Please use this identifier to cite or link to this item: http://dspace.univ-mascara.dz:8080/jspui/handle/123456789/942
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBENAHMED, ABDELOUAHED-
dc.date.accessioned2023-07-17T12:05:05Z-
dc.date.available2023-07-17T12:05:05Z-
dc.date.issued2023-07-17-
dc.identifier.urihttp://dspace.univ-mascara.dz:8080/jspui/handle/123456789/942-
dc.description.abstractThe initial subject of research was the study of minimal translation surfaces in the product space H2 ×R (the product space of the half Poincaré plane H2 and the real space R). On the other hand the study of surfaces of constant extrinsic Gaussian curvature in the Heisenberg space noted Nil3, this homogeneous space interests geometers by the fact that it admits a fairly large mobility (because its group of isometries is dimension four) and it admits a simply transitive subgroup of isometries which is nilpotent.en_US
dc.subjectMinimal surfacesen_US
dc.subjectFlat surfacesen_US
dc.subjectHomogenous spacesen_US
dc.titleSur la géométrie des surfaces dans les espaces H^2xR et Nil3en_US
dc.typeThesisen_US
Appears in Collections:Mémoire de Master

Files in This Item:
File Description SizeFormat 
Magister-Benahmed.pdf2,31 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.