Please use this identifier to cite or link to this item: http://dspace.univ-mascara.dz:8080/jspui/handle/123456789/1129
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCharfaoui, Younes-
dc.date.accessioned2024-12-10T08:36:43Z-
dc.date.available2024-12-10T08:36:43Z-
dc.date.issued2024-12-10-
dc.identifier.urihttp://dspace.univ-mascara.dz:8080/jspui/handle/123456789/1129-
dc.description.abstractBiclustering, a well-known bioinformatics technique, is essential for analyzing gene expression data because it reveals patterns and identifies groupings of genes that behave similarly under particular conditions. This thesis aims to contribute to the field through the introduction of three distinct approaches: a Differential Evolution-based method, a Multi-Objective Differential Evolution-based approach featuring a novel adaptive mutation operator known as BBDE, and a final method that employs Convolutional Denoising Autoencoders (CDAs) for preprocessing followed by Artificial Bee Colony (ABC) for biclustering. Each strategy displays its usefulness via comprehensive findings, contributing to the progress of biclustering techniques and improving gene expression data analysis in computational genomics.en_US
dc.subjectBiclusteringen_US
dc.subjectMicroarray data analysisen_US
dc.subjectGene Expressionen_US
dc.subjectDifferential Evolutionen_US
dc.subjectMulti-objectiveen_US
dc.subjectArtificial Bee Colonyen_US
dc.subjectConvolutional Autoencodersen_US
dc.titleAlgorithmes de Bi-regroupement pour l’Analyse des Données Complexes.en_US
dc.typeThesisen_US
Appears in Collections:Thèse de Doctorat

Files in This Item:
File Description SizeFormat 
Final Thesis After Correction.pdf4,89 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.