Please use this identifier to cite or link to this item: http://dspace.univ-mascara.dz:8080/jspui/handle/123456789/1044
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDJELLALI, Noura-
dc.date.accessioned2016-11-30T15:28:26Z-
dc.date.available2016-11-30T15:28:26Z-
dc.date.issued2024-06-23-
dc.identifier.urihttp://dspace.univ-mascara.dz:8080/jspui/handle/123456789/1044-
dc.description.abstractIn this research we give some geometric properties of hypersurfaces (M3; g) in the nilpotent Lie group (Nil4; eg). First, we give a left invariant metric, the Levi-Civita connection, Riemannian curvature, and the Ricci tensor in an orthonormal basis of vector eld in Nil4, beside, we note a classi cation of Codazzi hypersurfaces in a Lie group (Nil4; eg). We also give a characterization of a class of minimal hypersurfaces in (Nil4; eg) with an example of a minimal surface in this class.en_US
dc.subjectCodazzi hypersurfacesen_US
dc.subjectminimal hypersurfacesen_US
dc.titleGeometric properties of hypersurfaces in the geometry of Thurston Nil 4en_US
dc.typeThesisen_US
Appears in Collections:Thèse de Doctorat

Files in This Item:
File Description SizeFormat 
Mimoir Noura.D.pdf1,26 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.