Please use this identifier to cite or link to this item: http://dspace.univ-mascara.dz:8080/jspui/handle/123456789/1044
Title: Geometric properties of hypersurfaces in the geometry of Thurston Nil 4
Authors: DJELLALI, Noura
Keywords: Codazzi hypersurfaces
minimal hypersurfaces
Issue Date: 23-Jun-2024
Abstract: In this research we give some geometric properties of hypersurfaces (M3; g) in the nilpotent Lie group (Nil4; eg). First, we give a left invariant metric, the Levi-Civita connection, Riemannian curvature, and the Ricci tensor in an orthonormal basis of vector eld in Nil4, beside, we note a classi cation of Codazzi hypersurfaces in a Lie group (Nil4; eg). We also give a characterization of a class of minimal hypersurfaces in (Nil4; eg) with an example of a minimal surface in this class.
URI: http://dspace.univ-mascara.dz:8080/jspui/handle/123456789/1044
Appears in Collections:Thèse de Doctorat

Files in This Item:
File Description SizeFormat 
Mimoir Noura.D.pdf1,26 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.