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Abstract

The initial subject of research was the study of minimal translation surfaces in the product
space H? x R (the product space of the half Poincaré plane H? and the real space R). On the
other hand the study of surfaces of constant extrinsic Gaussian curvature in the Heisenberg
space noted Nils, this homogeneous space interests geometers by the fact that it admits a
fairly large mobility (because its group of isometries is dimension four) and it admits a simply
transitive subgroup of isometries which is nilpotent.

Keywords: Minimal surfaces, Flat surfaces, Homogenous spaces.



Résumé

Le sujet initial de recherche a été 1’étude des surfaces de translation minimales dans
'espace produit H? x R (I'espace produit du demi plan de poincaré H? et I'espace réelle R).
D’autre part I’étude des surfaces de courbure de Gauss extrinséque constante dans l’espace
de Heisenberg noté Nils, cet espace homogéne intéresse les géométres par le fait qu’il admet
une assez grande mobilité (car son groupe d’isométries est de dimension quatre) et il admet
un sous groupe simplement transitif d’isométries qui est nilpotent.

Mot clés: Surfaces minimales, Surfaces plates, Espaces homogénes.
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INTRODUCTION

In mathematics and in physics, a minimal surface is a surface minimizes its area while
achieving certain conditions on board.

In elemental differentiel geometry, a minimal surface is a closed and bounded surface
of a real Euclidean space of dimension 3 with regular board minimizing the total area with
fixed contour.

In 1744, Leonhard Euler posed and solved the first minimal surface problem: finding
between all surfaces passing through two parallel circles, the one with the smallest surface. In
particular, as the study of minimum surfaces, L.Euler found that the only minimum surfaces
of revolution are planes and catenoids.

In 1760, Lagrange generalised Euler’s results for calculating variations for integrals to
one variable in the case of two variables. He sought to solve the following problem: "given a
closed curve of E3, to determine a minimum area having this curve as a boundary " such a
surface is called a minimum area.

In 1776, Meusnier showed that the differential equation obtained by Lagrange being
equivalent to a condition on the mean curvature: "an area is minimal if and only if its mean
curvature at any point is zero'.

We have eight homogeneous spaces of dimension 3: E3, H3 53 S?xR, H*xR, SL (2,R), Nils
and Sols. In particular, our study will be space H? x R.

In this brief we have made it possible to obtain classification results concerning the
minimum translation areas of two properly prolonged types in the H? x R space. From D.
W. Yoon’s article , we will address the following information:

Let H? be represented by the upper half-plane model {(x,y) € R?|y > 0} equipped
with the metric gy = (dz* + dy?) /y?. The space H?, with the group structure derived by
the composition of proper affine maps, is a Lie group and the metric gy is left invariant.
Therefore the Riemannian product space H? x R is a Lie group with respect to the operetion

(z,y,2) + (2,9,2) = (Ty + 2,9y, 2 + 2)
and the left invariant product metric

da? + dy?
= Y +d2*
)

During the recent years, there has been a rapidly growing interest in the geometry of
surfaces in three homogenous spaces focusing on flat and constant Gaussian curvature sur-
faces. Many works are studying the geometry of surfaces in homogeneous 3-manifolds. See

for example [3],[4],[19],[20].[22].[47], [30].24].[31],[15] and [32].

The concept of translation surfaces in R3 can be generalized the surfaces in the three
dimensional Lie group, in particular, homogeneous manifolds. In Fuclidean 3—space, every
cylinder is flat. Conversely, complete flat surfaces in E3 are cylinders over complete curves.
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See [30]. L’opez and Munteanu [26| studied invariant surfaces with constant mean curvature
and constant Gaussian curvature in Sols space. Yoon and Lee [46] studied translation sur-
faces in Heisenberg group Hs whose position vector x satisfies the equation Az = Ax, where
A is the Laplacian operator of the surface and A is a 3 x 3—real matrix.

Flat G4—invariant surfaces are nothing but surfaces invariant under SO(2)—action, i.e.
rotational surfaces. Flat rotational surfaces are classified by Caddeo, Piu and Ratto in [14].

In [20], J.I.Inoguchi give a classification of intrinsically flat G;—invariant translation sur-
faces in Heisenberg group Hj. Let M be a surface invariant under G3, then M is locally
expressed as

X(u,v) =(0,0,v).(x(u),y(u),0) = (z(u),y(u),v), uel, veR.

Here I is an open interval and u is the arclength parameter. Note that (z,y,0) and (0,0, v)
commute. Then the sectional curvature K (X, A X)) = 411 and the extrinsically Gaussian

curvature K., = —% . Direct computation show that M is flat.(cf.[19],[20],[21],[37]).

My work is divided into three chapters:

In the first chapter we recall a number of definitions of a differential manifolds, map, atlas,
ect. We also report the definition of a group and Lie algebra, tanget space and vector fields,
rct. In section 1.6 we introduce the notion of a Riemannian manifolds and the connection of
Levi-Civita. We also write the curvature of Gauss and that of the mean curvature, ect.

In the second chapter we present the result concerning the classification of minimum
areas of type I and II in the H? x R space, according to the article by D.W.Yoon. We
begin with the study of the metric ¢ and we calculate the symbols of Chtistoffel Ffj and the

connecting forms V, the first and second fundamental form, ect.

In the third chapter we classify Go—invariant surfaces of the Heisenberg group Hj with
constant extrinsically Gaussian curvature K., including extrinsically flat Go—invariant sur-
faces.



Chapter

Riemannian manifold

In this chapter we present the basic concepts of the theory of differential geometry. We first
define topological and abstract manifold, differential maps (section 1.1.3). Next, we define
and give example of submanifolds of R" (section 1.1.4). Moreover, the notions of tangent
space, vector fields, brackets, Lie group and Lie algebra are definies.

In section 1.6 we present the definitions of Riemannian manifolds, Riemannian metric. In
section 1.6.1 we introduce the concept of isometry, the first and second fundamental form,
Christoffel symbols I‘f] In addition, we need to define what the cannonical connection, and
in section 1.6.5 we define the curvature average.

1.1 The notion of manifolds

Differential manifolds constitute the basic framework of differential topology and differen-
tial geometry. The notion of differentiable manifold generalizes the differential and integral
calculus that we know how to define on a euclidean space of dimension n (R").

1.1.1 Differentiable manifolds

Let M be a paracompact topological space i.e M is separated and such that any open
covering admits a finer and locally finite open covering .

Definition 1. We say that M is a topological manifold of dimension n € N if any point
x € M has an open neighborhood U homeomorphic to R™ i.e there exists a one-to-one map
¢: R™ — U such that ¢ and its inverse =1 be continuous.

Example 1. R" s trivially a topological manifold of dimension n.

Definition 2. We say that the topological manifold M s of dimension "n" if and only if
YU C Mopen set of M there exists an open set O C R" of R™ such that : U and O are
homeomorphie (i.e : Af: U C M — O C R"™ homeomorphism ) .

And (x1,...,1,) = ¢! (z) will be the coordinates of z. If (U, ¢) and (V, 1)) are two local
maps such that the intersection U NV is non-empty then a point x € U NV will be identified
by its coordinates (x1,...,z,) in U and its coordinates (z},...,z)) in V.
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Can we have
(z),...,x) =0 op(x,...,1,). (1.1.1)

The application ¢)~! o ¢ is called changing the coordinates of the map (U, ) to the map
(Vi9).

Definition 3. A map in a topological manifold M is a pair (U,p) such that :
1) U C M is an open set of M .

2) p: UC M — ¢ (U) CR"is a homeomorohism.

1.1.2 Abstract Manifolds

Definition 4. LetA = {(U;, ¢i)},c 4 be a collection of R"-valued charts on a set M. We call
A an R"-valued atlas of class CP if the following conditions are satisfied:

i) YU =M.
i€A
(ii) The sets of the form ¢, (U; N U;) for i,j € A are all open in R".
(iii) Whenever U; N U; is not emply, the map
¢ N 6 (UinTU;) — ¢ (U:N ;)
is a C? diffeomorphism (p > 1).

Definition 5. The pairs (U;, ¢;) are called the charts of the atlas {(U;, ¢;)}. A chart at or
around x € X 1s one whose domain contains x, and a chart centered at x is one mapping
x to the origin in R The local coordinates associated with a chart (Us, ¢;) are the functions

Gir: Up = R(1 <k <d) such that ¢; (x) = (¢i1 () ,...,0ia()).

Definition 6. Let {(U;, ¢;)},c; be an atlas on M, let U be a subset of M and ¢: U — R? a
bijection onto an open subset of R, The pair (U, $) is said to be a chart compatible with the
atlas {(Ui, ¢;)},c; if the union {(U, @)} U {(Us, ¢:)},c; is still an atlas. Two atlases (of same

dimension and differentiability class) are compatible if their union is still an atlas.

In order for (U, ¢) to be compatible with an atlas {(U;, ¢;)},.; it is necessary that each
¢ (UNU;) and ¢; (UNU;) be an open subset of R? and that the maps ¢ o ¢; ' and ¢~ o ¢
be of class C? on their domains of definition.

Definition 7. A differntiable manifold is a pair (M, A) where M is a topological manifold,
and A a differentiable atlas on M .

Example 2. The sphere S™ = {x € R""| |z| = 1} is an n-manifold.
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We construct an atlas {(Uy, ¢1), (Us, o)} with the aid of a standard well-known map
called stereographic projection. Let U; = S™\ {(0,...,0,1)} and Uy = S™\ {(0,...,0,—1)}.

Note that U, UUs = S™. Let ¢y (21, %o, . . ., Tns1) = (1;;;“,..., 1;’;“) and
T e
XT1,T9, ..., T = et .
02 (1, 2 m+1) (1+$n+1 1+5€n+1>

Then map ¢,: U; — R™ is called stereographic projection. The inverse map ¢;': R™ — U] is
defined by

2y, AT 2yn, 2

_ — = 11— —
Syr+1l Y yi41 Yoy 41 Yyi+1
=1 =1 =1 =1

¢1_1 (yla"'vyn) =

)

Both ¢; and ¢;' are continuous and hence ¢; is a homeomorphism.

The second coordinate chart (Us, ¢2) , stereographic projection from the south pole, is
given by ¢ = —¢; o (—Ign) where (—Ign) is multiplication by —Ig» on the sphere. Since
multiplication by —1 is a homeomorphism of the sphere to itself (its inverse is itself), the map
¢o: Uy — R™ is a homeomorphism.

Checking the compatibility conditions, we have

¢20¢1_1(y17"'7yn): n (yla'--7yn)

and ¢y 0 ¢! = ¢1 0 ¢, '. Hence, S™ is shown to be an n-manifold.
Compatibility is an equivalence relation. Thus we arrive at the definition of a manifold:

Definition 8. A C? differentiable structure (p > 1) on a set M is an equivalence class of
d-dimensional atlases of class CP on M. A d-dimensional manifold of class C? is a set M
endowed with a C? differentiable structure. A chart on M is any chart belonging to any atlas
in the differentiable structure of M.

1.1.3 Differentiable Maps

Definition 9. Let X and Y be manifolds, of dimension d and e and class C? and C",
respectively. Let p < inf (q,r). We say that a continuous map f: X — Y is of class CP, or
C? differentiable, or a C? morphism, if for every chart (U, ¢) at x € X and every chart (V1)
at f(z) €Y, the map o fod™t: p(UN f1(V)) = R® is of class CP. We will denote be
CP? (X,Y) the set of C? differentiable maps from X into Y.

This definition, involving as it does all possible charts at x and f (z), is not always
convenient to use. The next theorem helps:

Theorem 1. Let X and Y be manifolds of dimension d and e, respectively, and class > p.
Let f: X =Y be a continuous map. The following conditions are equivalent:
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(i) fis CP differentiable;

(ii) for every z € X, every chart (U,¢) at x and every chart (V,4¢) at f(x) such that
f(U) C V, the composition 1o fo¢™1: ¢ (U) — R® is of class C?;

(iii) for every x € X, there exists a chart (U, ¢) at x and a chart (V,¢) at f (z) such that
F(U)CV and wofog CCP(6(U),RY).

Proof. (i) = (ii) is immediate from the definition, just notice that f(U) C V implies
Unf(v)="uU.

(i) = (iii). Let (V1)) be chart at f (z). Since f is continuous, f~! (V) is open in X and
contains z, by the definition of canonical topology there exists a chart (U, ¢) at = such that
Uc f~1(V), whence f(U) C V. If (ii) is true it follows that ¢ o f o ¢! is of class C? from
¢ (U) into Re.

(iii) = (i). Let (S,«) be a chart at x € X and (7, 5) one at f(x) € Y. We must show
that the map 3o foa™!, from the open subset o (SN f~1(T)) of R? into R€, is of class CP.
It is enough to show that it is C? on a neighborhood of each point of its domain.

Take u € o (SN f~1(T)) and z' = o~ (u) € S. Property (iii), applied to ', gives a chart
(U, ¢) at =" and a chart (V1) at f (z') such that f(U) C V and that ¢ o f o ¢~ is of class
C? on ¢ (U). Now we can write

ﬁofoofl:(ﬁozbfl)o(wofoqﬁ*l)o(gboofl),

with the understanding that this only makes sense if each step in the composition is defined.
If we can prove that each step is defined and C? on a neighborhood of the image of u by the
previous steps, we will have shown that 3o f oa~!is CP on a neighborhood of u, and we’ll
be done.

The coordinate change ¢ o a™': a(SNU) — ¢(SNU) is of class CP, and its domain
contains u = « (') . Next, 9)o fo ¢~ is of class CP on ¢ (U), and its domain contains ¢ (z'),
the image of u under ¢ o a™!, by the very choice of U, so ¢ o f o ¢! is of class C? on a
neighborhood of ¢ (x') .

Finally, 8 o ¢! is a CP diffeomorphism between o (T'NV) and B (T NV). Its domain
Y (T NV) contains the image ¥ (f (z')) of u under the composition so far, since f(z') € V
by our choice of V and z' € f~!(T) as the image of u € a (SN f~1(T)) under a~*. Thus
Bo1~tis CP on a neighborhood of ¢ (f (2')), concluding the proof that So foa™!is C? on
a neighborhood of u.

Proposition 1. Let X and Y be CP manifolds of dimension d and e and having atlases
(Uis @i)ier and (Vj,1;) 5 respectively. The atlas (U; X Vj, ¢ X ;) where

i,j)EIET )

Gi X i: (m,y) — (¢ (7)1 (y)) € RY x R® = R*™,

makes X x Y into a (d + e) dimensional C? manifolds.
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Examples of differentiable maps

Proposition 2. Let X and Y be manifolds. The canonical projections p: X xY — X and
q: X XY =Y are differentiable.

Proof. We prove the result for p. By Theorem 1. (iii), it suffices to show that, for every
(r,y) € X xY, there exists a chart (U x V, ¢ x ¥) at (z,y) and a chart (W, 0) at x € X such
that p (U x V) C W and fopo (pot)) " : (¢ x ) (U x V) — R? (where d is the dimension
of X)) is of class C°.

Let (U x V, ¢ x ¢) be a product of charts, as in 1.1.1, at the point (z,y). For (W,0) we
take the chart (U, ¢) at z. We have p (U x V) = U, and the map ¢ opo (¢ x 1)~ " is defined
on (6 x ) (U x V) by

(5,) — (07 (), 071 (1) o 07" (s) o s,

~
eUxV

which is of class C*.

1.1.4 Submanifolds of R"

For d < n the canonical inclusion R? C R is defined as the map
ii (x1,...,mq) — (21,...,24,0,...,0).
Similarly, the canonical isomorphism is R” = R? x R*~

Definition 10. Let V' be a subset of R". We say that V is a d-dimensional C? submanifold
of R™ if, for every x € V, there exists an open neighborhood U C R"™ of x and a map
f:U — R™ such that f(U) C R"™ is open, f is a CPdiffeomorphism onto ils image and
funv)=f({U)NR". The codimension of V isn — d.

Example 3. [5/The sphere
The sphere S¢ = {x € R¥L: |jz]| = 1} is a compact, d-dimensional, C* submanifold
of R (We call S* a circle; S° is equal to two points).
To see this, write

Sd:{x:(flw--afoHl):£%+"'+§§+1_1:O}'

Thus S* is the zero-set of the map f (&1,...,8ap1) = & + -+ + &y — 1, which is
C*; furthermore, since

fl (iL’) = (2517 v 72£d+1) 3

f has non-zero derivative whenever x = (&1,...,&441) is on S9.

1.2 Tangent Spaces

Before introducing tangent spaces to abstract manifolds, we study the case of submanifolds
of R™.
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Definition 11. Let V' be a submanifold of R™. A wvector z € R" is said to be tangent to V
at z if there exists a C curve a: I — V (where I C R is an interval containing 0) such that
a(0) =z and o' (0) = z.

Remark 1. Strictly speaking, o/ (0) is a linear map from R into R™, but we have identified
it with the vector o' (0).1 € R™.

The condition 0 € [ just lightens the notation somewhat, but we could allow the curve to
be defined on an interval I containing some ¢ such that « (ty) = = and o' (tg) = =.

Definition 12. Let X be a manifold and x € X a point. A tangent vector to X at x is a
~-equivalence class of triples (U, ¢,u). The set of tangent vectors to X at x will be denoted
by T,.X.

Remark 2. A chart (U, ¢) at x determines an associated isomorphism
6,: T, X — RY,

which takes z € T, X to the unique vector u € R? such that (U, ¢,u) € 2. Bijectivity
follows because the vector u € R? in (U, ¢, u) is arbitrary.

1.3  Vector fields; brackets

Definition 13. A vector field X on a differentiable manifold M is a correspondence that
associates to each point p € M a vector X (p) € T,M. In terms of mappings, X is a mapping
of M into the tangent bundle T M. The field is differentiable if the mapping X : M — T M is
differentiable.

Considering a parametrization z: U C R® — M we can write

X(p) =) ai(p) a% (1.3.1)

=1

where each a;: U — R is a function on U and {%} is the basis associated to x, 1 =

1,...,n. It is clear that X is differentiable if and only if the functions a; are differentiable for
some (and, therefore, for any) parametrization.

Occasionally, it is convenient to use the idea suggested by (1.3.1) and think of a vector
field as a mapping X: D — F from the set D of differentiable functions on M to the set F
of functions on M, defined in the following way

X0 =Y ae) 52 ). (13.2)

7

where f denotes, by abuse of notation, the expression of f in the parametrization x.
Indeed, this idea of a vector as a directional derivative was precisely what was used to define
the notion of tangent vector. It is easy to check that the function X f obtained in (1.3.2)
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does not depend on the choice of parametrization z. In this context, it is immediate that X
is differentiable if and only if X: D — D, that is, X f € D for all f € D.

Observe that if ¢: M — M is a diffeomorphism, v € T,M and f is a differentiable
function in a neighborhood of ¢ (p), we have

(dp (v) )@ (p) =v(fop)(p).
Indeed, let a: (—e,e) — M be a differentiable curve with o' (0) = v, « (0) = p. Then

d

(dp (v) f) e (p) = 7

(fopoa)i=o=v(fop)(p).

The interpretation of X as an operator on D permits us to consider the iterates of X. For
example, if X and Y are differentiable fields on M and f: M — R is a differentiable function,
we can consider the functions X (Y f) and Y (X f). In general, such operations do not lead
to vector fields, because they involve derivatives of order higher than one. Nevertheless, we
can affirm the following.

Lemme 1. Let X and Y be differentiable vector fields on a differentiable manifold M. Then
there exists a unique vector field Z such that, for all f € D,

Zf=(XY-YX)f.
Proof. First, we prove that if Z exists, then it is unique. Assume, therefore, the existence
of such a Z. Let p € M and let z: U — M be a parametrization at p, and let

0 0
X = i—, Y = b —
z@': “ 0331 ZJ: J 8.73]'
be the expressions for X and Y in these parameterizations. Then for all f € D,
of
XYf = X b, ——
- x(20)

B ob; Of 02!
a ZZJ: i 81’, 81']' + 12]: aZbJ 8%8% ’

YXf =Y (Z%gx.)

B da; Of 9%
N Z bj a.Tj (9_1,’, * 12: aibj 8%28% ’

i,J ‘

Therefore, Z is given, in the parametrization x, by
Zf = XYf-YXf

(]
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which proves the uniqueness of Z.

To show existence, define Z, in each coordinate neighborhood z,, (U,) of a differentiable
structure {(Uy,, o)} on M by the previous expression. By uniqueness, Z, = Z3 on x, (U,) N
zg (Ug) # 0, which allows us to define Z over the entire manifold M.

The vector field Z given by Lemma (1) is called the bracket [X,Y] = XY —Y X of X
and Y; Z is obviously differentiable.

The bracket operation has the following properties:

Proposition 3. If XY and Z are differentiable vector fields on M, a,b are real numbers,
and f, g are differentiable functions, then:

(a) [X,Y] = —[Y, X] (anticommutativity),
(

(c
(d

)

b) [aX +b0Y,Z] = a[X, Z] + b[Y, Z] (linearity),
) [[X,Y], 2]+ [[Y. 2], X] + [[Z, X],Y] = 0 (Jacobi identity),
)

fX,gY]=fg[X, Y]+ fX(9)Y —gY (f) X.

Proof. (a) and (b) are immediate. In order to prove (c), it suffices to observe that, on the
one hand,

= XYZ-YXZ-/ZXY+7ZYX

while, on the other hand,
XY, Z]] + [V, [2, X]]

=XYZ -XZY - YIX+ZYX+YZX - YXZ - ZXY + XZY.

Because the second members of the expressions above are equal, (c¢) follows using (a).
Finally, to prove (d), calculate

fX,gY] = fX(gY)—gY (fX)
= fgXY +[fX(9)Y —gfYX —gY (f) X
= folX,Y]+ fX(9) X —gY (f) X.

1.4 Lie groups

|8] The space R™ is a C*° manifold and at the same time an Abelean group with group operation
given by componentwise addition. Moreover the algebraic and differentiable structures are
related: (z,y) — x 4+ y is a C™ mapping of the product manifold R” x R™ onto R", that is,
the group operation is differentiable. We also see that the mapping of R™ onto R™ given by
taking each element x to its inverse —ux is differentiable.

Now let G be a group which is at the same time a differentiable manifold. For x,y € G
let 2y denote their product and x~! the inverse of x.
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Definition 14. G is a Lie group provided that the mapping of G x G — G defined by
(x,y) — zy and the mapping of G — G defined by x — x~' are both C> mappings.

Example 4. R is a one-dimensional (Abelean) Lie group, where the group multiplication is
the usual addition +. Similarly, any real or complex vector space is a Lie group under vector
addition.

1.5 Lie algebra

Definition 15. We denote by X(M) the set of all C*®°—wvector fields defined on C*°—manifold
M.

We shall say that a vector space X(M) over R is a (real) Lie algebra if in addition to its
vector space structure it possesses a product, that is, a map X(M) x X(M) — X(M), taking
the pair (X,Y) to the element [X,Y] of X(M) , which has the following properties:

(1) it is bilinear over R:

[OCIX1+OCQX2,Y] = o [Xl,Y]+OéQ [XQ,Y],
(X, a1Vl +anYs] = o [X, V1] +au [X, V)],

(2) it is skew commutative:

X, Y] =-[Y, X],
(3) it satisfies the Jacobi identity:

X Y. ZI]+ [V, [Z2, X]] + [Z, [ X, Y]] = 0.

Theorem 2. X (M) with the product [X,Y] is a Lie algebra.

Proof. If o, € R and X, X5, Y are C'*™°-vector fields, then it is straightforward to verify
that

[aXy +8Xe, Y] f = a[X0, Y] f+ 5 [X0, Y] .
Thus [X,Y] is linear in the first variable. Since the skew commutativity [X,Y] = —[Y, X]
is immediate from the definition, we see that linearity in the first variable implies linearity
in the second. Therefore [X, Y] is bilinear and skew-commutative. There remains the Jacobi
identity which follows immediately if we evaluate
(X, [Y,Z]] + [Y,[Z, X]] + [Z,[X, Y]] applied to a C*™-function f. Using the definition, we
obtain

X2l f = XY, 2D) /) = [V, 2] (X )
= X(Y(2))-X(Z{X[) =Y (Z(X])+ 2 (X])).

Permuting cyclically and adding establishes the identity.
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1.6 Riemannian manifolds

The space
L* (T,,M,R) = {a: T,,M x T,,M — R/« is bilinear}

has a basis where the
{de; @dz; /1,7 =1,...,n}

where the dx; form the dual basis of the dual space

(TM)" = L(T,,M,R) ={w: T,,M — R/ linear form}

o\ . [ 1ifi=j
dxi(a_a;j)_é"j_{om#j

Bilinear forms dx; ® dx; are defined in terms of their action based on :

<dxi®dxj)(a a>:5ik5ﬂ:{11fz:kandj:l

Oz’ Ozl 0 otherwise

By inserting the base, for the coefficients of the representation

o = ZO&Z‘]‘CZZEZ' X dl’j

1,

a2 2
dij =« &m’@ycj '

Definition 16. A Riemannian metric (or Riemannian structure) on a differentiable mani-
fold M is a correspondence which associates to each point p of M an inner product ( >p
(that is, a symmetric, bilinear, positive-definite form) on the tangent space T,M, which
varies differentiably in the following sense: If x: U C R"™ — M s a system of coordi-
nates around p, with x (xy,zq,...,2,) = q € x(U) and B%i (q) = dz,(0,...,1,...,0), then

<8?:¢ (q), % (q)>q = gij (1, ...xy,) is a differentiable function on U.

defined as follows :

we get the expression

Remark 3. A Riemannian metric g on M is a map m — g, € L* (T, M,R) such that the
following conditions hold :

1. g (X,Y) = g (Y, X) for everything X,Y.
2. gm (X, X) > 0 for everything X # 0.

3. The coefficients g;; in each local representation (i.e , in any map )
G = Zgij (m) dz; ® dx;
2%

are differentiable functions .

(M, g) is then called Riemannian manifold.

Example 5. In R3, the Euclidian metric gy = dx® + dy? + dz? is a Riemannian metric .
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1.6.1 Isometry

Definition 17. f: (M,g) — (N,h) an isometry ( (M,g) and (N, h) are two Riemannian
manifolds ) if f is a diffeomorphism such that

h(Dpf (X),Dnf (X)) = ¢g(X,Y) at any point m € M and for all vectors X and Y
tangent in m to M.

1.6.2 The first and second fundamental form

Definition 18. Given a surface X, for any point p = X (u,v) on X, and letting
E=(X,X,, F=(X,X,), G=(X,X,).

The positive definite quadratic form (z,y) — Fxz? + 2Fxy + Gy? is called the first funda-
mental form of X at p. It is often denoted as I, and in matrix form, we have

wen = (7 a) ()

Since the map (z,y) — Ex? + 2Fzy + Gy* is a positive definite quadratic form, we must
have E/ # 0 and G # 0.

Then, we can write

F\°> EG-F?
Em2+2ny+Gy2:E(m+Ey) +Ty2.

Since this quantity must be positive, we must have £ > 0, G > 0, and also EG — F? > 0.
Definition 19. Given a surface X, for any point p = X (u,v) on X, and letting
= (Xu, N), m=(Xy,N), n=(Xy N),
where N s the unit normal vector such that

X, X X,

N=-F—F—.
[ X > X

The quadratic form (z,y) — 2 + 2maxy + ny? is called the second fundamental form of X at
p. It is often denoted as 11, and in matriz form, we have

L= (0 ") (1)

1.6.3 Christoffel symbols

Definition 20. Let g: U — R?**2 be a metric tensor of class C*. The Christoffel symbols of
the first kind of this metric tensor are the 23 functions.

1
Dije: = 5 (0igin + 990 + Ogis) : U = R
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(1 <i,j,k <2) and the Christoffel symbols of the second kind of this metric tensor are the
23 functions.

I => g™ Tye: U =R

(1<i,jk<?2)
Where (go‘k) is the inverse matriz of (gi;) -

1.6.4 The canonical connection

Definition 21. An affine connection V on a differentiable manifold M is a mapping
V:X(M)xX(M)— X(M)
which is denoted by (X,Y) AN VxY and which satisfies the following properties :

) VixegrZ = fVxZ + gVyZ.
i) Vx (Y +2)=VxY +VxZ.
i) T (1Y) = /Y5 + X ()Y,
in which X,Y,Z € X (M) and f,g € D(M).

Corollary 1. A connection V on a Riemannian manifold M is compatible with the metric if

and only if
XY, Z)=(VxY,Z)+ (Y,VxZ), XY, ZeX(M). (1.6.1)

Proof. Suppose that V is compatible with the metric. Let p € M and let ¢: I — M be a
differentiable curve with ¢ (to) = p, to € I, and with % |,_, = X (p). Then

d
X (p) <Yv Z> = E <Y7 Z> |t:to
= (VxpY.2), + (Y. VxpZ),
Since p is arbitrary, (1.6.1 ) follows. The converse is obvious.

Definition 22. An affine connection ¥V on a smooth manifold M s said to be symmetric

when
VxY = VyX =[X)Y] foral XY €eX(M). (1.6.2)

Remark 4. In a coordinate system (U, x), the fact that V is symmetric implies that for all
,j=1,....,n,
0

VXin - VX],XZ- == [X“XJ] = 0, Xz - 83’

(1.6.3)

which justifies the terminology (observe that (1.12.3) is equivalent to the fact that I'}; =
).
ji
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Theorem 3. (Levi-Civita). Given a Riemannian manifold M, there exists a unique affine
connection V on M satisfying the conditions:

a. V is symmetric.

b. V is compatible with the Riemannian metric.

Proof. Suppose initially the existence of such a V. Then

X<YZ> = <VXY,Z>+<Y,VXZ>, (164)
Y{(Z,X)=(VyZ, X))+ (Z,VyX), (1.6.5)
Z(X,)Y)=(VzX,)Y)+ (X,VzY). (1.6.6)
Adding (1.6.4 ) and (1.6.5 ) and subtracting (1.6.6 ), we have, using the symmetry of V,

that

XY, Z)+Y(Z,X) - Z(X,Y)
= (X, Z],Y) + (Y, 2], X) + (X, Y], Z) + 2(Z,Vy X).

Therefore

(1.6.7)

(Z,VyX) == —([v, 2], X) - ([X,Y],Z)

1{ XY, 2)+Y (Z,X) - Z(X,Y)— (X, Z].Y) }
2

The expression (1.6.7 ) shows that V is uniquely determined from the metric ( , ). Hence,
if it exists, it will be unique.

To prove existence, define V by (1.6.7 ). It is easy to verify that V is well-defined and
that it satisfies the desired conditions.

Definition 23. The curvature R of a Riemannien manifold M is a correspondence that
associates to every pair X, Y € X (M) a mapping

R(X,Y): X (M) — X (M) given by
R(X, Y)Z =VxVyvZ -V+vVxZ — V[X7y]Z, Z € %(M),

where V is the Riemannian connection of M.

Observe that if M = R™, then R(X,Y)Z = 0 for all X,Y,Z € X(R"). In fact, if
the vector field Z is given by Z = (z1,...,2,), with the components of Z coming from the
natural coordinates of R, we obtain

VxZ =(Xz,...,Xz,),

hence
VyVxZ =(YXz,...,YXz,),

which implies that

R(X,Y)Z =VxVyZ—VyVxZ = VixyZ =0,
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as was stated. We are able, therefore, to think of R as a way of measuring how much M
deviates from being Euclidean.
Another way of viewing definition (24) is to consider a system of coordinates {x;}

around p € M. Since [%, %] = 0, we obtain
i J

g 0 0 p
#(r ) o~ (7 VeV )

that is, the curvature measures the non-commutativity of the covariant derivative.

Proposition 4. The curvature R of a Riemannian manifold has the following properties:
(i) R is bilinear in X (M) x X (M), that is,

R(fX1+9Xo, Y1) = [R(X,Y1)+gR(X2, Y1),
R(Xy, fYi+g9Ys) = fR(X1,Y1)+gR(X1,Y2),

fag€D<M)7 X17X2,Y'1,Y'2 €x<M)

(ii) For any X,Y € X (M), the curvature operator R(X,Y): X (M) — X (M) is linear,
that is,

R(X,)Y)(Z+W) = R(X,Y)Z+R(X,Y)W,
R(X,Y)fZ = fR(X,Y)Z,

feD(M), ZWeX(M).
Proof. Let us verify (ii) only. The first part of (ii) is obvious. As for the second, we have

VyVx (fZ) = Vy(fVxZ+(Xf)Z)
= fVyVxZ+ (Y [f)(VxZ)+ (Xf)(VvZ) + (Y (Xf)) Z

Therefore,
VyVx (fZ) =VxVy (fZ2)=[(VyVx = VxVy) Z+((YX - XY) f) Z,
hence

R(X,Y)fZ = [VyVxZ— fVxVyZ+ (Y, X)) Z+ [VixyiZ+ (X, Y] f) Z
- fR(X,Y)Z

Proposition 5. (Bianchi Identity)

R(X,Y)Z+R(Y,Z)X +R(Z,X)Y =0.
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Proof. From the symmetry of the Riemannian connection, we have,

RIX.Y)Z+R(Y,Z)X +R(Z,X)Y = VyVxZ—VxVyZ+VixyZ
+VzVy X —Vy VX + V[Y,Z]X
VXV Y =V VxY + VgV
= VW [X, Z]|+ V[V, X]+Vx[Z,Y]
—Vix,z1Y¥ = Vyx1Z — Vizyv X
= WX 2+ Y X] + (X [Z,Y]
= 0,

where the last equality follows from the Jacobi identity for vector fields.
From now on, we shall write (R (X,Y) Z,T) = (X,Y,Z,T).

Proposition 6. (a) (X,Y, Z,T)+ (Y, Z, X, T)+ (Z,X,Y,T) =0,
b) (X,Y,2,T) = — (Y, X, Z,T),
© (X,Y,2,T) = —(X,Y,T,2),
() (X,Y,2,T) = (Z,T,X,Y).

Proof. (a) is just the Bianchi identity again;
(b) follows directly from Definition (curvature);
(¢) is equivalent to (X,Y, Z, Z) = 0, whose proof follows:

(X,Y,2,2) =(VyVxZ —VxVyZ+VxyvZ,Z).

. (VyVxZ,2) =Y (VxZ,Z) - (NxZ,VyZ),
and

(Vixy)Z,Z) = % (X,Y](Z,2Z).
Hence

(X,Y,2,2) = Y (VxZ,Z)— X (NyZ,7) +%[X, Y{Z,Z)

= WY (X(Z.2) - X (V{Z2) + 5 [X.V]{2,2)
— 0,

which proves(c).
In order to prove (d),we use (a), and write:

(X,Y,Z2,1)+ (Y, Z, X, T)+ (Z,X,Y,T) =0,

Y, Z,T,X)+ (Z,T,Y,X)+ (T,Y, Z,X) =0,
(Z, T, X,Y)+(T,X,Z,Y)+ (X, Z,T,Y) =0,
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(T,X,Y,Z)+ (X,Y,T,Z) + (Y,T,X,Z) = 0.

Summing the equations above, we obtain
2(Z, X, Y, T)+2(T,Y,Z,X)=0

and, therefore,
(Z,X,Y,T)=(Y,T,Z,X).

1.6.5 The curvature average

Definition 24.
B IG4+nE —2mF

H= 2(EG — F?)

If H =0, we say that (S) is minimal. Where the coefficients E, F,G,l,n and m are here
the coefficients of the first and second fundamental forms.




Chapter 2

Minimal translation surfaces in H? x R

The name minimal surfaces has been applied to surfaces of vanishing mean curvature, because
the condition H = 0 will necessarily be satisfied by surfaces which minimize area within a
given boundary configuration [1|. So, in the chapter we define the minimal surface (section
2.1). Then, we define the Lie group H? x R (section 2.2), and in section 2.3 we classify the
minimal translation surface of type 1. At the end, in section 2.4 we classify the minimal
translation surface of type 2.

2.1  Minimal surface

Definition 25. A minimal surface is a closed and bounded surface of a real Euclidean affine
space of dimension 8 with reqular boundary minimizing the total area with fixed contour. In
other words, a minimal surface in a given Riemannian manifold is the embedding of a compact
manifold with boundary minimizing the Riemannian volume with fized boundary .

Definition 26. In the space H*> x R , the surfaces which locally minimize the areas are called
minimal surfaces, they satisfy the condition H = 0, where H 1s the mean curvature given by

the formula:
_IG+nE—-2Fm

i = 2(EG — F?)

2.2 The Lie group H? x R

H? x R a Riemannian manifold endowed with a left invariant metric:
1
JH2xR — E (d.TQ + dyz) + d22

The Riemannian product space H? x R is a Lie group with respect to the operation :
(@,y,2) % (2,7,2) = (Ty + 2,9y, 2 + Z)
An orthonormal basis of left invariant vector fields {E1, s, E3} on H? x R is given by

0 0 0

Ey =Yg Ezzya—y; Es = 5
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The Levi-Civita connection of the H? x R space with respect to this base is

@ElEl = EQ; @ElEQ = _E17 @ElE?) = Oa

ViEi = 0, Vi,Ey=0, VB =0,

Ve, Er = 0, Vg,Ey=0, Vg,FE;=0.
where (z,vy, z) are usual coordinates of R3.

On the only hand, for any vectors X = x1Fy +y1Fo+ 21 E5 and Y = 29 Fy + yo By + 29 F3
in H% x R the cross product x is defined by:

E, Ey, FEs
XxY = rT Y1 2
T2 Y2 22
T
_ | B, — 1 B+ | M %N o8
Yo 22 To 22 T2 Y2

(Y129 — yo21) Er + (2221 — 2122) B + (T1y2 — 22y1) Es
= (ylzz — Y221, X221 — T1R2, X1Y2 — $21Ul) .
Lie brackets are :
[EbEZ] = —L; [E27E3] = 0; [E3,E1] =0.
As well as
Q(El,El) = Q(EQaEZ) = 9(E3,E3) =1,
g(Ey, Ey) = g(Eq, E3) =g (E, E3) =0.

Thus we have directly the fundamental tensor of ¢ (i.e: the matrix g;;) associated with
the metric, and its inverse ¢g*/. The associated matrices are :

2

O o
o O
[N
_ o O

0
0 |, (gl])1gi,j§3 -
1

ST

1
y2
(gij>1§i,j§3 = 0
0

with det (g;;) = y%l
The Christoffel symbols as well as the Levi-Civita connecting forms in (x, y, z) coordinates
for the metric g are :

koo 1 k1 d9i1 3931_agzg 1 k2 0gi2 agﬂ_agij
By = 2 |7 Oz, * Ox; 2 |7 Oz, i Ox; oy

+
1 k3 09gi3 3933 _ agzg

1,7, k=1,2,3 with z; =2, x5 =y, v3 = 2.
So we get :
F%1:§7 F12—F21——§, F%3:F§2:0, F§2:OJ
ngz_j F%3:F§1:07 F:l{,):()’ F?lzov F%SIFgQZ(]v
F%l 0, FQ_F =0, F§3:0> F?2:F§1:O,
F%zzo I‘%S:Félzo, F§3:07 I‘51’>3:F§1:0, F%3:F§3:O~
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Definition 27. A translation surfaces > (a, 3) in H? x R is a surface parameterized by:
x:Z—>H2><R, x(s,t) =al(s)*p(t),
where o and B are any generating planar curves lying in orthogonal planes of R3.

o We emphasize that the group operation x on the space H? x R is not commutative, we have
two translation surfaces, namely > (o, 8) and > (5, «) which are different. According
to planar curves a and B, we distinguish two

types as follows:
We assume that a (s) and 3 (¢) lie in the yz-plane and zy-plane of R?, respectively. That
is
a(s) = (0,s,f(s)),
B(t) = (9(t),4,0),

where f (s) and ¢ (¢) are smooth functions and s,t > 0.
In this case, we have two translation surfaces ), (o, 8) and ), (8, «) parameterized by:

z(s,t) = a(s)*xB(t)
= (0,5, f(s)) x (g (t),1,0)
= (sg(t),st, f(s)),

and

x(s,t) = B(t)*xal(s)
g(1),1,0)x(0,s, f(s))
g(t),st, f(s)),

which are called the translation surfaces of type 1 and 2, respectively.

~
—~

—~

Remark 5. 1) If one curve lies in the xz-plane,then the translation surface is a part of
rz-plane .

2) The translation surfaces generated by « (s) = (0, ¢1, s) and 5 (t) = (t,¢2,0) (c1, c2 € RT)
are planes. So, translation surfaces except for Remarks 1) and 2) are meaningful for
our study, because planes are trivial minimal surfaces.

2.3 Classification of type 1 minimal translation surface

Let >, be a translation surface of type 1 in Riemannian product space H*> x R. Then , >,
is parameterized by :

x(s,t) = (sg(t),st, f(s)) (2.3.1)

for all s >0 and ¢t > 0.
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We have
ox '
0s Ds

t 0
= cy—+ —y— + f'(s) - = with in this case y = st
r Yy

0z
t 1
_ 90 ey p e B
st S
ox
E: = Xy = EI’ (S,t)
= (sg‘ (t) Sy 0)
V(¢ 0 0
sg ( ) y_+fy— with in this Casey:St
Y ox Yy ay
g9 (@) 1
7 1+t 2

The coefficients of the first fundamental form of ), are given by:

E = (x5 )
g(®)
g(t) 1 ke
= _7_>f|(s) %
(St ’ ) f(s)
- (2 s mruer,
F = (x5, )
g'@)
(9@ 1 1
= (?,gaf(s)) 6
e 1
st2 st’
G = (m,xy)
g'@®)
)

I
N\
R
[~
~
| =

(@)
N——
Olew‘

The unit normal vector field U of ), is given by:
LS TP O 1O P CGEL ()P

|zs ¥ 2] wt
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where w = ||zs X z4|| and because

v Az = (?é '(s))/\(gT(t),%ﬁ)
(_f(S) f(s)g'(t) g(t) g(t))'

t t " st? st
To compute the second fundamental form of ), , we have to calculate the following:

D ~
—F = FE
Ds ! ?xs !

V%Eﬁ;Eﬁf‘(s)EgEl

t) ~ 1~ -
= %V&El + EVEgEl + f'(8) Vi, 1
g(t)

- 2,

st

— B = v, B

g(t) ~ 1~ | ~
= §VE1E2+EVE2E2+JC (s) \VaoN
= _MED
st
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D .
—F E
D Va3
g (t)

t
0.

5 1 -
Ve B3+ ;VEQES

So, the covariant derivatives are :

Vots = %(%Eri-éEri‘f(S)Ezz)
= @ [—éEl + %%El} + (—8—12E2+ %%EQ) + f'(s) Es + f'(s)
2
2
a _2i‘z(Z)El * (% - %2) By + f" (s) Es,
= D (g 1
S E(TE1+¥E2>
'(t) D 1D
Tt Ds T iDs
_&Z)El + (—g Oz; (t)> Es,
Sur = 2 (L0 1)
. W00y, g0Dy 1,10,
I ol | 2 |
_tg (t)ﬁ2 g<t)E1+gt(§) E2_t12E2_9T(t)E1
Il _ | I 2_
_ <tg -2 <t>)El+ (g O 1) 5
We have
U_l(_f (s) ['(s)g'(t) g(t)—tg (t)>
Cw t t st
and
- 2 () g(t)? 1
Vi, s = <_ ZQ(t)’gSgt)Z ?vfu (3)>7
G o = (_g(t) g(t) g (t) 0)
zs Lt St2 ) St2 ) )
- tg" () —2¢'(t) ¢'(t)* =1
Con <g<>t2 7 ¢ ¢ ’0>.

D
—F
Ds ®
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which imply the coefficients of the second fundamental form of ), are given by :

| = <?xsxs,U>
0

_ (_29 ) g 1 (8)) S ()5 )

st 7 s 8% 2071y 0
1 [2f (s)g(t)  ['(s)g (Hg®)’ f()g ()  gt)f'(s) tg(t)f (8)]

w

522 523 52t st2 st2

_ ( 21 (s) g (t) + f' () g (1) g (1) = 2f (s) g () + stf" (s) g (t) >
wsZt3 —st*f" (s) g (t) 7

_ ')
_ (_g<t>,g<t>g <t>70) P
st2 st? g(t)luzig‘(t)
1 [_f (5) (=g (1) , f(s)a(t)g <t>2]
w st3 st3
= PO+ ()90 (1)),
n = <~zt:pt,U>
) _1'e)
_ (tg' () =29 (1) ¢ (1 —170> rito
t2 t? g(t)iuég‘(t)
_ 1[—# (5)g'(t) 27 ()9 (1)  [()9 () [ ()9 (1)
w t3 t3 t3 t3

- e nrmen e ).

The translation surface ), of type 1 is minimal if and only if:

IG=2mF +nk
H= = IG —2mF E =
2 (BG = F?) 0<1lG mEF +n 0
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First let’s calculate G, mF and nkE:

IG = 32t3[2tf () g () + f(s)g(0) g (1) = *f (s) g (t) + stf" (s) g (t)

—st’f"(s) g (t)]
RAUINES
:w512t3[2f (s)g 75(75) g  f (8)9(52) g £(8)g (1 + sf" (s) gt(t) g (1)
—g" (s)g‘ (t)3—|—2f| (St)g(t) _{_f‘ (S)QIE;) g‘ (t) f\ (s)g‘ (t)
Sf'“t) 2O _ o5 ()9 1)
S a0+ £ &g g @20
_ 1 /1 (5)g g()*g (t) LS (t)9g ‘(t)3+f'(5)g(t)
wst3 st? st? st
f(s)gt) g (t)2]
st

nE =—s[=tf'(s)g" (0) + [ (s)g (t) + ['(s) g <t>3u‘2§2 + i + ' (s)°]

_ 1 fe)g W) F &g ®g®  f(5)gd O 9@ tf(s)g'®)  F(5)9'(¥)

wid 52t 522 522 52 52

POIO ip (o g 0+ 1 (9 () + 7 ()5 0]

+

Then we obtain:
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Heoo ij[Qf (s)g 2554) g ()’ L (s) 95(27575)52 g f (88)2?3@)3 L (s) 985;51) g (t)°
()9 @)’ L2 (s)g(t) i ()g@)’g @)  f(s)g (1)
st3 s2t4 52t° 52¢3
[(5)g'(t) 2 ()g@)’g () 2f (s)gt)*g (1)’ 2f(s)g (1) N f"(s)g(t)
st3 52t5 s2t5 s2t4 st4
2/ (9)gM g @ f(s)g' (t)g(t) L (s)g (1) g (t)
s2t4 s2t4 s2t5
f(s)g )
+ 352t5 , s2t2 , 321533 + s2t3
L (S)tZQ' (t) L (S)tgg' t  f (S)tgg (t) | =0
[f"( gt g ()° [ (s)g ()’ L (s)g@®) [f'(s)g'(®)
st4 st3 st4 st3
S (9)g W) f9)g ) f()’g @) L (s)°g (1)

st s2t? 12 t3

[(8)g®)*g @)  [(s)g" (1) L))

t3
*@%[Sf'( ) g(t) g ()" —stf'(s)g (¢)° +sf"(s)g(t)
—stf'(s)g (t) — f(s)g"(t) g (t)* = *F (s) g" (1)
— S f(s)° 9" (t) + S*tf' ()’ g () + 5°t £ (s)° g (¢)°] = O
Slsf (s)lgt) g (1) —tg ()’ +g(t) —tg' (t)]
+ () [~g" ) g (t)* — 2¢" (®)] + *f (s)° [tg' (t) — t2¢" (t) + g (¢)°]] = O (1)

We multiply (1) by (=1) , we find :

Sf ()" [£P9" (8) = tg (1) —tg' (1)’]

+sf'(s) [tg' (1) +1g () =g (t) g ()" =g ()] | =0 (2.3.2)
+/(s) [9" () g (1)° +t2 "(1)]

We start to study equation (2 3.2) in following cases :
If f'(s) =0, that is, f (s) =k (k € R), the surface ), is parameterized by :

Z (Sat) = (Sg (t) ; st, k) )

where ¢ (t) is an arbitrary function.
Now, we assume that f'(s) # 0 on an open interval. Since s > 0, divide (2.3.2) by
s2f' (s)® we obtain:

[P () — g () — 19 (0] + L [tg (0 + 19 () — 9 1) g ()" — 9 (0]
tapg 19 (D9 (1) + g ()]

(
(

2

=0
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and take derivative with respect to s:

i (o

> 19/ (1)° + 1 (1) — g/ (1 g (1) — 9 (1]

d 1 - - -
s (m) [9(1) 9" () + 29" ()] = 0.

Hence, we deduce the existence of a real number a € R such that

%(SJ; Ejiiﬁ) - i (82f1< E > (2.3.3)

g9 )+t (t) = a [tg )’ +tgd () —g )’ g(t)—g®)].

Let us distinguish the following cases:

Lifa=0ie £ () =0, then L — b and

g(t)’g" () +12g" () =0eg" () [gt)° +t}] =0

(t)
=¢"(t) =0,

that is g (t) = c1t + c2 (b, ¢1, c2 € R) .

(i) Let b=0i.e ;g; =0« f'(s) =0. Then f(s) = dis +dy (dy € R*, dy € R). In this
case, equation (2.3.2) becomes

s f (s)? [tQQ” (t) —tg' (t) —tg' (t)3] =0 =s°d’ [—tcl — tcﬂ =0
= — s’d3tc, (1 + cf) =0
=0 (1 + cf) s*dit =0
=c=0(s>0,t>0, d #£0).

Thus, the surface can be parameterize as
x (s,t) = (cas, st,d1s + ds) .

(i) If b = —k2 # 0, then f"(s) = —k2sf' (s)* and the general solution of the ODE is given

by:
f(s)= %ln (5 +14/8% + 21%) + do, (2.3.4)

Substituting (2.3.4) into (2.3.2), we easily obtain ¢; = ¢ = 0. Thus, ¢ (¢) = 0.
Where d; and dy are constants of integration.
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(iii) If b = k% # 0 = f"(s) = k2sf'(s)°, then the general solution of the ODE f" (s) =
k2sf' (s)° is given by:
Fls) = sint 2y 20
s) = —sin~' —— :
k V2d, ’

because we have

"(s 1 1 k2
; (i))?’ = k28 < — 5 f'2 352 + ]{Zl
1
== —k*s* — 2k
PN I B 1
=kt =2k k2 (—s2 - 2y)

1 —2k

<:>f‘ = W with dl = 71, k?l e R™ SO, d1 >0
1— S

)

which implies from (2.3.2) we can also obtain ¢; = ¢; = 0, that is g (¢) = 0.

2 Suppose now a # 0. From the first equation in (2.3.3), we obtain

f'(s) = —a L C1 "(s ap s) = cy1sf' (s)?
s = e e F )+ 6 = s o)

Sf'(s) = —g £ (s) +cisf (s)°
Sf'(s)+ %f‘ (s) = c1sf' (s)* (c1 € R), (2.3.5)

where ¢; is a constant of integration . We put f'(s) = p(s). Then we find the Bernoulli’s

equation as follows :
dp a

- — — 3‘
s + P =asp
We divide by p3, we obtain:
dp 5 a _,
— B 2
757 + P €18 (2)

To solve (2) we go through 2 stapes:
Step 1: homogenous first-order ODE
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I — a _ - a
P+ p =0 =pp = —

‘ 1
<:>/gds:—a/—ds
D s
< lnlp(s)|=—alns+nh
<=p(s) =exp(—alns+h).
So,

p=s‘exph(s) = p =—as " texph(s)+h'(s)s *exph(s).
Step 2: ODE of order 1 with second member

(2) <= [—as ™ exph(s) + ' (s) s “exph(s)] s* exp (—3h(s)) + 352“ exp (—2h (s)) = 18

= —as® texp (=2h (s)) + h' (s) s** exp (—2h (5)) + as**exp (—2h (s)) = 15
<=h'(s) s* exp (—2h (s)) = ¢;5

1
=-3 —2h' (s)exp (—2h (s))ds = /0131_2“ds

<= exp(—2h(s)) = / —2¢157 2 ds + ¢,

1 1 —2c
—h = 5 In (/ —2¢;572* M ds + 02> =3 In (mszm + C2>

So,
p=s" (/ —2¢;57 20 s + Cg)

p =352 (/ —2¢y57 2 s + 02) ) (2.3.6)

where ¢y is a constant of integration.

Wl

Then

(i) Let a = 1. Then from (2.3.6) we have

p 2 =5"(—2cIns+c)

1
p=—\c —2cIns
S

We put f'(s) = p(s), then

—2¢, - 1
f(s) :/ s)ds —/ Ve —2cInsds = —— 5 s gs. (2.3.7)

¢ —2c1lns
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1
(2.3.7) = f(s) = ——+/ca — 2c1Ins + ¢3, where ¢3 € R and ¢; = 0.
C1
1
sv/co —2¢;In s
—92¢, 1
—Ves = 2c1Ins — s g—i _ —eta(hs+1)

s?2(co —2¢y Ins) s? (g — 2¢1 In S)%

—f(s) =

= f"(s) =
Then

82

(2.3.2) = (29" (t) — tg' (t) — tg' (1)’]
s3(cg — 2¢1Ins)2 - ~ ~
Gl(t)

[ty ()" +tg' () g (1) g ()" =9 (1)]
s2(cg — 2¢1In 8)2 o

Njw

s(—ca+ ¢ (21ns+1))[

b [g(*' () 1 ' ()] =0

$v/Ca — 2¢1 In s~ g

Gs(t)

[G1(t)+ (c1 (2Ins+ 1) — c2) Go (t) + (e — 2¢1 Ins) G5 (t)] = 0.
(1)

1

—

[w

s(cg —2c¢1Ins)

We have
Go (t) = G5 (t)  according to (2.3.3)

So

(I) =G, (t) + 2¢1 In sGo (t) + c1Ga (t) — c2Ga () + 2G5 (t) — 2¢1 InsG3 (t) =0
<Gy (t) + 2¢1 InsG3 (t) + 1G5 (t) — oG5 (t) + 2G5 (t) — 2¢1 InsG5 (1) =0
=G (t)+aGs(t) =0
=t (1) —tg (t) —tg (1) + 1 (9 (1) 9" () + 2" (1)) = 0
= (1+a)t’y' (t) +ag (t)QQ”( t)=tg (1) [L+¢' ()]

Then

~— —

[(L+c)t?+egt)?] g (t) =tg (1) [1+4 )] . (2.3.8)

1. If ¢4 = 0, then equation (2.3.8) becomes
at’y' (t) =tg (t) +tg' (1)° <= g¢'(t) = 19 (t) = 19 (t)" =0,
We put ¢' (t) = w (t) . Then we can obtain the Bernoulli’s equation as follows:

dw 1 1 4
— - —w=-w
et t
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We divide by w?, we obtain:
dw 4 1 _,
E’UJ
To solve (3) we go through 2 stapes:
Step 1: homogenous first-order ODE

1 -2 1, —1 1
—zw =0 <=vww = -

t
@/Edt:/ldt
w t
<~ In|w(t)=Int+wv
<w(t) =texpuv(t)

w'w™?

S0
w=texpv(t) = w' =expuv(t) +tv' (t)expv ().
Step 2: ODE of order 1 with second member

(3) <= [expuv (t) +tv' (t)expv ()]t ?exp (—3v (t)) — tT exp (—2v (t)) = %

<=t 20 (t) exp (=20 (1)) +t P exp (—2v (1)) —t P exp (=20 (1)) = %

<" (t)exp (—2v (t)) = til
<:>—% o0 (1) exp (=20 (1)) dt /tdt

t2
< exp(—2v(t)) = -2 {5] +d;
1
=y = —§ln (di — t7)

So

Then
And from (3) give

Sls) 1

P8+ 5 () = 0= B =
< n|f(s)|=—Ins+c
“=f'(s) = dys*
< f(s)=dylns+d; (do,d3s €R).
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(ii) Let a # 1. In this case, the function f (s) satisfying equation (2.3.5) appears in the from

f(s ds (2.3.9)

1 1
) - \/ |02| 5. /g2(a—1) 4+ —a
ca(a—1)

because we have

1
pfz — g2 ( &1 152(%1) +62> _ [ 52 +6282a] § p=
a— - 52 4 cp5%0
and we put f'(s) = p(s), then
| 1 1
Cs2 4 ¢ps520 s\/ac_ll + cyps2(a=1)
So
1 1 1 1
1 |cal / 2(a—1) Gl ds=Fls) = Vel . 2(a—1) c1
Vic2 s\/s + Gy 2 3\/5 T &1
_ a2(a-1) c1
1 as ca(a—1)
:>fu (5> = ’ : 3
2| o (2601 c 2
Viel g (go-n 4 o)

So,
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1

(2.32) <= s [9" (t) — tg' (1) — tg (t)°]
2(a—1 ~ ~
sv/|eal \/s )+ 5 o=y o
—as 2(a—1) __ c1 ,
+ [tg (O’ +1g () —9 (Mg () —9 ()]
S2./ |02| (sQ(a—l) -+ 62(21_1)> G;?t)
1 9 9
+ lg(®)g'(t) +1g"(1)] =0
2(a—1 c N /
3\/|02]\/s (a=1) 4 02(a1—1) o
_ 4 e2(a-1) c1
1 as e2(a—1)
[G1 (t)] : S [Ga (1)]
\/ ‘02 Ve s <82(a ) 4 )2
cg(a 1)
1
/—|C . (G5 ()] =0
2 \/8 CQ((Z 1)
1 1 C1

/ C
|02 \/52(1 1) +C2 2

2(a—1) €1 a
(S o (a— 1)) 3(8) =0

1 ey L 2(a—1) @ _
<:>c2 Gl (t) -+ ( as o (a — 1) G2 (t) + (s + o (a 1) G3 (t) =0.

In addition, we have

Sg (8)g" (1) +1°g" (t) = a[tg ()" +tg (t) =g () g (1) —g ()] <= GCy(t) = aGs (1)

UD<:$éGH@)+8mknPﬂa2@y+aﬁwy+@(jilﬂ G (1) + G5 (1)) = 0
ﬁéGl()—FS [ Gg()—i-Gg(t)]—l-ﬁ|:—§G3<t)+G3<t) =0
<:>é01 (t) +c1G3 (1) -aCQ (:Ll_ 0 + o (al_ 1)] =

Cj%G“w+qG“ﬂcﬂgim+¢“5_n}:0

@igamw+qangiggﬁ}:o

<:>CLG1 (t) + Cng (t) =0
=a[t’g' (t) —tg (t) —tg (1)) +c1 [g (1) 9" (8) + 79" ()] = 0
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which implies
[at?g" (t) + c1g (1) g" () + c1t’g" (t)] = atg' (1) + atg' (t)° (4)
4) = [(a+c)+eag®)’]g ) =atg (t)[1+g (1)]. (2.3.10)

1. If ¢; = 0, then the general solution of (2.3.10) is given by g (t) = —v/d; — t2. As the
solution of equation ()and equation (2.3.5) gives:

a "(s a
O R
< In|f (s)| = —alns+c
= f'(s) = ws’“
—dy
= f(s) =dy _a1+ 13*‘”1 + ds
S50 J
f(8) = 778" 4 ds (dy do, ds €R).

We conclude with the following :

Theorem 4. Let Y, be a translation surface of type 1 in H* x R. If >, is minimal surface,
then >, is a plane parameterized as

z(s,t) = (sg (t),st, f(s)),
where
(1) either f(s) = c1s+ ¢ and g (t) = c3 or
(2) f(s)=cilns+cyand g(t) = —v/c3 — 2 or
(3) f(s) = s+ cyand g(t) = —v/cz — 2 or

(4) f(s) = ZVe2 = 2c1Ins + ¢ and g (t) is the function satisfying equation (2.3.8) or

(5) f(s) = \/L_Q‘ i 8\/52<a71}+ —ds and g (t) is the function satisfying equation (2.3.10).

cg(a—1)
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1.0+

0.7

0.5°

0.3

0.1- ‘

2y A 1618
6 I s14
8 2y, gy 12
10 1o X 510
6 6
18§ " 4

Figure 2.1: Minimal translation surface in H? x R of type 1 .
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2.4 Classification of type 2 minimal translation surface

Let >, be a translation surface of type 2 in Riemannian product space H* X R. Then , Y,

is parameterized by :
x(s,t) = (g(t),st, f(s)). (2.4.1)

for all s >0 and t > 0.
We have

t 0 9]
—+ f'(s ) Wlth in this case y = st

ry = —ux(s,t)

1 0
E = (Oagaf(s)> %
f(s)
1 | 9
= E—i_f (S) )
g'@)
1, st
F == O, ,f (S) ?
0
B 1
st
N1 g'(t)
! st
st 't 6
() 1
_ 9 5 1
522 2

The unit normal vector field U of >, is given by

fe)g®), ¢ (t)ES,

I (5)
U—-_2Ypg
wt wst 2 ws?t
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where w = ||zs X z4|| and because

Ts Ny = ()1 () ) A g‘(t)_o
(’S’f(>> (st’t’)
_ <_f'(5) f(s)g (t) _g'(t))

t st T s%t

To compute the second fundamental form of ), , we have to calculate the following:

D .
D_SEl — szEl
- v§Ez+f‘(S)EaEl
1~ .
= g E2E1 +f| (S> VE‘?,El
— 0’
D -
Ds2 = V, LI
1. .
= 5 g Eo+ f'(s) Vg, Es
= 0,
D -
D_S 3 = szEB
1~ .
== g E2E3—i_fI (S> VE?,E3
= 0.
D -
EEI = V., E
"(t) = 1~
- gs(t )vElE1 + VB
_ 9By
st
D .
EEQ - thEQ
"(t) = 1~
_ 90 g lem
st t
st ’
D -
EEg == thE:g
"(t) = 1~
A ) By 4 25 .
st t
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So, the covariant derivatives are :

~ D /1
Ve Ts ~Ds (—E2 + f'(s) E3)

1 1D ) D
:__2E2+—D—E +f ( )E3‘|‘f(3)D_SE3
1
:__2 2+fu()E37
( Bt E)
g ( g () D 1D
= E IV Y g+ -2 F
( T D T i D
_g‘(t)
82t 1
. D (g (t) 1
Vats =— ( =2 E) + - E
o Dt< st 't 2>
tg' (t) 29‘ (t) g'(t) D 1 1D
E = Bt B
( ! t Dt T iDt?
1 g'(t)

which imply the coefficients of the second fundamental form of ), are given by :

| = <®rsxs, U>
1)

1
— o f(S) (t)
- (0’ 82’ <S)) wst

_9@®
ws2t

_ % [—f' (;)tg' ) (2)25 (t)}

_ _M(f' (s)+ sf'(s)),

ws3t

G
— (_g (t) 0 ()) f'(S)l;'t(t)
st et
ws?t
1
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n = <@$txt, U>

_ l[_ﬂs)gm 2 () (1) , f'(5) 9 (1) 82f'(5)g'(t)]
w st3 st3 §3¢3 s3t3
= ST OIO (=) =27 ()t (1)~ 2 (1)

We suppose that the translation surface ), of type 2 is minimal if and only if
H=0«<=IG-2mF +nE =0

First let's calculate [G,mF and nE:

16 = g ) ()9 ()5 (o) [@ o
_ 1 [—g O’ f () sg O’ f'(s) g (B)f(s) sg(t)f (S)]
ws3t 5212 5212 ¢ t2 7
1 | ‘ 1
P = )9 0] ] 5]
1 [fs)g )
C ws2t2 [ st 1
nk = wsl3t3 [f‘ (s) g (t) (g‘ (t)Q — 82) — s (s) (tg" (t) — 2¢ (t))] [312 +f (8)2
B 1 f'(S)g'(t) ( ‘(t)2 f

Then we obtain:
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—g() f(S) _ g f(s) g f'(s) _ ()f (s) ( ) '(®)
1 s4¢3 §3¢3 3
H=0- 4 (s)g (O CYI0 N (OAIG RN 1] (s)g (0 4 fis ) g(t) —0

553 5375 g 533
_ ') (S) " () + 2f( ) '(t)

st3 st st3

. I'()g (" 2f(s)g () 9‘ ) f'(s)  [(s)g" (@) T (s)°g (t)°
s4t3 s3t3 52¢3 53¢2 s3t3
AR ACT IO
st? st3
1 —f" () g (t)° = 25f (s) g (t) — s*g' (£) f" (s)
gy | P90 05 ()9 (0 = e ()9 (1) | =0
+53f'(s)° g' (1)

=g () [=f' () +5f ()] + g (8) [-25 (5) = 8°f" (5) + 5° ' (5]
+tg" (1) [=sf' () = s°f ()] =0
We multiply this by (—1), we find:
tg" (t) [sf (s)+ S f (5)3} +g(t) [2sf (s) + s f" (s) = °f (3)3} (2.4.2)
+g () [f' (s) = s (s)°] =
If g'(t) = 0, that is g (£) = ¢ (c € R), the surface ) , is parameterized by:
x (s,t) = (¢, st, f(s)),

where f (s) is an arbitrary function.
If ¢' (t) # 0, then we can divide (2.4.2) by ¢'(t)

tiw%‘) [s1' () + S ()] + [2F () +8°F" (5) = 8 F ()] + 9/ ()" [f" (5) = S ()] = 0

then, we derive that with respect to ¢

d ( 0 [sf () + 7 ()] + 25 () + 20 (5) = 1 ()] > =0
dt +9' (0 [/ (s) = 5] ()]

) =g () (5 0+ 51 97 + 5 0 0F) (7 6) = 55 (o)) =0

g (t) ] S

-~ -

Fi(s) F3(s)

=re g (L) R4 607 -0

So, There is a real number a € R such that

d (tg"(t) d o2
i (50y) =i o 00
P (8) = 51 (5 =a (s (3)+ 5°F (7).

Let us distinguish the following cases:
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(1) Suppose that @ = 0. Then the first equation of (2.4.3) leads to

) — by 9'@) 1
tg" (t) = bg (t)(bER)@/gl—(t)dt—b/zdt
< 1Inlg (t)| =bln|t| + k (k € R)
<= exp (Inl|g (t)]) = exp (bIn|t| + k) = exp (k) - t°
=g (t) =c -t

where ¢; is a constant of integration .
If b # —1, then

/g(t)dt: /bdzu:»g() S o (0, 0 € R)

and if b = —1, then
g (t dt—clf dt <= g(t)=clnt+c (t>0).
From the second equation of (2.4.3), we have the ordinary differential equation

f'(s)—sf ()’ =0 f'(s) =sf (s)°

So
f"(s) / 1 1 52
ds= [ sds<— — - —=—+k
/sf(s)3 2 2 !
1
<:>F:—82—2]{51
2 1 1 ) _
== gy T Mthk="2k (k1 eR7)
1 1
—f' = = , c3 =/ ko.

Vky — 82 \/1 - (\/F>2

Then the general solution is given by f (s) = constant or f (s) = sin™* Ztca(e3 #0, ca €R).
(2) If a # 0, then the first equation of (2.4.3) writes as
g'(t)— =g (t) = —=g'(t)”, (2.4.3)

where b is a constant of integration. We put ¢'(t) = ¢(¢). Then we can obtain the
Bernoulli’s equation as follows:
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For his resolution, we put

Thus
dg b a dg 5 b _, a
. g = —— — — —
ar 14T e al T :
1
<:>——h‘—z—)h:—g
2 t t

We obtain a linear ODE of order 1 with second member.
To solve we go through 2 stapes:
Step 1: homogenous first-order ODE

1

b 1, b

h\
— / —dt = —2b at
h t
< In|h(t)] = —-2blnt + k
—h(t)=t"Pexpk
Hence, the general solution of the ODE without second member is :

h(t) =t expk;.

Step 2: ODE of order 1 with second member
We have

h(t) =t expk; =>h (t) = (k} (1)t ™ expky) + (—2bt > Lexp k)
By replacing h and h'in the ODE, we have

1 b a
IR —Zh=—2
2 t t
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S

(5) <= — % ((ky ()t expky) + (=26t > expky)) — - (t P expky) = —%

1
= -5kt = exp ky () + ?t_% exp ky () — %t‘% expky (t) = —%

1
2

2
=k () exph (t) = 7%2’)

— / k) (t) exp ky (t) dt = 2a / 21t

< expk; (t) = /2at2b_1dt

= = Sk (Ot Pexph (t) = —%

2
< expk; (t) = 2—Zt2b +c¢ (ceR)

=k () =In <%t2b + c)

So, the general solution in the ODE is:

hy (t) =exp (ln <%t2b 4 c>> -2

1
:th (%t%) 2 expc

or

We have h (t) = ¢ 2 (t). Then la solution general in the equation & —

dt
t) = L 2at** ! dt _
QQ ( ) tgb a

= (% + t_2b01>7 (c1 = expc)

:; (Cl - R)

% + t_%Cl

1
hy (1) = o / 2at* 1 dt.
dg b
t

q= —%qg is:

N[

NI

¢ =— [ 2at*'dt. (2.4.4)
1 = 0, then the general solution of (2.4.4) appears in the form
i) If b=0, th he g 1 soluti f(2.4.4 in the fi

1
g (t) = / it (2.4.5)
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1
(2.4.6) =¢'(t) = N
—92q-1
I o Nﬁ . __a ) 1
=g'(t) = (2aInt —dy) ¢ (2alnt—d1)%
50
1
4. ! 3 I I e ] 3 2 pu
(24.2) = (2alnt—d1 %ISf Zv:)f s)’] + ’—2alnt—d1\[28f (s) — s i"((j) +5°f" (5)]
1 3
R I _ | _ O
" aimt— )} () Fv(S)f (s)°]
@;ﬁ[ aFy (s)+ (2alnt —dy) Fy (s) + F5(s)] =0 *)
(2alnt — dy)2

In addition, we have

Sf" (s)—sf (s)’ =a(sf (s)+ 2 (s)°) <= Fs(s) =akF(s)

(%) <= —aF) (s) +aF; (s)+ (2alnt —dy) F5(s) =0
< (2alnt —dy) F5(s) =0

< (2alnt —dy) [2sf' (s) — s° ' (s)* + s f" (s)] =0

(2alnt — 2dy) [2sf' (s) — s° f' (s)% + s2f" (s)] =o0. (2.4.6)
From this, we obtain 2sf' (s) — s3f' (s)* + s2f" (s) = 0, and it’s solution is

(1+\/1+d252>
S

f(s)::i:ln —|—d3<d2, dgER)

(ii) If b =1, then from (2.4.5) the function g () is given by

1
g(t)= Vo + at? + ¢y (e € R)

because equation (2.4.5) became

2oL ogtar = q= 2 ( [ 2atat 7%—15 Wy é—1t(a152+c)2
q _t2 q_til - 2 1 - 1 bl

we have

Jun
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t 1 2at
(t)=q(t) =g (t) = Hdt = | ———=dt = — | ——=dt
00 =) =90 = [a@a- [ a1 [ 2
1
= a\/61+at2+02 (co ER).
In this case , the left hand side of equation (2.4.2) is polynomial in ¢ with functions of s

as the coefficients. Therefore, the leading coefficient must vanish.
In addition, we have

2at
Vo talt — . — 2t
! 24/ c1+at? C1

g'0) = (c1 + at?) N (1 + mf?)g
S50
(242) e ) — () — By(s) =0
(c1 + at?)? (c1 + at?)? (1 + at?)?
= s [e1Fy () + (e1 + at®) Fy (s) + t°F5(s)] =0
(Cl + CLt2) 2
= F () + (a1 +at?) Fo(s) + £ F5(s) = 0 (**)

(%) <=1 Fy (s) + at’Fy (s) + (e1 + at®) Fa (s) = 0
> (c1 +at®) [Fi(s) + Fa(s)] =0
<=F (s)+ Fy(s) =0
=5l (5)+5° ()" + 25 () = 8°F ()" + 5°[" (5) = 0
52" (s) +3sf (s) =0

We solve this equation

$F(5) 4 35F (5) = 0 = (5) + 21 (5) = 0
)3

fris) s
f(s) o ds
< In|f'(s)] = —-3Ins+ k
= f'(s) =dys7?

—=f(s) = d1/3_3ds

d
—f(s) = —515*2 + dy
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So, f(s) = —2 +dy (di, dy ER).

(iii) If b ¢ R—{0,1}, then (2.4.4) becomes:

b

1 1 -
¢ = o 2at?*Ldt = 2 [gt% + cl] — g=t <gt2b + cl> )

b
then the general solution of (2.4.4) is:

£t Vbl £t
t)= [ qt)dt= dt = dt = /b
s = fawa= | Y T AV

So, we have:

& ¢
0 = VIl | it =0 (0 = V- e

bt /a1 by —

VI

tb
—t.
/ vV Clt2b + bCl

tb . _ 2abt?b—1

| 24/ at?0+bc
=q" (t) = /|b| pre— -
bt G T iy —
A/ at?b+bcy
=4/1b
1o at? + bey

(at? + bcl)%

_ |b| bzcltb_l
(at? + bcl)%

bt*~1 (at® + bey) — abt3b—1>
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Then
(2.4.2) @M [F1 (s)] + % [, (s)] + M [F3(s)] =0
(ath + bC1)2 (ath + bCl>2 (at2b + bcl)Q
[b]t"

[b2ch1 (s) + (ath + bcl) Fy (s) + bt**Fy (s)} =0

<=b%ci Fy () + (at® + bey) Fy (s) + bt Fy (s) = 0
<=b%c1 Fy (s) + abt®® Fy (s) + (ath + bcl) Fy(s)=0
> (at® + bey) [Fo (s) + bFy (s)] =0
— I (S) + bFl (S) =0
=2sf'(s) — S (8)> + $2f" (s) + bsf' (s) + bs*f' (s)* =0
= (b+2)sf (s)+(b—1)s>f (s)> + 52" (s) =0
1
=)+ b+2) - f(s) +s(b-1)f (5)"=0
1
= f(s)+(0+2) f () =s (1= f (5)
We pose f'(s) = p(s) and we find a Bernoulli equation:
dp 1
— 4+ (b+2)=p=s(1—-10)p
5, T0+2)—p=s(1-0)p
We divide by p?, we obtain:
dp _4 1
' o 2) Zp~2 — _
Ly (b +2) 1y = (1) (7
To solve (7) we go through 2 staps:
Step 1: homogenous first-order ODE

1 1
p'p_3 + (b + 2) gp_2 =0 <:>p‘p_1 = —g (2 + b)

<:>/gd82—(b+2) ds
p s
< Inlp(s)|=—(b+2)Ins+ ks

—=p(s) = s D exp ks (s)

Then
P (s)=—(b+2)s D exphy (s) + s DL (s) exp ks (s) .

Step 2: ODE of order 1 with second member
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(7) <= [ (0+2) s P expky (s) + s T2k, (s) exp ks ()] s* O exp (—3ks (s))

(b+2) §s2b+3 exp (—2ky (s)) = s(1 =)

= — (b+2) s exp (—2ky (5)) + s2TE, (s) exp (—2k; ()
+(b+2) 5™ exp (—2kz (5)) = s (1 = b)

=Tl (5) exp (—2ks (5)) = s (1 — b)

<=k (s) exp (—2ky (s)) = (1 — b) s~ 273

[_
+

— —% 9k, (5) exp (— 2k (5)) ds = (1 — b) / 523
< exp(—2ky(s)) =-2(1-10) (ﬁs%z) +dy

1 1-b
—_9(1—=0b —2(b+1) di = —2(b+1) d
( )<—2(b+1)5 = T

1 1-5b
—k, = -3 In (_52(b+1) + d1> (d; € R).

b+1
So
1—0 1-b
—2 . 2(b+42) —2b+1) | g, | — 2 g g20+2)
e (e ) b,
Then )
1-0b, e
= d,52(0+2)
P (b+1s + dys
We have

ds,

1 1
Fe =)= o= [ploas= [ ts= |
\/ﬁsz + dy s2(0+2) S\/ﬁ 4 dys20+1)

where d; € R.
Thus, we have the following;:

Theorem 5. Let Y, be a translation surface of type 2 in H* x R. If 3", is minimal surface,
then >, is a plane or parameterized as

z(s,t) = (g(t),st, f(s)),
where
(1) either f(s) =sin™* S4caandg(t)=clnt+cor

(2) f(s) =sin"! S tcaandg(t) = Bt 4 ¢y or
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Figure 2.2: Minimal translation surface in H? x R of type 2 .

dt or

@ £(6) = (VRS g and g0 f

\/Zalnt dy

(4) f(s)=—-& +dyand g(t) = %\/cl + at? + ¢ or
f s/dlsQ(bJ,-l) b 1 s and g V f /at2b+bc1



Chapter 3

surfaces with Constant Extrinsically Gaussian
Curvature in the Heisenberg Group

The 3-dimensional Heisenberg group Hj is the simply connected and connected 2—step nilpo-
tent Lie group.Which has the following standard representation in GL(3,R)

1
0
0

S = 3

t
s (3.0.1)
1

with r,s,t € R.
The Lie algebra b3 of Hjs is given by the matrices

0 z =z
A=10 0 vy (3.0.2)
0 0O
with z,y, z € R."The exponential map exp : h3 — Hjs is a global diffeomorphism,and is given

by

a1
exp(A)=1+A+—=1| 0

_|_
. 3.0.3
5 ?{ (3.0.3)

The Heisenberg group Hj is represented as the cartesian 3—space R?(z,y, z) with group
structure:

1 1
(x1,y1, 21)-(T2, Yo, 22) 1= <1’1 + 22,01 Y2, 21+ 22+ 51Y2 — 51’2?/1) : (3.0.4)

We equip Hj3 with the following left invariant Riemannian metric

1 2
g :=dz* + dy* + (dz + é(ydzp — xdy)) : (3.0.5)
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The identity component I°(Hs) of the full isometry group of (Hs, g) is the semi-direct
product SO(2) x Hj. The action of SO(2) x Hj is given explicitly by

A = {COSQ —sin@] “ v
n sinf cosf |’ J
z

[ cos 6 —sin6 0 x a

= sin ¢ cos 0 y|+1]0

| 3(asing —bcosh) 3(acost+bsind) 1 z c

In particular, rotational around the z—axis and translations:
(2,y,2) = (2,9, +a),a € R

along the z—axis are isometries of Hs.
The Lie algebra b3 of 1°(Hj) is generated by the following Killing vector fields:

0 yo 0 zd

h=g: %90 70 200
0 0 0
Fs—a, F4——y£+xa—y.

One can check that I, F,, F3 are infinitesimal transformations of the 1—parameter groups of
isometries defined by

Gy = {(t,0,0)|t € R}, Gy = {(0,4,0)|t € R}, Gy = {(0,0,)]t € R},

respectively.Here this groups acts on Hjs by the left translation.The vector field F} generates
the group of rotations around the z—axis. Thus Gy is identified with SO(2).

Definition 28. A surface X in the Heisenberg space Hs is said to be invariant surface if
it is invariant under the action of the 1—parameter subgroups of isometries {G;}, with i €
{1,2,3,4}.

The Lie algebra b3 of Hj has an orthonormal basis {F}, Es, E3} defined by

g0 w0 0 a0 9

_9 _yvo _ v Y p_ 9 0.
dr 20z 7 8y+28z’ T 0z (3.06)

The Levi-Civita connection V of g,in terms of the basis { E; };—1 2.3,is explicitly given as follows

vElEl = 07VE1E2 - %E?)a vE1-E3 = _%EQ
Vi, By = —LE3 Vi By = 0,V By = 1B, (3.0.7)
Ve, By = —3E, Vg, Ey = 3F, Vg, E3 =0

The Riemannian curvature tensor R is a tensor field on Hj3 defined by

R(X,Y)Z =VxVyZ —VyVxZ — VixyZ. (3.0.8)
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The components {Réjk} are computed as

1
1

3 1
Ryyy = v Ry = 1 Riy = (3.0.9)

Let us denote K;; = K(E;, E;) the sectional curvature of the plane spanned by E; and
E;. Then we get easily the following:

3 1 1
Kp=-7 Kg=-7, Kn=—7. (3.0.10)
The Ricei curvature Ric is defined by
Ric(X,Y) =trace{Z — R(Z,X)Y}. (3.0.11)

The components {R;;} of Ric are defined by

3

k=1

The components {R;;} are computed as

1 1 1

The scalar curvature S of Hj is constant and we have
’ 1
— trRic = (B, E) = —=. 0.14
S = trRic ;ch( i B 5 (3.0.14)
3.1 Constant Extrinsically Gaussian Curvature
G1—Invariant Translation Surfaces in Heisenberg group

[H

3.1.1

In this subsection we study complete extrinsically flat translation surfaces ¥ in Heisenberg
group Hs which are invariant under the one parameter subgroup G;. Clearly, such a surface
is generated by a curve v in the totally geodesic plane {x = 0}. Discarding the trivial case
of a vertical plane {y = yo}. Thus 7 is given by v(y) = (0,y,v(y)). Therefore the generated
surface is parameterized by

Ty
X(z,y) = (2,0,0).(0,5,0(y) = (z,9,0(y) + 3°), (v,9) € R*.
We have an orthogonal pair of vector fields on (X), namely,

€1 = Xx = (1,0, %) = El + yEg
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and .
er =X, = (0,1,0" + 5) = Ey + v'E;.

The coeflicients of the first fundamental form are:
E=<eei>=1+9% F=<epe >=yv, G=<ey,e>=1+07
As a unit normal field we can take
N = —y B v’ 1

Ey + E.
/1+y2+/0/2 1 /1+y2+/0/2 2 /1+y2+/l}/2

The covariant derivatives are

Ve e1 = —yky
~ Y v 1
Ve e = §E1 - §E2 + §E3

V6262 = U/El + U”Eg.

The coeflicients of the second fundamental form are

/

Yv
V1+y?+o?

2 ,UIZ 1
5t 5 ts
V14+y?+o?

_y,U/ 4+

/1+y2+1)/2.

=< 66161,]\[ >=

m =< Ve, N >=

n =< 66262, N >=
Let K.,; be the extrinsic Gauss curvature of 3,

ko, ot ey = (e o
ext EG_F2 (1+y2—|—v’2)2 . A,

Thus ¥ is extrinsically flat invariant surface in Heisenberg group Hj if and only if
Kezt = 07

that is, if and only if

2 12 /i y2 Ulz 1 2
_ (=L 42} =0 3.1.2
YU+ yvv ( 5 + 5 + 2) ( )

to classify extrinsically flat invariant surfaces must solve the equation (3.1.2)
We can writes equation (3.1.2) as

2 2 2
2 I/ Yy v 1
- =4+ 4+ = =0 3.1.3
Y° +yvo (2 + 5 +2) ( )
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2 12
we assume that z = £ + %5 + % Then

1,11

Z' —y—l—vv
V" =2 —y (3.1.4)
v? =2z — 9% — 1.

Therefor equation (3.1.3) becomes

yz' — 22 =0. (3.1.5)
equation (3.1.5) implies that
4 1
- = ——. 3.1.6
- (3.16)
and equation (3.1.6) implies that
1
Z=—— 3.1.7
—In(y) + o ( )
where a € R, and if y # e*.
From 3.1.4 and 3.1.7 , we have
v? = 22—y -1
2 2

= Thyw Y L

2
Vo=t 2,
\/—ln(y) + y

Theorem 6. e The only non-extendable extrinsically flat translation surfaces in the 3—dimensional
Heisenberg group Hy invariant under the 1—parameter subgroup G1 = {(t,0,0) € H3/t € R},

are the surfaces whose parametrization is X (x,y) = (x,y, v(y) + x—Qy) where y and v satisfy

/ \/ —y? — 1dy.
In(y

e There are no complete extrinsically flat translation surfaces in the 3—dimensional Heisen-
berg group Hs invariant under the 1—parameter subgroup G, = {(¢,0,0) € H3/t € R}.

Thus

As conclusion, we have

where a € R, and y # e*.

Remark 6. Let ¥ be a Gi—invariant translation surfaces in the 3—dimensional Heisenberg
space. Then 3 1s locally expressed as

X(w,y) = (0,9.0(9) - (2.0,0) = (2.y.00) = 7).

Then the extrinsically Gaussian curvature K., of X is computed as
(v —2)*—1)°
4(14 (v —2)2)*

Thus X can not be of constant extrinsically Gaussian curvature.

ext —
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3.1.2

In this subsection we study complete constant extrinsically Gaussian curvature translation
surfaces Y in Heisenberg group Hj which are invariant under the one parameter subgroup
G1. Clearly, such a surface is generated by a curve « in the totally geodesic plane {z = 0}.
Discarding the trivial case of a vertical plane {y = yo}. Thus 7 is given by v(y) = (0, y, v(y)).
Therefore the generated surface is parameterized by

X(a,y) = (2,0,0).00,4,0(9)) = (w3, 0(w) + ), (2.9) € R,

Theorem 7. e The GGy—invariant constant extrinsically Gaussian curvature translation sur-
faces in the 3—dimensional Heisenberg group Hs, are:

_Z. Kext - _éll
The surfaces of equation

1
2= vly) + 5 =+ gyV/28 — 7 +aretan (L) ,

2 B—y
where B € R.

2. Koy # 1.
Then y and v satisfy

1 2
v<y>:/\/_2(Kmt+%)ln(y)+7_y — 1dy.

where v € R, and y # e*Feat+1),

e There are no complete constant extrinsically Gaussian curvature translation surfaces in the
3—dimensional Heisenberg group Hs invariant under the 1—parameter subgroup G.

Proof. From (3.2.1) and (3.1.3) we have

In—m? Py’ — i (1+y*+ v'2)?

Kest = 3o = T (3.1.8)
1. If Koy = —1—11‘ Then equation (3.1.8) becomes
y? +yv'v" =0 (3.1.9)
We note that y equal zero is solution of the equation(3.1.9).
If y is different to zero (y # 0), equation (3.1.9) becomes
V" = —y. (3.1.10)

Integration gives us

2

1
v(y) = =y+/20 — y? + arctan (%) ,
Y

where 3 € R.
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2. If Koy # —3%. Then equation (3.1.8) becomes

1
Y2 + v’ = (Keyy + 1)(1 +y? 4+ 0"?)> (3.1.11)

In fact, put 2 = 1 + v + v2. Then z satisfies
1 / 2
g¥7 = (e + )2% (3.1.12)

Hence we have

z= : (3.1.13)

~

where v € R, and y # e>¥estt1)  Using the equation z = 1 + 32 + v, we get

1
v? = —y* =1
_Q(Kext + %)y + 8

3.2 Constant Extrinsically Gaussian Curvature
Gs—Invariant Translation Surfaces in Heisenberg group
Hi

In this section we study constant complete extrinsically flat translation surfaces ¥ in Heisen-

berg group Hj which are invariant under the one parameter subgroup Gs. Clearly, such a

surface is generated by a curve v in the totally geodesic plane {y = 0}. Discarding the triv-

ial case of a vertical plane {z = x¢}. Thus 7 is given by v(z) = (,0, f(z)). Therefore the
generated surface is parameterized by

X(w,y) = (0,9,0).(2,0, /(@) = (2,9, f(2) = ), (0,9) € B,

We have an orthogonal pair of vector fields on (X), namely,
€1 = Xx = (1,0, f/ — %) = El + f/Eg.

and .
€g 1= Xy = (0, 1, —5) = EQ - I’Eg.
The coeflicients of the first fundamental form are:

E=<ee;>=1+f? F=<ee>=—af, G=<eye>=1+2%

As a unit normal field we can take
—f x 1

E + E, + E
Vit 2 fira2+ 2 v+
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The covariant derivatives are

66161 == _f,EQ + f”Eg

~ 1 x 1
Veey==FE +—-FEy— -FE
162 5 1 + g t2 = 5
65262 = —fL'El.
The coefficients of the second fundamental form are
— _ /_|_ 1
[ =<Vee,N>= of ]
V1t a2+ f2
2 et 1
m =< Ve, N >= 2 22
1+ a2+ [
_yvl +

n=<Veey N >= ——
V31+ty?+o?

Let K. be the extrinsic Gauss curvature of X,

In — m? 5C2+$f'f"—i($2+fl2+1)2

Kewt = EG_F° (4221 o) (3.2.1)
Thus X is extrinsically flat invariant surface in Heisenberg group Hj if and only if
Kewt =0,
that is, if and only if
2>+ af f - i(:ﬁ +f7+1)*=0. (3.2.2)

to classify extrinsically flat invariant surfaces must solve the equation (3.2.2)

We remark that the equation (3.2.2) is similarly to the equation (3.1.2), It is sufficient to
change y by x and v by f.

As conclusion, we have

Theorem 8. e The only non-extendable extrinsically flat translation surfaces in the 3—dimensional
Heisenberg group Hy invariant under the 2—parameter subgroup Go = {(0,t,0) € H3/t € R},
are the surfaces whose parametrization is X (x,y) = (x,y, f(z) — ﬂ) where x and [ satisfy

f(x):/\/m—ﬁ—ld(y.

where o € R, and x # e®.

e There are no complete extrinsically flat translation surfaces in the 3—dimensional Heisen-
berg group Hy invariant under the 1—parameter subgroup Go = {(0,t,0) € Hsz/t € R}.
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Remark 7. Let ¥ be a Go—invariant translation surfaces in the 3—dimensional Heisenberg
space. Then 3 1s locally expressed as

X(w,y) = (2.0, f(@))(0,9,0) = (2.9, f(@) + 5.

Then the extrinsically Gaussian curvature K., of X is computed as

(9~ 1
4(1+ (v — x)2)?

ext —

Thus > can not be of constant extrinsically Gaussian curvature.

Theorem 9. e The Gy—invariant constant extrinsically Gaussian curvature translation sur-
faces in the 3—dimensional Heisenberg group Hs, are:

_Z. Kemt — _411
The surfaces of equation

1
z:f(x)—%:—%+§x 2 — 2% + arctan (%),

where B € R.

2. Koy # 1.
Then x and f satisfy

1 2
(@) :/\/—Q(Kmﬂri)ln(x)—l—v 22— 1dy,

.
ok .1y
where v € R, and x # e*Featta)

e There are no complete constant extrinsically Gaussian curvature translation surfaces in the
3—dimensional Heisenberg group Hs invariant under the 1—parameter subgroup Gs.

CONCLUSION

In this magister thesis we gives a classification of minimal translation surfaces in product
Riemannian space H? x R and surfaces with constant extrinsically Gaussian curvature in
the Heisenberg group .
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