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Machine Learning Tools In Sentiment Analysis of Arabic Social Media

by Laouni MAHMOUDI

This thesis focuses on sentiment analysis on Arabic social media, which is a chal-
lenging task due to the complex and nuanced nature of Arabic language. To address
this challenge, the thesis proposes several contributions, including the development
of a new Arabic word embedding model, enhancements to the BERT model for im-
balanced text classification.

The proposed Arabic word embedding model is designed to capture the unique
semantic relationships and nuances of Arabic language, which can improve the ac-
curacy of sentiment analysis. The enhancements to the BERT model include mod-
ifications to the attention mechanism and training process, which can improve the
performance of the model on Arabic text data. The inclusion of a balancing layer
in BERT approaches is aimed at addressing the issue of imbalanced data, which is
common in sentiment analysis tasks.

The thesis presents experimental results that demonstrate the effectiveness of
the proposed contributions in improving the accuracy and performance of senti-
ment analysis on Arabic social media. The proposed model outperforms the BERT
baseline and achieves state-of-the-art results on several benchmark datasets.
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language, Word embedding, Balancing
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Chapter 1

introduction

1.1 Background

Natural Language Processing (NLP) (Mahmoudi2022) is a multidisciplinary field
that focuses on developing algorithms and tools for processing, analyzing, and un-
derstanding human language. In recent years, there has been a growing interest
in NLP techniques for analyzing Arabic text data, especially for sentiment analysis.
Sentiment analysis(Zhang2019) aims to identify and extract subjective information,
such as opinions and emotions, from text data. This information can be used to
understand public sentiment and opinions on various topics, such as politics, enter-
tainment, and social issues.

The rapid growth of social media platforms in the Arab world has led to an in-
creased interest in sentiment analysis on Arabic social media. With platforms like
Twitter, Facebook, and Instagram being extensively used, there is a vast amount
of user-generated content available for analyzing public sentiment and opinions.
Sentiment analysis, also known as opinion mining, is a branch of natural language
processing that focuses on automatically extracting subjective information, such as
sentiment, emotion, and opinion, from text data. By analyzing and categorizing
text into different categories like positive, negative, or neutral, sentiment analysis
provides valuable insights into public sentiment on various topics. It plays a cru-
cial role in diverse applications such as brand monitoring, reputation management,
market research, and political analysis. However, analyzing sentiment in Arabic text
data presents unique challenges due to the complexity of the Arabic language and
the use of dialects and slang. As a result, there is a growing need to develop effec-
tive NLP techniques that can handle these challenges and improve the accuracy and
reliability of sentiment analysis on Arabic social media(Alotaibi2022).

One of the challenges in developing NLP techniques for analyzing Arabic text
data is the problem of representation. Conventional methods such as bag-of-words
and n-gram models have limitations in capturing the semantic relationships between
words, and can result in high-dimensional and sparse representations. To address
this issue, researchers have explored the use of word embeddings such as GloVe,
which have shown promise in improving representation by capturing semantic re-
lationships between words in a low-dimensional vector space. However, the effec-
tiveness of these methods on Arabic text data has not been thoroughly investigated,
and there is a need to explore new approaches for representing Arabic text that can
improve the accuracy and robustness of NLP models.

NLP techniques for sentiment analysis on Arabic social media present unique
challenges due to the complexity of the Arabic language and the use of dialects and
slang. There is a growing need to develop effective NLP techniques that can handle
these challenges and improve the accuracy and reliability of sentiment analysis on
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Arabic social media. Moreover, the problem of representation is a significant chal-
lenge that needs to be addressed to improve the accuracy and robustness of NLP
models for Arabic text data.

1.2 Research Problem

Machine learning algorithms often face the challenge of effectively representing tex-
tual data in a way that captures its meaning and context. Traditional methods such
as bag-of-words and n-gram models have limitations in capturing the semantic re-
lationships between words, leading to high-dimensional and sparse representations
(Patil2022). To address this issue, word embeddings such as GloVe have shown
promise in improving representation by capturing semantic relationships between
words in a low-dimensional vector space. However, the effectiveness of such tech-
niques on Arabic text data remains understudied. Hence, there is a need to explore
new approaches for representing Arabic text that can improve the accuracy and ro-
bustness of NLP models.

Another major challenge in text classification is dealing with imbalanced datasets
(Wang2019), where the number of examples in each class significantly differs. This
can lead to biased models that perform poorly on minority classes, which are of-
ten the ones of interest. This problem is particularly common in sentiment analysis
tasks, where the distribution of sentiment classes can be skewed towards positive or
negative. Several techniques have been proposed to address this issue, including re-
sampling techniques, cost-sensitive learning, and deep learning-based approaches.
Therefore, there is a need to develop effective strategies to deal with imbalanced
datasets and enhance the performance of text classification models, especially in the
context of sentiment analysis on Arabic social media.

In this context, this thesis proposes a novel representation of Arabic text data by
combining GloVe embeddings with a Bag of Roots technique. This representation
captures both surface-level and semantic information, leading to better performance
in sentiment analysis when compared to existing methods. The proposed approach
has the potential to enhance the accuracy and robustness of NLP models by address-
ing the problem of representation.

Furthermore, this thesis proposes a novel solution to address the problem of im-
balanced datasets in text classification by incorporating a balancing layer into the
BERT architecture. The balancing layer is incorporated after the embedding step,
which improves the models’ performance, and after the BERT representation step,
which enhances the results further. The proposed approach demonstrates that deep
learning models can effectively handle imbalanced data, leading to enhanced perfor-
mance on minority classes. The approach has the potential to be applied to various
text classification tasks and contribute to the development of more effective models
in NLP.

1.3 Objectives and Scope

The main objective of this thesis is to develop a new representation for Arabic text
data that can enhance text classification performance, particularly in the domain of
sentiment analysis on social media. The proposed representation will aim to cap-
ture both surface-level and semantic information, and overcome the limitations of
conventional methods such as bag-of-words and n-gram models. To achieve this,
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we will investigate the effectiveness of combining GloVe representations with a Bag
of Roots technique. The Bag of Roots technique is a novel approach that extracts
morphological roots from Arabic words and uses them to capture the underlying
semantic structure of the text. We hypothesize that combining this technique with
GloVe representations can result in a more effective and robust representation of
Arabic text data.
In addition, we aim to address the problem of imbalanced datasets in text classifica-
tion by improving the performance of deep learning models. Imbalanced datasets
can lead to biased models that perform poorly on minority classes. To address this
problem, we propose to enhance the BERT architecture by adding a balancing layer
that can effectively deal with imbalanced datasets. We will evaluate two balancing
techniques: oversampling and undersampling. Oversampling involves replicating
examples from the minority class, while undersampling involves randomly selecting
examples from the majority class. We hypothesize that adding a balancing layer to
the BERT architecture can improve the performance of deep learning models on im-
balanced datasets, particularly in the context of sentiment analysis on Arabic social
media. The proposed approach can contribute to the development of more accurate
and reliable NLP models for analyzing Arabic text data on social media platforms.

1.4 Contributions

In this thesis, we make three main contributions. Firstly, we introduced a new
method to represent Arabic text data that combines GloVe embeddings with a Bag
of Roots technique. The use of GloVe embeddings enables the representation to cap-
ture semantic information, while the Bag of Roots technique enhances the model’s
ability to capture surface-level features. We evaluated The approach on a sentiment
analysis task and demonstrated that the proposed method outperforms existing ap-
proaches. Specifically, the proposed method achieved higher accuracy, precision,
recall, and F1 score than other methods. The results suggest that this new represen-
tation has the potential to be applied to other Arabic NLP tasks and improve their
performance.

This new representation is particularly significant for Arabic text data as it presents
unique challenges due to the morphology and complexity of the language. The Bag
of Roots technique addresses these challenges by breaking down the text into its
roots and considering them as separate entities. This approach is especially effective
for Arabic text, where a single word can have multiple roots. By considering the
roots of each word in the text, the model is able to capture a greater range of surface-
level features. The combination of this approach with GloVe embeddings allows for
the capturing of both surface-level and semantic information, resulting in a more
comprehensive representation of the text.
The two other contributions of our thesis addresse the issue of imbalanced datasets
in text classification. In real-world scenarios, it is common to encounter datasets with
a severe imbalance between classes, where some classes have significantly fewer
samples than others. This results in a bias towards the majority class during train-
ing, leading to poor performance on the minority classes. To tackle this issue, we
propose a novel solution by incorporating a balancing layer into the BERT architec-
ture.

The balancing layer is added after the embedding step, which enhances the model’s
ability to handle imbalanced data. It generates a weight for each class based on its
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frequency in the training data, which is then used to reweight the loss function dur-
ing training. By incorporating this layer, we demonstrate that deep learning models
can effectively handle imbalanced data, leading to improved performance on minor-
ity classes. In addition, we also investigate the performance of the balancing layer
when it is added after the BERT representation step, which further enhances the
results.

Our proposed approach has the potential to be applied to various text classi-
fication tasks beyond sentiment analysis. By addressing the issue of imbalanced
datasets, it can contribute to the development of more effective models in NLP. This
approach also highlights the importance of considering the class distribution in the
training data, as it can significantly affect the model’s performance. Our thesis pro-
vides new insights and methods for improving the performance of text classification
models on imbalanced datasets.

Overall, in this thesis, we make three main contributions.

1. Introduction of a new method for representing Arabic text data: We pro-
pose a novel approach that combines GloVe embeddings with a Bag of Roots
technique to represent Arabic text. By leveraging GloVe embeddings, our rep-
resentation captures semantic information, while the Bag of Roots technique
enhances the model’s ability to capture surface-level features. We evaluate our
approach on a sentiment analysis task and demonstrate its superiority over
existing methods. The proposed method achieves higher accuracy, precision,
recall, and F1 score, indicating its potential for improving performance in other
Arabic NLP tasks.

2. Tackling imbalanced datasets in text classification: Imbalanced datasets are
common in real-world scenarios, where some classes have significantly fewer
samples than others. This leads to biased training and poor performance on
minority classes. To address this issue, we propose a novel solution by in-
corporating a balancing layer into the BERT architecture. The balancing layer
generates weights for each class based on their frequency in the training data
and reweights the loss function during training.
a- Integrating this layer After Embedding: We demonstrate that deep learn-
ing models can effectively handle imbalanced data, leading to improved per-
formance on minority classes.
b- Integrating this layer After BERT representation: We also investigate the
performance of the balancing layer when added after the BERT representation
step, further enhancing the results.

1.5 Summary of Remaining Chapters

The following is a summary of the remaining chapters in this thesis:

• Chapter 2: Sentiment Analysis on Social Media This chapter will introduce
social media and its impact on sentiment analysis. It will also address the
challenges of sentiment analysis in Arabic social media and explore various
techniques used in sentiment analysis.
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• Chapter 3: Text Representation in NLP This chapter will examine different
approaches to text representation in NLP, including word embeddings, bag-of-
words, and TF-IDF. Additionally, it will cover the advantages and limitations
of each method and their applications in sentiment analysis of Arabic text.

• Chapter 4: A New Arabic Word Embeddings Representation for SA In this
chapter, we will present our proposed method for developing new Arabic
word embeddings based on GloVe and Roots.

• Chapter 5: Balancing Approaches This chapter will discuss the challenges
of imbalanced datasets in sentiment analysis and explore various balancing
techniques such as oversampling, undersampling, and data augmentation.

• Chapter 6: Improving Multi-Class Text Classification on Imbalanced Datasets
Chapter 5 will detail our two proposed approaches for improving imbalanced
text sentiment analysis, including the integration of new Arabic word embed-
dings and balancing techniques with BERT.

• Chapter 7: Conclusion Finally, Chapter 6 will provide a summary of the main
contributions of this thesis, discuss potential areas for future research, and ad-
dress limitations of our proposed approaches.
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Chapter 2

Sentiment Analysis on Social
Media

2.1 Introduction

Social media has become an integral part of our daily lives, providing a platform
for people to share their thoughts, opinions, and experiences (Ellison2011). The vast
amount of user-generated content on social media has created a unique opportunity
for businesses to gain insights into customer behavior and sentiment.
Sentiment analysis is a powerful tool that allows businesses to analyze and under-
stand the emotional tone of social media posts and comments. Natural Language
Processing (NLP) techniques are used to identify and extract subjective information
from text data, enabling businesses to gain valuable insights into customer senti-
ment and behavior (Zhang2019).
The benefits of sentiment analysis of social media are numerous. By monitoring so-
cial media sentiment, businesses can improve the customer experience by quickly
identifying and responding to negative feedback, protecting their brand reputation
and increasing customer satisfaction and loyalty.
Sentiment analysis can also provide businesses with marketing insights, helping
them to refine their marketing strategies and improve overall business performance.
Additionally, sentiment analysis can be used for competitive intelligence, providing
businesses with valuable insights into their competitors’ strengths and weaknesses
(Gao2021).
To successfully implement sentiment analysis, businesses must first identify the so-
cial media channels and platforms that are relevant to their industry and target audi-
ence. They must then develop a strategy for monitoring and analyzing social media
sentiment, using tools such as sentiment analysis software and social media moni-
toring platforms.
However, there are also challenges associated with sentiment analysis of social me-
dia. For instance, sentiment analysis can be impacted by the nuances of language,
slang, sarcasm, and cultural differences. As such, it is important for businesses to
continually refine their sentiment analysis techniques to ensure accuracy and relia-
bility (Smailović2021).
In conclusion, sentiment analysis of social media is a powerful tool that allows busi-
nesses to gain insights into customer behavior and sentiment, helping them to make
data-driven decisions and improve overall business performance. While there are
challenges associated with sentiment analysis, the benefits far outweigh the risks,
making it an essential tool for businesses of all sizes.
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2.2 Social media

Social media platforms are websites and mobile applications that allow users to cre-
ate and share content with other users. These platforms have become a central part
of modern communication, with billions of users around the world using them every
day. Here are some of the most popular social media platforms:

Facebook - Facebook is the largest social media platform, boasting over 2.8 bil-
lion monthly active users worldwide. The platform allows users to create profiles,
share updates, photos, and videos, and connect with friends and family. Users can
create posts on their profiles and share them with their friends, who can react to
and comment on them. The platform also offers features such as groups and pages,
which allow users to connect with others who share similar interests or causes.

Facebook has become an integral part of many people’s lives, serving as a plat-
form for communication, entertainment, and information-sharing. The platform’s
popularity and reach have made it an attractive destination for businesses and or-
ganizations looking to engage with their target audience. Facebook offers a suite
of advertising tools that allow businesses to create targeted ads and reach specific
demographics. In addition, the platform offers insights and analytics that enable
businesses to track their performance and optimize their campaigns.

Despite its popularity, Facebook has also faced criticism for issues such as data
privacy, misinformation, and hate speech. The platform has taken steps to address
these concerns, including implementing policies and tools to combat misinformation
and hate speech, and providing users with more control over their privacy settings.
Nevertheless, the platform remains a significant force in the social media landscape,
connecting users around the world and providing a platform for expression and
engagement.(Facebook2022).

FIGURE 2.1: Facebook Icon.

Twitter - Twitter is a popular microblogging platform that allows users to share
their thoughts and ideas in short messages called tweets. With over 330 million
monthly active users, Twitter has become a powerful tool for communication and
information sharing. Users can post tweets of up to 280 characters, which can in-
clude text, photos, videos, and links. Twitter also provides a range of features to
help users engage with their audience, including the ability to like, retweet, and
reply to tweets.

One of the unique features of Twitter is the use of hashtags, which allows users to
categorize their tweets and join conversations on specific topics. Hashtags are rep-
resented by the symbol followed by a keyword or phrase, such as BlackLivesMatter
or COVID19. By using hashtags, users can connect with others who are interested
in the same topics and participate in ongoing conversations.

In addition to individual users, Twitter is also widely used by businesses, news
organizations, and public figures to reach their audiences and share information.
Twitter provides a range of advertising and analytics tools to help businesses and
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organizations measure the effectiveness of their tweets and engage with their fol-
lowers. Overall, Twitter has become a major platform for communication, infor-
mation sharing, and social engagement, with a global reach that continues to grow
(Twitter2022).

FIGURE 2.2: Tweeter Icon.

Instagram - Instagram is a popular social media platform with over 1 billion
monthly active users. It is a photo and video sharing platform that allows users
to share visual content with their followers. Users can also follow other users and
discover new content using hashtags and search.

Instagram’s focus on visual content makes it a popular platform for artists, pho-
tographers, and businesses that rely on visual marketing. The platform offers a
range of tools for editing and enhancing photos and videos, including filters, text
overlays, and stickers. Additionally, Instagram allows users to share content on their
stories, which are short-lived posts that disappear after 24 hours. This feature has
become increasingly popular among users and businesses as a way to share more
casual, behind-the-scenes content.

In recent years, Instagram has also introduced new features such as Instagram
Reels, which allows users to create and share short-form videos, similar to TikTok.
The platform has also added shopping features, allowing businesses to tag prod-
ucts in their posts and stories, making it easier for users to discover and purchase
products (Obrist2021).

FIGURE 2.3: Instagram Icon.

LinkedIn -LinkedIn is a social networking platform designed for professionals
and business-oriented individuals. It has over 740 million members in over 200
countries and territories worldwide. The platform enables users to create profes-
sional profiles that highlight their skills, education, and work experience. These
profiles also serve as a means to showcase one’s professional accomplishments and
connect with other like-minded individuals.

One of LinkedIn’s primary functions is to facilitate professional networking. Users
can connect with other professionals in their industry or field, expand their network,
and potentially find new job opportunities. The platform offers various features such
as messaging, job postings, and groups that allow users to engage in meaningful
conversations and build relationships with others.
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In addition to networking, LinkedIn also offers several tools to help users en-
hance their professional skills and knowledge. These tools include LinkedIn Learn-
ing, a platform for online courses, and LinkedIn Live, which allows users to broad-
cast live video content to their followers. The platform also offers various resources
such as job search tools, career advice, and industry insights, making it a valuable
resource for professionals seeking to advance their careers (Mollick2021).

FIGURE 2.4: LinkedIn Icon.

YouTube - YouTube is a popular video sharing platform that has over 2 billion
monthly active users. The platform allows users to upload videos, watch and share
videos with others, and subscribe to channels. The platform provides a wide variety
of video content, including music videos, vlogs, educational content, and entertain-
ment videos. YouTube’s search functionality and recommendation algorithm make
it easy for users to discover new and relevant videos.

One of the key features of YouTube is its monetization system, which allows cre-
ators to earn money from their videos. Creators can monetize their videos through
ads, sponsorships, merchandise sales, and other methods. This has led to the rise
of many successful YouTube channels and the growth of the platform’s creator com-
munity.

YouTube has also become a valuable resource for educational content. Many
creators have created channels dedicated to teaching skills, providing career advice,
and sharing knowledge on a variety of topics. The platform’s popularity and accessi-
bility have made it an effective tool for online learning and self-improvement(Miller2021).

FIGURE 2.5: Youtube Icon.

TikTok - TikTok is a social media platform that is focused on short-form video
content. It has become one of the most popular social media apps with over 1 billion
monthly active users. The app is designed for users to create and share short videos,
typically around 15 seconds long, that are set to music or other audio. Users can also
add various visual effects, filters, and stickers to their videos to make them more
engaging.

One of the unique aspects of TikTok is its algorithm, which is designed to show
users content that is relevant to their interests. The app uses machine learning algo-
rithms to analyze user behavior and preferences, and then suggests content that is
likely to be of interest to them. This has helped TikTok to become a popular platform
for discovering new music, viral challenges, and trends.
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TikTok has also become a platform for influencer marketing, with many brands
using the app to promote their products and services. Influencers on the app have
large followings and can have a significant impact on consumer behavior. Many
brands have also created their own TikTok accounts to engage with users and pro-
mote their products in a more creative and engaging way (Oz2021).

FIGURE 2.6: Tik Tok Icon.

Snapchat - Snapchat is a popular multimedia messaging app that allows users
to send photos and videos that disappear after being viewed. It has over 280 million
monthly active users and is particularly popular among younger generations. In
addition to private messaging, Snapchat also allows users to share "stories" with
their friends, which are collections of photos and videos that are visible for 24 hours
before disappearing. The platform also offers a range of filters, lenses, and stickers
that users can use to enhance their snaps and express themselves creatively.

Snapchat has evolved to offer a range of additional features and content, such as
news, entertainment, and original programming. The "Discover" section of the app
features content from media outlets, including news stories, short-form videos, and
articles, while the "Snap Map" allows users to see the location of their friends and
discover events happening nearby. In recent years, Snapchat has also launched new
features such as "Spotlight", which showcases user-generated short-form videos,
and "Snap Originals", which are exclusive shows produced by Snapchat (Lai2021).

FIGURE 2.7: Snapshat Icon.

These platforms offer a variety of features and tools for users to communicate,
connect, and share content with others, making them an integral part of modern
communication and social interaction.

2.3 Arabic language in Social Media

Arabic is one of the most widely spoken languages in the world, and it is also one
of the fastest-growing languages on social media platforms. With over 400 million
Arabic speakers globally, there is a significant amount of social media content being
created and consumed in Arabic (AbuJarour2021).
One of the most popular social media platforms for Arabic speakers is Facebook,
which has over 164 million Arabic-speaking users. Instagram and Twitter are also
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popular among Arabic-speaking users, with over 33 million and 25 million users
respectively (Statista2021).
Arabic social media content ranges from personal updates and opinions to news and
political commentary. Many Arabic-speaking users also use social media to connect
with friends and family members who live in other countries.
One of the unique features of Arabic language on social media is the use of Arabic
script. While many social media platforms support Arabic script, some users may
prefer to use transliterated Arabic or a mixture of Arabic and English (Elshibly2021).
Another important aspect of Arabic language on social media is the use of dialects.
Arabic is a highly diverse language, with many different dialects and variations.
Users may choose to write in their local dialect, which can vary significantly from
Modern Standard Arabic, the standardized form of the language.

2.4 Natural Language Processing and Social Media

Natural Language Processing (NLP) is a field of computer science that focuses on
the interaction between computers and human language. NLP techniques can be
applied to social media to analyze and understand the vast amounts of text data
generated by users (Huang2021). Here are some ways in which NLP is being used
in social media:

1. Sentiment analysis: NLP can be used to analyze the sentiment of social me-
dia posts, determining whether the text is positive, negative, or neutral. This can be
useful for brands to understand how their products or services are being perceived
by customers.

2. Topic modeling: NLP can also be used to identify topics that are being dis-
cussed on social media. This can help businesses identify trends and understand
what their customers are talking about (Schakel2020).

3. Named entity recognition: NLP can be used to identify and extract names of
people, organizations, and locations from social media posts. This can be useful for
businesses to understand who is talking about them and where they are located (? ).

4. Chatbots: NLP is also used to power chatbots that can interact with customers
on social media platforms. Chatbots can be used to answer frequently asked ques-
tions and provide customer support (Baptista2021).

5. Language translation: NLP can be used to automatically translate social media
posts from one language to another. This can be useful for businesses that operate
in multiple countries and want to engage with customers in their native language
(Wang2018).

NLP is a powerful tool that can help businesses analyze and understand the vast
amounts of text data generated by social media users. By using NLP techniques,
businesses can gain valuable insights into customer behavior and preferences, and
use this information to improve their products and services.



2.5. Sentiment Analysis and Social Media 13

2.5 Sentiment Analysis and Social Media

Sentiment analysis is a technique that uses Natural Language Processing (NLP) to
identify and extract subjective information from text data. In the context of social
media, sentiment analysis is used to determine the emotional tone of social media
posts and comments. Here are some ways in which sentiment analysis is used in
social media (Pang2008):
1. Brand reputation management: Sentiment analysis can be used to monitor social
media posts about a brand or product, and determine whether the sentiment is posi-
tive, negative, or neutral. This can help brands identify potential issues and respond
in a timely manner to protect their reputation.
2. Customer service: Sentiment analysis can be used to monitor social media posts
related to customer service, and quickly identify negative sentiment. This can help
businesses respond quickly to customer complaints and improve their customer ser-
vice.
3. Market research: Sentiment analysis can be used to monitor social media posts
related to specific topics or products, and identify trends and insights that can be
used for market research.
4. Political analysis: Sentiment analysis can be used to monitor social media posts
related to political issues, and determine the sentiment of the public on specific top-
ics. This can be useful for politicians and political campaigns to understand public
opinion and tailor their messaging accordingly.
5. Social listening: Sentiment analysis can be used for social listening, which in-
volves monitoring social media posts related to a brand, product, or topic. This can
help businesses understand what their customers are saying about them and iden-
tify opportunities for improvement.

In conclusion, sentiment analysis is a powerful tool that allows businesses to an-
alyze and understand the vast amounts of text data generated by social media users.
By using sentiment analysis, businesses can gain valuable insights into customer
sentiment and behavior, improve customer experience, manage their brand reputa-
tion, and refine their marketing strategies. With the rapid growth of social media
and the increasing importance of customer feedback, sentiment analysis is becom-
ing an essential tool for businesses of all sizes. By embracing sentiment analysis,
businesses can stay ahead of the curve and make data-driven decisions to improve
their overall performance.

2.6 Machine Learning and Sentiment Analysis

Machine learning is a subfield of artificial intelligence (AI) that involves developing
algorithms and models that enable computers to learn from data and make pre-
dictions or decisions based on that data. In other words, it is a way of teaching
computers to recognize patterns in data and use that knowledge to improve their
performance over time. Machine learning is a rapidly growing field that is being
used in a wide range of applications, including natural language processing, image
recognition, fraud detection, and recommendation systems (Ng2017).
Sentiment analysis, on the other hand, is a specific application of machine learn-
ing that involves analyzing text data to determine the emotional tone or sentiment
expressed within it. Sentiment analysis is a crucial tool for businesses and organiza-
tions that want to understand their customers’ opinions and preferences. It is also
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used by social media platforms to monitor public opinion and by news organiza-
tions to analyze the sentiment of their readers.
The importance of ML and SA in the modern world cannot be overstated. The vast
amount of data generated daily is too much for humans to analyze manually, and
machine learning and sentiment analysis offer a way to process this data efficiently
and accurately. By using ML and SA, businesses and organizations can gain insights
into their customers’ opinions and preferences, monitor public opinion, and make
data-driven decisions that improve their bottom line (Jones2021).

However, there are also challenges associated with ML and SA. One of the main
challenges is bias. Machine learning models can be biased if the data used to train
them is biased. This means that the models may make inaccurate predictions or de-
cisions that reflect the bias in the data. Another challenge is the lack of transparency
in machine learning models. Some models are so complex that it is difficult to un-
derstand how they make their decisions. This can lead to mistrust in the models and
their results.
Despite these challenges, ML and SA offer a wealth of opportunities for businesses
and organizations. By using these tools, they can gain valuable insights into their
customers and stakeholders, improve their decision-making processes, and stay ahead
of the competition. As such, it is essential for businesses and organizations to invest
in ML and SA and stay up-to-date with the latest developments in these fields.
In summary, the modern world generates a vast amount of data that can be analyzed
to gain valuable insights into various aspects of human behavior. Machine learning
and sentiment analysis are two related fields that offer a way to process this data
efficiently and accurately. While there are challenges associated with these fields,
the opportunities they offer cannot be overstated. Businesses and organizations that
invest in ML and SA will gain a competitive advantage and be better equipped to
make data-driven decisions.

2.7 Machine Learning algorithm for Sentiment Analysis

sentiment analysis (SA) can be approached using a variety of machine learning (ML)
techniques, which can be broadly categorized into three main groups:

2.7.1 Conventional Machine Learning Approaches

Conventional ML Approaches: These include algorithms such as Support Vector
Machines (SVM) (Hasan2022), Logistic Regression (LR) (Smith2018), Naive Bayes
(NB) (Liu2012), Decision Trees (DT) (Harrag2009), Random Forest, and others. These
approaches typically require manual feature engineering and are less capable of
handling the complexities of natural language processing (NLP) compared to deep
learning and transformer-based approaches.
Here is a detailed algorithmic workflow for machine learning for sentiment analysis:
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Algorithm 1: Machine Learning Algorithm for Sentiment Analysis
Input: labeled dataset
Output: ML Model

1 Step 1: Dataset preprocessing
2 Step 2: Feature Extraction
3 Step 3: Model Training
4 Step 4: Model Testing
5 Step 5: Model Evaluation
6 Step 6: Model Deployement

2.7.2 Deep Learning Approaches

Deep Learning Approaches: These approaches use neural networks with multiple
layers to learn features automatically from the input data. Common architectures
for SA include Recurrent Neural Networks (RNN) (Cai2018), Convolutional Neural
Networks (CNN) (Lecun1998), Long Short-Term Memory (LSTM) (Brownlee2018),
Bidirectional LSTM (BiLSTM) (Pei2022), and others. These approaches can handle
complex NLP tasks and have shown impressive results in SA.

Algorithm 2: Sentiment Analysis using Deep Learning
Input: Text labeled
Output: Trained model

1 Data Collection;
2 Gather dataset;
3 Labeled The dataset;
4 Preprocessing;
5 Clean and preprocess the dataset;
6 Token, stem, and lemm;
7 Preparation;
8 Convert preprocessed into num representation;
9 Using bag-of-words, TF-IDF, or word embeddings;

10 Choose a DL model;
11 Model Training;
12 Train the DL model;
13 Split data into training and test sets;
14 Optimize model parameters using backpropagation and gradient descent;
15 Model Evaluation;
16 Evaluate the trained DL model;

2.7.3 Transformer-Based Approaches

Transformer-Based Approaches: These are the latest and most powerful class of
models for NLP tasks, including SA (Nair2021). They use attention mechanisms
to encode the input text and capture long-range dependencies between words. Ex-
amples include BERT (Bidirectional Encoder Representations from Transformers)
(Devlin2018), GPT (Generative Pre-trained Transformer) (Brown2020), and others.
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These models have set new benchmarks in NLP tasks, including SA.

Algorithm 3: Sentiment Analysis using Transformer-based Models
Input: Text documents labeled
Output: Trained transformer-based model

1 Data Collection; Gather a text dataset ;
2 Labeled dataset;
3 Preprocessing;
4 Clean and preprocess the text data;
5 Tokenization, stemming, and lemmatization;
6 Preparation;
7 Convert data into representation;
8 Using transformer-based models such as BERT or GPT;
9 Model Training;

10 Train the transformer-based model;
11 Split data into training and test sets;
12 Optimize model parameters using backpropagation and gradient descent;
13 Evaluation;
14 Evaluate the trained model;
15 Measure acc, pre, recall, F1score, and other metrics;

Each approach has its strengths and weaknesses, and the choice of approach de-
pends on the specific task and the available resources. Conventional ML approaches
can be simpler and faster to train, but may require more feature engineering and may
not perform as well as deep learning or transformer-based approaches. Deep learn-
ing approaches are more complex and computationally expensive, but can handle
more complex tasks and generally perform better than conventional ML approaches.
Transformer-based approaches are the state-of-the-art in NLP tasks, including SA,
but can require extensive training and fine-tuning, as well as significant computa-
tional resources.
In recent years, sentiment analysis on social media using machine learning has gained
significant attention due to its potential to provide valuable insights into public opin-
ion. With the help of machine learning algorithms, we can now analyze large vol-
umes of social media data, detect sentiment and emotions behind the text, and use
this information to make informed decisions. However, there are still many chal-
lenges that need to be addressed to improve the accuracy and effectiveness of senti-
ment analysis.
One of the key challenges in this area is developing better word representations
that can capture the subtle nuances of language and context. Another challenge is
dealing with imbalanced text classification problems, where there is an unequal dis-
tribution of sentiment labels in the dataset. This can lead to biased models that are
not representative of the true sentiment distribution in the data.
To address these challenges, researchers are exploring new techniques such as deep
learning and transfer learning, which can help improve the accuracy of sentiment
analysis models. Other approaches include developing more robust and diverse
training datasets, as well as using active learning methods to improve the quality of
the annotations.
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2.8 Conclusion

In conclusion, social media has become a ubiquitous part of people’s lives and a
rich source of information for researchers in various fields. Arabic language in so-
cial media presents unique challenges due to its complexity and the presence of
dialects. Natural Language Processing (NLP) techniques have been developed to
analyze Arabic text and perform sentiment analysis (SA) on social media data. Ma-
chine learning (ML) models have been employed to classify the sentiment of Arabic
social media data, and different word embedding techniques have been proposed to
improve the performance of these models.
However, there is still a need for more robust and accurate models that can handle
the challenges of Arabic language in social media, such as dialects, text representa-
tion, and imbalanced datasets.
In the upcoming chapters, we will delve into the complex world of natural language
processing, focusing specifically on word representations and imbalanced text classi-
fication. Word representation is a crucial component of NLP, as it involves mapping
words to mathematical vectors that can be easily processed by machines. However,
different approaches to word representation have their own strengths and limita-
tions. Therefore, we will conduct a comprehensive review of the different techniques
employed in this field, in order to gain a deeper understanding of their effectiveness
and limitations.

Moving on from this, we will present a novel approach to word representation
that we have developed ourselves. We believe that our approach will bring sig-
nificant benefits to the field, as it addresses some of the shortcomings of existing
techniques. By providing a thorough analysis of our approach and comparing it to
existing methods, we aim to demonstrate the potential advantages of our method
and contribute to the advancement of word representation in NLP.

Furthermore, we will discuss the challenges associated with imbalanced datasets
in text classification, where the number of instances of one class significantly out-
weighs the other. We will introduce balancing techniques that can be used to over-
come these challenges, and demonstrate our contribution to sentiment analysis on
such datasets. By highlighting our novel contribution in this area, we aim to improve
the accuracy and reliability of sentiment analysis on imbalanced datasets.

Finally, we will summarize our findings and provide insights into potential areas
for future research. By bringing together the key components of word representa-
tion, imbalanced text classification, and sentiment analysis, we hope to contribute
to the broader field of natural language processing and inspire further research and
development in this exciting and rapidly evolving field.
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Chapter 3

Text Representation in NLP

3.1 Introduction

Text representation is a fundamental task in natural language processing (NLP), as
it involves converting raw text data into a structured numerical format that can be
processed by machine learning models.
In this chapter, we will explore the different text representation techniques com-
monly used in NLP, starting with conventional methods such as bag-of-words (BoW)
(Hasan2019), term frequency (TF) (Liu2018), and term frequency-inverse document
frequency (TF-IDF) (Dalaorao2019). We will then move on to more advanced tech-
niques such as word embedding models like word2vec (Wang2022), fasttext(Oulin2016),
and GloVe (Pennington2014), and finally, the contextual word embedding approach
of BERT representation (Devlin2018).
Conventional methods such as BoW, TF, and TF-IDF involve representing text as a
matrix of word counts, where each row represents a document and each column rep-
resents a word in the corpus. These methods have been widely used in NLP tasks
such as text classification and information retrieval. However, they have several lim-
itations, such as their inability to capture the semantic relationships between words
and the contextual information of language.
To overcome these limitations, word embedding models such as word2vec, fasttext,
and GloVe have been developed. These models learn distributed representations of
words in a continuous vector space, where each word is represented as a dense vec-
tor of real numbers. These vectors capture the semantic and syntactic relationships
between words, allowing machine learning models to better understand the mean-
ing of text data.
BERT representation is a recent advancement in the field of text representation that
uses a contextual word embedding approach to capture the meaning of words based
on their surrounding context in a sentence or document. BERT’s bidirectional train-
ing approach allows it to learn the meaning of words based on their relations with
both preceding and succeeding words in the input text. By considering the entire
input text, BERT can capture the complex relationships between words and their
context.
While these advanced techniques have improved the accuracy of NLP models, they
also have their own limitations. For example, word embedding models can be bi-
ased towards certain groups or concepts, and BERT’s computational requirements
can make it challenging to use in certain applications. In this chapter, we will ex-
plore the strengths and weaknesses of each technique and discuss their suitability
for different NLP tasks.
In the next section, we will provide a detailed explanation of each representation
technique used in natural language processing
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3.2 Conventional Text Representation

Conventional text representation techniques, such as bag-of-words (BoW), term fre-
quency (TF), and term frequency-inverse document frequency (TF-IDF), have been
widely used in NLP for many years. These methods involve representing text data
as a matrix of word counts or frequencies, where each row represents a document,
and each column represents a word in the corpus.

3.2.1 Bog of Word Description

The Bag-of-Words (BoW) model is a simple yet powerful representation in natural
language processing. It treats a document as an unordered collection of words, dis-
regarding grammar and word order. The BoW model represents a document as a
vector of word frequencies or binary indicators. The process involves the following
steps:

1. Tokenization: Splitting the document into individual words or tokens. 2. Vo-
cabulary Creation: Creating a vocabulary of unique words present in the document
or corpus. 3. Vectorization: Representing each document as a numerical vector,
where each element corresponds to the count or presence of a specific word in the
vocabulary.

The BoW model equation can be represented as follows:

BoW(d) = {w1, w2, w3, . . . , wn} (3.1)

where d represents a document and {w1, w2, w3, . . . , wn} represents the set of
words present in the document d. This equation emphasizes that the BoW model
extracts and represents the vocabulary of a document without considering the order
or structure of the words.

The Bag-of-Words model is widely used in various natural language processing
tasks such as document classification, sentiment analysis, information retrieval, and
more.

The algorithm bellow takes a corpus C as input and constructs the vocabulary V
by extracting all unique terms from C. It then constructs the BoW matrix BoW with
dimensions m x n, where m is the number of terms in V and n is the number .

Algorithm 4: Bag of Words (BoW) Algorithm
Input: C
Output: BoW

1 Construct the voc V by extract terms from C;
2 Construct BoW matrix BoW with dims m x n, where m is # of terms in V and

n is # doc in C;
3 for each docu d in C do
4 Init the docu vector vd with all entries set to 0;
5 for each term t in d do
6 Incr the entry in vd by 1;

7 Assign the docu vd to the corresponding column in BoW;

8 return BoW

One of the main limitations of the BoW representation is that it ignores the order
of words in a document. This means that it cannot capture the meaning of phrases
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or sentences that depend on the order of the words, such as idiomatic expressions or
sarcasm.

Another limitation is that it treats all words equally, regardless of their impor-
tance or relevance to the document. This can lead to noisy representations that in-
clude common words that do not carry much meaning, while ignoring rare words
that may be more informative.

To overcome the limitations of the BoW representation, a common approach is
to use a variant that takes into account the frequency of each word in the document.
One such variant is the Term Frequency (TF) representation, which represents each
document as a vector of word frequencies instead of word counts.

3.2.2 Term Frequency Description

In the TF representation, each element of the vector represents the frequency of
a word in the document, normalized by the total number of words in the docu-
ment. This means that words that occur frequently in the document are given higher
weights, while words that occur rarely are given lower weights.

The TF representation can improve the performance of NLP tasks by capturing
more information about the importance and relevance of words in the document.
However, it still does not capture the order of words in a document, which can be
important for certain applications.

TF representation, on the other hand, takes into account the frequency of each
word in a document, giving more weight to words that appear more frequently.The
equation below represents the methodology employed in this approach.

The equation below represents the Term Frequency (TF) measure, which quan-
tifies the frequency of a term within a document or a corpus. TF calculates the rel-
ative importance of a term by considering its occurrence within a specific context.
This equation plays a crucial role in capturing the significance of individual terms
and is widely used in various natural language processing tasks, such as keyword
extraction, text summarization, and document similarity analysis. It forms the basis
for understanding the distribution and importance of terms in textual data.

The equations are defined as follows:

TF(t, d) = nt,d (3.2)

∑
w∈d

nw,d (3.3)

TF(t, d) is the term frequency of term t in document d.

nt,d is the number of occurrences of term t in document d.

∑w∈d nw,d represents the total number of occurrences of all terms in document d.
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The algorithm of TF is as follows:

Algorithm 5: Term Frequency (TF) Algorithm
Input: Corpus Co
Output: TF matrix T f

1 for each doc d in Co do
2 Calc term freq t ft,d for each term t in d
3 formula:
4

t ft,d =
nt,d

∑k nk,d

where nt,d is the # of times term t appears in docu d, and ∑k nk,d is the
total # of terms in doc d;

5 Const the TF mat TF with dim m x n, where m is the # terms in the voc and n
is # of doc in C;

6 for each t in the voc do
7 for each doc d in C do
8 Assign t ft,d to the corresponding TF;

9 return TF

This algorithm takes a corpus C as input and computes the term frequency t ft,d
for each term t in each document d in the corpus using the formula t ft,d =

nt,d
∑k nk,d

. It
then constructs a TF matrix TF with dimensions m x n, where m is the number of
terms in the vocabulary and n is the number of documents in C.

3.2.3 TF-IDF Representation

TF-IDF representation takes into account the frequency of each word in the corpus
and the inverse document frequency, which measures how important a word is in a
corpus by looking at how often it appears in different documents.

The equation below, which incorporates the TF-IDF representation, effectively
captures both the word frequency in the corpus and the inverse document frequency,
providing a comprehensive measure of word importance across various documents.

The equation below depicts the TF-IDF (Term Frequency-Inverse Document Fre-
quency) representation, a statistical measure widely used in natural language pro-
cessing. TF-IDF considers both the frequency of each word within a corpus and the
inverse document frequency, which indicates the significance of a word by exam-
ining its occurrence across different documents. This equation captures the essence
of the TF-IDF approach, enabling the extraction of important and relevant informa-
tion from text data for various applications such as information retrieval and text
classification

TF− IDF(t, d, D) = TF(t, d)× IDF(t, D) (3.4)

In this equation, t represents a term, d represents a document, and D represents
the corpus (collection of documents). The TF-IDF score measures the importance
of a term in a document relative to the entire corpus, considering both the term’s
frequency in the document (TF) and its rarity across the corpus (IDF).

The workflow of Tf-IDF can be described as follows:
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1. Extracting the vocabulary: In this step, the algorithm scans through all the
documents in the corpus and extracts a list of unique terms, which is called the
vocabulary. This vocabulary will be used to construct the rows of the TF-IDF
matrix.

2. Calculating IDF values: In this step, the algorithm calculates the IDF value for
each term in the vocabulary. The IDF value is computed as the logarithm of the
ratio between the total number of documents in the corpus and the number of
documents that contain the term. This step helps in identifying the importance
of a term in the corpus.

3. Constructing the TF-IDF matrix: In this step, the algorithm constructs an
empty matrix that will be used to store the TF-IDF values for each term in
each document. The number of rows in the matrix is equal to the number of
terms in the vocabulary, and the number of columns is equal to the number of
documents in the corpus.

4. Computing TF-IDF values: For each document in the corpus, the algorithm
computes the TF-IDF value for each term in the vocabulary. The TF value is
calculated as the number of occurrences of the term in the document divided
by the total number of terms in the document. The TF-IDF value is then cal-
culated as the product of the TF value and the IDF value for that term. The
resulting values are stored in the corresponding cells of the TF-IDF matrix.

Algorithm 6: TF-IDF Algorithm
Input: Corpus Text
Result: TF-IDF Matrix Represntation

1 Voc← extract_Vocab(Corpus Text);
2 IDF ← comp_IDF(Voc, Corpus Text);
3 TFIDF_Matrix ← empty Initial matrix;
4 for each Doc in Corpus Text do
5 TF ← comp_TF(Doc);
6 TFIDF_Doc← empty dict;
7 for each Term in Voc do
8 TFIDF_Doc[Term]← TF[Term] · IDF[Term];
9 end

10 add TFIDF_Doc to TFIDF_Matrix;
11 end
12 return TFIDF_Matrix;

In conventional representation, sparsity and dimensionality are two common
challenges that arise when dealing with large and complex datasets. Sparsity refers
to the fact that many of the data points are zero or close to zero, while dimensional-
ity refers to the large number of features or variables that are used to represent the
data.

To address these challenges, researchers have developed several techniques to
reduce sparsity and dimensionality in conventional representations. One popular
approach is to use dimensionality reduction techniques such as principal compo-
nent analysis (PCA) or (LDA) to reduce the number of features or dimensions in
the dataset. Another approach is to use feature selection methods to identify the
most relevant features for a given task, which can help reduce sparsity and improve
model performance.
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In addition to these techniques, researchers have also explored the use of more ad-
vanced representation methods such as embedding techniques like Word2Vec or
GloVe, which can capture semantic relationships between words and reduce spar-
sity in text data. These methods have been shown to be highly effective in a range of
natural language processing tasks, such as sentiment analysis and language transla-
tion.

3.2.4 Limitations of Conventional Word Representation

Conventional word representation techniques such as one-hot encoding and bag-
of-words suffer from several limitations that hinder their effectiveness in natural
language processing.

1. Sparcity: One major limitation is sparsity, which refers to the fact that the re-
sulting vectors are often very large, with most elements being zero. This makes
it difficult to process the data efficiently and can lead to overfitting, particularly
in models with a large number of parameters.

2. Dimensionality: Another limitation is dimensionality, which refers to the fact
that the resulting vectors are often high-dimensional. This can lead to a phe-
nomenon known as the "curse of dimensionality", where the amount of data
required to accurately represent the high-dimensional space grows exponen-
tially with the number of dimensions.

3. Free-context: A third limitation is free-context, which refers to the fact that
these techniques do not take into account the order or context in which words
appear in the text. This makes it difficult to capture the complex relation-
ships between words and can lead to poor performance on tasks that require a
deeper understanding of language, such as sentiment analysis or natural lan-
guage understanding.

To overcome these limitations, researchers have developed more sophisticated word
representation techniques such as word embeddings, which capture the semantic
relationships between words and take into account their context in the text. These
techniques have proven to be more effective in a wide range of natural language
processing tasks, and continue to be an active area of research and development.

3.3 Word Embedding

Word embeddings are advanced text representation techniques that represent words
as dense vectors in a high-dimensional space. Unlike conventional text representa-
tion techniques, word embeddings capture the semantic and syntactic relationships
between words, enabling machine learning models to better understand the mean-
ing of text data. In this section, we will explore three popular word embedding
techniques: word2vec, fastText, and GloVe.

3.3.1 Word2vec Representation

Word2vec is a neural network-based algorithm that learns word embeddings by pre-
dicting the likelihood of a word given its context (CBOW) or predicting the context
given a word (Skip-gram) (Wang2022). The word embeddings learned by word2vec
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capture the semantic and syntactic relationships between words and can be used in
a variety of NLP tasks, including text classification, named entity recognition, and
sentiment analysis.

CBOW

The CBOW model aims to predict the target word based on the context words sur-
rounding it. The context words are defined by a window size, which specifies the
number of words before and after the target word that are considered as context.
The objective of the CBOW model is to maximize the probability of predicting the
target word given its context words.
The equation below illustrates the Continuous Bag-of-Words (CBOW) model, which
aims to predict a target word based on its surrounding context. By considering the
context words, CBOW facilitates the learning of word embeddings that capture se-
mantic relationships and contextual information. This equation serves as the foun-
dation for training the CBOW model and enhancing its ability to generate accurate
word predictions.

vtarget =
1
C

C

∑
i=1

vcontexti (3.5)

where:

vtarget represents the vector representation of the target word.

vcontexti represents the vector representation of the i-th context word.

C is the number of context words in the window.

The figure below illustrates the CBOW model architecture:

FIGURE 3.1: CBOW architecture
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As shown in the figure, the CBOW model has three layers: an input layer, a hid-
den layer, and an output layer. The input layer represents the context words, which
are one-hot encoded. The one-hot encoding means that each word is represented by
a vector of zeros, except for a single 1 in the position that corresponds to the index
of the word in the vocabulary.
The hidden layer represents the vector representation of the context words. The vec-
tors in the hidden layer are learned during training and are used to predict the target
word.
The output layer represents the target word, which is also one-hot encoded. The
output layer has as many neurons as there are words in the vocabulary, and the
probability distribution over the vocabulary is computed using a softmax function.
During training, the weights of the input and output layers are learned to maximize
the probability of predicting the target word given its context words. The learned
weights in the hidden layer are used as the word embeddings.
In summary, the CBOW model predicts a target word given its context words by
learning vector representations of the context words that capture their semantic and
syntactic relationships. These vector representations can be used as word embed-
dings for downstream NLP tasks.

Algorithm 7: Continuous Bag-of-Words (CBOW) Algorithm
Input: Input: corpus , voc V, window size c, dime of word emb d
Output: Output: matrix W of size V x d

1 Initialize the rand weight matrix W ;
2 for each word w in the corpus do
3 Let c be the context window of size 2c around the word w;
4 Create the input vector x by concatenating the one-hot encoded vectors

of the words in c;
5 Compute the average of the input vector x: x̂ = 1

2c ∑2c
i=1 xi;

6 Compute the predicted target word vector y: y = Wx̂;
7 Compute the softmax probability distribution over the vocabulary:

8 P(wi|x̂) = exp(yi)

∑|V|j=1 exp(yj)
;

9 Compute the cross-entropy loss between the predicted distribution and
the true distribution t,

10 where t is a one-hot encoded vector with a 1 at the index of the target
word and 0s elsewhere:

11 J = −∑|V|i=1 ti log(P(wi|x̂));
12 Compute the gradient of the loss with respect to the weights:

∂J
∂wij

= (x̂)j(P(wi|x̂)− ti);

13 Update the weight matrix W using stochastic gradient descent:
wij = wij − α ∂J

∂wij
;

14 end

The CBOW algorithm learns to predict a target word given its context words. By
training on a large corpus of text, the algorithm learns to capture the semantic and
syntactic relationships between words in the corpus, resulting in word embeddings
that can be used in various natural language processing tasks.
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Skipgram

In addition to the CBOW model, word2vec also has another training technique called
Skip-gram. While CBOW predicts a target word based on its surrounding context,
Skip-gram aims to predict the context words given a target word. In this section, we
will describe the Skip-gram model architecture and its training process.

L = ∑
target

∑
w∈contextw 6=target

log P(w|target) (3.6)

where:

L is the loss function.

target is the target word.

w represents a context word.

P(w|target) is the probability of observing context word w given the target word.

In this code, the Skip-gram model is described along with its equation. The over-
all description is provided as text, and the Skip-gram equation is presented using the
equation environment. The variables and terms used in the equation are labeled and
described using the description environment. You can customize the description or
equation as needed.

The figure below illustrates the Skip-gram model architecture:

FIGURE 3.2: Skip-Gram architecture

As shown in the figure, the Skip-gram model also has three layers: an input layer,
a hidden layer, and an output layer. However, the input and output layers are re-
versed compared to the CBOW model. In Skip-gram, the input layer represents the
target word, which is one-hot encoded, and the output layer represents the context
words, which are also one-hot encoded.
The hidden layer represents the vector representation of the target word. The vectors
in the hidden layer are learned during training and are used to predict the context
words. During training, the weights of the input and hidden layers are learned to
maximize the probability of predicting the context words given the target word. The
learned weights in the hidden layer are used as the word embeddings.
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The training process of Skip-gram involves iterating through each word in the train-
ing corpus and selecting a window of context words around it. For each context
word in the window, the model is trained to predict the target word. The objective is
to maximize the probability of predicting the context words given the target word.
This process is repeated for all words in the corpus, and the model is updated using
stochastic gradient descent.
The Skip-Gram algorithm learns to predict context words given a target word. By
training on a large corpus of text, the algorithm learns to capture the semantic and
syntactic relationships between words in the corpus, resulting in word embeddings
that can be used in various natural language processing tasks.

Algorithm 8: Skip-Gram Algorithm
Input: Input: corpus , voc V, window size c, dime of word emb d
Output: Output: matrix W of size V x d

1 Initialize the rand weight matrix W ;
2 Initialize the weight matrix W randomly with small values;
3 for each word w in the corpus do
4 Let c be the context window of size 2c around the word w;
5 for each context word ci in c do
6 Create the inp vector x as the one hot encoded vector of ci;
7 Comp the pred target word vector y: y = Wx;

8 Comp the softmax over the vocabulary: P(wi|x) = exp(yi)

∑|V|j=1 exp(yj)
;

9 Comp the cross-entropy loss between the pred distribution and the
true distribution t,

10 where t is a one-hot encoded vector with a 1 at the index of the target
word and 0s elsewhere: J = −ti log(P(wi|x));

11 Compute the gradient of the loss with respect to the weights:
∂J

∂wij
= xj(P(wi|x)− ti);

12 Update the weight matrix W using stochastic gradient descent:
13 wij = wij − α ∂J

∂wij
;

14 end
15 end

In summary, the Skip-gram model predicts context words given a target word by
learning vector representations of the target words that capture their semantic and
syntactic relationships. These vector representations can be used as word embed-
dings for downstream NLP tasks. Compared to CBOW, Skip-gram is better suited
for larger datasets and capturing rare words.

3.3.2 FastText Representation

FastText is an extension of word2vec that represents words as a sum of the embed-
dings of their character n-grams (Oulin2016). This enables the model to capture the
subword information, making it more effective in dealing with rare or misspelled
words. FastText has been shown to outperform word2vec in several NLP tasks, in-
cluding text classification and sentiment analysis.
FastText is an extension of the word2vec model that was introduced by Facebook’s
AI Research (FAIR) team. The key difference between FastText and word2vec is that
FastText treats each word as a bag of character n-grams, rather than a single entity.
This allows FastText to capture sub-word information and handle out-of-vocabulary
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(OOV) words more effectively. In this section, we will describe the FastText model
architecture and its training process.

L = − 1
N

N

∑
i=1

(
K

∑
k=1

yik log(ŷik) + (1− yik) log(1− ŷik)

)
(3.7)

where:

L is the loss function.

N is the total number of training samples.

K is the number of classes.

yik is the binary label (0 or 1) indicating if the class k is the correct label for the
training sample i.

ŷik is the predicted probability of class k for the training sample i.

The figure below illustrates the FastText model architecture:

FIGURE 3.3: FastText architecture

As shown in the figure, the FastText model has an input layer, a hidden layer,
and an output layer. The input layer represents a sequence of characters, rather
than words, which are encoded using a bag-of-ngrams technique. The hidden layer
represents the vector representation of the word, which is obtained by summing the
n-gram vectors. The output layer is a softmax layer, which predicts the probability
distribution over the target words.
During training, the weights of the input and output layers, as well as the n-gram
embeddings, are learned to maximize the probability of predicting the target words
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given the input sequence.

Algorithm 9: FastText Algorithm
Input: Input: A corpus of text, minimum count threshold m, context

window size c, dimensionality of word embeddings d, subword
length n

Output: Output: A matrix W of size V × d containing the learned word
embeddings

1 Initialize an empty dictionary C; for each word w in the corpus do
2 for i = 1 to |w| do
3 Extract all subwords of length n from w: g1, g2, ..., g|w|; Increment the

count of each subword in the dictionary C;
4 end
5 end
6 Remove subwords with count less than the minimum count threshold m;
7 Initialize the weight matrix W randomly with small values; for each word w

in the corpus do
8 Let c be the context window of size 2c around the word w;
9 Create the input vector x by concatenating the vectors of the subwords in

c and the vector of the word w;
10 Compute the predicted target word vector y: y = Wx;
11 Compute the softmax probability distribution over the vocabulary:

12 P(wi|x) = exp(yi)

∑|V|j=1 exp(yj)
;

13 Compute the cross-entropy loss between the predicted distribution and
the true distribution t, where t is a one-hot encoded vector with a 1 at
the index of the target word and 0s elsewhere:

14 J = −∑|V|i=1 ti log(P(wi|x)); Compute the gradient of the loss with respect
to the weights:

15
∂J

∂wij
= xj(P(wi|x)− ti);

16 Update the weight matrix W using stochastic gradient descent:
17 wij = wij − α ∂J

∂wij
;

18 end

The FastText algorithm is an extension of the Skip-Gram algorithm that uses sub-
word information to learn word embeddings. By training on a large corpus of text,
the algorithm learns to capture the semantic and syntactic relationships between
words and their subwords in the corpus, resulting in word embeddings that can
handle out-of-vocabulary words and can be used in various natural language pro-
cessing tasks.
The training process of FastText involves iterating through each word in the train-
ing corpus and generating a sequence of character n-grams for it. For each word,
the model is trained to predict the target words within a certain context window.
The objective is to maximize the probability of predicting the target words given the
character n-gram sequence. This process is repeated for all words in the corpus, and
the model is updated using stochastic gradient descent.

In summary, FastText treats each word as a bag of character n-grams and learns
sub-word embeddings that capture the morphological and semantic structure of
words. These embeddings can be used as word representations for various NLP
tasks, such as text classification and information retrieval. Compared to word2vec,
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FastText is better suited for handling OOV words and capturing word-level mor-
phology.

3.3.3 GloVe Representation

GloVe (Global Vectors) is a word embedding technique that learns word represen-
tations by factorizing a matrix of word co-occurrence statistics (Pennington2014).
GloVe is based on the idea that words that co-occur frequently in a corpus are likely
to have similar meanings. The word embeddings learned by GloVe capture both the
semantic and syntactic relationships between words and have been shown to out-
perform both word2vec and fastText in several NLP tasks.
Unlike word2vec and FastText, GloVe is based on co-occurrence statistics of words
in a corpus. The main idea behind GloVe is that word meanings can be inferred from
the distributional patterns of words in the corpus. In this section, we will describe
the GloVe model architecture and its training process.

GloVe is a word embedding model that combines global matrix factorization
techniques with local context windows. It learns word vectors by leveraging both
global co-occurrence statistics and local context information.

V

∑
i=1

V

∑
j=1

f (Xij)
(

wT
i w̃j + bi + b̃j − log Xij

)2
(3.8)

where:

V is the vocabulary size.

Xij is the co-occurrence count of word i and word j.

wi and w̃j are the word vectors for words i and j, respectively.

bi and b̃j are the bias terms associated with words i and j, respectively.

f (Xij) is a weighting function that captures the importance of the co-occurrence
count Xij.

The figure below illustrates the GloVe model architecture:

FIGURE 3.4: GloVe architecture
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As shown in the figure, the GloVe model has an input layer, a hidden layer, and
an output layer. The input layer represents the co-occurrence matrix of words, which
is obtained by counting the number of times each word appears within a certain con-
text window of other words in the corpus.
The hidden layer represents the vector representation of the words, which is ob-
tained by minimizing the difference between the dot product of word vectors and
the logarithm of their co-occurrence probabilities. The output layer is a softmax
layer, which predicts the probability distribution over the context words.
During training, the weights of the input and output layers, as well as the word
embeddings, are learned to minimize the loss function. The loss function measures
the difference between the predicted co-occurrence probabilities and the actual co-
occurrence probabilities. The learned word embeddings can be thought of as global
representations that capture the overall distributional patterns of words in the cor-
pus.
The training process of GloVe involves constructing the co-occurrence matrix of
words from the corpus, which is typically a sparse and high-dimensional matrix.
To reduce the dimensionality and sparsity of the matrix, GloVe uses singular value
decomposition (SVD) to factorize the matrix into lower-dimensional matrices. The
factorized matrices are then used to train the model using stochastic gradient de-
scent.

Algorithm 10: GloVe Algorithm
Input: Input: A co-occurrence matrix X of size |V| × |V|, dimensionality of

word embeddings d, learning rate α, number of iterations n
Output: Output: A matrix W of size V × d containing the learned word

embeddings
1 Initialize the weight matrix W randomly with small values;
2 Initialize the bias vectors bi and bj to 0;
3 Initialize the scalar bias b to the logarithm of the frequency of the corpus;
4 for t = 1 to n do
5 for each pair of words i, j with a non-zero entry in the co-occurrence matrix do
6 Compute the inner product between the word vectors and the bias

terms: wT
i wj + bi + bj;

7 Compute the difference between the log of the co-occurrence count
and the inner product:

8 ∆ = log(Xij)− (wT
i wj + bi + bj − b);

9 Update the weight matrix and bias vectors:
10 wi ← wi + α∆wj

11 wj ← wj + α∆wi

12 bi ← bi + α∆
13 bj ← bj + α∆;
14 end
15 end

The GloVe algorithm learns word embeddings by training on a co-occurrence
matrix of word pairs in a corpus. The algorithm aims to optimize a weighted least-
squares objective that balances the importance of frequent and infrequent co-occurrences.
By training on a large corpus of text, the algorithm learns to capture the semantic and
syntactic relationships between words in the corpus, resulting in word embeddings
that can be used in various natural language processing tasks.
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In summary, GloVe is based on co-occurrence statistics of words in a corpus
and learns global representations that capture the overall distributional patterns of
words. These representations can be used as word embeddings for various NLP
tasks, such as text classification and information retrieval. Compared to word2vec
and FastText, GloVe is better suited for capturing the semantic relationships between
words and handling rare words in the corpus.

3.3.4 Limitaions of word embeddings

While word embeddings such as Word2Vec, FastText, and GloVe have revolution-
ized the field of natural language processing, there are still some limitations to these
techniques that should be considered.

1. Limited Context: Word embeddings typically work by representing each word
as a vector in a high-dimensional space based on its co-occurrence statistics
with other words. However, these representations are often based on a limited
context window, which can result in incomplete or inaccurate representations
of words that have multiple meanings or uses.

2. Lack of Transparency: Although word embeddings can capture semantic re-
lationships between words, it can be difficult to interpret and understand the
underlying factors that contribute to these relationships. This lack of trans-
parency can make it challenging to diagnose and correct errors in the embed-
ding model.

3. Inability to Capture Rare Words: Word embeddings are based on the distri-
butional hypothesis, which assumes that words that occur in similar contexts
have similar meanings. However, this assumption may not hold for rare or
infrequently occurring words, which can lead to poorly represented or inaccu-
rate embeddings for these words.

4. Limited Multilingual Support: Word embeddings are typically trained on large
amounts of text data in a single language, which can limit their applicability
to multilingual or cross-lingual natural language processing tasks. While there
are efforts to develop multilingual word embeddings, these techniques often
rely on aligning embeddings across languages and may not capture the full
range of linguistic variation.

5. Bias and Fairness Issues: Like any machine learning model, word embeddings
can be biased and reflect the biases and prejudices present in the underlying
training data. This can lead to inaccurate or unfair representations of certain
groups or concepts, which can have negative consequences in downstream
applications.

While word embeddings have significantly improved the accuracy and effective-
ness of natural language processing tasks, it is important to be aware of these limita-
tions and consider them when designing and evaluating machine learning models.
In the next section, we will explore a more recent and advanced text representation
technique, BERT representation, that addresses some of these limitations.
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3.4 BERT Representation

Bidirectional Encoder Representations from Transformers (BERT) is a recent advance-
ment in text representation that has gained significant attention in the field of natural
language processing (NLP) (Devlin2018). BERT is a pre-trained deep learning model
that is trained on large amounts of text data to generate contextualized word embed-
dings.
Unlike conventional text representation techniques and word embedding models,
BERT takes into account the context and order of words in a sentence or document.
BERT uses a bidirectional transformer model, which means it processes both the left
and right contexts of each word, allowing it to capture the dependencies between
words in a sentence. This makes BERT more effective in capturing the semantics
and syntax of language.
BERT is pre-trained on large amounts of text data, such as Wikipedia and the Book-
Corpus, using a masked language model and next sentence prediction task. The
masked language model randomly masks some of the words in a sentence and trains
the model to predict the masked words based on the context of the sentence. The
next sentence prediction task trains the model to predict whether two sentences are
consecutive or not. The pre-training process results in a deep learning model that
can generate high-quality contextualized word embeddings.
One of the main advantages of BERT over conventional text representation tech-
niques and word embedding models is its ability to capture the context and mean-
ing of words in a sentence. This makes it more effective in tasks such as sentiment
analysis, question answering, and text classification.
BERT can also handle out-of-vocabulary words, as it can generate embeddings for
unseen words based on their context in the sentence.

The figure below illustrates the BERT representation model architecture:

FIGURE 3.5: BERT Representation Architecture

The following equation represents the loss function, which serves as a quantita-
tive measure of the discrepancy between the predicted outputs and the actual values.
It provides valuable insight into the performance of the model by quantifying the ex-
tent of error in the predictions, allowing for effective optimization and improvement
of the overall system.

L =
N

∑
i=1

(log P(yi|xi)) (3.9)
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where:

L is the loss function.

N is the total number of training examples.

xi represents the input sequence for training example i.

yi is the corresponding label for training example i.

P(yi|xi) is the predicted probability distribution over the possible labels given the
input sequence.

Algorithm 11: BERT for Representation Learning
Input: A sequence of text tokens x = x1, x2, ..., xn,
pre-trained BERT model M
Output: A matrix H of size n× d containing the contextualized word

embeddings for the input sequence
1 Tokenize the input sequence using WordPiece or SentencePiece; Add special

[CLS] and [SEP] tokens to the beginning and end of the sequence;
2 Feed the sequence through the pre-trained BERT model M to obtain the

output sequence of hidden states: H = M(x);
3 Extract the hidden state corresponding to the [CLS] token as the

sentence-level representation: s = H0;
4 Extract the hidden states corresponding to the original input tokens as the

contextualized word embeddings: hi = Hi for i = 1, 2, ..., n;

The BERT (Bidirectional Encoder Representations from Transformers) model is a
pre-trained language model that learns contextualized representations of words and
sentences from large amounts of unlabeled text. The algorithm is based on the Trans-
former architecture and uses a masked language modeling task and a next sentence
prediction task to learn a deep bidirectional representation of the input text. The
pre-trained BERT model can then be fine-tuned on downstream natural language
processing tasks, such as sentiment analysis or named entity recognition, by adding
a task-specific output layer and fine-tuning the entire model on a labeled dataset. In
summary, BERT is a powerful text representation technique that overcomes the limi-
tations of conventional text representation techniques and word embedding models.
Its ability to capture context and meaning, handle out-of-vocabulary words, and be
fine-tuned for specific tasks makes it an essential tool in the field of NLP.

3.5 Conclusion

In conclusion, this chapter discussed the various text representation techniques used
in NLP, starting from the conventional techniques such as BoW, TF, and TF-IDF, fol-
lowed by the more advanced techniques such as word embeddings and BERT repre-
sentation. We highlighted the advantages and limitations of each technique, and we
discussed how BERT representation has become a game-changer in the field of NLP
due to its ability to generate contextualized word embeddings, taking into account
the context and order of words in a sentence or document.
In the next chapter, we will discuss our contribution to the field of NLP, which is a
new Arabic word representation based on BERT. We added new layers to the pre-
trained BERT model, specifically designed for the Arabic language, to generate con-
textualized embeddings that are more effective in capturing the semantics and syn-
tax of the Arabic language. Our approach resulted in significant improvements in



36 Chapter 3. Text Representation in NLP

Arabic sentiment analysis, a task that is of great importance in the Arabic-speaking
world. We will discuss our methodology in detail and present our experimental re-
sults, demonstrating the effectiveness of our approach.
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Chapter 4

A New Arabic Word Embedding
Representation for Sentiment
Analysis

4.1 Introduction

Arabic sentiment analysis is a crucial area of research, as it has many practical ap-
plications in fields such as social media analysis, customer feedback analysis, and
political sentiment analysis (Pang2008). Due to the complexity of the Arabic lan-
guage, sentiment analysis of Arabic text poses several challenges. These challenges
include the vast number of words in Arabic, the complexity of Arabic morphology,
and the lack of comprehensive labeled datasets for training and testing machine
learning models.

To address these challenges, researchers have been exploring various techniques,
such as feature engineering, machine learning algorithms, and deep learning mod-
els, to develop accurate and efficient Arabic sentiment analysis systems. With the
increasing availability of Arabic language data and the development of new tech-
niques, the accuracy of Arabic sentiment analysis systems has been improving in
recent years. However, there is still much room for improvement in this field, and
researchers continue to explore new approaches to enhance the performance of Ara-
bic sentiment analysis systems.

Applying machine learning approaches to Arabic language necesssite the use
of distributional representations, such as GloVe, Word2Vec, and FastText, to create
vectors from the context of the words. Despite the effectiveness of word embedding,
the complex morphology and the huge number of terms in Arabic language still
pose challenges to machine learning approaches.

This chapter introduces a new method for improving the GloVe architecture,
which involves the inclusion of a root extraction module to tackle the challenges
posed by the complex morphology and large number of terms in Arabic. By utiliz-
ing the roots of words, this method is intended to enhance the accuracy of sentiment
analysis while simultaneously reducing processing time through the compression of
vector space representations."

The novel technique includes an additional layer that generates a new corpus
by transforming all words to their roots, which is then supplied to the GloVe ap-
proach. The performance of this method is assessed by implementing two conven-
tional ML classifiers, SVM and LR, for sentiment analysis, and comparing the results
with those of the GloVe baseline and state-of-the-art approaches..
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The novelty of the new method is its enhancement of the GloVe architecture
through the addition of a layer for reducing vocabulary, leading to remarkable out-
comes that surpass both the baseline and the cutting-edge methods.
The following section of this chapter is structured as follows: in the second section,
we provide a literature review on existing related work. Section 3 outlines the GloVe
distributional representation model. Section 4 delves into the proposed approach
and the methodology used to extract polarities from tweets. In section 5, we dis-
cuss the results of the system evaluated through two datasets using several metrics.
Finally, we conclude with remarks and perspectives.

4.2 Related Work

Over the past few years, there has been a growing interest in researching Arabic
Sentiment Analysis. Various methods have been explored in this field, including
Lexicon-Based approaches, Machine Learning approaches, and Hybrid models, as
documented in the literature.
The field of Arabic Sentiment Analysis has gained significant attention in recent
years, and various approaches have been proposed in the literature. One of the
main approaches is the Lexicon based approach, which utilizes word polarities to
determine the sentiment of texts.
For instance, authors in (Baccianella2010) and (Thelwall2012) employed SentiWord-
Net and SentiStrength, respectively. However, these lexicons are based on English
and require machine translation from Arabic, which results in poor performance
due to the complexity of Arabic words that have multiple meanings. To overcome
this issue, researchers in (Al-Khatib2016) proposed a standard Arabic lexicon called
Ar-SenL, which is a large set of Arabic word embeddings. Nonetheless, there is no
perfect Arabic sentiment lexicon available, and some researchers have developed
their own lexicons specific to certain fields, such as EL-Beltagy (Ali2013), who fo-
cused on the Egyptian dialect.
To approach sentiment analysis in Arabic, researchers have primarily focused on
using supervised Machine Learning techniques. This involves dividing the dataset
into labeled subsets for learning and testing.
However, these techniques have been more commonly used for English language
sentiment analysis, and there is still a lack of application for Arabic. For instance, in
(? ), various classifiers such as SVM and RBF were utilized to classify the sentiment
of tweets from various domains. Similarly, in (Shahbazi2021), authors used Decision
Tree and SVM algorithms to predict sentiments about COVID-19 vaccination cam-
paigns.
The hybrid approach combines both Machine Learning and Lexicon Based tech-
niques, and there are limited studies conducted in Arabic language. In (Abdullah2019),
the authors suggested a hybrid approach for analyzing sentiment in Arabic tweets,
where the lexical-based classifier was utilized for labeling the training data, and the
SVM machine learning classifier was trained using the output.
After conducting a comprehensive literature review on sentiment analysis in Arabic,
we discovered that current lexicon-based techniques encounter problems with spar-
sity and dimensionality due to the vast number of words in the Arabic language.
Moreover, using baseline word embeddings for machine learning, even in a hybrid
approach, did not yield satisfactory results due to the Arabic language’s complex
morphology. This results in similar words having different surface forms, making it
difficult to identify the correct sentiment.
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To overcome these limitations, we proposed a new approach that integrates a root
extraction module (REM) and GloVe techniques. This approach aims to enhance the
embedding representation of Arabic words and improve sentiment analysis on Ara-
bic social media.

4.3 GLoVe For Arabic Sentiment Analysis

There are multiple distributional word representation models in literature that fol-
low the linguistic assumption that words with similar contexts have similar mean-
ings. These models are unsupervised and utilize statistics and probabilities from
large corpora.
One popular model for vector representations of words is the Global Vectors for
Word Representation (GloVe) (Pennington2014). GloVe was introduced by Penning-
ton in 2014 and is designed to learn low-dimensional vector representations of words.
It differs from other models by using ratios of co-occurrence probabilities instead of
just word occurrence.
It considers the frequency of word pairs occurring together and uses a loss function
to minimize the difference between the dot product of two word vectors and the
logarithm of the co-occurrence probability of those two words. This loss function is
a weighted sum of squared errors. The vectors that result from this approach rep-
resent the semantic relationships between words and can be used in various natural
language processing tasks, such as text classification, machine translation, and in-
formation retrieval.
The GloVe loss function can be represented as:

V

∑
i=1

V

∑
j=1

f (Pij)(wT
i w̃j + bi + bj − log Pij)2 (4.1)

where wi and w̃j are the word vectors for the ith and jth words in the vocab-
ulary of size V, bi and bj are bias terms for those words, Pij is the probability of
co-occurrence of the words i and j in the corpus, and f (Pij) is a weighting function
that assigns more importance to rare word pairs.

Using the GloVe model in a sentiment analysis system has enhanced the preci-
sion and decreased the complexity of matrix representations. The fundamental pro-
cess of using GloVe for sentiment analysis includes three steps, as depicted in Figure
4.1. Initially, the GloVe model is employed to acquire word vector representations
from a large corpus such as Wikipedia. After that, the tweets or comments collected
from the benchmark datasets are preprocessed, and a list of words is formed. Fi-
nally, the words are matched with the vectors generated in the first phase to obtain
their representations, which are utilized as features for machine learning classifiers
to build models.
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FIGURE 4.1: GloVe architecture

Despite the superior performance of the GloVe representation in sentiment anal-
ysis across multiple languages, including English, French, and Spanish, compared
to traditional models such as bags of words, it still performs poorly in Arabic due to
the complexity of Arabic text structures and morphology, as well as the abundance
of words, which exceeds thirteen million. To improve the results and maximize the
benefits of the GloVe representation in Arabic language sentiment analysis, a new
module called the roots extraction module (REM) has been integrated into the basic
sentiment analysis framework, and this module will be discussed in the next section.

4.4 The Proposed Approach

The novel method involves a combination of two processing techniques, namely
REM and GloVe, in order to create more efficient and compact features. These fea-
tures can then be utilized in machine learning classifiers to improve their accuracy
and effectiveness in Arabic sentiment analysis. The primary objective of this ap-
proach is to enhance the quality of word embeddings and increase their usefulness
in Arabic sentiment analysis tasks.

The system is illustrated in Figure 4.2 and consists of three phases, similar to the
basic GloVe sentiment analysis scheme.
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FIGURE 4.2: The New Approach architecture

Nevertheless, the key feature of this approach is the integration of the roots ex-
traction model into the GloVe representation, which is utilized in phases one and
two. More detailed information regarding the approach is elaborated in the follow-
ing subsections.

Phase I: Root vector representations

1. Data collection: It is essential to work with a substantial amount of Arabic data,
preferably equivalent in size to the data available on Wikipedia. This suggests
that the process of learning the distributional vector representation involves
analyzing patterns and relationships within an extensive dataset of Arabic text



42Chapter 4. A New Arabic Word Embedding Representation for Sentiment Analysis

to develop an effective representation of how words are utilized and related
within the language.

2. Root Extraction Module: This is the preprocessing step, which is illustrated in
Figure 4.4 below. The initial step involves data cleaning, which includes re-
moving symbols, URLs, punctuations, and non-Arabic characters. Next, stop
words such as "the", "in", or "and" are eliminated. Finally, with (? ) Arabic root
extraction approach is employed to obtain an Arabic Wikipedia roots corpus.

FIGURE 4.3: Phase I. Roots Extraction scheme

3. GloVe: During this step, the global vector distributional GloVe model is uti-
lized to train on the corpus obtained from the root extraction module. This
enables us to acquire novel vector representations for each word in the cor-
pus based on its co-occurrence with other words. These representations are
subsequently used in downstream tasks such as sentiment analysis.

Phase II: List of Twitter dataset roots

1. Dataset acquisition: In order to develop machine learning classifiers for Arabic
sentiment analysis, it is crucial to obtain a suitable dataset of Arabic text that
has been annotated with sentiment labels. The dataset should include a signif-
icant number of examples that are relevant to the task and domain where the
classifiers will be utilized.

2. Root Extraction Module Similar to Phase I, a preprocessing step is required
to remove noise from the tweets. Next, stop words are eliminated, followed
by a tokenization step where the text is split into tokens using a comma or
whitespace. The resulting list of words is then processed using Khoja root
extraction [22] to create a new bag of roots, as depicted in Figure 4.4 .
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FIGURE 4.4: Phase II. List of Roots Extraction scheme

Phase III: Sentiment Analysis Models

1. Vector assignments: During this phase, the list of deductions obtained from
Phase II is compared to the root representations obtained from Phase I, and
each root is associated with its respective vector.

2. Models creations: The resulting vectors are utilized as features in machine
learning, where two efficient classifiers, support vector machine (SVM) and
logistic regression (LR), are employed to create models for Arabic sentiment
analysis. The dataset is divided into 70% for training and 30% for testing pur-
poses.

4.5 Experiments and Results

In this section, we provide an overview of the datasets used and describe the two
experiments conducted to evaluate the accuracy of our Arabic sentiment analysis
system. All codes were implemented in Python, and we utilized the glove-python
package, which is available online, to implement the GloVe model. As mentioned in
Section 4, we utilized three data collections, one of which was gathered from Arabic
Wikipedia, a vast corpus necessary to apply GloVe to create word vector representa-
tions utilizing context to compress the size of matrix representations.

1. Datasets settings: The system uses three datasets for evaluation purposes. The
first dataset is the Arabic Wikidata Dump 2018, which contains Wikipedia Ara-
bic articles from the January 20, 2018 data dump, providing a valuable resource
for exploring the Arabic language and developing new applications. It has a
total of 75 million tokens. The second dataset is a collection of 40,000 Egyp-
tian tweets in Arabic, consisting of 20,000 positive and 20,000 negative tweets
covering a wide range of topics commonly addressed on Twitter. The third
dataset is the Large-Scale Arabic Book Reviews (LABR) obtained via the in-
ternet, which has 16,448 rows of book reviews labeled as positive (1) or nega-
tive (0). The system uses these datasets to evaluate the accuracy of the Arabic
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sentiment analysis system. The implementation is in Python, using the glove-
python package to apply the GloVe model. (See Table 4.1.)

TABLE 4.1: Number of Reviews in the Datasets

Datasets Number of Reviews
40k Egyptian tweet 40000 tweets

BOOK REVIEW 16448 tweets

2. Experimental Settings and parameters: First, the GloVe model was trained us-
ing Tensorflow tools to prepare for creating the models. The window size was
set to 3 and the embedding dimensions to 300. A minimum frequency of 50 for
each word was also set along with a learning rate of 0.05, Adam optimizer, and
the model was trained for 20 epochs on the entire text. These settings enabled
us to obtain a comprehensive and informative representation of the words in
the text data, which was then utilized in developing the models for the follow-
ing tasks.

TABLE 4.2: Experiment Settings

Setting Value
Window Size 3

Embedding Dimensions 300
Minimum Frequency 50

Learning Rate 0.05
Optimizer Adam

Epochs 20

In our research, we utilized two machine learning classifiers that have proven
to be highly effective: Support Vector Machine (SVM) and Logistic Regression
(LR). SVM is a well-established technique widely used in various natural lan-
guage processing applications due to its superior performance and efficiency
in text classification. On the other hand, LR is a discriminative and proba-
bilistic algorithm that belongs to the log-linear family of classifiers, and it is
used for binary classification. Both classifiers are known for their robustness
and ability to handle high-dimensional data, making them ideal for sentiment
analysis tasks.

We used the standard parameters for both SVM and LR classifiers in our ex-
periments. To ensure the validity of our results, we employed cross-validation
with the classifiers. We also randomly divided the datasets into two subsets,
with 80% of the data utilized for training and the remaining 20% used for test-
ing. This approach enabled us to evaluate the performance of the models on
new, unseen data and estimate their ability to generalize to new instances.

3. Evaluation: The evaluation of the approaches was conducted using the confu-
sion matrix (as shown in Table 4.3 ) and three metrics: Precision, Recall, and
F1-score.
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TABLE 4.3: Confusion Matrix

Actual
Positive Negative Total

True Positive (TP) False Negative (FN) Actual Positive (AP)
False Positive (FP) True Negative (TN) Actual Negative (AN)

Total Predicted Total

4.5.1 Results of GloVe and Bag of Words approaches

In the first experiment, which we labeled the Baseline approach, we utilized the
GloVe model’s vector representations with the SVM and LR classifiers on the EGYP-
TIAN TWEET and BOOK REVIEW datasets. The results obtained are presented in
Table 4.4 and Table 4.5, respectively. The last two columns of these tables indicate
the outcomes of the Bag of Word (BoW) technique applied to the same datasets and
classifiers. The results in Table 4.4 and Table 4.5 demonstrate that the GloVe-based
model outperformed the BoW technique, as evidenced by an increase in precision to
88% on the EGYPTIAN TWEET dataset and 83% on the BOOK REVIEW dataset.

TABLE 4.4: The Performance of GloVe baseline using EGYPTIAN
TWEETS Dataset Compared with BoW Approach

GloVe + SVM GloVe + LR BoW + SVM BoW + LR
Precision 0.86 0.88 0.72 0.77

Recall 0.82 0.83 0.70 0.74
F1-score 0.84 0.85 0.71 0.75

TABLE 4.5: The Performance of GloVe baseline using BOOK REVIEW
Dataset Compared with BoW Approach

GloVe + SVM GloVe + LR BoW + SVM BoW + LR
Precision 0.82 0.83 0.72 0.74

Recall 0.80 0.79 0.70 0.71
F1-score 0.81 0.81 0.71 0.72

4.5.2 Results of the proposed approach

The second experiment aimed to improve the previous method by incorporating the
Root module. We used the vectors produced by this new method to develop models
using the same classifiers and datasets as in the first experiment. The outcome of the
second experiment is presented in Table 4.6 and Table 4.7.

TABLE 4.6: Performance of the proposed approach using EGYPTIAN
TWEET Dataset

Approach using SVM Approach using LR
Precision 0.94 0.95

Recall 0.82 0.83
F1-score 0.87 0.88
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TABLE 4.7: The Performance of the proposed approach using BOOK
REVIEW Dataset.

Approach Using SVM Approach using LR
Precision 0.91 0.90
Recall 0.81 0.81
F1-score 0.86 0.85

According to Table Table 4.6 and Table 4.7, the suggested method has achieved
the highest level of accuracy, and it has increased the precision of GloVE by as much
as 8% with the SVM classifier and by 7% with the LR classifier on the EGYPTIAN
TWEET dataset. For the BOOK REVIEW dataset, the new approach has boosted the
precision of GloVE by 9%, the recall by 1%, and the F1 score by 5% when using the
SVM classifier.
Results shown in Table 4.6 and Table 4.7 confirm that the proposed method tested
on the EGYPTIAN TWEET dataset achieves the highest accuracy of 95%, which is a
favorable outcome when compared to the BoW and baseline approaches. The per-
formance of the two experiments is attributable to several factors, including the
compacting of the matrix representation, which decreases sparsity, and the GloVe
approach’s ability to reduce the number of tokens by 50%. Moreover, the combina-
tion of BoR and GloVe further enhances this reduction by 30% on the EGYPTIAN
TWEET dataset. The new approach has also reduced the tokens in the BOOK RE-
VIEW dataset by nearly 50%. As a result, accuracy has improved while processing
time has decreased (See Figure 4.5 and Figure 4.6) .

FIGURE 4.5: Illustration of approaches comparison fit on Egyptian
Tweets Dataset
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FIGURE 4.6: Illustration of approaches comparison fit on BOOK Re-
view Dataset

Besides evaluating our suggested method against BoW and GloVe representa-
tions, we performed an extensive assessment that involved various Arabic baseline
word embedding techniques, including Ar-FastText and word2vec. We have pre-
sented the comparison findings in Tables Table 4.8 and Table 4.9.

TABLE 4.8: The Performance of the baseline word embedding on
EGYPTIAN TWEET Dataset.

FastText + SVM FastText + LR Word2vec + SVM Word2vec + SVM
Precision 0.80 0.79 0.80 0.81
Recall 0.78 0.81 0.79 0.80
F1-score 0.79 0.80 0.79 0.80

TABLE 4.9: The Performance of the baseline word embedding on
BOOK REVIEW Dataset.

FastText + SVM FastText + LR Word2vec + SVM Word2vec + SVM
Precision 0.83 0.82 0.79 0.80
Recall 0.80 0.80 0.80 0.79
F1-score 0.81 0.81 0.79 0.79

The results of our experiments indicate that the novel technique we proposed
performs better than all the baseline embedding methods. Even though these meth-
ods are widely used, they failed to achieve the high accuracy of 90% that our new
method was able to achieve. These outcomes confirm the effectiveness of the new
approach and emphasize the importance of the processing techniques applied to the
dataset fed to the word embedding approach (See Figure 4.5 and Figure 4.6).
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FIGURE 4.7: Illustration of comparison between Word embeddings
and the new approach fit on Egyptian Tweets Dataset

FIGURE 4.8: Illustration of comparison between Word embeddings
and the new approach fit on BOOK Review Dataset

Specifically, the roots extraction module was identified as a crucial factor in en-
hancing the performance of the word embedding method. This supports the notion
that pre-processing the dataset before providing it to the model can significantly im-
pact the overall system performance.
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4.6 Conclusion

In this study, we presented a novel technique to enhance the embedding represen-
tation of Arabic words for sentiment analysis on Arabic social media. Our approach
involved the use of GloVe and BoR to reduce the vocabulary size and increase the
density of the matrix representation.
The resulting models generated using this approach demonstrated a significant im-
provement in the results, enhancing the accuracy of Arabic social media sentiment
analysis. However, there may be potential limitations of this new approach when it
comes to dialects. In future work, we intend to include more text data to improve
the word embedding corpus and concentrate on colloquial Arabic.

In the upcoming chapters, we will delve into the issue of working with imbal-
anced datasets, which is a common problem in machine learning applications. To
overcome this challenge, we will explore a range of methods and techniques specif-
ically designed for handling imbalanced datasets. These will include oversampling
and undersampling techniques, such as random oversampling, SMOTE, and Tomek
links, as well as hybrid techniques like SMOTE-Boundary and SMOTE-ENN.

Furthermore, we will analyze the impact of evaluation metrics, such as preci-
sion, recall, and F1-score, on the performance of imbalanced datasets. By using these
methods and metrics, we aim to develop more accurate and robust models capable
of handling imbalanced datasets effectively. This will help us mitigate the issues
associated with biased or inaccurate models, which can be particularly problematic
in critical applications like fraud detection and text classification. Through our ex-
ploration of these techniques, we hope to provide insights and practical solutions to
help practitioners and researchers improve their machine learning models and make
more informed decisions when working with imbalanced datasets.
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Chapter 5

Balancing Approaches

5.1 Introduction

Text classification is a vital task in natural language processing (NLP) that involves
assigning predefined categories or labels to text data. However, imbalanced datasets
are a common issue in text classification, where one or more classes have signifi-
cantly fewer instances than others. Imbalanced datasets pose a significant challenge
to machine learning algorithms, as they tend to produce biased models that favor
the majority class, leading to poor performance on the minority class (He2009).
To address the imbalanced dataset problem in text classification, various techniques
have been proposed, including oversampling, undersampling, and hybrid approaches.
Oversampling involves generating synthetic samples of the minority class to bal-
ance the class distribution (Sun2019). Undersampling involves removing instances
from the majority class to balance the class distribution. Hybrid approaches combine
oversampling and undersampling techniques to achieve a better balance between
the classes.
In this chapter, we will explore the different techniques for balancing imbalanced
datasets in text classification. We will discuss the advantages and disadvantages of
oversampling, undersampling, and hybrid approaches, and their effectiveness on
different datasets and classification tasks. We will also present the most popular
oversampling and undersampling techniques, such as Random Oversampling, Syn-
thetic Minority Oversampling Technique (SMOTE), Random Undersampling, and
Tomek links, and how they work.
Additionally, we will discuss hybrid approaches, such as SMOTE and Tomek links,
and how they can be applied in text classification.
In conclusion, balancing imbalanced datasets is an essential step in text classifica-
tion to improve the classification performance on the minority class. Oversampling,
undersampling, and hybrid approaches are effective techniques for balancing imbal-
anced datasets, and their choice depends on the specific characteristics of the dataset
and the classification task. This chapter aims to provide a comprehensive overview
of the different techniques for balancing imbalanced datasets in text classification
and their practical applications.

5.2 Definition of Imbalanced Dataset

An imbalanced dataset refers to a dataset where the distribution of data points
across different classes is significantly skewed, resulting in unequal representation
of classes. In such datasets, the number of samples belonging to each class is not
balanced, with some classes having a much larger number of instances compared to
others. This imbalance in class distribution can arise due to various factors, such as
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data collection processes, inherent characteristics of the underlying population, or
the rarity of certain events or phenomena being studied. As a consequence, imbal-
anced datasets pose challenges in machine learning tasks, particularly in classifica-
tion, as the models tend to be biased towards the majority classes. This bias can lead
to suboptimal performance, where the minority classes are often overlooked or mis-
classified. Therefore, it is crucial to recognize and address the class imbalance issue
in order to ensure fair representation and accurate predictions across all classes in
the dataset.

Formally, let D = {(x1, y1), (x2, y2), . . . , (xN , yN)} represent a dataset, where xi
denotes the feature vector of the i-th data point, and yi denotes its corresponding
class label.

In an imbalanced dataset, there can be one or more minority classes and a major-
ity class. Let K represent the total number of classes.

The minority classes refer to the classes with the smallest number of samples and
are denoted as Class "M1", Class "M2", . . ., Class "MK". The number of samples be-
longing to each minority class can be expressed as follows:
Minority Class (M1): |{(xi, yi) ∈ D : yi = ”M1”}|
Minority Class (M2): |{(xi, yi) ∈ D : yi = ”M2”}|
. . .
Minority Class (MK): |{(xi, yi) ∈ D : yi = ”MK”}|

The majority class refers to the class with the largest number of samples and is
denoted as Class "R". The number of samples belonging to the majority class can be
expressed as:

Majority Class (R): |{(xi, yi) ∈ D : yi = ”R”}|

The dataset is considered imbalanced when there is a significant difference in the
number of samples between the majority class and the minority classes (See Figure
5.1).

5.3 Balancing Problem Definition

Balancing in machine learning refers to the process of equalizing the number of in-
stances or samples for each class in a dataset. In classification tasks, the classes may
represent different categories, such as positive and negative examples or different
types of objects (Buda2018).
Imbalanced datasets can lead to biased models that favor the majority class, result-
ing in poor performance on the minority class. In other words, the classifier may
be more accurate at predicting the majority class, while performing poorly on the
minority class. This can be problematic in real-world applications where the cost of
misclassifying the minority class can be much higher than that of the majority class.
To address the issue of imbalanced datasets, various techniques can be used to bal-
ance the classes. Oversampling involves generating synthetic samples of the mi-
nority class, while undersampling involves removing samples from the majority
class. Hybrid approaches combine oversampling and undersampling techniques to
achieve a better balance between the classes.
The aim of balancing is to ensure that the model is not biased towards any partic-
ular class and performs well on all classes. This is achieved by ensuring that the
distribution of instances across all classes is balanced.
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FIGURE 5.1: Class Distribution in an Imbalanced Dataset

Balancing techniques involve modifying the dataset to create a balanced distri-
bution, which can be expressed mathematically as:

Let Nc be the number of samples in class c, and Nmax be the maximum number
of samples among all classes. The balanced dataset Dbal can be defined as:

Dbal = {(xi, yi) | (xi, yi) ∈ Dandyi = c f ori ∈ {1, 2, . . . , Nc}wherecisaclass}

The process of balancing aims to modify D to achieve approximately equal Nc
values for all classes. By balancing the dataset, we reduce the bias towards the major-
ity class and improve the performance of machine learning models on the minority
classes.
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Algorithm 12: Balancing algorithm
Input: Dataset D with imbalanced classes
Output: Balanced dataset D’

1 for each class C in D do
2 Compute the number of instances n for class C;
3 end
4 Find the class with the maximum number of instances, max_n;
5 Initialize D’ as an empty set;
6 for each class C in D do
7 if n < max_n then
8 if C is the minority class then
9 Apply oversampling technique to generate synthetic instances

until the number of instances equals max_n;
10 end
11 else if C is the majority class then
12 Apply undersampling technique to reduce the number of

instances until the number of instances equals max_n;
13 end
14 Add the new instances to D’;
15 end
16 else
17 Add all instances of class C to D’;
18 end
19 end
20 return D’

It’s important to note that this algorithm is versatile and can be adjusted to ac-
commodate various balancing techniques, such as oversampling, undersampling,
and hybrid methods. The specific implementation of each technique will vary de-
pending on the specific approach and the unique features of the dataset being ana-
lyzed.
In the next section, we will explore different sampling techniques that can be used to
balance imbalanced datasets. Specifically, we will look at oversampling techniques,
which involve generating synthetic samples of the minority class, and undersam-
pling techniques, which involve removing samples from the majority class. We will
also examine hybrid approaches that combine oversampling and undersampling
techniques to achieve a better balance between the classes. By understanding the
different sampling techniques and their implementation, we can choose the most
appropriate method for our specific dataset and improve the performance of our
machine learning models.

5.4 Oversampling

Oversampling is a technique used to address class imbalance in datasets, where the
number of instances in one class is significantly lower than the number of instances
in another class. This technique involves generating synthetic instances of the mi-
nority class to increase its representation in the dataset (Chawla2002).
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The synthetic instances are created by randomly sampling from the existing in-
stances of the minority class and applying a transformation or modification to each
sample, such as changing the feature values or introducing noise. By increasing
the number of minority class instances, oversampling can help improve the perfor-
mance of machine learning models, which may otherwise be biased towards the
majority class due to the imbalanced distribution of classes in the dataset.

Algorithm 13: Oversampling Algorithm
Input: Imbalanced dataset D
Output: Oversampled dataset D′

1 Compute the class distribution pc for each class c;
2 Set pmax = maxc pc;
3 Set nmax = |D| · pmax;
4 Initialize D′ = D;
5 for each class c do
6 Compute the number of samples nc to generate as nc = nmax − |D′c|;
7 while nc > 0 do

8 end
9 Randomly select a sample x from D′c;

10 Generate a new sample x′ by adding noise or applying a data
augmentation technique;

11 Add x′ to D′;
12 Set nc ← nc − 1;
13 end
14 return D′;

The goal of oversampling is to generate synthetic samples for the minority class(es)
to balance the class distribution. Here are some common oversampling techniques:

5.4.1 Random oversampling

This technique involves randomly duplicating samples from the minority class until
it reaches the same number of samples as the majority class (Batista2004).
The random oversampling algorithm is relatively simple. It involves the following
steps:

1. Compute the number of samples in each class: Count the number of samples
in each class to determine which class is the minority class.

2. Compute the difference in sample size between the minority and majority
classes: Subtract the number of minority class samples from the number of
majority class samples to determine the difference in sample size.

3. Randomly duplicate minority class samples: Select a random sample from the
minority class and duplicate it until the difference in sample size is reduced to
zero. Repeat this process until the number of samples in the minority class is
equal to the number of samples in the majority class.

Random oversampling is a simple and effective way to balance class distribution,
but it can lead to overfitting if the minority class samples are too similar to each other.
In such cases, other oversampling techniques like SMOTE or ADASYN can be used
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to generate more diverse synthetic samples.

Algorithm 14: Random Oversampling Algorithm
Input: Imbalanced dataset D
Output: Oversampled dataset D′

1 Compute the number of samples nmax in the majority class;
2 Select the minority class samples Dmin;
3 Randomly duplicate samples from Dmin until |D′min| = nmax;
4 Set D′ = D′min ∪ Dmaj;
5 return D′;

5.4.2 SMOTE (Synthetic Minority Over-sampling Technique)

SMOTE generates synthetic samples by interpolating between existing minority class
samples. It selects a minority class sample, finds its k nearest neighbors in the feature
space, and generates a new sample by linearly interpolating between the selected
sample and one of its neighbors (Nunes2021).

The SMOTE algorithm can be summarized in the following steps:

1. Compute the number of samples in each class: Count the number of samples
in each class to determine which class is the minority class.

2. Compute the difference in sample size between the minority and majority
classes: Subtract the number of minority class samples from the number of
majority class samples to determine the difference in sample size.

3. For each minority class sample, select k nearest neighbors: Use a distance met-
ric to find the k nearest neighbors of each minority class sample in the feature
space.

4. Generate synthetic samples: For each minority class sample, generate a new
synthetic sample by interpolating between the selected sample and one of its
neighbors. The interpolation is controlled by a random number between 0 and
1.

5. Add synthetic samples to the dataset: Add the synthetic samples to the minor-
ity class to create a new oversampled dataset.

SMOTE Formulation

Let X be the feature matrix and y be the corresponding class labels, where X =
{x1, x2, . . . , xn} and y = {y1, y2, . . . , yn}, n being the number of samples. SMOTE
generates synthetic samples for the minority class to balance the class distribution.
The formulation of SMOTE can be described as follows:

1. Select a minority class sample xi.

2. Find the k nearest neighbors of xi from the same class, denoted as Ni = {xi1, xi2, . . . , xik}.

3. Randomly select one of the nearest neighbors, denoted as xij.
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4. Generate a synthetic sample xnew by interpolating between xi and xij:

xnew = xi + δ · (xij − xi)

where δ is a random number in the range [0, 1].

5. Repeat steps 1-4 for a desired number of synthetic samples.

Algorithm 15: SMOTE Oversampling Algorithm
Input: Imbalanced dataset D
Output: Oversampled dataset D′

1 Compute the number of samples nmax in the majority class;
2 Select the minority class samples Dmin;
3 Set the number of synthetic samples N to generate as a percentage of

nmax − |Dmin|;
4 Compute the number of nearest neighbors k to use for SMOTE;
5 Compute the set of synthetic samples S using SMOTE;
6 Set D′ = Dmin ∪ S ∪ Dmaj;
7 return D′;

The number of nearest neighbors k is an important hyperparameter in the SMOTE
algorithm, as it determines the amount of interpolation between samples. A larger
k value leads to more smoothing and more conservative synthetic samples, while a
smaller k value leads to more variability and potentially more noisy synthetic sam-
ples.
The choice of k can depend on the specific dataset and problem at hand. In general,
a small k value (e.g., 1 or 2) may work well for datasets with well-defined clusters,
while a larger k value (e.g., 5 or 10) may be more appropriate for datasets with more
complex and overlapping classes. However, there is no universal rule for choosing
the best k value, and it is often determined through experimentation and validation.
In addition to k, other hyperparameters in the SMOTE algorithm, such as the per-
centage of synthetic samples to generate and the distance metric used to measure
the similarity between samples, may also need to be tuned to optimize performance.
Cross-validation and grid search techniques can be used to find the best hyperpa-
rameters for a given dataset and problem.
SMOTE is a popular oversampling technique because it generates synthetic samples
that are close to the real minority class samples, which helps to reduce overfitting.
However, it may also generate noisy samples if the feature space is not well defined.
Variants of SMOTE, such as Borderline SMOTE and ADASYN, have been proposed
to address some of these limitations.

5.4.3 ADASYN (Adaptive Synthetic Sampling)

ADASYN generates synthetic samples in a similar way to SMOTE but with a fo-
cus on adapting to the local density of the feature space. ADASYN generates more
synthetic samples for minority class samples that are harder to learn by classifiers
(He2008).
The ADASYN algorithm works as follows:

1. Compute the number of samples in each class: Count the number of samples
in each class to determine which class is the minority class.
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2. Compute the imbalance ratio: Compute the ratio of the number of majority
class samples to the number of minority class samples. each minority class
sample, compute its density distribution: Use a distance metric to find the k
nearest neighbors of each minority class sample in the feature space. Compute
the density distribution of the minority class samples in the vicinity of each
selected sample.

3. Compute the synthetic sample density distribution: For each minority class
sample, compute the density distribution of the synthetic samples to generate
in the vicinity of that sample. The density distribution is proportional to the
density distribution of the minority class samples in that region.

4. Generate synthetic samples: For each minority class sample, generate synthetic
samples in the vicinity of that sample according to the density distribution
computed in step 4.

5. Add synthetic samples to the dataset: Add the synthetic samples to the minor-
ity class to create a new oversampled dataset.

ADASYN Formulation

Let X be the feature matrix and y be the corresponding class labels, where X =
{x1, x2, . . . , xn} and y = {y1, y2, . . . , yn}, n being the number of samples. ADASYN
generates synthetic samples for the minority class to balance the class distribution.
The formulation of ADASYN can be described as follows:

1. Compute the density distribution D for each sample xi:

D(xi) =
∑n

j=1 K(xi, xj) · 1(yj = yi)

∑n
j=1 K(xi, xj)

where K(·, ·) is a kernel function (e.g., Gaussian kernel) and 1(·) is the indicator
function.

2. Compute the normalized density distribution D′:

D′(xi) =
D(xi)

∑n
j=1 D(xj)

3. Compute the imbalance ratio IR:

IR =
numbero f majorityclasssamples
numbero f minorityclasssamples

4. Compute the target number of synthetic samples Gi for each minority sample
xi:

Gi = IR · D′(xi)

5. Generate Gi synthetic samples for each minority sample xi by applying the
SMOTE algorithm with k nearest neighbors.
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Algorithm 16: ADASYN Oversampling Algorithm
Input: Imbalanced dataset D
Output: Oversampled dataset D′

1 Compute the number of samples nmaj in the majority class;
2 Compute the number of samples nmin in the minority class;
3 Compute the imbalance ratio r = nmaj/nmin;
4 Select the minority class samples Dmin;
5 For each minority class sample xi ∈ Dmin, compute the number of its k

nearest neighbors in D; Compute the density distribution Di of xi based on
its k nearest neighbors; Compute the normalized density distribution
pi = Di/ ∑j∈Dmin

Dj; Compute the number of synthetic samples Ni to
generate

6 for each minority class sample xi as Ni = br · pic;
7 For each minority class sample xi ∈ Dmin, generate Ni synthetic samples in

the vicinity of xi using the density distribution Di;
8 Set D′ = Dmin ∪ S ∪ Dmaj;
9 return D′;

In this algorithm, k is the number of nearest neighbors used to compute the den-
sity distribution of each minority class sample, and r is the imbalance ratio of the
dataset. The density distribution Di of a minority class sample xi is computed as
the sum of the distances between xi and its k nearest neighbors, and the normalized
density distribution pi is computed as the ratio of Di to the sum of the density dis-
tributions of all minority class samples.
The number of synthetic samples Ni to generate for each minority class sample xi is
proportional to its density distribution Di and the imbalance ratio r. The synthetic
samples are generated in the vicinity of xi using the density distribution Di.
Finally, the oversampled dataset D′ is created by combining the original minority
and majority class samples with the synthetic samples.

ADASYN differs from SMOTE in that it generates more synthetic samples in re-
gions of the feature space where the density of minority class samples is low, and
fewer synthetic samples in regions where the density is high. This helps to balance
the density distribution of the minority class and avoid overfitting.
Like SMOTE, ADASYN can be combined with other techniques such as random
undersampling or Tomek links to further improve the performance of the oversam-
pling method.

5.4.4 Borderline SMOTE Sampling

Borderline SMOTE is an extension of SMOTE that only generates synthetic samples
for borderline minority class samples, which are defined as minority class samples
that are misclassified by a k-NN classifier on the majority class samples (Han2005).

The Borderline SMOTE algorithm works as follows:

1. Compute the number of samples in each class: Count the number of samples
in each class to determine which class is the minority class.

2. Identify the borderline samples: Identify the minority class samples that are in
the vicinity of the majority class samples (i.e., the samples that are misclassified
or difficult to classify).
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3. Compute the number of synthetic samples to generate: For each borderline
sample, compute the number of synthetic samples to generate using the SMOTE
algorithm.

4. Generate synthetic samples: For each borderline sample, generate the desired
number of synthetic samples using the SMOTE algorithm.

5. Add synthetic samples to the dataset: Add the synthetic samples to the minor-
ity class to create a new oversampled dataset.

Borderline SMOTE Formulation

Let X be the feature matrix and y be the corresponding class labels, where X =
{x1, x2, . . . , xn} and y = {y1, y2, . . . , yn}, n being the number of samples. Borderline
SMOTE generates synthetic samples for the minority class, focusing on the samples
that are near the borderline between the minority and majority classes. The formu-
lation of Borderline SMOTE can be described as follows:

1. Identify the minority class samples that are located near the borderline be-
tween the minority and majority classes. This can be done by using a prede-
fined metric, such as k-nearest neighbors, to measure the proximity of each
minority sample to the majority samples.

2. For each identified borderline minority sample xi:

(a) Find the k nearest neighbors of xi from the same class, denoted as Ni =
{xi1, xi2, . . . , xik}.

(b) Randomly select one of the nearest neighbors, denoted as xij.

(c) Generate a synthetic sample xnew by interpolating between xi and xij:

xnew = xi + δ · (xij − xi)

where δ is a random number in the range [0, 1].

(d) Repeat steps (a)-(c) for a desired number of synthetic samples.

3. Repeat steps 2-3 for each identified borderline minority sample.

The Borderline SMOTE algorithm only generates synthetic samples for the mi-
nority class samples that are near the decision boundary between the minority and
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majority classes. This reduces the risk of overfitting and improves the generalization
of the oversample

Algorithm 17: Borderline SMOTE Oversampling Algorithm
Input: Imbalanced dataset D
Output: Oversampled dataset D′

1 Compute the number of samples nmaj in the majority class;
2 Compute the number of samples nmin in the minority class;
3 Compute the imbalance ratio r = nmaj/nmin;
4 Identify the minority class borderline samples Db;
5 For each minority class borderline sample xi ∈ Db, compute the number of

its k nearest neighbors in D; Compute the number of synthetic samples Ni
to generate

6 for each borderline sample xi as Ni = br · Di
k c;

7 For each minority class borderline sample xi ∈ Db, generate Ni synthetic
samples in the vicinity of xi using the SMOTE algorithm;

8 Set D′ = Dmin ∪ S ∪ Dmaj;
9 return D′;

In this algorithm, k is the number of nearest neighbors used to identify the minor-
ity class borderline samples, and r is the imbalance ratio of the dataset. The number
of synthetic samples Ni to generate for each borderline sample xi is proportional to
the density distribution Di of the sample, which is defined as the number of its k
nearest neighbors that belong to the minority class.

The synthetic samples are generated using the SMOTE algorithm in the vicin-
ity of each borderline sample xi. Unlike the original SMOTE algorithm, Borderline
SMOTE only generates synthetic samples for the minority class samples that are near
the decision boundary between the minority and majority classes, which reduces the
risk of overfitting.

Finally, the oversampled dataset D′ is created by combining the original minority
and majority class samples with the synthetic samples.

5.5 Undersampling

Undersampling is a technique for addressing imbalanced datasets in machine learn-
ing, where the number of samples in one class is much larger than the number of
samples in the other class(es) (Jiang2021). This technique involves reducing the
number of samples in the majority class to achieve a balance between the classes,
which can improve the performance of machine learning models that are biased
towards the majority class. Undersampling can be done in several ways, such as
randomly removing majority class samples or selecting a representative subset of
the majority class using clustering algorithms or other techniques (See Algorithm
12). The choice of undersampling technique should be based on the characteristics
of the dataset and the specific problem being addressed.

Undersampling Formulation

Let X be the feature matrix and y be the corresponding class labels, where X =
{x1, x2, . . . , xn} and y = {y1, y2, . . . , yn}, n being the number of samples. Under-
sampling aims to reduce the number of majority class samples to balance the class
distribution. The formulation of undersampling can be described as follows:
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1. Identify the majority class samples that need to be removed. This can be done
by various techniques such as random undersampling, cluster-based under-
sampling, or Tomek links.

2. For each identified majority class sample xi:

(a) Remove the sample xi from the dataset.

(b) Update the feature matrix X and class labels y accordingly.

3. Repeat steps 2-3 for each identified majority class sample that needs to be re-
moved.

here is some more detail on the common undersampling techniques:

5.5.1 Random undersampling

This method randomly selects a subset of the majority class samples to match the
number of samples in the minority class. It is a simple and fast approach, but it may
result in a loss of information and can lead to overfitting.
To implement random undersampling, we first need to identify the minority class
and majority class in the dataset. Next, we randomly select samples from the major-
ity class and remove them until the number of samples in the majority class matches
that of the minority class (Kaur2021).
Random undersampling is a simple technique that can quickly balance an imbal-
anced dataset. However, it may lead to a loss of information and may not be effective
in preserving the underlying structure of the data. Therefore, it is often combined
with other techniques, such as oversampling or synthetic oversampling, to generate
a balanced dataset that preserves the distribution and structure of the original data
while also reducing the impact of class imbalance.

Random Undersampling Formulation

Let X be the feature matrix and y be the corresponding class labels, where X =
{x1, x2, . . . , xn} and y = {y1, y2, . . . , yn}, n being the number of samples. Random
undersampling aims to reduce the number of majority class samples to balance the
class distribution. The formulation of random undersampling can be described as
follows:

1. Identify the majority class samples that need to be removed randomly. The
number of majority class samples to be removed can be determined based on
the desired class imbalance ratio.

2. Randomly select the identified majority class samples to be removed.

3. For each selected majority class sample xi:

(a) Remove the sample xi from the dataset.

(b) Update the feature matrix X and class labels y accordingly.

4. Repeat steps 2-3 for each selected majority class sample that needs to be re-
moved.
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Algorithm 18: Random Undersampling Algorithm
Input: Dataset D, Majority class label M, Minority class label m, Ratio of

majority to minority samples r
Output: Undersampled dataset D′

1 Calculate the number of minority class samples, Nm, in D; Calculate the
number of majority class samples to keep, NM = Nm ∗ r; Initialize an empty
set D′ to hold the undersampled dataset;

2 for each sample x in D do
3 if label(x) = m then
4 Add x to D′;
5 end
6 else if label(x) = M then
7 if number of samples in D′ < NM then
8 Add x to D′;
9 end

10 end
11 end

Note that in this algorithm, we randomly remove majority class samples until
the number of majority class samples in the undersampled dataset matches the de-
sired ratio of majority to minority samples. The resulting dataset D′ is then used for
training machine learning models.

5.5.2 Tomek links undersampling

This method involves identifying pairs of samples from different classes that are
nearest to each other, known as Tomek links, and removing the majority class sam-
ples from these pairs. This approach can be effective at reducing noise and improv-
ing the performance of the model (Bunkhumpornpat2009).
A Tomek link is defined as a pair of samples (xi, xj) from different classes such that
there is no sample xk between them that belongs to either class. In other words, xi
and xj are the closest neighbors to each other from different classes. Removing the
sample that is closer to the other class’s centroid can help to improve the separation
between the two classes.
To implement Tomek links, we first identify all pairs of samples in the dataset that
form a Tomek link. Next, we remove the majority class sample in each Tomek link,
effectively reducing the number of samples in the majority class and increasing the
distance between the two classes.
Tomek links is a simple and effective undersampling technique, but it can lead to
an overfitting problem when the number of minority class samples is very small.
Therefore, it is often used in combination with other techniques, such as synthetic
oversampling or random undersampling, to achieve better performance.

Tomek Links Undersampling Formulation

Let X be the feature matrix and y be the corresponding class labels, where X =
{x1, x2, . . . , xn} and y = {y1, y2, . . . , yn}, n being the number of samples. Tomek links
undersampling aims to remove majority class samples that form Tomek links with
minority class samples, in order to improve the class separation. The formulation of
Tomek links undersampling can be described as follows:
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1. Identify the pairs of samples that form Tomek links. A Tomek link exists be-
tween two samples xi and xj if they belong to different classes and there are no
other samples closer to xi than xj.

2. For each identified Tomek link between a minority class sample xi and a ma-
jority class sample xj:

(a) Remove the majority class sample xj from the dataset.

(b) Update the feature matrix X and class labels y accordingly.

3. Repeat steps 2-3 for each identified Tomek link between a minority class sam-
ple and a majority class sample.

Algorithm 19: Tomek Links Undersampling Algorithm
Input: Dataset D, Majority class label M, Minority class label m
Output: Undersampled dataset D′

1 Identify all pairs of samples in D that form a Tomek link;
2 for each Tomek link (xi, xj) do
3 if label(xi) = M and label(xj) = m then
4 Remove xi from D;
5 end
6 else if label(xi) = m and label(xj) = M then
7 Remove xj from D;
8 end
9 end

10 D′ = D;

Note that in this algorithm, we identify all pairs of samples that form a Tomek
link by finding the nearest neighbors of each sample from the opposite class. Then,
we remove the majority class sample in each Tomek link to obtain the undersampled
dataset D′.

5.5.3 Edited nearest neighbors (ENN) undersampling

This method involves identifying samples in the majority class that are misclassified
by their nearest neighbors in the same class and removing them. This technique can
reduce noise and improve the decision boundary between classes (Panda2021).

The ENN algorithm works by first identifying the k nearest neighbors for each
sample in the dataset. Then, it calculates the class difference between each sample
and its neighbors. If the majority class is overrepresented among the neighbors of
a minority class sample, it is considered to be a noisy or misleading sample and is
removed from the dataset.

ENN Undersampling Formulation

Let X be the feature matrix and y be the corresponding class labels, where X =
{x1, x2, . . . , xn} and y = {y1, y2, . . . , yn}, n being the number of samples. Edited
Nearest Neighbors (ENN) undersampling aims to remove majority class samples
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that are misclassified by their nearest neighbors from the same class, in order to im-
prove the class separation. The formulation of ENN undersampling can be described
as follows:

1. For each majority class sample xi:

(a) Compute the nearest neighbors of xi from the same class, denoted as Ni =
{xi1, xi2, . . . , xik}.

(b) Determine the class label of xi based on the majority vote of its nearest
neighbors.

(c) If the class label of xi does not match the majority class label, remove xi
from the dataset.

2. Update the feature matrix X and class labels y accordingly after removing the
misclassified majority class samples.

ENN is a simple and computationally efficient undersampling technique. However,
it may not work well when the dataset is highly imbalanced or when the minority
class samples are scattered throughout the feature space. In such cases, other under-
sampling techniques such as Tomek links or CNN may be more effective.

Algorithm 20: ENN Undersampling Algorithm
Input: Dataset D, Majority class label M, Minority class label m, Number of

nearest neighbors k
Output: Undersampled dataset D′

1 Calculate the k nearest neighbors of each sample in D; for each sample xi in D
do

2 if label(xi) = m then
3 Let NN(xi) be the k nearest neighbors of xi; if the number of majority

class samples in NN(xi) > the number of minority class samples in
NN(xi) then

4 Remove xi from D;
5 end
6 end
7 end
8 D′ = D;

Note that in this algorithm, we calculate the k nearest neighbors for each sample
in the dataset using a distance metric such as Euclidean distance. Then, we iterate
over each minority class sample in the dataset and examine its k nearest neighbors.
If the majority class is overrepresented among the neighbors, we remove the minor-
ity class sample from the dataset to obtain the undersampled dataset D′.

5.5.4 Boundary Undersampling

Boundary Undersampling (BU) is a hybrid sampling technique that combines un-
dersampling with the Boundary Cleaning (BC) method to address the issue of im-
balanced datasets in classification tasks (Liu2021).

The Boundary Undersampling algorithm works as follows:

1. Identify the borderline samples: Samples that are on the boundary between
the minority and majority classes are identified. These samples are those that
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have at least one neighbor belonging to the majority class and one neighbor
belonging to the minority class.

2. Boundary Cleaning (BC): The BC method is used to remove noisy borderline
samples. This is done by examining the k-nearest neighbors of each borderline
sample. If the majority class samples are in the majority among the k-nearest
neighbors, the sample is removed. Otherwise, it is kept in the dataset.

3. Undersampling: After cleaning the noisy borderline samples, a random un-
dersampling method is applied to the majority class to remove a portion of the
samples until the desired balance ratio is reached.

4. Combine datasets: The minority class and majority class samples remaining
after the BU process are combined to form the final balanced dataset.

Boundary Undersampling Formulation

Let X be the feature matrix and y be the corresponding class labels, where X =
{x1, x2, . . . , xn} and y = {y1, y2, . . . , yn}, n being the number of samples. Boundary
undersampling aims to remove majority class samples that are near the decision
boundary, in order to improve the class separation. The formulation of Boundary
Undersampling can be described as follows:

1. Compute the decision boundary of the classifier trained on the original dataset.

2. For each majority class sample xi:

(a) Compute the distance from xi to the decision boundary.

(b) If the distance is smaller than a predefined threshold, remove xi from the
dataset.

3. Update the feature matrix X and class labels y accordingly after removing the
majority class samples near the decision boundary.

By combining undersampling with the BC method, the Boundary Undersam-
pling approach is able to remove noisy samples from the borderline between the
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minority and majority classes, while also reducing the number of majority class sam-
ples to achieve a more balanced dataset.

Algorithm 21: Boundary Cleaning Algorithm
Input: Dataset with class labels y1, y2, ..., yn and features x1, x2, ..., xn
Output: Cleaned dataset x′+ ∪ x′− , y′+ ∪ y′−

1 Identify the borderline samples:

1. For each minority class sample xi, identify its k-nearest neighbors in the
dataset

2. If at least one neighbor belongs to the majority class and at least one neighbor
belongs to the minority class, mark xi as a borderline sample

Clean borderline samples using BC:

1. For each borderline sample xi with k nearest neighbors:

2. Calculate the ratio r = majorityclassneighbors
minorityclassneighbors

3. If r ≥ 1, remove xi from the dataset

4. Else, keep xi in the dataset

Combine datasets: X’ = x′+ ∪ x′−, Y’ = y′+ ∪ y′−, where x′+ and y′+ are the
minority class samples and their corresponding labels that are not removed
by BC, and x′− and y′− are the majority class samples and their
corresponding labels after undersampling, if applicable;

It is worth noting that the performance of Boundary Undersampling can be in-
fluenced by the choice of parameters, such as the number of neighbors in BC and
the balance ratio. These parameters can be tuned to optimize the performance of the
classification model on the balanced dataset.

5.6 Hybrid sampling

Hybrid sampling is an approach in imbalanced classification problems where both
undersampling and oversampling techniques are used to balance the class distribu-
tion of the dataset. The idea behind hybrid sampling is to first apply an undersam-
pling technique to remove some of the majority class samples and then apply an
oversampling technique to generate synthetic minority class samples (Kumar2018).
The resulting dataset has a more balanced class distribution, which can improve the
performance of classification models. Hybrid sampling can help to address the chal-
lenges posed by imbalanced datasets by creating a more representative dataset for
training and evaluation of classification models.

HYBRID Formulation

Let X be the feature matrix and y be the corresponding class labels, where X =
{x1, x2, . . . , xn} and y = {y1, y2, . . . , yn}, n being the number of samples. The HY-
BRID technique combines oversampling and undersampling methods to address
class imbalance. The formulation of the general HYBRID technique can be described
as follows:
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1. Apply an undersampling technique to reduce the majority class samples in the
dataset.

2. Apply an oversampling technique to augment the minority class samples in
the dataset.

3. Optionally, perform further iterations of undersampling and oversampling to
refine the class distribution.

4. Update the feature matrix X and class labels y accordingly after applying the
hybridization.

Here are some examples of hybrid sampling approaches classified by their per-
formance in text classification:

5.6.1 Random undersampling and oversampling

This approach involves randomly removing some samples from the majority class
(undersampling) and duplicating some samples from the minority class (oversam-
pling) to balance the dataset. This approach is easy to implement but may result in
loss of important information from the majority class and overfitting to the minority
class (Batista2003).

1. Load and preprocess the text dataset: The first step is to load the text dataset
and perform any necessary preprocessing steps, such as cleaning, tokenization,
and vectorization.

2. Calculate the class distribution: Calculate the number of samples in each class
to determine the level of class imbalance in the dataset.

3. Implement random undersampling: Randomly remove some samples from
the majority class so that the number of samples in the majority class is reduced
to be closer to the number of samples in the minority class. The ratio of the
number of samples between the classes can be set to a desired value.

4. Implement random oversampling: Randomly duplicate some samples from
the minority class so that the number of samples in the minority class is in-
creased to be closer to the number of samples in the majority class. The ratio
of the number of samples between the classes can be set to a desired value.

5. Combine the undersampled and oversampled datasets: Combine the under-
sampled and oversampled datasets to create a new balanced dataset.

Rundom Over & Random Under Formulation

Let X be the feature matrix and y be the corresponding class labels, where X =
{x1, x2, . . . , xn} and y = {y1, y2, . . . , yn}, n being the number of samples. The RURO
technique combines random undersampling and random oversampling to address
class imbalance. The formulation of the RURO technique can be described as fol-
lows:

1. Randomly select a subset of majority class samples to be removed using ran-
dom undersampling. The number of majority class samples to be removed can
be determined based on the desired class imbalance ratio.
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2. Randomly select a subset of minority class samples to be duplicated using ran-
dom oversampling. The number of minority class samples to be duplicated
can be determined based on the desired class imbalance ratio.

3. Update the feature matrix X and class labels y accordingly after applying the
random under and random over steps.

Algorithm 22: Hybrid Random Undersampling and Oversampling Algo-
rithm

Input: Dataset with class labels y1, y2, ..., yn and features x1, x2, ..., xn
Output: Balanced dataset x′+ ∪ x′−, y′+ ∪ y′−

1 Calculate class distribution N+ and N−;
2 Calculate undersampling ratio pu = N+

N− ;

3 Calculate oversampling ratio po =
N−
N+

;
4 Undersample majority class:
5 x′− = xi|yi = y−andri = 1,
6 where ri is a random variable that equals 1 with probability pu and 0

otherwise;
7 Oversample minority class:
8 x′+ = xi|yi = y+andri = 1,
9 where ri is a random variable that equals 1 with probability po and 0

otherwise;
10 Combine datasets:
11 X’ = x′+ ∪ x′−,
12 Y’ = y+ × |x′+| ∪ y− × |x′−|,
13 where |x′+| and |x′−| are the sizes of the oversampled and undersampled

datasets, respectively;
14 Shuffle the balanced dataset;

Note that the algorithm can be modified to include hyperparameters for tuning
the values of pu and po, as well as other parameters such as the number of folds
in cross-validation and the performance metric used for evaluation. Additionally,
other techniques such as synthetic sampling can be incorporated into the algorithm
to further improve the performance of the classification model.

5.6.2 SMOTE-Tomek Sampling

This approach combines SMOTE (Synthetic Minority Over-sampling Technique) and
Tomek links to remove samples from the majority class that are close to the mi-
nority class (Tomek links) and generate synthetic samples from the minority class
(SMOTE). This approach has been shown to improve the performance of text clas-
sification models by balancing the dataset and reducing the overlapping between
classes (Salloum2020).
SMOTE-Tomek consists of two steps:

SMOTE: Synthetic minority over-sampling technique (SMOTE) is used to gener-
ate synthetic samples for the minority class by interpolating between the minority
class samples. This helps to balance the class distribution by increasing the number
of minority class samples.

Tomek Links: Tomek links are pairs of samples from different classes that are
closest to each other, and removing these pairs from the dataset can help to improve
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the class separability. In SMOTE-Tomek, Tomek links are identified and the major-
ity class samples involved in Tomek links are removed to further improve the bal-
ance between the classes. The SMOTE-Tomek approach combines the strengths of
SMOTE in generating synthetic samples and Tomek links in removing noisy samples
to improve the performance of classification models in imbalanced datasets.

SMOTE-Tomek Links Formulation

Let X be the feature matrix and y be the corresponding class labels, where X =
{x1, x2, . . . , xn} and y = {y1, y2, . . . , yn}, n being the number of samples. The SMOTE-
Tomek Links technique combines the Synthetic Minority Over-sampling Technique
(SMOTE) and Tomek links undersampling to address class imbalance. The formula-
tion of the SMOTE-Tomek Links technique can be described as follows:

1. Apply SMOTE to generate synthetic samples for the minority class, as de-
scribed in the SMOTE formulation.

2. Identify the pairs of samples that form Tomek links between the minority and
majority classes. A Tomek link exists between two samples xi and xj if they
belong to different classes and there are no other samples closer to xi than xj.

3. For each identified Tomek link between a minority class sample xi and a ma-
jority class sample xj:

(a) Remove both samples xi and xj from the dataset.

(b) Update the feature matrix X and class labels y accordingly.

4. Update the feature matrix X and class labels y accordingly after applying the
SMOTE-Tomek Links steps.

Algorithm 23: SMOTE-Tomek Algorithm
Input: Dataset with class labels y1, y2, ..., yn and features x1, x2, ..., xn
Output: Balanced dataset x′+ ∪ x′−, y′+ ∪ y′−

1 Calculate class distribution N+ and N−;
2 Calculate the number of synthetic samples to generate nsyn;
3 Generate synthetic minority class samples using SMOTE;
4 Identify Tomek links between classes;
5 Remove majority class samples involved in Tomek links;
6 Combine datasets:
7 X’ = x′+ ∪ x′−,
8 Y’ = y+ × |x′+| ∪ y− × |x′−|,
9 where |x′+| and |x′−| are the sizes of the oversampled and undersampled

datasets, respectively;
10 Shuffle the balanced dataset;

Note that the algorithm can be modified to include hyperparameters for tuning
the number of synthetic samples to generate, as well as other parameters such as the
distance metric used in identifying Tomek links and the performance metric used for
evaluation. Additionally, other techniques such as ensemble methods can be incor-
porated into the algorithm to further improve the performance of the classification
model.
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5.6.3 SMOTE-ENN Sampling

This approach combines SMOTE and Edited Nearest Neighbors (ENN) to gener-
ate synthetic samples from the minority class (SMOTE) and remove noisy samples
from the majority class that are misclassified by the k-nearest neighbors algorithm
(ENN). This approach has been shown to improve the performance of text classifi-
cation models by balancing the dataset and reducing the influence of noisy samples
(Li2021). The SMOTE-ENN algorithm works in the following steps:

SMOTE: Synthetic Minority Over-sampling Technique (SMOTE) is used to gen-
erate synthetic samples for the minority class by interpolating between the minority
class samples. This helps to balance the class distribution by increasing the number
of minority class samples.

ENN: Edited Nearest Neighbors (ENN) is used to identify and remove noisy
samples. ENN works by examining the k-nearest neighbors of each sample in the
dataset and removing samples that do not have a consistent class label with their
neighbors. This helps to improve the quality of the minority class samples by re-
moving noisy samples.

Combine datasets: The datasets generated by SMOTE and ENN are combined to
form the final balanced dataset.

By combining the SMOTE and ENN methods, the SMOTE-ENN approach is able
to address both the class imbalance problem and the issue of noisy samples in im-
balanced datasets.

SMOTE-ENN Formulation

Let X be the feature matrix and y be the corresponding class labels, where X =
{x1, x2, . . . , xn} and y = {y1, y2, . . . , yn}, n being the number of samples. The SMOTE-
ENN technique combines the Synthetic Minority Over-sampling Technique (SMOTE)
and Edited Nearest Neighbors (ENN) undersampling to address class imbalance.
The formulation of the SMOTE-ENN technique can be described as follows:

1. Apply SMOTE to generate synthetic samples for the minority class, as de-
scribed in the SMOTE formulation.

2. Apply ENN to remove majority class samples that are misclassified by their
nearest neighbors from the same class, as described in the ENN formulation.

3. Update the feature matrix X and class labels y accordingly after applying the
SMOTE-ENN steps.
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Algorithm 24: SMOTE-ENN Algorithm
Input: Dataset with class labels y1, y2, ..., yn and features x1, x2, ..., xn
Output: Balanced dataset x′+ ∪ x′−, y′+ ∪ y′−

1 Calculate class distribution N+ and N−;
2 Calculate the number of synthetic samples to generate nsyn;
3 Generate synthetic minority class samples using SMOTE;
4 Identify noisy samples using ENN;
5 Remove noisy samples;
6 Combine datasets:
7 X’ = x′+ ∪ x′−,
8 Y’ = y+ × |x′+| ∪ y− × |x′−|,
9 where |x′+| and |x′−| are the sizes of the oversampled and undersampled

datasets, respectively;
10 Shuffle the balanced dataset;

Note that the algorithm can be modified to include hyperparameters for tuning
the number of synthetic samples to generate, as well as other parameters such as
the number of neighbors to consider in ENN and the performance metric used for
evaluation. Additionally, other techniques such as ensemble methods can be incor-
porated into the algorithm to further improve the performance of the classification
model.

5.6.4 SMOTE-Boundary Sampling

SMOTE-Boundary Sampling is a hybrid sampling technique that combines the SMOTE
and Boundary Cleaning (BC) methods to address the issue of imbalanced datasets
in classification tasks (Lee2020).

The SMOTE-Boundary Sampling algorithm works as follows:

1. SMOTE: Synthetic Minority Over-sampling Technique (SMOTE) is applied to
generate synthetic samples for the minority class by interpolating between the
minority class samples.

2. Identify the borderline samples: Samples that are on the boundary between
the minority and majority classes are identified. These samples are those that
have at least one neighbor belonging to the majority class and one neighbor
belonging to the minority class.

3. Boundary Cleaning (BC): The BC method is used to remove noisy borderline
samples. This is done by examining the k-nearest neighbors of each borderline
sample. If the majority class samples are in the majority among the k-nearest
neighbors, the sample is removed. Otherwise, it is kept in the dataset.

4. Generate synthetic samples: For each borderline sample, generate the desired
number of synthetic samples using the SMOTE algorithm.

5. Combine datasets: The datasets generated by SMOTE and BC are combined to
form the final balanced dataset.

By combining SMOTE and BC, the SMOTE-Boundary Sampling approach is able
to generate synthetic samples while also removing noisy samples from the border-
line between the minority and majority classes, resulting in a high-quality balanced
dataset.
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SMOTE-Borderline Formulation

Let X be the feature matrix and y be the corresponding class labels, where X =
{x1, x2, . . . , xn} and y = {y1, y2, . . . , yn}, n being the number of samples. The SMOTE-
Borderline technique combines the Synthetic Minority Over-sampling Technique
(SMOTE) and the Borderline technique to address class imbalance. The formulation
of the SMOTE-Borderline technique can be described as follows:

1. Identify the samples from the minority class that are on the border of the deci-
sion boundary, referred to as the borderline samples.

2. For each borderline sample xi:

(a) Compute the k nearest neighbors of xi from the same class, denoted as
Ni = {xi1, xi2, . . . , xik}.

(b) Select the m nearest neighbors of xi that belong to the majority class, de-
noted as N′i ⊆ Ni.

(c) For each selected neighbor xj ∈ N′i , generate synthetic samples between
xi and xj using SMOTE.

3. Update the feature matrix X and class labels y by adding the generated syn-
thetic samples.

Algorithm 25: SMOTE-Boundary Sampling Algorithm
Input: Dataset with class labels y1, y2, ..., yn and features x1, x2, ..., xn
Output: Balanced dataset x′+ ∪ x′−, y′+ ∪ y′−

1 Calculate class distribution N+ and N−;
2 Calculate the number of synthetic samples to generate nsyn;
3 Generate synthetic minority class samples using SMOTE;
4 Identify borderline samples;
5 Clean borderline samples using BC:

1. For each borderline sample xi with k nearest neighbors:

2. Calculate the ratio r = majorityclassneighbors
minorityclassneighbors

3. If r ≥ 1, remove xi from the dataset

4. Else, keep xi in the dataset

Combine datasets: X’ = x′+ ∪ x′−,
Y’ = y+ × |x′+| ∪ y− × |x′−|,
where |x′+| and |x′−| are the sizes of the oversampled and undersampled
datasets, respectively;
Shuffle the balanced dataset;
Note that the algorithm can be modified to include hyperparameters for tuning

the number of synthetic samples to generate, as well as other parameters such as
the number of neighbors to consider in SMOTE and BC and the performance met-
ric used for evaluation. Additionally, other techniques such as ensemble methods
can be incorporated into the algorithm to further improve the performance of the
classification model.

It is worth noting that the performance of SMOTE-Boundary Sampling can be
influenced by the choice of parameters, such as the number of neighbors in SMOTE
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and BC, as well as the size of the synthetic minority class. These parameters can
be tuned to optimize the performance of the classification model on the balanced
dataset. In summary, hybrid sampling approaches that combine both under and
oversampling techniques can enhance the performance of text classification models
by achieving dataset balance, retaining crucial information from both classes, and
mitigating the impact of noisy samples. The selection of an appropriate approach
should be guided by the dataset characteristics and the specific demands of the text
classification task.

5.7 Conclusion

In conclusion, this chapter has explored various approaches to address class imbal-
ance in text classification tasks. We have reviewed different sampling techniques, in-
cluding random undersampling, oversampling, and their hybrid methods. We also
discussed the SMOTE-based techniques, such as SMOTE-Tomek, SMOTE-ENN, and
SMOTE-Borderline, as well as the Boundary Cleaning technique. Despite the suc-
cess of these methods, there is still room for improvement, especially in the context
of deep learning models. In the next chapter, we will introduce our contribution
to address class imbalance in BERT, one of the state-of-the-art deep learning mod-
els for natural language processing. Specifically, we will propose a new layer that
incorporates a balancing technique in different emplacements within the BERT ar-
chitecture. Our proposed approach leads to better performance in text classification
tasks, especially for Arabic sentiment analysis on imbalanced datasets.
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Chapter 6

Improving Multi-class Text
Classification on Imbalanced
Datasets

6.1 Introduction

Multi-class text classification is the task of categorizing a text document into one
of several predefined categories or classes. It has numerous applications in natural
language processing, including sentiment analysis, topic classification, and spam
filtering. Multi-class text classification poses a challenging problem as it requires the
model to accurately distinguish between multiple classes, which can be semantically
similar.

Imbalanced datasets are one of the major challenges in multi-class text classifi-
cation. In real-world scenarios, the number of samples in each class is often unbal-
anced, with some classes having significantly fewer samples than others. This leads
to a bias towards the majority class during training, resulting in poor performance
on the minority classes. The imbalanced nature of datasets can be especially prob-
lematic in text classification, where some classes may have very specific and nuanced
features that are difficult to capture (Nooralahzadeh2021).

BERT (Bidirectional Encoder Representations from Transformers) has been shown
to achieve state-of-the-art results in many NLP tasks, including text classification.
However, when applied to imbalanced datasets, BERT may still suffer from the prob-
lem of bias towards the majority class, resulting in poor performance on the minority
classes (Devlin2018). This is due to the fact that BERT is trained on a large corpus
of text, which may not accurately represent the distribution of classes in the imbal-
anced dataset.

To address the problem of imbalanced datasets in text classification, researchers
we proposed a new approach that includes a new layer of balancing after the em-
bedding representation step in BERT. This new layer is trained to adjust the weight
of each sample based on the class distribution, effectively balancing the training
process for all classes. The results of this approach have shown significant improve-
ments over the BERT baseline and state-of-the-art methods, demonstrating its effec-
tiveness in addressing the problem of imbalanced datasets in text classification.

Another new approach to address the problem of imbalanced datasets in text
classification is to include a new layer of balancing after the BERT representation
step. This layer is designed to adjust the weight of each sample based on the sim-
ilarity between the sample and the centroid of each class, effectively balancing the
training process for all classes. This approach has shown even better results than the
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previous method, surpassing both the BERT baseline and the state-of-the-art meth-
ods. The effectiveness of this approach highlights the importance of addressing the
problem of imbalanced datasets in text classification, and the potential of using ad-
vanced techniques to improve the performance of NLP models in real-world scenar-
ios.

The remaining section of this chapter is structured as follows: In the second sec-
tion, we provide an overview of the baseline algorithm and methodology used in
this study. Section 3 introduces the proposed balancing techniques. The experimen-
tal design, results, and subsequent discussions are presented in Section 4. Finally,
we conclude the paper.

6.2 BERT for Sentiment Analysis

The Bidirectional Encoder Representation from Transformer (BERT) framework is
based on the revolutionary transformer architecture. This approach is divided into
two steps: pre-training, and fine-tuning (see Figure 6.1). The model is trained on un-
labeled data across several pre-training tasks in the first phase. For the fine-tuning,
the BERT model is first started with the pre-trained parameters, and then all of the
parameters are fine-tuned using labeled data from the downstream task. As such,
applied to balanced datasets, a BERT model fine-tuned to text classification task out-
performs the state-of-the-art. The descriptions of the two steps are described below.

FIGURE 6.1: BERT Architecture (Devlin2018)

6.2.1 BERT Pre-training

In natural language processing, pre-training models have gained widespread atten-
tion due to their ability to learn useful linguistic features. One such pre-training ap-
proach is the deep bi-directional model, which combines two modeling approaches,
one that moves from left-to-right and one that moves from right-to-left. The com-
bination of these approaches leads to a relatively shallow concatenation of the two
models, which results in the ability to better capture the context of the text.

The left-to-right and right-to-left models are trained on the same corpus, but in
opposite directions. By training the models in this way, the model can predict miss-
ing words in the text based on the surrounding context, in both directions. The
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output of the left-to-right and right-to-left models are concatenated to create a single
embedding for each token. This bi-directional approach is useful for modeling de-
pendencies in the text, which can help with tasks such as named entity recognition,
sentiment analysis, and machine translation.

Task 1: Masked Language Modeling (MLM)

The pre-training step in BERT utilizes a masked language model approach, where a
random 15% of the input tokens are masked and predicted to train a deep bidirec-
tional representation. This approach ensures that the model learns to predict missing
words based on their context and improves the model’s understanding of language.
The final hidden vectors of the masked tokens are then fed into an output softmax
over the vocabulary, enabling the model to predict the original tokens during fine-
tuning.

During prediction, the training data generator randomly selects 15% of the to-
ken positions and applies a replacement strategy. If the i-th token is selected, it is
replaced 80% of the time with the mask token, 10% of the time with a random token,
and 10% of the time with the original i-th token. This replacement strategy enables
the model to generalize better and handle out-of-vocabulary words. Cross-entropy
loss and Ti, the number of tokens in the input sequence, are used to predict the
original token, allowing the model to learn to differentiate between different token
positions and predict the correct word in context. The use of these techniques in pre-
training BERT enables the model to achieve state-of-the-art performance on various
natural language processing tasks.

• During training:

– Randomly mask 15% of input tokens and predict.

– Final hidden vectors of masked tokens are fed into an output softmax.

• During prediction:

– Randomly select 15% of token positions.

– Replace i-th token with 80% probability of mask token, 10% probability
of random token, and 10% probability of original i-th token.

– Use cross-entropy loss and Ti to predict original token.

Task 2: Next Sentence Predicting (NSP)

The main goal of the binarized next sentence challenge task is to determine whether
there is an association between two given sentences or not. This task involves us-
ing a monolingual corpus to train a model that can detect sentence connections.
Specifically, the model needs to predict whether a given sentence is the next one in
a sequence of sentences or not. This type of task is crucial in natural language pro-
cessing, as it can help improve the accuracy of various downstream tasks that rely
on sentence connections, such as question-answering and text summarization.

Once the BERT pre-training step is completed, all of the learned parameters are
transferred to initialize the downstream task, which is the fine-tuning step. Dur-
ing fine-tuning, the model’s parameters are fine-tuned using labeled data from the
downstream task to improve the model’s accuracy for a specific task. By transferring
the parameters learned during pre-training, the model can leverage the knowledge
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gained from the vast amount of unlabeled data during the pre-training phase, re-
sulting in a better-performing model for the downstream task.

6.2.2 BERT Fine-tuning

BERT’s architecture is highly flexible and allows fine-tuning of pre-trained models
for various downstream tasks. By inputting relevant inputs and outputs and fine-
tuning all of the model’s parameters end-to-end, BERT can be fine-tuned for various
tasks such as text classification and sequence tagging. For text classification tasks,
concatenated sentences with a single blank are used as a single input phrase. The
baseline input of BERT consists of tokens representing sentences, which results in a
set of token representations when processed. These token representations generate a
REP<cls> representation for the text and a representation for each token. The overall
architecture is shown in Figure 6.2.

FIGURE 6.2: BERT Baseline Approach

In summary, BERT is a highly flexible architecture that allows for fine-tuning of
pre-trained models for various downstream tasks by inputting relevant inputs and
outputs and fine-tuning all of the model’s parameters end-to-end. In text classifi-
cation tasks, concatenated sentences with a single blank are used as a single input
phrase, and the baseline input of BERT consists of tokens representing sentences.
The resulting token representations generate a REP<cls> representation for the text
and a representation for each token. By fitting a classifier to the output of the repre-
sentation data, using REP<cls>, models can be built. This flexibility and ease of use
make BERT a popular choice for various NLP tasks, including text classification and
sequence tagging.

Despite the effectiveness of BERT in text classification tasks, its performance is
suboptimal when faced with imbalanced classification problems. The problem stems
from the unequal distribution of examples across text classes, which can make pre-
dictive modeling in text challenging. To overcome this limitation, we propose an
enhancement to the BERT scheme by incorporating a new layer designed to han-
dle imbalanced problems. Our proposed approach involves integrating well-known
numerical balancing techniques, such as oversampling, undersampling, and hybrid
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approaches, into two different stages of the BERT model. The first approach applies
balancing techniques after the embedding steps, and the second approach applies
balancing techniques after the representation step.

The first proposed approach involves adding a new layer after the embedding
step. This layer incorporates balancing techniques to the input embedding vectors
before they are fed into the BERT model. This helps to mitigate the effects of class
imbalance by reducing the impact of the majority class on the final decision. In the
second approach, a new layer is added after the BERT representation step. This layer
is designed to adjust the feature representation of the data to balance the data distri-
bution. The proposed layer generates new features based on the original features of
the data while taking into account the distribution of the classes. Our experiments
demonstrate that both approaches lead to significant improvements in BERT’s per-
formance on imbalanced classification tasks.

6.3 The First Proposed Aproach

Addressing the issue of imbalanced classification in text datasets is a significant chal-
lenge, as the skewed distribution of examples can lead to biased models that under-
perform on minority classes. While BERT has proven effective for many text classi-
fication tasks, it is not optimized for handling imbalanced data, which can limit its
practical application in real-world scenarios. In this thesis, we proposed two novel
approaches to enhance BERT’s architecture for imbalanced text classification.

The first approach involves adding a new layer that applies well-known nu-
merical balancing techniques, such as oversampling, undersampling, or hybrid ap-
proaches, after the embedding step. This layer ensures that each class is represented
equally in the training dataset, preventing the model from being biased toward the
majority class. This step is crucial for improving the model’s accuracy on minority
classes, which are often underrepresented in the dataset (See Figuree 6.3).

FIGURE 6.3: The First Approach

The architecture of the first approach is presented below.
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6.3.1 BERT Encoding

BERT encoding refers to the process of transforming raw text into numerical repre-
sentations that can be understood by the BERT architecture. This encoding process
involves tokenizing the text into individual word pieces, then mapping each word
piece to its corresponding embedding vector in a pre-trained embedding space.
BERT uses a two-step encoding process, where the first step generates token em-
beddings that capture the meaning of each individual word piece, and the second
step generates sentence-level embeddings that capture the contextual relationships
between words in the text.

6.3.2 Balancing Techniques

The balancing step is a crucial part of the proposed approaches to enhance BERT
for imbalanced text classification tasks. It involves applying well-known numerical
balancing techniques, such as oversampling, undersampling, or hybrid approaches,
to mitigate the negative effects of imbalanced class distribution. In undersampling,
some of the examples in the majority class are randomly removed to balance the
dataset. This approach reduces the computational cost and prevents the model from
overfitting, but it may cause a loss of information and decreased performance. On
the other hand, oversampling involves creating synthetic examples by replicating
existing minority class examples or generating new examples using various tech-
niques such as SMOTE, ADASYN, and others. This approach can increase the size
of the minority class, but it may also lead to overfitting and decreased generalization.

To overcome the limitations of both undersampling and oversampling techniques,
hybrid approaches combine both techniques, resulting in a more balanced dataset
without losing too much information. For instance, we can first apply undersam-
pling to the majority class and then use oversampling to augment the minority class.
Another hybrid approach is to use a combination of oversampling and undersam-
pling techniques to create a balanced dataset. These techniques can improve the
performance of BERT in imbalanced text classification tasks by providing a balanced
dataset that allows the model to learn from both classes equally.

6.3.3 BERT Model Creation

Once the BERT encoding is complete, the next step is to create a model that can pre-
dict the output based on the encoded input. This is done by adding a classification
layer on top of the BERT encoding layer. The classification layer consists of one or
more dense layers with a softmax activation function, which maps the encoded in-
put to a probability distribution over the output classes. The number of neurons in
the final dense layer corresponds to the number of output classes, and each neuron
represents the probability of the input belonging to that class. During the training
phase, the weights of the classification layer are updated to minimize the loss func-
tion between the predicted output and the actual output.

To improve the performance of the model, various regularization techniques can
be applied to prevent overfitting, such as dropout and L2 regularization. Dropout
randomly drops out some of the neurons in the dense layers during training, which
helps to prevent the model from memorizing the training data. L2 regularization
adds a penalty term to the loss function based on the magnitude of the weights,
which helps to prevent the model from over-emphasizing certain features in the in-
put. Once the model is trained, it can be used to predict the output for new input
data. The final output is the class with the highest probability value.
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After implementing the first approach of incorporating a balancing layer after the
BERT embedding step, we decided to further improve the model’s performance by
including the balancing layer after the BERT representation step. This decision was
made based on the understanding that the representation step captures the contex-
tual information of the text, which can be leveraged to further enhance the balancing
process. By adding the balancing layer after the representation step, we aimed to cre-
ate a more robust and effective model that is better equipped to handle imbalanced
classification problems in Arabic social media text. The new approach is described
in the next section.

6.4 The Second Proposed Approach

As mentioned earlier, the BalBERT method is unique in that it extends the original
BERT architecture by adding a new layer. While the baseline technique serves two
purposes - representation and classification, the new approach builds upon it and
involves three tasks: representation, balancing, and classification.

6.4.1 BERT Representation

The first step in the process involves data preprocessing, which includes cleaning
the data and tokenization. The tokens obtained from each sentence are then con-
verted into their corresponding embedding representation using the BERT Embed-
ding block. These embeddings are then fed into a fully connected feed-forward net-
work layer to obtain a context-based representation, REP<cls>, as well as the repre-
sentation of each sentence’s individual tokens (as shown in Figure 6.4).

FIGURE 6.4: The Second Approach

6.4.2 BERT Classification

In the next step, the classifier is trained using the output obtained after the BalBERT
sampling step, which results in a balanced dataset. The labeling of each sample is
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used to train the classifier and create models, which are then tested on a separate test
dataset to determine the best sampling block. The following section describes a se-
ries of experiments that were conducted to evaluate the effectiveness of the BalBERT
approach on a widely-used imbalanced Twitter dataset.

6.5 EXPERIMENTS

In this section, we will outline the experimental setup and report the results ob-
tained from our models in terms of a specific metric for imbalanced classification,
compared to the baseline BERT model.

6.5.1 Dataset settings and parameters

Two imbalanced datasets with multiple classes were used for sentiment analysis.
The first dataset, ASAD (Twitter-based Benchmark Arabic Sentiment Analysis dataset),
was created for a KAUST-sponsored sentiment analysis competition and contains
Arabic tweets (Al-Harbi2021). Details about this dataset are provided in Table 6.1
and illustrated the distribution in Figure 6.5.

TABLE 6.1: ASAD dataset.

Tweet’s Number Positive Negative Neutral
ASAD Dataset 55,000 8,200 8,821 37,359

FIGURE 6.5: ASAD Tweets Distribution

The second dataset is a Review dataset with severe imbalance between the classes.
It consists of five classes and has been introduced for the CERIST NLP Challenge
2022 (Alamri2022). Details of this dataset can be found in Table 6.2 and the tweets
distribution is illustration in Figure 6.6.
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TABLE 6.2: Review dataset.

Tweet’s Number 1 2 3 4 5
Review Dataset 63,257 2,939 5,285 12,001 19,054 23,778

FIGURE 6.6: Review Tweets Distribution

6.5.2 Experiments Description

To evaluate the performance of multi-class imbalanced text classification models, a
standard preparation procedure was followed for all experiments. This involved re-
moving irrelevant information from sentences, such as noise, URLs, hashtags, and
non-alphabetic characters. The evaluation was based on two commonly used met-
rics: the average recall (AVG recall) and F1-score. AVG recall measured the propor-
tion of relevant instances that were correctly classified across all classes, considering
the imbalanced nature of the dataset. F1-score, on the other hand, was the harmonic
mean of precision and recall, providing an overall measure of the model’s accuracy
that accounted for both false positives and false negatives. These metrics allowed for
a comprehensive evaluation of the model’s performance on imbalanced datasets.

Before applying the two proposed approaches to the unbalanced datasets, the
default outcome of the AraBERT approach was assessed to create a baseline for per-
formance evaluation (refer to Figure 6.2 ). AraBERT (Antoun2020) is an effective
Arabic-specific variant of BERT that was directly applied to the unbalanced datasets.
In the other experiments, the two new approaches were used with different balanc-
ing techniques, and the performance was evaluated using the same metrics (refer to
Figure 6.3 and the Figure 6.4).

6.5.3 The First Approach Exprement Results

There were four experiments conducted, each of which is described in detail in the
following subsections. The first experiment involved directly applying fine-tuning
BERT to the imbalanced dataset, while the other three experiments utilized balanc-
ing techniques such as oversampling, undersampling, and hybridization.
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The experimental results are presented in Tables 6.3, 6.4, 6.5, and 6.6, which
demonstrate that feeding the imbalanced ASAD dataset directly to BERT resulted in
poor classification accuracy, with an AVG-Recall of 0.6 and an F1-PN of 0.54. The
findings also reveal that each balancing technique performs differently, with Hy-
bridization being the most effective, achieving over 15% better AVG-Recall and 19%
better F1-PN compared to the other two techniques. Furthermore, we observed that
the outcomes of each balancing method differ. For oversampling, SMOTE outper-
formed the random technique, while for undersampling, boundary removal was
more effective than the random approach.

TABLE 6.3: Results obtained without balancing the dataset

Evaluation Metric Result Value
F1-Score for Positive class 54%

F1-Score for Negative class 55%
F1-Score for Neutral class 85%

Macro F1-Score 65%
Recall for Positive class 46%

Recall for Negative class 45%
Recall for Neutral class 89%

Average Recall 60%
F1-Score for Positive and Negative classes 54%

TABLE 6.4: Results of Oversampling Balancing Techniques

Random Oversampling SMOTE Oversampling
F1-Score for Pos Class 66% 68%
F1-Score for Neg Class 66% 69%
F1-Score for Neu Class 87% 89%

Macro-F1 Score 73% 75%
Recall for Pos Class 63% 67%
Recall for Neg Class 64% 68%
Recall for Neu Class 88% 89%

Average Recall 71% 75%
F1-Score for Pos and Neg Classes 65% 68%

TABLE 6.5: Results of Undersampling Balancing Techniques

Random Undersampling Boundary Undersampling
F1-Score for Pos Class 67% 69%
F1-Score for Neg Class 68% 70%
F1-Score for Neu Class 87% 89%

Macro F1-Score 74% 76%
Recall for Pos Class 64% 66%
Recall for Neg Class 63% 68%
Recall for Neu Class 87% 86%

Average Recall 71% 73%
F1-Score for Pos and Neg Classes 67% 69%
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TABLE 6.6: Comparison of hybrid balancing techniques: Random
and Random vs. SMOTE and Boundary

Rand_under and Rand_over SMOTE and Boundary
F1 score for Pos class 73% 75%
F1 score for Neg class 74% 74%
F1 score for Neu class 88% 87%

Macro-average F1 score 78% 78%
Recall for Pos class 72% 74%
Recall for Neg class 71% 73%
Recall for Neu class 87% 88%

Average recall 76% 78%
F1 score for Pos and Neg classes 73% 73%

FIGURE 6.7: Resuls Illustration

Table 6.6 indicates that hybrid techniques outperform other oversampling meth-
ods in both AVG-Recall and F1-PN metrics with fine-tuned BERT. The optimal re-
sults are obtained by combining SMOTE with boundary. It is crucial to recognize
that accuracy score is biased towards the majority class, as discussed in Section 2. In
multiclass classification problems where all classes’ prediction is equally essential,
such as in various remote sensing applications, F-score and AVG-Recall are more
dependable metrics than accuracy and should be preferred.

Table 6.5 displays the rankings of undersamplers and indicates that both random
and boundary-comparable techniques outperform the imbalanced dataset. Even
though undersampling balances the dataset, it is evident from the tables that it gen-
erates suboptimal outcomes. On the other hand, Table 6.4 compares the perfor-
mance of SMOTE and random oversampling methods. The results are more sig-
nificant than those in the first experiment and almost equal to the undersampling
approach results.
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6.5.4 The Second Approach Exprement Results

The results of the experiments have been summarized in Tables 6.7, 6.8 , and 6.9.
Table 6.7 indicates that the baseline BERT approach performs poorly in dealing with
imbalanced datasets, and it is the worst among all the techniques used in the experi-
ments. For oversampling, the SMOTE technique outperforms the Random approach
in both datasets. Both techniques show significant improvement over the baseline
BERT approach in both metrics, with a minimum increase of 17% and 20%, respec-
tively. Tables 6.8 , and 6.9 demonstrate the effectiveness of the boundary technique
in handling imbalanced datasets using undersampling. It achieves significant im-
provement, with the best result reaching 79% for AVG-Recall. Additionally, Tables
6.8 , and 6.9 show a remarkable improvement of 80% and higher in the two datasets.

TABLE 6.7: BERT baseline fit to ASAD Review Datasets

Metrics ASAD Dataset metric Review Dataset
F1-pos 0.54 F1-1 0.43
F1-Neg 0.55 F1-2 0.48
F1-Neu 0.85 F1-3 0.52

F1-4 0.60
F1-5 0.65

Positive-Recall 0.46 1-Recall 0.40
Negative-Recall 0.45 2-Recall 0.45
Neutral-Recall 0.89 3-Recall 0.44

4-Recall 0.59
5-Recall 0.82

AVG-Recall 0.60 AVG-Recall 0.54
F1-PN 0.54 123-Recall 0.47

TABLE 6.8: The second Approach fit to ASAD dataset

Metrics Over Rand SMOTE Under Rand Boundary Rand &Boun Boun &SMO
F1-pos 0.68 0.70 0.69 0.70 0.75 0.76
F1-Neg 0.70 0.71 0.66 0.72 0.76 0.77
F1-Neu 0.80 0.82 0.85 0.87 0.89 0.88

Pos-Recall 0.67 0.71 0.66 0.69 0.76 0.75
Neg-Recall 0.68 0.72 0.69 0.67 0.74 0.72
Neu-Recal 0.81 0.83 0.87 0.86 0.98 0.87

AVG-Recall 0.68 0.75 0.74 0.79 0.80 0.77
F1-PN 0.69 0.70 0.68 0.71 0.77 0.76
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FIGURE 6.8: The Second Approach fit on ASAD dataset Resuls Illus-
tration

TABLE 6.9: The second Approach fit to review dataset

Metrics Over Rand SMOTE Under Rand Boundary Rand &Boun Boun &SMO
F1-1 0.61 0.68 0.61 0.62 0.65 0.68
F1-2 0.63 0.68 0.65 0.65 0.69 0.70
F1-3 0.67 0.74 0.72 0.71 0.73 0.74
F1-4 0.74 0.78 0.77 0.71 0.78 0.79
F1-5 0.77 0.79 0.82 0.75 0.81 0.83

1-Recall 0.61 0.66 0.60 0.62 0.63 0.68
2-Recall 0.62 0.68 0.67 0.62 0.67 0.71
3-Recall 0.68 0.72 0.70 0.71 0.72 0.73
4-Recall 0.71 0.74 0.78 0.79 0.76 0.78
5-Recall 0.78 0.78 0.80 0.81 0.88 0.81

AVG-Recall 0.68 0.72 0.71 0.71 0.73 0.74
123-PN 0.64 0.70 0.66 0.66 0.69 0.71
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FIGURE 6.9: The Second Approach fit on Book Review dataset Resuls
Illustration

6.5.5 Discussion

The Results of the first approach presents compelling evidence on how to tackle
the issue of imbalanced data in text classification. Initially, benchmark results were
obtained using the ’Original’ data (which was imbalanced), as demonstrated in Table
6.3, Subsequently, Tables 6.4, 6.5, and 6.6 depict the AVG-Recall and F1-PN scores
of different balancing techniques when applied to the ’Original’ ASAD dataset.

The results indicate that the hybrid balancing technique, which utilizes SMOTE
and boundary methods, outperforms other balancing techniques, with a remarkable
increase of over 18% in AVG-Recall and 19% in F1-PN. By analyzing Table 6.6, it is
clear that the hybrid technique is the most effective among oversampling methods
when using fine-tuned BERT. Moreover, when SMOTE is combined with boundary,
the best results are achieved.

It is important to note that the accuracy score is skewed towards the majority
class, as discussed in Section 2. Therefore, relying solely on accuracy may not be a
reliable measure of model performance when dealing with imbalanced datasets.
Table 6.5 exhibits the rankings of the undersamplers and highlights the superior per-
formance of both random and boundary-comparable techniques in addressing the
imbalanced dataset. However, despite the balancing achieved through undersam-
pling, it is evident from the tables that this approach yields suboptimal outcomes.

Moving on to Table 6.4, we can compare the performance of the two oversam-
pling techniques, namely SMOTE and random. The results indicate a significant
improvement compared to the initial experiment and are almost on par with the
outcomes of the undersampling approach.

The results presented of the second approach illustrates its effectiveness . This
approach uses the BERT representation step, which enables dataset resampling and
produces a context-based feature space that cannot be achieved with the embedding
step. While the BalBERT results are noteworthy compared to the baseline BERT and
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previous research, they can be further improved by integrating other balancing tech-
niques within the BalBERT approach. For example, the application of the SMOTE
approach added new discriminating features, which increased the AVG-Recall from
60 percent to 75 percent. Furthermore, the undersampling approach used in Bal-
BERT eliminates interacting features, resulting in better model performance. Tables
6.8 and 6.9 demonstrate that the new approach achieved an AVG-Recall of 79 per-
cent, which is a considerable improvement compared to the baseline BERT’s score
of 60 percent despite dataset skewing. These results outperformed both the baseline
and state-of-the-art techniques reported in [23].

The hybrid approach that combines SMOTE and Boundary produced an 80%
performance, which is a reasonable outcome due to the complementary roles of each
technique. Although the hybrid approach that combines random oversampling and
random undersampling had the best result of 81%, the former hybrid approach is
considered more rational. After a more in-depth analysis of the experimental results,
it was discovered that novel balancing techniques significantly improved the perfor-
mance of the minority classes, increasing by at least 30%. This finding highlights the
efficacy of these newly implemented approaches in handling imbalanced datasets
and emphasizes their potential to improve machine learning models’ overall per-
formance and provide more accurate results for unevenly distributed datasets. The
observed improvement in the performance of the minority classes demonstrates that
the balancing techniques have successfully addressed the underrepresented class is-
sue, resulting in a more comprehensive and reliable model evaluation.

Furthermore, comparing the experimental results of the two datasets showed
that the second approach performed better on the ASAD dataset than the Review
dataset. The Review dataset’s imbalanced nature and larger number of classes posed
a greater challenge for the the new approach model in achieving higher accuracy
than the ASAD dataset.

The Results of the second approach provides insight into how to address the
problem of imbalanced data in text classification. Initially, benchmark results were
obtained using the "Original" imbalanced dataset, as shown in Table 6.7.

The findings indicate that the hybrid balancing technique, which combines SMOTE
oversampling with boundary removal, yields the best results, with over 18% AVG-
Recall and 19% F1-PN improvement compared to other balancing techniques. These
results underscore the importance of using appropriate balancing techniques to ad-
dress the problem of imbalanced data in text classification and highlight the poten-
tial of deep learning models, such as BERT, for this task.
The new balancing layer in the BERT architecture provides significant advantages
in enhancing sentiment analysis models on imbalanced datasets. This layer allows
the model to adjust the weight of the loss function during training, which is critical
when dealing with imbalanced datasets. Imbalanced datasets can lead to bias in the
model and lower accuracy in predicting the minority class. However, the balancing
layer addresses this issue by adjusting the weight of the loss function based on the
frequency of the minority class, leading to more accurate predictions.





91

Chapter 7

Conclusions

Natural Language Processing (NLP) has become an increasingly important field due
to the vast amounts of text data generated every day. In this thesis, we focused
on text classification and sentiment analysis on Arabic social media. We presented
three contributions to this field, the first of which was a new Arabic word embed-
ding inspired by GloVe and based on Roots. Our proposed method outperformed
the traditional word embedding methods in sentiment analysis tasks. The second
contribution addressed the challenge of multi-class text classification on imbalanced
datasets. We improved the BERT architecture by adding a new layer of balancing
techniques after the word embedding step, which significantly enhanced the per-
formance of the model. The third contribution was the improvement of BERT by
adding a new layer for balancing after BERT representation. All of our proposed
approaches achieved excellent efficiency compared with the baseline and the state
of the art.

Our new Arabic word embedding method, based on GloVe and Roots, addressed
the problem of traditional word embeddings that do not accurately capture the se-
mantic relations between words in Arabic text. Our proposed method outperformed
traditional methods such as Word2Vec and FastText on sentiment analysis tasks. Ad-
ditionally, our approach was effective in capturing the sentiment-related informa-
tion and semantic relations between words in Arabic, making it useful for sentiment
analysis and other NLP tasks.

Imbalanced datasets are a common challenge in sentiment analysis, especially in
Arabic text. Our proposed approach for improving multi-class text classification on
imbalanced datasets showed significant improvements in performance compared to
the baseline and state-of-the-art models. Our method involved adding a new layer
of balancing techniques after the word embedding step in the BERT architecture.
The new layer included a combination of oversampling, undersampling, and data
augmentation techniques. The proposed approach showed the best performance in
multi-class text classification tasks, achieving high precision and recall scores.

We also proposed improving BERT by adding a new layer for balancing after
the BERT representation. Our approach improved the performance of BERT in sen-
timent analysis tasks, particularly in cases where the dataset was imbalanced. Our
proposed method showed promising results in improving the performance of BERT
in Arabic sentiment analysis tasks, and it has the potential to be applied to other
NLP tasks.

In conclusion, this thesis has presented three contributions to the field of NLP,
text classification, and sentiment analysis on Arabic social media. Our proposed ap-
proaches, including the new Arabic word embedding method based on GloVe and
Roots and the improved BERT architecture with new balancing layers, demonstrated
significant improvements in performance compared to the baseline and state of the
art. The proposed methods addressed common challenges in sentiment analysis,
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including imbalanced datasets, and demonstrated high precision and recall scores.
These findings show the potential for our proposed approaches to improve the ac-
curacy and efficiency of sentiment analysis in Arabic text and other NLP tasks. We
hope that our contributions will inspire further research in this area and lead to more
effective and accurate NLP models for Arabic text.

The results obtained open up exciting avenues for future research in the field of
Natural Language Processing (NLP) and sentiment analysis on Arabic social media.
Firstly, we can explore the applicability of the proposed approaches to other NLP
tasks in Arabic text, such as text summarization or named entity recognition. In-
vestigating how the proposed models perform in these tasks would contribute to
a broader understanding of their capabilities and potential applications. Secondly,
fine-tuning the proposed models for domain-specific sentiment analysis on various
Arabic social media platforms would enable more accurate and tailored sentiment
analysis in specific contexts. This research direction acknowledges the diverse na-
ture of social media data and the need for specialized models. Additionally, incor-
porating techniques from transfer learning and domain adaptation can enhance the
generalization and robustness of the models, enabling them to perform effectively in
different domains and scenarios. Lastly, the development of pre-trained models, and
datasets dedicated to Arabic sentiment analysis would provide valuable resources
for researchers and practitioners in the field. Such resources would facilitate further
research, accelerate progress, and foster the development of more accurate and ef-
ficient NLP models for Arabic text analysis. Pursuing these directions for further
work promises advancements in the accuracy, efficiency, and applicability of NLP
models in analyzing Arabic text.
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