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Abstract

Harmonic maps are mappings between Riemannian manifolds which extremize a nat-
ural energy functional. They include geodesics, minimal surfaces.

p-harmonic maps with (p > 2) defined as critical points of the p-energy functional.
The p-biharmonic maps are generalization of the notion of p-harmonic.

In this work, we study p-biharmonic submanifolds.

The main result are

The definition of p-biharmonic submanifold;

The necessary conditions for submanifold to be p-biharmonic submanifold in
space form;

e Some properties for p-biharmonic hypersurfaces in Riemannian submanifolds in
an Einstein space;

the construction of new examples of proper p-biharmonic hypersurfaces.
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Introduction

Denote by C*°(M, N) the space of smooth maps ¢ : (M, g) — (N, h) between two
Riemannian manifolds, for any compact domain D of M the energy functional of ¢ is
defined by

Ble:D) = 5 [ 1ok, )

where |dyp| is the Hilbert-Schmidt norm of the differential dp and v9 is the volume
element on (M, g). A map ¢ is called harmonic if it is a critical point of the energy
functional over any compact subset D in M, let {¢;}ie(—ec)

d
GE@iD) == [ b, 2
t=0 D
0
where v = 22t denotes the variation vector field of ¢, and 7(¢) is the tension field

t=0

of ¢ given by 7(p) = trace,Vdey.
A natural generalization of harmonic maps is given by integrating the square of the
functional of ¢ is defined by

PaoiD) = 5 [ Ir(o)f ®)

we say that ¢ id biharmonic map if it is a critical point of the bienergy functional, that
is to say, if it satisfies the Euler-Lagrange of the functional (3), that is

To(p) = —APT(p) — trace,R" (dp, 7(¢))dep

were studied by J.Eells, J.H.Sampson, L.Lemaire [10, 9], A .Lichnerwicz [17] and
G.Y.Jiang [14]

A Submanifold in a Riemannian manifold is called harmonic ( or minimal ) if the
isometric immersion defining the submanifold is a harmonic map, and it’s called bihar-
monic if the isometric immersion defining the submanifold is a biharmonic map

We will call proper biharmonic submanifold a biharmonic submanifold with is non
minimal (see[3])

The variational problem associated by considering for a fixed map, the energy func-
tional defined on the set of Riemannian metric on the compact domain gave rise to the

stress-energy tensor .

The p-harmonic map is a critical point of the p-energy functional

1
Ey(p; D) = _/ |d90|pvg> (4)
PJp
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over any compact subset D of M. Let {¢;}ie(—c.) be a smooth variation of ¢ supported

in D. Then
d

%EP(SOtQD)‘t:O = _/Dh(Tp(SO)aU)Ugv (5)

0
where v = % denotes the variation vector field of ¢,
t=0

() = div" (|dep|["dep). (6)

Let 7(p) the tension field of ¢ defined by

m

T(p) = trace, Vdy = Z {V?dp(e;) — dp(VYe)}. (7)

=1

(see [2]), where {ey, ..., €,,} is an orthonormal frame on (M, g), m = dim M, VM is the
Levi-Civita connection of (M, g), and V¥ denote the pull-back connection on ¢ 'T'N.
If |dyp|, # 0 for all x € M, the map ¢ is p-harmonic if and only if (see [1, 4, 11])

[de|P27(0) + (p — 2)|dp|Pdip(grad™ |dy|) = 0. (8)

A natural generalization of p-harmonic maps is given by integrating the square of
the norm of 7,(¢). More precisely, the p-bienergy functional of ¢ is defined by

PapleiD) = [ InfelPe )

We say that ¢ is a p-biharmonic map if it is a critical point of the p-bienergy functional,
that is to say, if it satisfies the Euler-Lagrange equation of the functional (9), that is
(see [20])

Top(p) = —|dp|P~? trace, RN(Tp(w), dp)dy — trace, V“’\d(p|p’2V‘PTp(g0)
—(p — 2) trace, V < V?7,(), dp > |dp[P~*dp = 0. (10)

Let {ey,...,en} be an orthonormal frame on (M, g), we have

m

trace, R (1,(p), dp)dp = Z RY (1, (¢p), dip(e;))dep(es),

=1

m

trace, V2 |dpP 2 Vor,(p) = ) | (Vé!dw!”‘2vffp(so) - \dwlp‘QvéyeiTp(@)) :

i=1

< V(). dp >= ) h (VE(9), deler))

=1
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trace, V < V¥7,(¢),dp > |dp|P*dp = Z (Vfi < V?7,(p), dp > |do[P~*dep(e;)
i=1
— < V'7(p), dp > Idsﬁl”“*d@(vgei))'

The p-energy functional (resp. p-bienergy functional) includes as a special case (p = 2)
the energy functional (resp. bi-energy functional), whose critical points are the usual
harmonic maps (resp. bi-harmonic maps),

p-harmonic maps are always p-biharmonic maps by definition. In particular, if (M, g)
is a compact orientable Riemannian manifold without boundary, and (N, h) is a Rie-
mannian manifold with non-positive sectional curvature. Then, every p-biharmonic
map from (M, g) to (N, h) is p-harmonic.

A submanifold in a Riemannian manifold is called a p-biharmonic submanifold if
the isometric immersion defining the submanifold is a p-biharmonic map. We will
call proper p-biharmonic submanifolds a p-biharmonic submanifols which is non p-
harmonic.
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The present thesis mainly deals with: the study of p-biharmonic submanifold in
space form and p-Biharmonic hypersurfaces in Einstein space and conformally flat
space.

The first chapter is intended to establish the notations and recall some basic of
Riemannian manifolds, witch will be used throughout the entire theses,

In the second chapter we introduce the notion of Riemannian submanifold,

In the third chapter, we shall introduce the theory of harmonic and biharmonic
maps,

In the fourth chapter, we extend the definition of p-harmonic and p-biharmonic
maps between two Riemannian manifolds and we present some new properties of stress
p-bienergy tensor (see [23]),

The fifth chapter contains new methods for constructing proper p-biharmonic hy-
persurfaces in Einstein space and conformally flat space, and we present fundamental
results and examples of proper p-biharmonic submanifold.



Chapter 1

Elementary Differential Geometry

In this chapter we recall the fundamental notation of Differential and a Riemannian
geometry, as differentiable manifolds and submanifolds, Riemannian manifolds, con-
nection, curvatures and operators on Riemannian manifolds,...ect.

Which will be used throughout the entire thesis.

1.1 Differentiable Manifold and Submanifold

References [5], [16], [26], [27], [28].

1.1.1 The Definition of a Differentiable Manifold

Definition 1.1.1. (Chart) A topological space M is locally Euclidean of dimension n
if every point p in M has a neighborhood U such that there is a homeomorphism ¢
from U onto an open subset of R™. We call the pair (U, ) a chart.

Definition 1.1.2. ( Topological Manifold ) A topological manifold of dimension n is
a Hausdorff, locally Euclidean space of dimension n and has a countable basis of open
sets.

Example 1.1.1. /28] (A Cusp ) The graph of y = 25 in R? is a topological manifold
(Figure1.1.1(a)). By wvirtue of being a subspace of R?, it is Hausdorff and second
countable. It is locally Fuclidean, because it is homeomorphic to R via ([E,$%) = T

Example 1.1.2. [28] ( A cross ) The cross in R? in (Figure1.1.1(b)) with the subspace
topology is not locally Euclidean at the intersection p, and so cannot be a topological
manifold.

Definition 1.1.3. ( Compatible Charts ) Two charts (U, : U — R™), (V ¢ : V — R")
of a topological are C*-compatible if the two maps

oty L p(UNV) — pUNV), popt:pUNV) — »(UNV) are C* these two
maps are called the transition map between the charts with U NV # ().

11
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(a) Cusp (b) Cross

Figure 1.1:

Figure 1.2: The transition map v o ¢! is define on p(U N'V)

Definition 1.1.4. (Atlas) A C™ atlas on a locally Fuclidean space M is a collection
A = (Uy, pa) of pairwise C*-compatible charts that cover M, i.e., such that M = | JU,,

Definition 1.1.5. ( Smooth Manifold ) A C*°-Manifold or differentiable manifold is
a topological manifold together with a C*-atlas.

Theorem 1.1.1. [5] Let M and N be C*°-manifold of dimension m andn. the M x N
is a C*™-manifold of dimension m +n with C*-atlas A = {(Uy X V3, pa X 15)} where
(Ua, pa) and (Vs,15) are a charts on M and N respectively, and ¢ X 1 is defined by

(o xP)(p,q) = (0(p),¥(q)) in R =R™ x R".

1.1.2 Differentiable Function and Mapping

Let f be a real-valued function defined on an open set W; of C*°-manifold M of
dimension n, possibly all of M ; in brief f : Wy — R. If (U, ¢) is a chart such that
W;NU # () and if 2',... 2™ denotes the local coordinates, then f corresponds to a
function f(z',...,2") on @(W; N U) defined by f(z'(p),...,2"(p)) = fle(p)) for all
pE Wf NnU.

Definition 1.1.6. (Differentiable Function ) f : Wy — R is a C* function if each p €
W; lies in a coordinate neighborhood (U, ) such that fop™'(x!, ... 2") = f(z!,... 2"
is C™ on o(WrNU).
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Definition 1.1.7. ( Differentiable Mapping ) Let M and N be two differential man-
ifolds. F is a smooth mapping of M into N if for every p € M there exist a co-
ordinated nezghborhood (U,p) of p and (V,v) of F(p) with F(U) C V such that
oFopt:pU)— (V) is smooth.

Figure 1.3: Differentiable Mapping between two manifolds

Definition 1.1.8. A differentiable mapping F' : M — N between C'*°-manifolds is a
diffeomorphism if it is homeomorphism and F~1 is C°, M and N are diffeomorphic
if there exists a diffomorphism F : M — N.

1.1.3 Rank of Mapping and Immersion

Let FF: M™ — N™ be a differentiable mapping of C'*°-manifolds and let p € M,
If (U,¢) and (V,4) are coordinate neighborhoods of p and F(p), respectively and
F(U) C V, then we have a corresponding expression for F' in local coordinates, namely

F=4¢oFop™:pU)— (V)

Definition 1.1.9. The rank of F at p is defined to be the rank of F at ©o(p).
Thus the rank at p is the rank at a = ©(p) of the Jacobian matric

oft of!
oxl *° Hxm
of . op
oxl 1 fxm a

of the mapping F(z!,...,z™) = (fi(z',...,2™),..., f*(z},...,2™))
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Definition 1.1.10. F' : M™ — N" is said to be an immersion (resp. submersion
) if rank F = m = dimM (resp. = n = dimN) everywhere if F' is an injective (
one-to-one ) immersion, then F establishes a one-to-one correspondence to endow M
with a topology and C™ structure, then M will be called a submanifold ( or immersed
submanifold ) and F : M — M is a diffeomorphism.

We note that rank F' < max(m,n) at every point it follows that if /' is an immersion
(resp. submersion ), then m < n ( respectively n < m). In general the topology and
O structure of an immersed submanifold M C N depend on F' as well as M i.e, M
is not a subspace of N.

Definition 1.1.11. An imbedding is a one to one immersion F' : M — N with is a
homeomorphism of M into N, that is, F' is a homeomorphism of M onto its image,
M = F(M) with its topology as a subspace of N. The image of an imbedding is called
an imbedded submanifold.

Theorem 1.1.2. [5] Let ' : M — N be an immersion. Then each p € M has a
neighborhood U such that F|U is an imbedding of U in N.

1.1.4 Submanifold

Definition 1.1.12. A subset M of a C* manifold N is said to have the m-submanifold

property if each p € M has a coordinate neighborhood (U, p) on N with local coordinates

b, ..., 2™ such that

(1) ¢(p) = (0,...,0),
(ii) p(U)=C"0)={z eR"/|z'| <e,i=1...n,}
(ifi) ¢(UNM)={z € C"(0)/z™ = ... =" =0},

ifM has this property, coordinate neighborhoods of this type are called preferred coor-
dinates ( relative to M) (Figure1.1.4) show such a subset M in N = R3
(m = 2andn = 3).
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Pl

@l nm)

x2

Figure 1.4:

Lemma 1.1.1. [5] Let M C N have the m-submanifold property then M with the
relative topology is a topological m-manifold and each preferred coordinate system (U, )
of N ( relative to M ) defines a local coordinates on M are C*-comapatible wherever
they overlap and determine a C*° structure on M relative to which the inclusion i :
M — N s an imbedding.

Definition 1.1.13. A regular submanifold of a C*> manifold N is any sub-space M with
submanifold property and with C*° structure that the corresponding preferred coordinate
neighborhoods determine on it.

Theorem 1.1.3. [5] Let F : M' — N be an imbedding of C*°-manifold M of dimension
m in C*°-manifold N of dimension n then M = F(M') has a m-submanifold property
and thus M is a reqular submanifold. As such it is diffeomorphic to M’ with respect to
the mapping F: M’ — M.

Theorem 1.1.4. [5| If F' : M — N is a one-to-one immersion and M is compact,

then F' is imbedding and M = F (M) a reqular submanifold. Thus a submanifold of N,
if compact in N s reqular.

Theorem 1.1.5. [5] Let M be C*°-manifold of dimension m, N be C*°-manifold of
dimension n, and F' : M — N be a C*™ mapping suppose that F' has constant rank
k on M and that ¢ € F(M). Then F~(q) is a closed, reqular submanifold of M of
dimension m — k.

Corollary 1.1.1. If FF: M — N is a C* mapping of manifolds, dim N =n < m =
dimM , and if the rank of F = n at every of A = F~1(q), then A is closed, reqular
submanifold of M.
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Example 1.1.3. The map
F:R" — R,

n
i=1

F has a rank 1 on R™\{0}, which contains F~*(1) = S"7, thus S* is an (n — 1)-
dimensional submanifold by corollary 1.1.1.

Example 1.1.4. The map
F:R® — R,
(.9,2) — (a— (@ +y7)?2)" + 22

has rank 1 at each point of F~'(b?) ,a > b > 0 thus locus F~'(b?), the torus in R? is a
submanifold of dimension 2.

1.2 Vector Fields on a Differential Manifolds

1.2.1 The Tangent Space at Point of a Differential Manifold

Let M denote a C*° manifold of dimension n. Just as for R", we define a germ of a C'*°
function at p in M to be an equivalence class of C*° functions defined in a neighborhood
of pin M, two such functions being equivalent if they agree on some, possibly smaller,
neighborhood of p. The set of germs of C'*° real-valued functions at p in M is denoted by
C2(M). The addition and multiplication of functions make C3°(M) into a ring, with
scalar multiplication by real numbers, C’;o(]\/[ ) becomes an algebra over R. Choosing
an arbitrary (U, ¢) about p it is easily verified that ¢*: C2¢ (M) — Cp°(M) given by
©*(f) = f o is an isomorphism of the algebra of germs of C'™ function at ¢(p) € R"

onto the algebra C>°(M).

Definition 1.2.1. We define the tangent space T,(M) to M at p to be a set of all
mappings X, : C3°(M) — R satisfying for all a, B € R and f,g € C;*(M) the two
conditions

(i) X,(af +Bg) = aX,(f)+ 5X,(9) (linearity)
(i) X,(fg) = (Xpf)gp) + f(p)(Xpf)  ( Leibniz rule )

with the vector space operations in T,(M) defined by
(Xp+ V) f =X f + Y, f

(aXp)f = (X, f)
A tangent vector to M at p is any X, € T,(M).
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Figure 1.5: Tangent space on M at p

Lemma 1.2.1. [26] Let X, € T,,(M)
1. If f,g € C®°(M) are equal on a neighborhood of p , then X,(f) = X,(g).
2. If h e C®(M) is a constant on a neighborhood of p then X,(h) =0

Definition 1.2.2. Let o = (z' ..., 2") be a coordinate system in M at p if f € C°°(M),

let
of I(f o) :
; = - = — 1<1 <
dilp(f) o (p) 5 (pp) (1 <i<n)
where u' ..., u™ are the standard coordinate on R™.

Theorem 1.2.1. [26] If p = (z',...,2") is a coordinate system in M at p, then its
coordinate vectors Oy|p, ..., 0n|p form a basis for the tangent space T,(M) and

X, =Y _0i|pV X, € T,(M).

=1

Definition 1.2.3. (Differential of a Map ) Let ¢ : M — N be a smooth mapping for
each p € M the function d,¢ : T,(M) — TppN sending X, to Xy ts called the
differential map of ¢ at p.

Thus d,¢ is characterized by the equation d,¢(X,)(g) = X,(g o ¢) for all X, € T,,(M)
and g € C(N) it follows that differential map is linear.

1.2.2 Vector Field

Definition 1.2.4. ( Tangent Bundle ) Let M be a smooth manifold and T,(M) be a
tangent space at p € M. The tangent bundle of M s the union of all the tangent spaces
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of M :
T™ = | J T,(M)
peEM

TM is a smooth manifold and dim TM =2 dim M (see [28]).

Figure 1.6: Tangent space to a circle .

Definition 1.2.5. ( Vector Bundle )

o Let E, M be smooth manifolds and let m : E — M be a smooth surjective map we
call that priem,(p) = E, the fibre at p for each p € M.

o On the tangent bundle TM of a smooth manifold M, the natural projection map
w:TM — M, ©(p,v) = p makes TM into a smooth vector bundle over M.

Definition 1.2.6. ( Vector Field )
o A section of a vector bundlew : E — M is amap s : M — E such that mos = Idy,

o A wector field X on a manifold M is a function that assigns a tangent vector X, €
T,Mto each point p € M. In terms of the tangent bundle, a vector field on Mis
simply a section of the tangent bundle w : TM — M and the vector field is
smooth if it is smooth as a map from M to T M.

o The set of vector field X : M — T M 1is denoted by I'(T'M).
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Figure 1.7: Vector field X on M .

1.3 Riemannian Manifolds

1.3.1 Tangent Covectors

Definition 1.3.1. (Covector on Manifold ) Let M be a smooth manifold and assume
p € M. We denote by T;(M) ( where T;(M) the dual space to T,(M), thus o, € Ty M
is a linear mapping o, : T,M — R and its value on X, € T,(M) is denote by o,(X},)

or < Xp,0, > . Gwen a basis ey, ..., en, of T,(M), there is a a uniquely determined
dual basis w},, .. wy satisfying, by definition, w;,(ejp) = 5;'» so that

n
op = Z Up(eip)w;.
i=1

Definition 1.3.2. ( C*°-covector field ) A C*-covector field o on M is a function
which assigns to each p € M a covector o, € T7 M in such a manner that for any chart
(U, ) with coordinate frame ey, ..., ey, the functions o(e;), i = 1...n are of class C*>

onU.
Remarks 1.3.1.

e The cotangent bundle of M is denoted by T*M

M=) T;M

peEM

e The map o is C*(M)-linear
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o Let (U, p) be a chart on M ,dim M =n andU’' = p(U) C R™ . Thendzxy,...,dz,
on U’ are dual basis to Oxy . ..,0x,.

Definition 1.3.3. (Tensor Field ) Let M be a smooth manifold and for any p € M.
We define a vectorial space

TOIM=T,M®.. @ T,MRT;M® ... T;M:={T \Tis(r,s) — tensor}

TV TV
r—Once s—once

Then :
1. The tensor bundle denote by T M = Upenr TIST’S)M

2. A (r,s)-tensor field on a manifold M is a function that assigns a section of the
tensor bundle

Example 1.3.1.
i) A function on a manifold M is a (0,0)-tensor.

ii) A wvector field X is a (1,0)-tensor.

iii) A differential 1-form w on a manifold M is a (0, 1)-tensor.

1.3.2 Riemannian Metric

Definition 1.3.4. A Riemannian metric g on a smooth manifold M is a C*>-bilinear,
symmetric, positive definite (0,2)-tensor field on M smoothly assigns to each point
p € M a scalar product g, on the tangent space T,M where,

L T,MxT,M — R
X, Y, — g(X)Y),=g,(X,,Y})

9p = g’T,,M@TP

The pair (M, g) is called Riemannian manifold.

1.3.3 Orientable Manifold

Definition 1.3.5. An oriented vector space in a vector plus an equivalence of allowable
bases: all those bases with the same orientation as chosen on; they will be called oriented
or positively oriented bases or frames.

Lemma 1.3.1. Let Q) # 0 be a alternating covariant tensor on V of order n = dimV
and let ey, ... e, be a basis of V. then for any set of vectors vq,...,v, with v; =

n
E Je.

agej;, we have
i=1

Qv ..., v,) = det(al)Qer, . . ., ep)
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Corollary 1.3.1. A non vanishing Q € A"(v) has the same sing ( or opposite sing )
on two bases if they have the same ( respectively , opposite ) orientation: thus choice
of an Q0 # 0 determines an orientation of V. Two such forms q,$y determine the
same orientation if and only if Q1 = Ao, where X\ is a positive real number.

Definition 1.3.6. We shall say that M is orientable if it is possible to define C'™°
n-form 2 = X where A > 0 is C* function would give M the same orientation.

Theorem 1.3.1. A manifold M is orientable if and if only it has covering {Uy, @u}
of coherently oriented coordinate neighborhoods.

Theorem 1.3.2. Let M be an orientable Riemannian manifold with Riemannian met-
ric g, corresponding to an orientation to an orientation of M there is an uniquely
determined n-form 0 which gives the orientation and which has the value +1 on every
oritented orthonormal frame

Example 1.3.2. The sphere S* = {x € R""!|||z|| = 1} is an orientable manifold.
Endeed; S"™ is a Hausdorff topological space, where Tgn is the topology induced by R
(it is the topology whose open sets are of the form U = QNS"™ with Q is open of R"™).
We consider the stereographic projection

on:Uy=S"—{N} — R"
(ul,...,un+1) — ( aal P Un )
1 — Upgq I —upp

wsiUS:Sn—{S} — Rn,
(uh B un—l—l) — ( 4 : o )

T+ s 7 T+ s

where N = (0,..,0, 1) denote the "north pole”, and S = (0, ...,0, —1) denote the "south
pole”.
Using uf + ... + u2,, = 1, we get

gijI:R” — Up;

(T1, .0y ) +— ( 201 2T quz_l)
o [zll>+ 17 [zl + 17 2> + 1

0g' ‘R" — Us.

2, 2.yl - 1)

(y].’"'?yn 'H ( bR ] b)
) WP+ TP 1 [ylP+1

So, the maps oy : Uy — R"™ and ¢g : Us — R™ are homeomorphismes. The smooth
transition maps between charts are given by,

_ T — Yy n
@SOSONl(x):Wa QONO%Osl(y):Wa Vz,y € R" — {0}.
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Thus, Asn = {(Un,¢n), (Us, ps)} form a differentiable atlas on S™. So, S"™ is a differ-
ential manifold of dimension n. with, Uy NUg = S™ — {N, S} are connexe, then S" is
orientable.

1.3.4 Integration on Manifold
1.3.5 Integral of a Differential Form over a Manifold

Integration of an n-form on R" is not so different from integration of a function . Our
approach to integration over a general manifold has several distinguishing features

e The manifold must be oriented
e On a manifold of dimension n, one can integrate only n-forms, not function

e The n-forms must have compact support

Let M be an oriented manifold of dimension n, with an oriented atlas (U,, ¢, ) giving
the orientation of M. Denote by Q¥(M) the vector space of C* k-forms with compact
support on M. Suppose (U, ) is a chart in this atlas. If w € Q(U) n-form with
compact support on U, then because ¢ : U — ¢(U) is a diffeomorphism, (¢~1)*wis an
n-form with compact support on the open subset ¢(U) € R". We define the integral

of won U to be
/ W= / (o™ H*w. (1.1)
U »(U)

If (U, 1) is another chart in the oriented atlas with the same U, then @ o' : (U) —
©(U) is an orientation-preserving diffeomorphism, and so

/@(U)(So_l)*w - /w(U)(SO ’ %D_l)*@ﬂ_l)*w - /w(U)(@D_l)*w

Thus, the integral / w on a chart U of of the atlas well define, independent of the
U
choice of coordinates on U, by the the linearity of the integral on R", if w,7 € Q2 (U)

then
/U(w—FT):/Uw—F/UT

Now let w € QF(M). Choose a partition of unity {p,} subordinate to the open cover
{U,}. Because w has compact support and a partition of unity has locally finite
supports, all except finitely many p,w are identically zero, In particular,

w:Zpaw

is a finite su. Since
SUpp(paw) C SUPPpa N SUPPW
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supp(paw) is a closed subset of the compact set supp w . Hence, supp(p,w) is compact.
Since p,w is an n-form with compact support in the chart U,, its integral fUa Pa 18
defined. Therefore, we can define the integral of w over M to be the finite sum

oS

1.3.6 Manifolds with Boundary

Definition 1.3.7. A smooth manifold with boundary is a Hausdorff space M with a
countable basis of open sets and a differentiable structure A = {Us,, pa} where ¢, :
Uy = ©a(Uy) C H" is homeomorphism, such that

o H" = {(v1,...,2,) € R" / 21 > 0}. ( half-space )
e the union of U, cover M

o If (Ua,pa) and (Us,@p) are two elements of A the vz o ¢ ' and o, 0 gpgl are

diffeomorphisms of o (Uy N Ug) and ps(U, NUg), open subsets of H"
o A is maximal with respect first and third properties

Remarks 1.3.2. e The boundary of the half-space noted OH" is given by: OH"™ =
{(mlyal‘n) GRn/,I'l :0}

o Let (p,U) be a chart on M at p if o(p) € OH™ in one coordinate system, then this
holds for all coordinate systems the collection of such points is called boundary of
M, denoted by OM .

e M\OM is a manifold which we denote by Int(M).
e I[fOM =, then M 1is called manifold without boundary.

1.4 The Connection on Riemannian Manifolds

1.4.1 Linear Connection

Definition 1.4.1. A linear connection on a smooth Riemannian manifold M is a map:

YV I(TM) x T(TM) — T(TM),
(X,Y) = VyY

such that:

1. Vx<Y + Z) =VxY +VxZ,
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2. Vx(fY) = fVxY + X(f)Y,

3. Vs (Z) = VxZ + fVy 2,

forall X,Y,Z € T(TM) and f € C*(M). We say that VxY is the covariant derivative
of Y wnth the direction of X.

Definition 1.4.2. A section Y € I'(T'M) is said to be parallel with respect to the
connection V if

VxY =0, VX € [(TM).

Definition 1.4.3. If g is a Riemannian metric on M then a connection V is said to
be metric or compatible with g if,

Vg=0ie (Vxg)(Y,Z) =0,
that is:
X(g(Y,2)) = g(VxY,2)+g(Y,VxZ), ¥ X,Y,Z e T(TM).
1.4.2 Torsion Tensor

Definition 1.4.4. Let M be a smooth manifold, and V be a connection on the tangent
bundle T'M, then the torsion of V is a tensor field of type (1,2) defined by

T :T(TM) x T(TM) —s T(TM)
(X, V) — VyY —VyX —[X,Y],

where [, ] is the Lie bracket on I'(TM). The connection V on the tangent bundle T M
1s said to be torsion-free if the corresponding torsion T vanishes i.e.

[X,Y] = VyY - VyX V¥ X,Y € I(TM).
Remark 1.4.1. T(X,Y) = -T(Y, X), foll all X, Y € I'(TM) (T is an antisymmetric).

1.4.3 Levi-Civita Connection

Definition 1.4.5. Let (M, g) be a Riemannian manifold then the map
V:INTM)xI(TM) — I'(T'M)

defined by the Koszul formula:

29(VxY.Z) = X(g(Y,2))+Y(9(Z X)) = Z(9(X,Y)) (1.2)
—|—g(Z,[X,Y])—|—g(Y,[Z,X])—g(X,[Y,Z]),

is called the Levi-Civita connection of (M, g).
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Theorem 1.4.1. Let (M, g) be a Riemannian manifold. Then the Levi-Civita connec-
tion is an unique linear connection compatible with g and torsion free.

Proposition 1.4.1. Let (M, g) be a Riemannian manifold with Levi-Civita connection
V. Further let (U,p) be a local coordinate on M and put 0; = % € I'(TU). Then
{8%1, e ,%} is a local frame of TM on U. We define the Christoffel symbols Ffj :
U — R of the connection V with respect to (U, p) by

m

ag il agzl agz
E 2N g% j
Fij 5 lz {axz D }

where gi; = g(e;, €5) = g(a%i, %) are the components of g, and (¢") = (gi;) " is the
mverse matriz.
1.5 Induced Connection on the Tangent Bundle

Definition 1.5.1. Let o : M — N be a smooth map between two differentiable mani-
folds M and N and let VN be a linear connection on N, then the Pull-back connection
on the tangent bundle o~ *T'N is defined by:

V2 :T(TM) xT(o'TN) — T(p 'TN),
(X, V) — v;;vzvgfp(x)f/ (1.3)

where V € T(TN) such that Vo=V,

Locally
ViV = ve, V(L oy
X - X 6‘21- aya ¥
ove o R
{ o (8—% op)+V Va%((?_ya 090)}
Note that
0 0
[} _ N
vfgi (a_yoc SD) B Vd(p(aii ) o
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So that

oV 0pgs 0
Vgp‘r i ‘roz Y
X X { Ox; Ox; (F )} ((’“)y7 O(p)

Then the relation (1.3) is independent of the choice of V ie. this connection is well
defined.

Definition 1.5.2. If ¢ : M — N s a map between differeniable manifolds, then two
vector fields X € T'(T'M), X € T'(TN) are said to be p-related if

dop(X) = Xy ¥ p € M.
In that case we write X = dp(X).

Proposition 1.5.1. Let ¢ : M — N be a smooth map and let VY be a linear
connection compatible with the Riemaniann metric h on N, then the linear connection
V¢ is compatible with the induce Riemannian metric on ¢ 'T'N, that is

X(h(V,W)) = VLV, W) + h(V, VEW),
forall X e T(TM) and V, W € T(¢ 'TN).
Proof.  Let X € D(TM),V,W € T'(¢~'TN) and X,V,W € I'(TN), such that
do(X)=Xop,Vop=Vand Wop=W
Then:
XV, W) = X(h(Vop,Woy))

= (VN )ogo—l—h(VV W)ogp
= h(V XwV WO@)+h(VO<,0,VN /V[v/)
= W(VEV, W) + h(V, VE).

Proposition 1.5.2. Let VY be a torsion free connection on N, then
Vide(Y) = Vido(X) + de([X,Y]),
For all X, Y € I'(TM).
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Proof. Let VW € I'(T'N) be a p-related with X and Y respectively, then:

V,W]oyp = dpol[X,Y]
VgW = V%V + [V, W].
From where:
V&de(Y) = ViWoop
N

= Vaux)W
= (VeW)op
= (V]V\(,V + [V, W]) o
— V{dp(X) + dip([X, Y)).

1.6 Second Fundamental Form

Definition 1.6.1. Let ¢ : (M, g) — (N, h) be a smooth map between two Riemannian
manifolds. The second fundamental form of ¢ is the covariant derivative of vectorial

1-form dip, defined by:
Vdp(X,Y) = Vidp(Y) — dp(VYY)
For all X, Y € I'(TM).

Definition 1.6.2. A map ¢ : (M,g9) — (N, h) is said to be totally geodesic if its
second fundamental form vanishes.

Property 1.6.1. Let v : (M, g9) — (N, h) be a smooth map between two Riemannian
manifolds, the second fundamental form of ¢ is a vectorial 1-form C°(M)-bilinear
symmetric. 1i.e.

Vdp(fi. X, [2.Y) = f1/oVde(Y, X),

forall X, Y € T(TM), and f, fo € C(M).

Proposition 1.6.1. Let o : M — N and v : N — P be a two smooth maps , then
Vd(y o ) = dp(Vdp) + Vdi(de, dp).

Proof. Let X|Y € I'(TM), then

Vd(o)(X,Y) = V¥dWo)(Y) —d(op) (VYY)
= VFdp(de(Y)) — di(de(VYY))
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= ng(dgp()())dw(dsf’(y)) — dy(dp(VYY))
= Vi d(de(Y)) — dp(dp(VYY))

= Vdy(dp(X),dp(Y)) + d(Va, ) de(Y)) — di(dp(VY))
= Vdy(dp(X),dp(Y)) + dib(Vdp(X,Y)).

]

Definition 1.6.3. Let (M, g) be an m-dimensional Riemannian manifold, the frame
{e;}, is said geodesic frame at x € M, if it is orthonormal that is g(e;, e;) = d;; on
UcCM, and (Vee;)|, =0, Vi,j=1.m.

1.7 Curvature
1.7.1 Curvature Tensor
Definition 1.7.1. The curvature tensor R is a tensor field of type (1,3) defined by

R(X,Y)Z = [Vx,VY]Z—V[X,y}Z
= VxVyZ2 -VyVxZ2 — V[X,y]Z, VX,KZ < F(TM)

The curvature tensor of type (0,4) is given by
RX,Y,Z,W) = g(R(X,Y)Z,W).

Proposition 1.7.1. Let (M, g) be a smooth Riemannian manifold. For vector fields
X, Y, Z, W on M we have

1. RIX,)Y)Z =—-R(Y,X)Z (antisymmetric).
2. g(R(X,Y)Z, W) =g(R(Z,W)X,Y).

3. g(R(X,Y)Z,Z) = 0.

4. R wverified Bianchi’s identity algebraic:

R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0.

5. R wverified Bianchi’s identity differential:

(VxR)(Y, Z) + (VyR)(Z,X) + (VzR)(X.Y) = 0.
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1.7.2 Sectional Curvature
Definition 1.7.2. For a point p € M the function
K, TTM)xI'(rM) — R

9(R(X, Y)Y, X)
g(X,X)g(}/, Y) - g(Xv Y)Q.

(X,)Y) —

15 called the sectional curvature at p.
The Riemannian manifold M is said to be of constant curvature if there exists k € R
such that K(X,Y) = k.

Definition 1.7.3. Let (M, g) be a smooth Riemannian manifold. We define the smooth
tensor field Ry : I'(TM) x I'(T'M) x I(T'M) — I'(TM) of type (3, 1) by

forall X,Y,Z € I'(TM).

Corollary 1.7.1. Let (M™, g)(m > 2) be a Riemannian manifold of constant curvature
k. Then the curvature tensor R is given by

R(X,Y)Z = k[Ri(X,Y)Z].
for all X,Y,Z € T(TM).

1.7.3 Ricci Curvature

Definition 1.7.4. Let (M™,g) be a Riemannian manifold, p € M and {ey, ..., } be
an orthonormal frame of T,M. Then

1. the Ricci tensor at p is defined by

Ricci(X) = Y R(X, e;)e;, vV X € T,M.

=1

2. the Ricci curvature at p is defined by

Ric(X,Y) =) g(R(X,e)e;,Y), VX, Y €T,M.

i=1
3. the scalar curvature S is defined by

S = tracegRic

= ZQ(R(Q', €j)€j, ei)

1,j=1
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Remark 1.7.1. For all X,Y € I'(TM) we have
Ric(X,Y) = g(Ricci(X),Y)
Corollary 1.7.2. Let (M™, g) be a Riemannian manifold of constant curvature k, then
1. Ricci(X) = (m —1)kX.
2. Ric(X,Y) = (m—1)kg(X,Y).
3. S =m(m—1)k.

Example 1.7.1.

1. The sphere S™ has constant sectional curvature +1.
2. The space R™ has curvature O .

da?+dy?
2

3. H? = {(z,y) € R? y > 0} The hyperbolic space with the metric g = , has

constant sectional curvature —1.

1.8 Operators On Riemannian Manifolds
1.8.1 Gradient Operator
Let (M, g) be a Riemannian manifold,

4§ T(T°M) — T(TM)
w = W

be a isomorphism map between the cotangent bundle and the tangent bundle given by
VX € T(TM), g(w*, X) = w(X).

Definition 1.8.1. Let (M, g) be a Riemannian manifold, the gradient operator is given
by

grad : C*°(M) — T'(T'M).
f oo gradf = (df)

So that for all X € I'(T'M) we have

glgrad f, X) = X(f) = df (X).
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Locally:
L Of 0
df = v —

where (a%i)iﬂw-m is a local coordinate. Let {e;};,—1 . be an orthonormal frame on

(M, g). Then

grad f = 3" il e

Proposition 1.8.1. Let (M, g) be a Riemannian manifold, then
1. grad(f + h) = grad f + grad h;
2. grad(fh) = hgrad f + f grad h;
3. (grad f)(h) = (grad h)(f).
4. 9(Vxgrad f,Y) = g(Vy grad f, X),
where f, h € C*(M) and X,Y € I'(T'M).

1.8.2 Hessian Operator
Definition 1.8.2. Let f be a differentiable function on (M™,g), then

Hess f : I'(TM) xI'(TM) — C*(M)
(X, Y) = (Hessf)(X,Y)=g(Vxgrad f,Y)

we have
1. Hess f be a tensor of type (0,2).
2. Hess f is symmetric.

Locally:

m

Hess f = Z (Hess f);; dv; ® dx;,

ij=1
where
(Hess f)i; = g(Vagrad f,0;)
Pf I 0f

. U
O0x;0x; pet oxx
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1.8.3 Divergence Operator
Let X be a vector field on (M, g), then

VX :T(TM) —s T(TM)
7 = VzX

is a smooth linear mapping.

Definition 1.8.3. The divergence of the vector field X € I'(TM), denoted div X is
defined by
div X = traceV X.

Let {e;}i=1,..m be an orthonormal frame on M, then
divX = Y g(Ve X, e)
i=1

Properties 1.8.1. Let (M, g) be a Riemannian manifold, then
1. div(X +Y) =divX 4+ divY;
2, div (fX) = fdiv X + X(f),
for all XY € I'(TM) and f € C*(M).
Example 1.8.1. Let (R", dz? + dz3 + ... + d2?), et P = Zxﬁi the postion field in
i=1
R". forallY = ZYjﬁj,we have :

J=1

VyP = ivyjajxiai

2,j=1

= Z Y7 ’ al + x; Vaj@
——

o1 837]‘
l?]_ :0
n
= E Yj 5@' &L
3,j=1

= iw‘aj.
Jj=1
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Then, Vy P =Y. Thus

diVRnP = Zg(veipa ei)
=1

= Zg(ei, i) =n.
i=1

Definition 1.8.4. The divergence of 1-form w € T'(T*M) is defined by

m

divMw = Z(ei(w(ei» - w(Vi‘fei))

i=1
Proposition 1.8.2. Let w,n € I'(T*M) and f € C*(M), then
1. div(w+n) = divw + divn.

2. div(fw) = fdivw + w(grad f).

1.8.4 Laplacian Operator

Definition 1.8.5. Let (M™,g) be a Riemannian manifold, the Laplacian operator
noted /\, on M 1s defined by

AN C®(M) — CF(M)
f = A(f) =div(grad f)
Properties 1.8.2. Let (M™, g) be a Riemannian manifold, then
1. A(f+h)=A(f)+ A(h);
2. A(fh)=hA(f)+ f A (h)+ 2¢g(grad f, grad h),
for all f,h € C®(M).

1.8.5 Divergence Theorem

Proposition 1.8.3. Let D a compact domain on board in a Riemannian manifold
(M, g). Let w a 1-forme differential and X a field of vectors defined on a neighborhood
included in D. Then :

/D (div™ w)o? = /a Dw(n)vaD et /D (divMw)o? = /8 (X, 0?2,

where D is a board of D, and n = n(x) is the unit vector normal to 0D.

Corollary 1.8.1. for all w a 1-form differential and X a compact supported vector
field in a domain D, then :

/(divw)vD =0 and /(diVX)UD = 0.
D D
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1.8.6 Green Theorem

Theorem 1.8.1. Let (M, g) a compact orientable and without boundary Riemannian
manifold (OM = (). Then, VX € I'(TM), Yw € T'(T*M), we have :

/ (divM X )9 =0, / (divMw)v? = 0,
M M
where v9 = \/det(gij)dzt A ... A dz™.

1.9 Conformally Metric

Definition 1.9.1. A smooth map ¢ from a Riemannian manifold (M, g) to (M',q’) is
called conformal if there is function f such that:

09 = fy.

Proposition 1.9.1. [29] Let (M, g) be a Riemannian manifold of a dimension m if
we deform the metric g by g = e*'g where v € C*°(M). Then:

VxY =VxY + X(7)Y +Y(7)X — g(X,Y) grad y (1.4)
for all X,Y,Z € T(TM)

Proof. Let {e;}i=1..m be an orthonormal frame on (M, g) such that V.,e; =0 at x € M
forall7,7 =1...m, so at x € M, we have

20(VxY,Z) = Xg(Y,2)+Yi(Z,X) - Z§(X,Y)

(eNg(Y, Z) + P Xg(Y, Z) + Y (e g(X, Z) + Y g(X, Z)
~Z(M)g(X,Y) + e Zg(X,Y)

= 27X (7)g(Y, Z)
+2e7Y (7)9(X, Z) — 2¢*1Z(7)g(X,Y)
+eP(Xg(Y, 2) +Yg(X,Z) — Zg(X,Y))

X
X

= 279(X(V)Y, Z) +2eg(Y (1) X, Z) — 2¢ Z 9(Z.ei)ei(7)g(X,Y) +25(VxY, Z)

= 20(VxY + X()Y +Y(7)X — g(X,Y)grad~, Z).

By using the definition of curvature tensor, we have the following

Proposition 1.9.2. [29] Let (M, g) be a Riemannian manifold of a dimension m if
we deform the metric g by g = e*'g where v € C*°(M). The curvature tensors of V
and V satisfy
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RX,)Y)Z = RX,)Y)Z+X(Y(7)Z-Y(Y(7)X
+Y (V) Z(MX = X(1)Z()Y = Y(7)9(X, Z) grady
+X(7)9(Y, Z) grady — g(Y, Z)V x grad y
+9(X, Z)Vy grady — g(Y, Z)| grad v[°X
+9(X, Z)| grad 4]%Y,
where X,Y,Z € I'(TM).

Proposition 1.9.3. [29] Let (M, g) be a Riemannian manifold of a dimension m if
we deform the metric g by g = e*'g where v € C*°(M). The Ricci tensors of V and
V satisfy :

Ricci(X) = e 2" (Ricci(X) — A(y) X +(2—m)(| grad v|* X + Vx grad v — X (v) grad 7)),

where X € I'(TM).



Chapter 2

Geometry of Submanifolds

In this chapter we define the fundamental notations of Riemannian submanifolds, con-
nection, curvature, second fundamental form ... References [15], [20].

2.1 Second Fundamental Form

Let M be an m-dimensional submanifold of n-dimensional Riemannian manifold (N, h)
and i : M — N the canonical inclusion, let g be a Riemannian metric defined by
g =1i"h. g is called the induced metric on M.

Theorem 2.1.1. [15] The Levi-Civita connection V™ of (M, h) from that on (N, h),
V¥ is given by
VY = (VEY)T for all X,Y € T(TM).

where T : T,N — T, M for x € M denote the orthogonal projection.
Proof. Let X, X1, X0, Y € (TM) and f € C®(M)

1. VM ig linear connection

(a)
v%(ﬁxzy = (V?Xl—i-XgY)T
= (fVRY +VyY)'
= f(VRY) +(VR,Y)'
= fVYY + VLYY, VX, XY € T(TM), Vf € C®(M);

(b)
VA (fY1 + Ya) V(Y +Ya))"
X(f)Y:+ fVAY + ViY)T
= X(Hi+ (Vi) 4+ (ViYa)'
= X(/)V1+ fVYY, + VY, VX, Y1, Y, e I(TM),Vf e C®(M).

—~

36
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2. VM is compatible with the Riemmanian metric g

Xg(Y,Z) = XWY,Z)
WYY, Z) + h(Y,VYZ)
W(VAY)T, 2) + (Y, (VY 2)T)
= n(VYY,2)+ Y, V¥Z), VXY e(TM).

3. VM is a torsion free connection

VXY - VyX = (VXY)T = (ViX)!
= (VXY - Vv{X)"
= [X7 Y]T
[X,Y], VXY e(TM).
O

Definition 2.1.1. The normal bundle of (M, g) in (N, h) as the bundle TM* at x € M
where T, M~ is orthogonal complement of TyM in T,N thus mean

T,M* = {v e T,N/h(v,w) =0,Yw € T,M}.

Proposition 2.1.1. [20] Let (M, g) be a Riemannian submanifold of a Riemannian
manifold (N,h). Then

Vee M, T,N=T,M&T,M"*,
that is,for all x € M, we have
Yo eT,N, ' eT,M, FwteT, M ov=uv+v"

Lemma 2.1.1. Let (M,g) be a Riemannian submanifold of a Riemannian manifold
(N, h) and let B : T(TM) x D(TM) — T(TM)*, B(X,Y) = (VYY)L, then

1. B s symmetric;
2. B is C(M)-bilinear.
Proof.
1.
B(X,Y) - B(Y,X) = (VXY)" —(VyX)*

(VXY = V§X)*
= [X,Y]" =0, VX,Y cI(TM);
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B(fX,Y) = (VixY)"
= (fVxY)*
FVXY)*:

— fB(X,Y), VX,Y €D(TM),VfeC>(M).

Thus, B(X, fY) = B(fY,X) = fB(Y,X) = fB(X,Y), by the same method, we
find B(X; + X»,Y) = B(X,,Y) + B(X5,Y) and B(X,Y;, + Y3) = B(X,Y}) +
B(X.Ya), VX,Y, X1, X5, Y1,Ys € D(TM),Vf € C=(M).

O
Lemma 2.1.1 makes the following definition possible

Definition 2.1.2. B is called the second fundamental form of (M, g).

2.2 The Curvature of Riemannian Submanifold

Definition 2.2.1. Let (M, g) be a Riemannian submanifold of a Riemannian manifold
(N, h) and B the second fundamental form (M, g), the mean curvature of (M, g) is

1 1 &
H= EtracegB = ;B(ei,ei)

for an orthonormal basis {e1,...,en} of T, M.

Definition 2.2.2. A Riemannian submanifold M of the Riemannian manifold N is
called minimal if its mean curvature H vanishes.

Proposition 2.2.1. Let (M, g) be a submanifold of (N,h), RM(resp RY) curvature
tensor of M (resp N) then

g(RM(V.W)X,Y) = h(RY(V.W)X,Y)=h(B(V,X), BW,Y))+h(B(V,Y), B(W, X)),
where X, Y, V,W € T'(TM).
Proof. We calculate
RM(V, W)X = VYV X — ViV X — Vi X;
g(RY(V, W)X, Y) = g(Vy Vg X, Y) — g(Viy VY XY) — g(Viyw X, Y).
For the term g(V¥ VM X Y), we have

g(VWVWX,Y) = g((VyVgX)'Y)
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= h(VyVgX — (VyVpX)"Y)

= WVYVEX,Y)

= (VY (VipX — (VipX)5),Y)

= WVIVEXY)—-h(VYB(W,X),Y)

= WVIVEXY)—=VhBW,X),Y)+h(B(W,X),VyY)
D

= WVyVRX,Y) = VR(B(W,X),Y) +h(B(W,X),(VyY)")

J/

= WVIVIX,Y)+h(B(W,X),B(V,Y)).

by the same method, we find that
(Vg VIV X,Y) = MV Vy X, Y) + M(B(V, X), BIW.Y));
9V X, Y) = (V3 X, Y).
finely
g(RY(V.W)X,Y) = h(RY(V.W)X,Y)~h(B(V,X), BW,Y))+W(B(V,Y), B(W, X)).
O

Corollary 2.2.1. Let (M, g) be a Riemannian submanifold of (N, h), KM (resp. KV)
the sectional curvature of (M, g) (resp. (N,h)). Then

h(B(v,v), B(w,w)) — h(B(v,w), B(v,w))
g(va U)g(w’ w) - g(”? w)2

KM (v,w) = KN (v,w) +

where {v,w} is a basis of 1 C T, M, with v € M.

Example 2.2.1. Let M = S"(r) = {x € R"™ | ||z|| = 7}, and N = R"™! equipped with
n+1

inner product h = (, ). We have, VP = X, for all X € T(TN), where P = in@-

r=1

(see example 1.8.1), and g the induced metric on M for h, as P is a normal field of
M, we get B(X,Y) = aP,for all XY € I'(T'M), where o € C*(M).
We have, (B(X,Y),P) = (P, P) i.e (B(X,Y),P) = a|P|* = ar?, as result

o = L(VAV)L P)

r

1

— S(X(Y,P) = (Y,VxP))

r

1
—§<YaX>-
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1
thus, B(X,Y) = ——(X,Y)P. Now we can calculate the sectional curvature of (S", g):
r

(B(v,v), B(w,w)) — (B(v,w), B(v,w))

K (v,w) = KX (v,w)+

N = Rgntl

2.3 Shape operator

Definition 2.3.1. Let (M, g) be a Riemannian submanifold of (N,h), U be a normal
vector field on M. The shape operator (or Weingarten map or second fundamental
tensor) of M is defined by

Ay :T(TM) — T(TM), AyX =—(VXU)".

Proposition 2.3.1. Let (M, g) be a Riemannian submanifold of (N,h), U a normal
vector field on M. Then :

g(ApX,Y) = h(B(X,Y),U), VX,Y € I(TM).
Proof. Let X, Y € I'(TM). We compute

g(ApX,Y) = —h((VXU)',Y)
= —n(VYU,Y)
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= —XhU,Y)+hU, VYY)
0

= WU, (VXY)")
h(U, B(X,Y)).

]
Example 2.3.1. The shape operator of cylinder C = {(x,y,2) € R3|2? + ¢* =

r?, —1 < z < 1} is given by
Lo
v=(i0)

where n is the unit normal vector field on C' withr > 0. Indeed; (0 z) —> (rcosf,rsinb, z)

is a C' parametrization, then 0y = (—rsinf,rcosf,0), 0, = (0,0,1), andn = (— cosf, —sin 0, 0).
We have
Ay(D0) = —(Vo,m)"
3
= —V]ge ’]7
= v%}j (cos 80, + sin 60,)

= —sinfd, + cos QVRsﬁ + cos 00, + sin QV]I;; Oy
— —sinfd, + cos OVF 00, +r cos 00, 0z + o8 00,

+ sin ev—r sin 00z +1 cos 00, ay
= —sinf0, — rcosfsin evﬂgj Dy + 1 cos® evﬂéjax
+ cos 09, — r sin? evﬂgj’ 0y + 1 cos 0 sin 9v§jay.

As VR38 = VR38 = VRsa = VR38 = 0, we find A,(0p) = (—sinb,cosb,0), i.e
A, () = 89, by the same way, we ﬁnd that A, (0.) = 0.

Example 2.3.2. Let U a normal vector field on S™(r) in R"*1. The shape operator of
(S™(r), g) in (R () relative to U is given by :

g(AUXv Y) = <B(X7 Y)? U>

= X Y)PD),

(see Uezample 2.2.1). Therefore, Ay X = —5(P,U)X for all X € T(T'S™(r)).
Definition 2.3.2. Let (M, g) be a Riemannian submanifold of (N, h).
VL D(TM) x T(TM)t — TD(TM)*, (X,Y)— VY = (ViY)*

is called the normal connection of (M, g) in (N, h).
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Properties 2.3.1. Let (M, g) be a Riemannian submanifold of (N, h).
1. VY is C°°(M)-linear with respect to X and R-linear with respect to Y ;
2. VxfY = X(f)Y + fVxY, VX e(TM),VY e (TM)*, Vf € C®(M);
3. X(WY,Z2))=h(VxY,Z)+ WY, VxZ), VX eTl(TM),VY,Z cT(TM)>*.

Proof. Using the definition of V+ and the properties of V.



Chapter 3

Harmonic and Biharmonic
mappings

In this chapter we give the definition of energy functional, the necessary and sufficient
conditions for a map between two Riemannian manifolds to be harmonic.

3.1 Harmonic maps

Definition 3.1.1. Let (M™, g), (N™, h) two Riemannian manifolds, and p € C*(M, N).
The energy of ¢ is defined by

1
B¢ D) =5 [ ldg v, (3.)

where D is a compact domain in M, |dp| the Hilbert-Schmidt norm of the differential
dp, v9 the volume element on (M™, g) given by v = /det(g — ij)dzy ... dx,y,.

Remark 3.1.1. The Hilbert Schmidt norm of differential ¢ is given by

lde|” =) " h(dp(e:), de(ey)),

=1

with {e1,...,en} be an orthonormal frame on (M, g), and the local expression of the
Hilbert Schmidt norm is

ldl® =) " h(dp(e:), diles))

=1

o - a a b a
= Z h(dep(e; 8$a)7d@(eia_xb))

i,a,b=1

“ - O™ 0 0P 0
_ ab _ _r (——
- Y (e S 00)

a,b=1 a,f=1

43
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b "L 0p® 9P ( o 0 )
g h : op
S 0x, Oxp 0Yo 0yg

- 8@ (9g0ﬂ
g 6.772 an

NE

>
Il

a,

Ms

——(hag 0 ).

-

,7=1 a,f=1

Example 3.1.1. Let the mapping

p:R"—{0} — Rn {0}.
T —s
HIHZ
Then
o . 0 e D
d@(axi)—HxH (ayzow) Lz z|] ;maayao%
9 0
|| Z<dso dp(5—) >

n a n a
—1 —1-2
= < ||x — o) — lx;||x Ty o P,
; : H || <9y¢ ) H || ; 1 e

0 - 0
2l (5~ 0 ) — laillal| ™2 D Jwpm— 0 >
9y =1 Ay

= Jlall- ”Zau—zuxu EED D) I M) 9 SRR

i=1 =1 i=1 a=1

B30 30 S amaaat

i=1 a=1 f=1
= nllz| 7 = )7 = ) + Pl

= (n =20+ )|z

Definition 3.1.2. A wvariation of ¢ € C®°(M,N) to support in a compact domain
D C M, is a smooth family maps (¢1)ie(—e,e) : M — N, such that oo = ¢ and ¢, = ¢
on M \ int(D).
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Definition 3.1.3. A map is called harmonic if it is a critical point of the energy
functional over any compact subset D of M. i.e

d
—F D =0.
dt (Spt’ ) -0 0

3.1.1 First variation of energy

Definition 3.1.4. Let ¢ : (M, g) — (N, h) be a smooth map between two Riemannian
manifolds. The trace of second fundamental form of ¢ is called tension field of p, noted

by
7(p) = trace, Vde. (3.2)

Local expression of tension field
Let a smooth map ¢ : (M, g) — (N, h), we have

u o 0
ij
=) g7 (Vde)( o2, 0z

i,j=1

_ 0 Py - 89011 8905 N 'y 690“/ Mk 9
Zz(ﬁxﬁ% aﬁz Ox; 8% La Z Oxy, X ywogp'

1,j=1 y=1

(%) ( resp. (%)) is a local frame of vector fields on M ( resp. on N)

Theorem 3.1.1. Let ¢ : (M™,g) — (N",h) be a smooth map and let (p¢)ic(—e) be
a smooth variation of ¢ supported in D. Then

d
GEiD) == [ b,
dt 0 D
d
where v = % denotes the variation vector field of (p¢)ie(—e,c) V9 the volume element
=0
on (M™, g)

d
Proof. Let {ey,...en} be an orthonormal frame on (M, g) and T frame of vector field

on | — g,¢[.Thus, {(e;,0), (0, %”gl becomes an orthonormal frame for the diagonal
metric g + dt* on the product manifold M x| — e, e[. We have

d

(60,0, 5

)}—O Vie{l,...,m}.
defined
¢: Mx]—ee — N.
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(x,t) — @z, t) = dy(x)
According to Leibniz’s formula, and
¢ ) —e,e] — N;

t o= 0u(t) = d(z,t) = ()

¢ M — N,
r o= ¢ulx) = oa,t) = pi(2)

we find that
d¢(€z’, 0)(;5,0) = dm¢o(ei|m) + dO%(O)
= dx¢0(ei’$)
460, L) oy = duol0) + dodu( 2 o—o)
" dt (z,0) — Uz @0 Oxdttzo
d
= d¢w(£|t=o)
= v(z).
Therefore

do(e;,0) = dp(e;) et dp(0, %) =v en t=0.

Let V¢ the Pull-Back connection associated with the map ¢ we calculate

d
EE(QDta D)

QU
)
~+~

)
<
Q

t=0 t=0

N}

Ug
t=0

=
3

m

" h(dai(er). dgi(e)

i=1
BV dole:,0),do(e:,0))
(O’E

d
WV {460, ), do(es, 0)

9
t=0

N = N—= N =
S— SRS

Yo oo

v9
t=0

I
S—
NE

N
Il
—_

v9
t=0

I
S—
NgE

.
[
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:/Zh(VéVw(ei)v,dga(ei))vg
D=1

_ /D > h(VEv.dg(ed) v?

— /D Z [61' h(v,dp(e;)) — h(v, Vfi dgp(ei))] na

Define a 1-form w to support in D by
w(X) = h(v,dp(X)), VX e (TM).

we have

m

divM w = Z(Veiu})(@i)

=1

= Z{ei(a}(ei)) — w(vé\fei)}

= D feihe dp(e)) — hio. dg(V e

from formulas (3.3), (3.4) we obtain

d t:O:/D(divw)vg—/Dh(UvT(W))-

—FE(¢, D

dt (gph )

By divergence theorem, we have
d

—FE(p; D
dt (Sph )

—— [ hw et

t=0

Theorem 3.1.2. The map ¢ € C*(M,N)
harmonic if and only if () = traceVdy = 0.

3.1.2 Second variation of energy

(3.3)

]

between two Riemannian manifolds is

Theorem 3.1.3. Let ¢ : (M™,g) — (N™, h) be a harmonic map and D a compact
domain of M, if {¢:s} is a variation of ¢ with two parameters with compact support

m D, then

82
mE(%s; D)

(t,s)=(0,0)

= / h(— trace RN (V,dyp)dp — trace(V?)?V, W) v9,
D
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where V' = agt’s and W = agt’s denotes variation vector fields.
t i,9=(0,0) S 1(t,5)=(0,0)
Proof. Let {ey,...,en} be an orthonormal frame on (M™, g). We set
o) M x (—€,€) x (—e,e) — N,
(x,t,5) — prs()
0 d 0 d
E,L' = (ei,0,0), 815 (0 —_— 0) et % (0,0, £>
Then
| = LS ) aomy )
8t8 Pt,ss £2)=(00) - 92 e 8t85 1)y 7 ; .
1= (t,8)=(0,0)
1 0 9, s
S (OB, dO(E)) = = h(V%, do(Er), do(E)
= h(V% V% do(E), do(Ey)
<V¢ i), V5, do (), (3.6)
and
WV V% do(Ey), do(Ey) = h(V% Vi dqs(a—) do(E;))
0
= h(RN(d¢( 2) dO(E:))dg(5 ), dp(E:))
0
WV V% do(5-), do(Ei)
0
—|—h(V[ 5] ( ) o(Ey)). (3.7)
Define an 1—form w, on M by
w(X) = (V% do(5 %) (dip(X)), X € D(TM).
S 1(t,5)=(0,0)
We use that ¢ is harmonic map, so
divMw = Z{el ) —w(Vie)}
0
= Z{ez WV do( & dip(e:)) = (V% do () dp(Vie))}
S 1(t,5)=(0,0) ot S 1(t,5)=(0,0)
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m

0
= 2 WV VS de(5) dgp(e)
i=1 o (t,5)=(0,0)
0
+h(V% do( ) VEdg(e)) = h(V5 d¢<a> dip(Velen)}
* )(oo> 5l (t9)=(0.0)
3
= Z{h(w V% (- 0) dip(e:)) + h(V do(5) (%)
$"1(t,5)=(0,0) o 5 1(t,5)=(0,0)
= Z{h(w v, do as> RLL (38)
(t,8)=(0,0

by (3.7) and (3.8), and since [2,¢;] = 0, we have :

9
ot?

> h(RN(V, dg(e:))W, dip(e;))

=1
+divMw. (3.9)

h(V, V%, do(E;), do(E;))

] o

(t,8)=(0,0)

The second term to the right of the equality (3.6) is given by

AV, d9(E), V5, d0(E)) = (Vi do(5-), Vdo(5))

= (tas( . aot )

0 ¢ o 0
—h(déb(@)ainindéb(a)) (3.10)
If n is an 1-form, on M defined by

n(X) = h(W,V4V), X € T(TM).

— divMy = Z{G’ ei) VMez)}

S b VEY)) - B, ¥y, V)}. (3.11)

i=1
We use (3.10) and (3.11), we obtain

m

> (VY do (), V' do(Ey))

=1

= div 77+ZhWV$Me

(t,8)=(0,0)
> W(W,VEVEV). (3.12)

=1
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From the equations (3.5), (3.6), (3.9), (3.17), and divergence theorem we have,

82

5195 = (#es: D)

/ Z{ h(RN(V,dp(e;))dp(e;), W)

(t,5)=(0,0)
T+ h(W, Ty, V) = (W, VEVEV) | of.
O

Definition 3.1.5. Let ¢ : (M™, g) — (N", h) be a smooth map between two Rieman-
nian manifolds, we define the Jacobi operator of ¢, noted J,, by

J, : I(p7'TN) — T(¢ 'TN)
v — Jy(v)
Jo(v) = —trace RN (v,dp)dp — trace(V¥)*v
= — Z RN (v, dp(e;))dp(e;) — Z [V“" Viv— V@Mezv] :
=1 =1

Properties 3.1.1. Let ¢ : (M™,g) — (N™, h) be a smooth map between two Rie-
mannian manifolds. Then

1. Jacobi’s operator J, is R—linear,

2. Jo(fv) = fI(v) = [A(f)v+2VE,q o], Yo € T(9 ' TN) et Vf € C=(M).
Proof.

1. Let v,w € T(¢ 'TN), then

Jo(v+w) = — Z {RN<U +w,dp(e;))do(e;) + [VEVEv+w — Vég{eiv + w]}

= =) {RN(v,dp(e:))dp(e;) — RN (w, dip(e;))dip(e;)

=1

[VSO V‘p v+ th chw VéMe U — véé\;lezw]}

_ i{ (v, dp(e;))dp(e;) + [VEVED — V@M&U]}

Xm: {RN w, dp(ei))dp(ei) + [VEVEW =V, w]}

= J¢(v) Jo(w).

Using the same method, we get J,(Av) = AJ,(v), VA € R.
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2. Let v € (@7 'TN) et f € C°(M), then

o) = =Y {RV(fv.dele)dele) + [VEVE fo = Vi, fol}

2

=1
= fZRN (v, dp(e;))de(e;) Z V‘pez (lo+VEfViv
=1

=1
(Ve (D0 = Ty,

m

= —f Z RN(Ua dp(e;))dp(e;) — Z [ei(ei(f))v + ei(f)Vfiv + ei(f)vév

=1 =1

"’fvfi(vfiv) - (VMei)(f)U - fVVMe U]
= f‘]@(v) - [A(f)v + Qvgrad fv} )

3.2 Biharmonic maps

Definition 3.2.1. Let ¢ : (M, g) — (N, h) be a smooth map between two Riemannian
manifolds, and D compact domain in M. The bi-energy of p on D is defined by

E» : C°(M,N) —s R,.
2 — E2 907 /|T ‘2

where |T(p)|> = h(1(9),7(p)), and T(p) is the tension field of map .

Definition 3.2.2. The smooth map ¢ : (M™,g) — (N™, h) between two Riemannian
manifold is called biharmonic map if it is a critical point of the bi-energy functional
over any compact subset D of M, i.e.

d
EEK%Q D) =0, (3~13)
t=0

(SOt)te(—e,e) 1 a variation of ¢ in compact support D.

3.2.1 First variation of bi-energy

Theorem 3.2.1. Let a smooth map ¢ : (M™,g) — (N", h) between two Riemannian
manifolds, (¢1)ic(—c,e) @ smooth variation of ¢ with support in D. Then

d

_E2(90t7 D)

i —— [ hwntoye

t=0
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where v = i:l%‘t—() is the vector field of variation associated with (t)ic(—c.e), T2(p) €

I'(¢ 'TN) is a Pull-Back field defined relatively to an orthonormal frame {e;}™, on
(M™, g) by

n(p) = —traceg RN (7(p), dnp)ahp—tmceg(V“’)2 ()
= —ZRN ?), dio(e;))dip(e:) Z{w VET($) = Vi, m(#)}
Proof. Let a map ¢ : M x (—¢,e¢) — N defined by ¢(x,t) = @(x).
Then
d
E EQ(QDt, |t 0 / zjlh (0, d)vd¢((elv ) (617 )) Vd¢((€]’ ) (6]’0>>)U
] 0
(3.14)
We have .
Vio,aydlei, 0) = Vi, )d(0, =), (3.15)
Because,
d
(0, 4. e,0)] = 0.
Also ;
@ _ 9
Vio,2)d0(Velei,0) = Vigu,, dd(0, 2. (3.16)
Hence
Vi 4y Vdo((e:,0), (€1,0) = V{4 {V(, 5dd(es,0) —dqb(VM_X(_e’e)(ei,O))}

- V?O it (e“o)dqs(e“o) Vo d)d¢( 0 (e:,0))

d
= RN(d¢( ) d¢(€za ))dﬂs(e“ ) -+ V (o O)Vd) dgb(ei, 0)
¢ . ¢ M
+v[<07%>,<ei,0nd¢(€“ 0) = Vig,2,d0(Ve €:,0)
d

d
= RY(do(0, ), dd(es, 0))dd(ei, 0) + Vi, o V1, A6 (0, —)
d
—Vige,000(0, 7).

Therefor
Zh Vi, Vd((e:,0), (e:,0)), Vdo((e5,0), (e, 0)))| =D h(R™ (v, diple)dio(e:), 7())
=1 t—=0 =1

+Zh (VEVED, T(0)) — Zh(V@Mev (). (3.17)

i=1

Let w € I'(T*M) be an 1-form to support in D defined by
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w(X) = h(Viu,7(p)), ¥VX € T(TM).
= divMw = Z{ez e;)) — w(V¥e;)}
— z:{eZ (VZv,7(p))) — h(végeiva(@)} (3.18)

= Z{h(vzvzv, () + M(VER, VET(9) = MV, v m(2)}

From (3.17) and (3.18), we obtain

Z h(v¢ Vd(b((ei? 0)7 <€i7 0))7 Vd¢((€j’ O)a (ej7 O)))Ug Z RN U dSO ez d90<€l> (90))
i,j=1 (0, —) i=1

dt t=0
+divMw — Z h(VEv, VET(p)).
i—1

(3.19)
Also let n € I'(T*M) be an 1-form to support in D defined by
n(X) = h(v, Vi7(p)), VX € T(TM).
— divMy = Z{el (e;)) VMel)}

= Z{ez (v, VET(9)) = h(v, Vi, T()} (3.20)

= Z{h(vzv, VET(9) + h(v, VEVET(9)) = h(v, Vi, T(9))}.
Substituting (3.20) in (3.19), we have
D RV, Vdcb((eu 0), (:,0)), Vdo((e;,0), (e5,0)))v* Z ), dp(es))dp(ei),v)
ig=1  (0,— P

dt t=0
+divMw — divMn + h(v, VEVZ 1(¢))
—h(v, VVMe 7(p). (3.21)
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From (3.14), (3.21), and divergence theorem, we obtain

d

— FEs(¢; D
dt 2(g0t7 )

- /D DRV (r(p), dp(er))dp(e) = VEVET(9) + Vi, (), v)0".

[]

Theorem 3.2.2. The map ¢ € C*(M,N) between two Riemannian manifolds is
biharmonic if and only if

ma(p) = —trace, RV (7(p),dp)dyp
— trace,(V?)?1(p) = 0. (3.22)
Remarks 3.2.1. 1) The equation (3.22) is called the Euler-Lagrange associated with

the bi-energy functional.
2)Let p : (M™, g) — (N™, h) a smooth map between two Riemannian manifolds

To(p) = Jo(7(0)).

3.3 Stress energy tensor

Proposition 3.3.1. Let ¢ : (M™,g) — (N", h) be a smooth map between two Rieman-
nian manifold and D a compact domain in M, let (G)ic(—ee) @ variation to support in
D of the metric g where gy = g, then

0
6g=—g| €T(T*M®T*M)
|,y

Locally g; = g;;(t,z)dz’ @ da?, gy = gij(z)dz’ @ dad, 6g = 2g;|  da' @ dad.
=0

Definition 3.3.1. Let ¢ : (M™, g) — (N™, h) a smooth map between two Riemannian.
The stress energy tensor is defined by

S(p) =e(p)g — ¢"h. (3.23)
For all X, Y € I'(TM), we have

S()(X,Y) = e()g(X,Y) — h(de(X), de(Y)), (3.24)
where, e(p) = %|d<,0|2 is the energy density of ¢.

Proposition 3.3.2. [19] Let ¢ : (M™,g) — (N™, h) be a C*-map between two Rie-
mannian manifolds, D a compact domain in M and (g;)ic(—ee) @ smooth variation of
the metric g. Then

d
—FE(p; D

= —/Dh(S(go),ch)vg, (3.25)

t=0
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Theorem 3.3.1. Let ¢ : (M™,g) — (N™, h) be a smooth map between two manifolds,

then

div™ S(p) = —h(7(¢), dy) (3.26)

Proof. Let {e1,...,en} be an orthonormal frame such that Vé\fej =0at x € M for all

ij=1..

.m and X € {e;},

At x € M we have

(div S(p))(2) =

NE

ei(S(p), (e, X)

=1

= 52 eildel’gi; — > eih(de(e), dp(e;)) we put X =e; forj € {1---m}
i=1 =1

-
Il

—_

= —Zez|dgp|25” Z h(dp(ei), do(e;))

= Zh(vw dip(ex), dip(ex) Zv@dw ), diple;)) = Y hldi(er), VEdio(ey))

= Z h(VEdp(e;), dele;)) — h(T(), dele;)) = > hldp(es), V¥ dp(e;))

= Ch(r(0), (X))
]

Corollary 3.3.1. Let ¢ : (M™,g) — (N, h) a C®-map between two Riemannian
manifolds, then from the above theorem, we have

o If ¢ is harmonic then div™ S(p) is vanishing.

o If @ is submersion and if div™ S(¢) = 0 then ¢ is harmonic.

3.4 Stress bi-energy tensor

Definition 3.4.1. Let ¢ : (M™,g) — (N",h) be a C*®°-map between two Riemannian

manifolds.

The stress bi-energy tensor Sa(p) € I'(T*M © T*M) associated to ¢ is

defined for all X, Y € T'(TM) by

where

Sa(p) = —%|T(90)|29(X, Y)— <dp,V¥7(p) > g(X,Y)
+h(dp(X), VyT(p) + h(dp(Y), ViT(9)), (3.27)

m

< dp, V?7(p) >= Y h(dp(e;), VET ()

=1

relative to an orthonormal frame {ey,...,en} on (M™, g).
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Proposition 3.4.1. Let o : (M™,g) — (N™, h) be a C*-map between two Riemannian
manifolds, D a compact domain in M and (g;)ie(—ee) @ sSmooth variation of the metric

g. Then

d
—Es(p; D
dt 2(§0a )

= —/Dh(Sg(gp),5g) 09, (3.28)

t=0

To proof the Proposition 3.4.1, we need the following Lemmas

Lemma 3.4.1. Let ¢ : (M™,g) — (N",h) a smooth map between two Rieman-
nian manifolds M and {g;} a C*>-variation of the metric g.The vector field £ =

(div (6g))F — %gradM(traceg(ég)) satisfied :

3(I7(@)]*) = =2 < M(Vdyp, 7(¢)), 69 > —2h(dp(€), 7(0)). (3.29)

Proof. Locally, we have

S(IT(@)|*) = —g"g"8(ga)(Vdp)5: — E it (3.30)
< h(Vdp,7(¢)),09 > = "¢ 5(gu)(Vdp)&T(0)  hag (3.31)
hdp(€),7(0)) = EopT(9) hag (3.32)
S(r(@)P) = 0(r(9)*T() hap)
= 26(7(£)*)7(0) hag
= —29"9"5(ga) (V)57 () has
—265 A7 () hag (3.33)

Subsisting the formulas (3.31) and (3.32) in (3.33) we obtain the formula (3.29) O

Lemma 3.4.2. Let ¢ : (M™,g) — (N", h) be a smooth map between two Riemannian
manifolds, D a compact domain in M and (g¢)ic(—e,ey a C™-variation of the metric g.
we set

¢ = (divM(6g))* — %gradM(traceg@g)).
Then
/D h(dp(€), T(p))v? = /D < —sym(Vh(dp, 7()))
+ div¥ (h(dg, 7(¢))g, 69 > v (3.34)

Proof. Let w = h(dgp,7(p)), then

1

/D (€N = /D (v (5g))e? — /D w(grad™ (trace, (59)) ). (3.35)
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The first term on the right of the equality (3.35) is given by
[ wt@ G = [ g, @iv Gt
D D

- /D g (w, div™ (39))0",

where ¢g* is the induced Riemannian metric on T*M. In the other hand, if for ¢ €
D(T*M @ T*M), we pose C(w,0) = w'o;jdx?, we obtain:

g (w,div" o) = divM (C(w, o)) — < sym(Vw), o > . (3.36)

for 0 = dg, from the formula (3.36), we find

/ w((divM(6g))F w9 = —/ < sym(Vw),dg > (3.37)
D D
Remarking for A € C*>°(M), we have
w(grad™ \) = g*(w, d\). (3.38)
For \ = trace(dg), from the formula (3.38) we obtain
1 1
——/ w(grad™ (trace(dg)))v? = ——/ g (w, d(trace(dg)))v?
2Jp 2Jp
1
= —5/ g(w*, grad™ (trace(dg)))v?
D
1
= —/ trace(dg) div™ (w*)v?
2Jp
1
= —/ < divM(wh g, dg > v9. (3.39)
2Jp
Substituting the formulas (3.37) and (3.39) in (3.35) we find (3.34). O
Proof of Prorosition (3.4.1). From the formula (3.29) and the Lemma 3.4.1, we
have
d 1 g 1 ,
Tmen)| = 5 [P+ [ Ir@)rom,)
t=0 D D
1

- ; /D (=2 < W(Vdp, (), 8g > —2h(dp(€), 7(¢)))0"

1

1
+—/ < =|7(¢)|*g. 09 > 17,
2/, 2

and from the Lemma 3.4.2, we obtain

1

1 1
. / (—2) < W(Vdi, 7()), 5 > v + = / < ()20, 69 > 0
2 /5 2 ), "2

d
—FE5(p; D
dt 2(@0a )

t=0
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+1¢;<2meVhM%T@ﬂD—dWMUK@zﬂ¢D%m59>v9

2
(3.40)
We have
Sa(p) = —2h(Vdep, 7(p)) + 2s5ym(Vh(de, 7(¢)))
— i (h(dg, 7(9))g + 31 (0)Pg. (3.41)
Let {e1,...,en} be an orthonormal frame on (M™, g) defined in a neighborhood of

point x € M such that V.,e; =0 at point z € M, for all ¢,j € {1...m}.
At x € M, we have

2sym(Vh(de, 7(¢)))(eie;) = VER(dp(e;), 7(v)) + VE h(dp(e:), ()
= 2h(Vdp(ei,e;),7(9)) + h(dp(e:), VE ()
+h(de(e;), VET(9)) (3.42)

and,

divM (h(dp,7(2)) = Y ei(g(h(de, 7(0)), €))

NE

1

.
Il

ei(h(de(e:), 7()))

I

1

7

I
[]=
—
>

(VEdp(ei), () + h(dp(e:), VET(0))}

= |7(Q)|*+ < dp, V¥7(p) > (3.43)

~.
[y

Substituting the formulas (3.42) and (3.43) in (3.41) after that in (3.40), we obtain
(3.28)

Theorem 3.4.1. Let ¢ : (M™, g) — (N™, h) be a smooth map between two manifolds,
then :
div™ Ss(p) = —h(m2(p), dy) (3.44)

Proof. Let {ey,... ey} be an orthonormal frame on (M™, g) such that VXe; = 0 at
reMforali,j=1...mand X € {e;}",.
At x € M we have

(div" Sa())(e;) = Zei(52(80)(6ia€j))
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( )| 513_ < dyp, VQPT( ) > 52']')

I
NE
o
’T
T

.
Il

+
MS —

s
Il
i

ei(h(dp(e:), VET(9)) + h(dp(e;), VET(0))),
T(9), () — ei(< dp, VZ7(p) >)

W(VEdp(e), VET(2) + D hldg(es), VEVE(9))

SN

|

@
I
A

m m

(), T()) — Z h(VE do(e;), VET(9)) — Z hdp(e;), VEVET(p))

+ 3 W(VEde(e:), VET(9) + Y hldeles), VEVET(9))

i=1 i=1

I

|
=
<
A

N

W

At point = we have

= V¢dp(e;) and Vidp(e;) = V¥ do(e;)

VEVET(0) = VEVET(9) = RV (d(es), dip(e;))T(p)

A straightforward computation yields

div™ Sy(p) = —h(ma(p), dp) (3.45)

From theorem 3.4.1, we deduce

Corollary 3.4.1. Let ¢ : (M™,g) — (N™ h) a C®-map between two Riemannian
manifolds, then

e If ¢ is biharmonic then div™ Sy(p) = 0.

o If @ is submersion and if div™ Sy(¢) = 0 then ¢ is biharmonic.



Chapter 4

p-Harmonic and p-Biharmonic
mappings

4.1 The p-Biharmonic maps

Definition 4.1.1. Let ¢ : (M, g) — (N, h) be a smooth map between two Riemannian
manifolds, and D compact domain in M. The p-energy functional of o on D is defined

by
E, : C®(M,N) —

R,.
1 P,9
@ — Ep(g; D) =— [ |dp[’v
PJp

Definition 4.1.2. The smooth map ¢ : (M™,g) — (N", h) between two Riemannian
manifold is called p-harmonic map if it is a critical point of the p-energy functional
over any compact subset D of M, i.e.

d
_EP(SOBD)

=0.
dt

t=0

4.1.1 First variation of p-energy
Theorem 4.1.1. Let ¢ : (M™,g) — (N, h) be a smooth map and let (p;)ie(—ec) be
a smooth variation of ¢ supported in D. Then

i) = /D W), o).

dt

t=0
with v = %%‘tzois the field of wvariation associated with {Yi}—cct<e, and T,(p) €
(¢~ 'TN) defined by

»(p) = trace Vl|dp|P~2dp = Z [Vfi|dcp|p_2dg0(ei) — |d¢|p_2d¢(vgei)} ,

T
=1

60
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where {e;}™, is an orthonormal frame on (M™, g).

Proof. Let {61}1 , an orthonormal frame on (M™, g), and {£} a frame on (—¢, €),then
{(el, 0), (0, & } is an local orthonormal frame for diagonal metric on the product man-

ifold M x (—e¢,€), and we have the Lie crochet [(e;,0), (0, 4)] =0, for all i = 1,.

Let ¢ : M x (—e, €) — N a map defined by ¢(z,t) = ¢i(x). We have :

dp(e;, 0)]—o = dp(e;) et dp(0, %)|—o = v.
The Hilbert Schmidt definition of dip; gives the following formula

D
2

de? = (|ded]?)>.

Therefor
Oyld|” = !dw iﬁt h(dpi(es), dpi(es))
= p(|de[?) 22§:h VS do(er), dpy(e;))
=1
= plde,f"™? i h(V5,dé(e:, 0), do(e;, 0))

=1
= pldp" 22h (.0 d0(0r) + do((D, (e:,0)]), dg(e:, 0))
= pldaifP ZZh 0 0)d6(0), do(e:,0)).
If, 9, = (0, 4). Then
ey = IS Vv de(c)

h(VE v, |de|P2dp(e;))

= p)_ [ei (M(v, ldol"*dp(e:))) — h(v, VE|do"dp(e:)] -

Ms IIMs

=1

We set w(X) = h(v, |dp[P~2dp(X)) pour tout X € I'(T'M). The divergence of an
1-form w is given by

m

divw = ) (Vew)(es)

i=1
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= D {eilh(v, [de|"dip(ei) — h(v, [dp|"*dip(Vfe))}

implies that
Oildei|—y = pdivw+p Y [h(v, [delP2dp(VY ;) — h(v, VE |dpPde(e:))]
i=1
= pdivw —p Y _ h (v, VE|dp2dp(e:) — |dplP2dp(Ve;)) .

=1

Finally, from the divergence theorem, we get

1 m
; / OrldpelP|,_yv? = — / > " h (v, VE|dpP2dg(e;) — |dplP2dp(V Y e;)) vf
M M i—1

]

Remark 4.1.1. [1]
Let ¢ : (M™,g) — (N™,h) be a smooth map between two Riemannian manifolds. If
|dpls # 0 for all x € M, then ¢ is p-harmonic if and only if

|27 () + (p — 2)|dgp|Pdip(grad™ |dy|) = 0. (4.1)

Indeed; On an orthonormal frame {e;}", on (M™, g), we have

3

@) = D [VE el de(e;) — |delP2dip(V 2 e;)]

=1
m

= Z —2)|dplPPe; (|dil) dp(e:) + |dlP~*VE dip(e;)

=1

—!dso!” 2dp(Vie;)]
= |deP27(p) + (p — 2)|dep|PPdp(grad™ |dy|).

4.1.2 Second Variation of p-energy Functional

Theorem 4.1.2. Let ¢ : (M™,g) — (N™, h) be a p-harmonic map and D a compact
domain of M, if {¢:s} is a variation of ¢ with two parameters with compact support
m D, then
92
ot (Prei D)

(t,8)=(0,0)
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where J? is Jacobian operator associated to E, defined by

J?(v) = —|dp[P~?trace, RN (v, dp)dyp — trace, V?|dp|P 2V v
P g g
—(p — 2) trace, V < V?v,dp > |do|P~*dy, (4.2)
0 t,s _ 0 t,s
and v = =5 W= chLe e

Remark 4.1.2. Let {e;}", be an orthonormal frame on (M™, g), then

trace, RY (v, dp)dp = RN (v,dp(e;))dp(e:),
trace, V¥|dp|P *V¥fv = V¢ |dp|"*Viv — |dg0|p_2V§M6iv,

trace, V < V¥u,dp > |dp[P*dp = V? < V%0,dp > |de[P*dp(e;)
g €;
— < V?,dyp > \d(p\p"ld(p(vgei)-

Proof. We define ¢ : M x (—¢,€) X (—€,e) — N by
o(x,t,8) = prs(x), (2,t,5) € M X (—€,€) X (—€,€). (4.3)
Let V¢ the pull-Back connection on ¢~'TN, for all vectors field X on M, we have
[0, X] =0, [0s5,X]=0, [0,0s=0. (4.4)

According to the definition of p-energy functional, we have

1 0? 02
t=s=0 1_9/17 dtos (‘d%’s‘ )

Let {e;}", be a geodesic frame at x € M , as dg; s(e;) = dp(e;). We obtain

82
O0tds

Vg (4.5)

t=s=0

Ep(gpt,é D)

1o
p Otds

D
2

(Ider,s|*)

1 .
P [as Aoy | }

(£,5)=(0,0) p (Ider.sf") (,5)=(0,0)
1

_ p 2 2\ 51

N p@t [288 (Ider.sl*) (Ider.sl) } (£,5)=(0,0)

= Ou[n(VE doler), ds(en) h(do(e;), do(e;) |
dip(er))ldl

)Idso!]”‘2

(¢,5)=(0,0)

= h(V} V5 do(e:)

(t,s)=(0,0)’

+h(V5,do(e:), V5, do(e:)) ‘(t 9=(0.0
+(p = 2)h (V5 do(e:)

h(V5,dé(e;)

(,5)=(0,0)
Jdip(eg))|del”™, (4.6)

(t,5)=(0,0)
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The first term of (4.6) is given by

h(V2 Ve do(e; do(e))|dolP2 = h(VEV?do(0, cdo(e;))|dplP?
(Vo Vodole)| - deled)ldel (Vo Vedo()|, ., dele)lds
= h(RY(do(dy), dd(e;))de(Dy) 200 d(e;))|dep]P?
+h(Ve VY de (0, Ldo(e;))|delP?
(Ve V5,do( )(t,s>:<o,0) o(e;))|de]
(Ve d do(e;))|dplP~2. 4.
+ (V[atyei] ¢(88) (6:5)=(00)’ 90(62))| §0| ( 7)

We define a 1-form w on M by

w(X) = n(V5,do(0,)

. |dp|P2dp(X)), X e T(TM).

(t,s)=

We find that

divMw = ei[h(vgtdgb(@s)

dil"2di(e:)) |

(0,0),190! p(ei))
.do(e;))|de|P?

00 p(e:))|dyl

,VE|dolP~?de(ei)), (4.8)

(t,5)=
= h(V2 V5 de(s)

+h (V5 dp(0y)

(t,5)=(0,0)
From (4.4), (4.7) and (4.8), we have

W(V5V5d0(e)| o dole))ldel’ ™ = h(R(v.dg(e))u. do(e)|del
+divM w — h(VE de(d, T .
( Ot ¢( ) (t7s):(0’0) p(gp))
(4.9)

The second term of (4.6) is given by
h(VE do(es), VE db(e: ( dolP~? = h(V?de(d,), V¢ de(d ) dip|P?
(V5.do(e:), Vi, do(ei)) (t,s):(070)| ¢l (VE.dp(0s), Ve do(dy)) (t’s):(070)| ol

= h(VZw,|deP>V2v)). (4.10)

Also, we define a 1-form 7 on M by
N(X) = h(w,|dp[P*V{v), X € D(TM).

From (4.10), we obtain

h(V5,d0(e). Vido(e))| ldol™ = div™n— h(w, VE|de*VEp). (4.11)
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Substituting (4.9), (4.11), and the following equation:
(b= Dh(V5,do(c) dp(e)h(Vhdole)| | dele))ldel

= (p—2)div" 0 — (p — 2)h(w, VERVE v, do(e;))|doP~*dp(e;)),
O(X) = h(w h(VE v, dole;))ldpldp(X)), X € D(TM),

(t,s)=(0,0)

in (4.6), we find the equation

1 02
5%]1(%,461‘)7 Prs(e:))

[NJiS]

— hRN Uyd €; w,d €; d p—2
(t9)—(00) (R (v, dp(e;))w, dip(e;))|del

+divM w — (V5 dg () ()

(t,5)=(0,0)
+div n — h(w, VZ |deP?VE) + (p — 2) div' 0
—(p = 2)h(w, VIRV, dgo(ej))]dg0|p’4dgo(ei)). (4.12)

According to the equations (4.5), (4.12), divergence theorem, and the p-harmony of ¢,
we find the result of Theorem 5.4.1. n

4.2 p-biharmonic map

Definition 4.2.1. Let ¢ : (M™,g) — (N™, h) be a smooth map between two Rieman-

nian manifolds, and D compact domain in M. The p-bienergy functional of ¢ on D is
defined by

1
Bay(eiD) = 5 [ [P,

where |7,(p)|> = h(1p(0), 7,(¢)), and 7,(¢) is the p-tension field of .

Definition 4.2.2. Let (M™, g), (N", h) two Riemannian manifolds, and ¢ : (M™, g) —
(N h) a smooth map. ¢ is said p-biharmonic if it critical point of the functional p-
bienergy Es ), for all D compact of M, that is

d

7 =0.

t=0

{¢i} being a variation of ¢ to support in D.

4.2.1 First variation of p-bienergy
Theorem 4.2.1. [21] Let ¢ : (M™, g) — (N", h) be a smooth map and let (p¢)ie(—ee)
be a smooth variation of ¢ supported in D, p > 2. Then

d
L) - /D h(ra, (), )07,

dt

t=0

where 13,() € T(p 'TN) is given by :
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Tap(p) = —|dp|P~2 trace, RY (1,(p), dp)dp — trace, V?|dp[P~2V 1, ()
—(p — 2) trace, V(V?T,(¢), dp)|dp[P~*dep,

dipy

2,y s the associated variation field to {p1} —ccice.

and v =
Proof. Consider the map ¢ : M x (—e€,¢) — N by ¢(x,t) = pi(x), we have

d

GPulei D) = [ W30 ) vy (113)

Let {e;}!*, be a geodesic frame of (M™,g) , at © € M, we have
Voo = Vo Veldal dees), (4.14)
According to the definition of the Riemannian curvature of (N", h), we find that

Vo Veldel"2deer) = |dp" RN (d6(0r), dr(er))dioi(e)
+VE VG ldedP 2 dipi(ei), (4.15)

by the compatibility of V? with h, we find

W(VE VG ldol 2 doe) mp(0)) = €MV ldarl" 2 dpi(e:), (1))
—h(Vyldei"2dpi(e:), VET(00),  (4.16)

and from property
VRdo(Y) = Vido(X) + dg([X, Y1),

with X = 0; and Y = |dip;|P~?e;, we have
vgt|d§0t|p_2dﬁpt<€i> o |dg0|p_2Vfiv +(p— 2)h(ijv, dgo(ej))]dg0|p_4dg0(ei), (4.17)

So that, according to the equations(4.16), (4.17), and the divergence theorem, we
conclude that

9
t=0

- /[h(vavf¢|ds@|”_2vfﬁp(@)
D

+(p — 2)h(v, ij]dg0|p_4 < V*1,(p),dp > dgp(ej))]vg.
(4.18)

| MEeTs el e o)
D

From (4.15),and (4.18), v = d¢(0;) at t = 0, the theorem 4.2.1 was proofed . O

From theorem 4.2.1, we find the following results
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Theorem 4.2.2. Let ¢ : (M™,g) — (N™, h) a smooth map between two Riemannian
manifold, then ¢ is p-bitharmonic map if and only if

Top(p) = _|d¢‘1’*2 trace, RN(Tp(w), dy)dy — trace, V“”\d<p|p’2V“’Tp(g0)
—(p — 2) trace, V < V?7,(), dp > |dp[P~*dp = 0.

Remark 4.2.1. [21] Let p : (M™,g) — (N™, h) be a smooth map between two Rie-
mannian manifold, then

Tap(p) = I3 (1))
4.3 Stress p-energy tensor

Proposition 4.3.1. Let ¢ : (M™, g) — (N", h) be a smooth map such that |dp|, # 0
for all x € M, and let (g¢)ic(—c,e) @ one parameter variation of g. Then

d 1
%Ep(w’ D)‘t:O - §/D < Sp(@)vég > Vg,
where Sy(p) € T(G*T*M) is given by
1 _
Sp(@)(X,Y) = S ldpPg(X,Y) = |dpl"h(dp(X), dp(Y)). (4.19)

Sp() is called the stress penergy tensor of .

Theorem 4.3.1. Let ¢ : (M™, g) — (N™, h) be a smooth map between two manifolds,
then
div' S, () = —h(7p(¢), dy) (4.20)

Proof. Let {e1,...,en} be an orthonormal frame such that Vé\fej =0at x € M for all
i,j=1...mand X € {e;}",.
At x € M we have

m

(div" S(p))(z) = Z@(Sp(s@),(ez-,X)
= % Z eildelPg(X, e) = Y eildpP~>h(dp(X), dg(e;))

=1

_ Z ||~ 2e;h(dp(X), do(e;))

- §g<x, gradldi|?) — h(dip(X), dip(grad |dig|?~?))
—|dglP 2 h(V xPdi(er), dgples)) — dpP2h(dp(X), 7()
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1
= ];g(X, grad|dpl|”)
—h(dp(X), dp(grad [de|P~?) + |deP*7())
1
—§\d<p|”‘2X!d90|2
1
= 59(X, grad|dpl|”)

—h(de(X), de(grad |delP~?) + |de|P>7(¢))

1 2
p—2 XldoplP
51d¢] Pl |di|

1
= ];g(X, grad|dpl|”)
—h(dp(X), dp(grad |dp|P~?) + |de|P 7 (p))
1
—Z—?g(X , grad|del?)

= —h(7y(p), dp(X))

]

Corollary 4.3.1. Let ¢ : (M™,g) — (N™, h) a C®-map between two Riemannian
manifolds, then from the above theorem, we have

e If  is harmonic then div" S,(p) is vanishing.

e If o is submersion and if div™ S,(p) = 0 then ¢ is harmonic.

4.4 Stress p-bienergy tensors

23] Let ¢ : (M, g) — (IV, h) be a smooth map between two Riemannian manifolds and
p > 2. Consider a smooth one-parameter variation of the metric g, i.e. a smooth family

, then dg € T(®*T*M) is

a symmetric 2-covariant tensor field on M (see [2]). Take local coordinates (z%) on M,
and write the metric on M in the usual way as g; = g;;(t, z) da’ dz?, we now compute

of metrics () (—e < t < €) such that go = g, write § = &

GEeD)| =5 [ 8n@Pe 5 [ m@Pse,). @

The calculation of the first term breaks down in three lemmas.

Lemma 4.4.1. The vector field &€ = (div™ §g)t — %gradM(trace dg) satisfies

5(|m(e)f?) = —(p—2)|dpl"~* < ¢*h,dg > h(7(¢), p(¢))
—2|dp|P~* < h(Vdp, (), 69 > —2|de|"*h(dp(€), 1,())
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—(p—2)(p — 4)|do["(p*h, 6g) h(dp(grad™ |del), 7, (0))
—2(p — 2)|de|"* < d|d| © h(dp, 7,(¢)), dg >
—(p — 2)|dep|P*h(dp(grad™ (p*h, 59)), (),

where ©*h is the pull-back of the metric h, and (, ) is the induced Riemannian metric
on @*T*M.

Proof. In local coordinates (z%) on M and (y*) on N, we have
3(Im(2)*) = 8 (7u(9)*T(9) hag) = 20(7(9)*)7(0) " hap. (4.22)

By the definition of 7,(yp) we get

3(mp()™) = O(ldel" 7 ()" +6%)
= 0(|dpP*)7 ()" + |del"~*d(7(0)") + 3(6%). (4.23)

where 7(p)* = g (o8, +V T%,0l'07 =M TE ) is the component of the tension field

7(p), and 6% = (p — 2)|dp|P g7 |del|ipF.
The first term in the right-hand side of (5.27) is given by

(oo = (p—2ldel (121
= —]?%2|dg0|p4 < @ h,0g > ()" (4.24)
The second term on the right-hand side of (5.27) is (see [18])
delP~*3((9)") = —ldpl"*g" 9" d(gw) (Vde)}; — ldplP €y, (4.25)
Now, we compute the third term on the right-hand side of (5.27)

|dy]?

5(0%) = (p—2)(p—3)|de"°6(——)g"|del i

2
+(p = 2)|delP~*0(g7)|del i
+(p = 2)ldp[" g7 o(|deli) 5 (4.26)
By using 5(|d§|2) = —1(¢*h, dg) with §(|dg|;) = (6(|dg|))s, the equation (4.26) becomes
(r—2)(p—3)

6(0%) = — 5 |de|P=°(p*h, 6g) g” |de|ip?
+(p —2)|deP?6(g7) |dli 0§

pb— 2 —4 ij/ «a
— 5 lde" g7 (", 09):5]

p— 2 —5 ij * o
e ldel? *g"|dg|i(p*h, 6g) ¢S (4.27)
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Note that
26(|deP )7 (0)*1p(0) hap = —(p = 2)|de|"™* < ©*h, 69 > T(¢)*7p(£)  hag
= —(p—2)|dpl"~* < ¢*h, 09 > h((0), T(¢)),
(4.28)
2dpP25(1(0)) () hap = —2|de|P 29" 6" 5(gab) (Vdp)$iTp(0)  hap

—2|de P2  opm(0) hag
= —=2[dp[P7? < h(Vdp, T,(p)), 59 >
—2|dp[P2h(dp(€), (), (4.29)
and the following
20(0°)75(0) hap = —(p—2)(p — 3)|deo|">(@*h, 8g) 9" |do|i 0 7 (0) N
+2(p — 2)dep[P26(g7)|deol:05 75 (0) P
—(p = 2)|deP~ g7 (©*h, 69)i0Tp(£)  hass
+(p — 2)|delP " |dli (" h, 9) 0§ Tp(0) hag
= —(p—2)(p—3)|dp|"*(¢*h, dg)h(de(grad™ |dg|), 7,(¢))
—2(p = 2)|deP~* < d|dg| © h(de, 7,()), 09 >

—(p — 2)|dep|"*h(dp(grad™ (¢*h, 69)), T (¢))
+(p — 2)|de|P~>(¢*h, 6g)h(de(grad™ |dy|), 7, (). (4.30)

Substituting (5.27), (4.28), (4.29) and (4.30) in (5.26), the Lemma 4.4.1 follows. [
Lemma 4.4.2. ([7]) Let D be a compact domain of M. Then
[ g2 hiagt©) mieNe, = [ (s (Vidap 2hde )
L. _
+5 div™ (|del"*h(d, 7())*) 9, 0) vy-
Lemma 4.4.3. We set w = |dp|P~*h(dp, 7,(¢)). Then

—/ |deolP~*h(dip(grad™ < @*h, 69 >),7p(0)) vy = / < ¢*h,6g > divwu,.
D D
Proof. Note that

div(< p*h,8g > w) =< ¢*h,dg > divw + w(grad” < ¢*h,dg >),

and consider the divergence Theorem, the Lemma 4.4.3 follows. O]
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Theorem 4.4.1. Let ¢ : (M™,g) — (N™, h) be a smooth map such that |dyp|, # 0 for
all z € M, and let (g:)ie(—e) a one parameter variation of g. Then

d 1
GEe D) =5 [ < Sesle)s> u,
where Sy, (@) € T(O*T*M) is given by
1 _
Sap(@)X,Y) = —5Im(p)Pg(X,Y) = |dpP™ < dp, Vo7,() > 9(X,Y)

+|dp|P2h(de(X), V() + |deP 2 h(dp(Y), V()
+(p = 2)|dpP* < dp, V?7,(0) > h(de(X), dp(Y)).

Sap() is called the stress p-bienergy tensor of .

Proof. By using 6(v,,) = 3(g,09)v, (see [2]). Lemmas 4.4.1, 4.4.2, and 4.4.3, the
equation (4.21) becomes

Sap(p) = —(p—2)|de|"*h(7 (@), T(¢)) " h
—2|d[P"*h(Vdep, 7(¢)) + 2sym (V]de|Ph(dp, T(¢)))
—div" (|de P h(de, 7,())") g
—(p—2)(p — 4)|dep|"*h(dp(grad™ |dg|), 7,(0))p*h
—2(p — 2)|de|P?d|de| © h(dp,T,(0))
i _ . 1
+(p — 2) div" [|de|P~*h(de, 7, ()] "R + 5Im(@)Fy. (4.31)
Note that, for all X, Y € I'(T'M), we have

2sym (V]dplP"*h(dp, 7(9)))(X,Y) = 2/do[P*h(Vdp(X,Y), 7,())
+|dip|P*h(dp(X), V%(s&))
+|de|P2h(de(Y), Vi ()

+X (|dplP ) h(dp(Y )’Tp(w))
+Y ([P =) h(dp(X), (),
(4.32)
and the following formula
—2d|de| © h(dp, 7 (0))(X,Y) = =X (lde|)h(dp(Y), 7(¢))
=Y (lde|)h(dp(X), () (4.33)

Calculating in a normal frame at x, we have

m

div" (|deP=*h(de, 7 ())") = Y eilg(ldelh(dp, 7(0))*, 1))

=1
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= Y elldelh(dp(e). 7(9))

=1

Il

ei(|delP~?)h(dp(e;), 7 (¢))

=1

m

+ 3 [P h(VE dip(es), T ()

=1

+ 3 | h(de(e;), VET, ()

(b — 2)ldel *h(dg(grad |dgl). 7 (¢))
dePh(r(2), 7))
—|—|d<,0|p_2 < dp,V?1,(p) > . (4.34)

From the definition of 7,(y), and equation (4.34), we get
div™ (JdolP2h(dg, 7(9))) = (@) + o2 < dp, Vor(0) > . (4.35)
With the same method of (4.34), we find that

div™ (JdeP~*h(dp, 7, (¢))) = (p—4)|dp["" h(de(grad™ |dg|), 7,())
+|dplP*h(T (), ()
—|r|dg0|p*4 < dp,V91,(p) > . (4.36)

Substituting (4.32), (4.33), (4.35) and (4.36) in (4.31), the Theorem 4.4.1 follows. [

By using the definition of divergence for symmetric (0,2)-tensors (see [2, 7]) we
have the following result.

Theorem 4.4.2. Let ¢ : (M, g) — (N, h) be a smooth map such that |dp|, # 0 for all
x € M. Then

div™ S, (0)(X) = =h(m2, (), dp(X)), VX € T(TM). (4.37)
Proof. First, the p-bitension field of ¢ is given by
Top(p) = —ldplP? trace, RV (r(), dip)dip — trace, V2|dp|P >V, (p)
—(p — 2) trace, V < V?7,(), dp > |dp[P~*de. (4.38)
and the p-tension field of ¢ is given by

() = div" (|dep|["dep). (4.39)
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when the tension field is defined by

7(p) = trace, Vdp (4.40)

Let {e;,..., ey} be an orthonormal frame such that VXe; = 0 at € M for all
i,j=1...mand X € {e;}4

At x € M we have

div? Sz, () (X)

m

Z ——|rp )29(X, &) — |dp|P~? < dip, VP7,() > (X, e;)

+|d90|p *h(dp(X), VET,(9)) + |delP2h(de(e;), V()
+(p = 2)|dplP" < dp, V¢7,(0) > h(dp(X), dip(e;))]
—h(VETp(X), (X)) = V|dpP™? < dp, Vi7, () >

+ 3 VEdel"h(dp(X), VET(9) + Y VE|dpPh(dip(e:), VT ()

i=1 i=1

+(p—2) ) VEldelP™ < dp, Vo7,() > h(dp(X), dp(e;))

=1
+(p = 2)dp ™ < de, VoT,(0) > > eih(dp(X), dip(e:))
—h(VET,(X), (X)) = X]do|"™? < dp, V97, () >

—|de Y h(Vidp(es), VET () — el Y hlde(e:), VEVET(9))

=1 i=1

+) " eildolP?h(dp(X), VET, () + deP™> > " h(VEdp(X), VET,(¢))

=1 =1

+|delP? Z h(dp(X),VEVET(0)) + > eldo|"h(dp(e:), ViT,(9))

=1

+|de]"™ QZh Ve dp(er), Vi (0) + delP 2 Y~ hldeo(ed), VEVET(9))

=1 =1

+(p—2) Z VEldolP ™ < di, Vo7, () > h(dip(X), dp(e;))
+(p = 2)ldp"™" < dip, V() > 3 h(VEde(X), dip(e:))
+(p — 2)|delP~" < dp, VET, () > Z h(de(X), VEdpl(e;)).
- (4.41)
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From the equation (4.39), we have

WVET(X),Y eldplPdeles) + |delP ™Y Vedp(e) = h(VET(X), div (JdelP~>dp)),
i=1 i=1
(4.42)
(p=2)ldp* > W(VEdp(X), dp(e) = (p—2)ldplP™* > h(Vide(es), dile:)
i=1 =1
p - 2 p—4 =
= Al Y Xh(dip(en), dip(er)
=1
p—2 —4 2
= T |l X dyl
= (p—2)|dplP° X|dy|
= X|dp|P™2 (4.43)

By using the proprieties the curvature operator R we obtain

> hldp(en), VEVER () = VEVET(9) = D hldi(er), RY(dp(X), dio(ei))mp(¢))

- Zh(dgo(X),RN(Tp(so),dw(ez-))dsO(ei))

= h(dp(X), trace, RN(Tp(t,D), dy)dp)
(4.44)

> (eildelPVET, () + [dpPTPVEVE T () = trace, VP|dpPT2 VT, ()
=1

(4.45)

m

D (VEldplP™ < dp, Vor(p) > de(e;) + |do|"™ < di, VPT,() > VEdp(e;))

i=1
= trace, V < V¥#7,(¢), dp > |dp|"dyp
(4.46)

Substituting (4.42), (4.43), (4.44), (4.45) and (4.46) in (4.41) and using equation (4.38)
we obtain equation (4.37) which completes the proof of the theorem
O
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Remark 4.4.1. When p = 2, we have Sy ,(¢) = Sa(¢), where Sy(p) is stress bienergy
tensor in [18].

Corollary 4.4.1. Let ¢ : (M,g) — (N,h) be a smooth map. (1) Then Ssm,(p) =0
implies ¢ is m-harmonic, where m = dim M. (2) If M is compact without boundary,
and p # %5 . Then Sy ,(p) = 0 implies ¢ is p-harmonic.

Proof. Let {e;} be an orthonormal frame on (M, g). (1) We have
m m -
0= Sep(@)ene) = —ZIn(@) + (o —m)ldpl ™ < dig, Vo7, () > .
i=1

For p = m, the last equation becomes —2|7,,(¢)|* = 0. So ¢ is m-harmonic map. (2)
We set (X ) = h(|dp|P~2dp(X), 7,(p)), for all X € T'(T'M). The trace of Sy ,(p) gives
the equality

0= Sap@lene) = (5 —pln(@)P +p—m)dio.

By using the Green Theorem, we get

m

(5= | Inlobe? =0,

Since p # %, we obtain |7,(¢)|*> = 0, that is ¢ is p-harmonic map. O



Chapter 5

On the p-biharmonic Submanifold

In this chapter we give new methods for constructing proper p-biharmonic submanifold
in space form and p-biharmonic hypersurfaces in Einstein space and conformally space
form. These new results are contained in [23, 24].

5.1 p-Biharmonic Submanifold in Space Form

Theorem 5.1.1. The canonical inclusion i is p-biharmonic if and only if

—AYH + trace, B(-, Au()) —m(c— (p—2)|H*) H = 0;
(5.1)
2trace, Ay (1) + (p — 2+ 2) grad™ |H|? = 0,

Where At is the Laplacian in the normal bundle of (M, g).
Proof. First, the p-tension field of i is given by
() = dif"~*r(i) + (p — 2)|difP*di(grad™ |di]),

Tp

since 7(i) = mH (see [1, 2]), and |di|*> = m, we get 7,(i) = m2H. Let {e;,...,em}
be an orthonormal frame such that Vﬁfej =0at x e M for all t,7 = 1,...,m, then
calculating at z

trace, RV (7, (i), di)di = Y RY(r,(i), di(e;))di(e;)

i=1
m

= m? Z RN (H,e;)e;.
i=1
By the following equation RV (X,Y)Z = c((Y,Z)X — (X, Z)Y), with (H,e;) = 0, for
all X,Y,Z € I'(T'N(c)) and i = 1,...,m, the last equation becomes

p+2

trace, R™ (1,(i),di)di = m 2 cH. (5.2)

76
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We compute the term trace,(V')?7,(i) at =

SV = YV~ Aue) + (TLID)
=1

= — Z VfAH(eZ) — Z B(eia AH(el))

—ZAV iy (e:) Z(V‘ (VI H)Y), (5.3)

i=1
since < Ay (X),Y >=< B(X,Y),H > for all X, Y € I'(T'M), we get

m

> VM Au(e) =

i=1

NE

<VMAH (e;) e]> e;

a@

<,
Il
—_

I
IMS

ei((Anei),e;)) e;

a&

<
Il
—

Il
IMS

(<B(€i’ ej)? H>) €j

e

&
I
—_

(V2ew H)) e,

-
Il
—

I

2]

since VAVYZ = RN(X,Y)Z + VEVEZ + V&’Y}Z, for all X,Y,Z € T'(T'N(c)), we
conclude

S VMAp(e) = Y (VEVNe Hyej+ > (VNe, ViH)e,
= ij=1 ij=1
= Z <RN(61', 6]')67;, H> €; + Z <ngg€i7 H> €;
3,j=1 i,j=1
+ Z (i, €5), H)L> e,
7,7=1

since RN(X,Y)Z =c((Y, Z2)X — (X, 2)Y), for all X,Y,Z € T'(T'N(c)), we have

m

> VM Ay(es) i (Ve H) Z (VNei, Vi Hye;

i=1 1,j=1

z L) e

.
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I
3

e;((H,H)) e, f: (H, Vi H)e,

1

J

Eqs

f‘l(vgiH)L (€:)

e;((H, H)) e;+ Y A my(e). (5.4)

1 =1

INgER:

m
2

J

From equations (5.3) and (5.13), we obtain

pt2
trace, (V)27,(i) = —% grad™ |H|? — 2m? tracey Agrpm)(+)
—m? trace, B(-, Ap(-)) + m3 AL H. (5.5)

Now, we compute the term trace, V < Vir,(i),di > di at z

I\D\’v

Z Vi < Viej 7,(1), di(ej) > di(e;) =

4,j=1

m
Z Vi <ViHe>e,

by the compatibility of pull-back connection V' with the Riemannian metric of N(c),
and the definition of the mean curvature vector field H of (M, g), we have

Z V‘ H,e;) = Z{€j<H>€j> - <H’Viej€j>}
7j=1 Jj=

= —mlH[",
by the last two equations, we have the following
trace, V < V'7,(i),di > di = —m"T grad™ |H|? — m'T |H|?H. (5.6)
The Theorem 2.1 follows by (10), (5.2), (5.14), and (5.6). O
If p=2and N =8", we arrive at the following Corollary.

Corollary 5.1.1. Let M be a submanifold of sphere S™ of dimension m, then the
canonical inclusion i : M — S™ is bitharmonic if and only if

% grad™ |H|? 4 2 trace, Awrm() =0,

—m H + trace, B(-, Ay (-)) — A*H = 0.
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This result was deduced by B-Y. Chen and C. Oniciuc [6, 25].

Theorem 5.1.2. If M is a hypersurface with nowhere zero mean curvature of N™*1(c),
then M is p-biharmonic if only if

—A*+H + (JA? 4+ m(p — 2)|H|* — mc)H = 0;
(5.7)
2A(grad™ |H|) + (2(p — 2) + m) |H| grad™ |H| = 0.

Proof. Consider {ey, ..., e, } to be a local orthonormal frame field on (M, g), and let 7
the unit normal vector field at (M, g) in N™"!(c). We have

H = <Hn>n

1 m
= —Z < B(ei,ei),n >0
m =1

= > gl e

1
= —(t A)n.
m( raceg A)n
Let « =1,...,m, we compute
An(e) = D g(An(e) e;)e
j=1

m
= —Z<VZH,€J'>€]'

J=1

= —Zei<H,ej > € +Z <H,B(€i,€j) > €5

7j=1 7j=1
= <Hn> Z <, B(e;,e;) > ey,
j=1
by the last equation and the formula < 7, B(e;,e;) >= g(Ae;,e;), we obtain the fol-
lowing equation Ag(e;) =< H,n > A(e;). So that

m m

ZB(Q,AH(GZ)) - ZB(eia < Hﬂ? > A(el))

=1 i=1

= <Hn> ZB(Gi,A(Gi))

=1

= < Hn> ZQ(A(Gi)7A(6i))77
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= |APPH. (5.8)

In the same way, with n = H/|H|, we find that

m m
Z AVELZH(GZ) = Z < AVELZ_H(BZ‘), 6]‘ > ej
i=1

ij=1

m
= —Z <VgV;H,€j > €5

2,j=1

m
= —Z <€i<H,n>Vé\j7],€j>€j
1,5=1

= A(grad |H|). (5.9)
The Theorem 2.3 follows by equations (5.15), (5.16), and Theorem 2.1. O

Corollary 5.1.2. (i) A submanifold M with parallel mean curvature vector field in
N"(c) is p-biharmonic if and only if

trace, B(-, Ay(-)) = m(c— (p— 2)|H|*)H, (5.10)

(ii) A hypersurface M of constant non-zero mean curvature in N™(c) is proper p-
biharmonic if and only if

|A]? = me — m(p — 2)|H|?. (5.11)

Example 5.1.1. We consider the hypersurface

m—+1
Sm<a) _ {(xl,-" ’xm7xm+l’b) c R™2 . Z(xl)Q _ (12} C Sm+1’

i=1

where a®> + b*> = 1. We have

with r? = ‘;—z (r > 0), s a unit section in the normal bundle of S™(a) in S™*1.

Let X € I'(TS™(a)), we compute

m-+1 1 m—+2 m a/2 1

vy n=-V5" (2t + )=-X.
Thus, V+n = 0 and A = —%Id. This implies that H = —%77, and so S™(a) has
constant mean curvature |H| = % in S™'. Since |A|? = %, according to Corollary 2.4.
we conclude that S™(a) is proper p-biharmonic in S™ if and only if p = 1/b%.
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5.2 Proper p-Biharmonic Hypersurface in Space Form

Theorem 5.2.1. The hypersurface (M™,g) with the mean curvature vector H = fn
s p-bihamronic if and only if

—AM(f) + fIAP® = fRic" (n,7) + m(p — 2) f* = 0;
m (5.12)
2A(grad™ f) — 2f(Ricci™ )T + (p — 2 + 5) grad” f2 = 0,
where RicY (resp. Ricci® ) is the Ricci curvature (resp. Ricci tensor) of (N™+1 ().

Proof. Choose a normal orthonormal frame {e; };—;, ., on (M™, g) at x, so that {e;,n}iz1,m
is an orthonormal frame on the ambient space (N™*! (,)). Note that, di(X) = X,
ViY = VY, and the p-tension field of i is given by 7,(i) = m? fn. We compute the
p-bitension field of i

(i) = —|di|fP*trace, RV (7,(i), di)di
—(p — 2) trace, V(V'7,(i), di)|di|"~*di
—trace, V|di|P 72V 7, (i). (5.13)

The first term of (5.13) is given by

—|di[P~? trace, RN (7,(i), di)di = —|di[’~* Z RN (7,(i), di(e;))di(e;)
i=1

= —m"' > RY(n,er)es
=1

= —mP ' fRicci™ g
—m?~ ! f [(Ricei™ n)* + (RiceiV n) '] .
(5.14)

We compute the second term of (5.13)

—(p — 2) trace, V(Vi7,(i), di)|difP*di = —(p—2)mP~? Z Vg(vgfn, €;)e;,

ij=1

m

Z(V?{fﬁ? ei) =

=1 A

= —f <777B(€i76i)>

=1

[<ei(f)77> €i> + f<vg777 €l>]

M

1



5.2 Proper p-Biharmonic Hypersurface in Space Form 82

= —mf*
By the last two equations, we have the following
—(p — 2) trace, V(V'7, (i), di) |di|*~*di = mP ™' (p — 2) (grad™ f> +mf3n). (5.15)

The third term of (5.13) is given by

— trace, VI|di|"*Vir, (i) = —m?! Z Ve Ve
e e+ SV

= —m! AMU)+QV%M”n+f§:VNVN
(5.16)

Thus, at =, we obtain

m

YNV = Y VNVt + (V)]
=1 =1
= =) VNA(e)
=1

= = VMA(e) =Y Blen Ale). (5.17)

i=1
Since (A(X),Y) = (B(X,Y),n) for all X,Y € I'(T'M), we get

m

> VMA(e) =

i=1

<VQZ[A(€2'>7 ej>€j

:MS

“S

<
Il
—

[ei(A(er), es)e; — (Ales), Viies)e;]

=

<
I
—_

ZMS ﬁMS

6i<B<€i> 6j)a 77>@j

=

<
Il
—_

IMS

€; <vé\;6ia 77) 63]'

“@

<
Il
—

(Vo Ve n)e;. (5.18)

s
<
Il

—

L
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By using the definition of curvature tensor of (N1 (}), we conclude

i VﬁfA(el) =
=1

[(RN(ei, ej)ei,ne; + <V§;Vgei, n)ej}

1

.

5]

[ (RN (n, ei)ei, e5)e; + <V5Véfei,n>e]}

|
J:MS

i,7=1
= Z(RICCI n,ej)e; + Z e; (Ve n)e; Z (VNe;, Vnle;
j=1 i,j=1 1,5=1
= —(Ricci™n)" + mgrad™ f. (5.19)
On the other hand, we have
Y BlewAle)) = Y (Blei Aler)m)n
i=1 i=1
= Y (A(e;), Aled))n
i=1
= |Al*. (5.20)
Substituting (5.17), (5.19) and (5.20) in (5.16), we obtain
—trace, V'|di[P >V, (1) = —m? ' [AM(f)n — 2A(grad™ f) + f(Ricci™ )"
m
2 grad 2 — flAP). (5.21)
The Theorem 5.2.1 follows by (5.13)-(5.15), and (5.21). O

As an immediate consequence of Theorem 5.2.1 we have.

Corollary 5.2.1. A hypersurface (M™, g) in an Einstein space (N™ 1, ())) is p-biharmonic
if and only if it’s mean curvature function f is a solution of the following PDEs

—AM(f)+ fIAP +m(p = 2)f* = Z5f = 0
. (5.22)
2A(grad™ f) + (p— 2+ ) grad™ 2 =0,

where S is the scalar curvature of the ambient space.

Proof. Tt is well known that if (N™*1 (,}) is an Einstein manifold then Ric" (X,Y) =
MX,Y) for some constant A, for any X,Y € I'(T'N). So that

S = trace) RicY
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= Z RicY (e;, ;) + Ric™ (1, 1)
i—1

= Am+1),

7777

on conclude that g
Ric™ (n,n) = T

On the other hand, we have

m

(RicciVn)" = Z(RiCCiN n,€i)e;
i=1

- Z RICN<T]7 ei)ei
i=1
= Z )‘<777 €i>€i
i=1
= 0.
The Corollary 5.2.1 follows by Theorem 5.2.1. [

5.3 p-Biharmonic Hypersurface in Riemannian Man-
ifold

Theorem 5.3.1. A totally umbilical hypersurface (M™, g) in an Einstein space (N™1, ()
with non-positive scalar curvature is p-btharmonic if and only if it is minimal.

Proof. Take an orthonormal frame {e;, n};—;
that {ei}izl

-----

.....

f= <H>77>

= 3 (Bleved )

1 m
= E;@(ei,ei)ﬁn,n)
= B,
where € C*(M). The p-biharmonic hypersurface equation (5.22) becomes

—AM(B) +m(p - 1B~ 556 = O;
(5.23)
(p—1+%)Bgrad" 3 = 0,
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Solving the last system, we have § = 0 and hence f =0, or

S
b= j:\/m(m +1(p—-1)

it’s constant and this happens only if S > 0. The proof is complete. O

5.4 p-biharmonic hypersurface in conformally flat
space

Let i : M™ — R+ be a minimal hypersurface with the unit normal vector field
n,i: (M™g) < (R™ h = e?h), z — i(z) = i(z) = x, where v € C®°(R™!),
h = (,)grm+1, and g is the induced metric by h, that is

E(X, Y) = QQVg(Xv Y) = 627 <X7 Y)Rm+1a

.....

,,,,,

mal frame on (Rm“,ﬁ), where ¢; = e ¢; foralli = 1,...,m, and 7 = e 7.

Theorem 5.4.1. The hypersurface (M™,q) in the conformally flat space (Rm“,ﬁ) is
p-biharmonic if and only if

( n(y)e " [— AM(y) —mHess™"" (n,n) + (1 — m)| grad™ 4|2
—[A]2 +m(1 = p)n(7)?] + AM(n(y)e) + (m — 2)(grad" v)(n(y)e™7) = 0;

—2A(grad™ (n(v)e™™)) + 2(1 — m)n(y)e ™ A(grad™ )

[ +(2p — m)n(7) grad™ (n(y)e™) =0,
(5.24)

where Hess%erl is the Hessian of the smooth function v in (R™1 h).

Proof. By using the Kozul’s formula, we have
VIY = VY + X(9)Y + Y (1) X — g(X,Y) grad" 5;
VETV = VETV £ UGV + VU = h(U, V) grad® ™,
for all XY € I'(T'M), and U,V € T(TR™"). Consequently

Vidi(Y) = ViV
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~mm+1
= Vgi(X)Y
- V§y
= V'Y £ X(1)Y + Y(1)X — h(X,Y) grad®"" 4, (5.25)

and the following

di(VYY) = di(VYY)+ X()di(Y) + Y (7)di(X) — g(X,Y)di(grad™ ~)
= VY + XY +Y(7)X — g(X,Y) grad" 4. (5.26)

From equations (5.25) and (5.26), we get

(Vd)(X,Y) = Vidi(Y)—di(VYY)
= (Vdi)(X,Y) + g(X,Y)[grad" 7 — grad®™""" 4]
= B(X,)Y) = g(X,Y)n(v)n. (5.27)

So that, the mean curvature function ]7 of (M™,g) in (Rmﬂ,ﬁ) is given by f =
—n(y)e~ 7. Indeed, by taking traces in (5.27), we obtain

X H = H —n(y)n.

Since (M™,g) is minimal in (R™ h), we find that H = —e 2(y)n, that is H =
—e ()1

With the new notations the equation (5.12) for p-biharmonic hypersurface in the con-
formally flat space becomes

R+ AAR - TR G+ mp - 2) — o
(5.28)

— ——Rm+1 — ~
2A(grade) —2f(Ricci M)+ (p—2+ %)gmde2 = 0,

A straightforward computation yields

——~——Rmt1

Ricci 7 = e ] Ricci®™™ ™ — AR () + (1 — m)VSm+1 grad®""

m-+1
dR

+(1—m)| grad®™ " y2n — (1 — m)n(y) gra )

— Rm+l —~ Rm+1
Ric (m,m) = h(Ricci  7,7)
o~ Rm+1

= h(Ricci  n,n)
= e 2 Ricci®"" n — AR™ (Y)n+ (1 — m)Vsm+1 grad®"" 5

+(1—m)| grad®™ " y2n — (1 — m)n(y) grad®™ " 4, 1)
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= e[ =AM () + (1 —m) Hess™" ™ (1, ) + (1 — m)| grad™™" 4|2
—(1=m)n(v)?; (5.29)

Rm+1 m /—\_/Rm+1
(Ricci  7)"T = Zh(Ricci 7, €;)e;

=1

= (= m)e ™ 3T [A(VE grad™ " o, eg)e; — n(x)h(grad™ " . e)e;|
=1

.

> h(VE grad®™™ " 4, n)e; — n(v) grad" 7}

m

= (1—m)e™ [ zm: eih(gradRmH v, n)e; — Z h(gradwn+1 7, VRmHn)ei

i=1 =1
—n(v) grad™ v}

= (1—m)e ™ [grad” n(y) + Y _ h(grad™ " 4, Ae;)e; — n(7) grad™ 4]

=1

= (L—m)e ® [grad" n(y) + A(grad" v) — n(y) grad" 7]; (5.30)
A(f) = e [A(f) + (m — 2)df(grad™ 7)]
e [=An(y)e™) = (m — 2)(grad" 7)(n()e)); (5.31)

‘ﬁ% = Z§<Avgia ggz)
= Z g(Ae;, Ae;)
i=1
_ Z h Rm+1 Rm+1m

m

= Y MVE i+ e+ (e VET i+ ()i +i(7)e:)
=1

= Z [h(VRmH VRmH )+ zﬁ(V)h(V§m+l~, e;) + ei(y)%e™
i=1
+2e:(A(VE™ 0, 7)] + mi(7)*. (5.32)
The first term of (5.32) is given by

m

SOMVE e VET ) = 3 h(—e Ten e TVE e Tein + e TVE )

i=1 i=1
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m

_ _ m+1 m+1
= D e Pe(7)? + e h(VET 0, VET )]
i=1
= 7| grad™ 72+ e 2| A2

The second term of (5.32) is given by

m

27(7) Y W(Ve ie) = —2e7m(y) Y k(e Vi)

=1 =1

Here H = 0. We have also

2 Z ei(v)h(vlim“ﬁ, n) = Z ei(y)esh(n, 1)

i=1 )

Rerl

+e~ P grad™ (n(v)e ) (V) + €V 0T

Thus
T2 2y 412 -2 2
Al = e A" +me”n(y)". (5.33)
We compute
ETRT R SO
i=1
= —e P grad”(n(y)e™); (5.34)
and the following
~ —~ M ~ . _""Rm+1 ~
A(grad f) = V@an
—  _yRML
= Vg
M ~ 1
= ¢ grad f)(7)n — eV —ni
= —e P grad (n(y)e ) () + e TVELLL o
= —e P grad™ (n(y)e ) (V)0 + e () grad" (n(y)e”)
(n(
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= ¢ n(y) grad” (n(y)e™?) — e~ A(grad™ n(y)e ™). (5.35)
Substituting (5.29) — (5.35) in (5.28), and by simplifying the resulting equation we
obtain the system (5.24). O

Remark 5.4.1.

1. Using Theorem 5.4.1, we can construct many examples for proper p-biharmonic
hypersurfaces in the conformally flat space.

2. If the functions v and n(vy) are non-zero constants on M, then according to
Theorem 5.4.1, the hypersurface (M™,q) is p-biharmonic in (Rm+1,71) if and
only if

[A]? = m(1 —p)n(7)?* — mn(n(y)).

Example 5.4.1. The hyperplane i : R™ — (R™+1 2G)R), 2+ (x,¢), where v €

C®([R), h = > dz? + dz?, and ¢ € R, is proper p-biharmonic if and only if (1 —
p)Y (c)*> —+"(c) = 0. Note that, the smooth function

In(c1(p—1)z+ca(p—1))

V(z) = P

) ClacQGRa

is a solution of the previous differential equation (for all c).

Example 5.4.2. Let M be a surface of revolution in {(x,y,2) € R®| 2z > 0}. If M is
part of a plane orthogonal to the axis of revolution, so that M is parametrized by

(w1, 22) = (f(w2) cos(x1), f(x2) sin(x1), ¢),

for some constant ¢ > 0. Here f(xg) > 0. Then, M is minimal, and according
to Theorem 5.4.1, the surface M s proper p-biharmonic in 3-dimensional hyperbolic

space (H?, zp%lh), where h = dz? + dy? + dz>.
Open Problems.

1. If M is a minimal surface of revolution contained in a catenoid, that is M is
parametrized by

(1, 29) —> (a cosh (% + b) cos(z1), a cosh <% + b) sin(zy), x2> ,

where a # 0 and b are constants. Is there p > 2 and v € C*°(R3) such that M is
proper p-biharmonic in (R?, e?(dz? + dy? + dz?))?

2. Is there a proper p-biharmonic submanifolds in Euclidean space (R™, dz? + ... +
dz?)?



Bibliography

1]

[5]

[10]

[11]

[12]

P. Baird, S. Gudmundsson, p-Harmonic maps and minimal submanifolds, Math.
Ann. 294 (1992), 611-624.

P. Baird, J. C. Wood, Harmonic morphisms between Riemannain manifolds,
Clarendon Press Oxford (2003).

A. Balmus, Biharmonic maps and submanifolds, PhD thesis, University Po-
litehnica of Bucharest-Romania, (2009).

B. Bojarski, and T. Iwaniec, p-Harmonic equation and quasireqular mappings,
Partial differential equations (Warsaw, 1984), 25-38, Banach Center Publ., vol.
19. PWN, Warsaw, (1987).

W.M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Ge-
ometry , 2" ed., Pure and Applied Mathematics, Academic Press , (1986) .

B-Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, Series in Pure
Mathematics, 1. World Scientific Publishing Co., Singapore, 1984.

M. Djaa and A. M. Cherif, On Generalized f-biharmonic Maps and Stress f-
bienergy Tensor. Journal of Geometry and Symmetry in Physics JGSP 29 (2013),
65-81.

M. Do Camrmo, Riemannian Geometry , Birkhduser Boston, (1992) .

J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math.Soc. 16
(1978), 1-68.

J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer.
J. Math. 86 (1964), 109-160.

A. Fardoun, On equivariant p-harmonic maps, Ann.Inst. Henri. Poincare, 15
(1998), 25-72.

Y. Han and W. Zhang, Some results of p-btharmonic maps into a non-positively
curved manifold, J. Korean Math. Soc., 52 (2015), No. 5, 1097-1108.

90



BIBLIOGRAPHY 91

[13] S. Gallot, D. Hulin and J. Lafontaine, Riemannian geometry , Universitex,
Springer, (2004) .

[14] G.Y. Jiang, 2-Harmonic maps between Riemannian manifolds, Annals of Math.,
China, 7A(4) (1986), 389-402.

[15] J. Jost, Riemannian Geometry and Geometric Analysis , Universitex, Springer,
(2017) .

[16] J .Lafontaine , An Intoduction To Diffentiable Manifolds , Grenoble Sciences
,Springer ,(2015).

[17] A. Lichnerwicz, Applications harmoniques et variétés khaleriennes, Symposia
Mathematica,vol.IIl,Academic Press, London,(1968-1969),341-402.

[18] E. Loubeau, S. Montaldo, And C. Oniciuc, the stress-energy tensor for biharmonic
maps, arXiv:math/0602021v1 [math.DG] (1 Feb 2006).

[19] A. mohammed Cherif, Géométrie harmonique des variétés , PhD thesis, University
of Oran-Algeria, (2014).

[20] A. Mohammed Cherif, Géométrie semi-Riemannienne,course notes, Mustapha
Stambouli-Mascara University, (2015).

[21] A. Mohammed Cherif, On the p-harmonic and p-biharmonic maps, J. Geom.
(2018) 109:41

[22] A. Mohammed Cherif, Some results on harmonic and bi-harmonic maps, Interna-
tional Journal of Geometric Methods in Modern Physics, (2017).

23] K. Mouffoki, A. Mohamed Cherif, On the p-biharmonic submanifolds and stress
p-bienergy tensors, Communications in Mathematics,(2022).

[24] K. Mouffoki, A. Mohamed Cherif, p-Biharmonic hypersurfaces in Einstein space
and conformally flat space, Bull. Korean Math. Soc., (2023).

[25] C. Oniciuc, Biharmonic maps between Riemannian manifolds, An. Stiint. Univ.
ALL Cuza lasi Mat (N.S.) 48 (2002), 237-248.

[26] B. O’Neill, Semi- Riemannian Geometry with applications to relativity, Pure and
Applied Mathematics, Academic Press, New York, 1983.

[27] P. Petersen, Riemannian Geometry, 3" ed., Graduate Texts in Mathematics,
Springer, (2016).

(28] L. W. Tu, An Introduction to Manifolds, 2" ed., Universitext, Springer, New
York, (2011).



BIBLIOGRAPHY 92

[29] S. Ouakkas, Biharmonic maps, conformal deformations and the Hopf maps ,
Differential Geometry and its Applications, (2008).

[30] Ye-Lin Ou, Biharmonic hypersurfaces in Riemannian manifolds, Pacific Journal
of Mathematics, Vol. 248, No. 1, (2010).

[31] Y. Xin, Geometry of harmonic maps, Fudan University, (1996).



