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et mes frères.

5



Contents

General introduction 7
0.1 Time-Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
0.2 The Kirchhoff equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
0.3 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1 Notations and Preliminaries 18
1.1 Functional spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1.1 Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.1.2 Weak, Weak star and strong convergence . . . . . . . . . . . . . . . . . . 20

1.2 Existence and uniqueness of solution . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2.1 Semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2.2 The Faedo-Galerkin method . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3 Stabilty Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3.1 Lyapunov’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3.2 The multiplier method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Well-posedness and general decay of solutions for a Petrovsky equation with

a memory term 26
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 Notation and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 Well posedeness and regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4 Assymptotic behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Well-posedness and stability for a Petrovsky equation with properties of

nonlinear localized for strong damping 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Well-posedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 Regular solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5 Stability result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6



CONTENTS

4 Well-posedness and exponential stability of coupled non-degenrate Kirchhoff

equation and the heat equation 66
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2 Hypothesis and main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Proof of Theorem 4.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4 Proof of Theorem 4.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Bibliography 82

1



ملخص

في والسلوك العام الوجود دراسة على الأطروحة ھذه تركز
... التطور معادلات بعض لحلول طويل وقت

قدمنا​بعض ، الأول الفصل في فصول أربعة من العمل ھذا يتكون
النظريات .بعض و سوبولاف فضاءات حول الأساسیة المفاھیم
بدراسة نقوم ، الثاني الفصل الداليفي التحلیل في الرئیسیة
لزج اضمحلال معامل وجود في اللاخطیة الصفیحة معادلة
تبديد وجود في يتسبب قوي آخر اضمحلال معامل و مطاطي
طريقة على وبالاعتماد عام بشكل للمعادلة المرفقة لطاقة
في العامة للحلول الوجود على حصلنا لقد غلاركین فايدو
الاستقرار إعطاء ، ،إلى بالإضافة سوبولاف الدالیة الفضاءات
دالة وجود ،بالاعتماد لیابونوف طريقة بواسطة الحلول العام
الفصل في محدبة الدوال خصائص بعض مع . الإسترخاء
الداخلي والاستقرار الحل وانتظام العام الوجود درسنا ، الثالثة
القوي التخمید طريق عن الخطیة غیر بتروفسكي معادلة .من
على معینة ظروف ظل في ، أنه برھنا قد يا ً محل الموزع
ھذه تقبل الاضمحلال بالانعدام يسمح الذي التخمید معامل
،اما الزمرة نصف نظريات على بالاعتماد وحیدا حل المعادلة
لاركین لـ فرعي مجال Ωفي ، غ فايدة طريقة بالاستخدام
طريقة باستخدام . انتظاما اكثر يكون الحل أن الى توصلنا
بشكل .تتناقص الطاقة أن أوضحنا ، القطع متعددة المضاعفاا
ظل في ، الصفر نحو الحدود ومتعددة ) )اسي جدا سريع
نظا درسنا ، الرابع الفصل في ، را ً أخي معینة ھندسیة ظروف
في الحرارة ومعادلة كیرشوف معادلة من يتكون جا ً مزدو ما ً
دائما ،بالاعتمادا وحید عام حل وجود برھنا لقد محدود. مجال
طريقة استخدمنا و التقريبیة. غلاركین فايدو طريقة على

عام استقرار لإيجاد المضاعفات
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Résumé

Cette thèse porte essentiellement sur l’étude d’existence globale et du comportement en temps
long des solutions de certaines équations d’évolution. Ce travail se compose de quatre chapitres.
Dans le premier chapitre, on a introduit quelques notions de base sur les espaces de Sobolev
et quelques théormes principaux en analyse fonctionnelle. Dans le deuxime chapitre, on a con-
sidéré l’équation de plaque non linéaire en présence de termes dissipatifs: un terme dissipatif
viscoélastique et un terme dissipatif fort et de forme générale. Par la méthode de Faedo-Galerkin
on a obtenu l’existence globale des solutions dans des espaces de Sobolev. De plus, sous des
conditions sur la fonction de relaxation la stabilité générale est donnée par la méthode de Lya-
punov combinée avec certaines propriétés des fonctions convexes. Dans le troisième chapitre, on
a étudié l’existence globale, la régularité de la solution et la stabilisation interne de l’équation de
Petrovsky non linéaire par une force d’amortissement localement distribué. On a montré que,
sous certaines conditions sur le coefficient a(x) qui permettent à celui-ci d’être nul sur un sous-
domaine de Ω, ce problème admet une unique solution par la théorie des semi-groupes et par
la méthode de Faedo-Galerkin on a trouvé que la solution est rǵulière. A l’aide d’une méthode
de multiplicateus par morceaux on a prouvé que l’énergie de la solution décrôıt exponentille-
ment et polynomiallement vers zéro, sous des conditions géométriques. Finalement, dans le
quatrième chapitre, on a considéré un système couplé constitué d’une équation de Kirchhoff
et d’une équation de la chaleur dans un domaine bornée. On a montré l’existence et l’unicité
d’une solution globale en se basant sur les approximations de Faedo-Galarkin. Et on a utilisé
la méthode des multiplicateurs pour trouver une stabilité générale.

Mots clés: Equation de Petrovsky, equation de Kirchhoff, equation de la chaleur, Terme
d’amortissement non-linéaire fort localement distibué, terme viscoélastique, existence globale
décroissance exponentiel, décroissance polynomiale, décroissance générale, méthode de Faedo-
Galerkin, théories des semi-groupes, la méthode de Lyapunov, la métode de multiplicateurs,
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Abstract

This thesis focuses on the study of global existence and long-time behavior of the solutions of
certain evolution equations. This work consists of four chapters. In the first chapter, we intro-
duced some basic notions on Sobolev spaces and some main theorems in functional analysis. In
the second chapter, we considered the nonlinear plate equation in the presence of dissipative
terms: a viscoelastic dissipative term and a strong dissipative term of general form. By the
Faedo-Galerkin method we have obtained the global existence of solutions in Sobolev spaces.
Moreover, under conditions on the relaxation function the general stability is given by Lya-
punov’s method combined with some properties of convex functions. In the third chapter, we
studied the global existence, the regularity of the solution and the internal stabilization of the
nonlinear Petrovsky equation by a strong locally distributed damping. We showed that, under
certain conditions on the damping term a(x) which allow it to be zero on a subdomain of Ω,
this problem admits a unique solution by the theory of semigroup and by the Faedo-Galerkin
method we find that the solution is regular. Using a piecewise multiplier method, we proved
the energy decreases exponentially and polynomially towards zero, under geometric conditions.
Finally, in the fourth chapter, we considered a coupled system consisting of the Kirchhoff equa-
tion and the heat equation in a bounded domain. We showed the existence and uniqueness of
a global solution based on the Faedo-Galarkin approximations. And we used the method of
multipliers to find a general stability.

Keywords: Petrovsky equation, Kirchhoff equation, Heat equation, nonlinear localized
strong damping, viscoelastic term, global existence, exponential stability, polynomial stabiliza-
tion, general decay, Faedo-Galerkin method, semi-groups theory, Lyapunov method, multiplier
method.
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List of symbols

Ω: Bounded domain in Rn.
Γ: Topological boundary of Ω.
x = (x1, x1, ..., xn):Generic point of Rn.
d x = d x1d x2...d xn: Lebesgue measuring on Ω.

∇u =
(
∂u
∂x1
, ∂u
∂x2
, ..., ∂u

∂xn

)
: Gradient of u.

∆u =
∑i=n

i=1
∂2u
∂x2i

: Laplacien of u.

a.e: Almost everywhere.
p
′
: Conjugate of p, i.e 1

p
+ 1

p′
= 1.

C(Ω): Space of real continuous functions on Ω.
Ck(Ω), k ∈ N: Space of k times continuously differentiable functions on Ω.
C∞0 (Ω) = D(Ω): Space of differentiable functions with compact support on Ω.
D′(Ω): Distribution space on Ω.
Dαu = ∂α1

1 ∂α2
2 . . . ∂αnn u = ∂α1+...+αnu

∂x
α1
1 ...∂xαnn

α = (α1, α2, . . . , αn) ∈ Nn, |α| = α1 + . . .+ αn
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General introduction

This thesis presents a wide-ranging survey of many important topics in partial differential
equations theory, in particular we study the well-posedness and stability of some evolutions
problems, we discuss the well-posedness and regularity of the solutions of the system by using
the nonlinear semigroup theory and the Faedo Galerkin scheme, we show the exponential and
polynomial stabilities by multiplied method and Lyapunov function.

0.1 Time-Delay

Time-delay (memory term) often appears in many real-world engineering systems either in the
state, the control input, or the measurements. Delays are strongly involved in challenging ar-
eas of communication and information technologies: in stabilization of networked controlled
systems and in high-speed communication networks. Time-delay is, in many cases, a source of
instability. However, for some systems, the presence of delay can have a stabilizing effect. The
stability analysis and robust control of timedelay systems (TDSs) are, therefore, of theoretical
and practical importance.
Time-Delay Systems (TDSs) are also called systems with aftereffect or dead-time, hereditary
systems, equations with deviating argument, or differential-difference equations. They belong
to the class of functional differential equations which are infinite-dimensional, as opposed to
ordinary differential equations (ODEs). The simplest example of such a system is

u̇(t) = −u(t− s) u(t) ∈ R

where s > 0 is the time-delay. Time-delay often appears in many control systems (such as
aircraft, chemical or process control systems, and communication networks), either in the state,
the control input, or the measurements. There can be transport, communication, or measure-
ment delays.

An example of time-delay system

A simple example of TDS is described as follows. Imagine a showering person wishing to achieve
the desired value Td of water temperature by rotating the mixer handle for cold and hot water
[35]. Let u(t) denote the water temperature in the mixer output and let s be the constant time
needed by the water to go from the mixer output to the person’s head (see Fig.3). Assume that

7



Chapter 0

the change of the temperature is proportional to the angle of rotation of the handle, whereas
the rate of rotation of the handle is proportional to T (t) − Td. At time t the person feels the
water temperature leaving the mixer at time t− s, which results in the following equation with
the constant delay h:

u̇(t) = −k[u(t− s)− Td], k ∈ R.

8



Chapter 0

Figure 3:

0.2 The Kirchhoff equation

The mathematical description of transversal small vibrations of elastic string, fixed at the
ends, is an old question. The first investigations on this problem were done by d’Alembertt
(1717− 1793) and Euler (1707-1783). We consider an orthogonal Cartesian coordinate system
(x, u) in R2 . Suppose that the string, in the rest position, is on the x axis with fixed ends
at the points M and N. If u(x, t) is the vertical displacement of a point X of the string, with
coordinate x, at time t, the mathematical model proposed by d’Alembert, in the modern
notation, is:

∂2u

∂t2
= c2∂

2u

∂x2
,

where c2 =
P0

ρ
, with P0 the initial tension and ρ the mass of the string MN.

D’Alembert observed that the configurations of the displacement of the string are given by:

u(x, t) = Φ(x+ ct) + Ψ(x− ct),

where Φ and Ψ , after d’Alembert, are arbitrary functions.
To obtain the d’Alembert model we impose many restrictions on the physical problem. Another
model for the same physical problem of the vertical displacement of the elastic strings was
proposed by Kirchhoff [31] and Carrier [17], which we will find, as a particular case of moving
ends, in the next section. If P0 is the initial tension, that is, the tension at the rest position,
the Kirchhoff-Carrier model for small vertical vibration of elastic string, with fixed ends, is:

∂2u

∂t2
−

(
P0

ρκ
+
Eκ

2Lρ

∫ L

0

∣∣∣∣∂u∂x(x.t)

∣∣∣∣2 dx
)
∂2u

∂x2
= 0 (0.1)

where 0 ≤ x ≤ L and t > 0, represent the string in repose, u(x, t) is the vertical displacement
of the point x at the instant t, ρ the mass density, κ is the area of the cross section of the
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Chapter 0

string, L is the lenght of the string, P0 the initial tension on the string and E the Young’s
modulus of the material.
The natural generalization of the model (0.1) is given by the following nonlinear mixed problem

∂2u

∂t2
−M

(
n∑
i=1

∫
Ω

∣∣∣∣∂u∂x(x.t)

∣∣∣∣2 dx
)

∆u = f on Ω× (0, T )

u = 0 on Γ × (0, T )

u(x, 0) = φ0(x) on Ω,

∂u

∂t
(x, 0) = φ1(x) on Ω,

(0.2)

where Ω is a bounded open set of Rn with smooth boundary Γ,M : [0;∞) → R is a positive

real function and ∆ =
∑n

i=1

∂2

∂x2
i

is the Laplace operator. We say that a problem is :

1) Coercive if M(r) ≥ ν > 0 for each r ≥ 0 .

2) Coercive at ∞ if M(r) ≥ 0 for each r ≥ 0, and
∫∞

0
M(r)dr =∞ .

3) Mildly degenerate if M(‖∇φ0(x)‖2
2) > 0 .

4) Really degenerate if M(‖∇φ0(x)‖2
2) = 0 .

In the Kirchhoff-Carrier model (0.1) , M : [0;∞)→ R is M(λ) =
P0

ρκ
+

E

2Lρκ
λ. Several

authors have investigated the nonlinear problem (0.2). When n = 1 and Ω = (0;L), it was
studied by Dickey [23] and Bernstein [10] whom considered φ0 and φ1 analytic functions with
some growth conditions. Assuming Ω bounded open set of Rn, φ0 and φ1 analytic functions,
Pohozaev[60] obtained existence and uniqueness of global solutions for the mixed problem (0.2).
In Lions [39], he formulated the Pohozaevs results in an abstract context obtaining better re-
sults and presenting a collection of problems. One of the problems proposed by Lions [39] was
the study of the problem (0.2) with M : Ω× [0;∞)→ R, i.e., the problem

∂2u

∂t2
−M

(
n∑
i=1

∫
Ω

∣∣∣∣∂u∂x(x.t)

∣∣∣∣2 dx
)

∆u = f on Ω× (0, T )

u = 0 on Γ × (0, T )

u(x, 0) = φ0(x) on Ω,

∂u

∂t
(x, 0) = φ1(x) on Ω,

(0.3)

that is, for nonhomogeneous materials. This case has its origin in the model (0.1) when the
physic elements ρ, κ and E are not constants, but depends on the point x in the string. In
Rivera Rodrigues [62] the author proved the existence and uniqueness of local solutions for the
problem (0.3).
In a more general context it is correct to consider ρ, h and E changing not only with the point
x in the string but with the instant t too, i.e., ρ = ρ(x; t), κ = κ(x; t) and E = E(x; t) . In
this case, we have the problem

10



Chapter 0

∂2u

∂t2
−M

(
x, t,

n∑
i=1

∫
Ω

∣∣∣∣∂u∂x(x.t)

∣∣∣∣2 dx
)

∆u = f on Ω× (0, T )

u = 0 on Γ × (0, T )

u(x, 0) = φ0(x) on Ω,

∂u

∂t
(x, 0) = φ1(x) on Ω,

(0.4)

where M : [0;∞) × [0, T ] × [0,∞) → R. The problem (0.4) were treated by Cicero Lopes
Frota they making use of the same technique used by Rivera Rodrigues [62], they proved

that if φ0, φ1, f and
∂M

∂t
are small in some sense, then exist one, and only one, nonlo-

cal solution for the problem (0.4). It’s important to observe that it’s a good assumption to

consider
∂M

∂t
small, because in normal conditions ρ, κ and E have a small variation with

the time. For the study of problem (0.2) with dissipative terms we have, for instance, Brito
[16] and Medeiros-Milla Miranda [51]. The problem (0.2) in the degenerate case can be find in
Arosio-Spagnolo [6], Ebihara-Medeiros-Milla Miranda [24], Arosio-Garavaldi [5], Crippa [21],
Yamada [70], Nishihara-Yamada [55] and Nishihara [56].

0.3 Thesis overview

This thesis is divided into four chapters.
Chapter 1: Notations and Preliminaries

In the first chapter, we collect some notions and results of functional analysis as well as some
technical methods used to establish either existence or stability of some nonlinear evolution
problems. These results are needed to develop further arguments.

Chapter 2: Well-posedness and general decay of solutions for a Petrovsky equa-
tion with a memory term
Let Ω is a bounded domain in Rn, having a boundary Γ = ∂Ω. Now consider a viscoelastic
Petrovsky equation in a bounded domain with a nonlinear strong damping
utt + ∆2u−

∫ t

0

h(t− s)∆2u(s)ds− g(∆ut) = 0, x ∈ Ω× [0,+∞[,

u = ∆u = 0, x ∈ Γ× [0,∞[,

u(x, 0) = u0(x), , ut(x, 0) = u1(x) x ∈ Ω× [0,+∞[.

(0.5)

In the absence of the viscoelastic term (i.e. if h = 0), problem (0.5) has been investigated
in [32] by Komornik, he showed that the well-posedness by the semigroup method. Then,
using the multiplier technique, he directly proved exponential and polynomial decay estimates
for the associated energy. When the damping term is general and without the memory term,
Lakroumbe et al. [44] showed the global existence of weak solutions using the Faedo-Galerkin
method and obtained general stability estimates by introducing Lyapunov method combined
with some properties of convex functions.

In this chapter, we prove a global existence result using the energy method combined with

11
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the Faedo- Galerkin. Meanwhile, under suitable conditions on relaxation function h(.), we study
the asymptotic behaviour of solutions using a perturbed energy method and some properties
of the convex functions, the general Young inequality and Jensen’s inequality. We make the
following hypotheses on the relaxation function and the damping function

(A1) Let h : R+ → R+ be a C2 real function such that h(0) = h0 > 0 and

l =

∫ ∞
0

h(s) ds < 1

There exists a non-increasing differentiable function ν : R+ → R+ such that h′(s) ≤
−ν(s)h(s),∀s ≥ 0 and ∫ ∞

0

ν(s) ds = +∞.

(A2) Consider g : R→ R a non-decreasing C1(R) function such that

g(v)v > 0, for all v 6= 0,

and there exist constants ε, c1, c2 > 0 and a convex increasing function G : R+ −→ R+

of class C1(R+) ∩ C2(R∗+) satisfying G linear on [0, ε] or ( G
′
(0) = 0 and G′′ > 0 on ]0, ε],

such that
c1 |s| 6 |g(s)| 6 c2 |s| , if |s| > ε,

|s|2 + |g(s)|2 6 G−1(sg(s)), if |s| 6 ε.

Let us introduce for brevity the Hilbert spaces

H = H1
0 (Ω), V = {v ∈ H3(Ω)|v = ∆v = 0 on Γ},

and
W = {v ∈ H5(Ω)|v = ∆v = ∆2v = 0 on Γ}.

Introduce the energy

E(t) =
1

2
‖∇ut‖2 +

1

2
(h ◦ ∇∆u)(t) +

1

2

(
1−

∫ t

0

h(s)ds
)
‖∇∆u‖2,

then E(t) is a nonincreasing function for t > 0 and

E ′(t) = −1

2
h(t)‖∇∆u‖2 +

1

2
h′ ◦ ∇∆u(t)−

∫
Ω

g(∆ut)∆ut dx ≤ 0.

where

(h ◦ v)(t) =

∫ t

0

h(t− s)‖v(t)− v(s)‖2 ds.

We are now in the position to state our results:

12



Chapter 0

Theorem 0.3.1. (Well-posedness) Assume that

(u0, u1) ∈ W × V,

then the solution of the problem (0.5) satisfies

ut ∈ L∞(0, T ;V ) ; utt ∈ L∞(0, T ;H)

and

u ∈ L∞(0, T ;H4(Ω) ∩ V ),

such that for any T > 0.

Theorem 0.3.2. (Stabilization) Assume that (A1) and (A2) hold. Then there exist positive

constants k0 and k1 such that the solution of the problem (0.5) satisfies

E(t) ≤ k0G
−1
1

(
k1

∫ t

0

ν(s) ds

)
, ∀ t ∈ R+,

where

G1(t) =

∫ 1

t

1

G2(s)
ds

and

G2(t) =

 t, if G is linear on [0, ε]

tG′(ε0t), if G′(0) = 0 and G′′ > 0 on ]0, ε]

Chapter 3: Well-posedness and stability for a Petrovsky equation with proper-
ties of nonlinear localized for strong damping
We consider a locally damped Petrovsky equation in a bounded domain. The damping is non-
linear, and is localized in a suitable open subset of the domain under consideration.

utt + ∆2u− a(x)g(∆ut) = 0, (x, t) ∈ Ω× [0,+∞[
u = ∆u = 0, (x, t) ∈ Γ× [0,∞[
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(0.6)

where Ω is a bounded domain of Rn with boundary Γ which assumed to be regular.
L. Tebou [65] considered a wave equation with a nonlinear strong damping term localized

in a neighborhood of a suitable subset of the domain under consideration, he proved the well-
posedness and regularity of the solutions of the system by using a combination of the nonlinear
semigroup theory and the Faedo-Galerkin scheme. Then, using the energy method combined
with the piecewise multipliers method, he investigated the exponential decay of the energy
when the nonlinear damping grows linearly. When g(∆ut) = |∆ut|p−2∆ut the problem (0.6)
was treated by L. Tebou [67]. The author proved the existence and uniqueness of global solution
u for (0.6). Then, using an appropriate perturbed energy combined with multiplier technique,
he directly proved exponential and polynomial decay estimates for the associated energy.
In this chapter, the well-posedness and regularity of solution is discussed owing to the nonlinear

13
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semigroup theory together with the Faedo-Galerkin approach. By energy method combined
with the piecewise multiplied method and relying on the localized smoothing property, we
show the exponential and polynomial stabilities by discussing with respect to the parameter p.
We assume that a(x) and g(s) satisfies the following hypotheses:

(H1) The function a : Ω→ R is a nonnegative and bounded such that

∃a0 > 0, a(x) ≥ a0 > 0, a.e in ω.

a(x) ∈ W 1,∞(Ω).

(H2) g ∈ C1(R,R) is nondecreasing function with g(0) = 0, and globally Lipschitz. Suppose
that there exist ci > 0, i = 1, 2, 3, 4 and p ≥ 1 such that

c1|s|p ≤ g(s) ≤ c2|s|
1
p , if |s| ≤ 1

c3|s| ≤ g(s) ≤ c4|s|, if |s| > 1.

Set
V = H1

0 (Ω), W = {u ∈ H3(Ω) ∩H1
0 (Ω), ∆u = 0 on Γ},

and
W̃ = {u ∈ H5(Ω) ∩H1

0 (Ω), ∆u = ∆2u = 0 on Γ}.
We introduce the functional energy

E(t) =
1

2
‖∇ut(t)‖2 +

1

2
‖∇∆u(t)‖2.

The energy E is a nonincreasing function of the time variable t and we have for almost every
t ≥ 0

E ′(t) = −
∫

Ω

a(x)∆utg(∆ut) dx.

Theorem 0.3.3. (Well-posedness) Let (u0, u1) ∈ W ×V and suppose that (H1) and (H2) hold.

Then, there exists a solution for system (0.6) satisfies

u ∈ C([0,∞),W ) ∩ C1([0,∞), V )

Theorem 0.3.4. ( Regular solutions) Let (u0, u1) ∈ W̃ ×W and suppose that (H1) and (H2)

hold. Then, there exists a solution of system (0.6) that satisfies

u ∈ L∞([0,∞), W̃ ) ∩ L∞([0,∞),W ).

We now turn to the statements of our stabilization result. Before stating it, we now introduce
a geometric constraint (GC) on the subset ω where the dissipation is effective. Let x0 ∈ Rn be
an arbitrary point of Rn, we set

Γ(x0) =

{
x ∈ Γ; m(x).ν(x) > 0

}
,

14
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Figure 4: geometric contraint

where ν represents the unit normal vector pointing towards the exterior of Ω and

m(x) = x− x0.

Let ω be a neighborhood of Γ(x0) in Ω and consider δ sufficiently small such that

M0 =

{
x ∈ Ω; d(x,Γ(x0)) < δ

}
⊂ ω,

M1 =

{
x ∈ Ω; d(x,Γ(x0)) < 2δ

}
⊂ ω.

If A ⊂ Rn and x ∈ Rn, we have

d(x;A) = inf
y∈A

(|x− y|),

then M0 ⊂M1 ⊂ ω.

Theorem 0.3.5. (Stabilization) Let (u0, u1) ∈ W̃ ×W and suppose that (H1) and (H2) hold.

Then, any weak solution of (0.6) satisfies the estimate

E(t) ≤ CE(0)e−kt ∀t > 0, and p = 1

and

E(t) ≤ Ct−2/(p−1) ∀t > 0, and p > 1

15
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Chapter 4 : Well-posedness and general stability for coupled non-degenerate
Kirchhoff equation and the heat equation

Let Ω be a bounded open subset of Rn with smooth enough boundary. Let α and β be two

nonzero real numbers with the same sign. Consider the coupled wave/heat system
ytt − γ∆ytt − φ(‖∇y(t)‖2)∆y + α∆θ = 0, in Ω× (0,+∞)

θt − σ∆θ − β∆yt = 0, in Ω× (0,+∞)

y = θ = 0, on ∂Ω× (0,+∞)

y(·, 0) = y0, yt(·, 0) = y1, θ(·, 0) = θ0, in Ω

(0.7)

where γ and σ are positive physical constants representing respectively, the rotational force

constant, thermal conductivity, and φ is given function. The functions (y0, y1, θ0) are the given

initial data.

When γ = 0 and φ(s) = m0 + m1s, with m0 > 0 and m1 > 0, Ben Aissa [8] has studied the

global existence for small data and the uniform exponential decay rate of the energy.

Moulay Khatir and Shel [58] studied the thermoelastic system with delay

utt(x, t)− αuxx(x, t− τ) + γθx(x, t) = 0, in (0, l)× (0,+∞)

θt(x, t)− κθxx(x, t)− γuxt = 0, in (0, l)× (0,+∞)

u(0, t) = u(l, t) = θx(0, t) = θx(l, t) = 0, on t ≥ 0

u(·, 0) = u0, ut(·, 0) = u1, θ(·, 0) = θ0, in Ω

where α, γ, κ and l are some positive constants. To avoid this problem, we added to the system,

at the delayed equation, a Kelvin-Voigt damping. They proved the well-posedness of the system by

the semigroup theory. Under appropriate assumptions, they obtained the exponential stability of the

system by introducing a suitable Lyapunov functional.

Mansouri et al. [57] considered a coupled system consisting of a Kirchhoff thermoelastic plate and an

undamped wave equation

ytt − γ∆ytt + a∆2y + α∆θ + µz = 0, in Ω× (0,+∞)

θt − γ∆θ − β∆yt = 0, in Ω× (0,+∞)

ztt − µ∆z + µy = 0, in Ω× (0,+∞)

y = ∂νy = 0, z = θ = 0, on ∂Ω× (0,+∞)

y(·, 0) = y0, yt(·, 0) = y1, θ(·, 0) = θ0, in Ω,

z(·, 0) = z0, zt(·, 0) = z1 in Ω

They showed that the coupled system is not exponentially stable. Afterwards, they proved that the

coupled system is polynomially stable, and provided an explicit polynomial decay rate of the associated

semigroup.
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In this chapter, we establish the well-posedness result of the solutions of the system by using the Faedo-

Galerkin scheme. By energy method combined with the multiplied method, we show the exponential

stability.

Let φ is a C1-class function on R+ and bijective. Assume that there exist m0, m1 > 0 such that and

satisfies

φ(s) ≥ m0, and sφ(s) ≥ m1φ̃(s), ∀s ≥ 0, where φ̃(s) =
∫ s

0 φ(r) dr. (0.8)

Introduce the energy

E(t) = 1
2

∫
Ω |yt(t)|

2 dx+ 1
2 φ̃(‖∇y(t)‖2) + γ

2

∫
Ω |∇yt(t)|

2 dx+ α
2β

∫
Ω |θ(t)|

2 dx, ∀t ≥ 0. (0.9)

Then, the energy functional defined by (0.7) satisfies

E′(t) = −σα
β

∫
Ω
|∇θ(t)|2 dx ≤ 0, ∀t ≥ 0.

Theorem 0.3.6. (Well-posedness) Let φ : [0,+∞[→ [0,+∞[ be a locally Lipschitz continuous function

and (y0, y1) ∈ H2(Ω) ∩H1
0 (Ω)×H2(Ω) ∩H1

0 (Ω), θ0 ∈ H2(Ω) ∩H1
0 (Ω). Assume that {y0, y1, θ0} are

small and

max
0≤s≤E(0)

|φ′(s)| ≤ m0.

Then the problem (0.7) has a unique weak solution (y, θ) such that for any T > 0, we have

y ∈ L∞(0, T ;H2(Ω) ∩H1
0 (Ω))

yt ∈ L∞(0, T ;H2(Ω) ∩H1
0 (Ω)), ytt ∈ L∞(0, T ;H1

0 (Ω))

θ ∈ L∞(0, T ;H1
0 (Ω)) ∩ L2(0, T ;H2(Ω) ∩H1

0 (Ω)).

θt ∈ L∞(0, T ;L2(Ω))

Theorem 0.3.7. (Stabilization) Let (y0, y1) ∈ H2(Ω)∩H1
0 (Ω)×H2(Ω)∩H1

0 (Ω), θ0 ∈ H2(Ω)∩H1
0 (Ω).

Assume that φ satisfies (0.8) and β < γ. The energy of the unique solution of system (0.7), given by

(0.9), decays exponentially to zero, there exist positive constants M and λ, independent of the initial

data, with

E(t) ≤M exp(−λt)E(0).
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Notations and Preliminaries

1.1 Functional spaces

1.1.1 Sobolev Spaces

The spaces Lp, 1 ≤ p ≤ ∞ , of p-integrable functions were useful tools for the study of differential

equations. In the papers by S. L. Sobolev published between 1935 and 1938, new spaces were intro-

duced which are nowadays called the classical Sobolev spaces Wm,p, 1 < p < ∞ ,m = 0, 1, 2, ... the

calculus of distributions and embedding theorems were used successfully for the further development

of the theory of linear partial differential equations and boundary value problems. Let Ω be open set

in Rn, we define the sobolev space Wm,p(Ω)

Wm,p(Ω) = {u ∈ Lp(Ω) such that ∀α ∈ N with |α| ≤ m Dαu ∈ Lp(Ω)}

Wm,p(Ω) is Banach space with norme

‖u‖Wm,p(Ω) =
( ∑
|α|≤m

‖Dαu‖Lp(Ω)

)1/p

If p = 2 we denot

Wm,p(Ω) := Hm(Ω)

Remark 1.1.1. Hm(Ω) is a Hilbert space
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Embedding.

Theorem 1.1.1. (Sobolev Embedding Theorem) Let Ω a bounded domain in Rn, (n ≥ 1) of C1 class

with smooth boundary ∂Ω, and 1 ≤ p <∞.

W 1,p(Ω) ⊂



Lp
∗
(Ω) where 1

p∗ = 1
p −

1
n , p < n

Lq(Ω) ∀ q ∈ [p,∞), p = n

L∞(Ω), p > n.

Furthermore, those embeddings are continuous in the following sense: there exists C(n, p,Ω) such that

for u ∈W 1,p
0 (Ω)

‖u‖Lp∗ (Ω) ≤ C‖∇u‖Lp(Ω), ∀p < n

supΩ |u| ≤ C ′.V ol(Ω)
1
n
− 1
p .‖Du‖Lp(Ω), ∀p > n.

Theorem 1.1.2. Let Ω a bounded domain in Rn, (n ≥ 1) of C1 class with smooth boundary ∂Ω, and

1 ≤ p ≤ ∞.

W 1,p(Ω) ⊂



Lp
∗
(Ω) ∀q ∈ [1, p∗[ where 1

p∗ = 1
p −

1
n , p < n

Lq(Ω) ∀ q ∈ [1,∞), p = n

C(Ω), p > n.

with compact imbedding.

Some inequalities.

Proposition 1.1.3. For u ∈W (a, b, V, V ′) et v ∈ V , we have:〈
du

dt
(.), v

〉
V×V ′

=
d

dt
(u(.), v), in D′(]a, b[).

Young inequality : For all a, b ∈ R, (or C) and for all p, q ∈ [1,+∞[ with 1
q + 1

p = 1, we have :

|ab|61

p
|a|p +

1

q
|b|q.

Hölder inequality : Let 1 < p, q < +∞, with 1
p + 1

q = 1. Let f a function of Lp(Ω) and g a

function of Lq(Ω). Then Hölder l’inequality writes:

‖fg‖L1(Ω) = ‖f‖Lp(Ω) ‖g‖Lq(Ω)·
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a.e 
∫

Ω |f(x)g(x)| dx6
(∫

Ω |f(x)p| dx
) 1
p
(∫

Ω |g(x)q| dx
) 1
q , if p, q ∈ [1,+∞[,

∫
Ω |f(x)g(x)|dx6‖g‖L∞

∫
Ω |f(x)| dx, if p = 1, and q = +∞.

Green Formula: Let Ω an open bounded of frontiers regulars ∂Ω and v(x) the normal exteriors

the point x. Let u a function of H2(Ω) and v a function of H1(Ω), then the Green formula write :

∫
Ω

(∆u)v dx =

∫
∂Ω

∂u

∂ν
v ds−

∫
Ω
∇u ∇v dx,

and ∫
Ω

(u∆v − v∆u) dx =

∫
∂Ω

(
u
∂u

∂ν
− v∂u

∂ν

)
.

1.1.2 Weak, Weak star and strong convergence

Definition 1.1.1. :(Weak convergence in E).

Let x ∈ E and let {xn} ⊂ E. We say that {xn} weakly converges to x in E, and we write xn ⇀ x in

E, if

〈f, xn〉 −→ 〈f, x〉 for all f ∈ E′ .

Definition 1.1.2. :(Weak Convergence in E
′
).

Let f ∈ E′ and let {fn} ⊂ E
′
. We say that {fn} weakly converges to f in E

′
, and we write fn ⇀ f

in E
′
, if

〈fn, xn〉 −→ 〈f, x〉 for all x ∈ E.

Definition 1.1.3. :(Weak star Convergence).

Let f ∈ E
′

and let {fn} ⊂ E
′
. We say that {fn} weakly star converges to f in E

′
, and we write

fn ⇀
∗ f in E

′
, if

〈fn, xn〉 −→ 〈f, x〉 for all x ∈ E.

Definition 1.1.4. :(Strong Convergence).

Let x ∈ E (resp. f ∈ E′) and let {xn} ⊂ E (resp. {fn} ⊂ E
′
. We say that {xn} (resp. {fn}) strong

converge to x (resp. f ), and we write xn → x in E (resp. fn → f in E
′
), if

lim
n→∞

‖xn − x‖E = 0, (resp. lim
n→∞

‖fn − f‖E′ = 0).

Theorem 1.1.4. (Bolzano- Weierstrass).

If dimE <∞ and if {xn} ⊂ E is bounded, then there existe x ∈ E and a subsequence {xnk} strongly

converges to x
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Theorem 1.1.5. (Weak star Compactness, Banach-Alaoglu-Bourbaki).

Assum that E is separable and consider {fn} ⊂ E
′
. If {xn} is bounded, then there existe f ∈ E′ and

a subsequence {fnk} of {fn}such that {fnk} weakly star converges to f in E
′
.

1.2 Existence and uniqueness of solution

1.2.1 Semigroups

We start by introducing some basic concepts concerning the semigroups. The vast majority of the

evolution equations can be reduced to the formUt = AU, t > 0,

U(0) = U0,
(1.1)

where A is the infinitesimal generator of a C0-semigroup S(t) over a Hilbert space H. Lets start by

basic definitions and theorems.

Let (X; ‖.‖X) be a Banach spaces and H be a Hilbert space equipped with the inner product 〈., .〉H
and the induced norm ‖.‖H .

Definition 1.2.1. A one parameter family (S(t))t≥0 of bounded linear operators from X into H is a

semigroup of bounded linear operator on X if

• S(0) = I (I is the identity operator on X)

• S(t+ s) = S(t).S(s) for every t, s ≥ 0.

• For each u ∈ H, S(t)u is continous in t on [0,+∞[.

Definition 1.2.2. A semigroup is said to be uniformly continuous with respect to operator norm ‖.‖
associated with X,

lim
t→0+

‖S(t)− I‖ = 0.

Definition 1.2.3. A semigroup (S(t))t≥0 of bounded linear operators is a strongly continuous semi-

group (or a C0-semigroup) if

lim
t→0+

S(t) = u.

Definition 1.2.4. A strongly continuous contraction semigroup (S(t))t≥0 on X is a strongly continuous

semigroup on X such that

‖S(t)− I‖L(X) ≤ 1 ∀t ≥ 0.
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Definition 1.2.5. For a semigroup (S(t))t≥0, we define an linear operator A with domain D(A)

consisting of points u such that the limit.The linear operator A defined by

Au = lim
t→0+

S(t)u− u
t

, ∀u ∈ D(A)

where

D(A) =

{
u ∈ X; lim

t→0+

S(t)u− u
t

exists

}
is the infinitesimal generator of the semigroup (S(t))t≥0.

Definition 1.2.6. An unbounded linear operator (A,D(A)) on H, is said to be dissipative if

R〈Au, u〉 ≥ 0, ∀u ∈ D(A).

Definition 1.2.7. An unbounded linear operator (A,D(A)) on X, is said to be m-dissipative if

• A is a dissipative operator

• ∃ λ0 > 0, such that R(λ0I −A) = X

Theorem 1.2.1. (Hille-Yosida’s Theorem in Banach spaces) An unbounded linear operator (A,D(A))

in X is the infinitesimal generator of a semigroup of contractions on X if and only if the following

conditions are satisfied

• A is a closed operator

• D(A) is dense in X

• For all λ > 0, (λI − A) is a bijective mapping from D(A) to X, its inverse (λI − A)−1 is a

bounded operator on X obeying

‖(λI −A)−1‖ ≤ 1

λ

Theorem 1.2.2. (Hille-Yosida’s Theorem in Hilbert spaces Phillips Theorem) An unbounded linear

operator (A,D(A)) in X is the infinitesimal generator of a semigroup of contractions on X if and

only if A is m-dissipative in X.

Theorem 1.2.3. (Hille-Yosida Theorem: Lumer-Phillips from in Hilbert spaces)

Let A : D(A) ⊂ H → H be a linear operator. Then A is maximal monoton if and only if -A is the

infinitesimal generator of a C0 semigroup of contraction on H.

Theorem 1.2.4. (Lumer-Phillips)

Let (A,D(A)) be an unbounded linear operator on X, with dense domain D(A) in X. A is the

infinitesimal generator of a C0-semigroup of contractions if and only if it is a m-dissipative operator.
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Definition 1.2.8. An unbounded linear operator A : D(A) ⊂ E → F is said to be monotone (or

accretive) if it satisfies

(Av, v) ≥ 0 ∀v ∈ D(A).

Remark 1.2.1. A is a monotone operator ⇔ -A is a dissipative operator

Definition 1.2.9. An unbounded linear operator A : D(A) ⊂ E → F is said to be maximal monotone

if

• A is a monotone operator.

• ∀f ∈ H ∃u ∈ D(A) such that u+Au = f .

The first properties of maximal monotone operators are given in the result below.

Proposition 1.2.5. Let A be a maximal monotone operator. Then

• D(A) is dense in H,

• A is a closed operator,

• For every λ > 0, (I+λA) is bijective from D(A) onto H, (I+λA)−1 is a bounded operator, and

‖(I + λA)−1‖L(H) ≤ 1.

Theorem 1.2.6. (Browder-Minty) Let’s E be a reflexive Hilbert space. Let A nonlinear operators

such as

〈Au−Av, u− v〉 ≥ 0 ∀v, u ∈ E

lim 〈Au,u〉
‖v‖E →∞ as ‖v‖E →∞, so A is coercive. Then A is surjective in E′ e.i (a operator A : E → E′

is surjective if for each f ∈ E′, there exists u ∈ E, such that Au = f).

1.2.2 The Faedo-Galerkin method

The method is based on three steps :

(i) Choose certain basis of functions in an appropriate Sobolev space, and solve the approximate prob-

lems in any finite dimensional space spanned by finite basis functions. This often turns out to be an

initial value problem for nonlinear ordinary differential equations. By the well-known local existence

theorem for ordinary differential equations, local existence of solution to the approximate problem

follows.

(ii) Obtain the compactness estimates for the solution of the approximate problem. It also turns out

that the solution to the approximate problem globally exists.
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(iii) Further use of the obtained compactness estimates allows one to choose a subsequence of solutions

of the approximate problem obtained in the second step, converging to a solution of the original prob-

lem; uniqueness of solution for the original problem has to be proved separately, but the compactness

estimates obtained in the second step are still very useful for this purpose.

1.3 Stabilty Methods

The purpose of stabilization is to attenuate the vibrations by feedback, therefore it is to ensure the

decay of the energy solutions to 0 more or less quickly by a dissipation mechanism. More precisely,

the stabilization problem in which we are interested amounts to determining the asymptotic behavior

of the energy that we denote by E(t) (this is the norm of solutions in the state space), to study its

limit in order to determine if this limit is zero or not, and, if this limit is zero, to give an estimate of

the decay rate of energy to zero. They are several type of stabilization :

1) Strong stabilization:

lim
t→+∞

E(t) = 0.

2) Exponential stabilization:

E(t) ≤ Ce−δt ∀t > 0.

3) Polynomial stabilization:

E(t) ≤ C

tα
∀t > 0.

where C, δ, and α are positive constans and C which depends on the initial data.

1.3.1 Lyapunov’s method

Lyapunov design has been a primary tool for nonlinear control system design, stability and performance

analysis since its introduction in 1982. The basic idea is to design a feedback control law that renders

the derivative of a specified Lyapunov function candidate negative definite or negative semi-definite.

Lyapunovs direct method is a mathematical interpretation of the physical property that if a systems

total energy is dissipating, then the states of the system will ultimately reach an equilibrium point. The

basic idea behind the method is that, if there exist a kind of continuous scalar energy functions such

that this energy diminishes along the systems trajectory, then the system is said to be asymptotically

stable. Since there is no need to solve the solution of the differential equations governing the system

in determining its stability, it is usually referred to as the direct method.

Although Lyapunovs direct method is efficient for stability analysis, its applicability is restricted due

to the difficulty in selecting a Lyapunov function. The situation is different when facing the controller

design problem, where the control has not been specified, and the system under consideration is
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undetermined. Lyapunov functions have been effectively utilized in the synthesis of control systems.

The basic idea is that, by first choosing a Lyapunov function candidate and then the feedback control

law can be specified such that it renders the derivative of the specified Lyapunov function candidate

negative definite, or negative semi-definite when invariance principle can be used to prove asymptotic

stability. This way of designing control is called Lyapunov design. Lyapunov design depends on the

selection of Lyapunov function candidates. Though the result is sufficient, it is difficult to find a

Lyapunov function (LF) satisfying the requirements of Lyapunov design. Fortunately, during the past

several decades, many effective control design approaches have been developed for different classes

of linear and nonlinear systems based on the basic ideas of Lyapunov design. Lyapunov functions

are additive, like energy, i.e., Lyapunov functions for combinations of subsystems may be derived by

adding the Lyapunov functions of the subsystems.

1.3.2 The multiplier method

We use this method to get a better estimate of the decay rate, A. Haraux and V. Komornik have

improved and generalized this method. They introduced integral inequalities which make it possible

to obtain very efficiently and very good decay estimates for many linear or nonlinear problems.

We will use these integral inequalities to study the decay rate of the energy of a nonlinear dissipative

problems.
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Well-posedness and general decay of

solutions for a Petrovsky equation with

a memory term

2.1 Introduction

In this chapter we consider the existence and decay properties of global solutions for the initial bound-

ary value problem of non-linear Petrovsky equation with a strong damping and a memory term
utt + ∆2u−

∫ t

0
h(t− s)∆2u(s)ds− g(∆ut) = 0, x ∈ Ω× [0,+∞[,

u(x, t) = ∆u(x, t) = 0, x ∈ Γ× [0,∞[,

u(x, 0) = u0(x), , ut(x, 0) = u1(x) x ∈ Ω× [0,+∞[,

(2.1)

where Ω is a bounded domain in Rn, Γ is a smooth boundary, (u0, u1) are the initial data in a suitable

function space, h and g are real functions.

The study of viscoelastic problems has attracted the attention of many authors and several decay and

blow up results have been established. In [18] Cavalcanti et al. considered the equation

utt −∆u−
∫ t

0
h(t− s)∆u(s)ds− a(x)ut + u|u|p−2 = 0, in Ω× [0,+∞[

where a : Ω→ R+ is a function which may vanish on a part of the domain Ω but satisfies a(x) ≥ a0 > 0

on ω ⊂ Ω and h satisfies, for two positive constants ξ1 and ξ2

ξ1h(t) ≤ h′(t) ≤ ξ2h(t), ∀t ≥ 0.

They established an exponential decay result under some restrictions on ω. Berrimi and Messaoudi

[11] established the result of [18], under weaker conditions on both a and h to a problem where a
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source term is competing with the damping term.

Belhannache et al. [7] considered the following problem

utt −∆u−
∫ t

0
h(t− s)∆u(s)ds− a(x)ut + |u|p−2u = 0, in Ω× [0,+∞[

with a

h′(t) ≤ −ξ(t)H(h(t)),

they showed the global existence and obtained a general stability result.

Mustafa and Messaoudi [53] established an explicit and general decay rate for relaxation function

satisfying

h′(t) ≤ H(h(t))

where H ∈ C1(R), with H(0) = 0 and H is linear or strictly increasing and strictly convex function

C2 near the origin.

Park and Kang [59] studied the following nonlinear viscoelastic problem with damping

|ut|lutt + ∆2u−∆utt −M(‖∇u‖22)∆u+

∫ t

0
h(t− s)∆u(s) ds+ ut = 0, x ∈ Ω, t > 0.

Santos et al. [63] considered the existence and uniform decay for the following nonlinear beam equation

in a non-cylindrical domain:

utt + ∆2u−M(‖∇u‖22)∆u+

∫ t

0
h(t− s)∆u(s) ds+ αut = 0, in Q̂,

where Q̂ = ∪0≤t≤∞Ωt × {t}. Yaojun [71] proved the existence of global solution, as well as, under

suitable conditions on relaxation function h(.) and the positive initial energy as well as non-positive

initial energy, it is proved that the solution blows up in the finite time and the lifespan estimates of

solutions are also givenresult for the equation

utt + (−∆)mu+

∫ t

0
h(t− s)(−∆)mu(s) ds = |u|p−2u. (2.2)

When m = 2 F. Tahamatani and M. Shahrouzi [69] prove the existence of weak solutions of Eq.

(2.2) with initial-boundary value conditions. Meanwhile, they show that there are solutions under

some conditions on initial data which blow up in finite time with non-positive initial energy as well as

positive initial energy and give the lifespan estimates of solutions. In the absence of nonlinear source

term, Munoz Rivera, Lapa and Baretto [54] considered Eq. (2.2) in a bounded domain Ω ⊂ Rn and

showed that the energy of solution decays exponentially provided the relaxation function h(.) also

decays exponentially.

Komornik [32] studied the following nonlinear Petrovsky system with a strong damping
utt(x, t) + ∆2u(x, t)− g(∆ut) = 0, x ∈ Ω× [0,+∞[,

u(0, t) = ∆u = 0, x ∈ Γ× [0,∞[,

u(x, 0) = u0(x), , ut(x, 0) = u1(x) x ∈ Ω× [0,+∞[.
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He used semigroup approach for sitting the well possedness and he studied the strong stability of

this system by introducing a multiplier method combined with a nonlinear integral inequalities given

by Martinez [50].

Kouémou-Patcheu [33] studied the Kirchhoff equation with a nonlinear source term

utt +A2u+M(‖A
1
2u‖2H)Au− g(ut) = 0,

where A is a linear operator in a Hilbert space H and M and g are real functions. She proved the

global existence of solutions by the Faedo-Galerkin method and she used a new method recently in-

troduced by Martinez [50] to study the decay rate of solution.

In this paper, we prove the global existence of weak solutions of the problem (2.1) by using the

Galerkin method (see Lions [41]). Meanwhile, under suitable conditions on g(.) and we use some

techniques using Liapunov functions and some properties of convex functions. These arguments of

convexity were introduced and developed by Cavalcanti et al. [19], Daoulatli et al. [22], Lasiecka and

Doundykov [38] and Lasiecka and Tataru [42], and used by Liu and Zuazua [47], Eller et al. [25] and

Alabau-Boussouira [3].

This paper is organized as follows. In Section 2, we present some notations and material needed

for our work. In Section 3, we establish the global existence of the solution of the problem. Some

technical lemmas and the decay results are presented in Sections 4.

2.2 Notation and Preliminaries

We begin by introducing some notation that will be used throughout this work.

Let us introduce three real Hilbert spaces H, V and W by setting

H = H1
0 (Ω), ‖v‖2H =

∫
Ω
|∇v|2dx

and

V = {v ∈ H3(Ω)|v = ∆v = 0 on Γ}, ‖v‖2V =

∫
Ω
|∇∆v|2dx

W = {v ∈ H5(Ω)|v = ∆v = ∆2v = 0 on Γ}, ‖v‖2W =

∫
Ω
|∇∆2v|2 dx.

Identifying H with its dual H ′ we have

W ⊂ V ⊂ H ⊂ V ′ ⊂W ′,
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with dense and compact imbedings.

If v ∈ L2(Ω), we denote by ‖v‖2L2(Ω) = ‖v‖2, the Hk(Ω) and H1
0 (Ω) are the Sobolev spaces.

Next, we give the precise assumptions on the functions h(.) and g(.).

(A1) Let h : R+ → R+ be a C2 real function such that h(0) = h0 > 0 and

l =

∫ ∞
0

h(s) ds < 1.

There exists a non-increasing differentiable function ν : R+ → R+ such that

h′(s) ≤ −ν(s)h(s), ∀s ≥ 0 and

∫ ∞
0

ν(s) ds = +∞.

(A2) Consider g : R→ R a non-decreasing C1(R) function such that

g(v)v > 0, for all v 6= 0, (2.3)

and there exist constants ε, c1, c2, τ > 0 and a convex increasing function G : R+ −→ R+ of

class C1(R+) ∩ C2(R∗+) satisfying G linear on [0, ε] or

( G
′
(0) = 0 and G′′ > 0 on ]0, ε]), such that

c1 |s| 6 |g(s)| 6 c2 |s| , if |s| > ε, (2.4)

|s|2 + |g(s)|2 6 G−1(sg(s)), if |s| 6 ε, (2.5)

|g′(s)| ≤ τ. (2.6)

Remark 2.2.1. Let us denote by G∗ the conjugate function of the differentiable convex function G,

i.e.,

G∗(s) = sup
t∈R+

(st−G(t)).

Then G∗ is the Legendre transform of G, which is given by (see Arnold [4, p. 61-62])

G∗(s) = s(G
′
)−1(s)−G

(
(G
′
)−1(s)

)
ifs ∈

]
0, G

′
(r)
]
,

and G∗ satisfies the generalized Young inequality

ST ≤ G∗(S) +G(T ), ifS ∈
]
0, G

′
(r)
]
, T ∈ ]0, r] . (2.7)

The relation (2.7) and the fact that G(0) = 0 and (G′)−1, G are increasing functions yield

G∗(s) ≤ s(G−1)(s), ∀s ≥ 0 (2.8)
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2.3 Well posedeness and regularity

Theorem 2.3.1. Assume that

(u0, u1) ∈W × V,

then the solution of the problem (2.1) satisfies

ut ∈ L∞(0, T ;V ) ; utt ∈ L∞(0, T ;H)

and

u ∈ L∞(0, T ;H4(Ω) ∩ V ),

such that for any T > 0

∫ T

0

(∫
Ω
utt(x, t) + ∆2u(x, t)−

∫ t

0
h(t− s)∆2u(s)ds− g(∆ut) dx

)
dt = 0, in L∞(0, T ;L2(Ω)),

u(0) = u0, ut(0) = u1, in Ω.

i) Approximate solutions:

We will use the Faedo-Galerkin method to prove the existence of a global solution. Let T > 0

be fixed and let {wj}, j ∈ N be a basis of H, V and W , i.e. the space generated by Bk =

{w1, w2, . . . , wk} is dense in H, V and W .

We construct approximate solutions uk, k = 1, 2, 3, . . . , in the form

uk(t) =
k∑
j=1

cjk(t)wj(x),

where cjk is determined by the ordinary differential equations.

For any v in Bk, uk(t) satisfies the approximate equation∫
Ω

(
uktt(x, t) + ∆2uk(x, t)−

∫ t

0
h(t− s)∆2uk(s) ds− g(∆ukt )

)
v dx = 0, (2.9)

with initial conditions

uk(0) = uk0 =
k∑
j=1

〈u0, wj〉wj → u0, ∈ W as k → +∞, (2.10)

and

ukt (0) = uk1 =

k∑
j=1

〈u1, wj〉wj → u1, in V as k → +∞. (2.11)

The standard theory of ODE guarantees that the system (2.9)-(2.11) has an unique solution in

[0, tk), with 0 < tk < T , by Zorn lemma since the nonlinear terms in (2.9) are locally Lipschitz

continuous. Note that uk(t) is of class C2.
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In the next step, we obtain a priori estimates for the solution of the system (2.9)-(2.11), so that

it can be extended outside [0, tk) to obtain one solution defined for all T > 0, using a standard

compactness argument for the limiting procedure.

ii) A priori estimates:

The first estimate. Setting v = −2∆ukt in (2.9) and denoting by

h ◦ u(t) =

∫ t

0
h(t− s)‖u(t)− u(s)‖2 ds,

we have
d

dt

[
‖∇ukt (t)‖2 + ‖∇∆u(k)(t)‖2

(
1−

∫ t

0
h(s) ds

)
+ h ◦ ∇∆uk(t)

]
= h(t)‖∇∆uk(t)‖2 + h′ ◦ ∇∆uk(t)− 2

∫
Ω

∆ukt (t)g(∆ukt (t)) dx.

Let

Ek(t) = ‖∇ukt (t)‖2 + ‖∇∆uk(t)‖2
(

1−
∫ t

0
h(s) ds

)
+ h ◦ ∇∆uk(t).

Integrating in [0, t], t < tk ; using (2.10) and (2.11), we obtain

Ek(t) +

∫ t

0

∫
Ω

∆ukt (t)g(∆ukt (t)) dx ≤ Ek(0) ≤ C0, (2.12)

for some C0 > 0 independent of k.

This estimate imply that the solution uk(t) exists globally in [0,+∞). Estimate (2.12) yields

uk is bounded in L∞(0, T ;V ), (2.13)

ukt is bounded in L∞(0, T ;H), (2.14)

∆ukt g(∆ukt ) is bounded in L1(Ω× (0, T )), (2.15)

The second estimate. Differentiating (2.9) with respect to x, taking v = ∇uktt(t) and choosing

t = 0, we obtain that

‖∇uktt(0)‖2 +

∫
Ω
∇∆2uk(0)∇uktt(0)−

∫
Ω
∇g(∆ukt )(0)∇uktt(0) dx = 0.

Using Cauchy-Schwarz inequality and (2.6) we obtain

‖∇uktt(0)‖ ≤ ‖∇∆2uk(0)‖+ ‖g′(∆ukt )(0)‖

≤ ‖∇∆2uk(0)‖+ τ‖∇∆ukt )(0)‖.

Taking (2.10) and (2.11), we obtain

uktt(0) is bounded in H. (2.16)

31



Chapter 2

The third estimate. Differentiating (2.9) with respect to t gives

ukttt(t) + ∆2ukt −
∫ t

0
h′(t− s)∆2uk(s) ds− h0∆2uk(t)−∆ukttg

′(∆ukt ) = 0. (2.17)

Multiplying (2.17) by v = −2∆uktt, integrating over Ω and applying the Green formula, we

obtain

d

dt
[‖∇uktt‖2 + ‖∇uktt‖2]−

∫ t

0
h′(t− s)∆2uk(s) ds− h0∆2uk(t)−∆ukttg

′(∆ukt ) = 0. (2.18)

Integrating by parts, we have

2

∫
Ω

∫ t

0
h′(t− s)∆2uk(s)∆uktt(t) dx = −2

∫ t

0
h′(t− s)

∫
Ω
∇∆uk(s)∇∆uktt(t) dx ds

= −2
d

dt

∫ t

0
h′(t− s)

∫
Ω
∇∆uk(s)∇∆ukt (t) dx ds

+ 2h′(0)

∫
Ω
∇∆uk(s)∇∆ukt (t) dx

+ 2

∫ t

0
h′′(t− s)∇∆uk(s)∇∆ukt (t) dx

and

2

∫
Ω
h0∆2uk(t)∆uktt(t) dx = −2h0

∫
Ω
∇∆uk(t)∇∆uktt(t) dx

= 2h0‖∇∆ukt (t)‖2 − 2h0
d

dt

∫
Ω
∇∆uk(t)∇∆ukt (t) dx.

− 2h0

∫
Ω
∇∆uk(t)∇∆ukt (t) dx.

Inserting the above two equalities into (2.18), we obtain

1

2

d

dt

[
‖∇uktt‖2 + ‖∇∆ukt ‖2 − 2

∫ t

0
h′(t− s)

∫
Ω
∇∆uk(s)∇∆ukt (t) dx ds

]
= −h′(0)

∫
Ω
∇∆uk(s)∇∆ukt (t) dx−

∫ t

0
h′′(t− s)

∫
Ω
∇∆uk(s)∇∆ukt (t) dx ds

− 2

∫
Ω
g′(∆ukt (t))(∆u

k
t (t))

2 dx− 2h0‖∇∆ukt (t)‖2.

(2.19)

Using Cauchy-Schwarz and Young inequalities; integrating (2.19) over (0, t), yields

‖∇uktt‖2 + ‖∇∆ukt ‖2 + 2

∫ t

0

∫
Ω
g′(∆ukt (s)(∆u

k
t (s))

2 dx ds

≤ ‖∇uktt(0)‖2 + ‖∇∆ukt (0)‖2 + 2

∫ t

0
h′(t− s)

∫
Ω
∇∆uk(s)∇∆ukt (t) dx ds

+ 2h0

∫
Ω
∇∆uk(t)∇∆ukt (t) dx+ 2h0

∫
Ω
∇∆uk(0)∇∆ukt (0) dx

+
(
ε+ ε‖h′′‖2L1

)∫ t

0
‖∇∆uk(s)‖2 ds+

(h′(0)2

4ε
+

1

4ε

)∫ t

0
‖∇∆ukt (s)‖2 ds,

(2.20)

32



Chapter 2

where∫ t

0
h′(t− s)

∫
Ω
∇∆uk(s)∇∆ukt (t) dx ds ≤ ε‖∇∆ukt (t)‖2 + ‖h‖1‖h‖∞

ν(0)

4ε

∫ t

0
‖∇∆uk(s)‖2 ds

and

h0

∫
Ω
∇∆uk(t)∇∆ukt (t) dx ≤ ε‖∇∆ukt ‖2 +

h2
0

4ε
‖∇∆uk‖2

we deduce from (2.10), (2.11), (2.16), (2.20), choosing ε small enough and using Gronwall lemma,

we obtain

‖∇uktt‖2 + ‖∇∆ukt ‖2 + 2

∫ t

0

∫
Ω
g′(∆ukt (s)(∆u

k
t (s))

2 dx ds ≤ C1,

where C1 is a positive constant independent of k. Therefore, we conclude that

ukt is bounded in L∞(0, T ;V ) (2.21)

and

uktt is bounded in L∞(0, T ;H). (2.22)

By (2.21) we deduce that

ukt is bounded in L2(0, T ;V )

Applying Rellich compactenes theorem given in [41], we deduce that

ukt is precompact in L2(0, T ;L2(Ω)). (2.23)

The fourth estimate. Setting v = ∆2ukt in (2.9), we have∫
Ω
uktt∆

2ukt dx+

∫
Ω

∆2uk(t)∆2ukt dx−
∫

Ω

∫ t

0
h(t− s)∆2uk(s)∆2ukt dx ds

−
∫

Ω
g(∆ukt )∆

2ukt dx = 0,

(2.24)

where∫
Ω

∫ t

0
h(t− s)∆2uk(s)∆2ukt dx ds = −1

2
h(t)|‖∆2uk‖2 +

1

2
h′ ◦∆2uk(t)

+
1

2

d

dt

{
− h ◦∆2uk(t) +

(∫ t

0
h(s) ds

)
∆2uk

}
.

(2.25)

From (2.24) and (2.25), we have

1

2

d

dt

{
‖∆ukt ‖2 + ‖h ◦∆2u(t) +

(
1−

∫ t

0
h(s) ds

)
‖∆2uk‖2

}
=

∫
Ω
g(∆ukt )∆

2ukt dx+
1

2
h(t)‖∆2uk‖2 − 1

2
h′ ◦∆2uk(t).

(2.26)

Taking in a acount that∫ t

0

∫
Ω
g(∆ukt )∆

2ukt dx ds = −
∫ t

0

∫
Ω
g′(∆ukt )(∇∆ukt )

2 dx ds
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and integrating ( 2.26) over (0, t), we obtain under (A1) and (2.6)

‖∆ukt (t)‖2 +
(

1−
∫ t

0
h(s) ds

)
‖∆2uk(t)‖2 + h ◦∆2uk(t) + τ

∫ t

0

∫
Ω

(∇∆ukt )
2 dx ds

≤ ‖∆ukt (0)‖2 + ‖∆2uk(0)‖2 +

∫ t

0
h(s)‖∆2uk(s)‖2 ds.

Using Gronwall Lemma, we deduce that

∆2uk is bounded in L∞(0, T ;L2(Ω)) (2.27)

and

∆ukt is bounded in L∞(0, T ;L2(Ω)). (2.28)

iii) Passing to the limit:

Applying Dunford-Petit theorem we conclude from (2.13), (2.22), (2.27) and (2.28), replacing

the sequence uk, with a subsequence if needed, that

uk ⇀ u, weak-star in L∞(0, T ;V ∩H4(Ω)) (2.29)

ukt ⇀ ut, weak-star in L∞(0, T ;V ) (2.30)

uktt ⇀ utt, weak-star in L∞(0, T ;H) (2.31)

ukt −→ ut, almost everywhere in Ω× [0,+∞) (2.32)

g(∆ukt ) ⇀ φ, weak-star in L2([0, T ]× Ω) (2.33)

∆2uk ⇀ ψ, weak-star in L∞(0, T ;L2(Ω)), (2.34)

where ψ = ∆2u.

As (uk)k∈N is bounded in L∞(0, T ;V ) (by (2.13)) ) and the injection of V in H is compact, we

have

uk −→ u, strong in L2(0, T ;H). (2.35)

In the other hand, using (2.29), (2.31) and (2.35), we have

∫ T

0

∫
Ω

(
uktt(x, t) + ∆2uk(x, t))−

∫ t

0
h(t− s)∆2uk(s) ds

)
v dx dt −→∫ T

0

∫
Ω

(
utt(x, t) + ∆2u(x, t))−

∫ t

0
h(t− s)∆2u(s) ds

)
v dx dt,

(2.36)
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for all v ∈ L2(0, T ;L2(Ω)).

It remains to show ∫ T

0

∫
Ω
g(∆u

(k)
t ) vdx dt −→

∫ T

0

∫
Ω
g(∆ut) vdx dt,

when k → +∞. We claim that

g(∆ut) ∈ L1([0, T ]× Ω).

Indeed, since g is continuous, we deduce from (2.32)

g(∆ukt ) −→ g(∆ut) almost everywhere in (0, T )× Ω. (2.37)

Using (2.15) and Fatou’s lemma, we deduce that

∆utg(∆ut) ∈ L1([0, T ]× Ω). (2.38)

set E ⊂ [0, T ]× Ω and

E1 =
{

(t, x) ∈ (0, T )× Ω : |g(∆ut)| ≤ |E|−1/2
}

; and E2 = E \ E1

Let J(r) = inf
{
|s| : s ∈ R, |g(s)| ≥ r

}
, then∫

E
g(∆ukt ) dx dt =

∫
E1

g(∆ukt ) dx dt+

∫
E2

g(∆ukt ) dx dt

By Cauchy-Schwarz inequality, we have∫ T

0

∫
Ω
|∆g(ukt )| dx dt ≤ c|E|1/2

(∫ T

0

∫
Ω
|∆g(ukt )|2 dx dt

)1/2
.

Using (2.4), (2.5) and (2.38), we obtain∫ T

0

∫
Ω
|∆g(ukt )|2 dx dt ≤

∫ T

0

∫
|∆ukt |>ε

∆ukt g(∆ukt ) dx dt+

∫ T

0

∫
|∆ukt |≤ε

G−1(∆ukt g(∆ukt )) dx dt

≤ c
∫ T

0

∫
Ω

∆ukt g(∆ukt ) dx dt+ cG−1
(∫

E
∆ukt g(∆ukt ) dx dt

)
≤ c

∫ T

0

∫
Ω

∆ukt g(∆ukt ) dx dt+ c′G∗(1) + c′′
∫

Ω
∆ukt g(∆ukt ) dx dt

≤ cK1 + c′G∗(1), for T > 0.

Then ∫ T

0

∫
E
|∆g(ukt )| dx dt ≤ K, for T > 0.

g(∆ukt ) −→ g(∆ut) in L1([0, T ]× Ω),
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then (2.33) implies that

g(∆ukt )) ⇀ g(∆ut), weak-star in L2((0, T )× Ω).

We deduce, for all v ∈ L2(0, T )× L2(Ω), that∫ T

0

∫
Ω
g(∆ukt ))v dx dt −→

∫ T

0

∫
Ω
g(∆ut)v dx dt.

Finally we have shown that, for all v ∈ L2((0, T )× L2(Ω)):

lim
k

∫ T

0

∫
Ω

(
uktt(x, t) + ∆2uk(x, t)−

∫ t

0
h(t− s)∆2uk(s) ds− g(∆ukt )

)
v dx dt =

∫ T

0

∫
Ω

(
utt(x, t) + ∆2u(x, t)−

∫ t

0
h(t− s)∆2u(s) ds− g(∆ut)

)
v dx dt = 0

Therefore, u is a solution for the problem (2.1). The proof of Theorem 2.3.1 is now completed.

2.4 Assymptotic behavior

Introduce the energy associeted to the system (2.1) such that

E(t) =
1

2
‖∇ut‖2 +

1

2
(h ◦ ∇∆u)(t) +

1

2

(
1−

∫ t

0
h(s)ds

)
‖∇∆u‖2. (2.39)

Remark 2.4.1. By multiplying equation (2.1) by −∆ut, integrating over Ω and using Green formula

and the boundary conditions we get

E′(t) = −1

2
h(t)‖∇∆u‖2 +

1

2
h′ ◦ ∇∆u(t)−

∫
Ω
g(∆ut)∆ut dx ≤ 0. (2.40)

Theorem 2.4.1. Assume that (A1) and (A2) hold. Then there exist positive constants k0 and k1

such that the solution of the problem (2.1) satisfies

E(t) ≤ k0G
−1
1

(
k1

∫ t

0
ν(s) ds

)
, ∀ t ∈ R+, (2.41)

where

G1(t) =

∫ 1

t

1

G2(s)
ds (2.42)

and

G2(t) =

 t, if G is linear on [0, ε]

tG′(ε0t), if G′(0) = 0 and G′′ > 0 on ]0, ε]
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For study the stability of a system (2.1), we use the Liapounov function giving some estimates.

For M > 0 and ε1 > 0, we define a perturbed modified energy by

L(t) = ME(t) + ε1Ψ(t) + χ(t), (2.43)

where

Ψ(t) = −
∫

Ω
ut∆u dx,

χ(t) = −
∫

Ω
ut

∫ t

0
h(t− s)(∆u(t)−∆u(s)) ds dx.

Lemma 2.4.2. There exist two positive constants α1 and α2 depending on ε1 and M such that for

all t > 0,

α1E(t) ≤ L(t) ≤ α2E(t). (2.44)

Proof. Using Cauchy-Schwarz, Sobolev -Poincare inequalities and (A1), we have

|Ψ(t)| ≤ Cs‖∇ut‖‖∇∆u‖ ≤ Cs
2

(
‖∇ut‖2 + ‖∇∆u‖2

)
≤ CE(t),

and

|χ(t)| ≤ Cs
2

(
‖∇ut‖2 +

∫
Ω

∣∣∣ ∫ t

0
h(t− s)(∇∆u(t)−∇∆u(s)) ds

∣∣∣2) dx
≤ Cs

2
‖∇ut‖2 +

C2
s l

2
(h ◦ ∇∆u)(t) ≤ CE(t).

Choosing M large enough, we obtain estimate (2.44 ).

Proof of Theorem 2.4.1. For each t0 > 0, sufficiently large M > 0 and suitably small ε1 > 0,

there exist positive constants C1, C2, and C3, such that

d

dt
L(t) ≤ −C1E(t) + C2(h ◦ ∇∆u)(t) + C3‖g(∆ut)‖2, ∀t0 ≥ t. (2.45)

The proof of this theorem will be carried out throughout the following two lemmas

Lemma 2.4.3. For any η > 0, the functional Ψ(t) satisfy

Ψ′(t) ≤ −(1− l − η − C2
sη)‖∇∆u(t)‖2 +

l

4η
(h ◦ ∇∆u)(t) + ‖∇ut‖2 +

1

4η

∫
Ω
|g(∆ut)|2 dx. (2.46)

Proof. Taking the derivative of Ψ(t) with respect to t, using the first equation in the system (2.1), we

obtain

Ψ′(t) = −
∫

Ω
ut∆ut dx+

∫
Ω

(
∆2u−

∫ t

0
h(t− s)∆2u(s) ds− g(∆ut)

)
∆u dx

=

∫
Ω
|∇ut|2 dx−

∫
Ω
|∇∆u|2dx+

∫
Ω

(∫ t

0
h(t− s)∇∆u(s) ds

)
∇∆u(t)dx

+

∫
Ω
g(∆ut)∆u dx.

(2.47)
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Now, the third term in the right-hand side of (2.47) can be estimated as follows:∫
Ω

(∫ t

0
h(t− s)∇∆u(s) ds

)
∇∆u(t) dx

=

∫
Ω

(∫ t

0
h(t− s)[∇∆u(s)−∇∆u(t)] ds

)
∇∆u(t) dx+

∫
Ω

(∫ t

0
h(t− s)[∇∆u(t)]2 ds

)
dx

≤ ‖∇∆u(t)‖
(∫

Ω

∣∣∣ ∫ t

0
h(t− s)[∇∆u(s)−∇∆u(t)]ds

∣∣∣2 dx)1/2
+ l ‖∇∆u(t)‖2

≤ l1/2‖∇∆u(t)‖(h ◦ ∇∆u)1/2(t) + l ‖∇∆u(t)‖2

≤ (l + η)‖∇∆u(t)‖2 +
l

4η
(h ◦ ∇∆u)(t).

Then, we conclude

Ψ′(t) ≤ (l + η − 1)‖∇∆u(t)‖2 +
l

4η
(h ◦ ∇∆u)(t) + ‖∇ut‖2 +

∫
Ω
|g(∆ut)||∆u| dx. (2.48)

Since ∫
Ω
|g(∆ut)||∆u| dx ≤ C2

sη‖∇∆u(t)‖2 +
1

4η

∫
Ω
|g(∆ut)|2 dx. (2.49)

By using (2.48) and (2.49), we obtain (2.46).

Lemma 2.4.4. For any η > 0, the functional χ(t) satisfy

χ′(t) ≤ η(1 + l)‖∇∆u‖2 +
(
l +

l

4η
+
lC2

s

4η
+
l2

4η

)
(h ◦ ∇∆u)(t)

−
((∫ t

0
h(s) ds

)
− C2

sη
)
‖∇ut‖2 + η‖g(∆ut)‖2 −

h0C
2
s

4η
(h′ ◦ ∇∆u)(t).

(2.50)

Proof. By differentiating χ, then exploiting the first equation in the system (2.1), and integrating by
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parts, we obtain

χ′(t) = −
∫

Ω
utt

∫ t

0
h(t− s)(∆u(t)−∆u(s)) ds dx−

∫
Ω
ut

∫ t

0
h(t− s)∆ut(t) ds dx

−
∫

Ω
ut

∫ t

0
h′(t− s)(∆u(t)−∆u(s)) ds dx

= −
∫

Ω

[(
−∆2u+

∫ t

0
h(t− s)∆2u(s)ds+ g(∆ut)

)∫ t

0
h(t− s)(∆u(t)−∆u(s)) ds

]
dx

−
∫ t

0
h(s) ds‖∇ut(t)‖2 −

∫
Ω
ut

∫ t

0
h′(t− s)(∆u(t)−∆u(s)) ds dx

−
∫

Ω
∇∆u(t)

∫ t

0
h(t− s)(∇∆u(t)−∇∆u(s)) ds dx

= −
∫

Ω
∇∆u(t)

∫ t

0
h(t− s)(∇∆u(t)−∇∆u(s)) ds dx

+

∫
Ω

[ ∫ t

0
h(t− s)∇∆u(s) ds

∫ t

0
h(t− s)(∇∆u(t)−∇∆u(s)) ds

]
dx

−
∫

Ω
g(∆ut)

∫ t

0
h(t− s)(∆u(t)−∆u(s)) ds dx

−
∫ t

0
h(s) ds‖∇ut(t)‖2 −

∫
Ω
ut

∫ t

0
h′(t− s)(∆u(t)−∆u(s)) ds dx.

(2.51)

Using Young’s, Sobolev-Poincaré and Cauchy-Schwarz inequalities, we infer

−
∫

Ω
ut

∫ t

0
h′(t− s)(∆u(t)−∆u(s)) ds dx ≤ C2

sη‖∇ut‖2 +
C2
s

4η

(∫ t

0
h′(s)ds

)
(h′ ◦ ∇∆u)(t)

≤ C2
sη‖∇ut‖2 −

h0C
2
s

4η
(h′ ◦ ∇∆u)(t),

−
∫

Ω
∇∆u(t)

∫ t

0
h(t− s)(∇∆u(t)−∇∆u(s)) ds dx ≤ η‖∇∆u‖+

l

4η
(h ◦ ∇∆u)(t),

−
∫

Ω
g(∆ut)

∫ t

0
h(t− s)(∆u(t)−∆u(s)) ds dx ≤ η‖g(∆ut(t))‖2 +

lC2
s

4η
(h ◦ ∇∆u)(t),
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and

−
∫

Ω

∫ t

0
h(t− s)

[
(∇∆u(s)−∇∆u(t)) ds

] ∫ t

0
h(t− s)(∆u(t)−∆u(s)) ds dx

−
∫

Ω

∫ t

0
h(t− s)∇∆u(t) ds

∫ t

0
h(t− s)(∆u(t)−∆u(s)) ds dx

≤
∫

Ω

(∫ t

0
h(t− s)(∆u(t)−∆u(s)) ds dx

)2
dx

+

∫
Ω
|∇∆u(t)|

(∫ t

0
h(s) ds

)(∫ t

0
h(t− s)|∆u(t)−∆u(s)| ds dx

)
≤
(∫ t

0
h(s) ds

)
(h ◦ ∇∆u)(t) +

∫
Ω
|∇∆u(t)|

(∫ t

0
h(s) ds

) 1
2
(∫ t

0
h(t− s)|∆u(t)−∆u(s)|2 ds dx

) 1
2

≤
(∫ t

0
h(s) ds

)
(h ◦ ∇∆u)(t) + ‖∇∆u(t)‖

(∫ t

0
h(s) ds

)[(∫ t

0
h(s) ds

)
(h ◦ ∇∆u)(t)

] 1
2

≤
(∫ t

0
h(s) ds

)
(h ◦ ∇∆u)(t) +

(∫ t

0
h(s) ds

)[
η‖∇∆u(t)‖2 +

1

4η

(∫ t

0
h(s) ds

)
(h ◦ ∇∆u)(t)

]
≤ ηl‖∇∆u(t)‖2 +

(
l +

l2

4η

)
(h ◦ ∇∆u)(t).

Combining all the above estimates allows us to conclude

χ′(t) ≤ η(1 + l)‖∇∆u‖2 +
(
l +

l

4η
+
lC2

s

4η
+
l2

4η

)
(h ◦ ∇∆u)(t)

−
((∫ t

0
h(s) ds

)
− C2

sη
)
‖∇ut‖2 + η‖g(∆ut)‖2 −

h0C
2
s

4η
(h′ ◦ ∇∆u)(t).

End of Proof of Theorem 2.4.1: Since h is positive, for any t0 > 0, we have
∫ t

0 h(s) ds ≥∫ t0
0 h(s) ds = h̃0, for all t > t0. Taking this into account and combining (2.40), (2.46) and (2.50), we

deduce that

L′(t) ≤ −a1‖∇ut‖2 − a2‖∇∆u‖2 + a3 h(◦∇∆u)(t)

+ a4 (h′ ◦ ∇∆u)(t) + ε2η‖g(∆ut)‖2
(2.52)

Now, we choose, ε1 > 0 and η > 0 so small that

a1 = h̃0 − C2
sη − ε1 > 0

a2 = ε(1− l − η − C2
sη)− η(1 + l) > 0

and

a3 = ε
l

4η
+ l +

l

4η
+
l2

4η
+
lC2

s

4η

Then, we pick the constant M > 0 sufficiently large such that

a4 =
M

2
− h0C

2
s

4η
.
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Therefore, (2.52) takes the form

L′(t) ≤ −C1E(t) + C2(h ◦ ∇∆u)(t) + C3‖g(∆ut)‖2, (2.53)

where C1, C2 and C3 are three positive constants.

Now, we estimate the last term in the right-hand side of (2.45). We define tow sets such that

Ω1 = {x ∈ Ω : |∆ut| > ε} and Ω2 = {x ∈ Ω : |∆ut| ≤ ε}.

From (2.4), (2.5) and (2.40), we have∫
Ω1

|g(∆ut)|2 dx ≤ Cs
∫

Ω
∆utg(∆ut)| dx ≤ −CE′(t) (2.54)

and ∫
Ω2

|g(∆ut)|2 dx ≤
∫

Ω2

G−1
(

∆utg(∆ut)
)
dx.

Case 1. G is linear on [0, ε], we obtain∫
Ω2

|g(∆ut)|2 dx ≤ −CE′(t). (2.55)

Substitution of (2.54) and (2.55) into (2.53) gives

(L(t) + CE(t))′ ≤ −C1G2(E(t)) + C2(h ◦ ∇∆u)(t). (2.56)

Case 2. G is nonlinear on [0, ε], we exploit Jensen’s inequality, it follows that∫
Ω2

|g(∆ut)|2 dx ≤
∫

Ω2

G−1
(

∆utg(∆ut)
)
dx

≤ |Ω|G−1
( 1

|Ω|

∫
Ω2

∆utg(∆ut) dx
)

≤ C4G
−1(−C ′E′(t)).

(2.57)

A combination of (2.45), (2.54) and (2.57) yields

(L(t) + CE(t))′ ≤ −C1E(t) + C2(h ◦ ∇∆u)(t) + C4G
−1(−C ′E′(t)), t ≥ t0. (2.58)

Making use of E′(t) ≤ 0, G′′(t) > 0 (2.7), (2.8) and (2.58), we conclude for ε0 > 0 small enough[
G′(ε0E(t)){L(t) + CE(t)}+ C4C

′E(t)
]′

= ε0E
′(t)G′′(ε0E(t)){L(t) + CE(t)}+G′(ε0E(t)){L(t) + CE(t)}′ + C4C

′E′(t)

≤ −C1G
′(ε0E(t))E(t) + C2G

′(ε0E(t))(h ◦ ∇∆u)(t) + C4G
′(ε0E(t))G−1(−C ′E′(t)) + C4C

′E′(t)

≤ −C1G
′(ε0E(t))E(t) + C4G

∗(G′(ε0E(t))) + C2G
′(ε0E(t))(h ◦ ∇∆u)(t)

≤ −C1G
′(ε0E(t))E(t) + C4(G′(ε0E(t)))ε0E(t) + C2G

′(ε0E(t))(h ◦ ∇∆u)(t)

≤ −C1G
′(ε0E(t))E(t) + C2G

′(ε0E(t))(h ◦ ∇∆u)(t)

41



Chapter 2

We have 0 ≤ G′(ε0E(t)) ≤ G′(ε0E(0)) then we obtain[
G′(ε0E(t)){L(t) + CE(t)}+ C4C

′E(t)
]′
≤ −C1G2(E(t)) + C2G

′(ε0E(0))(h ◦ ∇∆u)(t) (2.59)

If G is linear

Ẽ(t) = L(t) + CE(t) (2.60)

and if G is non linear

Ẽ(t) = G′(ε0E(t)){L(t) + CE(t)}+ C4C
′E(t) (2.61)

From (2.56) (2.58), (2.59), (2.60) and (2.61), we have

Ẽ′(t) ≤ −C1G2(E(t)) + C2(h ◦ ∇∆u)(t)

On the other hand, we can observe from Lemma 2.4.2 that L(t) is equivalent to E(t). So, Ẽ(t) is also

equivalent to E(t). Moreover, because ν(t) ≤ ν(0), there exists ε̃ > 0 such that

ν(t)Ẽ(t) + 2C2E(t) ≤ ε̃E(t), ∀t ≥ t0

Let

F (t) = ε(ν(t)Ẽ(t) + 2C2E(t)), for 0 < ε <
1

ε̃

F ′(t) = ε
(
ν(t)Ẽ′(t) + ν ′(t)Ẽ(t) + 2C2E

′(t))

≤ −C1εν(t)G2(E(t)) + C2εν(t)(h ◦ ∇∆u)(t) + 2C2εE
′(t)

≤ −C1εν(t)G2(E(t))− C2ε(h
′ ◦ ∇∆u)(t) + 2C2εE

′(t)

≤ −C1εν(t)G2(E(t))

≤ −C1εν(t)G2

(1

ε̃

(
ν(t)Ẽ(t) + 2C2E(t)

))
≤ −C1εν(t)G2

(
ν(t)Ẽ(t) + 2C2E(t)

)
= −C1εν(t)G2(F (t))

(2.62)

In the last two inequalities, we have used the fact that G2 is increasing. Recalling that G′1 = − 1

G2
,

we infer from (2.62)

F ′(t)G′1(F (t)) ≥ C1εν(t), ∀t ≥ t0

A simple integration over (t0, t) yields

G1(F (t)) ≥ G1(F (t0)) + C1ε

∫ t

0
ν(s) ds− C1ε

∫ t0

0
ν(s) ds.
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Choosing ε > 0 sufficiently small such that G1(F (t0)) − C1ε
∫ t0

0 ν(s) ds > 0, and exploiting the fact

that G−1
1 is decreasing, we infer

F (t) ≤ G−1
1

(
G1(F (t0)) + C1ε

∫ t

0
ν(s) ds− C1ε

∫ t0

0
ν(s) ds

)
≤ G−1

1

(
C1ε

∫ t

0
ν(s) ds

)
.

Consequently, the equivalence of L, Ẽ, F and E yields the estimate

E(t) ≤ k0G
−1
1

(
C1ε

∫ t

0
ν(s) ds

)
.

This concludes the proof of Theorem 2.4.1.

2.5 Examples

Example 2.1. Let g given by g(s) = sp(− ln s)q where p > 1 and q ∈ R on [0, ε] and the function

G is defined in the neighborhood of 0 by

G(s) = cs
p+1
2 (− ln

√
s)q,

we have

G′(s) = cs
p−1
2 (− ln

√
s)q−1[

p+ 1

2
(− ln

√
s)− q

2
]

G1(t) =
1

c

∫ 1

t

1

s
p+1
2 (− ln

√
s)q−1[

p+ 1

2
(− ln

√
s)− q

2
]
.

Making the following changement of variable z =
1√
s

we obtain

G1(t) =
1

c

∫ 1√
t

t

zp−2

(ln z)q−1(
p+ 1

2
ln z − q

2
)
dz.

We have three cases :

The case 1 : if p = q = 1 ,we have

G1(t) =
2

c
ln(− ln

√
et),

we deduce that

G−1
1 (t) =

1

e
e−2e

c
2 t ,

then

E(t) ≤ k0
1

e
e−2e

c
2C1ε

∫ t
0 ν(s) ds
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The case 2 : if p = 1, q < 1 ,we have

G1(t) =
2

c

∫ 1√
t

t

1

z(ln z)q−1(ln z − q

2
)
dz ∼ 2

c

∫ 1√
t

t

1

z(ln z)q
dz

∼ 2q

c(1− q)
(− ln t)1−q as t→ 0,

we deduce that

G−1
1 (t) ∼ e−kt

1
1−q

as t→∞,

then

E(t) ≤ k0e
−k(C1ε

∫ t
0 ν(s))

1
1−q

where k = (
c(1− q)

2q
)

1
1−q

44



Chapter 3

Well-posedness and stability for a

Petrovsky equation with properties of

nonlinear localized for strong damping

3.1 Introduction

There has been significant advancement in the study of the stabilization of the hyperbolic equations

with localized damping, which arise from many branches of applied sciences such as physics, mechan-

ics, chemistry, material sciences and biological sciences. We have a number of detailed articles and

reviews on this topic that relate to [61], where a localized frictional damping has been considered and

exponential decay was obtained under an appropriate geometric control condition to impress a large

class of damping regions. In particular, a semilinear wave equation with nonlinear localized damping

and source terms was developed in [45]. The authors considered, in open bounded connected domain,

the problem

utt + ∆u− χg(ut) = f(u). (3.1)

The question was discussed in terms of topological and geometric aspects to extend previous work

and find optimal decay rate (See [50]). As another type of such problem, we mention the Petrovsky

equation with locally damping, considered in [29]
utt + ∆2u− ρ(x, ut) = 0
∂u

∂ν
= u = 0

u(x, 0) = u0(x), ut(x, 0) = u1(x).

(3.2)
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The asymptotic behavior for solution was investigated by the authors and an explicit energy decay

was established. We refer the reader to the following papers [20, 34, 46, 66, 67, 68].

Motivated by all above papers, we investigate the well-posedness and stability of the following damped

beam equation 
utt + ∆2u− a(x)g(∆ut) = 0, (x, t) ∈ Ω× [0,+∞[

u = ∆u = 0, (x, t) ∈ Γ× [0,∞[

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(3.3)

where Ω is a bounded domain of Rn with boundary Γ which assumed to be regular. The function

g : R → R is a continuous nondecreasing, a : Ω → R is a nonnegative and bounded function. Let

x0 ∈ Rn be an arbitrary point of Rn. We set

Γ(x0) =

{
x ∈ Γ; m(x).ν(x) > 0

}
, (3.4)

where ν is the unit normal vector pointing towards the exterior of Ω and

m(x) = x− x0. (3.5)

Let ω be a neighborhood of Γ(x0) in Ω and consider δ sufficiently small such that

M0 =

{
x ∈ Ω; d(x,Γ(x0)) < δ

}
⊂ ω (3.6)

and

M1 =

{
x ∈ Ω; d(x,Γ(x0)) < 2δ

}
⊂ ω. (3.7)

If A ⊂ Rn and x ∈ Rn, we have

d(x;A) = inf
y∈A

(|x− y|),

and M0 ⊂M1 ⊂ ω.

When g(∆ut) = |∆ut|p−2∆ut the problem (3.3) was treated by Tebou [67]. The author proved the

existence and uniqueness of global solution u for (3.3). Then, using an appropriate perturbed energy

combined with multiplier technique, he directly proved exponential and polynomial decay estimates

for the associated energy.

Very recently, Tebou [66] proved the existence of global solution, as well as, the exponential stability

result for similar strong damping wave equation with a localized nonlinear source term.

Ammari et al. [2] studied the system
utt −∆u− div(a(x)∇ut) = 0, (x, t) ∈ Ω× [0,+∞[

u = 0, (x, t) ∈ Γ× [0,∞[

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(3.8)
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where a(x) = d1ω(x), d > 0 and ω be an open, non-empty subset of Ω with smooth boundary. The

authors obtained a logarithmic decay of energy. Their idea is to transform the resolvent problem of

(3.8) to a transmission system to be easy to use the so-called Carleman estimate. In [28], the same

problem has been considered and the polynomial energy estimate was showed. Liu and Rao in [46]

and Tebou [68] proved the exponential stability. Moreover, when a ≡ 1 Komornik [32] treated the

problem (3.3) for g having a polynomial growth near the origin, by using semigroup theory to prove

the existence and uniqueness of solution and established energy decay results depending on g.

In the present paper, we prove the global existence of weak solution of (3.3) by using the Galerkin

method (see Lions [41]) combined with a semigroup theory. Meanwhile, under suitable conditions on

the function g with some ideas inspired from [18], we estimate the energy decay of the solution under

some conditions on the nonlinear function g and nonnegative coefficient a.

The plan of this article is as follows. We present some notations and assumptions needed for our

results and then establish the well-posedness of our problem by the semigroup theory in Section 2.

Section 3 is devoted to use the Faedo-Galerkin method and prove the regularity of solution. In Section

4, we obtain the stability by introducing a suitable Lyapunov function.

3.2 Preliminaries

We begin by introducing some notations that will be used throughout this work. For the standard

Lq(Ω) space, we write

(u, v) =

∫
Ω
u(x)v(x) dx, ‖u‖qq =

∫
Ω
|u(x)|q dx.

Set

V = H1
0 (Ω), ‖u‖V =

∫
Ω
|∇u|2 dx,

W = {u ∈ H3(Ω) ∩H1
0 (Ω), ∆u = 0 on Γ}, ‖u‖W =

∫
Ω
|∇∆u|2 dx,

and

W̃ = {u ∈ H5(Ω) ∩H1
0 (Ω), ∆u = ∆2u = 0 on Γ}, ‖u‖

W̃
=

∫
Ω
|∇∆2u|2 dx.

First assume that a and g satisfies the following hypotheses:

(A1) The function a : Ω→ R is a nonnegative and bounded such that ∃a0 > 0, a(x) ≥ a0 > 0 a.e in ω.

a(x) ∈W 1,∞(Ω).
(3.9)

(A2) g ∈ C1(R,R) is non-decreasing function with g(0) = 0 and assume that it is globally Lipschitz.

Suppose that, for c1, c2, c3, c4 > 0 and p ≥ 1, we have

c1|s|p ≤ g(s) ≤ c2|s|
1
p , if |s| ≤ 1, (3.10)
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c3|s| ≤ g(s) ≤ c4|s|, if |s| > 1, (3.11)

∃τ > 0, |g′(s)| ≤ τ, ∀s ∈ R. (3.12)

We introduce the functional energy

E(t) =
1

2
‖∇ut(t)‖2 +

1

2
‖∇∆u(t)‖2. (3.13)

Note that E is the natural energy for system (3.3), given the structure of the damping term.

Lemma 3.2.1. Let u be a solution to the problem (3.3). Then E is a non-increasing function for all

t on R+.

Proof. Multiplying the first equation in (3.3) by −∆ut, integrating over Ω, using Green formula and

the boundary conditions, we get

1

2

d

dt

(
‖∇ut(t)‖2 + ‖∇∆u(t)‖2

)
= −

∫
Ω
a(x)∆ut(x, t)g(∆ut(x, t)) dx.

Then by (A1) and (A2), we have

E ′(t) = −
∫

Ω
a(x)∆ut(x, t)g(∆ut(x, t)) dx ≤ 0. (3.14)

This completes the proof.

3.3 Well-posedness

Let us introduce the vector function U = (u, v)T , where v = ut and rewrite (3.3) as
Ut +AU = 0, in Ω

U(0) =

u0

u1

 .
(3.15)

Here the nonlinear operator A is defined by

A =

 0 −I
∆2 −a(.)g(∆.)

 . (3.16)

The domain of A is given by

D(A) =
{

(u, v) ∈W ×W ; ∆2u− ag(∆v) ∈ V
}
.
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Introduce the Hilbert space H = W × V , equipped with the norm

‖U‖2H =

∫
Ω
|∇v|2 dx+

∫
Ω
|∇∆u|2dx ∀ (u, v) ∈ H. (3.17)

It is not hard to see that D(A) is dense in H.

We now state the existence and uniqueness result as follows.

Theorem 3.3.1. Let (u0, u1) ∈ W × V and suppose that (3.9)-(3.12) hold. Then, there exists a

solution for system (3.3) that satisfies

u ∈ C([0,∞),W ) ∩ C1([0,∞), V ). (3.18)

Proof. We show, in the first step, that A is a maximal monotone operator.

Let U =

u
v

 and Ũ =

ũ
ṽ

 be in D(A). We have

a (AU −AŨ , U − Ũ)

=

( −v + ṽ

∆2u− a(x)g(∆v)−∆2ũ+ a(x)g(∆ṽ)

)
,
(u− ũ
v − ṽ

)
=

( −v + ṽ

∆2(u− ũ)− a(x)(g(∆v)− g(∆ṽ))

 ,

u− ũ
v − ṽ

)
= −

∫
Ω
∇∆(v − ṽ)∇∆(u− ũ) dx−

∫
Ω

∆2(u− ũ)∆(v − ṽ) d

+

∫
Ω
a(x)(g(∆v)− g(∆ṽ))(∆v −∆ṽ) dx,

and thus, integrating by parts, to get

(AU −AŨ , U − Ũ)

= −
∫

Ω
∇∆(v − ṽ)∇∆(u− ũ) dx+

∫
Ω
∇∆(u− ũ)∇∆(v − ṽ) dx

+

∫
Ω
a(x)(g(∆v)− g(∆ṽ))(∆v −∆ṽ) dx

=

∫
Ω
a(x)(g(∆v)− g(∆ṽ))(∆v −∆ṽ) dx

≥ 0.

Then, the accretivity of nonbounded operator A is done.

Now, we prove that the operator I +A is surjective.

Define F =

f1

f2

 ∈ H, and show that there exists U =

u
v

 ∈ D(A) satisfying

Ut +AU = F,

49



Chapter 3

that is  u− v = f1 ∈W
v + ∆2u− a(x)g(∆v) = f2 ∈ V.

(3.19)

Equation (3.19)1 gives u as a function of v and f1. Substituting this in (3.19)2, we get

v + ∆2v − a(x)g(∆v) = f2 −∆2f1. (3.20)

Let B the operator given by

Bv = f2 −∆2f1, (3.21)

where we set

Bv = v + ∆2v − a(x)g(∆v).

Since we are looking for v in W , the nonlinear operator B defined from W into its topological dual

W ′, with W ↪→ V ↪→W ′ and V is the pivot space. This is doable because g is globally Lipschitz.

Now, we prove that the operator B is monotone

〈Bu− Bv, u− v〉

= 〈u− v + ∆2(u− v)− a(x)(g(∆u)− g(∆v)), u− v〉

=

∫
Ω
{|∇u−∇v|2 + |∇∆u−∇∆v|2 + a(x)(g(∆u)− g(∆v))(∆u−∆v)} dx

≥ 0.

So B is monotone.

Next, we prove that B is coercive

〈Bu, u〉
‖u‖W

=

∫
Ω{|∇u|

2 + |∇∆u|2 + a(x)g(∆u)∆u} dx
‖u‖W

≤ C‖u‖W + C ′
(∫

Ω
(a(x)g(∆u))2 dx

) 1
2
.

Noting that lim
〈Bu, u〉
‖u‖W

→∞ as ‖u‖W →∞, so B is coercive

Owing to the Minty-Browder theorem, (see, e.g., Theorem V.15 in [15]), the equation (3.21) has a

unique solution v, which imply that (3.19) has a unique solution (u, v).

Since g is globally Lipschitz, the operator I +A is surjective.

By using the nonlinear semigroup theory, the existence of a unique solution to the system (3.3) is

ensured. The proof of Theorem 3.3.1 is completed.
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3.4 Regular solution

Here, we establish the regularity of the solutions of (3.3). We can use the Faedo-Galerkin method [41],

we obtain the following result.

Theorem 3.4.1. Let (u0, u1) ∈ W̃ × W and suppose that (3.9)-(3.12) hold. Then, there exists a

solution of system (3.3) that satisfies

u ∈ L∞([0,∞), W̃ ) ∩ L∞([0,∞),W ).

Proof. We will use the Faedo-Galerkin method along with three a priori estimates to prove the exis-

tence of regular solutions.

i) Approximate solutions:

Let T > 0 be fixed and let {wk}, k ∈ N be a basis ofW , Bk the space generated by w1, w2, . . . , wk,

and λj are the eigenvalues of the operator ∆2.

Hence,

∆2wj = λjwj

uk(x, t) =
k∑
j=1

cjk(t)wj(x),

where cjk is determined by the ordinary differential equations.

For any v in Bk, uk satisfies the approximate equation∫
Ω

(uktt(t) + ∆2uk − a(x)g(∆ukt ))v dx = 0, (3.22)

with initial conditions

uk(0) = uk0 =
k∑
j=1

〈u0, wj〉wj −→ u0 in W̃ , as k → +∞, (3.23)

and

ukt (0) = uk1 =
k∑
j=1

〈u1, wj〉wj −→ u1 in W, as k → +∞. (3.24)

−∆2uk0 + a(x)g(∆uk1) −→ −∆2u0 + a(x)g(∆u1) in V, as k → +∞. (3.25)

The standard theory of ODE guarantees that the system (3.22)-(3.25) has a unique solution

uk ∈ H3[0, tk), with 0 < tk < T , owing to Zorn lemma since the nonlinear terms in (3.22) are

locally Lipschitz continuous, and by using the embedding Hm[0, tk] → Cm−1[0, tk], we deduce

that the solution uk ∈ C2[0, tk].

In the next step, we obtain a priori estimates for the solution of the system (3.22)-(3.25), so that

it can be extended outside [0, tk) to obtain one solution defined for all T > 0, using a standard

compactness argument for the limiting procedure.
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ii) A priori estimates:

First estimate. First, we estimate uktt(0). Taking v = −∆uktt in (3.22) and choosing t = 0, we

obtain that

‖∇uktt(0)‖2 =

∫
Ω
∇uktt(x, 0)∇(−∆2uk0 + a(x)g(∆uk1)) dx.

Using Cauchy-Schwarz’s inequality, we have

‖∇uktt(0)‖ ≤
(∫

Ω
|∇(−∆2uk0 + a(x)g(∆uk1))|2 dx

) 1
2
.

By (3.23)-(3.25), we get

uktt(0) is bounded in V. (3.26)

Second estimate. We assume first t < T and let 0 < a < T − t. Set

uka(x, t) = uk(x, t+ a),

and

Uka = uk(x, t+ a)− uk(x, t),

which solves the next differential equation

(Ukatt + ∆2Uka − a(x)(g(∆ukat )− g(∆ukt )), v) = 0, ∀v ∈ Bk.

By taking v = −∆Uka, we find, since g is non-decreasing, that

d

dt

∫
Ω
{|∇Ukat (x, t)|2 + |∇∆Uka(x, t)|2} dx ≤ 0, for all t ≥ 0.

Integrating in [0, t], we get∫
Ω
{|∇Ukat (x, t)|2 + |∇∆Uka(x, t)|2} dx

≤
∫

Ω
{|∇Ukat (x, 0)|2 + |∇∆Uka(x, 0)|2} dx, for all t ≥ 0.

Dividing by a2 and letting a→ 0, we find∫
Ω
{|∇uktt(x, t)|2 + |∇∆ukt (x, t)|2} dx

≤
∫

Ω
{|∇uktt(x, 0)|2 + |∇∆uk1(x)|2} dx, for all t ≥ 0.

By (3.24) and (3.26), we deduce that∫
Ω
{|∇uktt(x, t)|2 + |∇∆ukt (x, t)|2} dx ≤ C0, ∀t ≥ 0, (3.27)

where C0 is a positive constant independent of k ∈ N. Therefore, we conclude that

ukt is bounded in L∞(0, T ;W ) (3.28)
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and

uktt is bounded in L∞(0, T ;V ). (3.29)

Third estimate. Differentiating (3.22) with respect to x and taking v = ∇∆2uk, we have

‖∇∆2uk‖2 =

∫
Ω
∇∆2uk(−∇uktt +∇(a(x)g(∆ukt )) dx

=

∫
Ω
∇∆2uk(−∇uktt +∇a(x)g(∆ukt ) + a(x)∇∆ukt g

′(∆ukt )) dx.

Using Cauchy-Schwarz’s inequality, we get

‖∇∆2uk‖ ≤ 2
(∫

Ω
{|∇uktt|2 + |∇a(x)g(∆ukt |2 + |a(x)∇∆ukt g

′(∆ukt )|2} dx
) 1

2
. (3.30)

By Hölder’s inequality and Sobolev embedding, we obtain∫
|∆ukt |≤1

|∇a(x)g(∆ukt |2 dx ≤ c1‖∇a‖2∞
∫
|∆ukt |≤1

|∆ukt |
2
p dx

≤ c1‖∇a‖2∞
(∫

Ω
1

p
p−1 dx

) p−1
p
(∫

Ω
|∆ukt |2 dx

)
1
p

≤ c1C
′2
s‖∇a‖2∞‖∇∆ukt ‖

2
p , (3.31)

and ∫
|∆ukt |>1

|∇a(x)g(∆ukt |2 dx ≤ c1‖∇a‖2∞
∫
|∆ukt |>1

|∆ukt |2 dx

≤ c1C
′2
s‖∇a‖2∞‖∇∆ukt ‖2,

where C ′s > 0 and satisfies ‖∆ukt ‖ ≤ C ′s‖∇∆ukt ‖. Then∫
Ω
|a(x)∇∆ukt g

′(∆ukt )|2 dx ≤ τ2‖a‖2∞‖∇∆ukt ‖2. (3.32)

Taking into account (3.31)-(3.32) in (3.30) and using (3.27), we obtain

‖∇∆2uk‖ ≤ C1, ∀t ≥ 0,

where C1 is a positive constant independent of k ∈ N. Therefore, we conclude that

uk is bounded in L∞(0, T ; W̃ ). (3.33)

iii) Passing to the limit:

Applying Dunford-Pettis and Banach-Alaoglu-Bourbaki theorems, we conclude from (3.28),

(3.29) and (3.33) that there exists a subsequence {um} of {uk} and a function u such that

um ⇀∗ u, in L∞(0, T ; W̃ ), (3.34)
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umt ⇀∗ ut, in L∞(0, T ;W ), (3.35)

umtt ⇀
∗ utt, in L∞(0, T ;V ). (3.36)

It follows at once from (3.34) and (3.36), for each fixed v ∈ L2(0, T, L2(Ω)), that∫ T

0

∫
Ω

(umtt + ∆2um)v dx dt −→
∫ T

0

∫
Ω

(utt + ∆2u)v dx dt. (3.37)

It remains to show the convergence∫ T

0

∫
Ω
a(x)g(∆umt )v dx dt −→

∫ T

0

∫
Ω
a(x)g(∆ut)v dx dt. (3.38)

Then, we have
√
ag(∆umt ) −→

√
ag(∆ut). (3.39)

For two positive integers m,n with m > n, we set Umn = um − un.

The function Umn satisfies Umntt + ∆2Umn − a(x)
(
g(∆umt )− g(∆unt ), v

)
= 0

Umn(0) = um0 − un0 , Umnt (0) = um1 − un1 .

Taking v = −2∆Umnt and using integration by parts, we get

‖∇Umnt (t)‖2 + ‖∇∆Umn(t)‖2 + 2

∫ T

0

∫
Ω
a(x)

(
g(∆umt )− g(∆unt ))

)
∆Umnt dx dt

= ‖∇Umnt (0)‖2 + ‖∇∆Umn(0)‖2. (3.40)

Using (3.10), we have

1

c4

∫ T

0

∫
|∆umt |>1

a(x)|g(∆umt )− g(∆unt )|2 dx dt

≤
∫ T

0

∫
|∆umt |>1

a(x)(g(∆umt )− g(∆unt ))∆Umnt dx dt,

and ∫ T

0

∫
|∆umt |>1

a(x)|g(∆umt )− g(∆zt)|2 dx dt

≤ c2
4

∫ T

0

∫
|∆umt |>1

a(x)|∆umt −∆zt|2 dx dt (3.41)

≤ c2
4

∫ T

0

∫
Ω
a(x)|∆umt −∆zt|2 dx dt, ∀z ∈W 1,∞(0,∞, L2(Ω)),

54



Chapter 3

and using (3.11), we have

1

c2

∫ T

0

∫
|∆umt |≤1

a(x)|g(∆umt )− g(∆unt )|p+1 dx dt

≤
∫ T

0

∫
|∆umt |≤1

a(x)(g(∆umt )− g(∆unt ))∆Umnt dx dt,

and ∫ T

0

∫
|∆umt |≤1

a(x)|g(∆umt )− g(∆zt)|p+1 dx dt

≤ cp+1
2

∫ T

0

∫
|∆umt |≤1

a(x)|∆umt )−∆zt|
p+1
p dx dt (3.42)

≤ C(T )‖a(x)‖
p−1
p
∞
(∫ T

0

∫
Ω
a(x)|∆umt −∆zt|p+1 dx dt

) 1
p
.

Therefore, the convergence (3.23)-(3.25), combined with (3.40)-(3.42), shows that the sequences

(
√
a∆umt )m, (

√
ag(∆umt ))m are Cauchy sequences in L2(0, T ;L2(Ω)). By the middle convergence

in (3.35), we derive
√
a∆umt −→

√
a∆ut in L2(0, T ;L2(Ω)).

Then, choosing z = u in (3.41) and (3.42) and for m→∞, we get (3.39), which completes the

proof.

3.5 Stability result

We state and prove our stability result as follows.

Theorem 3.5.1. Let (u0, u1) ∈ W̃ ×W and suppose that (3.9)-(3.12) hold. Then, any weak solution

of (3.3) satisfies the estimate

E(t) ≤ CE(0)e−kt ∀t > 0, and p = 1, (3.43)

and

E(t) ≤ C ′t−2/(p−1) ∀t > 0, and p > 1, (3.44)

where C and k are positive constants independent of the initial data, while C ′ is a positive constant

only depending on the initial energy E(0).

In order to prove Theorem 3.5.1, we first consider ψ ∈ C∞0 (Rn) such that
0 ≤ ψ ≤ 1,

ψ = 1, in Ω̄\M1,

ψ = 0, in M0.

(3.45)
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For M > 0 and µ > 0, define the perturbed energy

Ê(t) = ME(t) + Eµ(t)ρ(t), (3.46)

where

ρ(t) = −2

∫
Ω
ut(h.∇∆u) dx− θ

∫
Ω
ut∆u dx, (3.47)

h = mψ, (3.48)

and

θ ∈]n− 2, 3n[.

Lemma 3.5.2. There exists two positive constants λ1 and λ2 such that

λ1E(t) ≤ Ê(t) ≤ λ2E(t), ∀t ≥ 0. (3.49)

Proof. We have the obvious estimates

‖ut‖ ≤ Cs‖∇ut‖,

and

‖∆u‖ ≤ C ′s‖∇∆u‖,

where Cs, C
′
s are a positive constants (depending only on the geometry of Ω).

Thanks to Cauchy-Schwarz’s inequality, we get

|ρ(t)| ≤ 2CsR(x0)‖∇∆u‖‖∇ut‖+ θCsC
′
s‖∇∆u‖‖∇ut‖, (3.50)

where

R(x0) = max
x∈Ω
|x− x0|. (3.51)

From (3.50) we obtain

|ρ(t)| ≤ Cs(θC ′s + 2R(x0))

{
1

2
‖∇ut‖2 +

1

2
‖∇∆u‖2

}
≤ Cs(θC ′s + 2R(x0))E(t). (3.52)

Then, for M large enough, we obtain (3.49), where λ1 = M − CsEµ(0)(θC ′s + 2R(x0)) and λ2 =

M + CsEµ(0)(θC ′s + 2R(x0)).
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Lemma 3.5.3. The functional ρ, defined in (3.48) satisfies

ρ′(t) =

∫
Γ
(h.ν)

(
∂3u

∂ν3

)2

dΓ +

∫
Γ
(h.ν)

(
∂ut
∂ν

)2

dΓ

− (3n− θ)
∫

Ω
|∇ut|2 dx− (θ − n+ 2)

∫
Ω
|∇∆u|2 dx

−
∫
M1\M0

m∇ψ|∇ut|2 dx+ 3n

∫
M1

(1− ψ)|∇ut|2 dx (3.53)

+ 2

∫
M1\M0

m∇ψut∆utdx− 2n

∫
M1\M0

∇ψut∇utdx

+ (n− 2)

∫
M1

(ψ − 1)|∇∆u|2dx+

∫
M1\M0

m∇ψ|∇∆u|2 dx

− 2

n∑
i,k=0

∫
M1

mi
∂ψi
∂xk

∂3u

∂x3
k

∂3u

∂x3
i

dx− θ
∫

Ω
∆u.a(x)g(∆ut) dx

+

∫
Ω

2(h.∇∆u)a(x)g(∆ut) dx.

Proof. Taking the derivative of ρ, with get

ρ′(t) = −2

∫
Ω
utt(h∇∆u) dx− 2

∫
Ω
ut(h∇∆ut) dx− θ

∫
Ω
utt(∆u) dx− θ

∫
Ω
ut(∆ut) dx

= + 2

∫
Ω
h.∇∆u.∆2u dx− 2

∫
Ω
h.∇∆u.a(x)g(∆ut) dx− 2

∫
Ω
ut(h∇∆ut) dx

− θ

∫
Ω
utt∆u dx+ θ

∫
Ω
|∇ut|2 dx.

To complete the proof of Lemma 3.5.3, we will need following three Lemmas.

Lemma 3.5.4. We have

−2

∫
Ω
ut(∇∆ut) =

∫
Γ

(∂ut
∂ν

)2
dΓ− 3n

∫
Ω
|∇ut|2 dx+ 3n

∫
M1

(1− ψ)|∇ut|2 dx

−
∫
M1\M0

m∇ψ|∇ut|2 dx+ 2

∫
M1\M0

m∇ψut∆utdx

− 2n

∫
M1\M0

∇ψut∇utdx. (3.54)

Proof. Integrating by parts and noting that ut = 0 and |∇ut|2 =
(∂ut
∂ν

)2
on Γ, we have

−2

∫
Ω
ut(h∇∆ut)dx

= 2

∫
Ω
div(h)ut∆utdx+ 2

∫
Ω
h∇ut∆ut dx (3.55)

− 2

∫
Ω
div[div(h)]ut∇utdx− 2

∫
Ω
div(h)|∇ut|2dx+ 2

∫
Ω
h∇ut∆ut dx

= 2

∫
Ω
div(h)ut∆utdx+

∫
Γ
hν
(∂ut
∂ν

)2
dΓ−

∫
Ω
div(h)|∇ut|2dx.
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Using (3.5), (3.45) and (3.48), we obtain

2

∫
Ω

(divh)ut∆utdx

= 2

∫
Ω\M1

div(ψ.m)ut∆utdx+ 2

∫
M1

div(ψ.m)ut∆utdx

= 2n

∫
Ω\M1

ut∆utdx+ 2

∫
M1

m∇ψut∆utdx+ 2n

∫
M1

ψut∆utdx

= −2n

∫
Ω\M1

|∇ut|2dx+ 2

∫
M1\M0

m∇ψut∆utdx+ 2n

∫
M1

ψut∆utdx

= −2n

∫
Ω\M1

|∇ut|2dx+ 2

∫
M1\M0

m∇ψut∆utdx− 2n

∫
M1\M0

∇ψut∇utdx

− 2n

∫
M1

ψ|∇ut|2dx, (3.56)

and

−
∫

Ω
div(h)|∇ut|2dx

= −
∫

Ω\M1

div(ψ.m)|∇ut|2dx−
∫
M1

div(ψ.m)|∇ut|2dx (3.57)

= −n
∫

Ω\M1

|∇ut|2dx−
∫
M1\M0

m∇ψ|∇ut|2dx− n
∫
M1

ψ|∇ut|2dx.

Taking into account (3.56) and (3.57) into (3.55), we get

−2

∫
Ω
ut(h∇∆ut)dx

=

∫
Γ

(∂ut
∂ν

)2
dΓ− 3n

∫
Ω\M1

|∇ut|2dx+ 2

∫
M1\M0

m∇ψut∆utdx

−2n

∫
M1\M0

∇ψut∇utdx−
∫
M1\M0

m∇ψ|∇ut|2dx

−3n

∫
M1

ψ|∇ut|2dx.

Lemma 3.5.5. We have the following equality

−2

∫
Ω

(h.∇u)∆2u dx =

∫
Γ
(h.ν)

(
∂3u

∂ν3

)2

dΓ + (n− 2)

∫
Ω
|∇∆u|2 dx

+ (n− 2)

∫
M1

(ψ − 1)|∇∆u|2dx− 2
n∑

i,k=0

∫
M1

mi
∂ψi
∂xk

∂3u

∂x3
k

∂3u

∂x3
i

dx

+

∫
M1\M0

m∇ψ|∇∆u|2 dx. (3.58)
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Proof. We have
∂u

∂xk
=
∂u

∂ν
νk, which implies

h.∆u = (h.ν)
∂2u

∂ν2
= 0, and |∇∆u|2 =

(∂3u

∂ν3

)2
on Γ.

Then

2

∫
Ω

(h.∇∆u).∆2u dx

= 2

∫
Γ
(h.ν)|∇∆u|2 dΓ− 2

n∑
i,k=1

∫
Ω

∂hi
∂xk

∂3u

∂x3
k

∂3u

∂x3
i

dx− 2

∫
Ω
h(∇∆u).∇(∇∆u) dx

= 2

∫
Γ
(h.ν)

(∂3u

∂ν3

)2
dΓ− 2

n∑
i,k=1

∫
Ω

∂hi
∂xk

∂3u

∂x3
k

∂3u

∂x3
i

dx−
∫

Ω
h∇(|∇∆u|2) dx

=

∫
Γ
(h.ν)

(∂3u

∂ν3

)2
dΓ− 2

n∑
i,k=1

∫
Ω

∂hi
∂xk

∂3u

∂x3
k

∂3u

∂x3
i

dx+

∫
Ω

div(h)|∇∆u|2 dx. (3.59)

So, by using (3.5), (3.45) and (3.48), the second term of (3.59) gives

−2

n∑
i,k=1

∫
Ω

∂hi
∂xk

∂3u

∂x3
i

∂3u

∂x3
k

dx

= −2
n∑

i,k=1

∫
M1

∂3u

∂x3
i

∂3u

∂x3
k

∂(miψi)

∂xk
dx− 2

n∑
i,k=1

∫
Ω\M1

∂3u

∂x3
i

∂3u

∂x3
k

∂(miψi)

∂xk
dx

= −2

n∑
i,k=0

∫
M1

∂3u

∂x3
i

∂3u

∂x3
k

ψi
∂mi

∂xk
dx− 2

n∑
i,k=0

∫
M1

mi
∂ψi
∂xk

∂3u

∂x3
i

∂2u

∂x3
k

dx

− 2
n∑

i,k=0

∫
Ω\M1

∂3u

∂x3
i

∂3u

∂x3
k

dx

= −2

∫
M1

ψ|∇∆u|2 dx− 2
n∑

i,k=0

∫
M1

mi
∂ψi
∂xk

∂3u

∂x3
i

∂3u

∂x3
k

dx− 2

∫
Ω\M1

|∇∆u|2 dx. (3.60)

Similarly, the third term of (3.59) can be rewritten as follows∫
Ω

div(h)|∇∆u|2 dx

=

∫
Ω\M1

div(ψm)|∇∆u|2 dx+

∫
M1

div(ψm)|∇∆u|2 dx (3.61)

= n

∫
Ω\M1

|∇∆u|2 dx+

∫
M1\M0

m∇ψ|∇∆u|2 dx+ n

∫
M1

ψ|∇∆u|2 dx.

Inserting (3.60) and (3.61) in (3.59), we arrive at

2

∫
Ω

(h.∇∆u).∆2u dx

=

∫
Γ
(h.ν)

(∂3u

∂ν3

)2
dΓ + (n− 2)

∫
Ω\M1

|∇∆u|2 + (n− 2)

∫
M1

ψ|∇∆u|2

− 2
n∑

i,k=1

∫
M1

mi
∂ψi
∂xk

∂3u

∂x3
k

∂3u

∂x3
i

+

∫
M1\M0

m∇ψ|∇∆u|2dx.
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Lemma 3.5.6. We have

−θ
∫

Ω
utt∆u dx = −θ

∫
Ω
|∇∆u|2 dx− θ

∫
Ω
a(x)∆ug(∆ut) dx. (3.62)

Proof. Using the first equation of (4.1) and applying the Green formula, we obtain

−θ
∫

Ω
utt∆u dx = −θ

∫
Ω

∆u(−∆2u+ a(x)g(∆ut)) dx

= −θ
∫

Ω
|∇∆u|2 dx− θ

∫
Ω
a(x)∆ug(∆ut) dx.

By (3.54), (3.58) and (3.62) give (3.53). This completes the proof.

Lemma 3.5.7. We have

ρ′(t) ≤ −KnE(t) + {3A+ n− 2}
∫

Ω
|∇∆u|2 dx+A

∫
ω
|∆ut|2 dx

+ {A(1 + Cs) + 3n+ n(1 + Cs) max
x∈Ω
|∇ψ(x)|}

∫
Ω
|∇ut|2 dx

− θ

∫
Ω

∆u.a(x)g(∆ut) dx+ 2

∫
Ω

(h.∇∆u)a(x)g(∆ut) dx, (3.63)

where

Kn = min
{

2(3n− θ), 2(θ − n+ 2)
}
,

θ ∈]n− 2, 3n[,

and

A = R(x0) max
x∈Ω
|∇ψ(x)|.

Proof. Next, we estimate some terms on the RHS of identity (3.53).

Taking (3.4), (3.6), (3.7), (3.45) and (3.48), we have∫
Γ
(h.ν)

(
∂3u

∂ν3

)2

dΓ =

∫
Γ(x0)

(m.ν)ψ

(
∂3u

∂ν3

)2

dΓ +

∫
Γ\Γ(x0)

(m.ν)ψ

(
∂3u

∂ν3

)2

dΓ

≤ 0, (3.64)

and ∫
Γ
(h.ν)

(
∂ut
∂ν

)2

dΓ =

∫
Γ(x0)

(m.ν)ψ

(
∂ut
∂ν

)2

dΓ +

∫
Γ\Γ(x0)

(m.ν)ψ

(
∂ut
∂ν

)2

dΓ

≤ 0, (3.65)
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and ∫
M1\M0

m∇ψ|∇ut|2 dx ≤ R(x0) max
x∈Ω
|∇ψ(x)|

∫
Ω
|∇ut|2 dx,

and

3n

∫
M1

(1− ψ)|∇ut|2 dx ≤ 3n

∫
Ω
|∇ut|2 dx,

and

2

∫
M1\M0

m∇ψut∆utdx ≤ R(x0) max
x∈Ω
|∇ψ(x)|

(∫
Ω
|ut|2 dx+

∫
ω
|∆ut|2 dx

)
≤ CsR(x0) max

x∈Ω
|∇ψ(x)|

∫
Ω
|∇ut|2 dx

+ R(x0) max
x∈Ω
|∇ψ(x)|

∫
ω
|∆ut|2 dx,

and

2n

∫
M1\M0

∇ψut∇utdx ≤ nmax
x∈Ω
|∇ψ(x)|(Cs + 1)

∫
Ω
|∇ut|2 dx,

and

2
∣∣∣ n∑
i,k=0

∫
M1

∂3u

∂x3
k

∂3u

∂x3
i

mi
∂ψi
∂xi

dx
∣∣∣ ≤ 2R(x0) max

x∈Ω
|∇ψ(x)|

∫
Ω
|∇∆u|2 dx,

and ∫
M1\M0

m∇ψ|∇∆u|2 dx ≤ R(x0) max
x∈Ω
|∇ψ(x)|

∫
Ω
|∇∆u|2 dx,

and

(n− 2)

∫
M1

(ψ − 1)|∇∆u|2 dx ≤ (n− 2)

∫
Ω
|∇∆u|2 dx. (3.66)

Taking into account (3.64)-(3.66) into (3.53) we obtain (3.63). The proof of Lemma 3.5.7 is completed.

Proof. (of Theorem 3.5.1) Taking the derivative of (3.46) with respective to t, we get

Ê ′(t) = ME ′(t) + µE ′(t)Eµ−1(t)ρ(t) + Eµ(t)ρ′(t). (3.67)
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Using (3.13) and (3.63), we have

Ê ′(t) ≤ ME ′(t) + CµEµ(0)|E ′(t)| −KnEµ+1(t)

+ AEµ(t)

∫
ω
|∆ut|2 dx+ (3A+ n− 2)Eµ(t)

∫
Ω
|∇∆u|2 dx

+
{
A(1 + Cs) + 3n+ n(Cs + 1) max

x∈Ω
|∇ψ(x)|

}
Eµ(t)

∫
Ω
|∇ut|2 dx

+ 2Eµ(t)

∫
Ω

(h.∇∆u)a(x)g(∆ut) dx− θEµ(t)

∫
Ω

∆u.a(x)g(∆ut) dx

≤ ME ′(t) + CµEµ(0)|E ′(t)| −KnEµ+1(t) +
Kn

2
Eµ+1(t)

+ AEµ(t)

∫
ω
|∆ut|2 dx+ 2Eµ(t)

∫
Ω

(h.∇∆u)a(x)g(∆ut) dx

− θEµ(t)

∫
Ω

∆u.a(x)g(∆ut) dx. (3.68)

Using (3.9), we have

AEµ(t)

∫
w
|∆ut|2 dx ≤ A

a0
Eµ(t)

∫
w
a(x)|∆ut|2 dx

≤ A

a0
Eµ(t)

∫
Ω
a(x)|∆ut|2 dx.

As in Komornik [34], we consider the following partition of Ω,

Ω1 = {x ∈ Ω : |∆ut| > 1}, Ω2 = {x ∈ Ω : |∆ut| ≤ 1}.

From now on, we distinguish two cases: p = 1 and p > 1.

Case p = 1: (Proof of (3.43)). Using (3.14), we get

AEµ(t)

∫
Ω
a(x)|∆ut|2 dx

≤ C
A

a0
Eµ(t)

∫
Ω
a(x)∆utg(∆ut) dx

≤ CEµ(t)(−E ′(t))

≤ CEµ(0)|E ′(t)|. (3.69)

Using Cauchy-Schwarz’s inequality, we get

2Eµ(t)

∫
Ω
ha(x)∇∆ug(∆ut) dx

≤ 2R(x0)Eµ(t)‖∇∆u‖
(∫

Ω
a2(x)g2(∆ut) dx

) 1
2

≤ 2cR(x0)‖a‖∞E
µ+

1

2 (t)
(∫

Ω1

a(x)∆ut(t)g(∆ut) dx
) 1

2

≤ 2cR(x0)‖a‖∞E
µ+

1

2 (t)(−E ′(t))
1
2 .
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Applying Young’s inequality, we obtain

2Eµ(t)

∫
Ω
h.a(x)∇∆ug(∆ut) dx

≤ cR(x0)‖a‖∞E2µ+1(t) + cR(x0)‖a‖∞|E ′(t)|

≤ cR(x0)‖a‖∞Eµ(0)Eµ+1(t) + cR(x0)‖a‖∞|E ′(t)| (3.70)

≤ Kn

4
Eµ+1(t) + cR(x0)‖a‖∞|E ′(t)|.

Using Cauchy-Schwarz and Young’s inequalities, we get

θEµ(t)

∫
Ω
a(x)∆ug(∆ut) dx

≤ θC ′sEµ(t)‖∇∆u‖
(∫

Ω1

a2(x)g2(∆ut) dx
) 1

2
(3.71)

≤ C ‖a‖∞
2
Eµ(0)Eµ+1(t) + C ′

‖a‖∞
2
|E ′(t)|

≤ Kn

8
Eµ+1(t) + C ′

‖a‖∞
2
|E ′(t)|.

By (3.69)-(3.71) and (3.68), we find

Ê ′(t) ≤ME ′(t) + CEµ(0)|E ′(t)|+ C|E ′(t)| − Kn

8
Eµ+1(t).

Choosing µ = 0 and M large enough, we obtain

Ê ′(t) ≤ −Kn

8
E(t)

≤ −Kn

8λ1
Ê(t). (3.72)

Finally, by combining (3.49) and (3.72), we obtain (3.43).

Case p > 1: (Proof of (3.44)). By using Hölder’s inequality and (3.14), we get

Eµ(t)

∫
Ω
a(x)|∆ut|2 dx

≤ CEµ(t)

∫
Ω1

a(x)∆utg(∆ut) dx+ C ′Eµ(t)

∫
Ω2

a(x)
(

∆utg(∆ut)
) 2
p+1

dx

≤ CEµ(t)

∫
Ω
a(x)∆utg(∆ut) dx+ C(Ω)‖a‖

p−1
p+1
∞ Eµ(t)

∫
Ω

(
a(x)∆utg(∆ut)

) 2
p+1

dx

≤ CEµ(t)(−E ′(t)) + C(Ω, p)‖a‖
p−1
p+1
∞ Eµ(t)

(
− E ′(t)

) 2
p+1

.

Now, fixing an arbitrarily small ε > 0, by applying Young’s inequality, we obtain

1

a0
Eµ(t)

∫
Ω
a(x)|∆ut|2 dx ≤ C 1

a0
Eµ(0)|E ′(t)|+ ‖a‖∞

a0
p−1
p+1

1

ε
p+1
p−1

Eµ
p+1
p−1 (t)

+C(Ω,p)
a0

2
p+1ε

p+1
2 |E ′(t)|. (3.73)
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Then, we have

A

a0
Eµ(t)

∫
w
|∆ut|2 dx ≤ CA 1

a0
Eµ(0)|E ′(t)|+A

‖a‖∞
a0

p−1
p+1

1

ε
p+1
p−1

Eµ
p+1
p−1 (t)

+A
C(Ω, p)

a0

2

p+ 1
ε
p+1
2 |E ′(t)

≤ CEµ(0)|E ′(t)|+ Kn
8 E

µ p+1
p−1 (t) + Cε

p+1
2 |E ′(t)|. (3.74)

Using Cauchy-Schwarz’s inequality, we get

2Eµ(t)

∫
Ω1

ha(x)∇∆ug(∆ut) dx ≤ 2cR(x0)‖a‖∞Eµ+ 1
2 (t)(−E ′(t))

1
2 . (3.75)

Applying Young’s inequality, we obtain

2Eµ(t)

∫
Ω1

h.a(x)∇∆ug(∆ut) dx

≤ cR(x0)‖a‖∞Eµ(0)Eµ+1(t) + cR(x0)‖a‖∞|E ′(t)|. (3.76)

By Cauchy-Schwarz and Hölder’s inequalities, we have

2Eµ(t)

∫
Ω2

h.a(x)∇∆ug(∆ut) dx

≤ R(x0)Eµ(t)‖∇∆u‖
(∫

Ω2

a2(x)g2(∆ut) dx
) 1

2

≤ cR(x0)‖a‖
p
p+1
∞ Eµ+ 1

2 (t)
(∫

Ω
(a(x)∆ut(t)g(∆ut))

2
p+1 dx

) 1
2

≤ C(Ω, p)R(x0)‖a‖
p
p+1
∞ Eµ+ 1

2 (t)(−E ′(t))
1
p+1 .

Set ε1 > 0, thanks to Young’s inequality, we obtain

2Eµ(t)

∫
Ω2

h.a(x)∇∆ug(∆ut) dx

≤ C(Ω, p)R(x0)‖a‖∞
p

p+ 1

1

ε
p+1
p

1

E(µ+ 1
2

) p+1
p (t)

+
C(Ω, p)

p+ 1
R(x0)εp+1

1 |E ′(t)|. (3.77)

Then, we deduce from (3.76) and (3.77), that

2Eµ(t)

∫
Ω
h.a(x)∇∆ug(∆ut) dx (3.78)

≤ Kn

4
Eµ+1(t) +

Kn

8
E

(µ+
1

2
) p+1
p

(t) + C|E ′(t)|+ CEµ(0)|E ′(t)|.

Using Hölder’s and Young’s inequalities, we get

θEµ(t)

∫
Ω1

a(x)∆ug(∆ut) dx ≤ C
‖a‖∞

2
Eµ(0)Eµ+1(t) + C ′

‖a‖∞
2
|E ′(t)|, (3.79)
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and

θEµ(t)

∫
Ω2

a(x)∆ug(∆ut) dx ≤ C‖a‖∞
p

p+ 1

1

ε
p+1
p

2

E(µ+ 1
2

) p+1
p (t)

+
C(Ω, p)

p+ 1
εp+1

2 |E ′(t)|. (3.80)

We deduce from (3.79) and (3.80)

θEµ(t)

∫
Ω
a(x)∆ug(∆ut) dx ≤

Kn

4
Eµ+1(t) +

Kn

8
E(µ+ 1

2
) p+1
p (t) + C|E ′(t)|. (3.81)

Reporting (4.30), (3.78) and (3.81) into (3.68), we find

Ê ′(t) ≤ ME ′(t) + CEµ(0)|E ′(t)|+ C|E ′(t)| − Kn

2
Eµ+1(t)

+
Kn

4
E(µ+ 1

2
) p+1
p (t) +

Kn

8
Eµ

p+1
p−1 (t).

We choose µ such that (
µ+

1

2

)p+ 1

p
= µ+ 1.

Thus, we find µ =
p− 1

2
and

µ
p+ 1

p− 1
= µ+ 1 + α.

with α = 0.

We find, for M large enough, the following inequality

Ê ′(t) ≤ −Kn

8
Eµ+1

≤ − Kn

8λµ+1
1

Êµ+1(t).
(3.82)

Finally, by combining (3.49) and (3.82), we obtain (3.44). This completes the proof.
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Well-posedness and exponential

stability of coupled non-degenrate

Kirchhoff equation and the heat

equation

4.1 Introduction

Let Ω be a bounded open subset of Rn with smooth enough boundary. Let α and β be two nonzero

real numbers with the same sign. Consider the coupled wave/heat system

ytt − φ(‖∇y(t)‖2)∆y − γ∆ytt + α∆θ = 0, in Ω× (0,+∞)

θt − σ∆θ − β∆yt = 0, in Ω× (0,+∞)

y = θ = 0, on ∂Ω× (0,+∞)

y(·, 0) = y0, yt(·, 0) = y1, θ(·, 0) = θ0, in Ω

(4.1)

where γ and σ are positive physical constants representing respectively, the rotational force constant,

thermal conductivity, and φ is given function. The functions (y0, y1, θ0) are the given initial data.

When γ = 0 and φ(s) = m0 + m1s, with m0 > 0 and m1 > 0, Ben Aissa [8] has studied the global

existence for small data and the uniform exponential decay rate of the energy.

Tebeau et al [49] considered the two and three-dimensional system of linear thermoelasticity in a
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bounded smooth domain with Dirichlet boundary conditions

ytt − µ∆y − (λ+ µ)∇divy + α∇θ = 0, in Ω× (0,+∞)

θt −∆θ + βdivyt = 0, in Ω× (0,+∞)

y = θ = 0, on ∂Ω× (0,+∞)

y(·, 0) = y0, yt(·, 0) = y1, θ(·, 0) = θ0, in Ω

where λ and µ are the Lame coefficients, which are assumed to satisfy µ > 0, λ+ 2µ > 0. The con-

stants α, β >0 are the coupling parameters. The authors analyzed whether the energy of solutions

decays exponentially or uniformly to zero as t → ∞. They showed that when the domain is convex,

the decay rate is never uniform. In fact, the lack of uniform decay may also be due to a critical

polarization of the energy on the transversal component of the displacement.

Mansouri et al. [57] considered a coupled system consisting of a Kirchhoff thermoelastic plate and

an undamped wave equation

ytt − γ∆ytt + a∆2y + α∆θ + µz = 0, in Ω× (0,+∞)

θt − σ∆θ − β∆yt = 0, in Ω× (0,+∞)

ztt − µ∆z + µy = 0, in Ω× (0,+∞)

y = ∂νy = 0, z = θ = 0, on ∂Ω× (0,+∞)

y(·, 0) = y0, yt(·, 0) = y1, θ(·, 0) = θ0, in Ω,

z(·, 0) = z0, zt(·, 0) = z1 in Ω

They showed that the coupled system is not exponentially stable. Afterwards, they proved that the

coupled system is polynomially stable, and provided an explicit polynomial decay rate of the associated

semigroup.

Tebou [64] studied a coupled system of the wave and heat equations given by

ytt − c2∆y + α(−∆)µθ = 0, in Ω× (0,+∞)

θt − ν∆θ − βyt = 0, in Ω× (0,+∞)

y = θ = 0, on ∂Ω× (0,+∞)

y(·, 0) = y0, yt(·, 0) = y1, θ(·, 0) = θ0, in Ω

where c and ν are positive physical constants. For 0 ≤ µ < 1, he showed that the semigroup

associated to the system is not uniformly stable, and he proposed an explicit non-uniform decay rate.

For µ = 1 the above coupled system is reduced to the thermoelasticity equations, the author showed

that in this case, the semigroup is exponentially stable. In addition, he examined a partially clamped
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Kirchhoff thermoelastic plate without mechanical feedback controls, and he proved that the semigroup

is also exponentially stable in this case, using a constructive frequency domain method to prove the

stabilization result, along with an explicit decay rate.

Tebou et al. [36] considered thermoelastic plate with rotational forces, in a bounded domain Ω. This

rotational forces involve the spectral fractional Laplacian, with power parameter 0 ≤ θ ≤ 1
ytt + (−∆)θytt + ∆2y + α∆z = 0, in Ω× (0,+∞)

zt − κ∆z − β∆yt = 0, in Ω× (0,+∞)

y(·, 0) = y0, yt(·, 0) = y1, z(·, 0) = z0, in Ω

The authors distinguished two particular cases of this problem that models for thermoelastic plate,

either the Euler-Bernoulli when θ = 0 or Kirchhoff if θ = 1. They showed that the semigroup studied

in this case is of Gevrey class δ for every δ > (2−θ)/(2−4θ) and proved that it is exponentially stable.

The main purpose of this chapter is to prove global solvability and energy decay estimates of the

solutions of problem (4.1). We extend the results obtained by Ben Aissa by giving more precise decay

rates. We use a new method recently introduced by Benaissa and Guesmia [9] to study the decay rate

of solutions

The plan of the chapter is as follows. In Section 2, we give some hypotheses, and we announce the

main results of this chapter. In section 3 we use the Faedo-Galerkin method to study the existence of

the solutions of system (4.1). In section 4, we prove exponential stability estimates using multiplier

method.

4.2 Hypothesis and main results

In this section we prepare some hypotheses which will be needed in the proof of our result.

Let φ is a C1-class function on R+ and bijective. Assume that there exist m0, m1 > 0 such that and

satisfies

φ(s) ≥ m0, and sφ(s) ≥ m1φ̃(s), ∀s ≥ 0, where φ̃(s) =

∫ s

0
φ(r) dr. (4.2)

Remark 4.2.1. 1) We have
∫ +∞

0 φ(r) dr = +∞ and then s →
∫ s

0 φ(r) dr is a bijection from R+

to R+

2) The function φ̃(s) = 1
2

∫ s
0 φ(r) dr is a convex function. Indeed, let x1 6= 0 and x2 6= 0 such that

x1 < x2, as φ is of class C1[x1, x2] and a non decreasing function, then φ̃ is a convex function.
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Now if x1 = 0, we have for all 0 ≤ λ ≤ 1

φ̃(λx2) =
1

2

∫ λx2

0
φ(s) ds =

1

2
λ

∫ x2

0
φ(λz) dz,

where we have the change of variable s = z. As φ is a non decreasing function and λx2 ≤ x2

for all λ ∈ [0, 1], then

φ̃(λx2) ≤ λφ̃(x2).

Introduce the energy

E(t) =
1

2

∫
Ω
|yt(t)|2 dx+ φ̃(‖∇y(t)‖2) +

γ

2

∫
Ω
|∇yt(t)|2 dx+

α

2β

∫
Ω
|θ(t)|2 dx, ∀t ≥ 0. (4.3)

Lemma 4.2.1. Let (y, θ) be a solution to the problem (4.1). Then, the energy functional defined by

(4.3) satisfies

E′(t) = −σα
β

∫
Ω
|∇θ(t)|2 dx ≤ 0, ∀t ≥ 0. (4.4)

Proof. Multiplying the first equation (4.1) by yt, integrating over Ω and using integration by parts,

we get

1

2

d

dt

∫
Ω
|yt|2 dx+

1

2
φ(‖∇y(t)‖2)

d

dt

∫
Ω
|∇y(t)|2 dx+

γ

2

d

dt

∫
Ω
|∇yt|2 dx = α

∫
Ω
∇yt∇θ dx (4.5)

and using (4.2), we have

1

2
φ(‖∇y(t)‖2)

d

dt

∫
Ω
|∇y(t)|2 dx =

d

dt
φ̃(‖∇y(t)‖2). (4.6)

Multiplying the second equation (4.1) by αθ, integrating over Ω and using Green’s formula, we find

α

2β

d

dt

∫
Ω
|θ(t)|2 dx+ σ

α

β

∫
Ω
|∇θ(t)|2 dx = −α

∫
Ω
∇yt∇θ dx (4.7)

Reporting (4.6) and (4.7) in (4.5), we get

d

dt

[1

2

∫
Ω
|yt(t)|2 dx+ φ̃(‖∇y(t)‖2) +

α

2β

∫
Ω
|θ(t)|2 dx+

γ

2

∫
Ω
|∇yt(t)|2 dx

]
= −σα

β

∫
Ω
|∇θ(t)|2 dx.

We are now in the position to state our results

Theorem 4.2.2. (Well-posedness) Let φ : [0,+∞[→ [0,+∞[ a C1-class function and

(y0, y1) ∈ H2(Ω) ∩H1
0 (Ω)×H2(Ω) ∩H1

0 (Ω)

,

θ0 ∈ H2(Ω) ∩H1
0 (Ω)
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. Then the problem (4.1) has a unique weak solution (y, θ) such that for any T > 0, we have

y ∈ L∞(0, T ;H2(Ω) ∩H1
0 (Ω))

yt ∈ L∞(0, T ;H2(Ω) ∩H1
0 (Ω)), ytt ∈ L∞(0, T ;H1

0 (Ω))

θ ∈ L∞(0, T ;H1
0 (Ω)) ∩ L2(0, T ;H2(Ω) ∩H1

0 (Ω)).

θt ∈ L∞(0, T ;L2(Ω)).

Theorem 4.2.3. (Stabilization) Let (y0, y1) ∈ H2(Ω)∩H1
0 (Ω)×H2(Ω)∩H1

0 (Ω), θ0 ∈ H2(Ω)∩H1
0 (Ω).

Assume that φ satisfies (4.2) and 1
β small enough.

The energy of the unique solution of system (4.1), given by (4.3), decays exponentially to zero, there

exist positive constants M and λ, independent of the initial data, with

E(t) ≤M exp(−λt)E(0). (4.8)

4.3 Proof of Theorem 4.2.2

We will use the Faedo-Galerkin method to prove the existence of a global solutions. Let ek, k ∈ N be

normalized eigenfunctions of the operators ∆ −∆ek = λkek

ek = 0 in ∂Ω

Let us denote by Wm the linear hull of e1, ..., em. Note that (ek)k is a basis of H2(Ω), H1
0 (Ω) and

L2(Ω) ; i.e., the set e1, .., em, ... is dense in H2(Ω), H1
0 (Ω) and L2(Ω).

Step 1: Approximate solutions. We construct approximate solutions ym and θm, m = 1, 2, 3, . . . ,

in the form 
ym(x, t) =

m∑
k=1

hm,k(t)ek(x)

θm(x, t) =
n∑
k=1

cm,k(t)ek(x)

(4.9)

where hm,k and cm,k (k = 1, 2, ...m) are determined by the following ordinary differential

equations

 (ymtt − φ(‖∇ym(t)‖2)∆ym − γ∆ymtt + α∆θm, w) = 0 ∀w ∈Wm

(θmt − σ∆θm − β∆ymt , v) = 0, ∀v ∈Wm
(4.10)
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with initial conditions

ym(x, 0) = ym0 =
m∑
k=1

〈f, em〉em → y0, in H2(Ω) ∩H1
0 (Ω) as m→ +∞, (4.11)

ymt (x, 0) = ym1 =
n∑
k=1

〈ft, em〉em → y1, in H2(Ω) ∩H1
0 (Ω) as m→ +∞. (4.12)

θm(x, 0) = θm0 =
n∑
k=1

〈g, em〉em → θ0, in H2(Ω) ∩H1
0 (Ω) as m→ +∞, (4.13)

φ(‖∇ym0 ‖2)∆ym0 − α∆θm0 → φ(‖∇y0‖2)∆y0 − α∆θ0, in L2(Ω) as m→ +∞, (4.14)

Step 2: A priori estimates.

Choosing w = ymt and v = θm in (4.10) and using Green’s formula, we find
d

dt

∫
Ω
|ymt |2 dx+ γ

d

dt

∫
Ω
|∇ymt |2 dx+ 2

d

dt
φ̃(‖∇ym(t)‖2) = 2α

∫
Ω
∇ymt ∇θm dx

α

β

d

dt

∫
Ω
|θm(t)|2dx+ 2σ

α

β

∫
Ω
|∇θm(t)|2dx = −2α

∫
Ω
∇ymt ∇θm dx,

(4.15)

integrating (4.15 ) over (0, t) and using (4.11)-(4.13), we obtain∫
Ω
|ymt |2dx+ 2φ̃(‖∇ym(t)‖2) +

α

β

∫
Ω
|θm|2 dx+ γ

∫
Ω
|∇ymt |2dx+ 2σ

α

β

∫ t

0

∫
Ω
|∇θm(s)|2 dx ds

=

∫
Ω
|ym1 |2dx+ 2φ̃(‖∇ym0 ‖2) + γ

∫
Ω
|∇ym1 |2dx+

α

β

∫
Ω
|θm0 |2 dx

= 2Em(0) ≤ C0

(4.16)

where

Em(0) =
1

2

∫
Ω
|ym1 |2dx+ φ̃(‖∇ym0 ‖2) +

γ

2

∫
Ω
|∇ym1 |2dx+

α

2β

∫
Ω
|θm0 |2 dx,

and C0 is a positive constant independent of m.

In the other hand, φ̃−1 is non decreasing∫
Ω
|∇ym|2 dx ≤ φ̃−1(Em(0)) ≤ φ̃−1(C0).

These estimates imply that the solution (ym, θm) exists globally in [0,+∞[.

Estimates (4.16) yields

ym is bounded in L∞(0, T,H1
0 (Ω)), (4.17)

ymt is bounded in L∞(0, T,H1
0 (Ω)), (4.18)

θm is bounded in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)). (4.19)
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Choosing w = −2∆ymt and v = −2α∆θm in (4.10) and using Green’s formula, we obtain
d

dt

∫
Ω
|∇ymt (t)|2 dx+ φ(‖∇ym(t)‖2)

d

dt

∫
Ω
|∆ym(t)|2 dx+ γ

d

dt

∫
Ω
|∆ymt (t)|2 dx = 2α

∫
Ω

∆θm(t)∆ymt (t) dx

α

β

d

dt

∫
Ω
|∇θm(t)|2 dx+ 2σ

α

β

∫
Ω
|∆θm(t)|2 dx = −2α

∫
Ω

∆ymt (t)∆θm(t) dx.

(4.20)

The second term of (4.20) can be rewritten as follows

φ(‖∇ym(t)‖2)
d

dt

∫
Ω
|∆ym(t)|2 dx

=
d

dt

[
φ(‖∇ym(t)‖2)

∫
Ω
|∆ym(t)|2dx

]
−
∫

Ω
|∆ym(t)|2 dx d

dt

[
φ(‖∇ym(t)‖2)

]
=

d

dt

[
φ(‖∇ym(t)‖2)

∫
Ω
|∆ym(t)|2 dx

]
− 2φ

′
(‖∇ym(t)‖2)

∫
Ω
∇ym(t)∇ymt (t) dx

∫
Ω
|∆ym(t)|2 dx.

(4.21)

Reporting (4.21) in (4.20) and integrating over (0.t), we get∫
Ω
|∇ymt (t)|2 dx+ φ(‖∇ym(t)‖2)

∫
Ω
|∆ym(t)|2 dx+ γ

∫
Ω
|∆ymt (t)|2 dx

+
α

β

∫
Ω
|∇θm(t)|2 dx+ 2σ

α

β

∫ t

0

∫
Ω
|∆θm(s)|2 dx ds

=

∫
Ω
|∇ym1 |2 dx+ φ(‖∇ym0 ‖2)

∫
Ω
|∆ym0 |2 dx+ γ

∫
Ω
|∆ym1 |2 dx

+
α

β

∫
Ω
|∇θm0 |2 dx+ 2

∫ t

0
φ
′
(‖∇ym(s)‖2)

∫
Ω
|∆ym(s)|2 dx

∫
Ω
∇ym(s)∇ymt (s) dx ds.

(4.22)

Applying the Cauchy-Schwarz inequality, (4.17) and (4.18) in the last term of the right-hand

side of (4.22), we find∫ t

0
φ
′
(‖∇ym(s)‖2)

∫
Ω
|∆ym(s)|2 dx

∫
Ω
∇ym(s)∇ymt (s) dx ds

≤ C max
0≤r≤Em(0)

|φ′(r)|
∫ t

0
φ(‖∇ym(s)‖2)

∫
Ω
|∆ym(s)|2 dx ds.

(4.23)

Reporting (4.23) in (4.22) and using the Gronwall’s lemma, we have

ym is bounded in L∞(0, T,H2(Ω)), (4.24)

ymt is bounded in L∞(0, T,H2(Ω)), (4.25)

θm is bounded in L∞(0, T ;H1
0 (Ω)) ∩ L2(0, T ;H2(Ω)). (4.26)

Choosing w = ymtt (t), v = θm(t) in (4.10) and choosing t = 0, we obtain that
(
ymtt (0)− φ(‖∇ym0 ‖2)∆ym0 − γ∆ymtt (0) + α∆θm0 , y

m
tt (0)) = 0

(θmt (0)− σ∆θm0 + β∆ym1 , θ
m
t (0)) = 0
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Using Cauchy-Schwarz’s inequality, we have

(γ − c2
s)‖∇ymtt (0)‖ ≤ cs

(∫
Ω
|φ(‖∇ym0 ‖2)∆ym0 − α∆θm0 |2 dx

) 1
2
,

where cs > 0 and satisfies ‖z‖ ≤ cs‖∇z‖ for all z ∈ H1
0 (Ω) and

‖θmt (0)‖ ≤ c
(
‖∆θm0 ‖+ ‖∆ym1 ‖

)
.

We choose γ > c2
s and using (4.11)-(4.14), we get

ymtt (0) is bounded in H1
0 (Ω), (4.27)

θmt (0) is bounded in L2(Ω). (4.28)

We assume first t < T and apply (4.10) at points t and t + ξ with ξ such that 0 < ξ < T − t.
By taking the difference and w = ymt (t+ ξ)− ymt and θm(t+ ξ)− θm(t), we find



(ymtt (t+ ξ)− ymtt (t)− φ(‖∇ym(t+ ξ)‖2)∆ym(t+ ξ) + φ(‖∇ym(t)‖2)∆ym(t), ymt (t+ ξ)− ymt (t))

− γ(∆ymtt (t+ ξ)−∆ymtt (t), ymt (t+ ξ)− ymt (t)) + α(∆θm(t+ ξ)−∆θm(t), ymt (t+ ξ)− ymt (t)) = 0

(θmt (t+ ξ)− θmt (t)− σ∆θm(ξ + t) + σ∆θm(t), θm(t+ ξ)− θm(t))

− β(∆ymt (t+ ξ)−∆ymt , θ
m(t+ ξ)− θm(t)) = 0.

Now, applying Green’s formula, we find

d

dt

∫
Ω
|ymt (t+ ξ)− ymt (t)|2 dx+ φ(‖∇ym(t+ ξ)‖2)

d

dt

∫
Ω
|∇ym(t+ ξ)−∇ym(t)|2 dx

+ γ
d

dt

∫
Ω
|∇ymt (t+ ξ)−∇ymt (t)|2 dx+

α

β

d

dt

∫
Ω
|θm(t+ ξ)− θm(t)|2 dx+ σ

2α

β

∫
Ω
|∇θm(t+ ξ)−∇θm(t)|2 dx

= 2(φ(‖∇ym(t+ ξ)‖2)− φ(‖∇ym(t)‖2))

∫
Ω

∆ym(t)(ymt (t+ ξ)− ymt (t)) dx.

(4.29)

Set

Ψξm(t) = ‖ymt (t+ ξ)− ymt (t)‖2 + φ(‖∇ym(t+ ξ)‖2)‖∇ym(t+ ξ)−∇ym(t)‖2

+ γ‖∇ymt (t+ ξ)−∇ymt (t)‖2 + ‖θm(t+ ξ)− θm(t)‖2.
(4.30)

Using Cauchy-Schwarz’s inequality, (4.29) and the fact that, φ is C1, we obtain

d

dt
Ψξm(t) + σ

2α

β

∫
Ω
|∇θm(t+ ξ)−∇θm(t)|2 dx

= 2‖∇ym(t+ ξ)−∇ym(t)‖2φ′(‖∇ym(t+ ξ)‖2)

∫
Ω
∇ym(t+ ξ)∇ymt (t+ ξ) dx+

2(φ(‖∇ym(t+ ξ)‖2)− φ(‖∇ym(t)‖2))

∫
Ω

∆ym(t)(ymt (t+ ξ)− ymt (t)) dx

≤ 2

m0
φ′(‖∇ym(t+ ξ)‖2))φ(‖∇ym(t+ ξ)‖2)(‖∇ym(t+ ξ)−∇ym(t)‖2)‖∇ym(t+ ξ)‖‖∇ymt (t+ ξ)‖

+ c(‖∇ym(t+ ξ)‖2 − ‖∇ym(t)‖2)‖∆ym(t)‖‖ymt (t+ ξ)− ymt (t)‖.

(4.31)

73



Chapter 4

The last term can be rewritten as

c‖∆ym(t)‖‖ymt (t+ ξ)− ymt (t)‖
∫

Ω
(∇ym(t+ ξ)−∇ym(t))(∇ym(t+ ξ) +∇ym(t)) dx, (4.32)

Reporting (4.17), (4.18), (4.24), (4.32) in (4.31), and using the Cauchy-Schwarz’s inequality we

find
d

dt
Ψξm(t) + σ

2α

β

∫
Ω
|∇θm(t+ ξ)−∇θm(t)|2 dx ≤ cΨξm(t).

Therefore, we deduce that

Ψξm(t) ≤ Ψξm(0) exp(cT ), ∀t ∈ [0, T ].

Dividing the two sides by ξ2, letting ξ → 0, and using (4.30), we deduce that

‖ymtt (t)‖2 +m0‖∇ymt (t)‖2 + γ‖∇ymtt (t)‖2 + ‖θmt (t)‖2

≤ c(‖ymtt (0)‖2 + φ(‖∇ym0 ‖2)‖∇ym1 (t)‖2 + γ‖∇ymtt (0)‖2 + ‖θmt (0)‖2)

By (4.12), (4.27) and (4.28), we deduce that

‖ymtt (t)‖2 + ‖∇ymt (t)‖2 + ‖∇ymtt (t)‖2 + ‖θmt (t)‖2 ≤ C2,

for all t ∈ [0.T ], where C2 is a positive constant independent of m. Therefore, we conclude that

ymtt is bounded in L∞(0, T,H1
0 (Ω)), (4.33)

θmt is bounded in L∞(0, T ;L2(Ω)). (4.34)

Step 3: Passage to the limit

Applying Dunford-Petit theorem we conclude from (4.17)-(4.19), (4.24)-(4.26), (4.33) and (4.34)

replacing the sequence (ym, θm) with a subsequence (yk, θk) we have

yk ⇀ y, weak-star in L∞(0, T ;H2(Ω) ∩H1
0 (Ω)) (4.35)

ykt ⇀ yt, weak-star in L∞(0, T ;H2(Ω) ∩H1
0 (Ω)) (4.36)

yktt ⇀ ytt, weak-star in L∞(0, T ;H1
0 (Ω)) (4.37)

φ(‖∇yk(t)‖2)∆yk ⇀ χ weak-star in L∞(0, T ;L2(Ω)) (4.38)

θk ⇀ θ weak-star in L∞(0, T ;H1
0 (Ω)) ∩ L2(0, T ;H2(Ω) ∩H1

0 (Ω)) (4.39)
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θkt ⇀ θt, weak-star in L∞(0, T ;L2(Ω)) (4.40)

We shall prove that, χ = φ(‖∇y(t)‖2)∆y i.e.,

φ(‖∇yk(t)‖2)∆yk(t) ⇀ φ(‖∇y(t)‖2)∆y(t) weak-star in L∞(0, T ;L2(Ω)) (4.41)

For v ∈ L2(0, T ;L2(Ω)), we have∫ T

0

∫
Ω

(χ− φ(‖∇y(t)‖2)∆y)v dx dt

=

∫ T

0

∫
Ω

(χ− φ(‖∇yk(t)‖2)∆yk)v dx dt+

∫ T

0
φ(‖∇y(t)‖2)

∫
Ω

(∆yk −∆y)v dx dt

+

∫ T

0
(φ(‖∇yk(t)‖2)− φ(‖∇y(t)‖2)

∫
Ω

∆ykv dx dt

(4.42)

We deduce from (4.35) and (4.38) that the first and second terms in (4.42) tend to zero as k →
+∞.

Using that φ is a C1-class function on R+, we have∫ T

0
(φ(‖∇yk(t)‖2)− φ(‖∇y(t)‖2))

∫
Ω

∆ykv dx dt

≤ c
∫ T

0
|‖∇yk(t)‖2 − ‖∇y(t)‖2|‖∆yk‖‖v‖ dt

≤ c
∫ T

0

∫
Ω
|∆(yk + y)(yk − y)| dx dt

≤ c
∫ T

0
‖yk(t)− y(t)‖ dt

(4.43)

As yk is bounded in L∞(0, T ;H2(Ω)) and the injection of H2(Ω) in L2(Ω) is compact, we have

we have

yk → y strongly in L2(0, T ;L2(Ω)). (4.44)

From(4.42), (4.66)and (4.44) , we deduce (4.41). It follows at once from (4.35), (4.37), (4.39)

and (4.40) that for each fixed v ∈ L2(0, T ;L2(Ω)),∫ T

0

∫
Ω

(yktt − φ(‖∇yk(t)‖2)∆yk − γ∆yktt + α∆θk)v dx dt

→
∫ T

0

∫
Ω

(ytt − φ(‖∇y(t)‖2)∆y − γ∆ytt + α∆θ)v dx dt

and ∫ T

0

∫
Ω

(θkt − σ∆θk − β∆ykt )v dx dt→
∫ T

0

∫
Ω

(θt − σ∆θ − β∆yt)v dx dt

as k → +∞
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4.4 Proof of Theorem 4.2.3

In this section, we prove our stability,using the multiplier technique

and the following Lemma due to [27]

Lemma 4.4.1. Let E : R+ → R+ be a non-increasing differentiable function and Ψ : R+ → R+ a

convex and increasing function such that ϕ(0) = 0. Assume that∫ T

S
ϕ(E(t)) dt ≤ E(s), ∀0 ≤ S ≤ T

Then E satisfies the following estimate:

E(t) ≤ ψ−1
(
h(t) + ψ(E(0))

)
, ∀t ≥ 0 (4.45)

where ψ(t) =
∫ 1
t

1
ϕ(s) ds for t > 0, h(t) = 0 for 0 ≤ t ≤ E(0)

ϕ(E(0)) and

h−1(t) = t+
ψ(t+ ψ(E(0)))

ϕ(ψ−1(t+ ψ(E(0))))
, ∀t ≥ E(0)

ϕ(E(0))

Step 1: We multiplying the first equation of (4.1) by
ϕ(E)

E
y where ϕ : R+ → R+ is convex,

increasing and of class C1 on ]0,+∞[ such that ϕ(0) = 0 and we integrate by parts, we have for

all 0 ≤ S ≤ T

0 =

∫ T

S

ϕ(E)

E

∫
Ω
y
[
ytt + φ(‖∇y‖2)∆y − γ∆ytt + α∆θ

]
dx dt

=

[
ϕ(E)

E

∫
Ω
yyt dx

]T
S

−
∫ T

S

(
ϕ(E)

E

)′ ∫
Ω
yyt dx dt−

∫ T

S

ϕ(E)

E

∫
Ω
|yt|2 dx dt

+ γ

[
ϕ(E)

E

∫
Ω
∇y∇yt dx

]T
S

− γ
∫ T

S

(
ϕ(E)

E

)′ ∫
Ω
∇y∇yt dx dt− γ

∫ T

S

ϕ(E)

E

∫
Ω
|∇yt|2 dx dt

+

∫ T

S

ϕ(E)

E
φ(‖∇y‖2)

∫
Ω
|∇y(s)|2 dx dt

+ α

∫ T

S

ϕ(E)

E

∫
Ω
y∆θ dx dt.

(4.46)

Then, we have

2

∫ T

S

ϕ(E)

E
φ(‖∇y(t)‖2)

∫
Ω
|∇y(t)|2 dx dt =

− 2

[
ϕ(E)

E

∫
Ω
yyt dx

]T
S

+ 2

∫ T

S

(
ϕ(E)

E

)′ ∫
Ω
yyt dx dt+ 2

∫ T

S

ϕ(E)

E

∫
Ω
|yt(t)|2 dx dt

− 2γ

[
ϕ(E)

E

∫
Ω
∇y∇yt dx

]T
S

+ 2γ

∫ T

S

(
ϕ(E)

E

)′ ∫
Ω
∇y∇yt dx dt+ 2γ

∫ T

S

ϕ(E)

E

∫
Ω
|∇yt(t)|2 dx dt

− 2α

∫ T

S

ϕ(E)

E

∫
Ω
y∆θ dx dt.
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Applying Green’s formula and Sobolev embedding inequality (4.3) and (4.2), we obtain

2

∫ T

S
ϕ(E) +

∫ T

S

ϕ(E)

E
φ(‖∇y(t)‖2)

∫
Ω
|∇y(t)|2 dx dt

≤ 2

m1

[
ϕ(E)

E

∫
Ω
yyt dx

]T
S

+
2

m1

∫ T

S

(
ϕ(E)

E

)′ ∫
Ω
yyt dx dt

+
2 +m1

m1

∫ T

S

ϕ(E)

E

∫
Ω
|yt|2 dx dt+

2γ

m1

[
ϕ(E)

E

∫
Ω
∇y∇yt dx

]T
S

+
2γ

m1

∫ T

S

(
ϕ(E)

E

)′ ∫
Ω
∇y∇yt dx dt+ γ

2 +m1

m1

∫ T

S

ϕ(E)

E

∫
Ω
|∇yt|2 dx dt

+
2α

m1

∫ T

S

ϕ(E)

E

∫
Ω
∇y∇θ dx dt+

α

β

∫ T

S

ϕ(E)

E

∫
Ω
|θ|2 dx dt.

(4.47)

Since E is nonincreasing, s → ϕ(s)

s
is non decreasing, using Young’s, Sobolev embedding in-

equalities and (4.2), we have∣∣∣∣∫
Ω
yyt dx

∣∣∣∣ ≤ ε

2
‖yt‖22 + 2C(ε)‖y‖22

≤ ε

2
‖yt‖22 + 2C(ε)‖∇y‖22

≤ εE(t) + 2C(ε)φ̃−1(E(t)),

2

m1

∣∣∣∣∣
[
ϕ(E)

E

∫
Ω
yytdx

]T
S

∣∣∣∣∣ ≤ εϕ(E(S)) + C(ε)
ϕ(E(S))

E(S)
φ̃−1(E(S)), (4.48)

and

2

m1

∫ T

S

(
ϕ(E)

E

)′ ∫
Ω
yyt dx dt ≤ ε

∫ T

S

(
−
(
ϕ(E)

E

)′ )
E dt+ C(ε)

∫ T

S

(
−
(
ϕ(E)

E

)′ )
φ̃−1(E) dt

≤ εϕ(E(S)) + C(ε)
ϕ(E(S))

E(S)
φ̃−1(E(S)).

(4.49)

Similarly, ∣∣∣∣∫
Ω
∇y∇yt dx

∣∣∣∣ ≤ εE(t) + 2C(ε)φ̃−1(E(t)),

2γ

m1

∣∣∣∣∣
[
ϕ(E)

E

∫
Ω
∇y∇ytdx

]T
S

∣∣∣∣∣ ≤ εϕ(E(S)) + C(ε)
ϕ(E(S))

E(S)
φ̃−1(E(S)), (4.50)

and

2γ

m1

∫ T

S

(
ϕ(E)

E

)′ ∫
Ω
∇y∇yt dx dt ≤ ε

∫ T

S

(
−
(
ϕ(E)

E

)′ )
E dt+ C(ε)

∫ T

S

(
−
(
ϕ(E)

E

)′ )
φ̃−1(E) dt

≤ εϕ(E(S)) + C(ε)
ϕ(E(S))

E(S)
φ̃−1(E(S)),

(4.51)
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and
α

β

∫ T

S

ϕ(E)

E

∫
Ω
|θ|2 dx dt ≤ C0

∫ T

S

ϕ(E)

E
(−E′) dt

≤ C0ϕ(E(S)),

(4.52)

and

2α

m1

∣∣∣∣∫ T

S

ϕ(E)

E

∫
Ω
∇y∇θ dx dt

∣∣∣∣ ≤ ε∫ T

S

ϕ(E)

E
φ̃−1(E) dt+ C0(ε)

∫ T

S

ϕ(E)

E
(−E′) dt

≤ ε
∫ T

S

ϕ(E)

E
φ̃−1(E) dt+ C0(ε)ϕ(E(S)).

(4.53)

Reporting (4.48)-(4.53) in (4.47), we get

2

∫ T

S
ϕ(E) +

∫ T

S

ϕ(E)

E
φ(‖∇y(t)‖2)

∫
Ω
|∇y(t)|2 dx dt

≤ C1ϕ(E(S)) + C(ε)
ϕ(E(S))

E(S)
φ̃−1(E(S)) + ε

∫ T

S

ϕ(E)

E
φ̃−1(E) dt

+
2 +m1

m1
(cs + γ)

∫ T

s

ϕ(E)

E

∫
Ω
|∇yt|2 dx dt.

(4.54)

Step 2: In this step, we are going to estimate the term
∫ T
S

ϕ(E)
E

∫
Ω |∇yt|

2 dx dt.

We Multiplying the second Eq of (4.1) by
ϕ(E)

E
yt integrating by parts over Ω×(S, T ), we obtain

0 =

∫ T

S

ϕ(E)

E

∫
Ω
yt (θt − σ∆θ − β∆yt) dx dt

=

[
ϕ(E(t))

E(t)

∫
Ω
ytθ dx

]T
S

−
∫ T

S

ϕ(E)

E

∫
Ω
yttθ dx dt−

∫ T

S

(
ϕ(E)

E

)′ ∫
Ω
ytθ dx dt

+ σ

∫ T

S

ϕ(E)

E

∫
Ω
∇yt∇θ dx dt+ β

∫ T

S

ϕ(E)

E

∫
Ω
|∇yt|2 dx dt.

Then,

β

∫ T

S

ϕ(E)

E

∫
Ω
|∇yt|2 dx dt = −

[
ϕ(E(t))

E(t)

∫
Ω
ytθ dx

]T
S

+

∫ T

S

ϕ(E)

E

∫
Ω
yttθ dx dt

+

∫ T

S

(
ϕ(E)

E

)′ ∫
Ω
ytθ dx dt− σ

∫ T

S

ϕ(E)

E

∫
Ω
∇yt∇θ dx dt.

(4.55)

Since E is nonincreasing, using the Cauchy-Schwarz inequality and (4.3), we have∣∣∣∣∣
[
ϕ(E(t))

E(t)

∫
Ω
ytθdx

]T
S

∣∣∣∣∣ ≤ C0ϕ(E(S)), (4.56)

∫ T

S

(
ϕ(E(t))

E(t)

)′ ∫
Ω
ytθ dx dt ≤

∫ T

S

(
−
(
ϕ(E(t))

E(t)

)′ )∫
Ω
ytθ dx dt

≤ C0ϕ(E(S)).

(4.57)
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Thanks to Young inequality, we obtain

σ

∫ T

S

ϕ(E(t))

E(t)

∫
Ω
∇yt∇θ dx dt ≤

β

2

∫ T

S

ϕ(E(t))

E(t)

∫
Ω
|∇yt|2 dx dt+

σ2

2β

∫ T

S

ϕ(E(t))

E(t)

∫
Ω
|∇θ|2dxdt

≤ β

2

∫ T

S

ϕ(E(t))

E(t)

∫
Ω
|∇yt|2 dx dt+

σ2

2α

∫ T

S

ϕ(E(t))

E(t)
(−E′) dt

≤ β

2

∫ T

S

ϕ(E(t))

E(t)

∫
Ω
|∇yt|2 dx dt+ C0ϕ(E(S)).

(4.58)

Substituting (4.56)-(4.58) in (4.55), we get

β

2

∫ T

S

ϕ(E(t))

E(t)

∫
Ω
|∇yt|2 dx dt ≤ C0ϕ(E(S)) +

∫ T

S

ϕ(E(t))

E(t)

∫
Ω
yttθ dx dt.

Choosing γ > cs, we obtain

2 +m1

m1
(cs + γ)

∫ T

S

ϕ(E(t))

E(t)

∫
Ω
|∇yt|2 dx dt ≤ Cϕ(E(S)) +

γ

β
C ′
∫ T

S

ϕ(E(t))

E(t)

∫
Ω
yttθ dx dt.

(4.59)

Step 3: In this step, we are going to estimate the term C ′
∫ T
S

ϕ(E(t))

E(t)

∫
Ω yttθ dx dt.

Exploiting Young’s, Poincaré inequalities and (3.17), we obtain

C ′
∣∣∣ ∫ T

S

ϕ(E(t))

E(t)

∫
Ω
yttθ dx dt

∣∣∣ ≤ 1

2

∫ T

S

ϕ(E(t))

E(t)

∫
Ω
|ytt|2 dx dt+

C ′2

2

∫ T

S

ϕ(E(t))

E(t)

∫
Ω
|θ|2 dx dt

≤ cs
2

∫ T

S

ϕ(E(t))

E(t)

∫
Ω
|∇ytt|2 dx dt+ C

∫ T

S

ϕ(E(t))

E(t)

∫
Ω
|∇θ|2 dx dt

≤ γ

2

∫ T

S

ϕ(E(t))

E(t)

∫
Ω
|∇ytt|2 dx dt+ C

∫ T

S

ϕ(E(t))

E(t)
(−E′(t)) dx dt.

(4.60)

Step 4: In this step, estimate for γ
2

∫ T
S

ϕ(E(t))

E(t)

∫
Ω |∇ytt|

2 dx dt. We multiplying the first Eq of

(4.1) by
ϕ(E)

E
ytt integrating over Ω× (S, T ), we obtain

∫ T

S

ϕ(E(t))

E(t)

∫
Ω
ytt(ytt − φ(‖∇y(t)‖2)∆y − γ∆ytt + α∆θ) dx dt = 0,

applying Green’s formula, we derive

γ

∫ T

S

ϕ(E(t))

E(t)

∫
Ω
|∇ytt|2 dx dt = −

∫ T

S

ϕ(E(t))

E(t)

∫
Ω
|ytt|2 dx dt−

∫ T

S

ϕ(E(t))

E(t)
φ(‖∇y(t)‖2

∫
Ω
∇y∇ytt dx dt

+ α

∫ T

S

ϕ(E(t))

E(t)

∫
Ω
∇θ∇ytt dx dt.

(4.61)
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The application of Young inequality shows∫ T

S

ϕ(E(t))

E(t)
φ(‖∇y(t)‖2

∫
Ω
∇y∇ytt dx dt ≤

γ

4

∫ T

S

ϕ(E(t))

E(t)

∫
Ω
|∇ytt|2 dx dt

+
1

γ

∫ T

S

ϕ(E(t))

E(t)

(
φ(‖∇y(t)‖2)

)2
∫

Ω
|∇y|2 dx dt.

(4.62)

Similarly, we have

α

∫ T

S

ϕ(E(t))

E(t)

∫
Ω
∇θ∇ytt dx dt ≤

γ

4

∫ T

S

ϕ(E(t))

E(t)

∫
Ω
|∇ytt|2 dx dt+

α2

γ

∫ T

S

ϕ(E(t))

E(t)

∫
Ω
|∇θ|2 dx dt

≤ γ

4

∫ T

S

ϕ(E(t))

E(t)

∫
Ω
|∇ytt|2 dx dt+ C

∫ T

S

ϕ(E(t))

E(t)
(−E)′ dt

(4.63)

The use of (4.62) and (4.63) in (4.61), gives

γ

2

∫ T

S

ϕ(E(t))

E(t)

∫
Ω
|∇ytt|2 dx dt ≤

1

γ

∫ T

S

ϕ(E(t))

E(t)

(
φ(‖∇y(t)‖2)

)2
∫

Ω
|∇y|2 dx dt+ C

∫ T

S

ϕ(E(t))

E(t)
(−E)′ dt.

(4.64)

By replacing (4.64) in (4.60), we have

C ′
∫ T

S

ϕ(E(t))

E(t)

∫
Ω
θytt dx dt ≤

1

γ

∫ T

S

ϕ(E(t))

E(t)

(
φ(‖∇y(t)‖2)

)2
∫

Ω
|∇y|2 dx dt+ Cϕ(E(S)).

(4.65)

To complete the proof of Theorem 4.2.2. reporting (4.59), (4.65) in (4.54), we get

2

∫ T

S
ϕ(E) +

∫ T

S

ϕ(E)

E
φ(‖∇y(t)‖2)

(
1− 1

β
φ(‖∇y(t)‖2)

)∫
Ω
|∇y(t)|2 dx dt

≤ C1ϕ(E(S)) + C(ε)
ϕ(E(S))

E(S)
φ̃−1(E(S)) + ε

∫ T

S

ϕ(E)

E
φ̃−1(E) dt.

(4.66)

Using the fact that φ̃−1(s) ≤ cs and choosing 1
β and ε small enough, we deduce from (4.66)∫ T

S
ϕ(E(t)) dt ≤ C2ϕ(E(S)).

Hence, the claimed uniform exponential decay estimate, thanks to Lemma 4.4.1 with ψ(s) = ϕ(s) = s.

80



Conclusion and prospects

After we prove the existence and uniqueness of the solution it crosses our minds the most important

question which is asymptotic behavior. That means: Does it exist for all time? And what is its

behavior in big time ( exponential decay, polynomial decay, logarithmic decay, ... etc)? We have

studied in the last part of this thesis the coupled system consisting of the Kirchhoff equation and

the heat equation ,we establish the well-posedness result by using the Faedo-Galerkin scheme. In the

future we can show the solution’s existence by the the nonlinear semigroup theory. .
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