
 الجمهوريــة الجزائريــة الديمقراطيــة الشعبيــة

People’s Democratic Republic of Algeria

 و الـبــحـــث العـــلـــمـــي وزارة الـتعـلــيــم الـعـالي

Ministry of Higher Education and Scientific Research

DOCTORAL THESIS
A thesis submitted in partial fulfilment of the requirements for the 3rd cycle (LMD) PhD degree in informatics

Option: Artificial Intelligence and Its Applications

Entitled:

Presented by: Abdessamed Ouessai

On: 13/07/2022

Before the Committee:

Academic Year: 2021-2022

University of Mascara MCA Rochdi Bachir Bouiadjra President

University of Mascara MCA Mohammed Rebbah Examiner

University of Relizane MCA Ahmed Louazani Examiner

University of Mascara MCA Mohammed Salem Supervisor

University of Granada, Spain Pr Antonio M. Mora Co-Supervisor

University of Granada, Spain MCA Antonio Fernández-Ares Invitee

 ـي ـة مصـطــفــى اسطمــبــولــــجامع
 كـــر معس

 Mustapha Stambouli University
Mascara

 Faculty of Exact Sciences ةـــقــيـدقـوم الـــة العلـــكلي

 Computer Science Department يــــــلام الألـــــم الإعـــقس

Developing Intelligent Bots for Real-Time
Strategy Games

To my parents, Faffa Zerrouki and Bachir Ouessai

For the unconditional, unlimited support.

iii

Acknowledgements

First and foremost, I would like to thank “Allah” for the strength bestowed
upon me to keep moving forward.

This work would have never seen the light of day without the active support
of my supervisor, Dr Mohammed Salem, whom I cannot thank enough for his
passionate, charismatic, and human-first guidance. Thank you for tolerating my
peculiar attitude.

My special thanks go to my co-supervisor Dr Antonio M. Mora who provided
an uninterrupted stream of exceptional advice for four years, even during the most
difficult times. Dr Antonio always kept his outstanding expertise within reach,
never objecting to the length of my emails or my poor handling of deadlines. Thank
you.

I express my utmost gratitude to the committee members for the time and efforts
they spent reviewing this thesis, namely committee president Dr Rochdi Bachir
Bouiadjra, Dr Mohammed Rebbah, Dr Ahmed Louazani, and Dr Antonio Fernán-
dez-Ares.

I would not miss the chance to thank my License supervisor Dr Djelloul Moka-
dem for inspiring my academic journey. I also extend my gratitude to Dr Abderrah-
mane Bendahmane, my Master’s supervisor, for his role in structuring my research
interests.

My thanks also go to the staff of the Faculty of Exact Sciences and the Depart-
ment of Computer Science, at the University of Mascara, for the remarkable organi-
zational and academic efforts.

Lastly, I would like to thank my parents and my siblings for their patience with
me, without forgetting the three little distractors, Bachirou, Sirine, and Nebras.

iv

Contents

List of Figures viii

List of Tables ix

List of Abbreviations x

1 Introduction 1
1.1 Games and Artificial Intelligence . 2
1.2 Thesis Objective & Contributions . 3
1.3 Thesis Outline . 4

2 Background and State of the Art 6
2.1 Real-Time Strategy (RTS) Games . 7

2.1.1 Origins & Evolution . 8
2.1.2 RTS Elements . 10
2.1.3 Challenges for Humans . 16

2.2 RTS Games & AI . 17
2.2.1 RTS AI in the Industry . 17
2.2.2 RTS AI Research . 17
2.2.3 Challenges for AI . 18
2.2.4 Levels of Abstraction . 19
2.2.5 Research Platforms & µRTS . 21
2.2.6 Formal Definition & Complexity . 23

2.3 Online Adversarial Planing: State of the Art 24
2.3.1 Low-Level Planning (LLP) . 24
2.3.2 High-Level Planning (HLP) . 27

v

Contents vi

2.3.3 Hybrid Planning (HyP) . 31
2.3.4 Partial Observability . 32
2.3.5 State Evaluation . 33

2.4 RTS AI Competitions . 34
2.5 Summary . 34

3 Move Pruning in MCTS 37
3.1 Monte-Carlo Tree Search (MCTS) . 38

3.1.1 Upper Confidence bounds for Trees (UCT) 39
3.1.2 NaïveMCTS . 40

3.2 Related Works . 41
3.3 Move Pruning . 42

3.3.1 Unit-Actions and Player-Actions . 43
3.3.2 Inactive Player-Actions (IPAs) . 44
3.3.3 Pruning Techniques . 45

3.4 Experiments & Results . 46
3.4.1 Pruning Analysis . 47
3.4.2 Best Pruning Approaches . 49
3.4.3 Performance Analysis . 50
3.4.4 Branching Factor & Scalability . 52

3.5 Summary . 53

4 Parametric Action Preselection 55
4.1 Related Works . 56

4.1.1 Relation with Dynamic Scripting . 57
4.2 Parametric Action Preselection . 57

4.2.1 Formal Definition . 59
4.2.2 Implementation: ParaMCTS . 61

4.3 Experiments & Results . 64
4.3.1 Experiments 1 & 2: Search Depth and Playout Duration 65
4.3.2 Experiment 3: Comparison Against State-of-the-Art 67
4.3.3 UMSBot: ParaMCTS in the µRTS Competition 69

4.4 Summary . 69

5 Evolutionary Action Preselection 72
5.1 Related Works . 73

5.1.1 Relation with Hyper-Heuristics . 74
5.2 Evolutionary Algorithms (EAs) . 74

Contents vii

5.3 Evolving Action Preselection Parameters 76
5.3.1 Encoding . 76
5.3.2 Fitness Function . 77
5.3.3 Genetic Operators . 78

5.4 Experiments & Results . 78
5.4.1 Experiment 1: Evolving Preselection Parameters 79
5.4.2 Experiment 2: Performance Validation 84

5.5 Summary . 87

6 Conclusion 88
6.1 Future Research Perspectives . 90

Appendix A ParaMCTS Parameters 92

References 96

List of Figures

2.1 Screenshot of an actual RTS game . 8
2.2 A screenshot of a STARCRAFT II player base. 11
2.3 The technology tree of the STARCRAFT II’s Protoss faction. 14
2.4 A selection of STARCRAFT II game maps. 15
2.5 RTS sub-problems and the levels of abstraction. 20
2.6 A graphical visualization of a µRTS match in a 10× 10 map. 22
2.7 A game-tree representation. 25

3.1 The four phases of MCTS . 39
3.2 Results of the pruning analysis experiments. 48
3.3 Results of the tournament in each map. 51

4.1 Action preselection in Monte-Carlo Tree Search (MCTS) 59
4.2 The action preselection process T . 60
4.3 The maps used in the experiments. 65
4.4 The results obtained by each ParaMCTS(depth, duration) variant. 66
4.5 Third experiment tournament results by map. 68

5.1 The encoding of a genotype. 77
5.2 The maps used in the experiments. 79
5.3 The evolution of fitness in each map. 82

viii

List of Tables

2.1 The Top 3 Contenders of Previous µRTS Competitions. 34

3.1 The unit-action types available for each unit-type in µRTS. 43
3.2 The best performing pruning approaches, by map size and search algorithm. 50
3.3 Overall tournament results . 51
3.4 Branching factor, sampled actions, and IPA pruning statistics 52
3.5 NMCTS-RIP-F(0) results versus NaïveMCTS in larger maps. 53

4.1 Results of the second experiment. 67
4.2 Overall results of the third experiment’s tournament. 68
4.3 Results of the Classic Track tournament of the 4th µRTS competition 70

5.1 The parameters of the GA used in EvoPMCTS parameter optimization 80
5.2 Results of the final tournament in the five maps. 85

A.1 Properties of Phase 1 heuristics parameters (θ1) 93
A.2 Properties of Phase 2 heuristics parameters (θ2) 95
A.3 Properties of heuristic-switching and post-processing parameters. 95
A.4 Properties of NaïveMCTS parameters. 95

ix

List of Abbreviations

AI Artificial Intelligence . 2

RL Reinforcement Learning . 2

RTS Real-Time Strategy . 3

MCTS Monte-Carlo Tree Search . 3

NPC Non-Playable Character . 3

PCG Procedural Content Generation . 3

EA Evolutionary Algorithm . 3

CoG Conference on Games . 4

MOBA Multiplayer Online Battle Arena . 10

DoTA DEFENSE OF THE ANCIENTS . 10

PC Personal Computer . 10

HP Health Points . 10

HUD Heads-Up Display . 15

FSM Finite-State Machine . 17

hFSM Hierarchical Finite-State Machine . 17

GA Genetic Algorithm . 20

API Application Programming Interface . 21

BWAPI Brood War Application Programming Interface 21

LLP Low-Level Planning . 24

HLP High-Level Planning . 24

HyP Hybrid Planning . 24

RTMM Real-Time MiniMax . 25

ABCD Alpha-Beta Considering Duration . 25

x

List of Abbreviations xi

UCT Upper Confidence bounds for Trees . 26

MAB Multi-Armed Bandit . 26

UCB Upper Confidence Bounds . 26

CMAB Combinatorial Multi-Armed Bandit . 26

LSI Linear Side Information . 26

PGS Portfolio Greedy Search . 27

POE Portfolio Online Evolution . 27

NGS Nested Greedy Search . 27

SSS Stratified Strategy Selection . 28

PS Puppet Search . 28

A1N Abstraction 1 NaïveMCTS . 28

A2N Abstraction 2 NaïveMCTS . 28

A3N Abstraction 3 NaïveMCTS . 28

SCV Strategy Creation via Voting . 29

CNN Convolutional Neural Network . 29

CNB Calibrated Naïve Bayes . 29

AIM Action-type Interdependence Model . 29

MDP Markov Decision Process . 30

HTN Hierarchical Task Network . 30

CCG Combinatory Categorial Grammar . 30

AHTN Adversarial Hierarchical Task Network . 30

NLP Natural Language Processing . 30

BFS Breadth-First Search . 31

STT Strategy Tactics . 31

GNS Guided NaïveMCTS . 32

RDU Rank Dependent Utility . 33

LTD Lifetime Damage . 33

FCN Fully Convolutional Network . 33

IPA Inactive Player-Action . 38

RIP-F(k) Random Inactivity Pruning - Fixed . 45

RIP-R(p) Random Inactivity Pruning - Relative 45

DRIP-F(k1, k2) Dynamic Random Inactivity Pruning - Fixed 45

DRIP-R(p1, p2) Dynamic Random Inactivity Pruning - Relative 45

RIP Random Inactivity Pruning . 50

List of Abbreviations xii

UMSBot University of Mustapha Stambouli Bot 69

GP Genetic Programming . 73

COEP Continual Online Evolutionary Planning 74

ES Evolutionary Strategy . 75

EP Evolutionary Programming . 75

COP Combinatorial Optimization Problem . 76

1

Introduction

“A computer would deserve to be called intelligent if it
could deceive a human into believing that it was
human.”

— Alan Turing

Ever since the dawn of humanity, games occupied a prominent position as a widespread
sociocultural phenomenon. There is no culture or civilization that roamed the earth and
did not engage in some form of ludic activity, regardless of the motives. People played
games for different reasons, entertainment being the most notable one, but hardly the
only one. Ruling elites and military leaders used board games as a safe way to sharpen
and develop their strategic decision-making abilities. Non-elites were mostly inter-
ested in physically-challenging games that helped enhance their fitness and physical
readiness for the serious tasks ahead. And of course, gambling games were a way for
the lucky ones to make quick money, despite the questionable nature of such games.
Clearly, games offered an enticing fusion of fun and benefit that not only kept them
relevant, but also continued to amplify their prominence until this day.

Nowadays, with the broad adoption of digital platforms (PCs, Smartphones, Tablets,
Smart TVs...etc.) digital games, also known as Video Games, emerged as this era’s de
facto form of games. Any digital platform can host digital games, and some platforms
exist solely for this purpose (i.e. Game Consoles). Each year, a plethora of games are re-
leased and enjoyed by millions around the globe. The game industry is an ever-growing
behemoth, counting thousands of game development studios, and thousands of sup-
porting hardware, software, and artistic production companies. Huge budgets are allo-
cated for the development of the next big franchises, and a wide array of cutting-edge
technologies continuously contribute to their success. Games transitioned from a sim-

1

Chapter 1. Introduction 1.1. Games and Artificial Intelligence

ple and quick, fun and profit activity, to a full-fledged medium of expression integrating
art, science, and technology.

Other sectors are taking cues from the discipline of game design to make serious,
dry, and often daunting tasks much more approachable, and even fun to do. Known
as Gamification, this growing trend is becoming more ubiquitous in logistical indus-
tries, education, health, and military sectors, just to name a few. Moreover, anyone
with a smartphone can easily find and interact with a host of gamified apps conceived
to reduce the friction associated with doing unpleasant tasks, such as learning a new
language, dropping detrimental habits, or engaging in physical activities.

1.1 | Games and Artificial Intelligence
Games helped in bringing forward and shaping Artificial Intelligence (AI) to reach its
current state. Early computer science pioneers viewed cognitively-demanding board
games, in the vein of Chess and Checkers, as the perfect environments to study ma-
chine intelligence. A machine was considered intelligent if it could play these games
at a human-comparable level. One of the very first attempts to solve Chess was at-
tempted by none other than Claude Shannon (Shannon, 1950), who devised a MiniMax
approach using a manually designed approximate state evaluation function. Later, Tur-
ing (1953) proposed an approach to program computers to play Chess and Checkers.
Both Alan Turing and Claude Shannon considered solving these games as an important
first step towards tackling more significant machine intelligence problems. Decades
later, Checkers has been solved (Schaeffer et al., 2007), Chess AI saw tremendous ad-
vances (Campbell et al., 2002), and the mindset of using games as a hatchery for AI
techniques remained.

Academia gradually adopted this point of view, and research questions concerning
more complex and more interesting games kept emerging, leading to the development
of numerous AI techniques and frameworks, such as Reinforcement Learning (RL) (Sut-
ton and Barto, 2018). With the democratization of digital games, AI researchers were at-
tracted to the extent of possibilities offered by this new medium. Digital games offered
a set of rich, complex, and controlled environments, perfect for use as experimentation
grounds for a class of problems previously difficult to approach otherwise. Laird and
VanLent (2001) issued a call to expand AI research through digital games, and expected
the endeavor to eventually lead AI towards human-level performance. Since then, reg-
ular academic gatherings and publications took form around the subject of Games and
AI, leading to an explosion in the number of research papers and academics studying

2

Chapter 1. Introduction 1.2. Thesis Objective & Contributions

the subject.
The game industry views AI differently. Employing AI within a digital game is

usually driven by an economic need to increase the value of the game product, which
would in-turn increase sales and profits. The goal of a professional AI programmer is
not to advance the AI state-of-the-art, but to create artificial agents capable of generating
good entertainment value that caters to players of all skill levels, while providing a high
degree of immersion. In general, game industry professionals do not place too much
trust in cutting-edge AI techniques developed in academia, citing their experimental
nature that does not yet account for the strict technical and usability requirements of
commercial game products. Still, if a technique is too useful to ignore, it will find its
way into commercial games, albeit in a more adapted and less-experimental form.

For both sides, the utility of AI in games does not stop at developing highly in-
telligent/entertaining game-playing agents or Non-Playable Characters (NPCs). AI is
also used to automatically generate game content (Levels, characters, art, items, ..., etc.)
through Procedural Content Generation (PCG), and to understand and fine-tune game
parameters by analyzing player behavior and emotions in play-testing phases, a prac-
tice known as Player-Modeling (Yannakakis and Togelius, 2018).

1.2 | Thesis Objective & Contributions
In line with the academic perspective of the relationship between AI and games, the
objective of this thesis is to study and develop intelligent game-playing agents for one
of the most difficult digital games subgenre for AI, namely Real-Time Strategy (RTS)
games. As a research domain, RTS games succeeded in attracting a large pool of aca-
demic and corporate researchers, due to their many AI challenges closely related to
real-world problems, and because of their complexity, many orders of magnitude above
previous AI benchmark games (Chess and Go).

In this thesis, we will discuss some successful propositions developed for adapting
and improving the emerging Monte-Carlo Tree Search (MCTS) holistic AI framework
for RTS game-playing agents, through the use of domain knowledge. In particular, we
will demonstrate that pruning detrimental moves from the search space could result
in a sizable performance gain for MCTS-based agents (Ouessai et al., 2020a). We will
also present a flexible action abstraction framework built on RTS heuristics and an ac-
tion preselection process that precedes the execution of MCTS to frame and restrict the
enormous decision space (Ouessai et al., 2020b). We will also show that our preselection
framework can perform better if we optimize its parameters through an Evolutionary

3

Chapter 1. Introduction 1.3. Thesis Outline

Algorithm (EA) (Ouessai et al., 2022). All proposals were validated by experiments car-
ried out using µRTS, a lightweight, fast, and research-focused RTS simulator.

The research work on this thesis resulted in several scientific contributions, includ-
ing multiple communications and a journal publication, as shown in the following
chronologically ordered list:

■ Communication: A. Ouessai, M. Salem, and A. M. Mora, “Online Adversarial
Planning in µRTS: A Survey” presented at the 2019 International Conference on
Theoretical and Applicative Aspects of Computer Science (ICTAACS), Skikda, Al-
geria, Dec. 2019.

■ Communication: A. Ouessai, M. Salem, and A. M. Mora, “Improving the Perfor-
mance of MCTS-Based µRTS Agents Through Move Pruning” presented virtually
at the 2020 IEEE Conference on Games (CoG), Osaka, Japan, Aug. 2020.

■ Communication: A. Ouessai, M. Salem, and A. M. Mora, “Parametric Action Pre-
Selection for MCTS in Real-Time Strategy Games” presented virtually at the VI
Congress of the Spanish Society for Video Game Sciences (CoSECiVi), Madrid,
Spain, Oct. 2020.

■ Publication: A. Ouessai, M. Salem, and A. M. Mora, “Evolving action pre-selec-
tion parameters for MCTS in real-time strategy games” Entertainment Comput-
ing, vol. 42, p. 100493, May 2022.

1.3 | Thesis Outline
This thesis is structured around six chapters, including this introduction and a conclu-
sion, plus an appendix. In the following, we provide a short description of the subjects
treated by the subsequent chapters:

■ Chapter 2 - Background and State of the Art: This chapter combines essential RTS
background information with a listing of the most important works in the domain
of RTS AI.

■ Chapter 3 - Move Pruning in MCTS: In this chapter we describe a domain know-
ledge-based, detrimental move pruning approach applied to the MCTS frame-
work.

4

Chapter 1. Introduction 1.3. Thesis Outline

■ Chapter 4 - Parametric Action Preselection: Here, we introduce an action abstrac-
tion framework, based on RTS heuristics, that can effectively restrict and frame the
RTS search space for subsequent planning or search algorithms, such as MCTS.

■ Chapter 5 - Evolutionary Action Preselection: In this chapter, we employ an EA
to optimize the parameters of our action preselection framework in various envi-
ronments, against strong state-of-the-art agents.

■ Chapter 6 - Conclusion: Summarizes all the approaches discussed in the thesis,
and discusses other areas of applications, and future research perspectives.

■ Appendix A - ParaMCTS Parameters: This appendix contains the full description
of the parameters of our proposed action preselection algorithm, ParaMCTS.

5

2

Background and State of the Art

“Perception is strong and sight weak. In strategy, it is
important to see distant things as if they were close and
to take a distanced view of close things”

— Miyamoto Musashi

Digital games (henceforth, games) come in diverse forms and dimensions. A game is de-
fined by its set of rules, challenges, and objectives, that distinguish it from other games.
Games sharing a similar set of rules, challenges, and objectives are grouped together
under the same category, known as the game genre. When new design variations arise
within the same genre, creating significant dissimilarities between games of the same
genre, subgenres are born and later grown into their own genres. Game aesthetics do
not play a major role in genre definition. Genres evolved from classical games, and new
genres emerge each time a new game could not fit the blueprints of the existing genres.
According to Fencott (2012), 389 genre names were recorded in circulation, from which
we can cite the most popular ones: Action, Adventure, Role-Playing, Sports, Simulators,
Survival, Strategy, ..., etc. New genres, and hybrid genres, keep appearing; such as the
PCG-heavy Roguelike, or the technical Soulslike.

RTS games initially emerged as a subgenre of Strategy games, distinguished by their
real-time constraint responsible for several challenging ramifications, asymmetrically
impacting human and artificial players. Nowadays, RTS games represent an indepen-
dent genre spanning hundreds of games, several candidate subgenres, and professional
e-sports leagues and tournaments. In this chapter, we define RTS games and their spe-
cific characteristics, and explain why they constitute an attractive AI research test-bed.
We also provide a global view of the RTS AI state-of-the-art, with a focus on online ad-

6

Chapter 2. Background and State of the Art 2.1. Real-Time Strategy (RTS) Games

versarial planning techniques that succeeded in dealing with the complexities of RTS AI
challenges (Ouessai et al., 2019).

2.1 | Real-Time Strategy (RTS) Games
RTS games follow a simple formula derived from the dynamics of veritable warfare sit-
uations. Essentially, an RTS game is a computer-based warfare simulator that offers the
necessary means for players to embody the role of a filed-commander participating in
an armed conflict of considerable scale. An RTS match involves at least two players
representing opposing field-commanders, each trying to annihilate the opposing side’s
forces to achieve victory. To realize their objectives, players must initiate and develop
an economy by exploiting resources previously discovered in the environment. The
economy is then put to use to support training and enhancing an army, composed of
heterogeneous units, which would engage in diverse military operations such as de-
fending own bases or capturing enemy bases. A match takes place in an environment,
known as the game map, representing the conflict zone. There can be several types of
game maps, and each one may offer unique challenges and features that would force
players to develop map-specific strategies. The events of an RTS match happen in real-
time, which signifies that players do not take turns to execute their actions, instead, they
may issue orders to their units at any point in time. Winning an RTS match requires a
combination of judicious strategic planning and astute tactical maneuvering.

Figure 2.1 presents a screen capture of an RTS match in Microsoft’s influential RTS
title, AGE OF EMPIRES IV (2021). This is an instance of a medieval-setting RTS game, as
can be seen from the weaponry and outfits of units. Figure 2.1’s screen was captured in
the midst of a confrontation between two army squads belonging to the two participat-
ing players. The figure also highlights a user interface control cluster, and a minimap.
The latter is essential in keeping up with the events happening in every controlled zone
of the game map.

The RTS formula tolerates a degree of variability to preserve originality among the
different RTS games. For instance, the types and attributes of units and resources, the
physical properties of the game map, and the overall degree of realism, are known to
vary from one RTS game to another. The game setting holds an important and direct
influence on game-specific variations. For example, a medieval setting (as shown in
Figure 2.1) cannot include flying units, as in a modern or sci-fi setting. The game setting
also dictates the number and characteristics of the available factions. A faction repre-
sents a distinctive set of units and structures, with unique attributes, abilities, and me-

7

Chapter 2. Background and State of the Art 2.1. Real-Time Strategy (RTS) Games

Figure 2.1: Screenshot of an actual PC RTS match from the popular RTS
game AGE OF EMPIRES IV. This screenshot depicts a real-time battle un-
folding between two players, identified by the color of their units (blue
vs. red).

chanics. Opposing players may choose different factions in the same match (asymmet-
ric factions), oppenning up new strategic and tactical pathways for every combination
of opposing factions. For instance, AGE OF EMPIRES IV (2021) features eight factions,
called civilizations, that include representations of The Abbasid Dynasty and The Holy
Roman Empire. The RTS formula, and its space of variations, came as the result of years
of experiments and refinements, as we will see next.

2.1.1 | Origins & Evolution
Original strategy board games, in the vein of Chess, Checkers, Shogi, and Go, are turn-
based by nature. In such games, players can afford the luxury of stress-free careful
planning. Playing these games in real-time, within the constrained physical medium
of boards and pieces, does not make sense. Early digital strategy games, such as IN-
VASION (1972) and COMPUTER BISMARK (1980), adopted the turn-based system from
board games (Walker, 2002), but it was clear that the new medium could support more

8

Chapter 2. Background and State of the Art 2.1. Real-Time Strategy (RTS) Games

interesting play styles. The first strategy games to experiment with a real-time compo-
nent were UTOPIA (1981) by Don Daglow, and CYTRON MASTERS (1982) by Danielle
Bunten. The first sought to blend real-time events with turn-based cycles, and the
second limited real-time interactions to short-term tactical planning sequences. These
games symbolized a proof of concept that led the way to more interesting developments
(Barton, 2007; Moss, 2017).

Dan Adams (2006) affirm that THE ANCIENT ART OF WAR (1984) by Dave and
Barry Murry was the very first fully real-time strategy game, followed later by Tech-
nosoft’s HERZOG ZWEI (1989) (Sharkey, 2004). Both games helped in forming the first
RTS games template, but the influence of HERZOG ZWEI was more significant due to
its introduction of many of the genre’s distinctive mechanics such as unit training, re-
source management, and base building and destruction. HERZOG ZWEI is considered
as the precursor of modern RTS games, and is often credited for inspiring the emergence
of the acclaimed RTS game, DUNE II (1992) (Clarke-Willson, 1998; Sharkey, 2004). West-
wood’s DUNE II was the culmination of the preceding technical and creative efforts,
it successfully combined the fledgling RTS mechanics scattered across prior pre-RTS
games, and presented them in a remarkably coherent and modern package. DUNE II
was the first game to actually use the “Real-Time Strategy” term, coined by its producer
Brett Sperry, to define its genre (Geryk, 2011). This last development ushered in the
mainstream popularization of the RTS subgenre as a standalone genre.

Following the success of DUNE II, and the solidification of the fundamental RTS
formula, several inaugural titles of today’s big RTS franchises materialized in the pe-
riod of the nineties (Dan Adams, 2006; Walker, 2002). Blizzard Entertainment released
the fantasy RTS WARCRAFT: ORCS & HUMANS (1994), which served as the basis for
their second RTS, STARCRAFT (1998), featuring a Sci-Fi setting and vastly improved
gameplay mechanics. Westwood’s next RTS attempt developed into the highly influen-
tial COMMAND & CONQUER (1995). Ensemble Studios sought to create a slow-paced
RTS game by introducing the concept of technological ages in AGE OF EMPIRES (1997).
The transition from two-dimensional (2D) to three-dimensional (3D) graphics engines
opened up new perspectives for the RTS genre. It became possible to integrate realistic
physics, larger game maps, higher maximum units count, and more features. HOME-
WORLD (1999), one of the first 3D RTS games, took the genre to an interesting, fully 3D,
outer-space warfare setting with six degrees of freedom.

Nowadays, with the widespread availability of powerful microchips and sophisti-
cated game engines, RTS game developers do not shy away from harnessing the full
potential of advanced technologies to dramatically raise the scale and fidelity of their
games. One striking example is the immense-scale and complexity of Creative Assem-

9

Chapter 2. Background and State of the Art 2.1. Real-Time Strategy (RTS) Games

bly’s TOTAL WAR (2000-2022) RTS franchise. A noteworthy RTS subgenre known as
Multiplayer Online Battle Arena (MOBA) focuses on the tactical control of a single unit
in a fast-paced confrontation between other players’ units, across the network. This
subgenre was born as a custom mode for WARCRAFT III (2003), called DEFENSE OF

THE ANCIENTS (DoTA), then matured as a proper genre with games like LEAGUE OF

LEGENDS and HEROES OF THE STORM (Minotti, 2014).
It is worth mentioning that RTS games remain predominantly Personal Computer

(PC) games. The mouse and keyboard combination was critical in facilitating the com-
plex control scheme demanded by RTS games. Today’s most important RTS games
includes the following: STARCRAFT II, TOTAL WAR WARHAMMER series, AGE OF EM-
PIRES IV, COMPANY OF HEROES 2, and ASHES OF SINGULARITY.

2.1.2 | RTS Elements
RTS games represent a system of several interacting components and ideas that work
in harmony to create the experience and pressure of a warfare situation. Under this
section, we briefly describe the core components and ideas that constitute an RTS game
(Adams, 2014b). Figure 2.2 presents a screenshot of STARCRAFT II, highlighting some
RTS elements discussed below.

2.1.2.1 | Units & Structures
Sometimes collectively referred to just as units, units and structures are the smallest
controllable entities in an RTS game. One may compare units to Chess pieces, although
with a more sophisticated control scheme and some degree of autonomy. A unit is typ-
ically mobile and is produced by some structure. A structure is a fixed building that is
built by specialized units, and offers unit training and upgrading facilities, among many
possible strategic advantages depending on its type. Examples of units and structures
are shown in Figure 2.1 and Figure 2.2. Units and structures may be atomic, or com-
pound, and are distinguished by a list of attributes that define their behavior and type.
Common unit attributes include: Health, Weapon, Damage, Accuracy, Offensive Range,
Vision Range, Fire Rate, Speed, Size, Defensive Dodging, ..., etc (Adams, 2014b). Upon con-
frontation, opposing units deal damage to each other by unit-specific means. A unit or
structure will be removed from the game if it has sustained enough damage equal or
greater than its Health Points (HP).

RTS players usually deal with units of different special abilities, that can affect the
tactics and strategy of play if correctly employed. As examples of units’ special abilities,
we cite the following:

10

Chapter 2. Background and State of the Art 2.1. Real-Time Strategy (RTS) Games

Figure 2.2: A STARCRAFT II screenshot showing the early state of a
player’s base in an RTS match. The player is focused on gathering re-
sources and training assault units, as seen by the concentration of worker
units around resource deposits, and the units in standby.

■ Stealth: The unit may become invisible to enemy units, facilitating sneak tactics.

■ Flying/Sailing: Grants the possibility to travel through terrain inaccessible to
other units.

■ Repair/Heal: The ability to restore the lost HP of allied units.

■ Transport: Makes it possible to rapidly convey a group of units across the map.

■ Constructing/Training: The capacity to build structures or train new units.

■ Leadership: The unit can enhance key combat attributes of nearby units.

11

Chapter 2. Background and State of the Art 2.1. Real-Time Strategy (RTS) Games

2.1.2.2 | Indirect Control
RTS players control their units in an indirect fashion, by issuing orders in the form of
unit-actions to each. This control scheme is important because it allows players to main-
tain granular control over a high number of units, whereas direct control is best-suited
for controlling a single unit at a time. Upon receiving an order, a unit acts autonomously
to execute it, regardless of the type of the unit-action it represents. How the unit behaves
to execute a unit-action is dictated by its attributes, and the internal implementation de-
tails of the game. The following is a list of the most common unit-action orders possible
in an RTS game (Adams, 2014b):

■ Move: Orders the unit to move to a chosen location on the map. The unit usually
uses a pathfinding algorithm to find its way to the destination. The unit may
attack enemy units found in its way.

■ Attack: Initiate an attack on a designated enemy unit. If the target is out of range,
the unit advances towards it.

■ Stop: Halts the execution of any action.

■ Hold: The unit maintains its current position, attacking any unit that may enter
its offensive range.

■ Retreat: Disengage from any combat situation and return to safety.

■ Dash: A quicker Move variant that ignores any enemy units on the way.

■ Patrol: Move back and forth between two waypoints and attack any approaching
enemy unit.

■ Produce: Specific to factory structures. Produce units in exchange for an amount
of resources.

■ Adopt formation: Specific to a group of units. Assume a special tactical formation
in hopes of gaining an advantage.

In Figure 2.2, one may note a unit-actions UI panel containing buttons specific to
each unit-action. Modern RTS games include squad management capabilities that sim-
plify the task of controlling groups of units, by allowing a group to execute a shared
order, instead of having the player manually issue the same order to each group mem-
ber.

12

Chapter 2. Background and State of the Art 2.1. Real-Time Strategy (RTS) Games

2.1.2.3 | Resource Economy
Resources act as a currency within an RTS game, and form the basis of the player’s
economy. Usually, players order special worker units to keep gathering resources from
natural resource deposits until depletion. To train new units and construct structures,
a player must spend a set amount of resources in exchange, relative to the value of the
new unit/structure. There can be multiple types of resources and a future unit/struc-
ture may require different quantities of different resource types. The game setting de-
fines the types of resources available. For instance, medieval settings may use gold,
stone, and wood, as in the AGE OF EMPIRES series. A sci-fi setting as in the STARCRAFT

series, use minerals and “vespene” gas as shown in Figure 2.2, to depict resources. Some
RTS games do not use physical resources, but instead, resort to a resource points accu-
mulation mechanism which grants points by holding strategic locations in the map, as
in COMPANY OF HEROES.

Controlling resource-rich points and interrupting the resource supply lines of op-
posing players are two examples of using resources to gain a strategic advantage.

2.1.2.4 | Technology Trees
Over the course of an RTS match, players may have the opportunity to gradually up-
grade the attributes of their units, or unlock additional unit types, structures, or abilities,
in exchange for resources, or by some other game-specific mechanism. These upgrades
and unlocks are usually structured as a dependency tree, where one upgrade/unlock
leads to new possible upgrades/unlocks. Such a tree is known as the Technology Tree,
and may host many upgrade paths for a player to take from root to leaves, depending
on his strategic approach. An example of a technology tree of moderate complexity,
concerning the Protoss faction of STARCRAFT II, is shown in Figure 2.3. The leaves of
the tree are usually reserved to some high-impact, game-altering abilities or units, like
an atomic weapon. Technology trees bring an additional layer of strategic complexity to
RTS games, although they do not constitute an RTS-specific element. Technology trees
are also common in Role-Playing Games (RPGs).

2.1.2.5 | Game Map
The physical space where an RTS match unfolds is known as the game map. The game
map is a major factor in determining the strategic pathways players can take. It is an
arbitrarily-sized geographical zone that may include geological or urban features es-
tablishing strategic locations such as choke points, hideouts, and elevated planes. In

13

Chapter 2. Background and State of the Art 2.1. Real-Time Strategy (RTS) Games

Initial structures

Final structures

Figure 2.3: An annotated technology tree regarding STARCRAFT II’s Pro-
toss faction. Arrows depict a dependency relationship between two
structures. A Protoss player starts with three possible structures, and pro-
gressively unlocks the structures bellow. Unlocked units are shown be-
neath structures. Note that technology trees are usually faction-specific.

addition, the game map may host natural resource deposits scattered across specific
locations, and may also include neutral forces that can be leveraged in some strate-
gic manner. Furthermore, a game map can be dynamic, meaning that abrupt layout
changes may happen during an RTS match, which would force players to shift their
strategies. The design of a game map is the responsibility of level designers within a
game-development team. For further clarification, Figure 2.4 shows four different RTS
game maps, featuring distinct layouts and features.

It is possible to draw a sharp contrast between RTS games and board games in this
regard. Board games usually possess a single, static board (equivalent to a game map),
with well-known strategies. Whereas in RTS games, the numbers and configurations of
possible maps is unlimited, with each map requiring a different strategic approach.

14

Chapter 2. Background and State of the Art 2.1. Real-Time Strategy (RTS) Games

Oxide LE 2-Players 2-PlayersDeathaura LE 4-PlayersNautilus 8-PlayersShipwrecked LE

Figure 2.4: A selection of official and user-made STARCRAFT II competi-
tion maps. Each map has an attached name for identification, and each
supports up to the indicated number of players. Note the symmetry of
layout in each map, which is a way to establish a correct game balance.

2.1.2.6 | Fog of War
In a veritable warfare situation, there is always an element of uncertainty and doubt at
play, whether about the location and strength of enemy forces, terrain conditions, or any
unforeseen events. Military strategists call this warfare uncertainty the fog of war. RTS
game designers model the fog of war as a dark map overlay concealing all parts of the
game map that the player has yet to explore. A concealed zone is fully revealed once
a player unit traverses through it, but may revert to only conceal enemy movements
on the exit of the player’s unit. A unit’s range of vision attribute determines how far it
may see through the fog of war. Some structures (e.g. Radar or Sentinel towers) may be
constructed to keep a limited zone fully visible. In Figure 2.2, two examples of the effect
of fog of war are shown.

2.1.2.7 | User Interface & Camera
With the evolution of RTS games and the growth of their complexity, traditional con-
trol methods using game-pads and joysticks would not keep up. The versatility of the
PC’s mouse and keyboard input combination attracted RTS designers to develop their
games on the PC platform. Because of this early choice, the PC remains as the platform
of choice for RTS games. These games gained a PC-friendly user interface and control
scheme reminiscent of a typical PC software. Players would control their units by select-
ing them and clicking buttons and toggles laid out in a Heads-Up Display (HUD)-like
interface, as show in Figure 2.1 and Figure 2.2. Support for keyboard shortcuts enabled
advanced players to speed up their game and develop rapid micromanagement skills.
This model of interaction is known as the multipresence model (Adams, 2014b), because
a player can control multiple aspect of the game at once.

15

Chapter 2. Background and State of the Art 2.1. Real-Time Strategy (RTS) Games

Player-assisting UI features include a minimap that shows a condensed overview
of the game map with units’ locations, accounting for the fog of war status. It is also
common to find resource and unit counters, event notifications, detailed views of unit
and economy statistics, and much more, depending on the RTS implementation.

In most cases, an RTS player has a top-down aerial view of the game map, from
where he could obtain a clear overall perspective of the situation. It may be possible to
adjust the angle, position, and tilt of the game’s camera to focus on specific zones.

2.1.3 | Challenges for Humans
Every game is expected to offer at least one type of challenge to its potential players.
A challenge is a gameplay element that represents a task to be completed to advance
through the game. Each type of challenge targets a different player skill. Challenges are
usually organized hierarchically, with the top-most challenge alluding to the game’s vic-
tory condition. To attain the victory condition, a series of intermediate challenges must
be completed, which are themselves composed of atomic challenges (Adams, 2014a).
Challenges are not required to be explicit. Oftentimes, it is up to the player to derive in-
termediate challenges from the victory condition. This is the case for RTS games, where
intermediate challenges change depending on the game map and the opponent. Nev-
ertheless, the atomic challenges of RTS games remain largely the same. The list that
follows enumerates the most important types of atomic challenges found in RTS games,
as adapted from (Adams, 2014a,b):

■ Strategic conflict: Being in a war simulation, a player is expected to exhibit simi-
lar skills to those of a filed commander. The challenge of strategic conflict requires
careful situational analysis followed by the elaboration of a functioning plan of ac-
tion. Challenges nested within any conflict situation include the survival of units
and the progressive reduction of enemy units. The challenge of conflict logistics
is also important, and pertains to the maintenance of a steady supply of combat
units, while protecting production facilities and resource supply routes.

■ Economic: The limited supply of resources, and the need to continuously produce
units and build the tech tree, drive players to carefully consider how, where, and
when to invest resources to maximize the chances of winning.

■ Exploration: Acquiring information early about the location of resource nodes,
strategic points, and enemy outposts, could grant a significant strategic advan-
tage. The player must seek out such information through systematic exploration
of the game map while minimizing the risk of being detected.

16

Chapter 2. Background and State of the Art 2.2. RTS Games & AI

2.2 | RTS Games & AI
AI technology is employed as part of an RTS game in two ways. The first, as a game-
enhancing element included to serve players in some form. The second way, that is most
relevant to this thesis, is by using experimental AI techniques in an attempt to solve RTS
games, and advance the AI state-of-the-art (Yannakakis and Togelius, 2018). In the latter
case, RTS games may also serve as an AI test-bed.

2.2.1 | RTS AI in the Industry
The game development industry views AI as a technology that helps in adding value
to their final products. A game of high value provides high-quality entertainment, and
this is an area where AI does a good job by providing believable artificial opponents
and NPCs. The main AI requirement of RTS game development companies is to pro-
vide artificial opponents with scalable difficulty levels, such as to remain enjoyable to
all RTS players, regardless of their skill level. In that regard, AI programmers must
create agents having a degree of predictability in order to maintain coherence with all
other game components, whilst embedding a human-like play aspect to increase the
AI’s believability.

The AI techniques used in the game industry usually combine rule-based agents
with state-transition models such as Finite-State Machines (FSMs) or Hierarchical Finite-
State Machines (hFSMs), or decision-making formalisms like Decision Trees or Behavior
Trees (Kirby, 2011; Millington, 2019). Goal-oriented planning systems and rule produc-
tion systems are also prevalent (Schwab, 2009). One common approach is to model
interactions between different units and components, in hopes of creating seemingly in-
telligent emergent behaviors (Rabin, 2007). The first usage of computational intelligence
techniques like Neural Networks in a commercial RTS game appeared in BLITZKRIEG 3
(O’Connor, 2017). Commercial AI agents are often allowed to cheat, by having access to
more information than the human player or allowing impossible maneuvers, as a way
to scale-up difficulty (Rabin, 2007; Sun et al., 2018).

2.2.2 | RTS AI Research
The goal of RTS AI researchers is to develop intelligent agents capable of playing RTS
games at a level similar to that of professional human RTS players, or beyond. The mo-
tive is to advance AI’s state-of-the-art, and move closer toward understanding how to
achieve human-level performance in similar tasks. Michael Buro was first to recognize

17

Chapter 2. Background and State of the Art 2.2. RTS Games & AI

the relevance of RTS AI, and issue a call (Buro, 2003b, 2004) to exploit the RTS domain
as an AI research platform. Since then, the genre caught the attention of AI researchers,
and interesting contributions began to appear (Ontañón et al., 2013). Competitions or-
ganized between RTS AI researchers aided in keeping a high interest, and in defining
future research directions. STARCRAFT emerged as an RTS AI competition platform
(Churchill et al., 2016). Later, specialized RTS AI research platforms, like µRTS1, devel-
oped their own competitions (Ontañón et al., 2018).

From an AI standpoint, developing an intelligent game-playing agent for an RTS
game is a very challenging task to undertake (Buro, 2004; Ontañón et al., 2013). This
difficulty rises as the result of a combination of distinct factors, related to the unique
mixture of characteristics in RTS games. We enumerate these factors in the following
list:

■ The Real-Time Aspect: RTS games run typically at 10 to 60 frames per second,
creating a very short decision cycle for an AI to work with. If we suppose a game
runs at 24 frames/s, this means a state change occurs every 1/24 = 42ms, corre-
sponding to the time left for an agent to compute a decision.

■ Simultaneous Moves: Opposing players can issue commands to their units at the
same time, in contrast to turn-based games.

■ Durative Actions: A unit can take more than one decision cycle to complete the
execution of certain commands. Thus, the effect of an action is not immediate.

■ Partial Observability: In most RTS games, the game map is partially visible to the
player due to the effects of the fog of war. In such circumstances, an agent is left
with incomplete information about the game state.

■ Non-Determinism: The effect of executing the same action can vary between two
executions because of some possible stochastic parameters.

2.2.3 | Challenges for AI
Facing such a complex problem domain, a divide and conquer approach towards build-
ing an RTS game-playing agent should be adopted. By breaking down the problem into
manageable sub-problems and solving each one separately, a bot/agent can be built
through integrating the solutions found for each sub-problem. The main challenges fac-
ing artificial RTS game-playing agents can be categorized as follows (Ontañón et al.,
2013; Robertson and Watson, 2014):

1https://github.com/santiontanon/microrts

18

https://github.com/santiontanon/microrts

Chapter 2. Background and State of the Art 2.2. RTS Games & AI

■ Adversarial Planning: How to determine the optimal sequence of actions leading
to victory, when facing an opponent trying to do the same thing, in real-time.
Online adversarial planning is an active research domain where techniques such
as game-tree search and machine learning are employed. The methods proposed
in later chapters focus on overcoming this challenge.

■ Learning: How can an agent employ machine learning techniques to learn to play
the game. The agent may use prior replay data, data acquired in-game, or from
another game.

■ Uncertainty: Imperfect information about the game state can negatively affect the
agent’s behavior. The agent has to minimize uncertainty in order to plan effec-
tively. Uncertainty originates from the lack of sufficient information about the
environment and/or the opponent’s behavior.

■ Spatial Reasoning: Where to place structures, units, and expand bases, strongly
impacts the agent’s strategy outcome. Spatial information is usually inferred from
a terrain analysis module, and used to optimize placements and tactical group
reasoning.

■ Temporal Reasoning: When to execute an action is just as crucial as the “where”,
especially in the presence of durative actions. The effect of some actions will not
manifest until later in the game.

■ Domain Knowledge Exploitation: How to extract and use data from the available
wealth of knowledge, in order to improve the agent’s behavior. Knowledge is
represented by expert replay logs, strategy guides, and expert strategies encoded
in scripts.

2.2.4 | Levels of Abstraction
RTS AI researchers classify techniques according to the level of abstraction they oper-
ate on. A technique may need to deal with more than one challenge, which makes it
hard to use challenges as categories. Three levels of abstractions are recognized by the
RTS AI community: Strategy, Tactics, and Reactive Control (Ontañón et al., 2013, 2015;
Robertson and Watson, 2014). Figure 2.5 was adapted from (Ontañón et al., 2015), and
shows the sub-problems within each abstraction level. Each sub-problem is related to at
least one challenge, and one sub-problem may depend on another sub-problem, either
in the same level or in a different level. The behavior switch duration estimate shown

19

Chapter 2. Background and State of the Art 2.2. RTS Games & AI

Figure 2.5: RTS sub-problems distributed according to the level of ab-
straction they operate on. Arrows represent dependency.

in the right axis is an approximation of the duration needed for the effects of an ac-
tion to manifest in each level. Switching strategic stance, for example, would require
at least three minutes for the result to take effect. The effect of unit micromanagement
behavior switch, by contrast, manifests almost immediately. These estimates concern
STARCRAFT.

Human players refer to the strategy level, and some parts of the tactics level, as
macromanagement. Reactive control and the remaining parts of the tactics level are
known as micromanagement (Ontañón et al., 2013). Next, we will give a brief descrip-
tion concerning each level.

2.2.4.1 | Strategy
In this level, the agent must consider the overall situation of the game and devise a
plan of action to counter the perceived opponent strategy. The strategic decisions taken
here have a long-term effect on the game. For example, in the build-order planning sub-
problem, the agent has to find an optimal order for building the required army composi-
tion in the shortest time possible (Churchill and Buro, 2011; Churchill et al., 2019). From
the research results regarding this sub-problem we can cite the work by Köstler and
Gmeiner (2013) that used a multi-objective Genetic Algorithm (GA) to optimize build
orders, and Tang et al. (2018)’s RL approach for learning optimal build orders.

2.2.4.2 | Tactics
Tactics refer to the intermediate decisions concerning groups of units tasked with the ex-
ecution of the decisions taken at the strategic level. Tactical decisions affect the game in

20

Chapter 2. Background and State of the Art 2.2. RTS Games & AI

the medium-term, and usually relate to the questions of where and when to execute an
action. Research in this direction may focus on building placements, as done by Barriga
et al. (2014), when they used a GA to find optimal building locations. Tactical decisions
may require the use of terrain analysis (Perkins, 2010; Richoux, 2022) techniques to assist
in finding interesting map locations.

2.2.4.3 | Reactive Control
In the lowest level of abstraction, the goal of the agent is to efficiently execute tacti-
cal orders through precise unit maneuvering (micromanagement). Decisions here affect
the game in the short-term, at the unit-level, and usually concern the behavior of units
within a direct conflict situation. Lookahead-based search techniques are widely used
for this task, as done by Churchill and Buro (2013). Evolving neural controllers for mi-
cromanagement is also an interesting application (Gabriel et al., 2012; Zhen and Watson,
2013).

2.2.5 | Research Platforms & µRTS
Developing intelligent game-playing agents within commercial RTS games can be a
daunting endeavor, due to the systematic absence of official Application Programming
Interfaces (APIs), and because of the limits imposed by the very nature of a product not
built to support AI research. This situation led to the development of independent solu-
tions such as the unofficial STARCRAFT API known as Brood War Application Program-
ming Interface (BWAPI), which opened the door widely for AI research on STARCRAFT.
Similarly, platforms entirely dedicated to simplify RTS AI research have emerged, such
as ORTS (Buro, 2003a), Wargus2, µRTS (microRTS) (Ontañón, 2013), ELF (Tian et al.,
2017), and DeepRTS (Andersen et al., 2018). It is worth mentioning that in 2017, Bliz-
zard Entertainment and DeepMind released a set of tools and an official API3 for AI
research in STARCRAFT II (Vinyals et al., 2017).

Each platform is best suited for attempting to solve a specific challenging, or exper-
imenting with a certain technique. In this thesis we used µRTS as our experimentation
platform because of its affinity with respect to online adversarial planning research.

2https://github.com/Wargus/wargus
3https://github.com/deepmind/pysc2

21

https://github.com/Wargus/wargus
https://github.com/deepmind/pysc2

Chapter 2. Background and State of the Art 2.2. RTS Games & AI

162

1

2

1317

Light
Heavy
Barracks

Ranged

Worker Unit
Base

Resource Deposit

Assault
Units

Game
Map

1

Figure 2.6: A graphical visualization of a µRTS match in a 10× 10 map.
Players can be distinguished by the outline color of their units (red and
blue). Numbers indicate the amount of resources held in a base or by a
worker, or the remaining resources in a deposit.

2.2.5.1 | µRTS
µRTS is an RTS AI research platform conceived by Santiago Ontañón (Ontañón, 2013) to
address the necessity of a specialized open platform that captures all the basic aspects
and proprieties of an RTS game. It provides the necessary facilities to quickly develop
and test intelligent agents. The game component of µRTS is an abstract, minimalistic
version of an RTS. All the basic rules and mechanics of a typical RTS game apply, and
being open-source, it is freely customizable and extensible. µRTS is currently one of the
most active RTS AI research platforms, mainly because of its lightweight, yet complete,
feature set and its efficient built-in forward model. These distinctive characteristics al-
lowed for the inception of many interesting holistic and hybrid planning approaches
that deserve a special attention.

In the default µRTS game settings, shown in Figure 2.6, each player controls two
types of structures: base and barracks, and four types of units: worker, light, heavy and
ranged. The base produces workers and the barracks produces assault units, in exchange
for a resource cost. All units can attack opponent units and structures, and workers can
harvest resources. There is a single type of resources available. The game takes place on
a map that consists of a 2D grid of arbitrary size, and each unit, structure, or resource
deposit, occupies a single square. µRTS comes with a set of maps in different sizes and a
map editor. The game can be configured to be partially or fully observable, deterministic
or non-deterministic.

The lightweight characteristic of µRTS enables fast computation of state transition,

22

Chapter 2. Background and State of the Art 2.2. RTS Games & AI

which constitutes the basis for its forward model. The availability of a forward model
permits the implementation of game-tree search methods that need to execute an impor-
tant number of simulations. In fact, a good chunk of the research done on µRTS revolves
around game-tree search algorithms. An area less-explored in other RTS games due to
the absence of an efficient forward model.

2.2.6 | Formal Definition & Complexity
A typical RTS game can be seen as a two-player, non-deterministic, zero-sum (either
win, or lose) game with imperfect information. The complexity of an RTS game can be
estimated by determining its state space dimensionality, and branching factor. The num-
ber of possible game states within an RTS is enormous, if we compare it to traditional AI
benchmark games such as Chess or Go. The state space of a regular STARCRAFT setting
has been estimated around 101685 whereas in Chess, 1047 and in Go, 10171. Similar pro-
portions are observed in the branching factor, where the average number of actions that
can be executed at a decision point in STARCRAFT reaches 1050, while it is estimated to
be 36 in Chess and 180 in Go (Ontañón et al., 2013).

The reason for which RTS games possess such an astronomical state space and bran-
ching factor resides in the combinatorial structure of both state and action spaces, where
a player can issue commands to multiple units at the same time, in an arbitrarily sized
game map. Because non-determinism and imperfect information fall outside the scope
of this thesis, we use the definition of a deterministic, perfect-information RTS game, as
put forward by Ontañón (2017). Thus, an RTS game is defined as a tuple:

G = (S, A, P, τ, L, W, sinit) (2.1)

Where:

■ S : The set of all possible states (state space).

■ A : The set of all player-actions (decision space).

■ P : The set of players. P = {max, min} for two players.

■ τ : S× A× A → S : The state transition function. It takes a game state at time t
and a player-action for each player, then returns a new game state at time t + 1.

■ L : S × A × P → {true, f alse} : Determines the legality of a player-action in a
given state for a specific player.

23

Chapter 2. Background and State of the Art 2.3. Online Adversarial Planing: State of the Art

■ W : S → P ∪ {ongoing, draw} : Determines the winner, if any, or whether the
game is a draw or still ongoing.

■ sinit ∈ S : The initial state.

Note that a player-action is a combination of unit-actions.

2.3 | Online Adversarial Planing: State of the Art
The goal of an RTS game-playing agent, or bot, is to generate relevant actions based
on the current game state, under a limited computation budget. The agent is expected
to generate a player-action for every game cycle, and the series of generated actions
should lead the agent to victory against an arbitrary opponent. In other words, the
agent has to figure out a winning plan in real-time, under the stress of a large state and
action spaces, and a tight computation budget. This problem description aligns with the
online adversarial planning problem, an active research area wherein µRTS is the most
suitable platform. The contributions presented in later chapters are attempts to address
the online adversarial planning problem in µRTS.

Online adversarial planing approaches can be placed under three categories (Oues-
sai et al., 2019): Low-Level Planning (LLP), High-Level Planning (HLP), and Hybrid
Planning (HyP).

2.3.1 | Low-Level Planning (LLP)
Planning in the original state and action spaces is considered a Low-Level Planning
(LLP) process, because of the low degree of abstraction considered. LLP directly con-
fronts the complexity of the unmodified search space, and risks generating suboptimal
plans when the space’s dimensionality is too high. LLP is generally associated with
game-tree search algorithms, and is known to produce good short-term tactical perfor-
mance.

A game-tree, as shown in Figure 2.7, is a game representation using a tree structure,
where nodes and edges represent states and actions, respectively. The root of the tree
represents the initial game state and the execution of an action by a player will result in
a new node with a new state. Each level (ply) in the tree is associated with one of the
players, in an alternating fashion. Leaves of the tree represent terminal states, where
a winner can be determined. In theory, if we can generate the complete game-tree,
optimal actions can be derived. However, in practice, this is not feasible, due to the ex-

24

Chapter 2. Background and State of the Art 2.3. Online Adversarial Planing: State of the Art

P1 Turn

P2 Turn

P1 Turn

Terminal
States

Figure 2.7: A game-tree representation for a two-player turn-based sce-
nario. Terminal states indicate a win by either players, or a draw in case
of gray states.

ponential size of the game-tree in RTS games, making traditional tree-search algorithms
less effective. Even so, searching a partial game-tree is more plausible.

Because of the possibility to work on small scale RTS scenarios in µRTS, with a rel-
atively low branching factor, game-tree search algorithms are applicable. Since such
algorithms are rooted in the domain of turn-based games, they need to be adapted for
real-time scenarios. This is what Ontañón (2012) attempted. By using the MiniMax
game-tree search algorithm as a basis, he first defined the game-tree for real-time sce-
narios, where moves can occur simultaneously. Instead of alternating player nodes, the
new tree structure permits successive nodes from the same player and different player
nodes in the same level. Durative actions are dealt with similarly as in the Alpha-Beta
Considering Duration (ABCD) algorithm (Churchill et al., 2012), which consists of for-
warding states to the moment an agent is able to take action. This algorithm is known
as Real-Time MiniMax (RTMM).

Search-space sampling based approaches are well suited for domains with a huge
decision space dimensionality, operating under tight computation constraints. MCTS
(Browne et al., 2012) is a family of sampling-based, anytime search algorithms, relying
on Monte Carlo simulations to improve the reward estimate of actions. Each node holds
a reward estimate and a visit count. The standard MCTS algorithm follows a four-step
process: (1) select the node to explore from the current state, following a tree policy, (2)
expand the selected node, (3) simulate the game (perform a playout) starting from the
expanded node, following a default policy, and (4) back-propagate the simulation’s out-
come (reward) to the parent nodes by updating their reward estimates and visit counts.

Different MCTS algorithms differ mostly in the tree policy employed (Browne et al.,
2012). In the simulation phase, the players’ actions are chosen according to a default
policy, until reaching a terminal state where the game outcome is clear (win, loss or

25

Chapter 2. Background and State of the Art 2.3. Online Adversarial Planing: State of the Art

draw). Or in most cases, until a playout time budget is consumed, after which, an
evaluation function is applied to the intermediate state to determine its value. Reward
estimates are improved iteratively, and usually the action leading to the most visited
node is returned.

Upper Confidence bounds for Trees (UCT) (Kocsis and Szepesvári, 2006) is a popular
MCTS algorithm that frames the selection phase as a Multi-Armed Bandit (MAB) prob-
lem. A MAB is a sequential decision problem that requires the agent to maximize the
total reward obtained from activating one of k arms in each iteration. The reward dis-
tribution of the arms is unknown, and the goal is to minimize regret: the difference be-
tween optimal and obtained reward. UCT node selection balances between exploration
and exploitation by employing the Upper Confidence Bounds (UCB) UCB1 formula.

When the branching factor gets very large, as in the RTS domain, UCT’s performan-
ce degrades (Ontañón, 2017). The solution proposed by Ontañón (2013) is to formulate
the selection phase as a Combinatorial Multi-Armed Bandit (CMAB) problem, most ad-
equate with the combinatorial decision space of an RTS game. In a CMAB, the agent
must activate a macro-arm in each cycle, where each macro-arm is a combination of
arms, in hopes of maximizing the expected reward.

The proposed NaïveMCTS algorithm uses a naïve sampling strategy, based on a
naïve assumption that considers the reward obtained from a macro-arm as the sum of
the individual rewards obtained from each underlying arm (Ontañón, 2017).

This assumption and the CMAB formulation allow the decomposition of the prob-
lem into n + 1 MAB; a global MAB responsible for exploiting macro-arms and n local
MABs tasked with exploring the decision space and forming macro-arms. In RTS terms,
an arm is a unit-action and a macro-arm is a player-action. NaïveMCTS has shown a
satisfying performance when the branching factor grows, but only in small scenarios.

Shleyfman et al. (2014), noted that the macro-arms generated towards the end of the
computation budget were not allowed enough exploitation time to produce good esti-
mates, which can mislead search. They proposed to split the computation budget be-
tween a candidate generation phase and a candidate evaluation phase. Their two-phase
sampling algorithm, Linear Side Information (LSI), is based on a CMAB formulation. In
the candidate generation phase, LSI collects side information about each value, which is
an estimate of the reward contribution of each value, assumed to be linear. Next, using
this information, it generates a set of macro-arms based on either entropy or union. The
remaining budget is spent on finding the best macro-arm using sequential halving.

26

Chapter 2. Background and State of the Art 2.3. Online Adversarial Planing: State of the Art

2.3.2 | High-Level Planning (HLP)
Search space dimensionality can be reduced to a more manageable size in order to ef-
ficiently find optimal player-actions. Researchers rely on an abstraction mechanism,
through which, the original search space is replaced by an abstracted one, where each
state/action becomes an abstract representation of the original states/actions. The ab-
straction function is responsible for the abstraction degree and the structure of the ab-
stracted space. HLP consists of searching the abstract space for optimal player-actions.
In contrast with LLP methods, HLP methods generally produce better long-term strate-
gic performance and weaker short-term tactical performance (Barriga et al., 2017).

2.3.2.1 | Script-Based Abstraction
The first use of abstraction in an RTS game was done using hard-coded scripts in combat
scenarios. Balla and Fern (2009) defined a pair of abstract actions and a unit grouping
approach to facilitate search using UCT. Portfolio Greedy Search (PGS), by Churchill
and Buro (2013), searches through an abstract action space induced by scripts, using a
greedy local-search via hill-climbing. PGS uses a set of combat scripts they call a Portfo-
lio, and iteratively assign to each unit the best-scoring action from a script in the portfo-
lio. The score is derived from a playout (simulation) between scripted opponents, with
the outcome calculated using an evaluation function. PGS was implemented in Spar-
Craft (a STARCRAFT combat simulator), and was shown to be highly effective against
UCT and ABCD in large combat scenarios (50 vs 50). PGS was later implemented in
µRTS, and was capable of playing the full game.

Later, Justesen et al. (2014) used UCT in the space of actions proposed by scripts
and further simplified search using a K-means unit clustering. Stanescu et al. (2014)
proposed a hierarchical adversarial search algorithm using three abstraction layers, and
Uriarte and Ontañón (2014) abstracted the game states using map decomposition into
regions, and unit grouping. Wang et al. (2016) described Portfolio Online Evolution
(POE), a PGS variant replacing greedy search with a GA.

Moraes and Lelis (2018b) identified a non-convergence issue in PGS, where it may
fail to return the best action possible, due to its reliance on a scripted opponent-model
during playouts. This way, PGS calculates a best response for that script only, whereas,
the actual opponent may play differently. They proposed a Nested Greedy Search
(NGS) approach that works in the same way as PGS, with the difference residing in
the way NGS handles opponent modelling. NGS greedily searches for the best oppo-
nent response to each unit/action combination and calculates optimal actions against
it. Moraes and Lelis (2018b) showed that PGS and NGS can be used to play full RTS

27

Chapter 2. Background and State of the Art 2.3. Online Adversarial Planing: State of the Art

games. Their NGS implementation in µRTS managed to overcome many state-of-the-
art LLP approaches in full game settings, for small to medium map sizes.

Lelis (2017) demonstrated the possibility to reduce the search space dimensionality
by partitioning units using a type system. His proposed algorithm, Stratified Strategy
Selection (SSS), assigns a script to a set of units judged to belong to the same type. A
type system decides on how to partition units using attributes such as current hit points,
offensive range and weapon damage. A higher number of types generates finer strate-
gies, and a lower number produces coarser strategies. A proposed variant, SSS+, uses
adaptive type systems and a meta-reasoning approach to balance strategy granularity
between searches. SSS and SSS+ use a hill-climbing search procedure with a modified
evaluation approach. Lelis (2017) tested both SSS variants in different combat scenarios
in SparCraft. The results show a substantial advantage over PGS and POE.

Puppet Search (PS) is a high-level search framework proposed by Barriga et al.
(2015). PS relies on a number of exposed choice points inserted in predefined, non-
deterministic scripts. A script can be a hard-coded, machine-learning based, search
based or rule-based agent. A choice point exposes different choices to an overlaying
search algorithm, which is expected to decide on the script’s next move, or switch to a
different script. Search is performed only on the set of choice points exposed, which sig-
nificantly lowers the branching factor. µRTS’s PS version uses the built-in rush scripts
implementing a rush strategy4 with a maximum of 2 choice points in each script. The re-
ported experimentation results using ABCD and UCT are very encouraging, especially
in larger maps, compared to benchmark algorithms. Properly designing choice points
is an important factor towards a better performance.

MCTS-based planning approaches do not scale well to larger RTS scenarios, where
the branching factor gets significantly high. Improving the scalability of NaïveMCTS
through action abstraction was proposed by Moraes et al. (2018), and three approaches
were presented. In the first approach, Abstraction 1 NaïveMCTS (A1N), naïve sampling
samples actions from a subset of abstract actions derived from a set of scripts P instead
of the set of low-level actions. In Abstraction 2 NaïveMCTS (A2N), unit-actions are sam-
pled from two distinct sets of scripts, an economy set Pe and a combat set Pb. A1N and
A2N significantly outperformed NaïveMCTS in larger scenarios. The third approach,
Abstraction 3 NaïveMCTS (A3N), is more related to Hybrid Planning (HyP) and will be
described later.

4Rush : Continuously train units and immediately dispatch them to attack the opponent’s base

28

Chapter 2. Background and State of the Art 2.3. Online Adversarial Planing: State of the Art

2.3.2.2 | Strategy Generation
The main drawback of previous action abstraction approaches is their reliance on a small
set of hard-coded strategies, limiting the agent’s behavior to a collection of scripted ac-
tions. Moreover, dynamic adaptation to the opponent’s strategy is not explored enough
(Ontañón et al., 2013). All this, can make the agent prone to exploitation.

Strategy Creation via Voting (SCV), proposed by Silva et al. (2018), attempts to solve
both problems. It includes a novel-strategy generation mechanism that builds on a small
set of hard-coded scripts to generate new strategies, by means of a voting scheme. Ad-
ditionally, SCV implements a strategy adaptation technique, using a logistic regression
model trained from a dataset of matches between different strategies. After every fixed
number of decision cycles, it detects the strategy employed by the opponent and adapts
its own strategy accordingly.

Finding an optimal abstraction can significantly improve the strategic performance
of the agent. Mariño et al. (2018) used an Evolutionary Algorithm (EA) to evolve a
set of script-induced abstractions, and find an optimal abstraction. Similarly to SCV,
a larger pool of strategies is generated from a smaller set, by varying the parameters
of each strategy. Each individual in the EA encodes a subset of strategies that induce a
different abstraction. An individual is evaluated by playing a set of RTS matches against
all other individuals using either PGS (Churchill and Buro, 2013) or SSS (Lelis, 2017) as
a search algorithm in the induced abstract spaces. The optimal individual found was
tested against state-of-the-art µRTS agents, and was found to significantly outperform
all of them when using SSS.

2.3.2.3 | Machine Learning
Machine learning may be used to learn an abstraction function from expert traces, elimi-
nating the need for domain knowledge. AlphaGo (Silver et al., 2016) achieved a Master-
level performance, by means of a Convolutional Neural Network (CNN)-based pol-
icy network, trained from a large database of expert Go replays, and improved via
a Reinforcement Learning (RL) phase. Later work on AlphaZero (Silver et al., 2018)
fully discarded expert knowledge. Inspired by this success, Ontañón (2016) proposed
InformedMCTS, an MCTS variant that uses a Bayesian model learned from µRTS re-
plays to inform the selection phase. The author experimented with two distinct models:
Calibrated Naïve Bayes (CNB) and Action-type Interdependence Model (AIM), with the
latter achieving better performance due to the better representation of the dependency
between legal and illegal actions. Yang and Ontañón (2019a) later demonstrated the
effectiveness of the C4.5 classifier for such tasks, due to its speed and accuracy.

29

Chapter 2. Background and State of the Art 2.3. Online Adversarial Planing: State of the Art

Reinforcement Learning (RL) over abstracted spaces was proposed by Tavares and
Chaimowicz (2018). They modelled the game as a Markov Decision Process (MDP),
where the opponent is assumed to be part of the environment, and used a tabular RL
approach over options. Options are a set of predefined scripts associated with an ab-
stract state. The RL agent chooses an option in the relevant state, and is rewarded after
reaching a different, terminal abstract state. This approach relies on the quality of the
script portfolio (options) and the abstraction function.

2.3.2.4 | Domain-Configurable Planners
Planning using domain-configurable formalisms can be regarded as a special case of
HLP, since the formalisms are based on expert-provided, high-level domain knowl-
edge. Hierarchical Task Networks (HTNs) are the most utilized domain-configurable
planners in µRTS, joined recently by a new research direction using Combinatory Cate-
gorial Grammars (CCGs) (Steedman, 2000) as a planning formalism.

An HTN is a hierarchical structure, composed of a goal node and a number of child
nodes that represent either primitive or non-primitive tasks. A primitive task can be exe-
cuted immediately by the agent, whereas a non-primitive task must be decomposed into
primitive tasks using a method. A method must have its preconditions satisfied to de-
compose a non-primitive task. An HTN is fully decomposed when all leaves are primi-
tive tasks. A domain definition determines tasks, methods and ordering constraints.

Adversarial Hierarchical Task Network (AHTN) is an HTN adaptation for adversar-
ial domains, conceived by Ontañón and Buro (2015) for the µRTS domain. It uses an
HTN for each player in a game-tree searched through using the MiniMax algorithm. In
each iteration, the HTN of the respective player is expanded, and primitive actions get
executed. AHTN is adapted for durative and simultaneous actions in the same way as
RTMM (Ontañón, 2012). AHTN did not take into account the probability of task failure,
and ignored the relationships between tasks. Sun et al. (2017) addressed those issues in
AHTN-R, incorporating a task repair mechanism that detects failed tasks, aborts them,
and starts an alternative task chosen from a predefined list.

A first attempt to generate plans in µRTS using CCGs (Steedman, 2000) was made by
Kantharaju et al. (2018). A CCG is an efficient, linguistically expressive grammar formal-
ism used in Natural Language Processing (NLP) for generating, and recognizing natural
language sentences. A CCG separates language-specific structures (lexicon) from gram-
mar. Because of their recognitive and generative properties, CCGs happen to be well
suited for recognizing, and generating plans. Kantharaju et al. (2018), were inspired by
Geib and Goldman (2011)’s use of CCGs in the context of planning domains. Their pro-

30

Chapter 2. Background and State of the Art 2.3. Online Adversarial Planing: State of the Art

posed agent, µCCG, uses a CCG learned from a set of µRTS plan traces, extracted from
replay logs. LexLearn (Geib and Kantharaju, 2018), the CCG learning algorithm, learns
abstract actions from a plan trace, by assigning categories to a series of action types.
Using the generated lexicon, planning is done by a similar approach to AHTN, via a
MiniMax variant.

Plan recognition (inverse-planning) is the process of determining the goal of an
agent, from a series of observed actions. Using CCGs for µRTS plan recognition was
proposed by Kantharaju et al. (2019a). They sought to scale CCGs for longer plan traces
using a new learning algorithm, LexGreedy, which reduces the number of learned abstrac-
tions by means of a greedy approach. The resulting lexicon was better at recognizing
µRTS plans than the one learned by LexLearn. A Breadth-First Search (BFS) was used for
recognition. For larger scenarios, the LexGreedy-learned lexicon will still contain a very
large number of categories per action type, which will impact the performance of BFS
recognition. Later, Kantharaju et al. (2019b) scaled-up plan recognition for larger lexi-
cons using MCTS, which is employed to search for the best explanation of the observed
series of actions.

2.3.3 | Hybrid Planning (HyP)
HLP approaches usually sacrifice short-term tactical performance for better long-term
strategic decision-making. The opposite is true for LLP methods. Hybrid Planning
(HyP) performs both types of planning by integrating approaches from both sides into
a single method. This integration best imitates the way human RTS players handle
strategic and tactical planning, by continuously switching between macro- and micro-
management during a match.

To enhance the tactical performance of Puppet Search (PS), Barriga et al. (2017, 2019)
sought to combine it with NaïveMCTS. A CNN-based model was trained to predict PS
output, and generate strategic decisions. NaïveMCTS would then use the liberated com-
putation budget to improve the tactical decisions of the chosen strategy. The resulting
agent, Strategy Tactics (STT), allocates all computation budget to strategic planning if
the opponent’s units are out of range, and 80% to tactical reasoning otherwise. The re-
ported performance was very promising in large, regular RTS maps, overcoming most
of the tested agents.

Strategy Creation via Voting (SCV) (Silva et al., 2018) already relies on a pre-trained
model for strategic decisions. Similar to STT, SCV+ (Silva et al., 2018) uses the remaining
computation budget to enhance the tactical performance of units in proximity of the
opponent’s units using ABCD (Churchill et al., 2012). Search is performed in a limited

31

Chapter 2. Background and State of the Art 2.3. Online Adversarial Planing: State of the Art

state containing only the relevant units.
Asymmetric abstraction (Moraes and Lelis, 2018a) can be seen as a way to provoke

hybrid planning, using a single search procedure. In A3N (Moraes et al., 2018), NaïveM-
CTS was modified to search in two levels of abstraction. This was done by splitting the
set of units into two sets, restricted and unrestricted. An unrestricted unit can acquire
any low-level action assignment, whereas, a restricted unit only gets high-level, script-
based actions. This way, the agent is allowed finer control over a subset of units. The
subset and number of unrestricted units are selected following various strategies, for
example, by proximity to enemy units or by remaining hit points.

Neufeld et al. (2019b) proposed a hybrid HTN-MCTS approach using HTN for stra-
tegic planning, and NaïveMCTS for tactical planning. Each HTN primitive task is rep-
resented by an evaluation function that is passed on to NaïveMCTS. Each evaluation
function is conceived to guide NaïveMCTS towards successfully executing a specific
task. Thus, the role of NaïveMCTS is to generate actions that optimize the provided
function, formulated as a weighted sum of multiple sub-functions (objectives). Func-
tion weights were manually tuned. Experimental results show important performance
gains against AHTN and NaïveMCTS.

Guided NaïveMCTS (GNS) by Yang and Ontañón (2019b) biases the tree policy of
NaïveMCTS by forcing it to select a script-generated action before any low-level action.
The goal is to make NaïveMCTS explore at least one high-level action in each iteration,
in addition to the low-level actions it usually explores. This way, NaïveMCTS may end-
up selecting low-level actions if found better than scripted ones. GNS was found to per-
form better than NaïveMCTS and the scripts it uses, because it successfully combined
the advantages of high- and low-level decisions.

2.3.4 | Partial Observability
In a partially observable setting, some opponent and/or environment information is
concealed from the agent, making the problem of online adversarial planning even
harder. This is usually a consequence of the fog of war, that is a map overlay that masks
all the zones out of the vision range of the player’s units, simulating a real warfare sit-
uation. Under this setting, scouting and information gathering become crucial. Fog of
war is enabled by default in most retail RTS games.

Dealing with partial observability in RTS games did not receive as much attention
as the rest of sub-problems (Ontañón et al., 2013; Robertson and Watson, 2014). Nev-
ertheless, some interesting approaches exist, such as the work of Weber et al. (2011), in
which they use a particle model to predict opponent units’ location in STARCRAFT.

32

Chapter 2. Background and State of the Art 2.3. Online Adversarial Planing: State of the Art

In µRTS, Uriarte and Ontañón (2017) dealt with partial observability in the context of
game-tree search by sampling a single believe state from the information set, and using
it as a root state for search. They tested multiple believe state generation methods.
Yang et al. (2019) proposed a similar approach that deals with discontinuity in unit
position history by using a grey-fuzzy approach to minimize prediction error. Antuori
and Richoux (2019) proposed a solution to the build order problem under imperfect
information, by modeling it as a combinatorial optimization problem and using Rank
Dependent Utility (RDU) (Quiggin, 1993) concept to rank different solutions.

2.3.5 | State Evaluation
The value of a player-action is estimated by evaluating the resulting state after n cycles
of its execution, through simulation. Evaluation is done by means of an evaluation
function. Such function is typically a hand-crafted linear combination of weighted state
components, such as unit attributes, resources, ..., etc., that assigns a high value to the
advantageous player in the state. RTS baseline evaluation functions include the Lifetime
Damage (LTD) function (Kovarsky and Buro, 2005) and Lanchester’s laws-of-attrition
based function (Lanchester, 1916; Stanescu, 2015). The accuracy and speed of evaluation
impacts the performance of planning. Faster evaluation enables more simulations, and
consequently, more accurate evaluations. A low evaluation accuracy can mislead search.

AlphaGo’s (Silver et al., 2016) use of a CNN-based value network motivated numer-
ous researchers to use similar techniques for RTS state evaluation. Stanescu et al. (2016)
proposed a CNN architecture motivated by the lack of spatial information in baseline
evaluation functions. Performance improved in multiple search algorithms, but their
network was map-size dependent. Barriga et al. (2017) used a Fully Convolutional Net-
work (FCN) that can evaluate arbitrary-sized maps. Yang and Ontañón (2018) sought
to learn generalizable, map-independent features, using a CNN architecture separat-
ing global and spacial information. CNN-based evaluation methods suffer from a slow
evaluation speed, which Huang and Yang (2018) tried to address using a multi-size
CNN architecture. Their network features four independent groups of filters of differ-
ent sizes, intended for parallel computation.

Inspired by HTN planning, Yang et al. (2018) proposed a hierarchical evaluation
network composed of three layers of compound and primitive nodes that reflect the
current state. The network is decomposed to calculate an evaluation. Neufeld et al.
(2019a) proposed to learn optimal evaluation function weights using an Evolutionary
Algorithm (EA) for their HTN-MCTS hybrid agent.

33

Chapter 2. Background and State of the Art 2.4. RTS AI Competitions

Table 2.1: The Top 3 Contenders of Previous µRTS Competitions. Agents
with an asterisk (*) in their names are hard-coded scripts.

Year
Tracks (Open and Hidden)

Standard Partial Observability

2017
1. STT (Barriga et al., 2017) 1. POLightRush*

2. POLightRush* 2. BS3NaïveMCTS (Uriarte and Ontañón, 2017)

3. NaïveMCTS 3. POWorkerRush*

2018
1. Tiamat (Mariño et al., 2018) 1. POAdaptive (Antuori and Richoux, 2019)

2. UTalcaBot* 2. POLightRush*

3. Capivara (Moraes et al., 2018) 3. BS3NaïveMCTS

2.4 | RTS AI Competitions
To instigate a higher research interest into RTS AI, annual RTS AI competitions take
place alongside a number of respected conferences. The µRTS competition5 started in
2017 as a side event of the IEEE® CoG (Ontañón et al., 2018). Similar to the STARCRAFT

AI competitions (Churchill et al., 2016), researchers have their agents pitted against each
other in a series of tournaments in multiple tracks. µRTS competition includes three
distinct tracks: standard track, non-determinism track and partial-observability track.

In each track, a series of round-robin tournaments is performed in each of the prede-
termined game maps. Maps are organized in two sets, open and hidden, where hidden
maps are kept secret from the participants in order to avoid map exploitation. Agents
are given a 100ms computation budget for each game cycle, and a match is limited by a
maximum number of cycles over which it is considered a draw.

The top 3 contenders from the two past tournaments, in all maps, are shown in
Table 2.1. Non-determinism track results are omitted for being identical to those of the
standard track, except for the 3rd place in 2017’s competition, which goes for the built-in
POWorkerRush script.

2.5 | Summary
Throughout this chapter, we first described RTS games and defined their general char-
acteristics, and then identified the challenges they pose for both humans and artificial

5https://sites.google.com/site/micrortsaicompetition/

34

Chapter 2. Background and State of the Art 2.5. Summary

agents. We also enumerated the RTS AI levels of abstractions, and formally described
RTS games and discussed their complexity, as well as the most common RTS AI research
platforms.

Because the focus of our thesis revolves around online adversarial planning tech-
niques, we reviewed and categorized, to our knowledge, all the major game-playing AI
techniques conceived in the µRTS domain and its immediate periphery to date. We clas-
sified each approach according to the level of abstraction considered during planning,
and described the more recent trend of hybrid planning, where strategic and tactical
planning are integrated into the same package. This integration led to the emergence
of interesting approaches, offering the best compromise between the two levels of plan-
ning. We also reviewed some promising planning techniques in partially observable
settings, as well as the state-of-the-art in µRTS state evaluation.

The annual µRTS competition results offer some insight about the progress made
in the RTS AI domain and its open challenges, through the lenses of µRTS. From those
results, and the experiments conducted in the referenced papers, we observe that plan-
ning in higher-levels of abstraction consistently yields better performance than in lower-
levels, in typical RTS scenarios. This is explained by the presence of expert knowledge in
HLP approaches, in the form of scripts, producing better strategic reasoning. Whereas,
most LLP approaches forgo expert knowledge. The quality of the script-induced ab-
stractions also contributes to the performance of the approach. 2018’s µRTS competition
winner, Mariño et al. (2018), managed to find an optimal abstraction that generated bet-
ter plans. LLP approaches are found to be most useful, when employed for enhancing
tactical reasoning, as part of hybrid planning.

Factors limiting the best use of expert knowledge include the absence of true µRTS
human-expert replay datasets, and the reliance on a small set of simple built-in scripts.
µRTS being a minimalistic research-driven platform, understandably drives away hu-
man players, however, we believe this should not stop researchers from finding ways
to adapt expert replays from other games to µRTS. In addition, adapting more expert-
authored scripts from retail RTS games could prove useful.

Partial observability and non-determinism could use more attention from research-
ers, since both settings closely reflect real-life scenarios that arise in robotics and control
domains. Improving state evaluation by finding an acceptable compromise between
speed and accuracy is an interesting line of research, with ample perspectives ahead.
Additionally, eliminating the need for a forward-model will expand the application
spectrum of planning approaches bound by a forward-model. Lastly, the µRTS platform
should be further extended to enable research on more common RTS features, such as
unit upgrades, asymmetric factions and multiple resource types. Of course any µRTS

35

Chapter 2. Background and State of the Art 2.5. Summary

extension must adhere to its minimalistic and lightweight philosophy.
In the next chapter we will propose an approach that tries to improve the perfor-

mance of the state of the art LLP approach, NaïveMCTS, by removing obviously detri-
mental actions from the search space.

36

3

Move Pruning in MCTS

“The essence of strategy is choosing what not to do.”

— Michael E. Porter

The complexity of RTS games, from an AI perspective, originates from the combinato-
rial structure of their state and decision spaces. In comparison with classic benchmark
games such as Chess or Go, the dimensionality of both state and decision spaces in
an RTS game is many orders of magnitude higher (Ontañón et al., 2013). Instead of
controlling a single unit in a turn-based fashion, RTS players control multiple units si-
multaneously in real-time, and usually in a much larger board (map) size. Moreover, the
branching factor in an RTS game grows exponentially with the increase in the number
of units positioned on the map.

Due to the game’s complexity, conceiving a human-challenging RTS game-playing
agent is a difficult task to undertake. The predominant approach followed by resear-
chers and practitioners in the domain is to decompose the task into manageable subtasks
targeting various degrees of abstraction. Most commonly, an RTS agent combines high-
level strategic components and low-level tactical components. Such decomposition is
inspired by the way human players interweave micro- and macro-management, and it
is shown to be effective by numerous implementations (Barriga et al., 2017; Moraes and
Lelis, 2018a; Neufeld et al., 2019b).

Holistic search-based approaches such as MCTS (Browne et al., 2012) enjoyed a re-
markable success in computer Go, as demonstrated by AlphaGo (Silver et al., 2016).
However, in RTS games, MCTS-based agents struggle with the enormous decision space
and fail to scale suitably when the branching factor grows past a certain threshold. Such
downside restricts MCTS applicability to limited scenarios, such as tactical planning or

37

Chapter 3. Move Pruning in MCTS 3.1. Monte-Carlo Tree Search (MCTS)

small maps. Abstracting the decision space is a tried and tested technique for scaling
MCTS-based agents to larger scenarios (Ontañón et al., 2013), at the expense of sacrific-
ing tactical performance due to the coarser actions considered.

We propose an approach to increase the performance and scalability of search-based
techniques, particularly MCTS-based ones, by pruning unnecessary and detrimental
player-actions from the decision space of an RTS game (Ouessai et al., 2020a). We in-
spect the low-level structure of the search space and identify detrimental player-actions
through domain knowledge. Next, we apply multiple hard-pruning approaches to re-
move those player-actions during the search. The goal is to reduce the branching factor
and explore more promising player-actions. Our approach targets a class of player-
actions we identify as Inactive Player-Actions (IPAs) because they tend to keep at least
one unit in an inactive state, which can be problematic. The experiments’ results using
UCT and NaïveMCTS in µRTS show a considerable performance gain relative to the
map’s size.

3.1 | Monte-Carlo Tree Search (MCTS)
The goal of an RTS game-playing agent is to compute an optimal player-action a ∈
A at each decision cycle t where the agent can act. MCTS (Browne et al., 2012) is a
sampling-based search framework applicable to sequential decision problems, formu-
lated as MDPs (Russell et al., 2010), within large decision spaces unapproachable to sys-
tematic search techniques. MCTS estimates the value of actions, sampled using a tree
policy, through random simulations. MCTS iteratively constructs a partial game tree
following a four-step process at each iteration, as illustrated in Figure 3.1. With each
iteration, value estimates of sampled actions would get further refined. The algorithm
can be halted anytime to obtain a decision. An MCTS iteration proceeds as follows:

1. Selection: Starting from the root node (current state), select a node with unex-
plored children following a tree policy.

2. Expansion: Create and attach a new child node under the selected node.

3. Simulation: Start a simulation (playout) from the new node following a playout
policy. Usually a default policy is followed, which consists of selecting random
actions.

4. Backpropagation: Backpropagate the simulation’s outcome starting from the new
node up to the root node. Nodes along the path will have their visit counts and
value estimates updated.

38

Chapter 3. Move Pruning in MCTS 3.1. Monte-Carlo Tree Search (MCTS)

1. Selection

Tree Policy

Default Policy

Value

2. Expansion 3. Simulation 4. Backpropagation

Figure 3.1: The four phases of the Monte-Carlo Tree Search (MCTS). Dif-
ferent MCTS algorithms mainly differ in their tree policy. Nodes repre-
sent states, and outbound edges represent actions.

The most visited decision is usually the one returned. Given enough computation
budget and a proper exploration/exploitation balance in the tree policy, MCTS is in
theory guaranteed to find the MiniMax solution in the limit (Kocsis et al., 2006). Dif-
ferent MCTS algorithms differ principally in the tree policy used in the Selection phase.
MCTS can be considered as a RL algorithm, because action reward estimates follow a
reinforcement process through each iteration (Sutton and Barto, 2018).

3.1.1 | Upper Confidence bounds for Trees (UCT)
UCT (Kocsis and Szepesvári, 2006) is a popular MCTS algorithm that frames the selec-
tion phase as a Multi-Armed Bandit (MAB) (Auer et al., 2002) problem, then uses the
UCB1 policy to select nodes for expansion. MABs define a class of sequential decision-
making problems, where an agent needs to select an action from K actions possible
in order to maximize the cumulative reward obtained. The best course of action is to
consistently select the optimal action, however, the underlying reward distributions are
unknown. Thus, estimates must be made from previous observations, leading to an ex-
ploration/exploitation dilemma. A K-armed bandit can be defined by random variables
Xi,n for 1 ≤ i ≤ K and n ≥ 1, with i identifying the arm (action chosen) of the bandit.
A MAB must be approached through a policy that aims to minimize the agent’s regret
(Browne et al., 2012). Cumulative regret after T iterations is defined as:

RT =
T

∑
t=1

(µ∗ − µt) (3.1)

Where µ∗ represents the maximum expected reward, and µt the reward obtained by
the action selected at iteration t. Regret thus represents the difference between the ideal

39

Chapter 3. Move Pruning in MCTS 3.1. Monte-Carlo Tree Search (MCTS)

choice and the choices made, over T iterations. Auer et al. (2002) proposed to compute
a Upper Confidence Bounds (UCB) value that determines whether an action will be
optimal. The UCB1 policy used by UCT requires the selection of an arm (action) that
maximizes the following:

UCB1 = Xj + c

√
ln n
nj

(3.2)

Where Xj is the average reward obtained from arm j. nj represents the number
of times arm j was selected and n is the total number of selections. The first term (Xj)
pushes for the selection of the best arm (exploitation), whereas the second term increases
the chances of selecting less explored arms (exploration). An exploration factor c is
added to the second term to control exploration intensity.

UCT works well in high branching-factor domains, such as Go, but suffers greatly
when the decision space has also a combinatorial structure, as in RTS games. This draw-
back is due to UCB1’s implicit requirement to explore all possible actions at least once
to commence exploitation. The short decision cycle and huge average number of possi-
ble moves at a decision point in RTS games do not allow UCT the chance to explore all
moves.

3.1.2 | NaïveMCTS
The idea of NaïveMCTS is to replace the MAB-based tree policy in UCT with a more
fitting Combinatorial Multi-Armed Bandit (CMAB)-based policy. CMABs are a natural
match for RTS games due to their support for combinatorial decision spaces. Instead of
sampling a single variable as in a MAB, A CMAB permits sampling a combination of
multiple variables. A CMAB is defined by the following (Ontañón, 2013):

■ A set of n variables X = {X1, . . . , Xn}, where each variable Xi may take Ki different
values Xi = {v1

i , . . . vKi
i }

■ A reward distribution R : X1× . . .×Xn → R depending on value of each variable.

■ A legality function V : X1 × . . .×Xn → {true, f alse} that checks whether a value
combination is legal or not.

A sampling strategy for a CMAB needs to find a legal combination of values, known
as a macro-arm, that yields maximum rewards. If v∗1 , . . . , v∗n represents the values that
grant the maximum expected reward µ∗, the regret ρT of a CMAB sampling strategy
after T iterations is defined as:

40

Chapter 3. Move Pruning in MCTS 3.2. Related Works

ρT = Tµ∗ −
T

∑
t=1

R(xt
1, . . . , xt

n) (3.3)

Where, xt
1, . . . , xt

n represent the macro-arm selected by the sampling strategy at iter-
ation t. NaïveMCTS exploits the underlying structure of RTS decision spaces using a
naïve sampling approach based on a naïve assumption that considers the reward estimate
of a macro-arm as the sum of the reward estimates obtained by each underlying arm
(single variable value). Thus, the reward distribution is decomposed as such:

R(x1, . . . , xn) =
n

∑
i=1

Ri(xi) (3.4)

The naïve assumption makes it possible to break down the CMAB problem into n+ 1
MAB problems:

■ Global MAB (MABg): Considers the whole CMAB problem as a MAB problem,
thus, each sampled legal macro-arm is treated as an arm. The global MAB is ini-
tially empty, and will be filled with sampled macro-arms in each subsequent iter-
ation.

■ Local MABs (MABi): For each variable Xi ∈ X, a MABi, specific to Xi is defined.
The job of local MABs is to form macro-arms by sampling the values of each vari-
able separately. The macro-arms are added to the global MAB.

Local MABs use the naïve assumption to explore different value combinations that
may yield a high reward. The global MAB would then exploit the combinations that
resulted in the highest reward. At each iteration, a policy π0 decides whether to explore
or exploit. On explore, a macro-arm xt

1, . . . , xt
n is sampled using a policy πl to indepen-

dently select a value for each variable. On exploit, a macro-arm xt
1, . . . , xt

n is sampled
using a policy πg which uses the sampled combinations of the global MAB.

NaïveMCTS uses ϵ-greedy policies for π0, πl , and πg, which take parameters ϵ0, ϵl ,
and ϵg, respectively. An ϵ-greedy policy uses a random policy with a probability ϵ, and
a greedy policy with a probability 1− ϵ.

3.2 | Related Works
Dealing with the enormous RTS decision space in the context of MCTS is an open prob-
lem continuously receiving contributions. By treating the selection phase as a CMAB,
NaïveMCTS effectively adapts MCTS to combinatorial search spaces. Nevertheless, the

41

Chapter 3. Move Pruning in MCTS 3.3. Move Pruning

decision space remains the same, and the algorithm still suffers from high dimension-
ality. Downsizing the search space’s dimensionality is usually done through action ab-
straction as detailed in section 2.3.2 and 2.3.3 of Chapter 2. Abstraction is effective in
reducing the overall branching factor, but move-pruning (Marsland, 1986) could also
play a significant role towards the same end.

If we adjust our perspective, HLP methods can be regarded as indirect move pruning
approaches (Yang and Ontañón, 2020). By focusing on a set of promising expert-based
player-actions, these approaches effectively prune the search space of all the remaining
player-actions, significantly reducing the branching factor. Still, such practice can also
become unsafe and prone to exploitation, due to the coarser player-actions considered,
resulting in a loss of tactical performance. To address this issue, HyP approaches com-
bine low- and high-level searches (Barriga et al., 2017; Moraes et al., 2018; Neufeld et al.,
2019b).

Directly pruning the player-actions responsible for weak performance can be an al-
ternative approach towards focusing the search on promising actions, without compro-
mising tactical strength. In the context of Chess (Heinz, 1999) and Shogi (Hoki and
Muramatsu, 2012), several forward pruning methods (Lim and Lee, 2006) such as Null-
move pruning and futility pruning were utilized to reduce the branching factor and
enhance AlphaBeta search. In Go, a domain-dependent pruning approach was imple-
mented in UCT (Huang et al., 2010), exploiting territory information. Similar MCTS
improvements were applied in the games of Hex (Arneson et al., 2010), Havannah
(Duguépéroux et al., 2016), and DeadEnd (He et al., 2008). In digital games, Sephton
et al. (2014) enhanced MCTS by applying a knowledge-based move pruning approach
for the strategic card game, LORDS OF WAR.

In this chapter, we suggest using a domain knowledge-based hard-pruning tech-
nique for MCTS agents in RTS games. This technique targets a specific type of player-
actions prevalent in all RTS games. To our knowledge, this is the first application of a
move-pruning approach in the context of RTS games.

3.3 | Move Pruning
We propose to act directly on the decision space and hard-prune a subset of decisions we
deem irrelevant and/or detrimental to the performance of MCTS. By doing so, MCTS
will be freed from sampling those decisions and simulating their outcomes. The recov-
ered computation time will be spent on exploring more relevant and significant deci-
sions, which would improve the playing strength and scalability of MCTS.

42

Chapter 3. Move Pruning in MCTS 3.3. Move Pruning

Table 3.1: The unit-action types available for each unit-type in µRTS.

Units
Actions

Move Attack Harvest Return Produce Wait

Worker • • • • • •
Light • • •

Ranged • • •
Heavy • • •

Base • •
Barracks • •

As a first attempt, we chose to focus on player-actions having the highest chance of
misleading search and negatively impacting the playing strength. Out of these player-
actions, we believe Inactive Player-Actions (IPAs) naturally come first. Thus, we imple-
mented several pruning approaches that keep a predefined number (fixed or relative)
of those player-actions and prune the remaining. We will briefly discuss the structure
of RTS player-actions next and then define IPAs.

3.3.1 | Unit-Actions and Player-Actions
In a typical RTS game, each unit type can execute a distinct set of actions known as
unit-actions. Table 3.1 enumerates the unit-action types executable by each unit-type
in µRTS. The Worker unit-type is the most versatile, followed by assault units (Light,
Ranged and Heavy) and structures (Base and Barracks). The attributes of a unit-type
define the effect of its unit-actions. For instance, the damage attribute controls how
much damage a unit-type causes when executing the Attack unit-action. Thus, even
for common unit-actions, each unit-type may behave differently. All unit-action types,
except Wait, require an argument that determines the target of the action. The Wait
unit-action type requires a numeric argument specifying the number of cycles ahead at
which the unit must remain inactive. Wait is the only unit-action type unaffected by
unit attributes and executable by all unit-types.

A player-action a ∈ A issued to n units at a given game cycle can be regarded as
a tuple, a = (α1, α2, . . . , αn), where each component αi is a unit-action issued to the i-
th unit. Given the average number of legal unit-actions available to each unit, m, the
number of all possible player-actions or the branching factor, b, can be estimated as
b = mn. We seek to lower b by finding ways to decrease m without negatively impacting

43

Chapter 3. Move Pruning in MCTS 3.3. Move Pruning

the playing strength.

3.3.2 | Inactive Player-Actions (IPAs)
We define an IPA as a player-action having at least one Wait (inactive, idle, or no-op)
unit-action as a component. Being the most prevalent non-critical unit-action, Wait unit-
actions make for a good pruning target. The Wait unit-action is continuously available
to all units, regardless of their situations. Thus, it strongly contributes to the inflation of
the search space. Nonetheless, Wait unit-actions can be advantageous for a unit, usually
in the following situations:

■ Trapped unit: No active unit-action is possible. The unit is caught in a situation
where all possible unit-actions are illegal. Waiting for a predefined duration is the
only option to choose in hopes the situation is resolved.

■ Tactical waiting: The unit anticipates for a chance to execute a high-value unit-
action. Here, the unit expects a suboptimal action by an opponent unit (via looka-
head) and chooses to Wait in anticipation for it. Executing the high-value action
happens afterward. This behavior is frequently observed in tactical skirmishes.

Although potentially useful, Wait unit-actions can also have a devastating effect on
the playing strength if improperly chosen. According to our observations, it is not un-
likely for a search-based agent (MCTS or otherwise) to assign a Wait unit-action to a unit
in a situation where better options exist. In such cases, doing nothing can be the worst
decision possible. We identify three disadvantageous situations where Waiting cannot
be a sound decision:

■ Waiting in front of opportunity: Here, the unit can seize an immediate opportu-
nity, such as Harvest resources, Return harvested resources, or safely remove an
opponent unit. Instead, the unit is assigned Wait.

■ Waiting in the face of danger: The unit is facing an immediate danger and holds
the necessary options to avoid it, but instead, it is assigned a Wait unit-action.

■ Waiting frequently: The unit is assigned Wait unit-actions more often than the
other unit-actions, in the absence of immediate dangers/opportunities, making it
less effective in pursuing opportunities and almost passive.

The presence of one Wait unit-action in a player-action (thus, IPA) is enough to in-
troduce a risk of encountering one of the disadvantageous situations. The more Wait

44

Chapter 3. Move Pruning in MCTS 3.3. Move Pruning

unit-actions in an IPA, the higher this risk gets. Thus, we believe that pruning the ma-
jority of IPAs from the search space, while preserving a fraction as a safety measure, to
account for trapped units and tactical waiting, can be beneficial to MCTS.

3.3.3 | Pruning Techniques
The radical pruning approach would be to remove all IPAs from the search space, basi-
cally removing the Wait unit-action from the set of unit-actions of all unit types. Thus,
diminishing m by 1 and obtaining a branching factor b′ = (m− 1)n, which represents a
considerable decline from b. As an example, if we have m = 5 unit-actions on average
in a given game state with n = 6 units, then b ≈ 1.56× 104 and b′ ≈ 4× 103. The total
number of IPA removed would be: v = b− b′ = 1.16× 104. The reduction is significant,
but we intend to keep a portion of IPAs to deal with trapped units and tactical waiting.

Detecting trapped units is a simple task. But dealing with tactical waiting can be
elusive since there is no simple way to differentiate between waiting as a tactical choice,
and waiting as a bad decision until witnessing the consequences. Random playouts do
not offer a reliable answer in that regard. We propose four pruning approaches that cap-
ture IPAs and decide whether to allow or prune them according to a given parameter.
These approaches preserve all IPAs involving trapped units and allow a predetermined
number/rate of random IPAs in hopes of preserving tactical waiting situations. The re-
maining IPAs are all considered disadvantageous and are systematically hard-pruned.
We do not re-insert pruned IPAs because we consider the non-pruned player-actions
more urgent to explore. The pruning approaches are described as follows:

■ Random Inactivity Pruning - Fixed (RIP-F(k)): Allow a fixed number k of IPAs.

■ Random Inactivity Pruning - Relative (RIP-R(p)): Allow a percentage of IPAs p
relative to the total number of removable IPAs.

■ Dynamic Random Inactivity Pruning - Fixed (DRIP-F(k1, k2)): Allow k1 IPAs
when the agent’s units outnumber the opponent’s units, and k2 IPAs otherwise.

■ Dynamic Random Inactivity Pruning - Relative (DRIP-R(p1, p2)): Allow p1 per-
cent of IPAs when the agent’s units outnumber the opponent’s units and p2 per-
cent of IPAs otherwise.

The intuition behind dynamic approaches is to equalize the chances of performing
tactical waiting when the agent does not hold a numerical advantage. This is done by
allowing more IPAs when the agent is outnumbered (k2 > k1 or p2 > p1).

45

Chapter 3. Move Pruning in MCTS 3.4. Experiments & Results

Algorithm 1 The general IPA pruning algorithm.

1: function PRUNE(a) ▷ a : A sampled player-action
2: if ISIPA(a) then
3: if TRAPPEDUNIT(a) then return a
4: end if
5: if a ∈ prunedIPAs or CHECKPARAM() then
6: repeat
7: prunedIPAs.addIfNotExist(a)
8: a← SAMPLEACTION(gameState)
9: until ISIPA(a) == false

10: end if
11: end if
12: return a
13: end function

These approaches can be easily implemented as part of any search algorithm, as
shown in Algorithm 1. Each time a player-action a gets sampled, PRUNE(a) is called to
decide whether to keep or replace a, in case it is an IPA. If a is a Non-IPA or an IPA
involving a trapped unit, it will be returned as-is (lines 3 and 12). ISIPA(a) returns true
if a has at least one Wait unit-action, and TRAPPEDUNIT(a) returns true if a Wait unit-
action in a belongs to a trapped unit. The algorithm keeps track of previously-pruned
IPAs in the prunedIPAs list to prevent re-insertions. The conditional expression in line 5
defines the pruning condition, which is satisfied either if a was previously pruned, or if
CHECKPARAM() returns true.

The pruning approaches differ in the implementation of CHECKPARAM(). For in-
stance, in RIP-F(k), CHECKPARAM() returns true only if the number of IPAs allowed is
higher than k. The loop in lines 6-9 will keep re-sampling for new player-actions until
a is replaced with a non-IPA. Finally, a new non-IPA or an IPA allowed by CHECK-
PARAM() is returned.

3.4 | Experiments & Results
To study the effect of pruning IPAs on MCTS, we implemented the four aforementioned
pruning techniques in UCT and NaïveMCTS and conducted various experiments in
µRTS. Indeed, UCT’s performance suffers greatly in RTS scenarios due to UCB1’s limi-
tations in combinatorial search spaces (Ontañón, 2017), nevertheless we wanted to test
if pruning IPAs would alleviate the dimensionality burden and results in performance
improvement. Integrating IPA pruning in UCT and NaïveMCTS generated new agents

46

Chapter 3. Move Pruning in MCTS 3.4. Experiments & Results

that we refer to by suffixing the acronym of the technique to that of the original search
approach. For instance, the agent using RIP-R(p) with UCT or NaïveMCTS is noted as
UCT-RIP-R(p) or NMCTS-RIP-R(p).

We first analyzed the performance of RIP-F(k) and RIP-R(p) relative to the number
of IPAs allowed, the map’s size, and the MCTS algorithm in use. We then took the top-
performing pruning approaches for each MCTS algorithm and map size and performed
a round-robin tournament with other µRTS agents. Afterward, we examined the impact
on the branching factor and performed a scalability test in larger maps. The experiments
were carried out on two PCs with Intel® Core® i5 and i7 CPUs, clocked at 3.1Ghz and
3.4Ghz, respectively, using the latest version of µRTS as of the 30th of March 2020.

3.4.1 | Pruning Analysis
To analyze the influence of IPA pruning on the performance of MCTS, we ran a series of
experiments involving each MCTS agent and non-dynamic IPA pruning approach. We
defined two distinct sets, F and R, composed of a selection of values that can be taken
by the parameters of RIP-F(k) and RIP-R(p), respectively. Next, we ran 500 matches
(switching sides after 250 matches) between the MCTS agent enhanced with an IPA
pruning approach, and the non-pruning version of the same MCTS agent for each re-
spective value in F or R. The process was repeated for each basesWorkers map of size
8× 8, 12× 12 and 16× 16. We define F and R as follows:

■ F = {0, 1, 5, 10, 50, 100, 500, 1000, 5000, 10000}

■ R = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}

The total number of matches played for a single MCTS agent amounts to (500 ×
|F| × 3) + (500× |R| × 3), yielding 63000 matches for both UCT and NaïveMCTS. In all
experiments, we kept the default UCT and NaïveMCTS parameters as defined in the
µRTS codebase, for all variants. Agents were given 100ms per frame as a computation
budget. The experiment results are expressed in Figure 3.2’s plots.

Overall, we can see that IPA pruning is responsible for a performance gain of vari-
able rates, relative to the number of IPAs allowed and the branching factor represented
by the map’s size. In UCT-RIP-F(k), allowing a few IPAs (0 < k ≤ 5) significantly
increases UCT’s performance. However, the more IPAs are allowed, the more perfor-
mance decreases until pruning losses its effect (k ≥ 1000). The same trend is witnessed
in UCT-RIP-R(p). Allowing a small percent of IPAs (0.1 ≤ p ≤ 0.3) increases UCT’s

47

Chapter 3. Move Pruning in MCTS 3.4. Experiments & Results

8 x 8 12 x 12 16 x 16

Sc
or

e
Sc

or
e

(1) UCT-RIP-F

k

0

10

20

30

40

50

60

70

80

90

100

0 1 5 10 50 100 500 1K 5K 10K

(2) UCT-RIP-R

p

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(3) NMCTS-RIP-F

k

0

10

20

30

40

50

60

70

80

90

100

0 1 5 10 50 100 500 1K 5K 10K

(4) NMCTS-RIP-R

p

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3.2: Results of the pruning analysis experiments. Each data point
represents 500 matches between a basic MCTS agent and the same agent
enhanced with IPA pruning. The vertical axes represent the score ob-
tained by the latter agent. The score was calculated as such: score =
((Wins + (Draws/2))/500) × 100. A match is considered a draw if no
winner has been decided after 3000, 3500, and 4000 cycles in each map of
size 8× 8, 12× 12, and 16× 16, respectively.

performance, but the more we raise p the more performance drops. We note that UCT-
RIP-R(p = 1) and UCT-RIP-F(k ≥ 1000) are equivalent to non-pruning UCT.

The highest performance gain was recorded in the smallest 8× 8 map with the low-
est branching factor, and the lowest gain was recorded in the largest 16× 16 map. This
is expected from UCT since its sampling strategy (UCB1) is ineffective in combinatorial

48

Chapter 3. Move Pruning in MCTS 3.4. Experiments & Results

search spaces. Thus, pruning IPAs is not enough to scale UCT’s performance. Pruning
all IPAs (k = 0 or p = 0) hurts UCT’s performance in larger maps due to the large num-
ber of IPAs encountered. This causes frequent player-action re-samplings that rapidly
consume the computation budget, leaving very little time to exploitation. Although this
effect is offset in the 16× 16 map by the large number of draws, it is quite clear in the
12× 12 map.

From the perspective of NaïveMCTS, IPA pruning exhibits the same effect as in UCT,
with two key differences. First, in the smallest 8× 8 map, NaïveMCTS performs opti-
mally when more IPAs are allowed (in comparison with UCT), that is, when 5 ≤ k ≤ 50
in NMCTS-RIP-F(k) and p = 0.9 in NMCTS-RIP-R(p). This is probably because naïve
sampling already handles small scenarios well and can gain an advantage if a portion
of IPAs is kept to explore tactical waiting situations. However, in larger maps, pruning
all IPAs (k = 0, or p = 0) yields the highest performance gain. Here, due to the bigger
branching factor, pruning IPAs significantly contributes to the better utilization of the
computation budget.

The second difference with respect to UCT is the scalability of performance, relative
to the increase in the branching factor. As opposed to UCT, NaïveMCTS enhanced with
IPA pruning delivers its best performance in the largest 16× 16 map, followed by the
12 × 12 map. Having fewer IPAs in the search space seems to allow naïve sampling
to sample more interesting player-actions, instead of wasting time on IPAs. Moreover,
pruning IPAs increases the movement frequency of units, resulting in an enhanced abil-
ity to explore large maps. We will see further how this translates to larger maps.

3.4.2 | Best Pruning Approaches
Concerning dynamic pruning approaches, DRIP-F(k1, k2) and DRIP-R(p1, p2), we have
conducted a similar experiment using UCT, by fixing k1 (or p1) to the optimal k (or p)
value found for each map size and performing 500 matches for each k2 (or p2) value
from F (or R). We omitted the results because of space constraints. For NaïveMCTS,
dynamic pruning did not bring any improvement over non-dynamic approaches, based
on preliminary tests. Thus, performing extensive experiments was not necessary. The
best performing IPA pruning approaches for each map-size and MCTS algorithm are
shown in Table 3.2.

For UCT, dynamic approaches work best in the small and medium-sized maps due
to the frequent encounters between opposing units. In the largest map, exploration
becomes more urgent, rendering the dynamic approaches ineffective.

49

Chapter 3. Move Pruning in MCTS 3.4. Experiments & Results

Table 3.2: The best performing pruning approaches, by map size and
search algorithm.

8× 8 12× 12 16× 16

Approach Score Approach Score Approach Score

UCT DRIP-F(1, 0) 82.2 DRIP-R(0.2, 0.4) 76.8 RIP-F(1) 63.9

NaïveMCTS RIP-R(0.9) 62.3 RIP-R(0) 73.3 RIP-F(0) 78.6

3.4.3 | Performance Analysis
To further assess the performance impact of IPA pruning on MCTS agents, we have run a
round-robin tournament between eight µRTS agents, including two IPA pruning MCTS
agents, under µRTS competition conditions. The tournament consists of 100 iterations,
where in each iteration, every agent plays a match against the other agents resulting
in 8× 7× 100 = 5600 matches in each of the maps used previously. The participating
µRTS agents include four baseline agents and one top performing agent from 2019’s
µRTS competition, MixedBot:

■ NaïveMCTS: The original unmodified NaïveMCTS.

■ RandomBiased: Selects actions randomly, with a bias towards attacking and har-
vesting. Built-in baseline agent.

■ POWorkerRush: Continuously produces workers and sends them to attack the
opponent. Built-in baseline agent.

■ POLightRush: Same as the above, but using Light units.

■ MixedBot: Relies on two separate agents; Tiamat (Mariño et al., 2018) for strategic
decisions and Capivara (Moraes et al., 2018) for tactical decisions. Both based on
search space abstraction through scripts, and both tuned for different map sizes.

In addition to the following IPA pruning agents:

■ NMCTS-Random Inactivity Pruning (RIP): NaïveMCTS integrating the best per-
forming IPA pruning approach for each map size, as defined in Table 3.2.

■ UCT-RIP: Same as the above, but based on UCT.

We also included unmodified UCT for the sake of comparison. The global tourna-
ment results are reported in Table 3.3, and the results by map-size are shown in Figure
3.3. The score is calculated similarly to the previous experiment.

50

Chapter 3. Move Pruning in MCTS 3.4. Experiments & Results

Table 3.3: Overall tournament results (Row agent vs. column agent)

PO
W

or
ke

rR
us

h

M
ix

ed
Bo

t

NM
CT

S-
RI

P

PO
Li

gh
tR

us
h

Na
ïv

eM
CT

S

UC
T-

RI
P

UC
T

Ra
nd

om
Bi

as
ed

Av
er

ag
e

POWorkerRush 74.5 60.6 100 69.8 72.3 89.5 100 81

MixedBot 30.5 74.8 82 89.6 86.8 99 100 80.4
NMCTS-RIP 42.1 26 47 72.1 80.6 96 100 66.3

POLightRush 0 30.8 58 66.3 65.3 66.6 98.3 55
NaïveMCTS 34.5 9.3 31 36.3 69.3 94 100 53.5

UCT-RIP 26.8 14.1 20.8 35.5 30.6 78 98.1 43.4
UCT 13 1 2.3 34.6 7.5 21.3 84.8 23.5

RandomBiased 0 0 0 6.6 0 1 13 2.9

Average 21 22.2 35.3 48.9 48 56.7 76.6 97.3

Sc
or

e

8 x 8

12 x 12

16 x 16

Overall

0
10
20
30
40
50
60
70
80
90

100

Figure 3.3: Results of the tournament in each map.

The results demonstrate how IPA pruning positively affects the playing strength
of UCT and NaïveMCTS. Looking at the average scores, NMCTS-RIP achieved a 12.8
points increase with respect to NaïveMCTS, and UCT-RIP achieved a near 20 points
increase, relative to UCT. IPA pruning in UCT (UCT-RIP) managed to shrink the per-
formance gap between UCT and NaïveMCTS from 30 points to 10.1 points, noticeable
in Figure 3.3 where UCT-RIP’s performance closely matches that of NaïveMCTS in
the 8 × 8 map. Moreover, NMCTS-RIP was able to score a higher average than PO-
LightRush, one of the strongest scripts usually outranking NaïveMCTS. Against each

51

Chapter 3. Move Pruning in MCTS 3.4. Experiments & Results

agent, both NMCTS-RIP and UCT-RIP obtained significantly higher scores than those
of NaïveMCTS and UCT respectively.

As expected, scripts and script-based approaches exhibit a superior performance
versus low-level MCTS search approaches, due to the presence of expert knowledge in
the form of hard-coded scripts. Expert knowledge helps in avoiding detrimental player-
actions by focusing the search on a limited set of player-actions judged more rewarding.
However, this comes at the cost of lower decision granularity and higher exploitation
risk. By pruning detrimental player-actions, we hope to focus the search on a wider
range of interesting player-actions and keep a higher degree of decision granularity.
The fact that NMCTS-RIP could achieve a higher average score than MixedBot in the
12× 12 map signifies that our approach could be promising.

Under the µRTS competition settings, both holistic MCTS agents and those that rely
on MCTS only for low-level tactical planning, e.g. (Barriga et al., 2017) and (Moraes
et al., 2018), would benefit from IPA pruning and see a tactical performance gain that
positively impacts their overall performance.

3.4.4 | Branching Factor & Scalability
To better grasp how IPA pruning affects MCTS performance, we took 100 mid-game
states from matches between NMCTS-RIP and NaïveMCTS and ran a 100ms search,
starting from those states for both agents. The search was limited to a single ply only
(maxDepth = 1), and the mid-game state was defined at 400, 600 and 1000 game cycles
for each map of size 8 × 8, 12 × 12 and 16 × 16, respectively. The statistics collected
during these searches are reported in Table 3.4.

Table 3.4: Branching factor, sampled actions, and IPA pruning statistics

Agent NMCTS-RIP NaïveMCTS

Map Size 8× 8 12× 12 16× 16 8× 8 12× 12 16× 16

Avg. Branching Factor, b (Incl. IPAs) 1782 2.48× 107 9.52× 1011 784 6.51× 106 1.84× 1011

Avg. Unit Count, n 5.19 14.39 20.92 5.32 14.39 20.06

Avg. Unit Actions, m (Incl. Wait) 3.15 2.67 3.11 2.71 2.54 3.05

Avg. Branching Factor, b′ (w/o IPAs) 54 1561 6.12× 106 17 494 1.87× 106

Avg. Sampled Actions 70.81 75.27 71.25 71.76 80.11 76.85

IPAs Rate in Sampled Actions 33.82% 71.81% 76.72% 80.03% 99.24% 99.88%

Pruned IPAs Rate (WRT. Sampled Actions) 6.04% 13.32% 24.56% 0% 0% 0%

We can see that the branching factor b in mid-game states is higher in NMCTS-RIP,
as a result of the similarly higher unit-actions average m. This, in turn, is the conse-
quence of the units being spread out on the map due to lesser IPAs (more movements),

52

Chapter 3. Move Pruning in MCTS 3.5. Summary

Table 3.5: NMCTS-RIP-F(0) results versus NaïveMCTS in larger maps.

Map Size Wins Losses Draws Score

24× 24 52 6 42 73

32× 32 43 1 56 71

leading to more space between units, and more possible actions for each. NMCTS-
RIP samples player-actions from a subset of the decision space having a lower bound
branching factor b′, expanded by the number of IPAs involving trapped units, and a
random set of IPAs allowed by the pruning approach.

The rate of IPAs in both branching factor and sampled actions grows proportionally
to the branching factor, as expected. The rate of IPAs in sampled actions is significantly
high in NaïveMCTS, reaching near 100% in larger maps. Whereas in NMCTS-RIP, this
rate drops under 34% and would not go beyond 77% in the tested maps. Moreover,
the rate of pruned IPAs increases proportionally with the branching factor. Therefore,
we may conclude that in larger maps NaïveMCTS gets fully overwhelmed by IPAs,
while NMCTS-RIP prunes more IPAs and focuses on a larger number of possibly better
player-actions. This further highlights the detrimental effect of the overabundance of
IPAs.

We have run 100 matches (switching sides after 50 matches) between NMCTS-RIP-
F(0) and NaïveMCTS in larger 24× 24 and 32× 32 maps, to test the performance scala-
bility of IPA pruning in larger scenarios. The results in Table 3.5 suggest a stable score
trend and an increasing win/loss ratio proportional to the map’s size. Additional ex-
periments in these scenarios are planned in the context of our next works.

3.5 | Summary
In this chapter, we studied the possibility of employing move pruning as a way to
enhance MCTS performance in the context of RTS games. We have identified a class
of player-actions that can negatively impact the performance of low-level MCTS ap-
proaches. We labeled those actions as Inactive Player-Actions (IPAs) due to their ten-
dency to keep at least one unit in an inactive state. Several pruning approaches were
conceived to prune IPAs, taking into account the existence of possibly useful IPAs. We
then carried out a range of experiments to test the validity of our approaches and dis-
cussed the obtained results. According to the results, pruning IPAs is associated with
a meaningful performance gain, due to the reduced branching factor and the increased

53

Chapter 3. Move Pruning in MCTS 3.5. Summary

focus on more interesting player-actions. IPA pruning in NaïveMCTS has demonstrated
an impressive performance across increasingly larger maps, especially when all exces-
sive IPAs get pruned. Therefore, we conclude that NaïveMCTS can safely ignore all
superfluous IPAs in such situations, which will grant a risk-free performance boost in
an RTS game (Ouessai et al., 2020a).

Move pruning in this context can be seen as inverse action abstraction, since we
are trying to find the set of player-actions to avoid, whereas, action abstraction meth-
ods seek to find the set of player-actions to focus on exclusively. Pruning low-quality
player-actions could result in a more flexible and granular decision space, rather than
the coarser space induced by action abstractions (scripts).

µRTS agents integrating a low-level search technique with IPA pruning could gain
an improved tactical reasoning ability. This improvement would positively influence
the agent’s performance in the µRTS competition.

Researching more prunable player-action types falls into the scope of our next work,
along with further analysis of IPA pruning in larger scenarios, and the analysis of the
impact of IPA pruning in multi-level search approaches such as STT (Barriga et al., 2017)
and A3N (Moraes et al., 2018). We believe that further research into the low-level struc-
ture of the RTS decision space could lead to a deeper understanding of the general fea-
tures of higher-quality decisions.

In the following chapter, we propose an integrated action and state abstraction frame-
work that relies on RTS heuristics to reduce the size of the decision space. In this frame-
work, it is also possible to make use of IPA pruning as post-processing phase.

54

4

Parametric Action Preselection

“Strategy without tactics is the slowest route to victory.
Tactics without strategy is the noise before defeat.”

— Sun Tzu

Because RTS games possess a state space and a decision space of massive proportions,
artificial agents often need the help of domain knowledge to navigate the vast array of
possibilities. Recently, the popular RTS game STARCRAFT II saw the rise of the break-
through agent, AlphaStar (Vinyals et al., 2019), to the rank of Grandmaster. Conceived
by DeepMind, AlphaStar uses domain knowledge in the form of match replays from top
human experts for a supervised learning phase, in addition to a multitude of machine
learning techniques, including self-play. Nonetheless, the tremendous computational
effort required in the training phase, paired with access to custom hardware, reduces
the chances of reproducibility under downscaled typical conditions.

Monte-Carlo Tree Search (MCTS)-based agents could be a promising alternative due
in part to their flexible computational needs and their proven, successful track record in
games with large decision spaces such as Go and its kin. However, MCTS applicability
in RTS games is still limited, given its forward-model requirement (simulator needed
to quickly simulate the outcomes of actions), and expectedly, because of its struggle
against expansive, combinatorial decision spaces. Several research evidences suggest
that guiding MCTS by means of expert knowledge may contribute to its competitive-
ness, depending on how the expert knowledge may be integrated in the search process.

In the previous chapter we explored how a knowledge-based move pruning ap-
proach could improve MCTS’ performance. Raw domain knowledge was used to de-
sign a player-action sampling scheme that discards a proportion of IPAs, known for
their detrimental qualities (Ouessai et al., 2020a). As mentioned in Chapter 2, some

55

Chapter 4. Parametric Action Preselection 4.1. Related Works

HLP and HyP approaches use domain knowledge in the form of scripts. A script is a
set of rigid rules, designed by a domain expert, that govern the behavior of an agent.
In this chapter, we propose an action preselection algorithm that relies on the building
blocks of scripts rather than full scripts to guide action selection (Ouessai et al., 2020b).

Expert-authored scripts combine several smaller scripts, we call heuristics, to form a
scripted agent. A heuristic represents an isolated task performed by a unit or a group of
units, such as harvesting or attacking. Our algorithm depends on parametric heuristics
to generate a wide variety of scripts that can be used to preselect actions for predefined
groups of units, to feed into an MCTS agent. The heuristics’ parameters can be modi-
fied in real-time to adjust both the decision granularity and the adopted strategy, which
opens the perspectives for dynamic strategy adaptation through MCTS. Experimenta-
tion results in the µRTS test-bed reveals a significant MCTS performance gain related to
the reduced branching factor and the more focused decision space.

4.1 | Related Works
The first bottleneck encountered by an algorithm searching for an optimal decision in an
RTS match is the very high dimensionality of the decision and state spaces, exacerbated
by the real-time constraints. Search approaches would easily get lost while looking
for optimal actions and may settle for suboptimal actions, in almost every instance. As
indicated in Chapter 2, the most prevalent solution to this dimensionality curse assumes
the form of an intermediate abstraction layer that conceals low-level representations in
favor of higher-level ones, deemed more valuable by expert knowledge. As commonly
practiced, an abstraction layer in the decision space is either implemented through a
portfolio of expert scripts or a probability distribution over expert actions. On the other
hand, an abstraction layer in the state space results from a manual or an automatic
clustering process.

All the approaches enumerated under Section 2.3.2, and 2.3.3 of Chapter 2 can be
considered related to the proposed approach, since all share the same trait of consider-
ing abstracted decision and/or state spaces. One key characteristic distinguishing our
approach from the other HLP and HyP methods, is its reliance on parametric heuris-
tics to manipulate and shape the abstraction layer, which opens up many interesting
possibilities for RTS game-playing agents.

56

Chapter 4. Parametric Action Preselection 4.2. Parametric Action Preselection

4.1.1 | Relation with Dynamic Scripting
Action preselection could be seen as analogous to dynamic scripting (Spronck et al.,
2006). This point of view is justified because both methods combine small-scale scripts
(Heuristics vs. rules) to form full-scale scripts or a strategy. The primary goal of dy-
namic scripting is to automatically adapt a game-playing AI to the playing strength of
its opponent. It works by continuously tuning weights associated with rules found in
agent-specific rule-bases, using the feedback received from online encounters, similarly
to actor-critic approaches (Sutton and Barto, 2018).

In contrast, action preselection was designed as a preprocessing technique that aims
to shrink and shape the search space, in line with a given strategy (expressed through
parameters), for a subsequent planning phase. To that end, heuristics were used instead
of rules as in dynamic scripting for two reasons. (1) Rules work in a narrow scope, and
(2) will always impose a decision by returning a single action. Heuristics extend the
scope of rules by supporting parameters, making a single heuristic act as a family of
related rules. Moreover, a heuristic does not always impose a decision and can return
multiple possible actions compatible with its goal. Such actions are forwarded to a
planning algorithm to make a decision. Although online optimization is a possibility, in
Chapter 5 we propose to optimize action preselection hyperparameters offline using an
EA.

4.2 | Parametric Action Preselection
While playing an RTS game, a human player would generally interact with groups (or
squads) of units more frequently than they would with individual units. We assume
this behavior is required to cope with the continuously growing number of their units
in the environment. For this reason, the user interfaces of most modern RTS games offer
streamlined group management facilities. The player would then have to figure out a
tactical objective for each group (harvest, reconnaissance, attack, defend, ..., etc.) and
assign the correct task to each, in line with their intended global strategy. One way to
model this behavior is through authoring rule-based scripts, which could implement a
strategy by assigning actions to different groups of units.

A script, however, as intricate as it could get, cannot account for every possible type
of opponent or map layout, and may get easily exploited by a robust search-based agent.
Nevertheless, scripts remain as an interesting medium for encoding expert knowledge
for use by more sophisticated RTS agents. We are particularly interested in the way rule-
based scripts are constructed. If one closely inspects their inner-workings, it becomes

57

Chapter 4. Parametric Action Preselection 4.2. Parametric Action Preselection

obvious that such scripts are themselves a combination of smaller-scale, simple scripts,
we denote as heuristics.

As an example, we inspect the Rush script. Rush is a well-known RTS script encod-
ing a strategy that aims to overwhelm the opponent by constantly producing assault
units and sending them immediately to attack the opponent’s base. The WorkerRush
variant can be broken down into three heuristics, the first one assigned to the Base
(Train), the second assigned to at least one Worker (Harvest), and the third assigned
to the remaining Workers (Attack). The Train heuristic simply keeps training Workers
as long as there are resources to cover the cost. The Harvest heuristic tasks its assignee
Workers with harvesting and returning resources. The Attack heuristic will send the
remaining Workers to attack the opponent’s Base. The Harvest and Assault heuristics
utilize a pathfinding algorithm to guide the units.

Viewing scripts as a combination of heuristics should help generate novel scripts
because through this viewpoint, the attention now shifts to the question of how to de-
sign interesting heuristics and combine them to produce original scripts (or strategies).
A script-generating system would help assist a search-based agent. We propose to con-
ceive parameterized heuristics to facilitate the generation of novel heuristics, and conse-
quently novel strategies, by simply defining the strategy’s heuristics and their parame-
ters. The possible advantages of a heuristic-based, parametric script-generation system
include:

■ Explainable strategy authoring: Selecting the right heuristics and their parame-
ters can clearly describe the intended strategy.

■ Controllable output: In contrast with regular scripts, parameterized heuristics
can be configured to output more than one candidate action. A high-level search
algorithm can decide which action to select.

■ Dynamic adaptation: The strategy in use can be adapted in-game through heuris-
tic re-parameterization or switching.

■ Parameter learning: The presence of parameters allow for learning optimal pa-
rameter values for various situations. We propose to use an evolutionary algo-
rithm for a similar task in Chapter 5.

■ Difficulty adjustment: It is possible to define difficulty parameters for the set of
heuristics and adjust them according to the player’s level.

We propose to use a heuristics-based, script-generating system for an action prese-
lection phase that precedes a NaïveMCTS search phase. This approach would signif-

58

Chapter 4. Parametric Action Preselection 4.2. Parametric Action Preselection

2. Selection1. Action Preselection 3. Expansion 4. Simulation 5. Backpropagation

Figure 4.1: Action preselection as a prior step to the four phases of MCTS.
Nodes represent states, and outbound edges represent actions. Actions
and states discarded by preselection are shown in gray.

icantly lower the branching factor while framing the decision space according to the
generated strategy. Moreover, this would also allow granular non-deterministic control
thanks to the presence of multi-output heuristics.

Figure 4.1 shows the position of action preselection relative to MCTS phases. Action
preselection is positioned as a pre-processing step that operates on the decision space
before each MCTS iteration. Action preselection molds the decision space according to a
strategy expressed using the combination of heuristics and their parameters. The result
is a considerably smaller decision space, conserving a degree of granularity. NaïveM-
CTS, or possibly any search algorithm, operates as usual on the resulting decision space.

4.2.1 | Formal Definition
We define an arbitrary, parametric heuristic h ∈ H, whereH is the set of all RTS heuris-
tics, as a function h : S× U × P(Au

s)×Rh → P(Au
s) taking as input a game state s ∈ S,

a unit u ∈ U , all legal unit actions possible for u in s, represented by a set α ⊆ Au
s with

|α| = l, and a parameter vector p ∈ Rh. The output of h is a unit-action set α′ ⊆ Au
s with

|α′| = k, under the constraints: k ≤ l and α′ ⊆ α. If k = l, either the heuristic h works at
the level of unit-action attributes or is an identity heuristic. U andRh represent the sets
of units and parameter vectors of heuristic h, respectively. P(Au

s) denotes the power set
of Au

s .
Non-parametric heuristics present in expert-authored scripts may implicitly encode

constant parameter vectors. Parametric heuristics explicitly include those parameters as
arguments to the heuristic. A parametric heuristic h is fully deterministic if k = 1, and
no stochastic parameter controls its execution. In case k > 1, the heuristic is multi-
output, and a search algorithm can select an optimal action from its output, α′. A

59

Chapter 4. Parametric Action Preselection 4.2. Parametric Action Preselection

A

d1

g1

gm
1

H1
h1

hm
1

A

Ò1

d2

g1

gm
2

H2
h1

hm
2

Ò2

An-110

dn

g1

gm
n

Hn
h1

hm
n

Òn

Game State s

Units U

A n

Search

Execution

x1 x2 xn

T

Po
st

-P
ro

ce
ss

in
g

Figure 4.2: The action preselection process T . Each phase refines the
unit-actions set received from the previous phase, according to a strategy
expressed by partitionings, heuristics, and parameters.

heuristic may employ any suitable algorithm, including pathfinding, to narrow down
the number of actions in α′ for the sake of reducing the overall branching factor. For
instance, the Harvest heuristic will discard all unit-actions in favor of those that guide
a Worker back and forth between a Resource Deposit and a Base. A parametric Har-
vest heuristic may expose parameters such as the maximum resources to harvest or the
pathfinding algorithm to use.

A heuristic h, when associated with a group of units g ∈ P(U), will be equally
applied to each unit in g using the same parameter vector p. Thus, a parametric group
heuristic is denoted as h[g, p]. We define D as the set of all possible unit partitionings,
where a partitioning d ∈ D can be expressed as: d = {g1, · · · , gm | gi ∈ P(U) ∧ u ∈
gi ⇒ u ̸∈ gj, ∀j ̸= i}. Determining a partitioning d can be done either manually or
automatically. In the current implementation, we use a manual, first-come-first-served
partitioning approach.

We define an action preselection process T (s,U ,A0, x1, · · · , xn) as an n-phase algo-
rithm operating on a given game state s, the set U of all units currently in s, and all
their legal unit-actions A0. In any preselection phase, xi(Ai−1, di,Hi, θi), each heuristic
hj ∈ Hi is applied to its assigned unit group gj ∈ di, using the relevant parameters
pj ∈ θi, and the unit-actions resulting from the previous phase Ai−1. The resulting
unit-actions set, Ai, is fed to the next preselection phase xi+1(Ai, di+1,Hi+1, θi+1). The
output of the last phase, xn, is also the final output of T , and it represents the unit-
actions that constitute the decision space framed by the strategy σn = (dx,Hx, θx), with
dx = (d1, · · · , dn), Hx = (H1, · · · ,Hn), and θx = (θ1, · · · , θn). Figure 4.2 illustrates the
preselection process T . An may undergo an additional post-processing phase before it
is used for search or execution.

Intuitively, an action preselection process is a successive refinement technique that

60

Chapter 4. Parametric Action Preselection 4.2. Parametric Action Preselection

sequentially manipulates the set of legal unit-actions of each unit, in the relevant game
state, according to a global strategy expressed by σn. The resulting set of unit-actions
represent a decision to execute, or the possible options admissible by σn. In the latter
case, a search algorithm such as MCTS can be employed to find an optimal player-action
in accordance with σn, in a much smaller and focused decision space. A regular expert-
authored script can be seen as a one phase preselection process, σ1, with deterministic,
single-output heuristics.

As an example use-case, it is possible to define a hierarchical 2-phase strategy using
the described action preselection process. In the first phase, units are split into two large
groups, d1 = {defense, offense}, that are assigned the heuristics H1 = {defend, attack},
under parameters θ1. In the second phase, the units could get split into more specialized
groups, such as d2 = {baseDef , barracksDef , offense}, with associated heuristics H2 =

{defendBase, defendBarracks, attack} under parameters θ2. The first phase ensures
a common behavior for defense units, and the second phase builds on that to create
specialized defense units. We will describe our proposed parametric action preselection
implementation for RTS games next.

4.2.2 | Implementation: ParaMCTS
We propose to implement a versatile action preselection process, based on the most
common heuristics employed by most RTS strategies. The general progression of any
RTS match can be described as follows: A player starts by harvesting resources and
building essential structures and at some point, the player must defend his base from
the assaults of his opponent’s forces and conduct assaults on his opponent’s base. While
confronting enemy units, the player must maximize the damage done, and minimize the
damage taken, using astute micro-management. We attempt to model the heuristics in
this general progression and allow for the emergence of interesting variants through
heuristic parameterization.

The proposed implementation, ParaMCTS, uses NaïveMCTS to search in the deci-
sion space framed by a 2-phase action preselection process. The first phase partitions
units into four functional groups, and the second phase puts units in two situational
groups. Both phases are described next, in the context of µRTS.

4.2.2.1 | Phase 1: x1(A0, d1,H1, θ1)

This phase segregates units depending on their intended function, then assigns the rel-
evant heuristic to each. d1 keeps track of the number of units in each group, and assigns

61

Chapter 4. Parametric Action Preselection 4.2. Parametric Action Preselection

each unit to its relevant group, in a first-come-first-served fashion. The maximum num-
ber of units in each group is a partitioning parameter to provide. d1 works in tandem
with the Train heuristic to keep the number of units within the provided limits. Unit
groups and heuristics are described bellow:

Functional Groups: d1

■ Harvesters: Worker units tasked with resource gathering and structure building.

■ Structures: Barracks and Base. Responsible for training mobile units.

■ Offense: Mobile units ready to assault opponent units anywhere.

■ Defense: Mobile units assigned to defend the Base’s perimeter.

Functional Heuristics: H1

■ Harvest: Applies to the Harvesters group. Automates the resource harvesting pro-
cess and provides Barracks building options whenever possible. Parameters in-
clude the building location selection mode (isolated or random), the maximum
number of build options, and the pathfinding algorithm.

■ Train: Applies to the Structures group. Trains units following the group compo-
sition in d1. Parameters include d1 group composition, the training side selection
mode, and the maximum number of training options.

■ Attack: Applies to the Offense group. Find and track opponent units for suppres-
sion. Parameters include the targeting mode (closest, minHP, ..., etc.), the max-
imum number of units to target, and the maximum number of escape routes to
consider in a close encounter.

■ Defend: Applies to the Defense group. Remain within a defense perimeter around
the Base and attack incoming opponent units. Parameters include the geometry
and size of the defense perimeter, the defense mode, and the maximum number
of units to attack.

4.2.2.2 | Phase 2: x2(A1, d2,H2, θ2)

Using the output of the first phase, A1, the goal of this phase is to give a tactical advan-
tage to the units in direct contact with the opposing forces, in an attempt to reproduce

62

Chapter 4. Parametric Action Preselection 4.2. Parametric Action Preselection

a micro-management behavior. d2 works independently of d1 and will group units ac-
cording to their spatial situation with respect to enemy forces. The maximum number
of units in each group is a partitioning parameter to provide.

Situational Groups: d2

■ Front-Line: A predefined number of mobile units in close-contact with opponent
units. Selected randomly by scanning the fire-range of opponent or own units.
Retrieves units in need of faster low-level reactivity.

■ Back: All units not in the Front-Line group.

Situational Heuristics: H2

■ Front-Line Tactics: Applies to the Front-Line group. Reduces the Wait unit-action
duration to increase the units’ reactivity while in combat.

■ Back Tactics: Applies to the Back group. Keeps the default Wait unit-action dura-
tion.

All heuristics described thus far are simple, rule-based, and multi-output. Through
parameter configuration (θ1 and θ2), the dimensionality and structure of the resulting
decision space at the end of the last preselection phase, can vary substantially. Param-
eters must be selected in a way that generates the best strategy possible against a spe-
cific opponent in a specific map. NaïveMCTS is then tasked with searching within the
decision space limited by the generated strategy for the best response possible. The
multi-output heuristics ensure a degree of granularity within the decision space.

4.2.2.3 | Heuristic Switching
Switching heuristics on the fly is a way to adapt the agent’s strategy according to en-
vironment changes. We propose to switch the heuristics of d1’s Defense group from
Defend to Attack according to a conditional trigger. The switch is triggered whenever
the player’s army composition score surpasses the opponent’s by a predefined margin
we call the overpower factor. The army composition score is calculated by summing the
resource costs of all mobile units of the relevant player. Intuitively, this switch occurs
whenever the player has the chance to overwhelm its opponent. The switch is only
triggered in the first preselection phase.

63

Chapter 4. Parametric Action Preselection 4.3. Experiments & Results

4.2.2.4 | Post-Processing
As a post-processing step, ParaMCTS applies IPA pruning to the final preselection out-
put. This would help further diminish the branching factor and improve the reactivity
of units. The percent of player-actions to prune constitutes an additional parameter to
consider. For more details about IPA pruning, refer to Chapter 3.

4.2.2.5 | Parameters
In total, 46 parameters were defined between heuristics, partitionings, heuristic-swit-
ching, and post-processing. Appendix A describes the full list of ParaMCTS parameters.
The reader can also refer to the source code repository1 for more technical details. Before
exploiting ParaMCTS, a manual parameterization phase must be carried out. The choice
of parameters should account for the characteristics of the map, and the opponent’s
strategy.

For the experiments described ahead, we configured ParaMCTS to adopt better, but
non-exploitative, strategies against MixedBot (Mariño et al., 2018; Moraes et al., 2018), in
multiple µRTS competition maps. In the next chapter we propose an automatic ParaM-
CTS configuration approach.

4.3 | Experiments & Results
The principal effect of action preselection manifests in the significant reduction of the
branching factor, caused by discarding a large portion of unit-actions in favor of more
meaningful ones. This alleviates the strain endured by NaïveMCTS in expansive combi-
natorial decision spaces, and should help improve game-tree exploration. The objective
sought by our experiments is to determine which MCTS parameter could exploit the
downsized decision space to achieve the highest performance gain. The NaïveMCTS
component of ParaMCTS could profit from the reduced branching factor in two ways;
by increasing its maximum search depth, or by increasing the duration of playouts (sim-
ulations). In both cases, one may expect more accurate action value estimates and higher
quality decisions, which may translate to a better overall performance.

To find out which MCTS parameter, and which value, makes an effective use of
the newly gained advantage, we test the performance of ParaMCTS using gradually
increasing search depth and playout duration values. Specifically, we conduct our initial
experiments using the values from the two sets: depthVals = {10, 15, 20, 30, 50} and

1https://github.com/Acemad/UMSBot

64

https://github.com/Acemad/UMSBot

Chapter 4. Parametric Action Preselection 4.3. Experiments & Results

(2) BasesWorkers16x16A(1) BasesWorkers8x8A (3) BasesWorkers32x32A

Figure 4.3: The maps used in the experiments. These maps feature a
symmetric layout, and represent a gradual increase in complexity from
the smallest map to the largest.

durationVals = {100, 150, 200, 300, 500}. Using the results of those experiments, we
proceed next to a performance assessment experiment against a group of state of the
art, and baseline agents.

ParaMCTS(depth, duration) is defined as the ParaMCTS variant using depth and
duration as the maximum search depth, and playout duration, respectively. Three maps
representing increasingly larger branching factors were used, namely basesWorkers 8× 8,
16× 16, and 32× 32, as shown in Figure 4.3. To guarantee a fair comparison, ParaM-
CTS was manually parameterized to not adopt exploitative strategies, even when there
could be a possibility to exploit certain agents. In all experiments, the score of an agent
is calculated likewise: score = wins + draws/2, then normalized between 0 and 100.

All experiments were executed on two computers with relatively similar hardware
and software configurations, using the latest version of µRTS as of the 10th of July 2020.
All agents were given a 100ms computation budget per cycle.

4.3.1 | Experiments 1 & 2: Search Depth and Playout Duration
To study the impact of deeper search and longer playouts on ParaMCTS, we ran two
120-iteration round-robin tournaments as part of the first experiment. The first tour-
nament ran between each ParaMCTS(depth, 100) variant, for each depth ∈ depthVals,
with playout duration fixed at 100 in each variant. And, the second tournament ran
between each ParaMCTS(10, duration) variant, for each duration ∈ durationVals, with
depth fixed at 10 in each variant. Fixed values, 10 and 100, for depth and duration, re-
spectively, are the default NaïveMCTS values. Results of this experiment are shown in
Figure 4.4.

In the second experiment, we took all the possible depth and duration combinations
from depthVals× durationVals, and ran 100 matches (switching sides after 50 matches)

65

Chapter 4. Parametric Action Preselection 4.3. Experiments & Results

Maximum Depth (depthVals)

(1) Search Depth Tournament (Playout duration = 100) (2) Playout Duration Tournament (Max depth = 10)

Sc
or

e

Playout Duration (durationVals)

0
10
20
30
40
50
60
70
80

10 15 20 30 50
0

10
20
30
40
50
60
70
80

100 150 200 300 500

Figure 4.4: The results obtained by each ParaMCTS(depth, duration) vari-
ant in both tournaments of the first experiment. The score represents the
win rate of each variant against the other variants in the same tourna-
ment. (1) shows the results of the first tournament with a fixed playout
duration (100) and a varying max depth, and (2) shows the results of the
second tournament with a fixed max depth (10) and a varying playout
duration.

between each resulting ParaMCTS(depth, duration) agent, and MixedBot, a state-of-the-
art agent combining various techniques (Barriga et al., 2019; Lelis, 2017; Mariño et al.,
2018; Moraes et al., 2018). The results of this experiment in the three maps are presented
in Table 4.1.

From the results of both experiments, we can see how the overall ParaMCTS per-
formance seems to be particularly sensitive to the playout duration. In Figure 4.4-(2)
performance vary significantly between playout durations. In the smallest maps short
playouts work best, but in larger maps slightly longer playouts work well up to a cer-
tain threshold. As for search depth, it is clear that in the largest map a deeper search
yields the most benefit, as seen in Figure 4.4-(1). As for the small and medium maps,
deeper search holds fewer benefits.

Against MixedBot (Table 4.1), the best performance in all three map sizes is achieved
when the playout duration equals 100 cycles, even if 150 cycles appears promising in
the 16 × 16 map. If we consider the search depth, going down 20 levels in the tree
is the optimal depth for 8 × 8 and 16 × 16 maps. In the 32 × 32 map, searching as
deep as 50 levels produces the best performance. Evidently, a deeper search yields the
highest performance gain than longer playouts. We believe this is true because deeper
search could be responsible for more accurate player-action reward estimates, due to
the increased number of visited nodes and playouts towards the depth of the game tree.
On the other hand, longer playouts decrease the number of visited nodes and playouts,
which may negatively impact performance. Larger maps benefit the most from deeper
search because the map’s dimensions contribute to the sparsity of rewards, and a deeper
search can reach rewarding states more frequently.

66

Chapter 4. Parametric Action Preselection 4.3. Experiments & Results

Table 4.1: Results of the second experiment. Each square represents the
score obtained by ParaMCTS(depth, duration) against MixedBot. Cells
with a score above 50 are gradually saturated in four levels: 50-59, 60-69,
70-79, and 80-89

100 150 200 300 500 Avg 100 150 200 300 500 Avg
10 74.5 69.5 59 46 19 53.6 3 74 63 20 20 36
15 82 65 56 46 28.5 55.5 1 80 71 10 28 38
20 86 74 51 40 23 54.8 88 77 59 15 25 52.8
30 81 68 62 40 18 53.8 71 73 66 9 21 48
50 83.5 68 69 46 21 57.5 68 74 62 4 29 47.4

Avg 81.4 68.9 59.4 43.6 21.9 46.2 75.6 64.2 11.6 24.6

100 150 200 300 500 Avg 100 150 200 300 500 Avg
10 68.5 54.5 35.5 33 20.5 42.4 48.7 66 52.5 33 19.8 44
15 72.5 44 42 34 25.5 43.6 51.8 63 56.3 30 27.3 45.7
20 65.5 50.5 46 39.5 17.5 43.8 79.8 67.2 52 31.5 21.8 50.5
30 74 46 43 38.5 25 45.3 75.3 62.3 57 29.2 21.3 49
50 76.5 41 46.5 45.5 24 46.7 76 61 59.2 31.8 24.7 50.5

Avg 71.4 47.2 42.6 38.1 22.5 66.3 63.9 55.4 31.1 23

M
ax

 D
ep

th

8 x 8 16 x 16

32 x 32 Overall

Playout Duration

4.3.2 | Experiment 3: Comparison Against State-of-the-Art
To assess the overall performance of ParaMCTS, we perform a 100-iteration round-
robin tournament between it and a number of best performing agents. The tournament
includes three top ranking agents from 2019’s µRTS competition, specifically, Mixed-
Bot, Izanagi (Mariño et al., 2018; Moraes et al., 2018), and Droplet (Yang and Ontañón,
2019b). All of these agents use some form of abstraction-assisted search. The partic-
ipating ParaMCTS agent uses the optimal depth and duration values found in previ-
ous experiments for each respective map. The tournament also includes two baseline
agents, NaïveMCTS, and NMCTS*, a NaïveMCTS variant using the same search depth
and playout duration as ParaMCTS. Results of the tournament are presented in Table
4.2 and Figure 4.5.

In terms of overall performance, ParaMCTS outperformed all state-of-the-art agents
by a sizable margin. ParaMCTS was able to achieve an 11.9 points margin over the 2nd
best agent, Izanagi, and 19.1 points margin over the 4th best, MixedBot. Both agents

67

Chapter 4. Parametric Action Preselection 4.3. Experiments & Results

Table 4.2: Overall results of the third experiment’s tournament. Row vs
Column.

ParaMCTS Izanagi Droplet MixedBot NMCTS* NMCTS Average
ParaMCTS 50.0 72.0 84.8 96.0 94.7 79.5

Izanagi 50.7 42.7 64.8 89.5 90.2 67.6
Droplet 30.2 53.3 45.0 89.7 90.2 61.7

MixedBot 22.8 32.8 53.5 96.8 96.0 60.4
NMCTS* 7.3 9.2 7.2 2.2 50.2 15.2

NMCTS 6.8 9.7 8.7 2.5 47.7 15.1

Average 23.6 31.0 36.8 39.9 83.9 84.3

Sc
or

e

ParaMCTS

Izanagi

Droplet

NMCTS*

NMCTS

MixedBot

0
10
20
30
40
50
60
70
80
90

100

8 x 8 16 x 16 32 x 32 Overall

Figure 4.5: Third experiment tournament results by map. Overall score
represents the average score.

make use of a combination of advanced techniques. This result is a direct evidence
of the potency of our action preselection approach when coupled with NaïveMCTS.
In individual maps, ParaMCTS outperformed the other agents in 8 × 8 and 32 × 32
maps, but it was overcome in the 16× 16 map by Droplet. This can be explained by the
adoption of an exploitative strategy by Droplet in the 16× 16 map. Although ParaMCTS
can be configured to adopt similar strategies, we chose not to do so in order to keep the
comparison as fair as possible. NMCTS* did not offer any tangible performance gain
over NaïveMCTS, which indicates that increasing the search’s depth will not yield any
performance gain if not paired with a significant decision-space reduction.

68

Chapter 4. Parametric Action Preselection 4.4. Summary

4.3.3 | UMSBot: ParaMCTS in the µRTS Competition
ParaMCTS took part in the 4th edition of the annual µRTS AI competition, held as
a side event of IEEE® CoG 2020. University of Mustapha Stambouli Bot (UMSBot)
was the alias of the participating ParaMCTS agent, which we registered for the Clas-
sic track, featuring full observability and determinism. The final results of the classic
track tournament of the competition are reported in Table 4.3.UMSBot ranked fourth in
the tournament, both in open maps, and in the combined open and hidden maps. Even
if UMSBot could not rank among the top three agents, we believe that the achieved
results are still remarkable. UMSBot managed to outperform all baseline agents, and
two non-baselines, Rojo and GuidedRojoA3N, with the latter making use of the HyP
method, A3N (Moraes and Lelis, 2018a). The average difference between UMSBot and
the third highest-ranking agent, MentalSeal, is clearly non-significant. Against agents
like UTS_Imass, Rojo, and POWorkerRush, UMSBot performed better than MentalSeal,
which uses an enhanced version of GNS (Yang and Ontañón, 2019b). By significantly
outperforming baseline NaïveMCTS, and using NaïveMCTS as the search algorithm,
UMSBot has proven that NaïveMCTS, combined with the right decision and state space
abstractions can produce a viable approach towards a strong RTS AI. This also indi-
cates that our heuristics-based action preselection framework constitutes a promising
path for search-based agents. It is worth noting that the winning agent, CoacAI, relies
on fast, expert-authored and rule-based scripts.

4.4 | Summary
Throughout this chapter, we have introduced a different point of view related to the
problem of domain-knowledge exploitation in RTS games. Instead of keeping with the
trend of using full-blown monolithic scripts that encode expert-authored strategies, we
switched our perspective towards the implicit components of scripts, the heuristics. We
proposed to control heuristics in a granular fashion through parameters and use these
parametric heuristics to formulate parameter-defined strategies. Next, we defined a sys-
tem that frames the decision space of an RTS game, in successive phases, according to
a strategy expressed by the combination of heuristics, unit partitioning schemes, and
their respective parameters. A search algorithm could then exploit the downsized deci-
sion space to perform more efficient searches. We proposed a basic action preselection
implementation, ParaMCTS, that relies on common domain knowledge for the design
of its heuristics and parameters, then uses NaïveMCTS for search (Ouessai et al., 2020b).

The downsized decision space freed NaïveMCTS to conduct deeper searches, and

69

Chapter 4. Parametric Action Preselection 4.4. Summary

Table 4.3: Overall results of the Classic Track tournament of the 4th µRTS
competition in all maps. Asterisk (*) marks baseline agents.

Co
ac

AI

UT
S_

Im
as

s

M
en

ta
lS

ea
l

UM
SB

ot

PO
Li

gh
tR

us
h*

Ro
jo

Na
ïv

eM
CT

S*

PO
W

or
ke

rR
us

h*

Gu
id

ed
Ro

jo
A3

N

Ra
nd

om
Bi

as
ed

*

Av
er

ag
e

CoacAI 65.8 95.0 97.5 100 99.2 100 94.2 100 100 94.6

UTS_Imass 34.2 97.1 93.3 98.3 94.6 98.8 89.2 99.2 99.6 89.4
MentalSeal 5 2.9 59.6 72.1 82.1 86.7 80.4 85.8 100 63.8

UMSBot 2.5 6.7 40.4 62.9 83.3 83.3 87.1 84.6 98.8 61.1
POLightRush* 0 1.7 27.9 37.1 60.4 77.1 77.1 62.1 94.6 48.7

Rojo 0.8 5.4 17.9 16.7 39.6 54.2 52.1 57.9 83.3 36.4
NaïveMCTS* 0 1.3 13.3 16.7 22.9 45.8 64.6 61.3 74.6 33.4

POWorkerRush* 5.8 10.8 19.6 12.9 22.9 47.9 35.4 48.8 86.3 32.3
GuidedRojoA3N 0 0.8 14.2 15.4 37.9 42.1 38.8 51.3 74.2 30.5
RandomBiased* 0 0.4 0 1.3 5.4 16.7 25.4 13.8 25.8 9.9

Average 5.4 10.6 36.2 38.9 51.3 63.6 66.6 67.7 69.5 90.1

further enhance its playing strength. Experimentation results have shown a significant
improvement over some state-of-the-art µRTS agents. ParaMCTS participated in the
2020 µRTS competition as UMSBot and managed to outperform all baseline agents, and
two participating agents, making it one of the highest-performing MCTS-based agents
in µRTS.

The proposed action preselection implementation, ParaMCTS, is a single possibility
among many. Using action preselection as a basis to develop more sophisticated agents
is a viable path ahead. Although proposed as a way to lower the RTS decision space
dimensionality, we believe this technique could be easily adapted to any multi-unit real-
time game. Real-time, in-game strategy adaptation is now a possibility for search-based
agents, since heuristics and their parameters can be altered during a match. Automat-
ically learning new heuristics, and finding better ways to combine them is also an in-
teresting direction. As a byproduct, we believe this approach could be most useful in
an industry setting. The self-contained nature of heuristics could help in facilitating the
development of a scalable and maintainable AI system for commercial games, which
could also rely on parameters for tasks such as difficulty adjustment or personalization.

In the next chapter, we investigate how to apply an Evolutionary Algorithm (EA) to

70

Chapter 4. Parametric Action Preselection 4.4. Summary

optimize the parameters of ParaMCTS heuristics, and automatically generate stronger
strategies that can outperform previously unbeatable agents.

71

5

Evolutionary Action Preselection

“However beautiful the strategy, you should
occasionally look at the results”

— Winston Churchill

ParaMCTS requires a prior configuration phase relying on domain knowledge. The
performance of ParaMCTS depends strongly on the configuration quality of the under-
lying action preselection process. Configuring an action preselection process occurs in
two phases. In the first phase, we need to determine the heuristics that compose the
process and their associated unit partitionings. In the second phase, we try to find a set
of optimal values for the parameters of each heuristic and partitioning scheme. Up to
this point, we used manual configuration in both phases. The design of ParaMCTS’ pre-
selection process was conceived manually by integrating heuristics and partitionings
found in the general progression of an RTS game match. ParaMCTS parameters were
tuned manually using MixedBot as a baseline in multiple µRTS competition maps. In
both instances, we heavily relied on domain knowledge.

The excessive reliance on domain knowledge for configuring an action preselection
agent can be disadvantageous for two reasons. First, the agent needs to be reconfigured
for each new opponent and map combination to preserve its performance. Second,
domain knowledge is not always readily available, and even if it is, it cannot guarantee
an optimal configuration. Thus, action preselection applicability may suffer if domain
knowledge is the sole source of configuration.

As a first step towards a fully automatic action preselection process, we propose
to act on the second configuration phase using an Evolutionary Algorithm (EA) (Bäck,
1996) to automatically find optimal action preselection parameters under diverse cir-
cumstances. This could eliminate the domain-knowledge requirement in the specifica-

72

Chapter 5. Evolutionary Action Preselection 5.1. Related Works

tion of preselection parameters and replace it with an evolutionary optimization process
for finding optimal parameters. Since each set of preselection parameters encodes a dis-
tinct strategy, our proposed approach effectively searches for an optimal strategy versus
a specific opponent within a specific environment. In specific terms, we suggest the us-
age of a Genetic Algorithm (GA) to optimize the parameters of an action preselection
agent when facing a strong state-of-the-art agent. We will closely examine the evolution
of fitness across several maps, then validate the performance of the evolutionary agent
in a final tournament against multiple agents within the same maps. The experiments’
results in µRTS indicate that such approach can indeed discover strategies that surpass
the manually-defined ones in a subset of tested environments (Ouessai et al., 2022).

5.1 | Related Works
The exploitation of EAs for optimizing game-playing agents is a common practice in
game AI, and many techniques were proposed to deal with the resulting challenges
(Lucas and Kendall, 2006). EAs are commonly used offline under supervised condi-
tions, to optimize the parameters of an AI controller, before any online exploitation.
This is also the case for controllers based on neural networks (Risi and Togelius, 2017).
Nevertheless, EAs are also used as effective online AI controllers, as proven by Justesen
et al. (2016)’s Online Evolution, and Perez et al. (2013)’s Rolling Horizon Evolution.

In the RTS games domain, the usage of EAs for offline optimization is more preva-
lent. Ponsen et al. (2005) evolved a population of rule-bases within the dynamic script-
ing framework (Spronck et al., 2006) for Wargus. Fernández-Ares et al. (2011) Used an
EA to optimize the parameters of a rule-based bot playing the simple RTS game, Planet
Wars. In a follow-up work Mora et al. (2012) studied the problem of noisy fitness faced
by EAs when optimizing agent parameters. García-Sánchez et al. (2015) applied Genetic
Programming (GP) to evolve complete strategies for STARCRAFT, and Fernández-Ares
et al. (2017) later studied the impact of different fitness functions on the generated strate-
gies. Louis and Liu (2018) optimized a micromanagement agent in a 3D RTS game, using
a multi-objective evolutionary algorithm, and Gajurel et al. (2018) proposed a neuroevo-
lution approach for RTS micromanagement. An evolutionary approach was proposed
by Mariño et al. (2018) for finding an optimal action abstraction by evolving a popula-
tion of agents, each producing a different abstraction layer using a different subset of
scripts. Abstractions were evaluated by playing a subset-selection game against each
other.

Fewer works were dedicated to online EAs in RTS games, compared to the offline

73

Chapter 5. Evolutionary Action Preselection 5.2. Evolutionary Algorithms (EAs)

counterpart. Wang et al. (2016) replaced PGS’ hill climbing optimization with an EA
for their Portfolio Online Evolution (POE) algorithm. In their experiments using STAR-
CRAFT, POE successfully outperformed PGS. In the macro-management level, Justesen
and Risi (2017) introduced an evolutionary real-time build order optimization approach
known as Continual Online Evolutionary Planning (COEP).

We propose to use offline evolutionary optimization to find an optimal set of hyper-
parameters for an action preselection process, under different situations. Our approach
is similar to the aforementioned offline RTS agent optimization approaches, but differ-
ing in the underlying optimization target. Instead of scripts and rule-bases, we attempt
to optimize the parameters of a set of heuristics, defined by the ParaMCTS action pres-
election implementation. We evaluate a parameter set against a high-performing agent
in hopes of finding a stronger ParaMCTS variant. Our end goal is to eliminate manual
knowledge-based parameter tuning in favor of an automatic approach.

5.1.1 | Relation with Hyper-Heuristics
A Hyper-Heuristic (Burke et al., 2003) is defined as any technique that uses (meta-)
heuristics to select (meta-) heuristics for solving a given problem. In action preselection,
a differently parameterized instance of the same heuristic can be seen as a standalone
heuristic. Therefore, when we use an EA for parameter optimization, we are actually
using a meta-heuristic to select a group of heuristics in an attempt to obtain an optimal
RTS AI. Our approach, thus, is compatible with this broad definition of hyper-heuristics.
The hyper-heuristics framework definition by Burke et al. (2003) eliminates the flow of
domain knowledge between the hyper-heuristic and the low-level heuristics. In our
proposition, we do supply the hyper-heuristic (the EA) with domain knowledge in the
form of parameter constraints, specific to each low-level heuristic. As a result, our ap-
proach does not fully conform to the hyper-heuristics framework.

5.2 | Evolutionary Algorithms (EAs)
Evolutionary Algorithms (Bäck, 1996) define a category of optimization methods that
attempt to model the evolutionary behavior of living organisms, with the aim to repli-
cate their adaptation mechanisms. EAs can be seen as a form of directed random search,
where solutions get randomly sampled and modified under the guiding influence of a
fitness function. EAs share the same set of elementary evolutionary operators, known as
selection, recombination, and mutation. The role of the selection operator is to ensure
that high-quality solutions are most likely to survive and reproduce. Recombination

74

Chapter 5. Evolutionary Action Preselection 5.2. Evolutionary Algorithms (EAs)

forms new solutions by merging parts of multiple solutions in hopes of producing bet-
ter quality solutions. Mutation introduces novelty through the random alteration of
solutions’ components. EAs are widely used for complex optimization tasks featuring
a large search space, and a non-differentiable objective function. The four most pop-
ular Evolutionary Algorithms (EAs) are: Evolutionary Strategies (ESs), Evolutionary
Programming (EP), Genetic Algorithms (GAs), and Genetic Programming (GP).

For the current proposition, we employ a Genetic Algorithm (GA) in an attempt
to discover an optimal parameter set for our action preselection implementation. GAs
were initially introduced by Holland (1984) as an abstract model of biological evolu-
tion, where a population of chromosomes, encoding potential solutions to a problem,
evolves through the application of genetic operators to form a new, possibly more per-
formant, population. GAs adopt the terminology and concepts of molecular genetics.
Consequently, a candidate solution is represented by a collection of one or more chro-
mosomes, and each chromosome is an array of genes, with each gene taking a single
value from a set of values called alleles. The typical GA evolution process proceeds as
follows:

1. Generate a population consisting of random chromosomes (solutions).

2. Evaluate the quality of the population’s members using a fitness function f .

3. Use a selection operator to select a subgroup (parents) of chromosomes from the
population. Apply crossover and mutation operators on the members of the sub-
group, following a crossover probability pc, and a mutation probability pm.

4. Use a reinsertion strategy to introduce the new offspring population back into the
original population.

5. Repeat the process using the new population, starting from the evaluation phase
(2), until a stopping criterion is reached.

The birth of a new population marks the start of a new generation. A frequently used
stopping criterion is the determination of whether a maximum number of generations
is attained. Throughout the evolution process, the mean fitness of the population of
potential solutions is expected to gradually improve. Ultimately, a possibly optimal
solution should emerge under the constraints of the fitness landscape. The encoding of
candidate solutions plays a major role in defining the dimensionality of the search space,
and the quality of the solutions. Usually, the best individual of the last generation is the
expected to represent an optimal solution.

75

Chapter 5. Evolutionary Action Preselection 5.3. Evolving Action Preselection Parameters

5.3 | Evolving Action Preselection Parameters
To successfully exploit the advantages of ParaMCTS, it is required to configure its pa-
rameters for each map and opponent combination. This is unrealistic if we intend to
conceive the most general agent possible. In a competition environment, where there
is a fixed number of maps and opponents, it is possible to use domain knowledge to
manually tune heuristics against strong opponents in every competition map. This is
how we proceeded in the 2020 µRTS competition, and our entry UMSBot (A ParaM-
CTS instance tuned manually against MixedBot, a strong asymmetric-abstraction based
agent), ranked fourth in the overall Classic-track ranking.

Besides the possibly non-generalizable performance, manual parameter configura-
tion accentuates the domain-knowledge dependency, already heavily relied-on in the
design of ParaMCTS heuristics. Furthermore, domain-knowledge is not something that
is constantly available, especially for new maps and opponents, and even if it is, the
resulting parameter combination does not guarantee an optimal performance. This sit-
uation calls for an automatic parameter configuration approach that may discover an
optimal set of parameter values for any map/opponent combination. The ParaMCTS
parameter search space can be exceedingly large. If we assume that each parameter
can take only 2 different values, this would amount to 246 ≈ 1013 possible combination.
An approximative optimization algorithm should be able to find an optimal parameter
combination. Therefore, we propose to use a GA for this task.

We focus principally on whether the parameters found by the GA can outperform
the manually-tuned parameters. To utilize a GA, we initially need to find a way to en-
code any potential set of action preselection parameters as a solution (genotype). Next,
we must determine how to accurately evaluate the quality of those solutions.

5.3.1 | Encoding
Our objective is to discover a set of parameters that could form the best performing
ParaMCTS agent possible. This translates to a Combinatorial Optimization Problem
(COP) where each potential solution corresponds to a vector p structured as a combi-
nation of values; one for each parameter in θ1 ∪ θ2 ∪ θ0 ∪ θN . We define θ0 as the set
containing heuristic-switching parameters, post-processing parameters, and the parti-
tioning parameters for d1 and d2. θN is the set of NaïveMCTS ϵ-greedy parameters.

To solve this COP using a GA, the first step is to establish an appropriate solution en-
coding for p. We use a real (or value) encoding, which means that the direct representa-
tion of the parameters is used, and each parameter is encoded as a single gene. Because

76

Chapter 5. Evolutionary Action Preselection 5.3. Evolving Action Preselection Parameters
Ch

ro
m

os
om

e
ID

Chrom
osom

e Length

1
2
3
4
5
6
7
8

2
3
2
5
9
2
11
5

Figure 5.1: The encoding of a genotype. A genotype groups eight (8)
chromosomes, each having at least two genes. The size of a gene corre-
lates with the range of values it can encode.

ParaMCTS’ parameters do not share a common range of values, multiple chromosomes
should be used to group similarly-constrained genes together. The final genotype of a
solution p comprises eight (8) chromosomes as shown in Figure 5.1. In this figure, each
chromosome is identified by an ID and a length (the number of genes). The longer the
gene the wider the range of values it admits.

In an effort to hasten the evolution process, we kept the 36 most impactful parame-
ters out of the 46 ParaMCTS parameters, in addition to the three parameters in θN , for a
total of 39 parameters/genes. The parameters/genes mapping, and the specifics of the
used and unused parameters can be found in Appendix A.

5.3.2 | Fitness Function
A precise evaluation of the quality of an individual is an important consideration to
address while applying a GA. Fitness evaluation is responsible for directing search to-
wards optimal regions in the search space, and a fitness function of poor accuracy could
misguide search and reduce it to a plain random process. To evaluate the quality of
an RTS agent, usually a large number of matches is executed versus one or more tar-
get agents, while ensuring to switch the starting positions after completing 50% of the
matches, to guarantee fairness. The average score obtained by the agent indicates its
quality. Because RTS matches are non-deterministic, this type of evaluation provides a
rather accurate estimate of the agent’s performance as the number of matches grows.
However, the accuracy of the evaluation would decline as the number of matches de-
creases.

In the context of GAs, evaluating each individual by playing a large number of
matches would result in an extremely time-consuming evolution, which could be im-
practical, even if the accuracy is high. Seeking a trade-off between the speed of evolution
and the accuracy of evaluation is the main concern to deal with when conceiving a fit-

77

Chapter 5. Evolutionary Action Preselection 5.4. Experiments & Results

ness function for this kind of problem. We use the fitness function fn(c) = v to evaluate
individuals. fn takes a phenotype c (A ParaMCTS agent instance based on the genotype
of c) and returns a value v ∈ [0, 1]. n corresponds to the number of matches to play
against a target agent on a target map. n must be an even number to ensure an equal
number of matches in both starting sides for the two agents. The outcome of a match
is either +1 for a win, −1 for a loss, or 0 for a draw. v is the average of the outcomes
of all n matches, normalized in [0, 1]. This is a common case of noisy fitness that arises
while attempting to optimize game-playing agents for games of non-deterministic out-
comes. In the context of RTS games, Mora et al. (2012) and Fernández-Ares et al. (2017)
conducted a thorough study of this particular phenomenon.

5.3.3 | Genetic Operators
We used a generational GA, as implemented by the Jenetics (Franz Wilhelmstötter, 2020)
library used in our experiments. It is a standard implementation that begins by select-
ing parents and survivors, and applying recombination and mutation operators to the
parents. The resulting offspring individuals substitute their parents and combine with
the survivors to form the new population. The process iterates until a stopping criterion
is reached. Because of the evaluation noise existing in the proposed fitness function, it
is important to choose a selection operator with the lowest possible sensitivity to noise.
Therefore, we used the tournament selector for parents and survivors selection due to
its decent performance in noisy fitness landscapes (Miller and Goldberg, 1995). Tourna-
ment selection uses a number of competitors s.

With a computationally costly fitness function, it would be beneficial to use recom-
bination operators capable of stimulating a higher convergence rate. Uniform crossover
seems to be best suited for this type of problem because of its ability to better explore
the parameter space. Uniform crossover is applied to every pair of selected parents with
a probability pc. A regular uniform mutation operator is applied to each resulting off-
spring individual with a probability pm. The GA begins with a population consisting of
m random individual and selects a proportion r and 1− r from m to form the parents
and survivors set, respectively. The stopping criterion is triggered when the number of
generations reach a predefined limit g.

5.4 | Experiments & Results
The objective of our experiments is to find out whether a GA would succeed in auto-
matically discovering a set of ParaMCTS parameters that can deliver a superior perfor-

78

Chapter 5. Evolutionary Action Preselection 5.4. Experiments & Results

(1) BasesWorkers8x8A (2) FourBasesWorkers8x8 (3) BasesWorkers8x8Obstacle (4) NoWhereToRun (5) BasesWorkers16x16A

Figure 5.2: The maps used in the experiments. Maps (2), (3), and (4)
could pose an interesting challenge to parameter tuning. The dark green
squares in map (3) represent walls.

mance than the manually-tuned ones. In the first experiment we use a GA, as described
in the previous section, to evolve a population of ParaMCTS parameters, for the sake
of finding a better-parameterized ParaMCTS agent with respect to a target agent and a
set of maps. We call the agent resulting from this evolution stage, EvoPMCTS. In the
second experiment, we attempt to validate the performance of EvoPMCTS by running
a round-robin tournament against multiple agents in the same set of maps.

A set of five distinct maps were used, two from the previous chapters’ experiments,
and an additional three representing interesting situations that necessitate non-trivial
strategies. The maps are shown in Figure 5.2, and all of them are consistently present
in the µRTS competition, except for map (3). EvoPMCTS will take advantage of the
results of Chapter 4 experiments and use the best search depth and playout duration
parameters found. Because all maps are smaller than 16× 16, a maximum search depth
of 20, and a playout duration of 100 cycles should be adequate.

5.4.1 | Experiment 1: Evolving Preselection Parameters
We propose an evolutionary optimization approach to explore the parameter space for
more interesting parameter combinations. We used the Jenetics library (Franz Wilhelm-
stötter, 2020) configured using the solution encoding, and the fitness function defined
in the previous section. The fitness function fn was adapted to evaluate an individ-
ual by running n = 10 matches against a single strong opponent in a given map from
those in Figure 5.2. The value of n was selected empirically after initial tests, because
it was found to offer a satisfactory evaluation accuracy in a reasonable time, compared
to lower/higher values. We chose CoacAI1 as the strong opponent that plays the role
of the optimization target along the maps. CoacAI was the winner of the 2020 µRTS
competition Classic track, in which ParaMCTS participated. It is a fast, expert-designed

1https://github.com/coac/coac-ai-microrts

79

https://github.com/coac/coac-ai-microrts

Chapter 5. Evolutionary Action Preselection 5.4. Experiments & Results

Table 5.1: The parameters of the GA used for EvoPMCTS parameter op-
timization.

Population
Size (m)

Generations
Count (g)

Crossover
Rate (pc)

Mutation
Rate (pm)

Selection:
Parents Fraction (r)

Selection:
Tournament Competitors (s)

20 100 or 450 0.7 0.2 0.6 4

rule-based agent incorporating strong strategies for various µRTS maps. CoacAI makes
for the best choice as an evaluation opponent, because of its speed and strength. How-
ever, it remains to be seen whether a strong agent could help in the emergence of a
stronger EvoPMCTS agent. A single evaluation match is limited to 3000 cycles for maps
(1) to (4), and 4000 cycles for map (5). If no winner is determined before those limits are
reached the match ends in a draw.

We performed a single GA run for each of the five maps in Figure 5.2 using the con-
figurations detailed above and the GA parameters presented in Table 5.1. The choice of
the GA parameters was made with a single consideration in mind. That is, the evolu-
tion process should be able to discover a solution, surpassing baseline quality, within
a reasonable computation time. After a series of exhaustive tests, we settled on the pa-
rameters in Table 5.1, which appeared to satisfy our consideration. A small population
size (m = 20) reduces the number of evaluations needed, keeping evolution time in
check, while high mutation (pm = 0.2) and crossover (pc = 0.7) rates ensure a decent
exploration capacity. In the majority of maps, 100 generations were enough to witness
individuals overcome baseline fitness. Otherwise, we permitted evolution to reach the
450th generations.

5.4.1.1 | The Computational Cost
The resulting computational cost of this experiment depends principally on the cost of
the evaluation function fn, which revolves around the time complexity of the evaluation
matches. The cost of one match is computed by multiplying the match’s length (in
game cycles) by the sum of the computational budget spent by the two agents (CoacAI
and EvoPMCTS) in each game cycle. We suppose the cost of µRTS game-mechanics
processing is negligible. Each agent is given 100ms as a computational budget, and
CoacAI being a rule-based agent, only uses roughly 10ms on average (according to our
observation), totaling 110ms per cycle for both agents. The estimated computational
cost of the evolutionary process with respect to a single map can be computed as such:
g×m× n× c× 110ms. Assuming we know the average match length, c, for the relevant
map. For map (1), we estimated c to be 595 cycles, which gives a computational cost of

80

Chapter 5. Evolutionary Action Preselection 5.4. Experiments & Results

15.12 days of computation time. In the larger map (5), c was estimated to be 977 cycles,
giving a computational cost of 24.87 days. For maps (2), (3), and (4), the estimates are
equivalent to those of map (1). We used eight processor threads to perform evaluations
in parallel, and the computation cost diminished to 1.89 days for map (1) and to 3.10
days for map (5).

In total, 260000 evaluation match were carried out across the five maps. Individuals
were reevaluated after each iteration in an attempt to offset the effect of noisy fitness,
which substantially increased the total matches count. The resulting fitness evolution
plots for each map are shown in Figure 5.3.

5.4.1.2 | Analysis
First, we determine the baseline fitness as the median value 0.5, over which EvoPM-
CTS starts outperforming CoacAI. The optimal fitness value is the maximum value the
fitness function can take, namely 1. In all evolution plots, the effect of noise in the fit-
ness function is clearly exhibited through the fluctuations in mean, min, and max fitness
values. More importantly, in maps (1) to (4), the max fitness begins under the baseline
value, then successfully fluctuates above it. In map (5), though, the max fitness starts at
the optimal value and remains there during the remaining generations. If EvoPMCTS
is represented by a max fitness individual, we can see that it is able to attain optimal
fitness in maps (1), (2), and (5). As for maps (3) and (4), EvoPMCTS could overtake
the baseline fitness with a high margin. This does not yet validate the performance
of EvoPMCTS versus CoacAI due to the small number of matches executed for fitness
evaluation (n = 10). Nevertheless, it does confirm that the GA-based optimization is
able to find EvoPMCTS agents that surpass the baseline fitness and even attain optimal
fitness under rational conditions.

The difficulty degree, v, is defined as the number of generations the max fitness
needs to overtake the baseline. Using v, we can assess and compare the difficulty of the
maps from the point-of-view of EvoPMCTS (and ParaMCTS, by extension). Therefore,
we can point out three map difficulty levels from the evolution plots. Map (5) represents
a trivial difficulty level with v = 1, whereas maps (1), (2), and (3) are of regular difficulty,
each with a v equaling 6, 9, and 4, respectively. The map having the highest difficulty
degree is (4), with v = 74, depicting a challenging difficulty level for EvoPMCTS. Note
that this map-specific difficulty degree depends principally on the design of the inherent
action preselection process, including heuristics and their parameters.

In the trivial difficulty map (5), max fitness attains the optimal value instantly after

81

Chapter 5. Evolutionary Action Preselection 5.4. Experiments & Results

Generations

Fi
tn

es
s

Maximum Fitness
Mean Fitness
Standard Deviation

Baseline Fitness
Minimum Fitness

(3) BasesWorkers8x8Obstacle

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

(1) BasesWorkers8x8A

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

(2) FourBasesWorkers8x8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

(4) NoWhereToRun

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450

(5) BasesWorkers16x16A

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Figure 5.3: The evolution of fitness throughout the generations in each
map. Each plot concerns one of the maps and shows the evolution of
the maximum fitness, mean fitness, standard deviation, and minimum
fitness of the population. The fitness represents the performance of the
evolving EvoPMCTS agent against CoacAI.

the first generation. One possible explanation may suggest that an optimal individual
already existed in the initial population, which implies that random sampling may be
enough to acquire an optimal EvoPMCTS agent for map (5). Nevertheless, if we exam-

82

Chapter 5. Evolutionary Action Preselection 5.4. Experiments & Results

ine the mean fitness, we can notice a small upwards trend, and likewise, the minimum
fitness seems to fluctuate towards higher fitness. This indicates that the initial, seem-
ingly optimal, individual may get replaced by another one with a more stable fitness in
subsequent generations, meaning that optimization may still be useful in trivial maps
such as (5).

In the challenging map (4), and as opposed to map (5), the max fitness could not attain
the baseline until the 74th generation. In hopes of reaching optimal fitness, we permit-
ted the evolution to continue up to the 450th generation, however the optimal fitness
kept out of reach. After the 74th generation, max fitness remained stuck between sub-
optimal values, not far from the baseline, for over 270 generations. Afterwards, fitness
progressed towards higher suboptimal values and fluctuated around there until the end
of evolution. It is unclear whether more generations would help EvoPMCTS achieve op-
timal fitness in this map. The explanation we can provide concerning this behavior is
that there may be some noisy parameters in the EvoPMCTS parameter space that could
be misleading search and stalling the evolution process. It would be interesting to see
whether a better-designed parameter space could mitigate this issue.

In the remaining regular difficulty maps, (1), (2), and (3), max fitness rapidly over-
takes the baseline and eventually attains optimal fitness, aside from map (3), where it
stays fluctuating near the optimal fitness. In maps (1) and (2), max fitness stabilizes
in the end, analogously to map (5). Similarly, we suppose that this stabilization phase
helps in improving the fitness stability of the resulting EvoPMCTS agent. As for map
(3), which features a closely similar layout as map (4), interestingly, EvoPMCTS was
not able to attain optimal fitness and seems to exhibit a similar, but much less severe,
struggle as in map (4). Thus, we can conclude that the map’s layout can be crucial in
determining how easily EvoPMCTS could attain optimal fitness. In maps (1), (2), and
(5), where a clear open area separates the opponents’ bases, EvoPMCTS succeeds in at-
taining optimal fitness. However, in maps (3) and (4), where physical obstacles stand
between the opposing sides, the optimal fitness is more challenging to attain. The ex-
istence of obstacles apparently exposes a weakness in the design of EvoPMCTS (and
eventually ParaMCTS) possibly related to the absence of heuristics that account for ob-
stacles.

In the following experiment, EvoPMCTS’ performance, based on the highest per-
forming individuals from each evolutionary process, will be examined against state-of-
the-art agents to verify the potential of the evolved strategies.

83

Chapter 5. Evolutionary Action Preselection 5.4. Experiments & Results

5.4.2 | Experiment 2: Performance Validation
In order to determine whether the parameters obtained through the evolutionary opti-
mization processes could produce high-performing EvoPMCTS agents, we ran a round-
robin tournament in each of the formerly used maps using the following agents:

■ EvoPMCTS: The ParaMCTS agent configured using the best parameters discov-
ered by the evolutionary process, for each map.

■ UMSBot: The manually-configured ParaMCTS agent, tuned versus MixedBot. At-
tained the fourth position in classic track of the 2020 µRTS competition.

■ CoacAI: The winner of the classic track in the 2020 µRTS competition. A fast,
expert-designed, rule-based agent used as the evaluation opponent in EvoPMCTS
optimization phase.

■ MixedBot: A script-assisted search-based agent combining three distinct agents
(Barriga et al., 2019; Lelis, 2017; Mariño et al., 2018; Moraes et al., 2018). Ranked
second in the 2019 µRTS competition (Classic track).

■ NaïveMCTS: A baseline LLP algorithm, based on Combinatorial Multi-Armed
Bandits (CMABs) (Ontañón, 2017).

Each tournament ran for 100 iteration, and in each iteration every agent plays two
matches, one in each side, against the remaining agents for a total of 20 matches per
iteration, and 2000 match per round-robin tournament. In total, 10000 matches were
played. The normalized scores obtained for each agent in each map are reported in
Table 5.2.

The first observation we can make from the data in Table 5.2 is the outstanding per-
formance of EvoPMCTS versus CoacAI. In all maps, except (4), EvoPMCTS was able to
outperform CoacAI, often by a large margin. In map (4), EvoPMCTS reached a nearly
equal performance to CoacAI, probably because the challenges encountered in the op-
timization phase for this specific map translated into a somewhat weaker performance.
By contrast, the score of UMSBot (Manually-configured ParaMCTS) versus CoacAI is
null in maps (2) and (3), and significantly low in maps (1), (4), and (5). This result vali-
dates two points. First, the evolutionary optimization process can generate EvoPMCTS
agents with a scalable performance by executing only 10 matches per fitness evaluation.
Second, the parameters obtained through evolutionary optimization could indeed out-
perform the manually-tuned parameters, for this specific use-case. Overall, the strate-

84

Chapter 5. Evolutionary Action Preselection 5.4. Experiments & Results

Table 5.2: Results of the final tournament in the five maps, read as row
vs column. The overall results indicate the average score of the agents
across the five maps. Framed rows highlight the scores of EvoPMCTS.

Average Average

CoacAI 97.5 35 100 100 83.13 EvoPMCTS 71.5 97.5 100 99.5 92.13
UMSBot 2.5 90.75 67.25 69.5 57.50 CoacAI 28.5 100 100 100 82.13

EvoPMCTS 65 9.25 46 61.5 45.44 UMSBot 2.5 0 58.5 71.5 33.13
MixedBot 0 32.75 54 88.75 43.88 NaïveMCTS 0 0 41.5 45.25 21.69

NaïveMCTS 0 30.5 38.5 11.25 20.06 MixedBot 0.5 0 28.5 54.75 20.94

Average Average

CoacAI 44 98 100 96.5 84.63 CoacAI 58.75 66.75 50.75 100 69.06
EvoPMCTS 56 82.5 33.5 81.25 63.31 UMSBot 41.25 57 81.75 84.5 66.13

MixedBot 2 17.5 58 76 38.38 MixedBot 33.25 43 81 86.5 60.94
UMSBot 0 66.5 42 30.5 34.75 EvoPMCTS 49.25 18.25 19 95.75 45.56

NaïveMCTS 3.5 18.75 24 69.5 28.94 NaïveMCTS 0 15.5 13.5 4.25 8.31

Average Average

CoacAI 41.5 87 91 100 79.88 CoacAI 39.95 88.65 91.15 99.30 79.76
EvoPMCTS 58.5 65.5 99.75 0 55.94 EvoPMCTS 60.05 44.80 69.35 67.70 60.48

UMSBot 13 34.5 72 100 54.88 UMSBot 11.35 55.20 61.95 68.60 49.28
MixedBot 9 0.25 28 100 34.31 MixedBot 8.85 30.65 38.05 81.20 39.69

NaïveMCTS 0 100 0 0 25.00 NaïveMCTS 0.70 32.30 31.40 18.80 20.80

UM
SB

ot

UM
SB

ot

M
ix

ed
Bo

t

Na
ïv

eM
CT

S

Co
ac

AI

Ev
oP

M
CT

S

(5) BasesWorkers16x16A Overall

Na
ïv

eM
CT

S

M
ix

ed
Bo

t

Co
ac

AI

Ev
oP

M
CT

S

M
ix

ed
Bo

t

UM
SB

ot

Na
ïv

eM
CT

S

Co
ac

AI

UM
SB

ot

M
ix

ed
Bo

t

Ev
oP

M
CT

S

Na
ïv

eM
CT

S

M
ix

ed
Bo

t

Na
ïv

eM
CT

S

Co
ac

AI

Ev
oP

M
CT

S

Co
ac

AI

UM
SB

ot

Ev
oP

M
CT

S

M
ix

ed
Bo

t

Na
ïv

eM
CT

S

Ev
oP

M
CT

S

Co
ac

AI

UM
SB

ot

(1) BasesWorkers8x8A (2) FourBasesWorkers8x8

(3) BasesWorkers8x8Obstacle (4) NoWhereToRun

gies generated by the GA appear to be much more effective than the manually-defined
ones, at least against CoacAI.

Furthermore, EvoPMCTS also managed to significantly outperform MixedBot in
maps (2), (3), and (5), with a higher score than the one obtained by UMSBot, which
was manually-tuned against MixedBot. Even though our goal was not to optimize for
the most general agent possible, this results shows that a degree of generalization is
still achievable if a strong agent (CoacAI) is used as an evaluation opponent. Against
NaïveMCTS, EvoPMCTS comfortably obtains higher scores than UMSBot, except in
map (1) and (5) where UMSBot does better. In map (5) in particular, EvoPMCTS is
completely dominated by NaïveMCTS despite the high performance versus the three

85

Chapter 5. Evolutionary Action Preselection 5.4. Experiments & Results

remaining agents, which could signify that the strategy learned for this map overfits
the strategies implemented by the script-based agents, leaving at least an opening that
might be exploited by a robust search agent. Interestingly, UMSBot can outperform
EvoPMCTS in maps (1), (3), and (4) which indicates that a generalizable performance
is still unreachable. The last two observations are understandable, knowing that the
optimization phase relied on a single target opponent for fitness evaluation, effectively
searching for the strategies that produce the best response against that particular agent
(CoacAI).

Concerning map-wise average performance, CoacAI outranks all other agents in
maps (1), (3), (4), and (5), as expected. The only case where CoacAI gets outranked oc-
curs in map (2), where EvoPMCTS ranks first with a 10 points margin above CoacAI.
In this particular map, EvoPMCTS appears to have discovered an optimal strategy that
works effectively against all tested agents by exploiting the strategy adopted by Coa-
cAI. That is another case of possible generalization. In maps (3) and (5) EvoPMCTS
ranks above UMSBot in further evidence of the superiority of the GA-based parameter
tuning, with respect to manual tuning. Nonetheless, in maps (1) and (4), EvoPMCTS
is only superior to baseline NaïveMCTS, which could be understandable for map (4)
since its related optimization process never reached the optimal fitness. But for map
(1), EvoPMCTS reached optimal fitness, and despite that, it acts as in map (4) and fails
to expand the performance gain against UMSBot or MixedBot. This might be another
instance of generalization failure caused by the use of a single agent as an evaluation
target in the optimization phase, possibly producing overfitted strategies.

In the case of overall results, EvoPMCTS outranked UMSBot, which represents a
clear positive answer to our initial question of whether automatically-tuned parame-
ters could outperform the manually-tuned ones. Therefore, we can conclude that a
GA-based optimization process is able to discover the right set of EvoPMCTS (even-
tually, ParaMCTS) parameters that could express a strategy capable of overcoming the
evaluation opponent in a more substantial manner than manually-tuned parameters.
Although such approach was not conceived to obtain highly generalizable strategies, in
some instances the generated strategies could maintain a satisfying performance across
diverse opponents. From these experiments, we can also affirm that the action preselec-
tion implementation, ParaMCTS, (the base technique used in UMSBot and EvoPMCTS)
is capable of composing a wide array of different strategies, as witnessed by the very
different performances of UMSBot and EvoPMCTS. ParaMCTS is hardly the best pos-
sible implementation. A better-designed action preselection approach could produce
more interesting strategies and generate more promising evolutionary agents.

86

Chapter 5. Evolutionary Action Preselection 5.5. Summary

5.5 | Summary
In this chapter, we proposed to further enhance the action preselection process described
in Chapter 4, by eliminating the problematic manual parameter tuning phase, in favor
of an automatic evolutionary optimization process. A GA was employed to find an
optimal parameter combination against a single strong agent, CoacAI, in multiple maps.
The resulting EvoPMCTS agent was able to reach optimal fitness in open-area maps
but could only surpass the baseline and maintain a suboptimal fitness in maps split by
obstacles. In a final tournament, EvoPMCTS exhibited a robust performance against
CoacAI and the manually-parameterized ParaMCTS agent, UMSBot. Despite not being
optimized for generalized performance, EvoPMCTS was still able to maintain a high
performance versus different opponents.

The findings in this chapter could present several interesting outcomes. First, the
overall obtained results constitute a positive assessment for the aptitude of the heuristic-
based action preselection approach in multi-action real-time games. Therefore, it could
be considered as a valid approach to consider in such domains. Second, the design
of heuristics and their parameters holds a direct influence on the performance of the
agent, thus, ParaMCTS could get easily outperformed by a better-designed action pre-
selection implementation with more sophisticated heuristics. Third, the layout of the
environment (map) could require specific heuristics to attain acceptable performance.
Fourth, an optimization algorithm (e.g. GA) could indeed discover interesting param-
eter combinations that may outrank expert-determined parameters, and that answers
the question we posed earlier in this chapter.

EvoPMCTS is still constrained by the action preselection process design of ParaM-
CTS, meaning it would not be able to generate strategies that require some behavior
outside the scope of ParaMCTS heuristics. Action preselection is still limited by expert
knowledge when it comes to the design and combination of heuristics. It would be
interesting to also explore ways to automate the process of designing and combining
heuristics prior to parameter configuration.

87

6

Conclusion

“The peak efficiency of knowledge and strategy is to
make conflict unnecessary.”

— Sun Tzu

The principal focus of this thesis gravitates around the fundamental online adversarial
planning challenge faced by an RTS game-playing AI. We proposed a number of ap-
proaches to enhance the compatibility and the performance of the MCTS algorithm in
the RTS games domain. The inspiration that prompted us to follow this line of research
was the super-human performance achieved by MCTS in the high-dimensionality deci-
sion/state space of Go (Silver et al., 2016). We attempted to enhance a successful MCTS
variant, NaïveMCTS, born from the same inspiration, by applying a move pruning ap-
proach, introducing an integrated action/state abstraction framework, and applying an
EA to learn strategies within the parameter space of the said framework.

Move pruning is a common game-tree search technique popular in the domain of
board games AI. Our move pruning implementation for MCTS focused on a type of
decisions (IPAs) that rarely offer any advantage, but negatively participates in the infla-
tion of the decision space. We proposed four move pruning algorithms targeting this
particular type of actions. The performance gain achieved in NaïveMCTS and UCT was
significant, especially in larger maps with a high branching factor. In some instances,
UCT even approached the performance of NaïveMCTS. To our knowledge, this was the
first application of move pruning in the context of game-tree search in RTS games. More-
over, the approach is simple and easy to implement in any game with a combinatorial
decision space and idle-type actions.

State and action abstraction is another promising direction that may prove crucial
towards better MCTS applicability in RTS games. In that regard, we proposed to decom-

88

Chapter 6. Conclusion

pose expert-scripts into a collection of small-scale scripts we called heuristics. Heuristics
guide a group of units towards the realization of a predetermined objective. We have
shown that heuristics can be enhanced by adopting parameters and allowing multiple
possible actions as an output. We introduced an action preselection process that exe-
cutes before MCTS’ selection phase and applies a heuristics-driven, successive action
refinement routine, to filter and shape the decision space before MCTS planning. The
ParaMCTS implementation, with the help of the integrated NaïveMCTS, was able to ex-
ploit the downsized decision space to search deeper. ParaMCTS exhibited a remarkable
performance against state-of-the-art agents, both in our experiments and in the µRTS
competition, as UMSBot.

ParaMCTS faces a domain knowledge bottleneck that could limit its potential and
applicability. In an effort to reduce its reliance on domain knowledge, we made use
of an EA to automatically find a set of ParaMCTS parameters, in hopes of outperform-
ing a strong target agent in a set of given maps. The EA had to be tuned correctly to
account for the noisy fitness related to the non-deterministic outcome of RTS matches.
The resulting agent, EvoPMCTS, managed to surpass the performance of the manually-
tuned ParaMCTS, and even CoacAI, 2020 µRTS competition winner, in some instances.
This approach has proven to be effective in finding better parameters, and yet, it suffers
from an overfitting problem, limiting generalization. Nevertheless, the results of our
experiments confirm the viability of evolutionary action preselection as an alternative
to previous abstraction approaches relying on coarse scripts. They also validate our
hypothesis stating that an EA can find better parameters than the manually-tuned ones.

We believe the research works presented in this thesis contribute to the RTS AI, and
the general AI, state of the art. By introducing move pruning to the RTS games domain,
we demonstrated how a simple heuristic can significantly increase the performance of
a decision space sampling approach, without any side effect or negative computational
impact. Through action preselection, we have shown that small-scale parameterized
scripts (heuristics) can be used to form a more effective abstraction layer that also keeps
a degree of granularity for the subsequent planning phase. Manual configuration of the
action preselection process can be replaced by an automatic evolutionary optimization
phase that yields possibly better strategies, as proven empirically in our experiments.

Although the proposed approaches were conceived primarily for the RTS games do-
main, we strongly believe that there are valid applications of the said approaches in
other domains as well. Any domain featuring a group of autonomous agents that must
work together towards the completion of a strategic or tactical objective, within an ad-
versarial environment, can benefit from the approaches we have proposed. Examples of
such domains may include multi-drone military operations, robots-assisted warehous-

89

Chapter 6. Conclusion 6.1. Future Research Perspectives

ing and logistics, autonomous vehicles fleets, and satellite coordination. Agents can
also belong to the same entity, for instance, the actuators/sensors of a robot or a self-
driving vehicle. Obviously, an adaptation phase must precede any application attempt,
especially if MCTS is envisaged for planning, which requires fast simulations. A simu-
lator can be easily replaced by a surrogate model, however special care must be taken to
guarantee the accuracy of the model. MCTS as a holistic approach has demonstrated a
solid performance in highly complex domains which makes it an attractive alternative.

6.1 | Future Research Perspectives
There is plenty of room for improvements, and a lot of questions to address and investi-
gate regarding the proposed approaches. We propose the following non-exhaustive list
of possibly interesting directions to pursue for future research:

■ IPA pruning proved the existence of detrimental actions in the RTS decision space,
we believe there are more detrimental actions to uncover. A thorough analysis of
the low-level decision space should help in finding and pruning more of those
actions.

■ The proposed action preselection process uses a simple unit grouping method.
Using an intelligent clustering method may produce better results.

■ The number of RTS heuristics is not out of reach. Implementing all possible RTS
heuristics and building a heuristics’ library could greatly help produce more per-
formant agents. One may study how to combine heuristics from the library to
form good preselection agents.

■ It is possible to learn expert heuristics from professional match replays of com-
mercial RTS games. What machine learning approach can be used to do so?

■ The effect of using other search algorithms in the decision space resulting after
action preselection is not yet known. A comparative study would be useful.

■ Dynamic adaptation of RTS agents is one of the most important challenges to AI.
Action preselection includes the necessary basics to implement dynamic strategy
adaptation. However, which technique can be used to intelligently adapt the pa-
rameters of action preselection in real-time in order to respond to the opponent’s
strategy.

90

Chapter 6. Conclusion 6.1. Future Research Perspectives

■ How can we adapt the proposed approaches for a partially observable setting?
How to adapt a heuristic for partial observability, and what heuristics are needed?

■ The proposed approaches were tested and validated in µRTS because of the ab-
sence of a reliable and fast forward model (a.k.a. simulator) in commercial games.
Implementing an approximate forward model, or eliminating the need for one,
would provide an opportunity to examine the effect of our approaches in com-
mercial games, and other domains, such as control and robotics.

■ Implement and test the proposed approaches as part of STARCRAFT II using a
surrogate forward-model.

■ Currently, RTS AI suffers from the lack of an accurate state evaluation function.
What can possibly be done to discover a more accurate RTS state evaluation func-
tion?

91

A

ParaMCTS Parameters

This appendix is intended as a reference, shortly describing specific information con-
cerning the parameters of each component in the proposed parametric action preselec-
tion implementation, ParaMCTS. The parameters are distributed across four Tables, and
each table focuses on a group of related components. Table A.1 and A.2 detail Phase 1
and Phase 2 heuristics’ parameters, respectively. Table A.3 describes the parameters of
heuristic-switching and post-processing, and Table A.4 concerns NaïveMCTS param-
eters. In each row of each table we provide (1) a parameter ID, (2) the name of the
parameter, (3) a short description, (4) the range of possible values, (5) a default value,
and (6) the ID of the encoding chromosome, based on Figure 5.1.

A total of 49 parameters are listed, including those of NaïveMCTS. 39 parameters
were used for the evolutionary optimization phase, and the ten unused parameters are
displayed in a faded tone within the tables. The principal reason for excluding these
parameters was to decrease the size of the search space. We targeted these ten parame-
ters due to their potential to inflate the search space, thanks to the wide range of values
they could take, all while offering little or no strategic/tactical advantages. The ten pa-
rameters were omitted from the encoding of genotypes. However, in the phenotypes,
they were assigned fixed values, equaling the default values indicated. Each of the 39
remaining parameters control a strategic or tactical aspect of clear impact.

Discarded parameters 6, 7, 20, 21, and 22 in Table A.1 concern the isolated build/-
train method, which searches for a build/train cell surrounded by the least amount
of occupied cells, in hopes of minimizing the chances of deadlocks. We have selected
fixed values that worked well in preventing deadlocks. The rectangular defense perime-
ter was kept as the only usable type of defense perimeters after deactivating circular
perimeters through parameter 33 (Table A.1). For heuristic-switching (Table A.3), three
types of triggers are available. We only used the score-trigger to switch defense units

92

to offense, and fixed the value of assault units by parameter 42 for the calculation of
the army composition score. Defense-time and unit-count triggers were deactivated by
parameters 43, 44, and 45. For the unused parameters, n depicts an undefined upper-
bound value, where applicable.

As part of the genotype, every parameter takes a discrete integer value. Two types
of parameters exist, cardinal and ordinal. Cardinal parameters encode a quantity, like
a unit count or a distance between two entities (E.g. parameters 8-16 and 28-29). On
the other hand, ordinal parameters encode a choice as an integer, such as pathfinding
algorithms, or the defense or offense modes (E.g. parameters 5, 25, 27, 31, and 32).
The values that may be taken by ordinal parameters are restricted by the available op-
tions. For cardinal parameters, we have selected an upper-bound for each in a way that
minimizes combinatorial explosion and keeps strategic and tactical diversity. For some
parameters, special value, -1, is used to bypass the upper-bound if necessary. Cardinal
unit-count parameters 1-2, 8-16, and 35 are additionally used as partitioning parameters
for d1 and d2.

The parameters encoded in chromosome 8 (40 and 46-49) represent a discretization
of the continuous parameters of score-trigger heuristic switching, post-processing, and
NaïveMCTS. In the phenotype, these parameters get multiplied by 0.05 to obtain a real
value in the [0,1] range.

Table A.1: Properties of Phase 1 heuristics parameters (θ1)

ID Parameter Description Values

1 maxBases The max. number of bases allowed 0 … 2 1 1
2 maxBarracks The max. number of barracks allowed 0 … 2 1 1
3 buildLocation Build-cell location selection method 0: Random, 1: Isolated 1 5
4 maxBuildActionsChosen The max. number of Build actions allowed 1 … 4 2 4
5 harvestPathFinder The pathfinding algorithm for harvester units 0: AStar, 1: Flood fill 0 5

6 isolatedBuildScanRadius
The radius of the zone to scan, centered at a possible
build-cell location

0 … n 1

7 isolatedBuildMaxOccupiedCells
The max. number of occupied cells tolerated in the
scanned zone

0 … n 1

Harvest Heuristic

De
fa

ul
t V

alu
e

Ch
ro

m
os

om
e

93

Appendix A. ParaMCTS Parameters

ID Parameter Description Values

8 maxHarvesters The max. number of harvesting Worker units -1 … 4 (-1: Unlimited) 1 7
9 maxOffenseWorkers The max. number of offense Worker units -1 … 4 (-1: Unlimited) -1 7

10 maxOffenseLights The max. number of Light offense units -1 … 4 (-1: Unlimited) 0 7
11 maxOffenseRanged The max. number of Ranged offense units -1 … 4 (-1: Unlimited) 0 7
12 maxOffenseHeavies The max. number of Heavy offense units -1 … 4 (-1: Unlimited) 0 7
13 maxDefenseWorkers The max. number of defense Worker units -1 … 4 (-1: Unlimited) 0 7
14 maxDefenseLights The max. number of Light defense units -1 … 4 (-1: Unlimited) 3 7
15 maxDefenseRanged The max. number of Ranged defense units -1 … 4 (-1: Unlimited) -1 7
16 maxDefenseHeavies The max. number of Heavy defense units -1 … 4 (-1: Unlimited) 2 7
17 trainSide Structure-side selection method for new units 0: Random, 1: Isolated 1 5
18 maxTrainActionsChosen The max. number of Train actions allowed 1 … 4 2 4
19 priority Per-stance unit production priority 0: Defense, 1: Offense 0 5

20 isolatedTrainScanWidth
Width of the zone to scan, centered at a cell beside a
structure

0 … n 1

21 isolatedTrainScanDepth
Depth of the zone to scan, starting from a cell beside a
structure

0 … n 2

22 isolatedTrainMaxOccupiedCells
The max. number of occupied cells tolerated in the
scanned zone 0 … n 2

Train Heuristic

De
fa

ul
t V

alu
e

Ch
ro

m
os

om
e

ID Parameter Description Values

23 maxTargetsOnOffense The max. number of opponent units to target 1 … 4 2 4
24 maxEscapes The number of move actions allowed while attacking 0 … 4 1 2

25 offenseTargetMode Opponent units targeting method
0: Closest to Self, 1: Closest to Base,
2: Min HP, 3: Max HP, 4: Random 0 2

26 fixedTarget Constantly targeted opponent unit(s) 1: None, 2: Base, 3: Barracks,
4: All Structures 3 4

27 offensePathFinder The pathfinding algorithm for offense units 0: AStar, 1: Flood fill 0 5

Attack Heuristic

De
fa

ul
t V

alu
e

Ch
ro

m
os

om
e

ID Parameter Description Values

28 horizontalDistanceFromBase
Rectangular Defense Perimeter: The horizontal
distance from base

0 … MapWidth
(0: Disabled, if V-distance is also null) 3 6

29 verticalDistanceFromBase
Rectangular Defense Perimeter: The vertical distance
from base

0 … MapHeight
(0: Disabled, if H-distance is also null) 3 6

30 maxTargetsOnDefense The max. number of opponent units to target 1 … 4 2 4
31 defenseMode The defense objective 0: Defend Base, 1: Defend Self 0 5
32 defensePathFinder The pathfinding algorithm for defense units 0: AStar, 1: Flood fill 1 5

33 radiusFromBase
Circular Defense Perimeter: The radius of the perimeter
centered at the base

0 … max (MapWidth, MapHeight)
(0: Disabled) 0

Defend Heuristic

De
fa

ul
t V

alu
e

Ch
ro

m
os

om
e

94

Appendix A. ParaMCTS Parameters

Table A.2: Properties of Phase 2 heuristics parameters (θ2)

ID Parameter Description Values

34 frontLineSelectionMode Front-line units selection method (uses ATK range) 0: Unit Range, 1: OPP Units Range 0 5
35 maxFrontLineUnits The max. number of front-line units to consider -1 … 4 (-1: All) 3 7

36 frontLineTacticalDistance
A distance added to the attack range to admit units
that may soon confront an opponent unit 0 … 4 1 2

37 frontLineWaitDuration The duration of the Wait action for front-line units 1 … 10 3 3
38 frontLinePathFinder The pathfinding algorithm for front-line units 0: AStar, 1: Flood fill 1 5

Front-Line Tactics Heuristic

De
fa

ul
t V

alu
e

Ch
ro

m
os

om
e

ID Parameter Description Values

39 defaultWaitDuration The duration of the Wait action for back units 1 … 10 10 3

Back Tactics Heuristic

De
fa

ul
t V

alu
e

Ch
ro

m
os

om
e

Table A.3: Properties of heuristic-switching and post-processing param-
eters.

ID Parameter Description Values

40 scoreTriggerOverpowerFactor
The relative difference in army composition scores of
the two players required to trigger a stance switch 0 … 20 5 8

41 switchingUnitCount The number of Defense units allowed to switch stance -1 … 4 (-1: All) -1 7

42 scoreTriggerAssaultUnitValue
The value of assault units w.r.t. worker units in army
composition score calculation

1 … n 4

43 timeTriggerDefensePeriod
The max. number of cycles defense units remain in a
defensive stance before a stance switch

-1 … nCycles (-1: Disabled) -1

44 timeTriggerSwitchDelay
The number of cycles in which units can switch stance
following a defense-time trigger

0 … n Cycles (0: Disabled) 0

45 unitCountTriggerThreshold
The number of defense units required to trigger a
stance switch

-1 … n (-1: Disabled) -1

Heuristic Switching

De
fa

ul
t V

alu
e

Ch
ro

m
os

om
e

ID Parameter Description Values

46 ipaAllowProb The probability of allowing Inactive Player Actions 0 … 20 0 8

Post-Processing

De
fa

ul
t V

alu
e

Ch
ro

m
os

om
e

Table A.4: Properties of NaïveMCTS parameters.

ID Parameter Description Values

47 epsilon0 The value of epsilon-0 0 … 20 8 8
48 epsilonG The value of epsilon-global (global MAB) 0 … 20 0 8
49 epsilonL The value of epsilon-local (local MAB) 0 … 20 6 8

De
fa

ul
t V

alu
e

Ch
ro

m
os

om
e

NaïveMCTS

95

References

Adams, E. Fundamentals of Game Design 3rd. New Riders, Berkeley, CA, 3rd edition, 2014a. ISBN 978-0-321-92967-9.

Adams, E. Fundamentals of Strategy Game Design. New Riders, 2014b. ISBN 978-0-13-381267-1 978-0-13-381201-5.

Andersen, P.-A., Goodwin, M., and Granmo, O.-C. Deep RTS: A Game Environment for Deep Reinforcement Learning
in Real-Time Strategy Games. In 2018 IEEE Conference on Computational Intelligence and Games (CIG), pages 149–156,
August 2018. doi: 10.1109/CIG.2018.8490409.

Antuori, V. and Richoux, F. Constrained optimization under uncertainty for decision-making problems: Application to
Real-Time Strategy games. arXiv:1901.00942 [cs], January 2019.

Arneson, B., Hayward, R. B., and Henderson, P. Monte Carlo Tree Search in Hex. IEEE Transactions on Computational
Intelligence and AI in Games, 2(4):251–258, December 2010. ISSN 1943-068X, 1943-0698. doi: 10.1109/TCIAIG.2010.
2067212.

Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time Analysis of the Multiarmed Bandit Problem. Machine Learning, 47
(2):235–256, May 2002. ISSN 1573-0565. doi: 10.1023/A:1013689704352.

Bäck, T. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms.
Oxford University Press, January 1996. ISBN 978-0-19-535670-0.

Balla, R.-K. and Fern, A. UCT for Tactical Assault Planning in Real-Time Strategy Games. In International Joint Conference
on Artificial Intelligence, pages 40–45, 2009.

Barriga, N. A., Stanescu, M., and Buro, M. Building Placement Optimization in Real-Time Strategy Games. In Artificial
Intelligence in Adversarial Real-Time Games: Papers from the AIIDE Workshop, page 6, 2014.

Barriga, N. A., Stanescu, M., and Buro, M. Combining Strategic Learning with Tactical Search in Real-Time Strategy
Games. In AIIDE’17, pages 9–15, Snowbird Ski Resort, Utah, September 2017.

Barriga, N. A., Stanescu, M., Besoain, F., and Buro, M. Improving RTS Game AI by Supervised Policy Learning, Tactical
Search, and Deep Reinforcement Learning. IEEE Computational Intelligence Magazine, 14(3):8–18, August 2019. ISSN
1556-603X, 1556-6048. doi: 10.1109/MCI.2019.2919363.

Barriga, N. A., Stanescu, M., and Buro, M. Puppet Search: Enhancing Scripted Behavior by Look-Ahead Search with
Applications to Real-Time Strategy Games. In AIIDE’15, pages 9–15, Santa Cruz, California, September 2015.

Barton, M. The History of Computer Role-Playing Games Part 2: The Golden Age (1985-1993). Gamasutra, February
2007.

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen, P., Tavener, S., Perez, D., Samoth-

96

References

rakis, S., and Colton, S. A Survey of Monte Carlo Tree Search Methods. IEEE Transactions on Computational Intelligence
and AI in Games, 4(1):1–49, March 2012. ISSN 1943-068X, 1943-0698. doi: 10.1109/TCIAIG.2012.2186810.

Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., and Schulenburg, S. Hyper-Heuristics: An Emerging Direction in
Modern Search Technology. In Glover, F. and Kochenberger, G. A., editors, Handbook of Metaheuristics, International
Series in Operations Research & Management Science, pages 457–474. Springer US, Boston, MA, 2003. ISBN 978-0-
306-48056-0.

Buro, M. ORTS: A Hack-Free RTS Game Environment. In Schaeffer, J., Müller, M., and Björnsson, Y., editors, Computers
and Games, Lecture Notes in Computer Science, pages 280–291, Berlin, Heidelberg, 2003a. Springer. ISBN 978-3-540-
40031-8.

Buro, M. Real-time strategy gaines: A new AI research challenge. In IJCAI 2003, 2003b.

Buro, M. Call for AI research in RTS games. In Proceedings of the AAAI Workshop on AI in Games, pages 139–141. AAAI
Press, 2004.

Campbell, M., Hoane, A. J., and Hsu, F.-h. Deep Blue. Artificial Intelligence, 134(1):57–83, January 2002. ISSN 0004-3702.
doi: 10.1016/S0004-3702(01)00129-1.

Churchill, D. and Buro, M. Build Order Optimization in StarCraft. Proceedings of the AAAI Conference on Artificial Intelli-
gence and Interactive Digital Entertainment, 7(1), October 2011. ISSN 2334-0924.

Churchill, D. and Buro, M. Portfolio greedy search and simulation for large-scale combat in starcraft. In 2013 IEEE
Conference on Computational Inteligence in Games (CIG), Niagara Falls, ON, Canada, August 2013. IEEE. ISBN 978-1-
4673-5311-3 978-1-4673-5308-3. doi: 10.1109/CIG.2013.6633643.

Churchill, D., Saffidine, A., and Buro, M. Fast Heuristic Search for RTS Game Combat Scenarios. In Proceedings, The
Eighth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, pages 112–117, 2012.

Churchill, D., Preuss, M., Richoux, F., Synnaeve, G., Uriarte, A., Ontañnón, S., and Čertický, M. StarCraft Bots and
Competitions. In Lee, N., editor, Encyclopedia of Computer Graphics and Games. Springer International Publishing,
Cham, 2016. ISBN 978-3-319-08234-9. doi: 10.1007/978-3-319-08234-9_18-1.

Churchill, D., Buro, M., and Kelly, R. Robust Continuous Build-Order Optimization in StarCraft. In IEEEE Conference on
Games 2019, page 8, 2019.

Clarke-Willson, S. The Origin of Realtime Strategy Game on PC. The Rise and Fall of Virgin Interactive. Above the Garage
Productions, August 1998.

Dan Adams. IGN: The State of the RTS. IGN, April 2006.

Duguépéroux, J., Mazyad, A., Teytaud, F., and Dehos, J. Pruning Playouts in Monte-Carlo Tree Search for the Game
of Havannah. In Computers and Games, volume 10068, pages 47–57. Springer International Publishing, Cham, 2016.
ISBN 978-3-319-50934-1 978-3-319-50935-8. doi: 10.1007/978-3-319-50935-8_5.

Fencott, P. C., editor. Game Invaders: The Theory and Understanding of Computer Games. Wiley, Hoboken, N.J, 2012. ISBN
978-0-470-59718-7.

Fernández-Ares, A., Mora, A. M., Merelo, J. J., García-Sánchez, P., and Fernandes, C. Optimizing player behavior in
a real-time strategy game using evolutionary algorithms. In 2011 IEEE Congress of Evolutionary Computation (CEC),
pages 2017–2024, June 2011. doi: 10.1109/CEC.2011.5949863.

Fernández-Ares, A., Mora, A., García-Sánchez, P., Castillo, P., and Merelo, J. Analysing the influence of the fitness
function on genetically programmed bots for a real-time strategy game. Entertainment Computing, 18:15–29, January
2017. ISSN 18759521. doi: 10.1016/j.entcom.2016.08.001.

Franz Wilhelmstötter. Jenetics: Java Genetic Algorithms Library. http://jenetics.io, 2020.

Gabriel, I., Negru, V., and Zaharie, D. Neuroevolution based multi-agent system for micromanagement in real-time

97

References

strategy games. In Proceedings of the Fifth Balkan Conference in Informatics, BCI ’12, pages 32–39, New York, NY, USA,
September 2012. Association for Computing Machinery. ISBN 978-1-4503-1240-0. doi: 10.1145/2371316.2371324.

Gajurel, A., Louis, S. J., Méndez, D. J., and Liu, S. Neuroevolution for RTS Micro. In 2018 IEEE Conference on Computational
Intelligence and Games (CIG), pages 1–8, August 2018. doi: 10.1109/CIG.2018.8490457.

García-Sánchez, P., Tonda, A., Mora, A. M., Squillero, G., and Merelo, J. Towards automatic StarCraft strategy generation
using genetic programming. In 2015 IEEE Conference on Computational Intelligence and Games (CIG), pages 284–291,
Tainan, Taiwan, August 2015. IEEE. ISBN 978-1-4799-8622-4. doi: 10.1109/CIG.2015.7317940.

Geib, C. W. and Goldman, R. P. Recognizing Plans with Loops Represented in a Lexicalized Grammar. In Proceedings of
the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI’11, pages 958–963, 2011.

Geib, C. W. and Kantharaju, P. Learning Combinatory Categorial Grammars for Plan Recognition. In The Thirty-Second
AAAI Conference on Artificial Intelligence (AAAI-18), pages 3007–3014, 2018.

Geryk, B. A History of Real-Time Strategy Games. GameSpot, April 2011.

He, S., Wang, Y., Xie, F., Meng, J., Chen, H., Luo, S., Liu, Z., and Zhu, Q. Game Player Strategy Pattern Recognition
and How UCT Algorithms Apply Pre-knowledge of Player’s Strategy to Improve Opponent AI. In 2008 International
Conference on Computational Intelligence for Modelling Control & Automation, pages 1177–1181, Vienna, Austria, 2008.
IEEE. ISBN 978-0-7695-3514-2. doi: 10.1109/CIMCA.2008.82.

Heinz, E. A. Adaptive Null-Move Pruning. ICGA Journal, 22(3):123–132, January 1999. ISSN 1389-6911. doi: 10.3233/
ICG-1999-22302.

Hoki, K. and Muramatsu, M. Efficiency of three forward-pruning techniques in shogi: Futility pruning, null-move
pruning, and Late Move Reduction (LMR). Entertainment Computing, 3(3):51–57, August 2012. ISSN 1875-9521. doi:
10.1016/j.entcom.2011.11.003.

Holland, J. H. Genetic Algorithms and Adaptation. In Selfridge, O. G., Rissland, E. L., and Arbib, M. A., editors,
Adaptive Control of Ill-Defined Systems, NATO Conference Series, pages 317–333. Springer US, Boston, MA, 1984. ISBN
978-1-4684-8941-5.

Huang, J. and Yang, W. A multi-size convolution neural network for RTS games winner prediction. In Wang, Y., editor,
MATEC Web of Conferences, volume 232, page 01054, November 2018. doi: 10.1051/matecconf/201823201054.

Huang, J., Liu, Z., Lu, B., and Xiao, F. Pruning in UCT Algorithm. In 2010 International Conference on Technologies and
Applications of Artificial Intelligence, pages 177–181, Hsinchu City, TBD, Taiwan, November 2010. IEEE. ISBN 978-1-
4244-8668-7. doi: 10.1109/TAAI.2010.38.

Justesen, N. and Risi, S. Continual online evolutionary planning for in-game build order adaptation in StarCraft. In
Proceedings of the Genetic and Evolutionary Computation Conference on - GECCO ’17, pages 187–194, Berlin, Germany,
2017. ACM Press. ISBN 978-1-4503-4920-8. doi: 10.1145/3071178.3071210.

Justesen, N., Tillman, B., Togelius, J., and Risi, S. Script- and cluster-based UCT for StarCraft. In 2014 IEEE Conference
on Computational Intelligence and Games, Dortmund, Germany, August 2014. IEEE. ISBN 978-1-4799-3547-5. doi:
10.1109/CIG.2014.6932900.

Justesen, N., Mahlmann, T., and Togelius, J. Online Evolution for Multi-action Adversarial Games. In Squillero, G.
and Burelli, P., editors, Applications of Evolutionary Computation, Lecture Notes in Computer Science, pages 590–603.
Springer International Publishing, 2016. ISBN 978-3-319-31204-0.

Kantharaju, P., Ontanon, S., and Geib, C. W. µCCG, a CCG-based Game-Playing Agent for µRTS. In IEEE Conference on
Computational Intelligence and Games (CIG), 2018.

Kantharaju, P., Ontañón, S., and Geib, C. W. Extracting CCGs for Plan Recognition in RTS Games. In Proceedings of the
Workshop on Knowledge Extraction in Games 2019, 2019a.

98

References

Kantharaju, P., Ontañón, S., and Geib, C. W. Scaling up CCG-Based Plan Recognition via Monte-Carlo Tree Search. In
IEEE Conference on Games 2019, August 2019b.

Kirby, N. Introduction to Game AI. Course Technology/Cengage Learning, Boston, 2011. ISBN 978-1-59863-998-8.

Kocsis, L. and Szepesvári, C. Bandit Based Monte-Carlo Planning. In Fürnkranz, J., Scheffer, T., and Spiliopoulou, M., ed-
itors, Machine Learning: ECML 2006, Lecture Notes in Computer Science, pages 282–293. Springer Berlin Heidelberg,
2006. ISBN 978-3-540-46056-5.

Kocsis, L., Szepesvari, C., and Willemson, J. Improved Monte-Carlo Search. Univ. Tartu, Estonia, Tech. Rep 1, 2006.

Köstler, H. and Gmeiner, B. A Multi-objective Genetic Algorithm for Build Order Optimization in StarCraft II. KI -
Künstliche Intelligenz, 27(3):221–233, August 2013. ISSN 0933-1875, 1610-1987. doi: 10.1007/s13218-013-0263-2.

Kovarsky, A. and Buro, M. Heuristic Search Applied to Abstract Combat Games. In Kégl, B. and Lapalme, G., editors,
Advances in Artificial Intelligence, Lecture Notes in Computer Science, pages 66–78. Springer Berlin Heidelberg, 2005.
ISBN 978-3-540-31952-8.

Laird, J. and VanLent, M. Human-Level AI’s Killer Application: Interactive Computer Games. AI Magazine, 22(2):15–15,
June 2001. ISSN 2371-9621. doi: 10.1609/aimag.v22i2.1558.

Lanchester, F. W. Aircraft in Warfare: The Dawn of the Fourth Arm. Constable limited, 1916. ISBN 0-598-85489-4.

Lelis, L. H. S. Stratified Strategy Selection for Unit Control in Real-Time Strategy Games. In Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, pages 3735–3741, Melbourne, Australia, August 2017. Interna-
tional Joint Conferences on Artificial Intelligence Organization. ISBN 978-0-9992411-0-3. doi: 10.24963/ijcai.2017/522.

Lim, Y. J. and Lee, W. S. Properties of forward pruning in game-tree search. In Proceedings of the 21st National Conference
on Artificial Intelligence - Volume 2, AAAI’06, pages 1020–1025, Boston, Massachusetts, July 2006. AAAI Press. ISBN
978-1-57735-281-5.

Louis, S. J. and Liu, S. Multi-Objective Evolution for 3D RTS Micro. In 2018 IEEE Congress on Evolutionary Computation
(CEC), pages 1–8, July 2018. doi: 10.1109/CEC.2018.8477926.

Lucas, S. M. and Kendall, G. Evolutionary computation and games. IEEE Computational Intelligence Magazine, 1(1):10–18,
February 2006. ISSN 1556-6048. doi: 10.1109/MCI.2006.1597057.

Mariño, J. R. H., Moraes, R. O., Toledo, C., and Lelis, L. H. S. Evolving Action Abstractions for Real-Time Planning in
Extensive-Form Games. In Proceedings of the Conference on Artificial Intelligence (AAAI), 2018.

Marsland, T. A. A Review of Game-Tree Pruning. ICGA Journal, 9(1):3–19, January 1986. ISSN 1389-6911. doi: 10.3233/
ICG-1986-9102.

Miller, B. L. and Goldberg, D. E. Genetic Algorithms, Tournament Selection, and the Effects of Noise. Complex Systems,
9:193–212, 1995.

Millington, I. AI for Games. Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor &
Francis Group, the academic division of T&F Informa, plc, Boca Raton, third edition edition, 2019. ISBN 978-1-138-
48397-2.

Minotti, M. The history of MOBAs: From mod to sensation, September 2014.

Mora, A. M., Fernández-Ares, A., Merelo-Guervós, J.-J., and García-Sánchez, P. Dealing with Noisy Fitness in the Design
of a RTS Game Bot. In Di Chio, C., Agapitos, A., Cagnoni, S., Cotta, C., de Vega, F. F., Di Caro, G. A., Drechsler, R.,
Ekárt, A., Esparcia-Alcázar, A. I., Farooq, M., Langdon, W. B., Merelo-Guervós, J. J., Preuss, M., Richter, H., Silva, S.,
Simões, A., Squillero, G., Tarantino, E., Tettamanzi, A. G. B., Togelius, J., Urquhart, N., Uyar, A. Ş., and Yannakakis,
G. N., editors, Applications of Evolutionary Computation, Lecture Notes in Computer Science, pages 234–244, Berlin,
Heidelberg, 2012. Springer. ISBN 978-3-642-29178-4. doi: 10.1007/978-3-642-29178-4_24.

Moraes, R. O. and Lelis, L. H. S. Asymmetric Action Abstractions for Multi-Unit Control in Adversarial Real-Time

99

References

Games. In The Thirty-Second AAAI Conference on Artificial Intelligence AAAI-18, pages 876–883, 2018a.

Moraes, R. O. and Lelis, L. H. S. Nested-Greedy Search for Adversarial Real-Time Games. In AIIDE, 2018b.

Moraes, R. O., Mariño, J. R. H., Lelis, L. H. S., and Nascimento, M. A. Action Abstractions for Combinatorial Multi-
Armed Bandit Tree Search. In AAAI Publications, Fourteenth Artificial Intelligence and Interactive Digital Entertainment
Conference, 2018.

Moss, R. Build, gather, brawl, repeat: The history of real-time strategy games. Ars Technica, September 2017.

Neufeld, X., Mostaghim, S., and Perez-Liebana, D. Evolving Game State Evaluation Functions for a Hybrid Planning
Approach. In IEEE Conference on Games 2019, August 2019a.

Neufeld, X., Mostaghim, S., and Perez-Liebana, D. A Hybrid Planning and Execution Approach Through HTN and
MCTS. In The 3rd Workshop on Integrated Planning, Acting, and Execution - ICAPS’19, pages 37–45, July 2019b.

O’Connor, A. Blitzkrieg 3 claims world’s first RTS neural net, Boris. Rock, Paper, Shotgun, February 2017.

Ontañón, S. Experiments with Game Tree Search in Real-Time Strategy Games. arXiv:1208.1940 [cs], August 2012.

Ontañón, S. The Combinatorial Multi-Armed Bandit Problem and Its Application to Real-Time Strategy Games. In
Proceedings of the Ninth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, pages 58–64,
2013.

Ontañón, S. Informed Monte Carlo Tree Search for Real-Time Strategy games. In 2016 IEEE Conference on Computational
Intelligence and Games (CIG), Santorini, Greece, September 2016. IEEE. ISBN 978-1-5090-1883-3. doi: 10.1109/CIG.
2016.7860394.

Ontañón, S. Combinatorial Multi-armed Bandits for Real-Time Strategy Games. Journal of Artificial Intelligence Research,
58:665–702, March 2017. ISSN 1076-9757. doi: 10.1613/jair.5398.

Ontañón, S. and Buro, M. Adversarial Hierarchical-Task Network Planning for Complex Real-Time Games. In Proceed-
ings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015), pages 1652–1658, 2015.

Ontañón, S., Synnaeve, G., Uriarte, A., Richoux, F., Churchill, D., and Preuss, M. A Survey of Real-Time Strategy Game
AI Research and Competition in StarCraft. IEEE Transactions on Computational Intelligence and AI in Games, 5(4):293–
311, December 2013. ISSN 1943-068X, 1943-0698. doi: 10.1109/TCIAIG.2013.2286295.

Ontañón, S., Synnaeve, G., Uriarte, A., Richoux, F., Churchill, D., and Preuss, M. RTS AI Problems and Techniques. In
Lee, N., editor, Encyclopedia of Computer Graphics and Games, pages 1–12. Springer International Publishing, Cham,
2015. ISBN 978-3-319-08234-9. doi: 10.1007/978-3-319-08234-9_17-1.

Ontañón, S., Barriga, N. A., Silva, C. R., Moraes, R. O., and Lelis, L. H. S. The First microRTS Artificial Intelligence
Competition. AI Magazine, 39(1):75–83, March 2018. ISSN 2371-9621. doi: 10.1609/aimag.v39i1.2777.

Ouessai, A., Salem, M., and Mora, A. M. Improving the Performance of MCTS-Based µRTS Agents Through Move
Pruning. In 2020 IEEE Conference on Games (CoG), pages 708–715, Osaka, Japan, August 2020a. IEEE. doi: 10.1109/
CoG47356.2020.9231715.

Ouessai, A., Salem, M., and Mora, A. M. Online Adversarial Planning in µRTS : A Survey. In 2019 International Conference
on Theoretical and Applicative Aspects of Computer Science (ICTAACS), Skikda, Algeria, December 2019. IEEE. doi:
10.1109/ICTAACS48474.2019.8988124.

Ouessai, A., Salem, M., and Mora, A. M. Parametric Action Pre-Selection for MCTS in Real-Time Strategy Games. In VI
Congress of the Spanish Society for Video Game Sciences, pages 104–115, Madrid, Spain, October 2020b. CEUR-WS.

Ouessai, A., Salem, M., and Mora, A. M. Evolving action pre-selection parameters for MCTS in real-time strategy games.
Entertainment Computing, 42:100493, May 2022. ISSN 1875-9521. doi: 10.1016/j.entcom.2022.100493.

Perez, D., Samothrakis, S., Lucas, S., and Rohlfshagen, P. Rolling horizon evolution versus tree search for navigation in

100

References

single-player real-time games. In Proceeding of the Fifteenth Annual Conference on Genetic and Evolutionary Computation
Conference - GECCO ’13, page 351, Amsterdam, The Netherlands, 2013. ACM Press. ISBN 978-1-4503-1963-8. doi:
10.1145/2463372.2463413.

Perkins, L. Terrain analysis in real-time strategy games: An integrated approach to choke point detection and region
decomposition. In Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment,
volume 6, pages 168–173, 2010. ISBN 2334-0924.

Ponsen, M. J. V., Muñoz-Avila, H., Spronck, P., and Aha, D. W. Automatically Acquiring Domain Knowledge For
Adaptive Game AI Using Evolutionary Learning. In AAAI, 2005.

Quiggin, J. Generalized Expected Utility Theory: The Rank-Dependent Model. Springer Science & Business Media, 1993.
ISBN 978-94-011-2182-8.

Rabin, S. AI Game Programming Wisdom. Charles River Media, Hingham, Mass., 2007. ISBN 978-1-58450-077-3.

Richoux, F. Terrain Analysis in StarCraft 1 and 2 as Combinatorial Optimization. arXiv preprint arXiv:2205.08683, 2022.

Risi, S. and Togelius, J. Neuroevolution in Games: State of the Art and Open Challenges. IEEE Transactions on Computa-
tional Intelligence and AI in Games, 9(1):25–41, March 2017. ISSN 1943-0698. doi: 10.1109/TCIAIG.2015.2494596.

Robertson, G. and Watson, I. A Review of Real-Time Strategy Game AI. AI Magazine, 35(4):75–104, December 2014. ISSN
0738-4602, 0738-4602. doi: 10.1609/aimag.v35i4.2478.

Russell, S. J., Norvig, P., and Davis, E. Making Complex Decisions (Ch. 17). In Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2010. ISBN 978-0-13-604259-4.

Schaeffer, J., Burch, N., Björnsson, Y., Kishimoto, A., Müller, M., Lake, R., Lu, P., and Sutphen, S. Checkers Is Solved.
Science, 317(5844):1518–1522, September 2007. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.1144079.

Schwab, B. AI Game Engine Programming 2nd. Course Technology, Cengage Learning, Boston, MA, 2nd ed edition, 2009.
ISBN 978-1-58450-572-3.

Sephton, N., Cowling, P. I., Powley, E., and Slaven, N. H. Heuristic move pruning in Monte Carlo Tree Search for
the strategic card game Lords of War. In 2014 IEEE Conference on Computational Intelligence and Games, Dortmund,
Germany, August 2014. IEEE. ISBN 978-1-4799-3547-5. doi: 10.1109/CIG.2014.6932892.

Shannon, C. E. XXII. Programming a computer for playing chess. The London, Edinburgh, and Dublin Philosophical Maga-
zine and Journal of Science, 41(314):256–275, 1950.

Sharkey, S. Hail to the Duke. 1UP.com, September 2004.

Shleyfman, A., Komenda, A., and Domshlak, C. On Combinatorial Actions and CMABs with Linear Side Information.
In ECAI 2014: 21st European Conference on Artificial Intelligence, pages 825–830, 2014.

Silva, C. R., Moraes, R. O., Lelis, L. H. S., and Gal, K. Strategy Generation for Multi-Unit Real-Time Games via Voting.
IEEE Transactions on Games, 2018. ISSN 2475-1502, 2475-1510. doi: 10.1109/TG.2018.2848913.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Pan-
neershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach,
M., Kavukcuoglu, K., Graepel, T., and Hassabis, D. Mastering the game of Go with deep neural networks and tree
search. Nature, 529(7587):484–489, January 2016. ISSN 0028-0836, 1476-4687. doi: 10.1038/nature16961.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel,
T., Lillicrap, T., Simonyan, K., and Hassabis, D. A general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play. Science, 362(6419):1140–1144, December 2018. ISSN 0036-8075, 1095-9203. doi:
10.1126/science.aar6404.

Spronck, P., Ponsen, M., Sprinkhuizen-Kuyper, I., and Postma, E. Adaptive game AI with dynamic scripting. Machine
Learning, 63(3):217–248, June 2006. ISSN 1573-0565. doi: 10.1007/s10994-006-6205-6.

101

References

Stanescu, M. Using Lanchester Attrition Laws for Combat Prediction in StarCraft. In Proceedings, The Eleventh AAAI
Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-15), pages 86–92, 2015.

Stanescu, M., Barriga, N. A., and Buro, M. Hierarchical Adversarial Search Applied to Real-Time Strategy Games. In
Proceedings of the Tenth Annual AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE),
pages 66–72, 2014.

Stanescu, M., Barriga, N. A., Hess, A., and Buro, M. Evaluating real-time strategy game states using convolutional
neural networks. In 2016 IEEE Conference on Computational Intelligence and Games (CIG), Santorini, Greece, September
2016. IEEE. ISBN 978-1-5090-1883-3. doi: 10.1109/CIG.2016.7860439.

Steedman, M. The Syntactic Process. Language, Speech, and Communication. MIT Press, Cambridge, Mass, 2000. ISBN
978-0-262-19420-4.

Sun, L., Jiao, P., Xu, K., Yin, Q., and Zha, Y. Modified Adversarial Hierarchical Task Network Planning in Real-Time
Strategy Games. Applied Sciences, 7(9):872, August 2017. ISSN 2076-3417. doi: 10.3390/app7090872.

Sun, P., Sun, X., Han, L., Xiong, J., Wang, Q., Li, B., Zheng, Y., Liu, J., Liu, Y., Liu, H., and Zhang, T. TStarBots: Defeating
the Cheating Level Builtin AI in StarCraft II in the Full Game. arXiv:1809.07193 [cs], December 2018.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An Introduction. MIT Press, 2018. ISBN 0-262-35270-2.

Tang, Z., Zhao, D., Zhu, Y., and Guo, P. Reinforcement Learning for Build-Order Production in StarCraft II. In 2018
Eighth International Conference on Information Science and Technology (ICIST), pages 153–158, June 2018. doi: 10.1109/
ICIST.2018.8426160.

Tavares, A. R. and Chaimowicz, L. Tabular Reinforcement Learning in Real-Time Strategy Games via Options. In 2018
IEEE Conference on Computational Intelligence and Games (CIG), 2018.

Tian, Y., Gong, Q., Shang, W., Wu, Y., and Zitnick, C. L. ELF: An Extensive, Lightweight and Flexible Research Platform
for Real-time Strategy Games. In 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA,
USA., 2017.

Turing, A. M. Digital computers applied to games. Faster than Thought, 101, 1953.

Uriarte, A. and Ontañón, S. High-level Representations for Game-Tree Search in RTS Games. In Tenth Artificial Intelligence
and Interactive Digital Entertainment Conference, Artificial Intelligence in Adversarial Real-Time Games Workshop, pages 14–
18, 2014.

Uriarte, A. and Ontañón, S. Single believe state generation for partially observable real-time strategy games. In 2017
IEEE Conference on Computational Intelligence and Games (CIG), pages 296–303, New York, NY, USA, August 2017. IEEE.
ISBN 978-1-5386-3233-8. doi: 10.1109/CIG.2017.8080449.

Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhnevets, A. S., Yeo, M., Makhzani, A., Küttler, H., Agapiou, J.,
Schrittwieser, J., Quan, J., Gaffney, S., Petersen, S., Simonyan, K., Schaul, T., van Hasselt, H., Silver, D., Lillicrap, T.,
Calderone, K., Keet, P., Brunasso, A., Lawrence, D., Ekermo, A., Repp, J., and Tsing, R. StarCraft II: A New Challenge
for Reinforcement Learning. arXiv:1708.04782 [cs], August 2017.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds, T.,
Georgiev, P., Oh, J., Horgan, D., Kroiss, M., Danihelka, I., Huang, A., Sifre, L., Cai, T., Agapiou, J. P., Jaderberg, M.,
Vezhnevets, A. S., Leblond, R., Pohlen, T., Dalibard, V., Budden, D., Sulsky, Y., Molloy, J., Paine, T. L., Gulcehre,
C., Wang, Z., Pfaff, T., Wu, Y., Ring, R., Yogatama, D., Wünsch, D., McKinney, K., Smith, O., Schaul, T., Lillicrap,
T., Kavukcuoglu, K., Hassabis, D., Apps, C., and Silver, D. Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature, 575(7782):350–354, November 2019. ISSN 1476-4687. doi: 10.1038/s41586-019-1724-z.

Walker, M. H. Strategy Gaming: Part I – A Primer. GameSpy Articles, 2002.

Wang, C., Chen, P., Li, Y., Holmgard, C., and Togelius, J. Portfolio Online Evolution in StarCraft. In Proceedings, The
Twelfth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-16), pages 114–120, 2016.

102

References

Weber, B., Mateas, M., and Jhala, A. A Particle Model for State Estimation in Real-Time Strategy Games. In Seventh
Artificial Intelligence and Interactive Digital Entertainment Conference (AIIDE’11), pages 103–108, 2011.

Yang, W., Zhang, Q., and Peng, Y. A Dynamic Hierarchical Evaluating Network for Real-Time Strategy Games. In
Bevrani, H. and Shuhui, W., editors, MATEC Web of Conferences, volume 208, page 05003, September 2018. doi:
10.1051/matecconf/201820805003.

Yang, W., Xie, X., and Peng, Y. Fuzzy Theory Based Single Belief State Generation for Partially Observable Real-Time
Strategy Games. IEEE Access, 7:79320–79330, June 2019. ISSN 2169-3536. doi: 10.1109/ACCESS.2019.2923419.

Yang, Z. and Ontañón, S. Learning Map-Independent Evaluation Functions for Real-Time Strategy Games. In 2018 IEEE
Conference on Computational Intelligence and Games (CIG), August 2018. doi: 10.1109/CIG.2018.8490369.

Yang, Z. and Ontañón, S. Extracting Policies from Replays to Improve MCTS in Real Time Strategy Games. In The
2nd Workshop on Knowledge Extraction from Games Co-Located with 33rd AAAI Conference on Artificial Intelligence (AAAI
2019), Honolulu, Hawaii, 2019a.

Yang, Z. and Ontañón, S. Guiding Monte Carlo Tree Search by Scripts in Real-Time Strategy Games. In Proceedings of
the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, volume 15, pages 100–106, October
2019b.

Yang, Z. and Ontañón, S. Integrating Search and Scripts for Real-Time Strategy Games: An Empirical Survey. In AAAI-20
Workshop on Reinforcement Learning in Games, New York, 2020.

Yannakakis, G. N. and Togelius, J. Artificial Intelligence and Games. Springer International Publishing, Cham, 2018. ISBN
978-3-319-63518-7 978-3-319-63519-4. doi: 10.1007/978-3-319-63519-4.

Zhen, J. S. and Watson, I. Neuroevolution for Micromanagement in the Real-Time Strategy Game Starcraft: Brood
War. In Cranefield, S. and Nayak, A., editors, AI 2013: Advances in Artificial Intelligence, Lecture Notes in Com-
puter Science, pages 259–270, Cham, 2013. Springer International Publishing. ISBN 978-3-319-03680-9. doi:
10.1007/978-3-319-03680-9_28.

103

Abstract

Real-Time Strategy (RTS) games impose multiple complex challenges to autonomous game-playing agents
(a.k.a. bots), that also relate to real-world problems. The real-time aspect and the astronomical size of the
decision and state spaces of an RTS game overwhelm the usual search algorithms. Monte-Carlo Tree Search
(MCTS) was successfully applied in games featuring large decision and state spaces, such as Go, and was
able to attain super-human performance in agents like AlphaGo and AlphaZero. Thus, researchers turned
to MCTS as a potential candidate for solving RTS Games, and several RTS-specific enhancements were
implemented, such as the support for real-time progression and combinatorial decisions. Nevertheless,
MCTS is still far from replicating its Go success in RTS games. In this thesis, we propose several approaches
to ease the RTS dimensionality burden on MCTS, in hopes of finding a path towards higher performance.
To this end, we have made use of a detrimental-move pruning approach, proposed an integrated
action/state abstraction process, and optimized its parameters through an Evolutionary Algorithm (EA).
These approaches were tested and validated in the μRTS research platform, and the results showed
moderate to significant performance gains. We expect the proposed approaches could be applied in
commercial RTS games in the near future.

Keywords: Real-Time Strategy Games, Monte Carlo Tree Search, Move Pruning, Action Abstraction,
Parameter Optimization, Genetic Algorithms

 ملـــخـــــص

عبها. هذه ض تحديات معقدة على برامج الذكاء الاصطناعي التي تحاول لذات الوقت الفعلي تفر إن ألعاب الاستراتيجية

التحديات مرتبطة بشكل وثيق بمشاكل واقعية مثل صفة الوقت الفعلي، و ضخامة فضاءي القرار و الحال اللتان تعيقان

كنت من إيجاد حل لألعاب معقدة، مثل لعبة ڤو خوارزميات البحث المعروفة. إن خوارزمية مونتي كارلو للبحث الشجري تم

ل. ذلك ما لفت انتباه الباحثين، و دفعهم لتكييف هذه الخوارزمية لأجل ألعاب الاستراتيجية المتميزة بفضاء كبير للقرار و الحا

ار المركب. ذات الوقت الفعلي. الشيء الذي أدى لظهور العديد من التحسينات الخاصة، كدعم الوقت الفعلي و فضاء القر

قادرة على تجسيد نجاحها في لعبة ڤو في ألعاب لكن بالرغم من ذلك لا تزال خوارزمية مونتي كارلو للبحث الشجري غير

الاستراتيجية ذات الوقت الفعلي. من خلال هذه الأطروحة، نحاول تقديم بعض الطرق التي قد تفيد في تخفيف عبء

ي كارلو للبحث الشجري، حيث قمنا باستعمال طريقة لتشذيب القرارات ضخامة فضاءات البحث على خوارزمية مونت

ي القرار و الحال، و قمنا بتحسين معايير هذا الاطار من خلال خوارزمية تطورية. ءمنا اطارا تجريديا لفضاالمضرة، ثم قد

النتائج المتحصل عليها بعد التجارب في منصة بحث خاصة بالألعاب الاستراتيجية ذات الوقت الفعلي، أظهرت تحسنا في

ذات الوقت بات في ألعاب الاستراتيجية نتوقع امكانية تطبيق هاته المقارالأداء بنسب تتفاوت بين المتوسطة و المعتبرة.

 القريب, المستقبلفي التجاريةالفعلي

ن سيتح ,قراراتيب الذشت, مونتي كارلو للبحث الشجري, عليفال ذات الوقت ألعاب الاستراتيجية حية:تافت المالمالك

 يةنيجيات الرزماخو, ال, المعايير

Résumé

Les jeux de stratégie en temps-réel (RTS) posent des défis considérables à l’encontre des agents autonomes
(dites aussi, "bots"), des défis étroitement liés aux problèmes du monde réel. L’aspect temps-réel, et les
énormes espaces d’état et de décision, accablent les algorithmes de recherche traditionnelle. L’algorithme
Monte-Carlo Tree Search (MCTS) s’est réjoui d’un succès immense dans les domaines ayant de larges
espaces d’état et de décision, tel que le jeu Go, où il a pu démontrer des capacités surhumaines à travers
les agents AlphaGo et AlphaZero. Les chercheurs ont pris note, et ont visé à adapter MCTS pour les jeux
RTS. Diverses améliorations spécifiques aux jeux RTS ont vu le jour, comme le support de l’aspect temps-
réel et des décisions combinatoires. Néanmoins, MCTS reste incapable de reproduire son succès dans Go
dans les jeux RTS. Dans cette thèse, on propose des approches qui tentent de diminuer l’impact de la haute
dimensionalité sur MCTS, visant à atteindre des performances plus élevées dans le domaine des RTS. Pour
cela, on a utilisé une méthode d’élagage des actions, et on a proposé un mécanisme d’abstraction d’états et
d’actions intégré, qu’on a ensuite optimisé par un algorithme évolutionnaire. Ces approches ont été testées
et validées dans la plateforme de recherche μRTS, et les résultats obtenus démontrent des gains de
performance de degré modéré jusqu’à un degré considérable. On prévoit que les approches proposées
pourraient être appliquées dans les jeux RTS commerciaux dans un proche avenir.

Mots-clés: Jeux de stratégie en temps réel, recherche d’arbre de Monte Carlo, élagage d’actions, abstraction
des actions, optimisation des paramètres, algorithmes génétiques

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Games and Artificial Intelligence
	Thesis Objective & Contributions
	Thesis Outline

	Background and State of the Art
	Real-Time Strategy (RTS) Games
	Origins & Evolution
	RTS Elements
	Challenges for Humans

	RTS Games & AI
	RTS AI in the Industry
	RTS AI Research
	Challenges for AI
	Levels of Abstraction
	Research Platforms & µRTS
	Formal Definition & Complexity

	Online Adversarial Planing: State of the Art
	Low-Level Planning (LLP)
	High-Level Planning (HLP)
	Hybrid Planning (HyP)
	Partial Observability
	State Evaluation

	RTS AI Competitions
	Summary

	Move Pruning in MCTS
	Monte-Carlo Tree Search (MCTS)
	Upper Confidence bounds for Trees (UCT)
	NaïveMCTS

	Related Works
	Move Pruning
	Unit-Actions and Player-Actions
	Inactive Player-Actions (IPAs)
	Pruning Techniques

	Experiments & Results
	Pruning Analysis
	Best Pruning Approaches
	Performance Analysis
	Branching Factor & Scalability

	Summary

	Parametric Action Preselection
	Related Works
	Relation with Dynamic Scripting

	Parametric Action Preselection
	Formal Definition
	Implementation: ParaMCTS

	Experiments & Results
	Experiments 1 & 2: Search Depth and Playout Duration
	Experiment 3: Comparison Against State-of-the-Art
	UMSBot: ParaMCTS in the µRTS Competition

	Summary

	Evolutionary Action Preselection
	Related Works
	Relation with Hyper-Heuristics

	Evolutionary Algorithms (EAs)
	Evolving Action Preselection Parameters
	Encoding
	Fitness Function
	Genetic Operators

	Experiments & Results
	Experiment 1: Evolving Preselection Parameters
	Experiment 2: Performance Validation

	Summary

	Conclusion
	Future Research Perspectives

	ParaMCTS Parameters
	References

