
 الجمهوريــة الجزائريــة الديمقراطيــة الشعبيــة

People's Democratic Republic of Algeria

وزارة الـتعـلــيــم الـعـالي والبـحـث الـعلـمــي

Ministry of Higher Education and Scientific Research

Faculty of Exact Sciences

Computer Science department

3rd cycle DOCTORATE THESIS

Sector: Computer Science

Specialty: Information and Communication Technologies

Title

Presented by: Mohamed Amine Mahmoudi

 On 07/07/2022 at 10:30 a.m.

In front of the jury:

College year: 2021/2022

Univesity of Mascara Professor Boudjelal Meftah President

Univesity of Mascara MCA Debakla Mohammed Examiner

Univesity of Tiaret MCA Mansouri Dou El Kefl Examiner

Univesity of Mascara MCA Boufera Fatma Supervisor

Univesity of Orléans Associate Professor Chetouani Aladine Co-Supervisor

Univesity of Paris Saclay Professor Tabia Hedi Guest

MUSTAPHA Stambouli University

 Mascara

 ة مصطفى اسطمبوليجامع

 معسكر

Deep learning for emotion recognition

 كلية العلوم الدقيقة

 قسم الإعلام الألي

 الجمهوريــة الجزائريــة الديمقراطيــة الشعبيــة

République Algérienne Démocratique et Populaire

وزارة الـتعـلــيــم الـعـالي والبـحـث الـعلـمــي

Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

Faculté des Sciences Exactes

Département d’informatique

THESE de DOCTORAT de 3ème cycle

Filière : Informatique

Spécialité : Technologies des informations et des communications

Intitulée

Présentée par : Mohamed Amine Mahmoudi

 Le 07/07/2022 à 10 H 30

Devant le jury :

Année Universitaire : 2021/2022

Université de Mascara Professeur Boudjelal Meftah Président

Université de Mascara MCA Debakla Mohammed Examinateur

Université de Tiaret MCA Mansouri Dou El Kefl Examinateur

Université de Mascara

MCA Boufera Fatma Encadreur

Université d’Orléans

Maitre de Conférences HDR Chetouani Aladine Co-Encadreur

Université de Paris Saclay Professeur Tabia Hedi Invité

Université MUSTAPHA Stambouli

Mascara

 سطمبولية مصطفى اجامع

 معسكر

Apprentissage profond pour la
reconnaissance d’émotions

 كلية العلوم الدقيقة

 قسم الإعلام الألي

To all who believe in success through hard work and sacrifice.

Acknowledgements

Ithank Allah the Almighty for giving me strength and courage to complete this work.
I wish to express my sincerest gratitude to my advisors:
• Ms Fatma Boufera professor at Mustapha Stambouli University of Mascara, Alge-

ria,

• Mr Aladine Chetouani Associate Professor at Univesity of Orléans, France,

• Mr Hedi Tabia Professor at Univesity of Paris Saclay, France,

who have provided much encouragement and freedom for my research. I also thank
them for their unconditional help in supervising me. They were always kindly shar-
ing deep knowledge in the field which inspired my research. Their attitudes towards
research no doubt set a good example of what a true researcher should be.

I would like to thank the members of the jury composed of:

• Mr Boudjelal Meftah professor at Mustapha Stambouli University of Mascara, Al-
geria,

• Mr Debakla Mohammed MCA at Mustapha Stambouli University of Mascara, Al-
geria,

• Mr Mansouri Dou El Kefl lecturer at the Ibn Khladoun University of Tiaret, Alge-
ria,

for taking the time to read and correct my thesis. Their remarks will undoubtedly
improve the quality of the manuscript and will constitute a rich experience for my future
research.

Last but not least, I must thank my beloved parents, as well as other family members,
without whose unconditional love, support and understanding, this work would not
have been possible.

iii

Résumé

La reconnaissance de l’expression faciale (FER) est un domaine de recherche qui
consiste à classer les émotions humaines à travers les expressions de leur visage comme
l’une des sept émotions de base : bonheur, tristesse, peur, dégoût, colère, surprise et
neutre. FER trouve des applications dans différents domaines, notamment la sécurité,
l’interaction homme-machine intelligente, la robotique et la médecine clinique pour
l’autisme, la dépression, la douleur et les problèmes de santé mentale. FER est un prob-
lème très difficile en raison des différences subtiles qui existent entre ses catégories. En
effet, la différence dans les catégories d’expressions faciales repose sur de petites zones
subtiles dans les images faciales comme la bouche, les sourcils. Ce type de problème est
connu, au sein de la communauté de la vision par ordinateur, sous le nom de recon-
naissance à grain fin. Il consiste en des catégories discriminantes qui étaient auparavant
considérées comme une seule catégorie et qui ne présentent que de petites différences
visuelles subtiles (ex. espèces d’oiseaux, modèles de voitures. . . etc.).

Avec la résurgence des techniques d’apprentissage en profondeur, la communauté
de la vision par ordinateur a connu une ère de résultats florissants. L’une des tech-
niques d’apprentissage en profondeur les plus utilisées sont les réseaux de neurones
convolutifs (CNN) qui ont connu un énorme succès dans ce domaine. Cependant, dans
la reconnaissance à grain fin, les CNN ne fonctionnent pas aussi bien que la classifica-
tion d’image habituelle. Nous pensons que cela est dû à la fonction de noyau linéaire
sur laquelle les CNN sont construits. Les fonctions de noyau linéaires sont moins dis-
criminantes et ne correspondent pas aux données d’entrée. Surtout lorsque les données
ne sont pas linéairement séparables. Pour surmonter ce problème, nous avons incor-
poré des fonctions plus complexes dans CNN, au lieu de simples fonctions linéaires,
à différents niveaux. Ces fonctions de noyau non linéaires sont capables d’ajuster des
données d’entrée plus complexes que la fonction de noyau linéaire et donc d’être plus
discriminantes. Ces méthodes ont également l’avantage d’être moins consommatrices
de mémoire, même si elles sont plus difficiles à apprendre.

Au niveau de la mise en commun, nous avons d’abord proposé d’utiliser la mise
en commun bilinéaire et bilinéaire améliorée avec les CNN pour le FER. Ce cadre a été
évalué pour les ensembles de données FER et a montré que l’utilisation de la mise en
commun bilinéaire et améliorée avec les CNN peut améliorer la précision globale à près
de 3% pour le FER et obtenir des résultats de pointe. Nous avons également introduit
une couche de regroupement plus sensible à la distorsion du filtre basée sur les fonctions
du noyau. La mise en commun proposée réduit les dimensions de la carte d’entités tout
en gardant une trace de la majorité des informations transmises à la couche suivante
au lieu d’en ignorer une partie. Les expériences sur les bases de données FER démon-
trent les avantages d’une telle couche et montrent que notre modèle atteint des résultats
compétitifs par rapport aux approches de l’état de l’art. Au niveau des couches entière-
ment connectées, nous avons proposé une couche dense noyautée (KDL) qui capture les

iv

interactions d’entités d’ordre supérieur au lieu des relations linéaires conventionnelles.
Les résultats expérimentaux démontrent les avantages d’une telle couche et montrent
que notre modèle atteint des résultats compétitifs par rapport aux approches de l’état
de l’art sur les jeux de données FER.

Pour améliorer encore les performances des CNN, nous avons étudié l’utilisation
des fonctions du noyau aux différentes couches de ce dernier. Nous avons mené des
études approfondies sur leur impact sur les couches convolutionnelles, de mise en com-
mun et entièrement connectées. Nous remarquons que le noyau linéaire peut ne pas
être suffisamment efficace pour s’adapter aux distributions de données d’entrée, alors
que les noyaux d’ordre élevé sont sujets à un surajustement. Cela conduit à conclure
qu’un compromis entre complexité et performance doit être atteint. Nous avons utilisé
des combinaisons de nos méthodes précédemment proposées sur plusieurs ensembles
de données. Les expériences sur des ensembles de données de classification convention-
nels, c’est-à-dire MNIST, FASHION-MNIST et CIFAR-10, montrent que les techniques
proposées améliorent les performances du réseau par rapport à la convolution classique,
au regroupement et aux couches entièrement connectées. De plus, des expériences sur
la classification fine, c’est-à-dire les bases de données FER, ont démontré que le pouvoir
discriminatif du réseau est renforcé puisque les techniques proposées améliorent la prise
de conscience des légers détails visuels et permettent au réseau d’atteindre des résultats
de pointe.

L’étude approfondie décrite ci-dessus nous a amenés à conclure que ni les noyaux
linéaires ni non linéaires ne sont suffisants pour atteindre les meilleures performances
sans sur-ajustement. Ainsi, une combinaison de ces méthodes doit être utilisée pour
atteindre les meilleurs résultats. Par conséquent, nous avons proposé une méthode de
combinaison, basée sur le modèle CNN amélioré par noyau. Notre méthode améliore
les performances d’un CNN sans augmenter ni sa profondeur ni sa largeur. Il con-
siste à développer la fonction noyau linéaire, utilisée à différents niveaux d’un CNN.
L’expansion est effectuée en combinant plusieurs noyaux polynomiaux avec des de-
grés différents. Ce faisant, nous permettons au réseau d’apprendre automatiquement le
noyau approprié pour la tâche cible spécifique. Le réseau peut soit utiliser un noyau
spécifique, soit une combinaison de plusieurs noyaux. Dans ce dernier cas, nous aurons
un noyau sous la forme d’un noyau en série de Taylor. Cette fonction noyau est plus
sensible aux détails subtils que la fonction linéaire et est capable de mieux s’adapter
aux données d’entrée. La sensibilité aux détails visuels subtils est un facteur clé pour
une meilleure reconnaissance des expressions faciales. De plus, cette méthode utilise le
même nombre de paramètres qu’une couche de convolution ou qu’une couche dense.
Les expériences menées sur les jeux de données FER montrent que l’utilisation de notre
méthode permet au réseau de surpasser les CNN ordinaires.

mots-clés: reconnaissance des expressions faciales ; Reconnaissance fine; Fonction
noyau ; L’apprentissage en profondeur.

v

Abstract

Facial expression recognition (FER) is a research area that consists of classifying
human emotions through the expressions on their faces as one of seven basic emotions:
happiness, sadness, fear, disgust, anger, surprise, and neutral. FER finds applications in
different fields including security, intelligent human-computer interaction, robotics, and
clinical medicine for autism, depression, pain, and mental health problems. FER is a
very challenging problem due to the subtle differences that exist between its categories.
Indeed, the difference in facial expression categories relies on small subtle areas in the
facial images like the mouth, eyebrows. This type of problem is known, within the
computer vision community as Fine-Grained recognition. It consists of discriminating
categories that were considered previously as a single category and have only small
subtle visual differences (e.g. bird species, car models. . . etc.).

With the resurgence of deep learning techniques, the computer vision community
has witnessed an era of blossoming results. One of the most used deep learning tech-
niques are Convolutional Neural Networks (CNNs) which have been extremely success-
ful in that field. However, in fine-grained recognition CNNs do not perform as well as
the usual image classification. We believe this is due to the linear kernel function that
CNNs are built on. Linear kernel functions are less discriminative and fails to fit the in-
put data. Especially when the data is not linearly separable. To overcome this issue, we
have incorporated more complex functions in CNN, instead of simple linear functions,
at different levels. These non-linear kernel functions are able to fit more complex input
data than the linear kernel function and thus be more discriminative. These methods
also have the benefits of being less memory-consuming, even though they are harder to
train.

At the pooling level, we first proposed to use bilinear and improved bilinear pool-
ing with CNNs for FER. This framework has been evaluated FER datasets and has
shown that the use of bilinear and improved bilinear pooling with CNNs can en-
hance the overall accuracy to nearly 3% for FER and achieve state-of-the-art results.
We have also introduced a more filter distortion-aware pooling layer based on kernel
functions. The proposed pooling reduces the feature map dimensions while keeping
track of the majority of the information fed to the next layer instead of ignoring part
of them. The experiments on FER databases demonstrate the benefits of such a layer
and show that our model achieves competitive results with respect to state-of-the-art
approaches. At the fully connected layers level, we proposed a Kernelized Dense Layer
(KDL) which captures higher-order feature interactions instead of conventional linear re-
lations. The experimental results demonstrate the benefits of such a layer and show that
our model achieves competitive results with respect to the state-of-the-art approaches
on FER datasets.

To further improve CNNs performance, we investigated the usage of kernel func-
tions at the different layers of the latter. We carried out extensive studies of their impact

vi

on convolutional, pooling, and fully-connected layers. We notice that the linear kernel
may not be sufficiently effective to fit the input data distributions, whereas high or-
der kernels are prone to over-fitting. This leads to conclude that a trade-off between
complexity and performance should be reached. We have used combinations of our pre-
viously proposed methods on several datasets. The experiments on conventional classi-
fication datasets i.e. MNIST, FASHION-MNIST, and CIFAR-10, show that the proposed
techniques improve the performance of the network compared to classical convolution,
pooling, and fully connected layers. Moreover, experiments on fine-grained classification
i.e. FER databases demonstrated that the discriminative power of the network is boosted
since the proposed techniques improve the awareness to slight visual details and allow
the network to reach state-of-the-art results.

The extensive study described above led us to conclude that neither linear nor non-
linear kernels are sufficient enough to reach the best performance without over-fitting.
Thus a combination of these methods must be used to reach the best results. There-
fore, we proposed a combination method, based on kernel enhanced CNN model. Our
method improves the performance of a CNN without increasing neither its depth nor
its width. It consists of expanding the linear kernel function, used at different levels of
a CNN. The expansion is performed by combining multiple polynomial kernels with
different degrees. By doing so, we allow the network to automatically learn the suitable
kernel for the specific target task. The network can either use one specific kernel or a
combination of multiple kernels. In the latter case, we will have a kernel in the form
of a Taylor series kernel. This kernel function is more sensitive to subtle details than
the linear one and is able to better fit the input data. The sensitivity to subtle visual
details is a key factor for better facial expression recognition. Furthermore, this method
uses the same number of parameters as a convolution layer or a dense layer. The exper-
iments conducted on FER datasets show that the use of our method allows the network
to outperform ordinary CNNs.

keywords: Facial expression recognition; Fine-grained recognition; Kernel function;
Deep learning.

vii

Contents

Contents viii

List of Figures xi

List of Tables xiv

Introduction 1
0.1 Scope and Overview . 1

0.2 Outline of the Thesis . 2

1 Literature Review 5
1.1 Deep learning . 6

1.1.1 Deep learning networks . 7

1.1.2 Deep learning techniques and frameworks 11

1.1.3 Applications of deep learning . 16

1.2 Kernel methods: an overview . 18

1.2.1 Kernel construction . 19

1.2.2 The Kernel trick . 22

1.2.3 Kernel types . 24

1.3 Facial expression recognition . 25

1.3.1 Macro-expression recognition methods 27

1.3.2 Micro-expression recognition methods 29

1.3.3 Hybrid methods . 30

1.3.4 Facial expression recognition datasets 31

1.4 Experimental setting . 32

2 Improved Bilinear Model For Facial Expression Recognition 35
2.1 Introduction . 36

2.2 Related work . 38

2.3 Approach . 40

2.3.1 Bilinear CNN models . 40

2.3.2 Improved bilinear pooling . 42

2.4 Experiments . 43

2.4.1 Datasets . 43

viii

2.4.2 Model architecture and Training process 43

2.4.3 Ablation Study . 44

2.4.4 Comparison with the State-of-the-Art 45

2.5 Conclusions and perspectives . 47

3 Learnable pooling weights for facial expression recognition 48
3.1 Introduction . 49

3.2 Pooling method: an overview . 50

3.3 Proposed method . 53

3.3.1 Learnable pooling . 54

3.3.2 Learning . 55

3.4 Experiments . 56

3.4.1 Training process . 57

3.4.2 Ablation Study . 57

3.4.3 Comparison with the State-of-the-Art 64

3.4.4 Cross-dataset evaluation . 64

3.5 Conclusion . 65

4 Kernelized dense layers for facial expression recognition 66
4.1 Introduction . 67

4.2 Kernelized classification . 68

4.3 kernelized Dense Layer . 69

4.3.1 Datasets . 70

4.3.2 Training process . 71

4.4 Experiments . 71

4.4.1 Ablation Study . 72

4.4.2 Comparison with the State-of-the-Art 76

4.5 Conclusion . 76

5 Kernel function impact on convolutional neural networks 78
5.1 Introduction . 79

5.2 Study design . 80

5.2.1 Kervolution . 81

5.2.2 Learnable Weights Pooling . 83

5.2.3 Kernelized dense layer . 83

5.3 Experiments . 84

5.3.1 Datasets . 84

5.3.2 Training process . 84

5.3.3 Ablation Study . 85

5.3.4 Comparison with the State-of-the-Art 98

5.4 Discussion . 100

5.5 Conclusion . 101

ix

6 Expanding Convolutional Neural Network Kernel For Facial Ex-
pression Recognition 102
6.1 Introduction . 103

6.2 Method . 104

6.2.1 Convolution layer expansion . 105

6.2.2 Dense layer expansion . 106

6.3 Experiments . 107

6.3.1 Models architecture,training process and datasets 108

6.3.2 Ablation Study . 109

6.3.3 Comparison with state-of-the-art . 114

6.4 Conclusion . 115

Conclusion and Future Work 117

Our contributions 121

A Deep kernelized network for fine-grained recognition 122
A.1 Study design . 122

A.2 Experiments . 123

A.2.1 Datasets . 123

A.2.2 Models architecture and training process 124

A.2.3 Ablation Study . 125

A.3 Conclusion . 128

B Taylor series kernelized layer for fine-grained recognition 129
B.0.1 Datasets and experimental settings . 129

B.0.2 Performance Analysis . 130

B.1 Conclusion . 132

C List of kernels 133
C.1 List of kernels . 133

Bibliography 138

x

List of Figures

1.1 Convolution layer with a kernel of size 2 × 2. 8

1.2 The Max pooling method keeps only the maximum values over the chan-
nel axis. Average pooling work in a similar manner, yet instead of keeping
the maximum value it computes the average. 8

1.3 Macro-expression recognition methods based on landmarks. 28

1.4 Macro-expression recognition methods based on the models. 28

1.5 Upstream schema fusion method.. 30

1.6 Downstream schema fusion method. 31

1.7 An overview of the content of the datasets used. All these datasets cate-
gorize emotions into seven classes, namely Anger, Disgust, Fear, Happy,
Sad, Surprise and Neutral. 32

2.1 The global Max pooling method keeps only the maximum values over
the channel axis. Global average pooling work in a similar manner, yet
instead of keeping the maximum value it computes the average. 37

2.2 A bilinear model . 40

2.3 Bilinear CNN architecture. 42

2.4 Improved Bilinear CNN architecture. 42

2.5 Base model architecture (Model-1). 44

3.1 Our proposed network architecture for FER task. The CNN alternates
convolutional layers and specifically designed layers. It ends by a fully
softmax activation layer. Each convolutional layer is followed by batch
normalization and rectified linear unit activation. 54

3.2 The processing of the learnable weights pooling layer is similar to usual
pooling layer in the manner that it down-scales the spatial dimensions of
the input. Learnable weights pooling rely on learnable weights to encode
important relations between features through kernel function. 56

xi

3.3 Visualisation of the outputs from the pooling layers. These visualisations
are generated from two facial expressions (the face in the left, and the
face in the middle). Given an input image, we show the feature maps
after each of the five pooling layers used in our CNN. The first row shows
the feature maps after third polynomial kernel based pooling. The second
and the third rows present feature maps after the standard average and
max pooling respectively. 58

3.4 Visualizations of accuracy versus epoch plots. This figure reports the im-
pact of the learnable pooling on the convergence speed of the used CNN.
A comparison between the performance of the CNN using max pooling,
the third order polynomial, and the RBF pooling methods on the RAF-DB
dataset. 59

4.1 The basic unit of our proposed KDL is a kernel neuron. It applies a kernel
function on an input vector x = {x1, x2, . . . , xn} and a vector of weights
w = {w1, w2, . . . , wn}, adds a bias term and eventually applies an activa-
tion function. 70

4.2 Base model architecture: it is composed of five convolutional blocks. Each
block consists of a convolution, batch normalization and rectified linear
unit activation layers. Each of the five convolutional blocks is followed by
a dropout layer. Finally, two KDL are added on top of these convolution
blocks with respectively 128 units and ReLU activation and 7 units with
softmax activation. 71

4.3 Validation accuracy and validation loss on RAF-DB with the three kernel
configurations. 73

4.4 Validation accuracy and validation loss on ExpW with the three kernel
configurations. 74

4.5 Validation accuracy and validation loss on FER2013 with the three kernel
configurations. 75

5.1 The different configurations to replace each layer type of an ordinary
CNN with a higher order kernel layer, notably Kervolution, Learnable
weights pooling and kernelized dense layers KDL. 81

5.2 The three study configurations of kervolution layers, namely: (a) one ker-
volution layer at the beginning of the network, (b) one kervolution layer
at the end of the network and (c) an end-to-end kervolution network. . . 82

5.3 The three study configurations of Learnable weights pooling layers,
namely: (a) one Learnable weights pooling layer after the first convolu-
tion layer, (b) one Learnable weights pooling layer after the last convolu-
tion layer, and (c) an end-to-end Learnable weights pooling network. . . . 83

xii

5.4 Base model-1 architecture: it is composed of two blocks. Each one of these
blocks is composed of a convolution layer, a batch normalization layer, a
dropout layer and ReLU activation. At the end, two fully-connected layers
are added with respectively 320 units and ReLU activation and 10 units
with softmax activation. 85

5.5 Base model-2 architecture: it is composed of five blocks. Each one of these
block is composed of a convolution layer, a batch normalization layer, a
dropout layer and ReLU activation. At the end, two fully-connected layers
are added with respectively 128 units and ReLU activation and 10 or 7

units with softmax activation. 86

5.6 Convergence of full kervolution networks 87

5.7 Convergence of networks with one kervolution layer at the begining . . . 89

5.8 Convergence of networks with one kervolution layer at the end 91

5.9 Convergence of networks with learnable pooling 93

5.10 Networks convergence with learnable pooling at the beginning 94

5.11 Networks convergence with a single learnable pooling layer at the end . . 96

5.12 Networks convergence with KDL . 98

6.1 The proposed expansion method consists of applying higher degree (≥ 2)
polynomial kernels to the input, in addition to convolution. The result of
these kernels is concatenated over the channel axis. 106

6.2 In our experiments, we compare the results to an ordinary CNN (a) with
our proposed method over three different configurations. In the first case
(b), we replace convolution by the convolution expansion allover the net-
work followed by fully connected layers. In the second case (c), we replace
only the fully connected layers with our expansion method for these lay-
ers. Finally, we test our expansion methods allover the network (d). . . . 108

6.3 Expansion of dense layer proceeds in two steps. First, it computes multi-
ple polynomial KDL in addition to the linear layer. Then, it concatenates
the resulting vectors in a single expanded dense layer vector. The latter
will be finally fed to the next expanded dense layer or dense layer. Best
viewed in color. 109

A.1 The deep kernel networks configuration used for this study. 123

A.2 Model-1 architecture: it is composed of five Kervolutional blocks. Each
block consists of a Kervolutional layer, batch normalization layers. Each
block is followed by a max pooling layer and a dropout layer. Finally, two
fully-connected layers are added on top of these convolution blocks with
respectively 256 units and ReLU activation and an output softmax layer. . 125

B.1 Pre-processing steps for fine-grained datasets. 130

xiii

List of Tables

1.1 The Comparison of Different Deep Learning Frameworks. 14

1.2 An overview of the facial expression datasets. 34

2.1 Accuracy Rates of the proposed approach 45

2.2 Accuracy rate of the proposed approach and state of the art approach . . 46

3.1 Accuracy rate of our proposed approach for different pooling strategies.
In this table, Model-1 architecture is used with the indicated pooling method 60

3.2 Accuracy rate of our proposed approach for different pooling strategies.
In this table, ResNet-50 architecture is used with the indicated pooling
method . 61

3.3 Accuracy rate of our proposed approach for different pooling strategies.
In this table, VGG-16 architecture is used with the indicated pooling method 61

3.4 Accuracy rate of our proposed approach and state of the art approach . . 63

4.1 Accuracy Rates of the proposed approach 72

4.2 Accuracy rate of the proposed approach and state-of-the-art approach . . 76

5.1 Accuracy rates of full kervolution networks 86

5.2 Accuracy rates with a single kervolution layer at the begining 88

5.3 Accuracy rates with a single kervolution layer at the end 89

5.4 Accuracy rates of full learnable pooling network 92

5.5 Accuracy rates networks with a single learnable pooling layer at the be-
gining . 94

5.6 Accuracy rates networks with a single learnable pooling layer at the end 95

5.7 Accuracy rates of networks with KDL . 97

5.8 Accuracy rates of networks with best combinations 97

5.9 Accuracy rates of networks with best combinations 100

6.1 Results of convolution layer expansion method. 111

6.2 Results of dense layer method. 112

6.3 Results of dense layer as MLP. 112

6.4 Results of full expansion method. 113

6.5 Accuracy rates of the proposed approach and state-of-the-art approach . 115

xiv

A.1 Results of the different configurations on fine-grained datasets. 125

A.2 Results of the different configurations on FER datasets. 126

B.1 Accuracy rates of MTSKLN network compared to MLP. 131

B.2 Accuracy rates of CNNs with SKLN compared to CNNs with fully con-
nected layers. 131

xv

Introduction

0.1 Scope and Overview

In recent years, machine learning has become more and more popular in research and
has been incorporated in a large number of applications, including multimedia concept
retrieval, image classification, video recommendation, social network analysis, text min-
ing, and so forth. Among various machine-learning algorithms, “deep learning,” also
known as representation learning [Deng, 2014], is widely used in these applications. The
explosive growth and availability of data and the remarkable advancement in hardware
technologies have led to the emergence of newstudies in distributed and deep learning.
Deep learning, which has its roots from conventional neural networks, significantly out-
performs its predecessors. It utilizes graph technologies with transformations among
neurons to develop many-layered learning models. Many of the latest deep learning
techniques have been presented and have demonstrated promising results across dif-
ferent kinds of applications such as Natural Language Processing (NLP), visual data
processing, speech and audio processing, and many other well-known applications [Yan
u. a., 2017; 2015]

One of the most used deep learning techniques are Convolutional Neural Networks
(CNNs) which have been extremely successful in computer vision applications. They
showed to perform very competitive results while linear operations are used at different
layers of the network. Linear functions are efficient, particularly, when the original data
is linearly separable, which should have, in general, a high dimensional representation.
In such a case, the decision boundary can be representable as a linear combination of
the original features. It is worth noting that not every high dimensional problems are
linearly separable [Robert, 2014]. For instance, images may have a high dimensional
representation, but individual pixels are not very informative. Moreover, taking in con-
sideration only small regions of the image, dramatically reduces their dimension, which
makes linear functions less sensitive to subtle changes in input data. Researchers are
trying to overcome this problem by either increasing the network size or by employing
more complex functions. In the first case, researchers are continuously trying to enhance
CNNs by increasing their depth (number of layers) or width (size of the output of each
layer). Even though by doing so the performance of the network is effectively enhanced,
it can not be a longstanding solution. Indeed, these methods drastically increase the
number of weights and the network complexity. Therefore, the resulting models can
only be used on powerful devices. In the second case, the focus is more on computa-

1

Introduction

tion. Many researchers incorporated more complex kernel functions in CNN, instead of
simple linear functions, at different levels. These methods have the benefits of being less
memory consuming, even though they are harder to train.

Kernel methods are a class of algorithms for pattern analysis or recognition, whose
best known element is the support vector machine (SVM). The general task of pattern
analysis is to find and study general types of relations (such as clusters, rankings, princi-
pal components, correlations, classifications) in general types of data (such as sequences,
text documents, sets of points, vectors, images, graphs, etc). The intuition behind is to
make the underlying linear kernel operates on higher dimensional feature map so that
it becomes more discriminative. In other words, instead of running a linear classifier
directly on feature, they are first mapped to a higher-dimensional Reproducing Kernel
Hilbert Space (RKHS) using a positive definite kernel function. For certain kernel func-
tions, the RKHS can even be infinite dimensional. A linear classifier is then run on this
high-dimensional RKHS. Since the dimensionality of the feature vectors is dramatically
increased via this mapping, a linear classifier in the RKHS corresponds to a powerful
nonlinear classifier in the original feature vector space. Such a classifier is capable of
learning more complex patterns than a linear classifier directly operating on the feature
vectors.

This great success encouraged the computer vision community to tackle more chal-
lenging tasks in this field. One of these challenging tasks is the fine-grained recognition.
It consists of discriminating categories that were considered previously as a single cat-
egory and have only small subtle visual differences(e.g. bird species). Facial expression
recognition is considered one of most challenging fine-grained recognition problems.
Indeed, the difference in facial expression categories relies on small subtle areas in the
facial images like the mouth, eyebrows and the noise. To overcome this issue, facial ex-
pression recognition systems must be able to recognise this subtle differences efficiently.
We believe that incorporating non-linear kernel functions at different level of a CNN can
enhance the discriminative power of the later. Hence, it will be more accurate on image
classification task. Moreover, it can perform well on fine-grained visual classification
tasks like facial expression recognition.

0.2 Outline of the Thesis

Our thesis start with an introduction in which the scope of our study is briefly defined. It
also sheds light on the intuition behind the research path we have chosen, the different
techniques involved and purpose of choosing a specific case of study. After that, the
outline of the remaining chapters of the thesis is given.

Chapter 1 sheds lights on the important concept related to our field of study. First
of all, We detail this new emergent domain in artificial intelligence called Deep Learn-
ing, review the most important models, framework and its different application fields.
Second, we give a brief overview about kernel methods. This overview covers the math-

2

Introduction

ematical basics that the kernel methods rely on. It also explains the construction steps of
kernels, the important concept of the kernel trick, and enumerate some well known ker-
nel functions. Since our work is centred around the incorporation of kernel methods in
deep learning networks. Among the deep learning models, our research focused specif-
ically on convolutional neural networks (CNN). Therefore, the later is more detailed
than other models. Finally, our case of study: facial expression recognition is defined
and some important study in this field are also illustrated.

Chapter 2 presents some techniques that were used to improve the CNN perfor-
mance on fine-grained visual tasks. This accuracy enhancement brought in multiple vi-
sual tasks, shows that their is still room for improvement for CNNs on FER. In this chap-
ter, we propose to use bilinear and improved bilinear pooling with CNNs for FER. This
framework has been evaluated on three well known datasets, namely ExpW, FER2013

and RAF-DB. It has shown that the use of bilinear and improved bilinear pooling with
CNNs can enhance the overall accuracy to nearly 3% for FER and achieve state-of-the-art
results.

Chapter 3 introduce one of our major contribution. It consists of a more filter dis-
tortion aware pooling layer based on kernel functions. The proposed pooling reduces
the feature map dimensions while keeping track of the majority of the information fed
to the next layer instead of ignoring part of them. The experiments on RAF, FER2013

and ExpW databases demonstrate the benefits of such layer and show that our model
achieves competitive results with respect to the state-of-the-art approaches.

Chapter 4 also introduce an innovative work that is similar to the precedent chap-
ter, yet focuses on the fully connected layer of Convolutional Neural Networks. This
method is called Kernelized Dense Layer (KDL) which captures higher order feature
interactions instead of conventional linear relations. We apply this method to Facial Ex-
pression Recognition (FER) and evaluate its performance on RAF, FER2013 and ExpW
datasets. The experimental results demonstrate the benefits of such layer and show that
our model achieves competitive results with respect to the state-of-the-art approaches.

Chapter 5 investigates the usage of kernel functions at the different layers in a con-
volutional neural network. We carry out extensive studies of their impact on convo-
lutional, pooling and fully-connected layers. We notice that the linear kernel may not
be sufficiently effective to fit the input data distributions, whereas high order kernels
prone to over-fitting. This leads to conclude that a trade-off between complexity and
performance should be reached. We show how one can effectively leverage kernel func-
tions, by using our proposed pooling layers (chapter 3) and the proposed Kernelized
Dense Layers (chapter 4). The experiments on conventional classification datasets i.e.
MNIST, FASHION-MNIST and CIFAR-10, show that the proposed techniques improve
the performance of the network compared to classical convolution, pooling and fully
connected layers. Moreover, experiments on fine-grained classification i.e. facial expres-
sion databases, namely RAF-DB, FER2013 and ExpW demonstrate that the discrimina-

3

Introduction

tive power of the network is boosted, since the proposed techniques improve the aware-
ness to slight visual details and allows the network reaching state-of-the-art results.

Chapter 6 introduces a Facial Expression Recognition (FER) method, based on ker-
nel enhanced CNN model. Our method improves the performance of a CNN without
increasing its depth nor its width. It consists of expanding the linear kernel function,
used at different levels of a CNN. The expansion is performed by combining multiple
polynomial kernels with different degrees. By doing so, we allow the network to auto-
matically learn the suitable kernel for the specific target task. The network can either
uses one specific kernel or a combination of multiple kernels. In the latter case we will
have a kernel in the form of a Taylor series kernel. This kernel function is more sensitive
to subtle details than the linear one and is able to better fit the input data. The sensi-
tivity to subtle visual details is a key factor for a better facial expression recognition.
Furthermore, this method uses the same number of parameters as a convolution layer
or a dense layer. The experiments conducted on FER datasets show that the use of our
method allows the network to outperform ordinary CNNs.

Finally, a general conclusion concludes our thesis. It summarizes all the important
findings we reached in our different contributions. It also point out the different chal-
lenges we discovered trough our research and some of which we could not overcome.
Nevertheless, these non fixed challenges, consist the basics of our future work. The later
are illustrated at the end of the general conclusion.

4

1Literature Review

Contents

1.1 Deep learning . 6

1.1.1 Deep learning networks . 7

1.1.2 Deep learning techniques and frameworks 11

1.1.3 Applications of deep learning . 16

1.2 Kernel methods: an overview . 18

1.2.1 Kernel construction . 19

1.2.2 The Kernel trick . 22

1.2.3 Kernel types . 24

1.3 Facial expression recognition . 25

1.3.1 Macro-expression recognition methods . 27

1.3.2 Micro-expression recognition methods . 29

1.3.3 Hybrid methods . 30

1.3.4 Facial expression recognition datasets . 31

1.4 Experimental setting . 32

This chapter sheds lights on the important concept related to our field of study. First
of all, We detail this new emergent domain in artificial intelligence called deep

learning, review the most important models, framework and its different application
fields. Second, we give a brief overview about kernel methods. This overview covers the
mathematical basics that the kernel methods rely on. It also explains the construction
steps of kernels, the important concept of the kernel trick, and enumerate some well
known kernel functions. Since our work is centred around the incorporation of kernel
methods in deep learning networks. Among the deep learning models, our research
focused specifically on convolutional neural networks (CNN). Therefore, the later is
more detailed than other models. Finally, our case of study: facial expression recognition
is defined and some important study in this field are also illustrated.

5

Chapter 1. Literature Review

1.1 Deep learning

In recent years, machine learning has become more and more popular in research and
has been incorporated in a large number of applications, including multimedia concept
retrieval, image classification, video recommendation, social network analysis, text min-
ing, and so forth. Among various machine-learning algorithms, “deep learning,” also
known as representation learning [Deng, 2014], is widely used in these applications. The
explosive growth and availability of data and the remarkable advancement in hardware
technologies have led to the emergence of new studies in distributed and deep learning.
Deep learning, which has its roots from conventional neural networks, significantly out-
performs its predecessors. It utilizes graph technologies with transformations among
neurons to develop many-layered learning models. Many of the latest deep learning
techniques have been presented and have demonstrated promising results across dif-
ferent kinds of applications such as Natural Language Processing (NLP), visual data
processing, speech and audio processing, and many other well-known applications [Yan
u. a., 2017; 2015]

Traditionally, the efficiency of machine-learning algorithms highly relied on the
goodness of the representation of the input data. A bad data representation often leads
to lower performance compared to a good data representation. Therefore, feature engi-
neering has been an important research direction in machine learning for a long time,
which focuses on building features from raw data and has led to lots of research studies.
Furthermore, feature engineering is often very domain specific and requires significant
human effort. For example, in computer vision, different kinds of features have been
proposed and compared, including Histogram of Oriented Gradients (HOG) [Dalal und
Triggs, 2005], Scale Invariant Feature Transform (SIFT) [Lowe, 1999], and Bag of Words
(BoW). Once a new feature is proposed and performs well, it becomes a trend for years.
Similar situations have happened in other domains including speech recognition and
NLP.

Comparatively, deep learning algorithms perform feature extraction in an automated
way, which allows researchers to extract discriminative features with minimal domain
knowledge and human effort [Najafabadi u. a., 2015]. These algorithms include a layered
architecture of data representation, where the high-level features can be extracted from
the last layers of the networks while the low-level features are extracted from the lower
layers. These kinds of architectures were originally inspired by Artificial Intelligence
(AI) simulating its process of the key sensorial areas in the human brain. Our brains can
automatically extract data representation from different scenes. The input is the scene
information received from eyes, while the output is the classified objects. This highlights
the major advantage of deep learning—i.e., it mimics how the human brain works.

6

Chapter 1. Literature Review

1.1.1 Deep learning networks

In this section, several popular deep learning networks such as recurrent neural net-
work(RNN), convolutional neural network (CNN), and deep generative models are dis-
cussed. However, since deep learning has been growing very fast, many new networks
and new architectures appear every few months, which is out of the scope of this Thesis.

Convolutional Neural Network (CNN)

CNN is also a popular and widely used algorithm in deep learning [LeCun u. a., 1995].
It has been extensively applied in different applications such as NLP [Wang u. a., 2016],
speech processing [Dahl u. a., 2011], and computer vision [Krizhevsky u. a., 2012], to
name a few. Similar to the traditional neural networks, its structure is inspired by the
neurons in animal and human brains. Specifically, it simulates the visual cortex in a cat’s
brain containing a complex sequence of cells [Hubel und Wiesel, 1962]. As described
in [Goodfellow u. a., 2016], CNN has three main advantages, namely, parameter sharing,
sparse interactions, and equivalent representations. To fully utilize the twodimensional
structure of an input data (e.g., image signal), local connections and shared weights in
the network are utilized, instead of traditional fully connected networks. This process
results in very fewer parameters, which makes the network faster and easier to train.
This operation is similar to the one in the visual cortex cells. These cells are sensitive to
small sections of a scene rather than the whole scene. In other words, the cells operate
as local filters over the input and extract spatially local correlation existing in the data.

In typical CNNs, there are a number of convolutional layers followed by pooling
(subsampling) layers, and in the final stage layers, fully connected layers (identical to
Multilayer Perceptron (MLP)) are usually used. The layers in CNNs have the inputs x
arranged in three dimensions, W × H × C, wherem refers to the height and width of the
input, and C refers to the depth or the channel numbers (e.g., C = 3 for an RGB image).

1. Convolution layer: In each convolutional layer, there are several filters (kernels)
k of size n × n × q. Here, n should be smaller than the input image, but q can
be either smaller or the same size as C . As mentioned earlier, the filters are the
base of local connections that are convolved with the input and share the same
parameters (weight Wk and bias bk) to generate k feature maps (hk). Similar to
MLP, the convolutional layer computes a dot product between the weights and
its inputs (as illustrated in Equation 1.1), but the inputs are small regions of the
original input volume (Fig 1.1). Then, an activation function f or a nonlinearity is
applied to the output of the convolutional layers:

hk = f (Wk ∗ x + bk) (1.1)

7

Chapter 1. Literature Review

16 22 28

47

42 3837

5149

1 2 3 4

6

2 22 2
78 5

1 2 3 4

4 2

3 1

Input Kernel

Output

Figure 1.1 – Convolution layer with a kernel of size 2 × 2.

2. Pooling layer: Thereafter, in the subsampling layers, each feature map is down-
sampled to decrease the parameters in the network, speeds up the training pro-
cess, and hence controls overfitting. The pooling operation (e.g., average or max)
is done over a p × p (where p is the filter size) contiguous region for all feature
maps (Fig 1.2).

1 2 3 4

6

2 22 2
78 5

1 2 3 4

Max pooling

2 4

8 7

Figure 1.2 – The Max pooling method keeps only the maximum values over the channel axis. Average
pooling work in a similar manner, yet instead of keeping the maximum value it computes the average.

3. Fully connected layers: Finally, the final stage layers are usually fully connected

8

Chapter 1. Literature Review

as seen in the regular neural networks. These layers take previous low-level and
midlevel features and generate the high-level abstraction from the data. The last
layer can be used to generate the classification scores, where each score is the
probability of a certain class for a given instance.

In recent years, we have witnessed the birth of numerous CNNs. These networks
have gotten so deep that it has become extremely difficult to visualise the entire model.
We stop keeping track of them and treat them as black-box models. In the following we
will present some of the most popular CNN architecture.

1. LeNet: is the most popular CNN architecture it is also the first CNN model which
came in the year 1998 [LeCun u. a., 2015a]. LeNet was originally developed to
categorise handwritten digits from 0–9 of the MNIST Dataset. It is made up of
seven layers, each with its own set of trainable parameters. It accepts a 32 × 32

pixel picture, which is rather huge in comparison to the images in the data sets
used to train the network. RELU is the activation function that has been used.

2. AlexNet: Starting with an 11x11 kernel, Alexnet [Krizhevsky u. a., 2012] is built
up of 5 conv layers. For the three massive linear layers, it was the first design to
use max-pooling layers, ReLu activation functions, and dropout. The network was
used to classify images into 1000 different categories. The network is similar to
the LeNet Architecture, but it includes a lot more filters than the original LeNet,
allowing it to categorise a lot more objects. Furthermore, it deals with overfitting
by using "dropout" rather than regularisation. Two GPUs were used to train the
initial network. It contains eight layers, each with its own set of settings that may
be learned. RGB photos are used as input to the Model. Relu is the activation
function utilised in all levels. Two Dropout layers were employed. Softmax is the
activation function utilised in the output layer.

3. GoogleNet / Inception: The ILSVRC 2014 competition was won by the
GoogleNet [Szegedy u. a., 2015] or Inception Network, which had a top-5 er-
ror rate of 6.67 percent, which was virtually human level performance. Google
created the model, which incorporates an improved implementation of the origi-
nal LeNet design. This is based on the inception module concept. GoogLeNet is a
variation of the Inception Network, which is a 22-layer deep convolutional neural
network. GoogLeNet is now utilised for a variety of computer vision applications,
including face detection and identification, adversarial training, and so on. The
InceptionNet/GoogleLeNet design is made up of nine inception modules stacked
on top of each other, with max-pooling layers between them (to halve the spatial
dimensions). It is made up of 22 layers (27 with the pooling layers). After the last
inception module, it employs global average pooling.

4. ResNet: is a well-known deep learning model that was first introduced in [He
u. a., 2016] . ResNet is one of the most widely used and effective deep learning

9

Chapter 1. Literature Review

models to date. ResNets are made up of what’s known as a residual block. This is
built on the concept of "skip-connections" and uses a lot of batch-normalization to
let it train hundreds of layers successfully without sacrificing speed over time.

5. VGG: VGG [Simonyan und Zisserman, 2014] is a convolutional neural network
design that has been around for a long time. It was based on a study on how
to make such networks more dense. Small 3 x 3 filters are used in the network.
The network is otherwise defined by its simplicity, with simply pooling layers and
a fully linked layer as additional components. In comparison to AlexNet, VGG
was created with 19 layers deep to replicate the relationship between depth and
network representational capability. Small size filters can increase the performance
of CNNs. Based on these observations, VGG replaced the 11x11 and 5x5 filters with
a stack of 3x3 filters, demonstrating that the simultaneous placement of small size
(3x3) filters may provide the effect of a big size filter (5x5 and 7x7). By lowering
the number of parameters, the usage of tiny size filters gives an additional benefit
of low computing complexity. These discoveries ushered in a new research trend
at CNN, which is to work with lower size filters.

Recurrent Neural Network (RNN)

Another widely used and popular algorithm in deep learning, especially in NLP and
speech processing, is RNN [Cho u. a., 2014]. Unlike traditional neural networks, RNN
utilizes the sequential information in the network. This property is essential in many
applications where the embedded structure in the data sequence conveys useful knowl-
edge. For example, to understand a word in a sentence, it is necessary to know the
context. Therefore, an RNN can be seen as short-term memory units that include the
input layer x, hidden (state) layer s, and the output layer y.

One main issue of an RNN is its sensitivity to the vanishing and exploding gradi-
ents [Glorot und Bengio, 2010]. In other words, the gradients might decay or explode
exponentially due to the multiplications of lots of small or big derivatives during the
training. This sensitivity reduces over time, which means that the network forgets the
initial input with the entrance of the new ones. Therefore, Long Short-Term Memory
(LSTM) [Li und Wu, 2015] is utilized to handle this issue by providing memory blocks
on its recurrent connections. Each memory block includes memory cells that store the
temporal states of the network. Moreover, it includes gated units to control the informa-
tion flow. Furthermore, residual connections in very deep networks [He u. a., 2016] can
alleviate the vanishing gradient issue significantly.

Generative Adversarial Networks (GAN)

These are the class of generative models based on game theory [Goodfellow u. a., 2014].
Which do not explicitly model the data distribution but rather models the sample from

10

Chapter 1. Literature Review

it. Sampling is performed using a deep neural network. The neural network takes as
input random noise and transforms it into model distribution. Generative Adversarial
Network consists of two neural networks. One is called Generator and another one is
called Discriminator. This model is called adversarial because the generator is constantly
trying to fool the discriminator into believing that the input is from training data(real
data). While the discriminator always distinguishes between the two.

1. Generator: A neural network that takes as input, a random noise vector and trans-
form it into a model distribution.

2. Discriminator: It is a neural network that distinguishes between output data point
(Fake) and training data samples (Real). It acts like a classifier as if the input is real
or fake.

These two neural networks are always trying to work against each other. In these
setting the weights of generator learns to converts a random noise vector into a model
distribution. The generator takes a random noise vector from the latent space and out-
puts some samples. Now the discriminator takes input from training data (real) and
checks against the generated fake sample from generator. The training data should have
images from the similar kinds of tasks say paintings or faces etc. Upon taking both in-
puts and errors the function outputs probability that particular sample is real or fake.
This output is used to train the weights of the generator as well as the discriminator.
The other important part is formulation of error function or cost function in GANs. This
problem is formulated as MiniMax zero sum game.

1.1.2 Deep learning techniques and frameworks

Different deep learning algorithms help improve the learning performance, broaden the
scopes of applications, and simplify the calculation process. However, the extremely
long training time of the deep learning models remains a major problem for the re-
searchers. Furthermore, the classification accuracy can be drastically enhanced by in-
creasing the size of training data and model parameters. In order to accelerate the deep
learning processing, several advanced techniques are proposed in the literature. Deep
learning frameworks combine the implementation of modularized deep learning algo-
rithms, optimization techniques, distribution techniques, and support to infrastructures.
They are developed to simplify the implementation process and boost the system-level
development and research. In this section, some of these representative techniques and
frameworks are introduced.

Unsupervised and Transfer Learning

Contrary to the vast amount of work done in supervised deep learning, very few stud-
ies have addressed the unsupervised learning problem in deep learning. However, in

11

Chapter 1. Literature Review

recent years, the benefit of learning reusable features using unsupervised techniques
has shown promising results in different applications. In the last decade, the idea of
having a self-taught learning framework has been widely discussed in the literature [Le,
2013, Radford u. a., 2015, Sermanet u. a., 2013].

In practice, very few people have the luxury of accessing very high-speed GPUs
and powerful hardware to train a very deep network from scratch in a reasonable time.
Therefore, pretraining a deep network (e.g., CNN) on large-scale datasets (e.g., Ima-
geNet) is very common. This technique is also known as transfer learning [Learning,
2017], which can be done by using the pretrained networks as fixed feature extractors
(especially for small new datasets) or fine-tuning the weights of the pretrained model
(especially for large new datasets that are similar to the original one). In the latter, the
model should continue the learning to fine-tune the weights of all or some of the high-
level parts of the deep network. This approach can be considered as a semisupervised
learning, in which the labeled data is insufficient to train a whole deep network.

Online Learning

Usually, the network topologies and architectures in deep learning are time static (i.e.,
they are predefined before the learning starts) and are also time invariant [LeCun u. a.,
2015b]. This restriction on time complexity poses a serious challenge when the data
is streamed online. Online learning previously came into mainstream research [Choy
u. a., 2006], but only a modest advancement has been observed in online deep learning.
Conventionally, deep neural networks (DNN) are built upon the stochastic gradient
descent (SGD) approach in which the training samples are used individually to update
themodel parameters with a known label. The need is that rather than the sequential
processing of each sample, the updates should be applied as batch processing. One
approach was presented in [Scherer u. a., 2010] where the samples in each batch are
treated as Independent and Identically Distributed (IID). The batch processing approach
proportionally balances the computing resources and execution time.

Another challenge that stacks up on the issue of online learning is high-velocity
data with timevarying distributions. This challenge represents the retail and banking
data pipelines that hold tremendous business values. The current premise is that the
data is largely close in time to safely assume piecewise stationarity, thus having a simi-
lar distribution. This assumption characterizes data with a certain degree of correlation
and develops the models accordingly, as discussed in [Chien und Hsieh, 2013]. Unfor-
tunately, these nonstationary data streams are not IID and are often longitudinal data
streams. Moreover, online learning is often memory delimited, is harder to parallelize,
and requires a linear learning rate on each input sample. Developing methods that are
capable of online learning from non-IID data would be a big leap forward for big data
deep learning.

12

Chapter 1. Literature Review

Optimization Techniques in Deep Learning

Training a DNN is an optimization process, i.e., finding the parameters in the network
that minimize the loss function. In practice, the SGD method [Sutskever u. a., 2013] is a
fundamental algorithm applied to deep learning, which iteratively adjusts the parame-
ters based on the gradient for each training sample. The computational complexity of
SGD is lower than that of the original gradient descent method, in which the whole
dataset is considered every time the parameters are updated.

In the learning process, the updating speed is controlled by the hyperparameter
learning rate. Lower learning rates will eventually lead to an optimal state after a long
time, while higher learning rates decay the loss faster but may cause fluctuations during
the training [Pouyanfar und Chen, 2017]. In order to control the oscillation of SGD, the
idea of using momentum is introduced.

On the other hand, several techniques are proposed to determine the proper learning
rate. Primitively, weight decay and learning rate decay are introduced to adjust the
learning rate and accelerate the convergence [Loshchilov und Hutter, 2017, Zhang u. a.,
2018a, Xie u. a., 2020]. A weight decay works as a penalty coefficient in the cost function
to avoid overfitting, and a learning rate decay can reduce the learning rate dynamically
to improve the performance. Moreover, adapting the learning rate with respect to the
gradient of the previous stages is found helpful to avoid the fluctuation

Deep Learning in Distributed Systems

The efficiency of model training is limited to a single-machine system, and the dis-
tributed deep learning techniques have been developed to further accelerate the train-
ing process. There are two main approaches to train the model in a distributed system,
namely, data parallelism and model parallelism [Pouyanfar u. a., 2018]. For data paral-
lelism, the model is replicated to all the computational nodes and each model is trained
with the assigned subset of data. After a certain period of time, the weight update needs
to be synchronized among the nodes. Comparatively, for model parallelism, all the data
is processed with one model where each node is responsible for the partial estimation
of the parameters in the model.

Both data-parallel and model-parallel strategies have their own limitations. On one
hand, if data parallelism has too many training modules, it has to decrease the learning
rate to make the training procedure smooth. On the other hand, if model parallelism has
too many segmentations, the output from the nodes will increase sharply and reduce the
efficiency accordingly [Yadan u. a., 2013]. Generally speaking, the larger the dataset is,
the more beneficial it is to have data parallelism. The larger the deep learning model is,
the more suitable it is to have model parallelism. Besides, compared to data parallelism,
it is hard to hide the communication needed for synchronization in model parallelism
because only partial information is included in each node for the whole batch. Thus, it
is necessary to wait till the synchronization step finishes before moving forward to the

13

Chapter 1. Literature Review

next layer since the activities are unable to be processed with only partial information.
The two kinds of strategies can also be fused to a hybrid model as discussed in [Yadan
u. a., 2013].

Deep Learning Frameworks

Table 1.1 – The Comparison of Different Deep Learning Frameworks.

Framework License Core Language Interface support CNN & RNN support DBN support

Caffe [Jia u. a., 2014] BSD C++ Python & MATLAB Yes No

DeepLearning4j (DL4j) Apache 2.0 Java Java? Scala & Python Yes Yes

Torch [Collobert u. a., 2002] BSD C & Lua C/C++, Lua & Python Yes Yes

Neon Apache 2.0 Python Python Yes Yes

Theano [Team u. a., 2016] BSD Python Python Yes Yes

MXNet [Chen u. a., 2015] Apache 2.0 C++ C++, Python, R, Scala, Perl,Julia, etc Yes Yes

TensorFlow [Abadi u. a., 2016] Apache 2.0 C++ & Python Python, C/C++, Java & Go Yes Yes

CNTK [Yu u. a., 2014b] MIT C++ Python, C++ & BrainScript Yes Yes

Table 1.1 lists a smattering of popular deep learning frameworks for architecture
designs, such as Caffe [Jia u. a., 2014], DeepLearning4j (DL4j), Torch [Collobert u. a.,
2002], Neon, Theano [Team u. a., 2016], MXNet [Chen u. a., 2015], TensorFlow [Abadi
u. a., 2016], and Microsoft Cognitive Toolkit (CNTK) [Yu u. a., 2014b]. In Table 1.1, the
license, core language, supported interface language, and framework support of CNN,
RNN, and DBN are also listed.

It can be observed from Table 1.1 that C++ is usually used for implementation of
deep learning frameworks because it accelerates the speed of training. Since GPU is
significantly helpful to speed up the matrix computation, most of the aforementioned
frameworks also support GPU via the interface provided by CuDNN [Chetlur u. a.,
2014]. Meanwhile, Python has become the most common language for deep learning
architecture design since it can make the programming more efficient and easier by
simplifying the programming process. Also, distributed calculation becomes common
in some recently released frameworks such as TensorFlow,MXNet, and CNTK. The goal
is to further improve the calculation efficiency for deep learning. Moreover, TensorFlow
also includes support for the customized deep learning Application-Specific Integrated
Circuit (ASIC), called Tensor Processing Unit (TPU), to help increase the efficiency and
decrease the power consumption.

Caffe, implemented by Berkeley Vision and Learning Center, is one of the most
widely used frameworks [Jia u. a., 2014]. It supports the most commonly used layers
for both CNN and RNN but does not directly enable the use of DBN. Users of Caffe
design their architecture by declaring the structure of a computation graph, such as
convolutional layers. There are pretrained models available for a wide range of neu-
ral networks such as AlexNet [Krizhevsky u. a., 2012], GoogleNet [Szegedy u. a., 2015],
and ResNet [He u. a., 2016]. Furthermore, Caffe is a single-machine framework. In other

14

Chapter 1. Literature Review

words, it does not support multinode execution while the multi-GPU calculation is sup-
ported when there are external offerings like CaffeOnSpark by Yahoo that integrate
Caffe with a big data engine like Spark.

DL4j is the most popular framework implemented in Java, developed and main-
tained by Skymind since 2014. Cooperating with Hadoop and Spark, DL4j is capable of
distributed computation as well. However, this framework is reported to have a longer
training time for similar architectures benchmarked with other frameworks [Kovalev
u. a., 2016].

Torch was first released in 2002 and extended its deep learning feature in 2011 [Col-
lobert u. a., 2002]. Combined with Facebook’s deep learning CUDA library (fb-
cunn) [Vasilache u. a., 2014], Torch can operate model and data level parallel computa-
tion. Unlike other frameworks, Torch is built based on a dynamic graph representation
instead of a static graph. The dynamic graph allows the user to update the computa-
tional graph (i.e., to change the model structure) during runtime, while the static graph
uses certain functions to define the graphs in advance. Torch released its Python inter-
face, PyTorch, and the usage of this framework has greatly increased due to its flexibility.

Neon and Theano [Team u. a., 2016] are two frameworks developed in Python by
Intel and the University of Montreal, respectively. Both of them perform code optimiza-
tions in the system and kernel level. Therefore, their training speeds usually outperform
other frameworks. However, although only parallelism and multi-GPU are supported,
the multinode calculation is not designed in these frameworks.

MXNet [Chen u. a., 2015] supports several interfaces, including C++, Python, R,
Scala, Perl, MATLAB, Javascript, Go, and Julia. It supports both computation graph dec-
larations and imperative computation declarations for architecture design. MXNet not
only supports data and model parallelism but also follows parameter server schemes to
support distributed calculation as well. MXNet has the most comprehensive functional-
ity, but the performance is not optimized as much as other state-of-theart frameworks.

TensorFlow [Abadi u. a., 2016] is implemented by Google and provides a series of
internal functions to help implement any deep neural network based on the static com-
putational graph. Recently, Keras started to support Tensorflow via a high-level inter-
face and allowed users to design the architecture without worrying about the internal
design. The framework provides different levels of parallel and distributed operations
and well-designed fatal tolerance. The robustness of its design attracts a lot of users
and it has become one of the most popular deep learning frameworks since its release.
All our experiments are implemented in tensorflow 2.0. However, they can be run in
earlier versions of tensorflow, except for the improved bilinear models introduced in
chapter 2. This technique can be used with tensorflow 1.4 and later version. Since the
matrix logarithm function and the matrix square-root function are only implemented in
these version of tensorflow, unless they are built from scratch in version 1.3 or earlier.

CNTK [Yu u. a., 2014b], designed by Microsoft, has a specific high-level script lan-
guage, BrainScript, for neural network implementation. CNTK models the neural net-

15

Chapter 1. Literature Review

work as a directed graph. Each node in the graph represents an operation or a filter and
each edge refers to the data flow. Instead of the parameter server model, the Message
Passing Interface is applied for distributed calculation support.

1.1.3 Applications of deep learning

Nowadays, applications of deep learning include but are not limited to NLP (e.g., sen-
tence classification, translation, etc.), visual data processing (e.g., computer vision, mul-
timedia data analysis, etc.), speech and audio processing (e.g., enhancement, recogni-
tion, etc.), social network analysis, and healthcare. This section provides details for the
different techniques used for each application.

Visual Data Processing

Deep learning techniques have become the main parts of various state-of-the-art mul-
timedia systems and computer vision [Ha u. a., 2015]. More specifically, CNNs have
shown significant results in different real-world tasks, including image processing, ob-
ject detection, and video processing.

1. Image Classification: With the advent of deep learning, in combination with ro-
bust AI hardware and GPUs, outstanding performance can be achieved on image
classification tasks. Hence, deep learning brought great successes in the entire field
of image recognition, face recognition, and image classification algorithms achieve
above human-level performance and real-time object detection.

In comparison to the conventional computer vision approach in early image pro-
cessing around two decades ago, deep learning requires only the knowledge of
engineering of a machine learning tool. It doesn’t need expertise in particular ma-
chine vision areas to create handcrafted features.

2. Object Detection and Semantic Segmentation: Deep learning techniques play a
major role in the advancement of object detection in recent years. Before that, the
best object detection performance came from complex systems with several low-
level features (e.g., SIFT, HOG, etc.) and high-level contexts. However, with the
advent of new deep learning techniques, object detection has also reached a new
stage of advancement. These advances are driven by successful methods such as
region proposal and Region-based CNN (R-CNN) [Girshick u. a., 2014].

Semantic segmentation is the process of understanding an image in pixel level that
is necessary for real-world applications such as autonomous driving, robot vision,
and medical systems. Now the question is how to convert image classification to
semantic segmentation. In recent years, many research studies apply deep learning
techniques to classify an image pixel-wise. A deconvolutional network [Noh u. a.,
2015], for instance, includes deconvolution and unpooling modules to detect and
classify the segmentation regions.

16

Chapter 1. Literature Review

3. Video Processing: Video analytics has attracted considerable attention in the com-
puter vision community and is considered as a challenging task since it includes
both spatial and temporal information. In an early work, large-scale YouTube
videos containing 487 sport classes are used to train a CNN model [Karpathy
u. a., 2014]. The model includes a multiresolution architecture that utilizes the lo-
cal motion information in videos and includes context stream (for low-resolution
image modeling) and fovea stream (for high-resolution image processing) mod-
ules to classify videos. An event detection from sport videos using deep learning
is presented in [Tsagkatakis u. a., 2017]. In that work, both spatial and temporal
information are encoded using CNNs and feature fusion via regularized Autoen-
coders.

Natural language processing (NLP)

NLP is a series of algorithms and techniques that mainly focus on teaching comput-
ers to understand the human language. Some NLP tasks include document classifi-
cation, translation, paraphrase identification, text similarity, summarization, and ques-
tion answering. NLP development is challenging due to the complexity and ambiguous
structure of the human language. Moreover, natural language is highly context specific,
where literal meanings change based on the form of words, sarcasm, and domain speci-
ficity. Deep learning methods have recently been able to demonstrate several successful
attempts in achieving high accuracy in NLP tasks.

1. Sentiment Analysis: This branch of NLP deals with examining a text and classi-
fying the feeling or opinion of the writer. Most datasets for sentiment analysis are
labeled as either positive or negative, and neutral phrases are removed by subjec-
tivity classification methods.

2. Machine Translation: Deep learning has played an important role in the improve-
ments of traditional automatic translation methods.

3. Paraphrase Identification: Paraphrase identification is the process of analyzing
two sentences and projecting how similar they are based on their underlying hid-
den semantics. It is a key feature that is beneficial for several NLP jobs such as
plagiarism detection, answers to questions, context detection, summarization, and
domain identification.

4. Summarization: Automatic summarization can extract the most significant and
relevant information from large text documents. A well-represented summary ef-
fectively reduces the size of text without losing the most important information.
This can considerably decrease the time and computations required to analyze
large text-based datasets.

17

Chapter 1. Literature Review

5. Question Answering: An automatic question-and-answering system should be
able to interpret a natural language question and use reasoning to return an ap-
propriate reply.

Speech and Audio Processing

Audio processing is the process that operates directly on electrical or analog audio sig-
nals. It is necessary for speech recognition (or speech transcription), speech enhance-
ment, phone classification, and music classification. Speech processing is an active re-
search area because of its importance in perfect human-computer interaction. Besides
speech recognition tasks, many research studies focus on Speech Emotion Recognition
(SER) [El Ayadi u. a., 2011], Speech Enhancement (SE), and Seaker Separation (SS),as
follow:

1. Speech Emotion Recognition (SER): Emotions influence both the voice character-
istics and linguistic content of speech. SER relies heavily on the effectiveness of the
speech features used for classification.

2. Speech Enhancement (SE): Recently, speech enhancement has aimed to improve
the speech quality by using the deep learning algorithm.

3. Speech Separation (SS): can be viewed as a subtask of speech enhancement, which
aims to separate reverberant target speech from spatially diffuse background in-
terference [Zhang und Wang, 2017]. Different from a single-speaker environment,
speaker separation focuses on reconstructing the speech of each speaker from a
mixed speech with more than one speaker talking simultaneously

Other than all the aforementioned applications, deep learning algorithms are also
applied to information retrieval, robotics, transportation prediction, autonomous driv-
ing, biomedicine, disaster management, and so forth.

1.2 Kernel methods: an overview

Kernel methods are a class of algorithms for pattern analysis or recognition, whose best
known element is the support vector machine (SVM). The general task of pattern anal-
ysis is to find and study general types of relations (such as clusters, rankings, principal
components, correlations, classifications) in general types of data (such as sequences,
text documents, sets of points, vectors, images, graphs, etc).

The main characteristic of Kernel Methods, however, is their distinct approach to this
problem. Kernel methods map the data into higher dimensional spaces in the hope that
in this higher-dimensional space the data could become more easily separated or better
structured. There are also no constraints on the form of this mapping, which could even

18

Chapter 1. Literature Review

lead to infinite-dimensional spaces. This mapping function, however, hardly needs to be
computed because of a tool called the kernel trick.

Kernel functions must be continuous, symmetric, and most preferably should have a
positive (semi-) definite Gram matrix. Kernels which are said to satisfy the Mercer’s the-
orem are positive semi-definite, meaning their kernel matrices have only non-negative
Eigen values. The use of a positive definite kernel insures that the optimization problem
will be convex and solution will be unique.

However, many kernel functions which aren’t strictly positive definite also have been
shown to perform very well in practice. An example is the Sigmoid kernel, which, de-
spite its wide use, it is not positive semi-definite for certain values of its parameters.

1.2.1 Kernel construction

Every linearization function ϕ defines a kernel function via

K(x, y) = ⟨ϕ(x), ϕ(y)⟩ (1.2)

It is always possible to define a kernel by choosing a linearization function ϕ and
an inner product. The function k(., .) can be evaluated by explicitly mapping patterns
to the linearization space and calculating the inner product in the linearization space.
However, sometimes it is not necessary to actually compute ϕ. It is natural to ask under
what circumstances does a function k(., .) implement an inner product in a linearization
space and what does the corresponding linearization space and linearization function
look like. As it turns out there is a well-developed branch of mathematics that deals with
these questions: Functional analysis. In short the answer is that if k(., .) is a symmetric
and positive definite kernel then k implements an inner product in a linearization space.
Constructing a linearization space and an inner product for a positive definite kernel is
the purpose of this section.

First, the introduction of some notation is required. For a set of patterns x1 to xN

and a function k(., .) of two arguments the kernel matrix is the matrix that collects all
pairwise applications of k to the patterns. Let us denote this N × N matrix with K and
denote the entry in the ith row and jth column with kij then K with kij = (xi, xj) is called
the kernel matrix or Gram matrix for the patterns x1, . . . , xN . A real and symmetric
function k(., .), that is a function with the property k(x, y) = k(y, x), is called a positive
definite kernel if for all choices of N points the corresponding kernel matrix K is positive
semi-definite, that is for all N-dimensional vectors w:

wTKw ≥ 0 (1.3)

Note that for a matrix to be positive semi-definite we do not require that equality
only holds for w = 0 (as opposed to the definition of a positive definite matrix). As K
is only positive semi-definite it can have eigenvalues that are zero and does not have to

19

Chapter 1. Literature Review

be full rank. This definition of a positive definite kernel seems confusing because for a
kernel to be positive definite we require the corresponding kernel matrices to be positive
semi-definite. However, the definition we give is the usual definition used in machine
learning and therefore we will use it, too [Schölkopf u. a., 2002].

With the definition of a positive definite kernel in mind, it is possible to construct a
vector space, an inner product, and a linearization function such that the kernel condi-
tion (Eq 1.2) is fulfilled. In the following, these three steps are demonstrated in a purely
formal way.

Constructing a vector space

The vector space will be a space of functions constructed from the kernel. Let K(., x)
denote a function that is taken to be a function of its first argument with a fixed second
argument. The vector space is then defined as all functions of the form:

f (x) =
N

∑
i=1

wiK(x, xi) (1.4)

Each function in the space is a linear combination of kernel functions K(., xi) and can
be expressed by some set of N patterns x1; . . . ; xN with real coefficients w1; . . . ; wN . It is
important to realize that these N patterns could be different for different functions. All
functions are linear combinations of kernel functions given by k and because they are
linear combinations they define a vector space—functions can be added and multiplied
with scalars. When functions are added potentially all the kernel functions of the two
added functions need to be included in the expansion of the summed function but the
sum will still be in the vector space.

The expansion of f given in Eq. 1.4 might not be unique. There is no requirement in
the definition of f that the kernel functions need to be linearly independent. If they are
not independent then the same function can be expressed in different ways. The function
space is the span of the generating system of functions. If there is an infinite number
of potential independent kernel functions then the vector space is infinite dimensional,
even though each function f can be expressed by a finite sum.

Constructing an inner product

Next we will equip this vector space with an inner product. A possibly infinite dimen-
sional vector space with an inner product is called a pre-Hilbert space. If the limit points
of all Cauchy sequences are included in the space, the space is completed and turned
into Hilbert space proper. Completeness is, for example, important for defining unique
projections. We will ignore these technicalities here (but see [Schölkopf u. a., 2002]) and
simply note that Hilbert spaces can be thought of as the possibly infinite dimensional
generalization of Euclidean spaces. Take a function f with an expansion given by Eq. 1.4

20

Chapter 1. Literature Review

and let g(x) = ∑M
i=1 vik(x, yi) be another function from this space then we can define the

inner product between the two functions f and g as:

⟨ f , g⟩H =
N

∑
i=1

M

∑
j=1

wivjk(xi, yj) (1.5)

In order to distinguish the inner product in Hilbert space from the normal inner
product in Euclidean space we have added the little index H . We have to show that this
definition is indeed an inner product. First we have to show that it is well-defined. The
particular expansions of f and g that are used in the definition might not be unique, as
mentioned above. Fortunately, the definition (Eq. 1.5) does not depend on the particular
expansions of f and g that are used to calculate the inner product. To see this, let f (x) =

∑N′
i=1 w

′
ik(x, x

′
i) and g(x) = ∑M′

i=1 v
′
ik(x, y

′
i) be two new expansions of f and g that are

different from the ones used in the definition of the inner product (Eq. 1.5). They will,
however, result in the same inner product because

N

∑
i=1

M

∑
j=1

wivjk(xi, yj) =
N

∑
i=1

wig(xi)

=
N

∑
i=1

M′

∑
j=1

wiv
′
jk(x, y

′
j)

=
M′

∑
j=1

v
′
j f (y

′
j)

=
N′

∑
i=1

M′

∑
j=1

w
′
iv

′
jk(x

′
i, y

′
j)

(1.6)

Therefore, equation 1.5 is indeed well-defined. To show that it is an inner product
it also has to be symmetric, linear in its arguments and positive definite. As k is sym-
metric in both arguments the above definition is also symmetric. It is obviously linear
because of the linearity of the sum. Positive definiteness means that ⟨ f , f ⟩H ≥ 0 where
equality only holds for f = 0. Note that ⟨ f , f ⟩H = wTKw by definition. As the defining
property of a positive definite kernel is that the kernel matrix K is always positive semi-
definite (Eq. 1.3), it is immediately clear that ⟨ f , f ⟩H ≥ 0. Definiteness is a bit more
tricky but it can be proved that for all positive definite kernels definiteness of Eq. 1.5
holds [Schölkopf u. a., 2002]. Hence, all positive definite kernels can define an inner
product in the above way. This may also justify calling these kernels positive definite.

Constructing a linearization function

Each kernel function K(., x) with a fixed x is trivially contained in the vector space. It is
simply an expansion with only one kernel function and a weight of one. Therefore, the

21

Chapter 1. Literature Review

inner product (Eq. 1.5) of this function with a function f that has N coefficients wi and
kernel functions K(., xi) is

⟨K(., x), f ⟩H =
N

∑
i=1

wiK(x, xi) = f (x), (1.7)

by the definition of the function space (Eq. 1.4). This is a remarkable fact: The inner
product with the function K(., x) evaluates the function f at point x. Therefore K(., x) is
also called the representer of evaluation. Another remarkable property directly follows
from the definition of the inner product (Eq. 1.5)

⟨K(., x), K(., y)⟩H = K(x, y), (1.8)

because each of the two kernel functions has a simple expansion with just one sum-
mand and a coefficient of one. Due to these two properties the linear space of functions
as given in Eq. 1.4 with the above dot product ⟨K(., x), K(., y)⟩H is called a reproducing
kernel Hilbert space (RKHS) in functional analysis (if it is completed).

Now, a linearization function can be defined in the following way ϕ(x) := K(., x).
Because of the reproducing property the kernel condition K(x, y) = ⟨ϕ(x), ϕ(y)⟩H holds
for this linearization function. The linearization space is a space of functions over the x.
The linearization function that was constructed maps each point x in the input space to
a function K(., x) in the linearization space.

1.2.2 The Kernel trick

The Kernel trick is a very interesting and powerful tool. It is powerful because it provides
a bridge from linearity to non-linearity to any algorithm that can expressed solely on
terms of dot products between two vectors. It comes from the fact that, if we first map
our input data into a higher-dimensional space, a linear algorithm operating in this
space will behave non-linearly in the original input space.

The Kernel trick is really interesting because that mapping does not need to be ever
computed. If our algorithm can be expressed only in terms of a inner product between
two vectors, all we need is replace this inner product with the inner product from some
other suitable space. That is where resides the “trick”: wherever a dot product is used,
it is replaced with a Kernel function. The kernel function denotes an inner product in
feature space and is usually denoted as:

K(x, y) = ⟨ϕ(x), ϕ(y)⟩ (1.9)

Using the Kernel function, the algorithm can then be carried into a higher-dimension
space without explicitly mapping the input points into this space. This is highly de-
sirable, as sometimes our higher-dimensional feature space could even be infinite-
dimensional and thus unfeasible to compute. For two points x and y in R2.

22

Chapter 1. Literature Review

⟨ϕ(x), ϕ(y)⟩ = x2
1y2

1 + 2x1x2y1y2 + x2
2y2

2 = ⟨x, y⟩2 (1.10)

A more general result can be proved. For an n dimensional input space a class of
popular and flexible linearization functions is given by all monomials of degree d. A
monomial of degree d takes the product of d components of an input vector x. For in-
stance, for n = 5 the following are monomials of degree d = 3 : x3

1, x1x2x5: and x2
2x4. The

possible number of monomials is given by choosing d out of n with replacement. The or-
der does not matter because of the commutativity of the product. However, for simplic-
ity let us consider a linearization function that takes all nd possible ordered monomials.
Thus, x1x2x3 is a dimension in the new space but x2x3x1 would be another dimension.
For the linearization function ϕ′ : Rn 7→ Rnd

that computes all ordered monomials it
holds that:

⟨ϕ′(x), ϕ′(y)⟩ =
n

∑
i1=1

n

∑
i2=1

· · ·
n

∑
id=1

xi1 xi2 . . . xid yi1 yi2 . . . yid

=
n

∑
i1=1

xi1 yi1

n

∑
i2=1

xi2 yi2 · · ·
n

∑
id=1

xid yid

=

(
n

∑
i=1

xiyi

)d

= ⟨x, y⟩d

(1.11)

Calculating the inner product in the linearization space is the same as taking the
inner product in the original space and taking it to the power of d. Computationally, this
is an extremely attractive result. Remember that a high number of dimensions is needed
to make the linearization space sufficiently flexible to be useful. If calculated naively
the computational effort of the inner product in the linearization space scales with its
dimensions. However, this result shows that, in the case of a monomial linearization
function, it is not necessary to explicitly map the vectors x and y to the nd dimensional
linearization space to calculate the dot product of the two vectors in this space. It is
enough to calculate the standard inner product in input space and take it to the power
of d.

Intuitively, kernels can provide a way to efficiently calculate inner products in higher
dimensional linearization spaces. They also provide a convenient non-linear generaliza-
tion of inner products. With the help of a kernel, it is easy to build non-linear variants
of simple linear algorithms that are based on inner products. This is called the kernel
trick in the machine learning literature.

23

Chapter 1. Literature Review

1.2.3 Kernel types

There are several types of kernel functions that were proposed in the literature. Each of
these kernel functions is proposed for a specific purpose, for instance, text classification,
pattern recognition...etc. Listing all kernel functions is out of the scope of this thesis.
Below is a list of some kernel functions that we have used in our studies. Appendix C
lists some of the most common kernel function used in the literatue.

Linear Kernel

Linear Kernel is used when the data is Linearly separable, that is, it can be separated
using a single Line. It is one of the most common kernels to be used. It is mostly used
when there are a large number of features in a particular dataset. One of the examples
where there are a lot of features, is Text Classification, as each alphabet is a new feature.

The Linear kernel is the simplest kernel function. It is given by the inner product
<x,y> plus an optional constant c.

K(x, y) = xTy + c (1.12)

The advantages of using linear kernel are:

• Training with a linear kernel is faster than with any other Kernel.

• When training with a Linear Kernel, only the optimisation of the c regularisation
parameter is required. On the other hand, when training with other kernels, there
is a need to optimise other parameter as well, which means that performing a grid
search will usually take more time.

Polynomial Kernel

In machine learning, the polynomial kernel is a kernel function commonly used with
the kernelized models (such as SVMs), that represents the similarity of vectors (training
samples) in a feature space over polynomials of the original variables, allowing learning
of non-linear models. Intuitively, the polynomial kernel looks not only at the given fea-
tures of input samples to determine their similarity, but also combinations of these. Such
combinations are known as interaction features. The (implicit) feature space of a polyno-
mial kernel is equivalent to that of higher feature space, but without the combinatorial
blowup in the number of parameters to be learned.

The Polynomial kernel is a non-stationary kernel. Polynomial kernels are well suited
for problems where all the training data is normalized. Adjustable parameters are the
slope alpha, the constant term c and the polynomial degree d.

K(x, y) = (αxTy + c)d (1.13)

24

Chapter 1. Literature Review

Gaussian Kernel

The Gaussian kernel is an example of radial basis function kernel.

K(x, y) = exp
(
−∥x − w∥2

2σ2

)
(1.14)

The adjustable parameter sigma plays a major role in the performance of the kernel,
and should be carefully tuned to the problem at hand. If overestimated, the exponential
will behave almost linearly and the higher-dimensional projection will start to lose its
non-linear power. In the other hand, if underestimated, the function will lack regular-
ization and the decision boundary will be highly sensitive to noise in training data.

1.3 Facial expression recognition

Communication between human beings can be of two kinds: verbal (audible) through
the voice, or non-verbal through movements, body posture, gestures and facial expres-
sions. According to [Dubey und Singh, 2016], Mehrabian [Mehrabian, 2008] states that
the first form of communication can only contribute with 7% in the transmission of the
message, while 38% of communication is done through vocal parts in the form of into-
nation. This means that the remaining 55% is done through non-verbal ways of commu-
nication, mainly through facial expressions. Therefore, the ability of recognizing facial
expressions is key for a better communication. Facial expressions are either viewed as di-
mensions (continuous representation) or viewed as categorical groups with well-defined
boundaries (discrete representation). Continuous representation uses dimensional space
such as arousal and valence to describe emotion. While the discrete representation cat-
egorizes facial expressions through seven basic emotions, namely happiness, sadness,
surprise, fear, disgust, anger, and neutral. These expressions are identified according to
the movement of the facial muscles, mainly forming the parts of the eyebrows, mouth,
nose and eyes. Ekman [Ekman und Friesen, 1971] proposed a purely objective system for
coding facial expressions by quantifying muscle movement. This system, called FACS
(facial action coding system). is made up of 44 action units. Each unit action (AU) cor-
responds to a movement of the facial muscles. The intensity of the muscle contraction
is also coded on five levels. The basic emotions defined by Ekman were described by
prototypes specific to each expression of emotion. However, a big problem with this
system is finding professionals who judge AU and its expression, which can be difficult
and expensive. The recognition of facial expressions is useful in various fields such as
human machine interaction, games, alert systems and monitoring of patients, especially
those who find it difficult to speak like disabled persons and autistic, to detect feel-
ings of pain for example. The automatic recognition of facial expressions is not a recent
field of research, in fact, the first research in this field dates back to a little over twenty
years. However, new advances have been made in the last five years in the field of object

25

Chapter 1. Literature Review

recognition in general, have further revived research in the field of facial expressions
recognition.

In the early days of facial expression recognition research, researcher would develop
a small set of images with a limited number of people, which they used as a database
for learning and testing. This method has a strong chance of leading to over-learning.
At the end of the 1990s, some researchers began to develop fairly large and varied
databases. The facial expression databases are characterized by the number of subjects
photographed, the environment implemented for this purpose, the recording media as
well as the annotation. Subjects can be of different sex, age and origin. The environment
implemented varies according to the equipment used for taking and recording images
and videos: the number of cameras (in color or in grayscale) and flash used, their ar-
rangement (front or profile), the resolution used, the number of images per second for
the videos and the fact that the expressions are spontaneous or posed. The annotation
is either automatic, semi-automatic or completely manual. We have distinguished two
types of databases. The first type of databases is implemented in laboratories with spe-
cific subjects and controlled conditions, for instance [Kanade u. a., 2000, Zhao u. a., 2011,
Bacivarov, 2009, Yin u. a., 2006, Sim u. a., 2002, Gross u. a., 2010, Pantic u. a., 2005, Lyons
u. a., 1998, McKeown u. a., 2011]. The second type of databases is made up of images col-
lected from the Internet, for example [Mollahosseini u. a., 2017, Dhall u. a., 2012; 2011,
Fabian Benitez-Quiroz u. a., 2016, Li u. a., 2017, Zhang u. a., 2018b, Goodfellow u. a.,
2013]. The former allow to produce images of good quality and with a better annotation
but are of small size. Whereas the latter allow to have a gigantic number of data but on
the contrary are of poorer quality.

The facial expression recognition system, like almost any conventional image recog-
nition system, consists of three major steps: pre-processing, feature extraction, and clas-
sification. The pre-processing step is a very important step in the process of recognizing
facial expressions. In fact, this step consists, first of all, in acquiring the images that it is
desired to process, either in static form or in the form of image sequences. These images
are often grayscale, although color images can convey more information about emotions
such as blushing. Then, it is necessary to eliminate the zones of the image which are not
of interest while keeping the parts which will be used in a subsequent processing and
to normalize the resulting image which makes it possible to obtain a uniform size and
an alignment. correct image. The feature extraction step extracts the significant shapes
from the image, which constitute the parts of the face which are considered to be de-
termining in the expression recognition step. Compared to the original image, feature
extraction dramatically reduces the image information, which provides an advantage
in terms of storage and processing. The classification of expressions and the method of
extracting the characteristics of the expression are closely related. The categorization of
expressions is performed by a classifier. The entry into the classifier is a set of features
extracted from the facial region in the previous step. The set of characteristics is formed
to describe the expression of the face. Classification requires supervised learning from

26

Chapter 1. Literature Review

labeled data. After training is complete, the classifier can recognize the input images by
assigning them a particular class label or point in the continuous representation space.

The classic facial expression recognition approach has been widely used over the
past two decades with different methods at all levels giving varying results. However,
in the last five years a new approach, Deep Learning, has been used with impressive re-
sults. Deep Learning is a set of end-to-end methods, enabling a machine to be supplied
with raw data and automatically discovering the representations necessary for detection
or classification, with several levels of representation, obtained by composing simple
modules. One of the most used deep learning techniques are Convolutional Neural Net-
works (CNNs) which have been extremely successful in computer vision applications.
This great success encouraged the computer vision community to tackle more challeng-
ing tasks in this field. One of these challenging tasks is the fine-grained recognition. It
consists of discriminating categories that were considered previously as a single cate-
gory and have only small subtle visual differences(e.g. bird species). Facial expression
recognition is considered one of most challenging fine-grained recognition problems.
Indeed, the difference in facial expression categories relies on small subtle areas in the
facial images like the mouth, eyebrows and the noise. To overcome this issue, facial ex-
pression recognition systems must be able to recognise this subtle differences efficiently.
Researchers are trying to overcome this problem by either increasing the network size
or by employing more complex functions. In the first case, researchers are continuously
trying to enhance CNNs by increasing their depth (number of layers) or width (size
of the output of each layer). Even though by doing so the performance of the network
is effectively enhanced, it can not be a longstanding solution. Indeed, these methods
drastically increase the number of weights and the network complexity. Therefore, the
resulting models can only be used on powerful devices. In the second case, the focus is
more on computation. Many researchers incorporated more complex functions in CNN,
instead of simple linear functions, at different levels. These methods have the benefits of
being less memory consuming, even though they are harder to train.

Facial expression recognition methods are divided into two categories: Macro-
expression recognition methods and Micro-expression recognition methods.

1.3.1 Macro-expression recognition methods

These methods are macroscopic methods that measure the displacements of certain parts
of the face such as the eyebrows or the corners of the mouth. In other words, they
consist in calculating the geometric distance between the facial action units extracted
by searching and tracking crucial points in the facial region. Examples of such algo-
rithms are Active Shape Model (ASM) [Cootes u. a., 1995] and Active Appearance Model
(AAM) [Cootes u. a., 2001, Pantic und Rothkrantz, 2000] and Descriptor Scale Invariant
Transformation. According to [Gharsalli, 2016] there are two kinds of macro-expression

27

Chapter 1. Literature Review

recognition methods: macro-expression recognition methods based on landmarks and
macro-expression recognition methods based on models.

1. Macro-expression recognition methods based on landmarks: landmarks describe
the expressions either by their displacements, or by the variation of the distances
between them. The displacement of the characteristic points requires two steps,
namely the extraction of their positions and their monitoring (Figure 1.3).

Figure 1.3 – Macro-expression recognition methods based on landmarks.

2. Macro-expression recognition methods based on the models: patterns for detect-
ing muscle deformities and changes in feature states are used for facial expression
recognition. The definition and initialization of these models is usually done on a
neutral face. They often encode the movement of muscles either by moving nodes
placed on facial features, or by transforming it into 3D information, which pro-
vides information on the intensity of the movement (Figure 1.4). The effectiveness
of these methods, however, becomes critical when it comes to weak muscle move-
ment.

Figure 1.4 – Macro-expression recognition methods based on the models.

28

Chapter 1. Literature Review

1.3.2 Micro-expression recognition methods

These microscopic methods describe the change in face texture according to pixel prop-
erties, when a particular action is performed, such as bumps, contour, wrinkles, the
region around the mouth and eyes. With the advance made in computing with GPUs
and the availability of the later to a larger number of researchers, the computer vision
community started focusing on these microscopic methods rather than the macroscopic
methods. These microscopic methods allow the use of number of features that were ne-
glected in the macroscopic methods like bumps, contour, wrinkles and blush, especialy
with RGB images. Micro-expression recognition methods may be expressed differently
in different papers. Sometimes it is refered to as fine-grained expression recognition. It
consists of discriminating categories that were considered previously as a single cate-
gory and have only small subtle visual differences(e.g. bird species). Facial expression
recognition is considered one of most challenging fine-grained recognition problems.
Indeed, the difference in facial expression categories relies on small subtle areas in the
facial images like the mouth, eyebrows and the noise. We prefer to use this term as it
is more general than FER, since the techniques used in this field can be used in a wide
range of computer vision tasks.

In [Bai u. a., 2021], the author investigates the effects of using video motion mag-
nification methods based on amplitude and phase, respectively, to amplify small facial
movements. They hypothesise that this approach will assist in the micro-expression
recognition task. To this end, they apply the pre-trained VGGFace2 model with its ex-
cellent facial feature capturing ability to transfer learn the magnified micro-expression
movement, then encode the spatial information and decode the spatial and temporal
information by Bi-LSTM model. Moreover, Grad-CAM is utilised to map the model and
visually explain the operating mechanism of the spatio-temporal network.

In [Saeed, 2021], the authors investigate the utility of micro-expressions as a soft bio-
metric for person recognition. The proposed system is based on the fusion of traditional
facial features that model the facial appearance with soft biometric features that model
the micro-expressions in an image sequence. They tested a texture-based traditional
feature extraction technique, two motion-based soft biometric techniques, and several
fusion methods at feature, rank, and decision level.

In [Li u. a., 2020] paper firstly proposes a new method to detect the apex frame by
estimating pixel-level change rates in the frequency domain. With frequency informa-
tion, it performs more effectively on apex frame spotting than the currently existing
apex frame spotting methods based on the spatio-temporal change information. Sec-
ondly, with the apex frame, this paper proposes a joint feature learning architecture
coupling local and global information to recognize micro-expressions, because not all
regions make the same contribution to micro-expressions recognition and some regions
do not even contain any emotional information. More specifically, the proposed model
involves the local information learned from the facial regions contributing major emo-

29

Chapter 1. Literature Review

tion information, and the global information learned from the whole face. Leverag-
ing the local and global information enables the model to learn discriminative micro-
expressions representations and suppress the negative influence of unrelated regions to
micro-expressions.

1.3.3 Hybrid methods

Micro-expression recognition methods are often criticized for a lack of movement rep-
resentation of facial features. Macro-expression recognition methods, representing only
the shape and geometric movements neglect information such as transient wrinkles
which can be essential characteristics for the differentiation between emotions. There is,
however, a combination of the two methods. The latter can be performed either directly
with models presenting the two pieces of information such as the Active Appearance
Model (AAM).

A second alternative is applied to describe both the macro and micro-expression
recognition. It consists in extracting each piece of information individually by a ded-
icated method for this purpose and then applying a fusion. In general two merging
schemes are used, namely an upstream scheme and a downstream scheme [Gharsalli,
2016].

1. Upstream schema: it combines the descriptors of different types of information
before going to the classification stage. In this case a pre-processing is applied
to the two pieces of information in order to be able to merge them into the same
vector. The latter is then used as input data by the classification method (Figure 1.5)

 Micro-expression
recognition methods

 Macro-expression
recognition methods

Fusion Emotion Classification

Figure 1.5 – Upstream schema fusion method..

2. Downstream schema: it combines the descriptors after the classification step. For
each type of descriptors extracted a classification is applied. The decisions from
the classification step are then combined into a merging entity (Figure 1.6)

30

Chapter 1. Literature Review

 Micro-expression
recognition methods

 Macro-expression
recognition methods

Fusion Emotion

Classification

Classification

Figure 1.6 – Downstream schema fusion method.

1.3.4 Facial expression recognition datasets

In the early days of facial expression recognition research, each researcher developed
a small set of images of a limited number of people as a database for training and
testing. This method has a strong chance of leading to over-fitting, in addition to the
impossibility of comparing the work carried out because they are tested on different
proprietary bases. At the end of the 90s, some researchers began to develop fairly large
and varied databases, accessible to researchers and the general public, which can be
used as a "benchmark". This allowed the researchers to compare the different techniques
used.

The databases of facial expressions are characterized by the number of subjects pho-
tographed, the environment implemented for this purpose, the recording medium and
the annotation. The subjects can be of different sex, age and origins. The environment
implemented varies according to the equipment used for taking and recording images
and videos: the number of cameras (in color or grayscale) and cameras used, their ar-
rangement (frontal or profile), the resolution used, the number of frames per second for
the videos and whether the images they contain are spontaneous or posed. Annotation
is either automatic, semi-automatic or completely manual.

We have distinguished two types of databases: databases implemented in laborato-
ries with specific subjects and conditions and in-the wild databases. The first allow to
produce images of good quality and with better annotation but are of restricted size.
While the latest allow to have a gigantic amount of data but on the contrary are of lower
quality.

For our experiments, we have used three well-known in the wild FER datasets,
namely RAF-DB, ExpW and FER2013. Below is a brief description of these datasets and
an illustration (Fig. 1.7) of their content. Some other datasets are described in table 1.2.

• The RAF-DB [Li u. a., 2017] stands for the Real-world Affective Face DataBase. It
is a real-world dataset that contains 29,672 highly diverse facial images, down-

31

Chapter 1. Literature Review

RAF-DB

ExpW

Figure 1.7 – An overview of the content of the datasets used. All these datasets categorize emotions into
seven classes, namely Anger, Disgust, Fear, Happy, Sad, Surprise and Neutral.

loaded from the Internet. With manually crowd-sourced annotation and reliable
estimation, seven basic and eleven compound emotion labels are provided for the
samples. This dataset is divided in training and validation subsets.

• The ExpW [Zhang u. a., 2018b] stands for the EXPression in-the-Wild dataset. It
contains 91,793 facial images downloaded using Google image search. Each of
the face images, was manually annotated as one of the seven basic expression
categories.

• The FER2013 database was first introduced during the ICML 2013 Challenges in
Representation Learning [Goodfellow u. a., 2013]. This database contains 28,709

training images, 3,589 validation images and 3,589 test images with seven expres-
sion labels: fear, happiness, anger, disgust, surprise, sadness and neutral.

1.4 Experimental setting

In this section we will describe the experimental setting that we have used in all our
experiments. We will first describe the hardware configuration, then the software setting
and finally the metrics we have used to evaluate our models.

1. Hardware configuration: For our experiments, we have used the following hard-
ware configuration:

• CPU: Intel Core i7-8700K Desktop Processor 6 Cores up to 4.7GHz Turbo
Unlocked LGA1151 300 Series 95W.

• GPU: MSI GAMING GeForce GTX 1060 6GB GDRR5 192-bit HDCP Support
DirectX 12 Dual TORX 2.0 Fan VR Ready Graphics Card (GTX 1060 GAMING
X 6G).

32

Chapter 1. Literature Review

• RAM: 16 Gb of memory.

2. Software configuration: All our experiments are implemented in tensorflow 2.0.
However, they can be run in earlier versions of tensorflow, except for the improved
bilinear models introduced in chapter 2. This technique can be used with tensor-
flow 1.4 and later version. Since the matrix logarithm function and the matrix
square-root function are only implemented in these version of tensorflow, unless
they are built from scratch in version 1.3 or earlier.

3. Metric: For all our experiments, we used the accuracy rate. Accuracy is one of the
most popular metrics in multi-class classification and it is directly computed from
the confusion matrix [Grandini u. a., 2020].

Accuracy =
TP + TN

TP + TN + FP + FN
(1.15)

The formula of the Accuracy considers the sum of True Positive and True Negative
elements at the numerator and the sum of all the entries of the confusion matrix
at the denominator. True Positives and True Negatives are the elements correctly
classified by the model and they are on the main diagonal of the confusion matrix,
while the denominator also considers all the elements out of the main diagonal
that have been incorrectly classified by the model.

33

Chapter 1. Literature Review

Table 1.2 – An overview of the facial expression datasets.

Database Samples Subject Collection
condition

Elicitation
method

Expression distri-
bution

CK+ [32] 593 image se-
quences

123 Lab P & S 7 BE + contempt

MMI [35] 740 images and
2,900 videos

25 Lab P 7 BE

JAFFE [36] 213 images 10 Lab P 7 BE
TFD [37] 112,234 images N/A Lab P 7 BE
FER-2013

[21]
35,887 images N/A Web P & S 7 BE

AFEW 7.0
[23]

1,809 videos N/A Movie P & S 7 BE

SFEW 2.0
[22]

1,766 images N/A Movie P & S 7 BE

Multi-PIE
[38]

755,370 images 337 Lab P Smile, surprised,
squint, disgust,
scream and
neutral

BU-3DFE
[39]

2,500 3D images 100 Lab P 7 BE

BU-4DFE
[40]

606 3D sequences 101 Lab P 7 BE

Oulu-CASIA
[33]

2,880 image se-
quences

80 Lab P six BE without
neutral

RaFD [41] 1,608 images 67 Lab P 7 BE + contempt
KDEF [42] 4,900 images 70 Lab P 7 BE
EmotioNet
[43]

1,000,000 images N/A Internet P & S 23 BE or CE

RAF-DB
[34], [44]

29672 images N/A Internet P & S 7 BE and 12 CE

AffectNet
[45]

450,000 images
(labeled)

N/A Internet P & S 7 BE

ExpW [46] 91,793 images N/A Internet P & S 7 BE
4DFAB [47] 1.8 million 3D

faces
180 Lab P & S 7 BE

P = posed; S = spontaneous; BE = basic expressions; CE = compound expressions

34

2Improved Bilinear Model For

Facial Expression Recognition

Contents

2.1 Introduction . 36

2.2 Related work . 38

2.3 Approach . 40

2.3.1 Bilinear CNN models . 40

2.3.2 Improved bilinear pooling . 42

2.4 Experiments . 43

2.4.1 Datasets . 43

2.4.2 Model architecture and Training process 43

2.4.3 Ablation Study . 44

2.4.4 Comparison with the State-of-the-Art . 45

2.5 Conclusions and perspectives . 47

Even though convolutional neural networks (CNN) achieved impressive results in
several computer vision tasks, they still do not perform as well in FER. Many

techniques, like bilinear pooling and improved bilinear pooling, have been proposed
to improve the CNN performance on similar problems. The accuracy enhancement they
brought in multiple visual tasks, shows that their is still room for improvement for
CNNs on FER. In this chapter, we propose to use bilinear and improved bilinear pooling
with CNNs for FER. This framework has been evaluated on three well known datasets,
namely ExpW, FER2013 and RAF-DB. It has shown that the use of bilinear and improved
bilinear pooling with CNNs can enhance the overall accuracy to nearly 3% for FER and
achieve state-of-the-art results.

35

Chapter 2. Improved Bilinear Model For Facial Expression Recognition

2.1 Introduction

A CNN is mainly a stack of three different types of layers: convolution layers, pooling
layers and fully-connected layers. Each of these types of layers a perform specific task.
Convolution layers are the core building block of a CNN leveraging the fact that an
input image is composed of small details, or features, and create a mechanism for an-
alyzing each feature in isolation, which makes a decision about the image as a whole.
Pooling layers, on the other hand, are used for the gradual spatial down-sampling of
the feature map. This results in reducing the number of parameters and thus decreases
both the consumption of the memory and the complexity of computing. In addition,
pooling layers widen the receptive field size of the intermediate neurons which allow
the latter to receive data from a larger area of the image. These two layers are usually
used in alternation until getting the most size-effective representative feature which is
finally fed into a fully connected neural network in order to take a final classification
decision. However, the fully connected layers are prone to overfitting, thus hampering
the generalization ability of the overall network. Many techniques were proposed in the
literature to overcome this problem. For instance, Dropout is proposed by [Hinton u. a.,
2012] as a regularizer which randomly sets half of the activations to the fully connected
layers to zero during training. It has improved the generalization ability and largely pre-
vents overfitting. Other methods consist of applying pooling before the fully connected
layers.

There are two groups of pooling generally used in CNNs. The first one is local pool-
ing, where the pooling is performed from small local regions (e.g., 2× 2) to downsample
the feature maps. The second one is global pooling, which is performed from each of
the entire feature map to get a scalar value of a feature vector for image representa-
tion. This representation is then passed to the fully connected layers for classification. In
this chapter, the focus is on later form of pooling, while the former form of pooling is
discussed in the next chapter.

The most used global pooling methods in CNNs are global average pooling and
global max pooling. Both of these methods take as input a tensor of size (H × W × C),
where H is the height of the tensor, W its width and C its channel depth. This input
tensor is downsized into an output vector of size C (i.e. it keeps a single value for each
feature map). The difference between global max and global average pooling is that the
former keeps only the maximum values over the channel axis while the later computes
the average value. Figure 2.1 shows the process of global Max pooling method. Global
average pooling work in a similar manner, yet instead of keeping the maximum value
it computes the average. Both of these methods present some weakness. For example,
global Max pooling only keeps the largest input values assuming that the rest of values
are not representative and do not bring relevant information. This assumption however
is not always true, especially in the last layers of the network where even the small
values represent a very relevant information. Therefore global max pooling dramati-

36

Chapter 2. Improved Bilinear Model For Facial Expression Recognition

1 2 3 4

6

2 22 2
78 5

1 2 3 4

8

Global Max pooling
Figure 2.1 – The global Max pooling method keeps only the maximum values over the channel axis.
Global average pooling work in a similar manner, yet instead of keeping the maximum value it computes
the average.

cally reduces the amount of useful information in the forward pass. Moreover, global
max pooling wrongly affects the learning of the network in the backward pass, since
only one branch is activated in each input neighborhood. In a global average pooling
layer, all the inputs equally contribute to the output computation. This causes a con-
stant and gradual attenuation of the contribution of individual neurons in the backward
and forward passes [Saeedan u. a., 2018]. To overcome the loss of information limita-
tions, several pooling methods where proposed. Among these recent techniques, we are
especially interested in bilinear CNN models and their ameliorations such as compact
bilinear pooling [Gao u. a., 2016] and the improved bilinear pooling [Lin und Maji, 2017].

Bilinear CNN model is a combination of two CNNs A and B that takes as input
the same image and output two feature maps. These feature maps are then multiplied
at each location using tensor product. The result is pooled to obtain a global image
descriptor of the image. The latter is passed to a classifier throughout make a prediction.
Compared to single CNNs, bilinear CNN models have shown to achieve very good
results on various visual tasks. For instance, semantic segmentation, visual questions
answering and fine-grained recognition. In this chapter, in addition of using bilinear
CNN models, we propose to use an improved bilinear pooling with CNNs models for
FER. In this framework, various ways of normalization are used to improve the accuracy,
including the matrix square root, element-wise square root and L2 normalization.

The remainder of this chapter is organized as follow: Section 2.2 reviews similar
works that have been done on FER and bilinear CNN models. Section 2.3 gives more
details about this approach. Section 2.4 presents our experiments, datasets and results;
and Section 2.5 concludes the chapter.

37

Chapter 2. Improved Bilinear Model For Facial Expression Recognition

2.2 Related work

Several methods have been proposed to improve the performance of CNNs. In [Lin
u. a., 2015] a bilinear pooling method for fine-grained recognition was proposed. In-
spired from the second order pooling model introduced by [Tenenbaum und Freeman,
2000], this model can capture higher interaction between image locations, which makes
the model more discriminant than a simple model. This method have been used for FER
by Zhou et al. [Zhou u. a., 2018] and noticed that they significantly outperformed their
respective baselines. However, these models are high dimensional and could be imprac-
tical for a multitude of image analysis. In [Zhang u. a., 2019b] the authors introduced
factorized bilinear pooling (FBP) to deeply integrate the features of audio and video.
The features are selected through the embedded attention mechanism from respective
modalities to obtain the emotion-related regions. Hierarchical Bilinear Pooling was pro-
posed by [Yu u. a., 2018] in which a cross-layer bilinear pooling approach is proposed
to capture the inter-layer part feature relations, which results in superior performance
compared with other bilinear pooling based approaches. Moreover, they proposed a
novel hierarchical bilinear pooling framework to integrate multiple cross-layer bilinear
features to enhance their representation capability. Yu et al [Yu u. a., 2017] developed a
Multi-modal Factorized Bilinear (MFB) pooling approach to efficiently and effectively
combine multi-modal features, which results in superior performance for visual ques-
tion answering compared with other bilinear pooling approaches. For fine-grained im-
age and question representation, they developed a ‘co-attention’ mechanism using an
end-to-end deep network architecture to jointly learn both the image and question at-
tentions. Combining the proposed MFB approach with co-attention learning in a new
network architecture provides a unified model for visual question answering. Zhang
et al [Zhang u. a., 2019a] introduced a Local Temporal Bilinear Pooling which is used
in intermediate layers of a temporal convolutional encoder-decoder net. In contrast to
previous work, the proposed bilinear pooling is learnable and hence can capture more
complex local statistics than the conventional counterpart. In addition, they introduced
exact lower dimension representations of their bilinear forms, so that the dimensionality
is reduced without suffering from information loss nor requiring extra computation.

In [Gao u. a., 2016] two compact bilinear representations of these models have been
proposed. They reached results as the full bilinear representation, yet with only a few
thousand dimensions. This compact representations have also been used, by [Nguyen
u. a., 2018], in a multi-modal emotion recognition, combining facial expressions and
voice sound. It was also used by [Chetouani u. a., 2020] to classify patterns of ceramic
sherds by combining deep learning-based features extracted from some pre-trained Con-
volutional Neural Network (CNN) models. Fukuri et al [Fukui u. a., 2016] proposed uti-
lizing Multimodal Compact Bilinear pooling (MCB) to efficiently and expressively com-
bine multimodal features on the visual question answering and visual grounding tasks.
A similar method to efficiently reduce the dimension of bilinear pooling descriptors

38

Chapter 2. Improved Bilinear Model For Facial Expression Recognition

was proposed by [López-Sánchez u. a., 2020] by performing a Random Projection. Con-
veniently, this is achieved without ever computing the high-dimensional descriptor ex-
plicitly. The latter was further generalized in the form of Taylor series kernel in [Cui u. a.,
2017]. The proposed method captures high order and non-linear feature interactions via
compact explicit feature mapping. The approximated representation is fully differen-
tiable, and the kernel composition can be learned together with a CNN in an end-to-end
manner. Another compact form of bilinear pooling was proposed by [Liao u. a., 2019]
called Squeezed Bilinear Pooling. It is a supervised selection based method to decrease
both the computation and the feature dimension of the original bilinear pooling. Differ-
ent from currently existing compressed second-order pooling methods, the proposed se-
lection method is matrix normalization applicable. Moreover, by extracting the selected
highly semantic feature channels, they proposed the Fisher-Recurrent-Attention struc-
ture and achieved state-of-the-art fine-grained classification results among the VGG-16

based models. In [Wei u. a., 2018] the authors proposed an alternative pooling method
which transforms the CNN feature matrix to an orthonormal matrix consists of its prin-
cipal singular vectors. Geometrically, such orthonormal matrix lies on the Grassmann
manifold, a Riemannian manifold whose points represent subspaces of the Euclidean
space. Similarity measurement of images reduces to comparing the principal angles be-
tween these “homogeneous” subspaces and thus is independent of the magnitudes and
correlations of local CNN activations. In particular, they demonstrate that the projec-
tion distance on the Grassmann manifold deduces a bilinear feature mapping without
explicitly computing the bilinear feature matrix, which enables a very compact feature
and classifier representation.

Lin et al. have furthered their bilinear CNN model, by applying matrix normalization
functions. Two matrix functions have been used, namely matrix logarithm and matrix
square-root. All these methods are plugged at the end of the network, right between
the convolution layers and the fully connected layers. They act as a basis expansion
layers, increasing thereby the discrimination power of the fully connected layers, This
discrimination power is back-propagated through the convolution layers. These methods
have attracted increasing attentions, achieving better performance than classical first-
order networks in a variety of tasks. Even-thought these methods increase the CNN
performance, they are unable to learn by themselves and rely entirely on the CNN
architecture. Furthermore, effectively introducing higher-order representation in earlier
pooling layers, for improving non-linear capability of CNNs, is still an open problem.

To the best of our knowledge, improved bilinear CNN models have never been used
for FER. We believe that these models can enhance the CNN performance also for FER,
given that FER is very similar to fine grained recognition. In the following sections, we
will give more details about the bilinear and the improved bilinear CNN models. We
will also explore the effect of using them on FER.

39

Chapter 2. Improved Bilinear Model For Facial Expression Recognition

2.3 Approach

In this section we will describe the approach we used for our FER task. This technique,
called bilinear CNN model, was inspired by Lin et al. [Lin und Maji, 2017]. It performed
very well on fine-grained visual recognition tasks, and was later improved in [Lin und
Maji, 2017]. We will describe bellow in more details bilinear CNN models and the im-
proved version.

2.3.1 Bilinear CNN models

Bilinear pooling models were first introduced by Tenenbaum and Freeman [Tenenbaum
und Freeman, 2000]. Also called second order pooling models, they were used to sepa-
rate style and content. These models have been later used for fine grained recognition
and semantic segmentation using both hand-tuned and learned features.

Figure 2.2 – A bilinear model

For image classification, we can generally formulate a bilinear model B as a quadru-
ple B(f A, f B, P, C) (Figure 2.2). Where f A, and f B, are feature functions, P a pooling
function and C a classification function. A feature function takes an image Img and a
location l ∈ Loc as inputs and produces a feature vectors, for each location in Loc, as
follows:

f (l, Img) 7→ Rc (2.1)

We then combine these feature functions outputs vectors using the tensor product
(equation 2.2) at each location. Here, A and B are feature vectors produced by the feature
functions f A, and f B respectively.

40

Chapter 2. Improved Bilinear Model For Facial Expression Recognition

A ⊗ B =

a1

a2

.

.
ac

⊗

b1

b2

.

.
yb

 =

a1b1 a1b2 ... a1bc

a2b1 a2b2 ... a2bc

. . .

. . .

. . .
anb1 anb2 ... acbc

(2.2)

Formally, the bilinear feature combination of f A and f B at a location l ∈ Loc is given
by:

Bilinear(l, Img, f A, f B) = f A(l, Img)⊗ f B(l, Img) (2.3)

The pooling function P combines the bilinear features throughout the different locations
in the image (equation 2.4), which will produce a global image descriptor. One of the
most used pooling functions are the sum and the max-pooling functions of all the bilin-
ear features. Both functions ignore the location of the features and are hence orderless
[Lin u. a., 2015].

P(Loc, Img, f A, f B) = ∑
l∈Loc

f A(l, Img)⊗ f B(l, Img) (2.4)

A natural candidate for the feature function f is a CNN consisting of a succession
of convolutional and pooling layers. According to [Lin u. a., 2015], the use of CNNs is
beneficial at many levels. It allows to use pre-trained CNNs in which we take only the
convolutional layers including non-linearities as feature extractors. This can be beneficial
specially when domain specific data is scarce. Another benefit of using only the convolu-
tional layers is that the resulting CNN can process images of an arbitrary size in a single
forward-propagation step. It produces outputs indexed by the location in the image and
feature channel, in addition of reducing considerably the network’s parameters num-
ber. Finally, the use of CNNs for a bilinear model allows this model to be trained in an
end-to-end fashion. This technique has been used in a number of recognition tasks. For
instance object detection, texture recognition and fine-grained classification and shown
to give very good results.

Lin et al.[Lin u. a., 2015] proposed bilinear CNN Models for fine-grained visual
recognition (Figure 2.3). The model consists of two CNNs, each trained to recognize
special features. The resulting feature maps are sum-pooled to aggregate the bilinear
features across the image. The resulting bilinear vector is then passed through signed
square-root step, followed by L2 normalization, which improves performance in prac-
tice. Finally, the result will be fed to a classifier.

41

Chapter 2. Improved Bilinear Model For Facial Expression Recognition

Figure 2.3 – Bilinear CNN architecture.

2.3.2 Improved bilinear pooling

Lin et al.[Lin und Maji, 2017] have also investigated various ways of normalization to
improve the representation power of their bilinear model. In particular, a class of ma-
trix functions were used to scale the spectrum (eigenvalues) of the co-variance matrix
resulting of the bilinear pooling. One example of such normalization is the matrix-
logarithm function defined for Symmetric Positive Definite (SPD) matrices. It maps the
Riemannian manifold of SPD matrices to an Euclidean space that preserves the geodesic
distance between elements in the underlying manifold (Figure 2.4). An other normal-
ization is the matrix square-root normalization which offers significant improvements
and outperforms the matrix logarithm normalization when combined with element-wise
square-root and L2 normalization. This improved the accuracy by 2-3% on a range of
fine-grained recognition datasets leading to a new state-of-the-art.

Figure 2.4 – Improved Bilinear CNN architecture.

The strength of bilinear models relies in the fact that they capture higher interac-
tion between image locations, which makes the model more discriminant than a simple
model. This allowed them to achieve impressive results in various image recognition
tasks including FER. For instance, bilinear pooling has recently been used for FER in
fine-grained manner [Zhou u. a., 2018]. Compact bilinear pooling has also been used

42

Chapter 2. Improved Bilinear Model For Facial Expression Recognition

in a multi-modal emotion recognition combining facial expressions and voice sound
[Nguyen u. a., 2018]. But as far as we know, the improved bilinear pooling has never been
used for FER. In the following section, we will explore the effect of using an improved
bilinear CNN for FER. We will also implement a bilinear CNN to further appreciate the
enhancement that can the improved bilinear CNN provide.

2.4 Experiments

In this section we will give more details about the experiments we performed in order to
evaluate the approach described above. First, we give a brief description of the datasets
we have used. After that, we describe architecture of the used models and training
process. Finally, we discuss the obtained results.

2.4.1 Datasets

Our experiments have been conducted on three well-known facial expression datasets,
namely the RAF-DB [Li u. a., 2017], ExpW [Zhang u. a., 2018b] and FER2013 [Goodfellow
u. a., 2013]. Facial expression datasets contain few classes that are nearly identical, which
makes the recognition process more challenging.

In order to have the same dataset structure for all datasets, we divided the validation
subset in RAF-DB [Li u. a., 2017] into validation and test subsets by a ratio of 0.5 each.
We have also divided ExpW dataset with a ratio of 0.7 for training, 0.15 for validation
and 0.15 for test.

2.4.2 Model architecture and Training process

For our experiment, we have used both a VGG-16 pre-trained on ImageNet database
and a model built from scratch. For the VGG-16 we only took the convolution layers
without the top fully connected ones. We added a batch normalization layer after each
convolution layer (this enhances the model’s accuracy by nearly 1%). We added only
one fully connected layer of size 512 and a final Softmax layer of seven output classes.

On the other hand, our model architecture, as shown in Figure 2.5 is quite simple
and can effectively run on cost-effective GPUs. It is composed of five convolutional
blocks. Each block consists of a convolution, batch normalization and rectified linear unit
activation layers. The use of batch normalization [Zou u. a., 2019] before the activation
brings more stability to parameter initialization and achieves higher learning rate. Each
of the five convolutional blocks is followed by a dropout layer. In the following we refer
to this network architecture as (Model-1).

The only pre-processing which we have employed on all experiments is cropping
the face region and resizing the resulting images to 100 × 100 pixels. We have used
Adam optimiser with a learning rate varying from 0.001 to 5e-5. This learning rate is
decreased by a factor of 0.63 if the validation accuracy does not increase over ten epochs.

43

Chapter 2. Improved Bilinear Model For Facial Expression Recognition

Figure 2.5 – Base model architecture (Model-1).

To avoid over-fitting we have first augmented the data using a range degree for random
rotations of 20, a shear intensity of 0.2, a range for random zoom of 0.2 and randomly
flip inputs horizontally. We have also employed early stopping if validation accuracy
does not improve by a factor of 0.01 over 20 epochs.

2.4.3 Ablation Study

This section explores the impact of using bilinear pooling and improved version on
the overall accuracy of the two base models (VGG-16 and Model-1). All the following
experiments follow the same training process described above.

First we fine tuned the VGG-16 model on the three datasets and trained our model
from scratch. Secondly, we took only the convolution part of the two trained models and
add bilinear pooling (as shown in Fig 2.3) with the following configurations: a) bilinear
pooling on top of VGG-16, b) bilinear pooling on top of Model-1 and c) bilinear pooling
on top of both VGG-16 and Model-1. We begin with fine tuning the bilinear pooling
part only by freezing the underlying models. After that we train model in an end-to-end
fashion. Finally, we repeated the same process of bilinear pooling with the improved
version. That is to take the convolution part only of the fine-tuned VGG-16 and Model-1
and add the improved bilinear pooling (as shown in Fig2.4). We followed the same three
configurations used for bilinear pooling.

Table 2.1 present the result of the two base models with comparison to these mod-
els with bilinear pooling and improved bilinear pooling. The VGG-16 model attains an
accuracy rate of 65.23%, 67.61% and 85.23% on FER2013, ExpW and RAF-DB respec-
tively. Whereas Model-1 attains an accuracy of 70.13%, 75.91% and 87.05% respectvely
on FER2013, ExpW and RAF-DB.

44

Chapter 2. Improved Bilinear Model For Facial Expression Recognition

Table 2.1 – Accuracy Rates of the proposed approach

Dataset
Models FER2013 ExpW RAF-DB
VGG-16 65.23% 67.61% 85.23%

VGG-16-BPa
68.15% 68.82% 85.77%

VGG-16-IBPb
68.71% 69.1% 86.34%

Model-1 70.13% 75.91% 87.05%
Model-1-BPa

71.63% 76.59% 88.48%
Model-1-IBPb 72.65% 77.81% 89.02%

(VGG-16/Model-1)-BPa
70.37% 73.57% 86.47%

(VGG-16/Model-1)-IBPb
71.22% 74.41% 87.13%

aBP: Bilinear Pooling.
bIBP: Improved Bilinear Pooling.

On the other hand one can notice that the use of bilinear pooling on top of a model
increases considerably its accuracy. As reported in table 2.1, the use of bilinear pooling
on to of VGG-16 increases the accuracy for nearly 3% for FER2013 and more than 1%
for both ExpW and RAF-DB. Similarly, the use of bilinear pooling on top of Model-1
increases the accuracy for about 1% on all datasets. However using bilinear pooling
on top of both models gives an average accuracy rate between the underlying models
accuracies. The resulting accuracy rates are 70.37%, 73.57% and 86.47% for FER2013,
EwpW and RAF-DB respectively. This is due to the difference in accuracy between the
two underlying models in the first place.

Finally, the use improved bilinear pooling increases further the accuracy rate for
about 1% for all models with all datasets, compared to bilinear pooling. For instance,
the accuracy rate of improved bilinear pooling on top of VGG-16 is 68.71%, 69.1% and
86.34% for FER2013, ExpW and RAF-DB respectively. Similarly, improved bilinear pool-
ing on top of Model-1 gives 72.65%, 77.81% and 89.02% accuracy rates respectively for
FER2013, ExpW and RAF-DB. The accuracy rate also increases when using improved
bilinear pooling on top of both models. The later gives 71.22%, 74.41% and 87.13% on
FER2013, ExpW and RAF-DB respectively.

These results demonstrate that the use of bilinear pooling and specially improved
bilinear pooling, in the case of FER problem, are beneficial for the overall accuracy of
the model. These techniques enhance the discriminative power of the model, compared
to a CNN with only fully connected layers.

2.4.4 Comparison with the State-of-the-Art

In this section, we compare the performance of the bilinear and improved bilinear CNN
with respect to several state-of-the-art FER methods. The obtained results are reported
in Table 2.2.

45

Chapter 2. Improved Bilinear Model For Facial Expression Recognition

Table 2.2 – Accuracy rate of the proposed approach and state of the art approach

Dataset
Models FER2013 ExpW RAF-DB

VGG-16-BPa
68.15% 68.82% 85.77%

VGG-16-IBPb
68.71% 69.1% 86.34%

Model-1-BPa 71.63% 76.59% 88.48%
Model-1-IBPb 72.65% 77.81% 89.02%

(VGG-16/Model-1)-BPa
70.37% 73.57% 86.47%

(VGG-16/Model-1)-IBPb
71.22% 74.41% 87.13%

Tang et al. [Tang, 2013] 71.16% – –
Guo et al. [Guo u. a., 2016] 71.33% – –
Kim et al. [Kim u. a., 2016] 73.73% – –

Bishay et al. [Bishay u. a., 2019] – 73.1% –
Lian et al. [Lian u. a., 2020] – 71.9 % –

Acharya et al. [Acharya u. a., 2018a] – – 87%
S Li et al. [Li und Deng, 2018b] – – 74.2%

Z.Liu et al. [Liu u. a., 2017b] – – 73.19%
aBP: Bilinear Pooling.
bIBP: Improved Bilinear Pooling.

According to Table 2.2, the bilinear and improved bilinear CNN outperforms the
state-of-the-art methods on the ExpW dataset. The best accuracy rate is 77.81% and has
been reached using the improved bilinear pooling on top of Model-1. Bilinear pooling
on top of Model-1 gives, for his turn, 76.59%. Moreover bilinear and improved bilinear
on top of both VGG-16 and Model-1 gives respectively 73.57% and 74.41%. Whereas
bilinear pooling and the improved version on top of VGG-16 give lower rates than state-
of-the-art methods [Bishay u. a., 2019] (73.1%).

On RAF-DB dataset, the accuracy of our models is also superior to state of the art
methods. The best accuracy rate is 89.02% and has been reached using the improved
bilinear pooling on top of Model-1. Bilinear pooling on top of Model-1 gives, for his
turn, 88.48%. Moreover improved bilinear on top of both VGG-16 and Model-1 gives
87.13%. Whereas bilinear pooling and the improved version on top of VGG-16, as well
as bilinear pooling on top of both VGG-16 and Model-1 give lower rates than state-of-
the-art methods [Acharya u. a., 2018a] (87%).

For FER2013, even thought using the bilinear and improved bilinear pooling im-
proves considerably the models accuracy, the obtained results are still under the state of
the art results. The best accuracy rate for this dataset, namely 72.65%, was reached us-
ing improved bilinear pooling on top of Model-1. Which 1% less than the state-of-the-art
method [Kim u. a., 2016] (73.73%).

46

Chapter 2. Improved Bilinear Model For Facial Expression Recognition

2.5 Conclusions and perspectives

This study proposes a FER method based on the improved bilinear CNN model. In this
framework, various ways of normalization are used to improve the accuracy, including
the matrix square root, element-wise square root and L2 normalization. To validate our
method, we have used three large, well known, facial expression databases which are
FER2013, RAF-DB and ExpW. In order to evaluate the improvement of our method, we
have first implemented a CNN from scratch and fine-tuned pre-trained VGG-16 on our
facial expressions datasets. After that we have implemented a bilinear model on top of
the above models individually and on top of both of them. Finally, we repeated the same
procedure with the improved bilinear model. The experiments show that this framework
improves the overall accuracy for about 3%.

Bilinear models have been shown to achieve very good accuracy results on different
visual recognition domains, like fine grained recognition, semantic segmentation and
face recognition. Nevertheless, the dimensions of bilinear features are very high, usually
on the order of hundreds of thousands to a few million. The reason why they are not
practical for many visual recognition fields. Moreover, matrix square root function and
bilinear pooling function are very memory and CPU consuming, which decrease the
performance of the model. Therefore, many improvements have been applied to CNN,
for instance compact bilinear pooling [Gao u. a., 2016], reaching the same discriminative
power as the full bilinear representation but with a representations having only a few
thousand dimensions. An other improvement is the kernel pooling for CNNs [Cui u. a.,
2017] which is a general pooling framework that captures higher order interactions of
features in the form of kernels.

Our Future work will focus on using more compact alternatives of the methods used
in this work. Moreover, our perspective is to use multiple input data types (text, image
and sound) in parallel, thus forming a multilinear FER model.

47

3Learnable pooling weights for

facial expression recognition

Contents

3.1 Introduction . 49

3.2 Pooling method: an overview . 50

3.3 Proposed method . 53

3.3.1 Learnable pooling . 54

3.3.2 Learning . 55

3.4 Experiments . 56

3.4.1 Training process . 57

3.4.2 Ablation Study . 57

3.4.3 Comparison with the State-of-the-Art . 64

3.4.4 Cross-dataset evaluation . 64

3.5 Conclusion . 65

Pooling layers are spatial down-sampling layers used in CNNs to gradually down-
scale the feature map, increase the receptive field size and reduce the number of

the parameters in the model. The use of pooling layers leads to less computing com-
plexity and memory consumption reduction but also introduces invariance to certain
filter distortions which may induce subtle detail loss. This behaviour is undesired for
some fine-grained recognition tasks such as FER which highly relies on specific regional
distortion detection. In this chapter, we introduce a more filter distortion aware pooling
layer based on kernel functions. The proposed pooling reduces the feature map dimen-
sions while keeping track of the majority of the information fed to the next layer in-
stead of ignoring part of them. The experiments on RAF, FER2013 and ExpW databases
demonstrate the benefits of such layer and show that our model achieves competitive
results with respect to the state-of-the-art approaches.

48

Chapter 3. Learnable pooling weights for facial expression recognition

3.1 Introduction

Pooling layers generally enhance the network performance and are mainly used for
the gradual spatial down-sampling of the feature map. This will reduce the parameters
number and thus reduces the memory consumption and computing complexity. In addi-
tion, pooling layers increase the receptive field size of the intermediate neurons allowing
the latter to receive information from a larger area of the image. However, pooling layers
introduce invariance to slight distortion which decreases the network performance on
FER tasks as this distortion may cause the loss of some discriminative details [Gao u. a.,
2019b].

In the literature, three conventional pooling methods have usually been employed
with CNNs, namely: (1) max pooling, (2) average pooling and (3) strided convolution,
having each their advantages and drawbacks. Max pooling, for instance, only keeps the
largest input values assuming that the rest of values are not representative and do not
bring relevant information. This assumption however is not always true, especially in the
last layers of the network where even the small values represent a very relevant informa-
tion. Therefore max pooling dramatically reduces the amount of useful information in
the forward pass. Moreover, max pooling wrongly affects the learning of the network in
the backward pass, since only one branch is activated in each input neighborhood. In an
average pooling layer, all the inputs equally contribute to the output computation. This
causes a constant and gradual attenuation of the contribution of individual neurons in
the backward and forward passes [Saeedan u. a., 2018]. Strided convolution is simply
a convolution layer with a stride bigger than one. This kind of layer is used in some
very deep networks like ResNet [Cohen und Welling, 2016], whereas max and average
pooling are used in mid-size networks like VGG [Simonyan und Zisserman, 2014] and
GoogleNet [Szegedy u. a., 2015].

Although, these pooling methods are easy to compute from an input neighborhood,
they omit important discriminant details which are crucial to many fine-grained clas-
sification problems. Particularly for FER, in which, we are more interested in detecting
specific distortions of facial regions rather than simply identifying it in a given location
(which is the case in a max-pooling operation [Acharya u. a., 2018b]). To handle this
problem, we introduce in this chapter, a more filter-distortion aware pooling layer based
on a kernel function which reduces the feature map dimensions while keeping track
of the most discriminant information for FER instead of ignoring part of it. We show
that the proposed layer improves the model performance in FER task, without many
additional parameters.

Our contributions

We propose a FER method based on a CNN model to which we specifically designed
a novel pooling layer that retains the down-sampling advantage of the ordinary pool-
ing function and brings several new features. The proposed pooling layer has learnable

49

Chapter 3. Learnable pooling weights for facial expression recognition

weights which generalize standard pooling functions (i.e. max and average pooling). In
other words, it can learn a suitable pooling from a continuum of methods that ranges
from average to max (or extremum) pooling. It additionally encodes patch-wise non-
linearity which in turn improves the discrimination power of the full network. The novel
pooling is completely differentiable and can be used at any level of the network, allow-
ing an end-to-end learning.

The remainder of this chapter is organized as follow: Section 3.2 reviews similar
works that have been proposed for pooling based networks. Section 3.3 introduces the
proposed pooling layer for FER. Section 3.4 presents the different conducted experi-
ments and their related results. Section 3.5 concludes the chapter.

3.2 Pooling method: an overview

All presented CNN based methods [Li und Deng, 2018a] use one or many conventional
pooling layers (max/average pooling, or strided convolution). As stated in Section 3.1
these pooling layers introduce invariance to slight distortion which may decrease the
network performance on fine-grained classification tasks. Several methods have been
proposed to overcome this limitation and thereby improves the performance of CNNs.
As discussed in chapter 2, several pooling techniques were proposed in the literature.
However, all these methods are always plugged at the end of the network, right be-
tween the convolution layers and the fully connected layers. They act as a basis expan-
sion layers, increasing thereby the discrimination power of the fully connected layers.
This discrimination power is back-propagated through the convolution layers allowing
the network to learn in an end-to-end fashion. These methods have attracted increasing
attentions, achieving better performance than classical, first-order networks in a variety
of computer vision tasks. Even-thought these methods increase the CNN performance,
they are enable to learn by themselves and rely entirely on CNN architecture. Fur-
thermore, how to effectively introduce higher-order representation in earlier layers for
improving non-linear capability of CNNs is still an open problem. In the following we
describe some of the proposed pooling methods used in CNNs.

1. Mixed Pooling

Max pooling extracts only the maximum activation whereas average pooling
down-weighs the activation by combining the non-maximal activations. To over-
come this problem, Yu et al. [Yu u. a., 2014a] proposed a hybrid approach by com-
bining the average pooling and max pooling. This approach is highly inspired by
dropout [Hinton u. a., 2012] and Drop connect [Wan u. a., 2013]. Mixed pooling
can be represented as:

Sj = λmaxi∈Rj ai + (1 − λ)
1
|R| ∑

i∈Rj

ai (3.1)

50

Chapter 3. Learnable pooling weights for facial expression recognition

where λ decides the choice of either using max pooling or average pooling. The
value of λ is selected randomly either 0 or 1. When λ = 0 it behaves like average
pooling, and when λ = 1 it works like max pooling. The value of λis recorded for
forward-propagation order and it is used during the backpropagation process. Yu
et al. showed its superiority over max and average pooling by performing image
classification on three different datasets.

2. Lp poling

Sermanet et al. [Sermanet u. a., 2012] proposed the concept of Lp pooling and
claimed that its generalization ability is better than max pooling. In this pooling, a
weighted average of inputs is taken in pooling region. It is represented as:

Sj =

 1
|R| ∑

i∈Rj

ap
i

 1
p

(3.2)

where Sj represents the output of the pooling operator at location j, aj is the feature
value at location i within the pooling region Rj. The value of p varies between 1

and ∞. When p = 1, Lp operator behaves as average pooling and at p = ∞ it leads
to max-pooling. For Lp pooling, p > 1 is examined as a trade-off between average
and max pooling.

3. Stochastic Pooling

Inspired by the dropout [Hinton u. a., 2012], Zeiler and Fergus [Zeiler und Fer-
gus, 2013] proposed the idea of stochastic pooling. In max pooling, the maximum
activation is selected from each pooling region. Whereas the areas of high activa-
tion are down-weighted by areas of low-activation in average pooling, because all
elements in the pooling region are examined, and their average is taken. It is a
major problem with average pooling. The issues of max and average pooling are
addressed using stochastic pooling. Stochastic pooling applies multinomial distri-
bution to pick the value randomly. It includes the non-maximal activations of the
feature map. In stochastic pooling, first, the probabilities Pi is computed for each
region j by normalizing the activations within the regions, as given in:

Pi =
ai

∑k∈Rj
ak

(3.3)

These probabilities create a multinomial distribution that is used to select location
l and corresponding pooled activation ai based on p. Multinomial distribution se-
lects a location l within the region. In simple words, the activations are selected
based on the probabilities calculated by multinomial distribution. In this, all ac-
tivations get the chances according to their probability proportionate. Stochastic

51

Chapter 3. Learnable pooling weights for facial expression recognition

pooling prohibits overfitting because of the stochastic component. Some advan-
tages of max-pooling are also available in the stochastic pooling, and it also uti-
lizes non-maximal activations. It is to be noted that stochastic pooling represents
the multinomial distribution of activations within the region; hence the selected
element may or may not be the largest element. It gives high chances to stronger
activations and suppresses the weaker activations.

4. Spatial Pyramid Pooling

Among the new methods used for the pooling layer, is the spatial pyramid pool-
ing. Spatial pyramid pooling [Grauman und Darrell, 2005, Lazebnik u. a., 2006]
(popularly known as spatial pyramid matching or SPM [Lazebnik u. a., 2006]), as
an extension of the Bag-of-Words (BoW) model [Sivic und Zisserman, 2003], is one
of the most successful methods in computer vision. It partitions the image into
divisions from finer to coarser levels and aggregates local features in them. In [He
u. a., 2015b], He et.al introduced a spatial pyramid pooling (SPP) [Grauman und
Darrell, 2005, Lazebnik u. a., 2006] layer to remove the fixed-size constraint of the
network. Specifically, they added an SPP layer on top of the last convolutional
layer. The SPP layer pools the features and generates fixed-length outputs, which
are then fed into the fully-connected layers. In other words, Huang et.al in [Huang
u. a., 2020] performed some information aggregation at a deeper stage of the net-
work hierarchy, between convolutional layers and fully-connected layers, to avoid
the need for cropping or warping at the beginning and build the YOLO detection
method.

5. Region of Interest Pooling

The Region of Interest (RoI) Pooling layer is an important component of convolu-
tional neural networks which is mostly used for object detection [Girshick, 2015]
and segmentation [Liu u. a., 2017a]. The ROI pooling layer worked by shifting the
processing specific to individual bounding-boxes later in the network architecture.
An input image is processed through the deep network and intermediate CNN
feature maps (with reduced spatial dimensions compared to the input image) are
obtained. The ROI pooling layer takes the input feature map of the complete im-
age and the coordinates of each ROI as its input. The ROI co-ordinates can be
used to roughly locate the features corresponding to a specific object. However,
the features thus obtained have different spatial sizes because each ROI can be of
a different dimension.

Since CNN layers can only operate on fixed dimensional inputs, an ROI pooling
layer converts these variable sized feature maps (corresponding to different object
proposals) to a fixed-sized output feature map for each object proposal. The fixed-
size output dimensions are a hyper-parameter which is fixed during the training
process. Specifically, this same-sized output is achieved by dividing each ROI into

52

Chapter 3. Learnable pooling weights for facial expression recognition

a set of cells with equal dimensions. The number of these cells is the same as
the required output dimensions. Afterward, the maximum value in each cell is
calculated (max-pooling) and it is assigned to the corresponding output feature
map location.

Using a single set of input feature maps to generate a feature representation for
each region proposal, the ROI pooling layer greatly improves the efficiency of a
deep network.

6. Universal pooling

Hyuan et al. [Hyun u. a., 2019] proposed a new pooling method called universal
pooling. The method intends to generate pooling function which better fits any
problem given a dataset. Universal pooling has been inspired by attention meth-
ods and can be considered as a channel-wise form of local spatial attention. The
strength of these methods relies on the fact that they capture additional discrimi-
nant information compared to conventional pooling techniques. This makes them
more suitable for fine-grained classification problem.

In this chapter, we build upon these works and introduce a novel pooling layer
that not only uses all input information but also extracts linear and non-linear relations
between features. To do so, we leverage kernel functions which allow to generalise linear
pooling while capturing higher order information.

3.3 Proposed method

We propose an end-to-end model to perform the FER task. Our network architecture is
simple. It is designed to capture discriminant facial features through successive layers
of multiple non-linear transformations and representations. It follows standard CNN as
it alternates convolutional and pooling layers and ends with a fully connected softmax
activation layer (see Figure 3.1). The convolutional layers learn several filter weights
which are convolved with the input facial image and produce a set of feature maps. The
filter weights are learned such that the final classification score is high (categorical cross
entropy loss is employed, see Section 3.3.2).

The novelty in this work is a specific pooling layers which are more sensitive to subtle
details in feature maps than standard pooling techniques (i.e. max-pooling, average-
pooling, etc). This is ensured by adding learnable weights to the pooling layers, similarly
as in convolutional layers, while reducing the feature map size. By doing so, the standard
pooling techniques can be seen as a particular case of our new pooling with fixed (non-
learnable) weights. In Section 3.3.1, we present our proposed pooling layer used for
boosting the FER task.

53

Chapter 3. Learnable pooling weights for facial expression recognition

3.3.1 Learnable pooling

The proposed learnable pooling layer is similar to an ordinary pooling one in the way
that it applies a pooling function on a specific location and a specific stride. The differ-
ence from previous poolings corresponds to the capability to dynamically extract more
relevant features from the input map. This is particularly performed by learning differ-
ent pooling weights for each feature map. These weights are learned in a similar fashion
as convolutional weights but with a single depth output (see Figure 3.1).

Figure 3.1 – Our proposed network architecture for FER task. The CNN alternates convolutional layers
and specifically designed layers. It ends by a fully softmax activation layer. Each convolutional layer is
followed by batch normalization and rectified linear unit activation.

Finally, a combination of the original feature map and the resulting weights is com-
puted using a specific function. This function is carefully chosen to capture linear and
non linear relations between both the weights and the original feature map. The output
of our pooling layer is a new feature map with reduced high and width.

Formally and as shown in Figure 3.2, we consider a flattened feature map vector
x = {x1, x2, . . . , xd} and a vector of pooling weights w = {w1, w2, . . . , wd}. In Figure 3.2,
d is equal to 4 which corresponds to a 2× 2 pixels. The vector w can be seen as a second
feature map which is dynamically learned. In order to capture linear and non-linear
relations between x and w, we employ a Symmetric Positive Definite (SPD) function
K : Rd × Rd → R. The choice of the SPD function is motivated by the fact that stan-
dard pooling (e.g. average pooling) can be considered as a linear combination of fixed
filter weights and the feature map values in a particular location. For instance given
the feature map vector x and a set of non-learnable weights w = {1/d, 1/d, . . . , 1/d},

the average pooling can be computed as:
d
∑

i=1
wi ∗ xi = xTw which is the dot product of

both vectors x and w, and corresponds to the inner product in Rd. By employing a SPD
function, we emulate an inner product in a higher dimensional space after a non linear
mapping of both x and w vectors. Thus, the pooling operation turns out to be

⟨φ(x), φ(w)⟩ ≈ K(x, w). (3.4)

In this work, we employed three different functions defined on the feature map space
which has an Euclidean structure Rd.

54

Chapter 3. Learnable pooling weights for facial expression recognition

• Linear kernel:
K(x, w) = xTw, x, w ∈ Rd. (3.5)

• Polynomial kernel:

K(x, w) = (xTw + r)n, x, w ∈ Rd, r ≥ 0. (3.6)

• Gaussian kernel (RBF Kernel):

K(x, w) = e−
∥x−w∥2

2σ2 , x, w ∈ Rd, σ > 0. (3.7)

The linear kernel (Equation 3.5) looks at the similarity between the feature map vec-
tor x and the filter weight vector w. Starting form n > 1 in Equation 3.6, the polynomial
kernel encodes not only the linear relation between both x and w vectors, but also non-
linear relations between them. Thanks to the exponential term in Equation 3.7, the Gaus-
sian kernel expands the pooling non-linearity to the infinity. This expansion can also be
reached by other functions, such as the Laplacian kernel defined by K(x, w) = e−α∥x−w∥,
or the Abel kernel defined as K(x, w) = e−α|x−w|, where, α > 0 in both kernels.

The proposed learnable pooling preserves the main purpose of a standard pooling
layer which corresponds to the down-sampling of the input feature map. But it not only
summarizes the presence of specific features in patches, it also captures the non-linear
relations between these features.

3.3.2 Learning

Our network ends with a fully connected layer to make sure that all activations in the
previous layer are connected to the last layer and to allow the pooled 2D feature maps
to be converted into a vector of probabilities for FER. In this work, we chose to use the
traditional softmax layer, with a cross entropy loss, to simply force features of different
expressions to remain apart. Many authors have proposed advanced losses for FER
such as the center loss [Wen u. a., 2016], the island loss [Cai u. a., 2018], and the locality-
preserving loss [Fabian Benitez-Quiroz u. a., 2016]. However here we opt for a simple
softmax layer and a cross entropy loss to demonstrate the efficiency of the proposed
learnable pooling layer.

Given a facial image I with a label vector y of yi elements (yi = 1 if I belongs to Ci

otherwise yi = 0 where Ci indicates the ground truth expression of the face in I), the
objective of our learning problem is to minimize the cross entropy loss over the set of C
classes :

CE =
C

∑
i

yi log(f (I)i), (3.8)

where f (I)i stands for the softmax activation of the i − th class.

55

Chapter 3. Learnable pooling weights for facial expression recognition

X12X11 X13 X14

X23 X24

X31 X32

X21 X22

X33 X34

X41 X42 X43 X44

w1 w2

w3 w4

y 3 y 4

y 1 y 2x k(x,W)

w
Single depth slice

Weights

Output

Output feature map

Learnable pooilng

Input feature map

Figure 3.2 – The processing of the learnable weights pooling layer is similar to usual pooling layer in
the manner that it down-scales the spatial dimensions of the input. Learnable weights pooling rely on
learnable weights to encode important relations between features through kernel function.

The learnable pooling weights are initialized using He normal function. It draws
samples from a truncated normal distribution centered on 0 (zero) with a standard
deviation given by:

stddev =

√
2
N

(3.9)

Where N is the number of input units in the weight tensor.

3.4 Experiments

In order to evaluate our method, several experiments have been conducted on three
well-known datasets, namely the RAF-DB [Li u. a., 2017], ExpW [Zhang u. a., 2018b] and
FER2013 [Goodfellow u. a., 2013]. The only preprocessing which we have employed on
all experiments is cropping the face region and resizing the resulting images to 100× 100
pixels.

56

Chapter 3. Learnable pooling weights for facial expression recognition

3.4.1 Training process

In order to demonstrate the efficiency of the proposed learnable pooling, we build a
simple CNN from scratch, in addition of using two pre-trained models, namely: ResNet-
50 and VGG-16. We have used Adam optimiser with a learning rate varying from 0.001

to 5e-5. This learning rate is decreased by a factor of 0.63 if the validation accuracy does
not increase over ten epochs. To avoid over-fitting we have also augmented the data
using a range degree for random rotations of 20, a shear intensity of 0.2, a range for
random zoom of 0.2 and randomly flip inputs horizontally.

As shown in Figure 3.1 our model architecture is quite simple and can effectively
run on cost-effective GPUs. It is composed of five convolutional blocks. Each block con-
sists of a convolution, batch normalization and rectified linear unit activation layers. The
use of batch normalization [Zou u. a., 2019] before the activation brings more stability
to parameter initialization and achieves higher learning rate. Each of the five convolu-
tional blocks is followed by a pooling layer. In the following we refer to this network
architecture as (Model-1).

3.4.2 Ablation Study

This section explores the impact of the use of the proposed learnable pooling layer
on the overall accuracy of Model-1, VGG-16 and ResNet-50. We evaluated the perfor-
mance of these network architectures with different pooling techniques. First, we eval-
uate these three models using the standard pooling techniques, namely: max pooling,
average pooling and strided convolution. After that, we replaced these poolings by our
learnable pooling layers. We studied the behaviour of four different kernel functions,
namely; (1) the linear kernel, (2) the second-order polynomial kernel, (3) the third-order
polynomial kernel and (4) the Gaussian RBF kernel. We also evaluated the performance
of these methods with different window sizes. The experiments show that the increase
of the pooling window affect negatively the performance of the model. Yet our pool-
ing method still performs better than the usual pooling methods. As consequence, the
smallest pooling window (2 × 2) is the best suited for better results.

57

Chapter 3. Learnable pooling weights for facial expression recognition

Figure 3.3 – Visualisation of the outputs from the pooling layers. These visualisations are generated from
two facial expressions (the face in the left, and the face in the middle). Given an input image, we show the
feature maps after each of the five pooling layers used in our CNN. The first row shows the feature maps
after third polynomial kernel based pooling. The second and the third rows present feature maps after the
standard average and max pooling respectively.

58

Chapter 3. Learnable pooling weights for facial expression recognition

Figure 3.4 – Visualizations of accuracy versus epoch plots. This figure reports the impact of the learnable
pooling on the convergence speed of the used CNN. A comparison between the performance of the CNN
using max pooling, the third order polynomial, and the RBF pooling methods on the RAF-DB dataset.

59

Chapter 3. Learnable pooling weights for facial expression recognition

Table 3.1 – Accuracy rate of our proposed approach for different pooling strategies. In this table, Model-1
architecture is used with the indicated pooling method

Pooling ExpW RAF-DB FER2013

Max 75.91% 87.05% 70.49%
AVG 75.74% 86.89% 70.13%
Strided Conv 73.81% 85.23% 68.74%
Linear kernel 76.28% 90.81% 70.69%
2

nd-order Poly 76.64% 92.87% 70.88%
3

rd-order Poly 76.81% 93.21% 71.35%
Gaussian RBF 76.42% 92.74% 70.74%

The experiments are conducted with the same training parameters as described
above. Tables 3.1, 3.2 and 3.3 present the results of Model-1, ResNet-50 and VGG-
16 using standard pooling methods with comparison to the proposed learnable pooling.
From table 3.1, one can notice that considering Model-1 architecture, the use of max or
average pooling gives approximately the same results with a slight improvement when
max pooling is employed. On the other hand, strided convolution reaches lower accu-
racy rates than both max and Average pooling. In the case of max pooling, Model-1
attains 75.91%, 87.05% and 70.49% of accuracy rate on respectively ExpW, RAF-DB and
FER2013 datasets. When using average pooling layers instead of max pooling, Model-1
reaches an accuracy rate of 75.74%, 86.89%, and 70.13% for respectively ExpW, RAF-DB
and FER2013 datasets. Whereas, using strided convolution, model-1 reaches an accu-
racy rate of 73.81%, 85.23% and 68.74% respectively on ExpW, RAF-DB and FER2013

datasets. However in contrast to these three cases, the use of learnable pooling layers in
Model-1 considerably increases their accuracy. As reported in Table 3.1, the accuracy of
Model-1 in which we use a learnable pooling with a linear kernel increases the accuracy
up to 0.4% for ExpW, 3.75% for RAF-DB and 0.2% for FER2013.

Following the same principle, we further studies the impact of the usage of three
additional kernels; (1) the second-order polynomial kernel with r = 1, (2) the third-
order polynomial kernel with r = 1 and (3) the Gaussian kernel with γ = 0.9. Although
the computational complexity of these kernels is higher compared to the max and the
average pooling, they strongly improve the model accuracy when used. As shown in
Table 3.1, 3.2 and 3.3, the same model architecture but using the third-order polynomial
kernel outperforms the other methods. The use of this kernel improves the accuracy rate
close to 71.35% for Model-1 on FER2013, 76.81% on ExpW, and enhances the accuracy
rate up to 93.21% on RAF-DB. Less efficient than the third-order polynomial kernel
but also computationally expensive is the Gaussian kernel. It increases the accuracy, for
Model-1, up to 76.42% for ExpW and 70.74% FER2013 comparing to max and average
poolings and 92.74% for RAF-DB. Moreover, the Gaussian kernel takes a considerable
time to converge. Finally, according to Table 3.1, the second-order polynomial kernel
is less efficient than the third-order one but remains better than the Gaussian kernel.
It merely outperforms the linear kernel with slightly higher complexity. However, it is

60

Chapter 3. Learnable pooling weights for facial expression recognition

the fastest kernel to converge compared to the third-order polynomial and the Gaussian
kernels.
Table 3.2 – Accuracy rate of our proposed approach for different pooling strategies. In this table, ResNet-
50 architecture is used with the indicated pooling method

Pooling ExpW RAF-DB FER2013

Max 72.32% 85.48% 68.12%
AVG 73.18% 84.74% 68.09%
Strided Conv 73.95% 85.11% 68.18%
Linear kernel 74.35% 87.72% 68.42%
2

nd-order Poly 74.41% 88.21% 68.94%
3

rd-order Poly 75.13% 89.49% 69.68%
Gaussian RBF 74.19% 88.16% 68.53%

Similarly to Model-1, ResNet-50 with max and average pooling gives approximately
the same results, as shown in table 3.2. In the case of max pooling, ResNet-50 at-
tains 72.32%, 85.48% and 68.12% of accuracy rate on respectively ExpW, RAF-DB and
FER2013. Whereas, when using average pooling ResNet-50 reaches 73.18%, 84.74% and
68.09% of accuracy rate on respectively ExpW, RAF-DB and FER2013. On the other
hand, ResNet-50 with strided convolution reaches better results than max and average
pooling. Strided convolution is the built-in pooling method for pre-trained ResNet-50

model. It gives 73.95% for ExpW, 85.11% for RAF-DB and 68.18% for FER2013. As for
Model-1 the linear kernel on ResNet-50 performs at least as good as the other pool-
ing methods. It reached an accuracy rate of 74.35% on ExpW, 87.72% on RAF-DB and
68.42% on FER2013. The use of higher order kernels also increases the accuracy rate
of ResNet-50. Second order polynomial kernel nearly outperforms the linear kernel. It
attains 74.41%, 88.21% and 68.94% on ExpW, RAF-DB and FER2013 respectively. Third
order polynomial kernel remains the most efficient kernel for our learnable pooling
method. It reached with ResNet-50 an accuracy rate of 75.13% on ExpW, 89.49% on
RAF-DB and 69.68% FER2013. Finally, Gaussian RBF kernel remains the less efficient
non-linear kernel with an accuracy rate of 74.19%, 88.16% and 68.53% on respectively
ExpW, RAF-DB and FER2013.

Table 3.3 – Accuracy rate of our proposed approach for different pooling strategies. In this table, VGG-16
architecture is used with the indicated pooling method

Pooling ExpW RAF-DB FER2013

Max 67.61% 85.23% 65.23%
AVG 67.42% 84.92% 65.11%
Strided Conv 66.87% 84.51% 64.74%
Linear kernel 68.17% 85.86% 65.67%
2

nd-order Poly 68.56% 86.31% 66.19%
3

rd-order Poly 70.24% 87.04% 67.13%
Gaussian RBF 68.43% 86.16% 66.04%

Finally, VGG-16 with standard pooling methods gives approximately the same re-

61

Chapter 3. Learnable pooling weights for facial expression recognition

sults, similarly to Model-1 and ResNet-50. For instance, max pooling reached 67.61%
on ExpW, 85.23% on RAF-DB and 65.23% on FER2013. Average pooling, on the other
hand, attained 67.42%, 84.92% and 65.11% on ExpW, RAF-DB and FER2013 respectively.
In the case of strided convolution, the accuracy rates reached were 66.87%, 84.51% and
64.74% for ExpW, RAF-DB and FER2013 respectively. Again, linear kernel is at least
as efficient as the standard pooling methods. It reached 68.17%, 85.86% and 65.67% of
accuracy on ExpW, RAF-DB and FER2013 respectively. For the non-linear kernels, third
order polynomial kernel remains the most efficient kernel with 70.24% on ExpW, 87.04%
on RAF-DB and 67.13% on FER2013. Less efficient but faster is the second order poly-
nomial kernel with an accuracy rate of 68.56%, 86.31% and 66.19% on ExpW, RAF-DB
and FER2013 respectively. Finally, Gaussian RBF kernel is the less accurate and slow-
est non-linear kernel with 68.43%, 86.16% and 66.04% on ExpW, RAF-DB and FER2013

respectively.
As demonstrated above, using learnable pooling layers with linear kernels performs

at least as good as the use of layers with max pooling, average pooling or strided convo-
lution. This behaviour can be explained by the fact that the linear kernel can automat-
ically learn the suitable pooling method from a continuum of methods which include
strided convolution, average and max pooling as particular cases. Although our pro-
posed pooling layer increases the number of learnable parameters, compared to the
max and the average pooling, the use of the simple linear kernel gives more flexibility
to the pooling since it acts as a decision maker of which weights to fix or use for each
particular filter. Eventhough, using learnable pooling with non-linear kernels increases
the complexity, it allows the model to reach better results. Second order polynomial ker-
nel outperforms linear kernel with slightly higher complexity. Third order polynomial
kernel add more complexity but reaches the highest results. The less efficient and also
computationally expensive is the Gaussian RBF kernel.

To further compare the proposed pooling technique with standard ones, we display
in Figure 3.3 the output image after each pooling layer. We compared max and aver-
age pooling with the third order polynomial pooling. As depicted in Figure 3.3, our
pooling method is able to capture more details than the standard pooling techniques.
The visualizations show that the third order pooling captures relevant features which
likely correspond to the expression action units e.g. the outlines of the mouth and the
eyes. Moreover, the third order pooling outperforms the other techniques in discarding
non-informative regions. One can clearly notice particularly in the two last layers, even
when the results are abstract and difficult to interpret, that the learnable pooling keep
activation of well localized features (nose, mouth and eyes). On the contrary, one can
also notice some common activated regions particularly in the earlier layers, this can
be explained by the fact that our pooling encompasses standard poolings thanks to the
linear term in the polynomial kernel.

In Figure 3.4, we report the training accuracy and validation accuracy versus epoch
plots of our CNN when using the max pooling, the RBF, and the third order kernel

62

Chapter 3. Learnable pooling weights for facial expression recognition

pooling layers. These plots give an idea about the influence of the different pooling
techniques on the convergence rate of the network. The sub-Figures demonstrate that
the third order based pooling has an important impact on the convergence speed of
the network compared to the max and the RBF based poolings. Although the compu-
tational complexity of the third order kernel is higher than the max pooling, it is still
able to converge to a higher validation accuracy in less epochs. Yet, the prediction speed
increases accordingly with the kernel complexity. On an average machine, with 6 Gb
GPU, The procesing of an image of size 100× 100 pixels takes 14 milliseconds with Max
pooling, 14.7 with linear kernel, 16 milliseconds with third degree polynomial kernel
and 18 milliseconds with Gaussian RBF kernel.

Note that in the literature, few researchers claim that the standard max pooling per-
forms a noise removal arguing that it gets rid of noisy features and also brings denois-
ing along with dimensionality reduction [Gao u. a., 2019b]. On the contrary, the average
pooling only carries out dimensionality reduction. Thus, the max pooling is generally
considered to achieve better performance than average pooling. However, by using our
proposed pooling, we demonstrate that the majority of the features in the input feature
map are relevant. By leveraging kernel functions, non-linear relation between features
in a given patch are captured and this allows to performs better than standard max and
average pooling. These results demonstrate that non-linear relations between features
in the feature map produced after a convolutional layer are beneficial for the overall ac-
curacy of the FER problem. The use of the third order pooling kernel allows to achieve
the best performance compared to standard pooling techniques as well as the different
studied kernels.
Table 3.4 – Accuracy rate of our proposed approach and state of the art approach

Methods ExpW RAF-DB FER2013

Linear kernel 76.28 % 90.81% 70.69%
2

nd-order Poly 76.64% 92.87 % 70.88 %
3

rd-order Poly 76.81% 93.21 % 71.35%
Gaussian RBF 76.42 % 92.74 % 70.74%
LIP [Gao u. a., 2019b] 76.52% 87.63% 70.79%
Tang et al. [Tang, 2013] – – 71.16 %
Guo et al. [Guo u. a., 2016] – – 71.33 %
Kim et al. [Kim u. a., 2016] – – 73.73 %
Bishay et al. [Bishay u. a., 2019] 73.1 % – –
Lian et al. [Lian u. a., 2020] 71.9 % – –
Acharya et al. [Acharya u. a., 2018a] – 87% –
Kuo et al. [Kuo u. a., 2018] – 65.52% –
Deng et al. [Deng u. a., 2015] – 68.2% –
S Li et al. [Li und Deng, 2018b] – 74.2% –
Z.Liu et al. [Liu u. a., 2017b] – 73.19% –

63

Chapter 3. Learnable pooling weights for facial expression recognition

3.4.3 Comparison with the State-of-the-Art

In this section, we compare the performance of Model-1 which uses the proposed learn-
able pooling with respect to several state-of-the-art methods. Moreover, we have also
used state-of-the-art pooling method LIP [Gao u. a., 2019b] with Model-1 for further
comparison. The obtained results are reported in Table 3.4. According to Table 3.4, our
proposed model outperforms the state-of-the-art methods on the ExpW dataset. The
best accuracy rate is 76.81% and has been reached using the third order polynomial ker-
nel. The second order polynomial kernel gives 76.64% while the linear kernel achieves
76.28% as accuracy rate. Finally, using the Gaussian kernel our model achieves 76.42%
of accuracy.

On RAF-DB dataset, the accuracy of our model is also superior to state-of-the-art
methods. Using the third order polynomial pooling, our model accuracy exceeds the
other methods by more than 1% and it obtains 93.21%. One can also notice that all
kernels outperform state-of-the-art methods. Using a linear kernel, our model achieves
90.81% of accuracy while 92.87% is reached using the second order polynomial pooling.
The use of the Gaussian kernel allows to reach 92.74%, whereas the best state-of-the-
art method only reports 87% of accuracy [Acharya u. a., 2018a] and 87.63% with state-
of-the-art LIP pooling method [Gao u. a., 2019b]. Similarly, with the ExpW dataset and
using the proposed method, we outperform state-of-the-art methods with all kernels. We
obtained a 76.81% of accuracy using the third order polynomial pooling which exceeds
the other methods by more than 3%. Finally, even though we did not outperform state-
of-the-art methods on FER2013, we confirmed the superiority of our method compared
to standard pooling methods. We reached an accuracy rate of 71.35% with the third
order polynomial pooling which is 2% less than state-of-the-art method [Kim u. a., 2016].
LIP pooling method slightly outperforms linear kernel on the ExpW and the FRE2013

datasets. It is however, outperformed by the third order polynomial pooling on the three
datasets.

3.4.4 Cross-dataset evaluation

We have also evaluated the generalizability of our network on data from different distri-
butions. We conducted an experiment on a cross-dataset. We compared the performance
of our network using the proposed learnable pooling weights with the same network
using standard pooling layers. The considered intra-dataset protocol is a training over
the whole ExpW dataset and a testing on RAF-DB dataset. The obtained results also
confirm the efficiency of the proposed pooling layer in the FER task. Our method using
a linear kernel gives 80.27% as accuracy rate. The use of the second-order polynomial
kernel allows to achieve 80.56%. The third-order polynomial kernel and the Gaussian
RBF kernel give respectively 81.43% and 81.03%. On the contrary, the use of max-pooling
layers instead of our learnable weights only allows to reach 80.12%.

64

Chapter 3. Learnable pooling weights for facial expression recognition

3.5 Conclusion

In this chapter, we proposed a FER method based on a CNN model to which we specif-
ically designed a novel pooling layer which retains the down-sampling advantage of an
ordinary pooling function and brings several new features. The proposed pooling layer,
which has learnable weights, generalizes standard pooling functions and, additionally
encodes non-linear relation between features. It is differentiable and can be plugged at
any level of the network, allowing, in turns, an end-to-end learning. The experiments
on ExpW, RAF-DB and FER2013 datasets demonstrate the efficiency of the proposed
pooling method compared to standard pooling. The experiments also showed that the
proposed FER method outperforms state-of-the-art methods. The performance of our
model is essentially due to its capability of capturing high order information that are
crucial for fine-grained classification tasks such as the FER.

65

4Kernelized dense layers for facial

expression recognition

Contents

4.1 Introduction . 67

4.2 Kernelized classification . 68

4.3 kernelized Dense Layer . 69

4.3.1 Datasets . 70

4.3.2 Training process . 71

4.4 Experiments . 71

4.4.1 Ablation Study . 72

4.4.2 Comparison with the State-of-the-Art . 76

4.5 Conclusion . 76

Fully connected layer is an essential component of Convolutional Neural Networks
(CNNs), which demonstrates its efficiency in computer vision tasks. The CNN pro-

cess usually starts with convolution and pooling layers that first break down the input
images into features, and then analyze them independently. The result of this process
feeds into a fully connected neural network structure which drives the final classification
decision. In this chapter, we propose a Kernelized Dense Layer (KDL) which captures
higher order feature interactions instead of conventional linear relations. We apply this
method to Facial Expression Recognition (FER) and evaluate its performance on RAF,
FER2013 and ExpW datasets. The experimental results demonstrate the benefits of such
layer and show that our model achieves competitive results with respect to the state-of-
the-art approaches.

66

Chapter 4. Kernelized dense layers for facial expression recognition

4.1 Introduction

Deep neural network architecture was found to be inefficient for computer vision tasks,
since images represent a large input for a neural network (they can have hundreds or
thousands of pixels and up to 3 color channels) with a huge number of connections
and network parameters. CNNs leverage the fact that an image is composed of smaller
details, or features, and creates a mechanism for analyzing each feature in isolation,
which informs a decision about the image as a whole. As part of the convolutional
network, FC layer uses the output from the the convolution/pooling process and learns
a classification decision. It is an essential component of CNNs, which demonstrates its
utility in several computer vision tasks. The input values flow into the first FC layer
and they are multiplied by weights. The latter usually go through an activation function
(typically ReLu), just like in a classic artificial neural network. They then pass forward to
the output layer, in which every neuron represents a classification label. The FC part of
the CNN goes through its own back-propagation process to determine the most accurate
weights where each neuron receives weights that prioritize the most appropriate label.
In fully connected layers, the neuron applies a linear transformation to the input vector
through a weights matrix. It applies a dot product between a vector of weights W =

{w1, w2, . . . , wn} and an input vector x = {x1, x2, . . . , xn}, add a bias vector (b ≥ 0) and
eventually applies an activation function f . Let Yi ∈ R be the ith output from the fully
connected layer for j input values. Then Yi ∈ R is computed as follows:

Yi = f

(
∑

j
XjWi,j + Bi

)
(4.1)

One way of thinking about fully connected layers is that each fully connected layer
effects a transformation of the feature space in which the problem resides. The ability
to perform problem-specific transformations can be immensely powerful [Bosagh und
Ramsundar, 2018]. Standard transformation techniques couldn’t solve problems of im-
age or speech analysis, while deep networks are capable of solving these problems with
relative ease due to the inherent flexibility of the learned representations.

In a typical deep neural network, the FC layers comprise most of the parameters of
the network. AlexNet has 60 million parameters, out of which 58 million parameters
correspond to the FC layers [Krizhevsky u. a., 2012]. Similarly, VGGNet has a total of
138 million parameters, out of which 123 million parameters belong to FC layers [Si-
monyan und Zisserman, 2014]. This huge number of trainable parameters in FC layers
are required to fit complex nonlinear discriminant functions in the feature space into
which the input data elements are mapped. This fact However, this large number of
parameters may result in over-fitting the classifier.

To improve the performance of CNNs, several methods using higher order kernel
function than the ordinary linear kernel have been proposed in the literature. In [Cui
u. a., 2017], a novel pooling method in the form of Taylor series kernel has been pro-

67

Chapter 4. Kernelized dense layers for facial expression recognition

posed. This method captures high order and non-linear feature interactions via compact
explicit feature mapping. The approximated representation is fully differentiable, thus
the kernel composition can be learned together with a CNN in an end-to-end manner.
It acts as a basis expansion layers, increasing thereby the discrimination power of the
FC layers. These methods have attracted increasing attentions, achieving better perfor-
mance than classical first-order networks in a variety of computer vision tasks. Wang et
al. [Wang u. a., 2019] focused more one the convolution part and they proposed to re-
place the convolution layers in a CNN by kernel-based layers, called kervolution layers.
The use of these layers increases the model capacity to capture higher order features at
the convolutional phase.

The remainder of this chapter is organized as follow: Section 4.2 reviews similar
works which was proposed for incorporating kernel function for classification. Sec-
tion 4.3 introduces the proposed KDL for FER. Section 4.4 presents the different con-
ducted experiments and their related results. Section 4.5 concludes the chapter.

4.2 Kernelized classification

When working with non-linear problems, it’s useful to transform the original vectors by
projecting them into a higher dimensional space where they can be linearly separated.
One of the most popular kernel based techniques in machine learning is the kernel
Support Vector Machine (KSVM). It is a supervised learning algorithm mostly used
for classification. The main idea is that based on the labeled data (training data) the
algorithm tries to find the optimal hyperplane which can be used to classify new data
points. The kernel SVMs return the inner product between two points in a suitable
feature space. Thus by defining a notion of similarity, with little computational cost
even in very high-dimensional spaces, according to the following equation:

K(Xi, Xj) = (XiXj + C)n (4.2)

where C (C ∈ R+) is constant and n (n ∈ Z+) is the polynomial order.
Elisseeffet al. [Elisseeff und Weston, 2001] presented a Support Vector Machine

(SVM) like learning system to handle multi-label problems. Such problems are usually
decomposed into many two-class problems but the expressive power of such a system
can be weak [McCallum, 1999, Schapire und Singer, 2000]. It is based on a large margin
ranking system that shares a lot of common properties with SVMs.

One of the earliest attempts to connect neural networks and kernel methods was the
sigmoid kernel [Vapnik Vladimir, 1995], which became popular in SVMs due to the early
success of the neural networks. This kernel was inspired by the sigmoid activation used
in the early generations of neural networks. More recently, the authors of [Cho und Saul,
2009] proposed a family of kernel functions that mimic the computation in multilayer
neural nets, and showed their usage in multilayer kernel networks. Chen et al. [Chen

68

Chapter 4. Kernelized dense layers for facial expression recognition

u. a., 2018] proposed a simple yet effective framework for point set feature learning by
leveraging a nonlinear activation layer encoded by Radial Basis Function (RBF) kernels.
It models the spatial distribution of point clouds by aggregating features from sparsely
distributed RBF kernels. A typical RBF kernel, e.g. Gaussian function, naturally penal-
izes long-distance response and is only activated by neighboring points. Such localized
response generates highly discriminative features given different point distributions. In
addition, it allows joint optimization of kernel distribution and its receptive field, auto-
matically evolving kernel configurations in an end-to-end manner.

In this chapter, we build upon these works and introduce a novel FC layer. We lever-
age kernel functions to build a neuron unit that applies a higher order function on
its inputs instead of calculating their weighted sum. The proposed Kernelized Dense
Layers (KDL) permits to improve the discrimination power of the full network and it
is completely differentiable, allowing an end-to-end learning. The experimental results
demonstrate the benefits of such layer in FER task and show that our model achieves
competitive results with respect to the state-of-the-art approaches.

4.3 kernelized Dense Layer

The proposed kernelized Dense Layer is similar to a classical neuron layer in the way
that it applies a dot product between a vector of weights and an input vector, add a
bias vector (b ≥ 0) and eventually applies an activation function. The difference from
standard FC layers is that our proposed method applies higher degree kernel function
instead of a simple linear dot product, which allows the model to map the input data to
a higher space and thus be more discriminative than a classical linear layer.

Figure 4.1 shows the processing of an elementary unit (kernel neuron) of our
proposed KDL. Formally, the output Y is computed by applying a kernel function
K on an input vector x = {x1, x2, . . . , xn} and the corresponding vector of weights
W = {w1, w2, . . . , wn} and, adding the bias vector (b ≥ 0).

In this work, we employed two different kernel functions which have an Euclidean
structure Rd.

• Linear kernel:
K(x, w) = xTw + b, x, w ∈ Rd, b ≥ 0. (4.3)

The linear kernel (Equation 4.3) looks at the similarity between the input vector x
and the filter weight vector w.

• Polynomial kernel:

K(x, w) = (xTw + b)n, x, w ∈ Rd, b ≥ 0. (4.4)

Starting form n > 1 in Equation 4.4, the polynomial kernel K encodes not only the

69

Chapter 4. Kernelized dense layers for facial expression recognition

W2

K(x,W)

Bias

Y

x n

x 1

x 2

Inputs Weights

Kernel

function

Output

Wn

W1

Figure 4.1 – The basic unit of our proposed KDL is a kernel neuron. It applies a kernel function on an
input vector x = {x1, x2, . . . , xn} and a vector of weights w = {w1, w2, . . . , wn}, adds a bias term and
eventually applies an activation function.

linear relation between both x and w vectors, but also non-linear relations between them.
It corresponds to an inner product in a feature space based on some mapping φ:

⟨φ(x), φ(w)⟩ ≈ K(x, w). (4.5)

Note that in the case of polynomial kernel with degree n > 1, we do not apply an
activation function on the neuron output, since non linearity is already added by the
high polynomial kernel degree.

Other kernels that expand the non-linearity to the infinity can also be used. For

instance, the Gaussian kernel defined by K(x, w) = e−
∥x−w∥2

2σ2 , x, w ∈ Rn, σ > 0, Lapla-
cian kernel defined by K(x, w) = e−α∥x−w∥, or the Abel kernel defined as K(x, w) =

e−α|x−w|, where, α > 0 in both kernels.

4.3.1 Datasets

Our experiments have been conducted on three well-known facial expression datasets:
RAF-DB [Li u. a., 2017], ExpW [Zhang u. a., 2018b] and FER2013 [Goodfellow u. a., 2013].

70

Chapter 4. Kernelized dense layers for facial expression recognition

Facial expression datasets contain few classes that are nearly identical, which makes the
recognition process more challenging. The only pre-processing which we have employed
on all experiments is cropping the face region and resizing the resulting images to
100 × 100 pixels.

4.3.2 Training process

We have used Adam optimiser with a learning rate varying from 0.001 to 5e-5. This
learning rate is decreased by a factor of 0.63 if the validation accuracy does not increase
over ten epochs. To avoid over-fitting we have first augmented the data using a range
degree for random rotations of 20, a shear intensity of 0.2, a range for random zoom
of 0.2 and randomly flip inputs horizontally. We have also employed earl stopping if
validation accuracy does not improve by a factor of 0.01 over 20 epochs. Each KDL of
our model is initialized with He normal distribution and a weight decay of 0.0001.

4.4 Experiments

In order to demonstrate the efficiency of the proposed KDL, we built a simple CNN
from scratch rather than using a pre-trained one. As shown in Figure 4.2, our model
architecture is composed of five convolutional blocks. Each block consists of a convo-
lution, batch normalization and rectified linear unit activation layers. The use of batch
normalization [Zou u. a., 2019] before the activation brings more stability to parameter
initialization and achieves higher learning rate. Each of the five convolutional blocks is
followed by a max pooling layer and a dropout layer. Finally, two KDL are added on top
of these convolution blocks with respectively 128 and 7 units. On the former, we apply a
ReLU activation function in the case of linear kernel only, since non-linearity is already
added by the polynomial kernel. Softmax activation function is finally applied on the
last KDL.

KDL-Softmax (7)

KDL 128

Conv (3,3)/512,
BN, ReLU

2* Conv (3,3)/512,

BN, ReLU

3*Conv (3,3)/256,

BN, ReLU

3*Conv (3,3)/128,

BN, ReLU

3* Conv (5,5)/64,

BN,ReLU

stride (2,2)

stride (2,2)

stride (2,2)

stride (3,3)

Flattening

Figure 4.2 – Base model architecture: it is composed of five convolutional blocks. Each block consists of a
convolution, batch normalization and rectified linear unit activation layers. Each of the five convolutional
blocks is followed by a dropout layer. Finally, two KDL are added on top of these convolution blocks with
respectively 128 units and ReLU activation and 7 units with softmax activation.

71

Chapter 4. Kernelized dense layers for facial expression recognition

4.4.1 Ablation Study

This section explores the impact of the use of the proposed KDL on the overall accuracy
of a CNN model. We evaluated the performance using the same network architecture
with different FC techniques. First, we used our model with standard FC layers which
gives the same results as kernel neuron layers with a polynomial function with degree
(n=1). After that, we replaced these FC layers by our KDL. We studied the behaviour
of two different kernel functions, namely; the second-order polynomial kernel and the
third-order polynomial kernel. The experiments are conducted with the same training
parameters as described above.

Table 4.1 presents the results of our model using standard FC layers with compar-
ison to the proposed KDL. In the case of the standard FC layers (Base-Model-FC), our
base model attains 70.13%, 75.91% and 87.05% of accuracy rate on respectively FER2013,
ExpW and RAF datasets, while the use of KDL considerably increases its accuracy. In-
deed, one can notice that the accuracy for the second-order polynomial kernel increases
for about 0.7% for FER2013, 0.25% for ExpW and 0.6% for RAF-DB. In the same way, us-
ing the third-order polynomial kernel increases further the overall accuracy. Compared
to standard FC layers, the third-order polynomial KLD enhances the model accuracy
for about 1.15% for FER2013, 0.75% for ExpW and 1% for RAF-DB. These results are
consistent with previous work [Wang u. a., 2019], where the third-order applied on con-
volution layers gave the best performance. Although the computational complexity of
these kernels is higher compared to the standard layers, they allow to strongly improve
the model accuracy. These results demonstrate that the use of KDL, in the case of FER
problem, are beneficial for the overall accuracy of the model. These techniques enhance
the discriminative power of the model, compared to a standard FC layer.

Table 4.1 – Accuracy Rates of the proposed approach

Dataset
Models FER2013 ExpW RAF-DB

Base-Model-FC 70.13% 75.91% 87.05%
Base-Model-KDLa (n=1) 70.09% 76.87% 87.03%
Base-Model-KDLa (n=2) 70.85% 76.13% 87.64%
Base-Model-KDL (n=3) 71.28% 76.64% 88.02%

aKDL: Kernelized Dense Layer.

72

Chapter 4. Kernelized dense layers for facial expression recognition

Epochs

A
cc
u
ra
cy

(a) Validation accuracy

Epochs

L
o
ss

(b) Validation loss
Figure 4.3 – Validation accuracy and validation loss on RAF-DB with the three kernel configurations.

73

Chapter 4. Kernelized dense layers for facial expression recognition

Epochs

A
cc
u
ra
cy

(a) Validation accuracy

Epochs

L
o
ss

(b) Validation loss
Figure 4.4 – Validation accuracy and validation loss on ExpW with the three kernel configurations.

Another beneficial aspect of using KDL is the speed of convergence. As shown in
Figures 4.3, 4.4 and 4.5, the higher degree is the kernel function, the fast it converge.
Due to the use of early stopping in our training process, the learning process is inter-
rupted as soon as the model begins to overfit. As can be seen, the higher is the kernel
function degree, the sooner it stops training (the blue, red and green curves correspond,
respectively, to n=1, n=2 and n=3). High degree kernel functions are known to be prone
to overfitting, which in our case limits the number of units and layers of our proposed
KDL.

74

Chapter 4. Kernelized dense layers for facial expression recognition

Epochs

A
cc
u
ra
cy

(a) Validation accuracy

Epochs

L
o
ss

(b) Validation loss
Figure 4.5 – Validation accuracy and validation loss on FER2013 with the three kernel configurations.

75

Chapter 4. Kernelized dense layers for facial expression recognition

Table 4.2 – Accuracy rate of the proposed approach and state-of-the-art approach

Dataset
Models FER2013 ExpW RAF-DB

Base-Model-FC 70.13% 75.91% 87.05%
Base-Model-KDLa (n=1) 70.09% 76.87% 87.03%
Base-Model-KDLa (n=2) 70.85% 76.13% 87.64%
Base-Model-KDL (n=3) 71.28% 76.64% 88.02%
Tang et al. [Tang, 2013] 71.16% – –

Guo et al. [Guo u. a., 2016] 71.33% – –
Kim et al. [Kim u. a., 2016] 73.73% – –

Bishay et al. [Bishay u. a., 2019] – 73.1% –
Lian et al. [Lian u. a., 2020] – 71.9 % –

Acharya et al. [Acharya u. a., 2018a] – – 87%
S Li et al. [Li und Deng, 2018b] – – 74.2%

Z.Liu et al. [Liu u. a., 2017b] – – 73.19%
aKDL: Fully connected kernel.

4.4.2 Comparison with the State-of-the-Art

In this section, we compare the performance of the KDL with CNN to several state-
of-the-art FER methods. The obtained results are reported in Table 4.2. As can be seen,
KDL with CNN outperforms the state-of-the-art methods on the ExpW dataset. The best
accuracy rate is 76.64% and has been reached using the third-order polynomial KDL.
Second-order polynomial KDL gives, for his turn, 76.13%. Whereas the state-of-the-art
methods [Bishay u. a., 2019] reached 73.1%.

On RAF-DB dataset, the accuracy of our models is also superior to state-of-the-art
methods. The best accuracy rate is 88.02% and has been reached using the third-order
polynomial KDL. Second-order polynomial KDL gives, for his turn, 87.64%. Whereas
the state-of-the-art methods [Acharya u. a., 2018a] gives 87%.

For FER2013, even thought using the KDL improves considerably the models ac-
curacy, the obtained results are still under the state-of-the-art results. The best accuracy
rate for this dataset, namely 71.28%, was reached using third-order KDL. Despite the im-
provement, the result obtained is 2.5% less than the state-of-the-art method [Kim u. a.,
2016] (73.73%) but remains competitive.

4.5 Conclusion

In this chapter, we designed Kernelized Dense Layer for CNN model that aims to en-
hance the discriminative power of the overall model. It consists of applying higher order
kernel method than the standard FC layer. Experimental results on ExpW, RAF-DB and
FER2013 datasets demonstrate the efficiency of the proposed KDL compared to stan-
dard FC layer in terms of convergence, speed and overall accuracy. The proposed FER

76

Chapter 4. Kernelized dense layers for facial expression recognition

method outperforms most of the state-of-the-art methods and remains competitive. The
performance of our model is essentially due to its capability of capturing high order
information that are crucial for fine-grained classification tasks such as the FER.

77

5Kernel function impact on

convolutional neural networks

Contents

5.1 Introduction . 79

5.2 Study design . 80

5.2.1 Kervolution . 81

5.2.2 Learnable Weights Pooling . 83

5.2.3 Kernelized dense layer . 83

5.3 Experiments . 84

5.3.1 Datasets . 84

5.3.2 Training process . 84

5.3.3 Ablation Study . 85

5.3.4 Comparison with the State-of-the-Art . 98

5.4 Discussion . 100

5.5 Conclusion . 101

Tiis chapter investigates the usage of kernel functions at the different layers in a convo-
lutional neural network. We carry out extensive studies of their impact on CNN lay-

ers. We show how one can effectively leverage kernel functions, by using previously in-
troduced Learnable Pooling Wheights (LPW) layers as well as Kernelized Dense Layers
(KDL). The experiments on conventional classification datasets i.e. MNIST, FASHION-
MNIST and CIFAR-10, show that the proposed techniques improve the performance
of the network compared to classical convolution, pooling and fully connected lay-
ers. Moreover, experiments on fine-grained classification i.e. facial expression databases,
namely RAF-DB, FER2013 and ExpW demonstrate that the discriminative power of the
network is boosted, since the proposed techniques improve the awareness to slight vi-
sual details and allows the network reaching state-of-the-art results.

78

Chapter 5. Kernel function impact on convolutional neural networks

5.1 Introduction

Image classification has always been one of the most studied operation of computer
vision. Several methods have been proposed in the literature addressing this prob-
lem, which consist in efficiently assigning the correct label to an image. Recently, with
the emergence of Convolutional Neural Network (CNN), the computer vision commu-
nity has witnessed an era of blossoming result thanks to the use of very large training
databases. These databases contain a very large number of different images (i.e. objects,
animals...etc). This advance encouraged the computer vision community to go beyond
classical image classification that recognizes basic-level categories. The new challenge
consists of discriminating categories that were considered previously as a single cate-
gory and have only small subtle visual differences. This new sub-topic of image clas-
sification, called fine-grained image classification, is receiving a special attention from
the computer vision community [Liu u. a., 2020, Tang u. a., 2020, Chen u. a., 2020, Ji u. a.,
2020, Wang u. a., 2020, Huang und Li, 2020, Gao u. a., 2020, Zhuang u. a., 2020]. Such
methods aims at discriminating between classes in a sub-category of objects like birds
species [Welinder u. a., 2010], models of cars [Krause u. a., 2013a], and facial expres-
sions, which makes the classification more difficult due to the high intra-class and low
inter-class variations. State-of-the-art approaches typically rely on convolutional neural
network as classification backbone and propose a method to improve its awareness to
subtle visual details.

A CNN is mainly a stack of three different types of layers: convolution layers, pooling
layers and fully-connected layers. Each of these types of layers perform specific task.
Convolution layers are the core building block of a CNN by leveraging the fact that
an input image is composed of small details, or features, and create a mechanism for
analyzing each feature in isolation, which makes a decision about the image as a whole.
Pooling layers, on the other hand, are used for the gradual spatial down-sampling of
the feature map by reducing the number of parameters and thus decreases both the
consumption of the memory and the complexity of computing . In addition, pooling
layers widen the receptive field size of the intermediate neurons which allow the latter
to receive data from a larger area of the image. These two layers are usually used in
alternation until getting the most size-effective representative feature which is finally
fed into a fully connected neural network in order to take a final classification decision.

CNNs have been used for a multitude of visual tasks. They showed to perform very
competitive results while linear operations are used at different layers of the network.
Linear functions are efficient, particularly, when the original data is linearly separable,
which should have, in general, a high dimensional representation. In such a case, the de-
cision boundary can be representable as a linear combination of the original features. It
is worth noting that not every high dimensional problems are linearly separable [Robert,
2014]. For instance, images may have a high dimensional representation, but individual
pixels are not very informative. Moreover, taking in consideration only small regions of

79

Chapter 5. Kernel function impact on convolutional neural networks

the image, dramatically reduces their dimension, which makes linear functions less sen-
sitive to subtle changes in input data. The ability of detecting such differences is crucial
essentially for fine-grained recognition.

To overcome these limitations, some researches investigated different ways to include
non-linear functions in CNNs. Starting from non linear activation functions like ReLU,
eLU [Clevert u. a., 2015], SeLU [Klambauer u. a., 2017] and more recently [Sitzmann u. a.,
2020]. Moreover, some recent work intended to replace the underlying linear function
of a CNN by non linear kernel function without resorting to activation functions. For
instance, some of them replaced convolution layers ([Zoumpourlis u. a., 2017], [Wang
u. a., 2019]), while others replaced the pooling layers ([Lin u. a., 2015], [Tenenbaum und
Freeman, 2000], [Lin und Maji, 2017], [Gao u. a., 2016], [Cui u. a., 2017], [Gao u. a., 2019a],
[Hyun u. a., 2019]). The higher order kernel function are, the more susceptible they are
to fit slight changes in data. We leverage this kernel function property to find the best
use of these functions in different level of the CNN.

In this chapter, we investigate the usage of kernel functions at the different layers in
a CNN. We carry out extensive studies of their impact on convolutional, pooling and
fully-connected layers. For this purpose, we first replace the convolution operation in
CNNs by a non-linear kernel function similarly to Kervolution [Wang u. a., 2019]. We
further used the learnable pooling weights proposed in chapter 3, and kernelized dense
layers proposed in chapter 4. We explore different dispositions and configurations of
these layers to find which configuration gives the best accuracy without over-fitting

5.2 Study design

In this section, we present the different proposed kernel based techniques which can
be plugged into a CNN. These techniques consist in new feature extraction, pooling
and classification layers that can be used in the same manner as the usual CNN layers.
Furthermore, these novel layers can be used solely or jointly with the usual CNN layers.
This flexibility makes them usable in any architecture or even plugged at any level of
a pre-trained CNN model. The novelty in this work is the use of higher order kernel
function to replace the underlying function of each layer. These kernel functions allow
them to perform the same task and brings additional features.

In the following, we give details on how kernel functions can be employed at each
level of a CNN. As shown in Figure 5.1, we replace each layer type of an ordinary CNN
(Fig 5.1-(a)) with a higher order kernel layer (Fig 5.1-(b)). More precisely, we replace
convolution layers with Kervolution layers, Max/AVG pooling layers with Learnable
weights pooling layers, and fully connected layers with Kernelized dense layers KDL.

80

Chapter 5. Kernel function impact on convolutional neural networks

Convolution

Pooling

FC

Classical layers

Kervolution

KDL

Kernelized layers

pooling

Learnable
weights

Kernelization

Figure 5.1 – The different configurations to replace each layer type of an ordinary CNN with a higher
order kernel layer, notably Kervolution, Learnable weights pooling and kernelized dense layers KDL.

5.2.1 Kervolution

Kervolution has been proposed by Wang et al [Wang u. a., 2019]. It extends the convolu-
tion operation which computes the dot product between an input vector X and a weight
vector W, and adds eventually a bias term, according to Equation 5.1:

Co,i,j = (X × W)i,j = ∑
g

∑
h

Xg+i,h+jWo,g,h + Bo, (5.1)

Where o corresponds to the output size, i and j are specific locations in the input, g and
h are respectively the width and height of the convolution filter and B is a bias term.

Convolution is a linear operation that usually requires adding an activation function
to introduce non-linearity. Without these activation functions the CNN performance
drops dramatically. Kervolution leverages this fact and proposes to replace the con-
volution operation in CNNs by a non-linear function that performs the same task as
convolution without resorting to activation functions. In this work, we use Kervolution
with three kernel functions:

1. Linear kervolution which corresponds to the convolution function (Equation 5.1);

2. Polynomial kervolution:

Ko,i,j = ⟨X, W⟩i,j = ∑
g

∑
h
(Xg+i,h+jWo,g,h + C)n + Bo (5.2)

81

Chapter 5. Kernel function impact on convolutional neural networks

where C (C ∈ R+) is a learnable constant and n (n ∈ Z+) is the polynomial order,
it extends the feature space to n dimensions;

3. Gaussian RBF kervolution:

Ko,i,j = e−
∥Xg+i,h+j−Wo,g,h∥

2

2σ2 (5.3)

where σ (σ ∈ R+) is a hyperparameter to control the smoothness of decision
boundary. It extends kervolution to infinite dimensions.

The linear kernel measures the similarity between the filter weight vector W and
the feature map vector X. However, when n > 1 in Equation 5.2, the polynomial ker-
nel encodes the non-linear relations between both X and W vectors, in addition to the
linear relation between them. In the case of the Gaussian kernel (Equation 5.3), the non-
linearity is expanded to the infinity. For this purpose, we can also use other kernels, such
as the the Abel kernel defined as K(X, W) = e−α|X−W|, or the Laplacian kernel defined
by K(X, W) = e−α∥X−W∥, where, α > 0 in both kernels.

Convolution

Kervolution

Pooling

Pooling

FC FC FC

(a) (b) (c)

Kervolution

Pooling

Convolution

Pooling

Kervolution

Pooling

Kervolution

Pooling

Figure 5.2 – The three study configurations of kervolution layers, namely: (a) one kervolution layer at
the beginning of the network, (b) one kervolution layer at the end of the network and (c) an end-to-end
kervolution network.

Kervolution layers are as flexible as convolution layers and can be plugged at any
level of a CNN. In this chapter, we use three configurations to study the kervolution
layer impact on CNNs. As shown in Figure 5.2, we use one kervolution layer at the

82

Chapter 5. Kernel function impact on convolutional neural networks

beginning of the network (Fig 5.2-(a)), one kervolution layer at the end of the network
(Fig 5.2-(b)), and an end-to-end kervolution network (Fig 5.2-(c)).

5.2.2 Learnable Weights Pooling

In order to efficiently study the impact of our proposed pooling layer on a CNN, we
test it following the three configurations. As shown in Figure 5.3, we study the impact
of one Learnable weights pooling layer after the first convolution layer (Fig 5.3-(a)), one
Learnable weights pooling layer after the last convolution layer (Fig 5.3-(b)), and an
end-to-end Learnable weights pooling network (Fig 5.3-(c)).

Convolution

Convolution Convolution

Pooling

Pooling
pooling

Learnable
weights

FCFC FC

(a) (b) (c)

Convolution

pooling

Learnable
weights

Convolution

pooling

Learnable
weights

Convolution

pooling

Learnable
weights

Figure 5.3 – The three study configurations of Learnable weights pooling layers, namely: (a) one Learnable
weights pooling layer after the first convolution layer, (b) one Learnable weights pooling layer after the
last convolution layer, and (c) an end-to-end Learnable weights pooling network.

5.2.3 Kernelized dense layer

The inputs of the fully-connected layers consist of the result of the subsequent alterna-
tion of convolution and pooling layers. These input values goes through the first fully-
connected layer where we multiply them by weights. After that, we apply an activation
function (i.e ReLU). Finally, they goes forward through the output layer, in which each
neuron represents a classification category. The fully-connected layers back-propagates
the most accurate weights where every neuron gets weights that prioritize the most
relevant category.

83

Chapter 5. Kernel function impact on convolutional neural networks

In this chapter, we use a novel dense layer composed of neuron that uses a kernel
function instead of the usual dot product, Kernelized Dense Layer (KDL), proposed
in [Mahmoudi u. a., 2020]. In contrary to a classical neuron layer where it computes a
dot product between an input vector and a vector of weights, add a bias vector (b ≥ 0),
KDL applies higher degree kernel function, which permits to the latter to map the input
data to a higher space and therefore be more discriminative than a usual linear layer.

In the case of KDL there is only one possible configuration to study the impact of
the later on the overall accuracy and convergence of a CNN, which is a fully KDL after
the succession of convolution and pooling.

5.3 Experiments

In this section, we evaluate the performance of the kernel-based layers described above,
in terms of accuracy rate and convergence speed. Several experiments have been con-
ducted on six well-known datasets, following the configuration shown in Figure 5.2 and
5.3. Note that for KDL, only one configuration can be tested, since they can be plugged
only at the end of the network. In the following, we detail our experiments process. First
we describe the datasets used to evaluate our approach (sec.5.3.1). After that we define
the training process of our networks (sec.5.3.2). Then we discuss the obtained results
(sec.5.3.3). Finally, we compare our results to state-of-the-art results.

5.3.1 Datasets

Our experiments have been conducted on six well-known datasets. In order to study
different characteristics of kernel functions in CNN, these datasets have been grouped
in two categories. The first category is used to study the accuracy enhancement and
convergence speed brought by the kernel function. It is composed of the following three
datasets: MNIST, Fashion-MNIST [Xiao u. a., 2017] and CIFAR-10 [Krizhevsky u. a.,
2009]. The second category is specially used to study the awareness of kernel function
to subtle visual details. It is composed of three well-known fine-grained facial expression
datasets: RAF-DB [Li u. a., 2017], ExpW [Zhang u. a., 2018b] and FER2013 [Goodfellow
u. a., 2013]. Facial expression datasets contain few classes that are nearly identical, which
makes the recognition process more challenging.

5.3.2 Training process

The datasets we have used for our experiments are not similar in terms image complex-
ity. MNIST and Fashion-MNIST contain small and very simple images, while Cifar-10

and FER datasets contain larger complex images. We have thus decided to use two
model architectures, as shown in Figures 5.4 and 5.5. These architectures are quite sim-
ple and can effectively run on cost-effective GPUs. Model-1 (Figure 5.4) is used for
MNIST and Fashion-MNIST. It is composed of two blocks. Each one of these blocks is

84

Chapter 5. Kernel function impact on convolutional neural networks

stride (2,2) stride (2,2)

Conv (3,3)/10,

FC (320)

Softmax (10)
BN, ReLU Conv (3,3)/20,

BN, ReLU

Figure 5.4 – Base model-1 architecture: it is composed of two blocks. Each one of these blocks is composed
of a convolution layer, a batch normalization layer, a dropout layer and ReLU activation. At the end,
two fully-connected layers are added with respectively 320 units and ReLU activation and 10 units with
softmax activation.

composed of a convolution layer, a batch normalization layer, a dropout layer and ReLU
activation. At the end, two fully-connected layers are added with respectively 320 units
and ReLU activation and 10 units with softmax activation. On the other hand, model-2
(Figure 5.5) is used for CIFAR-10 and FER datasets. It is composed of five blocks. Each
one of these block is composed of a convolution layer, a batch normalization layer, a
dropout layer and ReLU activation. At the end, two fully-connected layers are added
with respectively 128 units and ReLU activation and 10 units, for CIFAR-10, or 7 units
for FER datasets with softmax activation.

We have used Adam optimiser with a learning rate starting from 0.001 decreased by a
factor of 0.5 if the validation accuracy does not increase over two epochs for Model-1 and
five epochs for Model-2. We trained Model-1 for 50 epochs and Model-2 for 100 epochs.
To avoid over-fitting, for FER datasets, we used data augmentation with a shear intensity
of 0.2, a range degree for random rotations of 20, randomly flip inputs horizontally and
a range for random zoom of 0.2. We have also cropped the face region on FER datasets
and resize the resulting images to 100 × 100 pixels.

5.3.3 Ablation Study

In this section, we explore the impact of the three kernel-based layers in terms of accu-
racy rate and convergence speed. We study the impact of each layer solely, in a full non-
linear configuration network. After that, we test them jointly with the usual CNN layer,
plugging them either at the beginning or at the end of the network. The kernel functions
we have used are: (1) the linear kernel functions, (2) polynomial kernel functions from
second degree to degree five and (3) the Gaussian RBF kernel with σ = 0.9. The accuracy
rate results are illustrated in tables 5.1- 5.7 and convergence speed results are illustrated
in figures 5.6- 5.12. In order to distinguish clearly the difference in convergence among

85

Chapter 5. Kernel function impact on convolutional neural networks

3* Conv (5,5)/64,

BN,ReLU

Flattening

stride (2,2) stride (2,2)

FC (128)

Softmax (7)

stride (2,2) stride (2,2)

3* Conv (3,3)/128,

BN,ReLU 3* Conv (3,3)/256,

BN,ReLU
2* Conv (3,3)/512,

BN,ReLU Conv (3,3)/512,

BN,ReLU

Figure 5.5 – Base model-2 architecture: it is composed of five blocks. Each one of these block is composed
of a convolution layer, a batch normalization layer, a dropout layer and ReLU activation. At the end, two
fully-connected layers are added with respectively 128 units and ReLU activation and 10 or 7 units with
softmax activation.

kernel, we chose to plot only the first 20 epochs for MNIST, Fashion-MNIST and Cifar-10

datasets.

Kervolution

In this section we present the obtained results obtained with our two base models with
a full Kervolution configuration (Table 5.1, Figure 5.6), a single Kervolution layer at the
beginning of the network (Table 5.2, Figure 5.7), and a single Kervolution layer at the
end of the network (Table 5.3, Figure 5.8).

Table 5.1 – Accuracy rates of full kervolution networks

Model-1 Model-2
Layers configuration MNIST Fashion-MNIST Cifar10 RAF-DB FER2013 ExpW

Convolution (Linear kernel) 98.50% 88.29% 86.87% 87.05% 70.49% 75.91%
2

nd-order Poly 99.05% 90.06 % 87.92% 87.77% 70.68% 76.25%
3

rd-order Poly 99.16% 90.04 % 88.64% 87.93% 70.95% 76.32%
4

nd-order Poly 99.02% 89.57% 88.41% 87.31% 70.82% 76.16%
5

rd-order Poly 98.99% 89.71% 87.13% 86.04% 69.65% 75.80%
Gaussian RBF σ = 0.9 98.61% 88.78% 87.51% 87.33% 70.78% 76.23%

Table 5.1 illustrates the accuracy rates obtained using our two base models with a full
kervolution configuration. In table 5.1 one can clearly notice that the use of kervolution
layers enhance the overall accuracy of the network, especially with second, third and
fourth order polynomial kernels. In comparison to full convolution network, the full
kervolution network enhances the accuracy of Model-1 on MNIST dataset by 0.65%
and 1.77% on Fashion-MNIST. On the other hand, the accuracy of Model-2 increases
by 1.73% on CIFAR-10, 0.88% on RAF-DB, 0.46% on FER2013 and 0.41% on ExpW. The
best accuracy rates are, in most cases, reached with third order polynomial kernel and
decreases with higher order polynomial kernels. We have also noticed that Gaussian RBF
kernel is more beneficial on fine-grained FER dataset than other datasets. Therefore, we
can deduce that Gaussian RBF kernels are more sensitive to subtle details.

Figure 5.6 shows the validation accuracy rates evolution of our base models with full
convolution and kervolution configurations. We can clearly notice that kervolution net-

86

Chapter 5. Kernel function impact on convolutional neural networks

works, especially second and third order polynomial kernels, converge in fewer epochs
than convolution network. On the other hand, Gaussian RBF kernel takes more time to
converge than the other kernels. We have also noticed that, for fine-grained FER datasets,
the accuracy curve fluctuates accordingly to the kernel degree. This can be explained by
the fact that kernels are more sensitive to subtle changes in input data. Therefore, any
small change in the weights during the training phase can cause a big change in the
final classification decision.

0 2 4 6 8 10 12 14 16 18 20

Epochs

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

A
c
c
u

ra
c
y

Conv

p=2

p=3

p=4

p=5

RBF

(a) MNIST

0 2 4 6 8 10 12 14 16 18 20

Epochs

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

A
c
c
u

ra
c
y

Conv

p=2

p=3

p=4

p=5

RBF

(b) Fashion-MNIST

0 2 4 6 8 10 12 14 16 18 20

Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
c
c
u

ra
c
y

Conv

p=2

p=3

p=4

p=5

RBF

(c) Cifar-10

0 10 20 30 40 50 60 70 80 90 100

Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y

Conv

p=2

p=3

p=4

p=5

RBF

(d) RAF-DB

0 10 20 30 40 50 60 70 80 90 100

Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
c
c
u

ra
c
y

Conv

p=2

p=3

p=4

p=5

RBF

(e) Fer2013

0 10 20 30 40 50 60 70 80 90 100

Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
c
c
u

ra
c
y

Conv

p=2

p=3

p=4

p=5

RBF

(f) ExpW
Figure 5.6 – Convergence of full kervolution networks

87

Chapter 5. Kernel function impact on convolutional neural networks

Table 5.2 – Accuracy rates with a single kervolution layer at the begining

Model-1 Model-2
Layers configuration MNIST Fashion-MNIST Cifar10 RAF-DB FER2013 ExpW

Convolution (Linear kernel) 98.50% 88.29% 86.87% 87.05% 70.49% 75.91%
2

nd-order Poly 98.87% 89.74% 87.81% 87.62% 70.82% 76.64%
3

rd-order Poly 99.04% 90.26% 88.73% 88.06% 71.06% 76.85%
4

nd-order Poly 99.04% 90.61% 88.52% 87.88% 70.88% 76.53%
5

rd-order Poly 98.99% 90.35% 86.48% 86.71% 69.89% 75.56%
Gaussian RBF σ = 0.9 98.74% 89.53% 88.48% 87.89% 70.98% 76.75%

Table 5.2 presents the accuracy rate results of our two base models, in which we
replaced the first convolution layer by a kervolution layer. In table 5.2 we can also notice
that the use of one kervolution layer at the beginning of the network increases the
accuracy of the network comparing to full convolution network. Furthermore, the use of
only one kervolution layer in the beginning of the network allows to reach better results
than full-kervolution network. Compared to full convolution network, the accuracy rate
increases up to 1.97% on Fashion-MNIST, 1.86% on Cifar-10, 2% on RAF-DB, 0.57% on
FER2013 and 0.94 on ExpW. Gaussian RBF kernels are slightly less accurate than third
and fourth polynomial kernels, yet they also increase the accuracy rate compared to
full-convolution network. They enhance the accuracy on Cifar-10 by 1.61%, 0.84% on
REF-DB, 0.49% on FER2013 and 0.84% on ExpW. Another remark is that higher order
kernels are more accurate than lower order kernel when used only at the beginning
of the network. This may be explained by the fact that higher order kernels can fit to
subtle details more efficiently than lower order kernels. Therefore, the network learns to
detect more useful information than full-convolution network and will be less prone to
over-fitting than full-kervolution network.

Figure 5.7 shows the accuracy convergence of our two base models, in which we
replaced the first convolution layer by a kervolution layer. As illustrated in figure 5.7,
using one kervolution layer at the beginning of the network allows the latter to converge
in less time than the full convolution network. Similarly to full-kervolution configura-
tion, second and third degree polynomial are the fastest to converge in all cases. Higher
degree polynomial layers are also faster to converge than full convolution configura-
tion except for FER datasets. On the other hand, Gaussian RBF layers are the slowest to
converge, though they surpass convolution on MNIST, Fashion MNIST and Cifar-10.

88

Chapter 5. Kernel function impact on convolutional neural networks

0 2 4 6 8 10 12 14 16 18 20

Epochs

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995
A

c
c
u

ra
c
y

Conv

p=2

p=3

p=4

p=5

RBF

(a) MNIST

0 2 4 6 8 10 12 14 16 18 20

Epochs

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

A
c
c
u

ra
c
y

Conv

p=2

p=3

p=4

p=5

RBF

(b) Fashion MNIST

0 2 4 6 8 10 12 14 16 18 20

Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
c
c
u

ra
c
y

Conv

p=2

p=3

p=4

p=5

RBF

(c) Cifar-10

0 10 20 30 40 50 60 70 80 90 100

Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
c
c
u

ra
c
y

Conv

p=2

p=3

p=4

p=5

RBF

(d) RAF-DB

0 10 20 30 40 50 60 70 80 90 100

Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
c
c
u

ra
c
y

Conv

p=2

p=3

p=4

p=5

RBF

(e) FER2013

0 10 20 30 40 50 60 70 80 90 100

Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
c
c
u

ra
c
y

Conv

p=2

p=3

p=4

p=5

RBF

(f) A ExpW
Figure 5.7 – Convergence of networks with one kervolution layer at the begining

Table 5.3 – Accuracy rates with a single kervolution layer at the end

Model-1 Model-2
Layers configuration MNIST Fashion-MNIST Cifar10 RAF-DB FER2013 ExpW

Convolution (Linear kernel) 98.50% 88.29% 86.87% 87.05% 70.49% 75.91%
2

nd-order Poly 98.89% 88.37% 87.11% 87.63% 70.81% 76.24%
3

rd-order Poly 98.84% 88.45% 87.23% 88.03% 70.95% 76.82%
4

nd-order Poly 98.62% 87.76% 87.09% 87.85% 70.75% 76.66%
5

rd-order Poly 98.72% 87.45% 86.97% 87.15% 69.76% 75.45%
Gaussian RBF σ = 0.9 98.75% 89.33% 90.13% 89.36% 71.15% 77.21%

Table 5.3 presents the accuracy rate results of our two base models, in which we

89

Chapter 5. Kernel function impact on convolutional neural networks

replaced the last convolution layer by a kervolution layer. In table 5.3 one can notice
that the use of polynomial kervolution layers at the end of the network decreases its
accuracy compared to full-kervolution configuration and kervolution at the beginning.
Yet, it performs better than full-convolution configuration. Indeed, we could surpass
full-convolution configuration by 0.34% on MNIST, 0.16% on Fashion MNIST, 0.36% on
Cifar-10, .0.98% on RAF-DB, 0.46% on FER2013 and 0.91% on ExpW. The best accuracy
rates where reached with third degree polynomial kernel. Other polynomial kernels also
perform slightly better than full-convolution configuration, but are less accurate than
the other kervolution configurations. On the other hand, Gaussian RBF kernels increase
remarkably the overall accuracy of the network compared to full-convolution configura-
tion and other Gaussian RBF kervolution configurations. Indeed, it increases the overall
accuracy rates by 0.25% on MNIST, 1.04% on Fashion MNIST, 3.26% on Cifar-10, 2.31%
on RAF-DB, 0.66% on FER2013 and 1.30% on ExpW. With this has been said, we deduce
that polynomial kervolution layers are more suited for feature extraction which explains
why they are more accurate when plugged at the beginning of the network. On the
other hand, Gaussian RBF kervolution layers are more beneficial when plugged at the
end of the network than the beginning. This can be explained by the fact that Gaussian
RBF kernels are more accurate for classification than for feature extraction.

Figure 5.8 shows the accuracy convergence of our two base models, in which we
replaced the last convolution layer by a kervolution layer. We can clearly notice that the
use of one kervolution layer at the end of the network quicken remarkably its conver-
gence. This impact on convergence speed is valid with all kernels. On the other hand,
even-though Gaussian RBF kernel reaches the highest accuracy rates among all kernels,
it is still the slowest kernel to converge. Polynomial kernels, on the other hand, are still
the fastest in convergence.

According to these results, we can say that the use of kervolution layers have clearly
a beneficial impact on the accuracy rate and convergence speed of the network. As we
have seen above, this positive impact is noticeable wherever kervolution layers are used.
In terms of accuracy, using one kervolution layer at the beginning of the network shown
to be the most efficient configuration. Whereas, in terms of convergence speed, using
one kervolution layer at the end of the network shown to be the fastest to converge.
Full-kervolution configuration is, for its part, average in both accuracy and convergence
speed compared with the above configurations. In addition, full-kervolution configura-
tion is more prone to overfitting than the other kervolution configurations.

90

Chapter 5. Kernel function impact on convolutional neural networks

0 2 4 6 8 10 12 14 16 18 20

Epochs

0.93

0.94

0.95

0.96

0.97

0.98

0.99
A

c
c
u

ra
c
y

Conv

p=2

p=3

p=4

p=5

RBF

(a) MNIST

0 2 4 6 8 10 12 14 16 18 20

Epochs

0.78

0.8

0.82

0.84

0.86

0.88

0.9

A
c
c
u

ra
c
y

Conv

p=2

p=3

p=4

p=5

RBF

(b) Fashion MNIST

0 2 4 6 8 10 12 14 16 18 20

Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
c
c
u

ra
c
y

Conv

p=2

p=3

p=4

p=5

RBF

(c) Cifar-10

0 10 20 30 40 50 60 70 80 90 100

Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y

Conv

p=2

p=3

p=4

p=5

RBF

(d) RAF-DB

0 10 20 30 40 50 60 70 80 90 100

Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
c
c
u

ra
c
y

Conv

p=2

p=3

p=4

p=5

RBF

(e) FER2013

0 10 20 30 40 50 60 70 80 90 100

Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
c
c
u

ra
c
y

Conv

p=2

p=3

p=4

p=5

RBF

(f) A ExpW
Figure 5.8 – Convergence of networks with one kervolution layer at the end

Learnable weights pooling

Similarly to kervolution, we explore the impact of using learnable pooling with three
configurations, namely: full learnable pooling network (Table 5.4, Figure 5.9), learnable
pooling after the first convolution block (Table 5.5, Figure 5.10) and learnable pooling at
the end of the network (Table 5.6, Figure 5.11). This time, we compare the performance
of the network with the usual pooling methods, namely: Max and average pooling.

91

Chapter 5. Kernel function impact on convolutional neural networks

Table 5.4 – Accuracy rates of full learnable pooling network

Model-1 Model-2
Layers configuration MNIST Fashion-MNIST Cifar10 RAF-DB FER2013 ExpW

Max 99.05% 91.34% 88.42% 87.05% 70.49% 75.91%
AVG 99.17% 91.37% 88.12% 86.89% 70.13% 75.74%

Linear kernel 98.85% 90.05% 90.25% 90.81% 70.96% 76.28%
2

nd-order Poly 99.26% 91.42% 90.62% 92.87% 70.88% 76.64%
3

rd-order Poly 99.35% 91.79% 90.97% 93.21% 71.35% 76.81%
4

nd-order Poly 98.73% 88.56% 89.88% 93.03% 71.13% 76.73%
5

rd-order Poly 98.52% 87.91% 89.61% 92.64% 69.91% 75.56%
Gaussian RBF σ = 0.9 99.11% 91.32% 90.45% 92.74% 70.74% 76.42%

Table 5.4 presents the results of our base models with learnable pooling only. One can
clearly notice that learnable pooling enhance the accuracy of the network with all kernel
functions. Second and third order polynomial kernels are the most accurate kernels for
pooling with all datasets. With third order polynomial kernel Model-1 surpassed usual
pooling methods by 0.18% on MNIST and 0.42% on Fashion-MNIST. On the other hand,
Model-2 outperformed usual pooling method by 2.55% on Cifar-10, 6.15% on RAF-DB,
0.86% on FER2013 and 0.90% on ExpW. We can also notice that for fine-grained FER
datasets, higher order polynomial kernels are also beneficial for the model for the same
reasons cited for kervolution at the beginning of the network. Indeed, learnable pooling
uses less weights than convolution or kervolution which allows it to fit subtle details
without over-fitting. Finally, Gaussian RBF learnable pooling performs better than usual
pooling methods even-though it does not outperform polynomial kernels. Although it
did not surpass usual pooling method on model-1, it outperformed ordinary pooling
methods with Model-2 by 2.03% on Cifar-10, 5.69% on RAF-DB, 0.25% on FER2013 and
0.51 on ExpW.

The convergence progression of full learnable pooling networks is shown in Fig-
ure 5.9. We can notice that second and third order polynomial kernels are the fastest to
converge. On the other hand, higher order polynomial kernels convergence is the slow-
est among all kernels, even if they reach higher accuracy rates than Max and average
pooling for FER datasets. Finally, Gaussian RBF kernel has similar accuracy progression
to Max and average pooling.

92

Chapter 5. Kernel function impact on convolutional neural networks

0 2 4 6 8 10 12 14 16 18 20

Epochs

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1
A

c
c
u

ra
c
y

Max

Avg

p=1

p=2

p=3

p=4

p=5

RBF

(a) MNIST

0 2 4 6 8 10 12 14 16 18 20

Epochs

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

A
c
c
u

ra
c
y

Max

Avg

p=1

p=2

p=3

p=4

p=5

RBF

(b) Fashion MNIST

0 2 4 6 8 10 12 14 16 18 20

Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
c
c
u

ra
c
y

Max

Avg

p=1

p=2

p=3

p=4

p=5

RBF

(c) FER20132

0 10 20 30 40 50 60 70 80 90 100

Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y

Max

Avg

p=1

p=2

p=3

p=4

p=5

RBF

(d) RAF-DB

0 10 20 30 40 50 60 70 80 90 100

Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
c
c
u

ra
c
y

Max

Avg

p=1

p=2

p=3

p=4

p=5

RBF

(e) FER2013

0 10 20 30 40 50 60 70 80 90 100

Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
c
c
u

ra
c
y

Max

Avg

p=1

p=2

p=3

p=4

p=5

RBF

(f) A ExpW
Figure 5.9 – Convergence of networks with learnable pooling

In table 5.5 we notice that using one learnable pooling layer after the first convolution
block does not perform as well as the full learnable pooling network. Even-though linear
kernel outperforms the usual pooling methods. As stated before, linear kernel pooling
can learn a suitable pooling from a continuum of methods that ranges from average to
max pooling. This is the reason why linear kernel pooling performs well wherever it is
plugged.

93

Chapter 5. Kernel function impact on convolutional neural networks

Table 5.5 – Accuracy rates networks with a single learnable pooling layer at the begining

Model-1 Model-2
Layers configuration MNIST Fashion-MNIST Cifar10 RAF-DB FER2013 ExpW

Max 99.05% 91.34% 88.42% 87.05% 70.49% 75.91%
AVG 99.17% 91.37% 88.12% 86.89% 70.13% 75.74%

Linear kernel 99.11% 90.58% 88.15% 87.19% 70.26% 75.95%
2

nd-order Poly 98.97% 89.80% 87.71% 86.92% 70.08% 75.82%
3

rd-order Poly 99.24% 89.88% 87.54% 86.79% 69.92% 75.23%
4

nd-order Poly 99.12% 90.32% 87% 86.57% 69.79% 74.84%
5

rd-order Poly 99.10% 90.24% 86.89% 86.38% 69.54% 74.88%
Gaussian RBF σ = 0.9 98.43% 88.93% 85.71% 84.12% 68.63% 73.21%

0 2 4 6 8 10 12 14 16 18 20

Epochs

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

A
c
c
u

ra
c
y

Max

Avg

p=1

p=2

p=3

p=4

p=5

RBF

(a) MNIST

0 2 4 6 8 10 12 14 16 18 20

Epochs

0.65

0.7

0.75

0.8

0.85

0.9

0.95

A
c
c
u

ra
c
y

Max

Avg

p=1

p=2

p=3

p=4

p=5

RBF

(b) Fashion MNIST

0 2 4 6 8 10 12 14 16 18 20

Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
c
c
u

ra
c
y

Max

Avg

p=1

p=2

p=3

p=4

p=5

RBF

(c) Cifar-10

0 10 20 30 40 50 60 70 80 90 100

Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
c
c
u

ra
c
y

Max

Avg

p=1

p=2

p=3

p=4

p=5

RBF

(d) RAF-DB

0 10 20 30 40 50 60 70 80 90 100

Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
c
c
u

ra
c
y

Max

Avg

p=1

p=2

p=3

p=4

p=5

RBF

(e) FER2013

0 10 20 30 40 50 60 70 80 90 100

Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
c
c
u

ra
c
y

Max

Avg

p=1

p=2

p=3

p=4

p=5

RBF

(f) A ExpW
Figure 5.10 – Networks convergence with learnable pooling at the beginning

94

Chapter 5. Kernel function impact on convolutional neural networks

The convergence progression of learnable pooling at the beginning of the networks is
shown in Figure 5.10. We can notice that polynomial kernels are, in general, the fastest to
converge. Second and third order polynomial kernels are still the most efficient among
these kernels. On the other hand, Gaussian RBF kernel is the slowest kernel to converge,
specially for the biggest FER datasets (i.e. FER2013 and ExpW). This kernel is more
sensitive to the learning rate used. As we can see in Figure 5.10, Gaussian RBF kernel
does not start to converge until reaching a specific learning rate.

Table 5.6 – Accuracy rates networks with a single learnable pooling layer at the end

Model-1 Model-2
Layers configuration MNIST Fashion-MNIST Cifar10 RAF-DB FER2013 ExpW

Max 99.05% 91.34% 88.42% 87.05% 70.49% 75.91%
AVG 99.17% 91.37% 88.12% 86.89% 70.13% 75.74%

Linear kernel 98.93% 90.42% 87.52% 87.12% 70.06% 75.87%
2

nd-order Poly 98.85% 89.94% 87.28% 86.89% 69.87% 75.66%
3

rd-order Poly 98.78% 89.72% 87.04% 86.75% 69.71% 75.48%
4

nd-order Poly 98.62% 89.37% 86.79% 86.69% 69.58% 75.36%
5

rd-order Poly 98.90% 89.10% 86.63% 86.42% 69.22% 74.81%
Gaussian RBF σ = 0.9 99.03% 90.36% 88.09% 86.94% 70.11% 75.79%

Similarly to learnable pooling at the beginning of the network (Table 5.5), using
one learnable pooling layer after the last convolution layer and before fully connected
layers (Table 5.6) does not perform as well as the full learnable pooling network. One
exception is the Gaussian RBF kernel which slightly performs better at the end than at
the beginning. This last remark strengthens the deduction made on kervolution at the
end of the network which states that Gaussian RBF kernel is best suited for classification
than feature extraction or even pooling.

The convergence speed of learnable pooling at the end of the network is illustrated
in Figure 5.11. One can clearly notice that kernel based pooling does not perform as
well as when plugged at the beginning or in a full configuration. It performs similarly
to the usual pooling methods. On the other hand, Gaussian RBF kernels have a faster
convergence when used at the end of the network. Moreover, it outperforms other pool-
ing method, specially with FER dataset. This confirms the assumption made above that
Gaussian RBF kernel is more efficient when used just before the fully connected layers.

95

Chapter 5. Kernel function impact on convolutional neural networks

0 2 4 6 8 10 12 14 16 18 20

Epochs

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1
A

c
c
u

ra
c
y

Max

Avg

p=1

p=2

p=3

p=4

p=5

RBF

(a) MNIST

0 5 10 15 20 25 30 35 40 45 50

Epochs

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

A
c
c
u

ra
c
y

Max

Avg

p=1

p=2

p=3

p=4

p=5

RBF

(b) Fashion MNIST

0 2 4 6 8 10 12 14 16 18 20

Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
c
c
u

ra
c
y

Max

Avg

p=1

p=2

p=3

p=4

p=5

RBF

(c) Cifar-10

0 10 20 30 40 50 60 70 80 90 100

Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
c
c
u

ra
c
y

Max

Avg

p=1

p=2

p=3

p=4

p=5

RBF

(d) RAF-DB

0 10 20 30 40 50 60 70 80 90 100

Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
c
c
u

ra
c
y

Max

Avg

p=1

p=2

p=3

p=4

p=5

RBF

(e) FER2013

0 10 20 30 40 50 60 70 80 90 100

Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
c
c
u

ra
c
y

Max

Avg

p=1

p=2

p=3

p=4

p=5

RBF

(f) ExpW
Figure 5.11 – Networks convergence with a single learnable pooling layer at the end

kernelized Dense Layers

kernelized Dense Layers are only plugged at the end of the network since they replace
the fully connected layers. Table 5.7 shows the result of using kernelized Dense Lay-
ers instead of the usual fully-connected layers. One can clearly notice that using kernel
function for classification improves the accuracy of the network. For instance, polyno-
mial kernel enhances the accuracy of the network for about 1% with fine-grained FER
datasets. Third and Fourth order polynomial kernels are those who gave the best result
with all datasets. On the other hand, Gaussian RBF kernel results confirm the deduction

96

Chapter 5. Kernel function impact on convolutional neural networks

made trough this experimental section that it is best suited for classification than feature
extraction. Whenever it is used at the end of the network it performs better than when
used in the beginning.

Table 5.7 – Accuracy rates of networks with KDL

Model-1 Model-2
Layers configuration MNIST Fashion-MNIST Cifar10 RAF-DB FER2013 ExpW

Linear kernel 99.07% 90.07% 86.92% 87.05% 70.49% 75.91%
2

nd-order Poly 99.12% 90.73% 87.61% 87.64% 70.85% 76.13%
3

rd-order Poly 99.11% 90.63% 89.37% 88.12% 71.28% 76.64%
4

nd-order Poly 99.09% 90.30% 89.09% 87.83% 71.13% 76.42%
5

rd-order Poly 99.01% 91.07% 88.95% 86.93% 70.62% 75.86%
Gaussian RBF σ = 0.9 99.23% 90.79% 89.11% 88.03% 71.06% 76.51%

Figure 5.12 shows the convergence of networks with KDL. We can say that poly-
nomial kernels converge faster than other kernels. Even-though second and third order
polynomial reach better accuracy rates than other polynomial kernels, they have not bet-
ter convergence. On the other hand, Gaussian RBF kernel shows the slowest convergence
even if it gives the best accuracy rates.

We have also tried to combine these kernel-based methods together in the same net-
work. The number of all possible configurations is very big, therefore we only show the
configuration which gave the best results. These results are shown in Table 5.8. All the
combinations tested shown a dramatically decreasing in performance. The only reason-
able performances we could attain were using one kervolution layer at the beginning of
the network and KDL at the end. Yet we have noticed that this configuration shows a
clear over fitting.

Table 5.8 – Accuracy rates of networks with best combinations

Model-1 Model-2
Layers configuration MNIST Fashion-MNIST Cifar10 RAF-DB FER2013 ExpW

Single Kervolution layer at the beginning and KDL
2

rd-order Poly (1kerv-KDL) 99.16% 91.19% 65.86% 72.81% 62.41% 58.72%
3

rd-order Poly (1kerv-KDL) 98.96% 90.23% 65.75% 72.64% 61.73% 57.96%
4

nd-order Poly (1kerv-KDL) 98.88% 89.64% 61.87% 69.58% 59.86% 57.41%
Gaussian RBF σ = 0.9 (1kerv-KDL) 98.57% 88.92% 61.20% 68.12% 59.12% 56.87%

A more elaborated study on the use of kernel function on all over the network is
presented in appendix A. This shows the performance of a deep kernelized network
using kervolution, KDL and SVM on fine-grained and FER datasets.

97

Chapter 5. Kernel function impact on convolutional neural networks

0 2 4 6 8 10 12 14 16 18 20

Epochs

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995
A

c
c
u

ra
c
y

p=1

p=2

p=3

p=4

p=5

RBF

(a) MNIST

0 2 4 6 8 10 12 14 16 18 20

Epochs

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

A
c
c
u

ra
c
y

p=1

p=2

p=3

p=4

p=5

RBF

(b) Fashion MNIST

0 2 4 6 8 10 12 14 16 18 20

Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
c
c
u

ra
c
y

p=1

p=2

p=3

p=4

p=5

RBF

(c) Cifar 10

0 10 20 30 40 50 60 70 80 90 100

Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y

p=1

p=2

p=3

p=4

p=5

RBF

(d) RAF-DB

0 10 20 30 40 50 60 70 80 90 100

Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
c
c
u

ra
c
y

p=1

p=2

p=3

p=4

p=5

RBF

(e) FER2013

0 10 20 30 40 50 60 70 80 90 100

Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
c
c
u

ra
c
y

p=1

p=2

p=3

p=4

p=5

RBF

(f) A ExpW
Figure 5.12 – Networks convergence with KDL

5.3.4 Comparison with the State-of-the-Art

In this section, we compare the performance of the proposed methods, namely: ker-
volution, learnable pooling and KDL, with respect to several state-of-the-art methods.
According to table 5.9, we obtained state-of-the-art results on two FER datasets (RAF-DB
and ExpW) with all the proposed methods. For the remaining datasets namely MNIST,
Fashion MNIST, Cifar-10 and FER2013, we could not surpass state-of-the-art results,
yet we obtained very close results. In the following, we give the best results of each
configuration.

98

Chapter 5. Kernel function impact on convolutional neural networks

With full kervolution network (Table 5.1), the highest accuracy rate we reached, was
using third order polynomial kernel. It gave 99.16% on MNIST, 87.93% on RAF-DB and
76.32% on ExpW. Kervolution attains better results when used at the beginning of the
network (Table 5.2). With this configuration, we got 99.04 on MNIST, 88.73% on RAF-
DB and 76.85% on ExpW using third order polynomial kernel. On the other hand, when
using kervolution at the end of the network (Table 5.3), the Gaussian RBF reaches the
best results. It attains 89.36% on RAF-DB and 77.21% on ExpW.

Learnable pooling is the method that allowed to reach the best results. With the
full learnable pooling configuration (Table 5.4), we could reach the best results on all
datasets using third order polynomial kernel. We got very close results to state-of-the-
art with 99.35% on MNIST, 91.79% on Fashion MNIST, 90.97% on Cifar-10 and 71.35%
on FER2013. We have also reached state-of-the-art result on RAF-DB and ExpW with
respectively 93.21% and 76.81%. Using learnable pooling after the first convolution
block (Table 5.5), we could not surpass full learnable pooling network. The best results
were obtained with linear kernel with 87.19% on RAF-DB and 75.95% on Expw. The
same results were obtained when using learnable pooling at the end of the network,
with a slight improvement for Gaussian RBF kernel. Yet linear kernel remains the more
accurate with 87.12% for RAF-DB and 75.87% for ExpW.

Finally, KDL (Table 5.7) gives very good results with all the used kernels. On MNIST
dataset, all the results are above 99% and reached 99.23% with Gaussian RBF kernel. It
also reached 88.03% on RAF-DB and 76.51 on ExpW. The best KDL results were obtained
with third order polynomial kernel. It reached 88.12% on RAF-DB and 76.64% on ExpW.

99

Chapter 5. Kernel function impact on convolutional neural networks

Table 5.9 – Accuracy rates of networks with best combinations

Model-1 Model-2
Layers configuration MNIST Fashion-MNIST Cifar10 RAF-DB FER2013 ExpW

Full kervolution networks
3

rd-order Poly 99.16% 90.04 % 88.64% 87.93% 70.95% 76.32%
Gaussian RBF σ = 0.9 98.61% 88.78% 87.51% 87.33% 70.78% 76.23%

Single kervolution layer at the beginning
3

rd-order Poly 99.04% 90.26% 88.73% 88.06% 71.06% 76.85%
Gaussian RBF σ = 0.9 98.74% 89.53% 88.48% 87.89% 70.98% 76.75%

Single kervolution layer at the end
3

rd-order Poly 98.84% 88.45% 87.23% 88.03% 70.95% 76.82%
Gaussian RBF σ = 0.9 98.75% 89.33% 90.13% 89.36% 71.15% 77.21%

Full learnable pooling
3

rd-order Poly 99.35% 91.79% 90.97% 93.21% 71.35% 76.81%
Gaussian RBF σ = 0.9 99.11% 91.32% 90.45% 92.74% 70.74% 76.42%

Learnable pooling at the beginning
3

rd-order Poly 99.24% 89.88% 87.54% 86.79% 69.92% 75.23%
Gaussian RBF σ = 0.9 98.74% 89.53% 88.48% 87.89% 70.98% 76.75%

Learnable pooling at the end
Linear kernel 98.93% 90.42% 87.52% 87.12% 70.06% 75.87%

Gaussian RBF σ = 0.9 99.03% 90.36% 88.09% 86.94% 70.11% 75.79%
Kernelized Dense Layer

3
rd-order Poly 99.11% 90.63% 89.37% 88.12% 71.28% 76.64%

Gaussian RBF σ = 0.9 99.23% 90.79% 89.11% 88.03% 71.06% 76.51%
State-of-the-art results

Byerly et al [Byerly u. a., 2020] 99.84% – – – – –
Assiri [Assiri, 2020] 99.83% – – – – –

Jayasundara et al [Jayasundara u. a., 2019] 99.71% 96.36% – – – –
Kolesnikov et al [Kolesnikov u. a., 2019] – – 99.30% – – –

Huang et al [Huang u. a., 2019] – – 99% – – –
Ridnik et al [Ridnik u. a., 2020] – – 99% – – –

Tang et al. [Tang, 2013] – – – – – 71.16%
Guo et al. [Guo u. a., 2016] – – – – – 71.33%
Kim et al. [Kim u. a., 2016] – – – – – 73.73%

Bishay et al. [Bishay u. a., 2019] – – – – 73.10% –
Lian et al. [Lian u. a., 2020] – – – – 71.90 % –

Acharya et al. [Acharya u. a., 2018a] – – – 87% – –
S Li et al. [Li und Deng, 2018b] – – – 74.20% – –

Z.Liu et al. [Liu u. a., 2017b] – – – 73.19% – –

5.4 Discussion

In this chapter, we extensively studied the impact of using kernel functions on different
levels of a CNN, in particular, convolution, pooling and fully-connected layers. We re-
placed convolution layer by a non-linear layer as introduced by Wang et al. [Wang u. a.,
2019]. We tested the performance of this layer following three network configurations.
We first tested them solely, in a full configuration network. After that, we tested them
jointly with the usual convolution layers, plugging them either at the beginning of the
network or at the end.

We have also used a novel pooling layer, based on kernel functions, that keeps the
down-scaling aspect of the standard pooling function and brings various new features.
This pooling layer relay on learnable weights that generalize ordinary pooling opera-
tions (i.e. average pooling and max pooling). Furthermore, it encodes patch-wise non-
linearity. In this manner, the discrimination power of the full network is enhanced. The

100

Chapter 5. Kernel function impact on convolutional neural networks

novel pooling, called learnable weights pooling, can be used at any level of the network
and is fully differentiable, which allows the network to be trained in an end-to-end
training. We have also explored their impact following the same network configuration
as stated above.

We also use a novel fully-connected layer in which we use kernel functions to create
a neuron unit that uses a higher degree kernel function on its inputs rather than com-
puting the weighted sum. The used layer, called Kernelized Dense Layers (KDL), is also
differentiable and demonstrates its usefulness in the improvement of the discrimination
power of the full network.

For the three proposed layers, we explored their impact on the overall accuracy
and convergence speed of the network. The results illustrated in Tables 5.1- 5.7 and
Figures 5.6- 5.12 allow us to deduce the following. Kervolution layer is best suited for
feature extraction and gives the best of its results when used at beginning of the network
conjointly with convolution layers. It is more accurate with fine-grained FER datasets
which means that it is more sensitive to subtle details. Adding more kervolution layers
only increases over-fitting. While using kervolution at the end of the network decreases
its performance. On the other hand, learnable pooling works best when used in full
network configuration. It has the same advantages of kervolution in term of being more
sensitive to subtle details with fewer parameters, which prevents it from over-fitting.
The performance of learnable pooling decreases when used only at the beginning of the
network or at the end, compared to the full network configuration. Finally, KDL is the
most stable proposed layer. It shows good performance with all kernels and datasets.

In terms of kernels, we have also noticed that they may perform differently when
used at different levels. For instance, polynomial kernels work best as feature extractors.
They work better when used at the beginning of the network only; as stated in [Wang
u. a., 2019]. On the other hand, Gaussian RBF kernels work best when used at the end
of the network. Either as feature extraction or classification layer.

5.5 Conclusion

In light of the results obtained in the experiments, we have conducted in this work, we
deduce that kernel functions impact positively the CNN performance. Indeed, the ex-
perimental results prove that the use of kernel functions, instead of the linear functions
used in CNN layers, improves the accuracy rate of the whole model and its convergence
speed. Furthermore, we concluded that the impact of these kernel functions varies ac-
cording to the level in which they are plugged into and the specific kernel in use. We
have also concluded that high order kernels prone to overfitting, whereas low order
kernels might not be sufficiently effective to fit the input data distributions. Therefore, a
trade-off between complexity and performance should be reached.

101

6Expanding Convolutional Neural

Network Kernel For Facial

Expression Recognition

Contents

6.1 Introduction . 103

6.2 Method . 104

6.2.1 Convolution layer expansion . 105

6.2.2 Dense layer expansion . 106

6.3 Experiments . 107

6.3.1 Models architecture,training process and datasets 108

6.3.2 Ablation Study . 109

6.3.3 Comparison with state-of-the-art . 114

6.4 Conclusion . 115

In this chapter, we propose a Facial Expression Recognition (FER) method, based on
kernel enhanced Convolutional Neural Network (CNN) model. Our method im-

proves the performance of a CNN without increasing its depth nor its width. It consists
of expanding the linear kernel function, used at different levels of a CNN. The expan-
sion is performed by combining multiple polynomial kernels with different degrees. By
doing so, we allow the network to automatically learn the suitable kernel for the spe-
cific target task. The network can either uses one specific kernel or a combination of
multiple kernels. In the latter case we will have a kernel in the form of a Taylor series
kernel, which is more sensitive to subtle details than the linear one and is able to better
fit the input data. Furthermore, this method uses the same number of parameters as a
convolution layer or a dense layer.

102

Chapter 6. Expanding Convolutional Neural Network Kernel For Facial Expression
Recognition

6.1 Introduction

A CNN is mainly a stack of three different types of layers; namely convolution, pooling
and fully connected layers. These layers use linear kernel functions in order to extract,
down-sample and classify features, respectively. Let x ∈ Rn be an input vector fed into
a layer L and W ∈ Rn its related weight vector. A linear kernel is represented as in
equation 6.1.

Klinear(x, W) = ⟨x, W⟩, (6.1)

where ⟨., .⟩ is the inner product.

Linear functions are efficient, particularly when the original data is linearly separa-
ble. These data should have, in general, a high dimensional representation. In such a
case, the decision boundary is likely to be representable as a linear combination of the
original features. It is worth noting that not all high dimensional problems are linearly
separable [Robert, 2014]. For example, images may have a high dimensional representa-
tion, but individual pixels are not very informative. Moreover, taking in consideration
only small regions of the image, dramatically reduces their dimension. Thus making
linear functions less sensitive to subtle changes in input data. However, the ability of de-
tecting such details is crucial in fine-grained recognition, and particularly for FER. Such
recognition application requires a method that can detect the finest features in input
data.

To overcome this issue, facial expression recognition systems must be able to recog-
nise this subtle differences efficiently. Researchers are trying to overcome this problem
by either increasing the network size or by employing more complex functions. In the
first case, researchers are continuously trying to enhance CNNs by increasing their depth
(number of layers) or width (size of the output of each layer). Even though by doing so
the performance of the network is effectively enhanced, it can not be a longstanding
solution. Indeed, these methods drastically increase the number of weights and the net-
work complexity. Therefore, the resulting models can only be used on powerful devices.
In the second case, the focus is more on computation. Many researchers incorporated
more complex functions in CNN, instead of simple linear functions, at different levels.
These methods have the benefits of being less memory consuming, even though they
are harder to train.

In this chapter, we propose to enhance CNN performance without increasing the
number of parameters. Our method consists of expanding the linear kernel function,
used at different level of a CNN. The expansion is performed by combining multiple
polynomial kernels with different degrees. This method allows the network to auto-
matically learn the suitable kernel for a specific task. The network can either uses one
specific kernel or a combination of multiple kernels. In the latter case we will have a
kernel in the form of a Taylor series kernel. This kernel function is more sensitive to

103

Chapter 6. Expanding Convolutional Neural Network Kernel For Facial Expression
Recognition

subtle details than the linear kernel and is able to better fit the input data. The sensi-
tivity to subtle visual details is a key factor for a better facial expression recognition.
Furthermore, this method uses the same number of parameters as a convolution layer
or a dense layer.

The remainder of this chapter is organized as follows: Section 6.2 introduces the
proposed expansion method for convolution and fully connected layers. Section 6.3
presents our experiments setting, the datasets we used and their related results. Finally,
Section 6.4 concludes the chapter.

6.2 Method

Many researches attempted to enhance the underlying linear kernel in CNNs. Among
these techniques, we focus more on those in which higher order kernels are used instead
of the linear one. The intuition behind is to make the underlying linear kernel operates
on higher dimensional feature map so that it becomes more discriminative. In other
words, instead of running a linear classifier directly on feature, they are first mapped to a
higher-dimensional Reproducing Kernel Hilbert Space (RKHS) using a positive definite
kernel function. For certain kernel functions, the RKHS can even be infinite dimensional.
A linear classifier is then run on this high-dimensional RKHS. Since the dimensionality
of the feature vectors is dramatically increased via this mapping, a linear classifier in the
RKHS corresponds to a powerful nonlinear classifier in the original feature vector space.
Such a classifier is capable of learning more complex patterns than a linear classifier
directly operating on the feature vectors. According to [Cui u. a., 2017], there are two
ways in general to map features to a higher order RKHS. The first and most commonly
used one is to implicitly map the feature via the kernel trick, like in the case of kernel
SVM [Schölkopf u. a., 2002, Cortes und Vapnik, 1995]. Thanks to the kernel trick, we
never have to explicitly calculate the high-dimensional vectors in the RKHS, which will
be computationally expensive (or even impossible in the case of an infinite-dimensional
space) to compute and store. Let φ(.) : Rn 7−→ H represent this RKHS embedding.

K(x, W)H = ⟨φ(x), φ(W)⟩H, (6.2)

where ⟨., .⟩H denotes the inner product in the Hilbert space H.

The key difference between equation 6.1 and equation 6.2 is that the dot products
between x and W have been replaced with the inner products between φ(x) and φ(W).
The more general notion of inner product is used instead of the dot product because the
Hilbert space H can be infinite dimensional.

according to [Cui u. a., 2017, Jayasumana u. a., 2020], the disadvantages are twofold.
The storage needed and the evaluation time are both proportional to the number of
training data, which makes it inefficient on large datasets. In addition, the construction

104

Chapter 6. Expanding Convolutional Neural Network Kernel For Facial Expression
Recognition

of the kernel makes it hard to use stochastic learning methods, including Stochastic
Gradient Descent (SGD) in the training of CNNs. The second way is to explicitly map
the feature vector into high dimensional space with products of features (monomials).
The drawback of this method is the dimension of the explicit feature map, which makes
it impractical to use in real world applications. Despite of these disadvantages, higher
order kernel functions proved that they are more susceptible to fit slight details in data.

We leverage this kernel function properties, and propose to improve the linear ker-
nel function of both convolution and fully connected layers. This enhancement is done
through mapping feature with both ways, implicitly and explicitly. In the first step, we
use higher order kernel methods instead of the linear subsequent functions in these lev-
els of the CNN. Here we implicitly compute the feature mapping using the kernel trick,
as shown in Eq 6.2. After that, we can achieve the explicit mapping of the input features
by concatenating the resulting feature maps from the previous step, in addition to the
linear feature map. The combination is also considered as feature mapping, since the
addition of these kernels is also a valid kernel function. In the following sections, we
describe our proposed method for expanding convolution layers and fully connected
layers into higher degree kernel layers. These proposed layers can be used in the same
manner as the usual CNN layers. Furthermore, these novel layers can be used solely or
jointly with the usual CNN layers. This flexibility makes them usable in any architecture
or even plugged at any level of a pre-trained CNN model.

6.2.1 Convolution layer expansion

Convolution layers are the core building block of a CNN. They leverage the fact that an
input image is composed of small details, or features, and create a mechanism for ana-
lyzing each feature in isolation, which makes a decision about the image as a whole. This
mechanism allowed CNNs to achieve very good results in various fields. Convolution
layer is ruled by a linear kernel function as shown in Eq. 6.1. This makes convolution
implementation relatively simple and computationally inexpensive. Yet, in some cases
convolution fails to learn fully linearly separable features [Jayasumana u. a., 2020, Mah-
moudi u. a., 2021a]. As described above, we leverage kernel function to expand convolu-
tion operation to a higher degree kernel function. This will be achieved in both explicit
and implicit ways.

First of all, to implicitly expand the convolution function we use multiple polynomial
kernels (Eq. 6.3) that will map the input features to a higher dimensional RKHS as
follows:

KPolynomial(x, W) = ⟨φ(x), φ(W)⟩ =
p

∑
i=2

(xTW)p, (6.3)

where φ(.) : Rn 7−→ Rd(d ≫ n) is a non-linear mapping function.

This enables us to extract features in a high dimensional space, while its computa-

105

Chapter 6. Expanding Convolutional Neural Network Kernel For Facial Expression
Recognition

tional complexity is also much higher than Eq. 6.1. Fortunately, we are able to bypass
the explicit calculation of the high dimensional features φ(x) via the kernel trick. We
use multiple polynomial kernels with different degrees p ≥ 2. Each of these kernels will
output a feature map. These feature maps must have the same height and width, but
not necessarily the same depth (number of output channels), in order to be used in the
next step.

The second step consists of mapping explicitly the input feature maps. For this pur-
pose, we use special kernel function called Taylor series kernel. Eq. 6.4 describes a Taylor
series kernel of order p as follows:

KTaylor(x, W) = ⟨φ(x), φ(W)⟩ =
p

∑
i=0

⟨x, W⟩p, (6.4)

where for p = 1, KTaylor is equivalent to a convolution kernel.

Whereas, starting from p ≥ 2, KTaylor is equivalent to a polynomial kernel (Eq. 6.3).
To obtain a kernel in the form of Taylor series kernel, we compute simultaneously the
convolution operation in addition to higher degree polynomial kernels (from the previ-
ous step). The result of all kernel functions is concatenated over the channel axis. This
is similarly to an inception module [Szegedy u. a., 2015], except that instead of using
multiple convolution of different kernel size, we use multiple kernel functions. Fig. 6.1
shows the processing of our expansion method.

3rd Poly + BN + Tanh

Conv + BN + ReLU

2nd Poly + BN + Tanh

Figure 6.1 – The proposed expansion method consists of applying higher degree (≥ 2) polynomial kernels
to the input, in addition to convolution. The result of these kernels is concatenated over the channel axis.

6.2.2 Dense layer expansion

Fully connected layers are an essential component of CNNs. These layers take as input
the feature maps resulting from the successive convolution and pooling layers (com-
monly referred to as the feature vector fv of the input image) in order to drive the

106

Chapter 6. Expanding Convolutional Neural Network Kernel For Facial Expression
Recognition

final classification decision. Similarly to convolution layers, fully connected layers are
driven by a linear kernel function (Eq 6.1). As described above, this function, despite
of being simple and computationally inexpensive, fails to learn fully linearly separable
features [Jayasumana u. a., 2020]. Therefore, we propose to expand its linear kernel to
a higher degree kernel function as well. This also will be achieved in both explicit and
implicit ways.

First of all, to expand the dense layers, we use the method of Kernelized Dense Layer
(KDL), proposed in [Mahmoudi u. a., 2020]. KDL is similar to a classical neuron layer in
the way that it applies a dot product between a vector of weights and an input vector,
adds a bias vector (b ≥ 0) and eventually applies an activation function. The difference
from standard fully connected layers is that this method applies a higher degree kernel
function instead of a simple linear dot product, which allows the model to map the input
data to a higher space and thus be more discriminative than a classical linear layer.

Formally, the output Y is computed by applying a kernel function K on an input
vector x ∈ Rn and the corresponding vector of weights W ∈ Rn and, adding the bias
vector (b ≥ 0). Here, we also use multiple polynomial kernels (Eq. 6.3) that will map the
input features to a higher dimensional RKHS. Yet, in contrary to convolution expansion,
the output has no size constraints in order to be used in the next step.

The second step consists of mapping explicitly the input feature maps. As for convo-
lution expansion we compute simultaneously the linear dot product, which corresponds
to the ordinary fully connected layers, in addition to layers of higher degree polynomial
kernels. The result of these computations is concatenated to form a single vector. This
vector is then in the form of Taylor series kernel. This resulted vector will constitute
the input for the next fully connected layer. An illustration of this process is shown in
Fig. 6.3.

As illustrated in Fig. 6.3, we also propose to combine the two expansion methods
described above. This combination will result in a fully expanded model in the form of
a Taylor series kernel.

6.3 Experiments

In this section, we shed light on the experimental settings, that have been used to eval-
uate our expansion method. First, we briefly describe the FER datasets that have been
used for the experiments. Then we detail the architecture of the the models we have used
and their training process. Recall from previous section that our expansion method oper-
ates mainly on two type of layers which are convolution and dense layers. Therefore, we
study the impact of each expansion method, solely and jointly as shown in figure 6.2, on
the network accuracy. This results are compared to the ordinary convolution and dense
layers. Finally, we discuss the obtained results with regard to state-of-the-art results.

107

Chapter 6. Expanding Convolutional Neural Network Kernel For Facial Expression
Recognition

Convolution

FC

Convolution
Convolution

Expansion

Convolution

Expansion

Expansion
FC

ExpansionFC FC

(a) (b) (c) (d)

Figure 6.2 – In our experiments, we compare the results to an ordinary CNN (a) with our proposed
method over three different configurations. In the first case (b), we replace convolution by the convolution
expansion allover the network followed by fully connected layers. In the second case (c), we replace only the
fully connected layers with our expansion method for these layers. Finally, we test our expansion methods
allover the network (d).

6.3.1 Models architecture,training process and datasets

The assumption made in this article is that linear kernel, used at different levels on a
CNN, can achieve better performance if they are expanded using our proposed method.
Moreover, this improvement is reached without the need of additional weight parame-
ters. To verify this assumption we compare the performance of an ordinary CNN to a
network with the same architecture, yet using our proposed expansion method. For this
purpose, we used two pre-trained networks namely, VGG-16 and VGG-19 in addition to
a CNN built from scratch. For the pre-trained CNNs we took only the convolution part
and added two dense layers of 256 unit each and a final softmax layer with 7 output
units. This models will be referred to as VGG-16-bese and VGG-19-bese. Whereas, we
will refer to the model built from scratch as Model-1. This model architecture is com-
posed of five convolutional blocks. Each block consists of a convolution, batch normal-
ization and rectified linear unit activation layers. The use of batch normalization [Zou
u. a., 2019] before the activation brings more stability to parameter initialization and
achieves higher learning rate. Each of the five convolutional blocks is followed by a max
pooling layer and a dropout layer. Finally, three fully connected layers are added on
top of the last convolution block with respectively 128, 128 and 7 units. Furthermore,
we build expanded models, with the same architecture as the three models described
above, following the configuration shown in figure 6.2.

For training, We used Adam optimiser with a learning rate varying from 0.001 to
5e-5. This learning rate is decreased by a factor of 0.5 if the validation accuracy does not
increase over five epochs. To avoid overfitting, we first augmented the data using a range
degree for random rotations of 20, a shear intensity of 0.2, a range for random zoom of
0.2, and randomly flip the inputs horizontally. We also employed early stopping if the
validation accuracy does not improve by a factor of 0.01 over ten epochs. Each layer of

108

Chapter 6. Expanding Convolutional Neural Network Kernel For Facial Expression
Recognition

Linear 2nd polynomial 3rd polynomial

Softmax

Input
vector

Figure 6.3 – Expansion of dense layer proceeds in two steps. First, it computes multiple polynomial KDL
in addition to the linear layer. Then, it concatenates the resulting vectors in a single expanded dense layer
vector. The latter will be finally fed to the next expanded dense layer or dense layer. Best viewed in color.

our model is initialized with He normal distribution [He u. a., 2015a] and a weight decay
of 0.0001. For our experiments, we have used three well-known in the wild FER datasets,
namely RAF-DB, ExpW and FER2013. The only preprocessing which we employed on
all experiments is cropping the face region and resizing the resulting images to 100× 100
pixels.

6.3.2 Ablation Study

This section explores the impact of the use of the proposed expansion method on the
overall accuracy of VGG-16, VGG-19 and Model-1. The obtained results using these
models are reported in Tables 6.1, 6.2 and 6.4, as base models. As shown in Tables 6.1, 6.2,
and 6.4 the accuracy rates obtained with VGG-16-base is 69.38%, 85.42%, 77.75% on
FE2013, RAF-DB and ExpW, respectively. Whereas for VGG-19-base, the obtained accu-
racy rates are 69.52% for FER2013, 85.99% for RAF-DB, and 77.92% for ExpW. Lastly,
the obtained accuracy rates for Model-1 are 70.13%, 87.05%, and 75.91% for FER2013,
RAF-DB and ExpW, respectively.

After that, we evaluated the performance of these network architectures, with
our proposed method, on different levels and with different kernel function degrees
(Fig. 6.2). These expanded models of VGG-16, VGG-19 and Model-1, were, as men-

109

Chapter 6. Expanding Convolutional Neural Network Kernel For Facial Expression
Recognition

tioned above, built and trained from scratch. As shown in figure 6.2, we performed
CNN layers expansion following three main configurations. First, we used the expan-
sion on the convolution level. After that, we expanded the fully connected layers. Finally,
we tested full expansion by combining the two previous expansion methods. For all of
these expansions, we use three different kernels, namely: i) a Taylor series kernel up to
the second degree; ii) a Taylor series kernel up to the third degree; and iii) the linear
kernel which corresponds to a Taylor series kernel up to degree one. We have expanded
the convolution layer by first adding two blocks of feature maps resulting from two
polynomial kernels of second and third degree. The proportion of the kernels are ap-
proximately 70% for convolution, 20% for polynomial kernel of second degree, and 10%
for polynomial kernel of third degree. For instance, if the output channel size is 128, the
proportion of the three kernels output is 90 for convolution, 26 for polynomial kernel of
second degree and 12 for polynomial kernel of third degree. In the case of expansion up
to second degree only, the proportion are approximately 80% for convolution and 20%
for polynomial kernel of second degree. Following the previous example, the proportion
of the two kernels output is 102 for convolution and 26 for polynomial kernel of second
degree. We also used the same proportion in the dense layers expansion and the full
network expansion. The sections bellow discuss the obtained results at each level solely,
then the results of their combinations.

Convolution layer expansion

As shown in Table 6.1, the accuracy rates obtained with VGG-16 like model are 70.07%
for FER2013, 86.13% for RAF-DB, and 78.17% for ExpW, with the Taylor kernel up to
second degree. This represents an improvement up to 0.7% over the full linear model.
Whereas, with the Taylor kernel up to third degree, the obtained accuracy rates are
70.31% for FER2013, 86.24% for RAF-DB, and 78.61% for ExpW. This kernel improves
further the accuracy of the model up to 1% more than its full linear counterpart. On
the other hand, the accuracy rates obtained with VGG-19 like model are 70.82% for
FER2013, 86.44% for RAF-DB, and 78.33% for ExpW, with the Taylor kernel up to second
degree. Similarly to VGG-16, the use of this kernel also enhances the accuracy for VGG-
19 up to 0.8% more than the linear kernel model. Whereas, with the Taylor kernel up to
third degree, the obtained accuracy rates are 71.08% for FER2013, 87.04% for RAF-DB,
and 79.16% for ExpW. Again, this kernel improves the accuracy up to 1.5% compared
to its linear counterpart. Finally, the accuracy rates obtained with Model-1 are 70.84%
for FER2013, 87.69% for RAF-DB, and 76.52% for ExpW, with the Taylor kernel up to
second degree. Similarly to the previous models, the use of this kernel also enhances
the accuracy for Model-1 up to 0.6% more than the linear kernel model. Whereas, with
the Taylor kernel up to third degree, the obtained accuracy rates are 71% for FER2013,
87.84% for RAF-DB, and 79.71% for ExpW. Therefore, this kernel improves the accuracy
up to 0.8% compared to its linear counterpart.

110

Chapter 6. Expanding Convolutional Neural Network Kernel For Facial Expression
Recognition

Table 6.1 – Results of convolution layer expansion method.

Level Model Kernel FER2013 RAF ExpW
VGG-16-base 69.38% 85.42% 77.75%
VGG-19-base 69.52% 85.99% 77.92%

Model-1 70.13% 87.05% 75.91%
C

on
v-

Ex
pa

ns
io

n
VGG-16

Conv-2nd 70.07% 86.13% 78.17%
Conv-3rd 70.31% 86.24% 78.61%

VGG-19

Conv-2nd 70.82% 86.44% 78.33%
Conv-3rd 71.08% 86.57% 78.71%

Model-1
Conv-2nd 70.84% 87.69% 76.52 %
Conv-3rd 71% 87.84% 76.71 %

Dense layer expansion

First of all, as shown in Table 6.2, the accuracy rates obtained with VGG-16 like model
are 70.98% for FER2013, 86.89% for RAF-DB, and 78.85% for ExpW, with the Taylor
kernel up to second degree. This kernel improves further the accuracy of the model
up to 1.3% more than its full linear counterpart. Whereas, with the Taylor kernel up to
third degree, the obtained accuracy rates are 71.58% for FER2013, 87.04% for RAF-DB,
and 79.16% for ExpW. This represents an improvement up to 2% over the full linear
model. On the other hand, the accuracy rates obtained with VGG-19 like model are
71.46% for FER2013, 87.18% for RAF-DB, and 79.21% for ExpW, with the Taylor kernel
up to second degree. Similarly to VGG-16, the use of this kernel also enhances the
accuracy for VGG-19 up to 1.9% more than the linear kernel model. Whereas, with the
Taylor kernel up to third degree, the obtained accuracy rates are 71.95% for FER2013,
87.29% for RAF-DB, and 79.39% for ExpW. This represents an improvement up to 2.5%
over its linear counterpart. Finally, the accuracy rates obtained with Model-1 are 71.41%
for FER2013, 88.26% for RAF-DB, and 76.11% for ExpW, with the Taylor kernel up to
second degree. This represents an improvement up to 1.3% over its linear counterpart.
With the Taylor kernel up to third degree, Model-1 reached 71.86%, 88.59% and 76.63%
on FE2013, RAF-DB and ExpW, respectively. This represents an improvement up to 1.8%
over its linear counterpart.

111

Chapter 6. Expanding Convolutional Neural Network Kernel For Facial Expression
Recognition

Table 6.2 – Results of dense layer method.

Level Model Kernel FER2013 RAF ExpW
VGG-16-base 69.38% 85.42% 77.75%
VGG-19-base 69.52% 85.99% 77.92%

Model-1 70.13% 87.05% 75.91%
D

en
se

-E
xp

an
si

on VGG-16

Dense-2nd 70.98% 86.89% 78.85%
Dense-3rd 71.58% 87.04% 79.16%

VGG-19

Dense-2nd 71.46% 87.18% 79.21%
Dense-3rd 71.95% 87.29% 79.39%

Model-1
Conv-2nd 71.41% 88.26% 76.11 %
Conv-3rd 71.86% 88.59% 76.63%

To further evaluate the efficiency of dense layer expansion, we tested these layers
solely in an MLP fashion. The goal, here, is not achieve state-of-the-art or competitive
results. It is rather to demonstrate the improvement that an expanded dense layer can
bring when used, solely, in an MLP fashion. We built an MLP with two hidden layers of
256 units each and a softmax output layer of 7 units. We followed the same configuration
as the previous dense layer expansion, that is: i) a full linear MLP; ii) an MLP with a
Taylor series kernel up to the second degree; and ii) an MLP with a Taylor series kernel
up to the third degree. Given the small size of these MLP networks, We resized the FER
dateset images to 48 × 48 pixels. The results of these configuration are reported in 6.3.
As one can see in table 6.3, the linear MLP achieved 43.18%, 51.29%, 39.65% on FE2013,
RAF-DB and ExpW, respectively. Whereas, the MLP with Taylor series expanded dense
layers up to the second degree reached 45.32% on FER2013, 51.84% on RAF and 40.11%
on ExpW. This is represents an improvement up to 2.12% in accuracy rate compared
to its linear counterpart. Finally, the MLP with Taylor series expanded dense layers up
to the third degree reached 45.80%, 52.26%, 40.81% on FE2013, RAF-DB and ExpW,
respectively. Once again, the MLP with Taylor series expanded dense layers up to the
third degree outperformed the other expansion kernels and enhanced the accuracy for
about 2.62%. This short experiment show the inherent descriminative power of neuron
with a kernel of high degree. In other words, it show the enhancement that such a
neuron can bring at any level in any type of neural network.

Table 6.3 – Results of dense layer as MLP.

Kernel FER2013 RAF ExpW
linear-MLP 43.18% 51.29% 39.65%
Dense-2nd-MLP 45.32% 51.84% 40.11%
Dense-3nd-MLP 45.80% 52.26% 40.81%

112

Chapter 6. Expanding Convolutional Neural Network Kernel For Facial Expression
Recognition

Full expansion

After testing expansion on the two main levels of the CNN, namely: convolution layer
and fully connected layer, we have also tested the efficiency of this expansion method
jointly on these layer types. As shown in Table 6.4, the accuracy rates obtained with
VGG-16 like model are 70.22% for FER2013, 86.17% for RAF-DB, and 78.32% for ExpW,
with the Taylor kernel up to second degree. This kernel improves further the accuracy
of the model up to 0.8% more than its full linear counterpart. Whereas, with the Taylor
kernel up to third degree, the obtained accuracy rates are 70.28% for FER2013, 86.20% for
RAF-DB, and 78.41% for ExpW. This represents an improvement up to 0.9% over the full
linear model. On the other hand, the accuracy rates obtained with VGG-19 like model
are 70.91% for FER2013, 86.48% for RAF-DB, and 78.52% for ExpW, with the Taylor
kernel up to second degree. Similarly to VGG-16, the use of this kernel also enhances
the accuracy for VGG-19 up to 1.5% more than the linear kernel model. Whereas, with
the Taylor kernel up to third degree, the obtained accuracy rates are 70.97% for FER2013,
86.53% for RAF-DB, and 78.63% for ExpW. This represents an improvement up to 1.6%
over its linear counterpart. Unfortunately, the expansion to the third degree Taylor series
kernel does not enhance much the overall accuracy of the network compared with the
second degree expansion.

Table 6.4 – Results of full expansion method.

Level Model Kernel FER2013 RAF ExpW
VGG-16-base 69.38% 85.42% 77.75%
VGG-19-base 69.52% 85.99% 77.92%

Model-1 70.13% 87.05% 75.91%

Fu
ll-

Ex
pa

ns
io

n VGG-16

Full-2nd 70.22% 86.17% 78.32 %
Full-3rd 70.28% 86.20% 78.41%

VGG-19

Full-2nd 70.91% 86.48% 78.52%
Full-3rd 70.97% 86.53% 78.63%

Model-1
Conv-2nd 70.95% 87.78% 76.68%
Conv-3rd 71.12% 87.93% 76.84%

The obtained results with our expansion method show that the use of higher order
kernel along with the linear kernel is beneficial to the overall accuracy of the network.
However, the impact of our method changes according to the level where it is applied.
For instance, the use of our expansion method at the convolution level increases the
accuracy according to the kernel degree. The higher is the kernel degree, the better is
the accuracy. Similarly to the convolution layers, the fully connected layers also increase
the accuracy rates according to the kernel degree. However, the use of our expansion
method on the fully connected layers performs better than the convolution expansion.
Finally, even though the full network expansion increases the overall accuracy over the
linear model, it slightly outperforms the convolution expansion method. Furthermore,
the increase of the accuracy with respect to the kernel degree is not truly perceptible.

113

Chapter 6. Expanding Convolutional Neural Network Kernel For Facial Expression
Recognition

Also, the use of the full expansion seems to be prone to over-fitting. Taking into consid-
eration the computation cost of a full expansion, the latter seems to be less useful than
the precedent uses of our expansion method.

6.3.3 Comparison with state-of-the-art

In this section, we compare the performance of our two models which uses the proposed
expansion method with respect to several state-of-the-art methods. The obtained results
are reported in Table 6.5. According to Table 6.5, our proposed expansion method out-
performs all the state-of-the-art methods on the ExpW dataset. The best accuracy rate is
79.39% and has been reached using the fully connected layers expansion up to the third
degree kernel with VGG-19 model. The same kernel with VGG-16 model gives 79.16%.
On the other hand, convolution expansion reached an accuracy rate of 78.71% with the
third degree kernel on VGG-19, and 78.61% with the same expansion on VGG-16. As
stated in the previous section, the use of a full expansion overall the network does not
enhance the accuracy as it might be expected.

On RAF dataset, the performance of our method outperforms most of the state-
of-the-art methods. The best performance on this dataset were reached with the fully
connected layer expansion on both VGG-19 and VGG-16 models. The other expansion
techniques performs less than the latter, and reached lower results compared to state-
of-the-art methods. The methods we could not outperform are Mahmoudi et al which
implemented kernel function as pooling layer and FC layer.

Finally, even though we did not outperform state-of-the-art methods on FER2013, we
confirmed the superiority of our method compared to standard CNNs. We reached an
accuracy rate of 71.95% with the third order kernel expansion on fully connected layers
which is 1.78% less than state-of-the-art method [Kim u. a., 2016].

114

Chapter 6. Expanding Convolutional Neural Network Kernel For Facial Expression
Recognition

Table 6.5 – Accuracy rates of the proposed approach and state-of-the-art approach

Models FER2013 RAF ExpW
VGG-16-Conv-3rd 70.31% 86.24% 78.61%
VGG-19-Conv-3rd 71.08% 86.57% 78.71%
VGG-16-Dense-3rd 71.58% 87.04% 79.16%
VGG-19-Dense-3rd 71.95% 87.29% 79.39%
VGG-16-Full-3rd 70.28% 86.20% 78.41%
VGG-19-Full-3rd 70.97% 86.53% 78.63%

Model-1-Conv-3rd 71% 87.84% 76.71%
Mahmoudi et al. [Mahmoudi u. a., 2020] 71.35% 93.21% 76.81%
Mahmoudi et al [Mahmoudi u. a., 2020] 71.28% 88.02% 76.64%

Tang et al. [Tang, 2013] 71.16% – –
Guo et al. [Guo u. a., 2016] 71.33% – –
Kim et al. [Kim u. a., 2016] 73.73% – –

Bishay et al. [Bishay u. a., 2019] – – 73.1%
Lian et al. [Lian u. a., 2020] – – 71.9 %

Acharya et al. [Acharya u. a., 2018a] – 87% –
S Li et al. [Li und Deng, 2018b] – 74.2% –

Z.Liu et al. [Liu u. a., 2017b] – 73.19% –

6.4 Conclusion

In this chapter, we proposed to improve CNN performance without increasing the num-
ber of learnable parameters. Our method consists of expanding the linear kernel func-
tion, used at different levels of a CNN. The expansion is performed by combining mul-
tiple polynomial kernels with different degrees. By doing so, the network automatically
learns the suitable kernel that optimizes the target objective. In our settings, a network
can either use a single kernel or a combination of multiple ones which make a Taylor
series kernel. We demonstrated that the used kernel function is more sensitive to subtle
details than the linear one. This is important for fine-grained classification in particular
it increases both the representation and the classification power of the CNN for facial
expression recognition. The experiments conducted on FER datasets showed that the
use of our method allows the network to outperform conventional CNNs. The obtained
results showed that the use of higher order kernel along with the linear one is benefi-
cial to the overall accuracy of the network. However, we noticed that the position of the
plugged kernel impacts on the accuracy of the full network. For instance, the kernel ex-
pansion at the convolutional level increases the accuracy according to the kernel degree.
We also observed that, the fully connected layers react similarly as the convolutional
layers, to the kernel degree. However, the kernel expansion used on the fully connected
layers performs better than any convolutional layer in the network. We finally observed
that, even though the full network expansion increases the overall accuracy over the
linear model, it slightly outperforms the convolution. Furthermore, in the full network

115

Chapter 6. Expanding Convolutional Neural Network Kernel For Facial Expression
Recognition

expansion, the increase of the accuracy with respect to the kernel degree is not truly per-
ceptible. Also, the use of the full expansion seems to be prone to over-fitting. Taking into
consideration the computation cost of a full expansion, one may prefer to use either the
convolutional layer expansion or the fully connected layer expansion taken separately.

As perspectives, we aim at developing an algorithm that allows to learn the ap-
propriate kernel for a specific task. The algorithm favors a kernel, among a variety of
kernels, that optimizes the objective function. Moreover, the use of this algorithm may
results in a combination of different kernels at different levels of a network.

116

Conclusion and Future Work

Our studies focused on the incorporation of non-linear kernel functions at different
levels of a CNN. The assumption that we have made is that linear functions are efficient
only when the original data is linearly separable, which should have, in general, a high
dimensional representation. In such a case, the decision boundary can be representable
as a linear combination of the original features. On the other case, linear kernel func-
tions fail to fit the input data. Therefore, a more discriminative kernel functions must be
used. The intuition behind is to make the underlying linear kernel operates on higher
dimensional feature map so that it becomes more discriminative. In other words, in-
stead of running a linear classifier directly on feature, they are first mapped to a higher-
dimensional Reproducing Kernel Hilbert Space (RKHS) using a positive definite kernel
function. For certain kernel functions, the RKHS can even be infinite dimensional. A lin-
ear classifier is then run on this high-dimensional RKHS. Since the dimensionality of the
feature vectors is dramatically increased via this mapping, a linear classifier in the RKHS
corresponds to a powerful nonlinear classifier in the original feature vector space. Such
a classifier is capable of learning more complex patterns than a linear classifier directly
operating on the feature vectors. To evaluate the performance of the resulting meth-
ods, we chose to apply the later on more challenging fine-grained recognition. Facial
expression recognition is considered one of most challenging fine-grained recognition
problems. Indeed, the difference in facial expression categories relies on small subtle ar-
eas in the facial images like the mouth, eyebrows and the noise. To overcome this issue,
facial expression recognition systems must be able to recognise this subtle differences
efficiently.

Chapter 1 sheds lights on the important concept related to our field of study. First
of all, We detail this new emergent domain in artificial intelligence called Deep Learn-
ing, review the most important models, framework and its different application fields.
Second, we give a brief overview about kernel methods. This overview covers the math-
ematical basics that the kernel methods rely on. It also explains the construction steps of
kernels, the important concept of the kernel trick, and enumerate some well known ker-
nel functions. Since our work is centred around the incorporation of kernel methods in
deep learning networks. Among the deep learning models, our research focused specif-
ically on convolutional neural networks (CNN). Therefore, the later is more detailed
than other models. Finally, our case of study: facial expression recognition is defined
and some important study in this field were also illustrated.

Chapter 2 proposed a FER method based on the improved bilinear CNN model.

117

Conclusion and Future Work

In this framework, various ways of normalization were used to improve the accuracy,
including the matrix square root, element-wise square root and L2 normalization. To
validate our method, we have used three large, well known, facial expression databases
which are FER2013, RAF-DB and ExpW. In order to evaluate the improvement of our
method, we have first implemented a CNN from scratch and fine-tuned pre-trained
VGG-16 on our facial expressions datasets. After that we have implemented a bilinear
model on top of the above models individually and on top of both of them. Finally, we
repeated the same procedure with the improved bilinear model. The experiments show
that this framework improves the overall accuracy for about 3%.

Bilinear models have been shown to achieve very good accuracy results on different
visual recognition domains, like fine grained recognition, semantic segmentation and
face recognition. Nevertheless, the dimensions of bilinear features are very high, usually
on the order of hundreds of thousands to a few million. The reason why they are not
practical for many visual recognition fields. Moreover, matrix square root function and
bilinear pooling function are very memory and CPU consuming, which decrease the
performance of the model. Therefore, many improvements have been applied to CNN,
for instance compact bilinear pooling [Gao u. a., 2016], reaching the same discriminative
power as the full bilinear representation but with a representations having only a few
thousand dimensions. An other improvement is the kernel pooling for CNNs [Cui u. a.,
2017] which is a general pooling framework that captures higher order interactions of
features in the form of kernels.

Chapter 3 introduce one of our major contribution. we proposed a FER method based
on a CNN model to which we specifically designed a novel pooling layer which retains
the down-sampling advantage of an ordinary pooling function and brings several new
features. The proposed pooling layer, which has learnable weights, generalizes standard
pooling functions and, additionally encodes non-linear relation between features. It is
differentiable and can be plugged at any level of the network, allowing, in turns, an
end-to-end learning. The experiments on ExpW, RAF-DB and FER2013 datasets demon-
strate the efficiency of the proposed pooling method compared to standard pooling. The
experiments also showed that the proposed FER method outperforms state-of-the-art
methods. The performance of our model is essentially due to its capability of capturing
high order information that are crucial for fine-grained classification tasks such as the
FER.

Chapter 4 also introduce an innovative work that is similar to the precedent chapter,
yet focuses on the fully connected layer of Convolutional Neural Networks. we designed
Kernelized Dense Layer for CNN model that aims to enhance the discriminative power
of the overall model. It consists of applying higher order kernel method than the stan-
dard FC layer. Experimental results on ExpW, RAF-DB and FER2013 datasets demon-
strate the efficiency of the proposed KDL compared to standard FC layer in terms of
convergence, speed and overall accuracy. The proposed FER method outperforms most
of the state-of-the-art methods and remains competitive. The performance of our model

118

Conclusion and Future Work

is essentially due to its capability of capturing high order information that are crucial
for fine-grained classification tasks such as the FER.

Chapter 5 investigates the usage of kernel functions at the different layers in a con-
volutional neural network. We carry out extensive studies of their impact on convo-
lutional, pooling and fully-connected layers. We notice that the linear kernel may not
be sufficiently effective to fit the input data distributions, whereas high order kernels
prone to over-fitting. This leads to conclude that a trade-off between complexity and
performance should be reached. We show how one can effectively leverage kernel func-
tions, by using our proposed pooling layers (chapter 3) and the proposed Kernelized
Dense Layers (chapter 4). The experiments on conventional classification datasets i.e.
MNIST, FASHION-MNIST and CIFAR-10, show that the proposed techniques improve
the performance of the network compared to classical convolution, pooling and fully
connected layers. Moreover, experiments on fine-grained classification i.e. facial expres-
sion databases, namely RAF-DB, FER2013 and ExpW demonstrate that the discrimina-
tive power of the network is boosted, since the proposed techniques improve the aware-
ness to slight visual details and allows the network reaching state-of-the-art results.

In light of the results obtained in the experiments, we have conducted in this work,
we deduce that kernel functions impact positively the CNN performance. Indeed, the ex-
perimental results prove that the use of kernel functions, instead of the linear functions
used in CNN layers, improves the accuracy rate of the whole model and its convergence
speed. Furthermore, we concluded that the impact of these kernel functions varies ac-
cording to the level in which they are plugged into and the specific kernel in use. We
have also concluded that high order kernels prone to overfitting, whereas low order
kernels might not be sufficiently effective to fit the input data distributions. Therefore, a
trade-off between complexity and performance should be reached.

Chapter 6 we proposed to improve CNN performance without increasing the num-
ber of learnable parameters. Our method consists of expanding the linear kernel func-
tion, used at different levels of a CNN. The expansion is performed by combining mul-
tiple polynomial kernels with different degrees. By doing so, the network automatically
learns the suitable kernel that optimizes the target objective. In our settings, a network
can either use a single kernel or a combination of multiple ones which make a Taylor
series kernel. We demonstrated that the used kernel function is more sensitive to subtle
details than the linear one. This is important for fine-grained classification in particular
it increases both the representation and the classification power of the CNN for facial
expression recognition. The experiments conducted on FER datasets showed that the
use of our method allows the network to outperform conventional CNNs. The obtained
results showed that the use of higher order kernel along with the linear one is benefi-
cial to the overall accuracy of the network. However, we noticed that the position of the
plugged kernel impacts on the accuracy of the full network. For instance, the kernel ex-
pansion at the convolutional level increases the accuracy according to the kernel degree.
We also observed that, the fully connected layers react similarly as the convolutional

119

Conclusion and Future Work

layers, to the kernel degree. However, the kernel expansion used on the fully connected
layers performs better than any convolutional layer in the network. We finally observed
that, even though the full network expansion increases the overall accuracy over the
linear model, it slightly outperforms the convolution. Furthermore, in the full network
expansion, the increase of the accuracy with respect to the kernel degree is not truly per-
ceptible. Also, the use of the full expansion seems to be prone to over-fitting. Taking into
consideration the computation cost of a full expansion, one may prefer to use either the
convolutional layer expansion or the fully connected layer expansion taken separately.

As perspectives, we aim at developing an algorithm that allows to learn the ap-
propriate kernel for a specific task. The algorithm favors a kernel, among a variety of
kernels, that optimizes the objective function. Moreover, the use of this algorithm may
results in a combination of different kernels at different levels of a network.

120

Our contributions

• M Amine Mahmoudi, Aladine Chetouani, Fatma Boufera, and Hedi Tabia. “ Learn-
able pooling weights for facial expression recognition”. Pattern Recognition Let-
ters, 138, 2020. [Mahmoudi u. a., 2020]

• M. A. Mahmoudi, A. Chetouani, F. Boufera, and H. Tabia. “Kernelized dense layers
for facial expression recognition”. 2020 IEEE International Conference on Image
Processing (ICIP), pages 2226–2230, 2020. [Mahmoudi u. a., 2020]

• M Amine Mahmoudi, Aladine Chetouani, Fatma Boufera, and Hedi Tabia. “Im-
proved bilinear model for facial expression recognition”. Pattern Recognition and
Artificial Intelligence. MedPRAI2020. Communications in Computer and Informa-
tion Science, volume 1322, pages 47–59. Springer, 2021a. [Mahmoudi u. a., 2021b]

• M Amine Mahmoudi, Aladine Chetouani, Fatma Boufera, and Hedi Tabia. “Taylor
series kernelized layer for fine-grained recognition”. 2021 IEEE International Con-
ference on Image Processing (ICIP), pages 1914–1918. IEEE, 2021b. [Mahmoudi
u. a., 2021c]

• M Mahmoudi, Aladine Chetouani, Fatma Boufera, and Hedi Tabia. “Deep kernel-
ized network for fine-grained recognition”. International Conference on Neural
Information Processing, pages100–111. Springer, 2021 [Mahmoudi u. a., 2021a]

• M Amine Mahmoudi, Aladine Chetouani, Fatma Boufera, and Hedi Tabia.
“Kernel-based convolution expansion for facial expression recognition”. Pattern
Recognition Letters, Volume 160, August 2022, Pages 128-134. [Mahmoudi u. a.,
2022]

Contributions - Under Review

• M Amine Mahmoudi, Aladine Chetouani, Fatma Boufera, and Hedi Tabia. “Kernel
Function Impact on Convolutional Neural Networks”. In Multimedia Tools and
Applications – Springer, since August 2021.

• M Amine Mahmoudi, Aladine Chetouani, Fatma Boufera, and Hedi Tabia. “Ex-
panding Convolutional Neural Network Kernel For Facial Expression Recog-
nition”. In IEEE Transactions on Cognitive and Developmental Systems, since
September 2021.

121

ADeep kernelized network for

fine-grained recognition

In this chapter, we investigate the usage of different kernel methods in a CNN fashion.
The goal here is to use the structure of a CNN, but instead of using simple linear ker-
nel function which are usually in CNN layers, we use Higher degree kernel function.
These kernel function are more discriminative than linear function, therefore they can
bring more discrimination power to the network. However, the impact of these function
can vary from a layer to another. For this purpose, we first replace the convolution op-
eration in CNNs by a non-linear kernel function similarly to Kervolution [Wang u. a.,
2019]. We also replace fully connected layer alternatively with Kernelized Dense Lay-
ers (KDL) [Mahmoudi u. a., 2020] and kernel SVM [Burges u. a., 1999]. The remainder of
this chapter is organized as follows: Section A.1 introduces the study design. Section A.2
presents our experiments setting, the datasets we used and their related results. Finally,
Section A.3 concludes the paper.

A.1 Study design

In this section, we describe the study design that we have followed in order to investigate
the impact of kernel function methods when used in a deep network fashion. Figure A.1
shows the different deep kernel networks configuration used for this study. In the first
configuration (a), we used a Kervolution based network followed by fully connected
layers. This first configuration is used only for training the Kervolution based network
that will be used in later configurations. In the second configuration (b), we used the
same Kervolution based network followed by Kernelized dense layers (KDL). Finally,
for the third configuration, we took also the Kervolution based network and plugged a
kernel SVM at its end. The two last configurations represent two fully kernelized deep
networks that our study will be based on.

122

Appendix A. Deep kernelized network for fine-grained recognition

FC

(a)

KDL

(b)

SVM

(c)

Kervolution

Pooling

Kervolution

Pooling

Kervolution

Pooling

Kervolution

Pooling

Kervolution

Pooling

Kervolution

Pooling

Figure A.1 – The deep kernel networks configuration used for this study.

A.2 Experiments

In this section, we explain in more details the experiments we have performed in order
to evaluate our methods described above. For this purpose, we have used three well-
known fine-grained as well as three well-known FER datasets. Details of these datasets
are given below. After that, implementation details are given including the models ar-
chitectures and the training process. Finally, we discuss the obtained results are discuss
the improvement given by each technique.

A.2.1 Datasets

We evaluated our models on two categories of datasets. First of all, we used three
well-known fine-grained datasets, namely, FGVC-Aircraft [Maji u. a., 2013], Stanford-
Cars [Krause u. a., 2013b] and CVPRIndoor [Quattoni und Torralba, 2009].

• The FGVC-Aircraft [Maji u. a., 2013] dataset is composed of 10,200 images of air-
craft images. These images are categorized in 102 different aircraft model variants,
most of which are airplanes.

• The StanfordCars [Krause u. a., 2013b] dataset is composed of 16,185 images of
196 categories of cars. These images are divided into 8,144 for training and 8,041

for testing.

• The CVPRIndoor [Quattoni und Torralba, 2009] dataset is composed of 15620

images categorized in 67 Indoor classes with at least 100 images per category.

In addition, we also tested our approach on three FER datasets, namely, RAF-DB,
ExpW and FER2013.

123

Appendix A. Deep kernelized network for fine-grained recognition

• The RAF-DB [Li u. a., 2017] or Real-world Affective Face DataBase is composed of
29,672 facial in the wild images. This images are categorized in either seven basic
classes or eleven compound classes.

• The ExpW [Zhang u. a., 2018b] or EXPression in-the-Wild dataset is composed of
91,793 facial in the wild images. The annotation was done manually on individual
images.

• The FER2013 database was used for the ICML 2013 Challenges in Representation
Learning [Goodfellow u. a., 2013]. It is composed of 28,709 training images and
3,589 images for both validation and test.

The intuition behind that was to prove that kernel based models are efficient for
recognizing object with subtle visual details. It is worth noting that both categories of
the datasets used in this chapter meet these criteria.

A.2.2 Models architecture and training process

To demonstrate the efficiency of the proposed method, we used VGG-16 [Simonyan
und Zisserman, 2014] like models with two fully connected layers of 256 units each
and a final softmax layer. In addition, we built a second model from scratch (Fig A.2).
This model architecture is composed of five Kervolutional blocks, each followed by a
max pooling layer and a dropout layer. A block consists of a Kervolutional layer, batch
normalization layers. We will refer to these models as VGG-16-base and Model-1, re-
spectively. For training, we have used Adam optimiser using a learning rate starting
from 0.001 to 5e-5. This learning rate is lowered by a factor of 0.5 if the validation accu-
racy does not improve for five epochs. To avoid overfitting, we first augmented the data
using a shear intensity of 0.2, a range degree for random rotations of 20, and randomly
flip the inputs horizontally, a range for random zoom of 0.2,. We also employed early
stopping if the validation accuracy does not increase by a factor of 0.01 over ten epochs.
Each layer of our model is initialized with He normal distribution [He u. a., 2015a] and
a weight decay of 0.0001. The only preprocessing we employed on all our experiments
is cropping the face region and resizing the resulting images to 100 × 100 pixels for FER
dataset. For both FGVC-Aircraft and StanfordCars, we cropped the object region. We
resize the resulting images so that its longer side is 100 while keeping its aspect ratio.
We have also zero padded these images to obtain 100 × 100 pixels.

We first trained our two base kervolutional models, VGG-16-base and Model-1 with
fully connected layers. These models use both second and third order polynomial ker-
nels. After that, we took the Kervolution backbones and replaced the fully connected
layers with KDL and SVM with the same kernel used in the later (Fig A.1). These re-
sulted in six different configurations for each model.

124

Appendix A. Deep kernelized network for fine-grained recognition

3* Kerv (5,5)/64,
BN

Flattening

stride (2,2) stride (2,2)

FC (256)

Softmax

stride (2,2) stride (2,2)

3* Kerv (3,3)/128,
BN 3* Kerv (3,3)/256,

BN
2* Kerv (3,3)/512,

BN Kerv (3,3)/512,
BN

FC (256)

Figure A.2 – Model-1 architecture: it is composed of five Kervolutional blocks. Each block consists of
a Kervolutional layer, batch normalization layers. Each block is followed by a max pooling layer and
a dropout layer. Finally, two fully-connected layers are added on top of these convolution blocks with
respectively 256 units and ReLU activation and an output softmax layer.

A.2.3 Ablation Study

This section explores the impact of kernel-based methods on the overall network accu-
racy, following the network configurations explained above. The results obtained with
these models are reported as VGG-16-base and Model-1 in Table A.1 and Table A.2 for
fine-grained and FER datasets, respectively.

Table A.1 – Results of the different configurations on fine-grained datasets.

Model Kernel FGVC-Aircraft StanfordCars IndoorCVPR

VGG-16

FC
2nd order poly 65.42% 62.15% 64.23%
3rd order poly 65.87% 62.64% 64.92%

KDL
2nd order poly 66.11% 62.95% 65.06%
3rd order poly 66.72% 63.36% 65.7%

SVM
2nd order poly 66.4% 63.31% 65.52%
3rd order poly 67.08% 63.96% 66.01%

Model-1

FC
2nd order poly 65.88% 62.74% 64.79%
3rd order poly 66.45% 63.09% 65.32%

KDL
2nd order poly 65.27% 62.19% 64.08%
3rd order poly 66.8% 63.68% 65.88%

SVM
2nd order poly 65.59% 62.79% 64.6%
3rd order poly 67.03% 63.36% 64.24%

As shown in Table A.1, the accuracy rates obtained with VGG-16-base using second
order Kervolution and fully connected layers are 65.42%, 62.15%, 64.23 % on FGVC-
Aircraft, StanfordCars and IndoorCVPR, respectively. Whereas for third order Kervo-
lution VGG-16-base and fully connected layers, the obtained accuracy rates on FGVC-
Aircraft, StanfordCars and IndoorCVPR, respectively, are 65.87%, 62.64%, 64.92%. On
the other hand, the accuracy rates obtained with VGG-16 like model are 66.11% on
FGVC-Aircraft, 62.95% on StanfordCars and 65.06% on IndoorCVPR, with second or-
der Kervolution and KDL. This represents an improvement up to 0.8% over the fully
connected layers. Whereas, with Kervolution and KDL third degree polynomial, the ob-
tained accuracy rates are 66.72% on FGVC-Aircraft, 63.36% on StanfordCars, 65.7% on
IndoorCVPR. This kernel improves further the accuracy of the model up to 0.9% more

125

Appendix A. Deep kernelized network for fine-grained recognition

than its FC counterpart. Lastly, the accuracy rates obtained with VGG-16 like model are
66.4% on FGVC-Aircraft, 63.31% on StanfordCars, 65.52% on IndoorCVPR, with second
order Kervolution and SVM. This represents an improvement up to 1.3% over the fully
connected layers. Whereas, with Kervolution and SVM third degree polynomial, the ob-
tained accuracy rates are 67.08% on FGVC-Aircraft, 63.96% on StanfordCars, 66.01% on
IndoorCVPR. This kernel improves further the accuracy of the model up to 1.8% more
than its FC counterpart.

On the other hand, the accuracy rates obtained with Model-1 using second order Ker-
volution and fully connected layers are 65.88%, 62.74%, 64.79% on FGVC-Aircraft, Stan-
fordCars and IndoorCVPR, respectively. Whereas for third order Kervolution Model-1
and fully connected layers, the obtained accuracy rates on FGVC-Aircraft, Stanford-
Cars and IndoorCVPR, respectively, are 66.45%, 63.09%, 65.32%. On the other hand, the
accuracy rates obtained with Model-1 are 65.27% on FGVC-Aircraft, 62.19% on Stan-
fordCars and 64.08% on IndoorCVPR, with second order Kervolution and KDL. This
represents an improvement up to 0.5% over the fully connected layers. Whereas, with
Kervolution and KDL third degree polynomial, the obtained accuracy rates are 66.8% on
FGVC-Aircraft, 63.68% on StanfordCars, 65.88% on IndoorCVPR. This kernel improves
further the accuracy of the model up to 0.6% more than its FC counterpart. Lastly, the
accuracy rates obtained with Model-1 are 65.59% on FGVC-Aircraft, 62.79% on Stanford-
Cars, 64.6% on IndoorCVPR, with second order Kervolution and SVM. This represents
an improvement up to 0.9% over the fully connected layers. Whereas, with Kervolution
and SVM third degree polynomial, the obtained accuracy rates are 67.03% on FGVC-
Aircraft, 63.36% on StanfordCars, 64.24% on IndoorCVPR. This kernel improves further
the accuracy of the model up to 1.5% more than its FC counterpart.

Table A.2 – Results of the different configurations on FER datasets.

Model Kernel RAF - DB FER2013 - DB ExpW - DB

VGG-16

FC
2nd order poly 86.42% 69.57% 74.13%
3rd order poly 87.08% 69.85% 74.46%

KDL
2nd order poly 86.72% 69.97% 74.84%
3rd order poly 87.46% 70.29% 75.08%

SVM
2nd order poly 87.11% 70.32% 75.27%
3rd order poly 87.82 % 70.62% 76%

Model-1

FC
2nd order poly 87.77% 70.68% 76.25%
3rd order poly 87.93% 70.95% 76.32%

KDL
2nd order poly 87.91% 71.01% 76.72%
3rd order poly 88.14% 71.13% 76.96%

SVM
2nd order poly 88.52% 71.28% 77.09%
3rd order poly 88.71 % 71.41% 77.87%

As shown in Table A.2, the accuracy rates obtained with VGG-16-base using second
order Kervolution and fully connected layers are 86.42%, 69.57%, 74.13% on RAF-DB,
FE2013 and ExpW, respectively. Whereas for third order Kervolution VGG-16-base and

126

Appendix A. Deep kernelized network for fine-grained recognition

fully connected layers, the obtained accuracy rates on RAF-DB, FE2013 and ExpW, re-
spectively, are 87.08%, 69.85%, 74.46%. On the other hand, the accuracy rates obtained
with VGG-16 like model are 86.72% for RAF-DB, 69.97% for FER2013, 74.84% for ExpW,
with second order Kervolution and KDL. This represents an improvement up to 0.7%
over the fully connected layers. Whereas, with Kervolution and KDL third degree poly-
nomial, the obtained accuracy rates are 87.46% for RAF-DB, 70.29% for FER2013, 75.08%
for ExpW. This kernel improves further the accuracy of the model up to 0.6% more
than its FC counterpart. Lastly, the accuracy rates obtained with VGG-16 like model are
87.11% for RAF-DB, 70.32% for FER2013, 75.27% for ExpW, with second order Kervo-
lution and SVM. This represents an improvement up to 1.2% over the fully connected
layers. Whereas, with Kervolution and SVM third degree polynomial, the obtained ac-
curacy rates are 87.82 % for RAF-DB, 70.62% for FER2013, 76% for ExpW. This kernel
improves further the accuracy of the model up to 1.6% more than its FC counterpart.

The accuracy rates obtained with Model-1 using second order Kervolution and fully
connected layers are 87.77%, 70.68%, 76.25% on RAF-DB, FE2013 and ExpW, respec-
tively. Whereas for third order Kervolution Model-1 and fully connected layers, the ob-
tained accuracy rates on RAF-DB, FE2013 and ExpW, respectively, are 87.93%for RAF-
DB, 70.95%, for FER 76.32 for ExpW. On the other hand, the accuracy rates obtained with
Model-1 are 87.91% for RAF-DB, 71.01% for FER2013, 76.72% for ExpW, with second or-
der Kervolution and KDL. This represents an improvement up to 0.5% over the fully
connected layers. Whereas, with Kervolution and KDL third degree polynomial, the ob-
tained accuracy rates are 88.14% for RAF-DB, 71.13% for FER2013, 76.96% for ExpW.
This kernel improves further the accuracy of the model up to 0.6% more than its FC
counterpart. Lastly, the accuracy rates obtained with Model-1 are 88.52% for RAF-DB,
71.28% for FER2013, 77.09% for ExpW, with second order Kervolution and SVM. This
represents an improvement up to 0.8% over the fully connected layers. Whereas, with
Kervolution and SVM third degree polynomial, the obtained accuracy rates are 88.71

% for RAF-DB, 71.41% for FER2013, 77.87% for ExpW. This kernel improves further the
accuracy of the model up to 1.5% more than its FC counterpart.

As discussed before, one can clearly conclude that kernel based methods improve
considerably the network performance in terms of accuracy. Indeed, using all configura-
tions and with all the datasets used, the network performance was enhanced. Moreover,
the kernel methods used have different impact on the network, as well as, the kernel
function itself. For instance, kernel SVM can improve the accuracy from 0.8% to 1.5%
using second and third order polynomial kernel respectively. Whereas, KDL can im-
prove the accuracy from 0.5% using second polynomial kernel to 0.7% using third order
polynomial kernel respectively.

127

Appendix A. Deep kernelized network for fine-grained recognition

A.3 Conclusion

In this chapter, we investigated the impact of using higher order kernels at different lev-
els of the network. For this purpose, we replaced convolution layers with Kervolution
layers proposed in [Wang u. a., 2019]. Similarly, we replaced fully connected layers alter-
natively with Kernelized Dense Layers (KDL) proposed in [Mahmoudi u. a., 2020] and
Kernel Support vector Machines (SVM) [Burges u. a., 1999]. These kernel-based methods
are more discriminative in the way that they can learn more complex patterns compared
to the linear one. Those methods first maps input data to a higher space. After that, they
learn a linear classifier in that space which is similar to a powerful non-linear classi-
fier in the first space. The experimental results performed on challenging Fine-Grained
datasets namely, FGVC-Aircraft, StanfordCars and CVPRIndoor as well Facial Expres-
sion Recognition (FER) datasets namely, RAF-DB, ExpW and FER2013. demonstrate that
these methods outperform the ordinary linear layers when used in a deep network fash-
ion. Finally, all kernel based methods considered in this work allow to improve the
network performance. The best result was achieved by kernel SVMs followed by KDL,
then Kervolution with FC layers.

128

BTaylor series kernelized layer for

fine-grained recognition

To further demonstrate the efficiency of our Taylor Series Kernelized Layer (TSKL)
method, described in chapter 6, we applied the later on fine-grained datasets. This fur-
ther proves the improvement that this layer can bring to a CNN. In this section, we give
more details about the experiments we performed to evaluate the approach described
above. First, we give a brief description of the datasets we have used. After that, we
describe architecture of the used models and training process. Finally, we discuss the
obtained results and compare them to those obtained using the ordinary dense layers.

B.0.1 Datasets and experimental settings

We demonstrated the efficiency of the proposed TSKL on both MLPs and CNNs. In
the first case, we built a small network architecture which will be used for an ordinary
MLP and an MLP built with TSKL. We will refer to the latter architecture as Multi-
TSKL Network (MTSKLN). These networks are composed of two hidden layers with
256 units both and an output layer with a number of units corresponding to the number
of categories of each dataset. In the case of MTSKLN, the hidden layers are composed
of 128 linear units, 96 second degree polynomial units, and 32 third degree polyno-
mial units. For this experiment, we used datasets with relatively small images namely,
MNIST, Fashion-MNIST [Xiao u. a., 2017], CIFAR-10, CIFAR-100 [Krizhevsky u. a., 2009]
and UCI-Iris. These datasets can be handled by a small neural network.

In the second case, we used some pre-trained CNNs, namely VGG-16, VGG-19 [Si-
monyan und Zisserman, 2014], ResNet50 [He u. a., 2016], MobileNet [Howard u. a., 2017]
and DenseNet121 [Huang u. a., 2017]. First of all, we start by fine tuning these CNNs
with the same process described in [Cui u. a., 2017]. After that, we took only the con-
volution part of these networks and add two fully connected layers similar to the MLP
and MTSKLN used previously. In addition, we built a CNN from scratch to further
demonstrate the efficiency of our method. This model architecture is composed of five
convolutional blocks. Each block consists of a set of convolution layers followed by a
batch normalization layer and a ReLU activation function. The first three blocks are
composed of three convolution layers, while the fourth and fifth blocks are composed

129

Appendix B. Taylor series kernelized layer for fine-grained recognition

Original Cropped Zero padded

Figure B.1 – Pre-processing steps for fine-grained datasets.

of two and one convolution layers, respectively. The convolution kernel size is 5 × 5 for
the first block and 3 × 3 for the remaining blocks. Each block outputs successively 64,
128, 256, 512 and 512 feature maps. Each block is followed by a dropout layer of 0.3 and
a 2 × 2 Max pooling layer. Two fully connected layers of size 256, 256 are finally added
after the last block.

We evaluated these CNN models on three well-known fine-grained datasets,
namely: FGVC-Aircraft [Maji u. a., 2013], StanfordCars [Krause u. a., 2013b] and
CVPRIndoor [Quattoni und Torralba, 2009]. In all cases, we applied ReLU activation
function on linear kernels. For higher order kernels, we added batch normalization fol-
lowed by Tanh activation function. We have used Adam optimiser with a learning rate
starting from 0.001. This learning rate is decreased by a factor of 0.5 if the validation ac-
curacy does not increase over two epochs in the case of MLP and five epochs in the case
of CNN. To avoid overfitting, we have first augmented the data using a range degree for
random rotations of 20, a shear intensity of 0.2, a range for random zoom of 0.2, ran-
domly flip the inputs horizontally, and subtract it with the pixel-wise image mean. The
only preprocessing we have employed for fine-grained datasets is cropping the object
region for both FGVC-Aircraft and StanfordCars. We resize the resulting images so that
its longer side is 224 while keeping its aspect ratio. We have also zero padded these im-
ages to obtain 224× 224 pixels. This preprocessing, shown in Fig. B.1, has a considerable
impact on learning process. For CVPRIndoor, we only resized the images to 224 × 224
pixels.

B.0.2 Performance Analysis

In this section, we study the impact of our TSKL on both MLPs and CNNs compared to
the ordinary dense layer. The results achieved by TSKL on MLPs and CNNs are reported
respectively in Tables B.1 and B.2.

130

Appendix B. Taylor series kernelized layer for fine-grained recognition

TSKL impact on MLP

In this section, we study the impact of our proposed TSKL layer on an MLP. The goal,
here, is not achieve state-of-the-art or competitive results. It is rather to demonstrate the
improvement that a TSKL layer can bring when used, solely, in an MLP fashion. The
obtained accuracy rate results of MTSKLN compared to MLP are reported in Table B.1.

Table B.1 – Accuracy rates of MTSKLN network compared to MLP.

– MNIST Fashion
MNIST

Cifar-10 Cifar-100 UCI-Iris

MLP 98.34% 90.14% 52.46% 26.46% 96%

MTSKLN 98.6% 90.09% 57.52% 28.51% 98%

As shown in Table B.1, our proposed MTSKLN outperforms the MLP with all
datasets, except for Fashion-MNIST where they achieved quite similar results. Similarly
to Fashion-MNIST, MTSKLN slightly outperforms MLP with 0.26% on MNIST. Whereas
for both UCI-Iris and Cifar-100, MTSKLN surpasses MLP with more than 2%. Finally,
MTSKLN achieves 5.06% more than MLP for Cifar-10. These results demonstrate the
superiority of the proposed TSKL layer compared to an ordinary dense layer.

TSKL impact on CNN

In this section, we study the impact of our proposed TSKL layer on CNNs. The ob-
tained accuracy rate results of TSKL compared to fully connected layers are reported in
Table B.2.
Table B.2 – Accuracy rates of CNNs with SKLN compared to CNNs with fully connected layers.

Model FGVC-Aircraft StanfordCars IndoorCVPR

VGG-16

FC 70.59% 68.76% 71.12%
TSKL 71.63% 69.42% 72.36%

VGG-19

FC 70.98% 68.92% 71.65%
TSKL 72.04% 70.09% 72.82%

ResNet50

FC 75.96% 72.41% 74.72%
TSKL 77.23% 74.06% 76.18%

MobileNet
FC 71.38% 70.02% 70.69%

TSKL 72.21% 71.61% 71.38%

DenseNet121

FC 72.03% 71.15% 71.86%
TSKL 72.87% 72.07% 72.49%

Model-1
FC 58.19% 56.78% 58.31%

TSKL 60.13% 57.22% 59.84%

As reported in Table B.2, CNNs with TSKL outperforms all CNNs with fully con-
nected layers with all models and datasets. The worst results we could achieve with
pre-trained CNNs are obtained with both VGG-16 and VGG-19. The reason for such

131

Appendix B. Taylor series kernelized layer for fine-grained recognition

results is that these two CNNs have huge fully connected layers with two 4096 layers
and 1000 output layer. Omitting completely these layers impact negatively their perfor-
mance. Despite this, our TSKL could outperform the fully connected layers, with these
CNNs on all datasets. It reaches 71.63%, 69.42%, 72.36% with VGG-16 on respectively
FGVC-Aircraft, StanfordCars and CVPRIndoor. This represents an average accuracy rate
improvement of 1%. For VGG-19, it reaches 72.04%, 70.09% and 72.82% on respectively
FGVC-Aircraft, StanfordCars and CVPRIndoor which represents an average accuracy
rate improvement of 1.13%.

The best results we could achieve are obtained with ResNet50; This model does not
rely greatly on fully connected layers and therefore, its convolution part carries more
knowledge than the convolution part of both VGG-16 and VGG-19. In addition to that,
using TSKL allows to improve further the performance of this CNN compared to fully
connected layers reaching an accuracy rate of 77.23%, 74.06% and 76.18% on respec-
tively FGVC-Aircraft, StanfordCars and CVPRIndoor, enhacing thus the accuracy with
an average of 1.46% on all datasets. TSKL is also beneficial to MobileNet since it reaches
an accuracy rate of 72.21%, 71.61% and 71.38% on respectively FGVC-Aircraft, Stan-
fordCars and CVPRIndoor, which represents an average improvement of 1% over fully
connected layers. TSKL used on DenseNet121 reaches 72.87%, 72.07% and 72.49% on re-
spectively FGVC-Aircraft, StanfordCars and CVPRIndoor, improving by so the accuracy
by an average of 0.76% over fully connected layers.

Finally, in the case of Model-1, even though it reaches clearly lower results compared
to pre-trained CNNs, it demonstrates the superiority of our proposed TSKL layer. It
reaches 60.13%, 57.22% and 59.84% on respectively FGVC-Aircraft, StanfordCars and
CVPRIndoor with an average improvement of 1.3% over the fully connected layers on
all datasets.

B.1 Conclusion

In this section, we proposed a new dense layer powered by a Taylor Series Kernel instead
of a linear one. The intuition behind, was to map input data into a higher feature space.
This mapping was done implicitly using several polynomial kernels of different degrees,
leveraging the kernel trick. Then, explicitly by concatenating the output of the first step
in the form of a Taylor series kernel. This Taylor Series Kernelized Layer is able to learn
more complex patterns than an ordinary dense layer and thus be more discriminative.
The experimental results demonstrate that this layer outperforms the ordinary dense
layer when used as MLPs, or on top of CNNs on fine-grained datasets.

132

CList of kernels

C.1 List of kernels

1. Linear Kernel: Linear Kernel is used when the data is linearly separable, that is,
it can be separated using a single line. It is one of the most common kernels to be
used. It is mostly used when there are a large number of features in a particular
dataset. One of the examples where there are a lot of features, is Text Classification,
as each alphabet is a new feature.

The linear kernel is the simplest kernel function. It is given by the inner product
<x,y> plus an optional constant c.

K(x, y) = xTy + c (C.1)

The advantages of using linear kernel are:

• Training with a linear kernel is faster than with any other Kernel.

• When training with a linear kernel, only the optimisation of the c regular-
isation parameter is required. On the other hand, when training with other
kernels, there is a need to optimise other parameter as well, which means that
performing a grid search will usually take more time.

2. Polynomial Kernel: In machine learning, the polynomial kernel is a kernel func-
tion commonly used with the kernelized models (such as SVMs), that represents
the similarity of vectors (training samples) in a feature space over polynomials of
the original variables, allowing learning of non-linear models. Intuitively, the poly-
nomial kernel looks not only at the given features of input samples to determine
their similarity, but also combinations of these. Such combinations are known as
interaction features. The (implicit) feature space of a polynomial kernel is equiva-
lent to that of higher feature space, but without the combinatorial blowup in the
number of parameters to be learned.

The Polynomial kernel is a non-stationary kernel. Polynomial kernels are well
suited for problems where all the training data is normalized. Adjustable parame-
ters are the slope alpha, the constant term c and the polynomial degree d.

133

Appendix C. List of kernels

K(x, y) = (αxTy + c)d (C.2)

3. Gaussian Kernel:

The Gaussian kernel is an example of radial basis function kernel.

K(x, y) = exp
(
−∥x − y∥2

2σ2

)
(C.3)

The adjustable parameter sigma plays a major role in the performance of the ker-
nel, and should be carefully tuned to the problem at hand. If overestimated, the
exponential will behave almost linearly and the higher-dimensional projection will
start to lose its non-linear power. In the other hand, if underestimated, the function
will lack regularization and the decision boundary will be highly sensitive to noise
in training data.

4. Exponential Kernel: The exponential kernel is closely related to the Gaussian ker-
nel, with only the square of the norm left out. It is also a radial basis function
kernel.

K(x, y) = exp
(
−∥x − y∥

2σ2

)
(C.4)

5. Laplacian Kernel: The Laplace Kernel is completely equivalent to the exponential
kernel, except for being less sensitive for changes in the sigma parameter. Being
equivalent, it is also a radial basis function kernel.

K(x, y) = exp
(
−∥x − y∥

σ

)
(C.5)

It is important to note that the observations made about the sigma parameter for
the Gaussian kernel also apply to the Exponential and Laplacian kernels.

6. ANOVA Kernel: The ANOVA kernel is also a radial basis function kernel, just as
the Gaussian and Laplacian kernels. It is said to perform well in multidimensional
regression problems.

K(x, y) =
n

∑
k=1

exp
(
−σ(xk − yk)2

)d
(C.6)

7. Hyperbolic Tangent (Sigmoid) Kernel: The Hyperbolic Tangent Kernel is also
known as the Sigmoid Kernel and as the Multilayer Perceptron (MLP) kernel. The
Sigmoid Kernel comes from the Neural Networks field, where the bipolar sigmoid
function is often used as an activation function for artificial neurons.

134

Appendix C. List of kernels

K(x, y) = tanh(αxTy + c)d (C.7)

It is interesting to note that a SVM model using a sigmoid kernel function is equiv-
alent to a two-layer, perceptron neural network. This kernel was quite popular for
support vector machines due to its origin from neural network theory. Also, de-
spite being only conditionally positive definite, it has been found to perform well
in practice. There are two adjustable parameters in the sigmoid kernel, the slope
alpha and the intercept constant c. A common value for alpha is 1/N, where N is
the data dimension.

8. Rational Quadratic Kernel: The Rational Quadratic kernel is less computationally
intensive than the Gaussian kernel and can be used as an alternative when using
the Gaussian becomes too expensive.

K(x, y) = 1 − ∥x − y∥2

∥x − y∥2 + c
(C.8)

9. Multiquadric Kernel: The Multiquadric kernel can be used in the same situations
as the Rational Quadratic kernel. As is the case with the Sigmoid kernel, it is also
an example of an non-positive definite kernel.

K(x, y) =
√
∥x − y∥2 + c (C.9)

10. Inverse Multiquadric Kernel: The Inverse Multi Quadric kernel. As with the
Gaussian kernel, it results in a kernel matrix with full rank and thus forms a
infinite dimension feature space.

K(x, y) =
1√

∥x − y∥2 + c
(C.10)

11. Circular Kernel: The circular kernel is used in geostatic applications. It is an ex-
ample of an isotropic stationary kernel and is positive definite in R2.

K(x, y) =
2
π

arccos
(
−∥x − y∥

σ

)
− 2

π
− ∥x − y∥

σ

√
1 −

(
∥x − y∥

σ

)2

i f ∥x − y∥ < σ, zerootherwise.

(C.11)

12. Spherical Kernel: The spherical kernel is similar to the circular kernel, but is pos-
itive definite in R3.

135

Appendix C. List of kernels

K(x, y) = 1 − 3
2
∥x − y∥

σ
+

1
2

(
∥x − y∥

σ

)3

i f ∥x − y∥ < σ, zerootherwise.

(C.12)

13. Power Kernel: The Power kernel is also known as the (unrectified) triangular ker-
nel. It is an example of scale-invariant kernel and is also only conditionally positive
definite.

K(x, y) = −∥x − y∥d (C.13)

14. Log Kernel: The Log kernel seems to be particularly interesting for images, but is
only conditionally positive definite.

K(x, y) = − log
(
∥x − y∥d + 1

)
(C.14)

15. Chi-Square Kernel: The Chi-Square kernel comes from the Chi-Square distribu-
tion:

K(x, y) = 1 −
n

∑
i=1

(xi − yi)
2

1
2 (xi + yi)

(C.15)

However, as noted by commenter Alexis Mignon, this version of the kernel is only
conditionally positive-definite (CPD). A positive-definite version of this kernel is
given as

K(x, y) =
n

∑
i=1

2xiyi

(xi + yi)
(C.16)

and is suitable to be used by methods other than support vector machines.

16. Histogram Intersection Kernel: The Histogram Intersection Kernel is also known
as the Min Kernel and has been proven useful in image classification.

K(x, y) =
n

∑
i=1

min(xi, yi) (C.17)

17. Generalized Histogram Intersection: The Generalized Histogram Intersection ker-
nel is built based on the Histogram Intersection Kernel for image classification but
applies in a much larger variety of contexts. It is given by:

K(x, y) =
n

∑
i=1

min(|xi|α, |yi|β) (C.18)

136

Appendix C. List of kernels

18. Generalized T-Student Kernel: The Generalized T-Student Kernel has been
proven to be a Mercel Kernel, thus having a positive semi-definite Kernel matrix.
It is given by:

K(x, y) =
1

1 + ∥x − y∥d (C.19)

19. Bayesian Kernel: The Bayesian kernel could be given as:

K(x, y) =
n

∏
i=1

ki(xi, yi) (C.20)

where:

ki(a, b) = ∑
c∈{0;1}

P(Y = c|Xi = a)P(Y = c|Xi = b) (C.21)

137

Bibliography

[Abadi u. a. 2016] Abadi, Martín ; Agarwal, Ashish ; Barham, Paul ; Brevdo, Eu-
gene ; Chen, Zhifeng ; Citro, Craig ; Corrado, Greg S. ; Davis, Andy ; Dean, Jeffrey ;
Devin, Matthieu u. a.: Tensorflow: Large-scale machine learning on heterogeneous
distributed systems. In: arXiv preprint arXiv:1603.04467 (2016)

[Acharya u. a. 2018a] Acharya, Dinesh ; Huang, Zhiwu ; Pani Paudel, Danda ;
Van Gool, Luc: Covariance pooling for facial expression recognition. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018,
S. 367–374

[Acharya u. a. 2018b] Acharya, Dinesh ; Huang, Zhiwu ; Pani Paudel, Danda ;
Van Gool, Luc: Covariance Pooling for Facial Expression Recognition. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2018

[Assiri 2020] Assiri, Yahia: Stochastic Optimization of Plain Convolutional Neural
Networks with Simple methods. In: arXiv preprint arXiv:2001.08856 (2020)

[Bacivarov 2009] Bacivarov, Ioana: Advances in the modelling of facial sub-regions and
facial expressions using active appearance techniques, Dissertation, 2009

[Bai u. a. 2021] Bai, Mengjiong ; Goecke, Roland ; Herath, Damith: Micro-Expression
Recognition Based On Video Motion Magnification And Pre-Trained Neural Network.
In: 2021 IEEE International Conference on Image Processing (ICIP) IEEE (Veranst.), 2021,
S. 549–553

[Bishay u. a. 2019] Bishay, Mina ; Palasek, Petar ; Priebe, Stefan ; Patras, Ioannis:
SchiNet: Automatic Estimation of Symptoms of Schizophrenia from Facial Behaviour
Analysis. In: IEEE Transactions on Affective Computing (2019)

[Bosagh und Ramsundar 2018] Bosagh, Reza Z. ; Ramsundar, Bharath: TensorFlow
for deep learning. O’Reilly Media, Incorporated, 2018

[Burges u. a. 1999] Burges, Christopher J. ; Scholkopf, Bernhard ; Smola, Alexan-
der J.: Advances in kernel methods: support vector learning. MIT press Cambridge, MA,
USA:, 1999

[Byerly u. a. 2020] Byerly, Adam ; Kalganova, Tatiana ; Dear, Ian: A Branching
and Merging Convolutional Network with Homogeneous Filter Capsules. In: arXiv
preprint arXiv:2001.09136 (2020)

138

Bibliography

[Cai u. a. 2018] Cai, Jie ; Meng, Zibo ; Khan, Ahmed S. ; Li, Zhiyuan ; O’Reilly,
James ; Tong, Yan: Island loss for learning discriminative features in facial expression
recognition. In: 2018 13th IEEE International Conference on Automatic Face & Gesture
Recognition (FG 2018) IEEE (Veranst.), 2018, S. 302–309

[Chen u. a. 2020] Chen, Shizhe ; Zhao, Yida ; Jin, Qin ; Wu, Qi: Fine-grained Video-
Text Retrieval with Hierarchical Graph Reasoning. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, S. 10638–10647

[Chen u. a. 2015] Chen, Tianqi ; Li, Mu ; Li, Yutian ; Lin, Min ; Wang, Naiyan ; Wang,
Minjie ; Xiao, Tianjun ; Xu, Bing ; Zhang, Chiyuan ; Zhang, Zheng: Mxnet: A flexible
and efficient machine learning library for heterogeneous distributed systems. In: arXiv
preprint arXiv:1512.01274 (2015)

[Chen u. a. 2018] Chen, Weikai ; Han, Xiaoguang ; Li, Guanbin ; Chen, Chao ; Xing,
Jun ; Zhao, Yajie ; Li, Hao: Deep rbfnet: Point cloud feature learning using radial
basis functions. In: arXiv preprint arXiv:1812.04302 (2018)

[Chetlur u. a. 2014] Chetlur, Sharan ; Woolley, Cliff ; Vandermersch, Philippe ; Co-
hen, Jonathan ; Tran, John ; Catanzaro, Bryan ; Shelhamer, Evan: cudnn: Efficient
primitives for deep learning. In: arXiv preprint arXiv:1410.0759 (2014)

[Chetouani u. a. 2020] Chetouani, Aladine ; Treuillet, Sylvie ; Exbrayat, Matthieu ;
Jesset, Sébastien: Classification of engraved pottery sherds mixing deep-learning fea-
tures by compact bilinear pooling. In: Pattern Recognition Letters 131 (2020), S. 1–7

[Chien und Hsieh 2013] Chien, Jen-Tzung ; Hsieh, Hsin-Lung: Nonstationary source
separation using sequential and variational Bayesian learning. In: IEEE Transactions
on Neural Networks and Learning Systems 24 (2013), Nr. 5, S. 681–694

[Cho u. a. 2014] Cho, Kyunghyun ; Van Merriënboer, Bart ; Gulcehre, Caglar ;
Bahdanau, Dzmitry ; Bougares, Fethi ; Schwenk, Holger ; Bengio, Yoshua: Learning
phrase representations using RNN encoder-decoder for statistical machine translation.
In: arXiv preprint arXiv:1406.1078 (2014)

[Cho und Saul 2009] Cho, Youngmin ; Saul, Lawrence: Kernel methods for deep
learning. In: Advances in neural information processing systems 22 (2009)

[Choy u. a. 2006] Choy, Min C. ; Srinivasan, Dipti ; Cheu, Ruey L.: Neural networks
for continuous online learning and control. In: IEEE Transactions on Neural Networks
17 (2006), Nr. 6, S. 1511–1531

[Clevert u. a. 2015] Clevert, Djork-Arné ; Unterthiner, Thomas ; Hochreiter, Sepp:
Fast and accurate deep network learning by exponential linear units (elus). In: arXiv
preprint arXiv:1511.07289 (2015)

139

Bibliography

[Cohen und Welling 2016] Cohen, Taco ; Welling, Max: Group equivariant convolu-
tional networks. In: International conference on machine learning, 2016, S. 2990–2999

[Collobert u. a. 2002] Collobert, Ronan ; Bengio, Samy ; Mariéthoz, Johnny: Torch:
a modular machine learning software library / Idiap. 2002. – Forschungsbericht

[Cootes u. a. 2001] Cootes, Timothy F. ; Edwards, Gareth J. ; Taylor, Christopher J.:
Active appearance models. In: IEEE Transactions on pattern analysis and machine intelli-
gence 23 (2001), Nr. 6, S. 681–685

[Cootes u. a. 1995] Cootes, Timothy F. ; Taylor, Christopher J. ; Cooper, David H. ;
Graham, Jim: Active shape models-their training and application. In: Computer vision
and image understanding 61 (1995), Nr. 1, S. 38–59

[Cortes und Vapnik 1995] Cortes, Corinna ; Vapnik, Vladimir: Support-vector net-
works. In: Machine learning 20 (1995), Nr. 3, S. 273–297

[Cui u. a. 2017] Cui, Yin ; Zhou, Feng ; Wang, Jiang ; Liu, Xiao ; Lin, Yuanqing ;
Belongie, Serge: Kernel pooling for convolutional neural networks. In: Proceedings of
the IEEE conference on computer vision and pattern recognition, 2017, S. 2921–2930

[Dahl u. a. 2011] Dahl, George E. ; Yu, Dong ; Deng, Li ; Acero, Alex: Context-
dependent pre-trained deep neural networks for large-vocabulary speech recognition.
In: IEEE Transactions on audio, speech, and language processing 20 (2011), Nr. 1, S. 30–42

[Dalal und Triggs 2005] Dalal, Navneet ; Triggs, Bill: Histograms of oriented gradi-
ents for human detection. In: 2005 IEEE computer society conference on computer vision
and pattern recognition (CVPR’05) Bd. 1 Ieee (Veranst.), 2005, S. 886–893

[Deng 2014] Deng, Li: A tutorial survey of architectures, algorithms, and applications
for deep learning. In: APSIPA transactions on Signal and Information Processing 3 (2014)

[Deng u. a. 2015] Deng, Weihong ; Hu, Jiani ; Zhang, Shuo ; Guo, Jun: DeepEmo: real-
world facial expression analysis via deep learning. In: 2015 Visual Communications and
Image Processing (VCIP) IEEE (Veranst.), 2015, S. 1–4

[Dhall u. a. 2011] Dhall, Abhinav ; Goecke, Roland ; Lucey, Simon ; Gedeon, Tom:
Static facial expression analysis in tough conditions: Data, evaluation protocol and
benchmark. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV
Workshops) IEEE (Veranst.), 2011, S. 2106–2112

[Dhall u. a. 2012] Dhall, Abhinav ; Goecke, Roland ; Lucey, Simon ; Gedeon, Tom:
Collecting large, richly annotated facial-expression databases from movies. In: IEEE
Annals of the History of Computing 19 (2012), Nr. 03, S. 34–41

140

Bibliography

[Dubey und Singh 2016] Dubey, Monika ; Singh, Lokesh: Automatic Emotion Recog-
nition Using Facial Expression: A Review. In: International Research Journal of Engineer-
ing and Technology (IRJET) (2016)

[Ekman und Friesen 1971] Ekman, Paul ; Friesen, Wallace V.: Constants across cul-
tures in the face and emotion. In: Journal of personality and social psychology 17 (1971),
Nr. 2, S. 124

[El Ayadi u. a. 2011] El Ayadi, Moataz ; Kamel, Mohamed S. ; Karray, Fakhri: Survey
on speech emotion recognition: Features, classification schemes, and databases. In:
Pattern recognition 44 (2011), Nr. 3, S. 572–587

[Elisseeff und Weston 2001] Elisseeff, André ; Weston, Jason: A kernel method for
multi-labelled classification. In: Advances in neural information processing systems 14

(2001)

[Fabian Benitez-Quiroz u. a. 2016] Fabian Benitez-Quiroz, C ; Srinivasan, Ram-
prakash ; Martinez, Aleix M.: Emotionet: An accurate, real-time algorithm for the
automatic annotation of a million facial expressions in the wild. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016, S. 5562–5570

[Fukui u. a. 2016] Fukui, Akira ; Park, Dong H. ; Yang, Daylen ; Rohrbach, Anna ;
Darrell, Trevor ; Rohrbach, Marcus: Multimodal compact bilinear pooling for visual
question answering and visual grounding. In: arXiv preprint arXiv:1606.01847 (2016)

[Gao u. a. 2016] Gao, Yang ; Beijbom, Oscar ; Zhang, Ning ; Darrell, Trevor: Com-
pact bilinear pooling. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, S. 317–326

[Gao u. a. 2020] Gao, Yu ; Han, Xintong ; Wang, Xun ; Huang, Weilin ; Scott,
Matthew: Channel Interaction Networks for Fine-Grained Image Categorization. In:
AAAI, 2020, S. 10818–10825

[Gao u. a. 2019a] Gao, Zilin ; Xie, Jiangtao ; Wang, Qilong ; Li, Peihua: Global Second-
order Pooling Convolutional Networks. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2019, S. 3024–3033

[Gao u. a. 2019b] Gao, Ziteng ; Wang, Limin ; Wu, Gangshan: LIP: Local Importance-
based Pooling. In: arXiv preprint arXiv:1908.04156 (2019)

[Gharsalli 2016] Gharsalli, Sonia: Reconnaissance des émotions par traitement d’images,
Université d’Orléans, Dissertation, 2016

[Girshick 2015] Girshick, Ross: Fast r-cnn. In: Proceedings of the IEEE international
conference on computer vision, 2015, S. 1440–1448

141

Bibliography

[Girshick u. a. 2014] Girshick, Ross ; Donahue, Jeff ; Darrell, Trevor ; Malik, Jiten-
dra: Rich feature hierarchies for accurate object detection and semantic segmentation.
In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2014,
S. 580–587

[Glorot und Bengio 2010] Glorot, Xavier ; Bengio, Yoshua: Understanding the dif-
ficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth
international conference on artificial intelligence and statistics JMLR Workshop and Con-
ference Proceedings (Veranst.), 2010, S. 249–256

[Goodfellow u. a. 2016] Goodfellow, Ian ; Bengio, Yoshua ; Courville, Aaron: Deep
learning. MIT press, 2016

[Goodfellow u. a. 2014] Goodfellow, Ian ; Pouget-Abadie, Jean ; Mirza, Mehdi ; Xu,
Bing ; Warde-Farley, David ; Ozair, Sherjil ; Courville, Aaron ; Bengio, Yoshua:
Generative adversarial nets. In: Advances in neural information processing systems 27

(2014)

[Goodfellow u. a. 2013] Goodfellow, Ian J. ; Erhan, Dumitru ; Carrier, Pierre L. ;
Courville, Aaron ; Mirza, Mehdi ; Hamner, Ben ; Cukierski, Will ; Tang, Yichuan ;
Thaler, David ; Lee, Dong-Hyun u. a.: Challenges in representation learning: A report
on three machine learning contests. In: International Conference on Neural Information
Processing, Springer (2013), S. 117–124

[Grandini u. a. 2020] Grandini, Margherita ; Bagli, Enrico ; Visani, Giorgio: Metrics
for multi-class classification: an overview. In: arXiv preprint arXiv:2008.05756 (2020)

[Grauman und Darrell 2005] Grauman, Kristen ; Darrell, Trevor: The pyramid
match kernel: Discriminative classification with sets of image features. In: Tenth IEEE
International Conference on Computer Vision (ICCV’05) Volume 1 Bd. 2 IEEE (Veranst.),
2005, S. 1458–1465

[Gross u. a. 2010] Gross, Ralph ; Matthews, Iain ; Cohn, Jeffrey ; Kanade, Takeo ;
Baker, Simon: Multi-pie. In: Image and vision computing 28 (2010), Nr. 5, S. 807–813

[Guo u. a. 2016] Guo, Yanan ; Tao, Dapeng ; Yu, Jun ; Xiong, Hao ; Li, Yaotang ;
Tao, Dacheng: Deep neural networks with relativity learning for facial expression
recognition. In: 2016 IEEE International Conference on Multimedia & Expo Workshops
(ICMEW) IEEE (Veranst.), 2016, S. 1–6

[Ha u. a. 2015] Ha, Hsin-Yu ; Yang, Yimin ; Pouyanfar, Samira ; Tian, Haiman ;
Chen, Shu-Ching: Correlation-based deep learning for multimedia semantic concept
detection. In: International Conference on Web Information Systems Engineering Springer
(Veranst.), 2015, S. 473–487

142

Bibliography

[He u. a. 2015a] He, Kaiming ; Zhang, Xiangyu ; Ren, Shaoqing ; Sun, Jian: Delving
Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classifica-
tion. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV),
December 2015

[He u. a. 2015b] He, Kaiming ; Zhang, Xiangyu ; Ren, Shaoqing ; Sun, Jian: Spatial
pyramid pooling in deep convolutional networks for visual recognition. In: IEEE
transactions on pattern analysis and machine intelligence 37 (2015), Nr. 9, S. 1904–1916

[He u. a. 2016] He, Kaiming ; Zhang, Xiangyu ; Ren, Shaoqing ; Sun, Jian: Deep resid-
ual learning for image recognition. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, S. 770–778

[Hinton u. a. 2012] Hinton, Geoffrey E. ; Srivastava, Nitish ; Krizhevsky, Alex ;
Sutskever, Ilya ; Salakhutdinov, Ruslan R.: Improving neural networks by prevent-
ing co-adaptation of feature detectors. In: arXiv preprint arXiv:1207.0580 (2012)

[Howard u. a. 2017] Howard, Andrew G. ; Zhu, Menglong ; Chen, Bo ;
Kalenichenko, Dmitry ; Wang, Weijun ; Weyand, Tobias ; Andreetto, Marco ;
Adam, Hartwig: Mobilenets: Efficient convolutional neural networks for mobile vision
applications. In: arXiv preprint arXiv:1704.04861 (2017)

[Huang u. a. 2017] Huang, Gao ; Liu, Zhuang ; Van Der Maaten, Laurens ; Wein-
berger, Kilian Q.: Densely connected convolutional networks. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, S. 4700–4708

[Huang u. a. 2019] Huang, Yanping ; Cheng, Youlong ; Bapna, Ankur ; Firat, Orhan ;
Chen, Dehao ; Chen, Mia ; Lee, HyoukJoong ; Ngiam, Jiquan ; Le, Quoc V. ; Wu,
Yonghui u. a.: Gpipe: Efficient training of giant neural networks using pipeline paral-
lelism. In: Advances in Neural Information Processing Systems, 2019, S. 103–112

[Huang u. a. 2020] Huang, Zhanchao ; Wang, Jianlin ; Fu, Xuesong ; Yu, Tao ; Guo,
Yongqi ; Wang, Rutong: DC-SPP-YOLO: Dense connection and spatial pyramid pool-
ing based YOLO for object detection. In: Information Sciences 522 (2020), S. 241–258

[Huang und Li 2020] Huang, Zixuan ; Li, Yin: Interpretable and Accurate Fine-
grained Recognition via Region Grouping. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020, S. 8662–8672

[Hubel und Wiesel 1962] Hubel, David H. ; Wiesel, Torsten N.: Receptive fields,
binocular interaction and functional architecture in the cat’s visual cortex. In: The
Journal of physiology 160 (1962), Nr. 1, S. 106

[Hyun u. a. 2019] Hyun, Junhyuk ; Seong, Hongje ; Kim, Euntai: Universal Pooling–
A New Pooling Method for Convolutional Neural Networks. In: arXiv preprint
arXiv:1907.11440 (2019)

143

Bibliography

[Jayasumana u. a. 2020] Jayasumana, Sadeep ; Ramalingam, Srikumar ; Kumar, San-
jiv: Kernelized Classification in Deep Networks. In: arXiv preprint arXiv:2012.09607
(2020)

[Jayasundara u. a. 2019] Jayasundara, Vinoj ; Jayasekara, Sandaru ; Jayasekara,
Hirunima ; Rajasegaran, Jathushan ; Seneviratne, Suranga ; Rodrigo, Ranga:
Textcaps: Handwritten character recognition with very small datasets. In: 2019 IEEE
Winter Conference on Applications of Computer Vision (WACV) IEEE (Veranst.), 2019,
S. 254–262

[Ji u. a. 2020] Ji, Ruyi ; Wen, Longyin ; Zhang, Libo ; Du, Dawei ; Wu, Yanjun ; Zhao,
Chen ; Liu, Xianglong ; Huang, Feiyue: Attention Convolutional Binary Neural Tree
for Fine-Grained Visual Categorization. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, S. 10468–10477

[Jia u. a. 2014] Jia, Yangqing ; Shelhamer, Evan ; Donahue, Jeff ; Karayev, Sergey ;
Long, Jonathan ; Girshick, Ross ; Guadarrama, Sergio ; Darrell, Trevor: Caffe:
Convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM
international conference on Multimedia, 2014, S. 675–678

[Kanade u. a. 2000] Kanade, Takeo ; Cohn, Jeffrey F. ; Tian, Yingli: Comprehensive
database for facial expression analysis. In: Proceedings Fourth IEEE International Con-
ference on Automatic Face and Gesture Recognition (Cat. No. PR00580) IEEE (Veranst.),
2000, S. 46–53

[Karpathy u. a. 2014] Karpathy, Andrej ; Toderici, George ; Shetty, Sanketh ; Leung,
Thomas ; Sukthankar, Rahul ; Fei-Fei, Li: Large-scale video classification with con-
volutional neural networks. In: Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition, 2014, S. 1725–1732

[Kim u. a. 2016] Kim, Bo-Kyeong ; Dong, Suh-Yeon ; Roh, Jihyeon ; Kim, Geonmin ;
Lee, Soo-Young: Fusing aligned and non-aligned face information for automatic affect
recognition in the wild: a deep learning approach. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops (2016), S. 48–57

[Klambauer u. a. 2017] Klambauer, Günter ; Unterthiner, Thomas ; Mayr, Andreas ;
Hochreiter, Sepp: Self-normalizing neural networks. In: Advances in neural informa-
tion processing systems, 2017, S. 971–980

[Kolesnikov u. a. 2019] Kolesnikov, Alexander ; Beyer, Lucas ; Zhai, Xiaohua ;
Puigcerver, Joan ; Yung, Jessica ; Gelly, Sylvain ; Houlsby, Neil: Large Scale Learn-
ing of General Visual Representations for Transfer. In: arXiv preprint arXiv:1912.11370
(2019)

144

Bibliography

[Kovalev u. a. 2016] Kovalev, Vassili ; Kalinovsky, Alexander ; Kovalev, Sergey:
Deep learning with theano, torch, caffe, tensorflow, and deeplearning4j: Which one is
the best in speed and accuracy? (2016)

[Krause u. a. 2013a] Krause, Jonathan ; Stark, Michael ; Deng, Jia ; Fei-Fei, Li: 3D
Object Representations for Fine-Grained Categorization. In: 4th International IEEE
Workshop on 3D Representation and Recognition (3dRR-13). Sydney, Australia, 2013

[Krause u. a. 2013b] Krause, Jonathan ; Stark, Michael ; Deng, Jia ; Fei-Fei, Li: 3D
Object Representations for Fine-Grained Categorization. In: 4th International IEEE
Workshop on 3D Representation and Recognition (3dRR-13). Sydney, Australia, 2013

[Krizhevsky u. a. 2009] Krizhevsky, Alex ; Hinton, Geoffrey u. a.: Learning multiple
layers of features from tiny images. (2009)

[Krizhevsky u. a. 2012] Krizhevsky, Alex ; Sutskever, Ilya ; Hinton, Geoffrey E.: Im-
agenet classification with deep convolutional neural networks. In: Advances in neural
information processing systems (2012), S. 1097–1105

[Kuo u. a. 2018] Kuo, Chieh-Ming ; Lai, Shang-Hong ; Sarkis, Michel: A compact
deep learning model for robust facial expression recognition. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018, S. 2121–
2129

[Lazebnik u. a. 2006] Lazebnik, Svetlana ; Schmid, Cordelia ; Ponce, Jean: Beyond
bags of features: Spatial pyramid matching for recognizing natural scene categories.
In: 2006 IEEE computer society conference on computer vision and pattern recognition
(CVPR’06) Bd. 2 IEEE (Veranst.), 2006, S. 2169–2178

[Le 2013] Le, Quoc V.: Building high-level features using large scale unsupervised
learning. In: 2013 IEEE international conference on acoustics, speech and signal processing
IEEE (Veranst.), 2013, S. 8595–8598

[Learning 2017] Learning, Transfer: Convolutional Neural Network for Visual Recogni-
tion. 2017

[LeCun u. a. 2015a] LeCun, Yann u. a.: LeNet-5, convolutional neural networks. In:
URL: http://yann. lecun. com/exdb/lenet 20 (2015), Nr. 5, S. 14

[LeCun u. a. 1995] LeCun, Yann ; Bengio, Yoshua u. a.: Convolutional networks for
images, speech, and time series. In: The handbook of brain theory and neural networks
3361 (1995), Nr. 10, S. 1995

[LeCun u. a. 2015b] LeCun, Yann ; Bengio, Yoshua ; Hinton, Geoffrey: Deep learning.
In: nature 521 (2015), Nr. 7553, S. 436–444

145

Bibliography

[Li und Deng 2018a] Li, Shan ; Deng, Weihong: Deep facial expression recognition: A
survey. In: arXiv preprint arXiv:1804.08348 (2018)

[Li und Deng 2018b] Li, Shan ; Deng, Weihong: Reliable crowdsourcing and deep
locality-preserving learning for unconstrained facial expression recognition. In: IEEE
Transactions on Image Processing 28 (2018), Nr. 1, S. 356–370

[Li u. a. 2017] Li, Shan ; Deng, Weihong ; Du, JunPing: Reliable crowdsourcing and
deep locality-preserving learning for expression recognition in the wild. In: Computer
Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on IEEE (Veranst.), 2017,
S. 2584–2593

[Li und Wu 2015] Li, Xiangang ; Wu, Xihong: Constructing long short-term memory
based deep recurrent neural networks for large vocabulary speech recognition. In:
2015 ieee international conference on acoustics, speech and signal processing (icassp) IEEE
(Veranst.), 2015, S. 4520–4524

[Li u. a. 2020] Li, Yante ; Huang, Xiaohua ; Zhao, Guoying: Joint Local and Global
Information Learning With Single Apex Frame Detection for Micro-Expression Recog-
nition. In: IEEE Transactions on Image Processing 30 (2020), S. 249–263

[Lian u. a. 2020] Lian, Zheng ; Li, Ya ; Tao, Jian-Hua ; Huang, Jian ; Niu, Ming-Yue:
Expression analysis based on face regions in real-world conditions. In: International
Journal of Automation and Computing 17 (2020), Nr. 1, S. 96–107

[Liao u. a. 2019] Liao, Qiyu ; Wang, Dadong ; Holewa, Hamish ; Xu, Min: Squeezed
bilinear pooling for fine-grained visual categorization. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision Workshops, 2019, S. 0–0

[Lin und Maji 2017] Lin, Tsung-Yu ; Maji, Subhransu: Improved bilinear pooling with
cnns. In: arXiv preprint arXiv:1707.06772 (2017)

[Lin u. a. 2015] Lin, Tsung-Yu ; RoyChowdhury, Aruni ; Maji, Subhransu: Bilinear
cnn models for fine-grained visual recognition. In: Proceedings of the IEEE international
conference on computer vision, 2015, S. 1449–1457

[Liu u. a. 2017a] Liu, Wenhan ; Zhang, Mengxin ; Zhang, Yidan ; Liao, Yuan ; Huang,
Qijun ; Chang, Sheng ; Wang, Hao ; He, Jin: Real-time multilead convolutional neural
network for myocardial infarction detection. In: IEEE journal of biomedical and health
informatics 22 (2017), Nr. 5, S. 1434–1444

[Liu u. a. 2017b] Liu, Zhiwen ; Li, Shan ; Deng, Weihong: Boosting-POOF: boosting
part based one vs one feature for facial expression recognition in the wild. In: 2017
12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017)
IEEE (Veranst.), 2017, S. 967–972

146

Bibliography

[Liu u. a. 2020] Liu, Zongdai ; Lu, Feixiang ; Wang, Peng ; Miao, Hui ; Zhang,
Liangjun ; Yang, Ruigang ; Zhou, Bin: 3D Part Guided Image Editing for Fine-Grained
Object Understanding. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2020, S. 11336–11345

[López-Sánchez u. a. 2020] López-Sánchez, Daniel ; Arrieta, Angélica G. ; Cor-
chado, Juan M.: Compact bilinear pooling via kernelized random projection for
fine-grained image categorization on low computational power devices. In: Neuro-
computing 398 (2020), S. 411–421

[Loshchilov und Hutter 2017] Loshchilov, Ilya ; Hutter, Frank: Decoupled weight
decay regularization. In: arXiv preprint arXiv:1711.05101 (2017)

[Lowe 1999] Lowe, David G.: Object recognition from local scale-invariant features.
In: Proceedings of the seventh IEEE international conference on computer vision Bd. 2 Ieee
(Veranst.), 1999, S. 1150–1157

[Lyons u. a. 1998] Lyons, Michael ; Akamatsu, Shigeru ; Kamachi, Miyuki ; Gyoba,
Jiro: Coding facial expressions with gabor wavelets. In: Proceedings Third IEEE in-
ternational conference on automatic face and gesture recognition IEEE (Veranst.), 1998,
S. 200–205

[Mahmoudi u. a. 2021a] Mahmoudi, M ; Chetouani, Aladine ; Boufera, Fatma ;
Tabia, Hedi: Deep Kernelized Network for Fine-Grained Recognition. In: International
Conference on Neural Information Processing Springer (Veranst.), 2021, S. 100–111

[Mahmoudi u. a. 2020] Mahmoudi, M. A. ; Chetouani, A. ; Boufera, F. ; Tabia, H.:
Kernelized Dense Layers For Facial Expression Recognition. In: 2020 IEEE International
Conference on Image Processing (ICIP), 2020, S. 2226–2230

[Mahmoudi u. a. 2020] Mahmoudi, M A. ; Chetouani, Aladine ; Boufera, Fatma ;
Tabia, Hedi: Learnable pooling weights for facial expression recognition. In: Pattern
Recognition Letters 138 (2020)

[Mahmoudi u. a. 2021b] Mahmoudi, M A. ; Chetouani, Aladine ; Boufera, Fatma ;
Tabia, Hedi: Improved Bilinear Model for Facial Expression Recognition. In: Pattern
Recognition and Artificial Intelligence. MedPRAI 2020. Communications in Computer and
Information Science Bd. 1322 Springer (Veranst.), 2021, S. 47–59

[Mahmoudi u. a. 2021c] Mahmoudi, M A. ; Chetouani, Aladine ; Boufera, Fatma ;
Tabia, Hedi: Taylor Series Kernelized Layer for Fine-Grained Recognition. In: 2021
IEEE International Conference on Image Processing (ICIP) IEEE (Veranst.), 2021, S. 1914–
1918

147

Bibliography

[Mahmoudi u. a. 2022] Mahmoudi, M A. ; Chetouani, Aladine ; Boufera, Fatma ;
Tabia, Hedi: Kernel-based convolution expansion for facial expression recognition.
In: Pattern Recognition Letters (2022)

[Maji u. a. 2013] Maji, Subhransu ; Rahtu, Esa ; Kannala, Juho ; Blaschko,
Matthew ; Vedaldi, Andrea: Fine-grained visual classification of aircraft. In: arXiv
preprint arXiv:1306.5151 (2013)

[McCallum 1999] McCallum, Andrew K.: Multi-label text classification with a mix-
ture model trained by EM. In: AAAI 99 workshop on text learning Citeseer (Veranst.),
1999

[McKeown u. a. 2011] McKeown, Gary ; Valstar, Michel ; Cowie, Roddy ; Pantic,
Maja ; Schroder, Marc: The semaine database: Annotated multimodal records of
emotionally colored conversations between a person and a limited agent. In: IEEE
transactions on affective computing 3 (2011), Nr. 1, S. 5–17

[Mehrabian 2008] Mehrabian, Albert: Communication without words. In: Communi-
cation theory (2008), S. 193–200

[Mollahosseini u. a. 2017] Mollahosseini, Ali ; Hasani, Behzad ; Mahoor, Moham-
mad H.: Affectnet: A database for facial expression, valence, and arousal computing
in the wild. In: IEEE Transactions on Affective Computing (2017)

[Najafabadi u. a. 2015] Najafabadi, Maryam M. ; Villanustre, Flavio ; Khoshgof-
taar, Taghi M. ; Seliya, Naeem ; Wald, Randall ; Muharemagic, Edin: Deep learning
applications and challenges in big data analytics. In: Journal of big data 2 (2015), Nr. 1,
S. 1–21

[Nguyen u. a. 2018] Nguyen, Dung ; Nguyen, Kien ; Sridharan, Sridha ; Dean,
David ; Fookes, Clinton: Deep spatio-temporal feature fusion with compact bilinear
pooling for multimodal emotion recognition. In: Computer Vision and Image Under-
standing 174 (2018), S. 33–42

[Noh u. a. 2015] Noh, Hyeonwoo ; Hong, Seunghoon ; Han, Bohyung: Learning
deconvolution network for semantic segmentation. In: Proceedings of the IEEE interna-
tional conference on computer vision, 2015, S. 1520–1528

[Pantic und Rothkrantz 2000] Pantic, Maja ; Rothkrantz, Leon J. M.: Automatic
analysis of facial expressions: The state of the art. In: IEEE Transactions on pattern
analysis and machine intelligence 22 (2000), Nr. 12, S. 1424–1445

[Pantic u. a. 2005] Pantic, Maja ; Valstar, Michel ; Rademaker, Ron ; Maat, Ludo:
Web-based database for facial expression analysis. In: 2005 IEEE international conference
on multimedia and Expo IEEE (Veranst.), 2005, S. 5–pp

148

Bibliography

[Pouyanfar und Chen 2017] Pouyanfar, Samira ; Chen, Shu-Ching: T-LRA: Trend-
based learning rate annealing for deep neural networks. In: 2017 IEEE Third Interna-
tional Conference on Multimedia Big Data (BigMM) IEEE (Veranst.), 2017, S. 50–57

[Pouyanfar u. a. 2018] Pouyanfar, Samira ; Sadiq, Saad ; Yan, Yilin ; Tian, Haiman ;
Tao, Yudong ; Reyes, Maria P. ; Shyu, Mei-Ling ; Chen, Shu-Ching ; Iyengar, Sun-
daraja S.: A survey on deep learning: Algorithms, techniques, and applications. In:
ACM Computing Surveys (CSUR) 51 (2018), Nr. 5, S. 1–36

[Quattoni und Torralba 2009] Quattoni, Ariadna ; Torralba, Antonio: Recognizing
indoor scenes. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition IEEE
(Veranst.), 2009, S. 413–420

[Radford u. a. 2015] Radford, Alec ; Metz, Luke ; Chintala, Soumith: Unsupervised
representation learning with deep convolutional generative adversarial networks. In:
arXiv preprint arXiv:1511.06434 (2015)

[Ridnik u. a. 2020] Ridnik, Tal ; Lawen, Hussam ; Noy, Asaf ; Friedman, Ita-
mar: TResNet: High Performance GPU-Dedicated Architecture. In: arXiv preprint
arXiv:2003.13630 (2020)

[Robert 2014] Robert, Christian: Machine learning, a probabilistic perspective. 2014

[Saeed 2021] Saeed, Usman: Facial micro-expressions as a soft biometric for person
recognition. In: Pattern Recognition Letters 143 (2021), S. 95–103

[Saeedan u. a. 2018] Saeedan, Faraz ; Weber, Nicolas ; Goesele, Michael ; Roth, Ste-
fan: Detail-preserving pooling in deep networks. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, S. 9108–9116

[Schapire und Singer 2000] Schapire, Robert E. ; Singer, Yoram: BoosTexter: A
boosting-based system for text categorization. In: Machine learning 39 (2000), Nr. 2,
S. 135–168

[Scherer u. a. 2010] Scherer, Dominik ; Müller, Andreas ; Behnke, Sven: Evalua-
tion of pooling operations in convolutional architectures for object recognition. In:
International conference on artificial neural networks Springer (Veranst.), 2010, S. 92–101

[Schölkopf u. a. 2002] Schölkopf, Bernhard ; Smola, Alexander J. ; Bach, Francis u. a.:
Learning with kernels: support vector machines, regularization, optimization, and beyond.
MIT press, 2002

[Sermanet u. a. 2012] Sermanet, Pierre ; Chintala, Soumith ; LeCun, Yann: Convolu-
tional neural networks applied to house numbers digit classification. In: Proceedings of
the 21st international conference on pattern recognition (ICPR2012) IEEE (Veranst.), 2012,
S. 3288–3291

149

Bibliography

[Sermanet u. a. 2013] Sermanet, Pierre ; Kavukcuoglu, Koray ; Chintala, Soumith ;
LeCun, Yann: Pedestrian detection with unsupervised multi-stage feature learning.
In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2013,
S. 3626–3633

[Sim u. a. 2002] Sim, Terence ; Baker, Simon ; Bsat, Maan: The CMU pose, illumina-
tion, and expression (PIE) database. In: Proceedings of Fifth IEEE International Conference
on Automatic Face Gesture Recognition IEEE (Veranst.), 2002, S. 53–58

[Simonyan und Zisserman 2014] Simonyan, Karen ; Zisserman, Andrew: Very
deep convolutional networks for large-scale image recognition. In: arXiv preprint
arXiv:1409.1556 (2014)

[Sitzmann u. a. 2020] Sitzmann, Vincent ; Martel, Julien N. ; Bergman, Alexan-
der W. ; Lindell, David B. ; Wetzstein, Gordon: Implicit Neural Representations
with Periodic Activation Functions. In: arXiv preprint arXiv:2006.09661 (2020)

[Sivic und Zisserman 2003] Sivic, Josef ; Zisserman, Andrew: Video Google: A text
retrieval approach to object matching in videos. In: Computer Vision, IEEE International
Conference on Bd. 3 IEEE Computer Society (Veranst.), 2003, S. 1470–1470

[Sutskever u. a. 2013] Sutskever, Ilya ; Martens, James ; Dahl, George ; Hinton,
Geoffrey: On the importance of initialization and momentum in deep learning. In:
International conference on machine learning PMLR (Veranst.), 2013, S. 1139–1147

[Szegedy u. a. 2015] Szegedy, Christian ; Liu, Wei ; Jia, Yangqing ; Sermanet, Pierre ;
Reed, Scott ; Anguelov, Dragomir ; Erhan, Dumitru ; Vanhoucke, Vincent ; Rabi-
novich, Andrew: Going deeper with convolutions. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition (2015), S. 1–9

[Tang u. a. 2020] Tang, Luming ; Wertheimer, Davis ; Hariharan, Bharath: Revisit-
ing Pose-Normalization for Fine-Grained Few-Shot Recognition. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, S. 14352–14361

[Tang 2013] Tang, Yichuan: Deep learning using linear support vector machines. In:
arXiv preprint arXiv:1306.0239 (2013)

[Team u. a. 2016] Team, The Theano D. ; Al-Rfou, Rami ; Alain, Guillaume ;
Almahairi, Amjad ; Angermueller, Christof ; Bahdanau, Dzmitry ; Ballas, Nico-
las ; Bastien, Frédéric ; Bayer, Justin ; Belikov, Anatoly u. a.: Theano: A Python
framework for fast computation of mathematical expressions. In: arXiv preprint
arXiv:1605.02688 (2016)

[Tenenbaum und Freeman 2000] Tenenbaum, Joshua B. ; Freeman, William T.: Sepa-
rating style and content with bilinear models. In: Neural computation 12 (2000), Nr. 6,
S. 1247–1283

150

Bibliography

[Tsagkatakis u. a. 2017] Tsagkatakis, Grigorios ; Jaber, Mustafa ; Tsakalides, Pana-
giotis: Goal!! event detection in sports video. In: Electronic Imaging 2017 (2017), Nr. 16,
S. 15–20

[Vapnik Vladimir 1995] Vapnik Vladimir, N_: The nature of statistical learning theory.
1995

[Vasilache u. a. 2014] Vasilache, Nicolas ; Johnson, Jeff ; Mathieu, Michael ; Chin-
tala, Soumith ; Piantino, Serkan ; LeCun, Yann: Fast convolutional nets with fbfft:
A GPU performance evaluation. In: arXiv preprint arXiv:1412.7580 (2014)

[Wan u. a. 2013] Wan, Li ; Zeiler, Matthew ; Zhang, Sixin ; Le Cun, Yann ; Fergus,
Rob: Regularization of neural networks using dropconnect. In: International conference
on machine learning PMLR (Veranst.), 2013, S. 1058–1066

[Wang u. a. 2019] Wang, Chen ; Yang, Jianfei ; Xie, Lihua ; Yuan, Junsong: Kervolu-
tional Neural Networks. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019, S. 31–40

[Wang u. a. 2016] Wang, Yequan ; Huang, Minlie ; Zhu, Xiaoyan ; Zhao, Li: Attention-
based LSTM for aspect-level sentiment classification. In: Proceedings of the 2016 confer-
ence on empirical methods in natural language processing, 2016, S. 606–615

[Wang u. a. 2020] Wang, Zhihui ; Wang, Shijie ; Yang, Shuhui ; Li, Haojie ; Li, Jian-
jun ; Li, Zezhou: Weakly Supervised Fine-Grained Image Classification via Guassian
Mixture Model Oriented Discriminative Learning. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2020, S. 9749–9758

[Wei u. a. 2018] Wei, Xing ; Zhang, Yue ; Gong, Yihong ; Zhang, Jiawei ; Zheng,
Nanning: Grassmann pooling as compact homogeneous bilinear pooling for fine-
grained visual classification. In: Proceedings of the European Conference on Computer
Vision (ECCV), 2018, S. 355–370

[Welinder u. a. 2010] Welinder, P. ; Branson, S. ; Mita, T. ; Wah, C. ; Schroff,
F. ; Belongie, S. ; Perona, P.: Caltech-UCSD Birds 200 / California Institute of
Technology. 2010 (CNS-TR-2010-001). – Forschungsbericht

[Wen u. a. 2016] Wen, Yandong ; Zhang, Kaipeng ; Li, Zhifeng ; Qiao, Yu: A discrim-
inative feature learning approach for deep face recognition. In: European conference on
computer vision Springer (Veranst.), 2016, S. 499–515

[Xiao u. a. 2017] Xiao, Han ; Rasul, Kashif ; Vollgraf, Roland: Fashion-mnist: a
novel image dataset for benchmarking machine learning algorithms. In: arXiv preprint
arXiv:1708.07747 (2017)

[Xie u. a. 2020] Xie, Zeke ; Sato, Issei ; Sugiyama, Masashi: Stable weight decay
regularization. (2020)

151

Bibliography

[Yadan u. a. 2013] Yadan, Omry ; Adams, Keith ; Taigman, Yaniv ; Ranzato,
Marc’Aurelio: Multi-gpu training of convnets. In: arXiv preprint arXiv:1312.5853 (2013)

[Yan u. a. 2017] Yan, Yilin ; Chen, Min ; Sadiq, Saad ; Shyu, Mei-Ling: Efficient
imbalanced multimedia concept retrieval by deep learning on spark clusters. In: In-
ternational Journal of Multimedia Data Engineering and Management (IJMDEM) 8 (2017),
Nr. 1, S. 1–20

[Yan u. a. 2015] Yan, Yilin ; Chen, Min ; Shyu, Mei-Ling ; Chen, Shu-Ching: Deep
learning for imbalanced multimedia data classification. In: 2015 IEEE international
symposium on multimedia (ISM) IEEE (Veranst.), 2015, S. 483–488

[Yin u. a. 2006] Yin, Lijun ; Wei, Xiaozhou ; Sun, Yi ; Wang, Jun ; Rosato, Matthew J.:
A 3D facial expression database for facial behavior research. In: 7th international confer-
ence on automatic face and gesture recognition (FGR06) IEEE (Veranst.), 2006, S. 211–216

[Yu u. a. 2018] Yu, Chaojian ; Zhao, Xinyi ; Zheng, Qi ; Zhang, Peng ; You, Xinge:
Hierarchical bilinear pooling for fine-grained visual recognition. In: Proceedings of the
European conference on computer vision (ECCV), 2018, S. 574–589

[Yu u. a. 2014a] Yu, Dingjun ; Wang, Hanli ; Chen, Peiqiu ; Wei, Zhihua: Mixed
pooling for convolutional neural networks. In: International conference on rough sets and
knowledge technology Springer (Veranst.), 2014, S. 364–375

[Yu u. a. 2014b] Yu, Dong ; Eversole, Adam ; Seltzer, Michael L. ; Yao, Kaisheng ;
Guenter, Brian ; Kuchaiev, Oleksii ; Seide, Frank ; Wang, Huaming ; Droppo, Jasha ;
Huang, Zhiheng u. a.: An introduction to computational networks and the computa-
tional network toolkit (invited talk). In: INTERSPEECH, 2014

[Yu u. a. 2017] Yu, Zhou ; Yu, Jun ; Fan, Jianping ; Tao, Dacheng: Multi-modal fac-
torized bilinear pooling with co-attention learning for visual question answering. In:
Proceedings of the IEEE international conference on computer vision, 2017, S. 1821–1830

[Zeiler und Fergus 2013] Zeiler, Matthew D. ; Fergus, Rob: Stochastic pooling for reg-
ularization of deep convolutional neural networks. In: arXiv preprint arXiv:1301.3557
(2013)

[Zhang u. a. 2018a] Zhang, Guodong ; Wang, Chaoqi ; Xu, Bowen ; Grosse, Roger:
Three mechanisms of weight decay regularization. In: arXiv preprint arXiv:1810.12281
(2018)

[Zhang und Wang 2017] Zhang, Xueliang ; Wang, DeLiang: Deep learning based
binaural speech separation in reverberant environments. In: IEEE/ACM transactions
on audio, speech, and language processing 25 (2017), Nr. 5, S. 1075–1084

152

Bibliography

[Zhang u. a. 2019a] Zhang, Yan ; Tang, Siyu ; Muandet, Krikamol ; Jarvers, Chris-
tian ; Neumann, Heiko: Local temporal bilinear pooling for fine-grained action pars-
ing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2019, S. 12005–12015

[Zhang u. a. 2019b] Zhang, Yuanyuan ; Wang, Zi-Rui ; Du, Jun: Deep fusion: An
attention guided factorized bilinear pooling for audio-video emotion recognition. In:
2019 International Joint Conference on Neural Networks (IJCNN) IEEE (Veranst.), 2019,
S. 1–8

[Zhang u. a. 2018b] Zhang, Zhanpeng ; Luo, Ping ; Loy, Chen C. ; Tang, Xiaoou: From
facial expression recognition to interpersonal relation prediction. In: International Jour-
nal of Computer Vision, Springer 126 (2018), Nr. 5, S. 550–569

[Zhao u. a. 2011] Zhao, Guoying ; Huang, Xiaohua ; Taini, Matti ; Li, Stan Z. ;
PietikäInen, Matti: Facial expression recognition from near-infrared videos. In: Image
and Vision Computing 29 (2011), Nr. 9, S. 607–619

[Zhou u. a. 2018] Zhou, Feng ; Kong, Shu ; Fowlkes, Charless ; Chen, Tao ; Lei,
Baiying: Fine-grained facial expression analysis using dimensional emotion model.
In: arXiv preprint arXiv:1805.01024 (2018)

[Zhuang u. a. 2020] Zhuang, Peiqin ; Wang, Yali ; Qiao, Yu: Learning Attentive
Pairwise Interaction for Fine-Grained Classification. In: AAAI, 2020, S. 13130–13137

[Zou u. a. 2019] Zou, Xiaowu ; Wang, Zidong ; Li, Qi ; Sheng, Weiguo: Integration
of residual network and convolutional neural network along with various activation
functions and global pooling for time series classification. In: Neurocomputing (2019)

[Zoumpourlis u. a. 2017] Zoumpourlis, Georgios ; Doumanoglou, Alexandros ; Vre-
tos, Nicholas ; Daras, Petros: Non-linear convolution filters for CNN-based learning.
In: Proceedings of the IEEE International Conference on Computer Vision, 2017, S. 4761–
4769

153

	pagedegarde_Doctorat

