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Introduction

In this thesis, we study the harmonicity on tangent bundle equipped with different
types of structures, for this purpose we are first give some important definitions and
well known results that are gonna be used in our study.

The differential geometry of the tangent bundle T'M of Riemannian manifold (M, g)
was first studied by Sasaki. S in hid paper published in 1958 [30], where he used the
Levi-Civita and the metric on the manifold to define the horizontal and vertical lift
of vector field noted respectively X and XV by splitting TT'M into a horizontal and
vertical part, he also defined locally what was later generalized and we now know as
the Sasaki metric ¢g* on T'M:

g XY =g (XY YY) = g(X,Y) o
gS(XV,Y ) =0

Y

where 7 is the canonical projection from T'M to M.

In 1962 Dombrowski. P [14], gave a definition of the horizontal and vertical part of
TTM using the projection map 7 and the connection map K while proving that they
are independent of the connection on M.

In the same paper he also introduced the almost complex structure J on T'M defined
by JXV = —X# JXH = XV and showed that it is complex if and only if (M™, g) is
flat.

Dombrowski also calculated the Lie bracket on T'M in the same paper.

(XY =X, Y] — (R(X,Y)u)",
(X2 YV =(VxY)Y,
XV, Y] =0.

In 1962 Tachibana. S studied the Almost-complex structure of tangent bundles of
Riemannian spaces [32], he showed that the tangent bundle of any non-flat Riemannian

i



iii

space admits an almost-Kahlerian structure which is not Kahlerian.
Starting from there in 1966 Yano. K, Kobayashi. S and Ishihara. S started developing
the theory of vertical, complete and horizontal lift [34].

Although the Sasaki metric is naturally defined, in 1988 Musso. E and Tricerri. F
[24], have shown that the Sasaki metric has constant scalar curvature if and only if
(M, g) is locally Euclidian. In the same paper they gave an explicit expression of a
complete metric ¢“¢ on T'M introduced by Cheeger and Gromoll uniquely determined
at the point (p,u) by

g“C(XH YH)Y =g(X,Y)orm
gee(xv, Yt =0,
CG(XV7 YV) :W (gp<X> Y) + gp(Xv u)gp(Y’ U))>

for all X, Y € I'(T'M).

In 1995 Cruceanu. V, Fortuny. P and Gadea. P.M [11], gave some properties on
paracomplex geometry on a differential manifold.

In 2011 Yampolsky. A studied Geodesics of Tangent Bundle with Fiberwise De-
formed Sasaki Metric over Kahler Manifold.

In 2012 Salimov. A, Gezer. A and Iscan. M studied para-Kdhler-Norden structures
on the tangent bundles [28].

In 2019 Altunbas. M, Simsek. R, and Gezer. A [3], gave the geometry of the
tangent bundle equipped with the Berger type deformed Sasaki metric defined at a
point (p,u) € TM by

(pu)(XH YV) 0
9oy (XY YY) =g, (X, Y) + 8°g,(X, du)gp(V, pu),

for all vector fields X, Y on M, , where § is some constant and ¢ an almost paracom-
plex structure compatible with g on M and some almost paracomplex structures with
anti-paraHermitian metrics on the tangent bundle.

In 1996 Aguilar. R.M [2], defined the isotropic almost complex structure Js, to be
an almost complex structure with respect to a Riemannian metric ¢ on M there are
functions o, d,0 : TM — R with ad — 0 = 1, such that for all X € TM

Jso X7 =aXV + o X",
Jso XV = —6X"T —oXxV.

Aguilar. R.M proved in the same paper that isotropic complex structure exist when
M has constant sectional curvature.
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The harmonicity of sections on tangent bundle T'M equipped withe diagonal metric
gP was first studied in 1979 by Ishihara. T [18], where he proved that the natural
projection m : "M — M is a total geodesic submersion, he also proved that if M is a
compact and orientable manifold then the vector field X witch isamap X : M — TM
is harmonic if and only if the first covariant derivative of X vanishes.

In 1992, Konderak. J [21], gave a simple proof that a vector field X : M — T'M
on a compact Riemannian manifold is harmonic with respect to the Sasaki metric on
TM if and only if X is parallel.

Using the article by Altunbas. M, Simsek. R, and Gezer. A [3] we studied In 2020
Medjadj. A, Elhendi. H and Belarbi. L studied the harmonicity and the biharmonicity
of vector fields X : (M, ¢,g) — (T'M, ¢, g%%).

In 2016 Baghban. A and Abedi. E [5], studied integrability of the isotropic almost
complex structures and harmonic unit vector in tangent bundle and unit vector fields.

In 2021 Medjadj. A and Elhendi. H, equipped the tangent bundle with the gradient
Sasaki metric and a paracomplex structure to study the integrability of the paracomplex
structure, we also proved that a vector field X : M — T'M is harmonic if and only if
X is parallel.

In 2021 we constructed a Cheeger-Gromoll isotropic almost complex structure and
studied the Harmonicity of vector fields and unit vector fields.

This thesis is divided in four chapter.

In chapter one we give important definitions and result in differential an Rieman-
nian geometry witch are gonna be used (Differential manifold, Riemannian manifold,
Tangent bundle, Kahler manifold...) and some property in those spaces. We also add
some important definition about harmonic an bi-harmonic maps.

In the second chapter we will first talk about geometry on the tangent bundle and
give main definitions and result about lift theory, then we we will give a quick review
of the geometry of tangent bundle equipped with Sasaki and Cheeger-Gromoll met-
ric, and give the geometrical structure of the tangent bundle equipped with de Berger
type deformed metric g%° and then the gradient Sasaki metric g;. We also construct
a Cheeger-Gromoll isotropic almost complex structure and calculate the Levi-Civita
connection.

The third chapter is dedicated to the study of harmonicity an biharmonicity of
vector fields for all the structures mentioned in chapter two namely: Tangent bundle
equipped with the gradient Sasaki metric and an almost complex structure. Tangent
bundle equipped with Berger type deformed Sasaki metric (T'M, ¢, g”*). Tangent bun-
dle equipped with Cheeger-Gromoll isotropic almost structure.

Finally in chapter 4 we study the harmonicity and biharmonicity of maps between
tangent bundle.



Chapter 1

Riemannian Geometry

1.1 Differentiable Manifolds

We start this chapter with some basics definitions and result concerning structures on
a topological manifold in order to define what is known as a differentiable and smooth
manifold.

1.1.1 Topological Manifolds

Let M be a topological space. We say that M is a topological n-manifold if it has the
following properties:

e M is a Hausdorff space.
e M is second countable: There exists a countable basis for the topology of M.

e M is locally Euclidean of dimension n: Every point has a neighborhood that is
homeomorphic to an open subset of R™.

Definition 1.1.1. Let M be a topological n-manifold. A chart on M is a pair (U, p),
where U is an open subset of M and ¢ : U — ¢o(U) € R™ a homeomorphism. M have
always the same dimension of R™.

The map ¢ is called a local coordinate map, and the component functions of ¢ are
called local coordinates on U.

Let M be a topological n-manifold. If (U, ), (V, 1) are two charts such that UNV # 0,
then the map Y o™ : p(UNV) — (U NV) is itself a homeomorphism.

Definition 1.1.2. Two charts (U, ¢) and (V) are said to be smoothly compatible if
either UNV = 0 or the transition map 1) o o~ ! is a diffeomorphism.

1



2 Riemannian Geometry

Definition 1.1.3. An atlas A for M s a collection of charts whose domains cover M.
An atlas A is called a smooth atlas if any two charts in A are smoothly compatible with
each other.

Definition 1.1.4. A smooth atlas A on M is mazimal if it is not contained in any
strictly larger smooth atlas. This means that every chart that is smoothly compatible
with every chart in A is already in A.

Definition 1.1.5. A smooth structure on a topological n-manifold M is a mazimal
smooth atlas.

Definition 1.1.6. A smooth manifold is a pair (M, A), where M is a topological man-
ifold and A is a smooth structure on M.
We usually just say M is a smooth (differentiable) manifold.

Definition 1.1.7. Let U be an open set of a differentiable manifold M. A map f :
U — R™ is differentiable if for every x € U there is a chart {U, v} with x € U such
that f o =1 is differentiable on p(U).

Lemma 1.1.1. Let (U;, ;) be a smooth atlas for M. If f : M — R"is a function such
that f o ;' is differentiable for each i, then f is smooth.

Definition 1.1.8. A map f: M — N, where M and N are two differential manifold
and let (U, @) and (V,1) two chart on M and N respectively, f is said to be differen-
tiable if the map 1 o f o o=t is differentiable from ¢(U N f=1(V)) to (V).

f is a diffeomorphisme if f and f~1 are differentiable.

Lemma 1.1.2. Let M , N be smooth manifolds and let f : M — N be any map. If
{(Ui, i)} and {(V;,4;)} are smooth atlases for M and N, respectively, and if for each
tand j, pjofo @; ! is smooth on its domain of definition, then f is smooth.



1.2 Tangent and cotangent bundle 3

Lemma 1.1.3. Any composition of smooth maps between manifolds is smooth.

Proof. A differentiable maps f: M — N and g: N — P, let (U, ) and (V, %) be any
charts for M and P respectively.

Vpe UnN(go f)~Y(V), there is a chart (W, u) for N such that f(p) € W.

f and G are differentiable then o f o ¢! and ¥ o g o u~! are differentiable then

(Yogou™)o(uofop™t)=1ogo foep!is differentiable. [

1.1.2 Oriented manifold

Definition 1.1.9. An atlas A = {(U;, i)} for a differential manifold M is said to be
an orientation atlas if

JQC(Qbij)p = det(d@j(p)gbij) > O, Vp € Uj.
Where ¢;; are the transition maps ( ¢;; = @; o gpj_l ).

Definition 1.1.10. An oriented manifold is a smooth manifold with mazimal oriented
atlas.

1.2 Tangent and cotangent bundle

Vectors are used to talk about direction and calculating distances using its mag-
nitude, and so they are useful to study the behavior of functions. Here we will give
their generalization in manifolds, in the sens that a vector at a point associate to every
function its derivative in the direction of that vector.

Definition 1.2.1. Let M be a smooth manifold of dimension n, a tangent vector X,
at a point p € M is a map which associate to every differentiable function f defined
at p a number X,f € R, such that for every f and g two differential function at p this
map satisfy the flowing:

1. If f is constant in the neighborhood of p implies X,f = 0.
2. Xp(f+9) =X, f + Xpg.

3. Xp(fg) = (Xpf)a(p) + (Xp9) f(p)-

Definition 1.2.2. The set of all tangent vectors at p are denoted T,M and is called
the tangent space of M at p.

By defining for every two tangent vectors X, and Y, and for every o € R the
following operation:

(Xp + V) f = X, f +Y5f,
(aXp)f = a(X,f).



4 Riemannian Geometry

Proposition 1.2.1. Let (U, ) be a chart on a differential manifold M of dimension
n. For p € U we put x = p(p) ans for every differentiable function f at p the maps
X, defined by: 1

O(foe™)

=1, 1.1
a.fEZ' y ) y 0 ( )

X, f=
are all tangent vectors at p.

Theorem 1.2.1. Let M be an n-dimensional differential manifold then the tangent

space T,M is an n-dimensional vector space with basis {(a%l)p, ...(%)p}, where x4,

Ta,...,x, are local coordinates on a chart (U,¢) around p € M, so for X, € T,M:
Xp = Xp@@')(a%i)p-

Definition 1.2.3. Let f : M — R be a differentiable map. We define the differential
dfp by
df, : T,M — R
X, — df,(X) = X,(f).

Definition 1.2.4. Let f : M — N be a differentiable map then for p € M the differ-
ential df, is the map df, : T,M — Ty, N defined by

dfp(Xp)(9) = Xp(g o f),
for g € C>*(f(p)), and X, € T,M.

1.2.1 Tangent bundle
Definition 1.2.5. Let M be a differential manifold, the space TM defined by:

T™™ = | JT,M,

pEM
is called the tangent bundle of M.
If Ve TM we write V = (p,u) for some p € M, and v € T,M.

Remark 1.2.1. Let (M, A) be a differentiable manifold. The tangent bundle (T M, m, M)
of M is given by TM = {(p,u)|lp € M,u € T,M} and the bundle map

m:TM — M
(p,u) — w(p,u) = p,

is called the natural projection of T M.
A local chart (U,x")i=1.., on M induces a local chart (77 (U), 2", y")i=1... on TM.
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Theorem 1.2.2. Let M an n-dimensional differential manifold, then the tangent bun-
dle T'M is a 2n-dimensional differentiable manifold.

Proof. First we define a smooth charts, given any chart (U, ) for M , the component
functions of ¢ are (z'(p), ..., z"(p)).

We also define a map @ : 7~ 1(U) — R*"* by @(viaii
it’s a bijection into o(U) x R?".

We take now two chart on M (U, ) and (V,4), where the component functions of ¢
are (y*(p), ...,y"(p)). The corresponding chart on TM (7= 1(U), ®) and (7~ *(V), ¥).
We then can write the transition map

p) ::(xl(p)’“'7In(p)’u17“'vun)v

Vod l:pUNV)xR" = (UNV)xR"
given by

U o d—L(p! n o1 ny _ -1 - dy' -1 k - A k
© (I yees Uy U )_ (wow (p)7 axk (90 (p))u [ARRS) axk<90 (p))u )
k=1 k=1

Since 1) o =1 is smooth then ¥ o ®~! is smooth. Hence we can define a smooth atlas
on T'M, therefore T'M is a differential manifold.

Let now {U;} be a countable cover of M, we obtain a countable cover of TM by
coordinate domains {7 ~(U;)}.

Note that any two points in the same fiber of 7 lie in one chart, while if (p, X) and
(¢,Y) lie in different fibers there exist disjoint coordinate domains U; , U; for M such
that p € U; and g € U; , and then the sets 7—1(U;) and 7~ !(U;) are disjoint coordinate
neighborhoods containing (p, X) and (g, Y"), respectively. Then, T'M is Hausdorff.

7 is smooth, because its coordinate representation with respect to charts (U, ¢) for M
and (7~ 1(U), ®) for TM is w(z,u) = z. O

1.2.2 Cotangent bundle

Definition 1.2.6. Let M be an n-dimensional smooth manifold. Then for each p € M
the dual Ty M of the tangent space T,M 1s called the cotangent space at p that is

ToM = {wp : T,M — R|w,, is linear}.

Definition 1.2.7. For a differentiable manifold M we define T*M = |J T;M and

peEM
call 1t the cotangent bundle of M.

Definition 1.2.8. A 1-form is a differentiable map w : M — T*M such that w, € T;M
for every p € M. The set of all 1-form on M is noted T'(T*M).
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1.3 Vector fields and connection
Definition 1.3.1. A wvector field on M is a map

X M—TM
— X,

such that mo X = Idyy.

Every vector field can be written as follow: X, = X;(p) B
Z;

d%i being a local coordinate base and X; are functions into R called component functions
of X.
We note the set of all vector field on M by I'(TM).

Proposition 1.3.1. X is differentiable if and only if X; are differentiable.

Proposition 1.3.2. Let X and Y two vector fields on M and f: M — R a function.
X +Y and fX are vector fields defined by:

(X + Y)p =X, +Y),
(fX)p, =f(p)X,,

are also vector fields.

Definition 1.3.2. For every two vector fields X and Y, we define the Lie bracket of
X andY by:
(X, Y]=XoY -YoX.

Where X : C®°(M) — C*(M).
Proposition 1.3.3. The lie bracket of two vector field is also a vector field.

Proposition 1.3.4. Let X, Y and Z three vector fields of M, a,b € R and f, g two
differentiable functions on M, we have:

(X, Y] = —[V, X],

[aX 4+ bY, Z] = a[X, Z] + b]Y, Z],

X, Y], Z]+ (Y, Z], X]+ [[Z,X],Y] =0 (identity of Jacobi),
[fX,gY] = fglX. Y]+ f(Xg)Y —g(Y )X

Definition 1.3.3. Let X, Y and Z be three differentials vector fields and f ,g two
differentiable function on R.

An affine connection is a map that to each X and Y it give a vector field noted V xY
that satisfy the following conditions:
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1. fo+gyZ = fVXZ +gVy Z.
2 V(Y +2) = VxY + Vi Z.
3. VxfY = [VxY + X(f)Y.

Definition 1.3.4. Let M be a smooth manifold and V a linear connection on M. then
the torsion of V noted T is a C°°(M)-bilinear map defined by

T:T(TM)xI'(TM) - T'(T'M)
T(X,)Y)=VxY —-VyX —[X,Y].
The connection s said to be torsion free if:

VxY — Vy X = [X,Y].

1.4 Pull back vector field

Definition 1.4.1. Let vp : M — N be a smooth map between two differentials mani-
folds, the pull-back bundle is defined by:

TN = {(z,u) ,x € M,u € Ty N}.

A wector filed X on v 'TN is a smooth map between M and TN such that for every
x € M we have X (x) € Ty N.

Definition 1.4.2. Let ¢b : M — N be a smooth map between two differentials mani-
folds. The pull-back connection is a map V¥ : T(TM) x (" *TN) — T'(¢p"'T'N) such
that:

V(Y o) = Vi)Y,

for X e '(TM),Y € T(TN) and V¥ is a connection on N.

Proposition 1.4.1. Let ¢ be a smooth map between two differentials manifolds and
V¥ a torsion free connection on N then we have

Vidyp(Y) = Vid(X) + dy([X, Y]),
for every X, Y € I'(TM).

Proof. Let X, Y € I'(T'M) and N, M € I'(T'N) such that di)(X) = Vot and dy(Y) =
W o 1) then we get that:

Vidp(Y) = V(W o) = (VW) o = ([V,W]+ Vi V) 04
= dp([X,Y]) + (VYY) (X)) = di([X, Y]) + Vydy (buX).
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1.4.1 Second fundamental form

Definition 1.4.3. Let M, N two differential manifolds and ¢ € C*°(M, N), the second
fundamental form of 1 is defined by

Vdp(X,Y) = Vidy(Y) — dp(VxY), (1.2)
for every X, Y e I'(TM).
For local coordinate (z1, ..., z,) on M and (yi, ..., yn) on N we have

o 0 L0
(Vdi)i; = Vd%b(%“» 695]-,) = Vi

oYk
8@8@ )

Where

Proposition 1.4.2. Let ¢v : M — N a differential map.bu The second fundamental
form of 1 is linear and symmetric.

Proof. The linearity is obvious.
For the symmetry we use proposition 1.4.1 and we have:

Vdp(X,Y) = Vidp(Y) — dp(VYY)
= Vydy(X) + dv([X,Y] - VYY)
= Vydi(X) — dip (VY X)
= Vdi(Y, X).

1.5 Riemannian Manifolds

Definition 1.5.1. Let M be a smooth manifold. A tensor field T' of type (r,s) is a map

T: }“(TM) ®...® F(TMZ — F(TM) ®..1(T'M),

/

g ~~
T coples S coples

satisfying
TX1®.0(fX;+9Y)®.0X,)=fTX1®..0X,)+¢T(X;®..0 Y ®..® X,)
For all X;,Y e T'(TM), f,g € C*(M) andi=1,..r.

From now on 7'(X; ® ... ® X,.) will be noted T'(X1, ..., X,.).



1.5 Riemannian Manifolds 9

Definition 1.5.2. The tensor field T of type (r,s) is said to be smooth if for all
Xi,.., X, € T(TM) the map

s copies
T(X1, .. X)) : M — T(TM) ® ... @ T(TM)
pr Tp((Xl)pv e (Xr)p)

18 smooth.

Definition 1.5.3. A Riemannian metric or Reimannian structure on a differential
manifold M is a map noted g, defined by

g : D(TM) x T(TM) — C®(M)
(X,Y) — g(X,Y),

such that g is a symmetric, bi-linear, positive defined form on M.
For any local coordinate system x* on M the metric g can be written:

9 = gidz' ® da’,
where g;; is a symmetric defined positive matriz of smooth functions.

A Riemannian manifold is a couple (M, g) such that M is a smooth manifold and
g is a Riemannian metric.

Example 1.5.1. In R? we have that the Euclidean metric g is given by

g = da* + dy®.
Example 1.5.2. In the unit sphere S*> on R® we have the following coordinate system
for every point P € S? given by (sin(a)cos(@); sin(a)sin(6); cos(a)) for a € [0, 7] and
0 € [0, 27].
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and we have

oP . .
50 = (—sin(a)sin(0); sin(a)cos(6),0),
g—i = (cos(a)cos(0); cos(a)sin(h), —sin(a)),

and so the metric is given by:
g = da® + sin®*(a)df>.

Definition 1.5.4. The volume measure on v? on (M™,g) is defined by:

=1/ det(gij)dxy AN dxg A ... A\ dy,.

Example 1.5.3. From the example 1.5.2, we have that v9 = |sin(«)|da A d6.

Definition 1.5.5. Let (M, g) be a Riemannian manifold, the connection V is said to
be compatible with g if:

Xg(Y7 Z) :g(vXY7 Z) +g(Y7vXZ)7
forall XY, Z € T(TM).

Theorem 1.5.1. Let (M, g) be an n-dimensional Riemannian manifold and the map
VI . T(TM)x T(TM) — I'(TM) given by the Koszul formula:

oVLY.Z) = L(Xg(Y,Z)+Yg(Z.X) - Zg(X.Y)) (13)
+9(Z,[X, Y]+ g(Y, [Z, X]) — g(X,[Y, Z])), (1.4)
for all X,Y, and Z € T'(TM), then V is a connection on M.

Definition 1.5.6. The connection V9 on (M, g) defined in the Theorem 1.5.1 is called
the Levi-Civita connection of g.

Remark 1.5.1. Let {ai s %} a local base associated to a chart (U, ¢) such that:
X =Xz andY =Y;5% i

.78:1:’
VxY =Vy o Vo 0
_deiya%
—X,Y;V ila% +Xia%(m)a%

0
=X,Y; ZF” axk j)a—xj
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m

=3 ( ZXYF’“ +X Y’“))a(?ck

k=1 ¢,5=1

Ms

such that Ffj are the Christoffel symbols defined as: Ffj = %l 1g (%‘Z + gﬁ?f — %L;lj).

We put g* = (g) ™"

Theorem 1.5.2. (Fundamental theorem of Riemannian Geometry)
Let (M, g) be a Riemannian manifold. The Levi-Civita connection is the unique torsion
free connection compatible with g.

1.5.1 Parallel vector field and geodesics

Definition 1.5.7. Let (M, g) be an n-dimensional Riemannian manifold. For a C*
map o;[a,b] CR — M and o(t) = (o'(t),...,6"(t)) be the local expression of . X is
a C! wvector field along o if

1. X(t) € T,yM, for all t € [a,b].
2. In terms of local coordinate (U, (z',...,x™)) at each point o(t), it hold that

i, 0
X(t)=X (t)(%)g(t) € T,iM.

Such a vector field is parallel with respect to the connection V if Vo X = 0, such that

"~ do* 9,
o(t) =) ddf) (5.7) o0 (1.5)

i,k=1

Then using the necessary and sufficient condition to hold VX =0 is

dXZ

i,k=1
by means of (1.3) and (1.5).

Definition 1.5.8. A C' curve o : [a,b] — M in M is geodesic if the tangent vector
field ¢ is parallel, i.e Vs6 = 0.

In term of local coordinate system (U, (X!, ...,2?)), the condition V4o = 0 holds
that

d*o(t) "L dal(t) doF(t)
o > T -7 =0, (1.7)

J,k=1
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given initial conditions (o' (a), ...,0(a)) and (% (a), ..., %2(a)), there exist uniquely solu-

tion of (1.7) if t is close enough to a. For every point p € M and every vector u € T,M,
there exists a unique geodesic o(t), passing through p at the initial ¢, and having u
as the initial vector at p if ¢ sufficiently close to 0. Therefore, There exists a unique
geodesic satisfying 0(0) = p and ¢(0) = u.

Definition 1.5.9. Let (M, g) be a Riemannian manifold and T,M a tangent space at
the point p € M. The exponential map

exp, : T,M — M
w— o(1) = eapy(u),

1.5.2 Riemannian curvature

Definition 1.5.10. Let (M, g) be a Riemannian manifold with the Levi-Civita connec-
tion V, the Riemannian curvature associated to the Levi-Civita connection V noted R

15 defined by

R:T(TM) x I(TM) x T(TM) — T(TM)
(X, Y, Z) — R(X, Y)Z = VXVyZ — VYVXZ — V[X’Y]Z,

for every X,Y,Z € T'(T'M).
Remark 1.5.2.

e A manifold is flat if the Riemannian curvature is equal to 0.

e Locally we have R(:2 i)% = Y R™. =2, by the definition and easy calcula-
m=1

Ox;’ Ox; 15k Oz
tion we get:
" ort,  art
R = :(rmrl. _rort ) Midel LRty
ijk — Jjk™im ik~ jm 8@ axj

fori,j,k,l=1,..,n.

Example 1.5.4. For the unit sphere using the metric defined in example 1.5.2, we get.

(L0 i_ (L0
95 =\ 0 sin®(a) 9= \o ﬁ(a) '

We have the Christoffel symbols as follow
12, =1% = %gm(%) = %Wl(a)@sm(a)cosa) = cotan(«)
and

IY, = 1M (%2) = —cos(a)sina = —Lsin(2a), all the others are 0, so we get that

RL,, = — R}, = sin*(a) and the others are 0.
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Proposition 1.5.1. Let (M,g) be a smooth Riemannian manifold, for every vector
fields X,Y, Z and Z, we have

1. R(X,Y)Z = —R(Y,X)Z.

2. g(R(X,YV)Z,W) = —g(R(X, YW, Z).

3. g(R(X,Y)Z,W) + g(R(Z, X)Y,W) + g(R(Y, Z)X,W) = 0.
4. g(R(X,Y)Z,W) = g(R(Z,W)X,Y).

Definition 1.5.11. Let (M, g) a Riemannian manifold for every p € M let X, Y, €
T, M two linearly independent vectors, then the sectional curvature of M at p is defined

by:
9<R(Xp> Yp)Y;m Xp)

]C(X ,Y) - 9
PP g(Xanp)g(}/pa}/p) _g(XmY;?)z

for a local orthonormal frame {ey,...,e,} on M.

Definition 1.5.12. Let (M, g) be a Riemannian manifold and let X,Y € I'(T'M). The
Ricci tensor is on (M, g) is defined by:

m

Ric(X,Y) =Y g(R(X,e;)e;,Y),

i=1
where {e;} is any orthonormal frame on (M, g).

Definition 1.5.13. The scalar curvature on (M, g) is the functional S defined by:
S = ZRic(ei, €i),
i=1

where {e;} is any orthonormal frame on (M, g).

1.6 Complex and Almost-complex structure on Rie-
mannian manifolds

1.6.1 Almost complex structure

Definition 1.6.1. Let (M>*™, g) be an oriented Riemannian manifold. An almost com-
plex structure at p € M or on T,M is a linear transformation J, : T,M — T,M such
that J? = —1I.

A Riemannian metric is said to be Hermitian if g(JX,JY) = g(X,Y).
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Definition 1.6.2. An almost Hermitian structure at p is an almost complex structure
at p which is isometric.

Definition 1.6.3. [8/The Nijenhuis tensor of an almost complex structure J is:
NX,Y)=[X, Y]+ JJX, Y]+ JX,JY]| - [JX,JY], X, Y el'(TM). (1.8)

Theorem 1.6.1. An almost complex structure J is integrable if and only if its Nijenhuis
tensor vanishes.

Definition 1.6.4. A differentiable manifold equipped with an almost complex (respec-
tively, almost Hermitian) structure is called an almost complex (respectively, almost
Hermitian) manifold.

1.6.2 Kahler manifold

Definition 1.6.5. Let (M, g,J) be an almost Hermitian manifold and Q the second
fundamental form. If dw = 0 then is called an almost Kahler manifold.

Theorem 1.6.2. Let (M, g,J) be an almost Hermitian manifold. If V.J = 0, then J
is automatically integrable. In this case, J is called a Kahler structure on (M, g) and
(M, J,g) is called a Kdhler manifold.

1.7 Almost paracomplex manifold

Definition 1.7.1. An almost paracomplexr manifold is an almost product manifold
(M, ¢), ¢* = Id, such that the two eigenbundles T™M and T~ M associated to the two
eigenvalues +1 and —1 of ¢, respectively, have the same rank.

1.8 Para-Kahler-Norden manifold

Definition 1.8.1. Let(M, J)be an almost paracomplex manifold of dimension 2n and
let g be a pseudo-Riemannian metric on M, if J is a g-symmetric (compatible with g),
then g is called para-Norden metric and(M, J, g)is called para-Norden manifold.

Definition 1.8.2. A para-Kahler-Norden (para-holomorphic Norden) manifold is an
almost para-complex Norden manifold (M?*™,J,g) such that VJ = 0, where V is the
Levi-Civita connection of g.

Definition 1.8.3. Let X be a vector field in an n-dimensional differentiable manifold
M The differential transformation Lx is called the Lie derivative with respect to X if

o Lyxf=Xf, forall f € C®(M).
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o LyxY =[X,Y].
Definition 1.8.4. A Tachibana operator ®; applied to the pure metric g is given by
D1(X,Y,Z) = (JX)(9(Y. Z)) — X(9(JY. Z)) + g((Ly /)X, Z) + g((LzJ)X,Y) (1.9)

for all X,Y,Z € I'(T'M). It is well known that the theorem (V.J = 0 is equivalent to
Py, =0), see [32].

1.9 Anti-paraHermitian metric

Definition 1.9.1. [/ Let (M?*,¢) be an almost paracomplex manifold. A Riemannian
metric g is said to be an anti-paraHermitian metric if

9(¢X,9Y) = g(X,Y) (1.10)

for any vector field X, Y on M?*.
(M., g) is said to be an almost anti-paraHermitian manifold.

1.10 Harmonic and Bi-harmonic maps

Definition 1.10.1. Let (M, g) be a Riemannian manifold and a smooth function f :
M — R the gradient of f is a vector field given by grad(f); it is characterized by

g(grad(f)’X>:X(f)7 (pEM, XETPM)'

Proposition 1.10.1. Let (M, g) be a Riemannian manifold of dimension n, (U, ¢)

a
chart on M and a local coordinate base associated %, ...%, so for every f € C*°(M)
we have:

LOf 0
— 4] _—
gradf|y =g 5t Bl

Property 1.10.1. Let (M, g) be a Riemannian manifold, for every f,g € C*(M) we
have:

e grad(f + h) = grad f + grad h.
e grad(fh) = fgrad h + hgrad f.
e (grad f)(h) = (grad h)(f).
Example 1.10.1. Let f be a function on R", then:

af of

grad f = (@, o 6x")'
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Definition 1.10.2. Let (M,g) be a Riemannian manifold and ¥V the Levi-Civita as-
sociated to g. The Hessian of a smooth function f : M — R s defined as:

Hessp(X,Y) = g(Vxgrad(f),Y) = XY (f) = (VxY)(f),
such that X, Y € I'(T'M).

Definition 1.10.3. Let (M, g) a Riemannian manifold of dimension n and V the Levi-
Civita connection associated to g then the divergence of a vector field X is a smooth
map on M defined by:

div(X) = g(Ve X, e),
=1

where {ey, ...,e,} s a local orthonormal frame on (M, g).
In local coordinate bases we have:

div(X) = giﬂ'g<v ) X, 8(;)

= Xn:g”g(vagiX, a%)

3,j=1

- Zn: 9ij9<vaiX’“a?;k ai)

ij k=1

n

= Z g (%Xk +XkZFlkgﬂ>

ijkfl

S (G i)

i,5,k=1

Z( 0x; "t iXkF;]J

Property 1.10.2. Let (M, g) a Riemannian manifold of dimension n for every vectors
fields X, Y and f € C*(M) we have:

o div(X +Y) =div(X)+ div(Y).
o div(fX) = fdiv(X) + X(f).

Theorem 1.10.1. (Divergence theorem) Let D be a compact domain of a Riemannian
manifold (M, g) with smooth boundary. Let w be a 1-form and X a vector field defined
on a neighborhood of D.

/D(div w)rM = /8Dw(n)vaD (1.11)
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and

/D(dw X)UMZ/ 9(X,n)v?P. (1.12)

oD

where n = n(p) denotes the outward pointing unit normal at a point p € 9D.

Corollary 1.10.1. For any 1-form w and a vector field X with compact support,
/ (div w)v™ :/ (div X)vM = 0. (1.13)
M M

Definition 1.10.4. Let (M, g) be a Riemannian manifold, the Laplace operator A is
defined by:

A:C®(M) — C*(M) (1.14)

f— A(f) = div(grad f). (1.15)

Property 1.10.3. Let (M, g) be a Riemannian manifold, for every f,h € C*°(M) we
have:

e A(f+h)=A(f)+ A(h).
e A(fh) =hA(f) + fA(R) +2g(grad f,grad h).

Example 1.10.2. The Laplace operator of a differential function f on R™ is as follow:

1.10.1 Harmonic maps

Definition 1.10.5. Consider a smooth map ¢ : (M™,g) — (N",h) between two
Riemannian manifolds. The energy density of ¢ is the smooth function e(¢p) : M —
0, +-00[ such that

1
() = Ao, wEM (1.16)
Let K be a compact domain of M then the energy functional of ¢ over K is defined by:
1
B(0) = [ 4o, (1.17)
K
such that |dg| the Hilbert-Schmidt norm is defined as follow:
ot 00

|do|? = h(do(e;), dd(e:)) = 9" hu(9) O Or.
i O
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Example 1.10.3. In R? the energy of f;R3 — R over L is given by:

o) = [ [ [ 195Pdedyd

Definition 1.10.6. A smooth map ¢ : (M, g) — (N, h) is called harmonic if it is a
critical point of the energy functional E (or E(K) for all compact subsets K C M ).

Definition 1.10.7. Let ¢ : (M,g9) — (N,h) be a differentiable map between two
Riemannian manifold (M, g) and (N, h), ¥ is totally geodesic if Vdip = 0.

Remark 1.10.1. If ¢ is totally geodesic then 1 is harmonic.

1.10.2 First variation of energy

Definition 1.10.8. /8] Let ¢ be a smooth map from M to N. A smooth variation of
the map ¢ 1s a smooth map

O: M x (—€;e) — N (1.18)
(p,t) — ¢(p), (1.19)
where € > 0, such that ¢g = ¢.
Theorem 1.10.2. Let ¢ : (M, g) — (N, h) be a smooth map, {1}icr a smooth varia-
tion of Y, with 1Yy = 1 and the variation vector field V = %hzo, then

dt
d
GElea == [ hr(o), Vo, (1.20
where .
() = tr,Vdp = Y _Vdip(ei,e;), (1.21)
=1

7(¢) € T(Y YT N) and is called the tension field of 1.
Theorem 1.10.3. A smooth map ¢ : (M™,g) — (N", h) is harmonic if and only if
T(¢) =0. (1.22)

If (%) 1<i<m and (Y*)1<a<n denote local coordinates on M and N respectively then
equation 1.22 takes the form

« a i ]X 8¢B 8w’y

) =0, (1.23)

where . . N
0 ijai 0“1 _ Tk o )

1 g
A @ — _ - ) = Y gt
v \/maxl( l9lg ol ) =9 (8:61-8:5]- 7 Oz,

(1.24)

N
is the Laplace operator on (M™, g) and I'§, are the Christoffel symbols on N.
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Example 1.10.4. For a map f: (R", < .,. >gn) = R. f is harmonic if and only if

Af = ngé = 0. (1.25)

i=1 ?

Example 1.10.5. Let (M?™,J, g) and (N*",J' h) be two Riemannian manifolds and
a parallel almost complex structures J and J'.

Let a map ¢ : (M?*™, J,g) — (N, J', h) assuming that dip o J = J' o dip.

For an orthonormal base {e;, Je;}™, on (M*™, g) we find that:

Vdip(X,JY) = Ved(JY) — dip(Vx JY)

= Vaypx)d¢(JY) — dyy(Vx JY)
= Vapx)d(JY) = dp(Vx )Y + J(VxY)), (J parallel)
= Vapodp(JY) = dip(J(VxY))

= Vayx)J' dp(Y) — J'dp(VxY)
= (Vay)) /) (Y) + J' (Vapeo d (Y)) = J'dip(VxY)
= J' (Vayoydp (V) = J'dp(VxY))
= J'(Vdy(X,Y)),
since Vdp(X, JY) = Vdp(JY, X), then Vdp(J X, JY) = J IVAY(X,Y) = —Vdip(X,Y)
for every X, Y € I'(T'M). Hence 7(¢p) = in@/}(Jei, Je;) + Vdi(e;,e;) =0 and so ¢
i=1

1s harmonic.

1.10.3 Bi-harmonic maps

Definition 1.10.9. A smooth map ¢ : (M™,g) — (N", h) between Riemannian
manifolds the bienergy functional is defined by
1
Eo) = [ Ir(@)on (1.26)
K

we have

d

GEl0 == [ hma(o), Ve, (127

The Euler-Lagrange equation attached to bienergy is given by the vanishing of the
bitension field

72(¢) = —Js(7(9)) = —(A"7(¢) + tryR™ (1(9), dd)dg), (1.28)
where Jy is the Jacobi operator defined by

Js :T(¢H(TN)) — T(¢ '(TN)) (1.29)
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Vo — AV +tr,RN(V,d¢)do.

and

A’T(p) = trace,(V?)*r Z [V‘z’ Ver( V@Me T((b)] : (1.30)

i=1
Definition 1.10.10. A smooth map ¢ : (M, g) — (N, h) between Riemannian mani-

folds 1is called biharmonic if it is a critical point of the bienergy functional.

Example 1.10.6. In example 1.10.5 since the map 1 is harmonic then it is bihar-
monic.



Chapter 2

Geometrical structures on the
tangent bundle

In this chapter we introduces some necessary structure on the tangent bundle, we
start with what is called vertical and horizontal section, then we define different met-
rics on the tangent bundle such as the Sasaki metric, the Cheeger-Gromoll metric,
the Gradient Sasaki metric, the Berger type deformed Sasaki metric and the isotropic
Cheeger-Gromoll metric. We will also give some almost complex and almost paracom-
plxe structure compatible with those metrics.

2.1 Vertical, complete and horizontal lift

2.1.1 Vertical lift of function

In all the following we consider M to be an n-dimensional differential manifold and
(TM,m, M) to be its tangent bundle. A local chart (U, x");—1., on M induces a local
chart (7=1(U), 2", y")i=1.., on TM.

Definition 2.1.1. [3// Let f be a function in differential manifold M, we note f the
function in T M obtained by the composition of m : TM — M and f : M — R, such
that
f=for
Thus, if a point (p,u) € 7~ 1(U), then
Y (p,w) = fom((p.w) = f(p).
The value fY((p,u)) is constant along each T,M, we call fV the vertical lift of f.

Let w be a 1-form in M, it is regarded in a natural way, as a function in TM. If w
has the local expression w = w;dx; in a coordinate neighborhood and
u =1y a?;i € TM. We define a map,

w:TM — R

21
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(P, u) — wp(u),

1w has the local expression

iw = w;(z)y’,
with respect to the induced coordinate in 7=*(U). If f is a differentiable function in
M, then i(df) has the local expression

of

idf) =y' 55

Proposition 2.1.1. [3/]. Let X and Y be vector fields in TM such that
X (i(df)) =Y (i(df)), for an arbitrary function f in M. Then X =Y.

2.1.2 Vertical lift of a vector field

Let X € I'(TM) such that Xf¥ = 0 for all f € C*°(M). Then we say that X is
2 A

a vertical vector field. Let (gk) be component of X with respect to the induced

coordinates. Then from X f¥ = 0, we have Xh% = 0 for all f € C*°(M), then

. X" 0
X" =0, then (f(k) = <Xk>

Definition 2.1.2. Let X be a vector field in M. We define a vector field XV in TM
by
XV (iw) = (w(X))". (2.1)

w being an arbitrary 1-form in M. If X" are components of X. Thus the vertical lift

XV of X has components
0
XV (Xh) : (2.2)

For further details see [34].
The correspondence X + XV determines a linear isomorphism of I'(T'M) into
D(TTM) with respect to constant coefficients.

14
From (2.2), we have in each open set 7—!(U) that <a?ci> = 82,., with respect to

the induced coordinates in T'M.
Proposition 2.1.2. For all X,Y € I'(T'M) and f € C*(M), we have

(X+Y) =XV +YY,
(fX)" =frx".
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2.1.3 Vertical lift of a 1-form

Definition 2.1.3. Let @ € T(T*TM) such that ©(X"V) =0 for all X € T(TM). Then
we say that @ is a vertical 1-form in TM.

Proposition 2.1.3. Let X" be the components of X in U and let (&;, ;) be component
of @ with respect to the induced coordinates in 7' (U). Then & is vertical if and only

if (@i, ;) = (@i, 0).
Proof. Let X" be the components of X in U and let (&;,w;) be component of @ with
respect to the induced coordinates in 7= *(U). Then from &(X") = 0, we have @0;(X*) =
0. X" being arbitrary, this implies that w; = 0 and
(@i, ;) = (@i, 0).
O

Definition 2.1.4. Let f € C®(M). We define the vertical lift (df)V of the 1-form df
on TM by

(df)Y =d(f"). (2.3)

Proposition 2.1.4. Let g, f € C>®(M). Then
(gdf)" = g d(f"). (2.4)
Definition 2.1.5. Let w € ['(T*M). We define the vertical lift w" of the 1-form w by
w” = (w;)V (dz")". (2.5)

in each open set 7 H(U), where (U,z") is a coordinate neighborhood in M and w is
given by w = wdxt. The components of w¥ are (w;,0).

Proposition 2.1.5. Let w,0 € I'(T*M) and f € C*(M), then
(w+0) =¥ +6",
(fw)" = frw”,
and in each open set 71 (U),

(dz")V = da’, (2.6)

with respect to the induced coordinates.

2.1.4 Complete lift of a function

Definition 2.1.6. If f is a function in M, we call € the complete lift of the function
f in M to the tangent bundle T M defined by

F¢ =idf). (2.7)
Proposition 2.1.6. Let X € I'(TM) and f,g € C>*(M), we have
XVfe=(xf)",
(9f)" =g " +g" 1<



24 Geometrical structures on the tangent bundle

2.1.5 Complete lift of a vector fields
Definition 2.1.7. Let X € T'(TM), we define a vector field X¢ in TM by

X% = (Xh)°, (2.10)

for all f € C®(M), we call X the complete lift of X to TM.

h
Proposition 2.1.7. If X" are the components of X in U and (X

X’“) the component

of X© with respect to the induced coordinate in =1 (U) then

Xh

ozt

Proof. If X" are the components of X in U and ())g'k
respect to the induced coordinate in 7~1(U), then by the Definition 2.1.7,

h
) the component of X¢ with

~i Of L, = 0f  ,;0f\c ;0 ;Of
(8xi8xj) A Oxi (X axi) - oxt (X 8x">
0% f 0X7. Of
— YT i o
VX (om0 ) gar
then X’ = X' and )N(j:yi%ixf. O

Proposition 2.1.8. Let X, Y € I'(TM) and f € C*(M), then we have.
e (X 4+Y)Y=XC+YC,
o (FX)C = fOXV 4+ fVXC.
. XCPY = (XY,
o XOfC=(X))".
e XV Y9 =X, Y]V,
e [X,Y]Y =[XYYC].

2.1.6 Horizontal lift of a function

Let S be a tensor field on a differentiable manifold M defined by

_ qil..gp il ip
S=5" z‘paxﬂ@---@&ﬂp@diﬂ ® ... @ dz",

(2.12)
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and a vector field X = X'2; “HU) by
9 9 . .
i1 ojl,..., 72 %
/VXS (X Szjl ..... ’L:;?p) ﬁyﬂ 8yjp pv (213)
and a tensor field vS in 77! by
S — ilSjl ----- Jp 9 9 d 2 d ip 214
7S = (y"'Sh ip)w(g"‘@w@x ®...®dr", (2.14)

with respect to the induced coordinates. If S is a function, then vxS = 7S = 0.
Let V be an affine connection in a differentiable manifold M. If f is a function on M,
then we have (Vf) the gradient of f in M, and we have V., f = ~v(Vf).

Definition 2.1.8. We now define the horizontal lift f* for f in M to the tangent
bundle T'M by

fT=rC=v,f=o. (2.15)

2.1.7 Horizontal lift of a vector fields
Definition 2.1.9. Let X € I'(T'M). Then we define the horizontal lift X of X by

Xt =X°-v, X (2.16)
If X = X' then
ox: 0
VX (8 j + ij)(])a—.r ® dI]
0X' 0
VX =y (a ; +Fk]X])8_y"’

and from Proposition 2.1.7, we get X = X' 2. — X7y Zrzkay .

Proposition 2.1.9. Let X € I'(TM) and f € C* then,

XY =(x5Y,
XTfO = (X =((df) o (VX)).

Definition 2.1.10. Let (M, g) be a Riemannian manifold with Levi-Civita connection
V and (TM, 7, M) its tangent bundle. A local chart (U,x;) on M induces a local chart
(7=, zi,9;) on TM. We note by m the natural projection of TM into M and we get
that dm is a smooth map from TTM to T M.
The vertical subspace of T'T'M is defined by:

0

V = ker(dr) = {/\Z@

oy ER}
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Let M be a Riemannian manifold. and U a neighborhood of a point p.
The exponential map exp, witch is a diffeomorphism from a neighborhood U’ of
0 in T,M into U. let also p : 7= (U) — T,M a C*° map that translate every vector

Y in a parallel way form ¢ = 7(Y’) to p along the geodesic arc between p and ¢. For
u € T,M we define S_, : T,M — T,M such that S_,(X) = X — u. Using all the
precedents maps we define the connection map

K : TpuwTM — T,M,
of the Levi-Civita connection V by:
K(A) = d(capy 0 Sy 0 1)(A),
for all A € T{,,,)TM.
Definition 2.1.11. The horizontal subspace of TT M is defined by:
H = {Ai% - Aiujrfja%; A € R},
where (x,u) € TM.

Proposition 2.1.10. The tangent bundle T, T M of the tangent bundle T M at the
point (p,u) is the direct sum of the horizontal and vertical subspace.i.e

TpuyTM = Hpu © Vo

Definition 2.1.12. The horizontal lift of a smooth vector field X is noted X" of value

X(ﬁu) at every point (p,u).

The vertical lift of a smooth vector field X is noted XV of value X(‘; W) at every point

(p, ).
We can also define them by

d?T(XH)Z = X7r(Z) and K(XH)Z = Oﬂ'(Z)?
dn(XV)z =02y and K(XV)z = Xy(2),
for every vector field Z .

Proposition 2.1.11. Let (M, g) be a Riemannian manifold, we note V the Levi-Clivita
connection associated to g and R the Riemannian curvature tensor of V, then

1 XE YH = [X,YV]H — (R(X,Y)u)V.

2. [ X7 Y] VxY)V.

= (
3. [XV,YV]=0.
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2.1.8 Natural metric on tangent bundle

Definition 2.1.13. Let (M, g) be a Riemannian manifold. The Riemannian metric g’
on the tangent bundle T M is said to be natural with respect to g if

g’(XH,YH) g(X,Y)om,
g/(XH’Yv) — O7

for all vector field X,Y on TM.

2.2 Sasaki metric on tangent bundle

Definition 2.2.1. Let (M, g) be a Riemannian manifold. Then the Sasaki metric g°
on the tangent bundle T'M 1s the natural metric given by

gs(XH7YH) =g(X,Y)om,
gs(XH7yV) — O,
FXV, YY) =g(X,Y)om,

for all vector fields X,Y € T M.

Example 2.2.1. Let the manifold R? equipped with the usual metric g defined by
g = da? + da3,
the Sasaki metric on its tangent bundle (TR?, g*) is defined by
¢° = da} + dxj + dr; + daj.

2.2.1 Levi-Civita connection

Proposition 2.2.1. Let (M, g) be a Riemannian manifold with Levi-Civita connection

V and let V* be the Levi-Civita connection on (T'M, g°) equipped with the Sasaki metric
g®. Then

ViV = (Vx¥)T 4 (ROY, X))
T, = (Vv)Y 4+ %(R(u, Y)X)H
Vi Y = %(R(u,X)Y)H,

Vi YV =0,

for all vector field XY on TM.
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2.2.2 Riemannian curvature

Proposition 2.2.2. Let (M, g) be a Riemannian manifold, R and R are the Riemann
curvatures tensors of (M, g) and (T M, g°) respectively. Then, we have

R(X" yHyzH :%((VZR) (X, Y)Y + (R(X,Y)Z + iR(u, R(Z,Y)u)X

- iR(u, R(X, Z)u)Y + %R(u, R(X,Y)u)Z)",
RX" Y™ ZY =(R(X,Y)Z + iR(R(U, Z)Y, X )u — }LR(R(M Z)X, Y )u)Y

S (VxR)(w, 2)Y — (Vv R)(u, 2)X)",
R(X" yV)zH :}L((R(R(u, Y)Z, X)u) + %R(X, Z2)Y) + %((VXR)(U, Y)2)H,
RX" yVyzV =~ (%R(Y, Z)X + %lR(u,Y)(R(u, Z)X)1,
RXV.YY)Z —(R(X,Y)Z + E(R(u, X)R(u,Y)Z) iR(u, V) (R(u, X)2)",
R(XV,YV)ZV =o0.

For all X,Y,Z € I'(TM).

2.3 Cheeger-Gromoll metric on tangent bundle

Definition 2.3.1. Let (M, g) be a Riemannian manifold. Then the Cheeger- Gromoll
metric g°C is the natural Riemannian metric on the tangent bundle TM such that

g(cg;,Gu) (XHv YH) :gP(X7 Y),
g(C];i) (Xva YH) :Oa

1
95XV YY) = (9aX,Y) + 0, (X,w)gy (V) ).

for all X, Y € TM, where u =y

8‘; and r =1+ g(u,u), we have

gC6 = (gz‘j 0 ) .
o 0 (9 + 9a95'y")
2.3.1 Levi-Civita connection

Proposition 2.3.1. Let (M, g) be a Riemannian manifold and let V€ be the Levi-
Civita connection of (T M, g°“) equipped with the Cheeger-Gromoll metric g°¢. Then

VYT = (VaY) 4 o (ROY, X))
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1
VEEYY = (VxY)Y + Z(R(u, Y)X)H,

VY H = QLT(R(U, X,
VeSYY = _é(gC’G<XV’ DYV + Gy, U)x") + #QCG(XVJ/V)U
— PO XY D) O,
for all vector field X, Y on TM. U is the canonical vertical vector at (p,u) defined by

0
ayi'

U=4"=Y;

2.3.2 Riemannian curvature

Proposition 2.3.2. Let (M, g) be a Riemannian manifold, R and R“ are the Rie-
mann curvatures tensors of (M, g) and (TM, g¢“) respectively. Then, we have

RCY(XH yH)zH :%((VZR)(X, Yu) + (R(X,Y)Z + %R(u, R(Z,Y)u)X

1 1
+ ER(U, R(X, Z)u)Y + 5R(u, R(X,Y)u)Z)",

1 1
REC(XH YM\ZV =(R(X,Y)Z + 4—TR(R(u, 2)Y, X)u + 4—TR(Y, R(u, Z)X)u)¥

1 —I—rgCG

—4¢°Y( 2V, U)(R(X,Y)u)" + (R(X,Y)u)V,Z"\U

2—1T((VXR)(U, Z)Y — (VyR)(u, 2)X)H,

+
RCC(XH yVyzH :4—1r((R(R(u, Y)Z, X)u) + %R(X, 2)Y)V + %((VXR) (u,Y)2Z)H

= 29(¥, w)(R(X, Z2))" + (RO, Z))Y YY),

REG(xH yV\zV = - (%R(Y, Z)X + 4—i2R(u, Y)(R(u, Z)X))H

+ o (907, ) (R, 2)X)" — g(Z,0) (R, V) X)),

REC(XV YyV)ZzH :(%R(X, Y)Z + 4%2(3(@6, X)R(u,Y)Z — R(u,Y)(R(u, X)Z)))"

i T_12(g(y7 w(R(u, X)Z) — (X, u)(R(u,Y)Z))",

REG(XY, ¥ 2" =" 2 (4207, 2Y)g(v )l — g7 (v, 20 )g(X, D)
T

147+
+

(QCG(YV7 ZNXY — g9 (XY, ZV)YV>
,
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: t & (g(X ,u)g(Z,u)YY — g(Y,u)g(Z, u)XV),

r

For oll X,Y,Z € I(TM).

2.4 Para-complex Structures of Gradient Sasaki Met-
ric on tangent bundle

2.4.1 Gradient Sasaki metric on tangent bundle

Definition 2.4.1. Let (M,g) be a Riemannian manifold and f : M —]0,400[. On
the tangent bundle TM, we define a gradient Sasaki metric noted g; by

Lo gp(XHY M)y = gp(X,Y),
2. gr (X" YY) ) =0,
3. gy (XYY )y = (X, Y) + X, ()Y, (f),
where X,Y € I'(T'M), (p,u) € TM.
In the following, we consider a = 1 + ||grad f||?>, where ||.|| denote the norm with

respect to (M, g).

2.4.2 Levi-Civita connection

Theorem 2.4.1. Let (M, g) be a Riemannian manifold and (T'M, g¢) its tangent bun-
dle equipped with the gradient Sasaki metric. If V (resp V7) denote the Levi-Civita
connection of (M, g) (resp (I'M, gs) ). Then, we have

(V¥ )y =5 (RO, V)XY + 5V (D)(R(u grad(£)X)" + (VxY)"

+ Y () xgrad(7)" + o [o(Y, Vxgrad() = 5X (@)Y ()] (grad( )"
(VoY ™), =5 (R(u, X))+ 5 X(F) (R grad(1)Y)" + 5 X(F)(Tygrad(f)*

+ 5[0 Tygrad() = SY (@)X (1) (grad(£))".
(Vh YY)y = = S X (P (Trgrad(£)) — (Y (5)(Vxgrad(1))".

for all XY € I'(TM).
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Proof. For any vector fields XY, Z € T'(T' M), we have
20 (Vieu Y, 2 =X g(Y, 2) + Y g(X, Z) = 2" g(X,Y) + g,(Z", [ X", Y])
+g, (V[ 27, X)) — g (XM [V, Z21])
=9(VxY,Z)+g(Y.VxZ)+ g(VyX.,Z)+ g(X,VyZ)
—9(VzX.Y) = g(X,V5Y) + g(Z", [ X, Y] = (R(X,Y)u)")
+g(Y™ (2, X" — (R(Z, X)uw)") — g(X™, [V, Z]" = (R(Y, Z)u)")
=9(VxY,Z) + g(Y,VxZ) + g(Vy X, Z) + 9(X, Vv Z) — g(VzX,Y)
—9(X,VzY) +9(Z,[X,Y]) +9(Y, [2, X]) — g(X, [, Z])
=29(VxY, Z) = g(VxY), ZH).

29f(V§(HYH7 Zv) - ZV9<X’ Y) + gf(Zv> [XHv YH]) + gf(YHa [ZvaXH])
_gf<XH7 [YHvZVD
=g¢(ZY, [X,Y]" = (R(X,Y)uw)") = g¢(Z2", =(R(X,Y)u)"),

And we have (VQHYH)p = (VxY), — 3(R(X,Y)u), .
2gf(v§(HYV>ZH) :gf<YV7[ZH7XH]) —gr (Y ( (Z X) ) )
=—g(Y,R(Z, X)u) = Y (f)(R(Z, X)u)(])

=9(R(u,Y)X, Z) =Y (f)g(R(Z, X)u, grad(f))
=g(R(u, Y)X Z) Y(f)g(R(grad(f),u)X )

—gf<(R( A +Y(f)gf< (grad(f ZH>,

207(Vha V", 2Y) =X |g(¥, 2) + Y (NZ())] + 952" X7 YY) + ;0 (27, X))
—g(VxY, Z) + g(¥,Vx2) + (9(Vxgrad(f),Y) + glgrad(f), V<)) Z(f)
+ (9(Vxgrad(f), 2) + glgrad(f), Vx2))Y (f)
+ (27, (xY)") = ;7Y (Vi 2)")
=205(2",(VxY)") + g(Vxgrad(f),Y)Z(f) + 9(V xgrad(f), Z)Y (/)
+ glgrad(f), VxZ)Y () + (¥, VxZ) = g; (V" . (Vx2)")
:2gf(ZV7 (VXY)V) =+ g(VXgrad(f), Y)Z(f>
+ (9r((Vxgrad(£)¥, 2") = (Vxgrad()()Z ()Y (),
note that
2(f) =g(grad(f), Z) = gy(grad( )", 2¥) = grad(f)(/)Z(f)
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=g5(grad(f)", 2") = |lgrad()I*Z (),

and then

1
1+ [lgrad(f)

2() = ros(arad(9). 2%) = Zgslorad(1)". 2.

we also have

Vgrad(£)(f) = o(V xgrad(f), grad(f)) = 5 X (llgrad(f)|[}) = 3 X (@),
then
205(Vu YV, 2Y) =202 (VxY)") + ~g( xgrad(f), Y)gslgrad(f)", 2")
gy (VU (xgrad(£))Y, 2Y) = o= X (@)Y (s grad(f), 27),

295 (Vi Y, 2M) =g, (2" XV Y M]) 4 g (Y, [27, XV]) = g5 (XY, Y1, 21])

=97 (X", (R(Y, Z)u)") = g(R(u, X)Y, Z) + (R(Y, Z)u) (/)X (f)
=9(R(u, X)Y, Z) + g(R(u, grad(f))Y, Z) X (f)

=g;(R(u, X)Y)", Z") + g (X (f)(R(u, grad(f))Y)", Z"),

205 (Vi Y, ZV) =Y g (XY, ZY) + gp(ZY, [ XV, Y1) — gp (XY, [V, ZV])
=Y (9(X, 2) + X()Z(F)) = 912" (Vv X)") = gs(X"
=9(Vy X, 2) + 9(X, Vv Z) + (9(Tygrad(f), X) +
+ (9(Vvgrad(f), 2) + glgrad(f), Vv 2)) X ()

—91(Z" (Vv X)") = 9(X, Vv Z) = X(/)(Vy 2)(f)
=2g;((VyX)" ZV)+9(Vygmd( £):X)Z(f) + 9(Vygrad(f), 2)X(f)
7

=29;((VyX)" ZV>+ ~o(Vygrad(£), X)gs(grad()", 7")
+ (g5((Vygrad(f)¥, 2¥) = Vygrad())())Z())) X ()

(
=20,((VyX)", 2Y) + ~g(Vgrad(f), X)g (grad ()", 2")

(Vy2)")

glgrad(f), Vv X)) Z()

+ (97((Tygrad(1))", 2Y) = S-Y (@gslgrad()¥, 27)) X(f),

200(Ve YV, 21) = = 29 (9(X,Y) + X(NY (1) + g5 (7Y, 127, XV]) = g4(XV, [, 24)

~ 9(V2X,Y) = g(X,V2Y) = (9(Vzgrad(f), X) + glgrad(f), V2X) )Y ()
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— (9(V2grad(£),Y) + glgrad(f), V2Y) ) X (f)
+ (Y. V2 X) + (V2X)(DY (f) + (X, V2Y) + (VY )(HX(f)
= — 9(Vzgrad(f).Y)X(f) = g(V zgrad(f), X)Y (f).
we have that
9(Vzgrad(f),Y) =Zg(grad(f),Y) = glgrad(f), V2Y) = ZY () = (V2Y)(f)
=2Y(f) = (V2Y)(f) = [Z.Yf +[2.Y)f,

since the Levi-Civita connection is torsion free we get

9(Vzgrad(f),Y) =2Y (f) = (V2Y)(f) = 2Y (/) + YZ(f) + (V2Y)(f) = (Vv 2)([)
=YZ(f) = (Vv Z)(f) =Yg(grad(f),Z) — g(Vy Z, grad(f))
9(Vzgrad(f),Y) =g(Vygrad(f), Z) = gs(Vygrad(f))", Z™),
we finally have
297 (Vi YV, ZV) = 0.
O

2.4.3 Para-Kahler-Norden Structures of Gradient Sasaki met-
ric of tangent bundle.

Let (M, g) be a Riemannian manifold and (T'M, g;) be its tangent bundle equipped
with the gradient Sasaki metric. Consider an almost para-complex structure J on T'M

defined by

H _ _ vH
{‘]X =20 (2.17)

JXV =XV,
for all X e I'(T'M).

Lemma 2.4.1. Let (M,g) be a Riemannian manifold and (T'M, J,gs) its tangent
bundle equipped with the almost para-complex structure J. gy is pure with respect
to almost para-complex structure J defined by (2.17), i.e for all X, Y € I'(T'M) and
k,h e {HV},

g (JX*Y) = g (X*, TY)

Proof.
gr(JXTYH) = gp (=X V) = gp (X, V) = gp (X, IV,
gr(JXT YY) = gp (=X YY) =0 = gp (X7, YY) = g (X7, JYY),
gr(JXV,YT) = gp (XY, YT) =0 = g (XY, =YT) = gp (X", JYT),
( ) = g5(
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From Lemme 2.4.1, we have the following theorem.

Theorem 2.4.2. Let (M, g) be a Riemannian manifold, (T'M, gy) be its tangent bundle
equipped with the gradient Sasaki metric and the almost para-complex structure J. Then
(T'M, J,gy) is an almost para-complex Norden manifold.

Proposition 2.4.1. Let (M, g) be a Riemannian manifold, (TM,gy) be its tangent
bundle equipped with the gradient Sasaki metric and the almost para-complex structure
J defined by (2.17). for all X,Y,Z € T(TM), then we get

L (®ygp) (XY, Z1) =0,

2. (®y9p)(XV, VT, 2M) =0,

3. (0790 (X, YV, Z1) = 2g(R(Z, X )u,Y) + 2Y (f)g(R(Z, X )u, gradf)
4. (D 7g0) (XY ZV) = 29(R(Y, X)u, Z) + 2Z(f)g(R(Y, X )u, gradf)
5. (0 795)(XV, YV, ZH) =0,

6. (D 797)(XV,YH, ZV) =0,

7. (2 yg) (XYY, ZV) = =2Z(f)g(Y, Vxgradf) — 2Y (f)9(Z,V xgradf ),
8. (®797)(XV,YV,2ZV) =0,

where R denote the curvature tensor on (M, g).
Proof. For all X*,Y* 7k € I(TTM) with k € {H,V},

D (XY ZT) = (IXM)g (YT, Z7) = X gp(JY™, Z7) + g5 ((Lyn )X, Z')
+gr (YT, (Lzn )X ™)
= (=XM)gr (Y™, Z21) = XHgs(=YH, ZM)

g5 (Lyn (JX™) = J(Lyu X*), 27)
g5 (Y, (LI XH) = J(Lyn (X))
= g (D, =X = (v, X)), 2"
g (Y1127, =X = J([2", X))
= g( =V X)7 + (RO, X)), ZV>
—g (7Y, X)7 = (R(Y, X)u)"), 2")

+g< 12, X"+ (R(Z, X)), YV>
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—g(J((2.X]" = (R(Z. X)w)"). YY)
= 0,

O g,(XY, YT, ZM) =(JXY) g, (Y7, Z7) = XVgp(JYH, ZM) + g; ((Lyn J)XV, Z7)
+gr (Y, (Lyu J)XY)
=(X")gy (Y™, ZM") = XV g (=Y, Z7)
+ g7 ((LynJXY) = J(LynX"), Z")
+ g7 (YY", (LynJXY) = J(LynX"))
=(X")gs(Y, Z2) = XVgs(-Y, Z)
+ 97 (Vy X))V = J(Vy X)Y), 21)
+gr (YT, (V2X)Y) = J(V2X)")) =0,
O g (XYY, Z7) =g, (Y'Y, =X, Z27) — g, (J(IYY, X "), Z)
97127, =X, YY) = gp(J([27, X ), YY)
=97 (VxY)V, Z") = g;(J(=VxY)", Z")
+97(=[Z, X" + (R(Z, X)u)",Y")
—gr(J[Z, X" + J(=R(Z, X)u)",Y")
=29;((R(Z, X)u)",Y")
=29((R(Z, X)u),Y) +2Y (f)g(R(Z, X)u, gradf),
O g (XY ZY) =g, (Y7, =X, ZY) = g, (J(IYT, X)), Z27)
=2g((R(Y, X)u), Z) + 2Z(f)g(R(Y, X)u, gradf),
® g (XY, YV, Z1) =gV, XV], Z2") — g, (J(YY, XV]), 2)
+ 9,27, XV YY) — gp(J([Z27, XV]), YY)
=g7(VzX,Y) —g;/(V2X,Y) =0,
O g (XY, Y ZV) =gp (YT, XV], 2Y) = g, (J(IYT, XV]), 2Y) =0,
O 9p(XV YV, ZY) =XV g (Y, ZV) = XV gy (Y, ZV) + gp([YY, XV], Z2Y)
—gr(JIYV, XV], Z2Y) + g5 (27, XV], YY)
—9(J[2", X"],Y") =0,
O g (XYY, ZV) == XTgp(YV, ZV) = X gy (YV, ZY) + g, (YV, = X", Z27)
—gr(JIYYV, X", ZY) + g5 (27, - XT], YY)
—g(J[ZV, X", YY)
——2X"(g(v, 2) + Y(NZ())) +29((VxY)", 2")
+29((Vx2)V,YV)

=—2 [g(VXY, Z) +g(Y,VxZ) + Z(f)(9(VxY, grad(f))
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+ 90V, Vgrad(1))) + Y (5)(o(VxZ, grad(F) + 9(Z, V xgrad(])))]
+2|9((VxY), 2) + (VxY)(HZ(f)
+9(VxZY) + (VxZ2)(NY ()]
=—29(Y,Vxgrad(f)) — 29(Z, Vxgrad(f)),
[

Remark 2.4.1. Let (M, g) be a Riemannian manifold, (T'M, gy) be its tangent bundle
equipped with the gradient Sasaki metric. Another almost para-complex structure J on

TM is defined by

{ JXH =XV,

TV xr (2.18)

The gradient Sasaki metric gy is pure with respect to J if and only if f is constant
function ( gy is the Sasaki metric ).

Now we study a generalization of the almost para-complex structure defined by
(2.17). Let (M,g) be a Riemannian manifold and (7'M, gs) be its tangent bundle
equipped with the gradient Sasaki metric. We define an endomorphism J : TTM —
TTM by,

{ JXT = X" 49X (f)(grad f)", (2.19)

JXV =X+ pX(f)(grad f)",
for all X € I'(T'M), where 1, : M — R are smooth functions.
Remark 2.4.2.

1. If f = constant or n = pu = 0, we have the almost para-complex structure defined

by (2.17),
2. J(grad /)" = (=1 +n(a —1))(grad )",
3. J(grad f)V = (1 + p(a —1))(grad f)",
where o = 1+ ||grad f||*.

In the following, we consider f # constant and n # 0 # pu.

Lemma 2.4.2.

Let (M, g) be a Riemannian manifold and (T M, g}q) be its tangent bundle equipped
with the gradient Sasaki metric. The endomorphism J defined by (2.19) is an almost
para-complex structure on T M if and only if
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Proof.
1) Let Z € T,TM, then Z = X" + YV XY € T,M and p = (z,u) € TM.
J*Z = JJXT+YV) =JJXT 4+ YY)
= J(= X" +nX(f)(grad )T +YV +pY (f)(grad f)")
= —(=X"T 4+ nX(f)(grad /)T) +nX()(=1+nla —1))(grad f)"
+YYV 4+ uY (f)(grad £) + pY (f) (1 + ple— 1)) (grad f)¥

J2Z7 = X" 49X (f)(=2+n(a—1))(grad ) +YV
+uY ()2 + (e = 1)) (grad f)”
= Z+nX(f)(=2+nla—1))(grad )"
+uY (F)(2+ pla —1))(grad f)Y,

J is an almost product structure on T'M if and only if
—2+n(a—1)=2+pla—1)=0,

1.e

n:_M:a_17

in this case J is written in the following form:

JXH =_XH 4 %X(f)(gradf)H,
(2.20)

IXY =XV = X (f)(grad )",

«

and
J(grad f) = (grad f)7,
J(grad f)V = —(grad f)".

1
a—1

2) Let {e1, -+ ,en} be alocal basis on M, A; = el

; —

ei(f)(grad f)H and B; =

—el + - i 1ei(f)(gradf)v, for all i = 1, m.
JAY = (e~ el D)grad ) = J(el!) ~ () (grad )"
= el e )(grad ) — () (grad )"

= el el f)grad )1 =~ A,
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Then

TTM™ ={Z € T,TM,JZ = —Z} =< (A})_17 > -
Similarly we have:
Then

TTM* ={Z € T,TM,JZ = Z} =< (Bi) 17 > -

]

Proposition 2.4.2. Let (M,g) be a Riemannian manifold, (T'M,gys) be its tangent
bundle equipped with the gradient Sasaki metric and the almost para-complex structure
J defined by (2.20), then gy is pure with respect to J i.e (T'M,J,gs) is an almost
para-complex Norden manifold.

Proof.
gr(JXV, Y1) =0 = g; (XY, JYT),

gr(JXT V) = 9f< . G %X(f)gmd(f)H,YH>
= g (= X" Y1) 4 2 X(f)g(grad(s)" ¥
= gr (=X Y™) + %X(f)g (gmd(f% Y)

= gy (X, —¥) + 2 g(X. grad(f))Y (f)
2

= gp (XM, =Y ) 4 =gy (X, grad()")Y ()

= gy (X, =Y 2y (f)grad(£)") = g (X, Y1),

ar(TXV YY) = g (XY = 2o X(Pgrad(), ¥
= g (X7,Y") = 2 X (1) oY, (grad( ) + Y (F)grad(£)(/)]
gr(XV, YY) = === ()] 9(X, grad(f)) + g(X, grad(f))grad(f)(f)]
91 (XY YY) = ==Y () [g(X, grad(F)) + X(f)grad(f)(f)]
= gy (XV, YY) - - f Y (1)g(XY, (grad())")

= g (XY 2 (f)grad(£))") = g(X", YY),



2.4 Para-complex Structures of Gradient Sasaki Metric on tangent bundle 39

Now we study a generalization of the almost para-complex structure defined by
2.18. We define an endomorphism J : TTM — TTM by, for all X € I'(T'M)

JXH =XV +nX(f)(grad [)V,
(2.21)
JXV = X" 4 uX(f)(grad f)¥,

where 7, i : M — R are smooth functions.

Remark 2.4.3. 1. If f = constant or n = p = 0, we have the almost para-complex
structure defined by (2.18),

2. J(grad /) = (1+n(a —1))(grad )",
3. J(grad f)" = (1 + p(a — 1)) (grad f)7,
where o = 1+ ||grad f]?.
In the following, we consider f # constant and n # 0 # p.

Lemma 2.4.3. Let (M,g) be a Riemannian manifold and (T'M,gy) be its tangent
bundle equipped with the gradient Sasaki metric. The endomorphism J defined by
(2.21) is an almost para-complex structure on TM if and only if

-n

P T ne—1)

Proof.
1) Let Z € T,TM, then Z = X* +YV XY € T,M and p = (z,u) € TM.

JZ = JJXT+Y")
= JUJXT 4+ YY)
= J(XV+0X(f)(grad f)¥ + Y + pY (f)(grad f)T)
= X"+ uX(f)(grad /)T +nX(f)(1 + pla —1))(grad f)
+YV+77Y(f)(gmdf)v+uY(f)(1+77(a— 1))(grad f)¥
= Z+X(f)lu+n+ pla—1)(grad /)
+Y(f)n+ p(1 +nla —1))|(grad f)¥,

J is an almost product structure on T'M if and only if

pAnl+pa—1))=n+pl+nla-1)) =0,
1.e n

YT T e 1)
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in this case we have

J(grad f)i = %n(gmdf)v,

J(grad )V = %“(gmd Ht

2) Let {e1, -+, e} be alocal basis on M, and for all i = 1, m we put,
A=l + Bei(f)grad )T = e = Jei(f)(grad /)",
B =ell + Sei(f)(grad f)7 + ¥ + Jei(f)(grad f)""

JA) = J(ef + LeiDgrad )T = e = Le f)(grad )Y

= Jel' + Seil )T (grad )7 = Jef = Lei(f)I(grad f)”
= e + gez‘(f)(gmdf)v —efl — gei(f)(gmdf)H

Then
TTM™ ={Z € T,TM,JZ = —7} =< (Ay);—1m > -

, M

Similarly we have:

Then

TTM* ={Z € T,TM,JZ = Z} =< (B,),_t > -

[]

Proposition 2.4.3.

Let (M, g) be a Riemannian manifold, (T M, gs) be its tangent bundle equipped with the
gradient Sasaki metric and the almost para-complex structure J defined by (2.21), then
gy s pure with respect to J if n =1+ pa.

Proof.

gr(IXT Y)Y = gy (XY +nX (f)(grad(f))", Y") =0
gr(JXV YY) = gp (XY + pX (f)(grad(f))¥,Y") = 0= g;(X", JYY),

we have

gr(JXT YY) = g (X7 +nX(f)((grad(f))", YY)
= g(X,Y) + X(HY (f) + X (fgr (Y, (grad(f))")
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g(X,Y) + XY () + X () |g(Y: grad(f) + Y (f)grad(f)(f)]

(
g(XY) + X(NY(f) +nX(f [g (Y(f)+Y (Hgrad(£)(f)]
gXY) + XY (N1 +7+(a = 1),

o XV X (7 (grad 1)) = 906, Y) + XV ()

gr(X7 IYY)

in order for gy to be pure with respect to J we need that n =1+ «a. O]

2.4.4 Almost product connection symmetric of gradient Sasaki
metric

Let (M, g) be a Riemannian manifold, (7'M, g5) be its tangent bundle equipped with
the gradient Sasaki metric and the almost product structure J defined by (2.17).
V/ denote the Levi-Civita connection of (T'M, g¢). We define a tensor field S¥ of type

(1,2) and a linear connection V on TM, for all X,Y € ['(TTM) by,

SI(X,Y) = %[(V%J))N( +J(VENX ~ J(V§J)§7], (2.22)

VgV = VLY - S(X,Y). (2.23)

V is an almost product connection on T'M,
Then, we have the following lemma.

Lemma 2.4.4. Let (M, g) be a Riemannian manifold, (T'M, gs) be its tangent bundle

equipped with the gradient Sasaki metric and the almost product structure J defined by
(2.17). Then, tensor field S is given by

STX Y)Y = = S(ROGY ),

STXYY) == Y (1) (Vxgrad(1)” = = [o(Y, Vxgrad(r)
— SX (@Y ()] (grad(1)" +

S (RO Y)X) 4 2V (f) (Rlu, grad(£))X)"
STXY,YH) = — (R(u, X)V)H — X(f)(R(us grad(£))Y)" + 2X()(Vygrad(f))”

2
+ 5 [0(X, Vrgrad(f)) — SY (@) X()] (grad(1))",
ST(XY, YY) = = SX(F)(Vygrad(£) — (Y (7)(Vxgrad ()"

For all X, Y € T(T'M).
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Proof. Using the Theorem 2.4.1, we have for all X,Y € I'(T'M)
ST(xV, YY) :% [(vfm DXV + IV, NXY = J(VL, DYV
[V IXY (V] XYY I XY (X))
— (T Y = IV YY)
SH(XV, YY) :% [V{/VXV — J(VL XYY+ IV IXY) = (V] XY)
— J(Vi, YY) + (v_{(vyv)],

from Theorem 2.4.1 we have that VQVYV is horizontal, then we have
J(Vi YY) = =V, V" and we get

1
/(XY YY) =5 [v@VXV + (VL XYY = (VL IXY) = (Wi, xV)

+ (V) + (T4 )] = (V5]

= S X(D(Tygrad(D)" — S (f)(Vxgrad( )",
! [(vf sya )XYV + IV XY — IV J)YH]

[\

SHxXV, Y™y =

[ =

> [V XV = 0(7

Fou XYY+ J(VL,IXY) = JI(V.XY)

— (VL JYH) 4+ JJ(VQVYH)]

| = VXY 4+ IV X)) + TV, XY) = (V. X))

N —

J V) + (V4 v )]

[ — oVl XY 4 20(V L, XYY+ J(VE, YV H) 4 (VQVYH)}

DN —

| = 2(R(u, X)Y)f = 2X ()(R(u, grad(f))¥)"

+

X(F)(Vygrad(7) + ~[g(X, Vygrad()) — 2¥ (@)X (/)] (grad(F)"]
=~ (R(w, X)Y)}! ~ X(f)(R{u, grad())Y)"

+ XU (Trgrad(7)" + 5-[o(X, Trgrad(f)) — ¥ (@)X (1)) (grad ()",
V(X" = TV XY+ T (V] = XT) =V, X
— J(Viy = Y") + V], Y
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1 1
:§[J(V§(HYH) + VY] = —§(R(X, Y)Y,

SHXH YY) = [(vfm DX+ J(vI, )X — 5L, J)YV}

N =N =

L0 (XY Iy (X)) + T ()
= I (T (X)) = I YY) 4TIV
:% [_QvfvaH — 2 (Vv X)) — J(V5 YY) + (VQHYVﬂ

1
=V X — J(V o XY — I (VYY) + 5(v;}HYV)

1
5
=~ Y()(Txgrad(£))" — = [o(¥, Vxgrad(f) ~ 5 X (@)Y ()] (grad(1)"

Theorem 2.4.3. Let (M, g) be a Riemannian manifold, (T'M, gy) be its tangent bundle
equipped with the gradient Sasaki metric and the almost product structure J defined by
(2.17). Then the almost product connection V defined by (2.23) is given by

VxunYH =(VxY)H,
Tan¥ =(Vx¥)¥ + Y (1) (Vxgrad(f))"

+ 2o, Vxgrad()) = 3X (@)Y ()] (grad(1)",
eV =2 (R, X)Y) + S X() (Rl grad(1)Y)".

2
VYV =0,
for all vector fields X, Y € T'(TM), (x,u) € TM.

Lemma 2.4.5. Let (M, g) be a Riemannian manifold, (TM, gs) be its tangent bundle
equipped with the gradient Sasaki metric and the almost product structure J defined by
(2.17). Then the torsion tensor T of V, is given by

o T(X", VM) = (R(X,Y)u)",

o T(XH, YY) = 2~ (R(w, Y)X)" Y (1) (Rlu, grad(F)) X +Y (F)(V xgrad(f))*

+ 5 [g(¥, Vxgrad()) — X (@)Y ()] (grad(£))"]



44 Geometrical structures on the tangent bundle

o T(XY,¥H) = — 2 [(R(u, X)¥)# X () (R, grad(F))¥ ) + X (F)(Vygrad( )"

+ o [glX, Vygrad(£)) - 1Y (@)X ()] (grad()"],

e T(XV,YV) =0,

for all X, Y € I'(TM).

2.5 Fiberwise deformed Sasaki metric on tangent
bundle

2.5.1 Almost complex structure on tangent bundle

We now introduce another structure on the tangent bundle induced by the vertical and
horizontal lift, this structure is defined by :

Definition 2.5.1. Let J : TTM — TTM be the linear endomorphism of the tangent
bundle characterized by

dr(JX)=—-K(X) and K(JA) =dr(X),
using definition 2.1.12 we get
JXT) =XV and J(XV)=-X"

and so we have J?> = —Idpry and that it define an almost complex structure on TM.

2.6 Berger-type deformed Sasaki metric on the tan-
gent bundle

Let (M,g,J) be a Hermitian manifold of dimension 2n with an almost paracomplex
structure J, i.e. the (1, 1)-tensor field J satisfying J? = id. Denote by T'M; a slashed
tangent bundle, i.e. the tangent bundle with zero section deleted. Define a fiber-wise
Berger-type deformation of the Sasaki metric on T'M defined by

Definition 2.6.1. Let (M?* ¢, g) be an almost anti-paraHermitian manifold and T M
be its tangent bundle. The Berger type deformed Sasaki metric on T'M s defined by

1 P XM YT = g(X.Y)
0

2. gBS(XH, YV)

3. gP (XY, YY) = g(X,Y) + 8°g(X, pu)g(Y, du)
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for all vector fields X,Y € T'(TM), where & is some constant. If § = 0 then g% is
called the Sasaki metric.

and 25 in T'M is defined by
o(X™M) = XM HXxV)=-xV (2.24)
for all vector field X € I'(T'M).
The almost paracomplex structure ¢ on T'M satisfy the purity condition. i.e
P(6X,Y) = ¢" (X, Y)
for all vector fields X , Y

Proof. Let X,Y € I'(TM)) and g®% the Berger Type deformed Sasaki metric on T'M
then

PG (XY = gBS<XH )
g7 (@XY, Y ) =gPS (- XV Yy =0 = gBS<XV oY)
9P (XY YY) =g" (=X YY) = gPI(XY, YY) = ¢" (XY, oY)
[
Lemma 2.6.1. Let (M, g) be a Riemannian manifold. Then we have
o X"g(Y,u) = g(VxY, u).
o XVg(Y,u) =g(X,Y),
for all X, Y € I'(TM).
Proof. Locally, we have v = y* 8‘;, = ‘ 882, then
X (v u) =(x° ai X'yTY, aak) (Y.u)
ZXZ'%Q(Y, u) — X' ”Ffjaak (gimY'y™)
=g(VxY,u) + g(Y,Vxu) = X'yTF(gimY")
=g(VxY, u).
XVg(Y,u) = aaz gmY'y™ = Xig,Y! = g(X,Y).
O]

Lemma 2.6.2. Let (Mo, ¢, g) be an anti-paraKahler, we have the following
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o X"g(Y,pu) = g(VxY, pu),
o XVg(Y, ¢u) = g(Y,¢X),
for all X, Y € I'(T'M).
Proof. The proof come directly from Lemma 2.6.1. m

Theorem 2.6.1. Let (May,, ¢, g) be an anti-paraKihler manifold and (T M, gP°) be
the tangent bundle equipped with the Berger type deformed Sasaki metric gP% and the

paracomplez structure ¢. The triple (TM, ¢, gP%) is an anti-paraKdhler manifold if
and only if Msyy is flat.

Proof.
XYM, 21y =(6X ") (gP (YT, 2M)) = XM (P (@Y, Z2M)) + g"5 (Lynd) XM, ZM)
+ 955 (Lnp) X7, Y1)
=X"(g"5 (Y, Z2™M) — xM(g" (Y, Z2™))
+gPs (LquNs(XH) — H(Lyn XM, ZH>
+ g7 (Lond(XH) = 3L X1, Y1)
:gBS<[Y, X, ZH) B gBS<D/’ X, ZH)

_i_gBS([Z’ X]H7yH> _gBS<[Z7 X]H7yH> _0,

XY Y 21y =(0XV)(gPS (Y ", 27)) — XV (g (oY, ZM)) + gP5 (Lyn ) XY, 2)
+ g% (L)X, Y1)
= —2XVgPS (! ZM) 4 ¢S (Y M XV, ZM) — P (oY, XV]), 21
+ P21, XV, Y™ - ¢P5(a([27, X V), Y1)
=" (=(VyX)", Z2") = " (= ((Vy X)), Z")
+ g% (= (VX)) YT — ¢P5(—(V,X)V, Y1) =0,

XM YV, ZH) =(XM)(gPS(YV, 2M)) = XM (gP5 (=YY, Z2")) + ¢ (Lyvo) X, ZM)
+ P (Lynd) X7, YY)
=gPS([Y", X"], 2") — g5 (a(lY", X 1)), 2")
+ g5 ((27, X7, YY) = gBS(p(127, X)), YY)
= — 20" ((R(Z. X)u)",Y")
= —29(R(Z, X )u,Y) — 208%9(R(Z, X Ju, u)g (Y, pu),
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X YH 7V =(XH) (B (2V Y1) = XH(gPS(YH, ZY)) + gP (L o) X7, YH)
+gBS<<LYH<7>>XH,ZV>
=g%(([2V, X", Y ") — g% (6([2Y, X ")), Y H)
+ P (Y, XM, ZV> g (Y, XM, ZY)
= —2g(R(Y, X)u, Z) = 26°g(R(Y, X)u, du)g(Z, pu),

O(XV, YV, 2") = = (X")(g"(2", V") = XV (g5 (=YY, Z2")) + ¢P (Lznd) XV, YY)
+ g% (Lyvg) XV, 2™
=g"5((Lznd) XV, YY) = g"5([2", - XV],YY) - ¢%(0((2", X", YY)
=g"5(—(V2X)". YY) = ¢®5(6((V2X)"). YY) =0,

O(XV. YT 2V) = — (XV) (g5 (v ", 2V)) = XV(gPS (Y Z2Y)) + "5 (Lynd) XV, 27)
+ QBS«LZV%)XV» YH)
=" (—(VyX)", Z") — ¢P%(((Vy X)), Z2") = 0,

o(xH, vV, ZY) (cbXH)( Y, 2Y)) = XM (gP (oYY, ZY)) + ¢P (Lyv )X, ZY)
BS(Lyvd) X", YY)
—2(XH)(QBS(YV ZV)>+gBS([YV X", 2Y) - g"(a(ly", x1)), 27)
AP CIR A (¢([ZV7XH]),YV)
—2(XH)( Py, ZV))+gBS(—(VxY)V,ZV) — g7 (S~ (VxY)Y), Z2Y)
+ "5 (=(Vx2)", YY) = g"5(8(~(Vx 2)"),Y")
=2(X")(g" (Y'Y, Z27)) = 29" ((VxY)V, Z2V) = 29"5(Vx 2)V, YY),
using lemme 2.6.2 we have
(X vV, 2V) =2 [g(VXY, Z)+ g(VxZ,Y) + g(Vx Y, du)g(Z, du) + g(Vx Z, ) g(Y, gbu)]
—2|g(VxY, 2) + g(VxY. ou)g(Z, 6u)|

= 2[g(VxZ,Y) + g(VxZ, ou)g(Y, 6u)| =0,
DXV, YY,2Y) =XV )P (Y, 2)) = XV (g7 YV, 2Y)) 4+ g" (Lyv 3 X", 27)

+ 55 (L) XV, YY)
=(—X")(¢" (", 2")) - XV(¢"(-Y",Z2")) = 0.
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2.6.1 Levi-Civita connection
A direct result of usual calculations using the Koszul formula gives the following result

Proposition 2.6.1. Let (Myy, ¢, g) be an anti-paraKahler manifold and TM be its
tangent bundle. The Levi-Civita connection of the Berger type deformed Sasaki metric
gP% on TM is given by

(T oY) = (VY)Y — S(RA(X, Y)Y,

(pvu) o 2
~ 1
(VxaY") ) = (VXY)E;M) + §(Rz(u, V) X)H,
~ 1
(Vv YH) ) = §(Rz(u, X)Y){E ..
~ 52
1% _ 1%
(VXVY )(I%U) - mg<X7 ng) (gbu) P

where YV is the Levi-Civita connection on (M, ®,q), R is its Riemannian curvature
tensor and o = g(u,u).

Lemma 2.6.3. Let (M, ¢, g) be an an anti-paraKihler manifold and the tangent bundle
TM be equipped with a metric g* which is natural with respect to g on M. If F : TM —
TM s a smooth bundle endomorphism of the tangent bundle, then

(Vi VE) gy = F(X) 0+ > ul@) (Vv F(0)Y) -

i=1

Vi

(Vv HF) puwy = F(X){L o +

(psu)

u(acz) (V}v F(@Z)H) (p7u) .

(Vi VF)pu = (ViuaF(8;)"
(Vi HF)puy = (Via F(8;)"

N—
= =
3
£

for any X e I'(TM), (p,u) € TM.

Proof. Let (x1,...,x,) be local coordinates on M in a neighborhood V' of p. Then, we
have

(Vi V) =V (1) F () = X () F ()Y 44V F()"
XY Vi F()
= FX)Y Y Vi F)Y,

(View By =V (0)F )" = X () F () 4y Vi P35



2.6 Berger-type deformed Sasaki metric on the tangent bundle 49

D A 0
= X'F(75)" +y'Viv F(z)",
(8152) + Y Vxv (8331)
we prove the remaining two in the same way. O

Proposition 2.6.2. Let (M, ¢,g) be an anti-paraKihler manifold and TM be its
tangent bundle. If F € T1(M) is a tensor of type (1,1) then

1
(Vicn HF) gy = (Vi F) = 5 (Re(Xa, Fau))u)"

~ 1
(VxaVF)@u = (vXF)Xc,u) + E(Rx(ua Fo(u)X,)".

(Vv HF) g = (F(O) Ly + 5 (Ralin, X0) F ()"

(VxrVE) gy = (F(X)) o) +

where (z,u) € TM and X € T'(TM).

Theorem 2.6.2. Let (Mo, ¢, g) be an anti-paraKahler manifold and T M be its tangent
bundle equipped with the Berger type deformed Sasaki metric gB5. Then the correspond-
ing Riemannian curvature tensor R is given by

R(X" yHyzH — [R(X, Y)Z + %lR(u, R(Z,Y)u)X + ;lR(u, R(X, Z)u)Y

SR R Y2+ L (V2R)(X, Y )Y

R(X" yHyzV :% [(VXR) (u, Z)Y — (VyR)(u, Z)X} " [R(X, Y)Z + %R(R(u, Z)Y, X )u

—1R(R(u,Z)X,Y>U]V+ : (R(X,Y)u, ¢Z)(¢u)",

4 1+ 52ag
R(XH yVyzH :%((VXR)(U, Y)Z)H + ER(R(U, Y)Z, X)u + %R(X, Z2)Y)

2

|4

Y

+ g (RO 2y 0¥ ) (ou)”

R(X", Y2V = [ - %R(Y, Z)X — iR(u, Y)R(u, Z)X}H,

RXV, Yz = [R(X, Y)Z + ;LR(U,X)R(U, Y)Z - }lR(u, Y)R(u,X)Z}H

nvV vV oV ! 1%
R(X",Y")Z :m(g(Y,u)g(X,gbZ)—g(X,u)g(Y,gbZ))(gbu) -
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2.6.2 Almost product connection symmetric

Let V be an arbitrary linear connection on M and S be the (1,2)-tensor field defined
by

S(X.Y) = 5[V h)X + 6(T50)X (V)7 ]. (225)

Proposition 2.6.3. Let (Msy, ¢, g) be an anti-paraKahler manifold, T M be its tangent
bundle equipped with the Berger type deformed Sasaki metric ¢P° and the paracomplex
structure ¢. Then tensor field S is as follows,
S(XV,vY)
S(XV,yH

0,
- (R(’LL, X)Y)Ha

S(X" YY)

(R, Y)X)",
S, Y1) = - (RO Y)Y,

for all XY € I'(TM).
Proof. Let X and Y be vectors field on T'M, then using (2.25) and 2.24 we get,

X YY) =3 (Ve )XY+ 6Ty D)XV — ST )y ]

=5 [T (X7 = T XY) 4 3(Fyv(-XY)

X
—6(Vrr X)) = 6(Var (=¥YY) + 6V ¥V ))| =0,

SV YT = [(Vyu@) XY + 6(Tynd) XV = oV v )y 7|
=3 [V (=XY) = 8(Vyn XV) 4+ 9Ty (-XY)
= BTy XY)) = AT (Y1) + 3V v v )|

[—(vmv (RO X))+ (VyX) — S(R(u, X))

l\:)lb—[\ﬂ»—t

(RO X)) — (3 X)Y — L (R, X)Y )"
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= BV X)) = GV (YY) + H(T )]
:% [ — %(R(u, Y)X)H + %(R(u, Y)X)H + %(R(u, Y)X)H
(R(w,Y)X)" — (Vx¥)" 4 S(R(w, V)X + (Vx¥)¥

:ﬁyH (XY = $(Vyn XH) + 3(Vyu (XH)

— BV X)) = BV n (Y1) + H(Txny ™))

7 X" = SR XY — (Fy X)T — (RO, X))
FT X+ S(ROGX)0)Y = (3 X)" + 5
(V)T — LR Y)Y+ (VY — (R Y)Y |

= - SR Y Ju)"

Then we can construct any almost paracomplex connection on 7'M by
V¥ =V3Y - §(X,Y) (2.26)

Theorem 2.6.3. Let (Mo, ¢, g) be an anti-paraKahler manifold and T M be its tangent
bundle equipped with the Berger type deformed Sasaki metric gP% and the paracomplex
structure ¢ defined by (2.24). Then the almost paracomplex connection ¥V constructed
by the Levi-Clivita connection V is as follows:

VyaYH = (VxY),
VYV = (VxY)Y,

VY = g(R(u,X)Y)H,
— 52

v _ 7 1%
VxvY" = Hé%g(X,d)Y)(qﬁU) :

Forall X, Y onTM.

Proposition 2.6.4. Let (M, ¢,g) be an anti-paraKihler manifold and TM be its

tangent bundle equipped with the Berger type deformed Sasaki metric ¢P% and the para-

complex structure ¢. If F € (M) is a tensor of type (1,1), then we have
(VxnHEF)w = (VxF){

(z,u)’
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(VxaVF)@w = (VxF)u)-
(Vv HF)y = (FCO) + 5 (Ral, Xo)F(u))
TV Pl = (FX)oa + 1omgl(X, 0F () (60

where (x,u) € TM and X € T'(TM).
Using Theorem 2.6.3 and Proposition 4.8.1 and formula of curvature, we have

Theorem 2.6.4. Let (Mo, ¢, g) be an anti-paraKahler manifold and T M be its tangent
bundle equipped with the Berger type deformed Sasaki metric gP° and the paracomplex
structure ¢. Then the corresponding Riemannian curvature tensor R is given by

RXH vz = [R(X, Y)Z+;R(U,R(X, Y)u)Z]H,

BX" ")z = [REXY)Z+ 1+1529(R(X,Y)u,¢2)(¢u)]v,
RXH yV)zH = —;(VXR)(U,Y)Z}H,

RX" YVYZV = 0,

=

\%4
XV, y"z" = %[4R(X,Y)Z+3R(u,X)R(u,Y)Z—3R(u,Y)R(u,X)Z} ,
52
\% \4 v _
XV yN2Y = (e

=

)2 [9(X,u)g(Y, 0Z) — g(Y,u)g(X, 0Z)](¢u)" .



Chapter 3

Harmonicity on tangent bundle
structure

In this chapter, we study the harmonicity of vector fields considered to be maps from
the Riemannian manifold M into its tangent bundle T'M witch is equipped with an
almost complex structure or an almost paracomplex. We have studied here three cases.
First, the tangent bundle equipped with the gradient Sasaki metric gy and an almost
paracomplex structure compatible with g;. Then we studied the harmonicity and bi-
harmonicity on the tangent bundle of Kdahler manifold (M, ¢,g) equipped with the
Berger type deformed Sasaki metric g?°.

Finally, we study the harmonicity of vector field on the tangent bundle equipped with
an isotropic almost complex structure Jso and the isotropic Cheeger-Gromoll metric

cG
950 -

3.1 Harmonic vector field on tangent bundle equipped
with gradient Sasaki metric

Lemma 3.1.1. [12]. Let (M,g) be a Riemannian manifold. If X,Y € T'(TM) are
vector fields on M and (p,u) € TM such that X, = u, then we have:

4X(Y,) = Y+ (VxV)],

(pu)

Proof. Let (U, ) be a local chart on M and (7' (U), z%,%”) the induced chart on T M,
0

if X, =X'(p)s%|, and Y, = Yi(p)% », then
. 0 . OX*F 0
XY, =Y'"(p)=—|pw +Y* —(p)=—| (.
dp ( P) (p) ort ’(Pa ) + (p> ot (p) ayk ’(pv )
i 0 NG 0 i , & 0
=Y <p)%|(p7u) +Y*(p) or (p)g_ykhpm - Y'(p)X/ (p)Fij(p)a_ykkp,U)

23



54 Harmonicity on tangent bundle structure

+Yi(p) X (p)IE (b)) = Y+ (Vy X))

3.1.1 Harmonic vector field X : (M, g) = (T'M, J, g¢)

Theorem 3.1.1. Let (M,g) be a Riemannian manifold and (T'M, J, g¢) its tangent
bundle equipped with the almost paracomplex structure J and the gradient Sasaki gy.
Then, the tension field associated to X € T'(T'M) is given by

7(X) :gtrg(R(X, V. X)$) " +tr, [(ViX) + ;(V*X)(f)(R(X7 grad(f))x)

+Z9(V.X grad(P)(Vagrad(f)) + 5 -9(V.X, V.grad({))grad(f)
3

14
s X)) grad( )]

Proof. Let (z,u) € TM and {e;}?"; be a local orthonormal frame on M such that
(Ve,ej) = 0 and X, = u, then by summing over i, we have

T(X) = Vid(X(e))
= vef{Jr(VeiX)VezH +(Ve, X)Y
= Ve +Von(Ve, X)”
+ v(veix)veﬁ + v(VEix)V (VeiX)V'
By using Theorem 2.4.3, we obtain

H(X) = (Ve + (Ve Ve X)V + 29(Ve X, grad())(Ve,grad(f)"

b [009. . Vegrad(£)) = Seie)(Va X)) (grad()”

(RO, Ve X)) + SV X)) (R, grad(f))es)

]

Theorem 3.1.2. Let (M, g) be a Riemannian manifold and (T'M, J, g5) its tangent
bundle equipped with the almost paracomplex structure J and gradient Sasaki metric
gr. Then, the vector field X : (M, g) — (T'M, J, g¢) is harmonic if and only if

try(R(u, V., X)x) = 0 (3.1)

and

17, [(V2X) + SV X)) ROX, grad(1))%) — (Y gaatcr X) (1) (grad( )

20T, grad()(V.grad(£)) + 5-g(V.X, V.ograd(f))grad(f)] = 0. (3.2



3.1 Harmonic vector field on tangent bundle equipped with gradient Sasaki metrish

Corollary 3.1.1. Let (M,g) be a Riemannian manifold and (T'M, J, g5) its tangent
bundle equipped with the almost paracomplex structure J and gradient Sasaki metric
g¢. If X parallel then, X is harmonic.

Lemma 3.1.2. Let (M, g) be a Riemannian manifold and (TM, J, g¢) its tangent bun-
dle equipped with the almost paracomplez structure J defined in (2.17) and the gradient
Sasaki metric gy. If X € T'(T'M), then the energy density associated to X is given by

[ lI9. X1 + by (9. ) 7).

n

Proof. Let {eq, e, ..., €2, } be a local orthonormal frame on M, then

2k

e(X) = £ 3" 0s(dX (er), dX (e.))

i=1

Using Lemma 3.1.1 | we obtain

2k 2k
— 1 _ 1 H v _H Vv
= 5 o)X (e) = 5 3 arlel! + (V)" + (VX))

i=1

12k:

- 52 [gf(ef[>6fl) +9f((VeiX)V7(V€iX)V>]

]

Theorem 3.1.3. Let (M, g) be a Riemannian manifold and (T'M, J, gy) its tangent
bundle equipped with the almost paracomplex structure J and the gradient Sasaki metric
gr. Then X € I(TTM) is harmonic if and only if X is parallel.

Proof. From theorem 3.1.2, we have that if VX = 0, then X is harmonic.
Inversely, let X; be a variation of X defined by X; = (1 +¢)X, then

d 1d
ZB(X) 1o == —
(X0 =55 |

- (1+1)2 [||VX\|2 + g(grad(f), VX)? vy,
:/NWXW%+/g@m%ﬁVXW@
M M

If X is a critical point we have

0= /M V] 2o, + /M g(grad(f), VX2, (3.3)

then VX = 0. [l
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3.1.2 Geodesics on tangent bundle equipped with gradient
Sasaki metric

Definition 3.1.1. Let (M, g) be a Riemannian manifold and (T'M, J, gf) be its tangent
bundle equipped with almost paracomplex structure J and the gradient Sasaki metric
gr. If x(t) is a curve on (M, g), then the curve C(t) = (x(t),2(t)) is called the natural
lift of the curve x(t).

Definition 3.1.2. Let (M, g) be a Riemannian manifold and (T'M, J, g¢) be its tangent
bundle equipped with almost paracomplex structure J and the gradient Sasaki metric
gr- A curve C(t) = (x(t),y(t)) is said to be a horizontal lift of the curve x(t) if and
only if Vizy = 0.

Lemma 3.1.3. Let (M, g) be a Riemannian manifold and x : I — M be a curve on
M. IfC:telw—C(t)=(x(t);yt)) € TM is a curve in TM such y(t) € TypyM (i.e.
y(t) is a vector field along x(t)), then

Proof. Locally, if Y € I'(T'M) is a vector field such Y (z(t)) = y(¢), then we have

C(t) =dC(t) = dY (z(t)).
Using Lemma 3.1.1, we obtain
C(t) =dY (z(t)) = 2" + (Vi)Y
O

Theorem 3.1.4. Let (M, g) be a Riemannian manifold and (T'M, J, gs) be its tangent
bundle equipped with the almost paracomplex structure J and Sasaki gradient metric
gr. If x(t) is a curve on M and C(t) = (z(t),y(t)) is a curve on TM such that y(t) is
a vector fields on along x(t), then

VO =|Vai + g(R(u, ny)x)} " + [Vfby + g(vxy)(f) (R(u, grad(f))E + Vﬁ]md(f))

+ 5 g(Vay, Vagrad(f))grad(f) — —-i(0)(Vay)(fgrad(f)]

Proof. Let V be the connection on (T'M, J, g¢), then we have
VeC =V vy (@7 + (Viy)")
. 3
=(Vid)" + (VaViy)' + S (Vay) () (Vagrad(f))”

2
+ 5 g(Vay, Vagrad(f))grad(f)" — —(0)(Vsy)(f)grad( )"
+ (R, Va)2) + 3 (Ven) () (R(u, grad (1))
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Theorem 3.1.5. Let (M, g) be a Riemannian manifold and (T'M, J, gs) be its tangent
bundle equipped with the almost paracomplex structure J and gradient Sasaki metric
gs, and let C(t) = (z(t),y(t)) be a curve on TM, then C is geodesic if and only if

Vid = > (Rly, Viy)) (3.4)
and
2 3 -
vy =5 (V) (f) (Rly, grad(1)i + Vagrad(f))
+ 5 g(Vay, Vagrad(f))grad(f) - --i(0)(Vay)(fgrad(f). (35)

Corollary 3.1.2. Let (M, g) be a Riemannian manifold and (T'M, J, g¢) be its tangent
bundle equipped with the almost paracomplex structure J and gradient Sasaki metric
gr, and let C(t) = (x(t),y(t)) be the horizontal lift of x(t), then C is geodesic if and
only if x(t) is geodesic i.e

Vit = 0.

Example 3.1.1. et R equipped with the metric g = e*dz?. It’s tangent bundle (TR, g/, J)
where

JXH = _xH
JXV =XV

The Christoffel symbols of the Levi-Civita connection are given by

1 dgii  Ogu Ogu 1
1 by _
Fll_ﬁg (8:1:1 +8x1 _8951)_5’

the geodesics x(t) of g, such that x(0) = a,x'(0) = b where a,b € R |, verify the equation

1
Vit =a" + 5(:10')2 =0,

2bd

where '(t) = 522 so x(t) = a + 2In(1 + 3bt), then C(t) = (a + 2In(1 + 3bt), md—)
T

2+t

is the natural lift of x(t) on TR.
Now to find the horizontal lift of the curve x(t), we need to find y(t) such that Vy = 0.
dy dx

We have V;y = pris tha

d
particular solution is given by that y(t) = k(2 + bt)d—, k € Rt. Then the horizontal
x

=y + %y;{;' = 0, then we have 3y’ = —yﬁ; we get a

- d
lift of x(t) is given by C(t) = (a + 2In(1 + 3bt), k(2 + bt)d—). By Corollary 3.1.2 we
5 x
have that C(t) is geodesic.
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3.2 Harmonic and bi-harmonic vector field on tan-
gent bundle equipped with Berger type deformed
Sasaki metric

3.2.1 Harmonic vector field X : (M?*, ¢,q) — (T'M, (E, gP%)

Theorem 3.2.1. Let (M?* ¢, g) be an anti-paraKihler manifold and TM its tangent
bundle equipped with the Berger type deformed Sasaki metric P and the paracomplex
structure ¢. Then the tension field associated to X € I'(T'M) is given by

3 " ) 5 v
m(X) = 3 |ty (RX.V.X00) |+ | (0 V2X) 4 sty [9( V. X, 6V.X) (6X)] |

2
(3.6)

Proof. Let (z,u) € TM and {e;}?*, be a local orthonormal frame on M such that
(V,e;) =0 and X, = u, then by summing over ¢, we have

T(X) = Vgd(X(e))
— %e{u(v%x)v (eiH + (VeiX)v>
= %e{zeiH + %efz(veiX)V
+V v, xvel + Vg, xv (Ve X)V.

By using Theorem 2.6.3, we obtain

2

1+ 52atrg [9<V*X, gbV*X)(ng)} v,

3
7(X) = 5trg(R(X, VX)) 4 (tr, VEX)Y +

[]

Theorem 3.2.2. Let (Msy, ¢, g) be an anti-paraKihler manifold and T'M its tangent
bundle equipped with the Berger type deformed Sasaki metric gB°. Then the vector field
X 1 (Mag, ¢, 9) — TM is harmonic if and only if the following conditions are verified

M(X) = try(R(X,V.X)x) = 0, (3.7)

2
1+ 6%«
Example 3.2.1. Let (M = R? ¢, dz*+ dy?) be a Riemannian manifold, the orthonor-

(X)) = tr,V*X + trg[g(V.X, oV.X)(¢X)] = 0. (3.8)

mal basis on TR? is given by {a—, a—}, the almost paracomplex structure ¢ satisfy
T oy
0 9, 0 0
¢<%> = 8_3/ and ¢<8_y> =5 We have that a vector field X € TR? can be written

0

0
X = f(o,y) 5~ +g(x7y)a—y,

Ox
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where f,g € C>®(R).
We have

O2f Pf\O | (g 0g\ D

2 — N o ~ o - —_— —_— —_

t?"gv*X —<ax2 + ay2>ax (8x2 + ay2>@y,
[, (242 [ 090 ,O0f0 090

of & 990 0f 0 0g 0 0 o

+g<8y o 6y8y’¢(8y o+ 8yay)>](f(x’y)8y +g(x’y)aw)

:[g<8fﬁ+8g(’9 of 0 +8gﬁ>

Oxdx  Ox 0y dxdy = Oz Ox

f & 990 of 9 0g 0 0 0
+9<ayax+ayay’ayay+ayax)]mx,y)ay+g<x,y>ax>
_[,9f9 019
_[28x3m+20y8y

Then, X is harmonic if and only if
o2f  O*f 262 <8f@+0f@

}(f(w,y)a% +g(fc,y)(%)-

0= a2 T ar T 150 \or e 0_y8y>g<m’y)
and

0%g 0% 262 /0fdg Of Og
0= ox? + oy? * 1+ 62« (%% + 8_y6_y>f(x’y)'

0
For X = f(x,y)% + Ka—y, where K constant. X 1is harmonic if and only if f is

harmonic.

Corollary 3.2.1. Let (Mo, ¢, g) be an anti-paraKahler manifold and T M its tangent
bundle equipped with the Berger type deformed Sasaki metric ¢P% and the paracomplex
structure ¢. If X € T'(TM) is a parallel vector field (i.e VX = 0), then X is harmonic.

Lemma 3.2.1. Let (Msy, ¢,g) be an anti-paraKdhler manifold and TM its tangent
bundle equipped with the Berger type deformed Sasaki metric ¢P% and the paracomplex
structure ¢. If X € I'(T'M), then the energy density associated to X is given by

e(X)=k+ % [HVXH? +6%(g(V X, ¢u))2].

Proof. Let {ey,ea, ..., ea:} be a local orthonormal frame on M, then

2k

¢(X) = % S g7 (X (er), dX ().

i=1
Using Lemma 3.1.1 ; we obtain

1 = BS 1 - BS( H v _H \%4
= 52 07X (e dX(e) = 5 3™ (el + (Vo) el + (V0 X)")

=1
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Z el + 567 (V XY (9., X))

DO | = wl»—*

[2k + |[VX||” + 6°(9(VX, ¢u))?].
O

Theorem 3.2.3. Let (Mo, ¢, g) be a compact anti-paraKahler manifold and TM its
tangent bundle equipped with the Berger type deformed Sasaki metric ¢P% and the para-
complex structure ¢p. Then X € T'(T'M) is harmonic if and only if X is parallel.

Proof. 1f X is parallel, from Corollary 3.2.1, we deduce that X is harmonic vector field.
Inversely: Let X; be a compactly supported variation of X defined by X; = (1 +¢)X.
From Lemma 3.2.1 we have

GBI = [ @RI+ v o)

= [P+ [ SV u)
M M

If X is a critical point of the energy functional, then we have :

d
ZE(X)imo = 0,

/||VX||%g /52 (VX, ¢u))*v, = 0.
then VX = 0. O]

Theorem 3.2.4. Let (TM, ¢, g%5) be a anti-paraKihler manifold. Then X € T(T M)
18 harmonic if and only if

2

VX = -0
rsV 1+ 6%«

try,g(V.X, ¢V. X)(ou). (3.9)

Proof. Let (TM, &, gBS ) be a anti-paraKdhler manifold, from Theorem 2.6.1, we have
M is flat manifold, thus the Riemannian curvature R = 0. By using the Theorem
3.2.2, we have X is harmonic if and only if

2

J
tryV2X + mtrg [9(V.X, V. X)(¢u)] =0
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3.2.2 Biharmonic vector field X : (Msy, ¢,9) — (T'M, o, gP)

Theorem 3.2.5. Let (Mo, ¢, g) be a compact anti-paraKahler manifold and TM its
tangent bundle equipped with the Berger type deformed Sasaki metric ¢P° and the para-
complex structure ¢p. Then X € T'(T'M) is biharmonic if and only if X is harmonic.

Proof. Let X; be a compactly supported variation of X defined by X; = (1 + ¢)X.
From the formulas 3.7 and 3.8, we have

™X) = (1+6)* (X)),
(X)) = (1+)tr,V2X + (1 +1)? [Jmm[g(v*x, (bV*X)(qﬁu)”
= (1+t)AX + (1 +1)*A(X),

1
X) =5 [ 1) Easv,
/lT Xt stg /’7' Xt BSUg

S g0, 00wy + 3 [ atr 00, 7 X0
+ 2 [ e x), s
_ (14t (1+1)

S [ a0, 0, + S5 [ axax),

+@/9(AX,A(X))UQ+ (1J;t) /g(A(X),A(X>)vg

T [ aouye, + S [ @400, 00,

then
0= GEX)im0 =2 [ g 00 (X)), + [ o(AX. A%,
3

+§/g(AX,A(X))vg+2/g(A(X);A(X))U9

g / G(AX, b(u))v, + 202 / G(AX), 6(w))v,.

Since both functions g(7"(X), 7"(X)) and g(AX, AX), g(A(X), A(X)) are positive, we
easily conclude that

™X)=AX = AX) =

everywhere on M. Equivalently, X is an harmonic map. O
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Corollary 3.2.2. Let (Mg, ¢, g) be a compact anti-paraKihler manifold and TM its
tangent bundle equipped with the Berger type deformed Sasaki metric g®% and the para-
complex structure ¢. Then X € ['(TM) is biharmonic if and only if X is parallel.

Lemma 3.2.2. Let (Msy, ¢, g) be an anti-paraKihler manifold and TM its tangent
bundle equipped with the Berger type deformed Sasaki metric g®% and the paracom-
plex structure ¢. If X : M — TM 1is a smooth vector field then the Jacobi tensor
Jx (t°(X)V) is given by

I 0 Yy = = 3oV R) w70 ¢]

+ [trg (vav(X) F3R(TY(X), V. X )%

H

+ ZR(U,T”(X))R(U,V*X)*

_ ZR(U, VLX) R(u, (X)) % )|

\%4

(20)
o | tra((9(7X, 6r (X))o

+29(V. X, oV.7°(X))pu

ST (X) (V. X, 6V X)ou) |

(z,u)

2
—+

+1—|—0z62

Proof. Let (z,u) € TM and {e;}?*; be a local orthonormal frame on M such that
(Ve,€:)z = 0. Then by summing over ¢ and by using the Theorem 2.6.3, we have

Ve (T (X)) [y = Ver (v, xv (T"(X)"
2

_ v 14
= (V" () 4 s

(Ve, X, 07"(X))(w)",

try(V¥)(r(X))Y =VavE(r(X))" = ﬁelﬂﬂv%x)v [(Veﬁv(x))v

2

1+ as2?
=(V2r (X)) + 15 | Ve 9(Ve, X, 67 (X))
+ 9(Ve, X, 0V 7 (X)) (6)

2 14
Tt (Ve X or" (X))g(Vo X w)(0u)|

from Theorem 2.6.4 and Lemma 3.1.1, we have

+

(Ve X, 67" (X)) (6u)"

2

_|_

tryR(r"(X),dX)dX = (f_%((T”(X))V,GfI)efI +R((T"(X))", (Ve, X) ey

i=1
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+ R(7 (X)), ) (Ve )
+ R (0) (Ve X))V X)),

By calculating at (z,u), we obtain

tr(R(r(X)V, dX)dX) = [ - g(vei}z)(u, T“(X))el} "L Z [43(#()(), V.. X)e;
+ 3R(u, 7°(X))R(u, V., X)e;
— 3R(u, V.. X)R(u, TU(X))@} '

64
T ar (7 (X), u)g(V, X, 6V, X)gu

v
— g(Ve, X, u)g(r (X)), WQX)M .
Considering the formula 1.29, we deduce the result. O

Lemma 3.2.3. Let (Msy, ¢, g) be an anti-paraKihler manifold and TM its tangent
bundle equipped with the Berger type deformed Sasaki metric g®% and the paracom-

plex structure ¢. If X : M — TM 1is a smooth vector field then the Jacobi tensor
Jx (T"(X)H) is given by

Ix (T (X)) = [ty (R (X), ) + +§R(u, R(r(X), *)u)x
+ g(vTh(X)R)(u, V. X) * +(V2r" (X))

+ gV*R(u, VIrM(X) + gR(u, V. X)V.7"(X)

+ gR(u, V.X)R(u, V*X)Th(X)] g [R(Th(X), £V.X
g (R (X0, 0 6V X)6u) |

Proof. Let (z,u) € TM and {e;}?*, be a local orthonormal frame on M such that
(Ve,€i)e = 0. Then by summing over i, we have:

3
Vo (X)) Naw = (Ver"(X0O)" + 5(RB(w, Ve, X)r" (X)),
From Proposition 2.6.4, we have

3
VEVEE X)) =(V2 (X)) + 2| Ve R(u, V)7 (X) + R(u, Vo, X) V., 7 (X)
H
42 R, Ve X) R, Vo X)r (X))
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On the other hand, we have

tr(R(T"( X)), dX)dX) :[R( "(X),e)e + ;R(u,R(Th(X),ei)u)ei
3 H 1%
+ S (T B, Ve Xer]| + [RIH(X), ) Ve, X]
52 v
+ 15 5% [Q(R(Th(X), e, (bVeiX)gbu}
Considering the formula 1.29, we deduce the result. O
From Lemma 3.2.2 and Lemma 3.2.3, we deduce the next theorem.

Theorem 3.2.6. Let (Mg, ¢, g) be an anti-paraKihler manifold and T M its tangent
bundle equipped with the Berger type deformed Sasaki metric gP% and the paracomplex
structure ¢, if X : M — TM is a smooth vector field then the bitension field of X is
given by

n(X) =[REA(X), s + 5 R REHX), eu)e

S 5 700

gVeZR(u Ve, )TM(X) + gR(u, Ve, X))V 7"(X)
%R(u V. X)R(u, V., X)r(X) — ;(VQR)(u r(X))ed]

_l’_
+ |R(T"(X), ;) Ve, X + VgiT“(X) +3R(7°(X), Ve, X)e;

O r—

+ R, (X)) R, Vo X, ~ %R(u, Ve X)R(u, 7 (X)el Y

)
e [Valo(Ve X 07 (X))

(V2. 6V (X)) (90) + (R (X), e, 67, X
o (9700, WV X, 6V X)u) ]

Theorem 3.2.7. Let (Msy, ¢, g) be an anti-paraKihler manifold and T M its tangent
bundle equipped with the Berger type deformed Sasaki metric gP% and the paracomplex
structure ¢. A wvector field X : M — TM is biharmonic if and only if the following
conditions are verified.

+

0 =tr, | - S(V*R)(u, F(X)) * V2 (X) + gV*R(u, V) (X)
+ gR(u, V. X))V, 7"(X) + %R(u, V. X)R(u, V,X)m"(X)

+ R((X), ) % = Rl REX), #)u) %45 (T R)(w, T.X) 5
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and
0 =tr, [R(Th(X), £V X + V2r(X) + 3R(°(X), V. X e,

4 zR(u,T“(X))R(u, V. X)e; - %R(u, V. X)R(u, (X))

+

90V X o ()0

+ 9V, X 677 (X)) 60 + g (R (X)), 0V, X
o (09267 )V X, )

+ 9" (), (V. X, 67 X)u

— 9(V. X, w)g(r"(X), 6. X)gu) ]|

+

From Theorem 3.2.4 and the Lemma 3.2.2, we have

Theorem 3.2.8. Let (TM, ¢, g%5) be a anti-paraKihler manifold. Then X € T(TM)
1s btharmonic if and only if

[ 1, ((9(V2X, 67 (X))0X +29(V.X, 6V, 7(X))oX

2

and

try VY (X) = 0.




Chapter 4

Harmonic and bi-harmonic maps
between tangent bundle

In this final chapter we study the harmonicity of some maps in tangent bundle. Those
tangent bundle being equipped withe almost complex or almost paracomplex struc-
tures. We took the example of the projection map 7 and the identity map. And in
the case of the tangent bundle equipped with the Berger type deformed Sasaki metric
we also studied the harmonicity of a map between tangent bundle with one or both of
them equipped with the Berger type deformed Sasaki metric.

We start this chapter with an important notion and lemma about map between two
tangent bundles.

4.1 Maps between tangent bundles

Let (M™,g) and (N™, h) two Riemannian manifolds, and let ¢ : (M™, g) — (N", h)
a smooth map. The map ¢ induce a map
U =dip: TM — TN
(z,y) — (¥(2), d2(y)).

Let 2 and (2%, 9") be local coordinates on M and T'M respectively, the local frames of

vector fields on M and T'M are {%}, {<6i’>v = aiyi, (%)H = &ari _Ff’jyjaiyk}’

where 7,7,k =1,...,m.
Let v* and (v*,w®) be local coordinates on N and T'N respectively, the local frames

of vector fields on N and TN are {8ia}’ {( 0 >V = @i? ( g )H i —

ov® we ov® - ove

0
2 B— =
Fa’ﬁw 8w“f}’ where o, 8,7 =1, ..., n.
We have that
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awa )

Then, we have

oy !
ozl ° 9zm
6 «
@)= (22)" = ,
Oxl! o 9gm
o, o
W (50) = B0 Bun

Lemma 4.1.1. . Let ¢ : (M™,g9) — (N™, h) be a smooth map between Riemannian
manifolds. The map 1 induces the tangent map

U =dip: TM — TN
(2,y) — (V(x), dy(y)).

For all vector fields X € T'(T'M), we have

aw((0)") = (aw(x).
d\I/((X)H> - <d¢(X))H+ <de(y,X))V.

Proof. Let z* and (x',y') be local coordinates on M and T'M respectively, then the
local frames of vector fields on M and T'M are

{E)ii}’ {<8§:Z>V - 8%“ (%)H - 334 B Ff,jyjaiyk}, i,j,k=1,...m

Let now v® and (v®, w®) be local coordinates on N and T'N respectively, then the
local frames of vector fields on N and T'N are

{a%z} {<ava> = Jua’ (aia)H - aia N Flﬁwﬁ%}’o"ﬁ’” = L, where

w® =y’

dq’«%)v) :dq’(aiz) - %ﬁj aza - %ﬁj <aia>v - (%a&)v - (dwaii))V

we also have
0 B 0 k J g\ oY 0 ;0% 0 J\i ;O
dqj«@x ) ) _dqj(ax’ F a k) 9zt Qv ty oxtxd Qw™ Fijy oxk Ow

OOy Y 9Ot 0 L ov 9
COxt (81}0‘) La * L

oxt ow Y oxtxd Qwe iY oxk ow



68 Harmonic and bi-harmonic maps between tangent bundle

() G G+ Gt T G
Vg ) =V () ~ ( 527) = V' g () ~90(Th )
g (o) * 7 Vs (%) - (g )
aig;z(aia) +gqij %ﬁj w( - (igi: 8va>
ai?g;(aia%gij %ﬁ% a%iv) - (I%Jgi: %)'

Then, we have y (de( e arj)>v - <dw(6ii)>H = d@((axl)H) O

4.2 Harmonicity of the map 7 : (I'M, J,g;) — (M, g)

Theorem 4.2.1. Let (M, g) be an Riemannian manifold and TM its tangent bundle
equipped with the almost paracomplex structure J and the gradient Sasaki metric gy.
The Riemannian submersion 7 : (T'M, J, g;) — M. Then

7(m) = 0.

Proof. Let (z,u) € TM and let {e;}!, is an orthonormal basis of TM at z. We put
gradf

~llgradf?
at (z,u) such that (V.e;), = 0. Then by summing over i, we have using Theorem
2.4.3 for the Levi-Civita connection on the tangent bundle equipped with the gradient
Sasaki metric and the almost paracomplex structure J.

Then { er, fel €5 Viiji=2,. .,n} is an orthonormal basis of T{, ,T'M

Vdr (e, e = ngW(ef{)—dﬂ(VfHeiH)

=V ey d(el!) - dw(V el ) - —dﬂ(VeZHefI) =0

1 - 1,
ﬁe ) dﬂ.(v%e‘{ ﬁel )
1 1 — 1 _
:avdﬂe‘{dﬂ-(e}/) - Edﬂ(VGYGY) = _adﬂ(veYG‘l/) =0.
de(e}/, eV) = Zydw(ey) - dﬁ(vejve}/

J
:Vdm}/dﬂ(e}/) — dﬂ(ve}/e}/) == —dﬂ(v veV) =0.

ej J

1
—e}) :Wl ey dr(

Vdr(— 7a

61,

\/_
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4.3 Harmonic identity map I : (T'M, J,g;) — (I'M, ¢°)

Proposition 4.3.1. Let (M, g) be a Riemannian manifold and T'M its tangent bundle
equipped with the gradient Sasaki metric gf and the almost paracomplex structure J.
Suppose that I : (TM, J,g;) — (T'M, g°) is the identity map. Then the tension field
T(I) of I is given by

7(I)=0. (4.1)
Proof. Let (z,u) € TM and let {e;}; be an orthonormal basis of TM at x. Then
{ef{, \/Lae}/, ef,j=2,.., n} is an orthonormal basis of T, TM at (x,u) such that

(Ve,€i)e = 0. Then by summing over i, we have
1 = 1— _
T(I) =VipdI(ef) + =VivdI(e]) + Vi dI(e]) — dl(veae{f +=V.rel + ve_v(ejv)> = 0.
i o € j i o J
L]

4.4 Harmonicity of the map 7 : (T'M, o, gP%) — My,

Theorem 4.4.1. Let (Msy, ¢, g) be an anti-paraKihler manifold and T'M its tangent
bundle equipped with the Berger type deformed Sasaki metric ¢P° and the paracomplex
structure ¢. The Riemannian submersion w : (T M, ¢, gP°) — My, is totally geodesic.
Moreover w is a biharmonic map.

Proof. Let (z,u) € TM and let {e;}2£,, such that e, = HUH is an orthonormal basis of
u
1

€ "V1+ ad?

of T(pw)T'M at (x,u) such that (V.,e;), = 0. Then by summing over i, we have
Vdr (el ) =0,

TM at x. Then { (d(e1))Y, (d(e;)V, i = Qn} is an orthonormal basis

171

( 1+a& QVZ¢TIEﬁ
der( , (ej))V> —0,

(e«

(

Vdr (e, V)

Vdr (e, ——
1+&W

qb(el))V) — 0.
L]

Let h be another anti-paraHermitian metric on M with respect to an almost para-
complex structure ¢;. We take in consideration the projection
7 (TM, ¢, g%%) — (Mo, ¢1, h). Then we have

Vdnr(el! el')y = Ve,
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1
V1 + «b?

where V" the Levi-Civita connection of the metric h. Hence we get the proposition
below.

Vi (el (é(en)") =0,

Proposition 4.4.1. Let (Msy, ¢, g) be an anti-paraKahler manifold and TM its tan-
gent bundle equipped with the Berger type deformed Sasaki metric gP% and the para-
complex structure ¢. Then 7 : (TM, ¢, g%%) — (Mo, @1, h) is a biharmonic if and
only if I+ (Mag, ¢, g) —> (May, ¢1,h) is totally geodesic.

4.5 Harmonicity of the map VU : (T'M, o, gP%) — (TN, h°)

In the section, we denote (May, ¢, g) be an anti-paraKdhler manifold and (T'M, ¢, %)
its tangent bundle equipped with the Berger type deformed Sasaki metric ¢P% and
the paracomplex structure ¢, (N™, g) be an n-dimensional Riemannian manifold and
(T M, h®) its tangent bundle equipped with the Sasaki metric h”.

Theorem 4.5.1. Let ¥ : (T M, gg, gP%) — (T'N, h®) be a the tangent map of the map
W (Mg, d,9) —> (N™, h), then the tension field T(¥) of 1 is given by

(V) = [T(w)+t7"hRN(dw(u),de(u,*))dw(*)]H+[div(de)(u)
62 2

s (a0, 60) — 10l 6) ) (o))

Proof. Let (1(x),dy(u)) € TN and let {e;}?, is an orthonormal basis of TM at x.

1
Then {eZH, m(gb(el))v, ()Y, 5= Qn} is an orthonormal basis of T\, T'M
«
at (z,u) such that e; = Y and (Ve,€i)e = 0. Then by summing over i, we have:

[l

= = ~ 1
U) =VY%dU(e!) — dU(V _uell) + VY AV (——
T( ) el (61 ) ( 6?62 ) 7\/1+1w¢(61)v (m

¢(e1)”) + ﬁi(ej)vd‘ljéb(ej)v

¢ler)”)
AV (V =
1+1a52 dlen)” V1 + «d?

- dqj(ﬁqﬁ(ej)vd)(ej)v)v
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using Lemma 4.1.1, we have

—de (e:)H4+Vdy(u,e;) (CW(@Z) + Vdi(u, ei)v) - CW(%QHQH)

1 ~
vV_. W VY + Vawiore v d¥o(e)V
+ Vitas? d¥e(er) VAl + 0462 (¢(€1) ) d¥(g(e;)V) ¢(6J)
= 1
- d\II v 1 VY d\I] v ,
( L COMN . Y n Q52¢( ) ) — d¥( ble V¢(€J) )

from Proposition 2.6.1, we have

() =(Vap(end (€)™ + (Vape) Vdib(u, e;))"
+ (R(dy(u), Vdip(u, e;))dip(e;))" — dip(Ve,e;)”

— (2 atten). dole)d(o ()Y — gloles). dofe;) (o).

]
Theorem 4.5.2. Let U : (T M, ¢, g%5) —» (TN, h%) be a the tangent map of the map

¥ (Mag, ¢, 9) —> (N", h), then U is harmonic if and only if the following conditions
are verified

(W) + trp R (d(w), Vi (u, *))di (x) =

o (V) (0) — s (11,005, 6(00) — s (u 9u) )dw(9(u)) =

Corollary 4.5.1. Let ¥ : (T M, 5, gP%) — (TN, h®) be a the tangent map of the map
U (Mo, d,9) — (N™, h), if ¥ is totally geodesic then V is harmonic if and only if
52

tryg(*, ¢(x)) = mg(ua pu).

Lemma 4.5.1. Let V : (T'M, 5, gB%) — (TN, h®) be a the tangent map of the map
W (Mg, d,9) — (N™, h), then the energy density associated to V is given by

e(V) = 2e(¥)) + 5tra| (Vdy (u, %))" — m|d¢(¢(u))’ : (4.2)
Proof. Let (z,u) € TM and let {e;}2£,, such that e; = ”ZH is an orthonormal basis of
1
TM at . Then <eff, ———(o(e1))V, (¢(e;))V,j = 2..n ¢ is an orthonormal basis
{6 = @) (9(e))" = 2.n

of T(pw)T'M at (x,u) such that (V.,e;), = 0. Then by summing over i, we have:

(3

(0 oy avte) =5 | (oo (@ (), dU(el)))

[\
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1
s e aun (A (@(en)Y), d¥(d(en)”))

+ B o).avian (A2 (D(e5)"), d‘I’(qb(ej)V))}

Z% (15 (e, dip(e)™) + b5 (Vdi(u, ;)" , Vdu(u, e;)"))
T (o(en)” d(ofen)”)
5 (d(9le) dib(o(e;)))]

—~ [2e(0) + try| Vi (u, #)|? +

1
1+ ad? h(dy(¢(er)), dip(p(er)))
S (d(en)), () — S (db(d(er)), d(@ler)
(dy(o(u)), dib(d(u)))

_ 1
_ L % 2 -
=5 [4e0) + IVt I +

— ~h{db(6(w), dp(6(w))]
[

Theorem 4.5.3. Let TM be a compact tangent bundle and ¥ : (T'M, gg, g?%) —
(TN,h%) be a the tangent map of the map v : (M, ¢,g) — (N™, h), then U is
harmonic if and only if 1 is totally geodesic and

52
1 + oz529

trog(*, o(*)) (u, u).

Proof. 1f 1) is totally geodesic and tr,g(*, ¢(*)) = %g(u, ¢u), from Corollaryl.27,
we deduce that ¥ is harmonic. Inversely.

Let w: I x M — N be a smooth map satisfying for all ¢t € [ = (—¢,€),e > 0 and all
reM

w(t, x) = ¢y(x) = (1 +1)(x)
and
w(0,z) = (x).

The variation vector field v € T'(¢y"'T'N) associated to the variation {t}cs is given
for all x € M by

d
v(r) = d(o,xw(%),

from Lemma 4.5.1, we have

(1+1) (L4t

e(U;) = 2(1 +t)%e(¢y) + 2(1 + ad?)

tr| (Vi (u, +)) | |dbe(d(u)) .
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If W is a critical point of the energy functional, from equation 1.20, we have

d

EE (th) =0
52
= [ ae(w) - en (V) = (o)) Fdyes =0
If ¥ is harmonic hence Vdy = 0. [

Example 4.5.1. Let the map

Y (R? ¢, dx* + dy*) — (R, dt?)
(Jf,y) — w(xay) = .732 - y27

let the basis on R be Ot, the orthonormal basis on R? is {e; = 8(1762 = a%} and
u = U13% + uQa%, let us take the almost paracomplex structure on R? that verify
0 8 o 8
—)=—=— and —.
then we have U = dip : (TR, ¢, g%%) —» (TR, h*).
Then, T(V) = 2ujus
T(Y) = A = 0
div(Vdy)(u) =
9% o(Z)) + 9( O(5)) = 9(5, an) + 9(50 55) =0

9, B(u)) = gl & + s S+ 1y ) = Dyt

and ¥ is harmonic if and only if uyus = 0.

4.5.1 Harmonic identity map [ : (T'M, o, gP%) — (TM, g°)

Proposition 4.5.1. Let (Msy, ¢, g) be an anti-paraKahler manifold and TM its tan-
gent bundle equipped with the Berger type deformed Sasaki metric g% and the para-
complex structure ¢. Suppose that I : (TM, ¢, gP%) — (T M, g°) is the identity map.
Then the tension field T(I) of I is given by
7 o4 v 52 v 4
(D) = gt A0 = 1 tra(g( 6 6)"). (43)

Proof. Let (z,u) € TM and let {e;}?*,, such that e, = ”u” is an orthonormal basis of
u

TM at x. Then { P(e;)V,j = Qn} is an orthonormal basis

1 174
e 7\/ﬁ(¢(el)) S (

of TguwyTM at (x,u) such that (V,e;), = 0. Then by summing over i, we have:
(1) :Vigfd](efl) + V{(ﬁ(el))Vd]((d)(el))V) + V{qs(ej))vd]((ﬁﬁ(@j))v)
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_ 1 _
—dI(V.ne] + mv(¢(el))v(¢(€1))v + Vigtenyv (6(e;)Y).

From Theorem 2.6.3, we have

(1) = (1 sg0(er, 6(en) + e, 6(6))) (9()”

= (ot 6(w) + (e 6(e) ) (6w

O

Theorem 4.5.4. Let (Mg, ¢, g) be an anti-paraKihler manifold and T M its tangent
bundle equipped with the Berger type deformed Sasaki metric P and the paracomplex
structure ¢. Suppose that I : (TM, ¢, gP%) — (T M, g°) is the identity map. Then the
bitension field 7o(1) of I is given by

%4 H

+try (R(u, V.7(I)) * ) ,

(z,u)

(1) ey =(A(7(1)))

(z,u)
where A(7(1)) = tr,(V2ir(D)).
Proof. Let (z,u) € TM and let {e;}?*,, such that e, = H_uH is an orthonormal basis of
u
1 V V . . .
—(¢(e Jole) g = Qn} is an orthonormal basis
of Ty TM at (x,u) such that (V,e;), = 0. Then by summing over i, we have:

(3

TM at x. Then {efl,

1 I I
trys (V27 (1)) (o 0) = (Vﬁfvﬁﬂ(f )> o T 1T a5 <V<¢<e1>>vv(¢<e1>>”(1 )>

I I 1
+ <v(¢(6]))vv(¢(63))‘/7—<1)> (x7u) B (vveHef{T([)>

(z,u)

(z,u)

1
— vL I )
1+’V52( V<¢<e1))V(¢(€1))VT( ) (eu)
_ L
<VV(¢(ej))v(¢(ej))vT([)> (x,u)'
By using the Levi-Civita connection of Sasaki metric, we have

1 v
t1ys (V2T(I)) (2) :<Veiveﬁ([) - ZR(ei’ R(u, T(I))&-)U) (z,u)

+ 3 (RO Ve (e + Ve Blus (D))

(wu)

By using the Riemannian curvature tensor of Sasaki metric, we have

t?”gs (R(T(I)adj)d])(x,u) :(R(T(])7 eiH)efI>(I,u) - _(R(eH T<I))6H)(x,u)

([ (2
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\%

(-4t~

4
(- 3(VeRwr(D)e:)

H
()
Considering the formula 1.29, we deduce

%4 H

T2(1) (2 ) :<Veivei7'(l)> + (R(u7 V&.T(I))el)

(z,u) (x,u) ’

O

Theorem 4.5.5. Let (Mg, ¢, g) be an anti-paraKiahler manifold and TM its tangent
bundle equipped with the Berger type deformed Sasaki metric gP% and the paracomplex
structure ¢. Suppose that I : (TM,¢,gP%) — (T'M, g°) is the identity map. Then I
1s btharmonic if and only if

A(T(1)) =0 and try(R(u, V.r(I))*) = 0.

Corollary 4.5.2. Let (Mg, ¢, g) be an anti-paraKihler manifold and T M its tangent
bundle equipped with the Berger type deformed Sasaki metric ¢P% and the paracomplex
structure ¢. If T7(I) is a parallel tension field then I is biharmonic.

4.6 Harmonicity of the map V : (TN, h°) — (T'M, 5, gP%)

In the section, we denote (N™, ¢g) be an n-dimensional Riemannian manifold and
(T M, h¥) its tangent bundle equipped with the Sasaki metric h°, (May, ¢, g) be an anti-
paraKdhler manifold and (T M, ¢, gP°) its tangent bundle equipped with the Berger
type deformed Sasaki metric ¢®° and the paracomplex structure (Z

Theorem 4.6.1. Let ¥ : (TN, h*) — (TM, 5, gP%) be a the tangent map of the map
Y (N™ h) — (Mg, @, g), then the tension field T(V) of ¥ is given by

T(V) = [T(@D) + tTgRM(dw(u), Vdi(u, *))d@/}(*)}H + [div(deZz)(u)

+ﬁ% (g(deD(u, %), oV (u, *)) + g(dip(¥), ¢d¢(*)))>¢d¢(u)] .

Proof. Let (¥(z),dy(y)) € TN, and {e, fV'}™ be a local orthonormal frame on T'M
such that (V.,e;), = 0 then by summing over i, we have

(V) =V dU(efl) — dV(Vonel) + VEdU(e]) — d¥(V.ye])

K3

=Vig(emd¥(efl) = dV(Voe]') + Vag(er)d¥(e ) — d¥(V,pe]),
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From Proposition 2.6.1 and Proposition 2.2.1 , we have

T(\Ij) :6dw(e¢)H+(de(u,e¢))V [d¢<€l>H + (de(uﬂ ei))v] + 6d’lb(ei)vdw(ei)v
=(Vap(endo(e))™ + (R(dip(u), Vdy (u, e;))d(e;)) — (d(Ve,e:))?
+ (qug;(ei)de(u, ei)>v - (de(ua Veiei»V

(VU ), 6V, ) () + gl (e, o)) )]
=[rw) + (Rl (), Vau(u, e)dv(e)] — [din(Vav)

- f ;a (9(V e (u, e0), GV (u, ) + gldib(er), D (er)) ) ei(w)]

_|_

+

]

Theorem 4.6.2. Let ¥ : (TN, h*) — (TM, 5, gP%) be a the tangent map of the map
W (N" h) — (Mag, ¢, g), then ¥ is harmonic if and only if

0 =7(¢) + trn RM (dyp (u), Vdip(u, %)) dip(x),
and

ety (o ), 6V, 2)) + g(d(x), b)) ).

0 =div(Vdy)(u) + s

Corollary 4.6.1. Let ¥ : (TN, h") — (T'M, 5, gP%) be a the tangent map of the map
Y (N" h) — (Mag, ¢, ), if 1 is totally geodesic then ¥ is harmonic if and only if

trag(dip(x), dip(x)) = 0.

Lemma 4.6.1. Let V : (TN, h%) — (TM, 5, gP%) be a the tangent map of the map
W (N" h) — (Mag, ¢, g), then the energy density associated to WV is given by

() = 2e(0) + Ltrg V() + - (g2(Veli(u, #), 6 (u)) + g7(d(4), 6w,
(4.4)

Proof. Let (z,u) € TM and let {e;}2!,, such that e; = ﬁ is an orthonormal basis of
u

TM at z. Then {eH el i = 1n} is an orthonormal basis of T(, , TN at (z,u) such

I A

that (Ve,e;), = 0. Then by summing over i, we have:

(0) =3 [P (@w (), au(elh)) + g7 (dw (el ), du(el)
1

=3 |95 (e, dve)™) + g5 (Vi (u, ), Vdu(u, )V

+ g7 (dy ()Y, dip(e)V) |-
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From Definition 3.2.1, we have

2

() = 2e(t) + Sty |V W + (g (Vi ), Gaw) + g (du(er), 6di()).
[

Theorem 4.6.3. Let TN be a compact tangent bundle and V : (TN, h%) — (T M, (Z, g%
be a the tangent map of the map ¢ : (N", h) —: (May, ¢,9), then U is harmonic if
and only if 1 is totally geodesic and

trgg(di(x), ¢dip(x)) = 0.

Proof. If 1 is totally geodesic and tr,g(diy(*), pdi)(x)) = 0 from Corollary4.6.1, we
deduce that ¥ is harmonic. Inversely.

Let w: I x N — M be a smooth map satisfying for all ¢t € [ = (—¢,€),e > 0 and all
reN

w(t, z) = () = (1 + )¢ (x),
and
w(0,z) = Y(x).
The variation vector field v € T'(¢p"'T' M) associated to the variation {t;}s; is given
for all x € N by

d
v(z) = d(oyx)a)(%),
From Lemma 4.6.1, we have

(1+41¢)? 62(1+1t)?

2

e(U,) =2e(v) + try| Vdiy(u, *)|? +

(1 D20 (eq), ddib(w) ).

(9*(Vdi(u,e,), v (w))

If ¥ is a critical point of the energy functional, from equation 1.20, we have

S E(G)eo = 0
(52
= [ 260+ trf Vet 0 + 5 (Vv e, oo )
TN
g (A (e), 6y (w)) ) [v, = 0,
If ¥ is harmonic hence Vdy = 0. O

Example 4.6.1. Let the map

Y (R, dt?) — (R?, ¢, da? + dy?)
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t—=(t) = (2(1),y (1)),

et 1e1 = e the basis on an u-uo , the orthonormal basis on 18 define
[ 3 b h b R d = h h b R2 d d

by {f1 = 57, } let us take the almost paracomplex structure on R? that verify
0 0 0 0
“V=—— and ¢(—) = —

then for O = di : (TR, h*) — (TR, ¢, gP5), we have

At 9 A2 9
T(¢) =Vh,dy(0t) — dip(Va,0t) = Vﬁﬁ@ + gt%a_y

dpto  d*o 0 0
“aror  ar oy Cor Yoy

del d2w2 8
p _¥ P _ P
Vo Vdb(0t,u) =V, (Vidi (u)) = uV ( A2 Or  di2 8_y>

B A3t O d>? 0 B 3 0 3 9
U055 +u0_dt3 oy uo( O +ty a_y)
then we get
d3w1 o d3w2 o d3”¢1 B dSwQ i
g(Vdy(u, 0t), Vi (u, 0t)) _“°9< s or | dt3 3_y’¢( at Or | i3 a_y)>
d3¢1 d3¢2
e
B dypt 0 dy? 0 dap* 8 ¢2 0
9(d(01), 9y (97)) —g(ﬁ% oyt @)
At
cat at Y
dyt 0 dy? O , 0 , 0
P(dip(u)) =uo—- 7 Ox +U0Ea— uo(w B Ty 8_y>
then W to be harmonic if
:B//aaz + y//aay =0
and

(DL 44O £) 4 i (ur Dy 4 22) (4 y' ) =0

4.7 Bi-harmonic identity map I : (T'M, ¢°) — (T M, 5, gP%)

Now we investigate the harmonicity of the Berger type deformed Sasaki metric ¢®°
and the Sasaki metric ¢° with respect to each other. By using the Levi-Civita con-
nection of these metrics we state the following two propositions (for the Levi-Civita
connection of the Sasaki metric.
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Proposition 4.7.1. Let (Msy, ¢, g) be an anti-paraKahler manifold and TM its tan-
gent bundle equipped with the Berger type deformed Sasaki metric gP% and the para-
complex structure ¢. Suppose that I : (TM,g%) — (T M, ¢,gP%) is the identity map.
Then the tension field T(I) of I is given by

52

(1) = tr, (=900, 6()) (6()" ). (4.5)

Theorem 4.7.1. Let (Msy., ¢, g) be an anti-paraKahler manifold and TM its tangent
bundle equipped with the Berger type deformed Sasaki metric gP% and the paracomplex

structure ¢. Suppose that TM is a compact tangent bundle, then the identity map
I:(TM,g°) — (TM, ¢, g%%) is biharmonic if and only if is hrarmonic.

Proof. Let I; be a compactly supported variation of 7(7) defined by 7(1;) = (1+¢)7(I).
1
Ba(r(D) = [ IrI0Rsst,
1

—5 [ ot @ r @y, + % [ atrtm). ot

0 gt + S g6, o),

then
0= GE(r D)o = [ gD (D))o, + [(or(D) 6,

we now have

Theorem 4.7.2. Let (Msy, ¢, g) be an anti-paraKihler manifold and T'M its tangent
bundle equipped with the Berger type deformed Sasaki metric ¢P% and the paracomplex
structure ¢. Then the bitension field To(I) of I is given by

H

n(Day ={try (= SR (D))} 4 (o (A7)
+ (2) o) wgr. 000 w) )

1+ ad? (m,u)7

where A(T(1)) = tr,(V2r(1)).

Proof. Let (z,u) € TM and {e,ef’}?*, be a local orthonormal frame on TM such

R

that (V,e;), = 0. Then by summing over i, we have:

trys (Vr(D)eay =(Via V(D) + (Ve Vher(D)

(z,u) (z,u)
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I I
~(Vos,ar®) = (Tesurd)

From Theorem 4.8.1, we have

\%4

1145 (V27 (1)) (o) :(veiveﬁ(f))V S+ (6—2)2 (g(ei, o(7(1)glei, U)¢(U)> s

(z,u 1+ ad?

On the other hand, we have

trys(R(r(I), d)dI) @) =R(r(1), ;' )e;" Vo) + R(T(1), € )e; ) (w)

() 7

From Theorem 2.6.4, we have

trys (R (D), D) ey =( = SR r(D)er) o+ (50) (gt o)
- gles,w)g(r(D): Be)ow)),
Considering the formula 1.29, we deduce
(D =( = (Ve rD)er) & (A1)
(1) st wgten dlen)ow).

From Theorem 2.6.1, we have

Theorem 4.7.3. Let (TM, %, gP%) be a anti-paraKihler manifold. Then the identity
map I : (TM, g%) — (TM, ¢, gP%) is biharmonic if and only if

52
1+ ad?

A + (723) 0l (1), whg(x, 6 (u) = 0.

Example 4.7.1. Let (R?, ¢, g) be an anti-paraKahler manifold such that
g = e*®dx® + e¥dy?,

and o, o o, o

%) 9y and (b(a—y) = 9

; 2 : _ ,—x 0 _ ,—y 0
The orthonormal basis on (R?, g) is {e1, e2} where ey = e "5 and e = e™¥ 5 .
we have

o

gler, d(e1)) =g(o(e1), er),
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glez, d(e1)) =g(p(e2), e2),

—-r, -y~ — T,y T 2x —
g(el7¢(e2>> =€ ¢ €$g(al” aq}) e € e$e 17
ey 0 O € ey
g(¢(€1),62> e e eyg(ay7 ay) e € eye 17

then ¢ is pure with respect to the metric g. B
Now let the identity map I : (TR?, g°) — (TR?, ¢, gP%)
now using proposition 4.7.1, we get that

2 2

D =(12 529<e1,¢< D)) + (5 fa529<e2,¢<e2>><¢<u>>V)

(o0 e e 20 ) + (gt 0™ o))
52 0o 0

(G gy ) + (T 1529@; ) 6)") =0

Example 4.7.2. Let (R?, ¢, g) be an anti-paraKahler manifold such that

= e*da® 4 e*Vdy?
and

N I

then fo the identity map I : (TR2,g*) — (TR, ¢y, ¢%%), we have

:< sz ———g(e1, p1(e1))(p(u ))V>—|—(1+52a§29(62,¢1 (e2))(p(u)) >

S x,¢1<e D on)") + (e j o) n(w)")

(sl e r(e NG 0)Y) + (Tale Vo e o))
52

=7 +a52(_1 +1)(¢1u)” = 0.

4.8 Harmonicity of the map V : (T'M, o, g?%) — (TN, &, hB%)

In this section, we denote (May, ¢, g) be an anti-paraKéhler manifold and (T'M, ¢, ¢B5)
its tangent bundle equipped with the Berger type deformed Sasaki metric gP° and the
paracomplex structure ¢, (Nog, ¢, h) be an anti-paraKahler manifold and (T'N, ¢’ hB%)
its tangent bundle equipped with the Berger type deformed Sasaki metric hP% and the
paracomplex structure ¢'.
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Theorem 4.8.1. Let W : (TM,¢,g%5) — (TN, d', hBS) be a the tangent map of the
map

U (Mag, ¢,9) —>: (Nogs, @', h), then the tension field T(V) of ¢ is given by

r(0) =[r(0) + tr B (do(w), Vo (u, <)o)

(1 f&(p) [(1 fa(p)g(u, ¢(u)) —trg(+, d)(*))} (w(d)u)V)V

+ (div(Vay)(u) +

b (V0 ), (T s ) + (A6 (6(), 6 (d(9()

— h{du(9(w)), ¢ (A (6(w))) | &' (dip )"
Proof. Let (¢(x),dy(u)) € TN and let {e;}?*,, such that e, = ﬁ is an orthonormal
1
basis of TM at x. Then { e, v, N, =2. s an orthonormal
i x n {61 m(qﬁ(el)) (p(ej))" ] n} is an orthonorm
basis of T{, ., T'M at (z,u) such that (V.,e;), = 0. Then by summing over 7, we have:

T(0) =V ud¥(e;") — dV(V el ) + VY, ! p(er)")

AV (——
\/md)(el)v (1 /1 + 0552
1

v/ 1% NG 1%
—dq’(vﬁqs(el)vmﬁb(@l) )+ Vie,vd¥o(e;)”)

= dU(Vy(e, v dley)"):
From lemme 4.1.1 Proposition 2.6.1, we have

() = [V du(er) + Ridi(u), Vais(u,e))du(ey)] -+ [div(Vaw)(w)]

)
+ mtrhh(de(u, i), @' (Vdip(u, €)@ (dip(u))Y

- (1%_5—0[52)29(61, ¢(e1))dy(d(u))” — ﬂf—mp)g(ej, o(e;))di(p(u))”
6/2 1 ) / .

b T b (en). o (0 9(en))) o ()

4 hd((e,)), ¢ (A 0le))) ()

: 2% 2%
since we have > 37y e; = e1 + > ;75 e and €3 = i then

(W) =| V¥ dip(er) + R(dup(u), Vdib(u, e;))dip(e ] [dw V) (u ]V

5/2
+ T gtV (e, 0 (Vdy(u, e:)))¢' (di(u))”
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- e e — (e o) (60)
b (e dle ) (6(0)”

b (en). (@) )

D hAU(0(e0). Fd(D(e)))o ()"

- DA (6len). o)) ()

=|VEdy(e;) + R(d(u), Vdy (u, ei))dw(ei)] Ty [div(de)(u)] '

—+ 5—tThh(Vd77Z)(U7 ei)a ¢/(Vd¢(ua 61)))¢/(d¢(u))v

14+ a6
g A+ (). o () ()
5 &2 52

g, ) 6u) — h(de(ou). ¢'di(ou)o i (u)|

(14 a/0%)

O
Theorem 4.8.2. Let V¥ : (T'M, 5, gP%) — (TN,&,hBS) be a the tangent map of the
map

U (Mg, ¢,9) —: (Nogr, @', h), then ¥ is harmonic if and only if the following condi-
tions are verified

0 =7(1)) + trp RN (dip(w), Vdap(u, %) )dip(%),
(52

. 5 %
0 =div(Vdip)(u) + 5 o) [(1+a52)9(“’ ¢(u)) —trg(*,¢(*))]dw(¢u) ,

0 =[truh (Vi (u, ), (Vi (u, 4))) + trnh(d(9(+), & (d(6())
= R (6(w), & (du(9(w)) | &' (d(w))”.

Corollary 4.8.1. Let U : (TM,,g%5) — (TN, &', hB5) be a the tangent map of the
map
W (Mg, d,9) —: (Nogr, @', h), if ¢ is totally geodesic then V is harmonic if and only
of

a9 0) = trg(s, 6(0)|du (6w)” =0

[trhh(dw(cb(*)), ¢ (dib(6(+)))) = h(dip(b(u)), ¢’(dw(¢(U))))} ¢ (d(u)” =0.
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Lemma 4.8.1. Let (TM, ¢, g%5) — (TN, ¢/, hBS) be a the tangent map of the map
W (Nogr, @', h) — (Mo, &, 9), then the energy density associated to W is given by
e(¥)

=5 [266) + 11y 1V )| + (Strgh (Ve ), i ()P

+ 11| |dib (D ()| * + 82 trnh (dip(B(x)), &' dab(u))
s (I + R (o) ).

Proof. Let (z,u) € TM and let {e;}?%,, such that e, = ||u|| is an orthonormal basis of
u
1

m(¢(el))v, (¢(€j))v,j = Qn} is an orthonormal basis

TM at x. Then {elH,
of TgwyTM at (x,u) such that (V,e;), = 0. Then by summing over 4, we have:

1

1
(V) ((2),di(x)) =5 [(h(dlll(ef{),dlll(ef{))) + 1+ ad?

n

> (AW (6(e,)"). d¥(6(e,)"))|
(32 ndis(en™, dv(e)™) + n(Tdv(u, )", Vi (u,e)))
1
+ ad?

h(d¥(é(e1)"),d¥(d(er)"))

N | —

+

-4

_|_

(i (9(er)” di(6(en))") + 3 hldib((e;))" d(o(e;))

MV (u, ), ' dip(u)))* + 1+1a52h(d¢(¢(61)),d@b(gf)(q)))
] f gt (A ((en), ddp () + 3 h(d(o(e;)), di(é(e;)))

1
(h(dfes) db(e)) + h(Vdi(u,er), Vb (u, e.)
(0

+

+ (Oh(dy(9(e)), ¢ d(w)))?]

:% [26(1/1) + trp| [V d (u, %) || 4+ (Sh(Vd(u, e;), ¢'dip(u)))?

by (BdU(6en)). dv(o(en)) + (Bh(db(o(en), Fdb (w))
)).d )

o A(d(@(er)), d((ei))) — h(dib(6(er)), du(@(er))
+ SR (d(9(e:)), @i (w)) — SR (o(er)), d'dib(w) |

:% [26(0) + tr, [V, 0| + (5 (Vo ), &' ()
+ ||dw(p(e)||* + 62R*(dep(d(e;)), @ dap(w))
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52

- g () + R o). o dv(w)).

]

Theorem 4.8.3. Let TN be a compact tangent bundle and VU : (TM, o, g?%) —
(TN, ¢, hP%) be a the tangent map of the map 1 : (Mo, ¢, g) — (Nan, @', h), then ¥
18 harmonic if and only if 1 is totally geodesic and

trog(dip(x), ¢dip () = trah(di(p(x)), ¢'(dip(x))) = 0.

Proof. If 9 is totally geodesic and tr,g(diy(*), ¢di)(x)) = 0 from Corollary4.8.1, we
deduce that ¥ is harmonic. Inversely:

Let w: I x M — N be a smooth map satisfying for all t € [ = (—¢,€),e > 0 and all
reM

w(t,r) = Py(z) = (1 + )Y (x)
and
w(0,2) = (x).

The variation vector field v € T'(¢y"'T'N) associated to the variation {t}ics is given
for all z € N by

d

v(r) = d(o,x)w(a)y

From Lemma 4.8.1, we have

(0) =3 [26(0) + (14 0)try [V, )| + (L4 2 (5trgh (Ve (u, #), ()
+ (L4 8)%trg | (¢())][* + 0°(1 + t)*trgh* (e (6 (), ¢ dp(w))

0*(1 +t)? . /
~ 17 2 (LI + he (o), o) )

If ¥ is a critical point of the energy functional, from equation 1.20, we have

L B (60)s = 0

dt
= [ 5260y + 2190 u, I + 25T .0, o i)
+ 20 A (6(0) [P + 6220 T2 (0(+), &' Ao (u))

- s (v @) + 21260, S0 0) | dugos = 0

If ¥ is harmonic hence Vdy = 0. [
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4.9 Harmonicity of the map 7 : (T'M, J(;,O,ggoG) —
(M, g)

Theorem 4.9.1. Let (M, g) be an Riemannian manifold and TM its tangent bundle
equipped with the isotropic almost complex structure Jso and the ésotmpic Cheeger-
Gromoll metric gg CY. The Riemannian submersion 7 : (T M, Js 07950 &) — M. Then

T(r) = —(%V(%) oX) ;1 ;2”0‘ (V(a)ox) +%V<5) o X

Proof. Let (x,u) € TM and let {e;}! , such that e; = ||u|| is an orthonormal basis of
u

1
TM at z. Then {\/_ 7 ey \/; ef,J=2. n} is an orthonormal basis of T{, ,\T'M

at (x,u) such that (Ve,e;), = 0. Then by summing over ¢, we have

ot )7y Gt) ()
va* va"

Va : N a o
o ralted) ve]
Vit ) L el ) ~ T )

Vo
w5 [ “%er)—dw(w )
5% 5

By definition we have dr(X*#) = X om and dn(X") = 0, then

Vdﬂ(%efl % ):éveioﬂ-eioﬂ dﬁ[%e (T) el
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+ = (e @el’) = 2v(o)
- (o)1) + S o)
Vir( el el ) = — i (%E eyiéey) -~ ar(V el
== (e} (el + =9 ) = 5 (14 ) V()
zgwg) o X,

]

4.10 Harmonic identity map [ : (T'M, J(g,o,ggoG) —
(TM, g°)

Proposition 4.10.1. Let (M,, g) be a Riemannian manifold and T M its tangent bun-
dle equipped with the Isotropic Cheeger-Gromoll metric ggoG and the isotropic almost
complez structure Jso. Suppose that I : (TM, J(;,o,g(%;) — (T M, g°) is the identity
map. Then the tension field 7(I) of I is given by

(1) =~ [3dn(V(0) 0 X) + “dn(V(a) 0 X) + Fan(V () 0 )|

[2iv@e 0+ ((s) - 5o+ ko 0]

Proof. Let (z,u) € TM and let {e;}}_,, such that e; = ||u|| is an orthonormal basis of
u
1 1 r
TM at z. Then { —eV eV, j=2. n} is an orthonormal basis of T{, ,\T'M
\/— Z 7 \/— 1> 6 ] 9

at (x,u) such that (V,e;), = 0. Then by summing over ¢, we have:

(1) =V"y dl(%ef{)%—vfl df(%elvwvf\f dl(\/;])

Vv

\/a i %31

~ 1 ~ 1 ~ r

_ GC _— H GC -V GC v

d](V 1 eH\/aQZ +V 1 ev(\/(_sel)_l_vﬁev(\/;e] ))
va* Vol
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1 - 1 1, 'S

_d]<%§g§<%ef>+%vg§(%e¥) \/;vcc<\/;1)>
(e VI e)Y) +

From Lemme 4.1.1, we have
1 1 AS T Vv
T H+VI (u,e4)V \/a \/S \/g(el ) Ve;/ \/g(ej )

. d](%%i;?(\/la ) + —ch<%e¥> + \/?VGC(\/; jv))

T(I) =

1 T o n T N )
(D) = = el (@)l + 2V(a) = el ()el = U+ V() = el (S)e)
1 r ) n nr_ o
— —QGfI(a)ef{ + —V(o) ﬁey (—)eY — —5U + 5 V(;)

o
SO -

1 n r )
=— a—eH(a)eH + aV(oz) — eV (;)eY — —U+ —V(

271
2

-5 (et + R (A C)e)

- Lttt et~ B ey Bt (e[S (O



Conclusion and perspective

In this thesis we studied the harmonicity of vectors fields from a Riemannian manifold
(M, g) into its tangent bundle T'M equipped with an almost complex or paracomplex
structure, giving in the process necessary and sufficient condition in order for a vector
field to be harmonic.

In the future we may look into other type of structure like the golden structure which
satisfy for a (1, 1) tensor ¢ on M the relation p? = ¢ + Id and is compatible withe the
metric on g. We also want to study the the Tangent bundle of a Kenmotsu manifold
(M 6. & n,g), where ¢ is a (1,1) tensor, n a 1-form and g a Riemannian metric on
M verifying

¢(§) =0, n(¢(X)) =0, n(§) =1,
¢?*(X) = — X +n(X)¢,
9(X, &) =n(X)

and

9(o(X),¢(Y)) = (X, Y) = n(X)n(Y).

89
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Abstract

In this thesis we will study the harmonicity of vector fields X whom can be seen as maps from
M to its tangent bundle T'M endowed with a structures that are almost complex or almost
paracomplex, such that those structures are compatible with one of the three metrics:
Gradient sasaki metric g¢, Berger type deformed Sasaki metric ¢P% and the isotropic
Cheeger-Gromoll metric ggoa . We will also give conditions under witch maps between two
tangents bundle are harmonic and biharmonic.

Keywords; Tangent bundle, vertical and horizontal lift, almost complex structures, almost
paracomplex structures, Harmonicity.

Résumé

Dans cette these nous nous intéressant a I’harmonicité des champs de vecteurs X que 'on
peut considérer comme des applications entre la variété Riemannien (M, g) et le fibré tangent
TM équipé de structures presque complexe ou presque paracomplexe qui sont compatible
avec 'une des trois métriques: Gradient sasaki g;, deformation de Barger Sasaki g% et la
métrique isotropique de Cheeger — Gromoll ggoG sur T'M. Nous donnerons finalement des
conditions d’harmonicité et de biharminicité des applications entre deux fibrés tangents.

mots clés:fibré tangent, relevement vertical et horizontal, structures presque complexe et
presque paracomplexe, Harmonicité.
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