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Introduction

In 1976 William Thurston formulated the geometrization conjecture [63]. It says in simplified
terms that any compact manifold of dimension 3 can be endowed with a metric which is
locally isometric to one of the eight Thurston geometries. William Thurston studied many
three-dimensional spaces and found that all can be described by one of these eight geometries.
He encourages his students to explore computer databases. His concrete and experimental
work is of a very interesting rarity in mathematics. In the geometrization conjecture Thurston
used surgery, a method that allow manifolds to be cut out and glued together. For an example
we take a simple sphere (bellow a). At first we hollow out two disc-shaped holes as to obtain
a surface (b) whose edge consist of two circles (c). A trunk of a cylinder has two circles in its
edge, we can therefore sew the two circles of the cylinder along the two circles corresponding
to the edges of the hollowed discs. The results is (homeomorphic) to a torus (d). The torus
was thus obtained by surgery from a sphere.

(d)

In 2003 Grigori Perelman [59] used the Ricci flow, a technique used by Richard Hamilton in
1982 [36]:
dgr = —2Ricc(gr)

to prove the geometrization conjecture, and consequently the Poincaré conjecture.

In 1964 J. Eells and J.H. Sampson [21] introduce the harmonic maps. Harmonic maps are
solutions to a natural geometrical problem. The map ¢ between Riemannian manifolds is
harmonic if it is a critical point of the energy functional:

1
B D) = 5 [ ldoPu,
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where |dyp| is the Hilbert Schmith norm of the differential dy defined by:

ldpl® = " h(dp(es), dp(es)),

i=1

where {ey,...,e,} is a local orthonormal basis on (M™, g) and {0, ..., 0y} is a local vector
field basis associated with a map (U, ¢) of M. v, is the volume element of (M™, g) defined

by:
vy = y/det(gij)dxy A ... A\ dxpy,

and D is a compact domain of M. We also have that ¢ is harmonic if it satisfies the Euler-
Lagrange equation:
T(p) = trace,Vdep,

where Vdyp is the second fundamental form of .

In 1986 G.Y Jiang [40] introduced the concept of biharmonic maps. Biharmonic maps are
defined as critical points of the bienergy functional:

1
E2<907 D) - 5/ |T(80)|2 Vg,
D
and he proved that every biharmonic maps is a solution of the Euler-Lagrange equation:
7o) = —trace, Y (7(p), dp)dip — trace,(V¥)*7(p) =0,

T2(¢p) is called the bitension field of the map ¢.

In 2006 Y.L. Ou and Z.P. Wang [57] studied biharmonic maps on Sols and Nils spaces. Two
models space of Thurston’s 3-dimensional geometries.

In 2020 [8] we classified Legendre curves on three-dimensional Lorentzian Heisenberg space
(H37 g) :

In 2021 [9] we classified the biharmonic maps in three-dimensional generalized symmetric
spaces and Sols became a particular consequence.

The principal goal of this work is to study the Biharmonic curves in the Thurston model
geometry of dimension three and dimension four. This thesis is organized in five chapters.
In the first chapter, we give the definitions of manifolds, differentiable manifolds, tangent
spaces, pseudo-Riemannian metrics and we introduce basic concepts of curvature, harmonic
and biharmonic maps.

In the second chapter we introduce a Thurston model geometry (G, X). Three-dimensional
Thurston model geometries are classified by W. Thurston, this classification has eight geome-

tries, to know, E3, S H? S* x R, H?> X R, Sly(R), Nilz and Sols.

We also study the Thurston geometry of dimension four. R. Filipkiewicz classified the
Thurston geometry of dimension four. In this geometry classification we distinguish two
categories of spaces, those which are symmetrical: FE*, S* H* P?(C), H*(C), S? x S?,
S?2 x E?, 82 x H?, H? x E?, H?> x H?, H® x E' and H? x E' and those that are not symmet-
rical: Nil*, Sol}, . Soly, Sol}, F* Sly(R) x E' and Nily x E'.

m,n?
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In the third chapter we show that the Legendre curves on three-dimensional Lorentzian
Heisenberg space (Hs,g) is locally ¢-symmetric if and only if it is a geodesic. Moreover
we prove that the Legendre curves on three-dimensional Lorentzian Heisenberg space is bi-
harmonic if and only if it is a pseudo-helix.

The results obtained in this chapter are published in the paper [§].

In the fourth chapter we study biharmonic curves in three-dimensional generalized sym-
metric spaces, equipped with a left-invariant pseudo-Riemannian metric. We characterize
non-geodesic biharmonic curves in three-dimensional generalized symmetric spaces and prove
that there exists no non-geodesic biharmonic spacelike curve helix in three-dimensional gen-
eralized symmetric spaces. We also show that a linear map from an Euclidean space in
three-dimensional generalized symmetric spaces is biharmonic if and only if it is a harmonic,
and we give a complete classification of such maps.

The results obtained in this chapter are published in the paper [9].

In the last chapter we study harmonic and biharmonic applications in Thurston geometry of
dimension 4. We introduce the 4-dimensional geometry Nil* and we define the metric gy;s.
We give the Christoffel symbols and the Riemannian curvature to study the biharmonic curves
in Nil* space.



Chapter 1

Preliminaries

In this first chapter, we give definitions of manifolds, differentiable manifolds, tangent spaces,
pseudo-Riemannian metrics and we introduce basic concepts of curvature, harmonic maps
and biharmonic maps. [60], [19], [21], [26], [53], [54], [52], [28], [30], [35], [42], [14], [40] and
[41].

1.1 Differential geometry

1.1.1 Differential manifold

Let M be a topological space. A topological space M is called a separate space (or a Hausdorff
space) if for any two distinct points py,ps € M there exists two open sets Uy, Uy € U with
p1 € Ui,ps € Uy and Uy NUy = (). M is called a topological manifold if there exist an n € N
and for every point x € M an open neighborhood U, such that U, is homeomorphic to some
open subset V' of R”. The naturel number n is called the dimension of M.

Definition 1. Let M be a separate topological space. An chart on M is a pair (U, p) where
U is an open subset of M and ¢(U) is an open subset of R™ such that ¢ : U — o(U) is a
homeomorphism. m is called the dimension of the chart (U, ).

Definition 2. Let M be a separate topological space. An differentiable atlas A of dimension
n is a collection of open charts (U;, @;)icr on M where @;(U;) is an open subset of R"™ such
that M = J,c; Us, and for each pair i,j € I the mapping of all charts transitions:

piop; ! pi(UinU;) = ¢;(U;NT;),

are a C*®-diffeomorphism with U; N U; # 0. A differentiable atlas is called a differentiable
structure, and a differentiable manifold of dimension n is a manifold of dimension n with a
differentiable structure. Two atlas are called compatible if their union is again an atlas. An
atlas 1s called mazimal if any compatible with it is already contained in it.

Definition 3. A differentiable manifold of dimension n is a Hausdorff space provided with a
differentiable structure of dimension n.
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Example 1. Any vector space E of dimension n is a differentiable manifold. In effect let
defined the topology Tg:

¢o: E—R" x= inei — O(x) = (21, ..., Tp),
i=1

where {e1,...,e,} is a basis of E. Then ¢ is bijective.

Te ={A € E|¢(A) is an open of R"} is called the reverse image topology, then (E,Tg) is a
topological space.

Let XY € E with v # y. Like R™ is a separate topological space, 3 U,V € R™ such that
dU)eU,d(V)eV andUNV = 0. Let’s put A= ¢ (U) and B = ¢~(V), then ANB = 0,
so E 1is separate.

Now let defined the differentiable atlas Ap = {(E,¢)}, and show that ¢ : E — R" is a
homeomorphism.

We have, ¢ : (E,Tg) — (R, Tgn) is continued, because YU € Tgn, o~ (U) = A € Tg.

And ¢~ 0 (R™, Tgn) — (E,Tg) is also continuous, because VA € Tg, (¢71)71H(A) = ¢(A) €
Trn.

Where ¢ is a homeomorphism, then (E, Ag) is a differentiable manifold of dimension n.

Example 2. The Fuclidean space R"™ is a differentiable manifold of dimension n with A =
(R™, Ign). The opens 2 C R™ provided with an atlas Aq witch contains the only chart (2, Idg)
are a differentiable manifolds of dimension n.

Example 3. The standard sphere S"™ = {u € R™™ | ||u|| = 1} is a differentiable manifold of
dimension n. S™ is a topological space, where Tgn is the topology induced by that of R™ (its
the topology whose openings are of the form U = QN S™ where Q is an open from R" ). Let
the projections stereographic:

QDNSUN:STZ—{N} — R”
(Upy oy Upyr) — ( ! s tn )

)
L=tpt1 1 —upps

os:Us=S"—{S} —» R
(ub "'7U’n+1) — ( o : o ) :

1 + un—l—l7 v 1 + Un41

The applications oy : Uy — R™ and pg : Us — R™ are homeomorphism. Using 1—u3LJrl =
u? + ... +u?, we find that:

QOIVIIRTL — Uy

(X1, ooy ) — <

21y 21, ||x||2—1)
[zl + 17 el + 17 [l + 1)

o' ' R" — Ug

2y 2Un lyl> —1
(y].’ "'7yn H < bR ] ’_ .
) WE+T WP +1 [y 1
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the mapping of charts transitions are given by:

—1 T -1 Y n
PsOoPN = T PNOYy = , Vo,y € R" — {0},
SOV T YOS T o
which are diffeomorphisms of C*°. Therefore Asn = {(Un, ¢n), (Us, vs)} form a differentiable
atlas.

Example 4. The surfaces S of R® are a differentiable manifolds of dimension 2. (If X :
Q — R3 (u,v) — X (u,v) 1s a local parametrization of a surface S of R3, then p = X! :
X(Q) — Q is a chart of S).

Definition 4. An atlas for a differentiable manifold M is called oriented if all A = {(U;, v;)icr +
such that the charts changes mapping v;; = ;o goj_l has a positive Jacobian, 1.e:

J(wz])x = det(d@](z)w”) > 0.
Definition 5. A differentiable manifold is called oriented if it possesses an oriented atlas.

Remark 1. If ¢ be a diffeomorphism of R™, its Jacobian is defined by:
J(Qo)z - det(d:cgp)'

Example 5. R" is an orientable manifold.
The Mobius band and the Klein bottle are non-orientable manifold.

Definition 6. Let M be a differentiable manifold, f : M — R is called to be differentiable
function at point p € M, if there is a chart (U, ) of M with p € U such as fop™': o(U) —
R is differentiable. The function f is differentiable if it is differentiable in p for all p € M.

Definition 7. Let M and N two differentiable manifolds, a mapping f - M — N 1is said to be
differentiable (or C*°-differentiable), if for every chart (U;, ;) of M and every chart (V;, ;)
of N such that f(U;) C Vj, the mapping ;o fo ;" ¢;(U;) — 0;(V;) is differentiable.

1.1.2 Tangent space
Definition 8. [28] Let M be a differentiable manifold and p € M, then a tangent vector X,

at p 1s a map:
X,:C®(M) — R
f — XP(f)7

such that:
1. Xp(/\f + MQ) = /\Xp(f> + MXp(g);

2. Xp(fg) = Xp(f)g(p) + f(p>Xp<g);

forall \,u € R and f,g € C*°(M).

The set of tangent vectors at p is called the tangent space at p and denoted T,M .

The tangent space T,M of M at p has the structure of a real vector space. The addition +
and the multiplication . by real numbers are simply given by:
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L (X, + Y,)(f) = X, (f) + Y5 (),
2. (AX)(f) = AX(f),
for X,,,Y, e T,M, f € C*(M) and X € R.
Remark 2. X,(f) is also called the derivative of f by X,.

1.1.3 Tangent bundle

Definition 9. /48] For any smooth manifold M, we define the tangent bundle of M, denoted
by TM, to be the disjoint union of the tangent spaces at all points of the tangent spaces at
all points of M: TM = UpeM T,M. We consider an element of this disjoint union to be an
ordered pair (p, X), where p € M and X € T,M. We will often commit the usual mild sin
of identifying T, M with image under the canonical injection X —— (p, X), and depending on
context will use any of notations (p, X), X, or X for a tangent vector in T,M , depending on
how much emphasis we wish to give the point p. Define the projection map © : TM — M
by declaring w(p, X) = p.

Remark 3.
1. The tangent bundle TM to a manifold M is an oriented manifold even if M is not.
2. TxM is the dual space of the tangent space T, M of M at x.

3. TxM 1is the set of linear form on T, M where w, € T;M:

wy : M — R
X, — we(Xy).

4. We call cotangent bundle of M the fibre bundle such that:

.M = | T;M.
rzeM
1.1.4 Vectors fields

Definition 10. [/8] Let M be a smooth manifold. A vector field on M is a section of T'M.
More concretely, a vector field is a continuous map Y : M — T'M, usually written p — Y,
with the property that for each p € M, Y, is an element of T,M.

Remark 4.

1. We denote by X(M) the set of all differentiable vector fields on M.

2. If f is differentiable function on M, then X (f) is differentiable function on M defined
by X(f))(p) = X(f), for all X € X(M) and p € M.



1.2 Pseudo-Riemannian manifolds 15

Definition 11. Let M be an m-dimensional differentiable manifold, (U, ) be a chart of M
and p € U, fori=1,...,m we define the map:

a o0
8xi|p:c (M) — R
0 O(fop™)
! o, () = a—xi‘w(f)'

a%i|p is said derivative associated to the chart (U, ) and {a%lhp7 o %M,} be a frame for the
tangent space T,M, for allp € U.

Remark 5. {dxi|y, ...,dv,,|,} be a frame for the cotangent space Ty M (the dual basis of the
basis {8%1|p,. 9|} for T,M), for all p € U.

cey Bmm

Definition 12. Let T\" M = TM® .. T,MT;M®..RT;M be the vectorial space,

~~ ~~

r—once s—once

where x € M and let T"M = J,.\, TIM. A element T € T M is a tensor of type
(r,s) above x. A tensor field of type (r,s) on a manifold M is an assignment section of
TS M d.e. a tensor is a map:

T:M — TUIM
z — T(z) e T M.

xT

Example 6.

1. A function on a manifold M is a tensor of type (0, 0).
2. A vector filed X is a tensor of type (1,0).

3. A differential 1-form w on a manifold M is a tensor of type (0,1).

1.2 Pseudo-Riemannian manifolds

Pseudo-Riemannian geometry involves a particular kind of (0,2) tensor on tangent spaces.
To study these in general, let E be a real vector space (finite-dimensional where the context
so indicates). A bilinear form on E is an R-bilinear function g : Fx E — R, and we consider
only the symmetric case: g(x,y) = g(y,x) for all x,y € E.

1.2.1 Non degenerate bilinear forms

Definition 13. A symmetric bilinear form g on E is:
1. positive [negative] definite provided x # 0 implies g(x,x) > 0 [< 0],
2. positive [negative] semi-definite provided g(x,z) > 0 [< 0] for all x € E,

3. non degenerate provided g(x,y) = 0 for all y € E implies x = 0.
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Remark 6. If g is a symmetric bilinear form on E then for any subspace F' of E the restric-
tion g/ (pxry, denoted merely by g/p, is again symmetric and bilinear. If g is semi-definite,

50 18 g/ .
A subspace F of E is called non degenerate if g/ is non degenerate, where:

g/F:FXF—>]R7 g/F(x,y):g(may)

Definition 14. The index v of a symmetric bilinear form g on E is the largest integer that
is the dimension of subspace F' C E on which g/ is negative definite.
Thus 0 < v < dimFE, and v =0 if and only if g is positive semi-definite.
If {e1,...,en} is a basis for E, the n x n matriz (g;;) = g(ei,e;) is called the matriz of g
relative to {ey,...,e,}. Since g is symmetric, this matric is symmetric. Clearly it determines
g since:

9(Xzie;, Xyje;) = Xg;x:y;.

Lemma 1. A symmetric bilinear form is non degenerate if and only if its matriz relative to
one (hence every) basis is invertible.

Proof. Let {e1,...,e,} be a basis for E. If z € E, then g(x,y) =0 for all y € F if and only if
g(z,e;) =0 fori=1,...,n. Since (g;;) is symmetric:

g(z,e) = 9> _wjeje) = Y gijx;.

Thus g is degenerate if and only there exist numbers zy, ..., z,, not all zero such that ) g;;x; =
0 for i = 1,...,n. But this is equivalent to the linear dependence of the columns of (g;;), that
is, to (gi;) being singular. O

Definition 15. Let F' be a vector subspace of E, the orthogonal of F' for g is the subspace
of E defined by F*+ = {v € E | g(v,w) = 0,Yw € F}. Thus a symmetric bilinear form g on
E x E is therefore non degenerate if and only if the orthogonal of E is {0}.

Definition 16. A scalar product over E is a bilinear form g : E x E — R, symmetric and
non degenerate.

Lemma 2. If F' is a subspace of a scalar product space E, then
1. dimF + dimF*+ =n = dimFE,
2. (FHt=F.
Lemma 3. A subspace F of E is non degenerate if and only if E = F & F*.
Lemma 4. A scalar product space E # 0 has an orthonormal basis.
The matrix of g relative to an orthonormal basis {ey, ..., e, } for E is diagonal, in fact:
g(ei,e;) = di;¢;, where €; = g(e;, e;) = £1.

Whenever convenient we shall order the vectors in an orthonormal basis so that the negative
signs — if any — come first in the so-called signature (ei,...,€,). Taking these signs into
account orthonormal expansion is still available.
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Lemma 5. Let ey, ..., e, be an orthonormal basis for E, with €, = g(e;,e;). Then each x € E

has a unique expression:
T = g €ig(z, e)e;.

For the proof it suffices to check that x minus the sum is orthogonal to each e;, thus by the
non degeneracy of g it is zero.

The orthogonal projection m of E into non degenerate subspace F' is the linear transformation
that sends F+ to 0 and leaves any vector of F fived. An orthonormal basis {ey, ...,ex} for F
can always be enlarged to a basis for E, thus:

k

m(x) = Z €jg9(x,ej)e;.

Jj=1

It is customary to refer to the index v of the scalar product g of E as the index of E, writing
v=IndE

Lemma 6. For any orthonormal basis {ey,...,e,} for E the number of negative signs in the
signature (€y, ..., €,) is the index Ind of E.

Lemma 7. Scalar product spaces E and F' have the same dimension and indez if and only if

there exists a linear isometry from E to F'.

1.2.2 Pseudo-Riemannian metric

Definition 17. Let M be a manifold of dimension n. A semi-Riemannian metric on M is a
tensor field:
g:X(M)xX(M) — C*(M),

such that for each x € M the restriction of g is a famuly of applications:
9r = 9/romer,n - TeM @ T,M — R with,
g+ (Xp, Yp) — g(X,Y)(p)
1s tnner product such that:
1. Forall x € M, g, 1s a symmetric bilinear form non degenerate.
2. If XY € X(M), the function g(X,Y)(x) = g.(X,Yz) is differentiable.
3. The index of g is constant, and noted Ind(M ), that is to say:

3peN,Va € M, Ind(T,M) = P.

Definition 18. A metric tensor g on a smooth manifold M is a symmetric non degenerate
(0,2) tensor field on M of constant inde.

In order words g € @*T*M smoothly assigns to each point x of M a scalar product g, on a
tangent space T, M, and the index of g, is the same for all x.
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Definition 19. A semi-Riemannian manifold is a pair (M, g), where M is a differentiable
manifold of dimension n, and g is a metric tensor on M.

Remark 7. Let (M, g) a semi-Riemannian manifold, so:
1. 0< IndM < dim M.
2. If IndM =0, (M, g) is said Riemannian manifold.
3. If p=1and dimM > 2, (M, g) is said Lorentz manifold.

The metric g associated to a Lorentzian vector space is called pseudo-Riemannian metric.
So, when the metric is definite positive or of signature (—, +, ..., +) the group is called pseudo-
Riemannian also called semi-Riemannian or Lorentzian.

Definition 20. A Lorentzian vector space (E,(,)) is an n-dimensional vector space E en-
dowed with a Lorentzian scalar product (,) that is, a non degenerate symmetric bilinear form
of index 1. This means that we have a basis {eq, ...,e,} of the space E, such that:

<€i7 €j> =1
<6i7 €j> =—1
<6i7 €j> =0,
forall1 <i, j <n andi#j.
We use (,) as an alternative notation for g, writing g(z,y) = (z,y) € R for tangent

vectors, and g(X,Y) = (X,Y) € C°°(M) for vector fields.
If 2!, ..., 2" is a coordinate system on U C M (U is an open set) the components of the metric
tensor g on U are:

9ij = (05, 0;) (L<4i,j <n).

Thus for vector fields X = > X'0; and Y =Y Y79,
g(X,)Y)=(X,Y) = Zginin.

Since g is non degenerate, at each point p of U the matrix (g,;(p)) is invertible, and its inverse
matrix is denoted by (¢”(p)). The usual formula for the inverse of a matrix shows that
the functions ¢” are smooth on U. Since g is symmetric, g;; = g;; and hence g = ¢/* for
1 <1,7 <n. Finally on u the metric tensor can be written as:

g = Zgijd:vi ® da’.

Recall from Chapter 1 [53] for each p € R™ there is a canonical isomorphism from R" to
T,(R™) that, in terms of natural coordinates, sends x to z, = > 2'9;. Thus the dot product
on R"™ gives rise to a metric tensor on R™ with:

(p,yp) = 2y = Y 2y

Henceforth any geometric context R™ will denote the resulting Riemannian manifold, called
Euclidean n-space.
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For integer v with 1 < v < n, changing the first v plus signs above to minus gives a metric

tensor:
(p, yp) = Z:ﬁyl—l— Z xly?

Jj=v+1

of index v. The resulting semi-Euclidean space R} reduces to R" if v = 0. For n > 2, R is
called Minkowski n-space, if n = 4 it is the simplest example of a relativistic spacetime.

Fix the notation:
. -1, for 1<i<v,
ol 4L, for v+1<i<n.

Then the metric tensor of R} can be written:

g= Z e;dr’ @ da'.

The geometric significance of the index of a semi-Riemannian manifold derives from the
following trichotomy.

Definition 21. A tangent vector x to M is:
1. space-like if (x,x)) >0 or z =0,
2. null if (xz,x) =0 and x # 0,
3. time-like if (x,x) < 0.

The set of all null vectors in T,M is called the null-cone at p € M The category into which
a given tangent vector falls is called causal character. Particulary in the Lorentz case, null
vectors are also said to be light-like.

Definition 22. Letn >2 and 0 < P < n.
1. The pseudo-sphere of RZH 15 defined by:

n+1
Sp = {(z1..tn1) €R™ | — Zx + Z ri =1}
i=p+1
2. The pseudo-hyperbolic of R"ﬂl is defined by:
p+1 n+1
H = {(#1...¥n41) € R" | — Za: + Z r? = —1}.
i=p+2

Example 7. On the pseudo-sphere:
ST = {(z1, 72, 73) € R® | —2% + 25 + 23 = 1}.
of R, we consider the parametrization:

r1 = sinh o
X9 = cosh asin 8
x3 = cosh o cos 3.
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The metric g = —dx? + dx3 + dr3 of R} induced on S? a semi-Riemannian metric h, let O,
and 0z be the base vector fields associated with this parametrization, the components of the
metric h 1s given by:

hi1 = 9(0a,0a) = =1, h1o = g(0a,05) =0, has = g(03,05) = cosh® o,
that is to say h = —da? + cosh? adf?.
Example 8. We consider on the pseudo-sphere:
S} = {(21, 72, v3,74) € R | =27 + 25 + 25 + 25 = 1}.
of R}, the following parametrization:

r1 = sinh o

29 = cosh asin 8

x3 = cosh acos [ siny
x4 = cosh a.cos 3 cosy.

The metric g = —dx? + dr3 +dz3 + dz3 of R} induced on S} a semi-Riemannian metric h, let
O, O3 and 0., be the base vector fields associated with this parametrization, the components
of the metric h is given by:

h11 = g(@a,(%) = —1, hlg = g(@a,(?g) = 0, h13 = g(@a,a,\) = O,

hos = g(95,05) = cosh® o, haz = g(93,0,) =0, hsz = g(d,,0,) = cosh® acos® 3,
i.e. h = —da? + cosh? adf? + cosh? a cos? Bd~?.

Example 9. Let (N, h) a semi-Riemannian manifold, M a differentiable sub-manifold of N,
and i : M — N the canonical inclusion. If (i*h), is non degenerate of constant index for
every x € M, then (M,i*h) is a semi-Riemannian sub-manifold of (N, h) where:

(1"h)e(Xs, Ye) = h(dpi(Xy), dei(Yy)), € M, X,,Y, €T, M.

Example 10. Let (M,g) a semi-Riemannian manifold, and let v a differentiable function
on M. Then, (M,e*"q) is a semi-Riemannian manifold with the same index of (M, g), said
conform to (M, g) of conformity factor e*7g.

Moreover if {e;} is an orthonormal basis on (M, g), then {e Ve;} is an orthonormal basis on
(M, e*g).

1.3 Linear connection

Let X and Y be vector fields on a semi-Riemannian manifold M. The goal of this section is
to show how to define a new vector field VxY on M whose value at each point p is the vector
rate of change of Y in the X, direction.
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Definition 23. A linear connection on M is a map:

Vo X(M) x X(M) — X(M)
(X,Y) — VyY

such that for oll XY, Z € X(M) and f € C*(M) we have:
1. Vx(Y+2)=VxY +VxZ,
2. Vx(fY) = X(f)Y + fVxY,
3. VxypvZ =VxZ+ fVyZ.
We say that VxY 1s the covariant derivative of Y with the direction of X.
Definition 24. A section y € X(M) is said to be parallel with respect to the connection V if:
VxY =0, V X € X(M).

Definition 25. Let (M,g) a semi-Riemannian manifold, a linear connection on M is said
to be compatible with the metric g if:

X(g(Y,2)) = g(VxY,Z) + g(X,VxY), ¥V X,Y,Z € X(M).

1.3.1 Torsion tensor

Definition 26. Let M be a smooth manifold, and V be a connection on the tangent bundle
TM, then the torsion of V is a tensor field of type (1,2) defined by:

T:X(M)x X(M) — X(M)
(X,Y) — VyY —VyX —[X,Y],

where [,] is the lie bracket on X(M). The connection NV on the tangent bundle T M is said to
be torsion-free if the corresponding torsion T vanishes i.e.:

[X,Y] = VxY - VyX ¥ X,V € X(M).
Remark 8. T'(X,Y) = —T(Y, X), for all X,Y € X(M) (T is antisymmetric).

1.3.2 Levi-Civita connection

Definition 27. Let u',...,u™ be the natural coordinates on R™. If X and Y = >_Y'0; are
vector fields on R}, the vector field:

VY =Y X (Yo,

15 called the natural covariant derivative of Y with respect to X.
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Definition 28. A connection V on a smooth manifold M is a function
V:iX(M)xX(M) — X(M)
such that:
1. VxY is C°(M)-linear in X,
2. VxY is R-linear in Y,
3. Vx(fY)= (XY + fVxY for f € C*(M).
VxY is called the covariant derivative of Y with respect to X for the connection V.

Proposition 1. Let M be a semi-Riemannian manifold. If X € X(M) let X* be the one-form
on M such that:
X*(Y)=(X,Y) for all Y € X(M).

Then the function X — X* is an C°°(M)-linear isomorphism from X(M) to X*(M).
The following result has been called the miracle of semi-Riemannian geometry:
Theorem 1. On a semi-Riemannian manifold M there is a unique connection V such that:
1. [X,)Y]=VxY - VyX, and
2. Z(X,)Y) =(VzX,Y) + (X,VzY),

for all X,Y,Z € X(M). V is called the Levi-Cevita connection of M, and characterized by
the Koszul formula:

AVKY, Z) = XY, Z)+ Y{(Z,X) — Z(X,Y) + (Z,[X,Y]) + (V,[Z, X]) — (X, [Y, Z]).

Lemma 8. The natural connection V of Definition (27) is the Levi-Cevita connection of the
semi-Fuclidean space R}, for every v = 0,1, ...,n. Relative to natural coordinate on R

_17 Zf 1§]§V7

1. gij = dijej,  where Ei:{ +1, if v+1<j<n.

2. Fszo, forall1 <i, 5,k <n.

Proof. (1) is essentially the definition of the metric tensor of R?. To prove that V is the
Levi-Cevita connection of R one must check that is satisfies (1) of (28) and (2) of (1). Take
(2) of (1), for example. Since (X,Y) = > XY,

ZIX)Y) = > aZ(XHY'+) X' Z(Y)
= (V2X,Y)+ (X, V,Y).

Then (2) follows from Proposition 13(2) [53], since the g;;s are constant.

A vector field X is parallel provided its covariant derivatives VX are zero for all Z € X(M).
Thus the vanishing of Christoffel symbols in the lemma means that the natural coordinate
vector field on R} are parallel. In general the Christoffel symbols of a coordinate system
measure the failure of its coordinate vector fields to be parallel. n
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Theorem 2. Let (M,g) a semi-Riemannian manifold. Then Levi-Civita connection is an
unique linear connection compatible with g and torsion free.

Remark 9. In a coordinate system (x;) on M, ¥V is completely defined by the Christoffel
symbols Ffj defined by:

Let X = Xia%i, and Y = Yj%, then:

VyY = ZXZ(aYk ir’fW)(m

i,k=1

Proposition 2. Let (M™,g) a semi-Riemannian manifold with Levi-Civita connection V.
Further let (U, ¢) be a local coordinate on M and put 9; = 52~ € X(U). Then {8%1...%} is

a local frame of TM on U. We define the Christoffel symbols Ffj : U — R of the connection
V with respect to (U, ) by:

1 dgji  Oga  0gij
ko = Kl j _ 99ij
R Zg { ox; + dxj Oz |’

=1

where g;; = g(e;, e;) = g((ﬁ,%) are the components of g, and g = (gi;)”

. J
matriz.

L s the inverse

In effect, we put 0; = 8%1" like [0;,0;] =0, Vi, j = 1,...,m, we have:

29(V,0;,0) =2 _ g(T3,0;,0)

s=1
m
=2 Z Ffjgslv
s=1
and according the Koszul’s formula:

29(V,05,01) = 0i(9(0;,01)) + 9;(9(0r, 9;)) — i(g(0:, 0;)),

then:

1 [Ogy  Oga  0gi
ZFZ]gSl 2 { (9@ * 8xj al’l ’

from where:

ag]l 993 agz‘j
ergsm 27 {axz * ox; Oz )’
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and:

Z Z dgj  Ogu  0gij
s J _ J
(%) gslg { axl + a j axl )

s, =1

as ¢g* is the inverse matrix of g;; we have:

> gag™® = ks
=1

where 0y is the Kronecker symbol, we get:

1 dgj  Oga  0gij
rk — = ki j _ 995
o2 Zg { 0x; * Ox;  Ox

=1

1.3.3 Inverse tangent bundle and connection on tangent bundle

Definition 29. Let ¢ : M — N be a smooth map between two differentiable manifolds M
and N. The inverse tangent bundle is defined by:

(pflTN = {(J},U) e M,ve T@(I)N}.

A section on ¢ 'TN is a smooth map V : M — TN such as V(z) € TyN, Vo € M.
Denote by X(¢ 'TN) the set of sections on o 'TN.

Definition 30. Let o : M — N be a smooth map between two differentiable manifolds M
and N, and h a Riemannian metric on N. Then h induce a Riemannian metric on X(¢ TN
given by h(V,W)(x) = hy(w) (Va, Wy), for every x € M and V,W € X(¢ 'TN)

Definition 31. Let o : M — N be a smooth map between two differentiable manifolds M
and N and let VY be a linear connection on N, then the Pull-back connection on the tangent

bundle o 'T'N is defined by:

VP X(M) x X(p'TN) — X(¢ 'TN)
(X,V) — VEV =VixV, (1.1)

where V€ X(N) such that Voo ="V.

Let X € X(M), and V € X(¢'TN). Locally, we have X = X'32- and V = V(52 0 ),

where X', V* € C>(U)(U is a open of M), and {6x1" ,afm (resp {ay1 ’62n ) are the
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basic fields on M (resp.N). then:

VeV — vsolava(aiyaow)
- Z‘{%ka%owwav:zxao@}
e (7 ) )
(e () )

; 8‘/7 ((9305 a
=X' % r’ — .
{axﬁ al(“ﬁow)}(ava)
Then the relation (1.1) is independent of the choice V i.c. this connection is well defined.

1.3.4 Second fundamental form

Definition 32. Let ¢ : M — N be a smooth map between two differentiable manifolds M
and N. The second fundamental form of ¢ is defined by:

Vdp(X,Y) = V%de(Y) — dp(VYY), VXY € X(M).

Locally: Let {821 s 82: =91 (resp. {8y s ay 91 ) a local basic fields of the vectors on M (resp.
N). The second fundamental form in relation to these basis is given by:

o 0 0 0

v M 9
(Vi) (53 j) Vs di ax]) dp(V o =)
@gpg 0 (’9@ 0
= V¥ _ Mk 2
v@xz dx; Dys ° Oz, Zj((")yv °¥)
s 0 dpp e O Py pipok O
= — _ ZamMph
O0x;0x; Oyg °Pt B, 0z vaxz 3y3 ° Oxy, (8% ?)

= Owi0x; 0y © | Oz Om; - v ayﬁ D if(a_%ow)

Poy | 00 dpsy dp d
— @ I _ Mk )y 2
(amiaxj T om0z, %% B, ”) o

o .

Proposition 3. Let ¢ : M — N be a smooth map between two differentiable manifolds M
and N. The second fundamental form of ¢ is a vectorial 1-form C(M)-bilinear symmetric.
1.€.

Vdp(f1.X, 2Y) = f1/2Vdp(X,Y),
for all X, Y € X(M), and f1, fo € C(M).
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1.3.5 Geodesics

Definition 33. Let (M, g) be a semi-Riemannian manifold of dimension n, and let v : I C
R — M a C* curve on M. A set of the vector fields along vy, is defined by:

X(y'TM)={Y : I —TM|Y(t) € T,,yM,Vt € I}.

Remark 10. Let X € X(M), i.e X : M — TM s an differentiable application, such that
X(z) e T,M,VX € M, then X oy € X(v'TM).

Definition 34. Let Y € X(y 1T M), the covariant derivative of Y along v is defined by:
Ty M v
V%Y— Vdv(%)Y,

where Y € X(M) such that Y oy =Y.

Remark 11. Let {0;} a local basis of vector fields on M, then {0; 0~} is local basis of vector
fields along . Then, VY € X(y'TM), 3Y; : I — R (i = 1,...,n) what Y (t) = y;i(¢)0i|w)-
From where:

VLY =V, Yi(0i07)
dt dt

dY;
= —(0i07) +YiVy (907)
dt
dY;
= —=(0:07) +YiVy 4 (3),

where dy4 € X(y'TM) and locally dy4 = %(81- 07), where v; = xjo~y. So:

dy; dry

Ty = 224 D g M .
V%Y— o (@O’y)—l—YZdt (Vajaz)o'y
A dy;
= T id—;(rijov)(ako’ﬂ-

So this relation is independent of the chose 0fl~/ i.e. this connection is indeed defined.

Definition 35. A vector fields Y (t) along a curve v : I — (M, g) is said to be parallel along
v if (ViY)]=0,Vtel
dt

Proposition 4. Let v : I — (M, g) a curve, ty € I, and v € T, \M, Then, there is a
unique vector field Y, parallel along vy such that Y,(ty) = v.

Definition 36. Let (M, g) a semi-Riemannian manifold, of dimension n, a curvey on (M, g)

it said to be geodesic if V%dﬁy(%) =0, i.e:

e dyidy
dee ' dt di

(Ffj ov)=0, Vk=1,...,n.

Example 11. If M = R and g = dz?, then a curve v : I — R is a geodesic if and only if

d;;k =0, because I'l; =0, i.e, y(t) = at + b, where a,b € R.
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Example 12. If M = R}, then a curve v : I — R} is a geodesic if and only if d;% =0,
because Ffj =0, i.e, ¥(t) = at + b, where a,b € R™.

Example 13. We consider the parametrization of the sphere:
S" = {u € R™ | |lul| = 1},

and let the stereographic projection, 1 : R — R given by:

21y 2z,  |zl]? =1
x) = e , , reR"
Y@ = (Epr T P+ T 2P+ 1
— Uy Unp n+1
v u) = s , u e R
(W) <1—Un+1 1—Un+1)

The components of the metric tensor relatively to 1 are:

4(5@'
(@) = ——ou R".
W) = T
the Christoffel symbols are:
i () =T (z) = T(2) = —T (2) = _ Tk (2) = 0
it ij ji 73 1+ |z)2 9 ’

fori, 73,k =1,...,n distinct, for the proof using the proposition 1 that is:
v(t) = (cost,sint,0,...,0) € §", t € R.
The representation of v in this map is given by:

W o)) = (r(t), oo a(t))
= (cost,sint,0,...,0).

According to the geodesic definition and this last equation, v is a geodesic on S™.

Theorem 3. Let (M, g) be a semi-Riemannian manifold. For all x € M and any vector v €
T.M, there exists an open interval I of R with 0 € I, and a unique geodesic v : I — (M, g)
such that v(0) = x and ¥(0) = v.

1.4 Curvatures

1.4.1 curvature tensor

Definition 37. Let (M, g) be a semi-Riemannian manifold of dimension m, and V a Levi-
Civita connection. Then the function:

R:X(M)x X(M)x X(M) — X(M) defined by :

R(X,Y)Z =VxVyZ —VyVxZ —Vixy/Z V¥X,Y,Z € X(M),
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is a tensor of type (1,3) on M, called a curvature tensor. The curvature tensor type (1,4) is
given by:
R(X,Y,Z,W) = g(R(X,Y)Z,W).

The curvature tensor R is expressed as a function of the Christoffel symbols:

R(D;,0;) Z R5;,.0s.

where {0;} is a local basis of the vector fields on M. Like [0;,0;] = 0 we obtain:

R(8:,0,)0% = Vo,V',0 — Vo, Vo, 0
= vaz<rékal> - Vf’j (Fikal)

ort ort
’k(‘?l + ngVaial ik

o0, + FlkVa 15)

@Ii j
ort Or
_ a;ffal+r;kr§las_ - zkal+rz r%0,
(9F5.k arfk l s l T

Therefore the components of the curvature tensor R is given by:

8ij o 8ka

rl rs -1 I .

Z]k -

Proposition 5. Let (M, g) be a semi-Riemannian manifold. For all X,Y, Z, W € X(M) we
have:

1. RX,Y)Z =—-R(Y,X)Z (antisymmetric).
2. g(RIX,Y)Z, W) = —g(R(X, Y)W, Z).

3. g(R(X,Y)Z, W) =g(R(Z,W)X,Y).

4. R verified Bianchi’s identity algebraic:

R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0.

5. R wverified Bianchi’s identity differential:

(VxR)(Y, Z) + (VyR)(Z, X) + (VzR)(X,Y) = 0.

1.4.2 Sectional curvature

Definition 38. Let (M, g) be a semi-Riemannian manifold, of dimension n, with n > 2,
x € M and m a 2-plane of T, M of basic {X,Y}.

1. 7 is said to be non-degenerate if Q(X,Y) = g(X, X)g(Y,Y) — g(X,Y)?.
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2. If m 1s non-degenerate, we defined the Sectional curvature of m as follows:
g(R(X, Y)Y, X)
QX,Y)

3. We say that (M, g) is of constant curvature if K(m) =k (for any 2-plane 7).

K(r)=K(X,Y) =

Definition 39. Let (M,g) be a semi-Riemannian manifold. We define the smooth tensor
field Ry : X(M) x X(M) x X(M) — X(M) of type (1,3) by:

Corollary 1. A semi-Riemannian manifold (M, g) is of constant curvature k if and only if
the The curvature tensor verifies the equation:

R(X,Y)Z = k[Ri(X,Y)Z], VX,Y,Z € X(M).

1.4.3 Ricci curvature

Definition 40. The Ricci curvature of a semi-Riemannian manifold (M, g), of dimension n
is a tensor of type (0,2) defined by:

Ric(X,Y) = trace(Z — R(Z,X)Y)

n

= ZQQ(R(QZ"X)K ¢,

i=1
for all X, Y € X(M), where {e;} is an orthonormal frame on M (e¢; = g(e;, €;)).

Proposition 6. The Ricci curvature is symmetrical. Indeed:

Ric(X,Y) =Y eig(R(e;, X)Y, e)

=1

= Z€¢9(R(Y7 ei)ei, X)
i=1

= ZQ‘Q(R(% V)X, e)
i=1
= Ric(Y, X).
Definition 41. The Ricci tensor of a semi-Riemannian manifold (M, g), of dimension n is

a tensor of type (1,1) defined by:

Ricci(X) =Y eR(X,e;)e;, VX € X(M).
=1

Remark 12. For all VX,Y € X(M) we have:
Ric(X,Y) = g(Ricci(X),Y).
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Definition 42. We call scalar curvature of a semi-Riemannian manifold (M, g), of dimension
n, the function defined on M by:

n

S = trace,Ric = Z ei€jg(R(ei, ej)ej, e;).

1,j=1

Corollary 2. Let (M,g) be a semi-Riemannian manifold of dimension n and of constant
curvature k, then:

1. Ricci(X) = (n—1)kX.
2. Ric(X,Y) = (n—1)kg(X,Y).
3. S =n(n-1)k.
Example 14.
1. The sphere S™ has constant sectional curvature +1.

2. The space R™ has curvature 0.

da?4dy?
2

3. H? = {(z,y) € R? y > 0} the hyperbolic space with the metric g = , has

constant sectional curvature —1.

1.5 Operators on Pseudo-Riemannian manifolds

1.5.1 Gradient operator

Let (M, g) be a semi-Riemannian manifold, of dimension n, and X € X(M). We put:
X'(Y)=g(X.Y),

for all Y € X(M), then the application:

b X(M) — X' (M)
X — X

is C°°(M)-isomorphism. Moreover, b1 =, and:

w — wh

is a isomorphism map between the cotangent bundle and the tangent bundle given by:

VX € X(M), gw', X)=w(X).
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Definition 43. Let (M, g) be a semi-Riemannian manifold, of dimension n, we defines the
gradient operator by:

grad: C*(M) — X(M)
[ gradf = (df).
So that for all X € X(M) we have:
g(grad f, X) = X(f) = df (X).
Locally:

“~ . Of 0
grad f = Z j@a:, oz,

91 is a local coordinate. Let {e, ...,e,} be an orthonormal frame on (M, g).

gradf=">"eiei(f)e
i=1
Proposition 7. Let (M, g) be a semi-Riemannian manifold, then:
1. grad(f+h)=gradf+gradh.
2. grad(fh)=hgradf+fgradh.
3. (gradf)(h)~(gradh)(f).

where {8‘21 .
Then:

0 Bz

1.5.2 Hessian operator

Definition 44. Let (M, g) be a semi-Riemannian manifold, of dimension n and f € C*(M).
The Hessian of the function f denoted by Hess f is a C*°(M)-bilinear map, defined by:

Hessf : X(M) x X(M) — C*(M)
(X,Y) —— (Hessf)(X,Y)=g(Vxgradf,Y).

Proposition 8. Let (M, g) be a semi-Riemannian manifold, of dimensionn and f € C>*(M),
then:

1. Hessf be a tensor of type (0,2).

2. Hessf is symmetric.

Locally:
Hess f = Z (Hess f)ijdx; ® dx;,

ij=1
where:

(Hess [)ij = 9(Va,grad f,9;)

Pf O~y Of
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1.5.3 Divergence operator

Let X be a vector field on a semi-Riemannian manifold (M, g), then:

VX X(M) — X(M)
Y — VyX,

is a C°°(M)-linear mapping.
Definition 45. The divergence of the vector field X € X(M), denoted div X is defined by:
div X =traceVX.
Locally:
divX = dwi(Va%X)
0

=g"g(V o X, ).
99(V 2. ,amj)

Let {eq,...,en} be an orthonormal frame on M, then:

divX = Z €9(Ve, X, €;).

i=1
The divergence of 1-form w on M such that w € X*(M) is defined by:

divMw = trace(Y — Vyuw)

= Z €i(Vew)(ei)

— Z ei(ei(w(e;)) — w(Vé\fQ))

ij 0
Zgjg(vagiw)(a—%)-

In the definition of div X we can also define the divergence of (1,7)-tensor T to be (0,r)-
tensor:

(divT) (X, ..., X,) =trace(Y — (VyT)(Xq, ..., X;)).

1.5.4 First expression of the divergence in local coordinates

Proposition 9. Let (M, g) be a semi-Riemannian manifold, of dimension n, then:

divX = zn:(

,5=1

X
- + X%,

0
Ox;

with X =1 | X;:2- € X(M).

v Ox;
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Proposition 10. Let (M, g) be a semi-Riemannian manifold, then:
1. div(X+Y)=divX +divY.
2. div(fX)= fdivX + X(f).

for all XY € X(M) and f € C*(M).

1.5.5 Second expression of the divergence in local coordinates

Lemma 9. On a Riemannian manifold (M, g), we have:

(9%;6 ( det(gz‘j)) = Wgrg

Proposition 11. Let (M, g) be a Riemannian manifold, then:

1 0
divX = ———— 2 Jdet(g:;) X ) |
WX = (et i)
for all X € X(M).

1.5.6 Laplacian operator

Let (M, g) be a semi-Riemannian manifold, we define the Laplacian operator note A, on M
by:

A C®(M) — (M)
f — A(f) = div(grad f).
Proposition 12. Let (M, g) be a semi-Riemannian manifold, then:
1A+ ) = A() + A(h),
2. A(fh) = hA(f) + FA(R) + 2g(grad f, gradh),
for all f,h € C=(M).

Proposition 13. Let (M,g) be a semi-Riemannian manifold, then the expression of the
Laplacian in local coordinates is given by:

f . Of

al’ial'j ijé?_xk

A(f) = g"(

), forall feC®(M).
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In effect, let f € C*°(M), then:
A(f) = div(grad f)

— i
=979(V o gradf, aa:j>
0 0 0
— g d — glgrad
9"7(5,-9lgrad f, %) glgrad f,V o a%))
g , 0 0
r d
=g (8%(a ) = Tig(grad f, 5 92,
i O°f of
S VS I3}
E)xi@xj 8xk
Example 15. Let R? provided with the product scalar g = —dx? — ... —da +dal, + ... +dxd,

like gij = dije;, then for every differentiable function f on R} and X = (Xi, ..., X,) a vector
field on R™, we have:

grad f = Z &vzaxl divX = Z 8% - Qa_x?

i=1

1.6 Pseudo-Riemannian sub-manifolds

1.6.1 Sub-manifolds

Definition 46. Let (N™, h) a semi-Riemannian manifold, M™ a sub-manifold of N, and
i: M < N the canonical inclusion. If h is non degenerate on M (i.e if h(X,,Y,) =0, VY, €
T.M, then X, = 0, where x € M), and IndM 1is constant, then M is a semi-Riemannian
manifold called a semi-Riemannian sub-manifold, endowed with the induce semi-Riemannian
metric:

9(X,Y), =h(X,,Y,), VXY € X(M)andx € M.
where g : X(M) x X(M) — C*°(M) is the tensor field on M.

Definition 47. Let (N™, h) a semi-Riemannian manifold and let (M™, g) be a semi-Riemannian
sub-manifold of (N™, h). We define the normal space T,M~ by:

T,M* = {v € T,N | hy(v,w) =0, Yw € T,M}.
For all x € M we have the orthogonal decomposition:
T,N =T,M & T,M".
The normal bundle of M in N s defined by:
TM* = {(z,v) | v € M,v € T,M*}.

For allv e T,N, " € T,M, vt € T,M* suchthatv =v" + v .

The maps T : TyN — T,M, v+— v and L : T,N — T, M+, v — vtare R-linear.
A wector field X of N is said to be normal, if X, € TyM~* for all z € M.

X(M)* is the set of normal vector fields.
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Definition 48. Let (M, g) be a semi-Riemannian sub-manifold of (N,h), and let V¥ the
Levi-Ciita connection of (N,h). Then we define:

VM X(M) x X(M) — X(M)

by:
VXY = (VxY)',

VM s the Levi-Civita connection of the sub-manifold of (M,g). Further more let:
B:X(M)x X(M) — X(M)*

be given by:
B(X,Y) = (VXY)",

the operator B is called the second fundamental form of (N, h).
Proposition 14. For all X,Y € X(M), we have:

1. B(X,Y)=B(Y,X), (Bissymmetric).

2. B is C*°(M)-bilinear.
Proposition 15. Let (M, g) be a semi-Riemannian sub-manifold of (N, h), and let RM (resp.RY)
the curvature tensor of (M, g) (resp. of (N,h)). Then:

g(RM(V.W)X.Y) = (R (V,W)X.,Y) — h(B(V. X), B(W.Y))
FR(B(V,Y), BOW, X)), ¥ X,Y,V,W € X(M).

Corollary 3. Let (M, g) be a semi-Riemannian sub-manifold of (N, h), and let R™ (resp.RY)
the sectional curvature of (M, g) (resp. of (N,h)). Then:

h(B(v,v), Blw,w)) — h(B(v,w), B(v,w))

K¥ (v,w) = K™ (v,w) + g(v, w)g(w,w) — g(v, w)?

where {v,w} is a basis of 1 C T, M (x € M).

1.6.2 Pseudo-Riemannian Hypersurfaces

Definition 49. Let (N, h) a semi-Riemannian manifold, of dimension n. a semi-Riemannian
hypersurface of (N,h) is a semi-Riemannian sub-manifold (M,g) of (N,h), of dimension
m=n—1.

Definition 50. Let (M,g) a semi-Riemannian hypersurface of (N,h). Then:

. [ 41, if h(z,2) >0,Vz € T,M* — {0},
&Ww“_{q,ﬁh@@<awEﬂMk{m.

Remark 13.

1. If Sign(M) = +1, we have: Ind(M) = Ind(N).
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2. If Sign(M) = —1, we have: Ind(M) = Ind(N) — 1.

Proposition 16. Let (N, h) a semi-Riemannian manifold, f a differentiable function on N,
vo = f(x0) (xo € N). Then M = f~*({yo}) is a semi-Riemannian hypersurface if and only
if h(grad™ f, grad™ f) >0 or < 0 on M, and:

Sign(M) = Signh(grad® f, grad® f).

Example 16. Let f : R"™ — R, f(z1,...,Tn41) = 23 + ... + x%H — 12, then the sphere
S™(r) = f~*({0}) is a semi-Riemannian hypersurface of R""'. In effect:

n+1 a
rad® " f =2 Ti—,
g f=2) aig-
k=1
n+1
< graanHf, graanHf Spnt1= 42 z3,
k=1

from where ¥ (xq, ..., x,41) € S™(r), we have < grad® " f grad® " f >goen=4r2 > 0.

Definition 51. Let (M,g) a semi-Riemannian hypersurface of (N, h), and let U the unit
vector field normal to M. The operator

A:X(M) — X(M)

X +— AX =-VYU
18 called a chape operator.
Proposition 17. V XY € X(M), we have g(AX,Y) = ¢h(B(X,Y),U), where ¢; = £1.
Corollary 4. V XY € X(M), we have B(X,Y) = ¢,9(AX,Y)U, where ¢, = h(U,U).
Definition 52. Let (M, g) be a semi-Riemannian sub-manifold of (N, h).

VX (M) x X(M)E — X(M)*

(X,Y) — VxY = (ViY)*
15 called the normal connection of M.
Proposition 18. Let (M, g) be a semi-Riemannian sub-manifold of (N, h).

1. VY is C°°(M)-linear with respect to X and R-linear with respect to'Y .

2. VLIY = X(f)Y + fVLY, VX € X(M), VY € X(M)* and Vf € C=(M).
3. X(W(Y, Z)) = h(VLY, Z) + h(Y,VLZ), ¥V X € X(M) and V'Y, Z € X(M)*.

Definition 53. Let (M, g) be a semi-Riemannian sub-manifold of (N, h). A curve v : 1 C
R — M is said to be of timelike if dy(2)|; is a tangent vector of timelike, that is:

0 0
9ldy(5;), dy(5)le <0, Vte T

Definition 54. Let (M,g) a semi-Riemannian hypersurface of (N,h). M is said to be of
spacelike if all the tangent vectors to M are of spacelike, that is :

g(v,v) >00rv=0(weT,.M).
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1.7 Harmonic hypersurface of pseudo-Riemannian mani-
folds

1.7.1 Harmonic maps

Definition 55. Let ¢ : (M™,g) — (N™, h) be a smooth map between two semi-Riemannian
manifolds, for any compact domain D of M the energy functional of ¢ is defined by :

1
B D) = 5 | eldel vy, (1.2)

where |dy| is the Hilbert Schmidt norm of differential of the map ¢ given by:

ldol” = h(dp(e:), de(e;))

i=1
and {e1,...,en} be an orthonormal frame on M.

Definition 56. A variation of ¢ to support in a compact domain D C M, is a smooth family
maps (P¢)ie(—ee) - M — N, such that oo = ¢ and ¢, = ¢ on M \ int(D).

Definition 57. A map is called harmonic if it is a critical point of the energy functional over
any compact subset D of M. 1i.e.

d
%E(thv D)lt:O = 0.

1.7.2 First variation of energy

Theorem 4. Let ¢ : (M™,g) — (N™, h) be a smooth map and let (¢1)ic(—ee) be a smooth
variation of ¢ supported in D. Then:

%E(%;D)\t:o = /D hv,7(2)) v,

where v = denotes the variation vector field of {¢},

.y
dt =0
7(p) = trace,Vdy = Z e {VEdp(e;) —dp(VYVe)}, (1.3)
i=1

is called tension field of ¢ where {e1,...,en} is an orthonormal frame on (M™,g) and €; =
gle;,e;) = +1.

Proof. Defined ¢ : M x(—¢,€) — N by ¢(x,t) = ¢(x), let V? denote the pull-back connection
on ¢~ 'TN. Note that, for any vector field X on M considered as a vector field on M X (—¢, €),
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we have [0, X| = 0. Using (1.2) we obtain:

d
EE(()OM )‘t:O = 2dt/ Zh‘ dSOt ez ngt 62 'Ug‘t 0

_ M/Zh do(e:,0), do(e;, 0)) vg|,_,

- 2 /D a;h(d¢(€i,0)7dﬁb(ei’o))vg‘t:o

-/ f:h<v<g>07$)d¢<ei,o>7d¢<ei,0>>vg\to

_ /Zh o dd(0, )dm, )],

- /D;h(vﬁlfo(ei)v,dwei))vg

_ /Dgh(v;v,dgo(ei))vg. (1.4)

Define an 1-form on M by:
w(X) = h(v,dp(X)), X € X(M).

We have:

= > {n(VEv delen) + h(v, VEdi(ei) = hlv, do(Vefer)) )

= > (Vi dp(en) + h(v, 7()), (L.5)

according to formulas (3.22), (4.3), and the divergence theorem we obtain:

GE@D Ly = = [ hwr@e,

]

Theorem 5. A smooth map ¢ : (M™,g) — (N™, h) between two semi-Riemannian manifolds
18 harmonic if and only if:
T(p) = trace,Vdy = 0.
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If () 1<i<m and (Y*)1<a<n denote local coordinates on M and N respectively, then respectively
the equation T(p) = 0 takes the form:

iy Jp® 0P
(@) = ai(Ag? + gV, T

g ) =0 (1.6)

1 0 0
where Ap? = W%(\/]g]g”i) is the Laplace operator on (M™,g) and NFVB are the

oxJ «
Christoffel symbols on N.

Example 17. Fvery constant map:
w: (M™ g) — (N™, h), x —> yo is harmonic (i.e. dypp =0 Vo € M).

Example 18. The identity mapping:
Idy @ (M™,g) — (M™,g), x — x is totally geodesic (i.e. Vdldy = 0). Therefore Idy is
harmonic.

Example 19. Let (M™,g) be a semi-Riemannian manifold and let f : (M™,g) — R be a
smooth function, then:

7(f) = etrace,Vdf
= eivdf<€i7 61')
= a(VIdf(es) —df (VY ew)
= cleileN) = (Ve ()
= ¢g(Vegrad f, e;)
= divgradf

where {e;} is an orthonormal frame on (M™,g).

Remark 14. The composition of two harmonic maps is not in general a harmonic application.
In particular if ¢ is harmonic and 1 is totally geodesic (i.e. Vi) = 0), then 1o is harmonic.

Example 20. Let the map:

¢: (R, dr?) — (R? da® +dy?)
xr — (z,0),
we have:
0’z 0%0
() = (G g2)

and let the map:

Y (R de? + dy?) — (R, dz?)

22 —

2 ?

(z,y) —
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we have:
(W) = A(Y)
B 0% 0%
Ty
= 1-1
= 0,

then the two maps ¢ and Y are harmonic, but the compound:

Yo (R,dz?)

— (R, dz?)
22
l’ H —
2 Y

is not harmonic, T(1) o p) = 1.

Example 21. If M =]a, b[ be an interval of R, then a curve 7 : (a,b) — (N™, h) is harmonic
if:
dQ,}/a N 1a dryﬁ d76
g6 =0,
dt? dt dt
therefore, v is harmonic if and only if it is a geodesic.

1.7.3 Second variation of energy

Theorem 6. Let ¢ : (M™,g) — (N, h) be a harmonic map between Riemannian manifolds,
and {15} be a two parameter variation with compact support in D. We set:

o a(Pt,s - a@t,s
v = and w =

ot ‘ (t,5)=(0,0) Os ‘ (t,5)=(0,0)

denotes the variation vector fields of ¢.
Under the notation above we have the following:

92
3t88E(¢t’s’ D)‘(t78)=(0,0) - /Dh(Jg,(v),w)vg,

where J,(v) € T'(¢ 'TN) given by:
Jo(v) = —traceR™ (v, dp)dyp — trace(V¥)*v.

RN is the curvature tensor on (N, h), and

m

trace(V¥)*v = Z[V;Vfiv — Vi v].

VMe,
e; €i
=1
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Proof. Defined ¢ : M x (—¢,€) X (—€,€) — N by ¢(z,t,5) = @r(x). Let V¢ denote the
pull-back connection on ¢ !T'N. Note that, for any vector field X on M considered as a
vector field on M x (—¢,€) x (—¢,€), we have:

[0, X] =0, [0s5,X]=0, [0,0s=0

We put E; = (e;,0,0), 2 = (0,4,0) and 2 = (0,0, 4). Then, by (1.2) we obtain:

o2
dtds Elus, )‘(t78)=(00 - /Z(f)ta i), do(E;))vy, (1.7)
first, note that:
1 02 9 5
5 s A(E:), do(E) = —h(V' do(E;), db(E)
= (V% V% do(Ey), do(E;) (1.8)

+ (V¢ 19(E), V%, do(Ey),
the first term on the left-hand side of (1.8) is
WV V% dO(Ey), do(Er) = h(V do(E), V' dg(E)
_ (RNas 2 Mo |
= BB, d6(E)do( ) do(E) (19
0
+ (VY do(5 ), do(E;))

(T, L d0) d0(E))

52

Define an 1-form on M by:

0
w(X) = h(V‘%d¢($)\(m):(o’o), do(X)), X € X(M).
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We calculate the divergence of w.
divMw = Zez{el — VMeZ)}
— ¢
- Z{el (V% do( >\ o0y 42(€))

- h(v%d¢(—)| ),(00),dso<V£fez~))}

_ Z{h %4 V¢ b do(o )\ _ 00y de(e:))

¢
* h((V%d¢($)|<t,s) 00 Vadele)
0
- h(v%d¢(£)|(t,s):(070)’ dip(Ve/ei))}

m

0
= Z{h<vgv(§d¢(%) ‘ (t,5)=(0,0) d@(el))

=1
0
+ WV dd(50)] =00 T(PD}-

According to the harmonicity of ¢ we obtain:

divMw = Z{h (V5 v¢ o do(5 )\ 00y (e} (1.10)

From the formulas (1.9) and (1.10), with [Z, F;] = 0, we get:

ot’

WV V% db(Ey), do(E))| 00y = DR (v, dler))w, d(e:))
=1
+  divMw. (1.11)
The second term on the left-hand side of (1.8) is:
0 0
WV dd(E:), V% do(B:)) = h(VE,do(5), Vi,do(o2))
+ Ei(h<d¢<3>,vgd¢<3>>)

~ do(), VT ol :

=) (1.12)

Define an 1-form on M by:

n(X) = h(w,Viv), X eX(M).
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Then:

divMn = z:{eZ e;) VMeZ)}

= Z{ei(h(w,vgv)) h(w, Vi, v)}. (1.13)

=1

According to formulas (1.12) and (1.13), we obtain:

> h(V‘% do(E;), viﬁ dO(ED))] om0y = div"n+ Y h(w, Vi, v).
i=1 ° i=1 '

— > h(w,VEVE). (1.14)

=1

From the formulas (1.7), (1.8), (1.11), (1.14) and the divergence theorem, the theorem (6)
follows. O

1.7.4 Biharmonic maps

The bi-energy functional of a smooth map ¢ : (M™,g) — (N™, h) is defined by:

=5 [Im@rs, (1.15)

Definition 58. A map is called biharmonic if it is a critical point of the bi-energy functional
over any compact subset D of M.

1.7.5 First variation of bi-energy

Theorem 7. Let ¢ : (M™,g) — (N™, h) be a smooth map between Riemannian manifolds,

D a compact subset of M and let {¢;}ic(—ce) be a smooth variation with compact support in

D. Then:
d

EEZ(%’ D)li=0 = _/Dh<va2(90))vg’

where v = %hzg denotes the variation vector field of ¢ and in locale frame at x € M, we
have:

() = —tracegRN( (p )dcp)dgp—traceg(vw)Q (p)

= —ZRN ©),do(e;))dp(e;) Z{V“"V“" V@Me 7(p)}.  (1.16)

To(p) is called the bi-tension field of ¢.
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Proof. Define ¢ : M x (—€,¢) — N by ¢(z,t) = p(z).
First note that:

(13 D)1= 0_/ Zh 4 V(€10 (€1,0)), Vdo((e5,0), (€:,0)) ) vy, _e  (117)

Calculating in a normal frame at x € M we have:

d d
Vi a)d0(en0) = V3, do(0, )+ do(((0. ). (e, 0))
d
= V{00, 2). (1.18)
d
Vi 2)d8(Velen0) = Vigu,, 0do(0, —) (1.19)

V4 Vo ((e0), (,0) = Vi, Vi, 0)d¢(el, 0) = Vi o do (Vi (e 0))

= RY(0(0, ). d0(e1,0))6(e1,0) + V2, ) V¥, 4 d6(e1,0)
+ Vi) 0)]d¢(ei, 0) = V{, 4, d6(Vie:, 0).

= RY(dg(0, )d¢<ez, 0))d¢(e;, 0)

+ v(%o)vf’%o)dao,%)

—~ vage“o)dgb(o,%). (1.20)

From where:

h(V5, £, Vde((e:,0), (€:,0)), Vdo((ei,0), (€5, 0)))],_g = PR (v, dip(e:))dip(e:), 7(¢))
+ WMVEVEL T(9))
— h(V@Mev 7(p)). (1.21)

Let w € X*(M), be a 1-form to support in D, defined by:
w(X) =h(Viv,7(9), X € X(M).

We calculate the divergence of w:
divMw = 2:{6Z ei)) —w( VM )}
= Z{ez (VEu,7(9))) = MV, v, 7(#))}

= Z{h(vzvzmw +h(VE0, VET(9)) = h(VEw, v,7(9)}. (1.22)

e; -t
=1
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From the formulas (1.21) and (1.22), we obtain:

m

Zh(v‘é,%)v%((emo),(%0)), Vd((e:,0), (€:,0)))le=0 = Zh (v, do(es))dp(e:), ()

=1

— Zh(v;v,ng(@)

i=1
+  divMw. (1.23)
Let n € I'(T*M), be an 1-form to support in D, given by:
n(X) = h(v, Vi7(9)), X € X(M).

We calculate the divergence of 7:
= Y fene)) - (e}
= Z{ez (v, VET(#) = hl(v, Viy, 7(#))}
= Z{h(v;v,vy(gp))+h(v,vgv37(¢))—h(v Vi, 70D} (124)

Substituting (1.24) in (1.23), we obtain:

>V, 4y Va((ei,0), (€, 0)), Vdo((es,0), (ei,0))) =0 = Zh (RN (7(0), dp(e:))dip(e:), v)

+ Zh(v,v;v;7(¢))
=1

M
- Z h(v, Véyeﬂ'(@))
i=1 ‘
+ divMw — divMy. (1.25)

From the formulas (1.17), (1.25) and according and if:

/ div(w)v, =0, (1.26)
D
we obtain:

Pl Dl == [ 300 (<RY(r(e)dple)dilen) = VEVET(R) + Ty, (o). 0) vy

=1

]
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Theorem 8. Let ¢ : (M™,g) — (N™, h) be a smooth map between two Riemannian mani-
folds, then ¢ is said biharmonic if and only if:

() = —trace, R (1(p), dp)dp — trace,(V¥)*7(¢) = 0. (1.27)
1. The equation (1.27) is called the Euler-Lagrange equation.

2. Let M and N be two Riemanian manifolds with the coordinates (z%)and (y®) respec-
tively, then, in the neighborhood of the points x € M and ¢(x) € N we have

N or°or? o PP N
() = 90 T Y amon Grion Lo
a 89018 @Nrgﬂﬁ o 890 a(ppN v N
A — + T A R
oxt OxJ oxt OxJ
or? .08 8g0 8g0
k NFJ _ Np
”(8xk +7° Ok ) Ot 81‘3 ,Bow}a e

N1o
Fﬁ—i-

+7 Iy,

_ 027 O 9P N1y 8<p'YM k N :
where 77 = g% < geioe T 9raor Lago® — gor Lij) and 7R3, designate the compo-

nents of the curvature tensor of (N ”, h).
3. Any harmonic map is a biharmonic.

4. Biharomnic maps are not generally harmonic maps.
Example 22.

1. The polynomials of degrees 3 on R are biharmonic non-harmonic maps.
2. The identity map Id : (M™,g) — (M™, g) is biharmonic.

3. A smooth map ¢ : (M™, g) — (R", <, >gx), is biharmonic if and only if AM(AM ) =
0,forallc=1,...,n

Example 23. Let f : R" — R a harmonic function (i.e. A(f) = 0). Then the function
o(x) = r3(z) f(x) is a biharmonic function non-harmonic, where r(x) = \/2? + 23 + ... + 22
for every x = {x1, x9,...,x,} € R™ is the distance function.

In effect:

r’(z) =z} + a3+ ...+ —Zx

p
2 n x>

g; :; aiji = 20

L

g—i;_szxigiwxigiw?gji.
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Then the Laplacian of a function v is given by:

Ap = 8<p Z2f—i—i4xl Z —_—

—2nf—|—42x1

=0

Thus ¢ is non-harmonic. For j fixved, we have:

Ay _ dz; Of - o*f
4 AN g
Oz + Z Ox; Ox; * le Oz ;0x;
T

_ ., 9f  Of ~ Of
Znaxj +46x] +4;x18%8$i.

Therefore:
PAo  Pf P I~ O 0% n
o3 ”a@ * o3 * ; Oxj Ox;0x; * ;x Ox;077
=0y

7(f) = —=A(Ap) = — ZazAfO —(2n + A)Af —AAf — 42%8 (Af) = 0.

Example 24. The inversion ¢ : R" — {0} — R" — {0}, = — p(z) = Lz is a biharmonic
application non-harmonic if and only if n = 4.
In effect. We pose ¢®(x) = Hiﬁ for every o € {1,2,...,n}. Fori fived, we have:

a n

5o = Suallel ™ = 2zeai]

82 n

o = —Adialle]| 7 = 20al7]| ™ + 8zaa? 2] .

Then the Laplacian of a function ¢ is given by:

Ap" =4 Siallal| > =2 zallal ™ +8 Y waallle]
i=1 =1 i=1

= dag[|z)| ™t = 2na, ||z)|
=2(2— n)xa|]x||_4.

Thus 7(p) = 2(2 — n)||z||~*x. From the same technique, we obtain:
a(p) = —8(2 —n)(4 — n)[|z["z.

Therefore, v is biharmonic non-harmonic if and only if n=4.



Chapter 2

Thurston Geometry

In this chapter we introduce a Thurston model geometry (G, X). Three-dimensional Thurston
model geometries are classified by W. Thurston, this classification has eight geometries, to
know, E3, S3, H3 S? x R, H*> x R, Sl5(R), Nil3 and Sols.

R. Filipkiewicz classified the Thurston geometry of dimension four. In this classification
we distinguish two categories of spaces, those which are symmetrical, to know, £4, S* H*,
P%(C), H*(C), S?x 5%, S? x E?, S? x H?, H* x E?, H>x H? ) H® x E' and H® x E' and those
that are not symmetrical, to know, Nil*, Sol? = Solj, Solj, F*, Sly(R) x E' and Nils x E.

m,n’

(50, [65], (6], [37], [61], [63], [64], [27] and [49]

Definition 59. Let (M, g) and (N, h) be Riemannian manifolds. An isometry is a diffeomor-
phism f : M — N such that g = f~'h where g = f~'h denotes the pullback of the metric
tensor h by f. If f is a local diffeomorphism then f s local isometry. We say that M and
N are isometric, M ~ N, if there is such isometry between them. The set of isometries from
M to itself forms a group under composition, and is denoted Isom(M).

Definition 60. Let G be a group and M a set. A left action of G on M is a map:

GxM — M
(gvm> — g.m,

such that g1.(g2.m) = (g1.92).m for all g1,92 € M and m € M, and e.m = m for e the identity
element of G and all m € M. A right group action can be defined similarly.

Definition 61. Given a set with a left action of a group G and m € M, the orbit of m under
the action G is the set orb(m) = {g.m | g € G}, that is, the set of all images of m under the
action of elements of the group G.

Definition 62. An action G x M — M of a group G on a set M 1is called transitive if it has
a single orbit, i.e. for any two elements m,n € M, there exist g € G such that n = g.m.

Example 25. The modular group PSLy(7Z) acts transitively on the rational projective line
PY(Q) = QU {co}. The projective general linear group PGLy(C) acts 3-transitively on the
Riemann sphere P*(C).
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Definition 63. Given an action G X M — M of a group G on a set M, for every element
m € M, the stabilizer subgroup of m (also called the isotropy group of m) is the set of all
elements in G that leave m fized:

stab(m) = {g € G | g.m = m}.

Definition 64. A Lie group is a group with a differentiable manifold structure compatible
with its group structure, i.e. the map:

p:GxGE — G
(9,h) — g.n7Y,

15 differentiable.

Definition 65. Let H and N be groups and let Aut(N) the automorphism group of N for the
law o. The direct product N x H of N and H is the group whose underlying set is the product
set N x H, with the law (nq, hy)(ng, ha) = (n1ng, h1hy) for all ny,ny € N and hy, hy € H.
The semu-direct product is a generalization of this notion. Let ¢ : H — AutN a group
morphism which in particular defines an action hy.ny = ¢(h)(n) of N on H.

Proposition 19. We define a group law on the product set N x H in posing:
(nl.hl).(ng.hg) = (nl(hl.ng), hlhg).

This group s called the semi-direct product of N by H relative to the action ¢, it is denoted
H x4 N (or simply Hx N ).

2.1 Thurston Geometries of dimension 3

Definition 66. Let X be one of E*, S? or H?, where E? is Euclidean two-space, S? is the
two-sphere and H? is hyperbolic two-space. Let T’ be a subgroup of Isom(X). If F is a two-
manifold such that F ~ X /T and the projection X — X/I' is a covering map, we say that F
has a geometric structure modeled on X.

Definition 67. A geometry is a simply connected, complete, homogeneous Riemannian man-
ifold X together with its isometry group. A manifold M has a geometric structure modeled
on X if M ~ X/T" where T" is a subgroup of the isometry group of X and ~ indicate that M
is isometric to X/T.

Definition 68. Two geometries (X1,G1) and (Xy, G) are equivalent if G is isomorphic to
Go and there exist a map ¢ : X1 — Xo. That is, ¢(g1.7) = go.0(x) where gy is the isomorphic
image of g1 in Gs.

A geometry (X, G1) is mazimal if there is no geometry (X, Go) with G1 € Gs.

This definition is needed to identify all possible geometric structures in a given dimension.
Thurston has identified the eight geometric structures in dimension three.
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2.1.1 Model geometries

Definition 69. A model geometry (G, X) is a manifold X together with a Lie group G of
diffeomorphisms of X such that:

1. X 1is connected and simply connected.
2. G acts transitively on X, with compact point stabilizers.

3. G is not contained in any larger group of diffeomorphisms of X with compact point
stabilizers of points, and

4. there ezists at least one compact manifold modeled (G, X )-manifold.
Theorem 9. The only Thurston model geometry of dimension 1 is E* ~ £(1)/O(1).

Theorem 10. [6/] page:(181) (two-dimensional model geometries). there are precisely three
two-dimensional model geometries: the Euclidean two-space E? ~ £(2)/O(2), The two-sphere
S? ~ 0(2)/O(2) and the hyperbolic two-space H* = PGLy(R)/PO(2).

Proof. Since G acts transitively on X, it follows that any G-invariant Riemannian metric
on X has constant Gaussian curvature. When a metric is multiplied by a constant k, the
Gaussian curvature is multiplied by k2, so we can find a metric whose curvature is either 0,
1 or —1. It is a standard fact from Riemannian geometry that the only simply connected
complete Riemannian n-manifolds with constant sectional curvature 0, 1 and —1 are E™, S™
and H". O

In enumerating three-dimensional model geometries (G, X ), we will first look at the con-

nected component of the identity of G call it G'. The action of G’ is still transitive, and the
stabilizers G, of points € X are connected. This is because the quotients G.,/(G’,),, where
(G!), is the component of the identity of G’,, from a covering space of X. Since X is simply
connected, the covering is trivial.
Therefore G’ is a connected closed subgroup of SO(3). Using the fact that a closed subgroup
of a Lie group is also a Lie group, and therefore a manifold, it is easy to see that there are
only three possibilities: SO(3), SO(2) and the trivial group. The stabilizer G, is a Lie group
of the same dimension.

Theorem 11. [6/] page:(181-184) There are eight three-dimensional model geometries (G, X),
as follows:

1. If the point stabilizers are three-dimensional, X is S, E3 or H3.

2. If the point stabilizers are one-dimensional, X fibers over one of the two-dimensional
model geometries, in a way that is invariant under G. There a G-invariant Riemannian
metric on X such that the connection orthogonal to the fibers has curvature 0 or 1.

(a) If the curvature is zero, X is S* x E' or H*> x E'.

(b) If the curvature is one, we have nilgeometry (which fibers over E?) or the geometry

—~——

of Slo(R) (which fibers over H?).
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3. The only geometry with zero-dimensional stabilizers is solvegeometry, which fibers over
the line.

The geometry in (1) we have already discussed extensively, and those in (a) are self-
explanatory. The remanning ones will be described in more detail in the course of the proof.
We start by giving X a G-invariant Riemannian metric.

Proof. For (1). If G' acts with stabilizer SO(2), there is a non-zero, G'-invariant vector field
V on X whose direction at each point gives the axis of rotation of the elements of G’ that
fix that point. The trajectories of V' form a G’-invariant one-dimensional foliation F. Also,
the flow of V' call it ¢; at time ¢t commutes with the action of G’, so if an element of G’ fixes
some points on a leaf I’ of F, it fixes any other point on F': all points on the same leaf have
the same stabilizer. This also implies that if an element of G’ takes a point € F' to another
point y € F, it commutes with any element of the stabilizer G}, = G

Now fix a leaf F' and a point = € F, and let g, be an element of G taking ¢,(z) back to x.
Then g; o ¢; fixes x, and its derivative at x is a linear automorphism of T, M. The derivative
is the identity along the axis of the action of G’. It commutes with rotations around this
axis, that is, with elements of G’ . Then it must be itself a rotation around this axis, possibly
composed with an expansion or contraction. But an expansion or contraction is ruled out,
because the assumption that there is a compact manifold modeled on (G, X) implies that V'
must preserve volume.

The divergence of a vector field V' on a manifold X with a volume form w is a measure of
how much V' expands or contracts volume. More precisely, divV is a Lie derivative Ly w,
expressed in units of w.

Now suppose that X is a manifold on which is Lie group G acts transitively, and that V' and
w are a vector field and a volume form on X, both invariant under GG. Show that divV is
constant over X.

In the situation of the proof, if there is a compact manifold modeled on (G, X'), this manifold
inherits the vector field and the volume form from X. The vector field must preserve the
total volume, and so much preserves volume at every point. Therefore V' has divergence zero.
Show that this implies that g; o ¢; acts as a rotation on T, M.

We conclude that the derivative of ¢, maps T, M to Ty, )M isometrically. Since z was
arbitrary, the flow of the vector field V' is by isometries.

By considering a neighborhood of a point on a leaf and the fact that the leaf is invariant
under a invariant under a subgroup G’ isomorphic to SO(2), we conclude that the leaf does
not accumulate on itself, but is an embedded image of either S* or R. In fact, it is easy to see
that distinct leaves have disjoint neighborhoods. Therefore the quotient space X/F is a two-
dimensional manifold Y. Since V' acts by isometries, Y inherits a Riemannian metric from X,
and a transitive action of G’ by isometries. Also, Y is connected and simply connected because
X is. By proof of Theorem 1, Y must be one of the two-dimensional model geometries: E3,
S? or H?. In addition, X is a principal fiber bundle over Y, with fiber and structure group
equal to St or R.

The plane field T orthogonal to F is a connection for this bundle. Since the group of isometries
of X acts transitively, 7 has constant curvature.

(a) If the curvature is zero, T defines a foliation. Since Y is simply connected, the bundle is
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trivial. There are three possibilities, depending on Y (an open circle indicates that no new
geometry arises possibility):

e If Y = 52, we obtain the model geometry S? x E'. As a compact manifold modeled on
this geometry, we can take S? x S*.

o If Y = F? then X = E? x E' = E3. Thus G’ (and hence G) is contained in a bigger
group of isometries, and we don’t get a new model geometry.

e If Y = H? we obtain the model geometry H? x E'. Any compact hyperbolic surface
cross a circle is an example.

In each of these two geometries, the full group of isometries G contains G’ with index 4, since
we can reverse the orientation of either factor independently.

(b) If the curvature of T is non-zero, T defines a contact structure. After rescaling our metric
in the direction of the fibers and choosing appropriate orientations for the base and the fiber,
we can assume that the curvature is 1, expressed in terms of the standard bases for /\2 TY
and TF. This, together with the condition that X is simply connected, essentially determines
the geometry. If Y has no-zero curvature, X can be taken as the tangent circle bundle of
Y (or rather, its universal cover) with the Levi-Civita connection. The group is made of
derivatives of isometries of Y, together with rotation of unit tangent vectors keeping the base
point fixed.

o If Y = 5% the tangent circle bundle is SO(3), whose universal cover is S%. For G, we
get the group of isometries of S3 that preserve the Hopf fibration. This is not a maximal
group acting with compact stabilizers, so it not a model geometry.

e If Y = E?, we obtain nilgeometry. This can be defined in terms of our model contact
structure 7T as the group of contact automorphisms that are lifts of isometries of the
xy-plane.

o If Y = H? the unit tangent bundle is PSLy(R), the group of orientation preserving

isometries of H2. Passing to the universal cover, we get X = Sl(R). The unit tangent
bundle of a compact hyperbolic surface is an example of a three-manifold with this
geometry.

—_—

For Sl3(R) and nilgeometry, the contact structure determines an orientation of the geometry
which cannot be reversed. However the orientation of the base two-dimensional geometry can
be reversed simultaneously with the orientation of the fiber, so the index of G’ in G is 2. [

2.2 The Eight Geometries

2.2.1 E3

Euclidean 3-space, E3, is the space R3 with the metric ds? = dz? + dy? + dz?. As in E? any
isometry of E® can be written as x — Ax +b, but now A is a real orthogonal 3 x 3 matrix and
b is a translation vector in R®. Thus there is a group homeomorphism ¢ : Isom(E?) — O(3),
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and the kernel of ¢ is the translation subgroup of I'som(E?). In the case where n = 3, it can
be show that the translation subgroup of G is of finite index in G, or G is a finite extension
of Z, where Z = {g : g is a translation}.

2.2.2 G3

The spherical geometry is the three-sphere and its isometry group. S® can be embedded in
R* and thus the metric on S? is the one induced from R*, that is, ds?> = da? +dy? + dz? 4 dw?.
The isometry group of S? is O(3), the group of orthogonal 3 x 3 matrices. It is interesting to
note that any orientation reversing isometry of S® has a fixed point, which limits the discrete
subgroups of Isom(S?) to subgroups of SO(3).

2.2.3 H?

The basic properties of hyperbolic space H? can be developed exactly along the lines which I
used for H? in Chapter 1 [61]. One starts with upper half 3-space R} = {(z,y,2) € R*: z > 0}
and the metric ds* = % (dz? 4+ dy® + dz?) to assign a length to any smooth path in R and
hence define a metric on R?. One checks that vertical straight lines are geodesics in this new
metric. One also checks that inversion of R? in sphere with center on the xy-plane defines an
isometry of H3. Now one can show that the geodesics of H? are exactly the vertical straight
lines and arcs of circles which meet the zy-plane orthogonally. One can also show that the
full isometry group of H? is generated by reflections, which are simply the above inversions
(including the reflections in vertical planes). Clearly an isometry of H? is determined by its
restriction to the "2-sphere at infinity" consisting of CU{oc}, where we identify the zy-plane
with C. The group of orientation preserving isometries of H* can be identified with the group
of Méebius transformation of C U {cc}. Recall that a Moebius transformation of C U {cc}
is a map of the form z — %j_rs where a,b,c,d € C and ad — bec # 0. The group of these
transformation is naturally isomorphic to PSLy(C). We identify the point {z,y,z} of R?

with the quaternion x+yi+zj. The 2 x 2 complex matrix ( CCL d ) acts on R?, extending its

natural action on C U {oo}, by the formula w — (aw + b)(cw + d)™", where w is a quaternion
of the form x + yi + zj, z > 0. One can check that this yields all orientation preserving
isometries of H3.

2.2.4 S?xR

The space S? x R is precisely the Cartesian cross product of the unit two-sphere and the real
line with the product metric. The isometry group of S? x R is identified with the product of
Isom(S?) and ITsom(R). That is, Isom(S? x R) = I'som(S?) x Isom(R). This geometry is
relatively simple. In fact, there are exactly seven manifolds without boundary which have a
geometric structure modeled on S? x R.
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2.2.5 H?xR

The space H? x R is the Cartesian cross product of hyperbolic two-space and the real line
with the product metric. It has isometry group I'som(H? x R) = Isom(H?) x Isom(R).
There are infinitely many manifolds with a geometric structure modeled on H? x R. Let
H? be represented by the upper half-plane model {(z,y) € R? | y > 0}, therefore the space
H? x R is a Lie group with respect to the operation (z,y,t)(z',y/,2") = (2'y + z, 9y, z + 2')
and the left-invariant metric:

1
ds* = E(dm2 + dy?) + d2*.

e~ —

2.2.6  SIy(R)

The 3-dimensional Lie group of all 2 x 2 real matrices with determinant 1 is denoted Sls(R)

e~

and Sly(R) denotes its universal covering. The unit tangent bundle of H? can be identified
with PSLy(R), which is covered by Sly(R). The metric on H? can then be pulled back to

induce a metric on Sly(R). It is well-know that Sly(R) can, as a Riemannian manifold, be
modeled as R? equipped with the following metric:

1

2
ds—y2

d
(dz® + dy*) + (dz + 5)2

2.2.7 Nils

The space Nil3 on Thurston’s list can be presented as the 3-dimensional nilpotent Lie sub-
group

1 =

Nily = 0 1

0 0

of SL3(R) equipped with its standard left-invariant Riemannian metric. The restriction of

this metric to Nil? is determined by orthonormal basis {X,Y, Z} of its Lie algebra nil given
by:

4
y |lz,y,z€eR
1

010 000 00 1
X=[000|,Y=]001],Z={00 0

000 000 001
It is well-know that in the global coordinate {x,y, 2} on Nil® the left-invariant Riemannian

metric satisfies:
ds* = dx® + dy* + (dz + xdy)*.

This geometry is called Nil3 because the Lie group is nilpotent.
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2.2.8 S 0l3
The model space Sols on Thurston’s list can be seen as the 3-dimensional solvable Lie group
e 0 =z
Sols = 0 e y ||z,y,2z€R
0 0 1

of SL3(R). The metric on Sols is determined by orthonormal basis { X, Y, Z} of its Lie algebra
sol, given by:

0 01 000 0 0 0
X={000},Y=]001],Z=]0 —-10
000 000 0 0 1

We can identify Sol3 with R® with the multiplication given by (z,y,t)(z',y/,2") = (v +
ez’ y + e*y,z + 2'). In the global coordinates {x,y,2} on Sol® this takes the following
well-known metric form:

ds? = e**dx? 4+ e Zdy? + d2*.

This group is called Sols because it is a solvable group.

Remark 15. Fxcept Sols all models Thurston admit canonical normal almost contact metric
structures.

2.3 Thurston Geometries of dimension 4

The definition of model geometries of dimension 4 is the same for the dimension 3, except
that in condition 4 of definition (69) the word compact is replaced by finite volume.

For a geometry (X, G) and any point x of the n-manifold X, the stabilizer G, of the transi-
tive, effective and isometric G-action on X is compact. In fact, G, is isomorphic to a closed
subgroup of O(n) since the action is isometric. By classifying all the possible closed sub-
groups of SO(4), R. Filipkiewicz proved that there are 19 classes of maximal geometries in
4-dimension.

Table. Nineteen classes of 4-dimensional geometries of Filipkiewicz:

type geometries

solvable type E*, Nilg x E', Nil*, Sol,,, ., Solg, Sol}

product type | H?> x S?, 3 x E', 8? x E?, H?® x E', SI,(R) x E', H? x E? H? x H?
hyperbolic H*, H?*(C)

finite group St P?(C), S* x S?

T H? F?

Suppose M is closed 4-manifold with x(M) = 0, then [37] M can be seen as a quotient
X/T', where X is a 1-connected solvable Lie group and I is a closed torsion-free subgroup of
X x Aut(X).
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2.3.1 Nil*

The geometry Nil* is the semi-direct product R? x5 R where 6 = [t, ¢, %] and the component
of its isometry group with identity is Nil* itself as left translation. It has abelianization R?
and central series (Nil* 2 R < (Nil* = Nil* =~ R2.

These Lie groups have natural left invariant metrics, and the isometry groups are generated
by left translations and the stabilizer of the identity. For Nil® this stabilizer is O(2), and
Isom(Nil?) is an extension of £(2) by R. Hence Isom(Nily x E') = Isom(Nil3) x £(1). For
Nil* the stabilizer is (Z/27Z)?, and is generated by two involution, which send ((z,y, 2),t) to
(—(z,y,2),t) and ((—=z,y, z), —t), respectively.

2.3.2  Soll,,

The geometry Solfnm represents the semi-direct product R3 X0,,, R, where m and n are

integers such that the polynomial f,,, = X — mX? + nX — 1 has distinct roots e?, €
and e (with a < b < c real) and 0,,,(t) is the diagonal matrix diag[e®, ", e]. Since
O (t) = 05, (—t) we may assume that m < n, the condition on the roots then holds if and
only if 2¢/n < m < n. The metric is given by ds? = e 2%dz? + e Pldy? + e~ 2dz? + dt?
(in the obvious global coordinates) is left invariant, and the automorphism of Solfmn which
sends (z,y, 2,t) to (pz,qy,rz,t) is an isometry if and only if p? = ¢*> = r> = 1. Let G be a
subgroup of GL(4,R) of bordered matrices ( ZOD § ), where D = diag[+e®, +e% +e] and
£ € R3. Then Solfn’n is a subgroup of G with positive diagonal entries, and G = Isom(Solfn’n)
if m # n. If m = n then b = 0 and Sol,, , = Sol® x E', which admits the additional isometry
sending (z,y, 2,t) to (z,y,2,—t), and G has index 2 in Isom(Sol®> x E'). The stabilizer of
the identity in the full isometry group is (Z/27Z)? for Soly, , if m # n and Ds x (Z/2Z) for
Sol* x R. In all cases Isom(Soly,,) < (Soly, ) x Aut(Soly, ). In general Sol,, , = Sol,, .,
if and only if (a,b,c) = A\(d',V/, ) for some X\ # 0.

2.3.3 Sol}

The geometry Solg is the semi-direct product R® x¢ R, where £(¢) denotes the diagonal
matrix diag[e’,ef, e ?]. Note that if £(t) preserves a lattice in R? then its characteristic
polynomial has integral coefficients and constant term —1. Since it has e’ as a repeated root
we must have £(¢) = I. Therefore Solj does not admits any lattices. The metric given by
the expression ds? = e 2 (dz? + dy?) + e*dz? + dt* is left invariant, and O(2) x O(1) acts
via rotations and reflections in the (x,y)-coordinates and reflection in the z-coordinate, to
give the stabilizer of the identity. These actions are automorphisms of Sol3, so Isom(Sol}) =
Soly x (O(2) x O(1)) < (Solg) x Aut(Solj). The identity component of Isom(Solj) is not
triangular.

2.3.4  Sol!

The Sol} geometry is the group of real matrices: | z,y,z,t €R, t >0

o O
S+ 8
— < W
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The metric given by ds? = t72((1 + 2?)(dt* + dy?) + t*(da® + dz?) — 2tx(dtdx + dydz)) is
left invariant, and the stabilizer of the identity is Dg, generated by the isometries which send
(t,r,y,2) to (t,—x,y,—2) and to t~*(1, —y, —x,ry — tz). These are automorphisms. (The
latter one is the restriction of the involution Q of GL(3,R) which sends A to J(A")~1J,
where J reverses the order of the standard basis of R?.) Thus I'som(Sol}) = Solj x Dg <
(Sol}) x Aut(Sol}). The orientation-preserving subgroup is isomorphic to the subgroup & of
GL(3,R) generated by Sol{ and the diagonal matrices diag|—1, 1, 1] and diag[1,1, —1]. (Note
that these diagonal matrices act by conjugation on Sol}.)

2.3.5 F*

The geometry F'* is the tangent bundle .7 H? of the hyperbolic plane H?, which we may
identify with R? x H?. Its isometry group is the semidirect product R? x, SI3(R), where
SIF(R) = {A € GL(2,R) | detA = £1}, and « is the natural action of SIF (R) on R?. The
identity component acts on R? x H? as follows: if © € R? and A = ( CCL Z ) € Sly(R)

then u(w, z) = (u + w, z) and A(w, z) = (Aw, Zjig) for all (w,z) € R? x H?. The matrix

D= ( (1) _01 ) acts via D(w, z) = (Dw, —z). All H*(C) and F*-manifolds are orientable.

2.3.6 Stabilizers of Thurston geometries

The stabilizers of these geometries are:

stabilizer geometries nature of geometry
Soy St B HY constant curvature
Us P*(C), H*(C)

S0y x Soy | S% x S%, 5% x BE%, S%? x H? E? x H?, H?> x H? symmetric
Sos S3x BY, H? x Bt

S0y Sly(R) x B, Nily x E*, Solg, F* not symmetric
{1} Nil*, Sol? .. Solj




Chapter 3

Legendre curve on Lorentzian Heisenberg space

The Legendre curves play a fundamental role in 3—dimensional contact geometry. Legendre
curves on contact manifolds have been studied by C. Baikoussis and D. E. Blair in the paper
[1]. M. Belkhelfa, I. E. Hirica, R. Rosca and L. Verstraelen [11| have investigated Legendre
curves in Riemannian and Lorentzian manifolds. Heisenberg group is a unimodular Lie group
with left invariant Sasakian structure.

The concept of local ¢- symmetric was introduced by T. Takahashi [62]. According to Taka-
hashi a differentiable manifold is called locally if it satisfies:

»*(VwR)(X,Y)Z = 0. (3.1)

In this chapter, we show that the Legendre curves on three-dimensional Lorentzian Heisenberg
space (Hs, g) is locally ¢- symmetric if and only if is a geodesic. Moreover we prove that the
Legendre curves on three-dimensional Lorentzian Heisenberg space is biharmonic if and only
if is a pseudo-helix.

3.1 Contact Lorentzian manifold

Let M be a (2n + 1)-dimensional differentiable manifold. M has an almost contact structure
(¢,&,m) if it admits a (1,1) tensor field ¢, a vector field £ and a 1-form 7 satisfying:

PP =—I+n®E nE)=1 (3.2)

Suppose M has an almost contact structure (¢, &, 7). Then ¢£ = 0 and 1o ¢ = 0. Moreover,
the endomorphism ¢ has rank 2n.

If a (2n + 1)-dimensional smooth manifold M with almost contact structure (¢,&,n) admits
a compatible Lorentzian metric such that:

9@ X, 0Y) = g(X,Y) +n(X)n(Y), (3.3)

then we say M has an almost contact Lorentzian structure (1, &, ¢, g). Setting Y = £ we have:

n(X) = —g(X,§). (3.4)
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Next, if the compatible Lorentzian metric g satisfies:
dn(X,Y) = g(X,¢Y), (3.5)

then n is a contact form on M, £ the associated Reeb vector field, g an associated metric and
(M, 9,&,m, g) is called a contact Lorentzian manifold.
An almost contact Lorentzian manifold (M, ¢,&, 7, g) is Sasakian if and only if:

(Vx@)Y = g(X, V)€ +n(Y)X. (3.6)

Let (M, ¢,&,1,9) be a contact Lorentzian manifold. Then we have:
Vxé=¢X —ophX, h= %quﬁ. (3.7)
If € is a killing vector field with respect to the Lorentzian metric, then we have:
Vxé=oX. (3.8)

An arbitrary curve v : I — M?3 v = 7(s) in Lorentzian 3-manifolds is called spacelike,
timelike or null (lightlike), if all of its velocity vectors +/(s) are respectively spacelike, timelike
or null (lightlike). If v is a spacelike or timelike curve, we can reparametrize it such that
9(7(s),%(s)) = €, where € = 1 if «y is spacelike and € = —1 if 7 is timelike, respectively. In
this case y(s) is said to be unit speed or arclength parametrization. Then the Frenet-Serret
equations are following:

V1T = exN
VN = —kT + e37B
VTB = —GQTN

where k = |V T is the geodesic curvature of v and 7 is the geodesic torsion.

A Frenet curve is a geodesic if and only if K = 0. A Frenet curve v with constant geodesic
curvature and zero geodesic torsion is called a pseudo-circle. A pseudo-helix is a Frenet curve
~v whose geodesic curvature and torsion are constants.

The constant €1, €5, €3 defined by g(T,T) = €1, g(IN, N) = €9, g(B, B) = €3, and called second
causal character and third causal character of v, respectively. Thus it satisfied ;65 = —e3.

Proposition 20. Let {T, N, B} are orthonomal Frame field in a Lorentzian 3-manifold. Then

TAN=eB, NAB=eT, BAT =eN. (3.9)

3.2 Legendre curve on Lorentzian Heisenberg space

Definition 70. A Frenet curve v in a Riemannian manifold is said to be a Legendre curve
if it is an integral curve of the contact distribution D = Ker(n), i.e., if n(%) = 0.

Let us consider the three-dimensional Heisenberg group
I z4+%

Hg = 01 Yy

0 0 1
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Now, we take the contact form:
n =dz+ (ydx — zdy).

Then the characteristic vector field of 7 is £ = %.
Now, we equip the Lorentzian metric as following:

g =dz® + dy* — (dz + (ydx — zdy))*.

We take a left-invariant Lorentzian orthonormal frame field (e, es,e3) on (Hs, g):

0 0 0 0 0

61:%_y£7 62:8—y+l’&, 63:&,

and the commutative relations are derived as follows:
[e1, e2] = 2e3, e, €3] = [e3,e1] = 0.
Then the endomorphism field:
per = e, Pex = —ey, ez = 0.

The Levi-Civita connection V of (Hs, g) is described as:

V6163 = —é€g, v6162 = €3, Velel - 07
Vee3=e1, Veea=0, Vg,e = —e3,
Veses =0, Vesea = €1, Ve = —ea.

The contact form 7 satisfies dn(X,Y) = ¢g(X,¢Y). Moreover the structure (n,&,,qg) is
Sasakian. The Riemannian curvature tensor R of (Hj, g) is given:

R(eq,e2)er = 3es, R(er,ez)es = —3eq,
R(eg, e3)es = —e3, Rleg, e3)es = —e,
R(e?n 61)63 = €1, R(e?n 61)61 = €3,

the others are zero.
The sectional curvature is given by:

K& e)=-1, for i=1,2,

and
K(el, 62) = 3.
Hence Lorentzian Heisenberg space (Hs, g) is the Lorentzian Sasakian space forms with con-

stant holomorphic sectional curvature p = 3.

Definition 71. A 1-dimensional integral submanifold of a contact manifold is called a Leg-
endre curve.

Theorem 12. [11] Let M be a 3-dimensional contact metric manifold. Then M is Sasakian
if and only if the torsion of its Legendre curves is equal to 1.
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3.2.1 Locally ¢-symmetric Legendre curves on Lorentzian Heisen-
berg space

Definition 72. A Legendre curves v on Lorentzian Heisenberg space will be called locally
o-symmetric if it satisfies:

¢*(VrR) VT, T)T =0 (3.10)
where T = 7.

Theorem 13. [8]/ A Legendre curves on Lorentzian Heisenberg space is a locally ¢-symmetric
if and only if is a geodesic.

Proof. Let consider a loccaly ¢-symmetric Legendre curves on Lorentzian Heisenberg space.
Let T', ¢T', £ be a Frenet frame on Legendre curve. To maintain oriontation let ¢7T" = N and
¢N = —T. Also we take B = £. Now using Serret Frenet formula, we get:

R(VyT,T)T = R(exk¢T,T)T = es6R(N, T)T. (3.11)

Since T" and N are orthogonal to & = e3, we can take T' = t1e; + taes and N = njeq + noes.
Here tq, t5, n1, ny are scalars.

Using the definition of curvature tensor R the expression of 7" and N and (3.2) we gate after
straight forward calculation:

R(N,T)T = 3t1(—naties + nitaes) + 3ta(—nytae; + notieq). (3.12)
Since T, ¢T and £ = e3 forms a right handed system. We have t1ny — ton; = €3, then:
R(N,T)T = 3egtoe; — 3estyes. (3.13)
Combining (3.11) and (3.12), we obtain:

R(VTT, T)T = 3K€2€3t2€1 - 3H€2€3t162

= — 3%61t261 + 3/€€1t162. (314)
Now
(VoR)(V¢T, T)T = Ve R(VT, T)T — R(V2T, T)T — R(N+T,V1T)T
— R(V¢T, TV, T
= VrR(ea6N, T)T — 25/ R(N, T)T — e3> R(T, T)T
+ e kTR(B,T)T — k*R(N,T)N. (3.15)
Now

R(B, T)T = R(é, t1€1 + t2€2)(t161 + tgeg)
= t1t1R<€1, 5)61 — tthR(eg, 6)61 — tthR(el, 5)62 + t2t2R(62, f)eg. (316)

Using (3.2) in (3.16), we get:

R(B,T)T =(t] +t3)es, (3.17)
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and
R(N,T)N = —3esnyes + 3eznge;.

Again

VoR(exkN, T)T = Vo R(VoT, T)T
= Vi e14+tpe, — SKE1T2€1 + 3KE1t €9
= (t1e1)(—3kerty)e; — 3rert1ta Ve, e
+ (t1e1)(3kerty)es + 3rertit1 Ve, ea
+ (taea)(—3kerta)er — 3rertataVe,eq
+ (toes)(3kerty)es + 3rert1ta Ve, €0
= 3e1k't1eg — 3e1K'taer + 3rertities + 3reitataes. (3.18)

Using (3.17), (3.18) in (3.15), we have:

(VrR)(V7T, T)T = 3e1K't1e9 — 3e1k'tae; — 3kertities — 3kertataes
— 62K (3egtae; — 3esties)
+ e1k(t5 +t3)es
— k*(—3e3nieq + 3esnge)
= — 3eyKtities — Serktataes + ek (1 4 15)es

+ 3Kk2e3nies — 3K2esnsey.
By (3.2) and (3.3), the above equation yields:
¢*(VrR)(VrT, T)T =+ 3x*esnies — 3k eznge;. (3.19)
Let the Legendre curve be locallyg-symmetric. Then by definition:
—3k%e3(nge; — nyey) =0. (3.20)
In both sides of (3.20) taking inner product with e;, we get:
K =0. (3.21)

]

3.2.2 Biharmonic Legendre curves on Lorentzian Heisenberg Space

Definition 73. [/6] A Legendre curve on a three-dimensional Heisenberg group will be called
biharmonic if it satisfies the btharmonic equation

VaT + R(V4T, T)T =0, (3.22)
where T = 7.

Theorem 14. [8/ A Legendre curves on Lorentzian Heisenberg space is biharmonic if and
only if is a pseudo-helix.



3.2 Legendre curve on Lorentzian Heisenberg space 63

Proof. Using Serret-Frenet formula, by direct computations, we have:

VaT = Vi(Vr(VeT))
= VT(VTEQHN)
= GQ(VT(VTKJN))
e2(Vr(K'N + KV N))
EQ(V (K'N — 5*6,T + e3kTB))
e2(K'N — 2kKk'e;T + e35'TB + €357’ B
+ K'VN — k26 VT + e367V 1 B)
= 3eskk’T + e3(K" — €3k — k)N — €, (27K + k7)) B.

Using Theorem 1, we have:

VAT = 3esknr (treg + taey) + ea(K” — €3k — €1k)(n1eq + noes)

— 2¢1Kes.
In view of (3.14) and (3.22), it follows that:

VAT + R(VyT, T)T = 3eskn’ (tier + taes) + ex(K” — €36 — 1K) (n1eq + nges)
— 261/‘6/63 — 361/€t2€1 + 361/€t1€2. (323)

Consider that the Legendre curve is biharmonic. Then by definition:

0 = 3eszkn’(trer + taea) + ex(K” + e3k® + e1k)(n1er + noey)
— 2e1K es — 3e1Kktae; + 3€1kties. (3.24)

In both sides of (3.24) taking inner product with es, we obtain:
2¢;5" =0,

which gives k an arbitrary constant. O



Chapter

Biharmonic curves in 3-Dimensional
Generalized Symmetric Spaces

In 1967, A. J. Ledger [46] initiated the study of generalized Riemannian symmetric spaces.
These spaces are geometrically characterized by the fact that the (local) geodesic symmetries
are isometries. A generalized symmetric space is a pseudo-Riemannian manifold which ad-
mits at least a regular s-structure. Kowalski showed that all generalized symmetric spaces
are necessarily homogeneous and classify them in dimension < 5 [43]. While the only three-
dimensional (Riemannian or Lorentzian) generalized symmetric space is the Lie group Sols.
In this chapter, we study bi-harmonic curves in three-dimensional generalized symmetric
spaces, equipped with a left-invariant pseudo-Riemannian metric. We characterize non-
geodesic biharmonic curves in three-dimensional generalized symmetric spaces and prove that
there exists no non-geodesic biharmonic spacelike curve helix in three-dimensional general-
ized symmetric spaces. We also show that a linear map from a Euclidean space in three-
dimensional generalized symmetric spaces is biharmonic if and only if it is a harmonic map,
and give a complete classification of such maps.

4.1 Three-dimensional generalized symmetric spaces

Let (M, g) be a connected pseudo-Riemannian and z a point of M. A symmetry at z is an
isometry s, of M, having x as an isolated fixed point. When (M, g) is a symmetric space, each
point x admits a symmetry s, reversing geodesics through the point. Hence, s, is involutive
for all x. This property was generalized by A.J. Ledger, who defined a regular s—structure as
a family {s, : x € M} of symmetries of (M, g) satisfying:

Sp O Sy =5,058,, z==5,(y),

for all z,y of M. The order of an s—structure is the least integer & > 2, such that (s,)* = idy,
for all z (it may happen that k = c0). A generalized symmetric spaces is a connected pseudo-
Riemannian (M, g) admitting a regular s—structure. The order of a generalized symmetric
spaces is the minimum of all integers & > 2 such that M admits a regular s—structure of

order k.
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Following [13], any proper (that is, non-symmetric) three-dimensional generalized sym-
metric spaces (M, g) is of order 4. Moreover, it is given by the space R*(z,y,t) with the
pseudo-Riemannian metric:

Ger = 6(62td$2 + e_2tdy2) + \dt?, (4.1)

where € = +1 and A # 0 is a real constant. Depending on the values of € and ), these metrics
attain any possible signature: (3,0), (0,3), (2,1), (1,2).

Let (M, g) be a three-dimensional generalized symmetric space which is the space R3(z, 3, 1),
and denote by V, R and Ric the Levi-Civita connection, the Riemann curvature tensor and
the Ricci tensor of M, respectively.

A left-invariant orthonormal frame {E;, Es, E3} in the low-three-dimensional generalized
symmetric space is given by:

—t 0 t 0
E1:€ Do Egzea—y, E3:

Slo

L
N (4.2)
With respect to this orthonormal basis, the Levi-Civita connection can be easily computed
as:

Ve By = —\6/6|1—/\‘E37 Vi By =0, Vi By = ﬁEh
VE2E1 — O, VE2E2 — \E/EﬁEg, VEQEg — —ﬁEg, (43)
Vi, Ei =0, Vi, Es = 0, Vi, Es = 0,

where ¢; = ﬁ

The Lie brackets can be easily computed as:

[E1, Byl =0, [Es, Es] = \;_\17|E2’ (B, B3] = ﬁEh (4.4)

We adopt the following notation and sign convention for Riemannian curvature operator:
R(X,Y)Z =VxVyZ —VyVxZ =V xyZ. (4.5)
The Riemannian curvature tensor is given by:
R(X,)Y, Z, W) =—g(R(X,Y)Z,W). (4.6)
Moreover we put:
Rape = R(E,, Ey) E., Rapea = R(Eq, By, Ec, Eq). (4.7)

A direct computation using (4.3), (4.4), (4.5), (4.6) and (4.7) gives the following non zero
components of Riemannian curvature of the three-dimensional generalized symmetric space
with respect to the orthonomal basis { £, Ea, F3} (we do not list those that can be obtained
by symmetric properties of curvature):

R(Ey, Es) By = —$ By, R(Ey, Ep)Ey = $Ei,

R(Ey, E3)Ey = B3 R(Ey, E3)Es = — 7 En, (4.8)

R(EQ, E3)E2 = §E3, R(E27E3)E3 = _WE27
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and: ) )
Ripip =5, Riga1 = —3,
R € __ €
Rizis = =y, Russ1 = 7 (4.9)
— € __ €
Rasps = =15y, Rassa = -

The Ricci curvature components { Ric;;} are computed as:

2

o (4.10)

RiCH = RiClg = Riclg = RiCQg = RiCQQ = O, Rngg = —

The scalar curvature 7 of the three-dimensional generalized symmetric spaces is given by:

3
T =trRic = Zg(EZ, EZ)RZC(EZ7 Ez) = —

=1

|—i|. (4.11)

4.2 Biharmonic curves in 3-dimensional generalized sym-
metric spaces

An arbitrary curve v : I — M,y = ~(s) in three-dimensional generalized symmetric spaces
is called spacelike, timelike or null (lightlike), if all of its velocity vectors ¥(s) are respec-
tively spacelike, timelike or null (lightlike). If 7 is a spacelike or timelike curve, we can
reparameterize it such that g(§(s),3(s)) = €, where ¢ = 1 if v is spacelike and ¢ = —1 if v
is timelike, respectively. In this case (s) is said to be unit speed or arclength parametrization.

Let {T', N, B} be the orthonormal frame field tangent to M along « and defined as follows:
T is the unit vector field tangent to v, N is the unit vector field in the direction of VT normal
toyand B=T X, N.
The pseudo-vector product operation X ,; is related to the determinant function by:

det(u,v,w) = g(u X v, w).
With respect to the orthonormal basis { £y, By, E3} we can write:

T - TlEl + T2E2 —+ T3E3
N = N1 Fy + Nobiy + NsEs
B = B\Ey + ByEs + B3 Es.

The following Frenet formulas hold:

V7T = exN
VN = —esT + ;7B (4.12)
VrB = —erN,

where g(T,T) = ¢,9(N,N) =¢€,9(B, B) = €. Here k = |V T is the geodesic curvature of
and 7 is the geodesic torsion.
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Using Serret-Frenet formulas (4.12), by direct computations, we have:

ViT = Vo(Ve(VeT))

VT(VTEHN)

6<VT<VT/€N))

€<VT<K/N + KVTN))

e(Vr(k'N — ek®T + €,k7B))

€(kK"N — 2erk'T + €1k'TB + 61k7'B

kK'VrN — ex?V1T + e,k7V1B)

—3kk'T + (ex” — er® — e1kT?)N + 2€€1 (7K' + KT')B.

=+ 1

Then the biharmonic equation (3.22) reduces to the system:

ke =0
ex” —ex® — ekt + KR(T,N,T,N) =0 (4.13)
2T + k' + KR(T,N,T, B) = 0,

which is equivalent to:
k = constant # 0
ex? + 672 = R(T,N,T,N)
7= —R(T,N,T, B).

Theorem 15. Let v be a non-null curve parameterized by arclength of three-dimensional
generalized symmetric spaces. Then 7 is a proper non-geodesic biharmonic curve if and only
if:

Kk = constant # 0

ek’ + a1’ = (2B — 1) (4.14)
7'/ = %N(;Bg

Proof. By direct calculation, using (4.9), we obtain:

R(T,N,T,N) DN TiN,T; B, Ry

ijlp=1
= TiNT1NaRy212 + T1 Ny To N1 R0
ToN1T5 N1 Ro191 + T N1T1 NoRoy190
Ty N3T1 N3 Rig13 + T1N3T5N 1 Ri331

+
+
+ T3N1T3N1R3131 + T3N1T1 N3 R3i13
+
+

T2N3T2N3R2323 + T2N3T3N2R2332
T3N2T3N2R3232 + T3N2T2N3R3223
— 1(B} - (B2 + BY)
_ lem-).

(by T><N:B,TxB:—N,EB§+EB§+elB§=el>.
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R(T,N,T,B)

szlp 1TINTB le]
T1N2T1Ba Ryg12 + T1 NoTo By Rygm
TyN1T3B1 Ro121 + ToN1T1 B Roy12
T1N3T1 B3 Ry313 + T1 N3 1381 Rigs:
T3N1T3B1R3131 + T3N1T1 B3 Raqis
T5N3T5 B3 Rosas3 + 1o N3 T3 B2 Roszo
T3N2 T3 By R3az0 + 13N 15 B3 R3oos
172N, B, — LT\ TyN, B,

+ lTQ]VlBl — lTngNgBl

— ST2N,By+ TN, By

— STINBi + STTBiNs

— STEN,By + STy Ty N, By

— STEN,B, + 5 T>T3 By Ny

+ o+ o+ o+ A+

— (1B, - 1)) (TiN2 - T\, )

— (1N TN (T3By - iy )

~ (1N, = TNy ) (T3 B, - T3y )

= (=@ NyBy+ eNoBy + €N B )
— _XN3B?”
(by TxN=DB,TxB=—N,eN,By + eNyBy + ¢, N3 By — 0).

These, together with equation (4.13), complete the proof of the theorem. [

Corollary 5. If k = constant # 0 and 7 = 0 for a non-null curve v : I — M then v is a
non-geodesic biharmonic curve if and only if N3Bs = 0 and k* = 5 (2B2 —1).

Corollary 6. Let v be a non-geodesic curve parameterized by arclength of three-dimensional
generalized symmetric spaces. If B3 =0 and e = ¢; = 1, then v is not biharmonic.

Corollary 7. Let v be a non-geodesic curve parameterized by arclength of three-dimensional
generalized symmetric spaces. If Bz is constant and N3Bs # o, then 7 is not biharmonic.

Definition 74. A differentiable curve of three-dimensional generalized symmetric spaces hav-
ing constant both geodesic curvature and geodesic torsion is called a helix.

Corollary 8. Let v be be a non-geodesic curve parameterized by arclength of three-dimensional
generalized symmetric spaces. If v is biharmonic helix, then:

B3 = constant # 0
Ny =0 (4.15)

ek’ + e = (2B — 1)
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Theorem 16. Let v be a non-null spacelike curve parameterized by arclength. Then v is
non-geodesic biharmonic heliz in three-dimensional generalized symmetric spaces.

Proof. Suppose that v : I — M is a non-geodesic biharmonic helix parameterized by ar-
clength. We shall derive a contradiction by showing that v must be a geodesic. We can use
(4.3) to compute the covariant derivatives of the vector fields T, N, B as:

7

VT (T’ ;TT)E (T'—;TT)E
T 1+\/ﬂ i3 ) b1+ [1g N od3 | Lo
€1 _€ 2 !

VN = (N{+LT1N3)E1+ (N = —=ToNs) s

VI Vi (4.16)

+

VB = (B/—f— L ZB)E +<B/ 1 ZB)E
T 1 /_W 1D3 1 /_|>\| 203 2
\ + < /_|)\| 202 — /_|>\| 1D1 + Dy 3

It follows that the third components of these vectors are given by:

(VoT, By) = (ﬁ ~ T eng)
(VrN, E3) = (ﬁTQNQ \/WT1N1 + 61N) (4.17)
(VyB, Ey) = (ﬁBBQ ~ B+ elBg>.

On the other hand, using Frenet formulas (4.12):

(VrT, Es) = e15N3
<VTN, E3> = —EIHTg + TB3 (418)
<VTB, E3> = —€1TN3.

Since 7 is assumed to be a non-geodesic biharmonic helix, we have, by Corollary (8),
N3 = 0, By = constant These, together with Equations (4.17), (4.18), give:

2 1 2 /
\/‘7 \/KT +61T3—0

—=T5Ny —

mTQBQ - ﬁTlBl - 0

Noting that " x B = —N, we also have:
TQBl - TlBQ - Ng. (420)

—=T1N1 = —e1kT3+ 783 (4.19)

Thus, we have:

T1N1 61/‘6T3 +7’Bg 1

R <
— —=1T7 T; =0 2
1 |>\ +€1

—15B —T11B;=0 3
\/7 22 — \/m 11 — <

L T Ny —
"
T.
RY <
Al
T5B; —T1Bs =0 <4

)
)

4.21
> (4.21)
)
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Case A: T? # T%. In this case, Equations (3) and (4) in system (4.21) viewed as equations
in B; and Bj has a unique solution By = B, = 0. This implies that T5 = 0. Substitute this
into (2) of system (4.21), we have T? = T#, a contradiction. Thus, we must have.

Case B: T? = T#. In this case, equation (2) of system (4.21) implies that T3 = constant. To
understand the meaning of this, if A > 0 or ¢; = 1 we represent the unit tangent vector T as:

T = sina cos BE; + sin asin SEy + cos aFs. (4.22)

where a = a(s), 8 = [(s). With this representation, T3 = constant implies that cosa =
constant and hence a(s) = ap, a constant. This, together with T? = T3, gives:
sin ap(cos f £ sin 5) = 0. (4.23)

If sin oy = 0, then we have T} = T, = 0, and it follows from the first equation of (4.16) that
V1T = 0 which means that v is a geodesic, a contradiction. Thus, we must have sinag # 0 ,
which, together with (4.23), implies that:

2
cosﬁzisinﬁzj:\/?—,

and hence,
2
Ty = 4Ty — i% sin arp. (4.24)

We use the first equation of (4.16) again to get:

Vol = sinaocosa0< + V2 FE;+ V2 E2> = kN,
2/ 2V
which yields:
Ny =N, = ig, (4.25)
since |V T| = |%| By the assumption that + is non-geodesic, we may assume, without

loss of generality, that sin ag cos ag > 0 so:

sin a cos oy

T

Using equations (4.24), (4.25) and the fact that B =T x N, we have:

(4.26)

By = constant
B, = constant (4.27)
Bg = TlNQ - TQNl = :l:SinOéo.

It follows from (4.27), (3) of (4.21), and and the third equation of (4.16), that:

1
% =|VrB? = 3 sin® ay. (4.28)

Substituting (4.26), (4.27), (4.28) into the third equation in (4.15), we have:
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= sin? a cos” o + = sin ap = l(2 sin ap — 1), (4.29)
A A A
which implies:
sin o = 1,
and hence:
cosaj = 0.

It follows that cos a2 = 0 from which and (4.26), we conclude that: x = 0, .i.e., 7y is a geodesic,
a contradiction.

Similarly if A < 0 or ¢ = —1, we represent the unit tangent vector T' as:
T = cosh avcos fE; + cosh asin fE5 + sinh aE3. (4.30)

Then we have: )
cosh o sinh ayg

K= |VyT| = : 431
and: )
7% = |VrB|? = 5% cosh? ay, (4.32)
B3 = 4 cosh ay. (4.33)
Substituting (4.31), (4.32), (4.33) into the third equation in (4.15), we have:
—1 2 .02 1 4 1 2
~ cosh” ag sinh” ag + X cosh” ap = X(Q cosh” ag — 1), (4.34)

which implies:
cosh? oy = 1,

and hence:
sinh ag = 0.

It follows that cosha? = 0 from which and (4.26), we conclude that k = 0, .d.e., 7 is a
geodesic, a contradiction. O

4.3 Linear biharmonic maps in 3-dimensional generalized
symmetric spaces

In [58] Ye-Lin Ou and Ze-Ping Wang study linear biharmonic maps from a Euclidian space
into Solz, Nils and Heisenberg spaces. They show that a linear map from a Euclidian space
into Sols, Nily or Heisenberg space is biharmonic if and only if it is a harmonic map. In this
section we study linear biharmonic maps from a Fuclidian space in 3-dimensional generalized
symmetric spaces and we show that a linear map from a Euclidian space into this space is
biharmonic if and only if it is a harmonic map, and we give classification of such maps.
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4.3.1 Biharmonic map equation in local coordinates

Lemma 10. [57] Let ¢ : (M™,g) — (N", h) with ¢(x1,...2m) = (¢1(z), ..., om(x)) be a map
between Riemannian manifolds. With respect to to local coordinates (x;) in M and (y,) in
N, ¢ is bitharmonic if and only if it is a solution of the following system of PDE’s:

¥ o (o o 8 [ o a v o
o (75 + 70T + (U 0T) + 70T,

Dl + T0T0) — T R, ) =0, 0= 1,2m.

Corollary 9. Let ¢ : R™ — (N™, h) with ¢(x1,...,x,) = (¢1(x), ..., on(x)) be a map from
a Fuclidean space into a Riemannian manifold. Then ¢ is biharmonic if and only if it is a
solution of the following system of PDE’s:

AT+ (VT V¢ )T75 + (Vo7 V(7°T7,5))
+(V’ V) Ty T — 7(Ve* V¢ )RS, =0, o=12.n.
4.3.2 Linear biharmonic maps in 3-dimensional generalized symmet-
ric spaces
Let (R3, g) denote three-dimensional generalized symmetric spaces where the metric can be
written as g, = e(e**dz?+e ! dy?) + Adt* with respect to the standard coordinates (y1, y2, y3)

in R3. Then a direct computation gives the following components of metric and the coefficients

of the connection:
gu =e€c®,  gp=ce ¥ gy =X\ allother g;; =0,

gt =1 g2 =1 ¢¥ =1 allother ¢ =0.

I, =0, TH =0, TIY =te*

rL,=0, I2,=0, I3 =0

;=1 T2,=0, TI3,=0

ryi, =0, I3,=0, T3 =0

ry, =0, I'3,=0, I3, = ie*% (4.35)

[;=0, I'3;=-1, T3, =0

riL=1, T4 =0, I3 =0

L, =0, I'Z,=-1, I'd, =0

ri,=0, I'2, =0, TI3,=0.
By our convention of curvature operator and the following notation for the components of
the Riemannian curvature:

o o0 0 , 0

=) =Rl 4.36
(ayi ayj)ayk kjayz ( )
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we have:
_ 0 9 It Lt
Rknj _Z-ij — _yjrki + LT, — T4, (4.37)

A straightforward computation using (4.36) and (4.37) gives the following components of the
Riemannian curvature of three-dimensional generalized symmetric spaces:

1 _ —e_—2 1 _ 1 _ e, -2 1
Ry = € R33 =1, Ry = P Rg3 = —1,
__ €2t _ —€ 2t 2
R121 =€, R112 =3¢, R33 =1, R323 —1,
3 _ —€ .2t 3 _ —€_ —2t 3 _ €2t 3 _ €, —2t
Ri3 = € R339 = 3€ R = Y€ R3o5 = 36 -
Theorem 17. Let p : R™ — (R3, g. ) with
X
i Air - Qim To
90(56') = Q21 Qg2 -+ Agm
a31 Aazz2 -+ A3m
xm

i.e., p(X) = (A1 X", Ay X' A3 X") be a linear map of three-dimensional generalized symmetric
spaces, where A; denotes the row vectors of the representation matriz. Then, ¢ is a biharmonic
map if and if it 1s a harmonic map, which is equivalent to either

Asg = 0, |A1|2 = |A2|27
or,

A37éO7A1:A2:O7

Proof. With respect to the standard Cartesian coordinates z; in R™ and (y*) in R3, the
tension field of ¢ is given by
m(¢) = tr,Vdo € (T¢~'TN)
s 0
Yy

_ gij( %_F§j¢a+1—\aﬁ¢a¢ﬁ)

= O aﬁcb%ﬁ)

i=1
0
— Aa AB
Fas Yo

(4.38)

0Ys

where A® = gzﬁﬂ AP = gb;B denotes the inner product and |A“| the norm of the vectors in
Euclidean space.
Putting 7(¢) = T"ai and substituting (4.35) into Equation (4.38), we find the following
components of the tension field of ¢:

7'1 = 2A3.A1

™ = —24;.A (4.39)

- §<‘A2|2€f2t+ ’A1’262t>
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where and in the sequel y3 = A3 X",
A further computation gives:

0
(ATU + (V7Y quB) gﬁ) _8y = (A7 + AP N Zﬂ)@y
0

(— A (AP + i) 5 -
+ (2
(514

By
de,
A

[

0
A2A3 ‘A‘2 2t—{—|A’2 2t>

4.40
o (4.40)
%)

A2 A22t
F(Ae — e 5 -

0
0y,

(47 V7°Tg, + 7247 VT, ) o

— <_ X€A1-A3(|A2|2€_2]t + |A1|262t))i
(
(

(V64, VreTogh - =
oy

%AQ.A3<|A2|26—% + AP a%

T (A(AL A 4 4( Ay Ag)e 2f))aiy3

(4.41)

(0 v a (0% 12 o 8
(V¢ , V) 7T 510 — o = T Aﬁ.APraﬁrwa—ya

= (2A1A3|A3|2 - %A1A3|A1|262t

0
€ 2 —2t
AL s ) o

4 ( Ay Ay| Asl? + —A2A3|A1|Qe2t

8
o€ 2 9t
+ \ A3A2|A2| >8y

—2
+ (TE(A1A3)2621£ + —|A |4e4t

(4.42)

0

% 2 -2t 4 4t
+ T (Andy)%e \A\ ) o

A
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0 0
TV<V¢aav¢ﬂ>Rgauay = Aﬂ'AaTVRgow%
—3€ 2e
- (TA1A3|A2|26_2t — A AgAr Ay
€ 2 2t 2\ 9
+ XA1A3|A1| (& ‘|‘2A1A3|A3| )@ (443)
1
2€ 3€
+ (XA%AgAQth AL A Age®
€ 0
- XAQAg‘A2|2€72t - 2A2A3A§) a_yQ
1 1 _
4 (—F|A1|464t+p|142|46 4t
2 2 o, 2€ 5 o) O
b\ (AlAg) e+ \ (A2A3) € >8y3

It follows from equations (4.40), (4.41), (4.42), (4.43) and Corollary (9) that the linear
map ¢ is a biharmonic map if and only if:

(
%A1A3|A1’2€2t =0

8e
A

4e 4e
X(|A2\2|A3|2 + (AA3)%)e™? — X(|A1\2|A3|2 + (A1 A3)?)e*

A2A3 |A2 |2672t =0
(4.44)

2 aar_ 2 4,—4
\ +E|A1| € t — E|A2| (& t— 0.
Solving System of equations (4.44), we have either (i) Az = 0,|A4;]* = |As]?, or (i) Az #
0, A; = Ay =0. It follows from equation (4.39) that in both cases the tension field vanishes
identically, i.e., ¢ is also harmonic. Therefore, we obtain the theorem. [

Remark 16. If we put e = 1 and A\ = 1 the three-dimensional (Riemannian or Lorentzian)
generalized symmetric space is the Lie group Sols.



Chapter

Biharmonic curves in Thurston geometry of
dimension 4

In this chapter we study harmonic and biharmonic applications in Thurston geometry of
dimension 4. We introduce the The 4-dimensional geometry Nil* and we define the metric
gnit- We give the Christofell symbols, the Riemannian curvature and we study the biharmonic
curves in Nil* space. [16], 2], [37], [49], [50] [27], [8], [9] and [64].

5.1 The 4-dimensional geometry Nil*
The geometry Nil* can be identified with R* endowed with the metric:

2
gnas = ds® = da? + das + (dvy + w1dxs)? + (doy + 21d7s + %dx3)2, (5.1)

where (z1, %9, 73, 24) are the standard coordinates in R*. This can be calculated from its
characterization as a left-invariant metric with respect to the group structure of Nil*. There
is a natural harmonic Riemannian submersion (zi, s, s, 14) — (x1, %9, x3) onto (R? h =
dzi + da3 + (dzg + x1dzs)?) = Nil®.

The components of the matrix g;; are given by:

1 0 0 0
3
0 1-+a22 T+ 3 n
333 2 IE4 $2 (5'2)
0 vi+3 l14+ai+7 F
0 I % 1

Note that the Nil* metric can be also written as:

4
ds® = E w' Q@ w’,
i=1

where: )

xr
wt = dry, w? =drs, WP =dry+ vidrs, w' = dry+ vidrs + Eldl'g,
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and the orthonormal basis dual to the 1-forms is:

_ 0 p__. 0 0 B0 p_ o _ . 8 _ 0
El - ’ E2 - xlam + O3 + 2 Oy’ E3 T Oza $18x4’ E4 T Ozy4 (5?))

With respect to this orthonormal basis, the non-zero Christoffel symbols and the non-zero
Lie brackets can be easily computed as:

x2 x2
Ty =-—m, Th=-301+%), Th=-% Th=-n(1+%3),

2 i 2 27
F%A = _%17 F%B = %(1 - 7;)7 F%AL = %7 F?Q = %7 (5.4)
F:f?,:%l, F‘ﬁ:%(l—%), Fﬁ:—%-
[Ey, Es) = —Es, [Ey, Fs] = —FEy. (5.5)

We adopt the following notation and sign convention for Riemannian curvature operator:
R(X,Y)Z =VxVyZ —VyVxZ =V xyZ. (5.6)
The Riemannian curvature tensor is given by:
R(X,)Y,Z,W)=—g(R(X,Y)Z,W). (5.7)
Moreover we put:
Rape = R(E,, Ey) E., Rapea = R(Eq, By, E, Eq), (5.8)

where the indices a, b, ¢, d take the values 1,2,3,4. A direct computation using (5.4), (5.5),
(5.6), (5.7), and (5.8) gives the following non zero components of Riemannian curvature of
Nil* space with respect to the orthonormal basis {Ey, Fy, E3, B4} (we do not list those that
can be obtained by symmetric properties of curvature):

__1.,1,2 __3 1.3 _1
Rig19 = —5 + §77, Rioi3 = —3@1 + g2y,  Riou = 521,
_ _3_3,2 . 1.4 _ 1,12 _1
Rizi3 = =% — 921 + 3521, Rizuu = —7 + 527, Rig14 = 3, (5.9)
_1_ 1,2, 1.4 _1_ 1,2 _1 1.3
Rase3 = 1 4Tt 16T, Ragoq = 1 8%, Ras3q = 21 — g2,
_1 _1 _ 1,2
Royoq = 1 Rogzs = 111, R334 = 2T1-
The Ricci curvature non zero components { Ric;;} are computed as:
SR 1,2 1,3 o1
Rici1 =1, Ricgy = —5x1, Ricog = —3wy, Ricyy = —57y, (5.10)
; _ 1 1.4 ; _ _ 1.2 ; __1 '
RZng =35 gﬂ?l, RZ034 = _le’ R’LC44 = —3-
The scalar curvature o of the Nil* space is given by:
4

i=1



5.2 Biharmonic curves in Nil* space 78

5.2 Biharmonic curves in Nil* space

Let v : I — (Nil*, g) be a differentiable curve parameterized by arc length and let {T', N, B, D}
be the Frenet frame fields tangent to Nil* space along v and defined as follows:

T is the unit vector field tangent to v, IV is the unit vector field in the direction of VT
normal to v, B = T Xyjys N is the first binormal vector fields and D = N X ;4 B is the
second binormal vector fields.

With respect to the orthonormal basis { £y, Es, E3, E4} we can write:

T=TE +Toky+ T3k + T, Fy

N = N1Ey + NoEy + N3FEs + N, Ey (5.12)
B = B\E| + ByEy + BsEs + ByEy

D = D1Ey+ Dy FEy+ DsEs + DyEy.

Denote by T' = +, the tangent unit field along ~.
We have the following result:

Lemma 11. There are vectors fields N, B, D along the curve v and some functions k, T
and p defined on y(I) C Nil* such that:

V1T = kN

VrN =—-kT + 1B (5.13)
VrB=—-7N+ pD

VrD = —pB.

Where T', N, B and D are mutually orthogonal vectors satisfying the equations:

g(T,T)=1, g(N,N)=1, ¢(B,B) =1, g(D,D) =1,

g(N,T) =g(B,T) = g(D,T) = g(B,N) = g(D,N) = g(D, B) = 0. (5.14)

Proof. When ¢(T,T) = 1 we have g(V7T,T) = 0. Then there exist a function k € C*(I)
and a unitary vector field N € v~1(TNil*), orthogonal to T such that V4T = kN.
Next g(N, N) = 1 implies g(VyN, N) = 0, and from the equality g(N,T) = 0, we derive the
relation:
g(vTN7T) +g(N7 VTT) = g(VTNa T) + K“g(N7 N)

= g(VTN + IiT, T)

=0.
Hence VN + T € (span{T, N})*, and its exists a smooth function 7 on y(I) and a unitary
vector field B € y~}(T Nil*) such that the system {T, N, B} is orthogonal and V1N + kT =

7B. this gives the second relation of the system.
Similarly, g(B, B) = 1 leads to g(VrB, B) = 0 and from the relation g(B,T') = 0, we get:

g(vTB7T) +g(B7VTT) = g(VTBaT) + Hg(BaN)
=g(VrB+ kT, T)
= 0.
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From g(B, N) = 0, we have:

g(VrB,N) + g(B,V¢N) = g(VrB,N) — kg(B,N) + 79(B, B)
= g(VrB+1g(N,N))
= 0.

Hence V7B + 7N € (span{T, N, B})*, and its exists a smooth function p on v(I) and a
unitary vector field D € y~}(T'Nil*) such that the system {T, N, B, D} is orthogonal and
VrB+ 17N = pD. So we obtain the third equation of the system.

Furthermore, from g(D, D) = 1, we have ¢(VrD, D) = 0 and the relation g(D,T) = 0 leads
to:

9(VrD,T) + g(D,VaT) = (Vo D, T) + rg(D, T)
=0.

Also from ¢g(D, N) = 0, it follows that:

g(vTDaN)+g(DavTN>:g(vTDaN)_Rg(D>T>+Tg(D>N)
=0.

Similarly the relation g(D, B) = 0 gives:

9(VeD, B) + g(D,V1B) = g(VrD, B) — 79(D, N) + pg(D, D)
=9(VrD,B) +p
= 0.
We get then g(VrD, B) = —p and the last relation of the system follows.
The functions , 7 and p defined in the Lemma (11) are the curvature, the torsion and the

bitorsion along the curve -y, respectively.
The quadruplet (7', N, B, D) is called four-dimentional Frenet frame. O]

The tension field 71 () of the curve + is then given in the four-dimentional Frenet frame
(T, N, B, D) by:
71(7) = kN, (5.15)

in effect, from the definition of the tension field, we get directly:
71 (y) = VT (5.16)
The biharmonic equation:
7a(y) = —(A'7(y) + trace, RN (7(7), dy)dy) =0 (5.17)

in the case of a curve v : I — (N, g) from an open interval I C R to a Riemannian manifold
(N, g) parameterized by arc length transforms (dy = T, 7(y) = ngv(%) = VrT) to the
Os

differential equation:
n(y) = VT = R(T,V¢T)T = 0. (5.18)
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Using the Frenet formulas (5.13), biharmonic equation (5.18) reduces to the system:

k! = 0

K"+ K — k1t + KkR(T,N,T,N) = 0
2k'T + k' + KR(T,N,T,B) = 0
ktp+ KR(T,N,T,D) = 0.

(5.19)

Theorem 18. v : I — Nil* is a biharmonic curve if and only if:

k = constant # 0

k*—71>=R(T,N,T,N)
7 =R(T,N,T,B)

Tp:R(T,N,T,D),

(5.20)

with:
R(T,N,T,N)

1
i }l 2=11)(ToNs — T3N3)? + (1 Ny — Ty Ny )?
ix (T3N4 — T4N3)2 + l(T2N4 — TyN,)?
(—3x1 + ga})(T1N3 — Ty Ny)(T1 N, — ToNy)
2(La1)(T1 Ny — TyN )TNy — Tuy)
2(—1 + Lu?) (T Ny — TyN,) (T1Ns — TyNy)
(
(
(-

(—3+1 )(T1N2 TN1)? + (=5 — 321 + fg21) (TiNs — T3N0)?
(

DO

1
2 - —[L’l)(TgNg - T3NQ)(T2N4 — T4N2)
2(:x )(T4N2 T2N4)(T4N3 — T3N4)
2

% T -+ $1>(T3N2 TQNg)(T3N4 — T4N3>,

1
4
1
4

+ + + + + + + +

and:

R(T,N,T,B) = + +22)(Ty Ny — TyN,)(Ty By — Ty By)

1
1
— 2%+ fgal)(TLNs — ToNy)(TiBy — T3 By)

»Noa wl»—‘

2
Ty
— 102 4 Lut)(TyNy — TyN)(TyBs — Ty By)
V(TuNy — TyN,)(Ty By — TyBy) + (ToNy — TyNy)(To By — Ty Bs)]
320+ L) [(Ty Ny — ToNy)(Ty Bs — T3 By)
Ty N3 — TNy )(Ty By — ToBy)] + (202)(TsNy — TyN3)(Ts By — TyBs)

(—
(-
(
(
(—
(
(—1 + 323)[(TAN3 — T3N1)(T1 By — Ty By)
(
(
(
(
(
(
(

e L N L

TiNy — TyNy ) (Ty B3 — T3By))]

zll — —:L'l)[(TQNg — T3Ns)(ToBy — Ty Bs)

13N, — TyN2) (T2 Bs — T3B5)]

21)[(T1 Ny — ToNy ) (Th By — Ty By) + (11 Ny — TyN, ) (Th By — T5By)]
21)[(TyNy — ToNy)(TyBs — T3 Ba) + (T4N3 — T3N4)(Ty By — Ty By))
x1 — s23)[(TeN3 — T3N, ) (T3 By — Ty Bs)

TyN3 — T3N,)(T3By — To Bs)].

1
1
1
1
1
1

+ + + + + + o+ A+
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and:
R(T, N, T, D) = + %Jf%)(TlNg T2N1>(T1D2 — T2D1)
Sy 21)(TyN3 — T5N,)(T1 D3 — T3D;)

2
1
— i+ = )(T2N3 — T3N3)(12D3 — T3 Ds)

%Iw l\?lH

N

[
% 1+ %)[(TlNQ ToNy)(Th D3 — T3Dy)

T+ 12D [(TVNs — TN, )(Ty Dy — Ty Dy)
TiNy — TyN, ) (T D3 — T3 Dy )]
T — 223 [(TeNs — T3N;)(To Dy — Ty Ds)
TyNy — TyNy)(To D3 — T3D,)]

+ o+ + + + + o+ o+ o+ o+

1
4
1
4
zllxl — —.Z'l)[(TQNg T3N2>(T3D4 — T4D3)
TyN; — TyNy)(Ty Dy — T5Ds)].

+

(=
(=
(
(
(=
(
(=3
(
(
(
(
(
(
(

Proof. Using the fact that:

det(T,N,B,D) =1,
and:
+1y -1y +13 T
—N;y +N; —N3 +Ny
+B, —B, +Bg —By
-Dy +Dy; —D3 +Dy

det(T, N, B, D) =

Using Serret-Frennet formula, by direct computations, we have:

V1T = Vi (Vr(VrT))
= Vr(VreN)
— V(KN + kVrN)
= Vr(k'N — k(—kT + 7B))
= Vr(k'N — k*T + k7B)
= Vrk'N — Vrr?T + VT B)
= k"N —2kk'T + K'TB + k7' B
+ K'VN — &*ViT + k7V 1 B)
= K"'N = 2kx'T + (k'T + k7')B
+ K (=T + 7B) — K*(kN) + k7(—=7N + pD)

= —3kK'T+ (K" — K* — k7®)N + (2K'T + k7')B + Kk7pD.

)(T1Ny — T4N1)(T1D4 —T4Dy) + (IoNy — TyNo)(12Dy —

Ty N3 — TsNy)(Ty Dy — TyDy)] + (2a2) (T Ny — TyNs)(TsDy — TyDs)

[L‘l)[(TlNQ TgNl)(T1D4 — T4D1) + (T1N4 — T4N1>(T1D2 — Tngﬂ
LL’I)[(T4N2 T2N4)(T4D3 — T3D4> + (T4N3 — T3N4>(T4D2 — T2D4)}
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By direct calculation using (5.9), we obtain:

R(T,N,T,N)

e S S e s e s e a s S |

+ o+ + + + + o+t

Zij,k,lzl Ti;N; TN R

TiN2T1 N2 Ryg1a + T1 NoTo N1 Rigor + 1o N1 1o N1 Ror21 + 1o N1T1 Na Ro112
TiN3TIN3Ryz13 + TiN3T3 N1 Rsgy + T3 N1 T3N1 Raps1 + T3 N1 11 N3 R
T5N3T5 N3 Rogoz + ToN3T3No Raszo + T3 NoT3No Raase + T3 NoTo N3 Ros
TiNyJT1NgRyg14 + T Ny Ty Ny Ryggy + Ty N{TuN1 Ryyar + TyN1T1 Ny Ry114
T3N,T3Ny Raaza + T3 Ny Ty N3 Ryaas + Ty N3 Ty N3 Razaz + TyN3T3Ny Rysz34
ToNy Ty Ny Rogos + To Ny Ty No Roar + Ty No Ty No Ryzao + T4 NoTo Ny Ryzoy
TiN2TiN3Ryg13 + T1 NoT3 N1 Riggy + ToN1T1 N3 Ronas + T3 N1 1o N1 R
T1N3Ti NaRyz12 + T1N3To N1 Ryzon + T3N1 11 NoRgp12 + TaN1T3N1 Ro3:
TiNyT1NgRyo14 + T1 NoTy N1 Rygg1 + To N1 Ty Ny Roy14 + Ty N1To N1 Ry101
TiNyTI N2 Ryg1o + Ty Ny T2 N1 Rygor + Ty N1 Ty No Rypia + To N1 Ty N1 Ro1a1
TiN3TINyRyz14 + Ty N3TyN1 Rizar + T3 N1 Ti NaR3p1a + TuN1T3 N1 Rap31
TiNyTIN3 Rygi3 + TiNJT3 N1 Ryggy + Ty N1 Ty N3 Rynag + T3 N1 Ty N1 Rz
ToN3T5NyRogog + ToN3TyNo Rosan + T3 NoTo Ny R3oog + Ty NoT3No Ryaz0
T5NyTo N3 Roso3 + ToNaT3Na Royza + Ty NoTo N3 Rygo3 + T3 NoTy No R3p42
TyNoTyN3Raoaz + TyNoT3NyRagzq + To Ny Ty N3 Roasz + T3 Ny 1o Ny R3a24
TyN3TyNaRyzao + Ty N3To Ny Ryzoq + T3 NaTyNo R3pao + To Ny 13Ny Roy34
T3NoT3NyR3ozs + T3 NoTy N3 Raoaz + To N3 T3 Ny Rozss + T4 N3To N3 Ryze3
T3NyT3N2 Ragzo + T3 N, To N3 Ryaos + Ty N3 T3 No Ryzse + To N3 Ty N3 Rz
(=3 + 22 (TN, — TaN1)? + (=2 = 323 + Lad) (AN — T3 Ny)?

(3~ ot + dyal) (TN — T + (TN, - T’

123 (T5Ny — TyN3)? + 1 (ToNy — Ty N,)?

2(—3x1 4 323)(TyN3 — T3 N, ) (Ti Ny — TNy )

xl)(T1N2 — ToNy)(Ty Ny — Ty Ny)

+ )(T1N3 — T3N1)(Ty Ny — TyNy)
1
8T

1
2(3

[\

1
1
L 1a3)(TyNs — T3No)(TyNy — TyVy)
L20)(TyNy — TyNy)(TyN3 — TsNy)

i T + $1>(T3N2 TQNg)(T3N4 — T4N3>.

2

(
(-
2
(
2(-
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R(T,N,T,B)

e e S S e e e s a e s S S S|

+ o+ + + + + + + o+ o+ o+

> tkiet TN TiBiRiju

T1N2T1 BaRyg1a + T1NoTo By Rigon + ToN1T2 By Roror + ToN1T1 Bo Rono
T1N3T1B3Ryz13 + TiN3T3B1 Rigsn + T3 N1 1381 Rai1 + T3 N1 11 B3 Raas
TyN3T5 B3 Rosos + ToN3T3 By Rogso + T3NoT3 B2 Raase + T3 NoT2Bs Rsgos
TINJTVByRygia + TiNyTy By Ryyan + TyN1 Ty By Rynay + TyN1Ty ByRag14
T3Ny T3 By Razq + 13Ny Ty By R3gaz + TyN3Ty B3 Razaz + Ty N3 T3 By Ragzs
T5NyT5ByRoyos + ToNyTy By Rogas + Ty NoTy By Rysas + Ty NoTo By Ryz04
T1NoT1 B3 Rig13 + T1NoT3B1 Ryg31 + 1o N1T1 B3 Ro113 + T3 N112B1 Rai;
T1N3T1 By Ryz12 + T1N3To By Rigor + T3N1T1 Ba Rg112 + Ta N1 T3 B1 Roin
T1NoTh ByRig14 + TiNo Ty By Rigan + ToN1Ty ByRoy14 + Ty N1 T2 B1 Ryion
TiNyT1 By Ryg12 + TiNyTo By Rygor + TyN1 Ty Bo Rapia + To N1 Ty By Ry
TiN3T1ByRyg14 + Ty N3Ty By Rygan + T3 N1 T1 B4 R3i1a + TyN1T3B1 Rais
TiNyT1 B3 Rig13 + T1 Ny T3 By Ryyzy + Ty N1 Ty B3 Ry113 + T3 N1 Ty By R
T5N3T5ByRasas + ToN3Ty By Rogas + T3NoT2 By R3ooq + Ty NoT3Ba Raaso
ToNyTo B3 Royos + ToNyT3 Ba Royza + Ty NoTo B3 Ragoz + T3 NoTyBa R3puo
TyNoTyB3Ryoa3 + TyNoT3 By Ragzs + ToNyTy B3 Rogaz + T3NyTo By R34
TyN3TyByRyzas + TyN3To ByRagos + T3 Ny Ty By R3gao + To Ny T3 B4 Rosza
T3N2 T3 By R3gzs + T3No Ty B3 Ragas + To N3 T3 By Rogsa + TyN3To B3 Rysza3
T3N4T3ByR3yzp + T3NyTo B3 Rasog + Ty N3T3Bo Rygse + To N3 Ty Bs Roas
(—3+ lx%)(TlNg ToN:)(Ti By — Ty By)
(=3 = 32 4 Lat)(TiNs — TsN, ) (Ty Bs — T3 By)
(f— 371+ 7 )(T2N3 — T3N2) (T2 B3 — T3Bs)
([T Ny — T4N1)(T1B4 —TyBy) + (ToNy — TyNy)(To By — Ty By))|
(— % T+ !L‘l)[(T1N2 ToN1)(ThiBs — T3 By)
(TyN3 — TsN,)(Ty By — ToBy)] + (523) (T3 Ny — TyN3) (T3 By — Ty Bs)
(—3 + s2D)[(TiNs — T3N, ) (T By — Ty By)

(T1N4 = TyN,)(Th Bs — T3B,)]

(7 — 52D [(TeN3 — T3N2 )(To By — T Bo)

(T2N4 TyNo)(T2Bs — T3By)]

(321)[(TA Ny — ToNy (T4 By — TyBy) + (TyNy — TyN, ) (Ty By — To By )|
(321)[(T4Ny — ToNy)(TyBs — T3By) + (TyN3 — Ty Ny )(Ty By — T5By))
(321 — 32})[(ToN3 — Ty Ny ) (T3 By — Ty Bs)

(TyN3 — T3N4)(T3B5 — T3 B3)).
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R(T,N,T,D)

+ 4+ + + + + + + + 4

+ o+ + + + o+ o+ o+

> isimt TN T DiRijia

TiN2T1 Do Rigng + TiNoTo Dy Rigor + 1o N1 T2 Dy Royon + ToN1T1 Do Roqaa
TIN3TV D3 Rz + TAN3T3D1 Rygsy + T3 N1 T3D1 Rz + T3 N1T1 D3 R
ToN3T5 D3 Rozaz + ToN3T3 D2 Rogso + T3NoT3 D2 Raoss + T3NoTo D3 Roos
TINSTY Dy Rygig + TANJTy Dy Rygan + TyN1 Ty Dy Ranay + TyN1Ty Dy Ragna
TNy T3 Dy Rygza + T3NJ Ty D3 Ragaz + TuN3Ty D3 Ragaz + Ty N3T3 Dy R334
ToNST5 Dy Rosos + ToNyTy Do Rogas + TyNoTy Dy Ragas + TyNoTo Dy Ryzoy
TiNoT1 D3 Rygnz + T1NoT3D1 Rags1 + ToN1T1 D3 Ro113 + T3 N1 T2 D1 Rz
TiN3T1 Dy Ryziz + T1NsTo Dy Rasor + T3 N1T1 Do Rzi12 + Ta N1T3D1 Ro1z
TN Ty Dy Rigig + TiNoTy D1 Rygar + ToN1T1 Dy Ror1a + Ty N1To D1 R
TiINSTY Dy Rz + TANJT2 D1 Rygor + TN\ T1 Do Rania + To N1 Ty Dy Rora
TiN3T1 Dy Rygig + TAN3Ty D1 Rygan + T3 N1 T1 Dy R3pig + TaN1T3D1 Rans
TiNyT1 D3Rz + TiNyT3D1 Rugz1 + Ty N1T1 D3 Ry113 + T3 N1 Ty D1 R4
T5N3T2DyRogos + ToN3Ty Do Rozan + T3 NoTo Dy Rsgoq + Ty NoT3 D2 Ryaso
ToNyTo D3 Rosoz + ToNyT3 D2 Roszo + Ty NoTo D3 Ragoz + T3 NoTy Do R3oan
TyNoTy D3 Rygaz + TyNoT3DaRygzs + To Ny T4 D3 Rogaz + T3 NyTo Dy R34
TyN3Ty Do Ryzan + TyN3To DyRygog + T3 Ny T4 Do R3gan + ToNyT3D4 Roys4
T3N2 13Dy Ryosa + T3NoTy D3 R3oaz + ToN3T3 Dy Rogss + TyN3To D3 Ryza3
TNy T3 D5 Ryaso + T3 Ny T2 D3 R3gog + TuN3T3D2 Ragsa + ToN3Ty D3 Rosas
5+ 1x$)(T1N2 ToN:)(Ti Dy — To D)

% — —ﬂfl )(TlNg — T3N1)(T1D3 — Tng)
zll — —l'l )(T2N3 — TgNQ)(TQDg — T3D2)
DTN, — T4N1)(T1D4 — T4D1) + (ToNy = TyNo ) (T Dy — Tu D5

[

% 1+ $1)[(T1N2 ToNy)(Th D3 — T3Dy)

TiN3 — T3N1)(T1 Dy — ToDy)] + (%‘T%)(T3N4 — TyN3)(T3Dy — Ty D3)
T+ 22D [(TyNs — TN, )(Ty Dy — Ty Dy)

TiNy — TyN1)(Ty D3 — T3Dy))]

— 32)(TaNs — Ty Ny)(To Dy — Ty D)

TyNy — TyNo) (T2 D3 — T3Ds))

iﬁl)[(le\@ ToNy)(TyDy — TyDy) + (TyNy — TyN1)(T1 Dy — 15Dy )]

121)[(TyN2 — ToNy)(TyDs — T3 Dy) + (TyN3 — TsNy)(TyDy — ToDy)]

111 — 323)[(ToN3 — TsNo) (T3 Dy — Ty Ds)

(=3
(=
(
(
(=
(
(-3
(
(
(
(
(
(
(TyN3 — TsN,)(Ts Dy — Ty Ds)).
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These, together with equation (5.19), complete the proof of the theorem. [
Corollary 10. v : I — Nil* is a biharmonic curve if and only if:

N3 = Bg - D3 — 0

Kk = constant # 0

T = constant # 0 (5.21)
K2 —12=0

p=0.



Abstract

This thesis deals with the study of Harmonic and Biharmonic maps on Thurston geom-
etry. The aim of this thesis is to classify harmonic and biharmonic applications in Thurston
model geometries of dimension 3. Three-dimensional Thurston model geometries are clas-
sified by W. Thurston, this classification has eight Three-dimensional model geometries, to

know, E3, S3, H3 S? x R, H*> x R, Sl5(R), Nil3 and Sols.

Also we classify harmonic and biharmonic applications in Thurston model geometries of di-
mension 4. R. Filipkiewicz classified the Thurston geometry of dimension four and he proved
that there are 19 classes of maximal geometries in 4-dimension, to know, E4, S* H* P?(C),
H?*(C), 5* x 5%, 8> x E*, S* x H*, H* x E*, H* x H*, H* x E', H® x E', Nil*, Soly, .., Solg,
Sol}, F*, Sly(R) x E' and Nilz x E'.

In dimension 3 we study biharmonic Legendre curves on three-dimensional Lorentzian Heisen-
berg space (Hs, g) and we study biharmonic curves in three-dimensional generalized symmetric
spaces.

We also show that a linear map from an Euclidean space in three-dimensional generalized
symmetric spaces is biharmonic, and we give a complete classification of such maps.

In dimension 4 we study harmonic and biharmonic applications in Thurston geometry of di-
mension 4. We introduce the 4-dimensional geometry Nil* and we define the metric gy;4. We
give the Christoffel symbols and the Riemannian curvature to study the biharmonic curves
in Nil* space.

Keywords: harmonic applications, biharmonic applications, Lgendre curves, Generalized
symmetric spaces, Thurston geometry.



Résumé

Cette thése porte sur I’étude des applications harmonique et biharmonique sur les mod-
éles de Thurston. Le but de cette thése est de classifier les applications harmoniques et
biharmoniques dans les modeéles Thurston de dimension 3. Les géometries tridimensionnel de
Thurston sont classifier par W. Thurston, Cette classification a huit géometries, a savoir, E?,

S37 H3, S2 x R, H? x R, SlQ(R), N%lg et SOl3.

Nous classifions également les applications harmoniques et biharmoniques dans les modéles de
Thurston de dimension 4. R. Filipkiewicz a classifier les geometries de Thurston de dimension
quatre et il a prouvé qu’il existe 19 classes de géometries maximales en dimension 4, & savoir,
E*, S% H* P?*(C),

H?*(C), S x 5%, S*x E?, S? x H?, H* x E*, H* x H?*, H* x E', H* x E', Nil*, Sol}, ,,, Solg,
SOlil, F4, Slg(R) x E' et N’ng x B

En dimension 3 nous étudions les courbes biharmoniques de Legendre sur ’espace Lorentzian
Heisenberg tridimentionnel (Hj, g) et nous étudions les courbes biharmoniques sur 'espace
symétrique généralisé tridimensionnel.

Nous montrons égualement q’une application linéaire a partir d'un espace Euclidien sur
I'espace symétrique généralisé tridimensionnel est biharmonique, et nous donnons une classi-
fication compléte pour chaque application.

En dimension 4 nous étudions les applications harmoniques et biharmoniques sur les geome-
tries de Thurston de dimension 4. Nous introduisons la geometrie de dimension 4 Nil* et
nous definissons la metrique gn;+. Nous donnons les symboles de Christoffel et la courbure
de Riemann pour étudier les applications biharmoniques dans ’espace Nil*.

Mots clés: applications harmonique, applications biharmonic, courbes de Legendre, espaces
symétrique généralisées, géométrie de Thurston.
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