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Introduction

In 1976 William Thurston formulated the geometrization conjecture [63]. It says in simplified
terms that any compact manifold of dimension 3 can be endowed with a metric which is
locally isometric to one of the eight Thurston geometries. William Thurston studied many
three-dimensional spaces and found that all can be described by one of these eight geometries.
He encourages his students to explore computer databases. His concrete and experimental
work is of a very interesting rarity in mathematics. In the geometrization conjecture Thurston
used surgery, a method that allow manifolds to be cut out and glued together. For an example
we take a simple sphere (bellow a). At first we hollow out two disc-shaped holes as to obtain
a surface (b) whose edge consist of two circles (c). A trunk of a cylinder has two circles in its
edge, we can therefore sew the two circles of the cylinder along the two circles corresponding
to the edges of the hollowed discs. The results is (homeomorphic) to a torus (d). The torus
was thus obtained by surgery from a sphere.

(a) (b) (c) (d)

In 2003 Grigori Perelman [59] used the Ricci flow, a technique used by Richard Hamilton in
1982 [36]:

∂tgt = −2Ricc(gt)

to prove the geometrization conjecture, and consequently the Poincaré conjecture.

In 1964 J. Eells and J.H. Sampson [21] introduce the harmonic maps. Harmonic maps are
solutions to a natural geometrical problem. The map ϕ between Riemannian manifolds is
harmonic if it is a critical point of the energy functional:

E(ϕ;D) =
1

2

∫
D

|dϕ|2 vg,
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where |dϕ| is the Hilbert Schmith norm of the differential dϕ defined by:

|dϕ|2 =
m∑
i=1

h(dϕ(ei), dϕ(ei)),

where {e1, ..., em} is a local orthonormal basis on (Mm, g) and {∂1, ..., ∂m} is a local vector
field basis associated with a map (U,ϕ) of M . vg is the volume element of (Mm, g) defined
by:

vg =
√
det(gij)dx1 ∧ ... ∧ dxm,

and D is a compact domain of M . We also have that ϕ is harmonic if it satisfies the Euler-
Lagrange equation:

τ(ϕ) = traceg∇dϕ,
where ∇dϕ is the second fundamental form of ϕ.

In 1986 G.Y Jiang [40] introduced the concept of biharmonic maps. Biharmonic maps are
defined as critical points of the bienergy functional:

E2(ϕ,D) =
1

2

∫
D

|τ(ϕ)|2 vg,

and he proved that every biharmonic maps is a solution of the Euler-Lagrange equation:

τ2(ϕ) = −tracegR
N(τ(ϕ), dϕ)dϕ− traceg(∇ϕ)2τ(ϕ) = 0,

τ2(ϕ) is called the bitension field of the map ϕ.

In 2006 Y.L. Ou and Z.P. Wang [57] studied biharmonic maps on Sol3 and Nil3 spaces. Two
models space of Thurston’s 3-dimensional geometries.

In 2020 [8] we classified Legendre curves on three-dimensional Lorentzian Heisenberg space
(H3, g).

In 2021 [9] we classified the biharmonic maps in three-dimensional generalized symmetric
spaces and Sol3 became a particular consequence.

The principal goal of this work is to study the Biharmonic curves in the Thurston model
geometry of dimension three and dimension four. This thesis is organized in five chapters.
In the first chapter, we give the definitions of manifolds, differentiable manifolds, tangent
spaces, pseudo-Riemannian metrics and we introduce basic concepts of curvature, harmonic
and biharmonic maps.

In the second chapter we introduce a Thurston model geometry (G,X). Three-dimensional
Thurston model geometries are classified by W. Thurston, this classification has eight geome-
tries, to know, E3, S3, H3, S2 × R, H2 × R, S̃l2(R), Nil3 and Sol3.

We also study the Thurston geometry of dimension four. R. Filipkiewicz classified the
Thurston geometry of dimension four. In this geometry classification we distinguish two
categories of spaces, those which are symmetrical: E4, S4, H4, P 2(C), H2(C), S2 × S2,
S2×E2, S2×H2, H2×E2, H2×H2, H3×E1 and H3×E1 and those that are not symmet-
rical: Nil4, Sol4m,n, Sol40, Sol41, F 4, S̃l2(R)× E1 and Nil3 × E1.
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In the third chapter we show that the Legendre curves on three-dimensional Lorentzian
Heisenberg space (H3, g) is locally φ-symmetric if and only if it is a geodesic. Moreover
we prove that the Legendre curves on three-dimensional Lorentzian Heisenberg space is bi-
harmonic if and only if it is a pseudo-helix.

The results obtained in this chapter are published in the paper [8].

In the fourth chapter we study biharmonic curves in three-dimensional generalized sym-
metric spaces, equipped with a left-invariant pseudo-Riemannian metric. We characterize
non-geodesic biharmonic curves in three-dimensional generalized symmetric spaces and prove
that there exists no non-geodesic biharmonic spacelike curve helix in three-dimensional gen-
eralized symmetric spaces. We also show that a linear map from an Euclidean space in
three-dimensional generalized symmetric spaces is biharmonic if and only if it is a harmonic,
and we give a complete classification of such maps.

The results obtained in this chapter are published in the paper [9].

In the last chapter we study harmonic and biharmonic applications in Thurston geometry of
dimension 4. We introduce the 4-dimensional geometry Nil4 and we define the metric gNil4 .
We give the Christoffel symbols and the Riemannian curvature to study the biharmonic curves
in Nil4 space.



Chapter1
Preliminaries

In this first chapter, we give definitions of manifolds, differentiable manifolds, tangent spaces,
pseudo-Riemannian metrics and we introduce basic concepts of curvature, harmonic maps
and biharmonic maps. [60], [19], [21], [26], [53], [54], [52], [28], [30], [35], [42], [14], [40] and
[41].

1.1 Differential geometry

1.1.1 Differential manifold

LetM be a topological space. A topological spaceM is called a separate space (or a Hausdorff
space) if for any two distinct points p1, p2 ∈ M there exists two open sets U1, U2 ∈ U with
p1 ∈ U1, p2 ∈ U2 and U1 ∩ U2 = ∅. M is called a topological manifold if there exist an n ∈ N
and for every point x ∈M an open neighborhood Ux such that Ux is homeomorphic to some
open subset V of Rn. The naturel number n is called the dimension of M .

Definition 1. Let M be a separate topological space. An chart on M is a pair (U,ϕ) where
U is an open subset of M and ϕ(U) is an open subset of Rm such that ϕ : U 7→ ϕ(U) is a
homeomorphism. m is called the dimension of the chart (U,ϕ).

Definition 2. Let M be a separate topological space. An differentiable atlas A of dimension
n is a collection of open charts (Ui, ϕi)i∈I on M where ϕi(Ui) is an open subset of Rn such
that M =

⋃
i∈I Ui, and for each pair i, j ∈ I the mapping of all charts transitions:

ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj)→ ϕj(Ui ∩ Uj),

are a C∞-diffeomorphism with Ui ∩ Uj 6= ∅. A differentiable atlas is called a differentiable
structure, and a differentiable manifold of dimension n is a manifold of dimension n with a
differentiable structure. Two atlas are called compatible if their union is again an atlas. An
atlas is called maximal if any compatible with it is already contained in it.

Definition 3. A differentiable manifold of dimension n is a Hausdorff space provided with a
differentiable structure of dimension n.
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Example 1. Any vector space E of dimension n is a differentiable manifold. In effect let
defined the topology TE:

φ : E −→ Rn, x =
n∑
i=1

xiei 7−→ φ(x) = (x1, ..., xn),

where {e1, ..., en} is a basis of E. Then φ is bijective.
TE = {A ∈ E | φ(A) is an open of Rn} is called the reverse image topology, then (E, TE) is a
topological space.
Let X, Y ∈ E with x 6= y. Like Rn is a separate topological space, ∃ U, V ∈ Rn such that
φ(U) ∈ U , φ(V ) ∈ V and U∩V = ∅. Let’s put A = φ−1(U) and B = φ−1(V ), then A∩B = ∅,
so E is separate.
Now let defined the differentiable atlas AE = {(E, φ)}, and show that φ : E −→ Rn is a
homeomorphism.
We have, φ : (E, TE) −→ (Rn, TRn) is continued, because ∀U ∈ TRn , φ−1(U) = A ∈ TE.
And φ−1 : (Rn, TRn) −→ (E, TE) is also continuous, because ∀A ∈ TE, (φ−1)−1(A) = φ(A) ∈
TRn.
Where φ is a homeomorphism, then (E,AE) is a differentiable manifold of dimension n.

Example 2. The Euclidean space Rn is a differentiable manifold of dimension n with A =
(Rn, IRn). The opens Ω ⊂ Rn provided with an atlas AΩ witch contains the only chart (Ω, IdΩ)
are a differentiable manifolds of dimension n.

Example 3. The standard sphere Sn = {u ∈ Rn+1 | ‖u‖ = 1} is a differentiable manifold of
dimension n. Sn is a topological space, where TSn is the topology induced by that of Rn+1 (its
the topology whose openings are of the form U = Ω∩ Sn where Ω is an open from Rn+1). Let
the projections stereographic:

ϕN : UN = Sn − {N} −→ Rn

(u1, ..., un+1) 7−→
(

u1

1− un+1

, ...,
un

1− un+1

)
.

ϕS : US = Sn − {S} −→ Rn

(u1, ..., un+1) 7−→
(

u1

1 + un+1

, ...,
un

1 + un+1

)
.

The applications ϕN : UN −→ Rn and ϕS : US −→ Rn are homeomorphism. Using 1−u2
n+1 =

u2
1 + ...+ u2

n, we find that:

ϕ−1
N : Rn −→ UN

(x1, ..., xn) 7−→
(

2x1

‖x‖2 + 1
, ...,

2xn
‖x‖2 + 1

,
‖x‖2 − 1

‖x‖2 + 1

)
.

ϕ−1
S : Rn −→ US

(y1, ..., yn) 7−→
(

2y1

‖y‖2 + 1
, ...,

2yn
‖y‖2 + 1

,−‖y‖
2 − 1

‖y‖2 + 1

)
.
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the mapping of charts transitions are given by:

ϕS ◦ ϕ−1
N =

x

‖x‖2
, ϕN ◦ ϕ−1

S =
y

‖y‖2
, ∀x, y ∈ Rn − {0},

which are diffeomorphisms of C∞. Therefore ASn = {(UN , ϕN), (US, ϕS)} form a differentiable
atlas.

Example 4. The surfaces S of R3 are a differentiable manifolds of dimension 2. (If X :
Ω −→ R3, (u, v) 7−→ X(u, v) is a local parametrization of a surface S of R3, then ϕ = X−1 :
X(Ω) −→ Ω is a chart of S).

Definition 4. An atlas for a differentiable manifoldM is called oriented if all A = {(Ui, ϕi)i∈I}
such that the charts changes mapping ψij = ϕi ◦ ϕ−1

j has a positive Jacobian, i.e:

J(ψij)x = det(dϕj(x)ψij) > 0.

Definition 5. A differentiable manifold is called oriented if it possesses an oriented atlas.

Remark 1. If ϕ be a diffeomorphism of Rn, its Jacobian is defined by:

J(ϕ)x = det(dxϕ).

Example 5. Rn is an orientable manifold.
The Möbius band and the Klein bottle are non-orientable manifold.

Definition 6. Let M be a differentiable manifold, f : M −→ R is called to be differentiable
function at point p ∈M , if there is a chart (U,ϕ) of M with p ∈ U such as f ◦ϕ−1 : ϕ(U) −→
R is differentiable. The function f is differentiable if it is differentiable in p for all p ∈M .

Definition 7. LetM and N two differentiable manifolds, a mapping f : M −→ N is said to be
differentiable (or C∞-differentiable), if for every chart (Ui, ϕi) of M and every chart (Vj, ψj)
of N such that f(Ui) ⊂ Vj, the mapping ψj ◦ f ◦ ϕ−1

i : ϕi(Ui) −→ ψi(Vj) is differentiable.

1.1.2 Tangent space

Definition 8. [28] Let M be a differentiable manifold and p ∈ M , then a tangent vector Xp

at p is a map:

Xp : C∞(M) −→ R
f 7−→ Xp(f),

such that:

1. Xp(λf + µg) = λXp(f) + µXp(g),

2. Xp(fg) = Xp(f)g(p) + f(p)Xp(g),

for all λ, µ ∈ R and f, g ∈ C∞(M).
The set of tangent vectors at p is called the tangent space at p and denoted TpM .
The tangent space TpM of M at p has the structure of a real vector space. The addition +
and the multiplication . by real numbers are simply given by:
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1. (Xp + Yp)(f) = Xp(f) + Yp(f),

2. (λXp)(f) = λXp(f),

for Xp, Yp ∈ TpM , f ∈ C∞(M) and λ ∈ R.

Remark 2. Xp(f) is also called the derivative of f by Xp.

1.1.3 Tangent bundle

Definition 9. [48] For any smooth manifold M , we define the tangent bundle of M , denoted
by TM , to be the disjoint union of the tangent spaces at all points of the tangent spaces at
all points of M : TM =

⋃
p∈M TpM . We consider an element of this disjoint union to be an

ordered pair (p,X), where p ∈ M and X ∈ TpM . We will often commit the usual mild sin
of identifying TpM with image under the canonical injection X 7−→ (p,X), and depending on
context will use any of notations (p,X), Xp or X for a tangent vector in TpM , depending on
how much emphasis we wish to give the point p. Define the projection map π : TM −→ M
by declaring π(p,X) = p.

Remark 3.

1. The tangent bundle TM to a manifold M is an oriented manifold even if M is not.

2. T ∗xM is the dual space of the tangent space TxM of M at x.

3. T ∗xM is the set of linear form on TxM where wx ∈ T ∗xM :

wx : M −→ R
Xx 7−→ wx(Xx).

4. We call cotangent bundle of M the fibre bundle such that:

TxM =
⋃
x∈M

T ∗xM.

1.1.4 Vectors fields

Definition 10. [48] Let M be a smooth manifold. A vector field on M is a section of TM .
More concretely, a vector field is a continuous map Y : M −→ TM , usually written p 7−→ Yp,
with the property that for each p ∈M , Yp is an element of TpM .

Remark 4.

1. We denote by X(M) the set of all differentiable vector fields on M .

2. If f is differentiable function on M , then X(f) is differentiable function on M defined
by X(f))(p) = X(f), for all X ∈ X(M) and p ∈M .
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Definition 11. Let M be an m-dimensional differentiable manifold, (U,ϕ) be a chart of M
and p ∈ U , for i = 1, ...,m we define the map:

∂

∂xi

∣∣
p

: C∞(M) −→ R

f 7−→ ∂

∂xi

∣∣
p
(f) =

∂(f ◦ ϕ−1)

∂xi

∣∣
ϕ(f)

.

∂
∂xi
|p is said derivative associated to the chart (U,ϕ) and { ∂

∂x1
|p, ..., ∂

∂xm
|p} be a frame for the

tangent space TpM , for all p ∈ U .

Remark 5. {dx1|p, ..., dxm|p} be a frame for the cotangent space T ∗pM (the dual basis of the
basis { ∂

∂x1
|p, ..., ∂

∂xm
|p} for TpM), for all p ∈ U .

Definition 12. Let T (r,s)
x M = TxM ⊗ ...⊗ TxM︸ ︷︷ ︸

r−once

⊗T ∗xM ⊗ ...⊗ T ∗xM︸ ︷︷ ︸
s−once

be the vectorial space,

where x ∈ M and let T (r,s)M =
⋃
x∈M T

(r,s)
x M . A element T ∈ T (r,s)

x M is a tensor of type
(r, s) above x. A tensor field of type (r, s) on a manifold M is an assignment section of
T (r,s)M i.e. a tensor is a map:

T : M −→ T (r,s)M

x 7−→ T (x) ∈ T (r,s)
x M.

Example 6.

1. A function on a manifold M is a tensor of type (0, 0).

2. A vector filed X is a tensor of type (1, 0).

3. A differential 1-form w on a manifold M is a tensor of type (0, 1).

1.2 Pseudo-Riemannian manifolds
Pseudo-Riemannian geometry involves a particular kind of (0, 2) tensor on tangent spaces.
To study these in general, let E be a real vector space (finite-dimensional where the context
so indicates). A bilinear form on E is an R-bilinear function g : E×E −→ R, and we consider
only the symmetric case: g(x, y) = g(y, x) for all x, y ∈ E.

1.2.1 Non degenerate bilinear forms

Definition 13. A symmetric bilinear form g on E is:

1. positive [negative] definite provided x 6= 0 implies g(x, x) > 0 [< 0],

2. positive [negative] semi-definite provided g(x, x) ≥ 0 [≤ 0] for all x ∈ E,

3. non degenerate provided g(x, y) = 0 for all y ∈ E implies x = 0.
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Remark 6. If g is a symmetric bilinear form on E then for any subspace F of E the restric-
tion g/(F×F ), denoted merely by g/F , is again symmetric and bilinear. If g is semi-definite,
so is g/F .
A subspace F of E is called non degenerate if g/F is non degenerate, where:

g/F : F × F −→ R, g/F (x,y) = g(x, y).

Definition 14. The index ν of a symmetric bilinear form g on E is the largest integer that
is the dimension of subspace F ⊂ E on which g/F is negative definite.
Thus 0 ≤ ν ≤ dimE, and ν = 0 if and only if g is positive semi-definite.
If {e1, ..., en} is a basis for E, the n × n matrix (gij) = g(ei, ej) is called the matrix of g
relative to {e1, ..., en}. Since g is symmetric, this matrix is symmetric. Clearly it determines
g since:

g(Σxiei,Σyjej) = Σgijxiyj.

Lemma 1. A symmetric bilinear form is non degenerate if and only if its matrix relative to
one (hence every) basis is invertible.

Proof. Let {e1, ..., en} be a basis for E. If x ∈ E, then g(x, y) = 0 for all y ∈ E if and only if
g(x, ei) = 0 for i = 1, ..., n. Since (gij) is symmetric:

g(x, ei) = g(
∑

xjej, ei) =
∑

gijxj.

Thus g is degenerate if and only there exist numbers x1, ..., xn not all zero such that
∑
gijxj =

0 for i = 1, ..., n. But this is equivalent to the linear dependence of the columns of (gij), that
is, to (gij) being singular.

Definition 15. Let F be a vector subspace of E, the orthogonal of F for g is the subspace
of E defined by F⊥ = {v ∈ E | g(v, w) = 0,∀w ∈ F}. Thus a symmetric bilinear form g on
E × E is therefore non degenerate if and only if the orthogonal of E is {0}.
Definition 16. A scalar product over E is a bilinear form g : E × E −→ R, symmetric and
non degenerate.

Lemma 2. If F is a subspace of a scalar product space E, then

1. dimF + dimF⊥ = n = dimE,

2. (F⊥)⊥ = F .

Lemma 3. A subspace F of E is non degenerate if and only if E = F ⊕ F⊥.
Lemma 4. A scalar product space E 6= 0 has an orthonormal basis.

The matrix of g relative to an orthonormal basis {e1, ..., en} for E is diagonal, in fact:

g(ei, ej) = δijεj, where εj = g(ei, ej) = ±1.

Whenever convenient we shall order the vectors in an orthonormal basis so that the negative
signs − if any − come first in the so-called signature (ε1, ..., εn). Taking these signs into
account orthonormal expansion is still available.
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Lemma 5. Let e1, ..., en be an orthonormal basis for E, with εi = g(ei, ej). Then each x ∈ E
has a unique expression:

x =
∑

εig(x, ei)ei.

For the proof it suffices to check that x minus the sum is orthogonal to each ei, thus by the
non degeneracy of g it is zero.
The orthogonal projection π of E into non degenerate subspace F is the linear transformation
that sends F⊥ to 0 and leaves any vector of F fixed. An orthonormal basis {e1, ..., ek} for F
can always be enlarged to a basis for E, thus:

π(x) =
k∑
j=1

εjg(x, ej)ej.

It is customary to refer to the index ν of the scalar product g of E as the index of E, writing
ν = IndE

Lemma 6. For any orthonormal basis {e1, ..., en} for E the number of negative signs in the
signature (ε1, ..., εn) is the index Ind of E.

Lemma 7. Scalar product spaces E and F have the same dimension and index if and only if
there exists a linear isometry from E to F .

1.2.2 Pseudo-Riemannian metric

Definition 17. Let M be a manifold of dimension n. A semi-Riemannian metric on M is a
tensor field:

g : X(M)× X(M) −→ C∞(M),

such that for each x ∈M the restriction of g is a family of applications:

gx = g/TxM⊗TxM : TxM ⊗ TxM −→ R with,

gx : (Xp, YP ) 7−→ g(X, Y )(p)

is inner product such that:

1. For all x ∈M , gx is a symmetric bilinear form non degenerate.

2. If X, Y ∈ X(M), the function g(X, Y )(x) = gx(Xx, Yx) is differentiable.

3. The index of g is constant, and noted Ind(M), that is to say:

∃ p ∈ N,∀x ∈M, Ind(TxM) = P.

Definition 18. A metric tensor g on a smooth manifold M is a symmetric non degenerate
(0, 2) tensor field on M of constant index.
In order words g ∈ ⊗2T ∗M smoothly assigns to each point x of M a scalar product gx on a
tangent space TxM , and the index of gx is the same for all x.
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Definition 19. A semi-Riemannian manifold is a pair (M, g), where M is a differentiable
manifold of dimension n, and g is a metric tensor on M .

Remark 7. Let (M, g) a semi-Riemannian manifold, so:

1. 0 ≤ IndM ≤ dimM .

2. If IndM = 0, (M, g) is said Riemannian manifold.

3. If p = 1 and dimM ≥ 2, (M, g) is said Lorentz manifold.

The metric g associated to a Lorentzian vector space is called pseudo-Riemannian metric.
So, when the metric is definite positive or of signature (−,+, ...,+) the group is called pseudo-
Riemannian also called semi-Riemannian or Lorentzian.

Definition 20. A Lorentzian vector space (E, 〈, 〉) is an n-dimensional vector space E en-
dowed with a Lorentzian scalar product 〈, 〉 that is, a non degenerate symmetric bilinear form
of index 1. This means that we have a basis {e1, ..., en} of the space E, such that:

〈ei, ej〉 = 1
〈ei, ej〉 = −1
〈ei, ej〉 = 0,

for all 1 ≤ i, j ≤ n and i 6= j.

We use 〈, 〉 as an alternative notation for g, writing g(x, y) = 〈x, y〉 ∈ R for tangent
vectors, and g(X, Y ) = 〈X, Y 〉 ∈ C∞(M) for vector fields.
If x1, ..., xn is a coordinate system on U ⊂M (U is an open set) the components of the metric
tensor g on U are:

gij = 〈∂i, ∂j〉 (1 ≤ i, j ≤ n).

Thus for vector fields X =
∑
X i∂i and Y =

∑
Y j∂j,

g(X, Y ) = 〈X, Y 〉 =
∑

gijX
iY j.

Since g is non degenerate, at each point p of U the matrix (gij(p)) is invertible, and its inverse
matrix is denoted by (gij(p)). The usual formula for the inverse of a matrix shows that
the functions gij are smooth on U. Since g is symmetric, gij = gji and hence gij = gji for
1 ≤ i, j ≤ n. Finally on u the metric tensor can be written as:

g =
∑

gijdx
i ⊗ dxj.

Recall from Chapter 1 [53] for each p ∈ Rn there is a canonical isomorphism from Rn to
Tp(Rn) that, in terms of natural coordinates, sends x to xp =

∑
xi∂i. Thus the dot product

on Rn gives rise to a metric tensor on Rn with:

〈xp, yp〉 = x.y =
∑

xiyi.

Henceforth any geometric context Rn will denote the resulting Riemannian manifold, called
Euclidean n-space.
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For integer ν with 1 ≤ ν ≤ n, changing the first ν plus signs above to minus gives a metric
tensor:

〈xp, yp〉 = −
ν∑
i=1

xiyi +
n∑

j=ν+1

xjyj

of index ν. The resulting semi-Euclidean space Rn
ν reduces to Rn if ν = 0. For n ≥ 2, Rn

1 is
called Minkowski n-space, if n = 4 it is the simplest example of a relativistic spacetime.
Fix the notation:

εi =

{
−1, for 1 ≤ i ≤ ν,
+1, for ν + 1 ≤ i ≤ n.

Then the metric tensor of Rn
ν can be written:

g =
∑

εidx
i ⊗ dxi.

The geometric significance of the index of a semi-Riemannian manifold derives from the
following trichotomy.

Definition 21. A tangent vector x to M is:

1. space-like if 〈x, x〉) > 0 or x = 0,

2. null if 〈x, x〉 = 0 and x 6= 0,

3. time-like if 〈x, x〉 < 0.

The set of all null vectors in TpM is called the null-cone at p ∈ M The category into which
a given tangent vector falls is called causal character. Particulary in the Lorentz case, null
vectors are also said to be light-like.

Definition 22. Let n ≥ 2 and 0 ≤ P ≤ n.

1. The pseudo-sphere of Rn+1
p is defined by:

Snp = {(x1...xn+1) ∈ Rn+1 | −
p∑
i=1

x2
i +

n+1∑
i=p+1

x2
i = 1}.

2. The pseudo-hyperbolic of Rn+1
p+1 is defined by:

Hn
p = {(x1...xn+1) ∈ Rn+1 | −

p+1∑
i=1

x2
i +

n+1∑
i=p+2

x2
i = −1}.

Example 7. On the pseudo-sphere:

S2
1 = {(x1, x2, x3) ∈ R3 | −x2

1 + x2
2 + x2

3 = 1}.

of R3
1, we consider the parametrization:

x1 = sinhα
x2 = coshα sin β
x3 = coshα cos β.
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The metric g = −dx2
1 + dx2

2 + dx2
3 of R3

1 induced on S2
1 a semi-Riemannian metric h, let ∂α

and ∂β be the base vector fields associated with this parametrization, the components of the
metric h is given by:

h11 = g(∂α, ∂α) = −1, h12 = g(∂α, ∂β) = 0, h22 = g(∂β, ∂β) = cosh2 α,

that is to say h = −dα2 + cosh2 αdβ2.

Example 8. We consider on the pseudo-sphere:

S3
1 = {(x1, x2, x3, x4) ∈ R4 | −x2

1 + x2
2 + x2

3 + x2
4 = 1}.

of R4
1, the following parametrization:

x1 = sinhα
x2 = coshα sin β
x3 = coshα cos β sin γ
x4 = coshα cos β cos γ.

The metric g = −dx2
1 +dx2

2 +dx2
3 +dx2

4 of R4
1 induced on S3

1 a semi-Riemannian metric h, let
∂α, ∂β and ∂γ be the base vector fields associated with this parametrization, the components
of the metric h is given by:

h11 = g(∂α, ∂α) = −1, h12 = g(∂α, ∂β) = 0, h13 = g(∂α, ∂λ) = 0,

h22 = g(∂β, ∂β) = cosh2 α, h23 = g(∂β, ∂γ) = 0, h33 = g(∂γ, ∂γ) = cosh2 α cos2 β,

i.e. h = −dα2 + cosh2 αdβ2 + cosh2 α cos2 βdγ2.

Example 9. Let (N, h) a semi-Riemannian manifold, M a differentiable sub-manifold of N ,
and i : M ↪→ N the canonical inclusion. If (i∗h)x is non degenerate of constant index for
every x ∈M , then (M, i∗h) is a semi-Riemannian sub-manifold of (N, h) where:

(i∗h)x(Xx, Yx) = h(dxi(Xx), dxi(Yx)), x ∈M, Xx, Yx ∈ TxM.

Example 10. Let (M, g) a semi-Riemannian manifold, and let γ a differentiable function
on M . Then, (M, e2γg) is a semi-Riemannian manifold with the same index of (M, g), said
conform to (M, g) of conformity factor e2γg.
Moreover if {ei} is an orthonormal basis on (M, g), then {e−γei} is an orthonormal basis on
(M, e2γg).

1.3 Linear connection
Let X and Y be vector fields on a semi-Riemannian manifold M . The goal of this section is
to show how to define a new vector field ∇XY on M whose value at each point p is the vector
rate of change of Y in the Xp direction.
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Definition 23. A linear connection on M is a map:

∇ : X(M)× X(M) −→ X(M)

(X, Y ) 7−→ ∇XY

such that for all X, Y, Z ∈ X(M) and f ∈ C∞(M) we have:

1. ∇X(Y + Z) = ∇XY +∇XZ,

2. ∇X(fY ) = X(f)Y + f∇XY ,

3. ∇X+fYZ = ∇XZ + f∇YZ.

We say that ∇XY is the covariant derivative of Y with the direction of X.

Definition 24. A section y ∈ X(M) is said to be parallel with respect to the connection ∇ if:

∇XY = 0, ∀ X ∈ X(M).

Definition 25. Let (M, g) a semi-Riemannian manifold, a linear connection on M is said
to be compatible with the metric g if:

X(g(Y, Z)) = g(∇XY, Z) + g(X,∇XY ), ∀ X, Y, Z ∈ X(M).

1.3.1 Torsion tensor

Definition 26. Let M be a smooth manifold, and ∇ be a connection on the tangent bundle
TM , then the torsion of ∇ is a tensor field of type (1, 2) defined by:

T : X(M)× X(M) −→ X(M)

(X, Y ) 7−→ ∇XY −∇YX − [X, Y ],

where [, ] is the lie bracket on X(M). The connection ∇ on the tangent bundle TM is said to
be torsion-free if the corresponding torsion T vanishes i.e.:

[X, Y ] = ∇XY −∇YX ∀ X, Y ∈ X(M).

Remark 8. T (X, Y ) = −T (Y,X), for all X, Y ∈ X(M) (T is antisymmetric).

1.3.2 Levi-Civita connection

Definition 27. Let u1, ..., un be the natural coordinates on Rn
ν . If X and Y =

∑
Y i∂i are

vector fields on Rn
ν , the vector field:

∇XY =
∑

X(Y i)∂i

is called the natural covariant derivative of Y with respect to X.
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Definition 28. A connection ∇ on a smooth manifold M is a function

∇ : X(M)× X(M) −→ X(M)

such that:

1. ∇XY is C∞(M)-linear in X,

2. ∇XY is R-linear in Y ,

3. ∇X(fY ) = (Xf)Y + f∇XY for f ∈ C∞(M).

∇XY is called the covariant derivative of Y with respect to X for the connection ∇.
Proposition 1. LetM be a semi-Riemannian manifold. If X ∈ X(M) let X∗ be the one-form
on M such that:

X∗(Y ) = 〈X, Y 〉 for all Y ∈ X(M).

Then the function X → X∗ is an C∞(M)-linear isomorphism from X(M) to X∗(M).

The following result has been called the miracle of semi-Riemannian geometry:

Theorem 1. On a semi-Riemannian manifold M there is a unique connection ∇ such that:

1. [X, Y ] = ∇XY −∇YX, and

2. Z〈X, Y 〉 = 〈∇ZX, Y 〉+ 〈X,∇ZY 〉,
for all X, Y, Z ∈ X(M). ∇ is called the Levi-Cevita connection of M , and characterized by
the Koszul formula:

2〈∇XY, Z〉 = X〈Y, Z〉+ Y 〈Z,X〉 − Z〈X, Y 〉+ 〈Z, [X, Y ]〉+ 〈Y, [Z,X]〉 − 〈X, [Y, Z]〉.

Lemma 8. The natural connection ∇ of Definition (27) is the Levi-Cevita connection of the
semi-Euclidean space Rn

ν , for every ν = 0, 1, ..., n. Relative to natural coordinate on Rn
ν

1. gij = δijεj, where εi =

{
−1, if 1 ≤ j ≤ ν,
+1, if ν + 1 ≤ j ≤ n.

2. Γkij = 0, for all 1 ≤ i, j, k ≤ n.

Proof. (1) is essentially the definition of the metric tensor of Rn
ν . To prove that ∇ is the

Levi-Cevita connection of Rn
ν one must check that is satisfies (1) of (28) and (2) of (1). Take

(2) of (1), for example. Since 〈X, Y 〉 =
∑
εiX

iY i,

Z〈X, Y 〉 =
∑

εiZ(X i)Y i +
∑

εiX
iZ(Y i)

= 〈∇ZX, Y 〉+ 〈X,∇ZY 〉.

Then (2) follows from Proposition 13(2) [53], since the gijs are constant.
A vector field X is parallel provided its covariant derivatives ∇ZX are zero for all Z ∈ X(M).
Thus the vanishing of Christoffel symbols in the lemma means that the natural coordinate
vector field on Rn

ν are parallel. In general the Christoffel symbols of a coordinate system
measure the failure of its coordinate vector fields to be parallel.
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Theorem 2. Let (M, g) a semi-Riemannian manifold. Then Levi-Civita connection is an
unique linear connection compatible with g and torsion free.

Remark 9. In a coordinate system (xi) on M , ∇ is completely defined by the Christoffel
symbols Γkij defined by:

∇ ∂
∂xi

∂

∂xj
=

n∑
k=1

Γkij
∂

∂xk
.

Let X = X i ∂
∂xi

, and Y = Y j ∂
∂xj

, then:

∇XY =
n∑

i,k=1

X i

(
∂Y k

∂xi
+

n∑
j=1

ΓkijY
j

)
∂

∂xk
.

Proposition 2. Let (Mm, g) a semi-Riemannian manifold with Levi-Civita connection ∇.
Further let (U,ϕ) be a local coordinate on M and put ∂i = ∂

∂xi
∈ X(U). Then { ∂

∂x1
... ∂
∂xn
} is

a local frame of TM on U . We define the Christoffel symbols Γkij : U → R of the connection
∇ with respect to (U,ϕ) by:

Γkij =
1

2

n∑
i=1

gkl
{
∂gjl
∂xi

+
∂gil
∂xj
− ∂gij
∂xl

}
,

where gij = g(ei, ej) = g( ∂
∂xi
, ∂
∂xj

) are the components of g, and gij = (gij)
−1 is the inverse

matrix.

In effect, we put ∂i = ∂
∂xi

, like [∂i, ∂j] = 0, ∀i, j = 1, ...,m, we have:

2g(∇∂i∂j, ∂l) = 2
m∑
s=1

g(Γsij∂j, ∂l)

= 2
m∑
s=1

Γsijgsl,

and according the Koszul’s formula:

2g(∇∂i∂j, ∂l) = ∂i(g(∂j, ∂l)) + ∂j(g(∂l, ∂i))− ∂l(g(∂i, ∂j)),

then:
m∑
s=1

Γsijgsl =
1

2

{
∂gjl
∂xi

+
∂gil
∂xj
− ∂gij
∂xl

}
,

from where:
m∑
s=1

Γsijgslg
lk =

1

2
glk
{
∂gjl
∂xi

+
∂gil
∂xj
− ∂gij
∂xl

}
,
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and:
m∑

s,l=1

Γsijgslg
lk =

1

2

m∑
l=1

{
∂gjl
∂xi

+
∂gil
∂xj
− ∂gij
∂xl

}
,

as gij is the inverse matrix of gij we have:

m∑
l=1

gslg
lk = δks,

where δks is the Kronecker symbol, we get:

Γkij =
1

2

n∑
i=1

gkl
{
∂gjl
∂xi

+
∂gil
∂xj
− ∂gij
∂xl

}
.

1.3.3 Inverse tangent bundle and connection on tangent bundle

Definition 29. Let ϕ : M −→ N be a smooth map between two differentiable manifolds M
and N . The inverse tangent bundle is defined by:

ϕ−1TN = {(x, v) ∈M, v ∈ Tϕ(x)N}.

A section on ϕ−1TN is a smooth map V : M −→ TN such as V (x) ∈ Tϕ(x)N , ∀x ∈ M .
Denote by X(ϕ−1TN) the set of sections on ϕ−1TN .

Definition 30. Let ϕ : M −→ N be a smooth map between two differentiable manifolds M
and N , and h a Riemannian metric on N . Then h induce a Riemannian metric on X(ϕ−1TN)
given by h(V,W )(x) = hϕ(x)(Vx,Wx), for every x ∈M and V,W ∈ X(ϕ−1TN)

Definition 31. Let ϕ : M −→ N be a smooth map between two differentiable manifolds M
and N and let ∇N be a linear connection on N , then the Pull-back connection on the tangent
bundle ϕ−1TN is defined by:

∇ϕ : X(M)× X(ϕ−1TN) −→ X(ϕ−1TN)

(X, V ) 7−→ ∇ϕ
XV = ∇N

dϕ(X)Ṽ , (1.1)

where Ṽ ∈ X(N) such that Ṽ ◦ ϕ = V .

Let X ∈ X(M), and V ∈ X(ϕ−1TN). Locally, we have X = X i ∂
∂xi

and V = V α( ∂
∂yα
◦ ϕ),

where X i, V α ∈ C∞(U)(U is a open of M), and { ∂
∂x1
, ..., ∂

∂xm
} (resp. { ∂

∂y1
, ..., ∂

∂yn
}) are the
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basic fields on M (resp.N). then:

∇ϕ
XV = ∇ϕ

Xi ∂
∂xi

V α(
∂

∂yα
◦ ϕ)

= X i

{
∂V α

∂xi
(
∂

∂yα
◦ ϕ) + V α∇ϕ

∂
∂xi

(
∂

∂yα
◦ ϕ)

}
= X i

{
∂V α

∂xi
(
∂

∂yα
◦ ϕ) + V α∇N

dϕ( ∂
∂xi

)

∂

∂yα

}
= X i

{
∂V α

∂xi
(
∂

∂yα
◦ ϕ) + V α∂ϕβ

∂xi

(
∇N

∂
∂xβ

∂

∂yα

)
◦ ϕ
}

= X i

{
∂V α

∂xi
(
∂

∂yα
◦ ϕ) + V α∂ϕβ

∂xi

(
Γγαβ

∂

∂yγ

)
◦ ϕ
}

= X i

{
∂V γ

∂xi
+ V α∂ϕβ

∂xi
(Γγαβ ◦ ϕ)

}(
∂

∂yγ
◦ ϕ
)
.

Then the relation (1.1) is independent of the choice Ṽ i.e. this connection is well defined.

1.3.4 Second fundamental form

Definition 32. Let ϕ : M −→ N be a smooth map between two differentiable manifolds M
and N . The second fundamental form of ϕ is defined by:

∇dϕ(X, Y ) = ∇ϕ
Xdϕ(Y )− dϕ(∇M

X Y ), ∀X, Y ∈ X(M).

Locally: Let { ∂
∂x1
, ..., ∂

∂xm
} (resp. { ∂

∂y1
, ..., ∂

∂yn
}) a local basic fields of the vectors on M (resp.

N). The second fundamental form in relation to these basis is given by:

(∇dϕ)(
∂

∂xi
,
∂

∂yj
) = ∇ϕ

∂
∂xi

dϕ(
∂

∂xj
)− dϕ(∇M

∂
∂xi

∂

∂xj
)

= ∇ϕ
∂
∂xi

∂ϕβ
∂xj

∂

∂yβ
◦ ϕ− ∂ϕγ

∂xk
MΓkij(

∂

∂yγ
◦ ϕ)

=
∂2ϕβ
∂xi∂xj

∂

∂yβ
◦ ϕ+

∂ϕβ
∂xj
∇ϕ

∂
∂xi

∂

∂yβ
◦ ϕ− ∂ϕγ

∂xk
MΓkij(

∂

∂yγ
◦ ϕ)

=
∂2ϕβ
∂xi∂xj

∂

∂yβ
◦ ϕ+

∂ϕβ
∂xj

∂ϕα
∂xi

(∇N
∂
∂yα

∂

∂yβ
) ◦ ϕ− ∂ϕγ

∂xk
MΓkij(

∂

∂yγ
◦ ϕ)

=

(
∂2ϕγ
∂xi∂xj

+
∂ϕα
∂xi

∂ϕβ
∂xj

NΓγαβ ◦ ϕ−
∂ϕγ
∂xk

MΓkij

)
∂

∂yγ
◦ ϕ.

Proposition 3. Let ϕ : M −→ N be a smooth map between two differentiable manifolds M
and N . The second fundamental form of ϕ is a vectorial 1-form C∞(M)-bilinear symmetric.
i.e.

∇dϕ(f1X, f2Y ) = f1f2∇dϕ(X, Y ),

for all X, Y ∈ X(M), and f1, f2 ∈ C∞(M).
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1.3.5 Geodesics

Definition 33. Let (M, g) be a semi-Riemannian manifold of dimension n, and let γ : I ⊂
R −→M a C∞ curve on M . A set of the vector fields along γ, is defined by:

X(γ−1TM) = {Y : I −→ TM | Y (t) ∈ Tγ(t)M,∀t ∈ I}.

Remark 10. Let X ∈ X(M), i.e X : M −→ TM is an differentiable application, such that
X(x) ∈ TxM , ∀X ∈M , then X ◦ γ ∈ X(γ−1TM).

Definition 34. Let Y ∈ X(γ−1TM), the covariant derivative of Y along γ is defined by:

∇γ
d
dt

Y = ∇M
dγ( d

dt
)
Ỹ ,

where Ỹ ∈ X(M) such that Ỹ ◦ γ = Y .

Remark 11. Let {∂i} a local basis of vector fields on M , then {∂i ◦ γ} is local basis of vector
fields along γ. Then, ∀Y ∈ X(γ−1TM), ∃Yi : I −→ R (i = 1, ..., n) what Y (t) = yi(t)∂i|γ(t).
From where:

∇γ
d
dt

Y = ∇γ
d
dt

Yi(∂i ◦ γ)

=
dYi
dt

(∂i ◦ γ) + Yi∇γ
d
dt

(∂i ◦ γ)

=
dYi
dt

(∂i ◦ γ) + Yi∇M
dγ d

dt

(∂i),

where dγ d
dt
∈ X(γ−1TM) and locally dγ d

dt
=

dγj
dt

(∂i ◦ γ), where γj = xj ◦ γ. So:

∇γ
d
dt

Y =
dYi
dt

(∂i ◦ γ) + Yi
dγj
dt

(∇M
∂j
∂i) ◦ γ

=
dYk
dt

+ Yi
dγj
dt

(Γkij ◦ γ)(∂k ◦ γ).

So this relation is independent of the chose of Ỹ i.e. this connection is indeed defined.

Definition 35. A vector fields Y (t) along a curve γ : I −→ (M, g) is said to be parallel along
γ, if (∇γ

d
dt

Y )|t = 0, ∀t ∈ I.

Proposition 4. Let γ : I −→ (M, g) a curve, t0 ∈ I, and v ∈ Tγ(t0)M , Then, there is a
unique vector field Yv parallel along γ such that Yv(t0) = v.

Definition 36. Let (M, g) a semi-Riemannian manifold, of dimension n, a curve γ on (M, g)
it said to be geodesic if ∇γ

d
dt

dγ( d
dt

) = 0, i.e:

d2γk
dt2

+
dγi
dt

dγj
dt

(Γkij ◦ γ) = 0, ∀k = 1, ..., n.

Example 11. If M = R and g = dx2, then a curve γ : I −→ R is a geodesic if and only if
d2γk
dt2

= 0, because Γ1
11 = 0, i.e, γ(t) = at+ b, where a, b ∈ R.
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Example 12. If M = Rn
p , then a curve γ : I −→ Rn

p is a geodesic if and only if d2γk
dt2

= 0,
because Γkij = 0, i.e, γ(t) = at+ b, where a, b ∈ Rn.

Example 13. We consider the parametrization of the sphere:

Sn = {u ∈ Rn+1 | ‖u‖ = 1},

and let the stereographic projection, ψ : Rn −→ Rn+1 given by:

ψ(x) = (
2x1

‖x‖2 + 1
, ...,

2xn
‖x‖2 + 1

,
‖x‖2 − 1

‖x‖2 + 1
), x ∈ Rn,

ψ−1(u) = (
u1

1− un+1

, ...,
un

1− un+1

), u ∈ Rn+1.

The components of the metric tensor relatively to ψ are:

gij(x) =
4δij

(1 + ‖x‖2)2
, x ∈ Rn.

the Christoffel symbols are:

Γiii(x) = Γjij(x) = Γiji(x) = −Γijj(x) =
−2xi

1 + ‖x‖2
, Γkij(x) = 0,

for i, j, k = 1, ..., n distinct, for the proof using the proposition 1 that is:

γ(t) = (cos t, sin t, 0, ..., 0) ∈ Sn, t ∈ R.

The representation of γ in this map is given by:

(ψ−1 ◦ γ)(t) = (γ1(t), ..., γn(t))

= (cos t, sin t, 0, ..., 0).

According to the geodesic definition and this last equation, γ is a geodesic on Sn.

Theorem 3. Let (M, g) be a semi-Riemannian manifold. For all x ∈M and any vector v ∈
TxM , there exists an open interval I of R with 0 ∈ I, and a unique geodesic γ : I −→ (M, g)
such that γ(0) = x and γ̇(0) = v.

1.4 Curvatures

1.4.1 curvature tensor

Definition 37. Let (M, g) be a semi-Riemannian manifold of dimension m, and ∇ a Levi-
Civita connection. Then the function:

R : X(M)× X(M)× X(M) −→ X(M) defined by :

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z ∀X, Y, Z ∈ X(M),
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is a tensor of type (1, 3) on M , called a curvature tensor. The curvature tensor type (1, 4) is
given by:

R(X, Y, Z,W ) = g(R(X, Y )Z,W ).

The curvature tensor R is expressed as a function of the Christoffel symbols:

R(∂i, ∂j)∂k =
m∑
s=1

Rs
ijk∂s.

where {∂i} is a local basis of the vector fields on M . Like [∂i, ∂j] = 0 we obtain:

R(∂i, ∂j)∂k = ∇∂i∇∂j∂k −∇∂j∇∂i∂k

= ∇∂i(Γ
l
jk∂l)−∇∂j(Γ

l
ik∂l)

=
∂Γljk
∂xi

∂l + Γljk∇∂i∂l −
∂Γlik
∂xj

∂l + Γlik∇∂j∂l

=
∂Γljk
∂xi

∂l + ΓljkΓ
s
il∂s −

∂Γlik
∂xj

∂l + ΓlikΓ
s
jl∂s

=

{
∂Γsjk
∂xi
− ∂Γsik

∂xj
+ ΓljkΓ

s
il − ΓlikΓ

s
jl

}
∂s.

Therefore the components of the curvature tensor R is given by:

Rs
ijk = ΓljkΓ

s
il − ΓlikΓ

s
jl +

∂Γsjk
∂xi
− ∂Γsik

∂xj
.

Proposition 5. Let (M, g) be a semi-Riemannian manifold. For all X, Y, Z,W ∈ X(M) we
have:

1. R(X, Y )Z = −R(Y,X)Z (antisymmetric).

2. g(R(X, Y )Z,W ) = −g(R(X, Y )W,Z).

3. g(R(X, Y )Z,W ) = g(R(Z,W )X, Y ).

4. R verified Bianchi’s identity algebraic:

R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0.

5. R verified Bianchi’s identity differential:

(∇XR)(Y, Z) + (∇YR)(Z,X) + (∇ZR)(X, Y ) = 0.

1.4.2 Sectional curvature

Definition 38. Let (M, g) be a semi-Riemannian manifold, of dimension n, with n ≥ 2,
x ∈M and π a 2-plane of TxM of basic {X, Y }.

1. π is said to be non-degenerate if Q(X, Y ) = g(X,X)g(Y, Y )− g(X, Y )2.
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2. If π is non-degenerate, we defined the Sectional curvature of π as follows:

K(π) = K(X, Y ) =
g(R(X, Y )Y,X)

Q(X, Y )
.

3. We say that (M, g) is of constant curvature if K(π) = k (for any 2-plane π).

Definition 39. Let (M, g) be a semi-Riemannian manifold. We define the smooth tensor
field R1 : X(M)× X(M)× X(M) −→ X(M) of type (1, 3) by:

R1(X, Y )Z = g(Y, Z)X − g(X,Z)Y, ∀X, Y, Z ∈ X(M).

Corollary 1. A semi-Riemannian manifold (M, g) is of constant curvature k if and only if
the The curvature tensor verifies the equation:

R(X, Y )Z = k[R1(X, Y )Z], ∀X, Y, Z ∈ X(M).

1.4.3 Ricci curvature

Definition 40. The Ricci curvature of a semi-Riemannian manifold (M, g), of dimension n
is a tensor of type (0, 2) defined by:

Ric(X, Y ) = trace(Z 7−→ R(Z,X)Y )

=
n∑
i=1

εig(R(ei, X)Y, ei),

for all X, Y ∈ X(M), where {ei} is an orthonormal frame on M (εi = g(ei, ei)).

Proposition 6. The Ricci curvature is symmetrical. Indeed:

Ric(X, Y ) =
n∑
i=1

εig(R(ei, X)Y, ei)

=
n∑
i=1

εig(R(Y, ei)ei, X)

=
n∑
i=1

εig(R(ei, Y )X, ei)

= Ric(Y,X).

Definition 41. The Ricci tensor of a semi-Riemannian manifold (M, g), of dimension n is
a tensor of type (1, 1) defined by:

Ricci(X) =
n∑
i=1

εiR(X, ei)ei, ∀X ∈ X(M).

Remark 12. For all ∀X, Y ∈ X(M) we have:

Ric(X, Y ) = g(Ricci(X), Y ).
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Definition 42. We call scalar curvature of a semi-Riemannian manifold (M, g), of dimension
n, the function defined on M by:

S = tracegRic =
n∑

i,j=1

εiεjg(R(ei, ej)ej, ei).

Corollary 2. Let (M, g) be a semi-Riemannian manifold of dimension n and of constant
curvature k, then:

1. Ricci(X) = (n− 1)kX.

2. Ric(X, Y ) = (n− 1)kg(X, Y ).

3. S = n(n− 1)k.

Example 14.

1. The sphere Sn has constant sectional curvature +1.

2. The space Rn has curvature 0.

3. H2 = {(x, y) ∈ R2, y > 0} the hyperbolic space with the metric g = dx2+dy2

y2
, has

constant sectional curvature −1.

1.5 Operators on Pseudo-Riemannian manifolds

1.5.1 Gradient operator

Let (M, g) be a semi-Riemannian manifold, of dimension n, and X ∈ X(M). We put:

X[(Y ) = g(X, Y ),

for all Y ∈ X(M), then the application:

[ : X(M) −→ X∗(M)

X 7−→ X[,

is C∞(M)-isomorphism. Moreover, [−1 = ], and:

] : X∗(M) −→ X(M)

w 7−→ w]

is a isomorphism map between the cotangent bundle and the tangent bundle given by:

∀X ∈ X(M), g(w], X) = w(X).
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Definition 43. Let (M, g) be a semi-Riemannian manifold, of dimension n, we defines the
gradient operator by:

grad : C∞(M) −→ X(M)

f 7−→ gradf = (df)].

So that for all X ∈ X(M) we have:

g(gradf,X) = X(f) = df(X).

Locally:

gradf =
n∑
i=1

gij
∂f

∂xi

∂

∂xj
,

where { ∂
∂x1
, ..., ∂

∂xn
} is a local coordinate. Let {e1, ..., en} be an orthonormal frame on (M, g).

Then:

gradf =
n∑
i=1

εiei(f)ei.

Proposition 7. Let (M, g) be a semi-Riemannian manifold, then:

1. grad(f+h)=gradf+gradh.

2. grad(fh)=hgrad f+fgradh.

3. (grad f)(h)=(gradh)(f).

1.5.2 Hessian operator

Definition 44. Let (M, g) be a semi-Riemannian manifold, of dimension n and f ∈ C∞(M).
The Hessian of the function f denoted by Hessf is a C∞(M)-bilinear map, defined by:

Hessf : X(M)× X(M) −→ C∞(M)

(X, Y ) 7−→ (Hessf)(X, Y ) = g(∇Xgradf, Y ).

Proposition 8. Let (M, g) be a semi-Riemannian manifold, of dimension n and f ∈ C∞(M),
then:

1. Hess f be a tensor of type (0,2).

2. Hess f is symmetric.

Locally:

Hessf =
n∑

i,j=1

(Hessf)ijdxi ⊗ dxj,

where:

(Hessf)ij = g(∇∂igradf, ∂j)

=
∂2f

∂xi∂xj
−

n∑
i=1

Γkij
∂f

∂xk
).
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1.5.3 Divergence operator

Let X be a vector field on a semi-Riemannian manifold (M, g), then:

∇X : X(M) −→ X(M)

Y 7−→ ∇YX,

is a C∞(M)-linear mapping.

Definition 45. The divergence of the vector field X ∈ X(M), denoted divX is defined by:

divX = trace∇X.

Locally:

divX = dxi(∇ ∂
∂xi

X)

= gijg(∇ ∂
∂xi

X,
∂

∂xj
).

Let {e1, ..., em} be an orthonormal frame on M , then:

divX =
n∑
i=1

εig(∇eiX, ei).

The divergence of 1-form w on M such that w ∈ X∗(M) is defined by:

divMw = trace(Y 7−→ ∇Yw)

=
n∑
i=1

εi(∇eiw)(ei)

=
n∑
i=1

εi(ei(w(ei))− w(∇M
ei
ei))

= gijg(∇ ∂
∂xi

w)(
∂

∂xj
).

In the definition of divX we can also define the divergence of (1, r)-tensor T to be (0, r)-
tensor:

(div T )(X1, ..., Xr) = trace(Y 7−→ (∇Y T )(X1, ..., Xr)).

1.5.4 First expression of the divergence in local coordinates

Proposition 9. Let (M, g) be a semi-Riemannian manifold, of dimension n, then:

divX =
n∑

i,j=1

(
∂Xi

∂xi
+XjΓ

k
ij),

with X =
∑n

i=1Xi
∂
∂xi
∈ X(M).
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Proposition 10. Let (M, g) be a semi-Riemannian manifold, then:

1. div(X + Y ) = divX + div Y .

2. div(fX) = fdivX +X(f).

for all X, Y ∈ X(M) and f ∈ C∞(M).

1.5.5 Second expression of the divergence in local coordinates

Lemma 9. On a Riemannian manifold (M, g), we have:

∂

∂xk

(√
det(gij)

)
=
√
det(gij)

n∑
i=1

Γkij.

Proposition 11. Let (M, g) be a Riemannian manifold, then:

divX =
1√

det(gij)

∂

∂xk

(√
det(gij)Xk

)
,

for all X ∈ X(M).

1.5.6 Laplacian operator

Let (M, g) be a semi-Riemannian manifold, we define the Laplacian operator note 4, on M
by:

4 : C∞(M) −→ C∞(M)

f 7−→ 4(f) = div(gradf).

Proposition 12. Let (M, g) be a semi-Riemannian manifold, then:

1. 4(f + h) = 4(f) +4(h),

2. 4(fh) = h4(f) + f4(h) + 2g(gradf, gradh),

for all f, h ∈ C∞(M).

Proposition 13. Let (M, g) be a semi-Riemannian manifold, then the expression of the
Laplacian in local coordinates is given by:

4(f) = gij(
∂2f

∂xi∂xj
− Γkij

∂f

∂xk
), for all f ∈ C∞(M).
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In effect, let f ∈ C∞(M), then:

4(f) = div(gradf)

= gijg(∇ ∂
∂xi

gradf,
∂

∂xj
)

= gij(
∂

∂xi
g(gradf,

∂

∂xj
)− g(gradf,∇ ∂

∂xi

∂

∂xj
))

= gij(
∂

∂xi
(
∂

∂xj
)− Γkijg(gradf,

∂

∂xk
))

= gij(
∂2f

∂xi∂xj
− Γkij

∂f

∂xk
).

Example 15. Let Rn
p provided with the product scalar g = −dx2

1− ...−dx2
p+dx2

p+1 + ...+dx2
n,

like gij = δijεj, then for every differentiable function f on Rn
p and X = (X1, ..., Xn) a vector

field on Rn, we have:

gradf =
n∑
i=1

εi
∂f

∂xi

∂

∂xi
, divX =

n∑
i=1

εi
∂Xi

∂xi
, 4(f) =

n∑
i=1

εi
∂2f

∂x2
i

.

1.6 Pseudo-Riemannian sub-manifolds

1.6.1 Sub-manifolds

Definition 46. Let (Nn, h) a semi-Riemannian manifold, Mm a sub-manifold of N , and
i : M ↪→ N the canonical inclusion. If h is non degenerate on M (i.e if h(Xx, Yx) = 0, ∀ Yx ∈
TxM , then Xx = 0, where x ∈ M), and IndM is constant, then M is a semi-Riemannian
manifold called a semi-Riemannian sub-manifold, endowed with the induce semi-Riemannian
metric:

g(X, Y )x = hx(Xx, Yx), ∀X, Y ∈ X(M) and x ∈M.

where g : X(M)× X(M) −→ C∞(M) is the tensor field on M .

Definition 47. Let (Nn, h) a semi-Riemannian manifold and let (Mm, g) be a semi-Riemannian
sub-manifold of (Nn, h). We define the normal space TxM⊥ by:

TxM
⊥ = {v ∈ TxN | hx(v, w) = 0, ∀w ∈ TxM}.

For all x ∈M we have the orthogonal decomposition:

TxN = TxM ⊕ TxM⊥.

The normal bundle of M in N is defined by:

TM⊥ = {(x, v) | x ∈M, v ∈ TxM⊥}.
For all v ∈ TxN, ∃!v> ∈ TxM, ∃!v⊥ ∈ TxM⊥ such that v = v> + v⊥.
The maps > : TxN −→ TxM, v 7−→ v>and ⊥ : TxN −→ TxM

⊥, v 7−→ v⊥are R-linear.
A vector field X of N is said to be normal, if Xx ∈ TxM⊥ for all x ∈M .
X(M)⊥ is the set of normal vector fields.
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Definition 48. Let (M, g) be a semi-Riemannian sub-manifold of (N, h), and let ∇N the
Levi-Civita connection of (N, h). Then we define:

∇M : X(M)× X(M) −→ X(M)

by:
∇M
X Y = (∇N

XY )>,

∇M is the Levi-Civita connection of the sub-manifold of (M, g). Further more let:

B : X(M)× X(M) −→ X(M)⊥

be given by:
B(X, Y ) = (∇N

XY )⊥,

the operator B is called the second fundamental form of (N, h).

Proposition 14. For all X, Y ∈ X(M), we have:

1. B(X, Y ) = B(Y,X), (B is symmetric).

2. B is C∞(M)-bilinear.

Proposition 15. Let (M, g) be a semi-Riemannian sub-manifold of (N, h), and let RM(resp.RN)
the curvature tensor of (M, g) (resp. of (N, h)). Then:

g(RM(V,W )X, Y ) = h(RN(V,W )X, Y )− h(B(V,X), B(W,Y ))

+h(B(V, Y ), B(W,X)), ∀X, Y, V,W ∈ X(M).

Corollary 3. Let (M, g) be a semi-Riemannian sub-manifold of (N, h), and let RM(resp.RN)
the sectional curvature of (M, g) (resp. of (N, h)). Then:

KM(v, w) = KM(v, w) +
h(B(v, v), B(w,w))− h(B(v, w), B(v, w))

g(v, w)g(w,w)− g(v, w)2 ,

where {v, w} is a basis of π ⊂ TxM (x ∈M).

1.6.2 Pseudo-Riemannian Hypersurfaces

Definition 49. Let (N, h) a semi-Riemannian manifold, of dimension n. a semi-Riemannian
hypersurface of (N, h) is a semi-Riemannian sub-manifold (M, g) of (N, h), of dimension
m = n− 1.

Definition 50. Let (M, g) a semi-Riemannian hypersurface of (N, h). Then:

Sign(M) =

{
+1, if h(z, z) > 0,∀z ∈ TxM⊥ − {0},
−1, if h(z, z) < 0,∀z ∈ TxM⊥ − {0}.

Remark 13.

1. If Sign(M) = +1, we have: Ind(M) = Ind(N).
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2. If Sign(M) = −1, we have: Ind(M) = Ind(N)− 1.

Proposition 16. Let (N, h) a semi-Riemannian manifold, f a differentiable function on N ,
y0 = f(x0) (xO ∈ N). Then M = f−1({y0}) is a semi-Riemannian hypersurface if and only
if h(gradNf, gradNf) > 0 or < 0 on M , and:

Sign(M) = Signh(gradNf, gradNf).

Example 16. Let f : Rn+1 → R, f(x1, ..., xn+1) = x2
1 + ... + x2

n+1 − r2, then the sphere
Sn(r) = f−1({0}) is a semi-Riemannian hypersurface of Rn+1. In effect:

gradRn+1

f = 2
n+1∑
k=1

xi
∂

∂xi
,

< gradRn+1

f, gradRn+1

f >Rn+1= 4
n+1∑
k=1

x2
i ,

from where ∀ (x1, ..., xn+1) ∈ Sn(r), we have < gradRn+1
f, gradRn+1

f >Rn+1= 4r2 > 0.

Definition 51. Let (M, g) a semi-Riemannian hypersurface of (N, h), and let U the unit
vector field normal to M . The operator

A : X(M) −→ X(M)

X 7−→ AX = −∇N
XU

is called a chape operator.

Proposition 17. ∀X, Y ∈ X(M), we have g(AX, Y ) = εih(B(X, Y ), U), where εi = ±1.

Corollary 4. ∀X, Y ∈ X(M), we have B(X, Y ) = εig(AX, Y )U , where εi = h(U,U).

Definition 52. Let (M, g) be a semi-Riemannian sub-manifold of (N, h).

∇⊥ : X(M)× X(M)⊥ −→ X(M)⊥

(X, Y ) 7−→ ∇⊥XY = (∇N
XY )⊥

is called the normal connection of M .

Proposition 18. Let (M, g) be a semi-Riemannian sub-manifold of (N, h).

1. ∇⊥XY is C∞(M)-linear with respect to X and R-linear with respect to Y .

2. ∇⊥XfY = X(f)Y + f∇⊥XY , ∀X ∈ X(M), ∀Y ∈ X(M)⊥ and ∀f ∈ C∞(M).

3. X(h(Y, Z)) = h(∇⊥XY, Z) + h(Y,∇⊥XZ), ∀X ∈ X(M) and ∀ Y, Z ∈ X(M)⊥.

Definition 53. Let (M, g) be a semi-Riemannian sub-manifold of (N, h). A curve γ : I ⊂
R −→M is said to be of timelike if dγ( ∂

∂t
)|t is a tangent vector of timelike, that is:

g(dγ(
∂

∂t
), dγ(

∂

∂t
))|t < 0, ∀t ∈ I.

Definition 54. Let (M, g) a semi-Riemannian hypersurface of (N, h). M is said to be of
spacelike if all the tangent vectors to M are of spacelike, that is :

g(v, v) > 0 or v = 0 (v ∈ TxM).
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1.7 Harmonic hypersurface of pseudo-Riemannian mani-
folds

1.7.1 Harmonic maps

Definition 55. Let ϕ : (Mm, g) → (Nn, h) be a smooth map between two semi-Riemannian
manifolds, for any compact domain D of M the energy functional of ϕ is defined by :

E(ϕ;D) =
1

2

∫
D

εi|dϕ|2 vg, (1.2)

where |dϕ| is the Hilbert Schmidt norm of differential of the map ϕ given by:

|dϕ|2 =
m∑
i=1

h(dϕ(ei), dϕ(ei))

and {e1, . . . , em} be an orthonormal frame on M .

Definition 56. A variation of ϕ to support in a compact domain D ⊂M , is a smooth family
maps (ϕt)t∈(−ε,ε) : M → N , such that ϕ0 = ϕ and ϕt = ϕ on M \ int(D).

Definition 57. A map is called harmonic if it is a critical point of the energy functional over
any compact subset D of M . i.e.

d

dt
E(ϕt;D)

∣∣
t=0

= 0.

1.7.2 First variation of energy

Theorem 4. Let ϕ : (Mm, g) −→ (Nn, h) be a smooth map and let (ϕt)t∈(−ε,ε) be a smooth
variation of ϕ supported in D. Then:

d

dt
E(ϕt;D)

∣∣
t=0

= −
∫
D

h(v, τ(ϕ)) vg,

where v =
dϕt
dt

∣∣
t=0

denotes the variation vector field of {ϕt},

τ(ϕ) = traceg∇dϕ =
m∑
i=1

εi
{
∇ϕ
ei
dϕ(ei)− dϕ(∇M

ei
ei)
}
, (1.3)

is called tension field of ϕ where {e1, ..., em} is an orthonormal frame on (Mm, g) and εi =
g(ei, ei) = ±1.

Proof. Defined φ : M×(−ε, ε)→ N by φ(x, t) = ϕt(x), let∇φ denote the pull-back connection
on φ−1TN. Note that, for any vector field X onM considered as a vector field onM×(−ε, ε),
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we have [∂t, X] = 0. Using (1.2) we obtain:

d

dt
E(ϕt;D)

∣∣
t=0

=
1

2

d

dt

∫
D

m∑
i=1

h(dϕt(ei), dϕt(ei)) vg
∣∣
t=0

=
1

2

d

dt

∫
D

m∑
i=1

h(dφ(ei, 0), dφ(ei, 0)) vg
∣∣
t=0

=
1

2

∫
D

∂

∂t

m∑
i=1

h(dφ(ei, 0), dφ(ei, 0)) vg
∣∣
t=0

=

∫
D

m∑
i=1

h(∇φ

(0, d
dt

)
dφ(ei, 0), dφ(ei, 0)) vg

∣∣
t=0

=

∫
D

m∑
i=1

h(∇φ
(ei,0)dφ(0,

d

dt
), dφ(ei, 0)) vg

∣∣
t=0

=

∫
D

m∑
i=1

h(∇N
dϕ(ei)

v, dϕ(ei)) vg

=

∫
D

m∑
i=1

h(∇ϕ
ei
v, dϕ(ei)) vg. (1.4)

Define an 1-form on M by:

ω(X) = h(v, dϕ(X)), X ∈ X(M).

We have:

divMω = εi(∇eiω)(ei)

=
m∑
i=1

εi
{
ei(ω(ei))− ω(∇M

ei
ei)
}

=
m∑
i=1

{
h(∇ϕ

ei
v, dϕ(ei)) + h(v,∇ϕ

ei
dϕ(ei))− h(v, dϕ(∇M

ei
ei))
}

=
m∑
i=1

h(∇ϕ
ei
v, dϕ(ei)) + h(v, τ(ϕ)), (1.5)

according to formulas (3.22), (4.3), and the divergence theorem we obtain:

d

dt
E(ϕt;D)

∣∣
t=0

= −
∫
D

h(v, τ(ϕ))vg.

Theorem 5. A smooth map ϕ : (Mm, g)→ (Nn, h) between two semi-Riemannian manifolds
is harmonic if and only if:

τ(ϕ) = traceg∇dϕ = 0.
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If (xi)1≤i≤m and (yα)1≤α≤n denote local coordinates onM and N respectively, then respectively
the equation τ(ϕ) = 0 takes the form:

τ(ϕ)γ = εi(∆ϕ
γ + gijNΓγαβ

∂ϕα

∂xi
∂ϕβ

∂xj
) = 0. (1.6)

where ∆ϕγ =
1√
|g|

∂

∂xi
(
√
|g|gij ∂ϕ

γ

∂xj
) is the Laplace operator on (Mm, g) and NΓγαβ are the

Christoffel symbols on N .

Example 17. Every constant map:
ϕ : (Mm, g) −→ (Nn, h), x 7−→ y0 is harmonic (i.e. dxϕ = 0 ∀x ∈M).

Example 18. The identity mapping:
IdM : (Mm, g) −→ (Mm, g), x 7−→ x is totally geodesic (i.e. ∇dIdM = 0). Therefore IdM is
harmonic.

Example 19. Let (Mm, g) be a semi-Riemannian manifold and let f : (Mm, g) −→ R be a
smooth function, then:

τ(f) = εitraceg∇df
= εi∇df(ei, ei)

= εi(∇f
ei
df(ei)− df(∇M

ei
ei))

= εi(ei(ei(f))− (∇M
ei
ei)(f))

= g(∇eigrad f, ei)

= div gradf

= 4(f),

where {ei} is an orthonormal frame on (Mm, g).

Remark 14. The composition of two harmonic maps is not in general a harmonic application.
In particular if ϕ is harmonic and ψ is totally geodesic (i.e. ∇ψ = 0), then ψ◦ϕ is harmonic.

Example 20. Let the map:

ϕ : (R, dx2) −→ (R2, dx2 + dy2)

x 7−→ (x, 0),

we have:

τ(ϕ) =
(∂2x

dx2
,
∂20

dx2

)
= 0,

and let the map:

ψ : (R2, dx2 + dy2) −→ (R, dz2)

(x, y) 7−→ x2 − y2

2
,
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we have:

τ(ψ) = ∆(ψ)

=
∂2ψ

dx2
+
∂2ψ

dy2

= 1− 1

= 0,

then the two maps ϕ and ψ are harmonic, but the compound:

ψ ◦ ϕ : (R, dx2) −→ (R, dz2)

x 7−→ x2

2
,

is not harmonic, τ(ψ ◦ ϕ) = 1.

Example 21. IfM =]a, b[ be an interval of R, then a curve γ : (a, b) −→ (Nn, h) is harmonic
if:

d2γα

dt2
+N Γαβδ

dγβ

dt

dγδ

dt
= 0,

therefore, γ is harmonic if and only if it is a geodesic.

1.7.3 Second variation of energy

Theorem 6. Let ϕ : (Mm, g) −→ (Nn, h) be a harmonic map between Riemannian manifolds,
and {ϕt,s} be a two parameter variation with compact support in D. We set:

v =
∂ϕt,s
∂t

∣∣
(t,s)=(0,0)

and w =
∂ϕt,s
∂s

∣∣
(t,s)=(0,0)

denotes the variation vector fields of ϕ.
Under the notation above we have the following:

∂2

∂t∂s
E(ϕt,s, D)

∣∣
(t,s)=(0,0)

=

∫
D

h(Jϕ(v), w)vg,

where Jϕ(v) ∈ Γ(ϕ−1TN) given by:

Jϕ(v) = −traceRN(v, dϕ)dϕ− trace(∇ϕ)2v.

RN is the curvature tensor on (N, h), and

trace(∇ϕ)2v =
m∑
i=1

[∇ϕ
ei
∇ϕ
ei
v −∇ϕ

∇Mei ei
v].
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Proof. Defined φ : M × (−ε, ε) × (−ε, ε) → N by φ(x, t, s) = ϕt,s(x). Let ∇φ denote the
pull-back connection on φ−1TN . Note that, for any vector field X on M considered as a
vector field on M × (−ε, ε)× (−ε, ε), we have:

[∂t, X] = 0, [∂s, X] = 0, [∂t, ∂s] = 0.

We put Ei = (ei, 0, 0), ∂
∂t

= (0, d
dt
, 0) and ∂

∂t
= (0, 0, d

dt
). Then, by (1.2) we obtain:

∂2

∂t∂s
E(ϕt,s, D)

∣∣
(t,s)=(0,0)

=
1

2

∫
D

m∑
i=1

∂2

∂t∂s
h(dφ(Ei), dφ(Ei))vg, (1.7)

first, note that:

1

2

∂2

∂t∂s
h(dφ(Ei), dφ(Ei) =

∂

∂t
h(∇φ

∂
∂s

dφ(Ei), dφ(Ei)

= h(∇φ
∂
∂t

∇φ
∂
∂s

dφ(Ei), dφ(Ei) (1.8)

+ h(∇φ
∂
∂s

dφ(Ei),∇φ
∂
∂t

dφ(Ei),

the first term on the left-hand side of (1.8) is:

h(∇φ
∂
∂t

∇φ
∂
∂s

dφ(Ei), dφ(Ei) = h(∇φ
∂
∂s

dφ(Ei),∇φ
∂
∂t

dφ(Ei)

= h(RN(dφ(
∂

∂t
), dφ(Ei))dφ(

∂

∂s
), dφ(Ei)) (1.9)

+ h(∇φ
Ei
∇φ

∂
∂t

dφ(
∂

∂s
), dφ(Ei))

+ h(∇φ

[ ∂
∂t
,Ei]
dφ(

∂

∂s
), dφ(Ei)).

Define an 1-form on M by:

w(X) = h
(
∇φ

∂
∂t

dφ(
∂

∂s
)
∣∣
(t,s)=(0,0)

, dϕ(X)
)
, X ∈ X(M).
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We calculate the divergence of w.

divMω =
m∑
i=1

εi
{
ei(ω(ei))− ω(∇M

ei
ei)
}

=
m∑
i=1

{ei(h(
(
∇φ

∂
∂t

dφ(
∂

∂s
)
∣∣
(t,s)=(0,0)

, dϕ(ei)))

− h
(
∇φ

∂
∂t

dφ(
∂

∂s
)
∣∣
(t,s)=(0,0)

, dϕ(∇M
ei
ei))}

=
m∑
i=1

{h(∇φ
Ei
∇φ

∂
∂t

dφ(
∂

∂s
)
∣∣
(t,s)=(0,0)

, dϕ(ei))

+ h(
(
∇φ

∂
∂t

dφ(
∂

∂s
)
∣∣
(t,s)=(0,0)

,∇ϕ
ei
dϕ(ei))

− h
(
∇φ

∂
∂t

dφ(
∂

∂s
)
∣∣
(t,s)=(0,0)

, dϕ(∇M
ei
ei))}

=
m∑
i=1

{h(∇φ
Ei
∇φ

∂
∂t

dφ(
∂

∂s
)
∣∣
(t,s)=(0,0)

, dϕ(ei))

+ h
(
∇φ

∂
∂t

dφ(
∂

∂s
)
∣∣
(t,s)=(0,0)

, τ(ϕ))}.

According to the harmonicity of ϕ we obtain:

divMω =
m∑
i=1

{h(∇φ
Ei
∇φ

∂
∂t

dφ(
∂

∂s
)
∣∣
(t,s)=(0,0)

, dϕ(ei))}. (1.10)

From the formulas (1.9) and (1.10), with [ ∂
∂t
, Ei] = 0, we get:

h(∇φ
∂
∂t

∇φ
∂
∂s

dφ(Ei), dφ(Ei))
∣∣
(t,s)=(0,0)

=
m∑
i=1

h(RN(v, dφ(ei))w, dφ(ei))

+ divMω. (1.11)

The second term on the left-hand side of (1.8) is:

h(∇φ
∂
∂s

dφ(Ei),∇φ
∂
∂t

dφ(Ei)) = h(∇φ
Ei
dφ(

∂

∂s
),∇φ

Ei
dφ(

∂

∂t
))

+ Ei
(
h(dφ(

∂

∂s
),∇φ

Ei
dφ(

∂

∂t
))
)

− h(dφ(
∂

∂s
),∇φ

Ei
∇φ
Ei
dφ(

∂

∂t
)). (1.12)

Define an 1-form on M by:

η(X) = h(w,∇ϕ
Xv), X ∈ X(M).
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Then:

divMη =
m∑
i=1

{
ei(η(ei))− η(∇M

ei
ei)
}

=
m∑
i=1

{
ei(h(w,∇ϕ

ei
v))− h(w,∇ϕ

∇Mei ei
v)
}
. (1.13)

According to formulas (1.12) and (1.13), we obtain:

m∑
i=1

h(∇φ
∂
∂t

dφ(Ei),∇φ
∂
∂s

dφ(Ei))
∣∣
(t,s)=(0,0)

= divMη +
m∑
i=1

h(w,∇ϕ
∇Mei ei

v).

−
m∑
i=1

h(w,∇ϕ
ei
∇ϕ
ei
v). (1.14)

From the formulas (1.7), (1.8), (1.11), (1.14) and the divergence theorem, the theorem (6)
follows.

1.7.4 Biharmonic maps

The bi-energy functional of a smooth map ϕ : (Mm, g) −→ (Nn, h) is defined by:

E2(ϕ,D) =
1

2

∫
D

|τ(ϕ)|2 vg. (1.15)

Definition 58. A map is called biharmonic if it is a critical point of the bi-energy functional
over any compact subset D of M.

1.7.5 First variation of bi-energy

Theorem 7. Let ϕ : (Mm, g) −→ (Nn, h) be a smooth map between Riemannian manifolds,
D a compact subset of M and let {ϕt}t∈(−ε,ε) be a smooth variation with compact support in
D. Then:

d

dt
E2(ϕt;D)|t=0 = −

∫
D

h(v, τ2(ϕ))vg,

where v = dϕt
dt
|t=0 denotes the variation vector field of ϕ and in locale frame at x ∈ M , we

have:

τ2(ϕ) = −tracegR
N(τ(ϕ), dϕ)dϕ− traceg(∇ϕ)2τ(ϕ)

= −
m∑
i=1

RN(τ(ϕ), dϕ(ei))dϕ(ei)−
m∑
i=1

{∇ϕ
ei
∇ϕ
ei
τ(ϕ)−∇ϕ

∇Mei ei
τ(ϕ)}. (1.16)

τ2(ϕ) is called the bi-tension field of ϕ.
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Proof. Define φ : M × (−ε, ε) −→ N by φ(x, t) = ϕt(x).
First note that:

d

dt
E2(ϕt;D)|t=0 =

∫
D

m∑
i=1

h
(
∇φ

(0, d
dt

)
∇dφ((ei, 0), (ei, 0)),∇dφ((ei, 0), (ei, 0))

)
vg
∣∣
t=0
. (1.17)

Calculating in a normal frame at x ∈M we have:

∇φ

(0, d
dt

)
dφ(ei, 0) = ∇φ

(ei,0)dφ(0,
d

dt
) + dφ([(0,

d

dt
), (ei, 0)])

= ∇φ
(ei,0)dφ(0,

d

dt
). (1.18)

∇φ

(0, d
dt

)
dφ(∇M

ei
ei, 0) = ∇φ

(∇Mei ei,0)
dφ(0,

d

dt
). (1.19)

∇φ

(0, d
dt

)
∇dφ((ei, 0), (ei, 0)) = ∇φ

(0, d
dt

)
∇φ

(ei,0)dφ(ei, 0)−∇φ

(0, d
dt

)
dφ
(
∇M×(−ε,ε)

(ei,0) (ei, 0)
)

= RN(dφ(0,
d

dt
), dφ(ei, 0))dφ(ei, 0) +∇φ

(ei,0)∇
φ

(0, d
dt

)
dφ(ei, 0)

+ ∇φ

[(0, d
dt

),(ei,0)]
dφ(ei, 0)−∇φ

(0, d
dt

)
dφ(∇M

ei
ei, 0).

= RN(dφ(0,
d

dt
), dφ(ei, 0))dφ(ei, 0)

+ ∇φ
(ei,0)∇

φ
(ei,0)dφ(0,

d

dt
)

− ∇φ
(∇Mei ei,0)

dφ(0,
d

dt
). (1.20)

From where:

h(∇φ

(0, d
dt

)
∇dφ((ei, 0), (ei, 0)), ∇dφ((ei, 0), (ei, 0)))

∣∣
t=0

= h(RN(v, dϕ(ei))dϕ(ei), τ(ϕ))

+ h(∇ϕ
ei
∇ϕ
ei
v, τ(ϕ))

− h(∇ϕ
∇Mei ei

v, τ(ϕ)). (1.21)

Let ω ∈ X∗(M), be a 1-form to support in D, defined by:

ω(X) = h(∇ϕ
Xv, τ(ϕ)), X ∈ X(M).

We calculate the divergence of ω:

divMω =
m∑
i=1

{ei(ω(ei))− ω(∇M
ei
ei)}

=
m∑
i=1

{ei(h(∇ϕ
ei
v, τ(ϕ)))− h(∇ϕ

∇Mei ei
v, τ(ϕ))}

=
m∑
i=1

{h(∇ϕ
ei
∇ϕ
ei
v, τ(ϕ)) + h(∇ϕ

ei
v,∇ϕ

ei
τ(ϕ))− h(∇ϕ

∇Mei ei
v, τ(ϕ))}. (1.22)
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From the formulas (1.21) and (1.22), we obtain:

m∑
i=1

h(∇φ

(0, d
dt

)
∇dφ((ei, 0), (ei, 0)), ∇dφ((ei, 0), (ei, 0)))|t=0 =

m∑
i=1

h(RN(v, dϕ(ei))dϕ(ei), τ(ϕ))

−
m∑
i=1

h(∇ϕ
ei
v,∇ϕ

ei
τ(ϕ))

+ divMω. (1.23)

Let η ∈ Γ(T ∗M), be an 1-form to support in D, given by:

η(X) = h(v,∇ϕ
Xτ(ϕ)), X ∈ X(M).

We calculate the divergence of η:

divMη =
m∑
i=1

{ei(η(ei))− η(∇M
ei
ei)}

=
m∑
i=1

{ei(h(v,∇ϕ
ei
τ(ϕ)))− h(v,∇ϕ

∇Mei ei
τ(ϕ))}

=
m∑
i=1

{h(∇ϕ
ei
v,∇ϕ

ei
τ(ϕ)) + h(v,∇ϕ

ei
∇ϕ
ei
τ(ϕ))− h(v,∇ϕ

∇Mei ei
τ(ϕ))}. (1.24)

Substituting (1.24) in (1.23), we obtain:

m∑
i=1

h(∇φ

(0, d
dt

)
∇dφ((ei, 0), (ei, 0)), ∇dφ((ei, 0), (ei, 0)))|t=0 =

m∑
i=1

h(RN(τ(ϕ), dϕ(ei))dϕ(ei), v)

+
M∑
i=1

h(v,∇ϕ
ei
∇ϕ
ei
τ(ϕ))

−
M∑
i=1

h(v,∇ϕ
∇Mei ei

τ(ϕ))

+ divMω − divMη. (1.25)

From the formulas (1.17), (1.25) and according and if:∫
D

div(ω)vg = 0, (1.26)

we obtain:

d

dt
E2(ϕt;D)|t=0 = −

∫
D

m∑
i=1

h
(
−RN(τ(ϕ), dϕ(ei))dϕ(ei)−∇ϕ

ei
∇ϕ
ei
τ(ϕ) +∇ϕ

∇Mei ei
τ(ϕ), v

)
vg.
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Theorem 8. Let ϕ : (Mm, g) −→ (Nn, h) be a smooth map between two Riemannian mani-
folds, then ϕ is said biharmonic if and only if:

τ2(ϕ) = −tracegR
N(τ(ϕ), dϕ)dϕ− traceg(∇ϕ)2τ(ϕ) = 0. (1.27)

1. The equation (1.27) is called the Euler-Lagrange equation.

2. Let M and N be two Riemanian manifolds with the coordinates (xi)and (yα) respec-
tively, then, in the neighborhood of the points x ∈M and ϕ(x) ∈ N we have

τ2(ϕ) = gij{ ∂2τσ

∂xi∂xj
+ 2

∂τσ∂τβ

∂xj∂xj
NΓσαβ + τα

∂2ϕβ

∂xi∂xj
NΓσαβ

+τα
∂ϕβ

∂xi
∂NΓσαβ
∂xj

+ τα
∂ϕβ

∂xi
∂ϕρ

∂xj
NΓυαβ

NΓσυρ

−MΓkij(
∂τσ

∂xk
+ τα

∂ϕβ

∂xk
NΓσαβ)− τυ ∂ϕ

α

∂xi
∂ϕβ

∂xj
NRσ

βαυ}
∂

∂yσ
◦ ϕ,

where τ γ = gij
(

∂2ϕγ

∂xi∂xj
+ ∂ϕα

∂xi
∂ϕβ

∂xj
NΓγαβ ◦ ϕ− ∂ϕγ

∂xk
MΓkij

)
and NRσ

βαυ designate the compo-
nents of the curvature tensor of (Nn, h).

3. Any harmonic map is a biharmonic.

4. Biharomnic maps are not generally harmonic maps.

Example 22.

1. The polynomials of degrees 3 on R are biharmonic non-harmonic maps.

2. The identity map Id : (Mm, g) −→ (Mm, g) is biharmonic.

3. A smooth map ϕ : (Mm, g) −→ (Rn, <,>Rn), is biharmonic if and only if ∆M(∆Mϕσ) =
0, for all σ = 1, . . . , n.

Example 23. Let f : Rn → R a harmonic function (i.e. ∆(f) = 0). Then the function
ϕ(x) = r2(x)f(x) is a biharmonic function non-harmonic, where r(x) =

√
x2

1 + x2
2 + ...+ x2

n

for every x = {x1, x2, ..., xn} ∈ Rn is the distance function.
In effect:

r2(x) = x2
1 + x2

2 + ...+ x2
n =

n∑
j=1

x2
j

∂r2

∂xi
=

n∑
j=1

∂x2
j

∂xi
= 2xi

∂ϕ

∂xi
=
∂r2

∂xi
f + r2 ∂f

∂xi
= 2xif + r2 ∂f

∂xi
∂ϕ2

∂x2
i

= 2f + 2xi
∂f

∂xi
+ 2xi

∂f

∂xi
+ r2 ∂

2f

∂2xi
.
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Then the Laplacian of a function ϕ is given by:

∆ϕ =
n∑
i=1

∂2ϕ

∂2xi
=

n∑
i=1

2f +
n∑
i=1

4xi
∂f

∂xi
+

n∑
i=1

r2 ∂
2f

∂2xi

= 2nf + 4
n∑
i=1

xi
∂f

∂xi
+ r2 ∆f︸︷︷︸

=0

6= 0.

Thus ϕ is non-harmonic. For j fixed, we have:

∂∆ϕ

∂xj
= 2n

∂f

∂xj
+ 4

n∑
i=1

∂xi
∂xj︸︷︷︸
=δij

∂f

∂xi
+ 4

n∑
i=1

xi
∂2f

∂xj∂xi

= 2n
∂f

∂xj
+ 4

∂f

∂xj
+ 4

n∑
i=1

xi
∂2f

∂xj∂xi
.

Therefore:
∂2∆ϕ

∂x2
j

= 2n
∂2f

∂x2
j

+ 4
∂2f

∂x2
j

+ 4
n∑
i=1

∂xi
∂xj︸︷︷︸
=δij

∂2f

∂xi∂xj
+ 4

n∑
i=1

xi
∂3f

∂xi∂x2
j

,

τ2(f) = −∆(∆ϕ) = −
n∑
j=1

∂2∆ϕ

∂x2
j

= −(2n+ 4)∆f − 4∆f − 4
n∑
i=1

xi
∂

∂xi
(∆f) = 0.

Example 24. The inversion ϕ : Rn − {0} → Rn − {0}, x 7→ ϕ(x) = x
‖x‖2 is a biharmonic

application non-harmonic if and only if n = 4.
In effect. We pose ϕα(x) = xα

‖x‖2 for every α ∈ {1, 2, ..., n}. For i fixed, we have:

∂ϕn

∂xi
= δiα‖x‖−2 − 2xαxi‖x‖−4

∂2ϕn

∂x2
i

= −4δiα‖x‖−2 − 2xα‖x‖−4 + 8xαx
2
i ‖x‖−6.

Then the Laplacian of a function ϕα is given by:

∆ϕn = −4
n∑
i=1

δiα‖x‖−2 − 2
n∑
i=1

xα‖x‖−4 + 8
n∑
i=1

xαx
2
i ‖x‖−6

= 4xα‖x‖−4 − 2nxα‖x‖−4

= 2(2− n)xα‖x‖−4.

Thus τ(ϕ) = 2(2− n)‖x‖−4x. From the same technique, we obtain:

τ2(ϕ) = −8(2− n)(4− n)‖x‖−6x.

Therefore, ϕ is biharmonic non-harmonic if and only if n=4.



Chapter2
Thurston Geometry

In this chapter we introduce a Thurston model geometry (G,X). Three-dimensional Thurston
model geometries are classified by W. Thurston, this classification has eight geometries, to
know, E3, S3, H3, S2 × R, H2 × R, S̃l2(R), Nil3 and Sol3.
R. Filipkiewicz classified the Thurston geometry of dimension four. In this classification
we distinguish two categories of spaces, those which are symmetrical, to know, E4, S4, H4,
P 2(C), H2(C), S2×S2, S2×E2, S2×H2, H2×E2, H2×H2, H3×E1 and H3×E1 and those
that are not symmetrical, to know, Nil4, Sol4m,n, Sol40, Sol41, F 4, S̃l2(R)×E1 and Nil3×E1.
[50], [65], [66], [37], [61], [63], [64], [27] and [49].

Definition 59. Let (M, g) and (N, h) be Riemannian manifolds. An isometry is a diffeomor-
phism f : M −→ N such that g = f−1h where g = f−1h denotes the pullback of the metric
tensor h by f . If f is a local diffeomorphism then f is local isometry. We say that M and
N are isometric, M ' N , if there is such isometry between them. The set of isometries from
M to itself forms a group under composition, and is denoted Isom(M).

Definition 60. Let G be a group and M a set. A left action of G on M is a map:

G×M −→ M

(g,m) −→ g.m,

such that g1.(g2.m) = (g1.g2).m for all g1, g2 ∈M and m ∈M , and e.m = m for e the identity
element of G and all m ∈M . A right group action can be defined similarly.

Definition 61. Given a set with a left action of a group G and m ∈M , the orbit of m under
the action G is the set orb(m) = {g.m | g ∈ G}, that is, the set of all images of m under the
action of elements of the group G.

Definition 62. An action G×M →M of a group G on a set M is called transitive if it has
a single orbit, i.e. for any two elements m,n ∈M , there exist g ∈ G such that n = g.m.

Example 25. The modular group PSL2(Z) acts transitively on the rational projective line
P 1(Q) = Q ∪ {∞}. The projective general linear group PGL2(C) acts 3-transitively on the
Riemann sphere P 1(C).
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Definition 63. Given an action G ×M → M of a group G on a set M , for every element
m ∈ M , the stabilizer subgroup of m (also called the isotropy group of m) is the set of all
elements in G that leave m fixed:

stab(m) = {g ∈ G | g.m = m}.

Definition 64. A Lie group is a group with a differentiable manifold structure compatible
with its group structure, i.e. the map:

φ : G×G −→ G

(g, h) 7−→ g.h−1,

is differentiable.

Definition 65. Let H and N be groups and let Aut(N) the automorphism group of N for the
law ◦. The direct product N ×H of N and H is the group whose underlying set is the product
set N ×H, with the law (n1, h1)(n2, h2) = (n1n2, h1h2) for all n1, n2 ∈ N and h1, h2 ∈ H.
The semi-direct product is a generalization of this notion. Let φ : H → AutN a group
morphism which in particular defines an action h1.n1 = φ(h)(n) of N on H.

Proposition 19. We define a group law on the product set N ×H in posing:

(n1.h1).(n2.h2) = (n1(h1.n2), h1h2).

This group is called the semi-direct product of N by H relative to the action φ, it is denoted
H oφ N (or simply H oN).

2.1 Thurston Geometries of dimension 3
Definition 66. Let X be one of E2, S2 or H2, where E2 is Euclidean two-space, S2 is the
two-sphere and H2 is hyperbolic two-space. Let Γ be a subgroup of Isom(X). If F is a two-
manifold such that F ' X/Γ and the projection X → X/Γ is a covering map, we say that F
has a geometric structure modeled on X.

Definition 67. A geometry is a simply connected, complete, homogeneous Riemannian man-
ifold X together with its isometry group. A manifold M has a geometric structure modeled
on X if M ' X/Γ where Γ is a subgroup of the isometry group of X and ' indicate that M
is isometric to X/Γ.

Definition 68. Two geometries (X1, G1) and (X2, G2) are equivalent if G1 is isomorphic to
G2 and there exist a map ϕ : X1 → X2. That is, φ(g1.x) = g2.φ(x) where g2 is the isomorphic
image of g1 in G2.
A geometry (X,G1) is maximal if there is no geometry (X,G2) with G1 " G2.
This definition is needed to identify all possible geometric structures in a given dimension.
Thurston has identified the eight geometric structures in dimension three.
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2.1.1 Model geometries

Definition 69. A model geometry (G,X) is a manifold X together with a Lie group G of
diffeomorphisms of X such that:

1. X is connected and simply connected.

2. G acts transitively on X, with compact point stabilizers.

3. G is not contained in any larger group of diffeomorphisms of X with compact point
stabilizers of points, and

4. there exists at least one compact manifold modeled (G,X)-manifold.

Theorem 9. The only Thurston model geometry of dimension 1 is E1 ' E(1)/O(1).

Theorem 10. [64] page:(181) (two-dimensional model geometries). there are precisely three
two-dimensional model geometries: the Euclidean two-space E2 ' E(2)/O(2), The two-sphere
S2 ' O(2)/O(2) and the hyperbolic two-space H2 = PGL2(R)/PO(2).

Proof. Since G acts transitively on X, it follows that any G-invariant Riemannian metric
on X has constant Gaussian curvature. When a metric is multiplied by a constant k, the
Gaussian curvature is multiplied by k2, so we can find a metric whose curvature is either 0,
1 or −1. It is a standard fact from Riemannian geometry that the only simply connected
complete Riemannian n-manifolds with constant sectional curvature 0, 1 and −1 are En, Sn
and Hn.

In enumerating three-dimensional model geometries (G,X), we will first look at the con-
nected component of the identity of G call it G′. The action of G′ is still transitive, and the
stabilizers G′x of points x ∈ X are connected. This is because the quotients G′x/(G′x)o, where
(G′x)o is the component of the identity of G′x, from a covering space of X. Since X is simply
connected, the covering is trivial.
Therefore G′x is a connected closed subgroup of SO(3). Using the fact that a closed subgroup
of a Lie group is also a Lie group, and therefore a manifold, it is easy to see that there are
only three possibilities: SO(3), SO(2) and the trivial group. The stabilizer Gx is a Lie group
of the same dimension.

Theorem 11. [64] page:(181-184) There are eight three-dimensional model geometries (G,X),
as follows:

1. If the point stabilizers are three-dimensional, X is S3, E3 or H3.

2. If the point stabilizers are one-dimensional, X fibers over one of the two-dimensional
model geometries, in a way that is invariant under G. There a G-invariant Riemannian
metric on X such that the connection orthogonal to the fibers has curvature 0 or 1.
(a) If the curvature is zero, X is S2 × E1 or H2 × E1.
(b) If the curvature is one, we have nilgeometry (which fibers over E2) or the geometry
of S̃l2(R) (which fibers over H2).
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3. The only geometry with zero-dimensional stabilizers is solvegeometry, which fibers over
the line.

The geometry in (1) we have already discussed extensively, and those in (a) are self-
explanatory. The remanning ones will be described in more detail in the course of the proof.
We start by giving X a G-invariant Riemannian metric.

Proof. For (1). If G′ acts with stabilizer SO(2), there is a non-zero, G′-invariant vector field
V on X whose direction at each point gives the axis of rotation of the elements of G′ that
fix that point. The trajectories of V form a G′-invariant one-dimensional foliation F . Also,
the flow of V call it φt at time t commutes with the action of G′, so if an element of G′ fixes
some points on a leaf F of F , it fixes any other point on F : all points on the same leaf have
the same stabilizer. This also implies that if an element of G′ takes a point x ∈ F to another
point y ∈ F , it commutes with any element of the stabilizer G′x = G′y.
Now fix a leaf F and a point x ∈ F , and let gt be an element of G taking φt(x) back to x.
Then gt ◦ φt fixes x, and its derivative at x is a linear automorphism of TxM . The derivative
is the identity along the axis of the action of G′x. It commutes with rotations around this
axis, that is, with elements of G′x. Then it must be itself a rotation around this axis, possibly
composed with an expansion or contraction. But an expansion or contraction is ruled out,
because the assumption that there is a compact manifold modeled on (G,X) implies that V
must preserve volume.
The divergence of a vector field V on a manifold X with a volume form w is a measure of
how much V expands or contracts volume. More precisely, divV is a Lie derivative LVw,
expressed in units of w.
Now suppose that X is a manifold on which is Lie group G acts transitively, and that V and
w are a vector field and a volume form on X, both invariant under G. Show that divV is
constant over X.
In the situation of the proof, if there is a compact manifold modeled on (G,X), this manifold
inherits the vector field and the volume form from X. The vector field must preserve the
total volume, and so much preserves volume at every point. Therefore V has divergence zero.
Show that this implies that gt ◦ φt acts as a rotation on TxM .
We conclude that the derivative of φt maps TxM to Tφt(x)M isometrically. Since x was
arbitrary, the flow of the vector field V is by isometries.
By considering a neighborhood of a point on a leaf and the fact that the leaf is invariant
under a invariant under a subgroup G′x isomorphic to SO(2), we conclude that the leaf does
not accumulate on itself, but is an embedded image of either S1 or R. In fact, it is easy to see
that distinct leaves have disjoint neighborhoods. Therefore the quotient space X/F is a two-
dimensional manifold Y . Since V acts by isometries, Y inherits a Riemannian metric from X,
and a transitive action of G′ by isometries. Also, Y is connected and simply connected because
X is. By proof of Theorem 1, Y must be one of the two-dimensional model geometries: E3,
S2 or H2. In addition, X is a principal fiber bundle over Y , with fiber and structure group
equal to S1 or R.
The plane field T orthogonal to F is a connection for this bundle. Since the group of isometries
of X acts transitively, T has constant curvature.
(a) If the curvature is zero, T defines a foliation. Since Y is simply connected, the bundle is
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trivial. There are three possibilities, depending on Y (an open circle indicates that no new
geometry arises possibility):

• If Y = S2, we obtain the model geometry S2×E1. As a compact manifold modeled on
this geometry, we can take S2 × S1.

• If Y = E2, then X = E2 × E1 = E3. Thus G′ (and hence G) is contained in a bigger
group of isometries, and we don’t get a new model geometry.

• If Y = H2, we obtain the model geometry H2 × E1. Any compact hyperbolic surface
cross a circle is an example.

In each of these two geometries, the full group of isometries G contains G′ with index 4, since
we can reverse the orientation of either factor independently.
(b) If the curvature of T is non-zero, T defines a contact structure. After rescaling our metric
in the direction of the fibers and choosing appropriate orientations for the base and the fiber,
we can assume that the curvature is 1, expressed in terms of the standard bases for

∧2 TY
and TF . This, together with the condition that X is simply connected, essentially determines
the geometry. If Y has no-zero curvature, X can be taken as the tangent circle bundle of
Y (or rather, its universal cover) with the Levi-Civita connection. The group is made of
derivatives of isometries of Y , together with rotation of unit tangent vectors keeping the base
point fixed.

• If Y = S2, the tangent circle bundle is SO(3), whose universal cover is S3. For G, we
get the group of isometries of S3 that preserve the Hopf fibration. This is not a maximal
group acting with compact stabilizers, so it not a model geometry.

• If Y = E2, we obtain nilgeometry. This can be defined in terms of our model contact
structure T as the group of contact automorphisms that are lifts of isometries of the
xy-plane.

• If Y = H2, the unit tangent bundle is PSL2(R), the group of orientation preserving
isometries of H2. Passing to the universal cover, we get X = S̃l2(R). The unit tangent
bundle of a compact hyperbolic surface is an example of a three-manifold with this
geometry.

For S̃l2(R) and nilgeometry, the contact structure determines an orientation of the geometry
which cannot be reversed. However the orientation of the base two-dimensional geometry can
be reversed simultaneously with the orientation of the fiber, so the index of G′ in G is 2.

2.2 The Eight Geometries

2.2.1 E3

Euclidean 3-space, E3, is the space R3 with the metric ds2 = dx2 + dy2 + dz2. As in E2 any
isometry of E3 can be written as x→ Ax+b, but now A is a real orthogonal 3×3 matrix and
b is a translation vector in R3. Thus there is a group homeomorphism φ : Isom(E3)→ O(3),
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and the kernel of φ is the translation subgroup of Isom(E3). In the case where n = 3, it can
be show that the translation subgroup of G is of finite index in G, or G is a finite extension
of Z, where Z ∼= {g : g is a translation}.

2.2.2 S3

The spherical geometry is the three-sphere and its isometry group. S3 can be embedded in
R4 and thus the metric on S3 is the one induced from R4, that is, ds2 = dx2 +dy2 +dz2 +dw2.
The isometry group of S3 is O(3), the group of orthogonal 3× 3 matrices. It is interesting to
note that any orientation reversing isometry of S3 has a fixed point, which limits the discrete
subgroups of Isom(S3) to subgroups of SO(3).

2.2.3 H3

The basic properties of hyperbolic space H3 can be developed exactly along the lines which I
used forH2 in Chapter 1 [61]. One starts with upper half 3-space R3

+ = {(x, y, z) ∈ R3 : z > 0}
and the metric ds2 = 1

z2
(dx2 + dy2 + dz2) to assign a length to any smooth path in R3

+ and
hence define a metric on R3

+. One checks that vertical straight lines are geodesics in this new
metric. One also checks that inversion of R3 in sphere with center on the xy-plane defines an
isometry of H3. Now one can show that the geodesics of H3 are exactly the vertical straight
lines and arcs of circles which meet the xy-plane orthogonally. One can also show that the
full isometry group of H3 is generated by reflections, which are simply the above inversions
(including the reflections in vertical planes). Clearly an isometry of H3 is determined by its
restriction to the "2-sphere at infinity" consisting of C∪{∞}, where we identify the xy-plane
with C. The group of orientation preserving isometries of H3 can be identified with the group
of Möebius transformation of C ∪ {∞}. Recall that a Möebius transformation of C ∪ {∞}
is a map of the form z → az+b

cz+d
where a, b, c, d ∈ C and ad − bc 6= 0. The group of these

transformation is naturally isomorphic to PSL2(C). We identify the point {x, y, z} of R3
+

with the quaternion x+yi+zj. The 2×2 complex matrix
(
a b
c d

)
acts on R3

+, extending its

natural action on C∪{∞}, by the formula w → (aw+ b)(cw+ d)−1, where w is a quaternion
of the form x + yi + zj, z > 0. One can check that this yields all orientation preserving
isometries of H3.

2.2.4 S2 × R
The space S2×R is precisely the Cartesian cross product of the unit two-sphere and the real
line with the product metric. The isometry group of S2 ×R is identified with the product of
Isom(S2) and Isom(R). That is, Isom(S2 × R) ∼= Isom(S2) × Isom(R). This geometry is
relatively simple. In fact, there are exactly seven manifolds without boundary which have a
geometric structure modeled on S2 × R.
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2.2.5 H2 × R
The space H2 × R is the Cartesian cross product of hyperbolic two-space and the real line
with the product metric. It has isometry group Isom(H2 × R) ∼= Isom(H2) × Isom(R).
There are infinitely many manifolds with a geometric structure modeled on H2 × R. Let
H2 be represented by the upper half-plane model {(x, y) ∈ R2 | y > 0}, therefore the space
H2 × R is a Lie group with respect to the operation (x, y, t)(x′, y′, z′) = (x′y + x, yy′, z + z′)
and the left-invariant metric:

ds2 =
1

y2
(dx2 + dy2) + dz2.

2.2.6 S̃l2(R)

The 3-dimensional Lie group of all 2× 2 real matrices with determinant 1 is denoted Sl2(R)

and S̃l2(R) denotes its universal covering. The unit tangent bundle of H2 can be identified
with PSL2(R), which is covered by Sl2(R). The metric on H2 can then be pulled back to
induce a metric on S̃l2(R). It is well-know that S̃l2(R) can, as a Riemannian manifold, be
modeled as R3 equipped with the following metric:

ds2 =
1

y2
(dx2 + dy2) + (dz +

dx

y
)2.

2.2.7 Nil3

The space Nil3 on Thurston’s list can be presented as the 3-dimensional nilpotent Lie sub-
group

Nil3 =


 1 x z

0 1 y
0 0 1

 | x, y, z ∈ R


of SL3(R) equipped with its standard left-invariant Riemannian metric. The restriction of
this metric to Nil3 is determined by orthonormal basis {X, Y, Z} of its Lie algebra nil given
by:

X =

 0 1 0
0 0 0
0 0 0

 , Y =

 0 0 0
0 0 1
0 0 0

 , Z =

 0 0 1
0 0 0
0 0 1

 .
It is well-know that in the global coordinate {x, y, z} on Nil3 the left-invariant Riemannian
metric satisfies:

ds2 = dx2 + dy2 + (dz + xdy)2.

This geometry is called Nil3 because the Lie group is nilpotent.
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2.2.8 Sol3

The model space Sol3 on Thurston’s list can be seen as the 3-dimensional solvable Lie group

Sol3 =


 ez 0 x

0 e−z y
0 0 1

 | x, y, z ∈ R


of SL3(R). The metric on Sol3 is determined by orthonormal basis {X, Y, Z} of its Lie algebra
sol3 given by:

X =

 0 0 1
0 0 0
0 0 0

 , Y =

 0 0 0
0 0 1
0 0 0

 , Z =

 0 0 0
0 −1 0
0 0 1

 .
We can identify Sol3 with R3 with the multiplication given by (x, y, t)(x′, y′, z′) = (x +
e−zx′, y + ezy′, z + z′). In the global coordinates {x, y, z} on Sol3 this takes the following
well-known metric form:

ds2 = e2zdx2 + e−2zdy2 + dz2.

This group is called Sol3 because it is a solvable group.

Remark 15. Except Sol3 all models Thurston admit canonical normal almost contact metric
structures.

2.3 Thurston Geometries of dimension 4
The definition of model geometries of dimension 4 is the same for the dimension 3, except
that in condition 4 of definition (69) the word compact is replaced by finite volume.
For a geometry (X,G) and any point x of the n-manifold X, the stabilizer Gx of the transi-
tive, effective and isometric G-action on X is compact. In fact, Gx is isomorphic to a closed
subgroup of O(n) since the action is isometric. By classifying all the possible closed sub-
groups of SO(4), R. Filipkiewicz proved that there are 19 classes of maximal geometries in
4-dimension.
Table. Nineteen classes of 4-dimensional geometries of Filipkiewicz:

type geometries
solvable type E4, Nil3 × E1, Nil4, Sol4m,n, Sol40, Sol41
product type H2 × S2, S3 × E1, S2 × E2, H3 × E1, S̃l2(R)× E1, H2 × E2, H2 ×H2

hyperbolic H4, H2(C)
finite group S4, P 2(C), S2 × S2

T H2 F 4

Suppose M is closed 4-manifold with χ(M) = 0, then [37] M can be seen as a quotient
X/Γ, where X is a 1-connected solvable Lie group and Γ is a closed torsion-free subgroup of
X o Aut(X).
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2.3.1 Nil4

The geometry Nil4 is the semi-direct product R3 oθ R where θ = [t, t, t
2

2
] and the component

of its isometry group with identity is Nil4 itself as left translation. It has abelianization R2

and central series ζNil4 ∼= R < ζ2Nil
4 = Nil4

′ ∼= R2.
These Lie groups have natural left invariant metrics, and the isometry groups are generated
by left translations and the stabilizer of the identity. For Nil3 this stabilizer is O(2), and
Isom(Nil3) is an extension of E(2) by R. Hence Isom(Nil3×E1) = Isom(Nil3)×E(1). For
Nil4 the stabilizer is (Z/2Z)2, and is generated by two involution, which send ((x, y, z), t) to
(−(x, y, z), t) and ((−x, y, z),−t), respectively.

2.3.2 Sol4m,n

The geometry Sol4m,n represents the semi-direct product R3 oθm,n R, where m and n are
integers such that the polynomial fm,n = X3 − mX2 + nX − 1 has distinct roots ea, eb
and ec (with a < b < c real) and θm,n(t) is the diagonal matrix diag[eat, ebt, ect]. Since
θm,n(t) = θn,m(−t) we may assume that m ≤ n, the condition on the roots then holds if and
only if 2

√
n ≤ m ≤ n. The metric is given by ds2 = e−2atdx2 + e−2btdy2 + e−2ctdz2 + dt2

(in the obvious global coordinates) is left invariant, and the automorphism of Sol4m,n which
sends (x, y, z, t) to (px, qy, rz, t) is an isometry if and only if p2 = q2 = r2 = 1. Let G be a

subgroup of GL(4,R) of bordered matrices
(
D ξ
0 1

)
, where D = diag[±eat,±ebt,±ect] and

ξ ∈ R3. Then Sol4m,n is a subgroup of G with positive diagonal entries, and G = Isom(Sol4m,n)
if m 6= n. If m = n then b = 0 and Sol4m,n = Sol3×E1, which admits the additional isometry
sending (x, y, z, t) to (x, y, z,−t), and G has index 2 in Isom(Sol3 × E1). The stabilizer of
the identity in the full isometry group is (Z/2Z)3 for Sol4m,n if m 6= n and D8 × (Z/2Z) for
Sol3 × R. In all cases Isom(Sol4m,n) ≤ (Sol4m,n) o Aut(Sol4m,n). In general Sol4m,n = Sol4m′,n′

if and only if (a, b, c) = λ(a′, b′, c′) for some λ 6= 0.

2.3.3 Sol40

The geometry Sol40 is the semi-direct product R3 oξ R, where ξ(t) denotes the diagonal
matrix diag [et, et, e−2t]. Note that if ξ(t) preserves a lattice in R3 then its characteristic
polynomial has integral coefficients and constant term −1. Since it has et as a repeated root
we must have ξ(t) = I. Therefore Sol40 does not admits any lattices. The metric given by
the expression ds2 = e−2t(dx2 + dy2) + e4tdz2 + dt2 is left invariant, and O(2) × O(1) acts
via rotations and reflections in the (x, y)-coordinates and reflection in the z-coordinate, to
give the stabilizer of the identity. These actions are automorphisms of Sol40, so Isom(Sol40) =
Sol40 o (O(2) × O(1)) ≤ (Sol40) o Aut(Sol40). The identity component of Isom(Sol40) is not
triangular.

2.3.4 Sol41

The Sol41 geometry is the group of real matrices:


 1 x z

0 t y
0 0 1

 | x, y, z, t ∈ R, t > 0

.
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The metric given by ds2 = t−2((1 + x2)(dt2 + dy2) + t2(dx2 + dz2) − 2tx(dtdx + dydz)) is
left invariant, and the stabilizer of the identity is D8, generated by the isometries which send
(t, x, y, z) to (t,−x, y,−z) and to t−1(1,−y,−x, xy − tz). These are automorphisms. (The
latter one is the restriction of the involution Ω of GL(3,R) which sends A to J(Atr)−1J ,
where J reverses the order of the standard basis of R3.) Thus Isom(Sol41) ∼= Sol41 o D8 ≤
(Sol41) oAut(Sol41). The orientation-preserving subgroup is isomorphic to the subgroup G of
GL(3,R) generated by Sol41 and the diagonal matrices diag[−1, 1, 1] and diag[1, 1,−1]. (Note
that these diagonal matrices act by conjugation on Sol41.)

2.3.5 F 4

The geometry F 4 is the tangent bundle T H2 of the hyperbolic plane H2, which we may
identify with R2 × H2. Its isometry group is the semidirect product R2 oα Sl

±
2 (R), where

Sl±2 (R) = {A ∈ GL(2,R) | detA = ±1}, and α is the natural action of Sl±2 (R) on R2. The

identity component acts on R2 × H2 as follows: if u ∈ R2 and A =

(
a b
c d

)
∈ Sl2(R)

then u(w, z) = (u + w, z) and A(w, z) = (Aw, az+b
cz+d

) for all (w, z) ∈ R2 × H2. The matrix

D =

(
1 0
0 −1

)
acts via D(w, z) = (Dw,−z̄). All H2(C) and F 4-manifolds are orientable.

2.3.6 Stabilizers of Thurston geometries

The stabilizers of these geometries are:

stabilizer geometries nature of geometry
So4 S4, E4, H4 constant curvature
U2 P 2(C), H2(C)
So2 × So2 S2 × S2, S2 × E2, S2 ×H2, E2 ×H2, H2 ×H2 symmetric
So3 S3 × E1, H3 × E1

So2 S̃l2(R)× E, Nil3 × E1, Sol40, F 4 not symmetric
{1} Nil4, Sol4m,n, Sol41



Chapter3
Legendre curve on Lorentzian Heisenberg space

The Legendre curves play a fundamental role in 3−dimensional contact geometry. Legendre
curves on contact manifolds have been studied by C. Baikoussis and D. E. Blair in the paper
[1]. M. Belkhelfa, I. E. Hirică, R. Rosca and L. Verstraelen [11] have investigated Legendre
curves in Riemannian and Lorentzian manifolds. Heisenberg group is a unimodular Lie group
with left invariant Sasakian structure.
The concept of local φ- symmetric was introduced by T. Takahashi [62]. According to Taka-
hashi a differentiable manifold is called locally if it satisfies:

φ2(∇WR)(X, Y )Z = 0. (3.1)

In this chapter, we show that the Legendre curves on three-dimensional Lorentzian Heisenberg
space (H3, g) is locally φ- symmetric if and only if is a geodesic. Moreover we prove that the
Legendre curves on three-dimensional Lorentzian Heisenberg space is biharmonic if and only
if is a pseudo-helix.

3.1 Contact Lorentzian manifold
Let M be a (2n+ 1)-dimensional differentiable manifold. M has an almost contact structure
(φ, ξ, η) if it admits a (1, 1) tensor field φ, a vector field ξ and a 1-form η satisfying:

φ2 = −I + η ⊗ ξ, η(ξ) = 1. (3.2)

Suppose M has an almost contact structure (φ, ξ, η). Then φξ = 0 and η ◦ φ = 0. Moreover,
the endomorphism φ has rank 2n.
If a (2n + 1)-dimensional smooth manifold M with almost contact structure (φ, ξ, η) admits
a compatible Lorentzian metric such that:

g(φX, φY ) = g(X, Y ) + η(X)η(Y ), (3.3)

then we sayM has an almost contact Lorentzian structure (η, ξ, φ, g). Setting Y = ξ we have:

η(X) = −g(X, ξ). (3.4)
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Next, if the compatible Lorentzian metric g satisfies:

dη(X, Y ) = g(X,φY ), (3.5)

then η is a contact form on M , ξ the associated Reeb vector field, g an associated metric and
(M,φ, ξ, η, g) is called a contact Lorentzian manifold.
An almost contact Lorentzian manifold (M,φ, ξ, η, g) is Sasakian if and only if:

(∇Xφ)Y = g(X, Y )ξ + η(Y )X. (3.6)

Let (M,φ, ξ, η, g) be a contact Lorentzian manifold. Then we have:

∇Xξ = φX − φhX, h =
1

2
Lξφ. (3.7)

If ξ is a killing vector field with respect to the Lorentzian metric, then we have:

∇Xξ = φX. (3.8)

An arbitrary curve γ : I −→ M3, γ = γ(s) in Lorentzian 3-manifolds is called spacelike,
timelike or null (lightlike), if all of its velocity vectors γ′(s) are respectively spacelike, timelike
or null (lightlike). If γ is a spacelike or timelike curve, we can reparametrize it such that
g(γ̇(s), γ̇(s)) = ε, where ε = 1 if γ is spacelike and ε = −1 if γ is timelike, respectively. In
this case γ(s) is said to be unit speed or arclength parametrization. Then the Frenet-Serret
equations are following:

∇TT = ε2κN
∇TN = −ε1κT + ε3τB
∇TB = −ε2τN

where κ = |∇TT | is the geodesic curvature of γ and τ is the geodesic torsion.
A Frenet curve is a geodesic if and only if κ = 0. A Frenet curve γ with constant geodesic
curvature and zero geodesic torsion is called a pseudo-circle. A pseudo-helix is a Frenet curve
γ whose geodesic curvature and torsion are constants.
The constant ε1, ε2, ε3 defined by g(T, T ) = ε1, g(N,N) = ε2, g(B,B) = ε3, and called second
causal character and third causal character of γ, respectively. Thus it satisfied ε1ε2 = −ε3.
Proposition 20. Let {T,N,B} are orthonomal Frame field in a Lorentzian 3-manifold. Then

T ∧N = ε3B, N ∧B = ε1T, B ∧ T = ε2N. (3.9)

3.2 Legendre curve on Lorentzian Heisenberg space
Definition 70. A Frenet curve γ in a Riemannian manifold is said to be a Legendre curve
if it is an integral curve of the contact distribution D = Ker(η), i.e., if η(γ̇) = 0.

Let us consider the three-dimensional Heisenberg group

H3 =

 1 x z + xy
2

0 1 y
0 0 1





3.2 Legendre curve on Lorentzian Heisenberg space 60

Now, we take the contact form:

η = dz + (ydx− xdy).

Then the characteristic vector field of η is ξ = ∂
∂z
.

Now, we equip the Lorentzian metric as following:

g = dx2 + dy2 − (dz + (ydx− xdy))2.

We take a left-invariant Lorentzian orthonormal frame field (e1, e2, e3) on (H3, g):

e1 =
∂

∂x
− y ∂

∂z
, e2 =

∂

∂y
+ x

∂

∂z
, e3 =

∂

∂z
,

and the commutative relations are derived as follows:

[e1, e2] = 2e3, [e2, e3] = [e3, e1] = 0.

Then the endomorphism field:

φe1 = e2, φe2 = −e1, φe3 = 0.

The Levi-Civita connection ∇ of (H3, g) is described as:

∇e1e3 = −e2, ∇e1e2 = e3, ∇e1e1 = 0,
∇e2e3 = e1, ∇e2e2 = 0, ∇e2e1 = −e3,
∇e3e3 = 0, ∇e3e2 = e1, ∇e3e1 = −e2.

The contact form η satisfies dη(X, Y ) = g(X,φY ). Moreover the structure (η, ξ, φ, g) is
Sasakian. The Riemannian curvature tensor R of (H3, g) is given:

R(e1, e2)e1 = 3e2, R(e1, e2)e2 = −3e1,
R(e2, e3)e2 = −e3, R(e2, e3)e3 = −e2,
R(e3, e1)e3 = e1, R(e3, e1)e1 = e3,

the others are zero.
The sectional curvature is given by:

K(ξ, ei) = −1, for i = 1, 2,

and
K(e1, e2) = 3.

Hence Lorentzian Heisenberg space (H3, g) is the Lorentzian Sasakian space forms with con-
stant holomorphic sectional curvature µ = 3.

Definition 71. A 1-dimensional integral submanifold of a contact manifold is called a Leg-
endre curve.

Theorem 12. [11] Let M be a 3-dimensional contact metric manifold. Then M is Sasakian
if and only if the torsion of its Legendre curves is equal to 1.
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3.2.1 Locally φ-symmetric Legendre curves on Lorentzian Heisen-
berg space

Definition 72. A Legendre curves γ on Lorentzian Heisenberg space will be called locally
φ-symmetric if it satisfies:

φ2(∇TR)(∇TT, T )T = 0 (3.10)

where T = γ̇.

Theorem 13. [8] A Legendre curves on Lorentzian Heisenberg space is a locally φ-symmetric
if and only if is a geodesic.

Proof. Let consider a loccaly φ-symmetric Legendre curves on Lorentzian Heisenberg space.
Let T , φT , ξ be a Frenet frame on Legendre curve. To maintain oriontation let φT = N and
φN = −T . Also we take B = ξ. Now using Serret Frenet formula, we get:

R(∇TT, T )T = R(ε2κφT, T )T = ε2κR(N, T )T. (3.11)

Since T and N are orthogonal to ξ = e3, we can take T = t1e1 + t2e2 and N = n1e1 + n2e2.
Here t1, t2, n1, n2 are scalars.
Using the definition of curvature tensor R the expression of T and N and (3.2) we gate after
straight forward calculation:

R(N, T )T = 3t1(−n2t1e2 + n1t2e2) + 3t2(−n1t2e1 + n2t1e1). (3.12)

Since T , φT and ξ = e3 forms a right handed system. We have t1n2 − t2n1 = ε3, then:

R(N, T )T = 3ε3t2e1 − 3ε3t1e2. (3.13)

Combining (3.11) and (3.12), we obtain:

R(∇TT, T )T = 3κε2ε3t2e1 − 3κε2ε3t1e2

= − 3κε1t2e1 + 3κε1t1e2. (3.14)

Now

(∇TR)(∇TT, T )T = ∇TR(∇TT, T )T −R(∇2
TT, T )T −R(∇TT,∇TT )T

−R(∇TT, T )∇TT

= ∇TR(ε2κN, T )T − ε2κ′R(N, T )T − ε3κ2R(T, T )T

+ ε1κτR(B, T )T − κ2R(N, T )N. (3.15)

Now

R(B, T )T = R(ξ, t1e1 + t2e2)(t1e1 + t2e2)

= t1t1R(e1, ξ)e1 − t1t2R(e2, ξ)e1 − t1t2R(e1, ξ)e2 + t2t2R(e2, ξ)e2. (3.16)

Using (3.2) in (3.16), we get:

R(B, T )T =(t21 + t22)e3, (3.17)
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and
R(N, T )N = −3ε3n1e2 + 3ε3n2e1.

Again

∇TR(ε2κN, T )T = ∇TR(∇TT, T )T

= ∇t1e1+t2e2 − 3κε1t2e1 + 3κε1t1e2

= (t1e1)(−3κε1t2)e1 − 3κε1t1t2∇e1e1

+ (t1e1)(3κε1t1)e2 + 3κε1t1t1∇e1e2

+ (t2e2)(−3κε1t2)e1 − 3κε1t2t2∇e2e1

+ (t2e2)(3κε1t1)e2 + 3κε1t1t2∇e2e2

= 3ε1κ
′t1e2 − 3ε1κ

′t2e1 + 3κε1t1t1e3 + 3κε1t2t2e3. (3.18)

Using (3.17), (3.18) in (3.15), we have:

(∇TR)(∇TT, T )T = 3ε1κ
′t1e2 − 3ε1κ

′t2e1 − 3κε1t1t1e3 − 3κε1t2t2e3

− ε2κ′(3ε3t2e1 − 3ε3t1e2)

+ ε1κ(t21 + t22)e3

− κ2(−3ε3n1e2 + 3ε3n2e1)

=− 3ε1κt1t1e3 − 3ε1κt2t2e3 + ε1κ(t21 + t22)e3

+ 3κ2ε3n1e2 − 3κ2ε3n2e1.

By (3.2) and (3.3), the above equation yields:

φ2(∇TR)(∇TT, T )T = + 3κ2ε3n1e2 − 3κ2ε3n2e1. (3.19)

Let the Legendre curve be locallyφ-symmetric. Then by definition:

−3κ2ε3(n2e1 − n1e2) =0. (3.20)

In both sides of (3.20) taking inner product with e1, we get:

κ =0. (3.21)

3.2.2 Biharmonic Legendre curves on Lorentzian Heisenberg Space

Definition 73. [46] A Legendre curve on a three-dimensional Heisenberg group will be called
biharmonic if it satisfies the biharmonic equation

∇3
TT +R(∇TT, T )T = 0, (3.22)

where T = γ̇.

Theorem 14. [8] A Legendre curves on Lorentzian Heisenberg space is biharmonic if and
only if is a pseudo-helix.
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Proof. Using Serret-Frenet formula, by direct computations, we have:

∇3
TT = ∇T (∇T (∇TT ))

= ∇T (∇T ε2κN)

= ε2(∇T (∇TκN))

= ε2(∇T (κ′N + κ∇TN))

= ε2(∇T (κ′N − κ2ε1T + ε3κτB))

= ε2(κ′′N − 2κκ′ε1T + ε3κ
′τB + ε3κτ

′B

+ κ′∇TN − κ2ε1∇TT + ε3κτ∇TB)

= 3ε3κκ
′T + ε2(κ′′ − ε3κ3 − ε1κτ 2)N − ε1(2τκ′ + κτ ′)B.

Using Theorem 1, we have:

∇3
TT = 3ε3κκ

′(t1e1 + t2e2) + ε2(κ′′ − ε3κ3 − ε1κ)(n1e1 + n2e2)

− 2ε1κ
′e3.

In view of (3.14) and (3.22), it follows that:

∇3
TT +R(∇TT, T )T = 3ε3κκ

′(t1e1 + t2e2) + ε2(κ′′ − ε3κ3 − ε1κ)(n1e1 + n2e2)

− 2ε1κ
′e3 − 3ε1κt2e1 + 3ε1κt1e2. (3.23)

Consider that the Legendre curve is biharmonic. Then by definition:

0 = 3ε3κκ
′(t1e1 + t2e2) + ε2(κ′′ + ε3κ

3 + ε1κ)(n1e1 + n2e2)

− 2ε1κ
′e3 − 3ε1κt2e1 + 3ε1κt1e2. (3.24)

In both sides of (3.24) taking inner product with e3, we obtain:

2ε1κ
′ = 0,

which gives κ an arbitrary constant.



Chapter4
Biharmonic curves in 3-Dimensional
Generalized Symmetric Spaces

In 1967, A. J. Ledger [46] initiated the study of generalized Riemannian symmetric spaces.
These spaces are geometrically characterized by the fact that the (local) geodesic symmetries
are isometries. A generalized symmetric space is a pseudo-Riemannian manifold which ad-
mits at least a regular s-structure. Kowalski showed that all generalized symmetric spaces
are necessarily homogeneous and classify them in dimension ≤ 5 [43]. While the only three-
dimensional (Riemannian or Lorentzian) generalized symmetric space is the Lie group Sol3.
In this chapter, we study bi-harmonic curves in three-dimensional generalized symmetric
spaces, equipped with a left-invariant pseudo-Riemannian metric. We characterize non-
geodesic biharmonic curves in three-dimensional generalized symmetric spaces and prove that
there exists no non-geodesic biharmonic spacelike curve helix in three-dimensional general-
ized symmetric spaces. We also show that a linear map from a Euclidean space in three-
dimensional generalized symmetric spaces is biharmonic if and only if it is a harmonic map,
and give a complete classification of such maps.

4.1 Three-dimensional generalized symmetric spaces
Let (M, g) be a connected pseudo-Riemannian and x a point of M. A symmetry at x is an
isometry sx ofM, having x as an isolated fixed point. When (M, g) is a symmetric space, each
point x admits a symmetry sx reversing geodesics through the point. Hence, sx is involutive
for all x. This property was generalized by A.J. Ledger, who defined a regular s−structure as
a family {sx : x ∈M} of symmetries of (M, g) satisfying:

sx ◦ sy = sz ◦ sx, z = sx(y),

for all x, y ofM. The order of an s−structure is the least integer k ≥ 2, such that (sx)
k = idM

for all x (it may happen that k =∞). A generalized symmetric spaces is a connected pseudo-
Riemannian (M, g) admitting a regular s−structure. The order of a generalized symmetric
spaces is the minimum of all integers k ≥ 2 such that M admits a regular s−structure of
order k.
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Following [13], any proper (that is, non-symmetric) three-dimensional generalized sym-
metric spaces (M, g) is of order 4. Moreover, it is given by the space R3(x, y, t) with the
pseudo-Riemannian metric:

gε,λ = ε(e2tdx2 + e−2tdy2) + λdt2, (4.1)

where ε = ±1 and λ 6= 0 is a real constant. Depending on the values of ε and λ, these metrics
attain any possible signature: (3, 0), (0, 3), (2, 1), (1, 2).

Let (M, g) be a three-dimensional generalized symmetric space which is the space R3(x, y, t),
and denote by ∇, R and Ric the Levi-Civita connection, the Riemann curvature tensor and
the Ricci tensor of M, respectively.

A left-invariant orthonormal frame {E1, E2, E3} in the low-three-dimensional generalized
symmetric space is given by:

E1 = e−t ∂
∂x
, E2 = et ∂

∂y
, E3 = 1√

|λ|
∂
∂t
. (4.2)

With respect to this orthonormal basis, the Levi-Civita connection can be easily computed
as:

∇E1E1 = − εε1√
|λ|
E3, ∇E1E2 = 0, ∇E1E3 = 1√

|λ|
E1,

∇E2E1 = 0, ∇E2E2 = εε1√
|λ|
E3, ∇E2E3 = − 1√

|λ|
E2,

∇E3E1 = 0, ∇E3E2 = 0, ∇E3E3 = 0,

(4.3)

where ε1 = λ
|λ| .

The Lie brackets can be easily computed as:

[E1, E2] = 0, [E2, E3] = −1√
|λ|
E2, [E1, E3] = 1√

|λ|
E1, (4.4)

We adopt the following notation and sign convention for Riemannian curvature operator:

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z. (4.5)

The Riemannian curvature tensor is given by:

R(X, Y, Z,W ) = −g(R(X, Y )Z,W ). (4.6)

Moreover we put:

Rabc = R(Ea, Eb)Ec, Rabcd = R(Ea, Eb, Ec, Ed). (4.7)

A direct computation using (4.3), (4.4), (4.5), (4.6) and (4.7) gives the following non zero
components of Riemannian curvature of the three-dimensional generalized symmetric space
with respect to the orthonomal basis {E1, E2, E3} (we do not list those that can be obtained
by symmetric properties of curvature):

R(E1, E2)E1 = − ε
λ
E2, R(E1, E2)E2 = ε

λ
E1,

R(E1, E3)E1 = ε
λ
E3 R(E1, E3)E3 = − 1

|λ|E1,

R(E2, E3)E2 = ε
λ
E3, R(E2, E3)E3 = − 1

|λ|E2,
(4.8)
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and:
R1212 = 1

λ
, R1221 = − 1

λ
,

R1313 = − ε
|λ| , R1331 = ε

|λ| ,

R2323 = − ε
|λ| , R2332 = ε

|λ| .
(4.9)

The Ricci curvature components {Ricij} are computed as:

Ric11 = Ric12 = Ric13 = Ric23 = Ric22 = 0, Ric33 = − 2

|λ| . (4.10)

The scalar curvature τ of the three-dimensional generalized symmetric spaces is given by:

τ = trRic =
3∑
i=1

g(Ei, Ei)Ric(Ei, Ei) = − 2

|λ| . (4.11)

4.2 Biharmonic curves in 3-dimensional generalized sym-
metric spaces

An arbitrary curve γ : I −→ M,γ = γ(s) in three-dimensional generalized symmetric spaces
is called spacelike, timelike or null (lightlike), if all of its velocity vectors γ̇(s) are respec-
tively spacelike, timelike or null (lightlike). If γ is a spacelike or timelike curve, we can
reparameterize it such that g(γ̇(s), γ̇(s)) = ε, where ε = 1 if γ is spacelike and ε = −1 if γ
is timelike, respectively. In this case γ(s) is said to be unit speed or arclength parametrization.

Let {T,N,B} be the orthonormal frame field tangent toM along γ and defined as follows:
T is the unit vector field tangent to γ, N is the unit vector field in the direction of∇TT normal
to γ and B = T ×M N .
The pseudo-vector product operation ×M is related to the determinant function by:

det(u, v, w) = g(u×M v, w).

With respect to the orthonormal basis {E1, E2, E3} we can write:

T = T1E1 + T2E2 + T3E3

N = N1E1 +N2E2 +N3E3

B = B1E1 +B2E2 +B3E3.

The following Frenet formulas hold:

∇TT = εκN

∇TN = −εκT + ε1τB (4.12)
∇TB = −ετN,

where g(T, T ) = ε, g(N,N) = ε, g(B,B) = ε1. Here κ = |∇TT | is the geodesic curvature of γ
and τ is the geodesic torsion.
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Using Serret-Frenet formulas (4.12), by direct computations, we have:

∇3
TT = ∇T (∇T (∇TT ))

= ∇T (∇T εκN)
= ε(∇T (∇TκN))
= ε(∇T (κ′N + κ∇TN))
= ε(∇T (κ′N − εκ2T + ε1κτB))
= ε(κ′′N − 2εκκ′T + ε1κ

′τB + ε1κτ
′B

+ κ′∇TN − εκ2∇TT + ε1κτ∇TB)
= −3κκ′T + (εκ′′ − εκ3 − ε1κτ 2)N + 2εε1(τκ′ + κτ ′)B.

Then the biharmonic equation (3.22) reduces to the system:
κκ′ = 0
εκ′′ − εκ3 − ε1κτ 2 + κR(T,N, T,N) = 0
2κ′τ + κτ ′ + κR(T,N, T,B) = 0,

(4.13)

which is equivalent to: 
κ = constant 6= 0
εκ2 + ε1τ

2 = R(T,N, T,N)
τ ′ = −R(T,N, T,B).

Theorem 15. Let γ be a non-null curve parameterized by arclength of three-dimensional
generalized symmetric spaces. Then γ is a proper non-geodesic biharmonic curve if and only
if: 

κ = constant 6= 0
εκ2 + ε1τ

2 = 1
λ

(2B2
3 − 1)

τ ′ = 2
λ
N3B3.

(4.14)

Proof. By direct calculation, using (4.9), we obtain:

R(T,N, T,N) =
∑3

i,j,l,p=1 TlNpTiBjRlpij

= T1N2T1N2R1212 + T1N2T2N1R1221

+ T2N1T2N1R2121 + T2N1T1N2R2112

+ T1N3T1N3R1313 + T1N3T3N1R1331

+ T3N1T3N1R3131 + T3N1T1N3R3113

+ T2N3T2N3R2323 + T2N3T3N2R2332

+ T3N2T3N2R3232 + T3N2T2N3R3223

= 1
λ

(B2
3 − εε1 (B2

1 +B2
2))

= 1
λ

(2B2
3 − 1) .(

by T ×N = B, T ×B = −N, εB2
1 + εB2

2 + ε1B
2
3 = ε1

)
.
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R(T,N, T,B) =
∑3

i,j,l,p=1 TlNpTiBjRlpij

= T1N2T1B2R1212 + T1N2T2B1R1221

+ T2N1T2B1R2121 + T2N1T1B2R2112

+ T1N3T1B3R1313 + T1N3T3B1R1331

+ T3N1T3B1R3131 + T3N1T1B3R3113

+ T2N3T2B3R2323 + T2N3T3B2R2332

+ T3N2T3B2R3232 + T3N2T2B3R3223

= 1
λ
T 2

1N2B2 − 1
λ
T1T2N1B2

+ 1
λ
T 2

2N1B1 − 1
λ
T1T2N2B1

− ε
|λ|T

2
1N3B3 + ε

|λ|T1T3N1B3

− ε
|λ|T

2
3N1B1 + ε

|λ|T1T3B1N3

− ε
|λ|T

2
2N3B3 + ε

|λ|T2T3N2B3

− ε
|λ|T

2
3N2B2 + ε

|λ|T2T3B2N3

= 1
λ

(
T1B2 − T2B1

)(
T1N2− T2N1

)
− ε

|λ|

(
T3N1 − T1N3

)(
T3B1 − T1B3

)
− ε

|λ|

(
T3N2 − T2N3

)(
T3B2 − T2B3

)
= ε1

λ

(
− ε1N3B3 + εN2B2 + εN1B1

)
= − 2

λ
N3B3.(

by T ×N = B, T ×B = −N, εN1B1 + εN2B2 + ε1N3B3 = 0
)
.

These, together with equation (4.13), complete the proof of the theorem.

Corollary 5. If κ = constant 6= 0 and τ = 0 for a non-null curve γ : I −→ M then γ is a
non-geodesic biharmonic curve if and only if N3B3 = 0 and κ2 = ε

λ
(2B2

3 − 1).

Corollary 6. Let γ be a non-geodesic curve parameterized by arclength of three-dimensional
generalized symmetric spaces. If B3 = 0 and ε = ε1 = 1, then γ is not biharmonic.

Corollary 7. Let γ be a non-geodesic curve parameterized by arclength of three-dimensional
generalized symmetric spaces. If B3 is constant and N3B3 6= o, then γ is not biharmonic.

Definition 74. A differentiable curve of three-dimensional generalized symmetric spaces hav-
ing constant both geodesic curvature and geodesic torsion is called a helix.

Corollary 8. Let γ be be a non-geodesic curve parameterized by arclength of three-dimensional
generalized symmetric spaces. If γ is biharmonic helix, then:

B3 = constant 6= 0
N3 = 0
εκ2 + ε1τ

2 = 1
λ
(2B2

3 − 1)
(4.15)
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Theorem 16. Let γ be a non-null spacelike curve parameterized by arclength. Then γ is
non-geodesic biharmonic helix in three-dimensional generalized symmetric spaces.

Proof. Suppose that γ : I −→ M is a non-geodesic biharmonic helix parameterized by ar-
clength. We shall derive a contradiction by showing that γ must be a geodesic. We can use
(4.3) to compute the covariant derivatives of the vector fields T,N,B as:

∇TT =
(
T ′1 + 1√

|λ|
T1T3

)
E1 +

(
T ′2 − 1√

|λ|
T2T3

)
E2

+
(

ε1√
|λ|
T 2

2 − ε1√
|λ|
T 2

1 + T ′3

)
E3

∇TN =
(
N ′1 + 1√

|λ|
T1N3

)
E1 +

(
N ′2 − 1√

|λ|
T2N3

)
E2

+
(

ε1√
|λ|
T2N2 − ε1√

|λ|
T1N1 +N ′3

)
E3

∇TB =
(
B′1 + 1√

|λ|
T1B3

)
E1 +

(
B′2 − 1√

|λ|
T2B3

)
E2

+
(

ε1√
|λ|
T2B2 − ε1√

|λ|
T1B1 +B′3

)
E3.

(4.16)

It follows that the third components of these vectors are given by:
〈∇TT,E3〉 =

(
1√
|λ|
T 2

2 − 1√
|λ|
T 2

1 + ε1T
′
3

)
〈∇TN,E3〉 =

(
1√
|λ|
T2N2 − 1√

|λ|
T1N1 + ε1N

′
3

)
〈∇TB,E3〉 =

(
1√
|λ|
T2B2 − 1√

|λ|
T1B1 + ε1B

′
3

)
.

(4.17)

On the other hand, using Frenet formulas (4.12):
〈∇TT,E3〉 = ε1κN3

〈∇TN,E3〉 = −ε1κT3 + τB3

〈∇TB,E3〉 = −ε1τN3.
(4.18)

Since γ is assumed to be a non-geodesic biharmonic helix, we have, by Corollary (8),
N3 = 0, B3 = constant These, together with Equations (4.17), (4.18), give:

1√
|λ|
T 2

2 − 1√
|λ|
T 2

1 + ε1T
′
3 = 0

1√
|λ|
T2N2 − 1√

|λ|
T1N1 = −ε1κT3 + τB3

1√
|λ|
T2B2 − 1√

|λ|
T1B1 = 0.

(4.19)

Noting that T ×B = −N , we also have:

T2B1 − T1B2 = N3. (4.20)

Thus, we have:

1√
|λ|
T2N2 − 1√

|λ|
T1N1 = −ε1κT3 + τB3 〈1〉

1√
|λ|
T 2

2 − 1√
|λ|
T 2

1 + ε1T
′
3 = 0 〈2〉

1√
|λ|
T2B2 − 1√

|λ|
T1B1 = 0 〈3〉

T2B1 − T1B2 = 0 〈4〉

(4.21)
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Case A: T 2
1 6= T 2

2 . In this case, Equations 〈3〉 and 〈4〉 in system (4.21) viewed as equations
in B1 and B2 has a unique solution B1 = B2 = 0. This implies that T3 = 0. Substitute this
into 〈2〉 of system (4.21), we have T 2

1 = T 2
2 , a contradiction. Thus, we must have.

Case B: T 2
1 = T 2

2 . In this case, equation 〈2〉 of system (4.21) implies that T3 = constant. To
understand the meaning of this, if λ > 0 or ε1 = 1 we represent the unit tangent vector T as:

T = sinα cos βE1 + sinα sin βE2 + cosαE3. (4.22)

where α = α(s), β = β(s). With this representation, T3 = constant implies that cosα =
constant and hence α(s) = α0, a constant. This, together with T 2

1 = T 2
2 , gives:

sinα0(cos β ± sin β) = 0. (4.23)

If sinα0 = 0, then we have T1 = T2 = 0, and it follows from the first equation of (4.16) that
∇TT = 0 which means that γ is a geodesic, a contradiction. Thus, we must have sinα0 6= 0 ,
which, together with (4.23), implies that:

cos β = ± sin β = ±
√

2

2
,

and hence,

T1 = ±T2 = ±
√

2

2
sinα0. (4.24)

We use the first equation of (4.16) again to get:

∇TT = sinα0 cosα0

(
±
√

2

2
√
λ
E1 ±

√
2

2
√
λ
E2

)
= κN,

which yields:

N1 = N2 = ±
√

2

2
, (4.25)

since |∇TT | = | sinα0 cosα0√
λ
|. By the assumption that γ is non-geodesic, we may assume, without

loss of generality, that sinα0 cosα0 > 0 so:

κ =
sinα0 cosα0√

λ
. (4.26)

Using equations (4.24), (4.25) and the fact that B = T ×N , we have:
B1 = constant
B2 = constant
B3 = T1N2 − T2N1 = ± sinα0.

(4.27)

It follows from (4.27), 〈3〉 of (4.21), and and the third equation of (4.16), that:

τ 2 = |∇TB|2 =
1

λ
sin4 α0. (4.28)

Substituting (4.26), (4.27), (4.28) into the third equation in (4.15), we have:
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1

λ
sin2 α0 cos2 α0 +

1

λ
sin4 α0 =

1

λ
(2 sin2 α0 − 1), (4.29)

which implies:
sin2 α0 = 1,

and hence:
cosα2

0 = 0.

It follows that cosα2
0 = 0 from which and (4.26), we conclude that: κ = 0, .i.e., γ is a geodesic,

a contradiction.

Similarly if λ < 0 or ε1 = −1, we represent the unit tangent vector T as:

T = coshα cos βE1 + coshα sin βE2 + sinhαE3. (4.30)

Then we have:
κ = |∇TT | =

coshα0 sinhα0√
−λ

, (4.31)

and:
τ 2 = |∇TB|2 =

−1

λ
cosh4 α0, (4.32)

B3 = ± coshα0. (4.33)

Substituting (4.31), (4.32), (4.33) into the third equation in (4.15), we have:

−1

λ
cosh2 α0 sinh2 α0 +

1

λ
cosh4 α0 =

1

λ
(2 cosh2 α0 − 1), (4.34)

which implies:
cosh2 α0 = 1,

and hence:
sinhα2

0 = 0.

It follows that coshα2
0 = 0 from which and (4.26), we conclude that κ = 0, .i.e., γ is a

geodesic, a contradiction.

4.3 Linear biharmonic maps in 3-dimensional generalized
symmetric spaces

In [58] Ye-Lin Ou and Ze-Ping Wang study linear biharmonic maps from a Euclidian space
into Sol3, Nil3 and Heisenberg spaces. They show that a linear map from a Euclidian space
into Sol3, Nil3 or Heisenberg space is biharmonic if and only if it is a harmonic map. In this
section we study linear biharmonic maps from a Euclidian space in 3-dimensional generalized
symmetric spaces and we show that a linear map from a Euclidian space into this space is
biharmonic if and only if it is a harmonic map, and we give classification of such maps.
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4.3.1 Biharmonic map equation in local coordinates

Lemma 10. [57] Let φ : (Mm, g) −→ (Nn, h) with φ(x1, ...xm) = (φ1(x), ..., φm(x)) be a map
between Riemannian manifolds. With respect to to local coordinates (xi) in M and (yα) in
N , φ is biharmonic if and only if it is a solution of the following system of PDE’s:

gij
(
τσij + ταj φ

β
i Γσαβ +

∂

∂xi
(ταφβj Γσαβ) + ταφβj φ

ρ
iΓ

ν
αβΓσνρ

− Γkij(τ
σ
k + ταφβkΓσαβ)− τ νφαi φβjRσ

βαν

)
= 0, σ = 1, 2, ..., n.

Corollary 9. Let φ : Rm −→ (Nn, h) with φ(x1, ..., xn) = (φ1(x), ..., φn(x)) be a map from
a Euclidean space into a Riemannian manifold. Then φ is biharmonic if and only if it is a
solution of the following system of PDE’s:

∆τσ + 〈∇τα,∇φβ〉Γσαβ + 〈∇φβ,∇(ταΓσαβ)〉
+〈∇ϕβ,∇φρ〉ταΓναβΓσνρ − τ ν〈∇φα,∇φβ〉Rσ

βαν = 0, σ = 1, 2, ..., n.

4.3.2 Linear biharmonic maps in 3-dimensional generalized symmet-
ric spaces

Let (R3, g) denote three-dimensional generalized symmetric spaces where the metric can be
written as gε,λ = ε(e2tdx2 +e−2tdy2)+λdt2 with respect to the standard coordinates (y1, y2, y3)
in R3. Then a direct computation gives the following components of metric and the coefficients
of the connection:

g11 = εe2t, g22 = εe−2t, g33 = λ, all other gij = 0,

g11 = 1
ε
e−2t, g22 = 1

ε
e2t, g33 = 1

λ
, all other gij = 0.

Γ1
11 = 0, Γ2

11 = 0, Γ3
11 = −ε

λ
e2t

Γ1
12 = 0, Γ2

12 = 0, Γ3
12 = 0

Γ1
13 = 1, Γ2

13 = 0, Γ3
13 = 0

Γ1
21 = 0, Γ2

21 = 0, Γ3
21 = 0

Γ1
22 = 0, Γ2

22 = 0, Γ3
22 = ε

λ
e−2t

Γ1
23 = 0, Γ2

23 = −1, Γ3
23 = 0

Γ1
31 = 1, Γ2

31 = 0, Γ3
31 = 0

Γ1
32 = 0, Γ2

32 = −1, Γ3
32 = 0

Γ1
33 = 0, Γ2

33 = 0, Γ3
33 = 0.

(4.35)

By our convention of curvature operator and the following notation for the components of
the Riemannian curvature:

R(
∂

∂yi
,
∂

∂yj
)
∂

∂yk
= Rl

kij

∂

∂yl
(4.36)
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we have:
Rl
kij =

∂

∂yi
Γlkj −

∂

∂yj
Γlki + ΓlitΓ

t
kj − ΓljtΓ

t
ki (4.37)

A straightforward computation using (4.36) and (4.37) gives the following components of the
Riemannian curvature of three-dimensional generalized symmetric spaces:

R1
221 = −ε

λ
e−2t, R1

331 = 1, R1
212 = ε

λ
e−2t, R1

313 = −1,

R2
121 = ε

λ
e2t, R2

112 = −ε
λ
e2t, R2

332 = 1, R2
323 = −1,

R3
131 = −ε

λ
e2t, R3

232 = −ε
λ
e−2t, R3

113 = ε
λ
e2t, R3

223 = ε
λ
e−2t.

Theorem 17. Let ϕ : Rm −→ (R3, gε,λ) with

ϕ(x) =

 a11 a11 · · · a1m

a21 a22 · · · a2m

a31 a32 · · · a3m




x1

x2
...
xm


i.e., φ(X) = (A1X

t, A2X
t, A3X

t) be a linear map of three-dimensional generalized symmetric
spaces, where Ai denotes the row vectors of the representation matrix. Then, φ is a biharmonic
map if and if it is a harmonic map, which is equivalent to either

A3 = 0, |A1|2 = |A2|2,
or,
A3 6= 0, A1 = A2 = 0,

Proof. With respect to the standard Cartesian coordinates xi in Rm and (yα) in R3, the
tension field of φ is given by

τ(φ) = trg∇dφ ∈ (Γφ−1TN)

= τσ
∂

∂yσ

= gij(φσij − Γkijφ
σ
k + Γσαβφ

α
i φ

β
j )

∂

∂yσ
(4.38)

= (
m∑
i=1

Γσαβφ
α
i φ

β
i )

∂

∂yσ

= ΓσαβA
αAB

∂

∂yσ

where Aα = φβi , A
β = φβi denotes the inner product and |Aα| the norm of the vectors in

Euclidean space.
Putting τ(φ) = τσ ∂

∂yσ
and substituting (4.35) into Equation (4.38), we find the following

components of the tension field of φ:

τ 1 = 2A3.A1

τ 2 = −2A3.A2 (4.39)

τ 3 =
ε

λ

(
|A2|2e−2t + |A1|2e2t

)
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where and in the sequel y3 = A3X
t.

A further computation gives:(
4τσ + 〈∇τα,∇φβ〉Γσαβ

) ∂

∂yσ
= (4τσ + Aβ.∇ταΓσαβ)

∂

∂yσ

=
(
− 2ε

λ
A1A3(|A2|2e−2t + |A1|2e2t

) ∂

∂y1

+
(2ε

λ
A2A3(|A2|2e−2t + |A1|2e2t

) ∂

∂y2

(4.40)

+
(4ε

λ
|A3|2(|A2|2e−2t − |A1|2e2t

) ∂

∂y3

〈∇φβ,∇ταΓσαβ〉
∂

∂yσ
=

(
Aβ.∇ταΓσαβ + ταAβ.∇Γσαβ

) ∂

∂yσ

=
(
− 2ε

λ
A1.A3(|A2|2e−2t + |A1|2e2t)

) ∂

∂y1

+
(2ε

λ
A2.A3(|A2|2e−2t + |A1|2e2t

) ∂

∂y2

(4.41)

+
( ε
λ

(−4(A1.A3)2e2t + 4(A2.A3)2e−2t)
) ∂

∂y3

〈∇φβ,∇φρ〉ταΓναβΓσνρ
∂

∂yσ
= ταAβ.AρΓναβΓσνρ

∂

∂yσ

=
(

2A1A3|A3|2 −
3ε

λ
A1A3|A1|2e2t

− ε

λ
A1A3|A2|2e−2t

) ∂

∂y1

(4.42)

+
(
− 2A2A3|A3|2 +

ε

λ
A2A3|A1|2e2t

+
3ε

λ
A3A2|A2|2e−2t

) ∂

∂y2

+
(−2ε

λ
(A1A3)2e2t +

1

λ2
|A1|4e4t

+
2ε

λ
(A2A3)2e−2t − 1

λ2
|A2|4e−4t

) ∂

∂y3
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τ ν〈∇φα,∇φβ〉Rσ
βαν

∂

∂yσ
= Aβ.Aατ νRσ

βαν

∂

∂yσ

=
(−3ε

λ
A1A3|A2|2e−2t − 2ε

λ
A2.A3A1A2e

−2t

+
ε

λ
A1A3|A1|2e2t + 2A1A3|A3|2

) ∂

∂y1

(4.43)

+
(2ε

λ
A2

1A3A2e
2t +

3ε

λ
|A1|2A3A2e

2t

− ε

λ
A2A3|A2|2e−2t − 2A2A3A

2
3

) ∂

∂y2

+
(
− 1

λ2
|A1|4e4t +

1

λ2
|A2|4e−4t

− 2ε

λ
(A1A3)2e2t +

2ε

λ
(A2A3)2e−2t

) ∂

∂y3

.

It follows from equations (4.40), (4.41), (4.42), (4.43) and Corollary (9) that the linear
map φ is a biharmonic map if and only if:

−8ε

λ
A1A3|A1|2e2t = 0

8ε

λ
A2A3|A2|2e−2t = 0

4ε

λ
(|A2|2|A3|2 + (A2A3)2)e−2t − 4ε

λ
(|A1|2|A3|2 + (A1A3)2)e2t

+
2

λ2
|A1|4e4t − 2

λ2
|A2|4e−4t = 0.

(4.44)

Solving System of equations (4.44), we have either (i) A3 = 0, |A1|2 = |A2|2, or (ii) A3 6=
0, A1 = A2 = 0. It follows from equation (4.39) that in both cases the tension field vanishes
identically, i.e., φ is also harmonic. Therefore, we obtain the theorem.

Remark 16. If we put ε = 1 and λ = 1 the three-dimensional (Riemannian or Lorentzian)
generalized symmetric space is the Lie group Sol3.



Chapter5
Biharmonic curves in Thurston geometry of
dimension 4

In this chapter we study harmonic and biharmonic applications in Thurston geometry of
dimension 4. We introduce the The 4-dimensional geometry Nil4 and we define the metric
gNil4 . We give the Christofell symbols, the Riemannian curvature and we study the biharmonic
curves in Nil4 space. [16], [2], [37], [49], [50] [27], [8], [9] and [64].

5.1 The 4-dimensional geometry Nil4

The geometry Nil4 can be identified with R4 endowed with the metric:

gNil4 = ds2 = dx2
1 + dx2

3 + (dx2 + x1dx3)2 + (dx4 + x1dx2 +
x2

1

2
dx3)2, (5.1)

where (x1, x2, x3, x4) are the standard coordinates in R4. This can be calculated from its
characterization as a left-invariant metric with respect to the group structure of Nil4. There
is a natural harmonic Riemannian submersion (x1, x2, x3, x4) → (x1, x2, x3) onto (R3, h =
dx2

1 + dx2
3 + (dx2 + x1dx3)2) = Nil3.

The components of the matrix gij are given by:
1 0 0 0

0 1 + x2
1 x1 +

x31
2

x1

0 x1 +
x31
2

1 + x2
1 +

x41
4

x21
2

0 x1
x21
2

1

 (5.2)

Note that the Nil4 metric can be also written as:

ds2 =
4∑
i=1

wi ⊗ wj,

where:
w1 = dx1, w

2 = dx3, w
3 = dx2 + x1dx3, w

4 = dx4 + x1dx2 +
x2

1

2
dx3,
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and the orthonormal basis dual to the 1-forms is:

E1 = ∂
∂x1
, E2 = −x1

∂
∂x2

+ ∂
∂x3

+
x21
2

∂
∂x4
, E3 = ∂

∂x2
− x1

∂
∂x4
, E4 = ∂

∂x4
. (5.3)

With respect to this orthonormal basis, the non-zero Christoffel symbols and the non-zero
Lie brackets can be easily computed as:

Γ1
22 = −x1, Γ1

23 = −1
2
(1 +

3x21
2

), Γ1
24 = −1

2
, Γ1

33 = −x1(1 +
3x21
2

),
Γ1

34 = −x1
2
, Γ2

13 = 1
2
(1− x21

2
), Γ2

14 = 1
2
, Γ3

12 = 1
2
,

Γ3
13 = x1

2
, Γ4

12 = 1
2
(1− x21

2
), Γ4

14 = −x1
2
.

(5.4)

[E1, E2] = −E3, [E1, E3] = −E4. (5.5)

We adopt the following notation and sign convention for Riemannian curvature operator:

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z. (5.6)

The Riemannian curvature tensor is given by:

R(X, Y, Z,W ) = −g(R(X, Y )Z,W ). (5.7)

Moreover we put:

Rabc = R(Ea, Eb)Ec, Rabcd = R(Ea, Eb, Ec, Ed), (5.8)

where the indices a, b, c, d take the values 1, 2, 3, 4. A direct computation using (5.4), (5.5),
(5.6), (5.7), and (5.8) gives the following non zero components of Riemannian curvature of
Nil4 space with respect to the orthonormal basis {E1, E2, E3, E4} (we do not list those that
can be obtained by symmetric properties of curvature):

R1212 = −1
2

+ 1
4
x2

1, R1213 = −3
4
x1 + 1

8
x3

1, R1214 = 1
4
x1,

R1313 = −3
4
− 3

4
x2

1 + 1
16
x4

1, R1314 = −1
4

+ 1
8
x2

1, R1414 = 1
4
,

R2323 = 1
4
− 1

4
x2

1 + 1
16
x4

1, R2324 = 1
4
− 1

8
x2

1, R2334 = 1
4
x1 − 1

8
x3

1,

R2424 = 1
4
, R2434 = 1

4
x1, R3434 = 1

4
x2

1.

(5.9)

The Ricci curvature non zero components {Ricij} are computed as:

Ric11 = 1, Ric22 = −1
2
x2

1, Ric23 = −1
4
x3

1, Ric24 = −1
2
x1,

Ric33 = 1
2
− 1

8
x4

1, Ric34 = −1
4
x2

1, Ric44 = −1
2
.

(5.10)

The scalar curvature σ of the Nil4 space is given by:

σ = trRic =
4∑
i=1

g(Ei, Ei)Ric(Ei, Ei) = 1. (5.11)
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5.2 Biharmonic curves in Nil4 space
Let γ : I −→ (Nil4, g) be a differentiable curve parameterized by arc length and let {T,N,B,D}
be the Frenet frame fields tangent to Nil4 space along γ and defined as follows:
T is the unit vector field tangent to γ, N is the unit vector field in the direction of ∇TT
normal to γ, B = T ×Nil4 N is the first binormal vector fields and D = N ×Nil4 B is the
second binormal vector fields.
With respect to the orthonormal basis {E1, E2, E3, E4} we can write:

T = T1E1 + T2E2 + T3E3 + T4E4

N = N1E1 +N2E2 +N3E3 +N4E4 (5.12)
B = B1E1 +B2E2 +B3E3 +B4E4

D = D1E1 +D2E2 +D3E3 +D4E4.

Denote by T = γ̇, the tangent unit field along γ.
We have the following result:

Lemma 11. There are vectors fields N , B, D along the curve γ and some functions κ, τ
and ρ defined on γ(I) ⊂ Nil4 such that:

∇TT = κN

∇TN = −κT + τB (5.13)
∇TB = −τN + ρD

∇TD = −ρB.

Where T , N , B and D are mutually orthogonal vectors satisfying the equations:

g(T, T ) = 1, g(N,N) = 1, g(B,B) = 1, g(D,D) = 1,
g(N, T ) = g(B, T ) = g(D,T ) = g(B,N) = g(D,N) = g(D,B) = 0. (5.14)

Proof. When g(T, T ) = 1 we have g(∇TT, T ) = 0. Then there exist a function κ ∈ C∞(I)
and a unitary vector field N ∈ γ−1(TNil4), orthogonal to T such that ∇TT = κN .
Next g(N,N) = 1 implies g(∇TN,N) = 0, and from the equality g(N, T ) = 0, we derive the
relation:

g(∇TN, T ) + g(N,∇TT ) = g(∇TN, T ) + κg(N,N)

= g(∇TN + κT, T )

= 0.

Hence ∇TN +κT ∈ (span{T,N})⊥, and its exists a smooth function τ on γ(I) and a unitary
vector field B ∈ γ−1(TNil4) such that the system {T,N,B} is orthogonal and ∇TN + κT =
τB. this gives the second relation of the system.
Similarly, g(B,B) = 1 leads to g(∇TB,B) = 0 and from the relation g(B, T ) = 0, we get:

g(∇TB, T ) + g(B,∇TT ) = g(∇TB, T ) + κg(B,N)

= g(∇TB + κT, T )

= 0.
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From g(B,N) = 0, we have:

g(∇TB,N) + g(B,∇TN) = g(∇TB,N)− κg(B,N) + τg(B,B)

= g(∇TB + τg(N,N))

= 0.

Hence ∇TB + τN ∈ (span{T,N,B})⊥, and its exists a smooth function ρ on γ(I) and a
unitary vector field D ∈ γ−1(TNil4) such that the system {T,N,B,D} is orthogonal and
∇TB + τN = ρD. So we obtain the third equation of the system.
Furthermore, from g(D,D) = 1, we have g(∇TD,D) = 0 and the relation g(D,T ) = 0 leads
to:

g(∇TD,T ) + g(D,∇TT ) = g(∇TD,T ) + κg(D,T )

= 0.

Also from g(D,N) = 0, it follows that:

g(∇TD,N) + g(D,∇TN) = g(∇TD,N)− κg(D,T ) + τg(D,N)

= 0.

Similarly the relation g(D,B) = 0 gives:

g(∇TD,B) + g(D,∇TB) = g(∇TD,B)− τg(D,N) + ρg(D,D)

= g(∇TD,B) + ρ

= 0.

We get then g(∇TD,B) = −ρ and the last relation of the system follows.
The functions κ, τ and ρ defined in the Lemma (11) are the curvature, the torsion and the
bitorsion along the curve γ, respectively.
The quadruplet (T,N,B,D) is called four-dimentional Frenet frame.

The tension field τ1(γ) of the curve γ is then given in the four-dimentional Frenet frame
(T,N,B,D) by:

τ1(γ) = κN, (5.15)

in effect, from the definition of the tension field, we get directly:

τ1(γ) = ∇TT. (5.16)

The biharmonic equation:

τ2(γ) = −(∆γτ(γ) + tracegR
N(τ(γ), dγ)dγ) = 0 (5.17)

in the case of a curve γ : I → (N, g) from an open interval I ⊂ R to a Riemannian manifold
(N, g) parameterized by arc length transforms (dγ = T, τ(γ) = ∇γ

∂
∂s

dγ( ∂
∂s

) = ∇TT ) to the
differential equation:

τ2(γ) = ∇3
TT −R(T,∇TT )T = 0. (5.18)
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Using the Frenet formulas (5.13), biharmonic equation (5.18) reduces to the system:

κκ′ = 0
κ′′ + κ3 − κτ 2 + κR(T,N, T,N) = 0

2κ′τ + κτ ′ + κR(T,N, T,B) = 0
κτρ+ κR(T,N, T,D) = 0.

(5.19)

Theorem 18. γ : I −→ Nil4 is a biharmonic curve if and only if:

κ = constant 6= 0
κ2 − τ 2 = R(T,N, T,N)
τ ′ = R(T,N, T,B)
τρ = R(T,N, T,D),

(5.20)

with:
R(T,N, T,N) = (−1

2
+ 1

4
x2

1)(T1N2 − T2N1)2 + (−3
4
− 3

4
x2

1 + 1
16
x4

1)(T1N3 − T3N1)2

+ (1
4
− 1

4
x2

1 + 1
16
x4

1)(T2N3 − T3N2)2 + 1
4
(T1N4 − T4N1)2

+ 1
4
x2

1(T3N4 − T4N3)2 + 1
4
(T2N4 − T4N2)2

+ 2(−3
4
x1 + 1

8
x3

1)(T1N3 − T3N1)(T1N2 − T2N1)

+ 2(1
4
x1)(T1N2 − T2N1)(T1N4 − T4N1)

+ 2(−1
4

+ 1
8
x2

1)(T1N3 − T3N1)(T1N4 − T4N1)

+ 2(1
4
− 1

8
x2

1)(T2N3 − T3N2)(T2N4 − T4N2)

+ 2(1
4
x1)(T4N2 − T2N4)(T4N3 − T3N4)

+ 2(−1
4
x1 + 1

8
x3

1)(T3N2 − T2N3)(T3N4 − T4N3),

and:
R(T,N, T,B) = (−1

2
+ 1

4
x2

1)(T1N2 − T2N1)(T1B2 − T2B1)

+ (−3
4
− 3

4
x2

1 + 1
16
x4

1)(T1N3 − T3N1)(T1B3 − T3B1)

+ (1
4
− 1

4
x2

1 + 1
16
x4

1)(T2N3 − T3N2)(T2B3 − T3B2)

+ (1
4
)[(T1N4 − T4N1)(T1B4 − T4B1) + (T2N4 − T4N2)(T2B4 − T4B2)]

+ (−3
4
x1 + 1

8
x3

1)[(T1N2 − T2N1)(T1B3 − T3B1)

+ (T1N3 − T3N1)(T1B2 − T2B1)] + (1
4
x2

1)(T3N4 − T4N3)(T3B4 − T4B3)

+ (−1
4

+ 1
8
x2

1)[(T1N3 − T3N1)(T1B4 − T4B1)

+ (T1N4 − T4N1)(T1B3 − T3B1)]

+ (1
4
− 1

8
x2

1)[(T2N3 − T3N2)(T2B4 − T4B2)

+ (T2N4 − T4N2)(T2B3 − T3B2)]

+ (1
4
x1)[(T1N2 − T2N1)(T1B4 − T4B1) + (T1N4 − T4N1)(T1B2 − T2B1)]

+ (1
4
x1)[(T4N2 − T2N4)(T4B3 − T3B4) + (T4N3 − T3N4)(T4B2 − T2B4)]

+ (1
4
x1 − 1

8
x3

1)[(T2N3 − T3N2)(T3B4 − T4B3)

+ (T4N3 − T3N4)(T3B2 − T2B3)].
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and:

R(T,N, T,D) = (−1
2

+ 1
4
x2

1)(T1N2 − T2N1)(T1D2 − T2D1)

+ (−3
4
− 3

4
x2

1 + 1
16
x4

1)(T1N3 − T3N1)(T1D3 − T3D1)

+ (1
4
− 1

4
x2

1 + 1
16
x4

1)(T2N3 − T3N2)(T2D3 − T3D2)

+ (1
4
)[(T1N4 − T4N1)(T1D4 − T4D1) + (T2N4 − T4N2)(T2D4 − T4D2)]

+ (−3
4
x1 + 1

8
x3

1)[(T1N2 − T2N1)(T1D3 − T3D1)

+ (T1N3 − T3N1)(T1D2 − T2D1)] + (1
4
x2

1)(T3N4 − T4N3)(T3D4 − T4D3)

+ (−1
4

+ 1
8
x2

1)[(T1N3 − T3N1)(T1D4 − T4D1)

+ (T1N4 − T4N1)(T1D3 − T3D1)]

+ (1
4
− 1

8
x2

1)[(T2N3 − T3N2)(T2D4 − T4D2)

+ (T2N4 − T4N2)(T2D3 − T3D2)]

+ (1
4
x1)[(T1N2 − T2N1)(T1D4 − T4D1) + (T1N4 − T4N1)(T1D2 − T2D1)]

+ (1
4
x1)[(T4N2 − T2N4)(T4D3 − T3D4) + (T4N3 − T3N4)(T4D2 − T2D4)]

+ (1
4
x1 − 1

8
x3

1)[(T2N3 − T3N2)(T3D4 − T4D3)

+ (T4N3 − T3N4)(T3D2 − T2D3)].

Proof. Using the fact that:
det(T,N,B,D) = 1,

and:

det(T,N,B,D) =

∣∣∣∣∣∣∣∣
+T1 −T2 +T3 −T4

−N1 +N2 −N3 +N4

+B1 −B2 +B3 −B4

−D1 +D2 −D3 +D4

∣∣∣∣∣∣∣∣ .
Using Serret-Frennet formula, by direct computations, we have:

∇3
TT = ∇T (∇T (∇TT ))

= ∇T (∇TκN)

= ∇T (κ′N + κ∇TN)

= ∇T (κ′N − κ(−κT + τB))

= ∇T (κ′N − κ2T + κτB)

= ∇Tκ
′N −∇Tκ

2T +∇TκτB)

= κ′′N − 2κκ′T + κ′τB + κτ ′B

+ κ′∇TN − κ2∇TT + κτ∇TB)

= κ′′N − 2κκ′T + (κ′τ + κτ ′)B

+ κ′(−κT + τB)− κ2(κN) + κτ(−τN + ρD)

= − 3κκ′T + (κ′′ − κ3 − κτ 2)N + (2κ′τ + κτ ′)B + κτρD.
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By direct calculation using (5.9), we obtain:

R(T,N, T,N) =
∑4

i,j,k,l=1 TiNjTkNlRijkl

= T1N2T1N2R1212 + T1N2T2N1R1221 + T2N1T2N1R2121 + T2N1T1N2R2112

+ T1N3T1N3R1313 + T1N3T3N1R1331 + T3N1T3N1R3131 + T3N1T1N3R3113

+ T2N3T2N3R2323 + T2N3T3N2R2332 + T3N2T3N2R3232 + T3N2T2N3R3223

+ T1N4T1N4R1414 + T1N4T4N1R1441 + T4N1T4N1R4141 + T4N1T1N4R4114

+ T3N4T3N4R3434 + T3N4T4N3R3443 + T4N3T4N3R4343 + T4N3T3N4R4334

+ T2N4T2N4R2424 + T2N4T4N2R2442 + T4N2T4N2R4242 + T4N2T2N4R4224

+ T1N2T1N3R1213 + T1N2T3N1R1231 + T2N1T1N3R2113 + T3N1T2N1R3121

+ T1N3T1N2R1312 + T1N3T2N1R1321 + T3N1T1N2R3112 + T2N1T3N1R2131

+ T1N2T1N4R1214 + T1N2T4N1R1241 + T2N1T1N4R2114 + T4N1T2N1R4121

+ T1N4T1N2R1412 + T1N4T2N1R1421 + T4N1T1N2R4112 + T2N1T4N1R2141

+ T1N3T1N4R1314 + T1N3T4N1R1341 + T3N1T1N4R3114 + T4N1T3N1R4131

+ T1N4T1N3R1413 + T1N4T3N1R1431 + T4N1T1N3R4113 + T3N1T4N1R3141

+ T2N3T2N4R2324 + T2N3T4N2R2342 + T3N2T2N4R3224 + T4N2T3N2R4232

+ T2N4T2N3R2423 + T2N4T3N2R2432 + T4N2T2N3R4223 + T3N2T4N2R3242

+ T4N2T4N3R4243 + T4N2T3N4R4234 + T2N4T4N3R2443 + T3N4T2N4R3424

+ T4N3T4N2R4342 + T4N3T2N4R4324 + T3N4T4N2R3442 + T2N4T3N4R2434

+ T3N2T3N4R3234 + T3N2T4N3R3243 + T2N3T3N4R2334 + T4N3T2N3R4323

+ T3N4T3N2R3432 + T3N4T2N3R3423 + T4N3T3N2R4332 + T2N3T4N3R2343

= (−1
2

+ 1
4
x2

1)(T1N2 − T2N1)2 + (−3
4
− 3

4
x2

1 + 1
16
x4

1)(T1N3 − T3N1)2

+ (1
4
− 1

4
x2

1 + 1
16
x4

1)(T2N3 − T3N2)2 + 1
4
(T1N4 − T4N1)2

+ 1
4
x2

1(T3N4 − T4N3)2 + 1
4
(T2N4 − T4N2)2

+ 2(−3
4
x1 + 1

8
x3

1)(T1N3 − T3N1)(T1N2 − T2N1)

+ 2(1
4
x1)(T1N2 − T2N1)(T1N4 − T4N1)

+ 2(−1
4

+ 1
8
x2

1)(T1N3 − T3N1)(T1N4 − T4N1)

+ 2(1
4
− 1

8
x2

1)(T2N3 − T3N2)(T2N4 − T4N2)

+ 2(1
4
x1)(T4N2 − T2N4)(T4N3 − T3N4)

+ 2(−1
4
x1 + 1

8
x3

1)(T3N2 − T2N3)(T3N4 − T4N3).



5.2 Biharmonic curves in Nil4 space 83

R(T,N, T,B) =
∑4

i,j,k,l=1 TiNjTkBlRijkl

= T1N2T1B2R1212 + T1N2T2B1R1221 + T2N1T2B1R2121 + T2N1T1B2R2112

+ T1N3T1B3R1313 + T1N3T3B1R1331 + T3N1T3B1R3131 + T3N1T1B3R3113

+ T2N3T2B3R2323 + T2N3T3B2R2332 + T3N2T3B2R3232 + T3N2T2B3R3223

+ T1N4T1B4R1414 + T1N4T4B1R1441 + T4N1T4B1R4141 + T4N1T1B4R4114

+ T3N4T3B4R3434 + T3N4T4B3R3443 + T4N3T4B3R4343 + T4N3T3B4R4334

+ T2N4T2B4R2424 + T2N4T4B2R2442 + T4N2T4B2R4242 + T4N2T2B4R4224

+ T1N2T1B3R1213 + T1N2T3B1R1231 + T2N1T1B3R2113 + T3N1T2B1R3121

+ T1N3T1B2R1312 + T1N3T2B1R1321 + T3N1T1B2R3112 + T2N1T3B1R2131

+ T1N2T1B4R1214 + T1N2T4B1R1241 + T2N1T1B4R2114 + T4N1T2B1R4121

+ T1N4T1B2R1412 + T1N4T2B1R1421 + T4N1T1B2R4112 + T2N1T4B1R2141

+ T1N3T1B4R1314 + T1N3T4B1R1341 + T3N1T1B4R3114 + T4N1T3B1R4131

+ T1N4T1B3R1413 + T1N4T3B1R1431 + T4N1T1B3R4113 + T3N1T4B1R3141

+ T2N3T2B4R2324 + T2N3T4B2R2342 + T3N2T2B4R3224 + T4N2T3B2R4232

+ T2N4T2B3R2423 + T2N4T3B2R2432 + T4N2T2B3R4223 + T3N2T4B2R3242

+ T4N2T4B3R4243 + T4N2T3B4R4234 + T2N4T4B3R2443 + T3N4T2B4R3424

+ T4N3T4B2R4342 + T4N3T2B4R4324 + T3N4T4B2R3442 + T2N4T3B4R2434

+ T3N2T3B4R3234 + T3N2T4B3R3243 + T2N3T3B4R2334 + T4N3T2B3R4323

+ T3N4T3B2R3432 + T3N4T2B3R3423 + T4N3T3B2R4332 + T2N3T4B3R2343

= (−1
2

+ 1
4
x2

1)(T1N2 − T2N1)(T1B2 − T2B1)

+ (−3
4
− 3

4
x2

1 + 1
16
x4

1)(T1N3 − T3N1)(T1B3 − T3B1)

+ (1
4
− 1

4
x2

1 + 1
16
x4

1)(T2N3 − T3N2)(T2B3 − T3B2)

+ (1
4
)[(T1N4 − T4N1)(T1B4 − T4B1) + (T2N4 − T4N2)(T2B4 − T4B2)]

+ (−3
4
x1 + 1

8
x3

1)[(T1N2 − T2N1)(T1B3 − T3B1)

+ (T1N3 − T3N1)(T1B2 − T2B1)] + (1
4
x2

1)(T3N4 − T4N3)(T3B4 − T4B3)

+ (−1
4

+ 1
8
x2

1)[(T1N3 − T3N1)(T1B4 − T4B1)

+ (T1N4 − T4N1)(T1B3 − T3B1)]

+ (1
4
− 1

8
x2

1)[(T2N3 − T3N2)(T2B4 − T4B2)

+ (T2N4 − T4N2)(T2B3 − T3B2)]

+ (1
4
x1)[(T1N2 − T2N1)(T1B4 − T4B1) + (T1N4 − T4N1)(T1B2 − T2B1)]

+ (1
4
x1)[(T4N2 − T2N4)(T4B3 − T3B4) + (T4N3 − T3N4)(T4B2 − T2B4)]

+ (1
4
x1 − 1

8
x3

1)[(T2N3 − T3N2)(T3B4 − T4B3)

+ (T4N3 − T3N4)(T3B2 − T2B3)].
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R(T,N, T,D) =
∑4

i,j,k,l=1 TiNjTkDlRijkl

= T1N2T1D2R1212 + T1N2T2D1R1221 + T2N1T2D1R2121 + T2N1T1D2R2112

+ T1N3T1D3R1313 + T1N3T3D1R1331 + T3N1T3D1R3131 + T3N1T1D3R3113

+ T2N3T2D3R2323 + T2N3T3D2R2332 + T3N2T3D2R3232 + T3N2T2D3R3223

+ T1N4T1D4R1414 + T1N4T4D1R1441 + T4N1T4D1R4141 + T4N1T1D4R4114

+ T3N4T3D4R3434 + T3N4T4D3R3443 + T4N3T4D3R4343 + T4N3T3D4R4334

+ T2N4T2D4R2424 + T2N4T4D2R2442 + T4N2T4D2R4242 + T4N2T2D4R4224

+ T1N2T1D3R1213 + T1N2T3D1R1231 + T2N1T1D3R2113 + T3N1T2D1R3121

+ T1N3T1D2R1312 + T1N3T2D1R1321 + T3N1T1D2R3112 + T2N1T3D1R2131

+ T1N2T1D4R1214 + T1N2T4D1R1241 + T2N1T1D4R2114 + T4N1T2D1R4121

+ T1N4T1D2R1412 + T1N4T2D1R1421 + T4N1T1D2R4112 + T2N1T4D1R2141

+ T1N3T1D4R1314 + T1N3T4D1R1341 + T3N1T1D4R3114 + T4N1T3D1R4131

+ T1N4T1D3R1413 + T1N4T3D1R1431 + T4N1T1D3R4113 + T3N1T4D1R3141

+ T2N3T2D4R2324 + T2N3T4D2R2342 + T3N2T2D4R3224 + T4N2T3D2R4232

+ T2N4T2D3R2423 + T2N4T3D2R2432 + T4N2T2D3R4223 + T3N2T4D2R3242

+ T4N2T4D3R4243 + T4N2T3D4R4234 + T2N4T4D3R2443 + T3N4T2D4R3424

+ T4N3T4D2R4342 + T4N3T2D4R4324 + T3N4T4D2R3442 + T2N4T3D4R2434

+ T3N2T3D4R3234 + T3N2T4D3R3243 + T2N3T3D4R2334 + T4N3T2D3R4323

+ T3N4T3D2R3432 + T3N4T2D3R3423 + T4N3T3D2R4332 + T2N3T4D3R2343

= (−1
2

+ 1
4
x2

1)(T1N2 − T2N1)(T1D2 − T2D1)

+ (−3
4
− 3

4
x2

1 + 1
16
x4

1)(T1N3 − T3N1)(T1D3 − T3D1)

+ (1
4
− 1

4
x2

1 + 1
16
x4

1)(T2N3 − T3N2)(T2D3 − T3D2)

+ (1
4
)[(T1N4 − T4N1)(T1D4 − T4D1) + (T2N4 − T4N2)(T2D4 − T4D2)]

+ (−3
4
x1 + 1

8
x3

1)[(T1N2 − T2N1)(T1D3 − T3D1)

+ (T1N3 − T3N1)(T1D2 − T2D1)] + (1
4
x2

1)(T3N4 − T4N3)(T3D4 − T4D3)

+ (−1
4

+ 1
8
x2

1)[(T1N3 − T3N1)(T1D4 − T4D1)

+ (T1N4 − T4N1)(T1D3 − T3D1)]

+ (1
4
− 1

8
x2

1)[(T2N3 − T3N2)(T2D4 − T4D2)

+ (T2N4 − T4N2)(T2D3 − T3D2)]

+ (1
4
x1)[(T1N2 − T2N1)(T1D4 − T4D1) + (T1N4 − T4N1)(T1D2 − T2D1)]

+ (1
4
x1)[(T4N2 − T2N4)(T4D3 − T3D4) + (T4N3 − T3N4)(T4D2 − T2D4)]

+ (1
4
x1 − 1

8
x3

1)[(T2N3 − T3N2)(T3D4 − T4D3)

+ (T4N3 − T3N4)(T3D2 − T2D3)].
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These, together with equation (5.19), complete the proof of the theorem.

Corollary 10. γ : I −→ Nil4 is a biharmonic curve if and only if:

N3 = B3 = D3 = 0
κ = constant 6= 0
τ = constant 6= 0
κ2 − τ 2 = 0
ρ = 0.

(5.21)



Abstract

This thesis deals with the study of Harmonic and Biharmonic maps on Thurston geom-
etry. The aim of this thesis is to classify harmonic and biharmonic applications in Thurston
model geometries of dimension 3. Three-dimensional Thurston model geometries are clas-
sified by W. Thurston, this classification has eight Three-dimensional model geometries, to
know, E3, S3, H3, S2 × R, H2 × R, S̃l2(R), Nil3 and Sol3.
Also we classify harmonic and biharmonic applications in Thurston model geometries of di-
mension 4. R. Filipkiewicz classified the Thurston geometry of dimension four and he proved
that there are 19 classes of maximal geometries in 4-dimension, to know, E4, S4, H4, P 2(C),
H2(C), S2×S2, S2×E2, S2×H2, H2×E2, H2×H2, H3×E1, H3×E1, Nil4, Sol4m,n, Sol40,

Sol41, F 4, S̃l2(R)× E1 and Nil3 × E1.
In dimension 3 we study biharmonic Legendre curves on three-dimensional Lorentzian Heisen-
berg space (H3, g) and we study biharmonic curves in three-dimensional generalized symmetric
spaces.
We also show that a linear map from an Euclidean space in three-dimensional generalized
symmetric spaces is biharmonic, and we give a complete classification of such maps.
In dimension 4 we study harmonic and biharmonic applications in Thurston geometry of di-
mension 4. We introduce the 4-dimensional geometry Nil4 and we define the metric gNil4 . We
give the Christoffel symbols and the Riemannian curvature to study the biharmonic curves
in Nil4 space.

Keywords: harmonic applications, biharmonic applications, Lgendre curves, Generalized
symmetric spaces, Thurston geometry.



Résumé

Cette thèse porte sur l’étude des applications harmonique et biharmonique sur les mod-
èles de Thurston. Le but de cette thèse est de classifier les applications harmoniques et
biharmoniques dans les modèles Thurston de dimension 3. Les géometries tridimensionnel de
Thurston sont classifier par W. Thurston, Cette classification a huit géometries, à savoir, E3,
S3, H3, S2 × R, H2 × R, S̃l2(R), Nil3 et Sol3.
Nous classifions également les applications harmoniques et biharmoniques dans les modèles de
Thurston de dimension 4. R. Filipkiewicz a classifier les geometries de Thurston de dimension
quatre et il a prouvé qu’il existe 19 classes de géometries maximales en dimension 4, à savoir,
E4, S4, H4, P 2(C),

H2(C), S2×S2, S2×E2, S2×H2, H2×E2, H2×H2, H3×E1, H3×E1, Nil4, Sol4m,n, Sol40,

Sol41, F 4, S̃l2(R)× E1 et Nil3 × E1.
En dimension 3 nous étudions les courbes biharmoniques de Legendre sur l’espace Lorentzian
Heisenberg tridimentionnel (H3, g) et nous étudions les courbes biharmoniques sur l’espace
symétrique généralisé tridimensionnel.
Nous montrons égualement q’une application linéaire à partir d’un espace Euclidien sur
l’espace symétrique généralisé tridimensionnel est biharmonique, et nous donnons une classi-
fication complète pour chaque application.
En dimension 4 nous étudions les applications harmoniques et biharmoniques sur les geome-
tries de Thurston de dimension 4. Nous introduisons la geometrie de dimension 4 Nil4 et
nous definissons la metrique gNil4 . Nous donnons les symboles de Christoffel et la courbure
de Riemann pour étudier les applications biharmoniques dans l’espace Nil4.

Mots clés: applications harmonique, applications biharmonic, courbes de Legendre, espaces
symétrique généralisées, géométrie de Thurston.



ملخص
تصنيف هو الأطروحة هذه من الهدف Thurston هندسة على والبيهارمونكية التوافقية التطبيقات دراسة الأطروحة هذه ٺتناول
هذا Thurston، طرف من مصنفة الفضائات هذه ابعاد. 3 ذات Thurston فضاءات في والبيهارمونيكية التوافقية التطبيقات

.Sol3 و Nil3 ,S̃l2(R) ,H2 × R ,S2 × R ,H3 ,S3 ,E3 هي و هندسية نماذج 8 على يحتوي تصنيف
هندسة صنف Filipkiewicz R. أبعاد. 4 ذات Thurston نماذج في البيهارمونكية و الهرمونكية التطبيقات كذلك نصنف

,H2(C) ,P 2(C) ,H4 ,S4 ,E4 هي و ابعاد اربع في للهندسة أقصى صنف 19 يوجد أنه برهن و أبعاد 4 ذات Thurston
,F 4 ,Sol41 ,Sol40 ,Sol4m,n ,Nil4 ,H3 × E1 ,H3 × E1 ,H2 ×H2 ,H2 × E2 ,S2 ×H2 ,S2 × E2 ,S2 × S2

.Nil3 × E1 و S̃l2(R)× E1

ندرس و (H3, g)، 3 بعد ذات Heisenberg Lorentzian فضاء في البيهارمونكية Legendre منحنيات ندرس 3 بعد في
.3 بعد العام المتماثل الفضاء في البيهرمونكية المنحنيات

التطبيفات. هذه لمثل تام تصنيف نعطي هرمونيكي, هو متماثل الابعاد ثلاثي إقليدي فضاء من خطي تطبيق انا كذلك نبېن
4 بعد ذات الهندسة كذلك نعرف .4 بعد ذات Thurston هندسة في التطبيقات بيهارمونكية و هرمونكية ندرس 4 بعد في

.Nil4 الفضاء في المنحنيات بيهرمونكية لدراسة Riemann إنحناء و Christofell رموز نعطي .gNil4 القياس و Nil4

. Thurston هندسة متماثل، معمم فضاء ، Legendre منحنيات بيهرمونكية، منحنيات هرمونكية، منحنيات مفتاحية: كلمات
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