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Abstract

The present thesis investigates the global well-posedness and the asymptotic behaviour of the
global solution for some problems arising in Mathematical elasticity. The first model consid-
ered is an abstract viscoelastic equation that includes several PDEs of hyperbolic type such
as the wave or plate equation. The second problem is a non-dissipative wave equation with
memory-type boundary condition localized on a part of the boundary. The third system is
the one-dimensional Timoshenko beam with a linear strong damping and a strong constant
delay acting on the transverse displacement of the system. The fourth one is the Porous
system subjected to a nonlinear delayed damping acting on the volume fraction equation.
The last one is the Bresse system with three control boundary conditions and interior delay
in all the three equations. Some well-posedness results are based on the semigroup theory,
whereas the others are obtained by combining the Faedo-Galerkin’s procedure with some en-
ergies estimates. Furthermore, to study the solution’s asymptotic behavior we employ the
multipiliers method which relies on the construction of a Lyapunov functional satisfying a
proper differential inequality that leads to the desired stability estimate. For the first and
the fourth problems, we use also some properties of convex functions and some techniques
developped in these studies [22, 23, 102].

key-words: Evolution equation, Wave-Plate equation, Timoshenko system, Porous sys-
tem, Bresse system, Global well-posedness, Lyapunov functional, Delay term, Viscolastic
damping, Convexity.
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Introduction

Elasticity is the ability of a body to resist a distorting influence and to return to its
original size and shape when that influence or force is removed. Solid objects will deform
when adequate loads are applied to them; if the material is elastic, the object will return to
its initial shape and size after removal. This is in contrast to plasticity, in which the object
fails to do so and instead remains in its deformed state.

In engineering, the elasticity of a material is quantified by the elastic modulus such as
the Young’s modulus, bulk modulus or shear modulus which measure the amount of stress
needed to achieve a unit of strain; a higher modulus indicates that the material is harder to
deform. The material’s elastic limit or yield strength is the maximum stress that can arise
before the onset of plastic deformation.

On the other hand, a viscous fluid in a stress state has a capacity for dissipation energy
without storing, and so it flows irreversibly. Material that exhibit both viscous and elastic
characteristics when undergoing deformation is called viscoelastic material. Such material is
used in a vast range of applications due to its property of dissipation of mechanical energy.
Thus one of the importance of this material is to reduce the excessive vibrations which can
typically cause the most problems.

The concept of stability of elastic systems is also connected with the concept of stability
of motion that my be defined as the ability of physical system to return to equilibrium when
slightly distrubed. The classical definition due to Lyapunov states that an equilibrium state
is stable if and only if all motions of the system starting close to the equilibrium state remain
close to this state for all time.

Time delay is a physical property by which the response to applied forces are delayed in
its effect. It appears in many applications, for example, chemical, biological, thermal and
economic phenomena. For this reason, it is no surprise that the study of systems with delay
effects has been in the focus of attention in the recent years. In fact, it was shown that the
delay may be a source of instability. For instance, Datko [34] proved that the time delay may
destabilize the system

utt(x, t) = uxx(x, t)− 2ut(x, t− τ) in [0, 1]× [0,∞[,

u(0, t) = u(1, t) = 0 in [−τ,∞[,

u(x, 0) = u0(x), ut(x, 0) = u1(x) in [0, 1].

(0.0.1)

The same result was obtained in [35] by replacing the internal delay in (0.0.1) by a time delay
in the boundary feedback control. Whereas, in the absence of delay, the system is uniformly



asymptotically stable ( see [64]). So, to stabilize a delayed system, adding control terms will
be necessary. In this regard, let us consider the following linear wave equation

utt(x, t)−∆u(x, t) + µ1ut(x, t) + µ2ut(x, t− τ) = 0 in Ω × [0,∞[,

u(x, t) = 0 in Γ0 × [0,∞[,

∂νu = 0 in Γ1 × [0,∞[,

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω,

ut(x, t− τ) = f0(x, t− τ), in Ω× [0, τ ],

(0.0.2)

where µ1 is a fixed postive constant, µ2 is a real number,Ω is a bounded domain in Rn, n ≥ 1,
Γ = Γ0 ∪ Γ1 and Γ0, Γ1 are closed subsets of Γ with Γ0 ∩ Γ1 = ∅. It is well-known that the
system (0.0.2) is exponentially stable if µ2 = 0, that is, in the absence of delay. On the
contrary, Nicaise and Pignotti [36] showed that the exponential stability holds if and only if
|µ2| < µ1. This one was obtained by introducing a proper Lyapunov functional and by using
appropriate observability inequalities. However, if |µ2| ≥ µ1, they constructed a sequence of
delays for which the associated solution does not converge to zero. This study was generalized
by the same authors [37] where they treated the wave equation with a time-varying delay, in
which they got an exponential decay result provided that |µ2| <

√
1− dµ1, where d is a fixed

positive constant such that τ ′(t) ≤ d < 1, for all t ∈ R+. Subsequently, Benaissa and Louhibi
[38] considered the wave equation with a nonlinear damping and a delayed nonlinear internal
feedback. Namely, they studied the following problem

utt(x, t)−∆u(x, t) + µ1g1(ut(x, t)) + µ2g2(ut(x, t− τ)) = 0 in Ω × [0,∞[,

u(x, t) = 0 in Γ0 × [0,∞[,

∂νu = 0 in Γ1 × [0,∞[,

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω,

ut(x, t− τ) = f0(x, t− τ), in Ω× [0, τ ],

(0.0.3)

with g1 = g2 and proved its stability under a proper relationship between µ1 and µ2. The
authors of [61] examined (0.0.3) with τ = τ(t) and µ1g1,µ2g2 are multiplied by a positive
decreasing function σ of class C1(R+) satisfying∫ ∞

0

σ(t)dt = +∞, and |σ′(t)| ≤ cσ(t),

and gave a general and explicit formula for the decay of solutions in term of σ. Very recently,
Messaoudi et al.[39] studied a linear wave equation with a strong damping in the presence of
a strong constant delay of the form

utt(x, t)−∆u(x, t)− µ1∆ut(x, t)− µ2∆ut(x, t− τ) = 0 in Ω × [0,∞[,

u(x, t) = 0 in Γ0 × [0,∞[,

∂νu = 0 in Γ1 × [0,∞[,

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω,

ut(x, t− τ) = f0(x, t− τ), in Ω× [0, τ ],

(0.0.4)



and obtained the exponential stability under the assumption |µ2| < µ1. In the same paper,
they treated a linear wave equation with a strong damping and a distributed delay by replacing

the constant delay by

∫ τ2

τ1

µ2(s)ds, where µ2 : [τ1, τ2] −→ R is a bounded function and τ1 < τ2

are two positive constants. They proved that the uniform stability holds if and only if∫ τ2

τ1

|µ2(s)|ds < µ1.

On the other hand, Ammari et al.[65] investigated a boundary stabilization problem for
the wave equation with interior delay. The problem considered is (0.0.2) when the damping
is acting in the boundary, that is if µ1 = 0 and (0.0.2)3 is replaced by

∂νu = −kut in Γ1 × [0,+∞[, (0.0.5)

where k > 0. Under some Lions geometric condition, they showed that this system is uni-
formly stable for µ2 sufficiently small.

Also, we recall two important works of abstract systems with time delay. In [116], Nicaise
and Pignotti studied the second-order evolution equation:{

Ut(t) = AU(t) + F (U(t)) +KBU(t− τ),

U(0) = U0, BU(t− τ) = f(t),

where B is a bounded operator. They showed that the operator associated to the part
without delay is a generator of a strongly continuous semigroup, which is exponentially stable.
Moreover, they obtained, under a smallness condition on the time delay feedback, that the
system with delay is also exponentially stable. The same authors (see [115]) considered the
following second-order evolution equations with time delay

utt + Au+B1B
∗
1ut(t) +B2B

∗
2ut(t− τ) = 0 in [0,∞[,

u(−t) = u0, ut(0) = u1 in [0,∞[

B∗2ut(t) = f0(t) in [−τ, 0],

where the bounded operator B2 is the delay feedback operator. They proved that the system
is exponentially stable when B2 = 0 and that the exponential stability is preserved if ‖B∗2‖ is
sufficiently small.

The main aim of this thesis is to adress some problems related to the global well-posedness
and asymptotic stability of systems coming from elasticity in the presence of time delays.
Regarding the issue of stabilization, the main purpose is to attenuate the vibrations by
viscoelastic feedback or damping which is usually assumed to be viscous or proportional to
velocity. So, we are interested in analyzing the decay of the energy (norm of solutions) to
zero, i.e.

E(t) −→ 0 as t −→∞,
and then we give the rate of the decay.

This thesis, which consists of six chapters, presents results of global existence and stability
behavior of solutions for five evolution systems. The monograph is organized as follows.



Chapter 1 surveys the necessary notations and the main tools needed throughout this
thesis. Also, we introduce the stability concepts for abstract problems that include the
systems we consider here.

Chapter 2 adresses a second-order viscoelastic equation with a weak internal damping, a
time-varying delay term and nonlinear weights together with suitable initial conditions. We
first prove the existence of a unique global weak solution by means of the classical Faedo-
Galerkin method. Then, we consider finite memory kernels g : R+ → R+ satisfying

g′(t) ≤ −ξ(t)H(g(t)), ∀t ≥ 0,

where H is a positive increasing and convex function and ξ is a positive function which is not
necessarily monotone. And, under this general assumption, we establish optimal explicit and
general stability estimates by using the well-known multipliers method and some properties
of convex functions. This study generalizes and improves many earlier ones in the existing
literature.

Chapter 3 presents an important contribution on decay properties of solutions for a wave
equation with a viscoelastic boundary damping acting on a part of the boundary. We general-
ize the work of Messaoudi and Soufyane [67] by adding a non-dissipative term and establish
a general decay rate result that allows a larger class of relaxation functions and improves
previous results.

Chapter 4 deals with a linear Timoshenko system with a strong damping and a strong
constant delay acting on the transverse displacement of the beam. Using the semigroup
techniques, we first establish the global well-posedness of solutions under a condition on the
weight of the delayed feedback and the weight of the non-delayed feedback. By using Prüss’s
theorem, we obtain that the system is not exponentially stable even in the case of equal-speed
wave propagations. In this regard, we prove that the solution decays polynomially with rate
t−

1
2 . And in addition, we show the optimality of that rate.
Chapter 5 investigates a nonlinearly damped Porous system with nonlinear delay term

together with Dirichlet-Dirichlet boundary conditions in [0, 1] × [0,+∞[. By the classical
Faedo-Galerkin procedure, we first prove the well-posedness of solutions without paying any
attention to the weights of feedbacks (delayed or not). This improves many earlier works
existing in the literature by removing the usual restrictions imposed on these weights. Fur-
thermore, we establish two general decay estimates with rates that depend on the speeds of
wave propagation and the smoothness of the initial data. The result is new and leads to
open more research areas into the provided system. The novelty lies also in the study of the
nonequal-speeds case, which has never been discussed for nonlinear damped systems even in
the absence of delay

Chapter 6 studies the asymptotic behaviour of a Bresse system together with three bound-
ary controls, with delay terms in the first, second and third equation. By using semigroup
method, we prove the global well-posedness of solutions. Then, assuming the weights of
the delay are small, we establish the exponential decay of energy to the system by using an
appropriate Lyapunov functional.



Chapter 1

Basic concepts

This chapter gathers some preliminaries facts and concepts that will be needed throughout
this thesis. Also, some methods on which the well-posedness of evolution problems proof is
based will be presented.

1.1 Functional Spaces

In this section, we shall introduce the key notions of Sobolev spaces, which can be considered
as one of the main tools that made possible the wide development of the theory of partial
differential equations in the last several decades.

Let X be a Banach space over the field K = R or C and X ′ its dual space, i.e., the Banach
space of all continuous linear forms on X equipped with the norm ‖.‖X′ given by

‖f‖X′ = sup
x 6=0

|〈f, x〉|
‖x‖

,

In the same way, we can define the dual space of X ′ that we denote by X ′′. The Banach
space X ′′ is also called the bi-dual space of X.

Definition 1.1.1. A Banach space X is reflexive if X = X ′′.

Definition 1.1.2. A Banach space X is called separable if it contains a countable dense
subset.

Theorem 1.1.3. (Riesz). Let (X; 〈., .〉) be a Hilbert space then X ′ = X in the sense: to each
f ∈ X ′ there exists a unique x ∈ X such that f = 〈x, .〉 and ‖f‖X′ = ‖x‖X .

Remark 1.1.4. As a result of the this Theorem we have that X ′′ = X, which means that a
Hilbert space is reflexive.

Corollary 1.1.5. The following two assertions are equivalent: (i) E is reflexive; (ii) E ′ is
reflexive.

13



1.1 Functional Spaces 14

1.1.1 Lebesgue Spaces

Definition 1.1.6. For p <∈ [0,∞[, we define

Lp(Ω) =

{
u : Ω −→ R is measurable and

∫
Ω

∣∣u(x)
∣∣pdx <∞}.

with the following norm

‖u‖Lp =

(∫
Ω

∣∣u(x)
∣∣pdx) 1

p

.

In addition, if p =∞, we have

L∞(Ω) =
{
u : Ω −→ R is measurable and it exists C > 0 such that

∣∣u(x)
∣∣ ≤ C a.e in Ω

}
,

and
‖u‖L∞ = inf

{
C,

∣∣u(x)
∣∣ ≤ C a.e in Ω

}
.

Theorem 1.1.7. The Lp(Ω) spaces have the following properties:

i. Lp(Ω) is a Banach space.

ii. L2(Ω) is a Hilbert space with respect to the following scalar product

(u, v)L2(Ω) =

∫
Ω

u(x)v(x)dx.

iii. Lp(Ω) is reflexive and separable for 1 < p <∞ and its dual is L
p
p−1 (Ω).

iv. L1(Ω) is separable but not reflexive and its dual is L∞(Ω).

v. L∞(Ω) is not separable, not reflexive and its dual contains strictly L1(Ω).

Notation 1.1.8. We denote by Lploc(Ω) the space of functions which are Lp on any bounded
sub-domain of Ω.

Theorem 1.1.9. C∞0 (Ω) is dense in L2(Ω).

The Lp(0,T; X) Spaces

Definition 1.1.10. Let X be a Banach space, 1 < p < +∞, then Lp(0, T ;X) is the space of
Lp functions u from (0, T ) into X which is a Banach space for the norm

‖u‖Lp(0,T ;X) =

(∫ T

0

‖u(x)‖pX dt
)1/p

< +∞ for p < +∞,

and for the norm

‖u‖L∞(0,T ;X) = sup
t∈(0,T )

‖u(x)‖X < +∞ for p = +∞.
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1.1.2 Sobolev Spaces

weak derivative

Definition 1.1.11. Let u, v ∈ Lp(Ω). We say that v is the αth-weak partial derivative of u,
written

Dαu = v,

provided ∫
Ω

u(x)Dαφ(x)dx = (−1)|α|
∫

Ω

v(x)φ(x)dx, ∀φ ∈ C∞0 (Ω),

where

Dαφ(x) =
∂|α|φ(x)

∂xα1
1 ∂x

α2
2 ...∂x

αn
n

,

and α = (α1, ..., αn) is called a multi-index of dimension n and |α| =
n∑
i=1

αi is the length α.

Definition of Sobolev spaces

We now define the Sobolev spaces whose members have weak derivatives of various orders
lying in various Lp spaces.

Definition 1.1.12. Fix p ∈ [1,∞) and let k be a nonnegative integer. The Sobolev space
W k,p(Ω) is the set

W k,p(Ω) =
{
u ∈ Lp(Ω) : Dαu ∈ Lp(Ω). ∀α; |α| ≤ k

}
.

The space W k,p(Ω) is a Banack space with respect to the following norm

‖u‖Wk,p(Ω) =

(
k∑
i=0

‖Dαu‖pLp(Ω)

)1/p

, for p < +∞,

‖u‖Wk,∞(Ω) =
k∑
i=0

‖Dαu‖L∞(Ω) , for p = +∞.

Notation 1.1.13. We usually write W k,2(Ω) as Hk(Ω).

Theorem 1.1.14. The spaces W k,p(Ω) have the following properties:

i. For 1 ≤ p ≤ ∞, W k,p(Ω) is separable and it is reflexive space for 1 < p <∞.

ii. the Hk(Ω) is a Hilbert space with a scalar product defined in terms of the L2 scalar
product

(u, v)Hk(Ω) =
∑
|α|≤k

(Dαu,Dαv)L2(Ω) .

Notation 1.1.15. We denote by W k,p
0 (Ω) the closure of C∞0 (Ω) in W k,p(Ω).
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1.1.3 The Rellich-Kondrachov Compactness Theorem

The following Theorem will be fundamental in our study of the well-posedness of some non-
linear PDEs.

Theorem 1.1.16. Let Ω ⊆ Rn be an open, bounded Lipschitz domain, and let 1 ≤ p < n. Set

p∗ :=
np

n− p
.

Then, the Sobolev space W 1,p(Ω) is continuously embedded in Lp
∗
(Ω) and is compactly em-

bedded in Lq(Ω) for every 1 ≤ q < p∗. In symbols,

W 1,p(Ω) ↪→ Lp
∗
(Ω)

and
W 1,p(Ω) ⊂⊂ Lq(Ω) for 1 ≤ q < p∗.

Theorem 1.1.17. Let p > n, then W 1,p(Rn) ⊂ L∞(Rn), with continuous imbedding.

The Wk,p(0,T; X) spaces

Definition 1.1.18. Let X be a Hilbert space, 1 ≤ p ≤ +∞, then W k,p(0, T ;X) is defined by

W k,p(0, T ;X) =
{
u ∈ Lp(0, T ;X) : Dαu ∈ Lp(0, T ;X) ∀α; |α| ≤ k

}
.

Furthermore, W k,p(0, T ;X) is a Banach space with respect to the norm

‖u‖Wk,p(0,T ;X) =

∑
|α|≤k

‖Dαu‖pLp(0,T ;X)

1/p

, for p < +∞,

‖u‖Wk,∞(0,T ;X) =
∑
|α|≤k

‖Dαu‖L∞(0,T ;X) , for p = +∞.

And, in particular, the space W k,2(0, T ;X), which is noted Hk(0, T ;X), is a Hilbert space
with the inner product:

(u, v)Hk(0,T ;X) =
∑
|α|≤k

∫ T

0

(Dαu,Dαv)X dt .

1.2 The weak and weak-star topologies

1.2.1 Weak topology

Denote
ϕf :X −→ R

x −→ ϕf (x) = 〈f, x〉,
when f cover X ′, we obtain a family (ϕf )f∈X′ of applications to X in R.

Definition 1.2.1. The weak topology on X denoted σ(X,X ′) is the weakest topology for which
every (ϕf )f∈X′ is continous.
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1.2.2 Weak-star topology

For all x ∈ X, denote
ϕx :X ′ −→ R

x −→ ϕx(f) = 〈f, x〉,
when x cover X, we obtain a family (ϕx)x∈X of applications to X ′ in R.

Definition 1.2.2. The weak-star topology on X ′ denoted σ(X ′, X) is the weakest topology for
which every (ϕx)x∈X′ is continous.

1.2.3 Weak and weak-star convergence

• Strong convergence. A sequence fn is said to be strongly convergent if there exitsts
f ∈ X such that

lim
n−→∞

‖fn − f‖ = 0,

written
fn −→ f.

• Weak convergence. We say that a sequence {xn} ⊂ X weakly converges to x in X,
written xn ⇀ x in X, if

〈f, xn〉 → 〈f, x〉,
for all f ∈ X ′.
• Weak-star convergence. A sequence {fn} ⊂ X ′ is weak-star convergent to f ∈ X ′, and
we write fn ⇀

∗ in E ′, if
〈fn, x〉 → 〈f, x〉,

for all x ∈ X.

Remark 1.2.3. If dimX <∞ then strong, weak and weak star convergence are equivalent.

Remark 1.2.4. Since X ⊂ X ′′ we have fn ⇀ f in X ′ implies fn ⇀
∗ f in X ′. And, if X is

reflexive then notions of weak convergence and weak star convergence coincide.

1.2.4 Weak and weak-star compactness in Lebesgue Spaces

In finite dimension, we have the following Bolzano-Weierstrass’s theorem which is a strong
compactness theorem.

Theorem 1.2.5. (Bolzano-Weierstrass). If dimX <∞ and if {xn} ⊂ X is bounded, then it
exist x ∈ X and a subsequence {xnk} of {xn} such that xnk −→ x.

In Lebesgue Spaces, we have the following two Theorems.

Theorem 1.2.6. (weak compactness in Lp(Ω) with 1 < p < ∞). Given {fn} ⊂ Lp(Ω) , if
{fn} is bounded, then there exist f ∈ Lp(Ω) and a subsequence {fnk} of {fn} such that fn ⇀ f
in Lp(Ω).

Theorem 1.2.7. (weak-star compactness in L∞(Ω)).
Given {fn} ⊂ L∞(Ω), if {fn} is bounded, then it exist f ∈ L∞(Ω) and a subsequence {fnk}
of {fn} such that fn

∗
⇀ f in L∞(Ω).
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1.3 Inequalities

Here in this section we collect some useful inequalities.
• Poincaré’s inequality. Let Ω be a bounded open domain in Rn, n ≥ 1. Then, it exists

a fixed positive constant c∗ = C
(
Ω
)

such that

‖u‖2 ≤ c∗‖∇u‖2 ∀u ∈ H1
0 (Ω).

Moreover, if we take n = 1 and Ω =]0, L[ we obtain that c∗ = L/π.

•Young’s inequality. Let a, b and ε be fixed positive constants and m,n ≥ 1, 1
m

+ 1
n

= 1.
Then we have the inequality

ab ≤ εmam

m
+

bn

nεn
.

• Gronwall’s inequality. Let T > 0, g ∈ L1(0, T ), g ≥ 0 a.e and c1, c2 are positives
constants.Let ϕ ∈ L1(0, T ) ϕ ≥ 0 a.e such that gϕ ∈ L1(0, T ) and

ϕ(t) ≤ c1 + c2

∫ t

0

g(s)ϕ(s)ds a.e in (0, T ),

then, we have

ϕ(t) ≤ c1exp

(
c2

∫ t

0

g(s)ds

)
a.e in (0, T ).

• Jensen’s inequality Let (Ω, A, µ) be a measure space, such that µ(Ω) = 1. If g is a
real-valued function that is µ-integrable, and if is a convex function on the real line, then

ϕ

(∫
Ω

g dµ

)
≤
∫

Ω

ϕ ◦ g dµ.

In real analysis, we may require an estimate on ϕ

(∫ b

a

g(x) dx

)
where a, b are real numbers,

and g is a non-negative real-valued function that is Lebesgue-integrable. In this case, the
Lebesgue measure of [a, b] don’t need to be unity. However, by integration by substitution,
the interval can be rescaled so that it has measure unity. Then Jensen’s inequality can be
applied to get

ϕ

(∫ b

a

g(x) dx

)
≤ 1

b− a

∫ b

a

ϕ((b− a)g(x)) dx.

1.4 The Faedo-Galerkin method

The Faedo-Galerkin approximation is a powerful tool for solving the nonlinear partial differ-
ential equations. We explain in this section how the method works through studying a simple
example. Consider the initial value problem

(P)


utt(t) + Au(t) + f(u(t)) = 0 in [0, L]× [0,∞[,

u(0, t) = u(L, t) = 0 in [0,∞[,

u(0, x) = u0(x), ut(0, x) = u1(x) in [0, L],

(1.4.1)
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where A = −∂/∂x2 with the domain D(A) = H2∩H1
0 (0, L) and A

1
2 = ∂/∂x with the domain

D(A
1
2 ) = H1

0 (0, L), ‖.‖ is the norm of
(
H = L2(0, L); 〈.〉

)
To study problem (P) we need the following assumption:

(A1) f is a C1 function such that f(0) = 0 and that it exists β > 0 satisfying

|f ′(s)| ≤ β, ∀s ∈ R.

The existence result is ensured by the following Theorem.

Theorem 1.4.1. Assuming that (A1) holds and that (u0, u1) ∈ (D(A), D(A
1
2 )). Then, prob-

lem (P) has a unique weak solution u satisfying

u ∈ L∞loc
(

0,∞;D(A)
)
, ut ∈ L∞loc

(
0,∞;D(A

1
2 )
)
, utt ∈ L∞loc

(
0,∞;H

)
.

Proof. To prove this result, we will employ the approximation process of Fadeo-Galerkin.
For, we consider the following three steps.

i. Approximate problem. Let V m a sub-space of D(A) with the finite dimension dm,
and let {ωjm} one basis of V m. Define the solution um by

um(t) =
dm∑
j=1

ξj(t)ωjm. (1.4.2)

We will seek an approximate solution um in the form (1.4.2) where ξj(t) are determined by

(
Pm
){〈umtt (t), ωjm〉+ 〈A

1
2um(t), A

1
2ωjm〉+ 〈f

(
u(t)

)
, ωjm〉 = 0, 1 ≤ j ≤ dm

um(0) = um0 , umt (0) = um1 .
(1.4.3)

with
um0 −→ u0 in D(A)

um1 −→ u1 in D(A
1
2 ).

(1.4.4)

By virtue of the theory of EDOs, system (Pm) accepts a unique local solution on [0, tm[.
In the next step, we obtain a priori estimates for the solution, so that can be extended outside
[0, tm[, to obtain one solution defined for all t > 0.

ii. Priori estimates.
• The first priori estimate. Replacing ωjm by um in (1.4.3)1 and using Young’s inequality
assumption (A1) and Poincare’s inequality, it follows that

d

dt

[
‖umt ‖2 + ‖A

1
2um‖2

]
≤ c‖umt ‖2 + c‖A

1
2um‖2,

the integration over [0, t], 0 ≤ t ≤ T , using (1.4.4), gives

‖umt ‖2 + ‖A
1
2um‖2 ≤ c+ c

∫ t

0

[
‖umt ‖2 + ‖A

1
2um‖2

]
dt,
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employing then Gronwall’s inequality, we can get

‖umt ‖2 + ‖A
1
2um‖2 ≤ c, (1.4.5)

from which we conclude that um exists globally in [0,+∞) and

um is uniformly bounded in L∞loc

(
0,∞;D(A

1
2 )
)
,

umt is uniformly bounded in L∞loc

(
0,∞;H

)
.

(1.4.6)

• The second priori estimate. First, we shall estimate umtt (0) in the H-norm. For that,
let ωjm = umtt (0) in (1.4.3)1 and the exploit Young’s inequality, assumption (H) and (1.4.4) in
order to have

‖umtt (0)‖2 ≤ c. (1.4.7)

Then, differentiating (1.4.3)1 with respect to t and letting ωjm = umtt (0) in the resulting
equation, we obtain that

d

dt

[
‖umtt ‖2 + ‖A

1
2umt ‖2

]
= 〈umt f ′(um), ‖umtt ‖〉 ,

utilizing Young’ inequality, the boundedness of f ′ and (1.4.5), one gets

d

dt

[
‖umtt ‖2 + ‖A

1
2umt ‖2

]
≤ c+ ‖umtt ‖2.

Integrating this latter estimate over [0, t] and using (1.4.7), (1.4.4), we have that

‖umtt ‖2 + ‖A
1
2umt ‖2 ≤ c+

∫ t

0

‖umtt ‖2dt,

by applying Gronwall’s inequality, we arrive at

‖umtt ‖2 + ‖A
1
2umt ‖2 ≤ c, (1.4.8)

we, therefore, deduce that

umt is uniformly bounded in L∞loc

(
0,∞;D(A

1
2 )
)
,

umtt is uniformly bounded in L∞loc

(
0,∞;H

)
.

(1.4.9)

• The third priori estimate. Let ωj = Au in (1.4.3)1, exploit Young’s inequality, (A1),
(1.4.5) and (1.4.5) to get

‖Aum‖2 ≤ c. (1.4.10)

We thereupon have that

um is uniformly bounded in L∞loc

(
0,∞;D(A)

)
. (1.4.11)

iii. Passage to the limit. First, we have form (A1) that

‖f(um)‖2 ≤ β‖um‖2,
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and so
‖f(um)‖2 ≤ c, (1.4.12)

we then conclude that

f(um) is uniformly bounded in L2
(

0, T ;H
)
. (1.4.13)

It follows from the estimates (1.4.6), (1.4.9), (1.4.11) and (1.4.12) that it exists a sequence
{un}∞n=1 ⊂ {um}∞m=1 satisfying

un −→ u weakly-star in L∞loc

(
0,∞;D

(
A
))
,

unt −→ ut weakly-star in L∞loc

(
0,∞;D

(
A

1
2

))
,

untt −→ utt weakly-star in L∞loc

(
0,∞;H

)
,

f(un) −→ χ weakly-star in L2
(

0,∞;H
)
.

(1.4.14)

We now want to prove that χ = f(u). This will be done by applying the following two
lemmas.

Lemma 1.4.2. Let X,X0, X1 be three Banack spaces such that X0 ⊆ X ⊆ X1. Assuming
that X0 is compactly embedded in X and that X is continuously embedded in X1, also, assume
that X0 and X1 are reflexive spaces. For 1 < p, q <∞, let

W =
{
u ∈ Lp(0, T ;X0)/u̇ ∈ Lq(0, T ;X1)

}
.

Then, the embedding of W ↪→ Lp(0, T ;X) is also compact.

Lemma 1.4.3. Let Q = Ω × [0, T ] an open bounded domain in Rn × R, and fµ, f are two
functions in Lq

(
Q
)
, 1 < q <∞ such that

‖fµ‖Lq(Q) ≤ c, fµ −→ g a.e in Q.

Then, fµ −→ f weakly in Lq(Q).

Going back to the proof of Theorem 1.4.1. It follows from (1.4.5) that un is bounded in

L∞(0, T ;D(A
1
2 )) and unt is bounded in L∞(0, T ;H). Then, the injection by continuity in Lp

gives us the boundedness of un in L2(0, T ;D(A
1
2 )) and unt in L2(0, T ;D(A

1
2 )). It is known

that the embedding D(A
1
2 ) ↪→ H is compact. Then, with

W =
{
u ∈ L2(0, T ;D(A

1
2 ))/u̇ ∈ L2(0, T ;H)

}
,

it results that the embedding W ↪→ L2(0, T ;H) is compact. And so, we can extract a
subsequence of un, represented again by un, such that

un −→ u strongly in L2
(
0, T ;H

)
,

which implies
un −→ u a.e. on Q.
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By the continuity of f , we have

f(un) −→ f(u) a.e. on Q. (1.4.15)

Combining this with (1.4.12), and using Lemma 1.4.3, we obtain

f(un) −→ f(u) weakly-star in L2(Q),

which implies that χ = f(u).
Now, we are ready to prove that is u a weak solution of (1.4.1). Consider function

v ∈ C(0, T ;H) having the form

v(t) =
N∑
i=1

cin(t)ωi, (1.4.16)

where N ≥ n is a fixed integer.
Then, by multiplying (1.4.3)1 by cin(t) and summing the resultants over i from 1 to N , we
find that ∫ T

0

〈
untt + Aun + f(un)

〉
vdt = 0. (1.4.17)

After passing to the limit in (1.4.17) as n −→ +∞ and using (1.4.14), we arrive at∫ T

0

〈
utt + Au+ f(u)

〉
vdt = 0.

The above equation holds for all v ∈ L2
(
0, T ;H

)
since the functions of the forms (1.4.16) are

dense in L2
(
0, T ;H

)
. This ends the proof.

1.5 Semigroups

Let
(
X, 〈., .〉 , ‖.‖

)
be a Hilbert space and let A : D(A) ⊂ X −→ X be a linear operator. We

introduce in this section some basic concepts that will be needed in the study of the initial
value problem {

ut(t) = Au(t), 0 < t ≤ T,

u(0) = x.
(1.5.1)

By a strong solution here we mean a function u : [0, T ] −→ X such that it is continuously
differentiable, u(t) ∈ D(A) for t > 0 and (1.5.1) is satisfied. And, by a weak solution we
mean a function u ∈ C

(
0, T ;X

)
such that for each v ∈ D(A∗) where A∗ is adjoint of A, the

function (u, v) is absolutely continous on [0, T ] and

d

dt
〈u, v〉 = 〈u,A∗v〉 a.e on [0, T ].

When A is an n×n constant matrix, it is well-known that the solution of (1.5.1) is given by

u(t) = eAtx, (1.5.2)
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where

eAt =
∞∑
n=0

Antn

t!
. (1.5.3)

The family of matrices eAt is called a semigroup. And, it has the following properties, the
so-called semigroup properties,

eA.0 = I, eA(t+s) = eAteAs.

The vast majority of evolution equations can be written in the form (1.5.1), and so the
solution should be given by

u(t) = eAtx.

However, the definition (1.5.3) of the matrix exponential no longer makes a sense in that case
and we have to explain what eAt means. This leads to the concept of semigroup in a Banach
space.

1.5.1 Definitions and Properties

Definition 1.5.1. Let X be a Banach space. A family (S(t))t≥0 of bounded linear operators
from X into X is called a semigroup of bounded linear operators on X if

i. S(0) = Id.

ii. ∀s, t ≥ 0, S(t+ s) = S(t)S(s).

If moreover the semigroup S(t) also fulfills

lim
t−→0+

S(t)x = x,

then S(t) is called a strongly continuous semigroup (in short, a C0-semigroup) of bounded
linear operators on X.

It is clear that the definition of semigroup is an extension of eAt defined in (1.5.3). For
the matrix A, one has

Au = lim
t−→0+

eAtu− u
t

= lim
t−→0+

eAtu− eA0u

t
=
d+eAtu

dt

∣∣∣∣
t=0

. (1.5.4)

We can say that the semigroup is generated by A. The relation (1.5.4) can be generalized to
the case of C0-semigroup. Indeed, the linear operator A defined by

D(A) =
{
u ∈ X : lim

t−→0+

eAtu− u
t

exists
}

and

Au = lim
t−→0+

S(t)u− u
t

=
d+S(t)u

dt

∣∣∣∣
t=0

for u ∈ X

is called the infinitesimal generator of the semigroup S(t). We usually write S(t) = eAt.
Let us now present some important properties of C0-semigroups.
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Theorem 1.5.2. Let S(t) = eAt be a C0-semigroup. Then

i. It exist constants ω ≥ 0 and M ≥ 1 such that

‖S(t)‖ ≤Meωt, for 0 ≤ t ≤ ∞. (1.5.5)

ii. For each x ∈ X, t −→ S(t)x is a continuous function from [0,∞) into X.

iii. For x ∈ D(A), S(t)x ∈ D(A) and

d

dt
S(t)x = AS(t)x = S(t)Ax. (1.5.6)

iv. The domain of A is dense in X and A is a closed linear operator.

v. If B is a bounded linear operator on X, then A + B is the infinitesimal generator of a
C0-semigroup T (t) on X satisfying ‖T (t)‖ ≤Me(w+M‖B‖)t.

It is concluded from the property (1.5.6) that u(t) = S(t)x is the solution of the equation

ut(t) = Au,

that is why the theory of semigroup is an efficient tool for studying linear partial differential
equations.

Theorem 1.5.3. If A is the infinitesimal generator of a C0-semigroup S(t) on X, then

i. for every x ∈ D(A) the abstract Cauchy problem (1.5.1) has a unique strong solution
given by u(t) = S(t)x.

ii. for all x ∈ X the abstract Cauchy problem (1.5.1) has a unique weak solution given by
u(t) = S(t)x.

Remark 1.5.4. If ω = 0 in (1.5.5) then the corresponding semigroup is uniformly bounded.
If moreover M = 1 then (S(t))t≥0 is called a C0-semigroup of contractions.

1.5.2 The Lumer-Phillips Theorem

We shall characterize the infinitesimal generators of C0-semigroup, that is, we will give con-
ditions on an unbounded operator A to be the infinitesimal generator of C0-semigroup. For
this purpose, we start by recalling the notion of m-dissipative operators.

Definition 1.5.5. Let A : D(A) ⊂ X −→ X be an unbounded linear operator. A is said to
be dissipative (monotone) if Re〈Au, u〉)X ≤ 0

(
Re〈Au, u〉)X ≥ 0

)
. The dissipative operator A

is m-dissipative if λI − A is surjective for some λ > 0.

Let us now present the so-called Lumer-Phyllips Theorem.

Theorem 1.5.6. A linear operator A : D(A) ⊂ X −→ X is the infinitesimal generator of a
C0-semigroup (S(t))t≥0 if and only if A is m-dissipative.
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1.6 Stability Concepts

Various types of stability have been defined for the solutions of differential equations describ-
ing dynamical systems. The most important one is that concerning the stability of solutions
near to a point of equilibrium. This may be discussed by the theory of A. Lyapunov. In the
simplest of terms, if the solutions that start out near an equilibrium point ue stay near ue
forever, then ue is Lyapunov stable. More strongly, if ue is Lyapunov stable and all solutions
that start out near ue converge to ue, then ue is asymptotically stable. Consider in a Hilbert
space X, the differential equation

du(t)

dt
= Au(t), (1.6.1)

where A is an unbounded operator with domain D(A) ⊂ X. Suppose that the above differ-
ential equation subject to the condition u(0) = x is uniquely solvable and that u ≡ 0 is an
equilibrium point for (1.6.1). We are interested in the asymptotic stability of the null solution
in the sense.

Definition 1.6.1. The equilibrium of (1.6.1) is:

i. exponentially stable if it exist constants a, b, ε > 0 such that if ‖x‖ < ε, then

‖u(t, x)‖ ≤ ae−bt‖x‖, ∀t ≥ 0.

ii. polynomially stable if it exist constants α, β, ε > 0 such that if ‖x‖ < ε, then

‖u(t, x)‖ ≤ βt−α‖x‖, ∀t > 0.

1.6.1 Stability of semigroup

We present in what follows some definitions about strong, exponential and polynomial sta-
bility of a C0-semigroup.

Definition 1.6.2. Assume that A is the infinitesimal generator of a strongly continuous
semigroup of contractions (S(t))t≥0 on X. We say that the C0 -semigroup (S(t))t≥0 is:

i. strongly stable if
lim
t→+∞

‖S(t)u‖X = 0, ∀u ∈ X.

ii. uniformly stable if
lim
t→+∞

‖S(t)‖L(X) = 0.

iii. exponentially stable if it exist two positive constants M and ε such that

‖S(t)u‖X ≤Me−εt‖u‖X , ∀t > 0,∀u ∈ X.

iv. polynomially stable if it exist two positive constants C and α such that

‖S(t)u‖X ≤ Ct−α‖u‖X , ∀t > 0, ∀u ∈ X.



Chapter 2

Global well-posedness and stability
results for an abstract viscoelastic
equation with a non-constant delay
term and nonlinear weight

2.1 Introduction

Let µ1 : R+ →]0,+∞[ and µ2 : R+ → R be given functions. Let A : D(A) → H be a self-
adjoint linear positive definite operator with dense domain D(A) ⊂ H where

(
H, 〈., .〉 , ‖.‖

)
is

a real separable Hilbert space. In the present chapter, we deal with the following second-order
evolution equation

utt(t) +Au(t)−
(
g ∗ Au)(t) + µ1(t)ut(t) + µ2(t)ut(t− τ(t)) = 0 in ]0,+∞[,

u(−t) = u0, ut(0) = u1 in [0,+∞[,

u(t− τ(0)) = f0(t− τ(0)) in [0, τ(0)],

(2.1.1)

where u : R+ −→ H is the displacement vector, τ(t) > 0 is the time-varying delay, the initial
data (u0, u1, f0) are given in suitable function spaces, the so-called relaxation function g is
positive non-increasing defined on R+ and ∗ means the usual convolution product in t

(ψ ∗ ϕ)(t) =

∫ t

0

ψ(t− s)ϕ(s)ds.

The above general model includes several PDEs of hyperbolic type like the wave and plate
equations. So, to illustrate our abstract result, some applications will be given in section 5.

In the absence of delay (i.e. if µ2 ≡ 0), the issues of well-posedness, stability and long-
time dynamics to problem (2.1.1) have been addressed in many papers, see for instance [1-9].
In [1], Dafermos proved that the solutions converge to 0 as t tends to ∞, but no explicit
rate of decay was given. Later on, it has been proved that if the kernel function g decays
exponentially, i.e.,

∃k0 > 0 : g′(t) ≤ −k0g(t), ∀t ∈ R+ (2.1.2)

26
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then the solutions decay exponentially. And, when g decays polynomially then the solutions
also decay polynomially with the same rate, see for example [10, 13, 14]. Messaoudi [15]
proposed a general condition on g that gives a general decay result where the usual expo-
nential, polynomial and logarithmic decay rates are only special cases. To be specific, he
considered the following viscoelastic wave equation

utt(x, t)−∆u(x, t) +
(
g ∗∆u

)
(x, t) = 0 (2.1.3)

together with Dirichlet boundary condition in Ω × [0,+∞[ where Ω is a bounded domain in
Rn, n ≥ 1. And, for kernel function g satisfying

g′(t) ≤ −k0(t)g(t) ∀t ∈ R+, (2.1.4)

where k0 : R+ → R+ is a non-increasing differentiable function, he established a general
energy decay result. This condition has been employed by several authors in their study
of the solution’s asymptotic stability for systems related to (2.1.3), see for instance [16-
21]. After that, inspired by the pioneer work of Lasiecka and Tataru [22], a more general
assumption of the form:

g′(t) ≤ −H(g(t)) ∀t ∈ R+, (2.1.5)

where H is an increasing convex function with H(0) = 0, was introduced by Alabau-
Boussouira et al.[23] and used then in a great number of papers (see [24, 25]), in which
explicit formulas for the decay rates of the solutions were obtained in terms of H. Very
recently, Mustafa [26] considered a viscoelastic wave equation with the kernel function g
satisfying

g′(t) ≤ −k0(t)H(g(t)) ∀t ∈ R+ (2.1.6)

and gained a new general energy decay. For some papers employed (2.1.6), we refer the
interested readers to [27-33].

As is well-known, if the weight of the delayed feedback is smaller than the non-delayed
one then we can obtain the stability result for the wave equation (see [36, 37]). In this
regard, an interesting problem was examined by Benaissa et al.[40]. In that work the authors
considered the wave equation with time dependent weights µ1(t), µ2(t) and a constant delay
and established a general decay estimate. Analogous result was obtained in [41] for the one
space dimension and in the case of time-varying delay. We also recall the contribution of
Remil and Hakem [42], who realized the same results for a viscoelastic wave equation with a
constant delay term.

On the other hand, problems similar to (2.1.1) with constant weights µ1 and µ2 have been
considered in a series of papers, see for instance [43-51]. In [47], Benaissa et al. discussed a
nonlinear wave equation with homogeneous Dirichlet boundary condition of the form

utt(x, t)−∆u(x, t) +
(
g ∗∆u

)
(x, t) + µ1F1(ut(x, t)) + µ2F2(ut(x, t− τ)) = 0. (2.1.7)

in Ω×]0,+∞[, where F1 and F2 are two real functions. In that paper they got, under a
suitable relation between µ1 and µ2, a general energy decay result in the case of kernel
function satisfying (2.1.4). Also, we would like to mention the contribution of Kirane and
Said-Houari [43], who investigated (2.1.7) with F1(s) = F2(s) = s and obtained, under the
assumptions: 0 < µ2 ≤ µ1 and (2.1.4), a general decay of the total energy. Due to the
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presence of the internal memory-feedback, they showed that the uniform stability takes place
even if µ1 = µ2 in contrast to [36] where no memory-feedback was available. It is worth to
note that the frictional damping term µ1ut played a crucial role in the proof of this results
that is why the authors indicated that the case when µ1 = 0 is an open problem. Guesmia
[44] solved that open problem where he considered the following general model

utt(t) +Au(t)−
∫ +∞

0

g(t− s)Au(s)ds+ µut(t− τ) = 0 in ]0,+∞[, (2.1.8)

of second-order evolution equation with infinite memory and a time delay term in a real
Hilbert space H. Under appropriate assumptions on the operator A and the weight of the
delay µ, he realized the uniform stability of the above mentioned system. Precisely, by
assuming g fulfills (2.1.2), he proved that the memory-type damping is enough to stabilize
(2.1.8) exponentially.

Equation (2.1.1) is a second-order evolution equation with finite memory and a non-
constant delay term and non-linear weight. As far as we know, the general rate of decay for
abstract equations of the form (2.1.1) has never been considered.

The aims of this chapter are:
(i) to give the global solvability without the usual restrictions of:

µ1, µ2 > 0, |µ2| <
√

1− dµ1, τ ∈ W 2,∞(0, T ).

(ii) to prove, under a wider class of relaxation functions, general decay results which improve
many earlier related works with finite and infinite memory.

The remaining parts are written as follows. In the next section, we give the needed
assumptions, notations and materials. In section 3, we state and prove the global well-
posedness result. In section 4, we study the solution’s asymptotic stability by using the
multiplier method integrated with some ideas developed in [22, 23, 26], taking into account
the nature of our problem. Finally, we give in section 5 some applications in order to illustrate
our abstract result.

2.2 Preliminaries

In this section, we shall provide some assumptions, preliminary facts and notations which are
used in the course of our investigation. We start, as in the work [37], by introducing the new
variable

z(ρ, t) = ut(t− ρτ(t)), ρ ∈ [0, 1], t > 0,

which satisfies

τ(t)zt(ρ, t) +
(
1− ρτ ′(t)

)
zρ(ρ, t) = 0 in [0, 1]× [0,+∞].

Hence, our problem (2.1.1) is equivalent to

utt(t) +Au(t)−
(
g ∗ Au)(t) + µ1(t)ut(t) + µ2(t)z(1, t) = 0 in ]0,∞[,

τ(t)zt(ρ, t) +
(
1− ρτ ′(t)

)
zρ(ρ, t) = 0 in[0, 1]× [0,∞[,

z(0, t) = ut in [0,∞[,

u(−t) = u0, ut(0) = u1 in [0,∞[,

z(ρ, 0) = f0(−ρτ(0)) in [0, 1].

(2.2.1)
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In order to deal with the new variable z, we consider the following spaces

V1 =
{
z :]0, 1[−→ H,

∫ 1

0

‖z(ρ, t)‖2dρ <∞
}
,

V2 =
{
z :]0, 1[−→ H,

∫ 1

0

‖A
1
2 z(ρ, t)‖2dρ <∞

}
,

V3 =
{
z :]0, 1[−→ H,

∫ 1

0

‖A
1
2 zρ(ρ, t)‖2dρ <∞

}
.

We know that Vi, i = 1, 2, 3, are Hilbert spaces and endowed with the following inner products〈
z, z̃
〉
V1

=

∫ 1

0

〈
z(ρ, t), z̃(ρ, t)

〉
Hdρ,〈

z, z̃
〉
V2

=

∫ 1

0

〈
A

1
2 z(ρ, t),A

1
2 z̃(ρ, t)

〉
Hdρ,〈

z, z̃
〉
V3

=

∫ 1

0

〈
A

1
2 zρ(ρ, t),A

1
2 z̃ρ(ρ, t)

〉
Hdρ.

For the sake of simplicity, we consider the following notations

(ψ � ϕ)(t) =

∫ t

0

ψ(t− s)
(
ϕ(t)− ϕ(s)

)
ds,

(ψ ◦ ϕ)(t) =

∫ t

0

ψ(t− s)‖ϕ(t)− ϕ(s)‖2ds.

To study system (2.2.1), we require the following assumptions:
(A1) It exists a fixed positive constant γ satisfying

‖u‖2 ≤ γ‖A
1
2u‖2, ∀u ∈ D(A

1
2 ). (2.2.2)

(A2) τ is a differentiable function such that

0 < τ1 ≤ τ(t) ≤ τ2, ∀t > 0, (2.2.3)

τ ′(t) ≤ d < 1, ∀t > 0. (2.2.4)

(A3) g : R+ → R+ is a decreasing differentiable function such that

g(0) > 0,

∫ ∞
0

g(s)ds = β < 1. (2.2.5)

(A4) There exist a C0 function ξ : R+ →]0,+∞[ which is not necessarily monotone and a
C1-function H : R+ → [0,+∞ which is either linear or strictly increasing and strictly convex
of class C2 on [0, r], r ≤ g(0), with H(0) = H ′(0) = 0 such that

g′(t) ≤ −ξ(t)H
(
g(t)

)
, ∀t ≥ 0, (2.2.6)

and
ξ(t) ≤ c1, ∀t ≥ 0, (2.2.7)

where c1 is a fixed positive constant.
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Remark 2.2.1. As ξ(t) > 0 for all t ≥ 0, then it exists c0 > 0 such that

c0 < ξ(t), ∀t ≥ 0. (2.2.8)

Remark 2.2.2. [26] 1. Assumption (A3) and (A4) imply that it exists t0 such that

g(t0) = r and g(t) ≤ r, for all t ≥ t0.

As g is decreasing, then we have

0 < g(t0) ≤ g(t) ≤ g(0).

The Combination of this fact with the continuity of H, yield that, for b, k > 0,

b < H
(
g(t)

)
≤ k, ∀t ∈ [0, t0].

Then, we can get for any t ∈ [0, t0]

g′(t) ≤ −ξ(t)H
(
g(t)

)
≤ −bξ(t) = − b

g(0)
ξ(t)g(0) ≤ − b

g(0)
ξ(t)g(t),

hence, thanks to (2.2.8), we can infer

g′(t) ≤ − bc0

g(0)
g(t), ∀t ∈ [0, t0],

and so

g(t) ≤ −g(0)

bc0

g′(t), ∀t ∈ [0, t0]. (2.2.9)

2. If H is a strictly increasing and strictly convex function of class C2 on [0, r] with

H(0) = H ′(0) = 0,

then it has an extension H, which is also strictly increasing and strictly convex C2 function
on (0,∞). For example, we can define H for any t > r as

H(t) =
H ′′(r)

2
t2 +

(
H ′(r)−H ′′(r)r

)
t+
(
H(r) +

H ′′(r)

2
r2 −H(r)r

)
.

In what follows, we state some essential Lemmas which will be used later.

Lemma 2.2.3. ([54]) For all ϕ, ψ ∈ C1
(
R+;R

)
, we have

(ψ ∗ ϕ)ϕt = −1

2
ψ(t)|ϕ|2 +

1

2
(ψ′ � ϕ)− 1

2

d

dt

[
(ψ � ϕ)−

(∫ t

0

ψ(s)ds

)
|ϕ|2

]
.

Lemma 2.2.4. ([26, 55]) Assume that (A3) holds, then, with f(t) =
∫∞
t
g(s)ds, the func-

tional

R(t) =

∫ t

0

f(t− s)‖A
1
2u(s)‖2ds

fulfills an estimate of the form

R′(t) ≤ −1

2

(
g ◦ A

1
2u
)
(t) + 3β‖A

1
2u‖2.
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Lemma 2.2.5. (Jensen’s inequality) Let H : [a, b] −→ R be a convex function. Assume
that f : Ω −→ [a, b] and h : Ω −→ R are integrable with h(s) ≥ 0 for all x ∈ Ω and∫

Ω
h(x)dx = m > 0. Then,

H

(
1

m

∫
Ω

f(x)h(x)dx

)
≤ 1

m

∫
Ω

H
(
f(x)

)
h(x)dx.

We now define the modified energy functional associated with the solution of our problem
(2.2.1) as

E(t) =
1

2

[
‖ut(t)‖2 + ‖A

1
2u(t)‖2 +

(
g ◦ A

1
2u
)
(t) + τ(t)η(t)

∫ 1

0

‖z(ρ, t)‖2dρ

]
, (2.2.10)

where η : R+ −→]0,+∞[ is a non-increasing function of class C1(R+).
Our point of departure will be to provide an explicit upper bound of the derivative of the

modified energy functional E.

Lemma 2.2.6. Let (u, z) be the solution of (2.2.1), then E fulfills for any t ≥ 0

E ′(t) ≤−
(
µ1(t)− 1

2
η(t)− 1

2ε1

|µ2(t)|2
)
‖ut‖2

−
(1− d

2
η(t)− ε1

2

)
‖z(x, 1)‖2

+
1

2

(
g′ ◦ A

1
2u)(t)− 1

2
g(t)‖A

1
2u(t)‖2.

(2.2.11)

Proof. Taking the inner product of Eq.(2.2.1)1 with ut in H, we obtain the identity

1

2

d

dt

[
‖ut‖2 + ‖A

1
2u‖2

]
+ µ1(t)‖ut‖2 + µ2(t)〈ut, z(x, 1)〉 = 〈

(
g ∗ A

1
2u
)
(t),A

1
2u(t)〉, (2.2.12)

by Lemma 2.2.3, the latter term rewrites as

〈
(
g ∗ A

1
2u
)
(t),A

1
2u(t)〉 =

1

2

d

dt

[ ∫ t

0

g(s)ds‖A
1
2u(t)‖2 −

(
g ◦ A

1
2u
)
(t)
]

+
1

2

(
g′ ◦ A

1
2u)(t)− 1

2
g(t)‖A

1
2u(t)‖2,

(2.2.13)

hence, (2.2.12) becomes

1

2

d

dt

[
‖ut‖2 +

(
1−

∫ t

0

g(s)ds
)
‖A

1
2u‖2 +

(
g ◦ A

1
2u
)
(t)
]

+ µ1(t)‖ut‖2

+ µ2(t)〈ut, z(x, 1)〉 =
1

2

(
g′ ◦ A

1
2u)(t)− 1

2
g(t)‖A

1
2u(t)‖2.

(2.2.14)

After taking the inner product of Eq.(2.2.1)2 with η(t)z(x, ρ, t) in V1, we may have

1

2
τ(t)η(t)

d

dt

∫ 1

0

‖z(ρ, t)‖2dρ+
1

2
η(t)

∫ 1

0

(1− ρτ ′(t)) d
dρ
‖z(ρ, t)‖2dρ = 0,
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using the non-increasing property of η, we get

1

2

d

dt

∫ 1

0

τ(t)η(t)‖z(ρ, t)‖2dρ ≤ − 1

2
η(t)

∫ 1

0

(1− ρτ ′(t)) d
dρ
‖z(ρ, t)‖2dρ

+
1

2
τ ′(t)η(t)

∫ 1

0

‖z(ρ, t)‖2dρ,

that is,

1

2

d

dt

∫ 1

0

τ(t)η(t)‖z(ρ, t)‖2dρ ≤ − 1

2
η(t)

∫ 1

0

d

dρ

[
(1− ρτ ′(t))‖z(x, ρ, t)‖2

]
dρ,

then, since z(0, t) = ut, it results that

1

2

d

dt

∫ 1

0

τ(t)η(t)‖z(ρ, t)‖2dρ ≤ − 1

2
η(t)

[
(1− τ ′(t))‖z(1, t)‖2 − ‖ut‖2

]
. (2.2.15)

The sum of (2.2.14) and (2.2.15), bearing (2.2.10) in mind, yields

E ′(t) ≤−
(
µ1(t)− 1

2
η(t)

)
‖ut‖2 − 1− d

2
η(t)‖z(x, 1)‖2 +

1

2

(
g′ ◦ A

1
2u)(t)

− 1

2
g(t)‖A

1
2u(t)‖2 − µ2(t)〈ut, z(1, t)〉.

(2.2.16)

Applying Cauchy-Schwarz’s and Young’s inequalities to the latter term of (2.2.16), we obtain

µ2(t)〈ut, z(1, t)〉 ≤
1

2ε1

|µ2(t)|2.‖ut‖2 +
ε1

2
‖z(1, t)‖2.

Plugging this estimate into (2.2.16), we get (2.2.11). This concludes the proof.

We end this section by establishing the following Lemma which will be needed in the proof
of global existence.

Lemma 2.2.7. For any regular solution of system (2.2.1), we have

‖z(1, t)‖2 +

∫ 1

0

‖zt(ρ, t)‖2dρ

≤ c‖ut‖2 + c

∫ 1

0

‖zρ(ρ, 0)‖2dρ+ c

∫ 1

0

‖z(ρ, t)‖2dρ+ c

∫ t

0

‖utt‖2dt.

(2.2.17)

Proof. By taking the inner product of Eq.(2.2.1)2 with z(ρ, t) in V1, it holds that∫ 1

0

τ(t)
〈
zt(ρ, t), z(ρ, t)

〉
dρ+

∫ 1

0

[
(1− ρτ ′(t)) d

dρ
‖z(ρ, t)‖2

]
dρ = 0,

that is,∫ 1

0

[
τ(t)

〈
zt(ρ, t), z(ρ, t)

〉
+ τ ′(t)‖z(ρ, t)‖2

]
dρ+

∫ 1

0

d

dρ

[
(1− ρτ ′(t))‖z(ρ, t)‖2

]
dρ = 0,
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and so

(1− τ ′(t))‖z(1, t)‖2 = ‖ut‖2 +

∫ 1

0

[
τ ′(t)‖z(ρ, t)‖2 − τ(t)

〈
zt(ρ, t), z(ρ, t)

〉]
dρ,

utilizing then Cauchy-Schwarz’s and Young’s inequalities, we arrive at∫ 1

0

‖z(1, t)‖2dρ ≤ c‖ut‖2 + c

∫ 1

0

‖z(ρ, t)‖2dρ+

∫ 1

0

‖zt(ρ, t)‖2dρ. (2.2.18)

Besides, taking the inner product of Eq.(2.2.1)2 with zt(t, ρ) in V1 and proceeding in the same
way, we can get

2

∫ 1

0

‖zt(ρ, t)‖2dρ ≤ c

∫ 1

0

‖zρ(ρ, t)‖2dρ. (2.2.19)

Moreover, we obtain after taking the inner product of Eq.(2.2.1)2 with 2ztρ(ρ, t) in V1 that

τ(t)

∫ 1

0

d

dρ

(
‖zt(ρ, t)‖2

)
dρ+

d

dt

∫ 1

0

‖zρ(ρ, t)‖2dρ = 0.

This, combined with zt(0, t) = utt, leads us to

d

dt

∫ 1

0

‖zρ(ρ, t)‖2dρ ≤ c‖utt‖2,

the integration on [0, t] gives∫ 1

0

‖zρ(ρ, t)‖2dρ ≤
∫ 1

0

‖zρ(ρ, 0)‖2dρ+ c

∫ t

0

‖utt‖2dt. (2.2.20)

Collecting the estimates (2.2.18)-(2.2.20), we end up with (2.2.17).

2.3 The global well-posedness

This section aims to show the following global well-posedness result:

Theorem 2.3.1. Assume that (A1)-(A3) hold and that µi, i = 1, 2, are bounded. Then, for

any (u0, u1, f0) ∈ D
(
A
)
×D

(
A 1

2

)
× V3 satisfying f0(0, .) = u1, problem (2.1.1) has only one

global weak solution

u ∈ L∞loc
(

0,∞;D
(
A
))
, ut ∈ L∞loc

(
0,∞;D

(
A

1
2

))
, utt ∈ L∞loc

(
0,∞;H

)
.

Proof. In order to prove the result given in Theorem 2.3.1 we will implement the well-known
Faedo-Galerkin procedure.

i. Approximate problem. First, we assume D
(
A 1

2

)
to be separable. Let T > 0 and for

every m ≥ 1, let {Φm}m∈N be an Hilbertian basis of D
(
A
)
, D
(
A 1

2

)
and H. We denote by

Fm the space generated by Φ1, ...,Φm.
Defining, for 1 ≤ i ≤ m, the sequence Ψi(ρ) as

Ψi(0) = Φi.
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Then, we may extend Ψi(0) by Ψi(ρ) over V1 and denote Zm the space generated by Ψ1,Ψ2, ...,Ψm.
We shall construct an approximate solution

(
um(t), zm(ρ, t)

)
in the form

um(t) =
m∑
i=1

dim(t)Φi, (2.3.1)

zm(ρ, t) =
m∑
i=1

eim(t)Ψi(ρ). (2.3.2)

So, we are intend to determine the coeffitions dim and eim, i = 1, ...,m, to satisfy
〈
A

1
2um(t)−

(
g ∗ A

1
2um

)
(t),A

1
2 Φi
〉

+
〈
umtt (t) + µ1(t)umt (t) + µ2(t)zm(1, t),Φi

〉
= 0,〈

zmt (ρ, t) + (1− ρτ ′(t))zmρ (ρ, t),Ψi(ρ)
〉

= 0,

(2.3.3)

with 
um(0) = um0 −→ u0 in D

(
A
)
,

umt (0) = um1 −→ u1 in D
(
A

1
2

)
,

zm(., 0) = zm0 −→ f0(.) in V3,

(2.3.4)

as m −→ +∞.

By the standard methods of EDOs, we may show that the system (2.3.3)-(2.3.4) accepts
only one solution

(
um(t), zm(ρ, t)

)
on the interval [0, Tm], 0 < Tm < T . In the next step, we

will show that Tm is independent of m, that is, the approximate solution becomes global and
defined for all t > 0.

ii. Priori estimates.
• The first priori estimate. In view of Lemma 2.2.6, the functional

Em(t) =
1

2
‖umt ‖2 +

1

2

(
1− g0

)
‖A

1
2um‖2 +

1

2

(
g ◦ A

1
2um

)
+

1

2
τ(t)η(t)

∫ 1

0

‖zm(ρ, t)‖2dρ,

satisfies for any ε1 > 0

d

dt
Em(t) ≤ c‖umt ‖2 −

(1− d
2

η(t)− ε1

2

)
‖zm(1, t)‖2. (2.3.5)

For a suitable ε1, an integration over (0, t) yields that

Em(t) ≤ Em(0) + c

∫ t

0

‖umt ‖2dt. (2.3.6)

Taking the convergences (2.3.4) into account and employing the Gronwall’s inequality, we
obtain the first estimate below

Em(t) ≤ L1, (2.3.7)
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where L1 > 0 is independent of m. This estimate assures the global existence of (um, zm).
And, it is deduced that

um is uniformly bounded in L∞loc

(
0,∞;D(A

1
2 )
)
,

umt is uniformly bounded in L∞loc

(
0,∞;H

)
,

zm is uniformly bounded in L∞loc

(
0,∞;V1

)
.

(2.3.8)

• The second priori estimate. Let Φi = 2Aumt in (2.3.3)1 and exploit lemma 2.2.3 in order
to have

d

dt

[
‖A

1
2umt ‖2 +

(
1− g0

)
‖Aum‖2 +

(
g ◦ Aum

)]
+ g(t)‖Aum‖2

−
(
g′ ◦ Aum

)
(t) + 2µ1(t)‖A

1
2umt ‖2 + 2µ2(t)

〈
A

1
2 zm(1, t), A

1
2umt

〉
= 0.

(2.3.9)

Next, replacing Ψi by 2Azm(ρ, t) in (2.3.3)2, we find that

d

dt

∫ 1

0

τ(t)‖A
1
2 zm(ρ, t)‖2dρ = −

∫ 1

0

d

dρ

(
1− ρτ ′(t)

)
‖A

1
2 zm(ρ, t)‖2dρ,

which implies

d

dt

∫ 1

0

τ(t)‖A
1
2 zm(ρ, t)‖2dρ ≤ −

(
1− d

)
‖A

1
2 zm(1, t)‖2 + ‖A

1
2umt ‖2, (2.3.10)

Moreover, with

Em(t) = ‖A
1
2umt ‖2 +

(
1− g0

)
‖Aum‖2 +

(
g ◦ Aum

)
+

∫ 1

0

τ(t)‖A
1
2 zm(ρ, t)‖2dρ,

it follows from the estimates (2.3.9)-(2.3.10) that

d

dt
Em(t) ≤

(
1− 2µ1(t)

)
‖A

1
2umt ‖2 −

(
1− d

)
‖A

1
2 zm(1, t)‖2 − 2µ2(t)

〈
A

1
2 zm(1, t),A

1
2umt

〉
.

Due to Cauchy Schwarz’s and Young’s inequalities, one has

d

dt
Em(t) ≤ c‖A

1
2umt ‖2 −

(
(1− d)− ε2

)
‖A

1
2 zm(1, t)‖2.

Up to fixing ε2 sufficiently small to get

d

dt
Em(t) ≤ c‖A

1
2umt ‖2,

the integration over (0, t), bearing (2.3.4) in mind, gives

Em(t) ≤ c+ c

∫ t

0

‖A
1
2umt ‖2dt.
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By virtue of Gronwall’s inequality, we obtain for L2 > 0, that

Em(t) ≤ L2. (2.3.11)

We, thererfore, conclude that

um is uniformly bounded in L∞loc

(
0,∞;D(A)

)
,

umt is uniformly bounded in L∞loc

(
0,∞;D(A

1
2 )
)
,

zm is uniformly bounded in L∞loc

(
0,∞;V2

)
.

(2.3.12)

• The third priori estimate: Let Φi = umtt in (2.3.3)1, we have the identity

‖umtt (t)‖2 = −
〈
Aum(t)− (g ∗ Aum)(t) + µ1(t)umt (t) + µ2(t)zm(1, t), umtt (t)

〉
.

The boundedness of µi, i = 1, 2, Cauchy-Schwarz’s inequality and Young’s inequality, yield
that

‖umtt ‖2 ≤ c
(
‖Aum(t)‖2 + ‖umt (t)‖2 + ‖zm(1, t)‖2

)
+
〈
(g ∗ Aum)(t), umtt (t)

〉
. (2.3.13)

Since Au(s) =
(
Au(s)−Au(t)

)
+Au(t), we easily show that

〈(
g ∗ Au

)
(t), umtt

〉
=

∫ t

0

g(t− s)
〈
Au(s)−Au(t), umtt

〉
ds+

〈
Au(t), umtt

〉
≤ c
(
g ◦ Au

)
(t) + c‖Au(t)‖2 +

1

2
‖umtt ‖2.

Substituting this latter estimate into (2.3.13) and using (2.3.11), we get

‖umtt ‖2 ≤ c+ c‖zm(1, t)‖2,

which is

‖umtt ‖2 + c

∫ 1

0

‖zmt (ρ, t)‖2dρ ≤ c+ c
(
‖zm(1, t)‖2 +

∫ 1

0

‖zmt (ρ, t)‖2dρ
)
, (2.3.14)

Thanks to (2.2.17), we see that (2.3.14) implies

‖umtt ‖2 + c

∫ 1

0

‖zmt (ρ, t)‖2dρ

≤ c+ c‖umt ‖2 + c

∫ 1

0

‖zmρ (ρ, 0)‖2dρ+ c

∫ 1

0

‖zm(ρ, t)‖2dρ+ c

∫ t

0

‖umtt ‖2dt,

(2.3.15)

then, by (2.3.4) and (2.3.7), we have

‖umtt ‖2 +

∫ 1

0

‖zmt (ρ, t)‖2dρ ≤ c+ c

∫ t

0

‖umtt ‖2dt, (2.3.16)
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and with the help of Gronwall’s inequality, we arrive at

‖umtt (t)‖2 +

∫ 1

0

‖zmt (ρ, t)‖2dρ ≤ L3, (2.3.17)

where L3 is a fixed postive constant. We hence derive that

umtt is uniformly bounded in L∞loc

(
0,∞;H

)
,

zmt is uniformly bounded in L∞loc

(
0,∞;V1

)
.

(2.3.18)

It follows from the priori estimates (2.3.8), (2.3.12) and (2.3.18) that it exist subsequences
{un}∞n=1 ⊂ {um}∞m=1 and {zn}∞n=1 ⊂ {zm}∞m=1 such that

un −→ u weakly-star in L∞loc

(
0,∞;D

(
A
))
,

unt −→ ut weakly-star in L∞loc

(
0,∞;D

(
A

1
2

))
,

untt −→ utt weakly-star in L∞loc

(
0,∞;H

)
,

zn −→ z weakly-star in L∞loc

(
0,∞;V2

)
,

znt −→ zt weakly-star in L∞loc

(
0,∞;V1

)
.

(2.3.19)

The proof of the existence result can be completed following the same steps of proof of
Theoreme 1.4.1.

For the uniqueness, we assume that (u1, z1) and (u2, z2) are two pairs of weak solutions of
(2.2.1). Then, (u, z) = (u1, z1)− (u2, z2) fulfills the system

utt(t) +Au(t)−
(
g ∗ Au)(t) + µ1(t)ut(t) + µ2(t)z(1, t) = 0 in ]0,∞[,

τ(t)zt(ρ, t) +
(
1− ρτ ′(t)

)
zρ(ρ, t) = 0 in[0, 1]× [0,∞[,

z(0, t) = ut in [0,∞[,

u(−t) = u1 = 0 in [0,∞[,

z(ρ, 0) = 0 in [0, 1].

(2.3.20)

To get the uniquness result, it is sufficient to show that (0, 0) is the only weak solution of
(2.3.20). For that, invoking (2.3.6), and noting that E(0) = 0, we obtain

E(t) ≤ c

∫ t

0

E(s)ds.

As E > 0, the reserved Gronwall’s inequality implies that E(t) = 0 for all t > 0 and so
(u, z) ≡ (0, 0). Consequently, (2.2.1) has only one global weak solution.

2.4 Stability

We will divide this section into three subsections: in the first part, we investigate the decay
property in the case of |µ2| <

√
1− dµ1, in the second one, we discuss the situation when
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|µ2| =
√

1− dµ1. And, in the last one, we give some examples to illustrate our new general
decay results. As a starting point, letting ε1 = 1√

1−d |µ2(t)| in (2.2.11), we immediately get

E ′(t) ≤−
(
µ1(t)− 1

2
η(t)− 1

2
√

1− d
|µ2(t)|

)
‖ut‖2

−
(1− d

2
η(t)−

√
1− d
2
|µ2(t)|

)
‖z(x, 1)‖2

+
1

2

(
g′ ◦ A

1
2u)(t)− 1

2
g(t)‖A

1
2u(t)‖2.

(2.4.1)

Then, we assume that the non-increasing function η satisfies
1√

1− d
µ2(t) < η(t) < 2µ1(t)− 1√

1− d
µ2(t), if |µ2(t)| <

√
1− dµ1(t),

η(t) = µ1(t) =
1√

1− d
|µ2(t)|, if |µ2(t)| =

√
1− dµ1(t).

(2.4.2)

2.4.1 General decay for |µ2(t)| <
√

1− dµ1(t)

In this subsection, we prove our new general decay result in the case of |µ2| <
√

1− dµ1.
Recalling (2.4.2), then (2.4.1) implies

E ′(t) ≤ −C1‖ut‖2 − C2‖z(x, 1)‖2 +
1

2

(
g′ ◦ A

1
2u)(t)− 1

2
g(t)‖A

1
2u(t)‖2, (2.4.3)

where

C1 = µ1(t)− 1

2
η(t)− 1

2
√

1− d
|µ2(t)| > 0,

C2 =
1− d

2
η(t)−

√
1− d
2
|µ2(t)| > 0.

The main result of this part is ensured by the following Theorem.

Theorem 2.4.1. Let (u, z) be the solution of (2.2.1). Assuming that (A1)-(A4) are fulfilled,
|µ2| <

√
1− dµ1 and that µ1 is a bounded function. Then, it exist two positive constants a

and a1 such that the solution of (2.2.1) satisfies

E(t) ≤ aH−1
1

(
a1

∫ t

t0

ζ(s)ds

)
, ∀t > t0 (2.4.4)

where

t0 = g−1(r), ζ(t) = min
(
ξ(t), µ1(t)

)
, H1(t) =

∫ r

t

1

H2(s)
ds, and H2(s) = sH ′(ε0s).

Proof. To derive the stability result stated in Theorem 2.4.1, we shall establish some Lemmas
given for all regular solution of (2.2.1).
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Lemma 2.4.2. The functional K defined by

K(t) = 〈ut, u〉

fulfills, along the solution of (2.2.1), the estimate

K ′(t) ≤
(

1 +
γ

1− g0

|µ1(t)|2
)
‖ut‖2 − 1

4

(
1− g0

)
‖A

1
2u‖2

+
Cν

4(1− g0)

(
h ◦ u

)
(t) +

γ

1− g0

|µ2(t)|2.‖z(1, t)‖2,
(2.4.5)

for all 0 < ν < 1, where

Cν =

∫ ∞
0

g2(s)

νg(s)− g′(s)
ds and h(t) = νg(t)− g′(t).

Proof. Taking the derivative of K and using Eq.(2.2.1)1, we can get

K ′(t) = ‖ut‖2 + ‖A
1
2u‖2 +

〈
(g ∗ A

1
2u)(t),A

1
2u
〉

− µ1(t) 〈ut, u〉 − µ2(t) 〈z(1, t), u〉 ,

which is,

K ′(t) = ‖ut‖2 −
(
1− g0

)
‖A

1
2u‖2 −

〈
(g � A

1
2u)(t),A

1
2u(t)

〉
+ µ1(t) 〈ut, u(t)〉+ µ2(t) 〈z(1, t), u(t)〉 .

In view of the assumption (A1), Cauchy Schwarz’s inequality and Young’s inequality, we
obtain that

K ′(t) ≤
(

1 +
γ

1− g0

|µ1(t)|2
)
‖ut‖2 − 1

4

(
1− g0

)
‖A

1
2u‖2

+
γ

1− g0

|µ2(t)|2.‖z(1, t)‖2 +
1

4(1− g0)
‖(g � u)(t)‖2.

Now, using Cauchy Schwarz’s inequality, the latter term of the above inequality can be
estimated as

‖(g � u)(t)‖2 ≤
(∫ t

0

g(t− s)‖A
1
2u(s)−A

1
2u(t)‖ds

)2

=

(∫ t

0

g(t− s)√
h(t− s)

√
h(t− s)‖A

1
2u(s)−A

1
2u(t)‖ds

)2

≤
(∫ t

0

g2(s)

νg(s)− g′(s)
ds

)∫ t

0

h(t− s)‖A
1
2u(s)−A

1
2u(t)‖2ds

≤ Cν(h ◦ u)(t).

(2.4.6)

Collecting all above equations establishes (2.4.5).

Lemma 2.4.3. The functional

F (t) = τ(t)

∫ 1

0

e−ρτ(t)‖z(ρ, t)‖2dρ
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has the following property

F ′(t) ≤ −τ1e
−τ2
∫ 1

0

‖z(ρ, t)‖2dρ− (1− d)e−τ2‖z(1, t)‖2 + ‖ut‖2. (2.4.7)

Proof. It is easy to see that

F ′(t) =

∫ 1

0

[
τ ′(t)e−ρτ(t)‖z(ρ, t)‖2

]
dρ+

∫ 1

0

[
τ(t)e−ρτ(t) d

dt

(
‖z(ρ, t)‖2

)]
dρ

−
∫ 1

0

[
ρτ ′(t)τ(t)e−ρτ(t)‖z(ρ, t)‖2

]
dρ,

then, by (2.2.1)2, we can get

F ′(t) =−
∫ 1

0

[
e−ρτ(t) d

dρ

((
1− ρτ ′(t)

)
‖z(ρ, t)‖2

)]
dρ−

∫ 1

0

[
ρτ(t)τ ′(t)e−ρτ(t)‖z(ρ, t)‖2

]
dρ,

that is,

F ′(t) =−
∫ 1

0

d

dρ

[
e−ρτ(t)(1− ρτ ′(t))‖z(ρ, t)‖2

]
dρ− τ(t)

∫ 1

0

e−ρτ(t)‖z(ρ, t)‖2dρ,

this, together with (2.2.4), implies

F ′(t) ≤ −τ(t)

∫ 1

0

e−ρτ(t)‖z(ρ, t)‖2dρ− (1− d)e−τ(t)‖z(1, t)‖2 + ‖ut‖2.

As e−τ(t) ≤ e−ρτ(t) for all ρ ∈ [0, 1], we have

F ′(t) ≤− τ(t)e−τ(t)

∫ 1

0

‖z(ρ, t)‖2dρ− (1− d)e−τ(t)‖z(1, t)‖2 + ‖ut‖2,

using then (2.2.3), we end up with (2.4.7).

Lemma 2.4.4. For a suitable choice of N and Ni, i = 1, 2, the functional defined by

L(t) = NE(t) +N1K(t) +N2F (t),

satisfies
L ∼ E, (2.4.8)

and

L′(t) ≤ −c‖ut‖2 − 4β‖A
1
2u‖2 +

1

4

(
g ◦ A

1
2u
)
(t)− c

∫ 1

0

‖z(ρ, t)‖2dρ. (2.4.9)

Proof. It is not hard to establish that L ∼ E. Then, combining the estimates (2.4.3), (2.4.5),
(2.4.7), we immediately get

L′(t) ≤−
[
C1N −

(
1 +

γ

1− g0

|µ1(t)|2
)
N1 −N2

)]
‖ut‖2

− N1

4

(
1− g0

)
‖A

1
2u‖2 +

N

2

(
g′ ◦ A

1
2u
)
(t)

+
N1

1− g0

Cν
(
h ◦ A

1
2u
)
(t)− τ1e

−τ2N2

∫ 1

0

‖z(ρ, t)‖2dρ

−
[
C2N + (1− d)e−τ2N2 −

γN1

1− g0

|µ2(t)|2
]
‖z(1, t)‖2.
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As µ1 is bounded, we get that there exists a fixed positive constant α such that

µ1(t) ≤ α, for all t ≥ 0, (2.4.10)

This, together with |µ2| <
√

1− dµ1 and g′ = νg − h, gives

L′(t) ≤−
[
C1N −

(
1 +

γα2

1− g0

)
N1 −N2

]
‖ut‖2 − N1

4

(
1− g0

)
‖A

1
2u‖2

+
Nν

2

(
g ◦ A

1
2u
)
(t)−

[
N

2
− N1

4(1− g0)
Cν

](
h ◦ A

1
2u
)
(t)

− τ1e
−τ2N2

∫ 1

0

‖z(ρ, t)‖2dρ

−
[
C2N + (1− d)e−τ2N2 −

γα2(1− d)

1− g0

N1

]
‖z(1, t)‖2.

Furthermore, the choices

N1 =
16β

1− g0

, N2 =
C1

2
N,

give

L′(t) ≤−
[
C1

2
N −

(
1 +

γα2

1− g0

) 16β

1− g0

]
‖ut‖2 − 4β‖A

1
2u‖2

+
Nν

2

(
g ◦ A

1
2u
)
(t)−

[
N

2
− 4β

(1− g0)2
Cν

](
h ◦ A

1
2u
)
(t)

− C1τ1e
−τ2

2
N

∫ 1

0

‖z(ρ, t)‖2dρ

−
[
C2N +

C1(1− d)e−τ2

2
N − 16βγα2(1− d)

(1− g0)2

]
‖z(1, t)‖2.

Since νg2(s)
νg(s)−g′(s) < g(s), then it is readily seen, by the Lebesgue dominated convergence theo-

rem, that

lim
ν→∞

νCν = lim
ν→∞

∫ ∞
0

νg2(s)

νg(s)− g′(s)
ds = 0. (2.4.11)

Consequently, it exist some ν0 (0 < ν0 < 1) such that if ν0 < ν then

νCν <
1

8
[

4β
(1−g0)2

] .
Choosing N sufficiently large and take ν satisfying

C1

2
N −

(
1 +

γα2

1− g0

) 8β

1− g0

> 0,

C2N +
C1(1− d)e−τ2

2
N − 16βγα2(1− d)

(1− g0)2
≥ 0,
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ν =
1

2N
< ν0,

and then
N

2
− 16β

(1− g0)2
Cν > 0.

Hence, (2.4.9) is established.

Going back to our proof of Theorem 2.4.1 . By (2.4.9) and (2.2.10), one has

L′(t) ≤ −m0E(t) + c
(
g ◦ A

1
2u
)
(t),

tha is,

L′(t) ≤ −m0E(t) + c
(
g ◦ A

1
2u
)
(t0) + c

∫ t

t0

g(s)‖A
1
2u(t)−A

1
2u(t− s)‖2ds. (2.4.12)

It follows from (2.2.8), that(
g ◦ A

1
2u
)
(t0) ≤ −g(0)

bc0

(
g′ ◦ A

1
2u
)
(t0). (2.4.13)

Simple substitution of this latter estimate into (2.4.12), using (2.4.3), leads to

L′(t) ≤−m0E(t)− cE ′(t) + c

∫ t

t0

g(s)‖A
1
2u(t)−A

1
2u(t− s)‖2ds. (2.4.14)

Hence, with L0 = L+ cE, we clearly have L0 ∼ E and

L′0(t) ≤−m0E(t) + c

∫ t

t0

g(s)‖A
1
2u(t)−A

1
2u(t− s)‖2ds. (2.4.15)

Now, the main task is to estimate the last term of (2.4.15). For, we distinguish two cases.
(I). H is linear: Making use of (2.2.7), (2.4.10) and (2.4.3), one obtains

L′0(t) ≤ −
(m0

2c1

c1 +
m0

2α
α
)
E(t) + c

∫ t

t0

c0

c0

g(s)‖A
1
2u(t)−A

1
2u(t− s)‖2ds

≤ −m1

(
ξ(t) + µ1(t)

)
E(t) + c

∫ t

t0

ξ(s)g(s)‖A
1
2u(t)−A

1
2u(t− s)‖2ds

≤ −m1ζ(t)E(t)− c
∫ t

t0

g′(s)‖A
1
2u(t)−A

1
2u(t− s)‖2ds

≤ −m1ζ(t)E(t)− cE ′(t),

(2.4.16)

where m1 = min
(
m0

2c1
, m0

2α

)
. Obviously, the function L1 = L0 + cE satisfies

L1 ∼ E, (2.4.17)

and
L′1(t) ≤ −cζ(t)L1(t), (2.4.18)
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the integration over [t0, t] gives

L1(t) ≤ L1(t0)exp

(
− c

∫ t

t0

ζ(s)ds

)
, (2.4.19)

and so

E(t) ≤ cE(t0)exp

(
− c

∫ t

t0

ζ(s)ds

)
. (2.4.20)

(II). H is non-linear: We first define the functional

G(t) = L(t) +R(t),

where

R(t) =

∫ t

0

f(t− s)‖A
1
2u(s)‖2ds and f(t) =

∫ ∞
t

g(s)ds.

It is clear that G is positive. Then, using Lemma 2.2.4 and Lemma 2.4.4, we conclude that it
exists α0 > 0 such that

G ′(t) ≤ −c‖ut‖2 − β‖A
1
2u‖2 − 1

4

(
g ◦ A

1
2u
)
(t)− c

∫ 1

0

‖z(ρ, t)‖2dρ ≤ −α0E(t).

Therefore,

α0

∫ t

0

E(s)ds ≤ G(0)− G(t) ≤ G(0),

this guarantees that ∫ ∞
0

E(s)ds <∞. (2.4.21)

We now define θ by

θ(t) = δ

∫ t

t0

‖A
1
2 (t)−A

1
2 (t− s)‖2ds, (2.4.22)

from which, thanks to (2.4.21), we have∫ t

t0

‖A
1
2 (t)−A

1
2 (t− s)‖2ds ≤ 2

∫ t

t0

[
‖A

1
2 (t)‖2 + ‖A

1
2 (t− s)‖2

]
ds

≤ 4

∫ t

t0

(
E(t) + E(t− s)

)
ds

<∞,

(2.4.23)

this property enables us to take 0 < δ < 1 so that,

θ(t) < 1, ∀t ≥ t0. (2.4.24)

Assuming without any loss of generality that θ(t) > 0 for all t ≥ t0; otherwise, (2.4.15) leads
to (2.4.20). Also, we define

ϑ(t) = −
∫ t

t0

g′(s)‖A
1
2 (t)‖2 − ‖A

1
2 (t− s)‖2ds,
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which obviously satisfies
ϑ(t) ≤ −cE ′(t). (2.4.25)

Moreover, the strict convexity of H on [0, r] and H(0) = 0 entail that

H(ςs) ≤ ςH(s), for all 0 ≤ ς ≤ 1, s ∈ [0, r].

Using this fact, Jensen’s inequality, (2.2.6), (2.2.7), (2.2.8) and (2.4.24), it follows that

ϑ(t)

ξ(t)
= − 1

ξ(t)

∫ t

t0

g′(s)‖A
1
2u(t)−A

1
2u(t− s)‖2ds

=
1

ξ(t)θ(t)

∫ t

t0

θ(t) (−g′(s)) ‖A
1
2u(t)−A

1
2u(t− s)‖2ds

≥ 1

c1θ(t)

∫ t

t0

θ(t)ξ(s)H
(
g(s)

)
‖A

1
2u(t)−A

1
2u(t− s)‖2ds

≥ c0

c1θ(t)

∫ t

t0

H
(
θ(t)g(s)

)
‖A

1
2u(t)−A

1
2u(t− s)‖2ds

≥ c0

c1

H

(
1

θ(t)

∫ t

t0

θ(t)g(s)‖A
1
2u(t)−A

1
2u(t− s)‖2ds

)
=
c0

c1

H

(∫ t

t0

g(s)‖A
1
2u(t)−A

1
2u(t− s)‖2ds

)
=
c0

c1

H

(∫ t

t0

g(s)‖A
1
2u(t)−A

1
2u(t− s)‖2ds

)
,

(2.4.26)

where H is a C2 extension of H which is also strictly convex and strictly increasing of class
C2 on (0,∞). This gives that∫ t

t0

g(s)‖A
1
2u(t)−A

1
2u(t− s)‖2ds ≤ cH

−1
(
ϑ(t)

ξ(t)

)
. (2.4.27)

We hence derive from (2.4.15) that, for any t ≥ t1

L′0(t) ≤−m0E(t) + cH
−1
(
ϑ(t)

ξ(t)

)
. (2.4.28)

Let 0 < ε0 < r and λ > 0, then the functional given by

L(t) =H
′
(
ε0
E(t)

E(0)

)
L0(t) + λE(t),

fulfills, for some k0 and k1,
k0L(t) ≤ E(t) ≤ k1L(t), (2.4.29)

and

L′(t) = ε0
E ′(t)

E(0)
H
′′
(
ε0
E(t)

E(0)

)
L0(t) +H

′
(
ε0
E(t)

E(0)

)
L′0(t) + λE ′(t).
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As H is an increasing-convex function, we have that H
′
> 0, H

′′
> 0. Using these facts with

(2.4.28) and E ′ < 0, one gets

L′(t) ≤−m0H
′
(
ε0
E(t)

E(0)

)
E(t) + cH

′
(
ε0
E(t)

E(0)

)
H
−1
(
ϑ(t)

ξ(t)

)
+ λE ′(t). (2.4.30)

Let H
∗

be the convex conjugate of the differential convex function H, i.e.

H
∗
(s) = sup

t∈R+

(
st−H(t)

)
,

then, H
∗

is the Legendre transform of H, which satisfies (see Arnold [57], pp.61-64)

XY ≤ H
∗
(X) +H(Y ) (2.4.31)

and
H
∗
(s) = s(H

′
)−1(s)−H

[
(H
′
)−1(s)

]
. (2.4.32)

By taking

X = H
′
(
ε0
E(t)

E(0)

)
and Y = H

−1
(
ϑ(t)

ξ(t)

)
,

and using (2.4.31)-(2.4.32) with the fact that H is non-negative, we can obtain

H
′
(
ε0
E(t)

E(0)

)
H
−1
(
ϑ(t)

ζ(t)

)
≤ H

∗
(
H
′
(
ε0
E(t)

E(0)

))
+
ϑ(t)

ξ(t)

≤ ε0
E(t)

E(0)
H
′
(
ε0
E(t)

E(0)

)
+
ϑ(t)

ξ(t)
.

So, owing to (2.4.25), we end up with

L′(t) ≤−
(
m0E(0)− cε0

)E(t)

E(0)
H
′
(
ε0
E(t)

E(0)

)
+
(
λ− c

)
E ′(t). (2.4.33)

Since E ′ < 0, putting ε0 = m0E(0)
2c

and λ = 2c, we can derive

L′(t) ≤ −m0E(0)

2

E(t)

E(0)
H ′
(
ε0
E(t)

E(0)

)
= −

(
m0E(0)

4c1

c1 +
m0E(0)

4α
α

)
E(t)

E(0)
H ′
(
ε0
E(t)

E(0)

)
,

then, by (2.2.7) and (2.4.10), we get

L′(t) ≤ −
(
m0E(0)

4c1

ξ(t) +
m0E(0)

4α
µ1(t)

)
E(t)

E(0)
H ′
(
ε0
E(t)

E(0)

)
≤ −a0ζ(t)

E(t)

E(0)
H ′
(
ε0
E(t)

E(0)

)
.
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where a0 = min
(
m0E(0)

4α
, m0E(0)

4c1

)
, moreover, with H2(t) = tH ′(ε0t) one has

L′(t) ≤ −a0ζ(t)H2

(
E(t)

E(0)

)
. (2.4.34)

Defining

L1(t) =
k0L(t)

E(0)
,

it then follows from (2.4.29) that L1 ∼ E. Hence, (2.4.34) may be transformed into

L′1(t) ≤ −a1ζ(t)H2

(
L1(t)

)
. (2.4.35)

By the definition of H1, we know that

H ′1(t) = − 1

H2(t)
< 0, ∀t ≥ 0,

then, (2.4.35) rewrites as

L′1(t) ≤ a1ζ(t)

H ′1
(
L1(t)

) ,
that is, [

H1(L1(t))
]′ ≥ a1ζ(t). (2.4.36)

Integrating Eq.(2.4.36) on [t0, t], we yield that

H1

(
L1(t)

)
≥ H1

(
L1(t0)

)
+ a1

∫ t

t0

ζ(s)ds,

we then use the non-increasing property of H−1
1 , we infer

L1(t) ≤ H−1
1

(
H1

(
L1(t0)

)
+ a1

∫ t

t0

ζ(s)ds

)
,

and so

L1(t) ≤ H−1
1

(
a1

∫ t

t0

ζ(s)ds

)
.

This gives us the required result in Theorem 2.4.1 when combined with L1 ∼ E.

2.4.2 General decay for |µ2(t)| =
√

1− dµ1(t)

In this current subsection, we will show that the result given in Theorem 2.4.1 remains valid
even if |µ2(t)| =

√
1− dµ1(t). Firstly, in light of (2.4.2), we have

η(t) = µ1(t) =
1√

1− d
|µ2(t)|,

hence, (2.4.3) takes the form

E ′(t) ≤ 1

2

(
g′ ◦ A

1
2u)(t)− 1

2
g(t)‖A

1
2u(t)‖2. (2.4.37)

The main result of this part is the following.
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Theorem 2.4.5. Let (u, z) be the solution of (2.2.1). Assume that (A1)-(A4) are satisfied and
|µ2| =

√
1− dµ1. Then, there exist two positive constants w and w1 such that the solution of

(2.2.1) satisfies

E(t) ≤ wH−1
1

(
w1

∫ t

t0

ζ(s)ds

)
, ∀t > t0 (2.4.38)

Proof. As usual, our argument is based on the construction of a proper Lyapunov functional
Λ(t) which it is equivalent to E(t) and satisfies

Λ′(t) ≤ −c‖ut‖2 − 4β‖A
1
2u‖2 +

1

4

(
g ◦ A

1
2u
)
(t)− c

∫ 1

0

‖z(ρ, t)‖2dρ. (2.4.39)

To this purpose, we introduce the functional

J(t) = −
〈
ut,
(
g � u

)
(t)
〉
.

Then, we have the following estimate.

Lemma 2.4.6. The functional J satisfies for any positive constants δ1, δ2 and δ3, the estimate

J ′(t) ≤ −
(
g0 − 2δ1

)
‖ut‖2 + δ2‖A

1
2u‖2 + δ3‖z(1, t)‖2

+
(c|µ1(t)|2

δ1

+
c|µ2(t)|2

δ3

+ 1
)
Cν
(
h ◦ A

1
2u
)
(t).

(2.4.40)

Proof. A straightforward computation, using Eq.(2.2.1)1, leads to

J ′(t) =− g0‖ut‖2 −
〈
ut,
(
g′ � u

)
(t)
〉

+
〈
A

1
2u,
(
g � A

1
2u
)
(t)
〉

−
〈(
g ∗ A

1
2u
)
(t),
(
g � A

1
2u
)
(t)
〉

+ µ1(t)
〈
ut(t),

(
g � u

)
(t)
〉

+ µ2(t)
〈
z(1, t),

(
g � u

)
(t)
〉
,

which is,

J ′(t) = −g0‖ut‖2 −
〈
ut,
(
g′ � u

)
(t)
〉︸ ︷︷ ︸

I1

+
(
1− g0

)〈
A

1
2u,
(
g � A

1
2u
)
(t)
〉︸ ︷︷ ︸

I2

+ ‖
(
g � A

1
2u
)
(t)‖2︸ ︷︷ ︸

I3

+µ1(t)
〈
ut(t),

(
g � u

)
(t)
〉︸ ︷︷ ︸

I4

+µ2(t)
〈
z(1, t),

(
g � u

)
(t)
〉︸ ︷︷ ︸

I5

.

In what follows, we will estimate the terms I1, ..., I5, using Cauchy-Schwarz’s inequality,
Young’s inequality, (2.2.2) and similar computations in (2.4.6). So, for any δ1 > 0, one
has

−I1 =
〈
ut,
(
h � u

)
(t)
〉
−
〈
ut, ν

(
g � u

)
(t)
〉

≤ δ1‖ut‖2 +
1

4δ1

(∫ t

0

√
h(t− s)

√
h(t− s)‖u(s)− u(t)‖

)2

+
ν2

4δ1

(∫ t

0

g(t− s)‖u(s)− u(t)‖
)2

≤ δ1‖ut‖2 +

∫ t
0
g(s)ds

4δ1

(
h ◦ Au

)
(t) +

cCν
4δ1

(
h ◦ Au

)
(t)

≤ δ1‖ut‖2 +
c

δ1

(
h ◦ A

1
2u
)
(t) +

cCν
δ1

(
h ◦ A

1
2u
)
(t).
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Analogously,

I2 ≤ δ2‖A
1
2u‖2 +

cCν
δ2

(
h ◦ A

1
2u
)
(t),

I3 ≤ Cν
(
h ◦ A

1
2u
)
(t),

I4 ≤ δ1‖ut‖2 +
cCν
δ1

|µ1(t)|2
(
h ◦ A

1
2u
)
(t),

I5 ≤ δ3‖z(1, t)‖2 +
cCν
δ3

|µ2(t)|2
(
h ◦ A

1
2u
)
(t),

Adding all above estimates, we obtain (2.4.40).

Let us then define the Lyapunov functional Λ by

Λ(t) = ME(t) +M1K(t) +M2F (t) +M3J(t), (2.4.41)

where M and Mi are fixed positive constants to be selected posteriori. It is straightforward to
show that E(t) and Λ(t) are equivalent ( i.e.E ∼ Λ). Then, gathering the estimates (2.4.37),
(2.4.5), (2.4.7) and (2.4.40), we have

Λ′(t) ≤−
[(
g0 − 2δ1

)
M3 −

(
1 +

γ

1− g0

|µ1(t)|2
)
M1 −M2

]
‖ut‖2

−
[
M1

4

(
1− g0

)
− δ2M3

]
‖A

1
2u‖2 +

M

2

(
g′ ◦ A

1
2u
)
(t)

+

[
M1

4(1− g0)
+
(c|µ1(t)|2

δ1

+
c|µ2(t)|2

δ3

+ 1
)
M3

]
Cν
(
h ◦ A

1
2u
)
(t)

−
[
(1− d)e−τ2M2 −

γM1

1− g0

|µ2(t)|2 − δ3M3

]
‖z(1, t)‖2

− τ1e
−τ2M2

∫ 1

0

‖z(ρ, t)‖2dρ.

(2.4.42)

As η is non-increasing function, it then results that η(t) ≤ η(0) for all t ≥ 0. Hence, thanks

to η = µ1 =
1√

1− d
|µ2| and g′ = νg − h, we obtain

Λ′(t) ≤ −
[(
g0 − 2δ1

)
M3 −

(
1 +

γ|η(0)|2

1− g0

)
M1 −M2

]
‖ut‖2

−
[
M1

(
1− g0

)
4

− δ2M3

]
‖A

1
2u‖2 +

Mν

2

(
g ◦ A

1
2u
)
(t)

−
[
M

2
−
(

M1

4(1− g0)
+
(c|η(0)|2

δ1

+
c(1− d)|η(0)|2

δ3

+ 1
)
M3

)
Cν

](
h ◦ A

1
2u
)
(t)

−
[
(1− d)e−τ2M2 −

γ(1− d)|η(0)|2

1− g0

M1 − δ3M3

]
‖z(1, t)‖2

− τ1e
−τ2M2

∫ 1

0

‖z(ρ, t)‖2dρ.
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Moreover, by setting

M1 =
20β

1− g0

, M2 =
21βγ|η(0)|2

(1− g0)2e−τ2
, δ1 =

g0

4
, δ2 =

β

M3

,

we immediately get

Λ′(t) ≤ −
[
g0

2
M3 −

20β

1− g0

(
1 +

γ|η(0)|2

1− g0

)
− 21βγ|η(0)|2

(1− g0)2e−τ2

]
‖ut‖2

− 4β‖A
1
2u‖2 +

Mν

2

(
g ◦ A

1
2u
)
(t)

−
[
M

2
−
(

5β

(1− g0)2
+
(4c|η(0)|2

g0

+
c(1− d)|η(0)|2

δ3

+ 1
)
M3

)
Cν

](
h ◦ A

1
2u
)
(t)

−
[
βγ|η(0)|2

1− g0

− δ3M3

]
‖z(1, t)‖2 − 21βγ|η(0)|2

(1− g0)2

∫ 1

0

‖z(ρ, t)‖2dρ.

Now, we will select our constants M , M3 and δ3 very carefully. At the first, we take M3

sufficiently large so that

g0

2
M3 −

20β

1− g0

(
1 +

γ|η(0)|2

1− g0

)
− 21βγ|η(0)|2

(1− g0)2e−τ2
> 0.

Then, for any fixed M3, we pick δ3 small enough so that

βγ2|η(0)|2

1− g0

− δ3M3 ≥ 0.

Since limν→∞ νCν = 0 (for the same raison given in (2.4.11)), it then follows that it exist
some ν1 (0 < ν1 < 1) such that if ν1 < ν then

νCν <
1

8
[ 5β

(1− g0)2
+
(

4c|η(0)|2
g0

+ c(1−d)|η(0)|2
δ3

+ 1
)
M3

] . (2.4.43)

Choosing M sufficiently large and take ν satisfying

ν =
1

2M
< ν1,

and so
M

2
−
(

5β

(1− g0)2
+
(4c|η(0)|2

g0

+
c(1− d)|η(0)|2

δ3

+ 1
)
M3

)
Cν > 0.

Consequently, we end up with

Λ′(t) ≤ −c‖ut‖2 − 4β‖A
1
2u‖2 +

1

4

(
g ◦ A

1
2u
)
(t)− c

∫ 1

0

‖z(ρ, t)‖2dρ. (2.4.44)

Therefore, following the same steps as in the proof of (2.4.4), we obtain the claim (2.4.38).
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2.4.3 Examples

Along this subsection we assume that ξ(t) < µ1(t) for all t ∈ R+. So our general decay result
takes the form:

E(t) ≤ cH−1
1

(
c

∫ t

t0

ξ(s)ds

)
.

In order to illustrate this new general decay result we shall give here some examples.
Example 1: Consider

H(s) = s and g(t) = bexp

(
− pt− v

(
ln
(
2 + qt)

))v
− σln

(
2 + ln(2 + t)

))
,

with v, p, q, σ ≥ 0 and b > 0 is chosen so that (A3) is satisfied, then

g′(t) = −bξ(t)g(t),

where

ξ(t) = p+
qv2

2 + qt

(
ln
(
2 + qt)

)v−1

+
σ

(2 + t)
(
2 + ln(2 + t)

) .
It is clear that the function ξ : R+ →]0,∞[ is bounded and not necessarily monotone. Then,
we have for all t ≥ 0

E(t) ≤ cexp
(
− pt− v

(
ln
(
2 + qt)

))v
− σln

(
2 + ln(2 + t)

))
, if v, p, q, σ > 0,

and

E(t) ≤


cexp(−ct), if p > 0 and q = σ = 0,
c

t
, if q > 0, v = 1 and p = σ = 0,

c

ln(2 + t)
, if σ > 0 and p = q = 0.

Example 2: Assume that (A1) and (A2) are satisfied and that

H(s) = sp, for 1 ≤ p ≤ 2.

Then,

E(t) ≤


cexp

(
− c

∫ t

t0

ξ(s)ds

)
if p = 1,

c

(
1 +

∫ t

t0

ξ(s)ds

)− 1
p−1

if 1 < p < 2.

For more examples, we refer readers to these studies [24, 55, 58, 60].

2.5 Applications

Our abstract results are valid in many problems. In this section, we give only four illustrative
applications.
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2.5.1 Infinite memory

By adopting the method in [59], our stability results can be extended to the case which the
memory is infinite.

2.5.2 A more general model

Our results hold for the following more general form
utt(t) +Au(t)−

(
g ∗ Bu)(t) + µ1(t)ut(t) + µ2(t)ut(t− τ(t)) = 0 in ]0,+∞[,

u(−t) = u0, ut(0) = u1 in[0,+∞[,

u(t− τ(0)) = f0(t− τ(0)) in[0, τ(0)],

where B : D(A)→ H is a self-adjoint linear positive definite operator having domain D(A) ⊂
D(B) ⊂ H with dense embeddings such that,

‖u‖2 ≤ γ1‖B
1
2u‖2 ≤ γ2‖A

1
2u‖2 ≤ γ3‖B

1
2u‖2, ∀u ∈ D(A

1
2 ),

where γi are fixed positive constants and β ∈ ]0, 1/γ2[.

2.5.3 Abstract system

Consider the following problem:

utt(t) +Au(t)−
(
g ∗ Au)(t) + µ1(t)ut(t) + µ2(t)ut(t− τ(t)) = 0 in ]0,+∞[,

vtt(t) +Av(t)−
(
g ∗ Aαv)(t) + µ̃1(t)vt(t) + µ̃2(t)vt(t− τ(t)) = 0 in ]0,+∞[

u(−t) = u0, ut(0) = u1 in [0,+∞[,

v(−t) = v0, vt(0) = v1 in [0,+∞[,

u(t− τ(0)) = f0(t− τ(0)) in [0, τ(0)],

v(t− τ(0)) = f̃0(t− τ(0)) in [0, τ(0)],

where α ∈ [0, 1]. The energy functional E associated with the solution of this problem is
defined as

E(t) =
1

2
‖ut(t)‖2 +

1

2
‖vt(t)‖2 +

1

2
‖A

1
2u(t)‖2 +

1

2
‖A

1
2v(t)‖2 +

1

2

(
g ◦ A

1
2u
)
(t) +

1

2

(
g ◦ A

α
2 v
)
(t)

+
1

2
τ(t)η(t)

∫ 1

0

‖z(ρ, t)‖2dρ+
1

2
τ(t)η̃(t)

∫ 1

0

‖z̃(ρ, t)‖2dρ

Then, with ζ(t) = min
(
ξ(t), µ1(t), µ̃1(t)

)
, we have the following decay properties

E(t) ≤


cH−1

1

(
c

∫ t

t0

ζ(s)ds

)
if α = 1,

cH−1
2

(
c

(∫ t

t0

ζ(s)ds

)−1
)

if α 6= 1.
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In particularly, if we consider H(s) = s, we obtain that

E(t) ≤


cexp

(
− c

∫ t

t0

ζ(s)ds

)
if α = 1,

c

(∫ t

t0

ζ(s)ds

)−1

if α 6= 1.

2.5.4 Wave-Petrovsky equation

Let Ω be an open bounded domain in Rn, n ≥ 1, with smooth boundary Γ. Our results are
valid for the following wave equation with Dirichlet boundary condition:

utt(x, t)−∆u(x, t) +
(
g ∗∆u)(x, t)

+µ1(t)ut(x, t) + µ2(t)ut(x, t− τ(t)) = 0 in Ω×]0,+∞[,

u(x, t) = 0 in Γ×]0,+∞[,

u(x, 0) = u0, ut(x, 0) = u1 in Ω,

u(x, t− τ(0)) = f0(x, t− τ(0)) inΩ× [0, τ(0)],

which is (2.1.1) with A = −∆, D(A) = H2 ∩H1
0 (Ω) and H = L2(Ω).

Also, one could obtain the same results for the following Petrovsky equation with Dirichlet
and Neumann boundary conditions:

utt(x, t) + ∆2u(x, t)−
(
g ∗∆2u)(x, t)

+µ1(t)ut(x, t) + µ2(t)ut(x, t− τ(t)) = 0 in Ω×]0,+∞[,

u(x, t) = ∂νu(x, t) = 0 in Γ×]0,+∞[,

u(x, 0) = u0, ut(x, 0) = u1 in Ω,

u(x, t− τ(0)) = f0(x, t− τ(0)) inΩ× [0, τ(0)],

which is (2.1.1) with A = ∆2, D(A) = H4 ∩H2
0 (Ω) and H = L2(Ω).



Chapter 3

The control of a non-dissipative wave
equation by memory-type condition
on the boundary

3.1 Introduction

Let Ω be an open bounded domain of Rn, n ≥ 2, with a smooth boundary ∂Ω. We assume
that ∂Ω = Γ0 ∪ Γ1, where partition Γ0, Γ1 are closed and disjoint with meas(Γ0) > 0. In this
work, we are concerned with the following initial boundary value problem of wave equation:

utt(x, t)−∆u(x, t) + g(∇u(x, t)) = 0 in Ω ×]0,+∞[,

u(x, t) = 0 in Γ0×]0,+∞[,

u(x, t) = −(h ∗ ∂νu)(x, t) in Γ1×]0,+∞[,

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,

ut(x, t− τ) = f0(x, t− τ) in Ω × ]0, τ [,

(3.1.1)

where ν is the unit normal vector and ∂νu is the normal derivative. Moreover, h is a positive
non-increasing function defined on R+, and g is C1(R) function, the initial data (u0, u1, f0)
are taken in a suitable Sobolev space.

Stabilization of wave equations or wave systems by memory-feedback on the boundary has
been widely considered in the literature, see for example [11, 12, 53, 66] and so on. It has
been shown that if k is the resolvent kernel of −h/h(0), then the solutions decay at the same
decay rate as h and h′, that is, the energy decays exponentially when the resolvent kernels
decay exponentially and decay polynomially when the resolvent kernels decay polynomially.
Motivated by the important paper [23] of Alabau-Boussouira and Cannarsa, Mustafa [24]
considered (3.1.1) with g ≡ 0. Under the general assumption: k′(t) ≤ −H(k(t)), where H
is strictly convex and increasing function such that H(0) = 0, he established an explicit and
general decay result.

In [67], Messaoudi and Soufyane studied (3.1.1) with g ≡ 0 and established a general
decay estimate. In fact, they assumed that the resolvent kernel k : [0,∞[−→ [0,∞[ is a C2

non-increasing function satisfying the following conditions

lim
t−→∞

k(t) = 0, k(0) > 0, k′(t) ≤ −ζ(t)k(t), k′′(t) ≥ ζ(t)(−k′(t)), (3.1.2)

53
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where ζ : R+ →]0,+∞[ is a C0 non-increasing function. And, they showed that the energy
of solutions E has the following decay property

E(t) ≤ cexp

(
− c

∫ t

0

ζ(s)ds

)
, if u0 = 0 on Γ1.

Otherwise,

E(t) ≤ c

[
E(0) +

(∫
Γ1

|u0|2dΓ1

)∫ t

0

k2(s)
[
1 + exp

(
c

∫ s

t0

ζ(σ)dσ

)])
ds

]
exp

(
− c
∫ t

0

ζ(s)ds

)
.

Noting that the problem considered is dissipative where the fact that E ′ ≤ 0 played an
important role in the proof of the case when u0 6= 0 on Γ1. Here in this work we discuss the
situation when the problem is not necessary dissipative in the sense that E ′ is not negative
in general in which we introduce a new Lemma that gives us a general energy decay where
the exponential, polynomial and logarithm decay rates are only special cases.

This chapter is planned as follows. In section 2, we give some assumptions and materials
that will be needed in the course of our investigation. In the same section, we state, without
proof, the well-posedness result of the system. In the last, we establish a general decay of
solutions by the use of the multiplier method.

3.2 Preliminaries

Due to the condition (3.1.1)3, we introduce the following space

H1
? (Ω) =

{
f : f ∈ H1(Ω) and f = 0 on Γ0

}
.

Now, to estimate the term ∂u
∂ν

on Γ1 we shall use the equation (3.1.1)3. For that, by taking
the derivative of (3.1.1)3 we obtain the following Volterr’a equation

∂u

∂ν
= − 1

h(0)
ut −

1

h(0)
h′ ∗ ∂u

∂ν
.

Utilizing the Volterra’s inverse operator, we can get

∂u

∂ν
= − 1

h(0)

(
ut + h′ ∗ ∂u

∂ν

)
.

Assuming that h(0) > 0 and we denote by k the resolvant kernel of − h′

h(0)
, which satisfies

k(t) +
1

h(0)
(h′ ∗ k)(t) = − 1

h(0)
h′(t), t ≥ 0.

Then, denoting by γ = 1
h(0)

, we end up with

∂u

∂ν
= −γ

(
ut + k(0)u− k(t)u0 + k′ ∗ u

)
. (3.2.1)
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Reciprocally, one can show that (3.2.1) imply (3.1.1)3 by taking the intial data such that
u0 = 0 on Γ1. So, we will use (3.2.1) instead of (3.1.1)3.

We now consider the following assumptions:
(A1) It exists x0 ∈ Rn such that, for ω(x) = x− x0, we have

ω.ν ≤ 0 on Γ0, (3.2.2)

ω.ν > 0 on Γ1. (3.2.3)

(A2) k : [0,∞[−→ [0,∞[ is a C2 non-increasing function satisfying the following conditions

lim
t−→∞

k(t) = 0, k(0) > 0, k′(t) ≤ −ζ(t)k(t), k′′(t) ≥ ζ(t)(−k′(t)), (3.2.4)

where ζ : R+ →]0,+∞[ is a C0 function which is not necessarily monotone such that it exists
a fixed positive constant c1 satisfying

ζ(t) ≤ c1, ∀t ≥ 0. (3.2.5)

(A3) g : R −→ R is a C1 function such that g(0) = 0 and

|g′(s)| ≤ β. (3.2.6)

Remark 3.2.1. • Assumption (A1) implies that

ω.ν ≥ δ0 > 0 on Γ1 and |ω(x)| ≤ r, ∀x ∈ Ω, (3.2.7)

where δ0 and r are two fixed positive constants.
• As ζ(t) > 0 for all t ≥ 0, then it exists c0 > 0 such that

c0 < ζ(t), ∀t ≥ 0. (3.2.8)

• Assumption (A3) implies that

|g(s)| ≤ β|s|, ∀s ∈ R. (3.2.9)

Motivated by [66], we introduce the following Lemma:

Lemma 3.2.2. Let L : R+ −→ R+ be a C1 function. Assuming that there exist positive
constants λ0, λ1, λ2 and a continous and bounded function ζ : R+ →]0,+∞[ which is not
necessarily monotone such that

L′(t) ≤ −λ0L(t) + λ1exp

(
− λ2

∫ t

0

ζ(s)ds

)
,

then

L(t) ≤ C(L(0))exp

(
− c

∫ t

0

ζ(s)ds

)
.
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Proof. Let N > 0, defining a function F by

F (t) = L(t) +Nexp

(
− λ2

∫ t

0

ζ(s)ds

)
.

Then

F ′(t) = L′(t)−Nλ2ζ(t)exp

(
− λ2

∫ t

0

ζ(s)ds

)
≤ −λ0L(t)−

(
Nλ2ζ(t)− λ1

)
exp

(
− λ2

∫ t

0

ζ(s)ds

)
.

Since ζ(t) > 0 for all t ≥ 0, we can find a fixed positive constant ζ0 such that ζ(t) ≥ ζ0 for
all t ≥ 0. And so the latter inequality becomes

F ′(t) ≤ −λ0L(t)−
(
Nλ2ζ0 − λ1

)
exp

(
− λ2

∫ t

0

ζ(s)ds

)
.

Choosing N large enough so that λ3 = Nλ2ζ0 − λ1 > 0 and making use of the definition of
F (t), we can get

F ′(t) ≤ −λ4F (t).

As ζ is bounded then it exists ζ1 > 0 such that ζ(t) ≤ ζ1 for all t ≥ 0. This leads us to

F ′(t) ≤ −λ4

ζ1

ζ(t)F (t).

A simple integration over (0, t) gives

F (t) ≤ F (0)exp

(
− c

∫ t

0

ζ(s)ds

)
⇒ L(t) ≤

(
L(0) +N

)
exp

(
− c

∫ t

0

ζ(s)ds

)
.

This ends the proof.

For completeness, we state the global well-posedness result in the following Theorem.

Theorem 3.2.3. Assume that (A2)-(A3) hold. Then, for any (u0, u1) ∈ H2∩H1
? (Ω)×H1

? (Ω)
satisfying the compatibility condition

∂u0

∂ν
+ γu1 = 0 on Γ1,

problem (3.1.1) has only one global weak solution

u ∈ L∞loc
(

0,∞;H2 ∩H1
? (Ω)

)
, ut ∈ L∞loc

(
0,∞;H1

? (Ω)
)
, utt ∈ L∞loc

(
0,∞;L2(Ω)

)
.

Remark 3.2.4. The proof of the existence result given in Theorem 3.2.3 can be done by using
the Faedo-Galerkin method, see, for example [66]. And, the uniqueness of this solution is a
consequence of the assumption (A3).
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3.3 Asymptotic Stability

In this section, we investigate the asymptotic stability of our problem by the use of the energy
method. At the first, we define the modified energy functional of the problem (3.1.1) as

E(t) =
1

2

∫
Ω

[
u2
t + |∇u|2

]
dx+

γ

2

∫
Γ1

[
k(t)|u|2 − (k′ ◦ u)(t)

]
dΓ. (3.3.1)

Then, the following Lemma holds true.

Lemma 3.3.1. The energy functional E satisfies along the solutions of (3.1.1), the following
estimate

E ′(t) ≤− γ

2

∫
Γ1

[
u2
t + (k′′ ◦ u)(t)− k′(t).u2 − k2(t)u2

0

]
dΓ +

β

2

∫
Ω

[
u2
t + |∇u|2

]
dx. (3.3.2)

Proof. By multiplying (3.1.1)1 by ut and using integration by parts over Ω, we obtain

1

2

d

dt

∫
Ω

[
u2
t + |∇u|2

]
dx = −

∫
Ω

utg(∇u)dx =

∫
Γ1

∂u

∂ν
utdΓ. (3.3.3)

Substituting the boundary term by (3.2.1) and using Lemma 2.2.3, we find that

E ′(t) = −
∫

Ω

utg(∇u)dx− γ

2

∫
Γ1

[
|ut|2 + (k′′ ◦ u)(t)− k′(t).u2 − k2(t).u2

0

]
dΓ, (3.3.4)

using then Young’s inequality and (3.2.9), we obtain (3.3.2). That concludes the proof.

The main result of this chapter is:

Theorem 3.3.2. Let u be the solution of (3.1.1). Assuming that (A1)-(A3) hold with β small
enough. Then it exists two positive constants a1 and a2 such that the solution of (3.1.1)
satisfies the following decay property

E(t) ≤ a1exp

(
− a2

∫ t

0

ζ(s)ds

)
, ∀t ≥ 0. (3.3.5)

To prove the stability result stated in Theorem 3.3.2 we need the following Lemma.

Lemma 3.3.3. The functional

I(t) =

∫
Ω

[
2ω.∇u+ (n− 1)u

]
utdx, (3.3.6)

satisfies, along the solution of (3.1.1),

I ′(t) ≤ −
∫

Ω

|ut|2dx+

[
‖ω‖∞ + 4γ2

(
2‖ω‖2

∞
δ0

+ 2(n− 1)2c∗

)]∫
Γ1

|ut|2dΓ

−
[

1

2
−
(

1 + c∗ + ‖ω‖2
∞ +

(1− n)2

4

)
β − 4γ2c∗

(
2‖ω‖2

∞
δ0

+ 2(n− 1)2c∗

)
k2(t)

]
×
∫

Ω

|∇u|2dx+

[
2‖ω‖2

∞
δ0

+ 2(n− 1)2c∗

]
c

∫
Γ1

(−k′ ◦ u)(t)dΓ + ck2(t)

∫
Γ1

u2
0dΓ.

(3.3.7)
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Proof. A simple differentiation with respect to t yields

I ′(t) =

∫
Ω

(2ω.∇ut)utdx+ (n− 1)

∫
Ω

|ut|2dx+

∫
Ω

(2ω.∇u+ (n− 1)u)uttdx,

by (3.1.1)1, one has

I ′(t) =−
∫

Ω

|ut|2dx+

∫
Γ1

(ω.ν)|ut|2dΓ +

∫
Ω

(
2ω.∇u+ (n− 1)u

)
∆udx

−
∫

Ω

(2ω.∇u+ (n− 1)u)g(∇u)dx.

(3.3.8)
Using the identity 2∇u.∇(ω.∇u) = 2|∇u|2 + ω∇(|∇u|2), we can get∫

Ω

(2ω.∇u)∆udx = −
∫

Ω

∇(2ω.∇u).∇udx+

∫
∂Ω

(2ω.∇u)
∂u

∂ν
dΓ

= −
∫

Ω

(
2|∇u|2 + ω∇(|∇u|2)

)
+

∫
∂Ω

(2ω.∇u)
∂u

∂ν
dΓ

= (n− 2)

∫
Ω

|∇u|2dx−
∫
∂Ω

(ω.ν)|∇u|2dΓ +

∫
∂Ω

(2ω.∇u)
∂u

∂ν
dΓ.

By the fact that

∇u =

(
∂u

∂ν

)
ν on Γ0,

one gets ∫
Ω

(2ω.∇u)∆udx = (n− 2)

∫
Ω

|∇u|2dx−
∫

Γ0

(ω.ν)|∇u|2dΓ

+

∫
Γ1

(ω.ν)|∇u|2dΓ +

∫
Γ1

(2ω.∇u)
∂u

∂ν
dΓ.

Then ∫
Ω

[
2ω.∇u+ (n− 1)u

]
∆udx ≤ −

∫
Ω

|∇u|2dx− δ0

∫
Γ1

|∇u|2dΓ

+

∫
Γ1

[
(2ω.∇u) + (n− 1)u

]∂u
∂ν
dΓ,

(3.3.9)

where we used m.ν ≥ δ0 > 0 on Γ1, then, (3.3.8) becomes

I ′(t) ≤−
∫

Ω

|ut|2dx+ ‖ω‖∞
∫

Γ1

|ut|2dΓ−
∫

Ω

|∇u|2dx− δ0

∫
Γ1

|∇u|2dΓ

+

∫
Γ1

[
(2ω.∇u) + (n− 1)u

]∂u
∂ν
dΓ− 2

∫
Ω

(ω.∇u)g(∇u)dx

− (n− 1)

∫
Ω

ug(∇u)dx.

(3.3.10)

Applying the Young’s and Poincaré’s inequalities, we have that∫
Γ1

(2ω.∇u)
∂u

∂ν
dΓ ≤ δ0

2

∫
Γ1

|∇u|2dx+
2‖ω‖2

∞
δ0

∫
Γ1

∣∣∣∣∂u∂ν
∣∣∣∣2 dΓ, (3.3.11)
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∫
Γ1

(n− 1)u
∂u

∂ν
dΓ ≤ 1

2

∫
Ω

|∇u|2dx+ 2(n− 1)2c∗

∫
Γ1

∣∣∣∣∂u∂ν
∣∣∣∣2 dΓ, (3.3.12)∫

Ω

(2ω.∇u)g(∇u)dx ≤ β

∫
Ω

|∇u|2dx+
‖ω‖2

∞
β

∫
Ω

|g(∇u)|2dx, (3.3.13)

(n− 1)

∫
Ω

ug(∇u)dx ≤ βc∗

∫
Ω

|∇u|2dx+
(n− 1)2

4β

∫
Ω

|g(∇u)|2dx. (3.3.14)

A simple substituation of (3.3.11)-(3.3.13) into (3.3.10), using (3.2.9), gives

I ′(t) ≤ ‖ω‖∞
∫

Γ1

|ut|2dΓ−
[

1

2
−
(

1 + c∗ + ‖ω‖2
∞ + 2(1− n)2c∗

)
β

] ∫
Ω

|∇u|2dx

−
∫

Ω

|ut|2dx+

[
2‖ω‖2

∞
δ0

+
(n− 1)2

4δ1

] ∫
Γ1

∣∣∣∣∂u∂ν
∣∣∣∣2 dΓ.

(3.3.15)

Noting that the boundary condition (3.2.1) can be rewritten as

∂u

∂ν
= −γ (ut + k(t)u− k(t)u0 − k′ � u) ,

and

|(k′ � u)(t)|2 ≤
(∫ t

0

−k′(s)ds
)

(−k′ ◦ u)(t)

=
[
k(t)− k(0)

]
(−k′ ◦ u)(t).

Hence ∣∣∣∣∂u∂ν
∣∣∣∣2 ≤ 4γ2

[
u2
t + k2(t)u2 + k2(t)u2

0 − c(−k′ ◦ u)(t)

]
. (3.3.16)

Inseting (3.3.16) into (3.3.15) and using Poincaré’s inequality, we obtain (3.3.7).

We now define a Lyapunov functional L as follows:

L(t) = NE(t) + I(t), (3.3.17)

where N is positive real numbers that we will be choosen later.
It is clear that L is equivalent to E for N sufficiently large. Then, combining (3.3.2),(3.3.7),
we have that

L′(t) ≤ −
[
1− β

2

] ∫
Ω

|ut|2dx−
[
γ

2
‖ω‖∞N − 4γ2

(
2‖ω‖2

∞
δ0

+ 2(n− 1)2c∗

)]∫
Γ1

|ut|2dΓ

−
[

1

2
−
(3

2
+ c∗ + ‖ω‖2

∞ +
(1− n)2

4

)
β − 4γ2c∗

(
2‖ω‖2

∞
δ0

+ 2(n− 1)2c∗

)
k2(t)

]
×
∫

Ω

|∇u|2dx+

[
γc0

2
N −

(2‖ω‖2
∞

δ0

+ 2(n− 1)2c∗

)
c

] ∫
Γ1

(−k′ ◦ u)(t)dΓ

+ ck2(t)

∫
Γ1

u2
0dΓ− γc

2
N

∫
Γ1

k(t)|u|2dΓ.

(3.3.18)
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At this point, for a fixed γ we want to choose our constants N and β very carefully in order
to get

L′(t) ≤ −cE(t) + ck2(t) (3.3.19)

First, we take N large enough so that

γ

2
‖ω‖∞N − 4γ2

(
2‖ω‖2

∞
δ0

+ 2(n− 1)2c∗

)
≥ 0,

γc0

2
N −

(2‖ω‖2
∞

δ0

+ 2(n− 1)2c∗

)
c > 0.

Second, using the fact that limt−→∞ k(t) = 0 and we choose β sufficiently small so that

1− β

2
> 0,

1

2
−
(3

2
+ c∗ + ‖ω‖2

∞ +
(1− n)2

4

)
β − 4γ2c∗

(
2‖ω‖2

∞
δ0

+ 2(n− 1)2c∗

)
k2(t) > 0.

Thus, using the definition of E(t) we end up with

L′(t) ≤ −cE(t) + ck2(t) (3.3.20)

Noting that the assumption k′(t) ≤ −ζ(t)k(t) implies that

k(t) ≤ cexp

(
− c

∫ t

0

ζ(s)ds

)
, ∀t ≥ 0.

Then, (3.3.20) becomes

L′(t) ≤ −cL(t) + cexp

(
− c

∫ t

0

ζ(s)ds

)
. (3.3.21)

Applying Lemma (3.2.2), we obtain that

L(t) ≤ cexp

(
− c

∫ t

0

ζ(s)ds

)
. (3.3.22)

The use of L ∼ E leads us to the above mentioned stability result.



Chapter 4

Optimal polynomial decay for a
Timoshenko system with a strong
damping and a strong delay

4.1 Introduction

This chapter is devoted to the study of the well-posedness and the stability of the Timoshenko
system which was introduced in [73] as a simple model describing the transverse vibration of
a beam. The system is governed by two hyperbolic equations where the main variables ϕ(x, t)
and ψ(x, t) denote, respectively, the transverse displacement of the beam and the rotation
angle of the filament of the beam. The system is represented as{

ρ1ϕtt(x, t) = Sx(x, t) in ]0, L[×]0,+∞[,

ρ2ψtt(x, t) = Mx(x, t)− S(x, t) in ]0, L[×]0,+∞[.
(4.1.1)

Here S = κ(ϕx + ψ) and M = bψx, x is the space variable along the beam of length L, t is
the time variable and

ρ1 = ρ, ρ2 = Iρ, κ = K, b = EI,

where ρ, Iρ, K, E are positive constants for the elastic properties. More precisely, ρ for
density (the mass per unit length), Iρ for the polar moment of inertia of a cross section, E
for the modulus of elasticity (the Young’s coefficient), I for the moment of inertia of a cross
section and K for the shear modulus. To understand our motivation, we appeal to keep in
mind that the system (4.1.1) is purely conservative. More specifically, by taking any suitable
boundary condition into consideration, the energy of the beam defined by

E(t) =
1

2

∫ L

0

[
ρ1ϕ

2
t + ρ2ψ

2
t + κ(ϕx + ψ)2 + bψ2

x

]
dx (4.1.2)

satisfies the so-called energy conservation property, that is E(t) = E(0) for all t ≥ 0. So,
to attenuate that vibrations, control terms, such as: frictional damping, thermal dissipation
and viscoelastic damping, will be necessary. For instance, Kim and Renardy [79] considered
(4.1.1) with two boundary controls and they established the exponential decay of the energy
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E(t) by using a multiplier method. Soufyane and Wehbe [81] established an exponential
stability result by employing the unique frictional damping α(x)ψt. This result was obtained
in the case of the equal-speeds, i.e.,

ρ1

κ
=
ρ2

b
. (4.1.3)

Raposo et al. [114] used two frictional dissipative terms ϕt and ψt and proved that the
solution decays exponentially without imposing any conditions on the coefficients ρ1, ρ2, κ,
b. Alabau-Boussouira [83] generalized the result in [81] by employing the unique non-linear
damping g(ψt). In that work, she gave a semi-explicit and general formula for the decay rate
of solution at infinity provided (4.1.3) holds true. Mustafa and Messaoudi [85] improved this
result when they considered (4.1.1) with ρ1 = ρ2 = κ = b = 1. They used the weak non-
linear damping α(t)g(ψt) and established a general and explicit decay result. Motivated by
[86], Park and Kang [87] examined (4.1.1) with two weak non-linear damping α(t)g(ϕt) and
α(t)g(ψt) and established the stability result without assuming equal speeds of propagation
of waves.

Now, we concentrate on the stability problem for the Timoshenko system with delay which
is the subject of the present chapter. Consider the following model:{
ρ1ϕtt(x, t)− κ(ϕx + ψ)x(x, t) + a1ϕt(x, t) + a2ϕt(x, t− τ) = 0 in ]0, 1[×]0,∞[,

ρ2ψtt(x, t)− bψxx(x, t) + κ(ϕx + ψ)(x, t) + µ1ψt(x, t) + µ2ψt(x, t− τ) = 0 in ]0, 1[×]0,∞[,

(4.1.4)
where ai, µi > 0 for i = 1, 2. If ai = 0 and µ2 < µ1 then the exponential stability has
been established by Said-Houari and Laskri [76] in the case of equal-speeds of propagation.
Apalara [69] examined (4.1.4) when µi = 0 and a2 < a1 and realized an exponential stability
result in the case ρ1

κ
= ρ2

b
. And, in the opposite case, only the polynomial stability was given.

As a consequence of the results cited above, if the frictional damping is acting in only one
equation of the Timoshenko system then we can prove the uniform (exponential) stability
for weak solutions in the case of equal-speeds of propagation. For the opposite case, a slow
(polynomial) decay rate result is achieved for strong solutions. For Timoshenko system with
weak delay term, if the weight of delay term is small and satisfies some conditions between
the weights of delay term and the weights of frictional damping, we can get the same results,
see [76, 69] and so on.

According to this remarks, one question naturally arise: is it possible to consider the
Timoshenko system with a strong damping in the presence of a constant delay in the strong
internal feedback and get the same result as in [69]?

This chapter aims to answer this question by investigating the following system:

ρ1ϕtt(x, t)− κ(ϕx + ψ)x(x, t)− µ1ϕxxt(x, t)− µ2ϕxxt(x, t− τ) = 0 in ]0, 1[×]0,∞[,
ρ2ψtt(x, t)− bψxx(x, t) + κ(ϕx + ψ)(x, t) = 0 in ]0, 1[×]0,∞[,
ϕ(0, t) = ϕ(1, t) = ψx(0, t) = ψx(1, t) = 0 in ]0,∞[,
ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x) in ]0, 1[,
ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x) in ]0, 1[,
ϕt(x, t− τ) = f0(x, t− τ) in ]0, 1[×]0, τ [,

(4.1.5)
where µ1 > 0, µ2 is a real number, τ > 0 is the time of delay and (ϕ0, ϕ1, ψ0, ψ1, f0) are in a
suitable Sobolev space.
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The remaining parts of this chapter are as follows. In section 2, we provide the needed
assumptions and materials. In section 3, we study the well-posedness by the semi-group
techniques. In section 4, we prove the lack of exponential decay even if ρ1

κ
= ρ2

b
. In the

last section, to establish the polynomial decay of solution, we introduce a suitable Lyapunov
functional. We use c throughout the paper to denote a fixed positive number which may be
different at different estimates.

4.2 Preliminaries

In this section, we will present some materials and notations that will be needed to prove our
main results. First, we introduce as in Nicaise and Pignotti [36] the new variable

z(x, ρ, t) = ϕt(x, t− ρτ), x ∈ [0, 1], ρ ∈ [0, 1], t > 0.

It is easy to show that

τzt(x, ρ, t) + zρ(x, ρ, t) = 0 in ([0, 1])2 × [0,∞].

Thus, problem (4.1.5) becomes

ρ1ϕtt(x, t)− κ(ϕx + ψ)x(x, t)− µ1ϕxxt(x, t)− µ2zxx(x, 1, t) = 0 in ]0, 1[ × ]0,∞[,

ρ2ψtt(x, t)− bψxx(x, t) + κ(ϕx + ψ)(x, t) = 0 in ]0, 1[ × ]0,∞[,

τzt(x, ρ, t) + zρ(x, ρ, t) = 0 in (]0, 1[)2× ]0,∞[,

ϕ(0, t) = ϕ(1, t) = ψx(0, t) = ψx(1, t) = 0 in ]0,∞[,

z(x, 0, t) = ϕt(x, t) in ]0,∞[,

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x) in ]0, 1[,

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x) in ]0, 1[,

z(x, ρ, 0) = f0(x,−ρτ) in (]0, 1[)2.

(4.2.1)
We will show that the assumption

|µ2| < µ1 (4.2.2)

guarantees the global well-posedness as well as the uniform decay of the energy E, given by

E(t) =
1

2

∫ 1

0

[
ρ1ϕ

2
t + ρ2ψ

2
t + κ(ϕx + ψ)2 + bψ2

x + τγ

∫ 1

0

z2
x(x, ρ)dρ

]
dx, (4.2.3)

where γ is a fixed positive constant satisfying

|µ2| < γ < 2µ1 − |µ2|. (4.2.4)

Remark 4.2.1. By using Eq.(4.2.1)2 and the boundary conditions, we find that

d2

dt2

∫ 1

0

ψ(x, t)dx+
κ

ρ2

∫ 1

0

ψ(x, t)dx = 0,
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which directly gives∫ 1

0

ψ(x, t)dx =

(∫ 1

0

ψ0(x)dx

)
cos

(√
κ

ρ2

t

)
+

√
ρ2

κ

(∫ 1

0

ψ1(x)dx

)
sin

(√
κ

ρ2

t

)
.

Then, if we pose

ψ(x, t) = ψ(x, t)−
(∫ 1

0

ψ0(x)dx

)
cos

(√
κ

ρ2

t

)
−
√
ρ2

κ

(∫ 1

0

ψ1(x)dx

)
sin

(√
κ

ρ2

t

)
,

we can easily show that (ϕ, ψ, z) satisfies problem (4.2.1) together with its boundary conditions
and with initial conditions for ψ given as

ψ(x, 0) = ψ0(x)−
∫ 1

0

ψ0(x)dx, ψt(x, 0) = ψ1(x)−
∫ 1

0

ψ1(x)dx.

In addition, one has ∫ 1

0

ψ(x, t)dx = 0.

Thus, we will work with ψ but we write ψ for simplicity.

Our starting point will be to show that the energy functional E is non-increasing.

Lemma 4.2.2. Assuming that (4.2.2) holds. Then, the energy functional E defined by (4.2.3)
is non-increasing and satisfies, for all t ≥ 0, the following estimate

E ′(t) ≤ −β1

∫ 1

0

ϕ2
xtdx− β2

∫ 1

0

z2
x(x, 1)dx, (4.2.5)

where

β1 = µ1 −
γ

2
− |µ2|

2
> 0 and β2 =

γ

2
− |µ2|

2
> 0.

Proof. Multiplyting Eq.(4.2.1)1 by ϕt, Eq.(4.2.1)2 by ψt and integrating the products by parts
over (0, 1), we obtain

1

2

d

dt

∫ 1

0

[
ρ1ϕ

2
t + ρ2ψ

2
t + κ(ϕx + ψ)2 + bψ2

x

]
dx = −µ1

∫ 1

0

ϕ2
xtdx− µ2

∫ 1

0

ϕxtzx(x, 1)dx.

(4.2.6)
Multiplying then Eq.(4.2.1)3 by−γzxx(x, ρ), integrating over (0, 1)×(0, 1) and using Eq.(4.2.1)5,
we get

τγ

2

d

dt

∫ 1

0

∫ 1

0

z2
x(x, ρ)dρdx = −γ

2

∫ 1

0

z2
x(x, 1)dx+

γ

2

∫ 1

0

ϕ2
xtdx. (4.2.7)

The Combination of (4.2.6) and (4.2.7), bearing (4.2.3) in mind, gives

E ′(t) = −
(
µ1 −

γ

2

)∫ 1

0

ϕ2
xtdx−

γ

2

∫ 1

0

z2
x(x, 1)dx− µ2

∫ 1

0

ϕxtzx(x, 1)dx,

applying then Young’s inequality, we obtain the desired result (4.2.5). That completes the
proof.
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4.3 The well-posedness

In this section, we study the existence and uniqueness of solutions for system (4.2.1) by using

the theory of semigroup. For this aim, let U = U(t) =
(
ϕ, u, ψ, v, z

)T
, where u = ϕt and

v = ψt. Then, because of boundary conditions we consider the following spaces

L2
?(0, 1) =

{
u ∈ L2(0, 1) :

∫ 1

0

u(x)dx = 0

}
,

H1
? (0, 1) = L2

?(0, 1) ∩H1(0, 1),

H2
? (0, 1) =

{
u ∈ H2(0, 1) : ux(0) = ux(1) = 0

}
.

Next, we define the energy space as

H = H1
0 (0, 1)×H1

? (0, 1)× L2(0, 1)× L2
?(0, 1)× L2

(
0, 1;H1

0 (0, 1)
)
, ?

which endowed with the inner product

〈
U,U

〉
H =

∫ 1

0

[
ρ1uu+ ρ2vv + κ(ϕx + ψ)(ϕx + ψ) + bψxψx + τγ

∫ 1

0

zx(x, ρ)zx(x, ρ)

]
dx.

Therefore, our system (4.2.1) rewrites as{
U ′ = AU,
U0 = U(0) =

(
ϕ0, ϕ1, ψ0, ψ1, f0(., .− τ)

)
,

where the domain D(A) ⊂ H of the linear operator A is given by

D(A) =

{
U ∈ H / ϕ+ µ1u+ µ2z(., 1) ∈ H2 ∩H1

0 (0, 1), ψ ∈ H2
? ∩H1

? (0, 1)

v ∈ H1
? (0, 1), z ∈ L2(0, 1;H1

0 (0, 1)), z(., 0, .) = u

}
and

AU =



u
κ

ρ1

(ϕx + ψ)x +
µ1

ρ1

uxx +
µ2

ρ1

zxx(., 1)

v
b

ρ2

ψxx −
κ

ρ2

(ϕx + ψ)

−τ−1zρ


.

Our first main result is given by the following Theorem.

Theorem 4.3.1. Assume that (4.2.2) holds. Then, for any U0 ∈ H, it exists a unique weak
solution U ∈ C

(
[0,+∞);H

)
of system (4.2.1). Moreover, if U0 ∈ D(A) then (4.2.1) admits a

unique classical solution U ∈ C
(
[0,+∞);D(A)

)
∩ C1

(
[0,+∞);H

)
.

Proof. To prove the result given in Theorem 4.3.1, we use the semigroup arguments, that is,
we show that the linear operator A generates a C0-semigroup on H. For that, we need the
following two lemmas.
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Lemma 4.3.2. The operator A is dissipative and satisfies for all U ∈ D(A),

〈AU,U〉H ≤ −β1

∫ 1

0

u2
xdx− β2

∫ 1

0

z2
x(x, 1)dx ≤ 0. (4.3.1)

Proof. As E(t) = 1
2
‖U‖2

H, ∀U ∈ D(A), a simple differentiation gives

〈U ′, U〉H = E ′(t),

and so
〈AU,U〉H = E ′(t),

then by (4.2.5), we obtain (4.3.1). Hence, A is dissipative.

Lemma 4.3.3. The operator λI −A is surjective.

Proof. It suffices to prove that, for all F = (f1, f2, f3, f4, f5)T ∈ H, there exists U ∈ D(A)
satisfying

(λI −A)U = F, (4.3.2)

which is 

λϕ− u = f1,

λρ1u− κ(ϕx + ψ)x − µ1uxx − µ2zxx(., 1) = ρ1f2,

λψ − v = f3,

λρ2v − bψxx + κ(ϕx + ψ) = ρ2f4,

λz + τ−1zρ = f5.

(4.3.3)

Following the same method as in [36] by using Eqs.(4.3.3)5-(4.2.1)5, we obtain that

z(x, ρ) = e−λτρu(x) + τe−λτρ
∫ ρ

0

eλτsf5(x, s)ds,

then by (4.3.3)1, we have

z(x, ρ) = λe−λτρϕ(x)− e−λτρf1(x) + τe−λτρ
∫ ρ

0

eλτsf5(x, s)ds,

therefore,

z(x, 1) = λe−λτϕ(x)− e−λτf1(x) + τe−λτ
∫ 1

0

eλτsf5(x, s)ds. (4.3.4)

Plugging u = λϕ− f1, v = λψ − f3 and (4.3.4) into (4.3.3)2 and (4.3.3)4 to get{
λ2ρ1ϕ− κ(ϕx + ψ)x − λ(µ1 + µ2e

−λτ )ϕxx = ρ1(λf1 + f2) + hxx,

λ2ρ2ψ − bψxx + κ(ϕx + ψ) = ρ2(λf3 + f4),
(4.3.5)

where

hxx = −(µ1 + µ2e
−λτ )f1xx + µ2τe

−λτ
∫ 1

0

eλτsf5xx(x, s)ds.
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Solve (4.3.5) is equivalent to find (ϕ, ψ) ∈ H1
0 ×H1

? such that
∫ 1

0

[
λ2ρ1ϕω + κ(ϕx + ψ)ωx + λ(µ1 + µ2e

−λτ )ϕxωx

]
dx =

∫ 1

0

[
ρ1(λf1 + f2)ω − hxωx

]
dx,∫ 1

0

[
λ2ρ2ψ$ + bψx$x + κ(ϕx + ψ)$

]
dx =

∫ 1

0

ρ2(λf3 + f4)$dx.

(4.3.6)
Combining (4.3.6)1 and (4.3.6)2, we find the following variational formulation of (4.3.2)

B
(
(ϕ, ψ), (ω,$)

)
= L(ω,$) (4.3.7)

where the bilinear form B : [H1
0 (0, 1)×H1

? (0, 1)]
2 −→ R is defined by

B
(
(ϕ, ψ), (ω,$)

)
=

∫ 1

0

[
λ2ρ1ϕω + λ2ρ2ψ$ + κ(ϕx + ψ)(ωx +$)

+ bψx$x + λ(µ1 + µ2e
−λτ )ϕxωx

]
dx

and the linear form L : H1
0 (0, 1)×H1

? (0, 1) −→ R is given by

L(ω,$) =

∫ 1

0

[
ρ1(λf1 + f2)ω+ρ2(λf3 + f4)$ + (µ1 + µ2e

−λτ )f1xωx

− µ2τe
−λτωx

∫ 1

0

eλτsf5x(x, s)ds
]
dx.

Next, for V = H1
0 (0, 1)×H1

? (0, 1) endowed with the norm

‖(ϕ, ψ)‖2
V = ‖ϕx + ψ‖2

2 + ‖ϕ‖2
2 + ‖ψx‖2

2,

it is readily seen that B and L are bounded. On the other hand, we have

B
(
(ϕ, ψ), (ϕ, ψ)

)
≥ c‖(ϕ, ψ)‖2

V ,

which implies that B is coercive. Applying then Lax-Miligram theorem, we deduce that
(4.3.7) admits only one solution

(ϕ, ψ) ∈ H1
0 (0, 1)×H1

? (0, 1).

By the classical elliptic regularity, we conclude that the solution (ϕ, ψ) belongs into H2 ∩
H1

0 (0, 1) × H2
? ∩ H1

? (0, 1). Consequently, Eq.(4.3.2) has a unique solution U ∈ D(A). This
shows that the operator λI −A is surjective.

Finally, Lemma 4.3.2 and Lemma 4.3.3 imply that −A is maximal monotone operator.
Thanks to Lummer-Phillips Theorem, we conclude that the operator A generates a linear
C0-semigroup in H and hence (4.2.1) is well-posed (see Pazy [94]).
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4.4 The lack of exponential stability

In this section, using the following Gearhart-Herbst-Prüss-Huang Theorem (see [89, 90, 91]),
we prove that the semigroup associated to the system (4.2.1) is not exponentially stable.

Theorem 4.4.1. Let S(t) = eAt be a C0-semigroup of contractions on Hilbert space. Then
S(t) is exponentially stable if and only if

iR ⊂ %(A)

and
lim
|λ|→∞

‖
(
iλI −A

)−1‖L(H) <∞,

where %(A) is the resolvent set of A.

To demonstrate the lack of exponential stability, we will employ the above Theorem inte-
grated with some techniques used in [80, 88, 92, 93, 96] taking into account the nature of
our problem. So, we will prove that it exists a subsequence (λν)ν∈N ⊂ R such that∥∥(iλνI −A)−1∥∥

L(H)
−→∞ as ν −→∞.

Which is equivalent to show that it exist (λν)ν∈N ⊂ R and (Fν)ν∈N ⊂ H, with ‖Fν‖H ≤ 1,
such that ∥∥(iλνI −A)−1Fν

∥∥
H = ‖Uν‖H →∞ as ν −→∞.

We, therefore, consider the following spectral equation

iλνUν −AUν = Fν , (4.4.1)

and we shall prove that the corresponding solution Uν is not bounded when Fν is bounded in
H. Rewriting (4.4.1) in term of its components, we obtain that

iλϕ− u = f1,

iλu− κ

ρ1

(ϕx + ψ)x −
µ1

ρ1

uxx −
µ2

ρ1

zxx(., 1) = f2,

iλψ − v = f3,

iλv − b

ρ2

ψxx +
κ

ρ2

(ϕx + ψ) = f4,

iλτz(x, ρ) + zρ(x, ρ) = τf5,

(4.4.2)

where λ ∈ R and F = (f1, f2, f3, f4, f5)T ∈ H.
The main result of this section is the following.

Theorem 4.4.2. The semigroup associated to the problem (4.2.1) is not exponentially stable
even if ρ1

κ
= ρ2

b
.
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Proof. We will prove that it exists a sequence of real numbers (λν)ν∈N and functions (Fν)ν∈N ⊂
H, with ‖Fν‖H ≤ 1 verifying (4.4.2). For that, we take f1 = f2 = f3 = f5 = 0. So, one has

u = iλϕ,

v = iλψ.
(4.4.3)

The substitution of (4.4.3)1 and (4.4.3)2 into (4.4.2)2 and (4.4.2)4, respectively, leads to

− λ2ϕ− κ+ iµ1λ

ρ1

ϕxx −
κ

ρ1

ψx −
µ2

ρ1

zxx(., 1) = 0,

− λ2ψ − b

ρ1

ψxx +
κ

ρ2

(ϕx + ψ) = f4,

iλτz(x, ρ) + zρ(x, ρ) = 0,

(4.4.4)

Next, choosing f4 as follows
f4(x) = cos (νπx) .

And, due to the boundary conditions, we let

ϕ(x) = A sin (νπx) , ψ(x) = B cos (νπx) , z(x, ρ) = δ(ρ) sin (νπx) ,

where A, B and δ(ρ) depend on λ and will be determined explicitly in what follows. Hence,
system (4.4.4) is equivalent to[

− λ2 +
κ+ iλµ1

ρ1

(
νπ
)2
]
A+

κ

ρ1

(νπ)B +
µ2

ρ1

δ(1)
(
νπ
)2

= 0,[
− λ2 +

b

ρ2

(
νπ
)2
]
B +

κ

ρ2

(
νπ
)
A = 1,

δ′(ρ) + iλτδ(ρ) = 0.

(4.4.5)

Solving (4.4.5)3 and using the fact that δ(0) = iλA, we immediately get

δ(ρ) = iλAe−iλτρ.

Consequently, (4.4.5) becomes[
−λ2 +

1

ρ1

(
κ+ iλµ1 + iλµ2e

−iλτ
)

(νπ)2

]
A+

κ

ρ1

(νπ)B = 0,[
−λ2 +

b

ρ2

(νπ)2

]
B +

κ

ρ2

(νπ)A = 1.

Now, we select λ = λν such that

|λν | = νπ

√
b

ρ2

.

Then, straightforward computations give

A =
ρ2

κ
(
νπ
) ,
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B =
ρ1ρ2

κ2

(
b

ρ2

− κ

ρ1

)
− iµ1ρ2

κ2
λν −

iµ2ρ2

κ2
λνe

−iτλν .

It is obvious that |B| −→ ∞ as ν −→∞ in both cases ρ1
κ

= ρ2
b

and ρ1
κ
6= ρ2

b
. Then, since

‖Uν‖2
H ≥ ρ2‖vν‖2

2 = ρ2λ
2
ν |B|2

∫ 1

0

|cos (νπx)|2 dx,

it results that
‖Uν‖H −→∞ as ν −→∞,

and so the lack of exponential stability follows.

4.5 Optimal polynomial decay

In this section, using the multiplier method, we prove that the solution decays polynomially
to zero as t tends to infinity with rate t−

1
2 . And, that rate is optimal.

The main result of this section reads as follows.

Theorem 4.5.1. Assuming that (4.2.2) is fulfilled. Then, for any U0 ∈ D(A), it exists a
positive constant ω0 such that the solution of (4.2.1) satisfies

‖U‖H ≤
ω0√
t
, ∀t > 0. (4.5.1)

In addition, this rate of decay is optimal.

Proof. The problem of proving the polynomial decay of the semigroup S(t) = eAt

‖U‖H = ‖S(t)U0‖H ≤
ω0√
t
, ∀t > 0,

is equivalently, proving the polynomial decay of the energy E, that is,

E(t) ≤ ω1

t
, ∀t > 0.

To this end, we introduce some functionals which permit us to obtain the desired estimate.

Lemma 4.5.2. Let (ϕ, ψ, z) be a solution of (4.2.1). Then, the functional

F1(t) = −ρ2

∫ 1

0

ψtψdx

satisfies

F ′1(t) ≤ −ρ2

∫ 1

0

ψ2
t dx+ c

∫ 1

0

ψ2
xdx+ c

∫ 1

0

(ϕx + ψ)2dx. (4.5.2)

Proof. A simple differentiation yields that

F ′1(t) =− ρ2

∫ 1

0

ψ2
t dx+ b

∫ 1

0

ψ2
xdx+ κ

∫ 1

0

(ϕx + ψ)ψdx.

Estimate (4.5.2) follows by exploiting Young’s and Poincaré’s inequalities.
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Lemma 4.5.3. let (ϕ, ψ, z) be a solution of (4.2.1). Then, the functional defined by

F2(t) = −ρ2

∫ 1

0

ψtϕxdx−
bρ1

κ

∫ 1

0

ϕtψxdx

satisfies, for any ε1 > 0, the following estimate

F ′2(t) ≤ − b
2

∫ 1

0

ψ2
xdx+ ε1

∫ 1

0

ψ2
t dx+ cε1

(
ρ2 −

bρ1

κ

)2
∫ 1

0

ϕ2
xtdx

+ c

∫ 1

0

(ϕx + ψ)2dx+ c

∫ 1

0

ϕ2
xxtdx+ c

∫ 1

0

z2
xx(x, 1)dx.

(4.5.3)

Proof. Taking the derivative of F2 with respect to t, we get

F ′2(t) =− b
∫ 1

0

ψxxϕxdx− b
∫ 1

0

(ϕx + ψ)xψxdx+ κ

∫ 1

0

(ϕx + ψ)ϕxdx

+

(
ρ2 −

bρ1

κ

)∫ 1

0

ψtϕxtdx−
b

κ
µ1

∫ 1

0

ϕxxtψxdx−
b

κ
µ2

∫ 1

0

zxx(x, 1)ψxdx.

An integration by parts leads to

F ′2(t) =− b
∫ 1

0

ψ2
xdx+ κ

∫ 1

0

(ϕx + ψ)ϕxdx+

(
ρ2 −

bρ1

κ

)∫ 1

0

ψtϕxtdx

− b

κ
µ1

∫ 1

0

ϕxxtψxdx−
b

κ
µ2

∫ 1

0

zxx(x, 1)ψxdx,

using then Young’s inequality with the fact that∫ 1

0

ϕ2
xdx ≤ 2

∫ 1

0

(ϕx + ψ)2dx+ 2

∫ 1

0

ψ2
xdx,

we obtain (4.5.3).

Lemma 4.5.4. let (ϕ, ψ, z) be a solution of (4.2.1). Then the functional

F3(t) = ρ1

∫ 1

0

ϕt

(
ϕ+

∫ x

0

ψ(y, t)dy

)
dx

satisfies, for any ε2 > 0,

F ′3(t) ≤ −κ
2

∫ 1

0

(ϕx + ψ)2dx+ ε2

∫ 1

0

ψ2
t dx+ c

∫ 1

0

ϕ2
xtdx+ c

∫ 1

0

z2
x(x, 1)dx. (4.5.4)

Proof. Differentiating F3 and exploiting Eq.(4.2.1)1, we can get

F ′3(t) = κ

∫ 1

0

(ϕx + ψ)x

(
ϕ+

∫ x

0

ψ(y, t)dy

)
dx+ ρ1

∫ 1

0

ϕ2
tdx

+ ρ1

∫ 1

0

ϕt

∫ x

0

ψt(y, t)dydx+

∫ 1

0

(
µ1ϕxxt + µ2zxx(x, 1)

)
ϕdx

+

∫ 1

0

(
µ1ϕxxt + µ2zxx(x, 1)

)∫ x

0

ψ(y, t)dydx.
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Observing

ϕ(x, t) =

∫ x

0

ψ(y, t)dy = 0, for x = 0 = 1,

then, integrating by parts, we find that

F ′3(t) = −κ
∫ 1

0

(ϕx + ψ)2dx+ ρ1

∫ 1

0

ϕ2
tdx+ ρ1

∫ 1

0

ϕt

∫ x

0

ψt(y, t)dydx

− µ1

∫ 1

0

(ϕx + ψ)ϕxtdx− µ2

∫ 1

0

(ϕx + ψ)zx(x, 1).

(4.5.5)

For all ε2 > 0, using Young’s, Poincaré’s and Cauchy-Schwarz inequalities, we can estimate
the last three terms in the right-hand side of (4.5.5) as follows

ρ1

∫ 1

0

ϕt

∫ x

0

ψt(y, t)dydx ≤ ε2

∫ 1

0

ψ2
t dx+ c

∫ 1

0

ϕ2
xtdx, (4.5.6)

− µ1

∫ 1

0

(ϕx + ψ)ϕxtdx ≤
κ

4

∫ 1

0

(ϕx + ψ)2dx+ c

∫ 1

0

ϕ2
xtdx. (4.5.7)

−µ2

∫ 1

0

(ϕx + ψ)zx(x, 1)dx ≤ κ

4

∫ 1

0

(ϕx + ψ)2dx+ c

∫ 1

0

z2
x(x, 1)dx. (4.5.8)

By inserting the estimates (4.5.6)-(4.5.8) into (4.5.5), we obtain (4.5.4).

Lemma 4.5.5. The functional

F4(t) = τ

∫ 1

0

∫ 1

0

e−τρz2
x(x, ρ)dρdx

satisfies, along the solution of (4.2.1) an estimate of the form

F ′4(t) ≤ −e−τ
∫ 1

0

z2
x(x, 1)dx− τe−τ

∫ 1

0

∫ 1

0

z2
x(x, ρ)dρdx+

∫ 1

0

ϕ2
xtdx. (4.5.9)

Proof. By exploiting Eq.(4.2.1)3, we can obtain

F ′4(t) = −2

∫ 1

0

∫ 1

0

e−τρzx(x, ρ)zxρ(x, ρ)dρdx

= −
∫ 1

0

∫ 1

0

[
d

dρ

(
e−τρz2

x(x, ρ)
)]
dρdx− τ

∫ 1

0

∫ 1

0

e−τρz2
x(x, ρ)dρdx

= −e−τ
∫ 1

0

z2
x(x, 1)dx+

∫ 1

0

z2
x(x, 0, t)dx− τ

∫ 1

0

∫ 1

0

e−τρz2
x(x, ρ)dρdx.

Estimate (4.5.9) follows by using Eq.(4.2.1)5 and the fact that e−τρ ≤ e−τ , for all ρ ∈ [0, 1].

We now define, for any strong solution, the second-order energy functional to our problem
(4.2.1) as

E(t) =
1

2

∫ 1

0

[
ρ1ϕ

2
xt + ρ2ψ

2
xt + bψ2

xx + κ(ϕxx + ψx)
2 + τγ

∫ 1

0

z2
xx(x, ρ)dρ

]
dx.
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Lemma 4.5.6. Assuming that (4.2.2) holds. Then, the second-order energy functional E is
non-increasing and satisfies, for any t ≥ 0,

E ′(t) ≤ −β1

∫ 1

0

ϕ2
xxtdx− β2

∫ 1

0

z2
xx(x, 1)dx. (4.5.10)

Proof. Multiplying Eq.(4.2.1)1 by −ϕxxt and Eq.(4.2.1)2 by −ψxxt, then, integrating the prod-
ucts over (0, 1), we get

1

2

d

dt

∫ 1

0

[
ρ1ϕ

2
xt + ρ2ψ

2
xt + κ(ϕxx + ψx)

2 + bψ2
xx

]
dx = −µ1

∫ 1

0

ϕ2
xxtdx− µ2

∫ 1

0

ϕxxtzxx(x, 1)dx.

(4.5.11)
From Eq.(4.2.1)3, one has

τzxxt(x, ρ) + zxxρ(x, ρ) = 0,

then a multiplication by γzxx(x, ρ) yields that

τγ

2

d

dt

∫ 1

0

∫ 1

0

z2
xx(x, ρ)dρdx = −γ

2

∫ 1

0

z2
xx(x, 1)dx+

γ

2

∫ 1

0

ϕ2
xxtdx. (4.5.12)

Combining (4.5.11)-(4.5.12) and using the definition of E(t) and Young’s inequality, we obtain
(4.5.10).

Lemma 4.5.7. Let (ϕ, ψ, z) be a solution of (4.2.1), then for a suitable choice of N and Ni,
(i = 1, ..., 4), the functional L defined by

L(t) = N
(
E(t) + E(t)

)
+

4∑
i=1

NiFi(t)

satisfies the estimate
L′(t) ≤ −m1E(t), ∀t ≥ 0, (4.5.13)

where m1 is a fixed positive number.

Proof. It should be noticed that L is not equivalent to E. Then, gathering the estimates
(4.2.5), (4.5.2), (4.5.3), (4.5.4), (4.5.9) and (4.5.10) and using the facts

−
∫ 1

0

ϕ2
xtdx ≤ −

∫ 1

0

ϕ2
tdx,∫ 1

0

ϕ2
xtdx ≤

∫ 1

0

ϕ2
xxtdx,∫ 1

0

z2
x(x, 1)dx ≤

∫ 1

0

z2
xx(x, 1)dx,



4.5 Optimal polynomial decay 74

we obtain

L′(t) ≤ −
[
β1N − cN3 −

(
cε1

(
ρ2 −

bρ1

κ

)2

+ c
)
N2 −N4

] ∫ 1

0

ϕ2
xxtdx

− β1N

∫ 1

0

ϕ2
tdx−

[
κ

2
N3 − c(N1 +N2)

] ∫ 1

0

(ϕx + ψ)2dx

−
[
ρ2N1 − ε1N2 − ε2N3

] ∫ 1

0

ψ2
t dx−

[
b

2
N2 − cN1

] ∫ 1

0

ψ2
xdx

− τe−τN4

∫ 1

0

∫ 1

0

z2
x(x, ρ)dρdx−

[
β2N − c

(
N2 +N3

)] ∫ 1

0

z2
xx(x, 1)dx.

Furthermore, the choices

N1 = 3ε1, N2 = ρ2, ε2 =
ε1ρ2

N3

, N4 = 1,

yield that

L′(t) ≤ −
[
β1N − cN3 −

(
cε1

(
ρ2 −

bρ1

κ

)2

+ c
)
ρ2 − 1

] ∫ 1

0

ϕ2
xxtdx

− β1N

∫ 1

0

ϕ2
tdx−

[
κ

2
N3 − 3cε1 − ρ2

] ∫ 1

0

(ϕx + ψ)2dx

− ε1ρ2

∫ 1

0

ψ2
t dx−

[
bρ2

2
− 3cε1

] ∫ 1

0

ψ2
xdx

− τe−τ
∫ 1

0

∫ 1

0

z2
x(x, ρ)dρdx−

[
β2N − c

(
ρ2 +N3

)] ∫ 1

0

z2
xx(x, 1)dx.

At this point, we have to select our constants ε1, N3 and N very carefully. Choosing first
ε1 small enough so that

bρ2

2
− 3cε1 > 0.

Then, we take N3 large enough such that

κ

2
N3 − 3cε1 − ρ2 > 0.

As long as N3 and ε1 are fixed, we pick N large enough so that

β2N − c
(
ρ2 +N3

)
≥ 0,

β1N − cN3 −
(
cε1

(
ρ2 −

bρ1

κ

)2

+ c
)
ρ2 − 1 ≥ 0.

Thus, we can find a fixed positive constant m0 such that

L′(t) ≤ −m0

∫ 1

0

[
ϕ2
t + ψ2

t + (ϕx + ψ)2 + ψ2
x +

∫ 1

0

z2
x(x, ρ)dρ

]
dx,

which, together with (4.2.3), leads us to (4.5.13).
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Now, going back to the proof of Theorem 4.5.1, by integrating (4.5.13) over (0, t), we yield
that ∫ t

0

E(s)ds ≤ 1

ω
L(0).

Then, using the fact that E ′ ≤ 0, we get

tE(t) ≤ 1

ω
L(0),

which gives us the above mentioned decay result.
Next, we will show that the rate t−

1
2 is optimal. For, we use the following Theorem.

Theorem 4.5.8. ([95]) Let S(t) = eAt be a C0-semigroup of contractions on Hilbert space
such that iR ⊂ %(A). If

‖U‖H ≤
c

tα
‖U0‖D(A).

Then, for any η > 0, it exists a cη > 0 such that

1

λη+1/α
‖(iλI −A)−1‖H ≤ cη.

First, by (4.5.1), we have lim
t→∞
‖U(t)‖H = 0, which means that iR ⊂ %(A). Now, we are in

the position to prove the optimality of the rate t−
1
2 by applying the above Theorem. Suppose

that the rate can be better than t−
1
2 , for instance, the rate is t

− 1
2−η0 , for 0 < η0 < 2. And, we

prove that it exists η > 0 such that the operator

|λ|−η−(2−η0)‖(iλI −A)−1‖H′

is illimited. Choosing η = η0
2

, then we will show that it exist a subsequence (λν)ν∈N ⊂ R
with lim

ν→∞
|λν | = ∞ and (Uν)ν∈N ⊂ D(A) and (Fν)ν∈N ⊂ H such that (iλνI − A)Uν = Fν is

bounded in H and lim
λν→∞

|λν |−2+
η0
2 ‖Uν‖H =∞.

For each ν ∈ N, we can consider,

Fν =
(
0, 0, 0, cos(νπx), 0

)T
and Uν =

(
ϕν , uν , ψν , vν , zν

)T
,

where ϕν = Asin(νπx), ψν = Bcos(νπx) and zν = δ(ρ)sin(νπx). Then, following the same
arguments as in the proof of Theorem 4.4.2, we find that

|λν |−2+
η0
2 ‖Uν‖H ≥ O(ν

η0
2 ) −→∞ as ν −→∞.

Thus, the rate cannot be better than t−
1
2 . The proof of Theorem 4.5.1 is hence complete.



Chapter 5

On the decay rates of solutions for a
nonlinearly damped Porous system
with a delay

5.1 Introduction

In the present chapter, we study the global well-posedness and asymptotic behavior of solution
of the following Porous system

ρ1utt − κuxx − bφx = 0 in ]0, 1[×]0,∞[,

ρ2φtt − δφxx + bux + ξφ+ µ1g1(φt) + µ2g2(φt(x, t− τ)) = 0 in ]0, 1[×]0,∞[,

u(0, t) = u(1, t) = φ(0, t) = φ(1, t) = 0 in ]0,∞[,

u(x, 0) = u0(x), ut(x, 0) = u1(x) in ]0, 1[,

φ(x, 0) = φ1(x), φt(x, 0) = φ1(x) in ]0, 1[,

φt(x, t− τ) = f0(x, t− τ) in [0, τ ]×]0, 1[,

(5.1.1)

where µ1 > 0, µ2 is a real number and τ > 0 is a time delay. The function u = u(x, t)
represents the displacement of the solid elastic material, φ = φ(x, t) is the volume fraction
and the initial data (u0, u1, φ0, φ1, f0) are in suitable functional spaces. The original Porous
system is governed by the following evolution equations{

ρ1utt = Tx,

ρ2φtt = Hx +G.

Here T denotes the stress, H is the equilibrated stress and G is the equilibrated body force
such that 

T = κux + bφ,

H = δφx,

G = −bux − ξφ,
(5.1.2)

where ρ1, ρ2, κ, b, δ and ξ are positive constants satisfying the following condition

κξ > b2.
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There are a number of publications concerning the stabilization of the Porous system with
frictional dampings. Let us mention some well-known papers which discussed the stability of
(5.1.2) by frictional dampings. Quintanilla [108] proved that the damping µφt is not strong
enough to obtain the exponential stabiliy result. However, Apalara [105] got the exponential
decay of the solutions for the same problem provided that

ρ1

κ
=
ρ2

δ
. (5.1.3)

Furthermore, he [106] established a general decay result when he used the weak non-linear
damping µ(t)g(φt). Related to the Porous system with delay term, we can cite the works
[112, 113, 103, 111]. For instance, the authors of [113] proved that, under the assumption
|µ2| < µ1, the system{

ρ1utt − κuxx − bφx = 0 in ]0, 1[×]0,∞[,

ρ2φtt − δφxx + bux + ξφ+ µ1φt + µ2φt(x, t− τ) + α(t)g(φt) = 0 in ]0, 1[×]0,∞[

is uniformly stable if and only if the wave speeds of the two equations are the same.
If we consider κ = b = ξ in (5.1.1) we obtain the following standard Timoshenko system

with delay

ρ1utt − κ(ux + φ)x = 0 in ]0, 1[×]0,∞[,

ρ2φtt − δφxx + κ(ux + φ) + µ1g1(φt) + µ2g2(φt(x, t− τ)) = 0 in ]0, 1[×]0,∞[,

u(0, t) = u(1, t) = φ(0, t) = φ(1, t) = 0 in ]0,∞[,

u(x, 0) = u0(x), ut(x, 0) = u1(x) in ]0, 1[,

φ(x, 0) = φ1(x), φt(x, 0) = φ1(x) in ]0, 1[,

φt(x, t− τ) = f0(x, t− τ) in [0, τ ]×]0, 1[,

(5.1.4)

which was studied by Benaissa and Bahlil [97]. In that work the authors considered only
the equal-speeds case where they obtained an explicit decay estimate under a proper relation
between µ1 and µ2 and some assumptions on the functions gi.

As is known, if only one equation of a Timoshenko system is damped then the uniform
stability can be obtained for weak solutions in the case ρ1

κ
= ρ2

δ
. However, in the situation

when ρ1
κ
6= ρ2

δ
, a weaker decay rate result is achieved for stronger solutions. According to this

results, three questions can be asked:
1. Is it possible to consider the Porous system with a nonlinear damping term and a constant
delay in a non-linear internal feedback acting only in the second equation and get the same
result as in the Timoshenko system?
2. In the equal-speeds case, is it possible to get the stability result with same hypotheses on
µ1, µ2, g1 and g2 as in the Timoshenko system?
3. As we have mentioned above, the nonequal-speeds case is not considered for the Timo-
shenko system with a nonlinear delay term (see [97, 101]). So, is it possible to obtain the
slow decay result under the same conditions imposed for the equal-speeds case?

The main objectives of this chapter are twofold. Firstly, using the Faedo-Galerkin scheme
(see [56, 100]) together with some energy estimates, the global solvability will be given
without any limitation on µ1 and µ2. Secondly, we shall give positive answers to the above
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three questions. To do so, we use the well-known multiplier method and some ideas developed
in [22] and [102], taking into account the nature of Porous systems.

The outline of this chapter is as follows. In the next section, we give the needed materials
and assumptions. In section 3, we prove the existence and the uniqueness results. In the last
section, we study the solution’s asymptotic behavior in the equal-speeds case as well as in
the opposite case.

5.2 Preliminaries

We present here some assumptions, materials and notations that we shall use to prove our
results. We begin by introducing, as in the work [36], the new variable

z(x, ρ, t) = φt(x, t− ρτ), x ∈ [0, 1], ρ ∈ [0, 1], t > 0,

which satisfies

τ zt(x, ρ, t) + zρ(x, ρ, t) = 0 in ([0, 1])2 × [0,∞].

Hence, our problem (5.1.1) becomes

ρ1utt − κuxx − bφx = 0 in ]0, 1[ ×]0,∞[,

ρ2φtt − δφxx + bux + ξφ+ µ1g1(φt) + µ2g2(z(x, 1)) = 0 in ]0, 1[ ×]0,∞[,

τ zt(x, ρ, t) + zρ(x, ρ, t) = 0 in (]0, 1[)2×]0,∞[,

u(0, t) = u(1, t) = φ(0, t) = φ(1, t) = 0 in ]0,∞[,

u(x, 0) = u0(x), ut(x, 0) = u1(x) in ]0, 1[,

φ(x, 0) = φ1(x), φt(x, 0) = φ1(x) in ]0, 1[,

z(x, ρ, 0) = f0(x,−ρτ) in (]0, 1[)2.

(5.2.1)

In order to deal with the new variable z, we define the following space

L2
z(0, 1) = L2

(
0, 1;L2(0, 1)

)
=

{
z :]0, 1[−→ L2(0, 1),

∫ 1

0

∫ 1

0

z2(x, ρ)dρdx <∞
}
,

which is Hilbert space and endowed with the inner product

(z, z̃) =

∫ 1

0

∫ 1

0

z(x, ρ, t)z̃(x, ρ, t)dρdx.

To study system (5.2.1), we need the following assumptions:
(A1) g1 : R −→ R is a strictly increasing function of class C1 such that it exist ε < 1, c0,c1 and
a C1-function H : R+ −→ R+ which is linear on [0, ε] or non-decreasing and convex function
of class C2 with H(0) = H ′(0) = 0 such that{

c0|s| ≤ |g1(s)| ≤ c1|s| if |s| > ε,

s2 + g2
1(s) ≤ H−1

(
sg1(s)

)
if |s| ≤ ε,

(5.2.2)
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where H−1 is the inverse function of H.
(A2) g2 : R −→ R is a non-decreasing function of class C1 such that g2(0) = 0 and that it
exist three constants λ2, α1 > 0 and α2 ≤ 1 satisfying

|g′2(s)| ≤ λ2 (5.2.3)

and
α1sg2(s) ≤ G(s) ≤ α2sg1(s), (5.2.4)

where G(s) =

∫ s

0

g2(σ)dσ.

We now define the total energy associated with the solution of (5.2.1) as

E(t) =
1

2

∫ 1

0

[
ρ1u

2
t + ρ2φ

2
t + κu2

x + δφ2
x + ξφ2 + 2buxφ+ 2τ γ

∫ 1

0

G(z(x, ρ))dρ

]
dx, (5.2.5)

where γ is a fixed positive constant to be selected posteriori.

Remark 5.2.1. The energy functional E(t) defined in (5.2.5) is positive. Indeed, direct
calculations show that

κu2
x + 2buxφ+ ξφ2 =

1

2

[
κ
(
ux +

b

κ
φ
)2

+ ξ
(
φ+

b

ξ
ux

)2

+ 2κ1u
2
x + 2ξ1φ

2

]
,

where 2κ1 = κ− b2

ξ
and 2ξ1 = ξ − b2

κ
are positives due to κξ > b2. Thus,

κu2
x + 2buxφ+ ξφ2 >

1

2

[
κ
(
ux +

b

κ
φ
)2

+ ξ
(
φ+

b

ξ
ux

)2
]
> 0,

this implies that E(t) > 0 and

E(t) >
1

2

∫ 1

0

[
ρ1u

2
t + ρ2φ

2
t + κ1u

2
x + δφ2

x + ξ1φ
2 + 2γ τ

∫ 1

0

G(z(x, ρ))dρ

]
dx. (5.2.6)

Remark 5.2.2. • As g1 is a strictly increasing function, then we can find a positive constant
λ1 satisfying

λ1 < g′1(s), ∀s ∈ R.
• By the mean value Theorem for integrals and the monotonicity of g2, we have that

G(s) =

∫ s

0

g2(σ)dσ ≤ sg2(s),

so, α1 ≤ 1.

Remark 5.2.3. ([57]) Let ω∗ be the conjugate function of the differential convex function ω,
i.e.

ω∗(s) = sup
t∈R+

(
st− ω(t)

)
,

then, ω∗ is the Legendre transform of ω, which satisfies

AB ≤ ω∗(A) + ω(B), if A ∈ [0, ω′(r)] and B ∈ [0, r]. (5.2.7)

and
ω∗(s) = s(ω′)−1(s)− ω

[
(ω′)−1(s)

]
, if s ∈ [0, ω′(r)],
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Our starting point will be to provide a derivative’s upper bounded of the functional E1

defined, for 0 ≤ a0 < 1 and a1 ≥ 0, as

E1(t) =
1

2

∫ 1

0

[
ρ1u

2
t + ρ2φ

2
t + κu2

x + δφ2
x + ξφ2 + 2buxφ

+ 2τ

∫ 1

0

(
γ
(
1− a0

)
G(z(x, ρ)) + a1z

2(x, ρ)

)
dρ

]
dx.

(5.2.8)

Lemma 5.2.4. The functional E1 satisfies along the solution of system (2.2.1), the following
estimate

E ′1(t) ≤ −a1

∫ 1

0

z2(x, 1)dx−
(
γ
(
1− a0

)
α1 − (1− α1)|µ2|

)∫ 1

0

z(x, 1)g2(z(x, 1))dx

+ a1

∫ 1

0

φ2
tdx−

(
µ1 − γ

(
1− a0

)
α2 − α2|µ2|

)∫ 1

0

φtg1(φt)dx.

(5.2.9)

Proof. Multiplying (5.2.1)1 and (5.2.1)2 by ut and φt, respectively, and using integration by
parts over [0, 1], we obtain the identity

1

2

d

dt

∫ 1

0

[
ρ1u

2
t + ρ2φ

2
t + κu2

x + δφ2
x + ξφ2 + 2buxφ

]
dx

+ µ1

∫ 1

0

φtg1(φt)dx+ µ2

∫ 1

0

φtg2(z(x, 1))dx = 0.

(5.2.10)

Multiplying (5.2.1)3 by γ
(
1− a0

)
g2(z(x, ρ)) and integrating over ([0, 1])2, we get

γ
(
1− a0

) ∫ 1

0

∫ 1

0

[
τzt(x, ρ)g2(z(x, ρ)) + zρ(x, ρ)g2(z(x, ρ))

]
dρdx = 0,

that is,

γ
(
1− a0

)
τ
d

dt

∫ 1

0

∫ 1

0

G(z(x, ρ))dρdx+ γ
(
1− a0

) ∫ 1

0

∫ 1

0

∂

∂ρ
G(z(x, ρ))dρdx = 0.

Consequently, using the fact that zt(x, 0, t) = φt, we infer

γ
(
1− a0

)
τ
d

dt

∫ 1

0

∫ 1

0

G(z(x, ρ)dρdx = −γ
(
1− a0

) ∫ 1

0

[
G(z(x, 1))−G(φt)

]
dx.

(5.2.11)
Also, for a1 > 0 one has

τ a1
d

dt

∫ 1

0

∫ 1

0

z2(x, ρ)dρdx = −a1

∫ 1

0

[
z2(x, 1))− φ2

t

]
dx. (5.2.12)

This last equality has been obtained by applying the same previous arguments and after
multiplying (5.2.1)3 by 2a1z(x, ρ). Combining the estimates (5.2.10)-(5.2.12) and making use
of (5.2.4), we can get

E ′1(t) ≤− a1

∫ 1

0

z2(x, 1)dx+ a1

∫ 1

0

φ2
tdx−

(
µ1 − γ

(
1− a0

)
α2

)∫ 1

0

φtg1(φt)dx

− γ
(
1− a0

)
α1

∫ 1

0

z(x, 1)g2(z(x, 1))dx− µ2

∫ 1

0

φtg2(z(x, 1))dx.

(5.2.13)
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From Remark 5.2.3, we have

G∗(s) = sg−1
2 (s)−G(g−1

2 (s)), ∀s ≥ 0,

and so
G∗
(
g2(z(x, 1))

)
= z(x, 1)g2(z(x, 1))−G

(
z(x, 1)

)
.

Taking (5.2.7) with A = g2(z(x, 1)) and B = φt, and using (5.2.4) once more, we deduce that

µ2φtg2(z(x, 1)) ≤ α2|µ2|.φtg1(φt) +
(
1− α1

)
|µ2|.z(x, 1)g2(z(x, 1)). (5.2.14)

By inserting (5.2.14) into (5.2.13), we arrive at the desired inequality (5.2.9). This finishes
the proof.

Next, we will give a bound of the derivative of the second-order energy functional F which
is defined as

F(t) =
1

2

∫ 1

0

[
ρ1u

2
xt + ρ2φ

2
xt + κu2

xx + δφ2
xx + ξφ2

x + 2buxxφx + τ λ2 |µ2|
∫ 1

0

z2
x(x, ρ)dρ

]
dx.

Lemma 5.2.5. The second-order energy functional F satisfies an estimate of the form

F ′(t) ≤ −
(
λ1µ1 − λ2|µ2|

) ∫ 1

0

φ2
xtdx. (5.2.15)

Proof. Multiplying (5.2.1)1 and (5.2.1)2 by −uxxt and −φxxt, respectively, and integrating by
parts over [0, 1], we can get

1

2

d

dt

∫ 1

0

[
ρ1u

2
xt + ρ2φ

2
xt + κu2

xx + δφ2
xx + ξφ2

x + 2buxxφx

]
dx

+ µ1

∫ 1

0

φ2
xtg
′
1(φt)dx+ µ2

∫ 1

0

φxtzx(x, 1)g′2(z(x, 1))dx = 0.

And, after multiplying (5.2.1)3 by −λ2|µ2|zxx(x, ρ, t), we obtain

τλ2|µ2|
2

d

dt

∫ 1

0

∫ 1

0

z2
x(x, ρ, t)dρdx =− λ2|µ2|

2

∫ 1

0

z2
x(x, 1)dx+

λ2|µ2|
2

∫ 1

0

φ2
xtdx.

Adding the two identities above and using the fact that λ1 < g′1(s), we yield that

F ′(t) ≤−
(
λ1µ1 −

λ2|µ2|
2

)∫ 1

0

φ2
xtdx−

λ2|µ2|
2

∫ 1

0

z2
x(x, 1)dx− µ2

∫ 1

0

φxtzx(x, 1)g′2(z(x, 1))dx.

(5.2.16)
Therefore, since |g′2(s)| < λ2 for all s ∈ R, one obtains by the Young’s inequality

µ2

∫ 1

0

φxtzx(x, 1)g′2(z(x, 1))dx ≤ λ2|µ2|
2

∫ 1

0

φ2
xtdx+

λ2|µ2|
2

∫ 1

0

z2
x(x, 1)dx. (5.2.17)

A substitution of (5.2.17) into (5.2.16) gives (5.2.15). This concludes the proof of this Lemma.
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5.3 The well-posedness of the problem

In this current section, we shall establish, for arbitrary real numbers µ1 and µ2, the global
well-posedness of the system (5.2.1). For that, we let U = U(t) =

(
u, ut, φ, φt, z)

T and

U0 = U(0) = (u0, u1, φ0, φ1, f0(.,−.τ)
)T

and we then consider the following spaces

H = H1
0 (0, 1)× L2(0, 1)×H1

0 (0, 1)× L2(0, 1)× L2
z(0, 1)

and

H0 =
(
H2 ∩H1

0 (0, 1)
)
×H1

0 (0, 1)×
(
H2 ∩H1

0 (0, 1)
)
×H1

0 (0, 1)×H1
0

(
0, 1;H1(0, 1)

)
.

Our global well-posedness result is:

Theorem 5.3.1. Assuming that the assumptions (A1)-(A2) are satisfied and that κξ > b2.
Then, for all U0 ∈ H0 satisfying the compatibility condition f0(., 0) = φ1, problem (5.2.1) has
only one global weak solution

U ∈
(
L∞loc

(
(0,∞);H2 ∩H1

0 (0, 1)
)
× L∞loc

(
(0,∞);H1

0 (0, 1)
))2

× L∞loc
(
(0,∞);L2

z(0, 1)
)
,

Ut ∈
(
L∞loc
(
(0,∞);H1

0 (0, 1)
)
× L∞loc

(
(0,∞);L2(0, 1)

))2

× L∞loc
(
(0,∞);L2

z(0, 1)
)
.

Proof. To prove the existence result, we will implement the classical Faedo-Galerkin method.
For, we divide the arguments into three steps.

i. Approximated problem. Assuming first that U0 ∈ H0. Then, let T > 0 be fixed
and for m = 1, 2..., we denote by {Φm}m∈N the Hilbertian basis of H2 ∩H1

0 (0, 1) and Fm the
vector space generated by Φ1,Φ2, ...,Φm. Defining, for 1 ≤ i ≤ m, the sequence Ψi(x, ρ) as

Ψi(x, 0) = Φi(x).

Then, we may extend Ψi(x, 0) by Ψi(x, ρ) over L2
z(0, 1) and denote Zm the space generated

by Ψ1,Ψ2, ...,Ψm.
We aim to construct an approximate solution (um, φm, zm), i = 1, 2, ..., in the form

(
um(x, t), φm(x, t)

)
=
( m∑
i=1

cim(t),
m∑
i=1

dim(t)
)

Φi(x),

zm(x, ρ) =
m∑
i=1

eim(t)Ψi(x, ρ),

where cim, dim and eim, (i = 1, 2, ...,m), are determined by the following finite dimensional
problem

(
κumx + bφm,Φi

x

)
+
(
ρ1u

m
tt ,Φ

i
)

= 0,(
δφmx ,Φ

i
x

)
+
(
ρ2φ

m
tt + bumx + ξφm + µ1g1(φmt ) + µ2g2(zm(x, 1)),Φi

)
= 0,(

τ zmt (x, ρ) + zmρ (x, ρ),Ψj(x, ρ)
)

= 0,

(5.3.1)
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with 

um(., 0) = um0 =
m∑
i=1

(u0,Φ
i)Φi −→ u0 in H2 ∩H1

0 (0, 1),

umt (., 0) = um1 =
m∑
i=1

(u1,Φ
i)Φi −→ u1 in H1

0 (0, 1),

φm(., 0) = φm0 =
m∑
i=1

(φ0,Φ
i)Φi −→ φ0 in H2 ∩H1

0 (0, 1),

φmt (., 0) = φm1 =
m∑
i=1

(φ1,Φ
i)Φi −→ φ1 in H1

0 (0, 1),

zm(., ., 0) = zm0 =
m∑
i=1

(f0,Ψ
i)Ψi −→ f0 in H1

0

(
0, 1;H1(0, 1)

)
(5.3.2)

as m −→ +∞.

The standard methods of ODEs assures the existence of a unique solution of (5.3.1)-(5.3.2)
on the inertval [0, Tm], 0 < Tm < T . In the next step, we will prove that Tm is independent
of m. In other words, the approximate solution becomes global and defined for all t > 0.

ii. Priori estimates .
• The first priori estimate. As for Lemma 5.2.4, the functional

Em
1 (t) =

1

2

∫ 1

0

[
ρ1|umt |2 + ρ2|φmt |2 + κ|umx |2 + δ|φmx |2 + ξ|φm|2 + 2bumx φ

m

+ 2τ

∫ 1

0

(
γ
(
1− a0

)
G(zm(x, ρ)) + 2a1|zm(x, ρ)|2

)
dρ

]
dx

satisfies for all 0 ≤ a0 < 1, 0 ≤ a1,

dEm
1 (t)

dt
+ γ a0α2

∫ 1

0

φmt g1(φmt )dx+ γα1

∫ 1

0

zm(x, 1)g2(zm(x, 1))dx

≤ −a1

∫ 1

0

|zm(x, 1)|2dx+
(
γ a0α1 +

(
1− α1

)
|µ2|
)∫ 1

0

zm(x, 1)g2(zm(x, 1))dx

+ a1

∫ 1

0

|φmt |2dx−
(
µ1 − γα2 − α2|µ2|

)∫ 1

0

φmt g1(φmt )dx.

Choosing a0, a1 > 0, then by Young’s inequality, we may have

dEm
1 (t)

dt
+ γa0α2

∫ 1

0

φmt g1(φmt )dx+ γα1

∫ 1

0

zm(x, 1)g2(zm(x, 1))dx

≤ −
(
a1 − ca2

) ∫ 1

0

|zm(x, 1)|2dx+
(
a1 + ca3

) ∫ 1

0

|φmt |2dx+ a2

∫ 1

0

g2
2(zm(x, 1))dx

+ a3

∫ 1

0

g2
1(φmt )dx.

(5.3.3)

Let us estimate the last two term in the right-hand side of (5.3.3). We firstly observe that,
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owing to (5.2.2),∫ 1

0

g2
1(φmt )dx ≤

∫
|φmt |≤ε

g2
1(φmt )dx+

∫
|φmt |>ε

g2
1(φmt )dx

≤
∫
|φmt |≤ε

H−1
(
φmt g1(φmt )

)
dx+

∫
|φmt |>ε

φmt g1(φmt )dx.

(5.3.4)

By the Jensen’s inequality and the concavity of H−1, we assert that∫ 1

0

H−1
(
φmt g1(φmt )

)
dx ≤ H−1

(∫ 1

0

φmt g1(φmt )dx

)
,

taking then (5.2.7) with

A = 1 and B = H−1
(∫ 1

0

φmt g1(φmt )dx
)
,

we can get

H−1
(∫ 1

0

φmt g1(φmt )dx
)
≤ H∗(1) +

∫ 1

0

φmt g1(φmt )dx,

where H∗ is the conjugate function of H. Then, collecting the above estimates, the inequality
(5.3.4) becomes ∫ 1

0

g2
1(φmt )dx ≤ H∗(1) +

∫ 1

0

φmt g1(φmt )dx. (5.3.5)

From the assumption (A2), that is |g2(s)| ≤ λ2|s| ∀s ∈ R, one has∫ 1

0

g2
2(zm(x, 1))dx ≤ c

∫ 1

0

zm(x, 1)g2(zm(x, 1))dx. (5.3.6)

Plugging (5.3.5)-(5.3.6) into (5.3.3), we obtain that

dEm
1 (t)

dt
+
(
γa0α2 − a3c

) ∫ 1

0

φmt g1(φmt )dx+
(
γα1 − a2c

) ∫ 1

0

zm(x, 1)g2(zm(x, 1))dx

≤ cH∗(1)−
(
a1 − ca2

) ∫ 1

0

|zm(x, 1)|2dx+
(
a1 + ca3

) ∫ 1

0

|φmt |2dx.

At this point, we select a2 and a3 small enough such that

γα1 − a2c > 0, γa0α2 − a3c > 0.

Once a2 is fixed, we then pick a1 sufficiently large so that

a1 − ca2 ≥ 0.

It thus results that

dEm
1 (t)

dt
+

∫ 1

0

φmt g1(φmt )dx+

∫ 1

0

zm(x, 1)g2(zm(x, 1))dx ≤ c+ c

∫ 1

0

|φmt |2dx,
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the integration with respect to t < T on [0, t], using (5.2.6), (5.2.8) and (5.3.2), gives

Em
1 (t) +

∫ t

0

∫ 1

0

φmt g1(φmt )dxdt+

∫ t

0

∫ 1

0

zm(x, 1)g2(zm(x, 1))dxdt ≤ c+ c

∫ t

0

Em
1 (t)dt.

Applying then Gronwall’s inequality, we arrive at

Em
1 (t) +

∫ t

0

∫ 1

0

φmt g1(φmt )dxdt+

∫ t

0

∫ 1

0

zm(x, 1)g2(zm(x, 1))dxdt ≤ c. (5.3.7)

This bound gives us the global existence of (um, φm, zm) in [0,+∞) and

zm is uniformly bounded in L∞loc

(
0,∞;L2

z(0, 1)
)
,

um, φm are uniformly bounded in L∞loc

(
0,∞;H1

0 (0, 1)
)
,

umt , φ
m
t are uniformly bounded in L∞loc

(
0,∞, L2(0, 1)

)
,

φmt g1(φmt ) is uniformly bounded in L1
(

(0, T )× (0, 1)
)
,

zm(x, 1)g2(zm(x, 1)) is uniformly bounded in L1
(

(0, T )× (0, 1)
)
.

(5.3.8)

• The second priori estimate. In view of Lemma 5.2.5, one has for all t ≥ 0,

dFm(t)

dt
≤ c

∫ 1

0

|φmxt|2dx, (5.3.9)

where

Fm(t) =
1

2

∫ 1

0

[
ρ1|umxt|2 + ρ2|φmxt|2 + κ|umxx|2 + δ|φmxx|2 + ξ|φmx |2

+ 2bumxxφ
m
x + τ λ2 |µ2|

∫ 1

0

|zmx (x, ρ)|2dρ
]
dx.

Integrating (5.3.9) over [0, t] and taking the convergences (5.3.2) into account, we get

Fm(t) ≤ c+ c

∫ t

0

∫ 1

0

|φmxt|2dxdt.

The Gronwall’s inequality provides the second priori estimate below

Fm(t) ≤ c. (5.3.10)

We thereupon conclude that

um, φm are uniformly bounded in L∞loc

(
0,∞;H2 ∩H1

0 (0, 1)
)
,

umt , φ
m
t are uniformly bounded in L∞loc

(
0,∞;H1

0 (0, 1)
)
.

(5.3.11)
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• The third priori estimate. Firstly, we are going to estimate umtt (0) and φmtt (0) in the
L2-norm. Also, we need to estimate zmt (x, ρ, 0) in the L2

z-norm. For that, we replace Φi in
(5.3.1)1 by umtt , Φi in (5.3.1)2 by φmtt and using Young’s inequality, we can obtain∫ 1

0

[
|umtt (0)|2 + |φmtt (0)|2

]
dx ≤ c

∫ 1

0

[
|umxx(0)|2 + |umx (0)|2 + |φmxx(0)|2 + |φmx (0)|2

+ |φm(0)|2 + g2
1(φmt (0)) + g2

2(zm(x, 1, 0))
]
dx.

(5.3.12)

Let Ψi = zmt (x, ρ, t) in (5.3.1)3, then exploit Cauchy-Schwarz and Young’s inequalities to get∫ 1

0

∫ 1

0

|zmt (x, ρ, 0)|2dρdx ≤ c

∫ 1

0

∫ 1

0

|zmρ (x, ρ, 0)|2dρdx. (5.3.13)

The sum of (5.3.12)-(5.3.13), using (5.3.2), yields that∫ 1

0

[
|umtt (0)|2 + |φmtt (0)|2 +

∫ 1

0

|zmt (x, ρ, 0)|2dρ
]
dx ≤ c. (5.3.14)

Now, differentiating (5.3.1)1 and (5.3.1)2 with respect to t. Then, we set Φi = 2umtt and
Φi = 2φmtt , respectively, in the first and the second resulting equations and using the non-
decreasing property of g1, we find

d

dt

∫ 1

0

[
ρ1|umtt |2 + ρ2|φmtt |2 + κ|umxt|2 + δ|φmxt|2 + ξ|φmt |2 + 2bumxtφ

m
t

]
dx

≤ −µ2

∫ 1

0

zmt (x, 1)g′2(zm(x, 1))φmtt dx.

The boundedness of g′2 and the Young’s inequality imply that

d

dt

∫ 1

0

[
ρ1|umtt |2 + ρ2|φmtt |2 + κ|umxt|2 + δ|φmxt|2 + ξ|φmt |2 + 2bumxtφ

m
t

]
dx

≤ ε2

∫ 1

0

|zmt (x, 1)|2dx+ c

∫ 1

0

|φmtt |2dx.
(5.3.15)

In the other hand, taking the derivative of (5.3.1)3 with respect to t and setting Ψi =
2zmt (x, ρ, t) in the resulting equation, it then follows that

τ
d

dt

∫ 1

0

∫ 1

0

|zmt (x, ρ, t)|2dρdx+

∫ 1

0

∫ 1

0

d

dρ
|zmt (x, ρ, t)|2dρdx = 0.

As zmt (x, 0, t) = φmtt (x, t), it comes

τ
d

dt

∫ 1

0

∫ 1

0

|zmt (x, ρ, t)|2dρdx = −
∫ 1

0

|zmt (x, 1, t)|2dx+

∫ 1

0

|φmtt |2dx. (5.3.16)

Moreover, defining

Im(t) =

∫ 1

0

[
ρ1|umtt |2 + ρ2|φmtt |2 + κ|umxt|2 + δ|φmxt|2 + ξ|φmt |2 + 2bumxtφ

m
t + τ

∫ 1

0

|zmt (x, ρ)|2dρ
]
dx,
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one obtains from (5.3.15) and (5.3.16), that

dIm(t)

dt
≤ −

(
1− ε2

) ∫ 1

0

|zmt (x, 1))|2dx+ c

∫ 1

0

|φmtt |2dx.

For a suitable ε2, an integration over [0, t], using (5.3.2)-(5.3.14), yields that

Im(t) ≤ c+ c

∫ t

0

∫ 1

0

|φmtt |2dxdt.

Employing Gronwall’s inequality we immediately get

Im(t) ≤ c. (5.3.17)

Therefore, it is deduced that

zmt is uniformly bounded in L2
(

0, T ;L2
z(0, 1)

)
,

umtt , φ
m
tt are uniformly bounded in L∞loc

(
0,∞;L2(0, 1)

)
.

(5.3.18)

iii. Passage to the limit. It follows from the estimates (5.3.7), (5.3.10) and (5.3.17)
that it exist subsequences {un}∞n=1 ⊂ {um}∞m=1, {φn}∞n=1 ⊂ {φm}∞m=1 and {zn}∞n=1 ⊂ {zm}∞m=1

verifying, for all T ≥ 0, the following convergences

g1(φnt ) −→ f and g2(zn) −→ h weakly-star in L2
(

(0, 1)× (0, T )
)
,

un −→ u and φn −→ φ weakly-star in L∞loc

(
0,∞;H2 ∩H1

0

)
,

unt −→ ut and φnt −→ φt weakly-star in L∞loc

(
0,∞;H1

0

)
,

untt −→ utt and φntt −→ φtt weakly-star in L∞loc

(
0,∞;L2

)
,

zn −→ z and znt −→ zt weakly-star in L∞loc

(
0,∞;L2

z

)
,

(5.3.19)
We will show that U is a weak solution of system (5.2.1). Firstly, we will prove that

f = g1(φt) and h = g2(z(x, 1)).

Lemma 5.3.2. For each T > 0, we have

g1(φnt ) −→ g1(φt) weakly-star in L2
(

(0, 1)× (0, T )
)
,

g2(zn(x, 1)) −→ g2(z(x, 1)) weakly-star in L2
(

(0, 1)× (0, T )
)
.

(5.3.20)

Proof. From (5.3.10), we have φnt is bounded in L∞(0, T ;H1
0 ) and φntt is bounded in L∞(0, T ;L2).

Then, the injection by continuity in Lp gives us the boundedness of φnt in L2(0, T ;H1
0 ) and

φntt in L2(0, T ;L2). Hence, φnt is bounded in H1(Q), where Q = (0, 1) × (0, T ). It is known
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that the embedding H1(Q) ↪→ L2(Q) is compact. This enables us to extract a subsequence
of φn, represented again by φn, such that

φnt −→ φt strongly in L2
(
0, T ;L2(0, 1)

)
,

and so
φnt −→ φt a.e. on Q.

By the continuity of g1, we have

g1(φnt ) −→ g1(φt) a.e. on Q. (5.3.21)

And similarly,
g2(zn(x, 1)) −→ g2(z(x, 1)) a.e. on Q. (5.3.22)

On the other hand, appealing to the inequalities (5.3.5) and (5.3.6), we get∫ 1

0

[
g2

1(φnt ) + g2
2(zn(x, 1))

]
dx ≤ c+

∫ 1

0

[
φnt g1(φnt ) + zn(x, 1)g2(zn(x, 1))

]
dx.

It then follows from (5.3.7) that∫ t

0

∫ 1

0

[
g2

1(φnt ) + g2
2(zn(x, 1))

]
dxdt ≤ c,

which directly gives g1(φnt ), g2(zn(x, 1)) ∈ L2(Q). Combining these with (5.3.21) − (5.3.22)
and using Lemma 1.4.3, we obtain (5.3.20).

To prove that U is a weak solution of (5.2.1) we discuss as in [56] (see also [100]). For,
we consider functions v, ω ∈ C

(
0, T ;L2(0, 1)

)
and y ∈ C

(
0, T ;L2

z(0, 1)
)

having the forms

(
v(x, t), ω(x, t)

)
=
( N∑
i=1

c̃in(t),
N∑
i=1

d̃in(t)
)

Φi(x), (5.3.23)

y(x, ρ, t) =
N∑
i=1

ẽin(t)Ψi(x, ρ), (5.3.24)

where N ≥ n is a fixed integer.
Then, by multiplying (5.3.1)1, (5.3.1)2 and (5.3.1)3 by c̃in(t), d̃in and ẽin, respectively, and
summing the resultants over i from 1 to N , we find that

∫ T

0

∫ 1

0

[
ρ1u

n
tt − κunxx − bφnx

]
vdxdt = 0,∫ T

0

∫ 1

0

[
ρ2φ

n
tt − δφnxx + bunx + ξφnx + µ1g1(φnt ) + µ2g2(zn(x, 1))

]
ωdxdt = 0,∫ T

0

∫ 1

0

∫ 1

0

[
τznt (x, ρ) + znρ (x, ρ)

]
y(x, ρ)dρdxdt = 0.

(5.3.25)
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After passing to the limit in (5.3.25) as n −→ +∞ and using (5.3.19), we arrive at

∫ T

0

∫ 1

0

[
ρ1utt − κuxx − bφx

]
vdxdt = 0,∫ T

0

∫ 1

0

[
ρ2φtt − δφxx + bux + ξφ+ µ1g1(φt) + µ2g2(z(x, 1))

]
ωdxdt = 0,∫ T

0

∫ 1

0

∫ 1

0

[
τzt(x, ρ) + zρ(x, ρ)

]
y(x, ρ)dρdxdt = 0.

(5.3.26)

Eqs. (5.3.26) hold for all (v, ω, y) ∈
(
L2
(
0, T ;L2

))2 × L2
(
0, T ;L2

z

)
since the functions of the

forms (5.3.23) and (5.3.24) are dense, respectively, in L2
(
0, T ;L2

)
and L2

(
0, T ;L2

z

)
. Next, we

must verify that the limit functions u, φ, z fulfill the initial conditions

u(., 0) = u0, ut(., 0) = u1, φ(., 0) = φ0, φt(., 0) = φ1 (5.3.27)

and the history value
z(., ., 0) = f0. (5.3.28)

For, we take any v, ω ∈ C2
(
0, T ;L2

)
and y ∈ C1(0, T, L2

z) satisfying

u(., T ) = ut(., T ) = φ(., T ) = φt(., T ) = y(., ρ, T ) = 0.

Then integrating with respect to t in (5.3.26), we have

∫ T

0

∫ 1

0

[
ρ1uvtt −

(
κuxx + bφx

)
v
]
dxdt+ ρ1

∫ 1

0

[
u(0)vt(0)− ut(0)v(0)

]
dx = 0,∫ T

0

∫ 1

0

[
ρ2φωtt −

(
δφxx − bux − ξφx − µ1g1(φt)− µ2g2(z(x, 1))

)
ω
]
dxdt

+ρ2

∫ 1

0

[
φ(0)ωt(0)− φt(0)ω(0)

]
dx = 0,∫ T

0

∫ 1

0

∫ 1

0

[
− τz(x, ρ, t)yt(x, ρ, t) + zρ(x, ρ, t)y(x, ρ, t)

]
dρdxdt

−τ
∫ 1

0

∫ 1

0

z(x, ρ, 0)y(x, ρ, 0)dρdx = 0.

(5.3.29)
On the other hand, proceeding in the same way, we obtain from (5.3.25) that

∫ T

0

∫ 1

0

[
ρ1u

nvtt −
(
κunxx + bφnx

)
v
]
dxdt+ ρ1

∫ 1

0

[
un(0)vt(0)− unt (0)v(0)

]
dx = 0,∫ T

0

∫ 1

0

[
ρ2φ

nωtt −
(
δφnxx − bunx − ξφnx − µ1g1(φnt )− µ2g2(zn(x, 1))

)
ω
]
dxdt

+ρ2

∫ 1

0

[
φn(0)ωt(0)− φnt (0)ω(0)

]
dx = 0,∫ T

0

∫ 1

0

∫ 1

0

[
τzn(x, ρ, t)yt(x, ρ, t) + znρ (x, ρ, t)y(x, ρ, t)

]
dρdxdt

−τ
∫ 1

0

∫ 1

0

zn(x, ρ, 0)y(x, ρ, 0)dρdx = 0.
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Recalling (5.3.19) and (5.3.2), we get

∫ T

0

∫ 1

0

[
ρ1uvtt −

(
κuxx + bφx

)
v
]
dxdt+ ρ1

∫ 1

0

[
u0vt(0)− u1v(0)

]
dx = 0,∫ T

0

∫ 1

0

[
ρ2φωtt −

(
δφxx − bux − ξφx − µ1g1(φt)− µ2g2(z(x, 1))

)
ω
]
dxdt

+ρ2

∫ 1

0

[
φ0ωt(0)− φ1ω(0)

]
dx = 0,∫ T

0

∫ 1

0

∫ 1

0

[
− τz(x, ρ, t)yt(x, ρ, t) + zρ(x, ρ, t)y(x, ρ, t)

]
dρdxdt

−τ
∫ 1

0

∫ 1

0

f0y(x, ρ, 0)dρdx = 0.

(5.3.30)
As v(x, 0), vt(x, 0), ω(x, 0), ωt(x, 0), y(x, ρ, 0) are arbitrary, comparing identities (5.3.29) and
(5.3.30), we deduce (5.3.27) and (5.3.28).
Consequently, (5.2.1) admits at least one global weak solution U .

For the uniqueness, we assume that (ũ, φ̃, z̃) and (˜̃u, ˜̃φ, ˜̃z) are two weak solutions of (5.2.1),

then (u, φ, z) = (ũ, φ̃, z̃)− (˜̃u, ˜̃φ, ˜̃z) satisfies the following system

ρ1utt − κuxx − bφx = 0,

ρ2φtt − δφxx + bux + ξφ+ µ1

(
g1(φ̃t)− g1(

˜̃
φt)
)

+ µ2

(
g2(z̃(x, 1))− g2(˜̃z(x, 1))

)
= 0,

τ zt(x, ρ, t) + zρ(x, ρ, t) = 0,

u(0, t) = u(1, t) = φ(0, t) = φ(0, t) = 0,

u(x, 0) = ut(x, 0) = φ(x, 0) = φt(x, 0) = z(x, ρ, 0) = 0.
(5.3.31)

To get the uniqueness result, it suffices to verify that (u, φ, z) = (0, 0, 0) is the only stronger
weak solution of (5.3.31). For that, multiplying (5.3.31)1 by 2ut and (5.3.31)2 by 2φt, we yield

d

dt

∫ 1

0

[
ρ1u

2
t + ρ2φ

2
t + κu2

x + δφ2
x + ξφ2 + 2buxφ

]
dx+ 2µ1

∫ 1

0

φt
(
g1(φ̃t)− g1(

˜̃
φt)
)
dx

+ 2µ2

∫ 1

0

φt
(
g2(z̃(x, 1))− g2(˜̃z(x, 1))

)
dx = 0.

(5.3.32)

And, we multiply (5.3.31)3 by 2z(x, ρ) to get

τ
d

dt

∫ 1

0

∫ 1

0

z2(x, ρ)dρdx+

∫ 1

0

z2(x, 1)dx−
∫ 1

0

φ2
tdx = 0. (5.3.33)

Moreover, setting

Λ(t) =

∫ 1

0

[
ρ1u

2
t + ρ2φ

2
t + κu2

x + δφ2
x + ξφ2 + 2buxφ+ τ

∫ 1

0

z2(x, ρ)dρ

]
dx
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and adding the estimates (5.3.32)-(5.3.33), we obtain

Λ′(t) =− 2µ1

∫ 1

0

φt
(
g1(φ̃t)− g1(

˜̃
φt)
)
dx+

∫ 1

0

φ2
tdx−

∫ 1

0

z2(x, 1)dx

− 2µ2

∫ 1

0

φt
(
g2(z̃(x, 1))− g2(˜̃z(x, 1))

)
dx.

(5.3.34)

As g1 is an increasing function, we can easily see that(
s0 − s1

)(
g1(s0)− g1(s1)

)
> 0 ∀s0, s1 ∈ R.

Thus, (5.3.34) becomes

Λ′(t) ≤
∫ 1

0

φ2
tdx−

∫ 1

0

z2(x, 1)dx− 2µ2

∫ 1

0

φt
(
g2(z̃(x, 1))− g2(˜̃z(x, 1))

)
dx.

By the Young’s inequality, we get

Λ′(t) ≤ c

∫ 1

0

φ2
tdx−

∫ 1

0

z2(x, 1)dx+ ε3

∫ 1

0

(
g2(z̃(x, 1))− g2(˜̃z(x, 1))

)2
dx.

Since g2 is a continous function, it results from (5.2.3) that∣∣g2(s0)− g2(s1)
∣∣ ≤ λ2

∣∣s0 − s1

∣∣ ∀s0, s1 ∈ R.

This leads us to

Λ′(t) ≤ c

∫ 1

0

φ2
tdx−

(
1− λ2ε3

) ∫ 1

0

z2(x, 1)dx.

Hence, for a suitable ε3, we have

Λ′(t) ≤ c

∫ 1

0

φ2
tdx.

As Λ(t) is positive (for the same raison given in Remark 5.2.1) and Λ(0) = 0, Gronwall’s
inequality forces that Λ(t) = 0 (0 ≤ t ≤ T ), which means that u = φ = z = 0.
Consequently, (5.2.1) possesses only one weak stronger weak solution.

5.4 Asymptotic behavior

This last section, which will be divided into three subsections, studies the stability of system
(5.2.1). In fact, using the Lyapunov method, we will prove that, under equal and non-equal
wave speeds cases, the solution of (5.2.1) converges to zero as t tends to infinity.
At the first, we consider the following additional assumption:
(A3) With respect to the weights of feedbacks µi(i = 1, 2), we assume that

|µ2| <
α1

α2

µ1.
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Now, we can suppose that the positive constant γ satisfies the following inequality

(1− α1)|µ2|
α1

< γ <
µ1 − α2|µ2|

α2

.

Then, by setting a = a1 = 0 in (5.2.8), it results from (5.2.9) that

E ′(t) ≤ −β1

∫ 1

0

φtg1(φt)dx− β2

∫ 1

0

z(x, 1)g2(z(x, 1))dx, (5.4.1)

where β1 = µ1 − γα2 − α2 |µ2| > 0 and β2 = γα1 − (1− α1)|µ2| > 0.

5.4.1 Technical lemmas

In this subsection, we state and prove various Lemmas given for any regular solution of (5.2.1).
It would help us to estimate the derivative of the Lyapunov functional.

Lemma 5.4.1. The functional

F1(t) = −ρ1

∫ 1

0

utudx

satisfies, along the solution of system (5.2.1), the estimate

F ′1(t) ≤ −ρ1

∫ 1

0

u2
tdx+

3κ

2

∫ 1

0

u2
xdx+ c

∫ 1

0

φ2
xdx. (5.4.2)

Proof. A simple differentiation with respect to t, using (5.2.1)1, yields

F ′1(t) = −ρ1

∫ 1

0

u2
tdx+ κ

∫ 1

0

u2
xdx+ b

∫ 1

0

uxφdx.

The Young’s and Poincaré’s inequalities lead to (5.4.2).

Lemma 5.4.2. The functional defined by

F2(t) = ρ2

∫ 1

0

φtuxdx+
δρ1

κ

∫ 1

0

utφxdx

fulfills for any η > 0,

F ′2(t) ≤− b

2

∫ 1

0

u2
xdx+ η

(
u2
x(1, t) + u2

x(0, t)
)

+
δ2

4η

(
φ2
x(1, t) + φ2

x(0, t)
)

+ c

∫ 1

0

φ2
xdx

+ c

∫ 1

0

g2
1(φt)dx+ c

∫ 1

0

g2
2(z(x, 1))dx+

(
δρ1

κ
− ρ2

)∫ 1

0

φxtutdx.

(5.4.3)

Proof. Direct computations, using (5.2.1)1-(5.2.1)2, lead to

F ′2(t) =

∫ 1

0

ux

[
δφxx − bux − ξφ− µ1g1(φt)− µ2g2(z(x, 1))

]
dx

+
δ

κ

∫ 1

0

φx

[
κuxx + bφx

]
dx+

(
δρ1

κ
− ρ2

)∫ 1

0

φxtutdx.
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An integration by parts gives

F ′2(t) =
[
δuxφx

]x=1

x=0
− b
∫ 1

0

u2
xdx+

bδ

κ

∫ 1

0

φ2
xdx− ξ

∫ 1

0

uxφdx− µ1

∫ 1

0

g1(φt)uxdx

− µ2

∫ 1

0

g2(z(x, 1))uxdx+

(
δρ1

κ
− ρ2

)∫ 1

0

φxtutdx.

Using Young’s and Poincaré’s inequalities, (5.4.3) is established.

Lemma 5.4.3. Let χ be a solution of{
χxx = −φx,
χ(0) = χ(1) = 0.

Then, the functional

F3(t) =

∫ 1

0

(
ρ2φtφ+

bρ1

κ
utχ

)
dx

satisfies, for any η0 > 0, the following estimate

F ′3(t) ≤− δ
∫ 1

0

φ2
xdx−

1

2

(
ξ − b2

κ

)∫ 1

0

φ2dx+ η0

∫ 1

0

u2
tdx+ c

∫ 1

0

φ2
tdx

+ c

∫ 1

0

g2
1(φt)dx+ c

∫ 1

0

g2
2(z(x, 1))dx.

(5.4.4)

Proof. Differentiating F3 and using (5.2.1)1-(5.2.1)2, we get

F ′3(t) =− ξ
∫ 1

0

φ2dx+
b2

κ

∫ 1

0

χ2
xdx− δ

∫ 1

0

φ2
xdx+ ρ2

∫ 1

0

φ2
tdx+

bρ1

κ

∫ 1

0

utχtdx

− µ1

∫ 1

0

φg1(φt)dx− µ2

∫ 1

0

φg2(z(x, 1))dx.

(5.4.5)

By Young’s inequality, we have

bρ1

κ

∫ 1

0

utχtdx ≤ η0

∫ 1

0

u2
tdx+ c

∫ 1

0

χ2
tdx, (5.4.6)

µ1

∫ 1

0

φg1(φt)dx ≤
1

4

(
ξ − b2

κ

)∫ 1

0

φ2dx+ c

∫ 1

0

g2
1(φt)dx, (5.4.7)

µ2

∫ 1

0

φg2(z(x, 1))dx ≤ 1

4

(
ξ − b2

κ

)∫ 1

0

φ2dx+ c

∫ 1

0

g2
2(z(x, 1))dx. (5.4.8)

Inserting (5.4.6)-(5.4.8) into (5.4.5) and using the fact that∫ 1

0

χ2
xdx ≤

∫ 1

0

φ2dx,∫ 1

0

χ2
tdx ≤

∫ 1

0

χ2
txdx ≤

∫ 1

0

φ2
tdx,

we obtain (5.4.4).



5.4 Asymptotic behavior 94

Next, in order to eliminate the boundary terms, appearing in (5.4.3), we introduce the
following function

m(x) = −4x+ 2, x ∈ [0, 1]. (5.4.9)

Then, we have the following result.

Lemma 5.4.4. For any η > 0, the functional F4 defined by

F4(t) =
η

κ

∫ 1

0

ρ1m(x)utuxdx+
δ

4η

∫ 1

0

ρ2m(x)φtφxdx

satisfies

F ′4(t) ≤ −η
(
u2
x(1, t) + u2

x(0, t)
)
− δ2

4η

(
φ2
x(1, t) + φ2

x(0, t)
)

+ cηρ1

∫ 1

0

u2
tdx+ c

∫ 1

0

φ2
tdx

+
((1

4
+
η

4

)
b+ 2η

)∫ 1

0

u2
xdx+ c

∫ 1

0

φ2
xdx+ c

∫ 1

0

g2
1(φt)dx+ c

∫ 1

0

g2
2(z(x, 1))dx.

(5.4.10)

Proof. By using (5.2.1)1, (5.2.1)2 and (5.4.9), it holds that

F ′4(t) =
η

κ

[
− κ
(
u2
x(1, t) + u2

x(0, t)
)

+ 2ρ1

∫ 1

0

u2
tdx+ b

∫ 1

0

m(x)uxφxdx+ 2κ

∫ 1

0

u2
xdx

]
+

δ

4η

[
− δ
(
φ2
x(1, t) + φ2

x(0, t)
)

+ 2ρ2

∫ 1

0

φ2
tdx+ 2δ

∫ 1

0

φ2
xdx− b

∫ 1

0

m(x)φxuxdx

− µ1

∫ 1

0

m(x)φxg1(φt)dx− µ2

∫ 1

0

m(x)φxg2(z(x, 1))dx− 2ξ

∫ 1

0

φ2dx

]
.

Estimate (5.4.10) follows by exploiting Young’s and Poincaré’s inequalities.

Lemma 5.4.5. The functional

F5(t) = τ

∫ 1

0

∫ 1

0

e−τ ρG(z(x, ρ, t))dρdx

satisfies an estimate of the form

F ′5(t) ≤− τ e−τ
∫ 1

0

∫ 1

0

G(z(x, ρ, t))dρdx− α1e
−τ
∫ 1

0

z(x, 1)g2(z(x, 1))dx

+ c

∫ 1

0

φ2
tdx+ c

∫ 1

0

g2
1(φt)dx.

(5.4.11)

Proof. Taking the derivative of F5 and using (5.2.1)3, we have

F ′5(t) =

∫ 1

0

∫ 1

0

e−τ ρzρ(x, ρ, t)g2(z(x, ρ, t))dρdx,
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that is,

F ′5(t) = −
∫ 1

0

∫ 1

0

d

dρ

[
e−τ ρG(z(x, ρ, t))

]
dρdx− τ

∫ 1

0

∫ 1

0

e−τρG(z(x, ρ, t))dρdx

= −
∫ 1

0

[
e−τG(z(x, 1, t))−G(z(x, 0, t))

]
dx− τ

∫ 1

0

∫ 1

0

e−τρG(z(x, ρ, t))dρdx.

Using (5.2.4), we can obtain

F ′5(t) ≤ −τ
∫ 1

0

∫ 1

0

e−τ ρG(z(x, ρ, t))dρdx− α1e
−τ
∫ 1

0

z(x, 1)g2(z(x, 1))dx+ α2

∫ 1

0

φtg1(φt)dx.

Estimate (5.4.11) follows by using Young’s inequality with the fact that e−τ ≤ e−τ ρ, ∀ ρ ∈
[0, 1].

Lemma 5.4.6. For a suitable choice of N and Ni, (i = 1, 2, ..., 5), the functional defined by

L(t) = NE(t) +
5∑
i=1

NiFi(t) (5.4.12)

satisfies, for a fixed positive constant m0, the estimate

L′(t) ≤−m0E(t) +

(
δρ1

κ
− ρ2

)∫ 1

0

φxtutdx+ c

∫ 1

0

φ2
tdx+ c

∫ 1

0

g2
1(φt)dx+ c

∫ 1

0

g2
2(z(x, 1))dx.

(5.4.13)

Proof. It follows from (5.4.1), (5.4.2), (5.4.3), (5.4.4), (5.4.10) and (5.4.11) that for any t ≥ 0,

L′(t) ≤ −(N4 −N2)
[
η
(
u2
x(1, t) + u2

x(0, t)
)

+
δ2

4η

(
φ2
x(1, t) + φ2

x(0, t)
)]

−
[
ρ1N1 − η0N3 − ηcρ1N4

] ∫ 1

0

u2
tdx+

[
N3 +N4 +N5

]
c

∫ 1

0

φ2
tdx

−
[ b

2
N2 −

3κ

2
N1 −

((1

4
+
η

4

)
b+ 2η

)
N4

] ∫ 1

0

u2
xdx

− 1

2

(
ξ − b2

κ

)
N3

∫ 1

0

φ2dx−
[
δN3 −

(
N1 +N2 +N4

)
c
] ∫ 1

0

φ2
xdx

− τe−τN5

∫ 1

0

∫ 1

0

G(z(x, ρ))dρdx+
[
N2 +N3 +N4 +N5

]
c

∫ 1

0

g2
1(φt)dx

+
[
N2 +N3 +N4

]
c

∫ 1

0

g2
2(z(x, 1))dx+N2

(
δρ1

κ
− ρ2

)∫ 1

0

φxtutdx.

Furthermore, we take

N1 = 3ηc, N2 = N4 = N5 = 1, η0 =
ηcρ1

N3

,
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to get

L′(t) ≤ −ηcρ1

∫ 1

0

u2
tdx+ c

∫ 1

0

φ2
tdx−

1

4

(
b− η

(
18κc+ b+ 8

)) ∫ 1

0

u2
xdx

−
(
δN3 − c

)∫ 1

0

φ2
xdx−

1

2

(
ξ − b2

κ

)
N3

∫ 1

0

φ2dx+ c

∫ 1

0

g2
2(z(x, 1))dx

− τe−τ
∫ 1

0

∫ 1

0

G(z(x, ρ))dρdx+ c

∫ 1

0

g2
1(φt)dx+

(
δρ1

κ
− ρ2

)∫ 1

0

φxtutdx.

(5.4.14)

Now, we select η < b
18κc+b+8

and then we choose N3 large enough such that

δN3 − c > 0.

Thus, due to κξ > b2 and (5.4.14), we end up with

L′(t) ≤ −c
∫ 1

0

[
u2
t + φ2

t + u2
x + φ2

x + φ2 +

∫ 1

0

G(z(x, ρ))dρ

]
dx+ c

∫ 1

0

φ2
tdx

+ c

∫ 1

0

g2
1(φt)dx+ c

∫ 1

0

g2
2(z(x, 1))dx+

(
δρ1

κ
− ρ2

)∫ 1

0

φxtutdx.

(5.4.15)

In the other hand, from (5.2.5), we obtain by using Young’s inequality that

E(t) ≤
∫ 1

0

[
ρ1u

2
t + ρ2φ

2
t +

(
κ+ b

)
u2
x + δφ2

x +
(
ξ + b

)
φ2 + 2τγ

∫ 1

0

G(z(x, ρ))dρ

]
dx.

This relation, together with (5.4.15), gives the desired estimate (5.4.13).

5.4.2 General decay rates for equal speeds of wave propagation.

In this subsection, we study the decay of solution of our problem (5.2.1) in the case ρ1
κ

= ρ2
δ

.

Theorem 5.4.7. Let U0 ∈ H. Assuming that (A1)-(A3) are fulfilled, κξ > b2 and that

ρ1

κ
=
ρ2

δ
.

Then, there exist some positive constants ς, ς1, ς2 and ε0 such that the solution of (2.2.1)
satisfies

E(t) ≤ ς K−1
1

(
ς1t+ ς2

)
∀t > 0, (5.4.16)

where

K1(t) =

∫ 1

t

1

K(s)
ds and K(t) = tH ′(ε0t). (5.4.17)

Proof. Since ρ1
κ

= ρ2
δ

, then we can easily show, for N sufficiently large, that the functional L
given by (5.4.12) is equivalent to E, i.e.,

L ∼ E.
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Consider the following two sets:

D1 =
{
x ∈ [0, 1] : |φt| ≤ ε

}
, D2 =

{
x ∈ [0, 1] : |φt| > ε

}
.

Then, by recalling (5.2.2), (A2) and (5.4.1), we obtain that

L′(t) ≤−m0E(t)− cE ′(t) + c

∫
D1

H−1
(
φtg1(φt)

)
dx.

Hence, the function L0 = L+ cE satisfies

L0 ∼ E

and

L′0(t) ≤−m0E(t) + c

∫
D1

H−1
(
φtg1(φt)

)
dx. (5.4.18)

Now, we discuss the following two cases:
1. H is linear on [0, ε]: In this case, one has for some positive constant c′,

L′0(t) ≤ −m0E(t)− c′E ′(t).

Then, L1 = L0 + c′E ∼ E satisfies

L1(t) ≤ L1(0)e−ct,

which implies that
E(t) ≤ C

(
E(0)

)
e−ct.

2. H is non-linear on [0, ε]: We note that, by using Jensen’s inequality and the concavity
of H−1, the following inequality holds∫

D1

H−1
(
φtg1(φt)

)
dx ≤ cH−1

(∫
D1

φtg1(φt)dx

)
.

Substituting this latter estimate in (5.4.18), we get

L′0(t) ≤−m0E(t) + cH−1

(∫
D1

φtg1(φt)dx

)
. (5.4.19)

Let us define for ε0 < ε and m1 > 0

L(t) =H ′
(
ε0
E(t)

E(0)

)
L0(t) +m1E(t).

Then, one can easily see that, for some fixed positive constants v0 and v1,

v0L(t) ≤ E(t) ≤ v1L(t) (5.4.20)

and

L′(t) = ε0
E ′(t)

E(0)
H ′′
(
ε0
E(t)

E(0)

)
L0(t) +H ′

(
ε0
E(t)

E(0)

)
L′0(t) +m1E

′(t).
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As H is an increasing-convex function, we have that H ′ > 0 and H ′′ > 0. Using these facts
with (5.4.19) and E ′ ≤ 0, it results

L′(t) ≤−m0E(t)H ′
(
ε0
E(t)

E(0)

)
+ cH ′

(
ε0
E(t)

E(0)

)
H−1

(∫
D1

φtg1(φt)dx

)
+m1E

′(t).

(5.4.21)
Let H∗ be the convex conjugate of H, then testing (5.2.7) with

A = H ′
(
ε0
E(t)

E(0)

)
and B = H−1

(∫
D1

φtg1(φt)dx

)
,

we get

H ′
(
ε0
E(t)

E(0)

)
H−1

(∫
D1

φtg1(φt)dx

)
≤ H∗

(
H ′
(
ε0
E(t)

E(0)

))
+

∫
D1

φtg1(φt)dx.

Making use of H∗(s) ≤ s(H ′)−1(s) and (5.4.1), we have

H ′
(
ε0
E(t)

E(0)

)
H−1

1

(∫
D1

φtg1(φt)dx

)
≤ ε0

E(t)

E(0)
H ′
(
ε0
E(t)

E(0)

)
− cE ′(t). (5.4.22)

A simple substitution of (5.4.22) into (5.4.21) gives us

L′(t) ≤ −
(
m0E(0)− cε0

)E(t)

E(0)
H ′
(
ε0
E(t)

E(0)

)
+
(
m1 − c

)
E ′(t).

Fexing ε0 sufficiently small, so that m0E(0) − cε0 > 0, then for m1 > c, we can find a fixed
positive constant ς0 such that

L′(t) ≤ −ς0
E(t)

E(0)
H ′
(
ε0
E(t)

E(0)

)
= −ς0K

(
E(t)

E(0)

)
, (5.4.23)

where K(t) = tH ′(ε0t). Moreover, with L1(t) = v0L(t)
E(0)

it obvious that L1(t) ≤ E(t)
E(0)
≤ 1 and

L1 ∼ E. Thus, inequality (5.4.23) may be transformed into

L′1(t) ≤ −ς1K
(
L1(t)

)
. (5.4.24)

By the definition of K1, we know that

K ′1(t) = − 1

K(t)
< 0, ∀t ≥ 0,

which, combined with (5.4.24), implies

L′1(t) ≤ ς1

K ′1
(
L1(t)

) ,
that is, [

K1(L1(t))
]′ ≥ ς1,

by integrating over [0, t], we yield that

K1

(
L1(t)

)
≥ ς1t+K1

(
L1(0)

)
,

using then the non-increasing property of K−1
1 , we obtain

L1(t) ≤ K−1
1

(
ς1t+ ς2

)
.

This, together with L1 ∼ E, gives us the desired result in Theorem 5.4.7.
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5.4.3 General decay rates for non-equal speeds of wave propagation

In this subsection, we investigate the situation when ρ1
κ
6= ρ2

δ
, which is more realistic in the

view of physics. For that purpose, we consider the following hypotheses:
(A4) g1 : R −→ R is a strictly increasing function of class C1 such that it exist ε < 1, c3 and
a C1-function H : R+ −→ R+ which is linear on [0, ε] or non-decreasing and convex function
of class C2 with H(0) = H ′(0) = 0 such that{

|g1(s)| ≤ c3|s| if |s| > ε,

g2
1(s) ≤ H−1

(
sg1(s)

)
if |s| ≤ ε.

(5.4.25)

(A5) Also, we assume that

|µ2| < min

(
α1

α2

,
λ1

λ2

)
µ1.

We now present the general decay result in the non-equal speeds case.

Theorem 5.4.8. Let U0 ∈ H0. Assuming that (A2), (A4), (A5) hold, κξ > b2 and that

ρ1

κ
6= ρ2

δ
.

Then, it exist some positive constants w and w1 such that for any t > 0,

E(t) ≤ wK−1
(w1

t

)
. (5.4.26)

Proof. In view of Lemma 5.2.5 and (A5), we obtain that

F ′(t) ≤ −β3

∫ 1

0

φ2
xtdx ∀t ≥ 0, (5.4.27)

where β3 = λ1µ1 − λ2|µ2| > 0.
In the sequel, we introduce the following Lyapunov functional

G0(t) = MF(t) + L(t), (5.4.28)

where L is defined in Lemma 5.4.6 and M is a fixed positive constant to be determined
posteriori. Before go further, it should be mentioned that G0 is not equivalent to E. Then,
by combining (5.4.13) and (5.4.27), we find that for any t ≥ 0,

G ′0(t) ≤−m0E(t)− β3M

∫ 1

0

φ2
xtdx+

(
δρ1

κ
− ρ2

)∫ 1

0

φxtutdx

+ c

∫ 1

0

φ2
tdx+ c

∫ 1

0

g2
1(φt)dx+ c

∫ 1

0

g2
2(z(x, 1))dx.

Utilizing Young’s and Poincaré’s inequalities and (5.2.5), it follows that

G ′0(t) ≤−
(
m0 − η1

)
E(t)−

(
β3M − cη1 − c

) ∫ 1

0

φ2
xtdx+ c

∫ 1

0

g2
1(φt)dx+ c

∫ 1

0

g2
2(z(x, 1))dx.
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Fixing η1 < m0 and then taking M sufficiently large, so that β3M − cη1 − c ≥ 0, we obtain
for d0 > 0,

G ′0(t) ≤− d0E(t) + c

∫ 1

0

g2
1(φt)dx+ c

∫ 1

0

g2
2(z(x, 1))dx.

By exploiting (A2), (5.4.25) and (5.4.1), it holds that

G ′0(t) ≤− d0E(t)− cE ′(t) +

∫
D1

H−1
(
φtg1(φt)

)
dx.

In summary, the functional G1(t) = G0(t) + cE(t) fulfills

G ′1(t) ≤− d0E(t) +

∫
D1

H−1
(
φtg1(φt)

)
dx. (5.4.29)

As in the proof of Theorem 5.4.7, we distinguish the following two cases:
1. H is linear on [0, ε]: By (5.4.1), one obtains for a fixed positive constant c′,

G ′1(t) ≤ −d0E(t)− c′E ′(t).

Then, the functional G2(t) = G1(t) + c′E(t), satisfies

G ′2(t) ≤ −d0E(t).

Integrating the above inequality on [0, t] and using the non-increasing property of E, we yield
that

tE(t) ≤
∫ t

0

E(s)ds ≤ 1

d0

G2(0).

Hence, for d > 0 we have

E(t) ≤ d

t
∀t > 0.

2. H is non-linear on [0, ε]: Analogously to the second part of the proof of Theorem 5.4.7,
we find that the functional

G3(t) = H ′
(
ε0
E(t)

E(0)

)
G1(t) + d1E(t)

satisfies, for a fixed positive constant w0, the following property

G ′3(t) ≤ −w0K

(
ε0
E(t)

E(0)

)
.

An integration over [0, t] yields∫ t

0

K

(
ε0
E(s)

E(0)

)
ds ≤ 1

w0

G3(0).

Since E ′ ≤ 0 and K ′ > 0, then the map t 7−→ K
(
ε0

E(t)
E(0)

)
is non-increasing. This gives that

tK

(
ε0
E(t)

E(0)

)
≤
∫ t

0

K

(
ε0
E(s)

E(0)

)
ds,
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and so

tK

(
ε0
E(t)

E(0)

)
≤ 1

w0

G3(0).

Consequently, for w,w1 > 0 we have

E(t) ≤ wK−1
(w1

t

)
∀t > 0.

This ends the proof of Theorem 5.4.8.



Chapter 6

Stability result of the Bresse system
with delay and boundary feedback

6.1 Introduction

Let 0 < T ≤ ∞, L > 0. We denote by ϕ = ϕ(x, t) : [0, L] × [0, T ] −→ IR, ψ = ψ(x, t) :
[0, L] × [0, T ] −→ IR and ω = ω(x, t) : [0, L] × [0, T ] −→ IR, the longitudinal, vertical and
shear angle displacements of the cross section at x ∈ (0, L) and at time t ∈ (0, t), respectively.
The original Bresse system is given by the following equations (see [70]):

ρ1ϕtt = Qx + lN + F1,
ρ2ψtt = Mx −Q+ F2,
ρ1ωtt = Nx − lQ+ F3,

(6.1.1)

where we use N,Q and M to denote the axial force, the shear force and the bending moment
respectively. These forces are stress-strain relations for elastic behavior and given by

N = K0(ωx − lϕ), Q = K(ϕx + ψ + lω) and M = bψx,

where K,K0 and b are positive constants. Here ρ1 = ρA, ρ2 = ρI, K0 = EA, K = K ′GA,
b = EI and l = R−1. Coefficients aforementioned, all assumed positive, represent:

- ρ the density, - E the modulus of elasticity,

- G the shear modulus, - K ′ the shear factor,

- A the cross-sectional area, - I the second moment of area of the cross section,

- R the radius of curvature, - l the curvature l = 1/R.

Finally, by the terms Fi we are denoting external forces. Therefore, the evolutive problem
can be written as

ρ1ϕtt −K(ϕx + ψ + lω)x −K0l(ωx − lϕ) = 0 in [0, L]× [0, T ],

ρ2ψtt − bψxx +K(ϕx + ψ + lω) = 0 in [0, L]× [0, T ],

ρ1ωtt −K0(ωx − lϕ)x +Kl(ϕx + ψ + lω) = 0 in [0, L]× [0, T ]

(6.1.2)

102



6.1 Introduction 103

when the external forces are null.
It is known that the system (6.1.2) for l = 0 reduces to the standard Timoshenko system

when ω = 0. Many authors have established several results dealing with global existence
and the stability behavior of the two systems using different kinds of dampings. It has been
shown that the stability depends on the nature and position of the controls and some relations
between the coefficients.

A few works adressed the issue of stability of the Bresse system with delays ( see [117-
119].) The authors of [117] have treated (6.1.1) when

F1 = −µ1ϕt − µ2ϕt(x, t− τ1),

F2 = −µ̃1ψt − µ̃2ψt(x, t− τ2),

F3 = − ˜̃µ1ωt − ˜̃µ2ωt(x, t− τ3),

(6.1.3)

with homogeneous Dirichlet boundary conditions. Under suitable assumptions on the weight
of the delayed feedbacks and the weight of the non-delayed ones, they obtained an exponential
rate of decay of solutions by making use of a multiplier method. This work was extended by
the same authors in [118] to the nonlinear case.

In this paper we investigate the global well-posedness and the boundary stabilization of
the linear Bresse system in bounded interval [0, L].
ρ1ϕtt − κ(ϕx + ψ + lω)x − κ0l(ωx − lϕ) + a1ϕt(x, t− τ) = 0 in [0, L]× [0,+∞[,

ρ2ψtt − bψxx + κ(ϕx + ψ + lω) + a2ψt(x, t− τ) = 0 in [0, L]× [0,+∞[,

ρ1ωtt − κ0(ωx − lϕ)x + κl(ϕx + ψ + lω) + a3ωt(x, t− τ) = 0 in [0, L]× [0,+∞[.
(6.1.4)

System (6.1.4) is subjected to the following boundary conditions:
κ(ϕx + ψ + lω)(L, t) = −ϕt(L, t) in [0,+∞[,

bψx(L, t) = −ψt(L, t) in [0,+∞[,

κ0(ωx − lϕ)(L, t) = −ωt(L, t) in [0,+∞[,

ϕ(0, t) = ψ(0, t) = ω(0, t) = 0 in [0,+∞[,

(6.1.5)

where (x, t) ∈ (0, L)×(0,+∞) and L > 0 and the parameters a1, a2, a3, α, µ and γ are positive
constants. The system is completed with the following initial conditions:

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), in [0, L],

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), in [0, L]

ω(x, 0) = ω0(x), ωt(x, 0 = ω1(x) in [0, L]

ϕt(x, t− τ) = f1(x, t− τ) in [0, L]× [0, τ ],

ψt(x, t− τ) = f2(x, t− τ) in [0, L]× [0, τ ],

ωt(x, t− τ) = f3(x, t− τ) in [0, L]× [0, τ ],

(6.1.6)

where τ > 0 is the time delay. The initial data (ϕ0, ϕ1, ψ0, ψ1, ω0, ω1, f1, f2, f3) belong to a
suitable Sobolev space. By ω, ψ and ϕ we are denoting the longitudinal, vertical and shear
angle displacements.
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Concerning the boundary stabilization of the Timoshenko system with delays, we would
like to mention the contribution of Said-Houari and Soufyane, (see [75]) in which the authors
proved the global well-posedness and exponential decay of energy by assuming the weights of
the delay are small enough. For more results concerning Timoshenko system with delay, one
can refer to the previous studies [68]-[74] and so on.

Comparing our result with the work of Feng, (see [77]) he studied for laminated Tim-
oshenko beams with time delays and boundary feedbacks, he has proved the global well-
posedness and exponential decay of energy by assuming the weights of the delay are small
enough.

The main objectives of the present chapter are to establish the global well-posedness and
exponential stability of the problem (6.1.4)− (6.1.6).

Our purpose in this paper is to give a global solvability in Sobolev spaces and energy decay
estimates of the solutions to the problem (6.1.4)− (6.1.6) for linear damping and delay terms.
To obtain global solutions to the problem (6.1.4) − (6.1.6), we use the argument combining
the semigroup theory (see [36] and [72]) with the energy estimate method. To prove decay
estimates, we use a multiplier method.

6.2 Well-posedness of the problem

In this section, we prove the global existence and the uniqueness of the solution of system
(6.1.4)-(6.1.6). For this purpose, we adopt the technique of [36] (see also [76] ) to prove that
the operator A defined in (6.2) generates a contraction semigroup on the Hilbert space H
given by (6.2).

So, let us introduce the following new variables:

z1(x, ρ, t) = ϕt(x, t− τρ), x ∈ [0, L], ρ ∈ [0, 1], t > 0,
z2(x, ρ, t) = ψt(x, t− τρ), x ∈ [0, L], ρ ∈ [0, 1], t > 0,
z3(x, ρ, t) = ωt(x, t− τρ), x ∈ [0, L], ρ ∈ [0, 1], t > 0.

Then, it is easy to check that

τzit(x, ρ, t) + ziρ(x, ρ, t) = 0, in [0, L]× [0, 1]× [0,+∞] for i = 1, 2, 3.

Therefore, our problem (6.1.4)− (6.1.6) is equivalent to:

ρ1ϕtt(x, t)−K(ϕx + ψ + lω)x(x, t)−K0l(ωx − lϕ)(x, t) + a1z1(x, 1, t) = 0,

τz1t(x, ρ, t) + z1ρ(x, ρ, t) = 0,

ρ2ψtt(x, t)− bψxx(x, t) +K(ϕx + ψ + lω)(x, t) + a2z2(x, 1, t) = 0,

τz2t(x, ρ, t) + z2ρ(x, ρ, t) = 0,

ρ1ωtt(x, t)−K0(ωx − lϕ)x(x, t) +Kl(ϕx + ψ + lω)(x, t) + a3z3(x, 1, t) = 0,

τz3t(x, ρ, t) + z3ρ(x, ρ, t) = 0.

(6.2.1)

Now, we present a short discussion of the well-posedness, and semigroup formulation of
the initial boundary value problem (6.2.1), (6.1.5) and (6.1.6). For this purpose, let U =
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(ϕ, ϕt, z1, ψ, ψt, z2, ω, ωt, z3)T , then U satisfies the problem{
U ′ = AU,

U(0) =
(
ϕ0, ϕ1, f1(.,−.τ), ψ0, ψ1, f2(.,−.τ), ω0, ω1, f3(.,−.τ)

)T
,

where the operator A is defined by

A



ϕ
u
z1

ψ
v
z2

ω
ω̃
z3


=



u
K

ρ1

(ϕx + ψ + lω)x +
lK0

ρ1

(ωx − lϕ)− a2

ρ1

z1(., 1)

−τ−1z1ρ

v
b

ρ2

ψxx −
K

ρ2

(ϕx + ψ + lω)− a2

ρ2

z2(., 1)

−τ−1z2ρ

ω̃
K0

ρ1

(ωx − lϕ)x −
lK

ρ1

(ϕx + ψ + lω)− a3

ρ1

z3(., 1)

−τ−1z3ρ


with domain

D(A) =


(ϕ, u, z1, ψ, v, z2, ω, ω̃, z3)T ∈ H,

u = z1(., 0), v = z2(., 0), ω̃ = z3(., 0), in (0, L),
K(ϕx + ψ + lω)(L) = −αu(L), bψx(L) = −µv(L),

K0(ωx − lϕ)(L) = −γω̃(L)

 ,

where

H = (H2(0, L) ∩H1
∗ (0, L)×H1

∗ (0, L)× (H2(0, L) ∩H1
∗ (0, L)×H1

∗ (0, L)
×L2(0, 1, H1(0, L))× L2(0, 1, H1(0, L)),

and
H1
∗ (0, L) =

{
f ∈ H1(0, L) : f(0) = 0

}
.

Now, the energy space H is defined as follows:

H := H1
∗ (0, L)× L2(0, L)×H1

∗ (0, L)× L2(0, L)× L2((0, L)× (0, 1))× L2((0, L)× (0, 1)).

For U = (ϕ, u, z1, ψ, v, z2, ω, ω̃, z3)T , U = (ϕ, u, z1, ψ, v, z2, ω, ω̃, z3)T and for ξi positive con-
stants, we define the inner product in H as follows:

〈U,U〉H =

∫ L

0

[
ρ1uu+ ρ2vv + ρ1ω̃ω̃ + bψxψx +K(ϕx + ψ + lω)(ϕx + ψ + lω)

+K0(ωx − lϕ)(ωx − lϕ) +
3∑
i=1

ξi

∫ 1

0

zi(x, ρ)zi(x, ρ) dρ
]
dx.

The existence and uniqueness results read as follows.
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Theorem 6.2.1. For any U0 ∈ H, there exists a unique solution U ∈ C([0,+∞),H) of
problem (6.2). Moreover, if U0 ∈ D(A), then

U ∈ C([0,+∞);D(A)) ∩ C1([0,+∞);H).

Proof. In order to prove the result stated in Theorem 6.2.1, we will use the semigroup ap-
proach. That is, we will show that the operator A generates a C0−semigroup in H. In
this step, we concern ourselves to prove that the operator A is dissipative. Indeed, for
U = (ϕ, u, z1, ψ, v, z2, ω, ω̃, z3)T , we have

〈AU,U〉H =− αu2(L)− µv2(L)− γω̃2(L)− a1

∫ L

0

z1(x, 1)u dx− a2

∫ L

0

z2(x, 1)v dx

− a3

∫ L

0

z3(x, 1)ω̃dx−
3∑
i=1

ξi
τ

∫ L

0

∫ 1

0

zi(x, ρ)ziρ(x, ρ) dρ dx.

(6.2.2)
Looking now at the last two terms of the right-hand side of (6.2.2), we have

3∑
i=1

ξi

∫ L

0

∫ 1

0

zi(x, ρ)ziρ(x, ρ) dρ dx =
3∑
i=1

ξi

∫ L

0

∫ 1

0

1

2

∂

∂ρ
z2
i (x, ρ) dρ dx

=
3∑
i=1

ξi
2

∫ L

0

[
z2
i (x, 1)− z2

i (x, 0)
]
dx.

(6.2.3)

Consequently, (6.2.3) becomes

〈AU,U〉H =− αu2(L)− µv2(L)− γω̃2(L)− a1

∫ L

0

z1(x, 1)u dx− a2

∫ L

0

z2(x, 1)v dx

− a3

∫ L

0

z3(x, 1)ω̃ dx−
3∑
i=1

ξi
2τ

∫ L

0

[
z2
i (x, 1)− z2

i (x, 0)
]
dx.

(6.2.4)
By using Young’s inequality, we obtain from (6.2.4) that

〈AU,U〉H ≤− αu2(L)− µv2(L)− γω̃2(L)− ξ1

4τ

∫ L

0

z2
1(x, 1) dx

+
(a2

1τ

ξ1

+
ξ1

2τ

)∫ L

0

u2 dx− ξ2

4τ

∫ L

0

z2
2(x, 1) dx+

(a2
2τ

ξ2

+
ξ2

2τ

)∫ L

0

v2 dx

− ξ3

4τ

∫ L

0

z2
3(x, 1) dx+

(a2
3τ

ξ3

+
ξ3

2τ

)∫ L

0

ω̃2 dx

≤ max

(
1

ρ1

(a2
1τ

ξ1

+
ξ1

2τ

)
,

1

ρ2

(a2
2τ

ξ2

+
ξ2

2τ

)
,

1

ρ1

(a2
3τ

ξ3

+
ξ3

2τ

))
〈U,U〉H

= c1〈U,U〉H.

Consequently, the operator A − c1I is dissipative. To show that A is maximal monotone,
it is sufficient to show that the operator λI − A is surjective for fixed λ > 0. Indeed,
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given (h1, h2, h3, h4, h5, h6, h7, h8, h9)T ∈ H, we seek U = (ϕ, u, z1, ψ, v, z2, ω, ω̃, z3)T ∈ D(A)
solution of the following system of equations

λϕ− u = h1,

λu− K

ρ1

(ϕx + ψ + lω)x −
lK0

ρ1

(ωx − lϕ) +
a1

ρ1

z1(., 1) = h2,

λz1 +
1

τ
z1ρ = h3,

λψ − v = h4,

λv − b

ρ2

ψxx +
K

ρ2

(ϕx + ψ + lω) +
a2

ρ2

z2(., 1) = h5,

λz2 +
1

τ
z2ρ = h6,

λω − ω̃ = h7,

λω̃ − K0

ρ1

(ωx − lϕ)x +
lK

ρ1

(ϕx + ψ + lω) +
a3

ρ1

z3(., 1) = h8,

λz3 +
1

τ
z3ρ = h9.

(6.2.5)

Suppose that we have found (ϕ, ψ, ω) with the appropriate regularity, then
u = λϕ− h1,
v = λψ − h4,
ω̃ = λω − h7.

(6.2.6)

It is clear that u ∈ H1
∗ (0, L), v ∈ H1

∗ (0, L) and ω ∈ H1
∗ (0, L). Furthermore, by (6.2.5), we can

find zi(i = 1, 2, 3) as

z1(x, 0) = u(x), z2(x, 0) = v(x), z3(x, 0) = ω̃(x), for x ∈ (0, L). (6.2.7)

Following the same approach as in [36], we obtain, by using equations for zi in (6.2.5),

z1(x, ρ) = u(x)e−λτρ + τ1e
−λτρ

∫ ρ

0

h3(x, s)eλτs ds,

z2(x, ρ) = v(x)e−λτρ + τe−λτρ
∫ ρ

0

h6(x, s)eλτs ds,

z3(x, ρ) = ω̃(x)e−λτρ + τe−λτρ
∫ ρ

0

h9(x, s)eλτs ds.

From (6.2.6), we obtain
z1(x, ρ) = λϕ(x)e−λτρ − h1e

−λτρ + τe−λτρ
∫ ρ

0

h3(x, s)eλτs ds,

z2(x, ρ) = λψ(x)e−λτρ − h4e
−λτρ + τ2e

−λτρ
∫ ρ

0

h6(x, s)eλτs ds,

z3(x, ρ) = λω(x)e−λτρ − h7e
−λτρ + τe−λτρ

∫ ρ

0

h9(x, s)eλτs ds.

(6.2.8)
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By using (6.2.5) and (6.2.6) the functions ϕ, ψ and ω satisfy the following system

λ2ϕ− K

ρ1

(ϕx + ψ + lω)x −
lK0

ρ1

(ωx − lϕ) +
a1

ρ1

z1(., 1) = h2 + λh1,

λ2ψ − b

ρ2

ψxx +
K

ρ2

(ϕx + ψ + lω) +
a2

ρ2

z2(., 1) = h5 + λh4,

λ2ω − K0

ρ1

(ωx − lϕ)x +
lK

ρ1

(ϕx + ψ + lω) +
a3

ρ1

z3(., 1) = h8 + λh7.

(6.2.9)

Using the following

z1(x, 1) = u(x)e−λτ + τe−λτ
∫ 1

0

h3(x, s)eλτs ds = λϕe−λτ + z0
1(x),

z2(x, 1) = v(x)τe−λτ + τe−λτ
∫ 1

0

h6(x, s)eλτs ds = λψe−λτ + z0
2(x),

z3(x, 1) = ω̃(x)e−λτ + τe−λτ
∫ 1

0

h9(x, s)eλτs ds = λωe−λτ + z0
3(x),

where for x ∈ (0, L),

z0
1(x) = −h1(x)e−λτ + τe−λτ

∫ 1

0

h3(x, s)eλτ1s ds,

z0
2(x) = −h4(x)e−λτ + τe−λτ

∫ 1

0

h6(x, s)eλτs ds,

z0
3(x) = −h7(x)e−λτ + τe−λτ

∫ 1

0

h9(x, s)eλτs ds.

The problem (6.2.9) can be reformulated as

∫ L

0

[
λ2ϕ− K

ρ1

(ϕx + ψ + lω)x −
lK0

ρ1

(ωx − lϕ) +
a1

ρ1

λϕe−λτ
]
ω1 dx

=

∫ L

0

[
h2 + λh1 −

a1

ρ1

z0
1(x)

]
ω1 dx, ∀ω1 ∈ H1

∗ (0, L),∫ L

0

[
λ2ψ − b

ρ2

ψxx +
K

ρ2

(ϕx + ψ + lω) +
a2

ρ2

λψe−λτ
]
ω2 dx

=

∫ L

0

[
h5 + λh4 −

a2

ρ2

z0
2(x)

]
ω2 dx, ∀ω2 ∈ H1

∗ (0, L),∫ L

0

[
λ2ω − K0

ρ1

(ωx − lϕ)x +
lK

ρ1

(ϕx + ψ + lω) +
a3

ρ1

λωe−λτ
]
ω3 dx

=

∫ L

0

[
h8 + λh7 −

a3

ρ1

z0
3(x)

]
ω3 dx, ∀ω3 ∈ H1

∗ (0, L).

(6.2.10)

Integrating Eqs. (6.2.10)1-(6.2.10)3 by parts and then summing the resultants, we obtain the
following problem which is equivalent to (6.2.10)

φ((ϕ, ψ, ω), (ω1, ω2, ω3)) = I(ω1, ω2, ω3)), (6.2.11)
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where the bilinear form φ : [H1
∗ (0, L)×H1

∗ (0, L)×H1
∗ (0, L)]2 → R and the linear form

I : H1
∗ (0, L)×H1

∗ (0, L)×H1
∗ (0, L)→ R are defined by

φ
(
(ϕ, ψ, ω), (ω1, ω2, ω3)

)
=

∫ L

0

(
λ2 +

a1

ρ1

λe−λτ
)
ϕω1 dx+

∫ L

0

K

ρ1

(ϕx + ψ + lω)(ω1)xdx

− lK0

ρ1

∫ L

0

(ωx − lϕ)ω1dx+
α

ρ1

λϕ(L)ω1(L)

+

∫ L

0

(
λ2 +

a2

ρ2

λe−λτ
)
ψω2 dx+

b

ρ2

∫ L

0

ψx(ω2)x dx

+
K

ρ2

∫ L

0

(ϕx + ψ + lω)ω2 dx+
µ

ρ2

λψ(L)ω2(L)

+

∫ L

0

(
λ2 +

a3

ρ1

λe−λτ
)
ωω3 dx+

∫ L

0

K0

ρ1

(ωx − lϕ)(ω3)x dx

+
lK

ρ1

∫ L

0

(ϕx + ψ + lω)ω3 dx+
γ

ρ1

λω(L)ω3(L),

and

I
(
ω1, ω2, ω3

)
=

∫ L

0

(h2 + λh1 −
a1

ρ1

z0
1(x)).ω1 dx+

∫ L

0

(h5 + λh4 −
a2

ρ2

z0
2(x)).ω2 dx

+

∫ L

0

(h8 + λh7 −
a3

ρ1

z0
3(x))ω3 dx+

α

ρ1

h1(L)ω1(L)

+
µ

ρ2

h4(L)ω2(L) +
γ

ρ1

h7(L)ω3(L).

It is easy to verify that φ is continuous and coercive, and I is continuous. So applying the
Lax-Milgram theorem, we deduce that for all (ω1, ω2, ω3) ∈ H1

∗ (0, L) ×H1
∗ (0, L) ×H1

∗ (0, L),
problem (6.2.11) admits a unique solution (ϕ, ψ, ω) ∈ H1

∗ (0, L)×H1
∗ (0, L)×H1

∗ (0, L). By the
classical elliptic regularity, we deduce that (ϕ, ψ, ω) ∈ (H2(0, L) ∩ H1

∗ (0, L)) × (H2(0, L) ∩
H1
∗ (0, L))× (H2(0, L)∩H1

∗ (0, L)). Therefore, the operator λI−A is surjective for any λ > 0.
Hence, −A is maximal monotone operator. Thanks to Lummer-Phillips theorem, we conclude
that the operator A generates a linear C0-semigroup in H and so (4.2.1) is well-posed (see
Pazy [94]).

6.3 Asymptotic stability

In this section, we study the asymptotic behaviour of system (6.1.4)-(6.1.6). For any regular
solution of (6.1.4)-(6.1.6), we define the energy by the following formula

E(t) =
1

2

∫ L

0

[
ρ1|ϕt|2 + ρ2|ψt|2 + ρ1|ωt|2 + b|ψx|2 +K|ϕx + ψ + lω|2 +K0|ωx − lϕ|2

]
dx

+
ξ1

2

∫ t

t−τ

∫ L

0

ϕ2
t (x, s) dx ds+

ξ2

2

∫ t

t−τ

∫ L

0

ψ2
t (x, s) dx ds+

ξ3

2

∫ t

t−τ

∫ L

0

ω2
t (x, s) dx ds,

(6.3.1)
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where ξ1, ξ2 and ξ3 are strictly positive numbers that will be chosen later. The main result
of this section is:

Theorem 6.3.1. Let (ϕ, ψ, ω) be a regular solution of (6.1.4)-(6.1.6). Assume that

6KL2

π2
≤ b, l ≤ 1

4L
min

(√
K

K0

,

√
K0

K

)
,

and that it exist small enough positive constants a0
i satisfying 0 ≤ ai < a0

i , i = 1, 2, 3. Then,

E(t) ≤ C1e
−C2t, ∀ t ≥ 0, (6.3.2)

while C1 and C2 are two fixed positive constants.

The proof of Theorem 6.3.1 will be done through some Lemmas.

Lemma 6.3.2. For any regular solution of (6.1.4)-(6.1.6) the following estimate holds:

E ′(t) ≤− αϕ2
t (L, t) +

(
a1 + ξ1

2

)∫ L

0

ϕ2
t (x, t) dx+

(
a1 − ξ1

2

)∫ L

0

ϕ2
t (x, t− τ) dx

− µψ2
t (L, t) +

(
a2 + ξ2

2

)∫ L

0

ψ2
t (x, t) dx+

(
a2 − ξ2

2

)∫ L

0

ψ2
t (x, t− τ) dx

− γω2
t (L, t) +

(
a3 + ξ3

2

)∫ L

0

ω2
t (x, t) dx+

(
a3 − ξ3

2

)∫ L

0

ω2
t (x, t− τ) dx.

(6.3.3)

Proof. Differentiating (6.3.1), we get

E ′(t) =

∫ L

0

ρ1ϕtϕttdx+

∫ L

0

ρ2ψtψttdx+

∫ L

0

ρ1ωtωttdx+

∫ L

0

bψxψxtdx

+

∫ L

0

K(ϕx + ψ + lω)(ϕx + ψ + lω)tdx+

∫ L

0

K0(ωx − lϕ)(ωx − lϕ)tdx

+
ξ1

2

∫ L

0

ϕ2
t (x, t) dx−

ξ1

2

∫ L

0

ϕ2
t (x, t− τ) dx+

ξ2

2

∫ L

0

ψ2
t (x, t) dx

− ξ2

2

∫ L

0

ψ2
t (x, t− τ) dx+

ξ3

2

∫ L

0

ω2
t (x, t) dx−

ξ3

2

∫ L

0

ω2
t (x, t− τ) dx.

Now, using the equations in (6.1.4) and exploiting the boundary conditions in (6.1.5), we
obtain

E ′(t) ≤− αϕ2
t (L, t) +

ξ1

2

∫ L

0

ϕ2
t (x, t) dx− a1

∫ L

0

ϕt(x, t− τ)ϕt(x, t) dx

− µψ2
t (L, t) +

ξ2

2

∫ L

0

ψ2
t (x, t) dx− a2

∫ L

0

ψt(x, t− τ)ψt(x, t) dx

− γω2
t (L, t) +

ξ3

2

∫ L

0

ω2
t (x, t) dx− a3

∫ L

0

ϕt(x, t− τ)ϕt(x, t) dx

− ξ1

2

∫ L

0

ϕ2
t (x, t− τ) dx− ξ2

2

∫ L

0

ψ2
t (x, t− τ) dx− ξ3

2

∫ L

0

ω2
t (x, t− τ) dx.

(6.3.4)
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Applying Young’s inequality to the first three terms in (6.3.4), then (6.3.3) holds true. This
completes the proof of Lemma 6.3.2.

Next, we define the following functional:

F(t) =

∫ L

0

(
ρ1xϕt(ϕx + lω) + ρ2xψtψx + ρ1xωt(ωx − lϕ)

)
dx. (6.3.5)

Then we have the following estimate:

Lemma 6.3.3. Let (ϕ, ψ, ω) be the solution of (6.1.4)-(6.1.6). Then we have, for any ε1, ε2,
ε3, δ1, β1, β2, β3 > 0,

F ′(t) ≤− ρ1

2

∫ L

0

ϕ2
tdx−

ρ2

2

∫ L

0

ψ2
t dx−

ρ1

2

∫ L

0

ω2
t dx

+

(
a1Lε1 +

L2

4β1

)∫ L

0

(ϕx + lω)2 dx

+

(
a2Lε2 +

c∗

4β2

+ δ1c2 −
b

2

)∫ L

0

ψ2
x dx

+

(
β2K

2 + β3K
2l2 − K

2

)∫ L

0

(ϕx + ψ + lω)2 dx

+

(
a3Lε3 +

L2

4β3

+ β1K
2
0 l

2 − K0

2

)∫ L

0

(ωx − lϕ)2 dx

+

(
ρ2L

2
+
µ2L

2b

)
ψ2
t (L, t) +

(
ρ2L

2
+
α2L

2K
+
α2L2

4δ1

)
ϕ2
t (L, t)

+

(
ρ1L

2
+
γ2L

2K0

)
ω2
t (L, t) +

a1L

4ε1

∫ L

0

ϕ2
t (x, t− τ) dx

+
a2L

4ε2

∫ L

0

ψ2
t (x, t− τ) dx+

a3L

4ε3

∫ L

0

ω2
t (x, t− τ) dx,

(6.3.6)

where c∗ = L2/π2 is the Poincaré constant.

Proof. Differentiating the functional F with respect to t and using (6.1.4), we find

F ′(t) =

∫ L

0

Kx(ϕx + ψ + lω)x(ϕx + lω)dx+

∫ L

0

K0lx(ωx − lϕ)(ϕx + lω)dx

+

∫ L

0

bxψxxψxdx−
∫ L

0

Kx(ϕx + ψ + lω)ψxdx+

∫ L

0

K0x(ωx − lϕ)x(ωx − lϕ)dx

−
∫ L

0

Klx(ϕx + ψ + lω)(ωx − lϕ)dx+

∫ L

0

ρ1
x

2

dϕ2
t

dx
dx+

∫ L

0

ρ2
x

2

dψ2
t

dx
dx

+

∫ L

0

ρ1
x

2

dω2
t

dx
dx− a1

∫ L

0

x(ϕx + lω)ϕt(x, t− τ) dx

− a2

∫ L

0

xψxψt(x, t− τ) dx− a3

∫ L

0

x(ωx − lϕ)ωt(x, t− τ) dx.

(6.3.7)
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Remark that

−
∫ L

0

Kx(ϕx + ψ + lω)ψx dx =−KL(ϕx + ψ + lω)(L, t)ψ(L, t)

+

∫ L

0

K(ϕx + ψ + lω)ψ dx

+

∫ L

0

Kx(ϕx + ψ + lω)xψ dx.

(6.3.8)

Substituting (6.3.8) into (6.3.7) and using integration by parts, we obtain that

F ′(t) =−
∫ L

0

ρ1

2
ϕ2
tdx−

∫ L

0

ρ2

2
ψ2
t dx−

∫ L

0

ρ1

2
ω2
t dx−

∫ L

0

K

2
(ϕx + ψ + lω)2dx

−
∫ L

0

b

2
ψ2
xdx−

∫ L

0

K0

2
(ωx − lϕ)2dx+

bL

2
ψ2
x(L, t) +

KL

2
(ϕx + ψ + lω)2(L, t)

+
K0L

2
(ωx − lϕ)2(L, t) +

ρ1L

2
ϕ2
t (L, t) +

ρ2L

2
ψ2
t (L, t) +

ρ1L

2
ω2
t (L, t)

−KL(ϕx + ψ + lω)(L, t)ψ(L, t) +

∫ L

0

K(ϕx + ψ + lω)ψ dx

+K0l

∫ L

0

x(ωx − lϕ)(ϕx + lω)dx−Kl
∫ L

0

x(ϕx + ψ + lω)(ωx − lϕ)dx

− a1

∫ L

0

x(ϕx + lω)ϕt(x, t− τ) dx− a2

∫ L

0

xψx(x, t)ψt(x, t− τ) dx

− a3

∫ L

0

x(ωx − lϕ)ωt(x, t− τ) dx.

(6.3.9)
Using then the boundary conditions (6.1.5), we write

bL

2
ψ2
x(L, t) =

µ2L

2b
ψ2
t (L, t). (6.3.10)

Similarly, we get
KL

2
(ϕx + ψ + lω)2(L, t) =

α2L

2K
ϕ2
t (L, t), (6.3.11)

K0L

2
(ωx − lϕ)2(L, t) =

γ2L

2K0

ω2
t (L, t). (6.3.12)

By the imbedding of W 1,1(0, L) in L∞(0, L), one has

|ψ(L, t)|2 ≤ c1

∫ L

0

(ψ2 + ψ2
x) dx,

which implies by Poincaré’s inequality

|ψ(L, t)|2 ≤ c2

∫ L

0

ψ2
x dx, (6.3.13)
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where c1 and c2 are two fixed positive constants.
Making use of (6.1.5), Young’s inequality and (6.3.13) we obtain for all δ1 > 0 that

−KL(ϕx + ψ + lω)(L, t)ψ(L, t) = αLϕt(L, t)ψ(L, t)

≤ δ1c2

∫ L

0

ψ2
x dx+

α2L2

4δ1

ϕ2
t (L, t).

(6.3.14)

Once again, by Young’s and Poincaré’s inequalities we can get, for any β1, β2, β3 > 0

K0l

∫ L

0

x(ωx − lϕ)(ϕx + lω)dx ≤ β1K
2
0 l

2

∫ L

0

(ωx − lϕ)2 dx+
L2

4β1

∫ L

0

(ϕx + lω)2 dx,

(6.3.15)

K

∫ L

0

(ϕx + ψ + lω)ψ dx ≤ β2K
2

∫ L

0

(ϕx + ψ + lω)2 dx+
c∗

4β2

∫ L

0

ψ2
x dx, (6.3.16)

−Kl
∫ L

0

x(ϕx + ψ + lω)(ωx − lϕ) dx ≤ β3K
2l2
∫ L

0

(ϕx + ψ + lω)2 dx+
L2

4β3

∫ L

0

(ωx − lϕ)2 dx,

(6.3.17)
where c∗ = L2/π2 is the Poincaré constant.

On the other hand, for all ε1, ε2, ε3 > 0, using Young’s inequality then the last two terms
in the right-hand side of (6.3.9) can be estimated as follows:∣∣∣∣a1

∫ L

0

x(ϕx + lω)ϕt(x, t− τ) dx

∣∣∣∣ ≤ a1Lε1

∫ L

0

(ϕx + lω)2 dx+
a1L

4ε1

∫ L

0

ϕ2
t (x, t− τ) dx,

(6.3.18)

∣∣∣∣a2

∫ L

0

xψx(x, t)ψt(x, t− τ) dx

∣∣∣∣ ≤ a2Lε2

∫ L

0

ψ2
x(x, t) dx+

a2L

4ε2

∫ L

0

ψ2
t (x, t− τ) dx (6.3.19)

and∣∣∣∣a3

∫ L

0

x(ωx − lϕ)ωt(x, t− τ) dx

∣∣∣∣ ≤ a3Lε3

∫ L

0

(ωx − lϕ)2 dx+
a3L

4ε3

∫ L

0

ω2
t (x, t− τ) dx

(6.3.20)
Inserting (6.3.10)-(6.3.20) into (6.3.9), we get (6.3.6). Thus, the proof of Lemma 6.3.3 is
completed.

Next, let us introduce

F1(t) =:

∫ L

0

∫ t

t−τ
es−tϕ2

t (x, s) ds dx, (6.3.21)

F2(t) =:

∫ L

0

∫ t

t−τ
es−tψ2

t (x, s) ds dx (6.3.22)

and

F3(t) =:

∫ L

0

∫ t

t−τ
es−tω2

t (x, s) ds dx. (6.3.23)

Then, the following estimates hold.
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Lemma 6.3.4. Let (ϕ, ψ, ω) be the solution of (6.1.4)-(6.1.6), Then we have

F ′1(t) ≤
∫ L

0

ϕ2
t dx− e−τ

∫ L

0

ϕ2
t (x, t− τ) dx− e−τ

∫ L

0

∫ t

t−τ
ϕ2
t (x, s) ds dx, (6.3.24)

F ′2(t) ≤
∫ L

0

ψ2
t dx− e−τ

∫ L

0

ψ2
t (x, t− τ) dx− e−τ

∫ L

0

∫ t

t−τ
ψ2
t (x, s) ds dx (6.3.25)

and

F ′3(t) ≤
∫ L

0

ω2
t dx− e−τ

∫ L

0

ω2
t (x, t− τ) dx− e−τ

∫ L

0

∫ t

t−τ
ω2
t (x, s) ds dx. (6.3.26)

Proof. Taking the derivative of F1 with respect to t, we have

F ′1(t) =

∫ L

0

ϕ2
t (x, t) dx− e−τ

∫ L

0

ϕ2
t (x, t− τ) dx−

∫ L

0

∫ t

t−τ
es−tϕ2

t (x, s) ds dx. (6.3.27)

Then, (6.3.24) easily holds, and similarly (6.3.25) and (6.3.26).

To prove Theorem 6.3.1, we define the Lyapunov functionnal functional L(t) as follows:

L(t) := E(t) +NF(t) +N1F1(t) +N2F2(t) +N3F3(t) (6.3.28)

where N,N1, N2 and N3 are positive real numbers that be chosen later. Now, from (6.3.3),
(6.3.6), (6.3.24), (6.3.25) and (6.3.26) and using the trivial inequality∫ L

0

(ϕx + lω)2 dx ≤ 2

∫ L

0

(ϕx + ψ + lω)2 dx+ 2c∗
∫ L

0

ψ2
x dx,

we get

L′(t) ≤− A1ϕ
2
t (L, t)− A2ψ

2
t (L, t)− A3ω

2
t (L, t) +

[(
a1 + ξ1

2

)
+N1 −

Nρ1

2

] ∫ L

0

ϕ2
t dx

+

[(
a2 + ξ2

2

)
+N2 −

Nρ2

2

] ∫ L

0

ψ2
t dx+

[(
a3 + ξ3

2

)
+N3 −

Nρ1

2

] ∫ L

0

ω2
t dx

+

[(
a1 − ξ1

2

)
+N

a1L

4ε1
−N1e

−τ
] ∫ L

0

ϕ2
t (x, t− τ) dx

+

[(
a2 − ξ2

2

)
+N

a2L

4ε2
−N2e

−τ
] ∫ L

0

ψ2
t (x, t− τ) dx

+

[(
a3 − ξ3

2

)
+N

a3L

4ε3
−N3e

−τ
] ∫ L

0

ω2
t (x, t− τ) dx

+N

(
2a1Lε1 +

L2

2β1

+ β2K
2 + β3K

2l2 − K

2

)∫ L

0

(ϕx + ψ + lω)2 dx

+N

(
2a1Lε1c

∗ +
c∗L2

2β1

+ a2Lε2 +
c∗

4β2

+ δ1c2 −
b

2

)∫ L

0

ψ2
x dx

+N

(
a3Lε3 +

L2

4β3

+ β1K
2
0 l

2 − K0

2

)∫ L

0

(ωx − lϕ)2 dx

− η0

∫ L

0

∫ t

t−τ

[
ϕ2
t (x, s) + ψ2

t (x, s) + ω2
t (x, s)

]
ds dx,

(6.3.29)
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where η0 = e−τ min
(
N1, N2, N3

)
and

A1 = α−N
(
ρ2L

2
+
α2L

2K
+
α2L2

4δ1

)
,

A2 = µ−N
(
ρ2L

2
+
µ2L

2b

)
,

A3 = γ −N
(
ρ1L

2
+
γ2L

2K0

)
.

At this point, we have to select our constants very carefully in order to get

L′(t) ≤ −ηE(t) ∀t ≥ 0,

where η is a fixed postive constant. First, it is clear that for any α > 0, µ > 0 and γ > 0,
and for N sufficiently small, we get Ai ≥ 0, i = 1, 2, 3.

Second, we may choose β1, β2 and β3 such that

L2

2β1

+ β2K
2 + β3K

2l2 − K

2
≤ −K

4
,

c∗L2

2β1

+
c∗

4β2

− b

2
≤ − b

8
,

L2

4β3

+ β1K
2
0 l

2 − K0

2
≤ −K0

8
.

Letting

β1 =
1

8K0l2
, β2 =

1

8K
and β3 =

1

8Kl2
.

So, we need that

L2l2K0 ≤
K

16
,

4c∗K0l
2L2 + 2c∗K ≤ 3b

8
,

L2l2K ≤ K0

16
.

(6.3.30)

Of course, in order to obtain (6.3.30), we have to assume that

6Kc∗ ≤ b,

l ≤ 1

4L
min

(√ K

K0

,

√
K0

K

)
.

As long as βi, i = 1, 2, 3 are fixed, we pick δ1, ε1, ε2 > 0 and ε3 > 0 so small such that

2a1Lε1 ≤
K

8
,

2a1Lε1c
∗ + a2Lε2 + δ1c2 ≤

b

16
,

2a3Lε3 ≤
K0

16
.
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After that, we fix N1, N2 and N3 such that Nρ1
2
−N1 > 0, Nρ2

2
−N2 > 0 and Nρ3

2
−N3 > 0.

Now the main goal is to choose the sets of pairs (a1, ξ1), (a2, ξ2) and (a3, ξ3) such that
a1 + ξ1

2
<
Nρ1

2
−N1,

a1

(1

2
+
NL

4ε1

)
− ξ1

2
≤ N1e

−τ ,
a2 + ξ2

2
<
Nρ2

2
−N2,

a2

(1

2
+
NL

4ε2

)
− ξ2

2
≤ N2e

−τ ,

and 
a3 + ξ3

2
<
Nρ1

2
−N3,

a3

(1

2
+
NL

4ε3

)
− ξ3

2
≤ N3e

−τ .

Clearly, for ai, i = 1, 2, 3, small enough satisfies

ai < a0
i = min

{
Nie

−τ + (Nρi/2−Ni)

1 +NL/(4εi)
, (Nρi − 2Ni)

}
, i = 1, 2, 3

it exists ξi, i = 1, 2, 3 such that

ai

(
1 +

NL

2εi

)
− 2Nie

−τ ≤ ξi < (Nρi − 2Ni)− ai, i = 1, 2, 3.

From this we can infer that Ai ≥ 0 if (α, µ, γ) −→ (0, 0, 0) or if (α, µ, γ) −→ (∞,∞,∞),
then (N,Ni) −→ (0, 0) and consequently a0

i goes to zero.
Then, from above, we conclude that it exists a positive constant η > 0 such that (6.3.29)

becomes

L′(t) ≤− η
∫ L

0

[
ψ2
t + ϕ2

t + ω2
t + (ϕx + ψ + lω)2 + ψ2

x + (ωx − lϕ)2

]
dx

− η0

∫ L

0

∫ t

t−τ

(
ϕ2
t (x, s) + ψ2

t (x, s) + ω2
t (x, s)

)
dsdx, ∀t ≥ 0,

which implies by (6.3.1), that it exists also η1, such that

L′(t) ≤ −η1E(t), ∀t ≥ 0. (6.3.31)

On the other hand, from (6.3.1), (6.3.5), (6.3.21), (6.3.22), (6.3.23), (6.3.28) and for N suf-
ficiently small, we deduce that there exist two positive constants λ1 and λ2 depending on
N,N1, N2, N3 and L such that

λ1E(t) ≤ L(t) ≤ λ2E(t), ∀t ≥ 0. (6.3.32)

Now, combining (6.3.31) and (6.3.32), there exists Λ > 0, such that

dL(t)

dt
≤ −ΛL(t), ∀t ≥ 0. (6.3.33)

Consequently, integrating (6.3.33) and using once again (6.3.32), we obtain (6.3.2). This ends
the proof of Theorem 6.3.1.



Conlusion and Prospects

In this PhD thesis, we have studied the effect of delay on the global existence and the stability
of the global solutions for some evolution systems. In chapter 2, we have investigated a second-
order abstract viscoelastic equation with a weak internal damping, non-constant delay term in
an internal feedback and nonlinear weights. We established the well-posedness result without
any relation between the non-linear weights µ1 and µ2. Furthermore, we realized new optimal
explicit and gereral decay results which include the exponential, polynomial and logarithmic
decay rates. This ones have been obtained under a very general condition on g. Precisely, we
have assumed that

g′(t) ≤ −ξ(t)H(g(t)) ∀t ∈ R+,

and we did not require that the function ξ be non-increasing which improves several results
such as [15, 17, 26, 55]. The result we obtained in the third chapter is a generalization
of the important manuscript [67] of Messaoudi and Soufyane where we realized a general
energy decay for a non-dissipative problem which, to the best of our knowledge, has never
been studied before. In the chapter 4, we investigated a linear Timoshenko system with a
strong damping and a strong delay term in the first equation. Unexpectedly, we obtained that
the system is lack of exponential stability whether the equal-speeds condition (4.1.3) holds
or not. In addition, by introducing a second-order energy, we established the polynomial
decay with optimal rate. The result we obtained is different from the work of Raposo et
al.[84], where they considered a strong delayed thermoviscoelastic Timoshenko system with
heat conduction modeled by the Cattaneo law and established exponential decay. In chapter
5, a nonlinear damped Porous system with a nonlinear delay term was considered. We
proved the well-posedness of the system without the restrictions of µi > 0 and µ2 <

α1

α2
µ1.

Also, we established two general decay estimates with rates depending on the speeds of wave
propagation and the regularity of initial data. For the equal-speeds case, we got a similar
result as in the Timoshenko beam with the same hypotheses imposed on µ1 and µ2 (see
[97, 101]). Otherwise, a slow decay result was given subject to a new relationship between
µ1 and µ2. The result of the last chapter is an extension of the works [65, 75, 77] to Bresse
system where the exponential stability was gotten also under the smallness of the weights of
the interior delays ai, i = 1, 2, 3.

Many interesting problems in connection with the systems we have considered here are
still open. We propose in what follows some of them.

i. It is remarkable that the fact E ′ < 0 was employed in several sities in the proof of our
stability results (2.4.4), see for example, Eqs.(2.4.25),(2.4.34). And, in the case of µ1 ≡ 0 and
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|µ2| > 0, we obtain that the modified energy functional E defined by (2.2.10) satisfies, for
any t ≥ 0

E ′(t) ≤ 1

2

(
|µ2(t)|+ η(t)

)
‖ut(t)‖2 +

1

2

(
|µ2(t)| − η(t)

)
‖z(1, t)‖2

+
1

2

(
g′ ◦ u

)
(t)− 1

2
g(t)‖A

1
2u(t)‖2,

from which we conclude that the system is not dissipative in general in the sense that E ′

is not necessarily negative. So, one could adress this model in the case when H is linear
by combining the method of the present paper with the one in Feng [50]. But, when H is
non-linear the problem stills open.

ii. Inspired by the work of Chellaoua et al.[31] and Benaissa et al.[61], it would be inter-
esting to study problem (2.1.1) with the nonlinear damping µ1(t)F1(ut(t)) and the nonlinear
delay term µ2(t)F2(ut(t− τ(t))).

iii. Motivated by Guesmia and Tatar [62], it is an interesting problem to consider (2.1.1)
with the distributed delay

∫∞
0
µ2(t, s)u(t− s)ds instead of µ2(t)ut(t− τ(t)).

iv. In [63], Messaoudi considered the following weak viscoelastic wave equation

utt(x, t)−∆u(t) + κ(t)
(
g ∗∆u

)
(x, t) = 0 in Ω×]0,+∞[

with Dirichlet boundary condition where κ, g : R+ →]0,+∞[ are differentiable positive non-
increasing functions such that it exists a differentiable decreasing function ξ : R+ →]0,+∞[
satisfying

g(t) ≤ −ξ(t)g(t) ∀t ∈ R+,

lim
t→+∞

−κ′(t)
ξ(t)κ(t)

= 0.

And, he proved that the energy of solutions E has the following general decay property:

E(t) ≤ cexp
(
− c

∫ t

0

κ(s)ξ(s)ds
)

∀t ∈ R+.

Motivated by this study, we will consider in a forthcoming work the following more general
problem

utt(t) +Au(t)− κ(t)
(
g ∗ Au

)
(t) + µ1(t)ut(t) + µ2(t)ut(t− τ(t)) = 0, t > 0.

We will adress the well-posedness and moreover we will show whether the conditions imposed
in [63], give analogous decay results to those we established, when combined with the ones
imposed here.

v. As was mentioned above, Mustafa [24] examined a wave equation with a viscoelastic
boundary damping localized on Γ1 and established an explicit and general decay rate of its
solutions by assuming that u0 = 0 on Γ1. So, it is very interesting to consider the case when
u0 6= 0.

vi. One could derive the stability result (4.5.1) under the homogeneous Dirichlet-Dirichlet
boundary conditions. But showing the non-exponential decay as well as the optimality of the
obtained rate of decay in this case is an important open problem.
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