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0.3 Abstract

The purpose of this doctoral thesis is to study some geometric properties of f-harmonic
maps(resp. L-harmonic maps) with f € C°(M x N)(resp.L € C*(M x N x IR)).
This goal also includes the variationnels problems, where we introduce the notion of
(p, f)-harmonic maps with p > 2 et f € C°°(M), establishing the first variation of
the functional (p, f)-energy. Then we will define Liouville’s theorem relating to (p, f)-
harmonic maps, the stress (p, f)-energy tensor.Finally we give a result of homothetic
vector fields and (p, f)-harmonicity.

Keywords: f-harmonic maps (resp.f-biharmonic maps), L-harmonic maps
(resp.L-biharmonic maps), (p, f)-harmonic maps.

0.4 Résumé

Le but de cette these de doctorat est d’étudier de certaines propriétés géométriques

des applications f-harmoniques (resp. L-harmoniques) avec f € C°°(M x N)(resp.L €
C>®(M x N x IR)). Ce but inclut aussi les problemes variationnels, dont nous in-
troduisons la notion des applications (p, f)-harmoniques avec p > 2 et f € C®(M),

en établissant la premiere variation de la fonctionnelle (p, f)-énergie. Ensuite, nous
caractérisons le théoreme de Liouville relatif aux applications (p, f)-harmoniques, le
tenseur (p, f)-énergie impulsion. Enfin on donne un résultats de (p, f)-harmonicité et

le champs de vecteur homothétique.

Mots-clés :les applications f-harmoniques (resp.f-biharmonique), les appli-
cations L-harmoniques (resp.L-biharmonique), les applications (p, f)-harmoniques.
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0.5 Introduction

Harmonic maps are solutions to a natural geometrical variational problem. This notion
appear in various contexts: geodesic, harmonic functions, minimal surfaces...ect. A
map ¢ € C°(M, N) is called harmonic if it is a critical point of the energy functional

1
D)= 5/ \dip|* 0™
D

Equivalently, ¢ is harmonic if it satisfies the associated Euler- Lagrange equation
7(¢) = 0, where 7(¢p) is the tension field of ¢ defined by 7(p) = trace Vde.
Biharmonic maps generalize the notion of harmonic map and are defined as critical

points of the bienergy functional.
1
=5 [ P,
D

where ¢ is a smooth map between two Riemannian manifolds M and N, |dy| is
the Hilbert Schmidt norm of the differential dy. Several authors interested in this
type of harmonic maps, we can cite, J.Eells, J.H. Sampson, L.Lemaire [13], [14] and
A .Lichnerowiez [24].

Other authors introduced the f-harmonic maps (resp. f-biharmonic maps), (we can
cite for example M.Djaa, A.M.Cherif, K. Zagga, S. Ouakkas [11]).

Corresponding to the critical points of the functional f-energy (resp. f-bi-energy)

given by
/ @, pla)ldoPo, 0

resp.
Baglp, D / O )

where f: M x N — (0,00) is a smooth positive function, called torsion weight function
and 7¢(yp) is the f-tention field of ¢ defined by

71(p) = fo7(p) + dp(grad™ f,) — e()(grad™ f)op

In their article in 2015. A. M. Cherif and M. Djaa [29] established the L-harmonic
maps (resp. L-biharmonic maps), considering the critical points of the functionality
L-energy (resp. L-bienergy).

Eu(o, D) = /D L(z, pla), e(p) (@)™,

EQL Spa / |T |2 M

resp.
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where

L:MxNxR — (0,00)
(x,y,r) — L(z,y,7)

is a smooth positive function, e(y) is called energy density of ¢ defined by

1

e(p) = §|ds0\2,

71(¢) is the L-tension field of ¢ given by
T(p) = prT(go) + dcp(gradM L:D) — (grad™ L) o ¢.

The principal objective of this work is to study the geometric properties of f-harmonic
maps and f-biharmonic maps with f is a smooth positive function corresponding to
the critical points of f-energy and f-bienergy associated to ¢ (see the equations (1)
and (2)).

Next we mention some theorems relating to L-harmonic maps, for example we give the
proof of Liouville type theorem for L-harmonic maps from complete noncompact Rie-
mannian manifold (M™, g) with positive Ricci curvature into a Riemannian manifold
(N", h) with non-positive sectional curvature, where L € C*(M™ x N* x R,) is a
smooth positive function which satisfies some suitable conditions, where the Liouville
type theorems for harmonic maps between complete smooth Riemannian manifolds
have been done by many authors: Eells-Sampson [14], Schoen-Yau [23], Cheng [15].

In a different context, we introduced a new notion of harmonicity, it is the (p, f)-
harmonic maps with p > 2 and f € C°°(M) between riemannian manifolds. This
notion is a natural generalization of p-harmonic maps and f-harmonic maps. Our
purpose in this party is to study the geometric properties of (p, f)-harmonic maps
corresponding to the critical points of functional associated to ¢

Ey (¢, D) = I—l?/Df(x)]dap\va.

In the first chapter, we shall give several notations and definitions of differential ge-
ometry (resp. Riemannian geometry): differentiable manifolds, tangent space, tangent
bundle, etc .... (resp. Riemannian manifolds, Riemannian metric, etc ....).

The second chapter, we shall introduce the theory of harmonic mappings, (resp. bi-

harmonic maps), we shall present some results on the stability of harmonic maps in-
troduced by Y.L. Xin [45].

In the third chapter, we discuss the stabilities of f-harmonic maps on sphere S™ with
n > 2, we also prove that any f-harmonic map from a complete Riemannian manifold
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(M, g) to Riemannian manifold (N, h) is necessarily constant, with (N, h) admitting
a proper homothetic vector field satisfying some conditions. Also we present some
properties for the f-biharmonicity of submanifolds of R", where f is a smooth positive
function on R™.

The results obtained in this chapter are published in the article [39] and [40] .

The fourth chapter is devoted to the study of L-harmonic maps and some geomet-
ric properties, we prove that every semi-conformal harmonic map between Riemannian
manifolds is L-harmonic map. We also prove a Liouville type theorem for L-harmonic
maps.

The results obtained in this chapter are submitted for publication.

In the chapter five we extend the definition of p-harmonic maps between two Rie-
mannian manifolds called the (p, f)-harmonic maps which include the first variation of
(p, f)-energy functional , we prove a Liouville type theorem for generalized p-harmonic.
We present some new properties for the generalized stress p-energy tensor. We also
prove that every generalized p-harmonic map from a complete Riemannian manifold
into a Riemannian manifold admitting a homothetic vector field satisfying some con-
dition is constant.

The results obtained in this chapter are published in the article [41].



Chapter 1

Introduction to differential
and Riemannian geometry

In this chapter, we present the basic concepts: Differential geometry, manifold on-
board, Riemannian geometry, linear connection, induced connection on the inverse

tangent bundle, second fundamental form, submanifold, curvatures and operators on
a Riemannian manifold ([4], [17], [25], [35], [36], [37]).

1.1 Recall of differential geometry

1.1.1 Differentiable manifold

Let M be a topological space, we assume that M satisfies the Hausdorff separation
axiom which states that any two different points in M can be separated by disjoint
open sets. M is called a topological manifold if there exists an m € N and for every
point x € M an open neighborhood U, of x, such that U, is homeomorphic to some
open subset V' of R™. The naturel number m is called the dimension of M. So a
topological manifold M is locally homeomorphic to the standard m-dimensional vector
space R™. An open chart on M is a pair (U, ¢) where U is an open subset of M and
@ is a homeomorphism of U onto an open subset of R™.

Definition 1.1.1. Let M be a Hausdorff space. A differentiable structure on M of
dimension n ( atlas A) is a collection of open charts (Us, ;)icr on M where ;(U;) is
an open subset of R™ such that the following conditions are satisfied:

1. M=]Ju,

iel

2. For each pair i,j € I the mapping ¢; o ¢; ! is a C®-diffeomorphism mapping of
QOZ(UZ N UJ> onto QDJ(UZ N Uj), with Ul N Uj 7£ @

13
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Figure 1.1: Charts change mapping.

Definition 1.1.2. A differentiable manifold of dimension n is a Hausdorff space has
a differentiable structure of dimension n.

Ezample 1.1.1. The space R" is a differentiable manifold with A = (R", Idgn).
Ezample 1.1.2. Let S™ denote the unit sphere in R"*! i.e.

n+1

S*={zeR"™ /> 2] =1},
=1

equipped with the subset topology 7s» induced by 7 on R"*'. Let N be the north
pole N = (1,0) € R x R" and S be the south pole S = (—1,0) on S", respectively.
Put Uy = S" — {N}, Us = S" — {S} and define pn : Uy — R", 5 : Us — R", by

PN - (l’lv"'axn—l-l) = ﬁ(‘r?w“axn-i-l)a Ps - (xlw"axn—&-l) = ﬁ('x%“wxn—l—l)’ Then
T

the transition maps g0 @y, Yn 0 g : R* — {0} — R" — {0} are given by z — -
So A= {(Un,¢n), (Us, ps)} is a C>®-atlas on S".

N be the north pole

B | s —
|=| ; Pl
the unit sphe J

S be the south pole

Figure 1.2: Stereographic projection.
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1.1.2 Differentiable mapping

Definition 1.1.3. 1. Let M be a differentiable manifold, f : M — R is called to be
differentiable function at point p € M, if there is a chart (U, ¢) of M withp € U
such as fo¢™ ' : ¢(U) — R is differentiable. The function f is differentiable in
M if it is differentiable en p for all p € M.

2. Given two differentiable manifolds M and N, a mapping f : M — N is said to
be differentiable (or C™-differentiable), if for every chart (U;, @;) of M and every
chart (V;,10;) of N such that f(U;) C V;, the mapping ;o fo ;' of vi(U;) into
i (V}) is differentiable.

1.1.3 Tangent space

Notation 1.1.1. We note by:
C>®(M) is the set of differentiable functions in M.
C>®(M,N) is the set of differentiable mapping of M in N.

Definition 1.1.4 (Tangent vector). Let M be a differentiable manifold and p € M,
then a tangent vector X, at p is a map

X,:C®(M) — R

such that

CL. Xp(Af + ng) = AXp(f) + 1nXp(9),

C2. X,(f9) = Xp(f)9(p) + () X,(9).

C3. If f is constant in the neighborhood of p then X,(f) =0,
forall A\, uw € R and f, g € C*(M).

Definition 1.1.5 (Tangent space). The tangent space T,M of M at p is the set of all
tangent vectors at p, this set has a natural structure of a real vector space given by the
following operations (+) and (.)

L (Xp +Y)(f) = X(f) + Yo (f);
i, (AXp)(f) = AX(f);
for Xp, Y, € T,M, f € C*(M) and A € R.

Remark 1.1.1. X,(f) is also called the derivative of f by X,,.
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1.1.4 Tangent bundle

Definition 1.1.6. The set of tangent vectors of M, denoted by T'M = UpeM T,M, is
called the tangent bundle of M.

Then, A € TM if and only if there is a point p € M such as A € T,M. This point is
only determined by A and noted by w(A), the mapping:

m:ITM — M
A — w(A)=p

18 the canonical projection

1.1.5 Cotangent space

Definition 1.1.7. Let T M be the dual space of the tangent space T, M of M at x. An
element of Tx M 1is called a covector at x. An assignment of a covector at each point x
is called an 1-form (differential form of degree 1).

Remark 1.1.2. TY M is the set of linear form on T, M
T*M>w,: T,M — R
X, — we(X,)
1.1.6 Cotangent bundle
Definition 1.1.8. We call cotangent bundle of M the fibre bundle which has as total

space
T*M = | ] T;M.
zeM

1.1.7 Vectors field

Definition 1.1.9. A wvector field X on a differentiable manifold M is an assignment
of a vector X,, to each point p of M. In other words, a vector field X on a manifold
M is a mapping,

XM — TM
p — X,

such that m(X,) = p, for allp € M.
Remark 1.1.3.
e We denote by I'(T'M) the set of all differentiable vector fields on M.
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Figure 1.3: Vector field of S™.

e If f is a differentiable function on M, then X (f) is a differentiable function on
M defined by (X (f))(p) = X(f),for all X € I'(TM) and p € M.

Definition 1.1.10. Let M be an m-dimensional differentiable manifold, (U, ®) be a
chart of M and p € U, fori=1,...,m, we define the map %‘ :C®°(M) — R, by:
“Ip

9 O(fod™!
o] =]
8% p axl #(p)
2| s said derivative associated to the chart (U, §).
tlp

Remark 1.1.4. i. {;=],, i = 1..m} be a frame for the tangent space T,M, for all
pelU.

ii. {dz;|,, 7= 1..m} be a form basis for the cotangent space 7,y M( the dual basis of
the basis {;>|,, = 1..m} for T,M).

Definition 1.1.11. Let V"M = T,M @ ... @ M@ T;M ® ... ® T M be the vec-
—once T onee

torial space, where x € M and let T™)M = Usens TQET’S)M. A element T € ngT’s)M

is a tensor of type (r,s) above x. A tensor field of type (r,s) on a manifold M

is an assignment section of T™*IM (i.e. a tensor is a map T : M — TTSM,

x> T(z) € TV M),

Ezample 1.1.3. I) A function on a manifold M is a tensor of type (0,0).

IT) A vector field X is a tensor of type (1,0).
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IIT) A differential 1-form w on a manifold M is a tensor of type (0, 1).

Definition 1.1.12 (Tangent mapping). Let f : M — N be a differentiable mapping
between differentiable manifold, we define tangent mapping

dpf : TPM — Tf(p)N,

by:
(dpf(v))(g) =v(go f), VgeC(N) Vpe M.
Definition 1.1.13. If X and Y are vector fields, the Lie bracket [X,Y] is given by

[X,Y]= XY - YX.

1.2 Orientation and manifold with boundary

1.2.1 Orientable manifold

Definition 1.2.1. We call an atlas of orientation of manifold M all A = {(U;, ;) }ier
such that the charts changes mapping v;; = ; o gpj_l has a positive Jacobian, i.e.

J(¢w)x = det(d%(x)ww) > 0.

Definition 1.2.2. An orientable manifold is a manifold for which there are orientation
atlases.

Remark 1.2.1. If ¢ be a diffeomorphism of R”, its Jacobian is defined by:
‘](90):0 = det(dmso)‘
Ezxample 1.2.1. - IR"™ is an orientable manifold.

- The tangent bundle T'M to a manifold M is an oriented manifold even if M is
not.

- The real projective plane, the Mobius band and the Klein bottle are non-orientable
manifolds.

1.2.2 Half-space
Definition 1.2.3. The half-space noted H™ is defined by:
H™ = {(z1,...,2m) € R™ [ 21 < 0}.
The boundary of the half-space noted OH™ is given by:
OH™ = {(z1,...,zy) € R™ /21 = 0}.

The opens subset of the half-space H™ are defined by:
U, =V;NH™ where V; is an open subset of R™, = 1...m.
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bouteille de Klein. bande de Mobius

Figure 1.4: The Mobius band and the Klein bottle

Definition 1.2.4. Let U be an open subset of H™, the boundary of U noted OU is
gien by:

oU = U NoH™.
The interior of an open subset U denoted by Int(U) is the open subset of R™ defined

by:
Int(U) = U\OU.

1.2.3 Manifolds with boundary

Definition 1.2.5. Let M be a separate topological space, we say that M s an m-
dimensional smooth manifold with boundary, if there is an atlas A = {(W;, ¢;) }ier
such that ¢; is a homeomorphism of an open subset W; of M on an open subset U; of

the half space H™, and the charts change mapping ¢; o ¢;1 18 of class C°.

Definition 1.2.6. The boundary OM of a manifold with boundary is the set of points
x of M which has a chart (W, @) such that p(x) into the boundary of w(W).

Remark 1.2.2. i. OM is an (m — 1)-dimensional smooth manifold without boundary
(i.e. O(OM) = 0).
ii. If M be an orientable manifold with boundary, then 0M is an orientable manifold.

Proposition 1.2.1. Let f : R® — R be a smooth submersion on f~'({0}), then
M ={z e R" / f(x) <0} be an n-dimensional smooth manifold with boundary, and
OM ={z eR"/ f(x) =0}.

Example 1.2.2. Let B3 = {(z,y,2) € R® / 2*+y*+ 2% < 1}, then B? is a 3-dimensional
smooth manifold with boundary.
Indeed. The mapping:
f:R® — R
(z,y,2) — 2> +y*+22 -1
is a submersion on f~1({0}), because Jac; = (2z 2y 2z) is of rank 1 on f~({0}).
Another, 0B? = {z,y,2) e R® / 2> + y* + 22 =1} = §%
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Figure 1.5: Manifold with boundary.

1.3 Recall of Riemannian geometry

1.3.1 Riemannians metrics

Definition 1.3.1. Let M be an m-dimensional smooth manifold. A Riemannian metric
on M is a tensor field,

g:T(TM) xT(TM) — C*(M)
sach that for each p € M the restriction g, = g/TpM(@TpM T,M & T,M — R with

p i (Xp, ) = g(X,Y)(p)

py-p

is inner product (that is a symmetric, bilinear, positive-definite form) on the vector
space T, M.
The pair (M™, g) is called a Riemannian manifold of dimension m.

Definition 1.3.2. Let 7 : I — M be a C'-curve in M.Then the length L(v) of v is

defined by L(v) = [, /g ))dt, where (t) = dy(L)] .
t

Definition 1.3.3. The standard inner product on the vector space R™ is given by

go(u,v) = (u, v)gn = Zuzvz,

defines a Riemannian metric on R™. The Riemannian manifold E™ = (R™,{(, )gn)
18 called the Fuclidean space.

Remark 1.3.1. By multiply the Euclidean metric by a conformal factor we obtain other
important examples of Riemannian manifolds
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Ezxample 1.3.1. By the hyperbolic space we mean the Riemannian manifold

n {pn 4
H" = <B1 (0), (1— ||SL’H2)2 90)7

where B(0) is the n-dimensional open unit ball
B (0) = {xr € R* / [lz] < 1}.
Let v: (0, 1) = H"™ be the curve with v : ¢ — (¢, 0, ...0). Then

o) = 2[5 =2 [ =[G,

T Sl B S

Example 1.3.2. By the punctured round sphere we mean the Riemannian manifold

1
(1 + [ [En)?
Let v : Rt — X" be the curve with v : ¢t — (¢, 0, ...0). Then

/ V&) =2 T_dt :2[arctan(t)ro

L — T
() 1+||7||2 e .

Definition 1.3.4. Let (U, ¢) be a chart of (M™,g), with the basic fields {01, ...,0m}.
The functions g;;, such that g;; = ¢(0;,0;) for alli,j =1,...,m is called components
of the Riemannian metric g.

Locally: If M has a local coordinate system (z;), then:

g= Zgij dzr; ® dz;.

ij=1
Ezample 1.3.3. In the standard chart (D, Idp), the hyperbolic metric gy on D has the
components:

40;;
(1=l
Definition 1.3.5. We define the length of a vector field X of (M™,g), by:

Qij( )

| X] = Vg(X, X).
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Definition 1.3.6. Let (M™, g) be a Riemannian manifold, we call Riemannian volume
measure, noted v™ or vy, the measure defined locally in a frame by:

oM =\ /det(gi;)dxt A ... A d™.

Example 1.3.4. We consider the torus of revolution 72 of R?® with the Riemannian
metric,
g = (b+acosa)*dd? + a*da?,

where b > a > 0. Then:
det(g;;)df N da = a(b+ acos a)df A da.

Ezxample 1.3.5. We consider the manifold R? with Riemannian metric,
go = da® + dy?.

Then :
Vg, = dx A dy.

Example 1.3.6. We consider the manifold S? = {(z,y,2) € R® / 22+ y?+2? = 1} with
Riemannian metric,
g = db* + sin*0dp>.
Then:
det(gi;)d0 N dp = |sin@|dd N de.

1.3.2 Reverse image of a metric tensor

Definition 1.3.7. Let (N", h) be a Riemannian manifold, and M be a differentiable
manifold and let f : M — N be a smooth map, if f is an immersion at every point
of M, then f*h is a metric tensor on M, called inverse image of h by f, where:

(f"h)(X,Y) =h(df(X),df(Y)), X, YeI'(TM).

Locally:
Let (U, ¢) be a chart on M of associated basis (8%1, cee %) and let (V1) be a chart
on N of associated basis (aiyl, B 9.y then

0 8)
8.:1:Z axj

= Nldf(5 - )df( ))

(f*h)iy = () (5

Z 8fa 8f5 0 o
ox; 81'] 8ya 0yg

a,f=1
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where f, =y o fforalla=1,...,n.

1.3.3 Metric induced on the inverse tangent bundle

Definition 1.3.8. Let ¢ : (M, g) — (N, h) be a smooth map between two Riemanni-
ans manifolds, the inverse tangent bundle is defined by:

¢ 'TN = {(z,v)/x € M, v € T,;) N}.
A smooth map v : M — TN 1is called section on o YT N, such that
v(r) € Ty N Vo€ M.
The set of sections on ¢ YT'N will be denoted by T'(p~*TN) .

Definition 1.3.9. Let ¢ : M — N be a smooth map between two differentiable
manifolds and let h be a Riemannian metric on N, then h induces a Riemannian

metric on T'(e 'TN) by

h(u,v)(x) = hy() Uz, V), ¥ & € M and u, v € T(p 'TN).

1.4 Linear connection
Definition 1.4.1. A linear connection on a smooth Riemannian manifold M is a map:

YV I(TM) x T(TM) — T(TM),
(X,Y) = VyY

such that:

1. VX(Y+Z) :VXY+VXZ;
2. Vx(fY) = fVxY + X(f)Y;
3. Vxisy(Z)=VxZ+ fVyZ,

forall X,Y,Z € T'(TM) and f € C>®(M). We say that VxY is the covariant derivative
of Y with the direction of X.
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Definition 1.4.2. A section Y € I'(T'M) is said to be parallel with respect to the
connection V if
VyY =0, VX € I(TM).

Definition 1.4.3. If g is a Riemannian metric on M then a connection V is said to
be metric or compatible with g if,

Vg=0ie (Vxg)(Y,Z) =0,
that is:
XY, 2)=9(VxY,Z)+g(Y,VxZ), VX, Y, ZeT(TM).

1.4.1 Torsion tensor

Definition 1.4.4. Let M be a smooth manifold, and V be a connection on the tangent
bundle TM, then the torsion of V is a tensor field of type (1,2) defined by:

T :T(TM) xT(TM) —s T(TM)
(X, V) — VyY —VyX —[X,Y],

where [, ] is the Lie bracket on T'(T'M). The connection V on the tangent bundle T M
15 said to be torsion-free if the corresponding torsion T vanishes i.e.

[(X,Y]=VyxY —VyX V X,Y € (TM).

Remark 1.4.1. T(X,Y) = -T(Y,X), foll all X,Y € I'(TM) (T is an antisymmetric).

1.4.2 Levi-Civita connection

Definition 1.4.5. Let (M, g) be a Riemannian manifold then the map
V:T(TM)xT(TM) — T'(TM)
defined by the Koszul formula:

29(VxY,Z) = X(g(Y,2)) +Y(9(Z, X)) = Z(9(X,Y)) (1.1)
+9(Z, [X,Y]) + 9V, [2, X]) — g(X, [Y, Z]),

is called the Levi-Civita connection of (M, g).

Theorem 1.4.1. Let (M, g) be a Riemannian manifold. Then the Levi-Civita connec-
tion is an unique linear connection compatible with g and torsion free.
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Proposition 1.4.1. Let (M, g) be a Riemannian manifold with Levi-Civita connection
V. Further let (U, ) be a local coordinate on M and put 8; = 5> € T(TU). Then
{8%1, e ,%} is a local frame of TM on U. We define the Christoffel symbols Ffj :
U — R of the connection V with respect to (U, p) by

m

(99 il 891[ 89z
Eo_* kl J . J

=1

where g;; = g(e;, €;) = g(a%i, %) are the components of g, and (") = (gi;) ™" is the

mverse matriz.

1.5 Induced connection on the tangent bundle

Definition 1.5.1. Let p : M — N be a smooth map between two differentiable mani-
folds M and N and let V¥ be a linear connection on N, then the Pull-back connection
on the tangent bundle o™*T'N is defined by:

V2 :T(TM) xT(o'TN) — T(p 'TN),

(X,V) — VRV =V VW (1.2)
where V € T(TN) such that Voo =V.
Locally:
VeV = Vv, ,ve 9
X - X 6(; (aya © QD)
oV, 0 0
— XZ _ « ¥ R
{ O <0ya eItV vazi(aya OSO)}
Note that :
0 0
® _ N
Va”(a—%oso) = vdap(a‘zi)a_ya
_ Ops N 0O
O (V‘r’gﬁ ayOx) o
6305 0
= ZE8
o ( “5 oy > oY
So that

(VT dpy 9
» = X 7 (T -
V¥ { oz, o, (Fes OSO)} (ayv O¢)

Then the relation (1.2) is independent of the choice of V i.e. this connection is well
defined.
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Definition 1.5.2. If ¢ : M — N is a map between differeniable manifolds, then two
vector fields X € I'(T'M), X € I'(T'N) are said to be @-related if

dpp(X) = Xpp ¥ pe M.

In that case we write X = dp(X).

Proposition 1.5.1. Let ¢ : M — N be a smooth map and let VY be a linear
connection compatible with the Riemaniann metric h on N, then the linear connection
V¥ is compatible with the induce Riemannian metric on o 'TN, that is

X(h(V,W)) = A(VEV, W) + h(V, TEW),
for all X e T(TM) and V, W € T'(o 'TN).
Proof. Let X € D(TM),V,W € I'(¢~'TN) and X,V,W € ['(TN), such that
do(X)=Xop,Vop=Vand Wop=W
Then:

XV, W) = X(h(Vop, W o))
XMV, W) o)

(M(V, W) 0 0)(X)

WV W)(dp(X))

1o(X) (h(V. W)

X (h v,vp v N

(VeV, W)op+h(V, VNW)O()O

= (VY VWo<p)+h(Vogo,VN W)

= h(V“”VW)Jrh(V VeW).

Il I
SO TRV V¥
=

|
>
Z 2

Proposition 1.5.2. Let VY be a torsion free connection on N, then
Vide(Y) = Vidp(X) + dp([X,Y]),

For all X, Y € I'(TM).

Proof. Let VW € T'(T'N) be a p-related with X and Y respectively, then:

[V.W]oyp = dpo[X,Y]
VW = VNV + [V, W].
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From where:
Vide(Y) = VilWoy
= Vi)W
= (ViW)oyp
= (VpV+[V.W])oyp
= Vide(X) + di([X,Y)).

1.6 Second fundamental form

Definition 1.6.1. Let ¢ : (M, g) — (N, h) be a smooth map between two Riemannian
manifolds. The second fundamental form of ¢ is the covariant derivative of vectorial

1-form dyp, defined by:
Vdp(X,Y) = Vidp(Y) — dp(VYY)
For all X, Y € I'(TM).

Definition 1.6.2. A map ¢ : (M,g9) — (N, h) is said to be totally geodesic if its
second fundamental form vanishes

Property 1.6.1. Let ¢ : (M,g) — (N, h) be a smooth map between two Riemannian
manifolds, the second fundamental form of ¢ is a vectorial 1-form C°°(M)-bilinear
symmetric. i.e.

Vdo(f1.X, f2.Y) = f1/2Vde(Y, X),
forall X, Y € T(TM), and f, fo € C(M).

Proposition 1.6.1. Let ¢ : M — N and ¢p : N — P be a two smooth maps , then

V(o) = dip(Vdyp) + Vdi(dyp, dp).
Proof. Let X, Y € I'(T'M), then
Vd(op)(X,Y) = VFdWo)(Y) —d(yop) (VYY)
= VFdp(de(Y)) — di(dp(VYY))
= ng(dga(X))dw(d@(Y)) — dy(dp(VYY))
= Vi xodt(de(Y)) — dp(de(VYY))
= Vdu(dp(X),dp(Y)) + dib(VY,xde(Y)) = dip(dp(VYY))



1.7 Sub-manifolds 28

= Vdi(dp(X),dp(Y)) + do(Vdp(X,Y)).

O

Definition 1.6.3. Let (M, g) be an m-dimensional Riemannian manifold, the frame
{e;}™, is said geodesic frame at x € M, if it is orthonormal that is g(e;, e;) = §;; on
UCM, and (Veej)|, =0, Vi,j=1l.m.

1.7 Sub-manifolds

Definition 1.7.1. Let M™ and N™ be a two differential manifolds such that M C N
and dim M < dim N. M s said a sub-manifold of N if the inclusion

1M — N
r —

is a plongement (i is an immersion and homeomorphism of M on i(M) for induce
topology). If (N™, h) be a Riemannian manifold and M be a sub-manifold of N, then
g:T(TM) xT'(TM) — C>(M) is the tensor field on M defined by

9(X,Y), = h,(X,,Y,), forall X, Y e '(TM) and p € M.

It’s called the induce metric on M by h.

Definition 1.7.2. Let (N™, h) be a Riemannian manifold and (M™,g) be a Rieman-
nian sub-manifold of (N™, h). For a point p € M we define the normal space T,M~* of
M atp by

T,M* = {v € T,N / hy(v,w) =0, Yw e TpM}.

For all p € M we have the orthogonal decomposition
T,N =T,M & T,M~*.
The normal bundle of M in N is defined by TM*+ = {(p,v) / p€ M, v e T,M"*}.

Proposition 1.7.1. For all v € T,N, 3" € T,M, 3t € T,M~* such that v =
v' + vt The maps T : T,N — T,M, v+—v" and L : T,N — T,M*, v vt are
R-linear.

Remark 1.7.1. e A vector field X of N is said to be normal, if X, € T, M~ for all
reM

e (T M)t is the set of normal vector fields.
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Definition 1.7.3. Let (N, h) be a Riemannian manifold and M be a sub-manifold of
N with the induced metric g. Then we define

VM. I(TM) x T(TM) — T(TM)

by
VXY = (VY)',

VM s the Levi-Civita connection of the sub-manifold (M, g). Furthermore let

B:D(TM)xT(TM) —T(TM)*
be given by

B(X.Y) = (VXY)",

the operator B is called the second fundamental form of M in (N, h).

Definition 1.7.4. Let (N, h) be a Riemannian manifold and M be a sub-manifold of
N with the induced metric g. Then the smooth section H = %traceB of the normal
bundle TM~ is called the mean curvature of M in N where m = dim M and traceB =
Yo, Blei, e;), with {e;} is an orthonormal frame on (M, g).

Remark 1.7.2. e A sub-manifold M with mean curvature identically equal to zero
is called minimal.

e A sub-manifold M is said to be totally geodesic if its second fundamental form
vanishes.

Definition 1.7.5. Let (M, g) be a Riemannian sub-manifold of (N,h) and let x € M,
x 15 said to be umbilical if there is a normal vector z € T, M+ such that

B(v,w) = g(v,w)z forall v, w e T, M.

M is said to be totally umbilical if there is a vector field Z € U'(TM)* such that
B(X,Y)=g(X,Y)Z forall X,)Y € T(TM).

Remark 1.7.3. e / is called the normal vector field of curvature of M.

e We notice that any sub-manifold M which is minimal and totally umbilical is
totally geodesic.

Definition 1.7.6. Let (N, h) an n-dimensional Riemannian manifold. A Riemannian
hypersurface of (N, h) is an m-dimensional Riemannian sub-manifold (M, g) of (N, h),
where m =n — 1.
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Figure 1.6: The unit vector field normal to M

Definition 1.7.7. Let (M,g) be a Riemannian hypersurface of (N, h), and let U the
unit vector field normal to M. The operator

A:T(TM) — T(TM)
X = AX =-ViU

18 called a shape operator.
Remark 1.7.4. VX, Y € I'(T'M), we have g(AX,Y) = h(B(X,Y),U)

Definition 1.7.8. Let (M, g) be a Riemannian sub-manifold of (N, h)

VL T(TM) xT(TM): — I(TM)
(X,Y) = VyxY = (VEV)*

1s called the normal connection of M.

1.8 Curvatures
1.8.1 Curvature tensor
Definition 1.8.1. The curvature tensor R is a tensor field of type (1,3) defined by

R(X,Y)Z = [V)(,VY]Z—V[XJ/}Z
= VxVyZ -VyVxZ — V[X,Y]Z, VX,K Z € F(TM)

The curvature tensor of type (0,4) is given by

R(X,Y,Z,W) = g(R(X,Y)Z,W).
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Proposition 1.8.1. Let (M, g) be a smooth Riemannian manifold. For vector fields
X, Y, Z, W on M we have

1. R(X,Y)Z =—-R(Y,X)Z (antisymmetric).
2. g(R(X,Y)Z, W) =g(R(Z,W)X,Y).

3. g(R(X,Y)Z,Z)=0.

4. R wverified Bianchi’s identity algebraic:

R(X,Y)Z + R(Y,2)X + R(Z,X)Y = 0.

5. R verified Bianchi’s identity differential:

(VxR)(Y, Z) + (Vy R)(Z,X) + (VzR)(X,Y) = 0.

1.8.2 Sectional curvature

Definition 1.8.2. For a point p € M the function

K, :D(TM) xT(TM) — R
g(R(X, Y)Y, X)

EY) = R X)) - g(X.V)

18 called the sectional curvature at p.
The Riemannian manifold M is said to be of constant curvature if there exists k € R

such that K(X,Y) = k.

Definition 1.8.3. Let (M, g) be a smooth Riemannian manifold. We define the smooth
tensor field Ry : T(TM) x T(TM) x T(TM) — T'(TM) of type (3, 1) by

forall X,Y,Z € T'(TM).

Corollary 1.8.1. Let (M™, g)(m > 2) be a Riemannian manifold of constant curvature
k. Then the curvature tensor R is given by

R(X,Y)Z = k[Ri(X,Y)Z].

for all X,Y,Z € T(TM).
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1.8.3 Ricci curvature

Definition 1.8.4. Let (M™,g) be a Riemannian manifold, p € M and {ei,...en,} be
an orthonormal frame of T,M. Then

1. the Ricci tensor at p is defined by

Ricci(X) = Y R(X, e;)e;, V X € T,M.

=1

2. the Ricci curvature at p is defined by

Ric(X,Y) =) g(R(X,e)e;,Y), VX, Y €T,M.

i=1
3. the scalar curvature S is defined by

S = tracegRic

— Zg(R(ei,€j>€j,ei)

ij=1
Remark 1.8.1. For all X, Y € I'(T'M) we have:
Ric(X,Y) = g(Ricci(X),Y)

Corollary 1.8.2. Let (M™,g) be a Riemannian manifold of constant curvature k,
then:

1. Ricci(X) = (m — 1)kX.
2. Ric(X,Y) = (m —1)kg(X,Y).
3.8 =m(m—1)k.

Ezrample 1.8.1.

1. The sphere S™ has constant sectional curvature +1.

2. The space R™ has curvature 0 .

3. H? = {(z,y) € R? y > 0} The hyperbolic space with the metric g = dxi;dyQ, has

constant sectional curvature —1.




1.9 Operators on Riemannian manifold 33

1.9 Operators on Riemannian manifold

1.9.1 Gradient operator

Let (M, g) be a Riemannian manifold,

§LT(T*M) — T(TM)
w o= W

be a isomorphism map between the cotangent bundle and the tangent bundle given by
VX € T(TM), g(w, X) = w(X).

Definition 1.9.1. Let (M, g) be a Riemannian manifold, the gradient operator is given
by
grad : C*°(M) — T(TM).
o= grad f = (df)*

So that for all X € T'(T'M) we have

glgrad f, X) = X(f) = df (X).

Locally:
L Of 0
df = LY —

where (ai)izl,,,_m is a local coordinate. Let {e;};,—1 ., be an orthonormal frame on

€L

(M, g). Then

grad f = 3" il e

Proposition 1.9.1. Let (M, g) be a Riemannian manifold, then
1. grad(f + h) = grad f + grad h;
2. grad(fh) = hgrad f + f grad h;
3. (grad f)(h) = (grad )(f).
4. 9(Vxgrad f,Y) = g(Vy grad f, X),
where f, h € C*(M) and X,Y € I'(T'M).
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1.9.2 Hessian operator
Definition 1.9.2. Let f be a differentiable function on (M™,g), then

Hess f : D(TM) x T(TM) —s C®(M)
(X, V) — (Hessf)(X,Y)=g(Vxgrad f,Y)

we have
1. Hess f be a tensor of type (0,2).
2. Hess f is symmetric.

Locally:

m

Hess f = Z(Hess f)ij dz; @ dx;,

3,j=1

where

(Hess f)i; = g(Vagrad f,0;)
o f S Fka_f

O, i :
Ox;i0x; L= YOy

1.9.3 Divergence operator

Let X be a vector field on (M, g), then

VX :T(TM) —s T(TM)
7 ViX

is a smooth linear mapping.

Definition 1.9.3. The divergence of the vector field X € T'(T'M), denoted div X is
defined by
div X = traceVX.

Let {e;}i=1,.m be an orthonormal frame on M, then

divX = Z 9(Ve, X, €).
i=1

Propertys 1.9.1. Let (M, g) be a Riemannian manifold, then
1. div(X 4+Y)=divX +divY;



2. div (fX) = fdivX + X(f),
for all X, Y € I(T'M) and f € C*(M).
Definition 1.9.4. The divergence of 1-form w € T'(T*M) is defined by

m

divMy = Z(ei(w(ei)) — w(Vé\fei))

i=1
Proposition 1.9.2. Let w,n € I'(T*M) and f € C*(M), then
1. div(w+n) = divw + divn.
2. div(fw) = fdivw + w(grad f).

1.9.4 Laplacian operator

Definition 1.9.5. Let (M™,g) be a Riemannian manifold, the Laplacian operator
noted /N, on M 1s defined by

AN C®(M) — C®(M)
[ A(f) = div(grad f)
Propertys 1.9.2. Let (M™,g) be a Riemannian manifold, then
1. A(f 4+ h) = A(f) + A(h);
2. A(fh) = h A (f) + [ A () + 2g(grad f, grad h),
for all fh € C™(M).

1.9.5 Divergence Theorem

Proposition 1.9.3. Let (M™,g) be a Riemannian manifold, and let D be a compact
domain with boundary on M. Let w be an 1-form and X a vector field defined on a
neighborhood in D, then

(div X)v, = [ g(X,n)v"?  and (divw)v, = [ w(m)??
D oD D oD

where 0D is the boundary of D and n =~ n(x) is the unit normal at a point x € OD.

Corollary 1.9.1. Let X be a vector field (resp. 2 an 1-form) with compact supports
m a domain D, then:

/(div X)v, =0 and /(divw)vg = 0.
D D



Chapter 2

Harmonic maps

In this chapter we define the harmonic and bi-harmonic maps, we give some results on
stable harmonic maps [22] [45], some properties of harmonicity and homothetic vector
field, established by Ahmed Mohammed Cherif [27].

We start this chapter by studying the geodesics which will play very important roles
in the following works.

2.1 Geodesics

Let (M, g) be a Riemannian manifold, and let v : R D I — M be a C*°-curve on M.
The set of the vector fields along ~, is defined by

T(y~'TM) = {Y T TM JY(t) € TyyM, Vit € I}.

Definition 2.1.1. Let (M™, g) be an m-dimensional Riemannian manifold. A curve
v on (M™,g) is called geodesic if V', y(4)=0. i.e.

d

P, g iy
d " A de dt

(THoy) =0, Vk=1.m.

Ezample 2.1.1. Let (R, gy = do?) be a Riemannian manifold, then a curve v : [ — R
Py _
a2

is geodesic if and only if 0, because I'l; = 0, which implies v(¢) = at + b, where

a, beR

Definition 2.1.2. Let (M, g) be a Riemannian manifold and v : I — M be a C"-curve
on M. A wariation of v is a C"-map ¢ : (—€,€) X [ — M such that for all s € I,
wo(s) = v(0,s) = (s). If the interval is compact i.e. of the form I = [a,b], then the
variation ¢ is called proper if for allt € (—¢,€), vi(a) = v(a) and pi(b) = v(b).

36
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Definition 2.1.3. Let (M, g) be a Riemannian manifold and y : I — M be a C*-curve
on M. For every compact interval [a,b] C I we define the energy functional Ep,y by

Elagy(7) = 1/ g(3(t),¥(t))dt.

2
A C?-curve vy is called a critical point for the energy functional if every proper variation

© of v/ (ap satisfies
d

Z(Ban(e))| _ =0,
o Banled)|

Theorem 2.1.1. [17]. A C*-curve vy is a critical point for the energy functional if and
only if it is a geodesic.

Proof. For a C?-map

p:(—€ee)xI — M
(t,s) = ¢t,s)

We define the vector field X = dgp(%) and Y = dgp(%) along . The following shows

that the vector fields X and Y commute:
0 (‘9]) _0,

VaY — VX = [X,Y] = [do(), de(oh)] = de([ & 2

0s ot

since [%, %] = 0. We now assume that ¢ is a proper variation of 7/, 3. Then
(mente0) = ([ ot x0a5)
dt [a,b] Pt - 2 dt . g ) S
1 [*d
= | (e(x.x))a
2 dt( (X, X) )ds

= /bg(VXY,X)dS
_ /ab (% (g(Y, X)) —q(Y, VXX))ds
Sy Y,V X)ds

The variation is proper, so Y (a) = Y(b) = 0. Furthermore

X(0,s) = g—f(o,s) = 4(s).
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So

d

b
G| == [ a0, (T3)(s))as.

The last integral vanishes for every proper variation ¢ of « if and only if V7 = 0.
A geodesic v : I — (M, g) is special case of what is called a harmonic map
¢ :(M,g) — (N, h) between Riemannian manifolds. O

2.2 Harmonic maps

Definition 2.2.1. Consider a smooth map ¢ : (M™, g) — (N", h) between Riemannian
manifolds, for any compact domain D of M the energy functional of ¢ is defined by

1
B¢ D) = 5 [ ldolu, (2.)

where |dp| is the Hilbert Schmidt norm of differential of ¢ given by

dp* = h(dp(e;), dip(e;))

i=1
{e1,...,em} be an orthonormal frame on M

Definition 2.2.2. A wvariation of ¢ to support in a compact domain D C M, is a
smooth family maps (p¢)ic(—ce) : M — N, such that oo = ¢ and ¢, = ¢ on M\ int(D).

Definition 2.2.3. A map is called harmonic if it is a critical point of the energy
functional over any compact subset D of M. i.e

d
_E<80t3 D)

=0.
dt

t=0

2.2.1 First variation of energy

Theorem 2.2.1. Let ¢ : (M™,g) — (N, h) be a smooth map and let (p;)ie(—ec) be
a smooth variation of ¢ supported in D. Then

d
GE@iD)| == [ hwr),
dt -0 D
where v = % denotes the variation vector field of {¢},
t=0
T(p) = trace,Vdyp = Z {Vedp(e;) — dp(VYe)} (2.2)

=1

is called tension field of ¢ where {ey, ...,en} is an orthonormal frame on (M™,g).
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Proof. Defined ¢ : M x (—¢,¢) — N by ¢(z,t) = (), let V¢ denote the pull-back
connection on ¢ *T'N. Note that, for any vector field X on M considered as a vector
field on M x (—e¢,¢€), we have [0y, X] = 0. Using (2.1) we obtain

_ 2dt/2h dpi(er). dpi(e:)) v,
- 2dt/ Zh dg(e;,0),dg(e;, 0)) v
- . /D a;huqs(ei,o»dcz»(ei,om )
- [ ih<vfo,$)d¢<ei,o>,d¢<ei,o>>vg
_ /Zh V2 0ydol0, %), doles, 0)
_ /l);h(vfifp(ei)v,dw(ei))vg

- /Dilh(vzv,dgo(ei))vg. (2.3)

d
—F D
dt (9075) )

t=0

t=0

t=0

t=0

t=0

Define an 1-form on M by
w(X) =h(v,dp(X)), X el(TM).
We have
diviw = (V,w)(e)

= > Vi, do(e)) + hiv, VEdp(e,)) — h(v, dp(Ve:)}

= Y h(VEu.dp(e) +hlv.7(p). (2.4)

according to formulas (2.3), (2.4), and divergence Theorem, we obtain

L pin)| = - /D h(v, ().

dt

t=0
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Theorem 2.2.2. A smooth map ¢ : (M™,g) — (N™, h) between Riemannian manifolds
s harmonic if and only if
T(p) = traceVdyp = 0.

Remark 2.2.1. Locally:

= g¥ B @ Ny — X Mpk ) 2, 2.
m(p) =g (&Ei@xj + 0z; Ox; ap O P oz, ”) 0y °¥ (2:5)

(a%i) ( resp. (%)) is a local frame of vector fields on M ( resp. on N).

Ezample 2.2.1. Any constant map ¢ : (M, g) — (N, h) is a harmonic map (because
dp =0).

Ezxample 2.2.2. The second fundamental form of the identity mapping

Idy : (M, g) — (M, g) is zero, i.e. Idy is totally geodesic, therefore Idy; is harmonic.

Remark 2.2.2. Any totally geodesic map is a harmonic map, the reverse is not always
true.

Example 2.2.3. Let ¢ be a map defined by
p:R* - R
(2,y) = plzy)=2"—y

We have Ay = 0 then, ¢ is harmonic, and other hand we have

g 0., o 0 g2 O
(Vd‘ﬁ)(a—x?a—x) = V%dw(%) d@(va%%)
0
_ ® -
B Va%d¢(ax)
_ Py _
J%*x

Then ¢ is not totaly geodesic.

Ezample 2.2.4. Let (M, g) be a Riemannian manifold and let f : M — R be a smooth
function, then

7(f) = traceVdf
= Vdf(ei,ei)
= Vidf(e;) — df (V) e:)
= alelf) = (Ve)(f)
= ¢g(Vegrad f,e;)
= divgradf
= A(f),

where {e;} is an orthonormal frame on M.
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Ezxample 2.2.5. Let R™ be provided with the canonical metric gy and let

o1 (M,g) — (R", 90), p(z) = (p1(x), ..., 0n(T)),

)
be a differentiable map. According to the formula (2.5) with ®'T"7 op = 0, we have

D% ng 0
— 4 Yoo Y M k 7

that is
() = (Alp1), -, D(en),

hence the map ¢ is harmonic if and only if A(p,) = 0, Voo = 1,...,n, i.e. ¢, are
harmonic functions.

Ezample 2.2.6. If M =]a,b[ be an interval of R, then a curve v : (a,b) — (N™, h) is
harmonic if
d2’7a N pa d’yﬁ d76
dt? dt dt
therefore, v is harmonic if and only if it is a geodesic.

:0’

Remark 2.2.3. If ¢ is a harmonic map and if 1 is a totally geodesic map, then 1o ¢ is
a harmonic map.

Remark 2.2.4. The compound of two harmonic maps is not generally a harmonic map.
Example 2.2.7. We define the maps ¢ and 1) by

0:R* - R
(z,y) = 2=y’
and
Yv:R — R?
z = (z0)
We have
P D%p
Ap = =~ 127
7 ox? - 0y?
= 2-2
= 0,
then, ¢ is harmonic, and
Ay = (Ap', Ay
= (0,0)
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then, 1) is harmonic.
o :R—->R* =R
— (2,0) = 22
A(pot)) =2 #0.

Then, o) is not harmonic.
Ezample 2.2.8. Let S be a surface in Euclidean space R?, and let

@ (Q, <>p2) — (R?, <>ps)

be a local parametrization of S, where  is an open subset of R?, such that:
T_|oel Joe de\
| Oy| T\Ox Oy [fps

Let
Bap A Bgo

’_‘E/\_‘e

The normal unit vector,
2

dp !’
ox

0% P Rt
¢ = <N’w>m’ f= <N’ —axay>R3’ 9= <N’a—y2>m’

b 1eG +gE —2fF

Y

_ 9 90 a2
ox’ Oy ’ oy

al

2 EG-F?
The mean curvature of S. We have
Op O 0%¢ Do 0%p
7). = (arai), (o o),
Do ¢ P Oy
< 3$2> <3x3y 0y>
10 10 &p
20z % 20z |9y
= 0.
0y :
In the same way, <a—y, 7'(<p)> = 0. Therefore 7(¢) is normal on the surface S, and
we have -
ety (N, 7(9))ps

H— —
2F 2F

Then, S is minimal if and only if ¢ is harmonic.
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2.2.2 Second variation of energy

Theorem 2.2.3. Let ¢ : (M,g) — (N, h) be a harmonic map between Riemannian
manifolds, and {¢: s} be a two-parameter variation with compact support in D. We set:

aSpt,s
0s

&Pt,s
ot

and w =
(t,s)=(0,0)

v =

(t,5)=(0,0)

denotes the variation vector fields of ¢.
Under the notation above we have the following

2

D105 = (s

D)

= [ o) wye,

(t,5)=(0,0)
where Jy(v) € T'(¢ 'T'N) given by
J,(v) = —trace RN (v,dp)dp — trace(V?)*v

RY is the curvature tensor on (N,h), and

trace(V¥)v Z [V“" Viv— V@Me v]
i=1
Proof. Define ¢ : M x (—¢,€) x (—€,€) — N by ¢(z,t,5) = ¢1.4(2). Let V¢ denote the
pull-back connection on ¢ 'T'N. Note that, for any vector field X on M considered as
a vector field on M x (—e¢,€) X (—¢,¢€), we have

[0, X] =0, [0s5,X] =0, [0,05] =0

We put E; = (;,0,0), 2 =(0,4,0) and 2 = (0,0, 4). Then, by (2.1) we obtain

ot ) dt? Os
S B(ps D) -5/ Z (OB, d6(E)) v, (26)
(t,)=(0,0) (t,5)=(0,0)
first, note that
1 0? 0
59 dO(B), dO(E) = Zh(V' do(Ey), do(Ey))
= h(V5 V% do(E;), do(Ey))
(W d¢< ), V% do(E3)), (2.7)

the first term on the left-hand side of (2.7) is

h(V%, V% d0(E), do(E)) = h(V% Ve do(),do(E,)
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= h(RN(d¢( ) dcb( i)de( 5 ) do(E;))
+h(V VY, d¢< 22 d9(Ey))
+h(vfgﬂi]d¢(&),d¢(&)). (2.8)
Define an 1-form on M by

w(X) = (v¢ do( dp(X)), X e T(TM).

(t,5)=(0,0)

83)

We calculate the divergence of w.

divMw = Z{ei(w(ei))_w(vé\fei)}

=1

- Z{ez MVSA6()|  dple)) ~A(VAS()| L dp(VYe,
Os (t,5)=(0,0) ot Os (t,5)=(0,0)
= Z{h (VY% ol 2 dp(e:))
— Js (t,5)=(0,0)
+h(V% do(o- >  VEdip(en) = h(V do( - > (Ve e)}
s (0 0) s =(0,0)
= Z{h V5V do( 0) dip(e) + h(V% do(5- 0) 7).
S 1(t,5)=(0,0) S 1(t,5)=(0,0)
According to the harmonicity of ¢ we obtain
AV = Y (H(VE V50| dple)). (2.9
at O0s (t,s)=(0,0)

i=1

From the formulas (2.8) and (2.9), with [2, E;] = 0, we get

ot?

WV V% do (), do(E;)

Z h(RN (v, de(e;))w, dp(e;))

HdivMw. (2.10)

(t,s)=(0,0)

The second term on the left-hand side of (2.7) is
9] 0
WV do(B:), V5 do(E) = h(Vi,de(5), Vi dé(5,)
BE ot s t
0 0
— (o). V3005

)}
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0 6 o 0
—h(dqﬁ(%), inindqb(a))‘ (2.11)
Define an 1-form on M by
n(X) = h(w,V§v), X e T(TM).

Then
divMy = Z{ez e;)) —n(V>Me;)}

= Z{ez (w, VE0)) = h(w, Ty, 0)}. (2.12)

According to formulas (2.11) and (2.12), we obtain

o é Y,
; h(V d¢( i) V d¢( i) 00 div''n + ; h(w, Vgé\geiv)
=Y h(w, VEVED). (2.13)

=1

From the formulas (2.6), (2.7), (2.10), (2.13) and the divergence Theorem, the Theorem
2.2.3 follows. O

2.3 Biharmonic maps

The bienergy functional of a smooth map ¢ : (M™, g) — (N™, h) is defined by

=5 [Im@rs, (2.14)

Definition 2.3.1. A map is called biharmonic if it is a critical point of the bienergy
functional over any compact subset D of M.

2.3.1 First variation of bi-energy

Theorem 2.3.1. Let ¢ : (M™,g) — (N",h) be a smooth map between Riemannian
manifolds, D a compact subset of M and let {¢i}ie(—ce) be a smooth variation with
compact support in D. Then

%E2(Sﬁta D)i=o = _/Dh<va2(90))Ug’
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where v = %";—tlt:o denotes the variation vector field of @ and in locale frame at x € M,
we have

n(p) = —tracegRN( (p),dp)dp — traceg(V“’)2 (p)
= — Z RN (1(), dp(e;))dy(e;) Z{V‘p Vir
V@ME ()} (2.15)

To(p) is called the bi-tension field of .

Proof. Define ¢ : M x (—€,€) — N by ¢(z,t) = pi(z).
First note that

d m
2 By(1; D)limo = /D >k (Vi 4 Vda((e:,0), (€:.0)). Vdo((e;, 0). (1:0)) ) vyleco.

i=1

(2.16)
Calculating in a normal frame at © € M we have
d
Vi d0(en0) = V2o o0, %) +do(((0, ), e:,0)
d
= v((z)ei,O)d¢(07£)' (217)
d
¢ _ ¢

Vi 4 A0V 0) = Vigu, do(0, =), (2.18)

v (0, d)Vd¢((eZJ ) (6170)> = V?O d ?)ei7())d¢(ei70> - (0, d)d(b( (e; 0) E’E)(ei;()))

d

= RY(d6(0, ), do(ei, 0)do(ei, 0) + V() Vi,
¢ . @ M,

+v[<07%>,<emnd¢<e“ 0) = Vip,4,d0(Ve, €:,0).

t)d¢(€l,0)
d
= RY(d6(0, ). d6(e.,0))d6(ex,0) + VY, o V1, 0 d6(0, )

d
@
_v(v%ei,o)dqﬁ(o’ rn

). (2.19)

From where

MV, 1) Vdd((e:,0), (e:,0)), Vdo((e:,0), (€:,0))) im0 =
h(RY (v, dip(eq))dip(e:), 7(¢)) + HVEVED, T(9)) = MV Gy, v, 7(9)- (2:20)

Let w € I'(T*M), be a 1-form to support in D, defined by:

w(X) = hViv,7(9)), X el(TM).



2.3 Biharmonic maps 47

We calculate the divergence of w
divMw = Z{el e;)) —w(V¥e)}
= Z{ez (VEu,7(9)) = M(VEu, v, 7(9))}

= Z{h(vzvzww +W(VED VET(9)) = MV, v, 7(9)}(2.21)

From the formulas (2.20) and (2.21), we obtain:

M

h(v((ﬁoyﬁ)qub((eiv 0)7 (€i7 0))7 qub((elv 0)7 (€i> 0)))|t:0 =

=1

h(RN (v, dp(e;))dp(e;), T(9)) + divMw — Z h(VEv,VET(p)). (2.22)

1 =1

NE

)

Let n € T'(T*M), be an 1-form to support in D, given by

n(X) = (v, VE7(9)), X e I(TM).
We calculate the divergence of n

diVM77 = Z{ei(ﬁ(ei)) - n(Vﬁfei)}
= z:{eZ v, V‘p (¥))) = h(v, Végifef(@))}
- Z{h(vfiv, VET(@) + (v, VEVET(9)) = h(v, VEu, 7(9))}-(2:23)

Substituting (2.23) in (2.22), we obtain

2 h<v((b0’%)Vd¢<<€i7 0)7 (62'7 O))? Vd¢<<€l> 0)7 (62'7 O>>)|t=0 =
Z RN (1(p), do(e;))dp(e;), v) + divMw — divMy
+> h(v, VEVET(0) = Y h(v, V., 7(9)). (2.24)

i=1 =1
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From the formulas (2.16), (2.24) and according the divergence Theorem, we obtain

_EQ(got7 )i=0 = / Zh RN @), dp(e;))dp(e;) = VEVET(p) —i—VéQ%iT(gp),v) Vg

]

Theorem 2.3.2. Let ¢ : (M™, g) — (N™, h) be a smooth map between two Rieman-
nian manifolds, then o is said biharmonic if and only if

() = —trace, RY (1(p), dp)dp — trace,(V¥)*7(¢) = 0. (2.25)
Remark 2.3.1. 1. The equation (2.25) is called the Euler-Lagrange equation.

2. Let M and N be two Riemanian manifolds with the coordinates (z') and (y®)
respectively, then, in the neighborhood of the points x € M and p(z) € N we
have

I or°or? 7 %08
() = 910t 2 omam L Dridwi o8
aagpﬂ 6NFZ/3 890 890 N1w Nito
oxt 0xJ +7° Oxi Oxi B F
o7 | 097 390 &P Np
ro.) —
M (g T T gk Lat) = T i ﬁw}a 7 ° P

+7

Ox*0xJ Ox* OxJ
components of the curvature tensor of (N™, h).

where 77 = ¢¥ (—‘L - —‘L—“LNIW °op— LMF’“) and VRY,,, designate the

3. Any harmonic map is a biharmonic.

4. Biharomnic maps are not generally harmonic maps.

Example 2.3.1. 1. The polynomials of degrees 3 on R are biharmonic non-harmonic
maps.

2. The identity map Id : (M™,g) — (M™, g) is biharmonic.
3. A smooth map ¢ : (M™,g) — (R",<,>gn), is biharmonic if and only if
AM(AMpo)y =0, forall o =1,...,n
2.4 Somes result on stable harmonic maps

Definition 2.4.1. Let ¢ : (M™,g) — (N™, h) be a harmonic map between two Rie-
mannian manifolds, the Hessian of ¢ (of the energy E) is defined by

H(E)w(v,w):/Mh(J@(v),w)vg, Vo, w € (g 'TN).
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Remark 2.4.1.

J,(v) = —trace RN (v,dp)dp — trace(V¥)*v

m

= =S R (v, dples))dgle) = S [v;vg;v ~ Ve, vl (2.26)
i=1 o

=1

Definition 2.4.2. A harmonic map ¢ : (M,g) — (N, h) between two Riemannian
manifolds is called stable if H(E),(v,v) >0, for allv € T(p 'TN).

Proposition 2.4.1. Let ¢ : (M™,g9) — (N™, h) be a harmonic map between two
Riemannian manifolds, where M is compact manifold without boundary, if N has a
sectional curvature < 0, then ¢ is stable map.

Proof. Let {e;}"; be an orthonormal frame on M, such that
(VMe;) =0,Vi,j=1,...,m,
where € M, then Vv € T'(p~'T'N) we have (at point z):

<Jyv,u> = — Z <VeViv,v > — Z < RN(v,dy(e;))dp(e;), v >
i=1 i=1
= —Zei <VZv,v> —|—Z <VZv,Viv>
i=1 i=1

— Z < RN (v,dp(e;))dp(e;),v >

i=1

= —div< V¥v,0v >+ |V“021|2 — Z < R (v,dg(e;))dep(e;), v > .

=1

Since sectional curvature < 0 and according to the divergence Theorem, we get:

H(E) (v,0) = /M Vool v, — /M Y- < BY (v, delen))dp(en), v > 1y 2 0

O

Proposition 2.4.2. Let (M, g) be a compat Riemannian manifold, without boundary,
of dimension m < 2, then the identity mapping I : (M, g) — (M, g) is stable harmonic
map.

For the proof of the proposition 2.4.2 we need the following lemma:
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Lemma 2.4.1 ( Yano’s formula). Let (L,g) an operator of the derivative of lie on the
metric g then:

1
5/ |L,g|*v, = / [|Vv|2 — Ricci(v,v) + (divv)?|v,
M M

Proof. Let {e;}I", be a orthonormal frame on M with (V.,e;), =0, Vi,j =1,...m.
We compute

|ng|2 = Lyg(ei,ej)Log(es, e;)
= [g(veiv7 ej) + g<v€jv7 ez):| [g(veivv ej) + g(vej/U7 ez):|
= g<v€iv7 ej)g(v&'v? ej) + 29<V6iv7 ej)g(vejv, 62‘) + g(verJ €i>g(ve]-va ez’)

= 9(Vev,9(Vevsei)es) + 26| g(v,€)9(Ve,v,e0)|
—29(v,€;)9(Ve,Ve,v,€) + g(Ve,v,9(Ve,v, €5)e;). (2.27)

We put 6(X) = g(v,e;)g9(Ve,v, X) then

|ng|2 = 2|VU|2+2d1V9+2g(v,ej)[—g(vejveiv,ei)—g(R(ei,ej)v,ei)]

= 2|Vl +2dive + 2[ — 9(Vgweye; Ve, i) — g(R(ei, g(v, e5)e;)v, ei)}

= 2|VU|2 +2 dive — 2g(vvveivv ei) - 2g(R(ela U)'U, ei)
= 2|Vul* +2divl — 29(V,V.v,e;) — 2Ricci(v,v). (2.28)

We know that
(dive)? = [g(veiv,ei)] [g(Vejv,ej)}

= cig(v,e)9(Ve,v,0)] = [9(0,€)9(Ve Vo0, 5)
divd — g(vg(v,ei)eivejv7 ej)
= divd — g(vuveﬂ/a ej)

Then
9(VoVe,v,e;) = divd — (dive)?, (2.29)

where

ﬁ(X) = g(v, X)g<v€jv7 ej)
Substituting (2.29) in (2.28) we get

1
§|ng\2 = |Vv]? +divd — divd + (dive)? — Ricci(v,v)
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According to the divergence theorem we obtain

1
—/ |Log|*v, = / [|Vv]2 + (divv)? — Ricei(v,v) | v,.
2 Jm M
O
Proof. (of proposition 2.4.2) Let {e;}™, be an orthonormal frame on M such that
(Ve,€i)e = 0 where x € M, and let v € I'(T'M), then at point  we have
< Jw,v> = —Z <VVv,v> —Z < R(v,e;)e;,v >

i=1 i=1

m m m
= —Zei < Vv,v > —1—2 < Vv,Vev>— Z < R(v,e;)e;, v >
i=1 i=1 i=1

= —divew + |Vo|* — < Ricciv,v >

Such that, g =<, > and w(X) =< Vxv,v > VX € ['(T'M) from where
< Jw,v> = —divw + |Vo|> = Ric(v,v)

As M is compact manifold without boundary, according to the Green Theorem we
obtain

/ <J,v>v, = / [|VU|2—Ric(v,v)}vg
M M

By the lemma 2.4.1 we have

/M |:|VU|2_RiC(U7U)]Ug = /M [%|Lv9|2_(diV’0)2}Ug, (2.30)

Since

’ng|2 Z (ng(eia 6i))2 = 4Z(g(veiva ei)2
i=1

> %(Z 9(Ve,v, ei))Q
> %(divv)? (2.31)

Substituting (2.31) in (2.30) we obtain:

2
/ < Jw,v>v, > / [—(divv)2 — (divv)?|v,
M M

m

2
> /—m(divv)Qvg.
M

m

By the condition m < 2 we have Hess;(v,v) > 0, then I is stable harmonic map. [
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Ezample 2.4.1. Any closed geodesic v : St — H" is stable, where
H" = {(21, x9, ..., x,) € R" |z, > 0},

is the hyperbolic space with the metric g;; = x%(sij (because the sectional curvature of
H" is equal to —1).

Theorem 2.4.1 (Y. L. Xin 1980,[45]). Any stable harmonic map ¢ from sphere (S™, g)
(n > 2) to Riemannian manifold (N, h) is constant.

The proof of Theorem 2.4.1 is based on the following lemma:

Lemma 2.4.2. Let S™ be an unit sphere of R"™ \(z) =< a, >pn+1 be a function
defined on S™, where o € R"™ fized, and v = grad \, then:

e [n the orthonormal frame {e;} on S™, we have
m
v = Z < O, €; >Rrntl €,
i=1

o Let V the Levi-Civita connection of the metric induced on S™, we have:

1. Vxv==-XX, VX e I'(TS"),

2. trace Vv = —uv.

Proof. e In the canonical frame {9;};—1 . .1 of R*T1if

1 . . 1 . .
r=3"""1210;, =79, and a= Z?; a?0; = o’ 0}, then
n+1

AMz) = Zziai. (2.32)

Let {e;}_, be an orthonormal frame on S™, we have
grad A = e;(N)e;,

and Vi =1,...,n, we have e; = €"0),.
Then by (2.32) we get

v=grad A = €"0,(N)e;
= ¢e'ae;

= <e€,a>e;.
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o Let {e;}I"; be an orthonormal frame on S", such that (V.e;), = 0, Vi,j =
1,...,n, where x € S". Then at point  we have:

Vxv = Vx<a,e >e¢;
= X(<a,e >)e+ < a,e; > Ve
= X(<a,e >)e,
with Vxei == VX].ejei == vaeje,» = 0.
So that
Vxv = [< vxoz,ei >+ < a,vxei > ]ei
= < Ol,vxei > e;
= <o, (WXei)T > e+ < @, (vxei)J— > €e;
= <a,Vyxe >e+ < a,B(X,e) > e
= <ao,B(X,e) > e, (2.33)
where V is the Levi-Civita connection of R"*', Vya = 0, and B is the second
fundamental form of S” in R**!.

We have:
B(X,e;) = Az, (2.34)

because B(X,e;) is a normal, and = € (T,S")*, where A € C>(S").

h(B(X,e;),x) = A, (2.35)
because h(x,x) = 1 with h =<, >gn+1, that is
A=h((Vxe)t, 2) = h(Vxei, 7).
Then o o
A= X(h(e;j,x)) — h(e;, Vxx) = —h(e;, Vx). (2.36)
We have
VX:L’ = vxiaﬂ}jaj
= Xivaifﬂjaj
= Xi{0:(;)0; + 2,;V,0;}
= XZ(SU 8j
= X;0,
= X, (2.37)
substituting the equation (2.37) in (2.36) we get

A= —h(e;, X). (2.38)
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From the equations (2.34) and (2.38) we obtain:
Vxv = <a,—h(e,X)x >e¢;
= —h(e,X) <a,z>e¢
= —)\X, (2.39)
and by the equation (2.39) we get:
Viv = V.V
= Vei(_)‘ei>
= —ei()\)ei - )\Veiei
= —grad A
—0.
O

Proof. (of Theorem 2.4.1)

Choose a normal orthonormal frame {e;} at point g in S™, from the lemma 2.4.2 we

have

VeVedp(v) = VEVEde(e;) + Ve dp([e;,v])
= RN(dp(e;), dp(v))dp(e;) + VEVE do(e;)
+do(les, les,v]]) + 2/, V], de(es),

lei,v

from the definition of tension field, we get

VeEVedo(v) = —RN(dp(v),do(e;))dp(e;) + VET(p)
—i—Vfdgo(ijei) + dg&(ijVE’jv)
—dp(V5 'V e;) +2VF dip(e;)

[e’i 7U]

by equations (2.40), (2.41), and the harmonicity condition of ¢, we have

VEVEdp(v) = RM(dp(v),dp(e;))dp(e;)
+dp(Vy Ve e;) + dp(VE V5 v)
—dp(VE'VY e) + 2V dp(e;),

by the definition of Ricci tensor, we get
VEVEdp(v) = —RY(dp(v),de(e;))dgp(e;)
—l—dgp(RicciSn v) + dnp(trace(VSn)zv)
+2VZ.. do(e;),

sn
Ve, v

(2.40)

(2.41)

(2.42)

(2.43)
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from the property V& v = —A\X, we obtain

ViVido(v) = —RY(dp(v),dp(e:))dp(e:) (2.44)
+dp(Ricci® v)
+dip(trace(VS")2v) — 2A7(p). (2.45)

From the definition of Jacobi operator (2.26), the harmonicity condition of ¢ and
equation (2.44) we have

Jo(dp(v)) = —dp(Ricci® v) — dp(trace(V®")?v) (2.46)
since trace, (V5" )20 = —v, and Ricci® v = (n — 1)v (see [1, 44]), we conclude
h(Jo(dp(v)), dp(v)) = —(n—=2)h(dp(v),dp(v)) (2.47)

by (2.47), it follows that
traceq h(J,(dp(0)), dp(v)) = —(n — 2)ldl? (2.43)

from the stable harmonic condition, and equation (2.48), we get
0 < trace, I?(de(v),dp(v)) = —(n— 2)/ |d|?v®" < 0.
Sn

Consequently, |dp| = 0, that is ¢ is constant, because n > 2. H
Using the similar technique we have

Theorem 2.4.2 (P. F. Leung. 1982 [22]). Let (Mg) be a compact Riemannian mani-
fold. When n > 2, any stable harmonic map ¢ : M — S™ must be constant.

Proof. Choose a normal orthonormal frame {e;} at point xy in M. When the same
data of previous proof, we have

VeVZ(vop) = —=VE(Aop)dp(e;)
= —dp(grad” (X o)) — (Ao p)T(p), (2.49)

by the definition of gradient operator, we get
—dp(grad™ (Mo @) = — < dp(e;), v o > dp(e;), (2.50)
substituting the formula (2.50) into (2.49) gives

ViVE(vop) = — <dp(e),vop>dpe)
—(Aop)T(¥), (2.51)
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from the harmonicity condition of ¢, and equation (2.51), we have
<VEiVE(vop)vop> = — <dp(e),vop><dp(e),vop>  (2.52)
since the sphere S™ has constant curvature, we obtain

< R (v o, dp(e;))dp(e;),vo @ >= |do|* <vogp,vop >
— <dp(e;),vop ><dp(e;),vop >, (2.53)

by the definition of Jacobi operator and equations (2.52), (2.53), we get

<Jp(vop)vop> = 2<dp(e),vop ><dp(e)vop>

—|dp* <vop,vop>. (2.54)
So
trace, < J,(vop),vop > = (2—n)|de|* (2.55)
So that
trace, [P(vop,vop) = (2—mn) / |dip|*v™ (2.56)
M

Hence Theorem 2.4.2 follows from (2.56) and the stable harmonicity condition of ¢
with n > 2. N

2.5 Homothetic vector fields and harmonic maps

2.5.1 Homothetic vector fields and harmonic maps

A vector fields £ on a Riemannian manifold (M, g) is called a homothetic if Leg = 2kg,
for some constant k € R, where L¢g is the Lie derivative of the metric g with respect
to &, that is

g(VxE,Y) + g(Vyé, X) = 2kg(X,Y), VX,Y € T(TM). (2.57)

The constant k is then called the homothetic constant. If ¢ is homothetic and & #
0, then it is called proper homothetic while £ = 0 it is Killing (see [1], [20], [43]).
It follows that gradf is homothetic if and only if the Hessian satisfies the equation:
(Hessf)(X,Y) = kg(X,)Y), V XY € I'(TM), k € R.If (M,g) is a complete
n-dimensional Riemannian manifold, and suppose that there exists a non-constant
smooth function f in M satisfying Hessf = kg, for some constant k # 0, then M is
isometric to R” (see [34]). Note that, if a complete Riemannian manifold of dimension
> 2 admits a proper homothetic vector field then the manifold is isometric to the
Euclidean space (see [19], [43]).
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Ezample 2.5.1. The position vector fields P = " | xia%iv in R™ is an homothetic
vector fields.
Indeed, we have

VE'p=X, VX eT(TR"),

then, VX, Y € T'(TR"):
(Lpg)(X.Y) = g(VxPY)+g(VyP X)
9(X,Y) +g(Y, X)
= 29(X,Y).
So, P is an homothetic vector fields with the homothetic constant & = 1.

Theorem 2.5.1 (A.M.Cherif.2017.]27]). Let (M, g) be a compact orientable Rieman-
nian manifold without boundary, and (N,h) be a Riemannian manifold admitting a
proper homothetic vector field & with homothetic constant k # 0. Then, any harmonic
map ¢ from (M, g) to (N, h) is constant.

Proof. Let X € T'(T'M), we set
W(X) = h(€ 0 9, dp(X)). (2.58)
Let {e;} be a normal orthonormal frame at = € M, we have
divt w = e;[h(€ 0 g, dip(e;))], (2.59)
by equation (2.59), and the harmonicity condition of ¢, we get
div w = h(VE (£ 0 p), dp(e;)), (2.60)
since ¢ is a homothetic vector field, we find that
div w = kh(dp(e;), dp(e;)) = k|dp|?. (2.61)

Theorem 2.5.1 follows from equation (2.61), and the divergence theorem, with k #
0. O]

In the case of non-compact Riemannian manifold, we obtain the following result.

Theorem 2.5.2 (A.M.Cherif.2017.[27]). Let (M,g) be a complete non-compact Rie-
mannian manifold, and (N,h) be a Riemannian manifold admitting a proper homoth-
etic vector field & with homothetic constant k # 0. If ¢ : (M, g) — (N, h) is harmonic
map, satisfying:

/ [€ 0 0¥ < o0, (2.62)
M

then ¢ is constant.
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To prove the Theorem 2.5.2; we need the following lemma:

Lemma 2.5.1 ( Young’s inequality). Let (M, g) be a Riemannian manifold and XY €
[(TM), then Ye > 0 we have —2g(X,Y) < | X|> + L|Y]2

Proof. Let € > 0, we have

[VeX + %YIQ = g(VeX + %Y, VeX + %W

1

1
= —29(X,Y) < ¢l X)? + =V~
€
O

Proof of Theorem 2.5.2. Let p be a smooth function with compact support on M, we
set

w(X) =h(€op,p?dp(X)), X eTl(TM). (2.63)
Let {e;} be a normal orthonormal frame at zo € M, we have
div? w = e;[h(€ o @, pPde(e;))], (2.64)
by the equation (2.64), and the harmonicity condition of ¢, we get:

diviw = h(VE(£0 ), pPdo(es)) + h(E o @, VE p’dp(e;))

PPR(VE(E 0 ), dples)) + 2pei(p)h(€ 0 ¢, dp(er)), (2.65)
since ¢ is a homothetic vector field with homothetic constant k, we find that:
PP R(VE (& 0 p),dp(er)) = kp*h(dp(es)), dp(es)), (2.66)

by the Young’s inequality, we have:
~2pep)h(€ o 0, dp(er)) < en?ldpl? + epIE o o (2.67)
Ve > 0. From (2.65)-(2.67), we deduce the inequality:
kp'ldel? — divt w < ep?|dp]® + éez-(pfli o . (2.68)
We suppose that & > 0, and let € = g by (2.68), we have

k 9
§p2!d90!2 —divMw < Eei(p)Q\f o, (2.69)
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by the divergence theorem, and (2.69), we have
E 2l dol?0? < 2 ()2 2,9 2.70

p ldel"v? < ei(p)7|€ o [’ (2.70)
2 Ju k Jar

Consider the smooth function p = pg such that,p < 1 onM, p = 1 on the ball B(xg, R),
p =0 on M\B(zy,2R) and | grad p| < 2 (see [42]). Then, from (2.70), we get:

ko, 8
— dol*v? < — 29 2.71
5 | Plaek < o [ g0 (271)
since [, € o ¢[*v9 < 0o, when R — oo, we obtain:
k 2
> [ ldel"v? =0, (2.72)
2 Jm

Consequently, |dp| = 0, that is ¢ is constant.(If & < 0,consider the proper homothetic
vector field £ = —¢). O

If (M,g) = (N,h) and ¢ = Idy, from Theorem 2.5.2, we get the following.

Corollary 2.5.1. Let (M, g) be a complete non-compact Riemannian manifold and let
¢ be a proper homothetic vector field on (M, g). Then,

[ g oo

2.5.2 Homothetic vector fields and biharmonic maps

A vector field £ on a Riemannian manifold (M, g) is said to be a Jacobi-type vector
field if it satisfies:

vaxf—VVxxf+R(£,X)X =0, VX € F(TM)

Theorem 2.5.3 (A.M.Cherif.2017.[27]). Let (M, g) be a compact orientable Rieman-
nian manifold without boundary and (N,h) be a Riemannian manifold admitting a
proper homothetic vector field & with homothetic constant k # 0. Then, any bi-
harmonic map ¢ from (M, g) to (N, h) is constant.

For the proof of Theorem 2.5.3, we need the following lemma.

Lemma 2.5.2. A homothetic vector field on a Riemannian manifold is a Jacobi-type
vector field.

Proof. (see [27].) O
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Proof. (of theorem 2.5.3) We set
n(X) = W&oy, Vi), X el(TM),
calculating in a normal frame at x € M, we have

divt'n = eh(€ 0w, VET(9))]
= h(VE(€op), ViT(p)) + MEop, VEVET(p)), (2.73)

from the equation (2.73), and the biharmonicity condition of ¢, we get:
diviin = W(VE(E o), VET(9)) — MR (1(0) dp(e)dple:),E 0 ), (2.74)
the first term on the left-hand side of (2.74) is
WMVE(E0w), VET(0) = eilM(VE(§ 0 9), T(9)] = h(VEVE(E 0 9), T(9)),  (2.75)
by the equations (2.74), (2.75 and the property:
MRY(X,Y)Z,W) = h(RY(W, 2)Y, X),
where X,Y, Z, X € I'(T'M), we conclude that
divin = div" h(V#(E 0 ), 7(p)) = M(VEVE(E 0 p), T())
—h(RY(€ 0, dip(ei))dip(e:), T(¢)), (2.76)
from Lemma 2.5.2, we have
div n = div? h(V#(€ 0 9), 7(9)) = h(V€, T()), (2.77)
since £ is a homothetic vector field with homothetic constant k, we get:
div?n = div™ h(V#(€ 0 0), 7(¢)) — klT(p) %,

from the equation (2.78), and the divergence theorem, with k& # 0, we get 7(¢) = 0,
that is ¢ is harmonic map, so by Theorem 2.5.1, ¢ is constant. O

If € = grad” f, from Theorem 2.5.2, we deduce.

Corollary 2.5.2. Let (M,g) be a compact orientable Riemannian manifold without
boundary and (N, h) be a Riemannian manifold admitting a smooth function f satisfy-
ing hess f = kh, for some constant k # 0. Then, any bi-harmonic map ¢ from (M, g)
to (N, h) is constant.



Chapter 3

Generalized f-harmonic maps

In this chapter, we define f-harmonic maps and f-biharmonic maps between two Rie-
mannian manifolds M and N, where f is a positive function in C*°(M x N), and we
present some properties for f-harmonic maps and f-biharmonic maps. The case where
f =1 we find the results of chapter 2.

3.1 f-harmonic maps

Definition 3.1.1. Consider a smooth map ¢ : M™ — N™ between Riemannian
manifolds, and

f:MxN — (0,00)
(z,y) — [f(z,9)

be a smooth positive function. The f-energy functional of ¢ is defined by

1
BileiD) = 5 | Faplo)ldgl, (3.1)
Definition 3.1.2. A map is called f-harmonic if it is a critical point of the f-energy
functional over any compact subset of M, that is

d
%Ef(%t; D)i=o =0, (3.2)

where {@} is a smooth variation of ¢ with compact support in D.

Definition 3.1.3. Let ¢ : (M™, g) — (N™, h) be a smooth map. The f-tension field
of v it is a section 7;(p) € (¢ 'TN) defined by

Ti(p) = trace,V fodp — e(gp)(gradN fow.
= for(p) + do(grad™ f,) — e() (grad™ f)op.

61
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3.1.1 The first variation of the f-energy

Theorem 3.1.1. [11]. Let ¢ : (M™,g) — (N™, h) be a smooth map and {p;}ier,(I =
(—e,€) C R) a smooth variation of ¢ to support in D then

GEeiDllico == [ Hw (oo,

d(pt
dt |,

smooth function deﬁned by

where v = denotes the variation vector field of variation {@t}ier and f, is a

for M — (0,00)
v folx) = flz, o).

Proof. Let {ei,...,e,} be an orthonormal frame and v € I'(¢ 'T'N) the variation
vector field associated to the variation {¢;}e; given by

dipe
dt lt=0

V=
Let ¢ : M x (—¢,e) — N defined by

o(z,t) = pi(x).
We have

d
thf(SOta D)li=0 = /wa Od) (€i>0)7d¢(€i,0))vg|t:0

/ Z af%h (do(e;,0), do(es, 0))vgli=o

d
-/ Zf@thwz;,o)dqﬁ(o, ). dole, 0l
/ Z af@t h d¢ €i, )7 d¢(6ia O))Ug‘tzo

— /L;Zf¢h(V‘§iv,d90(€i))Ug—I—/Dv(f)e(<p)vg, (3.3)

6(90) = % Z h(dgb(ei7 ()), dgb(ei, O)) ’t:() - 5fgot

=1

‘t o = v(f) = h(v, (grad™ flop).
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Let w € (T*M) defined by
W(X) = h(v, f,dp(X)), X € D(TM),
Then

divMw =

M

{eiwle) —w(Ve)}

=0

I

Il
o

{20, fadpled) + (v, V2 fodle) — hv, fodp(V2e) b(3.4)

)

By using the formulas (3.3), (3.4) and the divergence Theorem, we get

d m
GEei Do =~ [ > {0 Ve fpdpte) = fodo(Vile) (o) arad” fog)
[

Theorem 3.1.2. Let o : (M™,g) — (N", h) be a smooth map, then ¢ is f- harmonic,
if and only if

71(p) = fo1(9) + dp(grad™ f,) — e()(grad™ flop = 0. (3.5)
Remark 3.1.1. 1. If f =1 on M then 74(p) = 7(¢) is the natural tension field of ¢.
2. The equation (3.5) is called Euler-Lagrange equation associated to the f-energy

functional.

3.1.2 The second variation of the f-energy
Notation 3.1.1. Let v € T'(¢ 'TN),

Jf(v) = —f,trace, RN (v, dp)dyp — trace, V¥ f,V?v
+e()(Vy grad™ f) o o — dp(grad™ v(f))
—v(f)T(p)+ < V¥u,dp > (grad™ f) o ¢, (3.6)

J;f is called the f-Jacobi operator corresponding to ¢.

Theorem 3.1.3. [11]. Let ¢ : (M™,g) — (N™, h) be an f-harmonic map between
Riemannian manifolds and ¢y s : M — N(—e < t,s < €)) be a two-parameter variation
with compact support, such that o o) = @, then

82
= [ h(J?(v),w)v,,
(1,5)=(0.,0) /D (J7 (), w)oy

Ot0s
where v = %kt,s):(o,m and w = %“t,s):(oﬂ) denote the vectors filed of variations.

Et(¢rs; D)
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Proof. Let {e1,..., ey} be an orthonormal frame on M, such that V.,e; =0 , at fixed
point z € M for all 7,5 = 1,...,m. We put

0 d 0 d
E; = ,0,0), = =1(0,—,0 d —= 0,0,—).
(e,0,0), g7 = (0, 2 0) and 52 =1(0,0,20)

Let ¢ : M x (—¢,€) x (—€,e) —> N defined by ¢(x,t,s) = ¢ 5(x).We compute

o

sasBiten) =5 [ ZMS (¢, s () hldpra(er), dis(e)) | o
we have

1

557 |f @ era@Nhdpn(e) %(ei))} -

55“ s Pr,s()) . h(depr s(€:), dpr s(€:)
+1 (2, 005(2))- RV dipns(e:), depes(e:).
Hence

%8?85 f(@, o1s(x))h(deprs(es) dgot,s(ei))] -

5 5] (0 Pa(@) hdralen). dipus(en)

0
+§f<l', th,s($))h(v% d@t,s(@')? dgpt,s(ei))
0
55T (@ 91s(@)) DV digys(e:), diprs (1))
1 (2, 005(2)) -1V V5 diprs(e0), digu s (e4)

@, 000 hV dpuaer), Vo disle)).
(3.7)

On the other hand

0 D1 s(x)
i@ o) = df(0, =)

= df(o,dd)(%))
- h((grade)ocb,dcﬁ(%));

%f(x,gptys(x)) = h((grade)Ocﬁ,(w(%))S
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and
T pale)) = (T (gad fog, do())
Otos ’ o ot
th(erad® F)os, ¥, do( ).
From where
l e 02
BY - %f(% SOt,s(@)-h(d%,s(@i) ) d(pt,s(ei)) (£.9)=(0.0) =
WV (grad™ f)op, v)e(p) (3.8)
+h((grad® fop. Vo3| elio)
We have

0
il @ s @)V ds(es) o daus(en)|
= +h((grad" flog, v)h (V% do(E:), do(E;))
0
_ ¢ .
= W(DA(VEdd(5). do(ED)| s

= o(f)|eslh(w, dp(es)) = h(w, 7(¢))].

(t,s)=(0,0)

If wy denotes the differential 1-form with support in D, defined on M by
wi(Y) = h(w,dp(Y)), Y € T(TM).

Then

0
af(ﬂ%@t,s(x))-h(v(%d%,s(@i) ) d@t,s(ei))

(t,s)=(0,0)

= o(f)divMw; — h(w,v(f)T(p))

= div™ (v(f)wy) — h(w, dp(grad™ v(f)))
—h(w,v(f)7(¥)); (3.9)

0
Z&f(%@t,s(z))-h(v(%d%s(ei) ) d‘Pt,s(ei))

i=1

(t,5)=(0,0)
= h((grad” f)op, w). < V¥v,dp >
= h(< V¥0,dp > (grad” flop,w); (3.10)
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¢ 7P . ,
; f(xa Spt,s(aj))'h(v%vgd@t,s(ez) ) dgpt,s(ez)) (t,5)=(0,0)

m 0
_ Z fwh(v‘% Vide(52), de(e:)) o=
_ Zf@ (w, dp(e;))v, dp(e;))

9
s Foh (V5% do(5,). dp(e)
i=1

(t,8)=(0,0)
- Zf¢h(RN(v,dgo(ei))d¢(€i)7w)
=1
+ngpez (V% do( ) de(e))| . _oo

—feh(V d¢<§>, (%))

(t,5)=(0,0)
If wy denotes the differential 1-form with support in D, defined on M by

0
Y) = h(V% dé(=),dp(Y Y € T(TM).
wslY) = bV do(g)ude (V)| Y e(Ta)
Then
s h ¢ d s\&2 ) d s\&1
;1 J (@, 01,5(2))-h (V' V% diyo(e:) s, oo
= —f,h(trace, RN (v, dp)dp, w)
0
.M B é g
+f<pd1v wWa f@h(v%dgb(at)ﬂ_((p))) (£,8)=(0,0)
= —f,h(trace, RN(U, dp)dp,w) + divM(f@wg)
0
_ ¢ “ M
) ot 1)
0
_ ¢ el
Fb(Vodo(g)r @), B
So that

0 0
f(fasot,s(x))-h(vgdsot,s(ei);V%dwt,s(ei)) = fgoh(V%idﬂa)’V%dﬂﬁ(%))

= L [eh(VP0,w) ~ H(VEVE D, w)];

(t,8)=(0,0)
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S @) bV dpsle) Vi dor(er)

(t,5)=(0,0)
= f, [divM w3 — h(trace,(V¥)?o, w)]
= divM(f,ws) — h(VgradM f¢v,w)
—h(f, trace,(V¥)?v, w)
= divM(f,ws) — h(trace, V¥ f,V?v,w), (3.12)

where w3 denotes the differential 1-form with support in D, defined on M by
w3(Y) = h(Vyv,w), Y e T(TM).

By the formulas (3.7),(3.8),(3.9),(3.10), (3.11), (3.12) and the divergence Theorem, the
Theorem 3.1.3 follows. [

3.2 f-biharmonic maps

A natural generalization of f-biharmonic maps is given by integrating the square of
the norm of the f-tension field. More precisely, the f-bienergy functional of a smooth
map ¢ : (M™, g) — (N™, h) is defined by

Paslo.D) = 5 [ I, (313)

where D is a compact subset M.
A map ¢ is called f-biharmonic if it is a critical point of the f-bi-energy functional
over any compact subset of M that is,

d
EEQ,f(SOtv D)|i=0 =0, (3.14)

where {¢;} is a smooth variation of ¢ with support in D.

Definition 3.2.1. Let ¢ : M™ — N be a smooth map between two Riemannian
manifolds. 12 ¢(¢) € T( ' (T'N)) defined by

Top(p) = —fotrace, RN (14(p), dp)dp — trace, V¥ [,V 74 (p)
+e(p) (V2 ) grad™ flop — dp(grad™ () (f))
—71(@)(f)T(9)+ < VI7s(0), dip > (grad™ f)oy

1s called the f-bi-tension field of ¢, where

m

trace, R (1¢(p), dp)dp = Z RN (14(p), dgp(e;))dip(e;);

=1
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trace, (V¥ f,V?1(p) =

M-

(Vfifsovfﬁf(@ - fwvég;feﬁf(@)) ;

=1

L

< VP7p(0),dp > = h(VETs(), dp(e;)),

i=1

where {e1,...,en} is an orthonormal frame on M.

3.2.1 First variation of the f-bi-energy

Theorem 3.2.1. [11]. Let ¢ : (M™,g) — (N™, h) be a smooth map and let {p;} be
a smooth variation of ¢ with support in D. Then

d
B Do = = [ homy (),
D

where v = ‘Pt Lli—o denotes the variation vector field of {¢;}.

Proof. Let {¢;} be a smooth variation of ¢ with support in compact subset D of M
and v € T(p 'T'N) is a variation vector field of {(;}.
Let ¢ : M x (—¢,e) — N defined by ¢(z,t) = ¢(), then

cth”(%D) - /Dh(véjf(%)ﬁf(%))vg- (3.15)

Let {eq, ..., €y} be an orthonormal frame on M such that (Ve;) =0Vi,j=1,...,m
at a fixed point x € M, we have

VY 7r(00) = V5% Vi g fadpiled = V5 e(p) (grad™ Nopi. (3.16)
i=1
The first term of (3.16) is given by

0
ZV¢ f@td@t(ez) = N déa%dgb(ewo))ﬁﬂtd@t(el)

1=

>R

=1

+ Z Vq(bei,O)V%fwd@t(ei)- (3.17)
i=1

We have

> MV i), 7(50) eh(V' fadin(e), 71(21))
=1

h(v(% fﬁpt dgpt(ei% v((z)ei,o)Tf((Pt))
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Z V¢ o fordpi(€i): 75(¢1))

Ofp,
Z = h(dpi(e:), vq(behoﬂ'f(%@t))

—ngof V d%(ez) Vi (#1)-
(3.18)
Let wy be a differential 1-form with support in D, defined on M by
wi(Y) = WV fdon(¥), 74(@0))limo, Y € T(TM).

By (3.18) we obtain

m

S0V VY fadenle) mie))| = div wi = h((grad™ Flog,v). < dp, V¥r(¢) >

i=1 B

—wa (V% dpi(e:), Vi, 077 (#0)li=o; (3.19)

h( (e; od¢t( ) f<,0t (e; on(QDt)”t 0

'M?

Z fsoth(vgd(’ot(ei)’ v?€i70)7f<¢t)) )t:O B
i=1

=1

M

[ei(h(v, f,VETs (1))

—h(v, VE f,VET(00)]- (3.20)

If wy denotes the differential 1-form with support in D, defined on M by

wy(X) = h(v, [oVyTi(p)), Y e I(TM).

Then
Zf% V dcpt(ez) V (e O)Tf(got))|t o = divMwy — h(v, trace, V2 £, V7: (1)), (3.21)

By the formulas (3.17) (3.19) and (3.21), we obtain

2 V%V g fadelen, ez = h(f, traces R (75(¢), dig)dip, v)
=1

+divMw; — h(< dp, VP1i(p) > (grad” flop, v)
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—divMwy + h(trace, V¢ £,V?1¢(p), v). (3.22)
The second term of (3.16) is given by

v, el arad” og, = 2 (grad® flog, + (@) VY, (rad® flog. (329

Calculate

h(dg(e;, 0), do(ei, 0))l]i=o

g
Sle

i}

()

I
N
1[M:
¥l

1

h(V% dé(e:,0), d(es,0))li=o

M

s
I
—_

0
WV, 0ydd(50), do(er, 0))li=o

Ms

1

(2

Ms

ei(h(v, dp(ei))) — h(v, 7(#))

= divM ws — h(v, 7()), (3.24)

.
—_

where ws is a differential 1-form with support in D, defined on M by
ws(Y) = h(v,dg(Y)), Y € T(TM)
By the formulas (3.23) and (3.24),we get

h(Vge(sOt)(gfadNf)OSOtan(%))\mo = 7r(@)(f) div" ws — 75 () () (v, ()
+e(p)h(V (grad™ flogr, 75(0) =0

= div(rs(yp )( Jws) = h(v, dp(grad™ 74(2)(f)))
_Tf(<P)( (v, 7(#))
+e(0)(V3 () grad™ f,v). (3.25)

By the equations (3.15),(3.16), (3.22), (3.25) and the divergence Theorem, we obtain

d
G P2s(ps Do = —/h(—fgatracegRN(Tf(w),dw)dw—tracegwf¢v“07f(s0)
D

+e(p) (VD () grad” fop — dp(grad™ () (f))
—7r(@)(f)T(9)+ < VO1s(0), dip > (grad™ f)op,v)v,
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Theorem 3.2.2. Let ¢ : (M™,g) — (N",h) be a smooth map . Then ¢ is f-
biharmonic if and only if

To.f(p) = —fwtracegRN(Tf(go), dp)dy — trace, V¥ f,V¢1s ()
+e(p) (VD () grad” fop — dp(grad™ () (f))
—7r(@)(N)T(p)+ < V75(0), dp > (grad™ f)op
= 0. (3.26)

Remark 3.2.1. o (1) If f =1, then 7 () = 72(¢), is the natural bi-tension field
of .

e The equation (3.26) is called the Euler-Lagrange equation associated to f-bi-
energy functional .

3.3 Main results

3.3.1 Some results on stable f-harmonic maps

Theorem 3.3.1. [39]. Any stable f-harmonic map ¢ from sphere (S",g) (n > 2)
to Riemannian manifold (N, h) is constant, where f is a smooth positive function on
S* x N satisfying trace, h((Vdp)(-, grad®” f), dp(-)) > 0.

Proof. Choose a normal orthonormal frame {e;} at point xy in S™. Set
AMz) =< @,z >gn+,
for all € S”, where a € R"*! and let v = grad®” \. Note that

v=<a,e; > e, Viv=-)\X, forall X € ['(TS"),

§™M\2, _ ST s” S
trace, (V> )"0 = V. V. v — VVE?eiU = —v,

where V®" is the Levi-Civita connection on S™ with respect to the standard metric g
of the sphere (see [44]). At point zy, we have

Ve foNVEdp(v) = VY

grads” fo

do(v) + f,VEVEdp(v), (3.27)
the first term of (3.27) is given by

Vgraud fo d(p(v) = Vfdgp(gradgn f<p) + dw([gradsn fcpv U])
= Vidp(grad™ f,) +dp(Vy, e v)

gradsn

—dp(VE" grad® f,), (3.28)
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the seconde term of (3.27) is given by

fVENEde(v) = [oVEVTdp(e:) + [,V do(lei, v])
RN (di(es), d@(v))dsﬁ(ei) + [ VIVEdp(e)
+fpdo([ei [ei, v]]) + 20V, ydip(es), (3.29)

from the definition of tension field, we get

fVEVEdp(v) = —f,RY(dp(v), dp(e;))dp(e;) + f,VET(¢)
+[oVido(Ve e:) + fwdso(VS"VS" )
— Fodp (VY e) 4+ 2£,VE, dile)
= [ RN (dp(v), dp(e;))do(es) + Vi for(0) = v(fo)T ()
+ 1o VEdo(Ve e) + fodp(Ve, Ve, v)
—fodp(Ve, V3 ) + 2f, V7 dp(er), (3.30)

by equations (3.27), (3.28), (3.30), and the f-harmonicity condition of ¢, we have

VEfVidov) = dp(Vo g v) —dp(Vy grad™ f,)
— [ RN (dp(v), dp(eq))dip(e;)
+Vie(o)(grad™ f) oo —v(f,)7(p)
+fodp(VE" V" e;) + fwng(VSnVSnv)
—fodp(Ve, Yy €) + 2f,VE varodeled, (3.31)

by the definition of Ricci tensor, we get

VEfVEde(v) = d@(vgradsn v) — dp(VE" grad® f,)

—f@RN(dw( ), dip(e;))dep(e;) + Vie(p)(grad™ f) o g
~o(f)7(@) + Fadip(Ricei™ v) + fodip(trace(V™")20)
+2f¢V§§%dg0(ei), (3.32)

from the property V& v = —A\X, we obtain

Ve fVEde(v) = —Mdp(grad® f,) — dp(V5 grad™ f,)
— fo RN (do(v), dp(e;))de(e;)
+ < VZdp(v),de(e;) > (grad™ f) o
(e

—h(dp(VE ), dp(e;)) (grad" f) o
+e(p )V“’(grade)Ow
—v(f)7() = dp(v)(f)T(9) + fodo(Ricei® v)
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+fodo(trace(VE")2v) — 2Xf,7(¢p). (3.33)
From the definition of Jacobi operator (3.6) and equation (3.33) we have

Jf(dp(v)) = Adp(grad™ f,) + dp(V, grad™ f,)

—Ah(dp(e;), dp(e:))(grad™ f) o o +v(f)7(p)
— fodp(Ricci®” v) — f do(trace(VS")?v)
—dp(grad™ dp(v)(f)) + 2Mf,7 (), (3.34)

since trace,(VS")2v = —v and Ricci® v = (n — 1)v (see [1, 44]), we conclude

h(Jf(de(v)),de(v)) = Ah(dp(grad®™ f,),dp(v))
+h(dp(Vy" grad™ f,), de(v))
—2h(e(p)(grad™ f) o ¢, dp(v))
+o(f)h(T(p), dp(v))
—(n —2) foh(dp(v), dp(v))
—h(dp(grad® dp(v)(f)), de(v))
+2A foh(T(9), dp(v)), (3.35)

by (3.35) and the f-harmonicity condition of ¢, it follows that

tracea h(Jf (dp(v)),dp(v)) = h(de(Ve, grad™ f,), dp(e;))
+h(1(¢), dp(grad®™ f)) — (n — 2) f,|dg|?
—h(dp(grad® dp(e;)(f)), dyp(e;)), (3.36)

by the following formulas
h(dp(VE grad™ f,),de(e;)) = h(dp(VE grad® f),de(e;
+h(V“’d<p(ez) grad” f)h(deo(es), do(e;))
h(de(e;), VE grad™ f)h(dp(e:), dp(e;)),

dip(grad™ dp(e;)(f)) = [( p(e;), grad™ f)ldp(e;)
= h(VEdp(e)), grad” f)dp(e;)

+h(de(e;), VE grad™ f)dp(e;);

)

—h(dp(grad®™ de(e;)(f)), dp(e;)) = —h(VEdp(e;),grad” f)h(dp(e;), dp(e;))
—h(dep(e;), V¢ grad™ f)h(dp(e;), dp(e;)),

and equation (3.36), it follows that

traceq h(Jf (dp(v)), dp(v)) = h(dp(Ve, grad™ f), dp(e;))
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+h(7(p), dp(grad® f)) = (n = 2) foldp,
note that
h(r(p), dp(grad®™ f)) = h(VEde(e;), dp(grad™ f))
= div”" 1y — h(dp(e;), VE dp(grad™ f)),
with 7(X) = h(de(X), dp(grad® f), VX € T(TS"). We obtain
traceq h(Jf (dp(v)), dp(v)) = —h((Vdp)(e;, grad”™ f), dp(e;))
+div" n — (n = 2) f,ldpl, (3.37)
since h((Vdgp)(ej,gradSn f),dp(e;)) > 0, from the stable f-harmonic condition, and
equation (3.37), we get

0 < trace, I (dp(0).do() + [ B(Vd)(es,rad® ). dofey)e”

n

= —(n—-2) f¢]d90|2v8n < 0.
Sn

Consequently, |dp| = 0, that is ¢ is constant, because n > 2. O
Using the similar technique we have

Theorem 3.3.2. [39]. Let (M,g) be a compact Riemannian manifold. When n > 2,
any stable f-harmonic map @ : M — S™ must be constant, where f is a smooth positive
function on M x S", with AS"(f) o ¢ <0.

Proof. Choose a normal orthonormal frame {e;} at point xy in M. When the same
data of previous proof, we have

VEFVEWop) = VE L (Vo) + fVEVE (Vo ), (3.39)
the first term of (3.38) is given by
Ve v g, (00 9) = —(Aop)dp(grad™ [,); (3.39)

the seconde term of (3.38) is given by

fVENVE (o) = —f,VE(Aop)dp(e;)
= —fodp(grad™ (Ao @) — (Ao @) f,7(), (3.40)

by the definition of gradient operator, we get

— fodo(grad™ (X o)) = — f, < dp(e;),v 0 > dple;), (3.41)
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substituting the formulas (3.39), (3.40), (3.41) into (3.38), we get

Ve V(o) = —(Ao)dp(gradY f,) — f, < dple;),vop > dp(e;)
—(Ao)foT(p), (3.42)

from the f-harmonicity condition of ¢, and equation (3.42), we have

<VEfVe(vop)vop> = —f, <dp(e),vop><dp(e),vop>

—(Aople(p) < (grad™ f)op,vop >,
(3.43)

since the sphere S™ has constant curvature, we obtain

< foR¥ (vo g, dp(e;))dple;), v o >= flde* <vop,vop>
—fo < dp(e;),vop ><dp(e),vop >, (3.44)

by the definition of Jacobi operator and equations (3.43), (3.44), we get

<Jf(wop)vop> = 2f, <dp(e),vop><dp(e;),vop >
—foldpl* <vop,vop >
+(Aople(p) < (grad™ f)op,vop >
+e(p) < (Vio, grad” f)op,vop >
— < dp(grad™ (vo p)(f)),vop >
— < (vop)(f)T(p)vop >
+ < VPvop,dp>< (grad™ f)op,vop >,
(3.45)

so that

trace, < Jf(vop),vop> = (2—n)f,|dpl
+e(¢p) trace, (Hess™ f)(v o p,v o @)
— trace, < dy(grad™ (vo ¢)(f)),vo ¢ >

—trace, < 7(p),vop > (vop)(f)
+ trace, < Vv o p,dp >
< (gradgn flop,vop >, (3.46)

where Hess®" f is the hessian of the function f on S*, by the following formulas

dp(grad” (vo ) (f)) = e <voyp,grad®™ f > dp(e;)
< V?(voy), grad® f > dp(e;)
+<vop,V? grad® f > dy(e;)
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= —(Aoy) < dp(e;),grad”™ f > dp(e;)
+ <wvop, VEZ;(Q) grad® f > do(e;);

— trace, < dp(grad” (vo ¢)(f)),vop > = —(Hess™ f)(dp(e;), dp(er));
<Vfvop,dp> = <VZvopdp(e) >
= —(Aoyp) <dp(e;),dp(e;) >
= —(Aop)ldel*;

trace, < V¥vo g, dp >< (gradS" flop,vop> = 0;

—trace, < 7(@),vo09 > (Vop)(f) = —<7(p),grad® f >
= — < V?dp(e;),grad™ f >
= —divw+ < dy(e;), V(Si;(ei) grad®” f >,
where w(X) =< dp(X), grad®” f >, VX € (T M), and (3.46), we have
trace, < Jf(vop),vop> = (2—n)f,|dpl
+e(0) AT (f) o

—(Hess™ f)(dp(e;), dp(e;))
—divw + (Hess™ f)(dy(e;), do(e;)),

where AS"(f) o p = trace,(Hess® f)(vog,vo ), so that
trace, I[f(vop,v0p) = (2—n) /M foldp>v™

T /M (D) IAT (f) 0 . (3.47)

Hence Theorem 3.3.2 follows from (3.47) and the stable f-harmonicity condition of ¢
with n > 2 and AS"(f) o < 0. O

If f(z,y) = fi(z) V (xz,y) € M x N, such that f; be a smooth positive function
positive on M, we get the following result:

Corollary 3.3.1. [26]. any stable f-harmonic map ¢ : S™ — N must be constant,
where [ is a smooth positive function on S™. with h((Vdy)(., gradf),dy(.)) > 0.

Corollary 3.3.2. [26]. Let (M,g) be a compact Riemannian manifold. When n > 2,
any stable f-harmonic map @ : M — S™ must be constant, where f is a smooth positive
function on M.
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3.3.2 Homothetic vector fields and f-harmonic maps

Theorem 3.3.3. ./[40] Let (M, g) be a compact orientable Riemannian manifold with-
out boundary, (N, h) a Riemannian manifold admitting a homothetic vector field & with
homothetic constant k, and let f be a smooth positive function on M x N such that

2kf 4+ &(f) # 0 at any point. Then, any f-harmonic map ¢ from (M,g) to (N,h) is
constant.

Proof. We set
W(X) = h(€ 0 ¢, fudp(X)), VX € D(TM), (3.48)

let {e;} be a normal orthonormal frame at x € M, we have
divMw = ¢ [h(f o, fg,dgo(ei))}
= WVE(Eo ) fedp(e) + h(€ 0w, VE fodp(es))
= WVE(Eoyp), fodple) + (€0, for(p) + dp(grad™ f,)) (3.49)

by equation (3.49) and the f-harmonicity of ¢, we get:
divw = h(VE(E0 ), fedp(e) + h(€ o p,e(p)(grad™ f) o )
= [P (Vipen&: dip(ei) + h(€ 0 @, e() (grad™ f) o ),

since ¢ is a homothetic vector field with homothetic constant k, we find that

divMw = f kh(do(e;), do(e;)) + e(@)h(€ o o, (grad™ f) o o)

1
= kfldol® + §|dsol2h(€ o, (grad™ f) o )

2
= R Lok, 1 hieo . (arad” )0 )]

2
= ks, v e 0]

Theorem 3.3.3 follows from the last equation, and the Green Theorem [1], with 2k f +
§(f) #0. O

Remark 3.3.1. If f =1 on M x N we obtain the following result of chapter 2 [27].

If f(z,y) = fi(z), for all (x,y) € M x N, where f; is a smooth positive function
on M, we have the following.

Corollary 3.3.3. Let (M,g) be a compact orientable Riemannian manifold without
boundary, (N,h) a Riemannian manifold admitting a proper homothetic vector field,

and let f1 be a smooth positive function on M. Then, any fi-harmonic map ¢ from
(M, g) to (N,h) is constant.

In the case of non-compact Riemannian manifold, we obtain the following result.
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Theorem 3.3.4. .[/0] Let (M,g) be a complete non-compact orientable Riemannian
manifold, (N,h) a Riemannian manifold admitting a homothetic vector field & with
homothetic constant k, and let f be a smooth positive function on M x N such that
2k — p)f +&(f) # 0 (at any point) for some constant pn > 0. If ¢ : (M, g) — (N, h)
1s f-harmonic map satisfying

/ Jol€ 0 p20? < o,
M

then @ is constant.
Proof. Let p be a smooth function with compact support on M, we set
w(X) = h(&op,p*fodo(X)), VX € I(TM),
and let {e;} be a normal orthonormal frame at x € M, we have
diviw = elh(€op, o fodp(e)]
= h(VE(Eop) p*fodp(e:)) + h(E 0 @, VE p*(fodip(es)))

= W(VE(E0p),p’fodp(es) + h(E o @, ei(p®) fodp(es))
+h(& o @, P’V fadp(e;)),

—_— o~ o~

so that

divMw = hVE (€0 @), p* fodp(e:) + h(E o, 2pei(p) fode(e;))
+h(& o, p[f,7(0) + dp(grad™ f,)]) (3.50)

by equation (5.26), and f-harmonicity condition of ¢, we get

divtw = PP (Vi o6 deler)) + 20ei(p) foh(€ 0 o, do(e;))
+p°h(€ 0 @, e(p)(grad™ f) o ©)

since £ is a homothetic vector field with homothetic constant &k, we find that
diviiw = ko’ foh(dp(ei), dp(e:)) + 2pei(p) foh(€ o @, dp(e:))
+%|d<ﬂ|2ﬂ2§(f) °p,
that is,
diviw = kp? foldel* + 2pei(p) foh(€ o o, dip(e;))
FaldePoE(f) o g, (3.51)

by the Young’s inequality, we have

1
—2pe;(p)h(& o p,dp(e;)) < ep?ldp|* + Eei(p)Q\f o,
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for all € > 0, multiplying the last inequality by f,, we find that

—2f<ppei(P)h(f o, dp(e;)) < Gfgo/92|d80‘2 + %ftpei(p)2|’£ © ‘P‘Qa (3.52)

from (5.27), (5.28), we deduce the inequality
kp? foldp|? — divM w  + %|ds0|2p2£(f) o
< efer’ldel’ + %f«:ei(p)Qlé o pf*, (3.53)
we set € = u, by (5.29), we have
(k = wp* foldpl* — diviw + %IdcpIZpQé(f) o
< Cfoedp)le ool (350

by the divergence Theorem, and (5.30), we have

1 1

3 [ AR =l odv <5 [ felollgoete. (359)
M HJm

Now, consider the cut-off smooth function p = pg such that, p <1 on M, p =1 on the

ball B(p, R), p=0on M \ B(p,2R) and |grad" p| < 2 (see [42]), from (5.31) we get:

1

4
§/Mp2|d<ﬁ|2[2(k—ﬂ)f¢+§(f)O@O]vg < W/Mfsalfosd?vg, (3.56)

since [, fol€ o ¢[*v? < 0o, when R — co we obtain:

/M dp2[2(k — ) f, + E(F) 0 ] 07 = 0. (3.57)

Consequently, |dp| = 0 that is ¢ is constant, because 2(k — p)f + £(f) # 0 at any
point. ]

3.3.3 f-biharmonic maps and submanifolds

Let M be a submanifold of R™ of dimension m, i : M — R" the canonical inclusion,
f € C®°(R™) a smooth positive function such that foi = 1, and let {¢;} be an
orthonormal frame with respect to induced Riemannian metric on M by the inner
product <,> on R™. We denote by V (resp. VM) the Levi-Civita connection of R"
(resp. of M), by grad (resp. grad™) the gradient operator in R” (resp. in M), by B
the second fundamental form of the submanifold M, by A the shape operator, by H
the mean curvature vector field of M, and by V+ the normal connection of M (see for
example [1]). Under the notation above we have the following results.
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Theorem 3.3.5. ./40] The map i is f-biharmonic if and only if

m
B grad™ |H|* — QAVELiH(ei) —m(VeH)(f)e:

+ A grad f(€1) + == grad™ H(f) — Z—= grad™ | grad f|*> = 0,

1
—B(e;, An(e;)) — ATH + §B(€ia Agraa r(€i))

1 m m
—|—§AL grad f + E(VH grad f)* — Z(ngdf grad f)*

“mH(f)H + %| grad fI2H — m|H|?grad f + %H(f) grad f = 0.
We need the following lemmas to prove Theorem (5.1.1).

Lemma 3.3.1. [{9] Let A+ the Laplacian in the normal bundle of M, then

trace V2H = —% grad™ (|H|?) + 2Av. n(e:)
+B(ei, Ap(e;)) + ATH.
Lemma 3.3.2. On taking the trace of V? grad f, we obtain
trace V2 grad f = —m(V;H)(f)ei + 2Avé_i arad £ (€1)
+B(e;, Agraa £(€:)) + At grad f.

Proof. First, note that grad f is normal to M because f is constant on M. We suppose
that Vé‘fej =0atx e M for all ©,7 = 1,...,m. Then calculating at x

VeiVei gradf = Vei (Agradf(ei) + (Vei grad f)J-)
VY Agraa s (€5) + Blei, Agraa r(€5))
1
+A(Vei grad f)+ (61) + (vei (Vei grad f)L) ) (358)
since < Agraa f(X),Y >= — < B(X,Y),grad f >, for all X,Y € I'(T'M), we get the
following
Ve Agaas(e) = (Vi Agraas(ei),ej) €
= ei((Agaas(e),e;)) e
= —ei(<B(ei,ej),grad f>) e;
—ei(<V6J_ei, grad f>) e,

and since VyVy =V Vy +V 7, for all XY, Z € T(T'M), we have

VY Agraas(e;) = —<V6ivejei, grad f)e; — <Vejei, V. grad f)e;



3.3 Main results 81

= _<vejveieia grad f> € — <B(ei7 ej)? (Vei grad f)J_> €5,
here, the Riemannian curvature tensor of R™ is null, so that
VY Agraas(e)) = —e;({(V.ei,grad f))e; +(V, e, V., grad fhe;

A, graa )t (€1), €5) €]
= —mej(<H, grad f>) ej + m<H, Vej grad f> e;

+A(vei grad f)- (€1)
= —m<Vej H, grad f> €; + A(vei grad f)L <€z> (359)
By (3.58) and (3.59) the lemma is follows. O

Proof of theorem 5.1.1. Note that the f-tension field of i is given by

(1) = 7(i) — e(i)(grad f) oi
= mH — %grad /.

we suppose such that Vé\fej =0atz e M forall 7,5 =1,...,m. Then calculating at x
. . . m
vleivlein(l) = mveiveiH - Eveivei grad f7

so by lemmas 3.3.1 and 3.3.2, we have

2

~ViViT(i) = -erad"(|H?) - 2mAc u(e:)

2
—mB(ei, Anles) = mAH = - (VEH)(Fe,
m m
+MAVL graa p(€3) + 5 Blei, Agraa r(ei)) + EAL grad f. (3.60)

In the same way, we have the following formulas

) . m2 m2
e<1)(v7'f(i) grad f) °1 = TVH grad f - Ivgradf gradf
m? m?
= T(VH grad f)* — T(Vgradf grad f)*

m2
—1—7 <V, grad f, H > e,

m2
I <V, grad f,grad f > ¢;
m2 2
2

m
(VH grad f)J_ - T(vgradf grad f)J_
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1 grad H(f) - " (VEH) (e
m2
-5 grad™ | grad f|?, (3.61)
—di(grad™ 7;(1)(f)) = —mgrad™ H(f) + % grad™ | grad f|?, (3.62)
—r@()7) = —mPH(F)H + " | gead fH. (3.63

< Vin(i),di > (grad f)oi = [m <V.H, e >
_% < V., grad f,e; > } grad f
= [-m<H Blee) >
+% < grad f, B(e;, e;) > ] grad f
m2
= [-m?H] + - H(f)] grad f, (3.64)

by definition (3.6), and equations (5.24 - 3.64), the Theorem is follows. O

Ezample 3.3.1. . Let € € R, the plane M = {(z,y,2) € R?z = €} is proper f-
biharmonic, i.e. the canonical inclusion i : M < R3 is f-biharmonic non- f-harmonic
map, for f(z,y,z) = F(z—¢), where F is a smooth positive function such that F'(0) = 1,
F'(0) # 0 and F"(0) = 0. For example, we consider the function

F(t) = % + % [ — exp(t)]Q.

Indeed; the function f satisfies the following formulas

grad f = F'(z — €)0,, |grad f|*> = F'(0)? on M,

Vzgrad f = F"(z —¢€) < Z,0, > 0.,
for all Z € T(TR?), and for X € T'(T'M) we have
Vxgrad f =0,

and note that a unit normal vector field U on M is evidently parallel in R?® (constant
Euclidean coordinates), hence Ay X = VxU = 0, for all tangent vectors X to M.
Thus the shape operator is identically zero, so that B = 0 and H = 0. According to
Theorem 5.1.1, the map i is f-biharmonic if and only if F”(0)F’(0) = 0.

Using the similar technique of Example 3.3.1, we have

Ezample 3.3.2. The sphere S™ of R™*! is proper f-biharmonic for
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fly)=F (g), Vy € R", where F(t) = fexp (3 — 5t) — 2t + 1.
Here, H = —P, where P is the position vector field on R™*+!,
|H|=1, V3xH=0, AyxX=-X, BX,)Y)=-<X,Y > P,
grad f = F'(BF) P, H(f) = —F'(3), AgaasX = F/(3)X
Vygrad f =< Z,P > F' (M5 P+ /(145 7,

where X, Y € T'(TS™) and Z € T'(TR™"). According to Theorem 5.1.1, the map i is
f-biharmonic if and only if

1 1 1 5 1\? 1 1 1
iy N (e IOV 5 0N (i Ry Y () P Z)+r1=0.
o (5) v (3) <3 (3) < (5) (5) e



Chapter 4

L-harmonic maps

In this chapter, we prove that every semi-conformal harmonic map between Riemannian
manifolds is L-harmonic map. We also prove a Liouville type theorem for L-harmonic
maps.

4.1 The Euler-Lagrange equations

Definition 4.1.1. The Lagrangian on an open set U of R™ is a smooth function,
defined by

LZUXR”X[tl,tQ] — R
(x,y,t) +— L(z,y,t)

Let E(p) the energy functional defined by

Bl) = [ Lie(t), 0. (4.1)

Let x1,x9 € U, the associated variational problem consists in looking for the curves

¢ [t1,ta] — U plotted in U, as p(t1) = x1 and o(t2) = xo, which minimize the
energy functional (4.1). To characterize the function ¢, we consider the variation
s(t) = (t) + sv(t) where v(t) is a non-zero function, except at the limits t; and to,
then we have

v(ty) = v(ta) =0, s(t1) = p(t1) = 1 and ps(ta) = @(ts) = 2, where s € (—¢,¢€).

Theorem 4.1.1.

FPe]= [0 5 (0. F00) - 5 (G (e, o))
where

84
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(,) denote the scalar product on R™.

Proof. Define ¢ : (—¢,€) X [t1,t2] — R™ by

8(5,1) = ) = (1) + s0(0) (4.2)
By (4.1) and (4.2) we have
FEC 0= [ 50,0, Sote.0). (4.3
Since
FHO00. 5006, 0.0 = D2 050000, (0.0

"9 9 oL

29
>~ 5, ()t (9050,

5 —(s,1),t) (4.4)

Integrating by party we find

[0 20 2 (o100, 22101

"t g o oL

:Z —( 09

— Ji, Ot 83)(S’t)a_yi<¢(5=t)aE(&ﬂ,t)dt

¢’ oL 0o ta
- Z ds (s, t)ayi <¢(8 b, ot a5t t)

t1

S o AT LI ) TR
According to formulas (4.2), (4 3),(4. 4) (4.5) we get
Lol = [ (o0 %200.0)) i+ (o0, 2 (ot 20|
- <v<t>7 %(Z—j«o(w, %0.0)) a (4.6

Since v(t;) = v(t2) = 0 then

Loty = [ (o0 20, 20,

- [ o5 (e o)) @
]
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Theorem 4.1.2. The curve ¢ : [t1,t3] — U is a critical point of energy functional
(4.1) if and ally if

o (v0. F0.0) - 5 (50 (o0, 01.1)) =0 (1.9

This system of n second order differential equations is called the Euler-Lagrange equa-
tion system.

Ezxample 4.1.1. Let U be an open set of R™ and L is the Lagrangian defined by

2
Yy
L(x7y7t) = 37

the Lagrangian represents kinetic energy

o3 (5

the system (4.8) is reduced to the equation
d*¢
dt?

Then the Euler-Lagrange solutions are the affine lines (geodesics)

=0.

o(t)=at+b, a,beR".

4.2  L-harmonic maps

Consider ¢ : (M, g) — (N, h) a smooth map between two Riemannian manifold and
L:MxNxR — (0,00)
(x,y,7) +— L(z,y,7)

a positive function, for any compact domain D of M the function L-energy of ¢ is
defined by

Eu(eiD) = [ L{zo(@).e()(o) vy (49)

D
where e(y) is the energy density of ¢ defined by

elp) = 5 h(dpler). dper). (1.10)

v, is the volume element, here {e;} is an orthonormal frame on (M, g). ¢ is said to be
L-harmonic if it is a critical point of the functional L-energy on any compact domain D
of M. We note by 9, = 8/dr, L' = 8,(L), L" = 9,(0,(L)) and let L, L € C=(M)
defined by

Li(z) = L' (z, p(x), e(e) (),  Li(x) = L"(z,0(2), e(p)()). (4.11)
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4.2.1 The first variation of L-energy

Theorem 4.2.1. [29]. Let ¢ : (M, g) — (N,h) be a smooth map and let {@;}ic(—cc)
be a smooth variation of ¢ supported in D. Then

d

GEue D) == [ hrule)o)u, (4.12)

0
where v = % denotes the variation vector field of ¢,
t=0

71(p) = L, 7(p) + d(p(gradM pr) — (grad™ L) o ¢, (4.13)
and T(p) is the tension field of ¢ given by
7(p) = trace Vde. (4.14)
Proof. Defined ¢ : M x (—e,€) — N by
oz, t) = p(x), (z,t) € M X (—¢,€), (4.15)

let V? denote the pull-back connection on ¢ 'T'N. Note that, for any vector field X
on M considered as a vector field on M x (—e¢, €), we have

[0, X] =0

Using (5.7) we obtain

d
GEeD)| = [ o(Lwo@). @) v (1.16)
First, note that
oLl p@)e(@)@)| = dLdo(@)|  +dL@fee)))| . (417)
t=0 t=0 t=0
the first term on the left-hand side of (4.17) is
dL(dgb(@t))‘ = h((grad" L)og, ) (4.18)
t—
Calculating in a normal frame at x € M, we have
dulele)) = h(Vdpi(e), dpies))
= h(VLdp(dy),dpi(e;)) (4.19)

the second term on the left-hand side of (4.17) is

dL(Oy(e(pr))| = L,h(VEv,dp(e;))

t=0
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= e;i(h(v, L:pdcp(ei))) — h(v, Vfl_L:Odgo(ei)), (4.20)
where the last equality holds since d¢(0;) = v, define a 1-form on M by
t=0
w(X) = h(v, L,dp(X)), X €T (TM) (4.21)

By (4.20) and (4.21) we get

dL(9(e(#1)))

= divw — h(v, dp(grad L;,))

t=0

—  h(v, LZPT(QD)) (4.22)

Substituting (4.18), (4.17) and (4.21) in (4.16), and consider the divergence Theorem,
the Theorem 4.2.1 follows. O

Corollary 4.2.1. A smooth map ¢ : (M, g) — (N, h) between Riemannian manifolds,
is L-harmonic if and only if 71,(p) = 0.

4.2.2 The second variation of L-energy

Theorem 4.2.2. [29]. Let p : (M, g) — (N, h) be an f-harmonic map between Rieman-
nian manifolds and {@ps}isc(—ee) be a two-parameter variation with compact support
in D. Set

. 8@15,8 o 8@15,8

= = . 4.2
Ot lt=s=0’ 0s lt=s=0 (423)
Under the notation above we have the following
92
Ep(ors: D ‘ — [ n w)v,, 4.24
5B D) = [ masto)wye, (1.21)
where J, 1 (v) € T(o 'TN) given by
Jor(v) = —L, trace RV (v, dp)dp — trace V¥ L, V¥ v
—l—(VUN grad®™ L) o+ < V¥u,dp > (grad™ L) o ¢
—trace V¥ < V¥?uv,dp > L dp. (4.25)

Here <, > denote the inner product on T*M ® ¢~ 'T'N and RY is the curvature
tensor on (N, h)

Proof. Let

¢: M X (—€€) X (—€,6) = N
<x7t> S) = ¢(Iat75> = SOt,s(x) (4.26)
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LetV? denote the pull-back connection on ¢ 'T'N. Note that, for any vector field X

on M considered as a vector field on M X (—e¢,€) X (—¢, €), we have
[0, X] =0, [05,X]=0, [0,05] =0

Then, by (5.7) we obtain
2

0,05

EL (Spt,s; D)

Vg,
t=s=0 g

tmsm0 /D a?asL(x’ Prs(), e(rs) ()

first, note that

O (L. 05(2), (1,6)(2)) ) = AL{AB(D,)) + AL(Ou(e ().

AL(d6(3,)) = h((grad® L)op,v)
and
dL(9i(e(prs))) = h(aniddD(ei), d(lﬁ(ei))L;ot,s
when we pass to the seconde derivative, we get
92
0,05

(L, prol@).elpnn)(@))) = h(V5,d6(0,), (grad™ L)op)
+h(dp(d,), V5, (grad™ L)oy)
+h(V5 V5 dd(e;), do(e;))
Hh(V5 do(e;), Vi do(e;))
+h(V5,dp(e;), dp(e;))0s(L

’
LCpt,s
’

L‘Pt,s
’

By (4.23) and the property of the gradient operator we have

h(dé(0;), V5, (grad™ L)oy) = h(w, (V) grad™ L)oy)

t=s5=0

By (4.28) and the definition of the curvature tensor of (IV, h) we have

(V5 V5 db(e:), do(e)) L,

Pt,s

= L h(RN(w,dp(e;))v, dp(e;))

t=s=0

+L (V2 V5 dd(0y), dpl(e;))

(Pt,s>‘

t=s=0

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

By (4.34), the property of the curvature tensor of (N, h) and the compatibility of V¢

with the metric A we have

h(V5, V5, dé(e:), do(e)) L, = —L,h(R"(v,dp(ei)dp(e:), w)

t=s=0
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+ei(h(V5,d6(0,), Ldg(er)

t=5=0
~(h(V5,dé(9,), VE Lydip(en))| __ (4.35)
h(V5 do(e;), Vﬁsdqb(ei))L;tys = e;(h(L,VZv,w)) — h(VZ L, VEv,w). (4.36)
Note that
0L, ) = O(L' (2, pus(x), e(0rs)(@)))
= AL (dp(8y)) + dL (ds(e(rs))) (4.37)
by a simple calculation we have
AL (dg(05)| = h(w, (grad™ L)op) (4.38)
t=s=
dL/(é?S(e((pm))) T L;h(Vfiw, dy(e;)). (4.39)
Then we get
h(V5,do(e:), dd(e))Ou(Ly,,)| = < V¥u.dp> hiw, (grad” L')og)
’ t=s=

+ < V%u,dp > L;h(Vfiw, do(e;))

= h(w, < V*v,dp > (grad L)oy)
+e;(h(w, < V¥v,dp > L;dgo(ei)))
—h(w, V¢ < V¥v,dp > L;dga(ei)) (4.40)

From the formulas (4.28), (4.32),(4.33),(4.35),(4.36),(4.40), the divergence Theorem
and the L-harmonicity of ¢, the Theorem 4.2.2 follows. O]

4.3 L-biharmonic maps

A natural generalization of L-harmonic maps is given by integrating the square of the
norm of the L-tension field. More precisely, the L-bienergy functional of a smooth map
v :(M,g) — (N,h) is defined by

1

Paule.D) = 5 [ o), (141)

Definition 4.3.1. A map s called L-biharmonic if it is a critical point of the L-
bienergy functional over any compact subset D of M.



4.3 L-biharmonic maps

91

4.3.1 First variation of the L-bienergy

Theorem 4.3.1. [29] Let ¢ : (M, g) — (N,h) be a smooth map between Riemannian
manifolds, D a compact subset of M and let {¢i}ic(—ee) be a smooth variation with

compact support in D. Then

d
precaaCat D)‘ = / h(72,L(1), v)vg (4.42)
t t=0 D
where in normal frame at x € M, we have
Teo,0)(p) = —L:D trace RY (11,(¢), dp)dyp — trace V¢ L:O Ve 1()
—l—(ViVL((p) grad¥ L) o o+ < V¥ 11(p),dp > (grad™ L') o
—trace V¥ < V¥ 71(p),dp > L dp. (4.43)
Proof. Define ¢ : M x (—€,€) — N by ¢(x,t) = ().
First note that p
GEen(en D) = [ WVhm(e0 mle)e, (444
t=0 D
Calculating in a normal frame at x € M we have
VgtTL(cpt) = VgtVfiL;zdgot(ei) — Vgt (grad™)og, (4.45)
by the definition of the curvature tensor of (N, h) we have
Vi V2 L, dpi(e;) = L, RN (dp(0y), dei(e;))dpi(e;) + VE VG L, doy(e;),  (4.46)
by the compatibility of V¢ with h we have
WVEVE Ly deie),mole) = e(h(V5 Ly, de(e), m(er)
—h(VgtL:ptdgot(ei), Vfl_TL(gpt))) (4.47)
the second term on the left-hand side of (4.47) is
—h(V§ L, dey(e;), V() = —0i(L,,)h(dgi(e), VETr(er))
— L, h(V§ dpi(e:), V21 (0r)) (4.48)
be a simple calculation we have
Ou(L,,) = do(D) (L) + Lo, h(VE,do (D), dpi(e))), (4.49)
then the first term on the left-hand side of (4.48) is
—0t(L;,t)h(dgot(ez~), VfﬁL(‘Pt)) = —h(dps(e;), VfirL(got))h((gradNL')ogot, do(0y))

—e; (h(dp(8,), Ly, h(dire:), VETL(00))dpi(e5)
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+(h(de(0r), V¢ L, h(dei(e:), VETL(@))deor(e))),
(4.50)

the second term on the left-hand side of (4.48) is
—L;th(Vgtdgot(ei),VfiTL(gpt)) = —ei(h(dcb(at),L;tvfﬁL(%)))
+h(d(0,), Ve L, VeTr(pr),  (4.51)

and notice that

(V5 (grad™ LYog:, mr(¢r)) = h((VE ,, erad™ L)ogy, do(0;)). (4.52)
From (4.45),(4.46), (4.47),(4.48),(4.49),(4.50),(4.51),(4.52), v = d¢(0;) when ¢t = 0 and
the divergence Theorem, we deduce the Theorem 4.3.1 [

4.4 Main results

Let ¢ : (M™,g9) — (N",h) be a smooth map between Riemannian manifolds. Let
x € M™, the tangent space at x splits T,M™ = H, & V, where V, = Kerd,y and
H, = V1 is the orthogonal complement of the vertical space V,. The map ¢ is called
semi-conformal if for each x € M™ where d, ¢ # 0 the restriction d,p : Hy — Ty N"
is conformal and surjective. On setting A(z) = 0 at points x where d,¢ = 0, we obtain
a continuous function A : M™ — R, such that for any X, Y € H,

h(dop(X), dop(Y)) = M (2)g(X,Y),

the function A is called the dilation of ¢. Note that the generalized conformal maps is
discussed in [28].

4.4.1 Semi-conformal L-harmonic maps

Let (M™, g) be a Riemannian manifold and let N the Euclidian space R™ equipped
with the Riemannian metric h = dy? + ... + dy?. We have the following results.

Theorem 4.4.1. Any semi-conformal harmonic map ¢ : M™ — R™ is L-harmonic
with L(z,y,r) = F(2y 4+ (n — 2) o(z))r, for all (z,y,r) € M™ x R" x Ry, where
F € C(R"™) be a smooth positive function.

Proof. A semi-conformal harmonic map ¢ is L-harmonic if and only if
dio(grad™” L) — (grad® L) o =0,

where L), : M™ — (0, 4+00) is a smooth positive function given by

Li(z) = F(ne(x)).
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Let us choose {ey, ..., e, } to be an orthonormal frame on a domain of M™ such that
the vectors {ey, ..., €, } are horizontal and the vectors {e, 11, ..., €, } are vertical, so that
dp(e;) = A(€ o) for i = 1,...,n where {é1,...,€,} is an orthonormal frame on a
domain of R™. Then, we get

m

dp(grad™”™ L:O) = Z ei(pr) de(e;)
i=1

=n Z dip(e;)(F) dip(e:)

=nX* ) (Eop)(F) (Eoy)

i=1

= n A% (grad™ F) o g, (4.53)

and the term (grad® L) o ¢ is given by

" [OL 0O
Rn
(grad Yoy = Z [ayz @yz]

=1

OF 0
= 2e(yp) { ] o
; 8%‘ ayi

= 2¢(p) (grad®” F) o o, (4.54)

since e(yp) = 22, we get (grad™ L) o p = n A\ (grad™ F) o ¢. O

Using Theorem 4.4.1, we can construct many examples for semi conformal L-
harmonic maps.

Ezample 4.4.1. The Hopf construction map ¢ : R* — R3, defined by

o(z) = (xf + x% — fL‘g — xi, 2w 13 + 22974, 2 Towy — 2 T1T4),

is a semi conformal harmonic map with dilation
Nz) = 2|z, Vo = (21, 9, 23, 14) € RY,
see [1]. According to Theorem 4.4.1 the map ¢ is L-harmonic, where L is the form
F (ﬁ +x§ — a:§ — :BZ +2y1,22123 + 22904 + 2o, 22903 — 22174 + 2y3) T,

for all (z,y,7) € R? x R® x R,, where F' € C*(R?) is a smooth positive function.

If n =1, we have the following corollary.

Corollary 4.4.1. A smooth function ¢ € C*°(M™) is harmonic if and only if it is
L-harmonic for L(z,y,r) = F(Zy — gp(x))r, for all (x,y,r) € M™ x R x Ry where
F € C*(R) is a smooth positive function.
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Proof. First note that, the function ¢ is L-harmonic if and only if
TL(p) = L;T(w) + dgo(grade L:p) — (grad]R L)op =0, (4.55)
where L{ (v) = F(p(z)), for all z € M™. We compute

dgp(gradML:D) = Zei(L:D)dgo(ei)

i=1

ei(F o pei(p)

M

1

]

ei(@)(F o p)ei(p)

o )| grad™” %, (4.56)

NE

1

F

<

N .

here {e;} is a orthonormal frame in M™, and e;(¢) = dp(e;). The term —(grad® L) o ¢
of (4.55) is given by

1 m
—(grad®L)op = =2} eilp)’[2(F o )]
i=1
= —|grad™” p|*(F" o ). (4.57)
The Corollary follows from (4.55), (4.56) and (4.57). O

Ezxample 4.4.2. The harmonic function

T
:RA\{0} — R —

2 \{ } 9 (331,372) x%_i_x%’

is L-harmonic with

X1

L<$1,9€2,y77“):F(2y— )7"7 V(w1,22,y,7) € R X R X Ry,

23+ 23
where F' € C*°(R) is a smooth positive function.
For n = 2, we have the following result.

Theorem 4.4.2. A semi-conformal map o : M™ — N? from a Riemannian manifold
to a Riemannian 2-manifold is L-harmonic with

Lz, y,r) = re®@PW  V(z, yr)e M™x N?> x Ry,
where a« € C®(M™) and 8 € C*(N?) if and only if

() + (B 0 ) dp(grad™ a) = 0.
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Proof. First, note that the function L, is given by
! — (@) Ble(2)) m
L (z)=e )l N e M™.

Let us choose {ey, ..., e, } to be an orthonormal frame on a domain of M™ such that
the vectors {e;,es} are horizontal and the vectors {es,...,e,,} are vertical, so that
dp(e;) = (e o) for i = 1,2 where {€1,€2} is an orthonormal frame on a domain of
N2, then we get

Z 67;(Lia) di(e;
i=1

)
Z e®(#o9) o, (a(ﬁ o (p)) dp(e;)

B9 (8 0 ) dip(grad™” o) + a dp(grad™” (8 0 )) },

we compute the term dp(grad™ (5 o ¢)),

dp(grad™” pr)

(‘b
—_

m

dp(grad™” (Bo @) = ei(B o p) dp(e:)

i=1

= ngp i) (B) dp(e;)

— ZAz (€ 09)(B) (€op)

= A% (grad™” B) o o,
we conclude that
dgp(gradM L ) = e(Bo¥) {(5 o) dgp(grad ) + a )\’ (gradN2 B) o go},

since e(p) = A%, we get the following
(grad¥" L)oo =Y (& o ¢)(L)(E o)

=\ Z(évi op)(ap)e” (Bo) (€i0¢p)

=1

= a\? e (grad™" B) o ¢,
so that, the L-tension field of ¢ is given by

() = PP r(p) + (8o p)dp(grad™” a)].
This completes the proof of Theorem 4.4.2. n



4.4 Main results 96

Ezample 4.4.3 (The foliation by the circles of Villarceau, [3]). Let M? the manifold
R x R*\{0} and let o : M3 — R? defined by

(1 — @) Ty + V21173 (1 — %) T3 — /22179

Y

90<x1a T, LU3) -

2 2 2 2
5+ T3 T3 + 23

the map ¢ is semi-conformal, its dilation is given by the function

AN
)\(aj)zg

T Yr= (o) € M

The tension field of ¢ is

(o)) T
T(p)(x) = | — - .
v Ztal al+
According to Theorem 4.4.2, with a(z) = ¢; In(2 + |z|?) + ¢ and S(y) = —é, where
c1 € R*) co € R, the map ¢ is L-harmonic with
L(z T)—ﬁ Y(z,y,7) € M*> x R* x R
' Yy _2—|—|ZL’|2, 'Y, +-

4.4.2 A Liouville type theorem for L-harmonic maps

Liouville type theorems for harmonic maps between complete smooth Riemannian man-
ifolds have been done by many authors. Eells-Sampson [14] proved that any (bounded)
harmonic map from a compact Riemannian manifold with positive Ricci curvature into
a complete manifold with non-positive curvature is a constant map. Schoen-Yau [23]
also proved that any harmonic map with finite energy from a complete smooth Rie-
mannian manifold with non-negative Ricci curvature into a complete manifold with
non-positive curvature is a constant map. Cheng [15] showed that any harmonic map
with sublinear growth from a complete Riemannian manifold with non-negative Ricci
curvature into an Hadamard manifold is a constant map. Bair-Fardoun-Ouakkas [7]
proved the Liouville-type theorem for bi-harmonic maps. The purpose of this party is to
provide a proof of the Liouville type theorem for L-harmonic maps from complete non-
compact Riemannian manifold (M™, g) with positive Ricci curvature into a Riemannian
manifold (N, h) with non-positive sectional curvature, where L € C*°(M™ x N" xR,)
is a smooth positive function which satisfies some suitable conditions.

Theorem 4.4.3. Let (M™,g) be a complete noncompact Riemannian manifold with
positive Ricci curvature Ricci™™ > 0, (N™, h) a Riemannian manifold with non-positive
sectional curvature Sect’ < 0. Consider an L-harmonic map ¢ from (M™, g) to
(N™ h), where L € C®(M™ x N™ x R) is a smooth positive function. Suppose that

L, >0, HessM" L, <0, HessV" L >0,
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de(grad™” L.)(L) <0, / . L, v = o0, o Li|do]? v? < 0.
Then ¢ is constant.
We need the following lemmas to prove Theorem 4.4.3.
Lemma 4.4.1 ([12, 38]). Let ¢ : (M™,g9) — (N",h) a smooth mapping between

Riemannian manifolds and let f € C(M™), then

<dgp,V‘pdgp(grade f)> = %(grade f) (|dgp|2) + <d<,0,d<p(VMm grad™” f)>

Here (,) denote the inner product on T*M™ @ T*M™.

Lemma 4.4.2. Let (M™, g), (N™, h) be two Riemannian manifolds, and L € C°(M™ x
N" x Ry) a smooth positive function. Consider an L-harmonic map ¢ : (M™, g) —
(N™, h), then we have

(grade L;) (Jdel?)

1 vym 1 . 1
§AM |do|* = |Vd90|2+ﬁ|d90(gfadM L:")|2_2L’
' '
1 m m ]_ m
—L—,<dgp,d<p(VM grad™ L;)>—ngo(gradM L) (L)
%2}

®

+Li{p<d<p, VAerad™ Ly o o)+ ) h(dp(Ricd™" ). do(e))

i=1

=3 R(RN (de(er), dpley)) dele;), diples))

ij=1
where {e1, ...,en} be a orthonormal frame on (M™, g).

Proof. We start recalling the standard Bochner formula for the smooth map ¢. Let
{e1,...,em} be a orthonormal frame on (M™, g), we have

m

%AMm\dso\z = |Vdy|* + (de, V¥7(0)) + Z h(dp(Ricci™™ e;), dp(e;))
= > W(BRY (dp(er), dole)) dp(es), dp(e)), (4.58)

i,j=1

where |Vdyp| is given by

Vdpl* = > h(Vdpl(ei, e;), Vdp(ei, e)),

3,j=1
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and (dp, V#7(p)) is defined by

(de, V?7(¢)) = Z h(dg(e;), VET(9)),

since the map ¢ is L-harmonic, we have
71(p) = L, 7(p) + dip(grad™” L,) — (grad™ L) o ¢ =0,

and L], > 0 on M, we obtain

1
T(p) = —L—/dgp(gradM L ) + L—/(gradN L)oo, (4.59)

we get the following

(dp,V¥1(p)) = I gldw(gradM L)? <dso,V“"d90(gradM L))
1 m n
—7rahdp(grad™ L;),(gradN L)oy)

©
1 n

+L—,<dgo,w(gradN L)o o), (4.60)
(%}

by the lemma 5.1.1, the second term on the left-hand side of (5.13) is

——<dg0, Vedp(grad™™ L )> =

(grade L:O) (]dg0|2)

L, 2[/
— L—/<dgo, de(VM" grad™” L))). (4.61)
The Lemma 4.4.2 follows by (5.12), (5.13) and (5.14). O

Proof. (of Theorem 4.4.3) By lemma 4.4.2, we get

1 m 1 m 1 m
§LZPAM dol* = pr|Vd<p|2+L—/|dg0(gradM L;)|2—§(gradM pr)(|d<p|2)

©

—(dg, dp(VM" grad™™ L, >——dg0(gradM L) (L)

+{dy, V¥ (grad™" L) o ) + L, Z h(de(Ricci™" €;), dp(e;))

i=1

=L, > h(RY" (dp(es), dip(e)) dp(e;), deler)),

1,j=1
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we denote A} p= LLAM" p + (grad™” L) (p) for all p € C®(M™), we have

1 m / 1 mory m mory
§Aﬁ4 do|* = L¢|Vdsol2+L—,|d¢(gradM L) = {dp, dp(VM" grad™™ L))
Y
1 m n
—L—,dw(gradM L) (L) + {dp, V¥ (grad™" L) o )

P

+L, 3" h(do(Ricdi™” ¢;)., dio(e;)

i=1

~L, Z h(RY" (de(e;), dp(e;))do(e;), do(e;)),

ij=1

since Sect™" < 0, RicciM™ > 0, Hess™" L > 0, Hess™™ L;, < 0and dgo(grade L;)(L) <
0 by (5.15) we obtain the following inequality

1 m
SAN gl 2 L [Vdel?, (1462

since JAY" |dp|? = |dp|AY" |de| + L, | grad™™ |dg|[?, by (5.16) and the Kato’s in-
equality [6], we get the following

|de| AL [dg| > L, (|Vdp]* — | grad™™ |de|[*) > 0. (4.63)
Let p: M™ — R be a smooth function with compact support, then

p*ldo| AY" |d| = p?|dip| divM™ (L, grad™"™ |dep])
= div™"" (p*|de|L, grad™"” |depl) — Li,p*| grad™" |d| |
— 2L p|dep|g(grad™” p, grad™" |dy)), (4.64)

by (5.17), (5.18) and the Stokes Theorem, we deduce
2 Mm 2
0<- / L grad” gl
~2 [ L pldlg(erad™” p.grad" del)o (4.65)
using the Young inequality [48], we have

m m 1 m
—2g(|dip| grad™™ p, pgrad™™ |dg|) <—|dp|’| grad™™ p|?
+ep?| grad™™ |d|?, (4.66)

for any € > 0, substituting (5.20) in (5.19), we obtain

m ]- m
OS—/ Li,p?| grad" Id<p!|2vg+—/ L |dp[*| grad™"™ p|?v?
Mm € Jym
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—l—e/ L;,pQIgrade |depl |09,

the last inequality is equivalent to
m ]- m
(=0 [ Ltlarad dolfr < ¢ [ EjldgRlsrad®™ o a7

Choose the smooth cut-off p = prie p <1on M™ p =1 on the ball B(0,R), p =0
on M™\ B(0,2R) and | grad™” p| < 2 Let 0 < e < 1, replacing p = pg in (5.21) we
obtain

m 4
0< (- [ LPled ol < o [ mdape, o)
Mm € Mm

since [, L, |do|*v9 < 0o, when R — oo, we have
i/ L |do|*v? — 0

Thus, by (4.68), we have | grad™” |dy|| = 0 i.e |d¢| = ¢ constant. If ¢ > 0,
2

c
7/ Lv? < oo,
but me L:Dvg = oo then ¢ = 0, that is ¢ is constant map. O

If L(z,y,r)=rforall (z,y,r) € M™ x N™ x R, we recover the following classical
result.

Corollary 4.4.2. [14] Let (M™, g) be a complete noncompact Riemannian manifold of
infinite volume with positive Ricci curvature and (N™, h) a Riemannian manifold with
non-positive sectional curvature. Consider an harmonic map ¢ : (M™, g) — (N™, h)

with finite energy
1

Bp) =5 / dgl? o9 < oo.

Then ¢ is constant.

Let f: M™ — (0, 00) be a smooth function. If L(z,y,r) = f(x)r for all (x,y,r) €
M™ x N™ x R,. We recover the following result.

Corollary 4.4.3. [38, 46] Let (M™,g) be a complete noncompact Riemannian man-
ifold with positive Ricci curvature, (N h) a Riemannian manifold with non-positive
sectional curvature and let f be a smooth positive function on M™ with non-positive
Hessien Hess™" f < 0. Consider an f-harmonic map ¢ : (M™,g) — (N", h) with
finite f-energy
1
Ef() =5 | fldglv? < 0.
Mm
If Vol (M™) = [,;m [v9 = 00. Then ¢ is constant.



Chapter 5

(p, f)-harmonic maps

Let ¢ : (M,g9) — (N,h) be a smooth map between two Riemannian manifolds, its
p-energy is defined by

Ep«o;D):}? /D dot (p>2). (5.1)

where D is a compact subset of M. We say that ¢ is a p-harmonic map if it is a
critical point of the p-energy functional, that is to say, if it satisfies the Euler-Lagrange
equation of the functional (5.1), that is,

T,(p) = divM(|dg0|p_2dg0) =0. (5.2)
Let 7(¢p) the tension field of ¢ given by:
() = trace, Vdp = V¢ dp(e;) — dcp(Vé\fe,-), (5.3)

where VM is the Levi-Civita connection of (M, g), V¥ denote the pull-back connection
on ¢ 'T'N and {e;} is an orthonormal frame on (M, g) (see [1], [14], [44]). If |d.p| # O,
for all z € M, then ¢ is p-harmonic if and only if (see [5]):

[deP27(p) + (p — 2)|de P 2dip(grad™ |dy]) = 0. (5.4)

For more details on the concept of p-harmonic maps see [2, 5, 16].

5.1 Main results

5.1.1 The first variation of the (p, f)-energy

Definition 5.1.1. Let ¢ : (M, g) — (N, h) be a smooth map between two Riemannian
manifolds, the (p, f)-energy is defined by

By (p:D) = % /D f(@) g, (5.5)

where p > 2, f is a smooth positive function on M, and D is a compact subset of M.

101
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Remark 5.1.1. e The (p, f)-energy functional (5.5) includes as a special case (f =
1) the p-energy functional, and a special case (p = 2) the f-energy functional
(see [9, 11, 29, 33]).

e We call (p, f)-harmonic (or generalized p-harmonic) a smooth map ¢ which is a
critical point of the (p, f)-energy functional for any compact domain D.

Theorem 5.1.1. [/1] Let ¢ : (M,g) — (N,h) be a smooth map between two Rie-
mannian manifolds, and {p:}ic(—ee) a smooth variation of ¢ to support in D C M.
Then

d
GEnsteaD)|_ == [ b, (5.6
where 7, ;(p) is the (p, f)-tension field of ¢ given by
Tp.s(0) = div" (flde|P?de) = fr,() + |dp|"*dp(grad™ f), (5.7)

d@t

and v = o

denotes the variation vector field of {¢i}ie(—ce)-
=0

Proof. Let ¢ : M x (—¢,¢) —> N be a smooth map defined by ¢(z,t) = ¢;(z), we have
é(x,0) = p(z), and the variation vector field v € T'(p~ T N) associated to the variation
(01)te(—ee) 15 given by v(z) = d0d(2), for all 2 € M. Let {e;} be an orthonormal
frame with respect to g on M, such that Vﬂfei =0atxe Mforalli,j=1,...,m. We
compute

d 1 0
I p
GEnsteaD)| = o [ f@glaar]_ o 53)

First, note that

b
2

0 0
a|d<ﬁt|p = a(\d%ﬁ)

p 10
= 5 (de?)* ™ 5 (1deif?)
= pldpd" (V' do(e,0), (e, 0)).

Substituting the last formula in (5.8), and using V‘% do(e;,0) = V?ei,o) dp(Z), we obtain

the following equation

d
EEpvf(SOﬁ D)

t=0 t=0

- /D h(VE v, fldelP2do(er))v,. (5.9)

= [ naerney,, 46(3), does, 0)]_o,

Let w € I'(T*M) defined by
w(X) = h(v, fldel"*dp(X)), VX € D(TM).
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So that, the divergence of w at x, is given by
divMw = e [h(v, fldelP2dp(e;))] - (5.10)

By the equations (5.9), (5.10), we get

d
GBnstesD)| = [ @iV, — [ V2 fldel tdpted), (511)
= D D
The Theorem 5.1.1 follows from (5.11), and the divergence Theorem. O

From Theorem 5.1.1, we deduce:

Theorem 5.1.2. Let ¢ : (M,g) — (N,h) be a smooth map between Riemannian
manifolds. Then, ¢ is (p, f)-harmonic if and only if 7, f(¢) = 0.

Example 5.1.1. According to Theorem 5.1.2, the inversion map

¢ R"\{0} — R"\{0}, z+—

R

is (p, f)-harmonic, for all p > 2, where f(z) = |x|2(7””), for all x € R™\{0}.

Remark 5.1.2. In particular, we note that every harmonic map with constant energy
density 1|de[* is (p, f)-harmonic if and only if grad™ f € ker dp. The previous exam-
ple prove the following results; There is no equivalence between the p-harmonicity of
smooth map ¢ : (M, g) — (N,h) and the (p, f)-harmonicity of ¢. There are (p, f)-
harmonic maps that are neither p-harmonic nor harmonic.

5.1.2 A Liouville type Theorem for (p, f)-harmonic maps

Liouville type theorems for harmonic maps between complete smooth Riemannian
manifolds have been done by many authors. Liu [21] proved the Liouville-type theorem
for p-harmonic maps with free boundary values.

The purpose of this section is to provide a proof of the Liouville type theorem for
(p, f)-harmonic maps from complete noncompact Riemannian manifold (M, g) with
positive Ricei curvature into a Riemannian manifold (N, h) with non-positive sectional
curvature.

Theorem 5.1.3. [41] Let (M,g) be a complete non-compact Riemannian manifold
with positive Ricci curvature Ricci™ > 0, and (N, h) be a Riemannian manifold with
non-positive sectional curvature Sect™ < 0. Consider an (p, f)-harmonic map ¢ :
(M,g) — (N,h), where f € C*(M) is a smooth positive function, and p > 3.
Suppose that

Hess™ f <0, E,;(¢) < oo, /vag = 00.

Then o s constant.



5.1 Main results 104

We will need the following lemma to prove the Theorem 5.1.3.

Lemma 5.1.1 ([12, 38]). Let ¢ : (M,g) — (N, h) a smooth mapping between Rie-
mannian manifolds and let f € C°(M), then

<d<p, V“Ddgo(gradM f)> = %(gradM f) (\d<p|2) + <dg0,dgo(VM grad™ f)>

Here (,) denote the inner product on T*M ® ¢ 'TN.

Proof of Theorem 5.1.1. We start recalling the standard Bochner formula for the smooth
map ¢. Let {e;} be a orthonormal frame on (M, g), we have

%AM‘CZ@F = |Vdyp|* + (do,VeT(p)) + h(dgp(RicciM ei),dp(e;))
— h(RY (dp(es), dp(e;))dp(e;), dp(es)), (5.12)
where |[Vdyp|? and (dp, V?7(p)) are given by

|Vdp]*? = h(Vdgo(ei,ej),Vdgo(ei,ej)),
(de,Vo1(p)) = h(dp(e:), VET(0))-

Since the map ¢ is (p, f)-harmonic, we have
FldelP=*1(0) + (p = 2) fldp P dip(grad™ |de]) + |dp|P~2dip(grad™ f) = 0.
Let 64,0,05 € I'(T*M) defined by

01(X) = h(flde|"*de(X),7(v)),
02(X) = |delPh(dp(X), dp(grad™ [)),

05(X) = (p— 2)fldel" h(dp(X), dp(grad™ |dg])).
where X € I'(T'M). By using the (p, f)-harmonic condition of ¢, we obtain
div 6, = flde|""*(dg, Vor(¢)),
A, = —ldgldplgrad® PE + ldol (e, V¥ dp(grad™ ).

Note that by the (p, f)-harmonic condition of ¢, we have 6; 4+ 6, + 03 = 0. From the
last equations, and Lemma 5.1.1, we find that

. _ 1 _
divM6; = —f|dgl 2<dw,V¢T(w)>+}!dw!” ?|dgp(grad™ f)|?

1
—§|d90|p’2(gradM £)(ldel?) = |delP~2(de, dp(VM grad™ f)).
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By using the Bochner formula (5.12), with Ricci® > 0, Sect” < 0, and Hess f < 0,
we have the following inequality

Ay > fldgPVdol? — AN dgf
—%]dgp|p_2(gradM ) (|del?). (5.13)
We set AY|dp|?> = fAM|dp|* + (grad™ f)(|de]?). So, the inequality (5.13) becomes
a0y > fldglr | Vdgl? — 3 |dglr AN dg (514
By using the following formula
SO Idgl? = |dplAYldgl + £ | arad® ldgl? (5.15)
and inequality (5.14), we have the following
divt s > fldp[P | Vdp[* — |dplP A} de| — flde|P~2] grad™ |de][.
From the Kato’s inequality |Vdyp|? — | grad™ |dip||? > 0, and the last inequality, we get
div by > —|dpP AN |dy. (5.16)

Let p: M — R be a smooth function with compact support. Multiplying the in-
equality (5.16) by p®, with A} |dyp| = div" (f grad™ |d|), we conclude that

div¥(p%03) — 2(p — 2)pf|deP*h(dp(grad™ p), dp(grad™ |dy]))
> —div" (p* fldp|"~" grad™ |di|)

+2pfldelP g(grad™ p, grad™ |del)
+(p — 1)p* fldp|P 2| grad™ |dep||. (5.17)

By the Young inequality, we have
—2(p — 2)pfldelP*h(dp(grad™ p), dp(grad™ |de|))
< e1lp = DA ldol 2 grad" g + L2 fldglr guad o, (519
and the following inequality
—2pfldplP~"g(grad™ p, grad™ |di|)

. 1
< eop” fldep[P*| grad™ |de|[* + 1l grad p[?, (5.19)
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for any €, €, > 0. Substituting (5.18) and (5.19) in (5.17) we obtain

. p—2 1
a o)+ (P24 L) fldgb st of
> —div" (p?fldep|P~ ! grad™ |dy)) (5.20)

+lp—1—e(p—2) —e] P fldeP?| grad™ |dp|[*.
By using the divergence Theorem, with €; =1 and €5 = %, we deduce
1 _
p [ SidePled oo, > 5 [ P flae 2 grad el (520
M M
Choose the smooth cut-off p = pr on M, ie. p <1 on M, p=1 on the geodesic ball

B(z,R), p =0 on M\B(x,2R) and |grad" p| < 2 where 2 € M. Replacing p = pr
in (5.21), we obtain

4p 1
fldp|Pvg > 5/

5 fldep|P=2| grad™ |de||*v,.
B(z,2R) B(z,R)

Since [, f |dg[P vy < 0o, when R — oo, we have
[ Flagr? grad | <o
M

Thus, if |dp| # 0 on M, we have |grad™ |dy|| = 0, i.e. |dy]| is a positive constant on
M. So that

|deo]”
Eps(p) = fvg < oo0.
P Ju
But fM f vy = 00. Hence ¢ is constant on M. O]

From Theorem 5.1.3, we deduce:

Corollary 5.1.1 ([30, 32]). Let (M, g) be a complete non-compact Riemannian man-
ifold with positive Ricci curvature, (N, h) be Riemannian manifold with non-positive
sectional curvature. If Vol(M) is infinite, then any p-harmonic map of E,(¢) < oo is
constant.

5.1.3 Stress (p, f)-energy tensor

Let ¢ : (M,g9) — (N, h) be a smooth map between two Riemannian manifolds, and
f € C(M) be a smooth positif function. Consider a smooth one-parameter variation
of the metric g, i.e. is a smooth family of metrics {g;}(—e<i<c), such that go = g. Write
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0= aﬁ , then 6g € T*M ©® T*M is a symmetric 2-covariant tensor field on M.
Let () the induced Riemannian metric on 7*M & T M, we have

)~ Llagpetnig) p22) (522

50 = 5 (0.59)vy, O

where ¢*h is the pull-back of the metric h (see [1]).

Theorem 5.1.4. Under the notation above we have the following

d

EEPJ(SO; D)

1
o= 5 ] Srstoh oo,

where D is a compact subset of M, and S, (¢) € T*M © T*M is given by

f P
Sp.s(p) = ];!dso|”g [

Sp.r (@) is called the stress (p, f)-energy tensor of .
Proof. Follows immediately from equations (5.22). O
From Theorem 5.1.4, we deduce:

Theorem 5.1.5. [/1] A non-constant smooth map ¢ : (M,g) — (N, h) is extremal
with respect to wvariations of the metric for (p, f)-energy functional if and only if
dim M = p and ¢ is weakly conformal.

Proof. It S, ¢(¢) = 0, taking the trace shows that dim M = p, then comparing with
©*h = M\%g (where ) is a smooth function on M), shows that ¢ is weakly conformal,

with A = 425 O

Theorem 5.1.6. Let ¢ : (M,g9) — (N,h) be a smooth map between Riemannian
manifolds, f a smooth positive function in M, and p > 2. We have

divM S = —h d Md
v Sy p(p) = —h(7p 1 (), dp) + ’ If.

Proof. Let {e;} be an orthonormal frame with respect to g on M, such that Vé‘;[ e; =0,
at x € M for all 4,5 = 1,...,m. We compute

[diVM Spj((p)} (6]‘) = € £|d90|p5ij - f|d90|p_2h(d90(ei)v d(p(ej))

_ }Jei(fndsom + ﬁeiuwm — i) dePh(dples), dple;)
— feulldol 2 h(dg(e:). dple;)) — fldoP 2h(VE dp(e,). dp(e;))
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—fldel|P~?h(dp(e;), VE dp(e;)). (5.23)

By the definitions of gradient and 7(y), with V¢ dp(e;) = V¢ dp(e;) at x, we get the
following

: dpl? B
[divY S, 1 (0)] (e5) = %g(gradM fre;) — |deP2h(dp(grad™ f), dp(e;))
—(p — 2)f1dpl"h(dep(grad™ |del), dip(e;))
—fldel"?h(7 (), deo(e;)). (5.24)
The Theorem 5.1.6 follows from (5.24), and the definition of 7, ¢(¢). O

5.1.4 Homothetic vector fields and (p, f)-harmonic maps

A vector field £ on a Riemannian manifold (M, g) is called a homothetic if Leg = 2kg,
for some constant k&, where L¢g is the Lie derivative of the metric g with respect to &,
that is:

g(VXEY) +g(VYE X) =2kg(X,Y), X,Y eT(TM). (5.25)

If ¢ is homothetic, while £ = 0 it is Killing (see [1], [20], [43]).

In the seminal work [29], where we proved that, if (M, g) is a compact Riemannian
manifold without boundary, (N, h) is a Riemannian manifold, ¢ : (M,g) — (N,h) a
harmonic map, assume that there is a proper homothetic vector field £ on (N, h), that
is L¢h = 2kh, for some constant £ € R*. Then ¢ is a constant map. We obtain the
following results.

Theorem 5.1.7. [/1] Let (M, g) be a complete orientable Riemannian manifold, (N, h)
a Riemannian manifold admitting a homothetic vector field & with homothetic constant
k # 0, and f a smooth positive function on M. If ¢ : (M,g) — (N,h) is (p, f)-
harmonic map, satisfying

/ FldgP € 0 oPv < .
M

Then s constant.

Proof. Let p be a smooth function with compact support on M, we set
W(X) = h(E o o, g fldglP2dp(X)), VX € T(TM),
and let {e;} be a normal orthonormal frame at x € M, we have
divMw = e [h(Eop, P fldplP2dp(e;))] - (5.26)

By equation (5.26), and (p, f)-harmonicity condition of ¢, we get

div?w =’ fldp[Ph(VE (€ 0 p), dp(es) + 2pei(p) fldplP>h(E 0 @, dip(e;)).
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Since £ is a homothetic vector field with homothetic constant k, we find that

div’w = kp*fldo|P"*h(de(e;), dp(e)) + 2pei(p) flde|P2h(€ o ¢, dp(e;)),

is equivalent to the following equation
divw = kp*fldelP + 2pei(p) fldpP72h(€ o @, dp(e;)). (5.27)

By the Young’s inequality, we have
—2pe;(p)h do(e:)) < epldel? + Sex(p)2lE o o2
pei(p)h(& o p. dp(ei)) < ep”ldpl” + —ei(p) [€ o ¢,
for all € > 0. Multiplying the last inequality by f|dp|P~2, we get

—2f|deP"?pei(p)h(€ o @, dp(e;)) < ef pldel” + %fldsf)!””ei(p)ﬂé o, (5.28)

from (5.27), (5.28), we deduce the following inequality
1
k' fldgl” — divtw < efp?|del” + —fldp|"ei(p)*|€ 0 I, (5.29)
We assume that & > 0, and we set € = % By (5.29), we have
k 2 P s M 2 p—2 2 2
SP fldel” —diviw < o fldel"ei(p)"|€ o o] (5.30)

From (5.30), and the divergence Theorem, we have

k 2 _
5 [ ordere < [ pidapeerico s, (531)
M M
Now, consider the cut-off smooth function p = pg such that 0 < p <1lon M, p=1
on the geodesic ball B(z, R), p = 0 on M \ B(z,2R) and |grad" p| < 2, from (5.31)
we get
5 fldelPvy < -—5 FldpP~7[E o pf 07, (5.32)
2 JB(@,R) kR* Jp(z2m)
since [, flde[P72|¢ o [*v9 < 0o, when R — oo we obtain:
/ flde|Pv, = 0. (5.33)
M

Consequently, |dp| = 0 that is ¢ is constant (if k < 0, consider the homothetic vector
field £ = —¢). 0
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Corollary 5.1.2. Let (M,g) be a compact orientable Riemannian manifold without
boundary, (N,h) a Riemannian manifold admitting a homothetic vector field £ with
homothetic constant k # 0, f a smooth positive function on M, and p > 2. Then, any
(p, f)-harmonic map ¢ from (M,g) to (N, h) is constant.

Ezxample 5.1.2. Let T? = S! x S! the Torus. We note that the circle S! is compact
orientable manifold of dimension 1, and without boundary because 9S' = 9(9D?) = ()
where D? is the unit disk in R?. So that the product manifold S' x S! is also compact,
without boundary, orientable manifold of dimension 2. In [47], the authors proved that
the non-constant map

(T?, da? + da3) — (S%, dyi +sin® yidys), (1, 72) — (7/2, may + nwy + 1)
is harmonic, where m,n,l € R. One can verify by direct computations that
@ : (T2, da? + da3) — (S%, dyf +sin®yidy;), (z1,72) — (azy + 1, bry + o)
is (p, f)-harmonic for all p > 2, with f(x1,z5) = 66_%, where b, ¢, c9, 6 €

R, and a € R*. Thus, the condition of existence of the homothetic vector field with
non-zero constant homothetic is necessary to verify the previous Corollary.
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