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Abstract. In this paper we introduce a new algebra of generalized func-
tions containing Roumieu ultradistributions and their microlocal analysis
suitable for them.

AMS Mathematics Subject Classification (2010): 46F10, 46F30

Key words and phrases: Colombeau generalized functions, Roumieu ul-
tradistributions, microlocal analysis

1. Introduction

The theory of generalized functions as a positive answer to the question of
product distributions [[6], caused a very important area of research [d, 5, G, (0]
and [[3], this theory has been developed and applied in linear and nonlinear
partial differential equations with non-smooth coefficients and distributions
data by several authors [R], [I0] and [T3].

Ultradistributions are useful in applications in quantum field theory, par-
tial differential equations, convolution equations, harmonic analysis, pseudo-
differential theory, time-frequency analysis, and other areas of analysis, see [I2]
and [I5], so it is necessary to develop a generalized functions type theory in
connection with ultradistributions.

Generalized Gevrey ultradistributions of Colombeau type have been de-
fined, but as a side-theme, in the paper [8]. The first paper aiming to con-
struct differential algebras containing ultradistributions is [I4]. Let us also
mention the interesting approach of the paper [B] to algebras of generalized
ultradistributions. However, a Colombeau type theory of generalized Gevrey
ultradistributions has been addressed in [8], where was developed the core of
a full theory and also introduced a new way of defining differential algebras
of generalized Gevrey ultradistributions that makes such a complete theory
possible. But, it was not clear in that paper why different Gevrey exponents
occurred in the embedding of the spaces of Gevrey ultradistributions. In [2], the
authors gave a general construction of algebras of generalized Gevrey ultradis-
tributions and then the microlocal analysis suitable for them. It also highlights
the explicit contribution of the mollification in the embedding of ultradistri-
butions into algebras of generalized functions of Colombeau type. In [0] the
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authors introduced new algebras of generalized functions containing Roumieu
ultradistributions.

The aim of this paper is to develop a microlocal analysis suitable for our
algebras defined in [l] by introducing a notion of generalized regularity which
coincides with ultradifferentiability.

2. Roumieu ultradistribution

Let (Mp)pez, be a sequence of real positive numbers, recall the following
properties.

(H1) Logarithmic convexity:

M2 < Mp_1Mp1, Vp>1

(H2) Stability under ultradifferentiation:

3A > 0,3H > 0, M, , < AHP*9M,M,,Vp > 0,Yq > 0.

(H2)’ Stability under differentiation:

JA > 0,3H > 0, M,y < AHPM,,,¥p >0

(H3)’ Non-quasi-analyticity:

o0

Z]\%;l < 400

p=1 P

The associated function of the sequence (Mp)pez, is the function defined
by
tP "
M(t) = sgplnﬁp,t e R}
Proposition 2.1. A sequence (Mp)pez, of positive numbers satisfies condition
(H1) if and only if

M, = Mosup[t’ exp(—M(t))], p € Z4
t>0

Proposition 2.2. Let the sequence (My)pez, satisfy condition (H1), then it
satisfies (H2) if and only if 3A > 0, 3H > 0, Vt > 0,
2M(t) < M(Ht) + In(AMy).

The class of ultradifferentiable functions of class M, denoted EM (), is the
space of all f € C°°(Q) satisfying for every compact subset K of Q, 3¢ > 0,
Vo € Z7,

(2.1) sup [0 f ()] < 10,
rzeEK
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This space is also called the space of Donjoy-Carleman.
A differential operator of infinite order P(D) = )" a,D" is called an
7621
ultradifferential operator of class (M,),ez. , if for every h > 0 there exist ¢ > 0
such that Vy € Z7,

(2.2) lay| < e

The basic properties of the space EM () are summarized in the following
proposition.

Proposition 2.3. Let the sequence (Mp)pez, satisfy condition (H1), then the
space EM (Q) is an algebra moreover, if (My)pez, satisfies (H2)', then EM ()
is stable by differential operators of finite order with coefficients in EM (),
and if (My)pez. satisfies (H2) then any ultradifferential operator of class M
operates also as a sheaf homomorphism.

The space DM (Q) = EM(Q)ND(R) is not trivial if and only if the sequence
(Mp)pez.,. satisfies (H3)'.

Definition 2.4. The strong dual of D (Q), denoted D'M(Q), is called the
space of Roumieu ultradistributions.

3. Generalized Roumieu ultradistributions

To consider the algebra of generalized Roumieu ultradistributions, we first
introduce the algebra of moderate elements and its ideal of null elements. Let
 be a non void open set of R™ and I =|0, 1].

We will always suppose that the sequence (M),),cz, satisfies the conditions
(H1), (H2), (H3)" and My = 1.

Definition 3.1. The space of moderate elements, denoted £ (), is the space
of (fo)e € C(Q)! satisfying for every compact K of Q, Va € Z", 3k > 0,
de > 0,deg € I, Ve < gy,

k
(3.1) sup 0% fe(z)| < cexp(M(=))
TEK )
The space of null elements, denoted N'M (Q2), is the space of (f.). € C>®(Q)!
satisfying for every compact K of Q, Vo € Z", Vk > 0,3dc > 0, Jeg € 1, Ve < gy,
o k
(32) sup 0% fe(z)| < cexp(=M(=))
zeEK S
The main properties of the spaces £M(Q) and NM(Q) are given in the
following proposition.

Proposition 3.2. 1. The space of moderate elements EM () is an algebra
stable by derivation.
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2. The space NM(Q) is an ideal of EM ().

Definition 3.3. The algebra of generalized Roumieu ultradistributions of class
(My)pez., , denoted GM (Q), is the quotient algebra

EM(Q

4. Embedding of Roumieu ultradistributions with com-
pact support

Let N = (Np)pez, be a sequence satisfying the conditions (H1), (H2),
(H3) and Ny = 1, the space SV (R") is the space of functions ¢ € C(R")
such that Vb > 0, we have

|$|\5|

(4.1) lellyy = sup | g
PN apeny S bHPN| Nig)

|0%p(z)] dox < 00

Define % as the set of functions ¢ € SV (R") satisfying
/c/)(m)dm =1 and/xo‘qb(x)dac =0, VaeZ}N{0}.

Definition 4.1. The net ¢. = ¢ "¢(./¢), ¢ € I, where ¢ € XV is called a N—
mollifier net.

Let (Lp)pez, satisfying (H1), (H2), (H3)' ,the space £X(12) is embedded
into GM () by the standard canonical injection

4.2
(42) ;s =)
Where f. = f, Ve e I.

And by [0] we have the following result gives the embedding of Roumieu
ultradistributions into G (). Let M and N be two sequences satisfying (H1),
(H2), (H3) with My = No=1,M,, > N, Vp € Z" and ¢ € =V

Theorem 4.2. The map

(4.3) Jo: Byn(@) - GM(Q)
. T - [T =Cl((T*¢s)/Q)
18 an embedding.

Notation 4.3. If M = (My)pez, and N = (N,)pez, are two sequences, then
MN-1:= (Mpr_l)peer
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In order to show the commutativity of the following diagram of embeddings

DMNTP Q) GgM(Q)
pY i
Eun ()

We have the following fundamental result [].

Proposition 4.4. Let f € DMN?lp!(Q) and ¢ € BN, then

(f = (f % de)ja)e € NM().

5. Regular generalized Roumieu ultradistributions

Definition 5.1. The space of N-ultraregular moderate elements of class M,
denoted EM:N:+20(Q), is the space of (f.). € C>(Q) satisfying VK € Q, 3k >
0, Jc¢ >0, Jeo €]0,1], Ya € Z7}

sup [0° £ (2)] < 1 Ny exp(M (L))
reK 15

The space of null elements is defined as NM:N:+22(Q) := NM(Q)NEM-N: o2 ().

The main properties of these two spaces are given in the following proposi-
tion.

Proposition 5.2.

1) The space EMN-+°(Q) is an algebra stable by the action of N -ultradiffe-
rential operators.

2) The space NMN:-+(Q) is an ideal of EMNT°((Q).
Proof. 1) Let (f-)e, (ge)e € EMANF°(Q) and K be a compact subset of Q,
then 3k; > 0, Jc; >0, Je1 €]0,1], Vo € Z7}, Ve < g4,
o o +1 ks
sup [0 fe(z)| < ;" Njajexp(M(—))
zeK 9

We have also 3k > 0, Jcg > 0, Jep €]0,1], Vo € Z7, Ve < &3,
o ol +1 k2
sup [0%ge(z)| < cy ' Njg exp(M(—))
zeK £

let @« € Z, A\, Ay € Z7%, it’s clear that 3¢ = max(cy,c2), Tk = (A1 +
Ao)max(ky, ka), Jeg = min(e1, e2) such that Ve < gq,

07 (A1 fo () + hage(@))] < e N exp(M(2))
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So, (A1 f1 + Aaf2) € ENNH(Q).
And we have

|aa(fegs)(17)|
< S (@) 10° 7 few)] |07 ge()]
5=0
< > () e NN exp(M(%) + M(%))
5=0

then 3A > 0, 3H > 0,Vt >0
2M(t) < M(Ht) 4 In(A).

t = Imax(ki, ko) = &, C = maz(cy, c2).

=

0 (g )@ S 5 (3)ACIIN exp(M ()
< ClMHL NG exp(M(%))

Then (fe.gc)e € 5%71\[’00(0)'
Let now P(D) = Xa,D" be an N-ultradifferential operator, then YA > 0,
3b > 0, such that

exp(—M(%2))

)

Niq|

exp(-M(L)) 3 bt

7621

k1
bexp(~M(Z)) Y
YEZY

b Z A(H)le+7Iphl

YELY

0%(P(D) ()l

IN

A(H)\oc-w\hh\
|0
Nats]

IN

IN

hence, for Hh < % we have

@ 1

)

9 N|a‘

exp(—M( 0°(P(D) fe(a)| < ' H*!

which shows that (P(D)f.). € EM:N.20(()

2) The fact that NMN-20(Q) = NM(Q) N EMN2(Q) ¢ EMN>(Q), and
that NM(Q) is an ideal of EM (), imply that NM:N>° is an ideal of
£M:N50(0)

O
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Definition 5.3. The algebra of N—ultraregular generalized functions of class
M = (Mp)pez, , denoted QA]\/[[’OO(Q), is the quotient algebra

gM,Npo(Q)
M ,c0
ooy = Sm U
gN ( ) NMvaoo(Q)
The basic properties of g%’“’(m are given by the following result.
Proposition 5.4. The space QJA\;I’OO(Q) is a sheaf subalgebra of GM (€2).

This motivates the following definition.

Definition 5.5. We define the g%’mfsingular support of a generalized ultra-
distribution f € GM(Q), denoted by N — singsupp,(f) as the complement of
the largest open set Q' such that f € g%""(Q’)

The following result is Paley-Wiener type characterization of gj\‘f"”((z).

Proposition 5.6. Let f = cl(f.). € GM(Q), then f is N—ultraregular if and
only if Ik1 > 0, ko > 0, Jc > 0, Je1 > 0, Ve < &1, such that

61 FUEOIS cop(M(L) - Nl lel), Ve R

Proof. Suppose that f = cl(f.) € GM(Q) N GN">°(Q) then k; > 0, Je >
0, Je1 >0, Ve < &1, Va € 27,

0° f-(2)| < C“"“~N|a|~exp(M(%))
Consequently, we have V{ € R" Va € Z7,
€O < | [ e(-iatorf.(ayas).
K

Then &
€1 [F(f)O)] < mes(K)el* . Nigy. exp(M(2))

IF(L)E)] < c|“+1.mes(K).|];]|i|l. p(M(g))
Aol
< c.mes(K).igf( |§|]z||)~ p(M(g))
< c.mes(K).|1§|a|~€Xp(M(€))
Slép(c‘MNla‘ )
< cmes(K) 1 |€||a‘ .eXp(M(g))
exp(In(su
plinsup( 51—
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Take ko = 1, C = c.mes(K), Ve < g

k1

IF(£) ()] < cexp(=N (k2 [¢])). exp(M(>))

So we have (BI).
Suppose now that (1) is valid. Then Ve < ¢,

0°5.(a)
| ewtioeF©

IN

c

IN

cexp((2) [ 6] exp(~N (ks €))do

IN

cexp(M(k;))sgp(Ifﬂ exp(—N (k2 [£])))

k
C’la‘H.Nm.exp(M(?l)),

IN

with C' = man(e, 1712)’ ie. f. € GnZ(). O

Remark 5.7. Let f = cl(f.) € GM(Q), then Jk; > 0, Jc > 0, Igo > 0, Vk2 > 0,
Ve < €0,

(5:2) |F(f)(O)] < Cexp(M(%) + N(k28]),  VEEeR™

The algebra g{‘fo"(Q) plays the same role as the Oberguggenberger subal-
gebra of regular elements G*(Q2) in the Colombeau algebra G(2).

Theorem 5.8. We have

g%’]\o,o,lp,(fl) N D),y (Q) = EMN'#(Q)

Proof. Let S € gﬁ}gﬁlp!(ﬂ) N Dy n(Q). For any fixed g € 2, we take ¢ €
DMN(Q), with ¢ = 1 on a neighborhood U of z¢. Then, T' = %S € Ej;x ().
Let ¢. be a net mollifiers with ¢ = ¢ and let y = 1 on K = suppy. and
X € DMNTP(Q), As [T] € Gyynte, (), Fhy >0, Fkp >0, ey > 0, Jey >
05 Ve < €1,

FOUT * 92)(E)] < ex exp(M () — MN~p1(h )
FO(T * 6:))(O) ~ FT)E)

= FO(T % 02))(€) = FIT)(E)] |
= [T(@), (x(@)e ™) * ¢ () — (x(w)e "))
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As Ejyyn () C Eyyy-1,(2), then 3L € Q such that VA > 0,3¢ > 0

[F(X(T % 62))(§) = F(T)(E)]

plel » .
< ¢ sup e |05 (x(@)e™" x g (2) — x(2)e ")
Q€LY 2EL ||l

We have e~y € DMN"'7!(Q2) and by [4], we obtain Vks > 0, 3¢y > 0, 3 >
0,ve <,

hlel
M\a\
Nia

k3

|05 (x(2)e ™" * e (z) — x(2)e %) < ez exp(—M(—

)

u
QGZI,IGL

all

So there exists ¢ = ¢/(ks) > 0, such that

ks

IFO(T * 62))(€) = F(D)O] < ¢ exp(=M(—

)
Let € < min(n,e1), then

(M) < If( )(€) = FOUT # ¢))| + [ F(X(T * )|
< eexp(—M("%)) + crexp(M (%) — MN~'pl(k2|€]))

keypl® k
Take ¢ = max(cy, ), e = #1, r €]0, ko and k3 = %, then

(k2 —7) || Ny 2
36 > 0, Je > 0 such that

[F(T)(E)] < cexp(~=MN~'pl(5[¢])),

Which means T' = ¢S € EMN_IP!(Q). As ¢ =1 on the neighborhood U of z,
Consequently S € EMN_lpl(Q). Which proves

Garnca () N Dy (Q) € BMN ().

We have EMN'#(Q) ¢ EMN(Q) C D)5 (), BMNPHQ) C Gyt (9),
then EMNT'P(Q) € G171 (Q) N Dhyn ().
Consequently we have

Grinca (@) N DYy (Q) = BMN (@),

6. Generalized Roumieu wave front

The aim of this section is to introduce the generalized Roumieu wave front
of generalized Roumieu ultradistribution and to give its main properties.
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Definition 6.1. We define Z;WN(f) C R™\{0}, f € GM(Q), as the comple-
ment of the set of points having a conic neighborhood I' such that Jk; > 0,
dko >0,3dc>0,dg e I, VE €', VE €T, Ve < ey,

FUO] < coxpM() — Nk e])

The following essential properties of Z;\/[’N( f) are sufficient to define later
the generalized Roumieu wave front of generalized Roumieu ultradistribution

Proposition 6.2. For every f € GM(Q) we have
1. The Set Zév”v(f) is closed cone.
2. SN (f) =0 f e gMNee,

3. 0N ) c SN (F), v € BN ().

Proof. One can easily, from Definition (631) and Proposition (68), prove the
assertion 1 and 2.

Let suppose that &y & Zg/[’N(f), then 3T" a conic neighborhood of &y, Jk; > 0,
Jko >0, dc; >0, 3e1 >0, VE €T, Ve € g,

FUE)] < c.oxp(M(2) ~ Nk le))

Let x € DN(Q), x =
Vi) € EN(Q) hence from [I

[IFOe) (€] < c.exp(=N (k3 [€]))

Let A be a conic neighborhood of &, such that A C I' we have for a fixed
e,

F@f)(6)
= Fxvf)(©)

_ /J-'fg Floo)n — §dn+/ff5 Flxw)(n — €)dn,

1 on neighborhood of supp(f), so x¥ € DN(Q),
1] 3k3 > 0, Jeo > 0, V€ € R™,

where A = {n:[§ —n < 6(|¢| + |n[)} and B = {n: |£ —n| > 6(|¢| + [n])}

Take § sufficient small such that % < |n| < 2€|, Vn € A, then 3¢ > 0,

Ve < e,

| / FU () n — i)
s exp(Mé) - N lE0) % [ exp(-Nlkaln - D)y
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Then e > 0, 3k, > 0

(6.1)

[ FEAmF )0~ 1an| < cexpha() — N (k3 )

As GM(Q), from Remark (622), dco > 0, Juy > 0, ez > 0, Y > 0,
VE € R™, Ve < &9, such that

[F£)O] < cexp(M(EH) + Nuz )

Hence, for ¢ < min(e1,e2), we have

/ F(f2) 1) F ) - §)dn‘

< cocs. exp(M(&))

[ exp(0¥ (s ) = Nk - 5))dn‘
< coexp(M ] [ expV(ua ) - Nl + n|>dn]
Then taking us < k3dé, we obtain

(6.2)

[ F0-Foa)n- E)dn‘<cexp(M(m) N k33 [€]))

Consequently, (611) and (60) give & ¢ ZgI’N(i/ff) O

Definition 6.3. Let f € QM( ) and zg € £, the cone of N —singular directions
of f at xp, denoted EQ v N(r), is

RMN () = ﬂ{E;V[’N(@f) : ¢ € DM(Q) and ¢ = 1 on a neighborood of z}

9,%o

Lemma 6.4. Let f € GM(Q), then

SMN(F) = § & z0 & N — singsupp,(f)

g,%o

Proof. Let g ¢ N — singsuppgy(f), i.e. 3U C © an open neighborhood of zg
such that f € Gr'>°(U), let ¢ € DM(U) such that ¢ = 1 on a neighborhood

of zg, then ¢f € QJ]:,/I °°(2). Hence, from Proposition (E32), Zé\/f’N (of) =0, ie.
Sy (1) =0,
Suppose now S XN () = 0, ve € R™\{0}, Ve € V(zo), Jwe € £ conical

9,0

neighborhood. 3k; > 0, k2 > 0, 3¢ > 0, ¢ > 0, V€ € W, Ve < eo,
Vd)g S DM(Q).

Foe)@) < c-exp(M(2) — (ks el
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Since the unit sphere |£| = 1 is a compact set, then one can find finite
points §;,j =1,...,nin R", W; € { and ¢; € DM(Q), ¢j(x) =1in V;, ki >0,
dko >0, dc >0, 9 > 0, Ve < g

|F(d5f)(E)] < e exp(M(%) — Nk [€]), €W

Taking V = (NV; and W = W, ¢ = ¢1...¢,, we have ¢ € DM(Q) and
J J
p(r)=1on V.

k
F(ef)©) < coxp(M(Z) = Nl [¢]), €€ W
Consequently, (¢f:) & gﬁ’f, where zg € N — singsuppy(f) O

Definition 6.5. A point (z9,&) ¢ WEMN(f) ¢ QxR™\{0}if& ¢ S0V (f),

g;%o
i.e. there exists ¢ € DM (Q), ¢(x) = 1 neighborhood of x, and conic neighbor-
hood ¥ of &, 3k1 > 0, Jka > 0, Ic > 0, Jeg > 0 such that V€ € T', Ve < g,

F0£)(6)] < coxp(M () ~ Nk e])

The main proprieties of the generalized Roumieu wave front W F éM’N are
subsumed in the following proposition.

Proposition 6.6. Let f € GM(Q), then
(1) The projection of WEMN(f) on Q is N — sinsuppg(f).
(2) If f € GM(Q), The projection of WFMN(f) on R™\{0} is 30" (f).
(3) Ya e Z1t, WF)IN (9 f) € WEMN(f).
(4) ¥g € Gy (Q), WFMN(gf) C WEMN(f).

Proof. (1) and (2) hold from the definition, Proposition (62) and Lemma (64).

(3) Let (z9,&0) ¢ WFgM’N(f), then 3¢ € DM(Q), ¢ = 1 on a neighborhood
U of xg, there exists a conic neighborhood I' of &y, 3k > 0, Fko > 0, Je; > 0,
Jep €]0, 1], such that V€ € T, e < &,

(63) F0£)(©) < creap(M (") — N (ks e])
We have for 1 € DM (U) such that ¢(zg) = 1.

[Fof)©l = |[FOf))(E) = F(0p) (&)l
< LEHF@ef) ()] + [F(9¢)of) (&)l

As WEMN(pf) € WEMN(f), (63) holds for both |F(¢¢f.)(€)| and
[F((09)f) (&)
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So
ENF@of)E < [€lexp(M (%) — N(k2 [€])
< dexp(M(%) — N(ks [¢])
With ¢ > 0, ks > 0, such that [£] < ¢ exp(M (ks |€]) — M (ks |€])). This proves
(0, &) & WEN (D).
(4) Let (x9,&) € WFgM*N(f) then 3¢ € DM (Q), ¢ = 1 on a neighborhood
of xg, & ¢ Zg/[’N(gbf) by Proposition (6232), for g € gﬁ’o"(Q), we have &, ¢

SN (gof), which proves (zo,&) & WEMN (gf). O
Corollary 6.7. Let P(x,D) = Y. an(z)D* be a partial differential oper-
|| <m

ator with Q%’OO(Q) coefficient, then WFN(P(z,D)f) ¢ WEMN(f), Vf €
gM(Q).

Lemma 6.8. Let p € DM(B(0.2)), 0 < ¢ <1, and ¢ =1 on B(0,1) and let
¢ € SM then 3¢ >0, v >0, Igg > 0, Ve €]0,], V€ € R,

95(5)] < ce e~ Mvelél)

where 0. (x) = (1)".¢(2).o(z |€]), and 0 denoted the Fourier transform of 6.

€

Proof. We have, for ¢ sufficiently small, e < |[Ing|™" < 1
Let £ € R™, then

ﬁJﬁ@@—nDﬁ$|¢("Q®
el [ [ A€ — ) (2 — e
where A= {n: ¢ = n| < 8(I¢| + D)} and B = {n: |¢ = n| > 5(/¢| + )}

We choose § sufficiently small such that % <In| < 2|¢], Vn € A.
Since p € DM(Q), ¢ € SM then Ik, ko > 0,3e1, o > 0, VE € ‘R,

|(E)] < c1 exp(—M (k1 [€]))

0:(¢)

)dn} :

and
16(8)] < ez exp(—=M(kz ).
’ Il

‘—TL

e[ ™" | [, (e —m) (s
< crepexp(—M (B2 Ly

Let z =¢(n — &), then

L ce " exp(—M (%2 |Ine|” |§\))fexp(—M(k:1 |z]))dz

ce ™ exp(— M(ve 1€1))

INIA
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For I we have

I el ™[ &€ = )@ ey

crca [ exp(—M (ki€ — nl) — M(kafZL))dn

cexp(—M (k16e[€])). [ exp(—M (kyide [n] — M (kade n]))dn
cexp(—M (k1de [€])). [ exp(—M (khe [n]))dn

ce”"exp(—M (ve [€]))

INININ A

Consequently, 3¢ > 0, Jv > 0, Jg¢ > 0, Ve < ¢ such that

95(5)‘ < ceme~Melg))

We have the following important result.

Theorem 6.9. Let T € Dy, (Q) NGM(Q); then
M,MN~* _ MN~1p!
WE, (TY=WF PYT).
Proof. Let S € Ejy;5(02) C E’MP,(Q) and ¢ € DVPY(Q), we have
M )
|F((S * ¢e))(€) — O = |(S(@), (Y(x)e™") * de () — (p(x)e™™))|.
Then there exists a compact subset L of € such that VA > 0, dc > 0,

[F (S % 62)) () = F(S)(E)]
lex] _ . .
h |aa 715:1: * ¢E(I) . 1/}(93)6715:1:”

< ¢ sup
aGZi;xGL Ivt\

We have e~ € DNPY(Q), then, ey, Vho > 0, In > 0, Ve < 1,

Ia\ R

T g () — w(z)efigz)} < CQ@iM(?O);

sup

aGZ" acGL
N\u\

So there exist ¢/ > 0, Vkg > 0, Ip > 0, Ve < 7, such that
k
(6.4) [ F(S)(€) = F(h(S * ¢)(§))] < /e M=)
Let T € D)y, (2) NGM(Q) and (z0,y0) & WFgM’%p!(T), Then there exist
X € D%”!(Q), Xx(z) = 1 in a neighborhood of zg, and a conic neighborhood I"
of &, Ik1 > 0, ko > 0, ey > 0, Jep €]0, 1], such that V€ € T, Ve < &,

k1 M
(6.5) | F((T % 0.)) ()] < eeMZ)=wpika1eD)
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Let ¥ € D%I’I(Q) equal to 1 in neighborhood of xg such that for sufficiently
small & we have x = 1 on suppy + B(0, %), and let ¢ € DNP'(B(0,2));

’ |Ineg]

0<p<1land ¢ =1 on B(0,1), then there exist 9 < 1, such that Ve < &,
(T +0:)(x) = P(XT * 0:) ().
where 0.(z) = L o(z|lnel)p(2). As XT € E};n (), then
P(T#0:) () = (XT * 0:)(x) = (XT * <) (x)
Let £ < min(n,ep) and & € T', we have

IF@T)OI < |FOT)E) = FW(T *0:))(E)] + [F(x(T* 0:))(€)]
< F@XT)(E) = F(OXT * @) ()] + [F(x (T * 02))(£)]

Then by (64) and (633), we obtain
IFT)(E)] < e MUB) 1 oy eM2)=MN " pllkaé])

1
kipl» k
Take ¢ = max(cy,), e = #, r €]0, ko and kg = k‘i’ then

(k2 —r) €| Ny 207
30 > 0, Je > 0 such that

|F(XT)(€)] < /e KPHEIED,

Which proves that (xo, &) & WEXP/(T). So WE¥P'(T) c WEM ¥ (7).

Suppose that (zo,&) &€ WFNP(T), then there exist y € DNPY(), x(z) =
1 in a neighborhood of z(, a conical neighborhood I' of £y, 3A > 0, ¢; > 0, such
that V€ € T

(6.6) IF(XT)(E)| < cre™ FPHOKED,

Let ¥ € ’D%Z’!(Q) equals 1 in neighborhood of z( such that for sufficiently
small £ we have y = 1 on suppy + B(0, |1n€|) then there exist ¢g < 1, such
that Ve < eg,

U(T x0c)(z) = D(XT * 0c) ().
We have

F(T *0.))(€) = / F)(E — 1) FOT) (). F(62)(n)en.

Let A be a conic neighborhood of &, such that, A C T'. For a fixed £ € A,
we have

F(p(XT +6.))(€)
/A F)(€ = n)-FOT)(n).F(02)(n)dn

+ / F)(€ — ) FOT) (). F(6.)(n)in,
B
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where A = {n:[€ —n| <4([f| + |nl)} and B = {n: |£ —n| = (] + [n])}.

We choose ¢ sufficiently small such that A C I and % < |n| < 2]¢|. Since
1 € DM(Q), then Ju > 0, Jez > 0, VE € R™,

M
IF W) < ez exp(=5pH(nl€])),
Then Jc > 0, g €]0, 1], Ve < &,

[ P~ n)f(xTxn).f(ea)(n)dn\
< coxp(—arpl( lED) x

M
exp (=P | — €])-F (6e) ()
A
From preceding Lemma, Jc3 > 0, Jv > 0, Jg¢ > 0, such that

|]:(95)(§)| S ng_ne_N(luglgl) Vé- c Rn
then Jde > 0, such that

|/f (6 — n) FOT) () F @ ><n>dn]

e exp(~ PN E]) x

M
| exp(= ot = 1) exp(- oz )
A
We have 3k > 0, Ve €]0, &,

(67) e exp(—N(ve o)) < exp(M(2)),

So
65 | [ Fote- 070070 0] < cospor®) - T 1)
A e

AséT e B () C E’Mp,(Q), then VI > 0, 3¢ > 0, V¢ € R™,
M )

FXT)E] < cexp( pMIED)

Hence, we have

/B F@)(€ — n)FOT) ) F(62)(n)dn

<

e [ exp(Gpattin = Frokels = D). 1F (0. dn

M
< e, exp(—ﬁp!(#(s €1))

/B exp(3 (L — ) In) — N(ve Jn])
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Then, taking | — pud = —a < 0 and using (624), we obtain for a constant
c>0

M

V)E ) FO)0) F(0:) )| < cosp(b (L) — Xpi(us e]),

which gives that (zo,&0) & WENP(T), so WEM NP (1) c wE¥P(T). D

7. Generalized Hormander’s theorem

To extend the generalized Hérmander’s result on the wave front set of the
product, define WEMN(f) + WFMN(f), where f,g € GM(Q), as the set

{(z,&+n) e WE)N(f), (x,m) € WEMN (g)}.
We recall the following fundamental lemma, see [[d] for the proof.

Lemma 7.1. Let X1, ¥y be closed cones in R™\{0}, such that 0 & ¥ + o,
then

s R\{0}

i) X1+ 2o = (X1 + ) U UX,.

i1) For any open conic neighborhood T of ¥1 4+ o in R™\{0}, one can find
open conic neighborhoods of T'1, Ty in R™\{0} of respectively 31, o such
that
+I,cT

The principal result of this section is the following theorem.
Theorem 7.2. Let f,g € GM(Q), such that Vz € Q,
(7.1) (,0) & WESN (f) + WES Y (g).
Then the following holds:
M,N M,N M,N M,N M,N
WEST(f.9) € (WEST(f) + WES T (g)) UWE, ST (f) UWE,S 7 (g).

Proof. Let (z0,80) & (WESMN(f) + WEN(g)) UWEN (f) UWEMN (g),
);

then 3¢ € DM(Q); d(x0) = 1, & & (ZMV(6f) + BN (gg)) USMN (6f) U
%N (¢g) From (1) we have 0 ¢ X" N((bf) + )N (¢g) then by Lemma T
i), we have

€0 & (SMN (G 1)1 EMN (6g)) USMN () U MY (9)
R™\{0}
— SN G5 + SN ()

Let I'g be an open conic neighborhood of X3V (¢ f) + 23N (¢g) in R™\{0}

such that & ¢ I then, from Lemma [T 74), there exist open cones I'; and I'y
in R™\{0} such that

SMN(pf) c Ty BN (gg) C Ty
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and
I'i+Ts CTy
Define I' = R™\TI'g, so
(72) FﬂF2=®and(P—F2)ﬁF1=®

Let (€T and e € 1.

F(ofetg:)(€) = (F(dfe) * F(9ge))(€)
Jr, F(@f) (€ = n)-F(dge)(n)dn
Jrs F(01)(§ = n)-F(dge)(n)dn = 1 (§) + L2(€)

By Proposition B8, Jc¢; > 0, Jk1, ke > 0, Je; > 0, such that Ve < g,
Vn ey,

k
F(81:)(€ = )] < ex exp(M(-2) = N(kz € = n]),
and by Remark 674, dcy > 0, k3 > 0, Vky > 0, deg > 0, Vp € R™, Ve < g9,
k
|F(¢g:) ()] < c2 exp(M(f’) + N (k4 nl))
Let v > 0 be sufficiently small such that

1€ —nl =~ + nl), Vne€Tls.

Hence for ¢ < min(eq,e2),

[11(€)] < cr.coexp(M(

PR - Nk ) [ exp(-N(ka )+ N )y

Take k4 > ko7, then

1(6)] < ¢ exp(1(%) - N ).

Let r > 0,

L) = / F(612)(€ — n)-Flge) (m)d
rsn{in|<r(&l}

n / F(6£:)(€ = m)-F(bge)(n)dn
rsn{in|>r(gl}
151 () + I2(&).

Choose r sufficiently small so that {|n| < r|¢|} = & —n & T'1. Then
€ =nl= @ =r)[¢] > (1 =2r) €]+ n],
Consequently, Jcg > 0, IA1, A2, A3 > 0, Jez > 0 such that Ve < g4,

[L1(6)] < ezexp(M(3)) [exp(=N(Az € —n]) = N(As [n]))dn
< ¢ exp(M(%) N(X5[€])) [ exp(=N (X3 [n]))
< chexp(M() - N(/\'z €0)
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[nl + 7 [¢]

If |n| > r&|, we have |n| > , and then Jeqy > 0, Juq,uz > 0,

Vo > 0, Jde4 > 0 such that Ve < gy,

[122(8)|
< coexp((2)) [ exp(N(ua |6 ~ 1)) ~ Nlua )

< coexp(M(2) [ exp(N(ual€ ~ ) — N Gu ) — N s I

If take po < %g”(l + 1), we obtain

/

k
T2 < €} eXP(M(f’) — N(ps 1)),

which finishes the proof. O
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