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Abstract. In this paper we introduce a new algebra of generalized func-
tions containing Roumieu ultradistributions and their microlocal analysis
suitable for them.
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1. Introduction

The theory of generalized functions as a positive answer to the question of
product distributions [16], caused a very important area of research [4, 5, 9, 10]
and [13], this theory has been developed and applied in linear and nonlinear
partial differential equations with non-smooth coefficients and distributions
data by several authors [8], [10] and [13].

Ultradistributions are useful in applications in quantum field theory, par-
tial differential equations, convolution equations, harmonic analysis, pseudo-
differential theory, time-frequency analysis, and other areas of analysis, see [12]
and [15], so it is necessary to develop a generalized functions type theory in
connection with ultradistributions.

Generalized Gevrey ultradistributions of Colombeau type have been de-
fined, but as a side-theme, in the paper [8]. The first paper aiming to con-
struct differential algebras containing ultradistributions is [14]. Let us also
mention the interesting approach of the paper [6] to algebras of generalized
ultradistributions. However, a Colombeau type theory of generalized Gevrey
ultradistributions has been addressed in [3], where was developed the core of
a full theory and also introduced a new way of defining differential algebras
of generalized Gevrey ultradistributions that makes such a complete theory
possible. But, it was not clear in that paper why different Gevrey exponents
occurred in the embedding of the spaces of Gevrey ultradistributions. In [2], the
authors gave a general construction of algebras of generalized Gevrey ultradis-
tributions and then the microlocal analysis suitable for them. It also highlights
the explicit contribution of the mollification in the embedding of ultradistri-
butions into algebras of generalized functions of Colombeau type. In [1] the
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authors introduced new algebras of generalized functions containing Roumieu
ultradistributions.

The aim of this paper is to develop a microlocal analysis suitable for our
algebras defined in [1] by introducing a notion of generalized regularity which
coincides with ultradifferentiability.

2. Roumieu ultradistribution

Let (Mp)p∈Z+
be a sequence of real positive numbers, recall the following

properties.

(H1) Logarithmic convexity:

M2
p ≤Mp−1Mp+1, ∀p ≥ 1

(H2) Stability under ultradifferentiation:

∃A > 0, ∃H > 0,Mp+q ≤ AHp+qMpMq, ∀p ≥ 0, ∀q ≥ 0.

(H2)’ Stability under differentiation:

∃A > 0, ∃H > 0,Mp+1 ≤ AHpMp, ∀p ≥ 0

(H3)’ Non-quasi-analyticity:
∞∑
p=1

Mp−1

Mp
< +∞

The associated function of the sequence (Mp)p∈Z+ is the function defined
by

M(t) = sup
p

ln
tp

Mp
, t ∈ R∗

+

Proposition 2.1. A sequence (Mp)p∈Z+ of positive numbers satisfies condition
(H1) if and only if

Mp =M0sup
t>0

[tp exp(−M(t))], p ∈ Z+

Proposition 2.2. Let the sequence (Mp)p∈Z+ satisfy condition (H1), then it
satisfies (H2) if and only if ∃A > 0, ∃H > 0, ∀t > 0,

2M(t) ≤M(Ht) + ln(AM0).

The class of ultradifferentiable functions of class M , denoted EM (Ω), is the
space of all f ∈ C∞(Ω) satisfying for every compact subset K of Ω, ∃c > 0,
∀α ∈ Zn

+,

(2.1) sup
x∈K

|∂αf(x)| ≤ c|α|+1M|α|
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This space is also called the space of Donjoy-Carleman.
A differential operator of infinite order P (D) =

∑
γ∈Zn

+

aγD
γ is called an

ultradifferential operator of class (Mp)p∈Z+
, if for every h > 0 there exist c > 0

such that ∀γ ∈ Zn
+,

(2.2) |aγ | ≤ c
k|γ|

M|γ|

The basic properties of the space EM (Ω) are summarized in the following
proposition.

Proposition 2.3. Let the sequence (Mp)p∈Z+ satisfy condition (H1), then the
space EM (Ω) is an algebra moreover, if (Mp)p∈Z+ satisfies (H2)′, then EM (Ω)
is stable by differential operators of finite order with coefficients in EM (Ω),
and if (Mp)p∈Z+ satisfies (H2) then any ultradifferential operator of class M
operates also as a sheaf homomorphism.

The space DM (Ω) = EM (Ω)∩D(Ω) is not trivial if and only if the sequence
(Mp)p∈Z+ satisfies (H3)′.

Definition 2.4. The strong dual of DM (Ω), denoted D′M (Ω), is called the
space of Roumieu ultradistributions.

3. Generalized Roumieu ultradistributions

To consider the algebra of generalized Roumieu ultradistributions, we first
introduce the algebra of moderate elements and its ideal of null elements. Let
Ω be a non void open set of Rn and I =]0, 1].

We will always suppose that the sequence (Mp)p∈Z+ satisfies the conditions
(H1), (H2), (H3)′ and M0 = 1.

Definition 3.1. The space of moderate elements, denoted EM
m (Ω), is the space

of (fε)ε ∈ C∞(Ω)I satisfying for every compact K of Ω, ∀α ∈ Zn
+, ∃k > 0,

∃c > 0,∃ε0 ∈ I, ∀ε ≤ ε0,

(3.1) sup
x∈K

|∂αfε(x)| ≤ c exp(M(
k

ε
))

The space of null elements, denoted NM (Ω), is the space of (fε)ε ∈ C∞(Ω)I

satisfying for every compactK of Ω, ∀α ∈ Zn
+, ∀k > 0, ∃c > 0, ∃ε0 ∈ I, ∀ε ≤ ε0,

(3.2) sup
x∈K

|∂αfε(x)| ≤ c exp(−M(
k

ε
))

The main properties of the spaces EM
m (Ω) and NM (Ω) are given in the

following proposition.

Proposition 3.2. 1. The space of moderate elements EM
m (Ω) is an algebra

stable by derivation.
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2. The space NM (Ω) is an ideal of EM
m (Ω).

Definition 3.3. The algebra of generalized Roumieu ultradistributions of class
(Mp)p∈Z+ , denoted GM (Ω), is the quotient algebra

GM (Ω) =
EM
m (Ω)

NM (Ω)
.

4. Embedding of Roumieu ultradistributions with com-
pact support

Let N = (Np)p∈Z+ be a sequence satisfying the conditions (H1), (H2),
(H3)′ and N0 = 1, the space SN (Rn) is the space of functions φ ∈ C∞(Rn)
such that ∀b > 0, we have

(4.1) ∥φ∥b,N = sup
α,β∈Zn

+

∫
|x||β|

bα+βN|α|N|β|
|∂αφ(x)| dx <∞

Define ΣN as the set of functions ϕ ∈ SN (Rn) satisfying∫
ϕ(x)dx = 1 and

∫
xαϕ(x)dx = 0, ∀α ∈ Zn

+�{0}.

Definition 4.1. The net ϕε = ε−nϕ(./ε), ε ∈ I, where ϕ ∈ ΣN is called a N−
mollifier net.

Let (Lp)p∈Z+ satisfying (H1), (H2), (H3)′ ,the space EL(Ω) is embedded
into GM (Ω) by the standard canonical injection

(4.2)
I : EL(Ω) → GM (Ω)

f → [f ] = cl(fε)

Where fε = f , ∀ε ∈ I.

And by [1] we have the following result gives the embedding of Roumieu
ultradistributions into GM (Ω). LetM and N be two sequences satisfying (H1),
(H2), (H3)′ with M0 = N0 = 1,Mp > Np, ∀p ∈ Z+ and ϕ ∈ ΣN

Theorem 4.2. The map

(4.3)
J0 : E′

MN (Ω) → GM (Ω)
T → [T ] = cl((T ∗ ϕε)/Ω)

is an embedding.

Notation 4.3. If M = (Mp)p∈Z+ and N = (Np)p∈Z+ are two sequences, then
MN−1 := (MpN

−1
p )p∈Z+
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In order to show the commutativity of the following diagram of embeddings

DMN−1p!(Ω) → GM (Ω)
↘ ↑

E ′
MN (Ω)

We have the following fundamental result [1].

Proposition 4.4. Let f ∈ DMN−1p!(Ω) and ϕ ∈ ΣN , then

(f − (f ∗ ϕε)/Ω)ε ∈ NM (Ω).

5. Regular generalized Roumieu ultradistributions

Definition 5.1. The space of N -ultraregular moderate elements of class M ,
denoted EM,N,+∞

m (Ω), is the space of (fε)ε ∈ C∞(Ω) satisfying ∀K b Ω, ∃k >
0, ∃c > 0, ∃ε0 ∈]0, 1], ∀α ∈ Zn

+

sup
x∈K

|∂αfε(x)| ≤ c|α|+1N|α| exp(M(
k

ε
))

The space of null elements is defined asNM,N,+∞(Ω) := NM (Ω)∩EM,N,+∞
m (Ω).

The main properties of these two spaces are given in the following proposi-
tion.

Proposition 5.2.

1) The space EM,N,+∞
m (Ω) is an algebra stable by the action of N -ultradiffe-

rential operators.

2) The space NM,N,+∞(Ω) is an ideal of EM,N,+∞
m (Ω).

Proof. 1) Let (fε)ε, (gε)ε ∈ EM,N,+∞
m (Ω) and K be a compact subset of Ω,

then ∃k1 > 0, ∃c1 > 0, ∃ε1 ∈]0, 1], ∀α ∈ Zn
+, ∀ε ≤ ε1,

sup
x∈K

|∂αfε(x)| ≤ c
|α|+1
1 N|α| exp(M(

k1
ε
))

We have also ∃k2 > 0, ∃c2 > 0, ∃ε2 ∈]0, 1], ∀α ∈ Zn
+, ∀ε ≤ ε2,

sup
x∈K

|∂αgε(x)| ≤ c
|α|+1
2 N|α| exp(M(

k2
ε
))

let α ∈ Zn
+, λ1, λ2 ∈ Zn

+, it’s clear that ∃c = max(c1, c2), ∃k = (λ1 +
λ2)max(k1, k2), ∃ε0 = min(ε1, ε2) such that ∀ε ≤ ε0,

|∂α(λ1fε(x) + λ2gε(x))| ≤ c|α|+1N|α| exp(M(
k

ε
))
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So, (λ1f1 + λ2f2) ∈ EM,N,+∞
m (Ω).

And we have

|∂α(fεgε)(x)|

≤
α∑

β=0

(
α
β

) ∣∣∂α−βfε(x)
∣∣ . ∣∣∂βgε(x)∣∣

≤
α∑

β=0

(
α
β

)
c
|α−β|+1
1 .c

|β|+1
2 .N|α−β|.N|β| exp(M(

k1
ε
) +M(

k2
ε
))

then ∃A > 0, ∃H > 0, ∀t > 0

2M(t) ≤M(Ht) + ln(A).

t = 1
εmax(k1, k2) =

k
ε , C = max(c1, c2).

|∂α(fε.gε)(x)| ≤
α∑

β=0

(αβ).A.C
|α|+1N|α|. exp(M(Hk

ε ))

≤ C |α|+1.N|α|. exp(M(kε ))

Then (fε.gε)ε ∈ EM,N,∞
m (Ω).

Let now P (D) = ΣaγD
γ be an N -ultradifferential operator, then ∀h > 0,

∃b > 0, such that

exp(−M(k1

ε ))

N|α|
|∂α(P (D)fε(x))|

≤ exp(−M(
k1
ε
))

∑
γ∈Zn

+

b
h|γ|

N|γ|.N|α|

∣∣∂α+γfε(x)
∣∣

≤ b exp(−M(
k1
ε
))

∑
γ∈Zn

+

A(H)|α+γ|h|γ|

N|α+γ|

∣∣∂α+γfε(x)
∣∣

≤ b
∑
γ∈Zn

+

A(H)|α+γ|h|γ|

hence, for Hh < 1
2 we have

exp(−M(
k1
ε
))

1

N|α|
|∂α(P (D)fε(x))| ≤ c′H |α|

which shows that (P (D)fε)ε ∈ EM,N,∞
m (Ω)

2) The fact that NM,N,∞(Ω) = NM (Ω) ∩ EM,N,∞
m (Ω) ⊂ EM,N,∞

m (Ω), and
that NM (Ω) is an ideal of EM

m (Ω), imply that NM,N,∞ is an ideal of
EM,N,∞
m (Ω)
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Definition 5.3. The algebra of N−ultraregular generalized functions of class
M = (Mp)p∈Z+ , denoted GN,∞

M (Ω), is the quotient algebra

GM,∞
N (Ω) =

EM,N,∞
m (Ω)

NM,N,∞(Ω)

The basic properties of GM,∞
N (Ω) are given by the following result.

Proposition 5.4. The space GM,∞
N (Ω) is a sheaf subalgebra of GM (Ω).

This motivates the following definition.

Definition 5.5. We define the GM,∞
N −singular support of a generalized ultra-

distribution f ∈ GM (Ω), denoted by N − singsuppg(f) as the complement of

the largest open set Ω′ such that f ∈ GM,∞
N (Ω′)

The following result is Paley-Wiener type characterization of GM,∞
N (Ω).

Proposition 5.6. Let f = cl(fε)ε ∈ GM
c (Ω), then f is N−ultraregular if and

only if ∃k1 > 0, ∃k2 > 0, ∃c > 0, ∃ε1 > 0, ∀ε ≤ ε1, such that

(5.1) |F(fε)(ξ)| ≤ c exp(M(
k1
ε
)−N(k2 |ξ|)), ∀ξ ∈ Rn.

Proof. Suppose that f = cl(fε) ∈ GM
c (Ω) ∩ GM,∞

N (Ω) then ∃k1 > 0, ∃c >
0, ∃ε1 > 0, ∀ε ≤ ε1, ∀α ∈ Zn

+,

|∂αfε(x)| ≤ c|α|+1.N|α|. exp(M(
k1
ε
))

Consequently, we have ∀ξ ∈ Rn ∀α ∈ Zn
+,

|ξα| . |F(fε)(ξ)| ≤
∣∣∣∣∫

K

exp(−ixξ)∂αfε(x)dx
∣∣∣∣ .

Then

|ξα| . |F(fε)(ξ)| ≤ mes(K)c|α|+1.N|α|. exp(M(
k

ε
))

|F(fε)(ξ)| ≤ c|α|+1.mes(K).
N|α|

|ξ||α|
. exp(M(

k

ε
))

≤ c.mes(K).inf
α
(
c|α|N|α|

|ξ||α|
). exp(M(

k

ε
))

≤ c.mes(K).
1

sup
α

(
|ξ||α|

c|α|N|α|
)

. exp(M(
k

ε
))

≤ c.mes(K)
1

exp(ln(sup
α

(
|ξ||α|

c|α|N|α|
)))

. exp(M(
k

ε
))
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Take k2 = 1
c , C = c.mes(K), ∀ε ≤ ε0

|F(fε)(ξ)| ≤ c exp(−N(k2 |ξ|)). exp(M(
k1
ε
))

So we have (5.1).
Suppose now that (5.1) is valid. Then ∀ε ≤ ε0,

|∂αfε(x)|

≤ c

∣∣∣∣∫
Rn

exp(ixξ)ξαF(fε)(ξ)dξ

∣∣∣∣
≤ c exp(M(

k1
ε
))

∫
Rn

|ξα| . exp(−N(k2 |ξ|))dx

≤ c exp(M(
k1
ε
))sup

|ξ|
(|ξα| exp(−N(k2 |ξ|)))

≤ C|α|+1.N|α|. exp(M(
k1
ε
)),

with C = man(c, 1
k2
), i.e. fε ∈ GM,∞

N (Ω).

Remark 5.7. Let f = cl(fε) ∈ GM
c (Ω), then ∃k1 > 0, ∃c > 0, ∃ε0 > 0, ∀k2 > 0,

∀ε ≤ ε0,

(5.2) |F(fε)(ξ)| ≤ c exp(M(
k1
ε
) +N(k2 |ξ|)), ∀ξ ∈ Rn.

The algebra GM,∞
N (Ω) plays the same role as the Oberguggenberger subal-

gebra of regular elements G∞(Ω) in the Colombeau algebra G(Ω).

Theorem 5.8. We have

GM,∞
MN−1p!(Ω) ∩ D′

MN (Ω) = EMN−1p!(Ω)

Proof. Let S ∈ GM,∞
MN−1p!(Ω) ∩ D′

MN (Ω). For any fixed x0 ∈ Ω, we take ψ ∈
DMN (Ω), with ψ ≡ 1 on a neighborhood U of x0. Then, T = ψS ∈ E′

MN (Ω).
Let ϕε be a net mollifiers with ϕ̌ = ϕ and let χ ≡ 1 on K = suppψ. and
χ ∈ DMN−1p!(Ω), As [T ] ∈ GM,∞

MN−1p!(Ω), ∃k1 > 0, ∃k2 > 0, ∃c1 > 0, ∃ε1 >
0, ∀ε ≤ ε1,

|F(χ(T ∗ ϕε))(ξ)| ≤ c1 exp(M(
k1
ε
)−MN−1p!(k2 |ξ|))

|F(χ(T ∗ ϕε))(ξ)−F(T )(ξ)|
= |F(χ(T ∗ ϕε))(ξ)−F(χT )(ξ)|
=

∣∣⟨T (x), (χ(x)e−iξx) ∗ ϕε(x)− (χ(x)e−iξx)
⟩∣∣
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As E′
MN (Ω) ⊂ E′

MN−1p!(Ω), then ∃L b Ω such that ∀h > 0, ∃c > 0

|F(χ(T ∗ ϕε))(ξ)−F(T )(ξ)|

≤ c sup
α∈Zn

+, x∈L

h|α|

M|α|
N|α|

|α|!

∣∣∂αx (χ(x)e−ixξ ∗ ϕε(x)− χ(x)e−iξx))
∣∣

We have e−iξχ ∈ DMN−1p!(Ω) and by [4], we obtain ∀k3 > 0, ∃c2 > 0, ∃η >
0, ∀ε ≤ η,

sup
α∈Zn

+, x∈L

h|α|

M|α|
N|α|

|α|!

∣∣∂αx (χ(x)e−ixξ ∗ ϕε(x)− χ(x)e−iξx)
∣∣ ≤ c2 exp(−M(

k3
ε
))

So there exists c′ = c′(k3) > 0, such that

|F(χ(T ∗ ϕε))(ξ)−F(T )(ξ)| ≤ c′. exp(−M(
k3
ε
))

Let ε ≤ min(η, ε1), then

|F(T )(ξ)| ≤ |F(T )(ξ)−F(χ(T ∗ ϕε))|+ |F(χ(T ∗ ϕε))|
≤ c′. exp(−M(k3

ε )) + c1 exp(M(k1

ε )−MN−1p!(k2 |ξ|))

Take c = max(c1, c
′), ε =

k1p!
1
p

(k2− r) |ξ|N
1
p
p

, r ∈]0, k2[ and k3 =
k1r

k2 − r
, then

∃δ > 0, ∃c > 0 such that

|F(T )(ξ)| ≤ c exp(−MN−1p!(δ |ξ|)),

Which means T = ψS ∈ EMN−1p!(Ω). As ψ ≡ 1 on the neighborhood U of x0,

Consequently S ∈ EMN−1p!(Ω). Which proves

GM,∞
MN−1p!(Ω) ∩ D′

MN (Ω) ⊂ EMN−1p!(Ω).

We have EMN−1p!(Ω) ⊂ EMN (Ω) ⊂ D′
MN (Ω), EMN−1p!(Ω) ⊂ GM,∞

MN−1p!(Ω),

then EMN−1p!(Ω) ⊂ GM,∞
MN−1p!(Ω) ∩ D′

MN (Ω).
Consequently we have

GM,∞
MN−1p!(Ω) ∩ D′

MN (Ω) = EMN−1p!(Ω).

6. Generalized Roumieu wave front

The aim of this section is to introduce the generalized Roumieu wave front
of generalized Roumieu ultradistribution and to give its main properties.
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Definition 6.1. We define
∑M,N

g (f) ⊂ Rn\{0}, f ∈ GM
c (Ω), as the comple-

ment of the set of points having a conic neighborhood Γ such that ∃k1 > 0,
∃k2 > 0, ∃c > 0 , ∃ε0 ∈ I, ∀ξ ∈ Γ, ∀ξ ∈ Γ, ∀ε ≤ ε0,

|F(fε)(ξ)| ≤ c exp(M(
k1
ε
)−N(k2 |ξ|))

The following essential properties of
∑M,N

g (f) are sufficient to define later
the generalized Roumieu wave front of generalized Roumieu ultradistribution

Proposition 6.2. For every f ∈ GM
c (Ω) we have

1. The Set
∑M,N

g (f) is closed cone.

2.
∑M,N

g (f) = ∅ ⇐⇒ f ∈ GM,N,∞.

3.
∑M,N

g (ψf) ⊂
∑M,N

g (f), ∀ψ ∈ EN (Ω).

Proof. One can easily, from Definition (6.1) and Proposition (5.6), prove the
assertion 1 and 2.
Let suppose that ξ0 ̸∈

∑M,N
g (f), then ∃Γ a conic neighborhood of ξ0, ∃k1 > 0,

∃k2 > 0, ∃c1 > 0, ∃ε1 > 0, ∀ξ ∈ Γ, ∀ε ∈ ε1,

|F(fε)(ξ)| ≤ c. exp(M(
k1
ε
)−N(k2 |ξ|))

Let χ ∈ DN (Ω), χ ≡ 1 on neighborhood of supp(f), so χψ ∈ DN (Ω),
∀ψ ∈ EN (Ω) hence from [11] ∃k3 > 0, ∃c2 > 0, ∀ξ ∈ Rn,

|F(χψ)(ξ)| ≤ c. exp(−N(k3 |ξ|))

Let Λ be a conic neighborhood of ξ0 such that Λ̄ ⊂ Γ we have for a fixed
ξ ∈ Λ,

F(ψfε)(ξ)

= F(χψfε)(ξ)

=

∫
A

F(fε)(η).F(χψ)(η − ξ)dη +

∫
B

F(fε)(η).F(χψ)(η − ξ)dη,

where A = {η : |ξ − η| ≤ δ(|ξ|+ |η|)} and B = {η : |ξ − η| > δ(|ξ|+ |η|)}

Take δ sufficient small such that
|ξ|
2
< |η| < 2 |ξ| , ∀η ∈ A, then ∃c > 0,

∀ε ≤ ε1,∣∣∣∣∫
A

F(fε)(η)F(χψ)(η − ξ)dη

∣∣∣∣
≤ c1.c2.exp(M(

k1
ε
)−N(k2

|ξ|
2
))×

∫
A

exp(−N(k3 |η − ξ|))dη
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Then ∃c > 0, ∃k′2 > 0

(6.1)

∣∣∣∣∫
A

F(fε)(η)F(χψ)(η − ξ)dη

∣∣∣∣ ≤ c exp(M(
k1
ε
)−N(k′2 |ξ|))

As GM
c (Ω), from Remark (5.7), ∃c2 > 0, ∃µ1 > 0, ∃ε2 > 0, ∀µ2 > 0,

∀ξ ∈ Rn, ∀ε ≤ ε2, such that

|F(fε)(ξ)| ≤ c exp(M(
µ1

ε
) +N(µ2 |ξ|))

Hence, for ε ≤ min(ε1, ε2), we have∣∣∣∣∫
B

F(fε)(η).F(χψ)(η − ξ)dη

∣∣∣∣
≤ c2.c3. exp(M(

µ1

ε
))

∣∣∣∣∫
B

exp(N(µ2 |η|)−N(k3 |η − ξ|))dη
∣∣∣∣

≤ c. exp(M(
µ1

ε
))

∣∣∣∣∫
B

exp(N(µ2 |η|)−N(k3δ(|ξ|+ |η|)dη
∣∣∣∣

Then taking µ2 < k3δ, we obtain

(6.2)

∣∣∣∣∫
B

F(fε)(η).F(χψ)(η − ξ)dη

∣∣∣∣ ≤ c exp(M(
µ1

ε
)−N(k3δ |ξ|))

Consequently, (6.1) and (5.6) give ξ0 ̸∈
∑M,N

g (ψf).

Definition 6.3. Let f ∈ GM (Ω) and x0 ∈ Ω, the cone of N−singular directions

of f at x0, denoted
∑M,N

g,x0
(f), is

ΣM,N
g,x0

(f) =
∩

{ΣM,N
g (φf) : φ ∈ DM (Ω) and φ ≡ 1 on a neighborood of x0}

Lemma 6.4. Let f ∈ GM (Ω), then

ΣM,N
g,x0

(f) = ∅ ⇔ x0 ̸∈ N − singsuppg(f)

Proof. Let x0 ̸∈ N − singsuppg(f), i.e. ∃U ⊂ Ω an open neighborhood of x0
such that f ∈ GM,∞

N (U), let ϕ ∈ DM (U) such that ϕ ≡ 1 on a neighborhood

of x0, then ϕf ∈ GM,∞
N (Ω). Hence, from Proposition (6.2),

∑M,N
g (ϕf) = ∅, i.e.∑M,N

g,x0
(f) = ∅.

Suppose now
∑M,N

g,x0
(f) = ∅, ∀ξ ∈ Rn\{0}, ∃Vξ ∈ V(x0), ∃wξ ∈ ξ conical

neighborhood. ∃k1 > 0, ∃k2 > 0, ∃c > 0, ∃ε0 > 0, ∀ξ ∈ Wξ, ∀ε ≤ ε0,
∀ϕξ ∈ DM (Ω).

|F(ϕξfε)(ξ)| ≤ c. exp(M(
k1
ε
)−N(k2 |ξ|))
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Since the unit sphere |ξ| = 1 is a compact set, then one can find finite
points ξj , j = 1, ..., n in Rn, Wj ∈ ξ| and ϕj ∈ DM (Ω), ϕj(x) = 1 in Vj , k1 > 0,
∃k2 > 0, ∃c > 0, ε0 > 0, ∀ε ≤ ε0

|F(ϕjfε)(ξ)| ≤ c. exp(M(
k1
ε
)−N(k2 |ξ|)), ξ ∈Wj

Taking V =
∩
j

Vj and W =
∪
j

Wj , φ = ϕ1...ϕn, we have φ ∈ DM (Ω) and

φ(x) = 1 on V .

|F(φfε)(ξ)| ≤ c. exp(M(
k1
ε
)−N(k2 |ξ|)), ξ ∈W

Consequently, (φfε) ̸∈ GN,∞
M,c , where x0 ∈ N − singsuppg(f)

Definition 6.5. A point (x0, ξ0) ̸∈WFM,N
g (f) ⊂ Ω×Rn\{0} if ξ0 ̸∈

∑M,N
g,x0

(f),

i.e. there exists ϕ ∈ DM (Ω), ϕ(x) = 1 neighborhood of x0, and conic neighbor-
hood Σ of ξ0, ∃k1 > 0, ∃k2 > 0, ∃c > 0, ∃ε0 > 0 such that ∀ξ ∈ Γ, ∀ε ≤ ε0,

|F(ϕfε)(ξ)| ≤ c exp(M(
k1
ε
)−N(k2 |ξ|))

The main proprieties of the generalized Roumieu wave front WFM,N
g are

subsumed in the following proposition.

Proposition 6.6. Let f ∈ GM (Ω), then

(1) The projection of WFM,N
g (f) on Ω is N − sinsuppg(f).

(2) If f ∈ GM
c (Ω), The projection of WFM,N

g (f) on Rn\{0} is
∑M,N

g (f).

(3) ∀α ∈ Zn
+, WFM,N

g (∂αf) ⊂WFM,N
g (f).

(4) ∀g ∈ GM,∞
N (Ω), WFM,N

g (gf) ⊂WFM,N
g (f).

Proof. (1) and (2) hold from the definition, Proposition (6.2) and Lemma (6.4).
(3) Let (x0, ξ0) ̸∈WFM,N

g (f), then ∃ϕ ∈ DM (Ω), ϕ ≡ 1 on a neighborhood

Ū of x0, there exists a conic neighborhood Γ of ξ0, ∃k1 > 0, ∃k2 > 0, ∃c1 > 0,
∃ε0 ∈]0, 1], such that ∀ξ ∈ Γ, ε ≤ ε0,

(6.3) |F(ϕfε)(ξ)| ≤ c1exp(M(
k1
ε
)−N(k2 |ξ|))

We have for ψ ∈ DM (U) such that ψ(x0) = 1.

|F(ψ∂fε)(ξ)| = |F(∂(ψfε))(ξ)−F(∂ψ)fε(ξ)|
≤ |ξ| |F(ψϕfε)(ξ)|+ |F((∂ψ)ϕfε)(ξ)|

As WFM,N
g (ψf) ⊂ WFM,N

g (f), (6.3) holds for both |F(ψϕfε)(ξ)| and
|F((∂ψ)ϕfε)(ξ)|.
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So
|ξ| |F(ψϕfε)(ξ)| ≤ |ξ| exp(M(k1

ε )−N(k2 |ξ|))
≤ c′ exp(M(k1

ε )−N(k3 |ξ|))

With c′ > 0, k3 > 0, such that |ξ| ≤ c′ exp(M(k2 |ξ|)−M(k3 |ξ|)). This proves
(x0, ξ0) ̸∈WFM,N

g (∂f).

(4) Let (x0, ξ0) ̸∈ WFM,N
g (f) then ∃ϕ ∈ DM (Ω), ϕ ≡ 1 on a neighborhood

of x0, ξ0 ̸∈
∑M,N

g (ϕf) by Proposition (6.2), for g ∈ GN,∞
M (Ω), we have ξ0 ̸∈∑M,N

g (gϕf), which proves (x0, ξ0) ̸∈WFM,N
g (gf).

Corollary 6.7. Let P (x,D) =
∑

|α|≤m

aα(x)D
α be a partial differential oper-

ator with GM,∞
N (Ω) coefficient, then WFM,N

g (P (x,D)f) ⊂ WFM,N
g (f), ∀f ∈

GM (Ω).

Lemma 6.8. Let φ ∈ DM (B(0.2)), 0 ≤ φ ≤ 1, and φ ≡ 1 on B(0, 1) and let
ϕ ∈ SM , then ∃c > 0, ∃v > 0, ∃ε0 > 0, ∀ε ∈]0, ε0], ∀ξ ∈ Rn,∣∣∣θ̂ε(ξ)∣∣∣ ≤ cε−ne−M(vε|ξ|),

where θε(x) = ( 1ε )
n.ϕ(xε ).φ(x |ε|), and θ̂ denoted the Fourier transform of θ.

Proof. We have, for ε sufficiently small, ε ≤ |ln ε|−n ≤ 1
Let ξ ∈ Rn, then

θ̂ε(ξ) =
1

εn
∫
ϕ̂(ε(ξ − η)). 1

|ln ε|n .φ̂(
η

|ln ε| )dη

= |ln ε|−n
[∫

A
ϕ̂(ε(ξ − η))φ̂( η

|ln ε| )dη +
∫
B
ϕ̂(ε(ξ − η))φ̂( η

|ln ε| )dη
]
,

where A = {η : |ξ − η| ≤ δ(|ξ|+ |η|)} and B = {η : |ξ − η| > δ(|ξ|+ |η|)}
We choose δ sufficiently small such that |ξ|

2 < |η| < 2 |ξ|, ∀η ∈ A.
Since φ ∈ DM (Ω), ϕ ∈ SM then ∃k1, k2 > 0, ∃c1, c2 > 0, ∀ξ ∈ ‘R,

|φ̂(ξ)| ≤ c1 exp(−M(k1 |ξ|))

and ∣∣∣ϕ̂(ξ)∣∣∣ ≤ c2 exp(−M(k2 |ξ|)),

so,

I1 = |ln ε|−n
∣∣∣∫A ϕ̂(ε(ξ − η))φ̂( η

|ln ε| )dη
∣∣∣

≤ c1c2 exp(−M(k2

2
|ξ|

|ln ε| ))

Let z = ε(η − ξ), then

I1 ≤ cε−n exp(−M(k2

2 |ln ε|−1 |ξ|))
∫
exp(−M(k1 |z|))dz

≤ cε−n exp(−M(vε |ξ|))
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For I2 we have

I2 = |ln ε|−1
∣∣∣∫B ϕ̂(ε(ξ − η))φ̂( η

|ln ε| )dη
∣∣∣

≤ c1c2
∫
B
exp(−M(k1ε |ξ − η|)−M(k2

|η|
|ln ε| ))dη

≤ c exp(−M(k1δε |ξ|)).
∫
B
exp(−M(k1δε |η| −M(k2δε |η|))dη

≤ c exp(−M(k1δε |ξ|)).
∫
B
exp(−M(k′2ε |η|))dη

≤ cε−n exp(−M(vε |ξ|))

Consequently, ∃c > 0, ∃v > 0, ∃ε0 > 0, ∀ε ≤ ε0 such that∣∣∣θ̂ε(ξ)∣∣∣ ≤ cε−ne−M(vε|ξ|)

We have the following important result.

Theorem 6.9. Let T ∈ D′
MN (Ω) ∩ GM (Ω); then

WFM,MN−1

g (T ) =WFMN−1p!(T ).

Proof. Let S ∈ E′
MN (Ω) ⊂ E′

M
N p!

(Ω) and ψ ∈ DM
N p!(Ω), we have

|F(ψ(S ∗ ϕε))(ξ)−F(ψS)(ξ)| =
∣∣⟨S(x), (ψ(x)e−iξx) ∗ ϕ̌ε(x)− (ψ(x)e−ixξ)

⟩∣∣ .
Then there exists a compact subset L of Ω such that ∀h > 0, ∃c > 0,

|F(ψ(S ∗ ϕε))(ξ)−F(ψS)(ξ)|

≤ c sup
α∈Zn

+;x∈L

h|α|

M|α|
N|α|

α!

∣∣∂αx (ψ(x)e−iξx ∗ ϕ̌ε(x)− ψ(x)e−iξx)
∣∣

We have e−iξψ ∈ DM
N p!(Ω), then, ∃c2, ∀k0 > 0, ∃η > 0, ∀ε ≤ η,

sup
α∈Zn

+;x∈L

c
|α|
2

M|α|
N|α|

α!

∣∣∂αx (ψ(x)e−iξx ∗ ϕ̌ε(x)− ψ(x)e−iξx)
∣∣ ≤ c2e

−M(
k0
ε );

So there exist c′ > 0, ∀k0 > 0, ∃η > 0, ∀ε ≤ η, such that

(6.4) |F(ψS)(ξ)−F(ψ(S ∗ ϕε)(ξ))| ≤ c′e−M(
k0
ε )

Let T ∈ D′
MN (Ω) ∩ GM (Ω) and (x0, y0) ̸∈ WF

M,MN p!
g (T ), Then there exist

χ ∈ DM
N p!(Ω), χ(x) = 1 in a neighborhood of x0, and a conic neighborhood Γ

of ξ0, ∃k1 > 0, ∃k2 > 0, ∃c1 > 0, ∃ε0 ∈]0, 1[, such that ∀ξ ∈ Γ, ∀ε ≤ ε0,

(6.5) |F(χ(T ∗ θε))(ξ)| ≤ c1e
M(

k1
ε )−M

N p!(k2|ξ|)
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Let ψ ∈ DM
N p!(Ω) equal to 1 in neighborhood of x0 such that for sufficiently

small ε we have χ ≡ 1 on suppψ + B(0, 2
|ln ε| ), and let φ ∈ DM

N p!(B(0, 2));

0 ≤ φ ≤ 1 and φ ≡ 1 on B(0, 1), then there exist ε0 ≤ 1, such that ∀ε < ε0,

ψ(T ∗ θε)(x) = ψ(χT ∗ θε)(x).

where θε(x) =
1
εnφ(x |ln ε|)ϕ(

x
ε ). As χT ∈ E′

MN (Ω), then

ψ(T ∗ θε)(x) = ψ(χT ∗ θε)(x) = ψ(χT ∗ ϕε)(x)

Let ε ≤ min(η, ε0) and ξ ∈ Γ, we have

|F(ψT )(ξ)| ≤ |F(ψT )(ξ)−F(ψ(T ∗ θε))(ξ)|+ |F(χ(T ∗ θε))(ξ)|
≤ |F(ψχT )(ξ)−F(ψ(χT ∗ ϕε))(ξ)|+ |F(χ(T ∗ θε))(ξ)|

Then by (6.4) and (6.5), we obtain

|F(ψT )(ξ)| ≤ c′e−M(
k0
ε ) + c1e

M(
k1
ε )−MN−1p!(k2|ξ|)

Take c = max(c1, c
′), ε =

k1p!
1
p

(k2− r) |ξ|N
1
p
p

, r ∈]0, k2[ and k0 =
k1r

k2 − r
, then

∃δ > 0, ∃c > 0 such that

|F(χT )(ξ)| ≤ c′e−
M
N p!(δ|ξ|),

Which proves that (x0, ξ0) ̸∈WF
M
N p!(T ). So WF

M
N p!(T ) ⊂WF

M,MN p!
g (T ).

Suppose that (x0, ξ0) ̸∈WF
M
N p!(T ), then there exist χ ∈ DM

N p!(Ω), χ(x) =
1 in a neighborhood of x0, a conical neighborhood Γ of ξ0, ∃λ > 0, c1 > 0, such
that ∀ξ ∈ Γ

(6.6) |F(χT )(ξ)| ≤ c1e
−M

N p!(λ|ξ|).

Let ψ ∈ DM
N p!(Ω) equals 1 in neighborhood of x0 such that for sufficiently

small ε we have χ ≡ 1 on suppψ + B(0, 2
|ln ε| ), then there exist ε0 < 1, such

that ∀ε < ε0,
ψ(T ∗ θε)(x) = ψ(χT ∗ θε)(x).

We have

F(ψ(T ∗ θε))(ξ) =
∫

F(ψ)(ξ − η).F(χT )(η).F(θε)(η)dη.

Let Λ be a conic neighborhood of ξ0 such that, Λ̄ ⊂ Γ. For a fixed ξ ∈ Λ,
we have

F(ψ(χT ∗ θε))(ξ)

=

∫
A

F(ψ)(ξ − η).F(χT )(η).F(θε)(η)dη

+

∫
B

F(ψ)(ξ − η).F(χT )(η).F(θε)(η)dη,
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where A = {η : |ξ − η| ≤ δ(|ξ|+ |η|)} and B = {η : |ξ − η| ≥ δ(|ξ|+ |η|)}.
We choose δ sufficiently small such that A ⊂ Γ and |ξ|

2 < |η| < 2 |ξ|. Since
ψ ∈ DM (Ω), then ∃µ > 0, ∃c2 > 0, ∀ξ ∈ Rn,

|F(ψ)(ξ)| ≤ c2 exp(−
M

N
p!(µ |ξ|)),

Then ∃c > 0, ∃ε0 ∈]0, 1[, ∀ε ≤ ε0,∣∣∣∣∫
A

F(ψ)(ξ − η).F(χT )(η).F(θε)(η)dη

∣∣∣∣
≤ c exp(−M

N
p!(
λ

2
|ξ|))×

∣∣∣∣∫
A

exp(−M
N
p!(µ |η − ξ|).F(θε)(η)dη

∣∣∣∣
From preceding Lemma, ∃c3 > 0, ∃v > 0, ∃ε0 > 0, such that

|F(θε)(ξ)| ≤ c3ε
−ne−N(vε|ξ|) ∀ξ ∈ Rn

then ∃c > 0, such that∣∣∣∣∫
A

F(ψ)(ξ − η).F(χT )(η).F(θε)(η)dη

∣∣∣∣
≤ cε−n exp(−M

N
p!(λ |ξ|))×∣∣∣∣∫

A

exp(−M
N
p!(µ |η − ξ|). exp(−N(vε |η|))dη

∣∣∣∣
We have ∃k > 0, ∀ε ∈]0, ε0[,

(6.7) ε−m exp(−N(vε |η|)) ≤ exp(M(
k

ε
)),

So

(6.8)

∣∣∣∣∫
A

F(ψ)(ξ − η).F(χT )(η).F(θε)(η)dη

∣∣∣∣ ≤ c exp(M(
k

ε
)− M

N
p!(
λ

2
|ξ|))

As ξT ∈ E′
MN (Ω) ⊂ E′

M
N p!

(Ω), then ∀l > 0, ∃c > 0, ∀ξ ∈ Rn,

|F(χT )(ξ)| ≤ c exp(
M

N
p!(l |ξ|))

Hence, we have∣∣∣∣∫
B

F(ψ)(ξ − η)F(χT )(η)F(θε)(η)dη

∣∣∣∣
≤ c

∫
B

exp(
M

N
p!(l |η|)− M

N
p!(µ |ξ − η|)). |F(θε)| dη

≤ c′ε−n. exp(−M
N
p!(µδ |ξ|))∫

B

exp(
M

N
p!((l − µδ) |η|)−N(vε |η|))
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Then, taking l − µδ = −a < 0 and using (6.7), we obtain for a constant
c > 0∣∣∣∣∫

B

F(ψ)(ξ − η).F(χT )(η).F(θε)(η)dη

∣∣∣∣ ≤ c exp(M(
k1
ε
)− M

N
p!(µδ |ξ|)),

which gives that (x0, ξ0) ̸∈WF
M,MN p!
g (T ), so WF

M,MN p!
g (T ) ⊂WF

M
N p!(T ).

7. Generalized Hörmander’s theorem

To extend the generalized Hörmander’s result on the wave front set of the
product, define WFM,N

g (f) +WFM,N
g (f), where f, g ∈ GM (Ω), as the set

{(x, ξ + η) ∈WFM,N
g (f), (x, η) ∈WFM,N

g (g)}.

We recall the following fundamental lemma, see [7] for the proof.

Lemma 7.1. Let Σ1, Σ2 be closed cones in Rn\{0}, such that 0 ̸∈ Σ1 + Σ2,
then

i) Σ1 +Σ2
Rn\{0}

= (Σ1 +Σ2) ∪ Σ1 ∪ Σ2.

ii) For any open conic neighborhood Γ of Σ1 + Σ2 in Rn\{0}, one can find
open conic neighborhoods of Γ1, Γ2 in Rn\{0} of respectively Σ1, Σ2 such
that

Γ1 + Γ2 ⊂ Γ

The principal result of this section is the following theorem.

Theorem 7.2. Let f, g ∈ GM (Ω), such that ∀x ∈ Ω,

(7.1) (x, 0) ̸∈WFM,N
g (f) +WFM,N

g (g).

Then the following holds:

WFM,N
g (f.g) ⊆ (WFM,N

g (f) +WFM,N
g (g)) ∪WFM,N

g (f) ∪WFM,N
g (g).

Proof. Let (x0, ξ0) ̸∈ (WFM,N
g (f) +WFM,N

g (g)) ∪WFM,N
g (f) ∪WFM,N

g (g),

then ∃ϕ ∈ DM (Ω); ϕ(x0) = 1, ξ0 ̸∈ (ΣM,N
g (ϕf) + ΣM,N

g (ϕg)) ∪ ΣM,N
g (ϕf) ∪

ΣM,N
g (ϕg) From (7.1) we have 0 ̸∈ ΣM,N

g (ϕf) + ΣM,N
g (ϕg) then by Lemma 7.1

i), we have

ξ0 ̸∈ (ΣM,N
g (ϕf)+ΣM,N

g (ϕg)) ∪ ΣM,N
g (ϕf) ∪ ΣM,N

g (ϕg)

= ΣM,N
g (ϕf) + ΣM,N

g (ϕg)
Rn\{0}

Let Γ0 be an open conic neighborhood of ΣM,N
g (ϕf)+ΣM,N

g (ϕg) in Rn\{0}
such that ξ0 ̸∈ Γ0 then, from Lemma 7.1 ii), there exist open cones Γ1 and Γ2

in Rn\{0} such that

ΣM,N
g (ϕf) ⊂ Γ1; ΣM,N

g (ϕg) ⊂ Γ2
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and
Γ1 + Γ2 ⊂ Γ0

Define Γ = Rn\Γ0, so

(7.2) Γ ∩ Γ2 = ∅ and (Γ− Γ2) ∩ Γ1 = ∅

Let ξ ∈ Γ and ε ∈ I.

F(ϕfεϕgε)(ξ) = (F(ϕfε) ∗ F(ϕgε))(ξ)
=

∫
Γ2

F(ϕfε)(ξ − η).F(ϕgε)(η)dη∫
Γc
2
F(ϕfε)(ξ − η).F(ϕgε)(η)dη = I1(ξ) + I2(ξ)

By Proposition 5.6, ∃c1 > 0, ∃k1, k2 > 0, ∃ε1 > 0, such that ∀ε ≤ ε1,
∀η ∈ Γ2,

|F(ϕfε)(ξ − η)| ≤ c1 exp(M(
k1
ε
)−N(k2 |ξ − η|)),

and by Remark 5.7, ∃c2 > 0, ∃k3 > 0, ∀k4 > 0, ∃ε2 > 0, ∀η ∈ Rn, ∀ε ≤ ε2,

|F(ϕgε)(η)| ≤ c2 exp(M(
k3
ε
) +N(k4 |η|))

Let γ > 0 be sufficiently small such that

|ξ − η| ≥ γ(|ξ|+ |η|), ∀η ∈ Γ2.

Hence for ε ≤ min(ε1, ε2),

|I1(ξ)| ≤ c1.c2 exp(M(
k1 + k3

ε
)−N(k2γ |ξ|))

∫
exp(−N(k2γ |η|)+N(k4 |η|))dη

Take k4 > k2γ, then

|I1(ξ)| ≤ c′ exp(M(
k′1
ε
)−N(k′2 |ξ|)).

Let r > 0,

I2(ξ) =

∫
Γc
2∩{|η|≤r|ξ|}

F(ϕfε)(ξ − η).F(ϕgε)(η)dη

+

∫
Γc
2∩{|η|≥r|ξ|}

F(ϕfε)(ξ − η).F(ϕgε)(η)dη

= I21(ξ) + I22(ξ).

Choose r sufficiently small so that {|η| ≤ r |ξ|} ⇒ ξ − η ̸∈ Γ1. Then
|ξ − η| ≥ (1− r) |ξ| ≥ (1− 2r) |ξ|+ |η| ,

Consequently, ∃c3 > 0, ∃λ1, λ2, λ3 > 0, ∃ε3 > 0 such that ∀ε ≤ ε1,

|I21(ξ)| ≤ c3 exp(M(λ1

ε ))
∫
exp(−N(λ2 |ξ − η|)−N(λ3 |η|))dη

≤ c3 exp(M(λ1

ε )−N(λ′2 |ξ|))
∫
exp(−N(λ′3 |η|))

≤ c′3 exp(M(λ1

ε )−N(λ′2 |ξ|))
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If |η| ≥ r |ξ|, we have |η| ≥ |η|+ r |ξ|
2

, and then ∃c4 > 0, ∃µ1, µ3 > 0,

∀µ2 > 0, ∃ε4 > 0 such that ∀ε ≤ ε4,

|I22(ξ)|

≤ c4 exp(M(
µ1

ε
))

∫
exp(N(µ2 |ξ − η|)−N(µ3 |η|))dη

≤ c4 exp(M(
µ1

ε
))

∫
exp(N(µ2 |ξ − η|)−N(µ′

3 |η|)−N(µ′
3 |ξ|))dη

If take µ2 <
µ′
3

2 (1 + 1
r ), we obtain

|I22| ≤ c′4 exp(M(
k′3
ε
)−N(µ′

3 |ξ|)),

which finishes the proof.
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exponent weights. Realizations of Colombeau type algebras. Dissert. Math. 447
(56) (2007), 141.
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