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Introduction

The theory of generalized functions as a positive answer to the question of product distribu-
tions [37|, caused a very important area of research [6, 8, 24, 26] and [30], this theory has been
developed and applied in linear and nonlinear partial differential equations with non-smooth

coefficients and distributions data by several authors [23], [26] and [30].

Ultradistributions are useful in applications in quantum field theory, partial differential equa-
tions, convolution equations, harmonic analysis, pseudo-differential theory, time-frequency anal-
ysis, and other areas of analysis, see [28] and [35], so it is necessary to develop a generalized

functions type theory in connection with ultradistributions.

Generalized Gevrey ultradistributions of Colombeau type have been defined, but as a side-
theme, in the paper [23]. The first paper aiming to construct differential algebras containing
ultradistributions is [31]. Let us also mention the interesting approach of the paper [14] to alge-
bras of generalized ultradistributions. However, a Colombeau type theory of generalized Gevrey
ultradistributions has been addressed in [3], where was developed the core of a full theory and
also introduced a new way of defining differential algebras of generalized Gevrey ultradistribu-
tions that makes such a complete theory possible. But, it was not clear in that paper why
different Gevrey exponents occurred in the embedding of the spaces of Gevrey ultradistributions.
In [2] was given a general construction of algebras of generalized Gevrey ultradistributions and
then the microlocal analysis suitable for them. It also highlights the explicit contribution of
the mollification in the embedding of ultradistributions into algebras of generalized functions

of Colombeau type. In [1] was introduced a new algebras of generalized functions containing



Roumieu ultradistributions.

The first chapter is a brief and minimal introduction to Colombeau algebra of generalized
function, in particularly the microlocal analysis and as an application we establish an extension
of the well-known Hérmander’s theorem.

However in the second chapter we introduce new algebras of generalized function contain-
ing Gevrey ultradistributions and then develop a Gevrey microlocal analysis suitable for these
algebra.

In the last chapter we give a contribution of generalized Roumieu ultradistribution theory

where we develop the microlocal analysis suitable for this algebra.



Chapter 1

Colombeau generalized functions

1.1 Notation

We begin by presenting some basic notations. Let z = (x1,...,x,) be an element of R" the
n—dimensional Euclidean space. The scalar product z1&, + ... + x,&,, between x and £ is denoted
by (x,€) or else ¢ for short; |z| = /23 + ... + 22 is the Euclidean norm in R™. Let Q be an
open subset of R", K &€ ) means that K is relatively compact in . Let a = (v, ..., ;) with
a; € Z for j =1,...,n a multi-index, his length is || = oy + ... + @, Moreover a! = oq!...a,,!,

and if § < «

o o QU al

5 ﬂl Bn

We write 0% = (0/0z1)*...(0/0x,)*"; using the notation D,, = —id/0x; where i is the imaginary

Qn

unit, we write also: D% = Dg!...Dg». Similarly for € R" we set: 2% = 7" ...25".



6 Colombeau generalized functions

1.2 The algebra G(1)

Following [24], the impossibility result of L.Schwartz [37] on the product of distributions can
be interpreted as, the space of distributions D’(€2) cannot be embedded into an associative

commutative algebra (A(€2)), +, o) satisfying:
(i) D'(R) is linearly embedded into A(€2) and f(z) = 1 is the unity in A(Q).

(77) There exist derivation operators 0; : A(2) — A(€2), that are linear and satisfy the Leibniz

rule.
(ii1) 0;/pr () is the usual partial derivative.
(iv) o/c)xc(q) coincides with the pointwise product of functions.

For example, let I =]0,1], the set (C*(Q))! with the following operations, (u.)., (v:). €

(C=(Q), A€ C,acZ
L (ue)e + (ve)e = (e + ve)e
2. (ue)e-(ve)e = (ueve)e.
3. Aue)e = (M)
1. 9°(u). = (9°u.)

is an associative, commutative and differential algebra, with f(x) = 1 is unity element. But
we have not (iv). However J-F. Colombeau, in [8], succeeded to construct a commutative and

associative algebra (G(Q), +,.) satisfying (i) — (i4i), but instead of (iv) we have:

(iv)" The restriction o/cee(q)xceo(n) coincide with smooth functions multiplication.
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Definition 1.2.1 (i) The space of moderate elements, denoted &,(2), is the space of

(u.)e € (C=(Q)), satisfying for every compact K of Q, Va € 7%, Im >0,3¢ >0

deg € 1,Ve < g, sup|0%u.(z)| <ce™™ (1.1)
zeK

(ii) The space of null elements, denoted N'(Q), is the space of (uz). € (C(Q))’, satisfying for

every compact K of Q, Vo € Z1, Vg > 0,3c > 0,

deg € I,Ve < g, sup|0%u.(z)| < ce? (1.2)
reK

Remark 1.2.2 The estimates (1.1) and (1.2) mean respectively that sup|0®u.| = O(e™™) and
zeK

sup |0%u.| = O(e?) as € — 0.
zeK

Proposition 1.2.3 i) The space &,(2) is subalgebra of C=(Q)! stable by derivation.

it) The space N'(Q) is an ideal of &,,(£2).
Proof.

i) Let (ug)e, (v2)e € (C=(Q))', A\, Xg € C,

VK € Q, Va € Z we have

dmy = my(a) > 0,3c; = (@) > 0,3e; = e1(a) € I, Ve < ey, sup |0%u.(x)| < c1e™
rzeK

dmg = mo(a) > 0,3y = co(a) > 0,3ey = e9(ar) € I, Ve < g9, sup |0%u.(x)| < coe™
rzeK
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Then
sup |0%(Aus(z) + Agve(z))| < (M| [0%uc(z)] + [A] [0%0: ()]

zeK

< Mfae™ + (A ee™

Taken ¢ = Max(cl |A1], c2|A2|), m = my + my for £ = min(ey, e2) we obtain

sup |0%(Aruc(x) + Agve ()| < ™™
TeK

Consequently A;(ue): + A2(v:): € &,(2). Furthermore, we have

10%(uzv.) ()] < ZC’B |0%u.(2)] . |0 Pu. ()]

B<a

Then

sup |07 (u0)(2)] <Y Clsup [0%ue ()] sup |07, ()
reK B<a zeK zeK

< Z Cg.C5.€_m5.Ca_5.€_ma_5
B

Taken m = ngzn(mﬁ,ma 5), C = > CPegcy_p, then (uove)e € E,(Q).
B<a

Now, let K € Q and a € Z1, € Z so |0%(9°u.)(z)| = |0°TPu.(z)|, and by definition

3ma+5 > 0, ECOH_Q > 07 35&—1—6 S I, Ve < Ea+p

|6°‘ (0°u.)(x) | < Cappe Mo

We take ¢ = co43, M = mq4p then ‘8“(85u5)(x)| < ce™™. Hence 9°u. € &,(9).



1.2 The algebra G(Q2) 9

i) Let (u.)e € En(Q), (ve): € N(Q), K € Q and o € Z7}, we have

0%(ueve) (2)] < ZCg |85u5(x)‘ ’aa—BUE<I>‘

BLa

By definition Va, € Z7,¥q > 0,3ca—p > 0,35 € I, Ve < g9,

sup ’80‘_61}5(@‘ < co—pe?
reK

So

sup |0%(uv:)(x)] < Z CPege™™ o pe?
TeEK B<a

Let m/ < min(mg,q), mg=q—m' and C = Y CPcs.co_z. We have
Bla B<a

sup |0%(ueve)(z)] < Cef
zeK

This shows that (u.v.). € N(Q).

Proposition 1.2.4 Let (u.). € &,(QY), we say that (u.). is negligible if and only if the following

condition is satisfied

VK € Q; VYm € N :sup |u.(z)| = O(E™) as e — 0.
zeEK

Definition 1.2.5 The simplified (or special) Colombeau algebra of generalized functions is de-
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fined as the quotient space

If u € G(Q2), we write u = [(u.):] and we say that u is the class of (u.)e..

Definition 1.2.6 Let u = [(uc):] € G(2) and Q' an open subset of Q. The restriction of u to

Y, denote by u/CY, is the element defined by [(u./Q).], i.e.

U/Q/ = (U/Q/)E +N(Q/)

So it’s clear that u/Q € G(€).

Definition 1.2.7 Let u € G(Q2) and ' an open subset of Q). We say that u is null on ', if

u/Y =0 in G(Y).

The following result shows that Q — G(Q) is a sheaf of differential algebras on R™.

Theorem 1.2.8 Let (2))xea be an open covering of Q, and let (uy)rea such that uy € G(2y),

A € A, then we have the following properties.

(1) If u,v € G(Q) and u/Qx =v/Qy, for all X € A, then uw =v on Q.

(it) If for all \,pp € A, up /SN Q, = u, /U NQ,, with A NQ, # 0, then there exists a unique

element u € G(Q) such that u/Q2y = uy for all X € A.

The property (i) of the last theorem motivate as the following definition.



1.3 Embedding of distributions 11

Definition 1.2.9 We call support of u € G(§2), denoted suppyu, the complement of the largest

open subset where u is null, 1.e.

suppgu = Q\ (U{Q" open subset of Q, u/Q = 0})

Definition 1.2.10 We denote by G.(2) the subspace of G(Q2) consisting of elements with compact

support.

1.3 Embedding of distributions

The main goal of this section is to give a complete analysis of the various techniques of embedding

D'(2) into Colombeau algebra G(£2).

Local structure of distribution

We first recall two classical results on the local structure of distributions.

Theorem 1.3.1 For all T € D'(Q) and all Q' open subset of R™ with O/ C Q, there eists
f € C°%R™) whose support is contained in arbitrary neighborhood of ', a € 77 such that

Tigr = 0°f.

Theorem 1.3.2 For all T € E'(QQ), there exists an integer r > 0, a finite family
(fa)o<jaj<r(a € Z) with each f, € C°(R™) having its support contained in the same arbitrary

neighborhood of the support of T, such that T = Y. 0%f,.

0<|r|<r
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Construction of mollifiers

Take p € S(R™) even such that:

/ p(z)de = 1, / 2™ p(x)dz = 0, ¥m € N"\{0}

And x € D(R") such that 0 < x <1, y =1 o0n B(0,1) and xy = 0 on R"\ B(0, 2).
Define

Ve elo, 1), Ve eR", p.() = o

)

1 =z

€
And

Ve €0,1], Vz eR", 0.(z) = p.(x)x(/Ine|x)

Lemma 1.3.3 We have the following properties:

* [(0) = (po)]. € N(Q).

o VkeN, [0.(x)dx =1+ o(e") fore — 0.

o Vk € N, Vm € N"\{0}, [2™0.(x)dx = o(c*) ase =0

In other words, we have ([ 0-(z)dx —1)_€ N(Q); and for all m € N"\{0} we have

([ 2m0(x)dz)_ e N(Q)

The space C*°(€2) is canonically embedded into G(€2) by the map

it C®(Q) — G(Q)

f = (fo): + N (Q)
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Where f. = f, Ve € I.

Construction of the embedding 4

Proposition 1.3.4 The map 1y defined by

in: E'(Q) — G(Q)

w = ((wxp)ia)e + N(Q)

s a linear and injective.

Let (2))xea be an open covering of € such that each Q) is compact subset of © and let
(1y)a C D() such that each ¢, = 1 in a neighborhood of Q. For any A € A, we define the

linear map 7y by

ir: D) — G()
T = (0T * p.) /) + N (),
ie. ix(T) =io(0,\T)/Q. The linear map i, /D’(§2y), from the proposition (1.3.4), is injective.
For any T' € D'(2), we check easily, that (ix(7")), is a coherent family of generalized functions,
le

iNT) /N =i, (T) /%N, YA pueA

If (x;)32, is a smooth partition of unity subordinate to the covering (£2\)xca we define the

linear injective map

ia: D(Q) — G(Q)

T = [T = (3 x; (05, T * p.))
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Which is independent of the chose of (€2x)xea, (X;)jen and ().

Proposition 1.3.5 We have

i) ia/ErQ) = lo

i) iajcoe(q) = i

The second item of the above proposition means that the space C*°(2) can be embedded into

G(92) by two ways, shown by following commutative diagram

C>*(Q) — D(Q)

Construction of embedding 7,

Proposition 1.3.6 The map

i,: DR — G(R)

T — (T x6.). + NR")

is an injective embedding. Moreover igcoorny = 1.

Proof. Let K be a compact set of €2, we know that

Yy e R" Tx0.(y) =(T,z— 0.(y — x))



1.3 Embedding of distributions 15

Fory € K and x € R", we have 0.(y —2) # 0 =y —x € B(0, ‘):>x€B(y,“nE|):>x€Q

for € small enough. Then the function z — 6.(y — x) belongs to D(2) and
(T, 0:(y — ) = (Ti. 0=(y — .))
Using (1.3.1), we have Tg = 0% f where f € Co(2). Then 0°(T % 0.) = f * 0°P0. and
Vy € K,0°(T % 0.)( /f y).0°P0.(x)dx
And we know that 6. € &,,(2). So Vo, 8 € Zy, 3maqps > 0
Ve € R",|0%0.(x)] < g Mets

We get

‘Gﬁ(T * Hs(y))’ < Ciug |£(€)] mes(Q).eMa+s

So sup |(T * 6.)(y)| < Ce™s. Consequently (T *6.). € £,(Q).

yeK

Let us prove that i, injective, i.e.
(T%0.). e N(R") =T =0
Taking ¢ € D(R™), we have

(Tx0.,p) = (T,p) then (T x0. — T inD’)



16 Colombeau generalized functions

And T % 6. — 0 uniformly on suppp since T % 0. € N(R"™). Then (T % 0., p) — 0 and (T, ¢) = 0.
We will prove the last assertion in the case of dimension one. Let f € C°°(R) and set:

A =i4(f) —i(f). One representative of A is given by

A, R — &,

y = (fx0:)(y) = [ fly (@)dx — f(y)

Let K a compact subset of R, and [ 0.(z)dx =1+ N, with (N;). € N(R), we get

According to Taylor’s formula we have

fly—=)— fly) = Z<_.—$)if<l / FOD(y —uz) (1 — ) du

7!
i=1

A (y) = i (;gl)if(i)(y) el 2ig (x)dx%—f_“f;‘ x)n fo FO) (y—uz) (1—u)"dub. (z)dz—N.. f(y).

Put P(n,y) =Y. S fO(y) [ 20, (x)dx

|Ine|

And R.(n,y) = [T5 &2 f fO) (y — ux)(1 — u)"dub.(z)dx — N..f(y).

@
Il
—_

According to Lemma (1.3.3)7 we have ([ 2'0.(x)dz). € N(R) and consequently
(P.(n,y)): € N(R).

Using the definition of 6., we have
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Setting v = x /e, we get

/0 Fr (y — euv) (1 — w)"dup(v).x(e [Ine|)dv

2 2 ]
ellnel’ gllneld”

For (¢,v) € [0,1] x [—ﬁ,y—% ﬁ] we have y — cuv € [y —

Then for y € K then y — cuv is in a compact set K'. It follows:

n

€

_2
Reny)l < Ssup [F0H0()] [T (o p(v)] du
n'ﬁEK' e|llne|
en o m
< Sosup [FO©] [ o™ [p(v)] du
n.geK/
< e (C >0)

The constant C' depend only on the integer n, the compact sets K and K’, p and f.

Finally, as (A.): € En(R) and supA.(y) = o(e") for all n > 0 and K € R, we conclude that
zeK

(Ae)e € N(R) O

For the same choice of p, we have 14 = ig

1.4 Generalized numbers and point values

Generalized numbers are defined by point values of a generalized function u = [(u.).] € G(Q2) at a
point x € Q. For a fixed = € ), if we take the sequence (u.(x)). a new object, called generalized

number, appears. Set

En(K) = {(2.): €K', Im € Zy, |2| = O(e™™),e — 0},
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And

N(EK) = {(z.). e K Vg € Zy,|2| = O(g%),e — 0},

where K design C or R.

Clearly the space &,,(K) is an subalgebra of K/ and NV(2) is an ideal of &,,(K).

Definition 1.4.1 The Colombeau algebra of generalized complex (resp.real) numbers, denoted

~ gm(C) ™ gm(R)
“= Ve ( rep = N(R))

Proposition 1.4.2 The field K is canonically embedded into the ring K by the following map

K — K

z = [z]=(2):+NK].

Remark 1.4.3 The algebra K is not a field, is just a ring.

Definition 1.4.4 Let € G(2) and xy € 2, the point value of u at xy, denoted f(xq), is the

generalized number represented by (u.(xg))e, where (u.) is a representative of u.

The generalized number u(xy) does not depend of the choice of representative (u.). of .

Example 1.4.5 We know that 26 = 0 in D'(R), but i(x)i(d) # 0 in G(R), however, every point

value of this generalized function is null.

The last example show that generalized functions are not determined by their point values. To

solve this problem, we introduce the notion of generalized points, see [34].
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Let 2 be an open set of R", on

QM - {(‘rs)s < QI’ N S Z+7 Ellr] > O,Vg S n, |I6| < €_m}7

We define an equivalence relation by

(x)e ~ (Ye)e ©Vm € Zy,3In > 0,Ve < 1, |x. — y| < &

Definition 1.4.6 We call the set of generalized points of 2, denoted (NZ, the quotient set defined

by Q= Q) ~.

Definition 1.4.7 The set (), defined by

Q. = {Z € Q,3(x.). a representative of T,3K a compact of 0,3n > 0,2, € K if 0 < & < n}

is called the set of generalized compactly supported points.

Proposition 1.4.8 Letu € G(Q) and T € Q., then the generalized point value of u at ¥ = [(z2)e],

is w(@) = [uc(x.))e], which is well-defined element of C.
The following theorem gives a characterization of generalized function by their point values.

Theorem 1.4.9 Let ) be an open set of R™, then

uinnQ(Q)@u(E):Oin@,foEQNC.

Proof. See [34] O
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1.5 Notion of association

In this section we are going to introduce an association relationship by which we can identify in

G(€2) the same elements of D'(12).

Definition 1.5.1 1) An element u of G(Q) is called associated with O (denoted by u ~ 0) if

lim [ u.(z)p(z)dx =0, Vo € D(2)

e—0 Q

The definition is independent of the chosen representative (u.). of .

2) Let u,v € G(£2) are associated with each other if and only if u —v ~ 0

Let us take a closer look at the interplay between distributions and equivalence classes in G(€2)

with respect to association

Definition 1.5.2 Let u € G(Q2) and w € D'(Q) and suppose that u =~ i(w) then u is said to
admit w as associated distribution and w is also called distributional shadow of u. In this case

we simply write u ~ w.
The distributional shadow of u is uniquely determined (if it exists)

Proposition 1.5.3 Ifw € D'(Q2) and i(w) ~ 0 then w = 0.

Example 1.5.4 (i) We have 26 = 0 in D'(R), but x6(x) # 0 in G(R) and that all points values of
xd(z) vanish. To round off this picture, we show that: xd(x)(= xi(d)) = 0. Indeed, if ¢ € D(R)

then:

/ £p.(@)p(e)de = ¢ / up()el(ey)dy — 0

e—0
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(ii) There are elements of G(Q) that do not have any shadow. Taking for instance §* € G(R)

we have

[ et =2 [ P@reendy =, 0

€ e—0

Lemma 1.5.5 (i) If f € C*(Q) and w € D'(2) then

i(f)i(w) = i(fw).

(13) If u,v € G(Q) and u ~ v then

¢ 0%u =~ 0%, Vo € Nj.

¢ i(fHu=i(f), Ve Cx(Q).

Proof. For any net of molifiers (p,). and any ¢ € D(R) we can write

1 1
p(=*p.),0 ) = = P *pp.
X i

If we write ¢(z) = ¢(0) + ¢'(0)x + 2% (), then ¥(0) = lwzlrégb(a:) = 271"(0). limz' (¢ (z) —

z—0

¥(0)) = (3!)7'¢”(0) and so on. Since p, * p, is an even function, (1, p, * p.) vanishes. Put

a. = p.xxp, then &, = p.* (—x)p. = (—x)(p. * p.) + (zp.) * p., and so a. — &. = z(p,, * p) and
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therefore

(La)=5 [ Haw-atani =3 [ prpioi g

oo X 2 /) 2

and thus the second term tends $¢/(0) = (—30', ) Now it follows from Itano [20] that the third

term tends to 0 if € tend to 0 O

An important result has obtained by Damyanov [12]

Proposition 1.5.7 For an arbitrary p in Nij, let

xP forx >0

0 elsewhere

and

xP forx <0

ks
|

0 elsewhere
Then it holds

2? 6P () = (=1)Plpl2—"5(2)
2P 6P (z) ~ pl2"s

Remark 1.5.8 The equation

xp‘(;(erq)(x) — ch(q) (z) (p,q € Ny)

is easily show to hold in D'(R) in view of the identity x* = x", + (—1)Pa".

Proposition 1.5.9 The product of the generalized function =P and 5@ forp=1,2,3,... and
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q=0,1,2... in G(R) admits associated distributions and it holds:

(_1)pq]5(p+q) (z)

w3 )~ 2(p + q)!

xP

Proof. We have: 7.0 = —$.5'(z) So
otz o(x)) m OPTIT (=56 (2))

TS ot (@)W 1R ) e S50 ()
k=0

- k

ptg—1 (p+q—1)! (=1)"k! '5(p+q—k‘—1)<x> ~ __15(p+Q)(x)
E Hptqg—1-k) zh 2

prg—1 (p t+q-— 1)'(_1)k x(p*kfl)

—1
(5p+q—k—1<x> ~ —pta) (x) such that p > 1

= (p+q—1—k) gkl grh-1 5
Using
—1)P !
T %5(” (@) (p.q€No)
we found
Pt (p g = DI(DF ()P g = k= 1) -1
iz (pHa—1-k)ar p 39 (2) ~ =60 ()
p%:rl (p+q— 1)!'(_1)p_1, L ~ __1(5(p+q)($)
k=0 q! xp‘(;(Q)(x) 9
(»+ Q)!-(—l)p‘l. 1 —_15<p+q>(:c)
q! xpé(‘l) (ZL’) 2
Then
kS 5@ () ~ (—1)Pql6@t9 (1)
z? T 2p+9)

Next, to extend this result in G(R™) we need the following lemma

Lemma 1.5.10 Let u and v be distribution in D'(R™) such that
uw(z) = []u(x;), v(x) = [] v'(x;) with each u’ and v* in D'(R), and suppose that their embedding
=1 1=1

in G(R) satisfy u'.0" =~ w', fori=1,...,n. Then 4.0 = w, where w = [[;_, w'(z;)
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Theorem 1.5.11 The product of the generalized functions xP and 5(p)(x) for k =1,2,... and

p=0,1,2,... in G(R™) admits associated distributions and it holds:

_1\lel 15(+a)
S0 ~ (D (@)
P 2"(p +q)!

Proof. In this case, due to the tensor product structure of the distributions that are consid-

ered, we can apply previous Lemma and we have:

n —p; i — n —1)Pig;1sPitai) (g,
7.8 (x) = [Ty 70 (2) = [T, — 2pta) =

(—1)IPlqls(r+a) ()
27 (p+q)!

1.6 Local and microlocal analysis in G(£2)

Set

EX(Q) = {(u). € (C™(Q),VK € Q,3m € Zy,Va € Z,sup |0%u.(z)| = O(e™™) as ¢ — 0}

zeK
Proposition 1.6.1 (i) The space £°(2) is an subalgebra of &,,(2).

(ii) The space N (Q) is an ideal of E2°(2).

Definition 1.6.2 The quotient
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is called algebra of reqular generalized functions, or Oberguggenberger algebra.

The algebra of regular generalized functions G*°(£2) plays, in G(2), the same role as C*°((Q2)
in D'(Q2) as G*(Q) ND'(Q) = C*() proved by Oberguggenberger [32]. The algebra G*(Q2) is
a subsheaf of G(Q2), which give as the definition of generalized singular support of an element of

g(9).

Definition 1.6.3 The generalized singular support of u € G(Q), denoted singsuppy(u), is the

complement of the largest open set ' C Q) where u is G*.

Proposition 1.6.4 Let w € D'(QY), then

singsuppy(i(w)) = singsupp(w)

Microlocal analysis in Colombeau algebra has been initiated in [13], [30] as natural extension
of its distribution theoretic analogue.
Using the Paley-Wiener theorem of Colombeau generalized functions see [29], [30], we have a

characterization of element G* by its Fourier transform as following definition

Definition 1.6.5 A generalized function u = [(uc).| € G(2) is said to be G®-microlocally regular
at (xo,&) € Q x R"\{0} if there exist a relatively compact open neighborhood U of xq, a conic
neighborhood T' C R™\{0} of &,, a function ¢ € D(U) such that ¢(xg) = 1 and natural number

N such that for all o € 71,

€% | F(pu) ()] = O(e™) as e — 0.
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The generalized wave front set of u, denoted WFy(u), is the complement of the set of points

(x0,&,) where u is G™-microlocally regular.

Proposition 1.6.6 Let T' € D'(Q2) then

WF,(T) = WF(T)

Proof. See [17] O
The main properties of the generalized wave front set WF, are resumed in the following

proposition
Proposition 1.6.7 Let f € G(Q2), then

1) The projection of WF,(f) on Q is the singsuppy(f).
2) Yo € Z,WE,(0°f) C WE,(f).
3) Vg € G=(Q),WEy(gf) C WE(f).

Corollary 1.6.8 Let P(z,D) = > aq(z)D* be a partial differential operator with G*(Q2)
la|<m

coefficients then

WE,(P(z,D)f) C WE(f), Vf € G(Q)

The reverse inclusion, studied in [13|, gives a generalized microlocal hypoellipticity of linear
partial differential operators with regular generalized coefficients, which are micro-elliptic. The
case of generalized G*°-microlocal hypoellipticity of generalized micro-hypoelliptic linear partial
differential operator has been studied recently in [19]. The generalized G*-microlocal hypoel-

lipticity of micro-elliptic generalized pseudodifferential operators has been tackled in [22], and
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lastly in [21] this result was extended to the level of basic functionals in the dual of Colombeau

algebra.

1.7 Generalized Hormander’s theorem

To extend the Héormander’s result on the wave front set of the product, define

WE,(f)+WEFy(f), where f,g € G(), as the set

{(z,§+n) e WE,(f), (z,n) € WEy(9)}

The principal result of this section is the following theorem.

Theorem 1.7.1 Let f,g € G(R2), such that Vx € Q,

(z,0) gWFg(f)‘i‘WFg(g) (1.3)

Then

WE,(f.g) CWE,(f)+WZE,(g9) UWE,(f)UWEF,g).

Proof. See [19] O



Chapter 2

Algebras of generalized Gevrey

ultradistributions

A Colombeau type theory of generalized Gevrey ultradistributions has been addressed in [3],
where we recovered a whole list of important result known for the usual Colombeau theory in
the setting of generalized Geverey ultradistributions.

This chapter is aimed at giving first a general construction of algebras of generalized Gevrey
Ultradistributions and then the microlocal analysis suitable for them. Finally, we give an ap-
plication through an extension of the well-know Hormander’s theorem on the wave front of the

product of two distributions.

2.1 Generalized Gevrey ultradistributions

We first introduce the algebra of moderate elements and it’s ideal of null elements depending on

the order 7 > 0.
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Definition 2.1.1 The space of moderate elements, denoted E7, (), is the space of (f.). € C=(Q)!,

satisfying for every compact K of Q, Vo € Z1y, 3k > 0, dc > 0, Jgg € 1,

sup |0°f.(z)| < cexp(ke™7), Ve <&
zeK

The space of null elements, denoted N7(Q), is the space of (f.). € C°(Q)! satisfying for every

compact K of ), Voo € Z7, Vk > 0, 3¢ > 0, Jgp € 1,

sup [0° f.(w)] < cexp(—ke™7), Ve <&
zeK

Proposition 2.1.2 1) The space of moderate elements E] (§2) is an algebra stable by deriva-

tion.

2) The space N7(Q) is an ideal of E} ().

Proof. Let (u.)., (v:). € &](2) and K be a compact subset of Q2. Then

V3 € Z:L_, dk, = kl(ﬁ) >0, deg = Cl(ﬁ) > 0, 3515 el Ve< €18

sup ‘(?Bug(:v)} < exp(k‘le_%)
zeK

\V/B € Z:L_, dky = kg(ﬁ) > 0, dey = CQ(/B) > 0, 3525 el, Ve < €28

su}g ‘8’8@5(%)‘ < ¢ exp(kQE_%)
Te
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1) Let A\, A2 € R, and = € K then

0% (Mrue + Agve) ()] < (Ml [0%us ()] + [Aa] [070: ()]

S C1 ’)\1’ exp(kle_%) + Co |)\2| eXp(]{ZQE_%)

For ¢ = max(c1 | M|, ca | Aa]), k = k1 + ko, € < min(e1, €25, |5] < |a]).
We have [0%(A\jue + Av.)(x)] < cexp(kze’%), Le. (Aque + Av.)e € E7(Q).

Let a € Z7}, then

10°(uv.)(z)] < ﬂ% 3|07 ()] . |0%0. (x)|

< Py Cgei(a—B) exp(kie™7) x Cop exp(kae™7)

< c(a)exp(ke7)
Where k = maz(ki(a — B) + k2(B) : B < ), e < min(e15,e28; | 5] < |af),
cla) =3 Ciei(a— B)ea(B). ie. (ucve)e € EL(Q).
B
It is clear that for every compact subset K of Q, V§ € Z7}, 3k = ki(f + ) > 0,

dey = c1(B 4+ @) > 0, Jeyp € I such that Vo € K, Ve < g44.

1

}aﬂ(aafg(x))\ < crexp(kie™7)

ie. (0°F.). € E7(Q).

2) If (v.). € N7(Q), for every compact subset K of Q. V3 € Z', Vky > 0, o = ¢2(8, k2) > 0,
3825 S [,

|0%.(z)] < e exp(—kgé_%) Vo € K, Ve < g94
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Let a € Z} and k > 0, then

0% (u0.) ()] < gcg 19 (2)] . [0 ()
Let ko = max(k1(8), 3 < a) + k and € < min(g15,e25; 8 < ), then Vo € K
0% (uev) ()] < ﬂz Cger(a — B)ea(B, k) exp(—ke?)
< clo, k) exp(—ke7)
Which show that (f.g.). € N7(Q).

O

Definition 2.1.3 The algebra of generalized Gevrey ultradistributions of order T > 1, denoted

G7(Q), is the quotient algebra

Proposition 2.1.4 Let (u.). € E7(QY), then (us). € N7(Q) if and only if for every compact

subset K of Q, Vk >0, dc > 0, deg € I, Ve < &,

sup e ()] < cexp(—ke?) (2.1)
rzeK

Proof. Let (u.). € & () satisfy (2.1) we will show that (J;u.). also satisfy (2.1) wheni = 1,...,n

and then it will follow by induction that (u.). € N7(Q).



32 Algebras of generalized Gevrey ultradistributions

Suppose that u. has real values, Let K be a compact subset of ().

For ¢ = min(1,dist(K,09)), set L = K + B(0,2). Then K € L € (2. By the moderateness of

(ue)e, we have Jk; > 0, Je; > 0, Fe; € I, Ve < ;.

suIL) |0Fu ()| < exp(kles’%) (2.2)
Te

By (2.1), Yk > 0, dcg > 0, Jeg € I, Ve < 9.

sup |ue ()| < coexp(—(k + kl)a"%) (2.3)
xcL

Let 2 € K, e sufficiently small and r = exp(—(k + k1) 7) < S By Taylor’s formula, we have

Oiu.(z) = U=z + Te;) —u(@) %Qzue(x + Ore;)r,

Where e; is i vector of the canonical base of R™ hence (z + fre;) € L, and then

-1

|0;ue(z)| < |ue(x + re;) — ue(z)|r— + % |8i2u€(x + 97’61'} r

From (2.2) and (2.3) |uc(z + re;) — ue(z)| r~ < ¢y exp(—ke7) and

|02u. (z + Ore;| r < ¢y exp(—ke™7) so |Byue(z)| < cexp(—ke ) which complete the proof. O
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2.2 (Generalized point values
The ring of Gevrey generalized complex numbers, denoted C7, is defined by the quotient

=&

0

Where

& ={(a.). € C',3k > 0,3c > 0,3y € I, such that: Ye < g¢; |a.| < cexp(ks_%)}
And

NT ={(a.). € C'Vk > 0,3c > 03gy € I such that Ve < gy, |a.| < cexp(—k’s_%)}

It is clear that &] is an algebra and N is an ideal of &£].

Proposition 2.2.1 If u € G7(2) and x € ), then the element u(x) represented by (u.(z)). is

an element of CT independent of the representative (u.). of u.

A generalized Gevrey ultradistribution is not defined by its point values.

Example 2.2.2 We give here an example of a generalized Gevrey ultradistribution
[ =1f))e € NT(R), but [(f-(z)):] € N for every x € R. Let ¢ € D(R) such that ¢(0) # 0.

Fore € I, define

fe(z) = xexp(—g’%)w(f); z€R
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It is clear that (f.). € E7(R). Let K be a compact neighborhood of 0, then:

sup|(@)] < [£2(0)] = exp(—e77) [(0))]

which shows that (f.): € N7 (R).

For any xg € R, there exists €y such that gp(@) =0, Ve < &g, i.e. f(xg) € NJ.
£

In order to give a solution to this situation, set
O, = {(2z.). € QF, 3k > 0,3 > 0,39 > 0, Ve < &, |2.| < cexp(ke 7))}
Define in 2, the equivalence relation ~ by z. ~ y. < Vk > 0,3¢ > 0,3¢9 > 0, Ve < g,
_1
‘xs - y€| < cexp(—k&? T)

Definition 2.2.3 The set ()™ = Q7 /~ is called the set of generalized Gevrey point. The set of

compactly supported Gevrey points is defined by
07 = {7 = [(z.).] € U : 3K a compact set of Q,Feq > 0,Ve < g9, 7. € K}

Proposition 2.2.4 Let f € G7(Q) and & = [(x.).] € Q7 then the generalized Gevrey point value
of f atx, i.e.

f(@) = [(fez2))]

1s a well-defined element of the algebra of generalized Gevrey complex numbers.
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Proof. Let f € G7(Q) and & = [(z.).] € Q7, there exists a compact subset K of Q such that

r. € K for € small, then Jdk > 0, dc > 0, dg¢ > 0, Ve < &g,

fo(@e)] < sup | f.(2)] < coxplke™)

Therefore (f.(z.)). € &, and it is clear that if f € N7(Q); then (f.(z.)). € N7 ie, f(Z) does
not depend on the choice of the representative (f.)..

Let now Z = [(z.):] ~ § = [(y)c], then Yk > 0, 3¢ > 0, Fg¢ > 0, Ve < &,

_1
|LL’€ - y€| < cexp(—ké‘ T)

Since (f:). € £7(Q2), so for every compact subset K of €,

Vj € {1,m}, Elk] > 0, Ele > 0, E|€j > 0, Ve < e

ifE(:lc) < exp(l@-e’%)

sup oL
J

zeK

We have
1
- 0
|fe(xe) - fs(ys)’ < |ZE€ - y€| Z/ '(ans)(xa + t(ys - xs))dt
=17 !
and z. + t(y. — z.) remains within some compact subset K of ) for ¢ < ¢’.

Let k' > 0 then for k£ + k' = supk; and ¢ < min(e’,ep,¢; : j = 1,m) we have
J

|fo(2) = fo(ye)| < cexp(—K'e™7),
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which giVGS (fe(xe) - fa(y€>>6 S '/\/'OT O
Theorem 2.2.5 Let f € G7(Q). Then f =0in G (Q) < f(Z)=01inC" forall T € ﬁz

Proof. If f € N7(Q), then f(z) € N7, V& € Q7. Suppose that f # 0 in G7(€2). Then by the
characterization of N7 () we have there exists a compact subset K of 2, 3k > 0, Ve > 0, Ve > 0,
Veg > 0, de < g,

sup | fo(x)| > cexp(—k‘g_%)
reK

So there exists a sequence €, — 0 and z,, € K such that Vm € Z*

[ fen ()] > exp(—ken™) (2.4)

For ¢ > 0 we set x. = x, when ¢,;1 < ¢ < g,, we have (z.). € QF, with values in K, so

7= [(z.).] € Q7 and (2.4) means that (f.(z.)). € N7 i.e f(Z)#0in C". O

2.3 Sheaf properties of G’

Let € be an open subset of Q and let f = (f.). + N7(Q) € G™(Q), the restriction of f to €V,
P

denoted f,_,, is defined as

(fa/Q/)s + NT(Q/) € gT(Q,)
Theorem 2.3.1 The functor Q — G7(Q) is a sheaf of differential algebras on R™.

Proof. Let Q be a non void open of R™ and (£2))ea be an open covering of ). we have to show

the properties
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(S1) If f,g € G7(2) such that f/o, = g/a,, YA € A, then f =g.

(S2) If for each A € A, we have f, € G7(2,), such that

']C>\/QmQH = fﬂ/Q)\mQH fOT’ all )\, ne A with: QN QH 75 1]

then there exists a unique f € G7(Q2) with f/o. = fA,VA € A

To show (S1), take K a compact subset of 2. Then there exists compact set K;, Ko,..., K, and

indice A1, A9, ..., A\, € A such that:
K C U K; and K; C Q)\w
i=1

Where (f. — g.). satisfies the N™—estimate on each K;. Then it satisfies the N™—estimate on K
which means (f. — g:). € N7(Q).
To show (S2), let (x;)32; be a C°°—partition of unity subordinate to the covering (£2x)xea-

Set

= (fa)s +N(Q)>

where f. = > x;fr;e and (fi,c)e is a representative of fy,. Moreover, we set fy,. = 0 on Q\Qy;,
j=1

so that x;fx,c is €™ on all of 2. First let K be a compact subset of (2. Then K; = K N suppy;

is a compact subset of Q; and (fi,c)e € £7,(25;) - Then (x; fi,c) satisfies £ —estimate on each

Kj, and x;(z) =0 on K except for a finite number of j, i.e, AN > 0, such that

ijfhf(x) = ZXjf/\js(x),Vx eK
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o (3" x;j/ne) satisfies £ —estimates on K, which means (f.). € £7,(Q2). It remains to show that
for = fr VA € A,
N
Let K be a compact subset of 2y, choose N > 0 in such a way that ) x;(z) = 1 on a neighbor-

j=1
hood €' of K with € compact in Q. For z € K,

f( f)\e ZX] f)\z-: fAs(x))

Since (fy,e — fre) € N7(, N Q) and K; = K N suppy; is compact subset of QN Qy,, then
<Zjvz1 X;(faje — fAE)) satisfies the N™—estimate on K. The uniqueness of such f € G7(Q)

follows from (S1). O

Definition 2.3.2 The support of f € G7(Q), denoted supp} f, is the complement of the largest

open set U such that f;; = 0.

2.4 Embedding of Gevrey ultradistributions

Definition 2.4.1 A function f € E™(Q2), if f € C®(Q) and for every compact subset K of Q,
de >0, Va € Z7,

sup [0° f ()] < "1 (al)"
zeK

Denote by D7(€2) the space E7(Q) N C5°(§2). Then D7(€2) is nontrivial if and only if 7 > 1.

The topological dual of D7(Q2), denoted D’'(12), is called the space of Gevrey ultradistributions
of order 7.

The space E.(Q) is the topological dual of E7(€2) and is identified with the space of Gevrey

ultradistributions with compact support.
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Definition 2.4.2 A differential operator of infinite order

P(D)= Y a,D"

WEZi

is called a T—ultradifferential operator, if for every h > 0 there exist ¢ > 0 such that Vy € Z7,

@] Ixed

ay| < c——

RGO

Proposition 2.4.3 Let T € EL(2), 7 > 1 and suppT C K then there exist a T—ultradifferential

operator P(D) = > a,D7 and M > 0 and continuous functions f, € Co(K) such that

7621

sup | f,(z)| < M
7€Zi
zeK

T= > aDf,

7621

The space S(7)(R), o > 1 is the space of functions ¢ € C*(R") such that ¥b > 0, we have

’x‘lﬁl .
Iello = opezn / platBlalo Glo 0% p(x)]dr < o0
PELY

There exists ¢ € S (R") satisfying
/gb(x)dx =1 and /x%ﬁ(m)dw =0, Ya € Z1\{0} (2.5)

Definition 2.4.4 The net ¢, = e "¢(=), € € I, where ¢ satisfies the condition (2.5), is called a
£
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net of mollifiers.

The space E'(Q) is embedded into G7(£2) by the standard canonical injection

I: EYQ) — §G(Q)

where f. = f, Ve € I.

Theorem 2.4.5 The map

b EL, - G(Q)

T = [T =d((T*¢.)/q)

15 an embedding.

Proof. Let T' € E, () with suppT C K, then there exists an (7+0)—ultradifferential operator

P(D) = EZ: a, D" and continuous functions f, with suppf, C K, Vy € Z7, and 5161};3 |fy(z)| < M,
YELY T

WEZi
such that T'= " a,D"f,. Let a € Z, then
7621

0T 0)@) < 3 iy [ UG+ el Do) dy

7621

We have Vh > 0, dc > 0, such that

Akl
0(T * 6.) ()| < Y ¢ Frragheal / [f(x +ey)| [D7 o (y) | dy

7621
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And from the inequality (3 + a)!f < 2e+Blaltplt vt > 1.

T+0)|vt+a
otrta)ly+alpvl 1 i tal

0T * ¢ )(z)] < 3 cal™

VELT (y+a)r  ehtel

D+
x [ 1f1(z +ey) b|w|+a|(7qi(ya))|17

then for h > %

or+otipp)htal
o - Meal™o 5 -
(T b))l < gl Meal™ 5 ( ta)r et

< cla)exp(kie™7),

where ky = 7(27t7Hbh) .

Suppose that (T * ¢.). € N7(Q), then for every compact L of Q, 3¢ > 0, Vk > 0, Jgo € I,
T % ¢_(z)| < cexp(—ke™7), Vo € L,e < &
Let x € D™"7(Q2) and x = 1 in a neighborhood of K, then Vi) € E77(Q),
(T} = (1) = limy [T 6.)(@)x(z)lz)ds =0

ieT =0. [l
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In order to show the commutativity of the following diagram of embedding

DT—O’+1 N gT
N T

/
E’?’-‘r0'

We have to prove the following fundamental result:
Proposition 2.4.6 Let f € D771 (Q) then: (f — (f * ¢.)/) € NT(Q)

Proof. Let f € D"71(Q), then there exists a constant ¢ > 0, such that
0% f(2)| < ™M Vo € 7" Vo € Q

Let o € Z7}, the Taylor’s formula and the properties of ¢, give

o (f 6. — (s Z/ D" ot () oy

|Bl=N

Where © < € < x + ey. Consequently, for b > 0, we have

Nl < &8 f' 1990 £(6)] 6(y) | dy

< Ny b‘ﬂ'ﬁ“’w o)l st (3] IV
~ |BI=N ﬁ' (a + B)!T—a’—l—l b|/8|ﬂ|o—
b"BIB!G(2ng+1)‘a+ﬁ|a!770'+16!7'70+1

[o(y)| dy

< Y L |8,

|Bl=N f!
< &N Y b\ﬂlﬁva!fﬂ’“(027*”+1)|a+’6‘ ||¢||b,a
|Bl=N

< gNoé!T—U+1H¢||b7U Z b|ﬁ\ﬁ!’r(c2’r—0+1)\a+ﬁ|
I8I=N

Let £k >0 and T > 0, then
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< (@)l (eNT)N(RTT) N (c2mmo el S (bhTT) 8l (c2m o)Al
|BI=N

Hence, taking 27 k7T < 5, with a > 1, we obtain

0°(f * ¢ = [)(@)] < cal™ 7 eNT)T(KTT) "N |8l , (277 H)lla™ mE_IN(%)'B

< T NN (RTT) N (9],

1 1
Let g¢ €]0,1] such that e 2% < 1 and take 7' > 27 then (7 —1) > 1 > e~ —

k
1 - 1 -
(%) - (5] =
Then, there exists N = N(e¢) € Z*, such that
Ina 1\ Ina 1\, 1
(I;aef) <N < (I;aaf) T~

N7 I
which gives o™V < exp(—ke~7) and ZTT = (m) <1

>€§€0

In particular, we have

If we choose Ina > 1. Finally, from (2.6) we have

10°(f * ¢ — f)(x)| < cexp(—ke )

e fxop.— feNT(Q).

(2.6)

Now we construct the embedding of D/, () into G™(2) using the sheaf properties of G7.

T+0o

First, choose some covering (£2))aen of €. Let (¢0,)aea be a family of elements of D™(2) C D™
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with ¢, = 1 in some neighborhood of Q. For each A we define

I DL, = §(Q)

T = [T]x = (V2T * ¢.) ja,)e

We have [Ty = cl((¥,\T * ¢.)/0,) € E7,(2) and the family (Jy(T)),., is coherent, i.e.

INT) j05n0, = Ju(T) 0500, YA, 1 € A

Then if (x;)52, is a smooth partition of unity subordinate to (£2y)xeca, the preceding theorem

allows the embedding

I DL,@) - G(Q)

T o M= (i (T @))

We can also embedded directly D’ (€2) into G7(£2). Indeed, let ¢ € D7(B(0,2)), 0 < ¢ < 1,

¢ =1on B(0,1), and take ¢ € S(®) define the function p_ by
"o
p() = {2 ) o(D)e(z ()]
We have dc > 0, such that Va € Z7,

sup |0%p.(2)] < delttalogn=lel
rER?
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Define the injective map

J: D;'-&-U(Q) — gT(Q)

T = [T =cl(T *p.)e

Proposition 2.4.7 The map J coincides on E., (Q) with Jy.

The sheaf properties of G™ and the precedent proposition show that the embedding J, coincides

with the embedding J. We have the following commutative diagram

Q) — ¢(Q)
! e

D, ()

Definition 2.4.8 The space of elements of G™(2) with compact support is denoted GT(£2).

Proposition 2.4.9 The space G () is the space of elements f of G7(2) satisfying there exist a

representative (f:)ee; and a compact subset K of Q such that suppf. C K, Ve € I.

2.5 Equalities in G7(02)

In G7(Q2), we have the strong equality, denoted =, between two elements f = [(f.):] and g = [(9:).]
which means that

(fe —9:) €NT(Q)
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We define the equality in the sense of ultradistributions, denoted rtw, where t € [T—o+ 1,7+ 0],
by

rtoe ([ - atonotin) € Agvoe D@

3

and we say that f equals g in the sense of ultradistributions. We say that f = [(f.).] is associated

t0 g = [(¢.).], denoted f ~ g, if

lim | (f: — g.)(z)¢(x)dx = 0,V € D™T7(Q)

e—0

In particular, we say that f = [(f.):] € G7(Q) is associated to the Gevrey ultradistribution

T € E7/'+a

(), denoted f ~ T, if

lim [ fo(e)i(e)de = (T,4) Vi € D™(Q)

The main relationship between these inequalities is given by the following results.

Proposition 2.5.1 Let f,g € G7(?), T € E!

T+0o

(Q), andt €[t —o+1,7+0]. Then

(1) f=g=>frg=flg=fryg

(2) Tm0inG+(Q) = T =0 in E., ()

2.6 Regular generalized ultradistributions

To define the algebra of regular generalized ultradistributions, we needs first to define these

regular moderate elements and these null elements.
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Definition 2.6.1 The space of o—regular elements denoted E,7°(12), is the space of
(f): € (C=() satisfying, for every compact K of Q, 3k > 0, 3¢ > 0, Jeo € I, Vo € Z7,
Ve < gg

sup |0°f-(z)] < 1 al? exp(ke7)
zeK

Proposition 2.6.2 1) The space E:7°°(Q) is an algebra stable under the action

of o—ultradifferential operators.

2) The space No7>°(Q) := NT(Q) N ET(Q) is an ideal of ET7°(Q).

Proof.

1) Let (f.)e, (go)e € EH7°°(2) and K be a compact subset of Q2. Then

dky > 0,dc; > 0,3ey € I such that Vo € K, Va € Z7, Ve < ¢y,

0% f.(x)] < c'la‘ﬂoz!" exp(k’ls_%)

We have also Jk; > 0,3c; > 0,de; € I such that Vo € K, Va € Z7}, Ve < &,

|0%g(x)| < c‘f'“oz!” exp(krge_%)
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Let a € Z7}. Then

0°(foge)(@)] < ;3005\3a‘5f5(x)\\3595(w)\

< > Cgclla_mﬂ(a —p)7 exp(kls_%)c‘flﬂﬁl" exp(kae™7)
3=0

< cottale(Lyolel exp(ke)

< el lalo exp(ke)

ie. (f.g:): € E7°(). Now let P(D) = > a,D" be a ultradifferential operator, then

Vh > 0, 3b > 0, such that

°P(D)f.()] < 3 bEL|9*f ()|

ez "

< X bR (a4 )17 exp(he )
7621

< S b|hN detrtigeletalgle exp (ke 7)
7621

< (29bc)lelFigle S phl(2o¢)hi

YEZY

Hence, for 27hc < %, we have

0°(P(D) f-(2))| < c*1al” exp(ke™)

Which shows that (P(D)f.). € £7°(£2).

(2) The fact that N™7>(Q) = N7(Q) N ELT>2(Q) C &1(N) and N7(Q) is an ideal & (Q)

implies that N7°(Q) is an ideal of £7:7°°(Q)
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Now, we define the Gevrey regular elements of G7(Q2).

Definition 2.6.3 The algebra of regular generalized Gevrey ultradistributions of order o > 0,

denoted GT7*°(Q), is the quotient algebra

ET:0:0(()
gT,cr,oo(Q) — n;moo((Q))

Proposition 2.6.4 G77°(Q) is a subsheaf of G".

Definition 2.6.5 We define the GT7°° singular support of a generalized Gevrey ultradistribution
f € G7(Q), denoted o — singsupp,(f), as the complement of the largest open set ' such that

f E g‘r,o‘,oo(Q)‘
The following result is a Paley-Weiner type characterization of G77°°(€2).

Proposition 2.6.6 Let f = cl(f.) € GI(Q2). Then f is o—regular if and only if Ik > 0,

dko >0, dc > 0, Je1 € I, Ve < &4, such that
F(£)(E)] < coxpllre™ — ko [€]7), VE € R" (27)

Proof. Suppose that f = cl(f.) € GZ(Q) NG77>(Q). Then Ik > 0, J¢; > 0, Je1 > 0, Vo € Z7}

0% f. ()] < c'la‘ﬂa!” exp(k’ls_%)

Consequently we have, Vo € Z7,

RO < | [ expl-ing)or o)
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Then dc > 0, Ve < ey,

€ F(f)(©)] < el exp(kie™)

For a € Z1, AN € Z, such that

N N
— <la] < —+1,
g o

So
€17 |F(f)E)] < ol ol exp(kie7)

< ANTINYN exp(kye )

Hence 3¢ > 0, VN € Z™,
_N 1
[F(£)©)] < CVFHel™ Nlexp(kie™™)
Which gives

FUE) explye ) < coxplhne=) 32 27

IF(£)E)] < ¢ exp(kae™™ — ky [€]7)

i.e, we have (2.7).

Suppose now that (2.7) is valid. Then Ve < g,

0°f.(2)] < &1 / exp(kre™7 — ko €]7) €] de

K
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Due to inequality ¢V < Nlexp(t),Vt > 0, then Jcg = c(ky) such that
[€°] . exp(=5 [€]7) < eaal”.

Then [0°f.(z)| < cexp(kie™ )l ie. f € GToo(Q). O

Remark 2.6.7 Let f =cl(f.). € GI(QY), then Fky >0, F¢ >0, Vky >0, g9 € I, Ve < eq :
IF(f.)] < cexp(kae7 + ko [€]7),VE € R”

Theorem 2.6.8 We have
G (Q) 1D, () = ETHQ)

Proof. Let S € Gm7oth>(Q) N DL, (). For any fixed o € Q we take ¢ € D™7(Q) with
¢ =1 on neighborhood U of zy. Then T'= ¢S € E., ().
Let ¢, be a net of mollifiers, with ¢ = ¢ and ¥ € D™ °T1(Q) such that y = 1 on K = supptp. As

[T] S gT,T—U+1,OO(Q)> Elkl > O, Elk’z > 0, ElCl > O’ 351 > 0’ Ve S €1
|F(T)(€)] < cexpllie™r — ko |¢|777T)

Then

[FOUAT * 0))(&) = F(D)OI = [FIX(T*¢.))(€) = FIXT)(E)]
= [(T(2), (x(2)e™) * 6. (x) — (x(2)e™"))|
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As F'

" o) C EL_ (), 3L a compact subset of Q such that YA > 0, 3¢ > 0 and

o | |
[F(X(T * 0.))(€) = F(I)(E)] < Cigg# |02 ((x(2)e ") % . (x) — (x(x)e "))

ani

We have e~ € D™7F1(Q), so Vks > 0, Icy > 0, In >0, Ve <17

o A | 1
palh— |02 ((x(2)e ™) % b.(x) — (x(2)e ™ ))| < cxexp(—kse™7)

aEZi

So there exists ¢ = ¢/(k3) > 0, such that

1

[F(T)(E) = FX(T * ¢.)) ()] < ¢ exp(—kse™7)
Let e < min(n, &;), then

[ F(T)(&)]

IA

[F(T)(E) = FIX(T* ¢)) ()] + |F (T * 6.)) ()]

< exp(—kga’%) + ¢ exp(kle’% — ko ‘5|7_},+1)

kq
(ky — 1) €] =

kflT

2 —T

, then 36 > 0, ¢ > 0

Take ¢ = max(c,¢1), € = < > , 7 €]0, ko] and k3 = Z
such that

IF(T)()] < cexp(—6 [¢|7==),

Which means T = S € E7°"(Q). As ¢ = 1 on the neighborhood U of zg, consequently
S € ET7t(Q), which proves G 7t(Q) N DL, () € ET7T(Q). We have ET7HHQ) C

E™7(Q) C D!

T+0o

() and ET7TH(Q) € G777 oT10(Q) then
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ETotH Q) € gTTothe(Q)NDL ., () Consequently we haveG™ ™o the(Q)NDL, () = ET7TH(Q)

0

2.7 Generalized Gevrey wave front

Definition 2.7.1 We define >/ (f) C R™\{0}, f € G7(Q), as the complement of the set of
points having a conic neighborhood 1" such that: dky > 0, dky > 0, dc > 0, deg € I, V€ € T,
Ve < gq:

IF(£)E)] < cexplhre™ — ks |€]7)

Proposition 2.7.2 For every f € GI7(Q2), we have

(1) The set 3 7°(f) is a closed cone.
(2) S0°(f) =& fegraeQ).

(3) 2257 (W) € 3257 (F), v € E*(Q).

Proof. One can easily, from the definition (2.7.1) and proposition (2.6.6), prove the assertions
(1) and (2).

Let us suppose that §, & >7°(f), then 3I" a conic neighborhood of §,, 3k; > 0, Je; > 0, Je; € 1,
VE el Ve < e,

IF(F)E)] < crexplhae™ — ks |€]7)

Let x € D?(Q2), x = 1 on a neighborhood of suppf, so x¢ € D?(2), hence k3 > 0, Jey > 0,
V¢ e R™

IF(x)(6)] < ez exp(—Fks |€]7)
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Let A be a conic neighborhood of &, such that A C I'. We have, for a fixed £ € A

F@f)€) = Fxyf)€)
= [LF(f) ). F(xo)(n — &)dn + [ F(fo)(n).F(xv)(n — &)dn

Where A= {n: [ —n| <5+ 1n])} and B ={n: | —n| > (|| + |n|)} Take § sufficient small

lfl

such that = < |n| <27 |¢|, Vn € A, then J¢ > 0, Ve < &

[ - é)dn‘ < cveveapline = 21%)x [ exp(—hs - €

then 3¢ > 0, 3k, > 0

/Ffz-: F(x)(n — £)d?7‘ < cexp(kie™r — Ky [¢]7)

As f € GI(Q), from remark (2.6.7), Jeg > 0, Jpuy > 0, Feg > 0, Yy, > 0, V€ € R, Ve < g9, such
that

IF(f)E)] < esexpline + pa [€]7)

Hence, for ¢ < min(e,e9), we have

[ FUEIm)-F ) (n = dn| < cacexp(ine) [y expluy |nl= — ks |n — €| )dn

1 1 1 1
< coexp(per) [pexp(ug [nle — ksd([€]7 4+ |n|=)dn
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Then taking p, < k3d, we obtain

/B F(1) ) Fxh) (o — )dn| < coxplme? — ked [¢]%) (2.8)

Consequently &, & > (¥ f). O

Definition 2.7.3 Let f € G"(Q) and zo € , the cone of o—singular directions of f at xy,

denoted Y77 (f), is

9,20

X (f) = ﬂ{E;’”(gpf) :p € D7(Q) and ¢ = 1 on a neighborood of xo}

9,20

Lemma 2.7.4 Let f € G7(R), then

07 () =0 < xo & o — singsuppy(f)

Proof. Let zy & 0 — singsupp,(f), i.e. U C Q an open neighborhood of z, such that
f e grooU), let ¢ € DT(U) such that ¢ = 1 on a neighborhood of xg, then ¢f € G™7>(Q).

Hence, from the proposition (2.6.6), Y7 (¢f) =0, i.e: 307 (f) = 0.

9,0

Suppose now » 77 (f) =0, V¢ € R"\{0}, IV; € V(xy), Jwe € V(&) a conic neighborhood of .

9,T0

Jky >0, Fky >0, dc > 0, Jg¢ > 0, VE € W, Ve < g, Vo € DT(Q).

| F(¢ef)(©)] < c.exp(kne™™) — ks [€]7)



56 Algebras of generalized Gevrey ultradistributions

Since the unit sphere |{| = 1 is a compact set, then one can find finite points §;,7 = 1,...,n in

R"”, Wj S §| and qu S DM(Q), ¢($) =1in ‘/j, ki >0,3dky > 0,dc>0,e9 >0, Ve < g

J
|F(6,£)(0)] < c.expllae ™™ — ko [€]7), €€ W,

Taking V =V, and W =W, ¢ = ¢;...¢,,, we have p € D7(Q2) and p(x) =1on V.
J J
Flef) @l < coxpllae™ — ko [¢]7), €W

Consequently, (¢f.) € G where: xg € 0 — singsupp,(f) O

Definition 2.7.5 A point (x0,&,) € WE]7(f) CQxR™N{0}. If &y & > 00 (f), i-e: there exists

9,Z0

¢ € D(Q),p(x) = 1 neighborhood of xy, and conic neighborhood T' of &,, Ik; > 0, Fks > 0,

de > 0, deg > 0 such that V€ € T', Ve < g,

IF(6)(€)] < coxplhrer — ko [¢]7)

The main properties of the generalized Roumieu wave front W F> are subsumed in the following

proposition
Proposition 2.7.6 Let f € G7(Q), then
(1) The projection of WE;?(f) on Q is o — sinsupp,(f).
(2) If f € GI(2), The projection of WE;°(f) on R™\{0} is 377 (f).

(3) Vg € G77(Q), WET“(gf) € WEF“(f).
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(4) Ya € Z, WE° (9 f) € WET°(f).

Proof. (1) and (2) hold from the definition, Proposition (2.6.6) and lemma (2.7.4).

(3) Let (z0,&9) € WF;7(f) then 3¢ € D7(Q), ¢ = 1 on a neighborhood of xg, &, & > (¢ f)
by proposition (2.6.6), for g € G77>°(Q), we have §, & > 7" (g¢f) which proves: (zo,&,) &
WEZ(9f).

(4) Let (x0,&,) € WE°(f), then 3¢ € D™(Q2), ¢ = 1 on a neighborhood U of o, there exist a

conic neighborhood I' of §,, 3k > 0, Fky > 0, e > 0, Jeo €]0, 1],such that V€ € T, € < gy,

IF(0£)(E)] < 1 exp(kye™r — ky [€]7) (2.9)

We have for ¢ € D7(U) such that i(xy) = 1.

[F@of)© = |[FOWf))(E) — F0u.£f(£))|
< [ENF@ef) O]+ |1F((09)of:)(E)]

As WED (¢ f) C WED?(f), (2.9) holds for both | F(¢¢f:) ()| and | F((8¢)¢f:)(E)]-

So
EHF@of)(€)] < clé|exp(kaer — ky[¢]7)

< dexplkier — ks |€]7)

With ¢ > 0, k3 > 0, such that |{] < ¢ exp((ka — k3) \§|%) which prove (z¢,&,) € WEF;7(0f). O

Corollary 2.7.7 Let P(x,D) = > aq(x)D* be a partial differential operator with GT7>°(Q)

laf<m

coefficient, then: W] (P(x,D)f) C WE]?(f), Vf € G7(Q).
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Lemma 2.7.8 Let ¢ € D?(B(0.2)), 0 < ¢ <1, and ¢ = 1 on B(0,1) and let ¢ € S?, then

de >0, Jv >0, dgg > 0, Ve €]0,¢¢], V€ € R",

Where 0.(x) = (2)™.¢(£).¢(z |In(e)|), and 0 denoted the Fourier transform of 0.

Proof. We have, for ¢ sufficiently small, ¢ < |lng|™" < 1

Let £ € R", then

06) = o HEE — 1) e B

= e | B — M)k + [y (€ — m)(

)dn]

1 1,1 1 1 1,1 1
Where A = {n : [€—nl= < 6=([]= + |n[7)} and B = {n : [ —n|" > d-(|¢]7 + [n]=)} we
choose ¢ sufficiently small such that |€| < In| < 27|, ¥n € A. Since ¢ € D?7(Q), ¢ € S then

Ell{fl,kg > 07301,02 > 0, \V/é- c R,

B(6)] < 1 exp(—F [€]7)

And

BE)| < caexp(~kz [€]7)

So

|—TL

]1 = |1D€

fAAg -

( s |1n5|
< crco€exp

dn‘

)feXp k1 |e(n — &)1 )dn

Q\»—A._.
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Let z = e(n — &), then

For I, we have

I

IA

IA

IN

IN

=~
IN

ce™™ exp(—k?—? Ine|" 7 [£]7) [ exp(—ki |z|7)dz

ce™" exp(—ve [€]7)

IN

el ™| [ ble(€ — m)@(p)dn

cies [y exp(—kie® |€ — |7 — Ky |lne| "7 [5]*)dy
cexp(—kides [€]7). [, exp(—kidew [n]7 — ks [ne| ™ [n|=)dn
cexp(—kidew 15\5). [ exp(—kev \n]%)dn

ce™" exp(—vew [¢]7)

Consequently, 3¢ > 0, Jv > 0, Jgg > 0, Ve < gy such that

0.6)| < cemexp (—ver 7)), veeR

Theorem 2.7.9 Let T € D, ,(Q) NG™(Q); then WE;™(T) = WFTT(T),

Proof. Put p=7 -0+ 1. Let S € E () C E,(Q) and ¢ € D?(£2), we have

[F (S * 6.))(€) = F@S)(€)l = [(S(@). ((x)e ") * d.(x) — ((x)e™*))| then 3L a compact

of €2 such that Vh > 0, d¢ > 0,

hledl

[F(S*¢))(€) = F@S)(E) S sup —— |95 ((x)e” " * g () — p(w)e )]

a€Zm el ale
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We have e~ € D?(Q), then, Jey, Vko > 0, I > 0, Ve < 1,

|al

. - . _1
sup 2 |02 (4 (x)e T % g (x) — (x)e )| < cpeh0 T
el wel Q-

So there exist ¢ > 0, Vko > 0, In > 0, Ve < 1, such that

F@WS)(€) — F((S * 6.)(€))] < ce e (2.10)

Let T' € D}, (©2) N G7(Q) and (9, y0) € WF;*(T), then there exist xy € D?(2), x(z) = 1in a
neighborhood of zy, and a conic neighborhood I' of &,, 3k, > 0, Jky > 0, Iy > 0, Je¢ €]0, 1],

such that: V& € I', Ve < e,
_1 1
[FOUT #02)) ()] < exetrs 7 H2kl7 (2.11)

Let ¢ € D?(Q2) equal to 1 in neighborhood of z( such that for sufficiently small € we have y = 1

on suppy) + B(0, =2 ), and let ¢ € D?(B(0,2)),0 < » < 1and ¢ = 1 on B(0, 1), then there exist

[Ine|

€0 < 1, such that Ve < g,

U(T s 0c)(x) = p(XT * Oc ) ().

Where 0.(z) = Zp(x [Ine|)p(2). As xT € E., (), then

O(T x0:) () = p(XT * 0c)(x) = (XT * ¢.) ()
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Let € < min(n,ep) and £ € I', we have

IFOT)E < [FET)HE = F(T +602)) ()] + |F (T * 0:))(§)]
< JFXT)E) = F((XT * ¢.)) ()] + [F (T 62)) (&)

Then by (2.10) and (2.11), we obtain

FWT)(E)] < deho™ 4 pehie™ hald?

Take ¢ = max(cq,d), € = ((k—l)Hl , 7 €]0, ko[ and kg = kklr , then 30 > 0, dc > 0
f?

]{2—7“ 2T

such that

FOI)E)] < cee”,

Which proves that (z¢,&,) € WEF?(T).So WE?(T) C WE*(T).
Suppose that (zg,&,) € WF?(T), then there exist x € D?(Q2), x(z) = 1 in a neighborhood of x,

a conic neighborhood I' of £,, 3\ > 0, d¢; > 0, such that V¢ € T’
IFOXT)E)] < ere™7. (2.12)

Let 1p € DP(Q) equals 1 in neighborhood of zy such that for sufficiently small € we have y =1

on suppy + B(0, =), then there exist &y < 1, such that Ve < &,

[Ine|

DT x0c)(2) = p(XT * 0c) ().
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We have

F(T % 6.))(€) = / F)(E — n).FOT) (). F(0.) ().

Let A be a conic neighborhood of ¢, such that, A C T'. For a fixed £ € A, we have

F(xT*0.))(§) = /A F@)E—n).F(XT)(n).F(0:)(n)dn+ /B F@)E=n).F(XT)(n).-F(0:)(n)dn

1 1 1 1 1 1
Where A = {n:|¢—nl» <o([5]7 + nl*)} and B = {n:|¢ —n|» > 5(|¢|» + |n|*)}. We choose §
sufficiently small such that A C T" and ‘;—J < |n| < 2*|&|. Since ¢ € DP(Q), then Fu > 0, ez > 0,
Ve € R™,

IF()(€)] < cpexp(—p [€]7),

Then 3¢ > 0, Jgo €]0, 1], Ve < &y,

| FE= ) FOT) 0 F O i) < coxn(=5 [€7) x | [ explouly— ¢} F @ )
A A

From lemma (2.7.8), 3c3 > 0, Jv > 0, ¢ > 0, such that
| F(0:) ()] < cze™me 717 v e R™

then dec > 0, such that

[, F)(E = ). FT)0).FO)(mdn| <c e exp(=2 [¢])x

[y exp(=ptln = €[7). exp(—ve? |7 )dn
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We have 3k > 0, Ve €]0, g,

e exp(—ver |n]7) < exp(ke7), (2.13)

So

| FwE = n)-F D)) F O] < coxplhe’ = 3 1€l7) (214)

As T € EL, () C E)(Q), then VI > 0, 3¢ > 0, V¢ € R,

[FOXT)(E)] < cexp(l[€]7)
Hence, we have

| [ F@)(E = m)FOD)F @) ()dn| < ¢ [yexp(lin]s — ul€ —nl#). |F(6-)|dn
< demexp(—pud €]

1 1
[z exp((l — pd) nle — vew |n|7)dn,

Then, taking [ — ud = —a < 0 and using (2.13), we obtain for a constant ¢ > 0

/B FW)(E — n) FOT)0)-F(0:) (m)dn| < coxplle™ — ud|€]?)

Which gives that (zo,&y) € WE]*(T), so WE*(T) C WF?(T).
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2.8 Generalized Hormander’s theorem
To extend the generalized Hormander’s result on the wave front set of the product, define

WED(f) + WES(f), where f,g € G7(), as the set:

{(z,§+n) e WEF(f), (x,n) € WF]?(g)}

Lemma 2.8.1 Let 3, 3y be closed cones in R"\{0}, such that: 0 & X1 + X, then:

i) St 5 (2 4D, US U,

ii) For any open conic neighborhood T of X1 + X in R™\{0}, one can find open conic neigh-

borhood of T'y, Ty in R"\{0} of respectively 31, ¥y such that:

h+Iycl

The principal result of this section is the following theorem.

Theorem 2.8.2 Let f,g € G7(Q), such that: Yz € €,

(z,0) g WE(f) + WE]“(g) (2.15)

Then:

WE;?(f.9) € WE7(f) + WE () UWEF}7(f) UWEF]“(g).

Proof. Let (zo,&) & (WF,(f)+WFy(g)) UWFy(f) UW Fy(g), then: 36 € D(Q); d(wo) = 1,

§o & (Zg(@f) +2g(09)) U Xg(0f) U Eg(dg) From (2.15) we have 0 & X4(4f) + X4(¢g) then by
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lemma (2.8.1) 7), we have

6o & (S4(01) + %,(00)) U By(0) U D(09) = 5,(6) + By(0g)

Let I'y be an open conic neighborhood of ¥,(¢f) + X,(dg) in R™\{0} such that: &, & T then,

from lemma (2.8.1) i7), there exist open cones I'y and I'y in R™\{0} such that

g(of) C 'y Xg(gg) C I

And

I+, C Ty

Define I' = R™\T'y, so

Fﬂng(Z)and(F—Fg)ﬂH:@ (216)

Let €T and € € [.

F(of09:)(€) = (F(ofe) * F(dge))(E)
= Jp, F(@f)(E —n).F(og:)(n)dn+
frg f(¢fa)(€ - n)'f(¢ga)(n)dn = Il(f) + 12(5)

From (2.16), 3¢; > 0, 3k, ko > 0, Je; > 0, such that: Ve < e, Vi € Ty,

IF(S£)(€ =) < erexp(kre ™ — Ky [€ —7]7)
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And from remark (2.6.7), 3eo > 0, Fk3 > 0, Vky > 0, Jeu > 0, Vn € R", Ve < &9,

I F(g-)(n)| < caexp(kse™ ™ + ka|n])

Let v > 0 sufficiently small such that:

1 1 1
€ —nl= >y(&l7 +nl7), Vnely

Hence for ¢ < min(eq,¢e2),

1 1 1 1
[11(8)] < cr.caexp((ky + k3)e™ ™ — kv [€]7) /GXP(—kw Inl" + ks |n|=)dn

Take k4 < ko, then:

()] < & exp(ke™r — ky|€]7)

Let r > 0,

L(§) = fFSﬂ{IWISTIE\} F(of) (€ —n).F(pg:)(n)dn + ngﬂ{ln\Zr\fl} F(of) (€ —n).F(pg:)(n)dn

= (&) + I(8).

Choose r sufficiently small such that {\77\% <r ]é‘ﬁ} =¢—n ¢TI Then

€ —nle > (1 —7r)[€]7 > (1—2r)[¢]7 + 5|7, Consequently Jez > 0, Iy, Aoy Ay > 0, Tz > 0
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such that Ve < eq;

1 1 1
|121(f)\ < ¢ eXp<)\157;) fexp(—)\g ‘5 - 77"’ — A3 W")dﬁ
1 1
< cgexp(her — Xy [€]7) [exp(—N; |n|7)dn
< dexp(het — N [¢]7)

1 1
nl= + gl

If [n|= > r|€|7, we have |y|* > 5

, and then Jey > 0, Jpy, g > 0, Yy > 0, 3e4 > 0

such that Ve < g4,

_1 1 1
[1(§)] < caexp(pe) [exp(py € —nl" — ps|n|)dn
_1 1 / 1 ’ 1
< cgexp(ue7) [exp(py | —nle — psn|e — whr |€]7)dn

If we take p, sufficiently small we obtain
~1 9 1
[ Ioa| < cjexp(kze™ — pg” [€]7)

Which finishes the proof. O



Chapter 3

(zeneralized Roumieu ultradistributions

The aim of this chapter is to introduce and to study a new classes of generalized functions
containing the space of Roumieu ultradistributions introduced by Komatsu [27] as natural gen-
eralization of Schwartz distributions. The problem of multiplication of ultradistributions is still
posed, so it’s natural to search for algebras of generalized functions containing the space of ul-
tradistributions where we recovered a whole list of important result know in generalized Geverey

ultradistribution theory [3],[2].

3.1 Roumieu ultradistributions

Let (M,)pez, be a sequence of reel positive numbers, recall the following properties:

(H1) Logarithmic convexity:

M; S Mp—lMp-‘rl) VP Z 1
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(H2) Stability under ultradifferentiation:

3A > 0,3H > 0, M,,, < AH"*M, M, Vp > 0,¥q > 0.

(H2)’ Stability under differentiation:

3A > 0,3H > 0, My, < AH”M,,¥p > 0

(H3)’ Non-quasi-analyticity:

o] Mpfl
Z M, < +00

p=1

The associated function of the sequence (M,)pecz, is the function defined by

tp
M(t) = In— ¢t e R}
(t) supln 3 +
Example 3.1.1 The Gevrey sequence (My)pez, = (P'7)pez,., 0 > 0, has associated function

equivalent to the function M(t) = to.

Proposition 3.1.2 A positives sequence (Mp)pez, satisfies condition (H1) if and only if

M,, = Mysup[tP exp(—M(t))], p € Z+

t>0

Proposition 3.1.3 Let the sequence (M,),ez, satisfy condition (H1), then it satisfies (H2) if
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and only if 3A >0, 3H > 0, Vt > 0,

2M(t) < M(Ht) + In(AM,).

The class of ultradifferential functions of class M, denoted EM (), is the space of all f €
C>(Q) satisfying for every compact subset K of Q, 3¢ > 0, Va € Z7,

sup |0 f ()] < cl*M,, (3.1)

zeK

This space is also called the space of Donjoy-Carleman.

Example 3.1.4 If (M,)pez, = (p!?)pez, we obtain E°(SY) the Gevrey space of order o, and

A(Q) := EY(Q) is the space of real analytic functions on the open set 2.

A differential operator of infinite order P(D) = ) a,D" is called an ultradifferential oper-
vEZi

ator of class (M,)pez., , if for every h > 0 there exist ¢ > 0 such that Vy € Z7,

3kl )
<c—— .
) < e (3:2)

The basic properties of the space EM () are summarized in the following proposition.

Proposition 3.1.5 Let the sequence (M,)pez, satisfy condition (H1), then the space EM(Q) is
an algebra moreover, if (M)pez, satisfies (H2)', then EM(Q) is stable by differential operators of
finite order with coefficients in EM(Q), and if (M,)pez, satisfies (H2) then any ultradifferential

operator of class M operates also as a sheaf homomorphism.
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The space DM(Q) = EM(Q) N D(Q) is not trivial if and only if the sequence (M,)yez,
satisfies (H3)’. To develop a local and microlocal analysis with respect to a "good" space of

regular elements.

Remark 3.1.6 The sequence (p!”)pez, satisfies (H3)" if and only if o > 1

Definition 3.1.7 The strong dual of DM (Q), denoted D™ (Q), is called the space of Roumieu

ultradistributions.

3.2 Generalized Roumieu ultradistributions

To consider the algebra of generalized Roumieu ultradistributions, we first introduce the algebra
of moderate elements and its ideal of null elements. Let {2 be a non void open set of R™ and
I =]0,1].

We will always suppose that the sequence (M,,),cz, satisfies the conditions (H1), (H2), (H3)

and M(] =1.

Definition 3.2.1 The space of moderate elements, denoted EM(Q), is the space of (f.). €

C>(Q)! satisfying for every compact K of Q, Va € Z1%, Fk > 0, Je > 0,3ey € I, Ve < &,

sup|or ()| < cexp(M (%) (3.3)

zeK

The space of null elements, denoted N™M(Q), is the space of (f.). € C=(Q)! satisfying for every
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compact K of ), Vo € Z% , Vk > 0, 3c > 0, Jegy € 1, Ve < &y,

sup 0 1.(2)| < cexp(~0(D)) (3.4)

rzeK

The main properties of the spaces EX(Q) and NM () are given in the following proposition.

Proposition 3.2.2 1) The space of moderate elements EM(Q) is an algebra stable by deriva-

tion.
2) The space NM(Q) is an ideal of EX(Q).
Proof.

1) Let (f.)e, (g-)c € EM(Q) and K be the compact of €, then

VB eZy, 3k =ki(B) >0, 3cr = c1(B) >0, g € I, Ve < g4,

sup |07 ()] < e exp M (D), (3.5)
zeEK £

VB € Z:L_, dky = kg(ﬁ) > 0, dey = CQ(/B) > 0, 3625 el, Ve < €28,

sup [0% . (2)] < eaexp M("2), (3.6)
€K £

Let o € Z7}, then

°(f.0.) ()] < (O‘) 00 £.(2)| [0%0.(2)]
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From proposition (3.1.3), we have 3A > 0, 3H > 0, Vt > 0,
2M(t) < M(Ht) + In(AM,) (3.7)

For k = H(max{ki(B),k2(8) : f < a}), ¢ < minf{eip,e95; 8 < a} and x € K, we have for

k
=2
£

xp (<M (£)) 1 (f9) (@) < exp(n(AMo)) 3 (3) exp (‘M (k_»

<o o) exp (~0r22)) .00

«

< A (Yala - Aeld) = o)

B=0
ie. (f.g.). € EM(Q). Tt is clear that for every compact K of €,

VBeZ}, Ik =ki(B+1)>0,3c1 =ci(f+1) >0, Jeqp € I such that Vo € K, Ve < g4,

0°(0f.)(2)] < exp(Mé)),

ie. (0f.). € EM(Q).

2) If (g.). € NM(Q), for every K compact of Q, VB € Z, Vky > 0, Jeo = 2(B,k2) > 0,
3625 el,

k
10%g.(2)] < ¢ exp(—M(§>>, Vi € K, Ve < eqg
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Let o € ZT} and k > 0 then

exp (M (2))10°(fege)(@)] - < exp (M (2)) ;_0 (3) 0777 f-(2)] |079: ()]

Let ke = H.max{ki(5), k; 8 < a} and € < min{eip,£95; 5 < a}, then Vz € K, we have for

t =" in (3.7)

£

o (V () (L)@ < A (oxw (<21 (2)) o o)

=0 €

< exp <M<%>> 10%9.(a)

< AY (erla - BealB. k) = cla k)

Which shows that (f.g.). € NM(Q)

Definition 3.2.3 The algebra of generalized Roumieu ultradistributions of class (Mp)pez, , de-

noted GM (), is the quotient algebra

Definition 3.2.4 If (M,)pcz, = (p!7)pez, we obtain G7(2) the algebra of generalized Gevrey

ultradistributions
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3.3 Embedding of Roumieu ultradistributions

Let N = (Np)pez, be a sequence satisfying the conditions (H1), (H2), (H3)" and Ny = 1, the

space SV(R™) is the space of functions ¢ € C*(R™) such that Vb > 0, we have

|x|\f3|
= — |0° dx < 3.8
lelh = sup | sy el < oo (3.

Define XV as the set of functions ¢ € SV (R") satisfying
/(b(x)dx =1 and /xagzﬁ(x)dx =0, VYaeZIN\{0}.

Definition 3.3.1 The net ¢. = e "¢(./c), € € I, where ¢ € X is called a N— mollifier net.

Let (Lp)pez, satisfying (H1), (H2), (H3)' ,the space EX(2) is embedded into GM(2) by the
standard canonical injection

I: EMQ) — GM(Q) ",

Where f. = f, Ve € I.
The following theorem gives the embedding of Roumieu ultradistributions into GM(Q). Let M
and N two sequences satisfying (H1), (H2), (H3)" with My = Ny = 1,M,, > N,, Vp € Z" and

pexh.
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Theorem 3.3.2 The map

Jo: Eyun(Q) — GM(Q) (3.10)

T = [T]=d((T * ¢.) )

1s an embedding.

Proof. Let T' € E), 5 () with suppT C K, then there exists P(D) = > a,D? an ultrad-
7621
ifferential operator of class (M,N,)pez,, C > 0, and continuous functions f, with suppf, C K,
VyeZt,and sup |f,(z)| < C, such that

NEL zEK

T=)> aDf,

7621

We have

—1)hl
Troo) = Y a0 [ heapiotan

7621
Let a € Z7}, then
(0% 1 (0%
()@ < 3 [ 15+ o)l (D760 d.
YEZY

From (3.2) and condition (H2), we have 3A > 0, 3H > 0, Vh > 0, Jc¢ > 0, such that

Rl 1
|0%(T * ¢.) ()] < Cwe%mﬁﬂf”(x“y” [ DY (y)| dy

A" N 1 |DV g (y))|
< ¢ e +ey)| e dy
wezzjzt My Ny ghte J15 s ' Nital

R eI M N 1
< A O - cllll
VEL My 4ql ghrtel o
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then,
SN T )@ < cOaloly 5 2
< cexp (M (%))
i.e.
(0] < clajesp (31 (1)) (3.11)

Where k = 2h HbD.

Suppose that (T * ¢.). € NM(Q), then for every compact L of 2, 3¢ > 0, Vk > 0, Jgo € 1,

T % ¢_(x)| < cexp (—M(g)) Ve € L,Ve < g (3.12)
Let x € DMN(Q) and y = 1 in a neighborhood of K, then Vi) € EMN(Q),

(T.0) = (o) = liny [ (75 0) @@

Consequently, from (3.12), we obtain

(T ) @) < cexp (—M (5)) Ve<e

€

Which gives (T,¢) =0

Notation 3.3.3 If M = (M,)pez, and N = (Np)pez, are two sequences, then

MN-':= (Mpril)p€Z+
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In order to show the commutativity of the following diagram of embeddings

DMNTH(Q) - GgM(Q)
N T

Eyn ()

We have the following fundamental result

Proposition 3.3.4 Let f € DMN'P(Q) and ¢ € £V, then

(f = (f * 6.)s0): € NH ().

Proof. Let f € DMN'?/(Q)), then there exists a constant ¢ > 0, such that

M,
0% f(2)] < C‘“'“ﬁ&!ﬁa €Z" Nz € Q.

laf

Let a € Z7}, the Taylor’s formula and the properties of ¢, give

O (f 6. — ) Z/ D 305 (€60,

|8|=N

Where © < € < x + cy. Consequently, for any b > 0, we have
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B
°(f 6 — f)a)] < Nlmsz’y‘ 5 £()6(y)dy

bPINg Miasg(cr + B)!
IB=N B'Njat g

N\oz+,3| o B |y|‘ﬁ‘
S 0 0] o

el ol Ay o)
CN—HgN ST b8 HIBI M g
o Bl=N

IN

3

IN

Aol n

Let k>0 and T" > 0, then

10%(f * ¢, — £)(2)| < c(a)e My(KT)™N Z (kTbHc)?

|8|=N

C|a‘H‘O‘|M|a‘Oé!

h =A
Where efa) = A 6], 5~

1
. Taking kTbHc < 5’ with a > 1, we obtain
a

18]
0°(f %6 — (@) < (@) My(kT)Na N 3 (1)

g=n \2
< c()eNMy(KT)Na=N.

M, M
Let g9 € I such that egM; < 1 and take T" > %, Vp > 1.
P

Then, see [31], there exists N = N(¢) € Z, such that

Which gives

k
aN <exp <—M <g)> and e¥ My (KT)™ < 1
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if we take a > 2. Finally we have

0°(f * 6. — f)(x)] < cexp (‘M (ﬁ»

ie (fx¢. - f)e e NY(Q) m
As in [24] and [2], we embed D), () into GM () using the sheaf properties, then we have

the following commutative diagram

ENP(Q) — GM(Q)
¢ /

Diyn (€)
3.4 Regular generalized Roumieu ultradistributions

Definition 3.4.1 The space of N -ultraregular moderate elements of class M, denoted EMN-+°(Q),

is the space of (f.). € C*(Q) satisfying: VK € Q, Ik >0, Jc > 0, J¢, €0,1], Vo € ZT}

sup [0° ()] < Ny exp(M (D))
xeK £

The space of null elements is defined as NMN+°(Q) .= NM(Q) N EMN+o0(Q).
The main properties of this two spaces are given in the following proposition.

Proposition 3.4.2 1) The space EMNT°°(Q) is an algebra stable by the action of

N -ultradifferential operators.

2) The space NMN+2(Q) is an ideal of EXNT(Q).
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Proof.

1) Let (f.)e, (ge). € EMNA(Q) and K be a compact of €, then

dky > 0, deg > 0, dey 6]0, 1], Va € ZT_:_, Ve <eq:

o k
sup 07 £.(x)| < e Vo exp(M (1))

rzeK

We have also 3k, > 0, Jcp > 0, Jep €]0,1], Va € Z7, Ve < e

o k
sup [0%g(x)| < 0‘2 |+1N|a‘ exp(M(—Q))
rxeK g

let o € Z%, A\, Ay € Z7, it’s clear that dc = max(ci,c2), Ik = (A + Xo)maz(ky, ka),

deg = min(eq,e2) such that: Ve < g
k
07 (M fel@) + Dage ()] < ™M Njgexp(M(2))

So ()\1f1 + )\2f2) € 8%’N’+OO(Q>.

And we have

B

|0%(fege) ()] < (3) [0°77 fe(@)] - [07g- ()|

T
o)

(3) & N g Njgy exp(M (2) + M (k2))

€

[\
=

i
o

then 93A > 0, 9dH > 0,Vt > 0

OM(t) < M(HL) + In(A).



82 Generalized Roumieu ultradistributions

t = tmaz(ky, ko) = £, C = maz(ci, cp).

0°(fog:) ()] < é(g).A.O'a'“MM.exp<M<7k>>

< RNy exp(M(E)

Then (f..g:). € ExN(9).

Let now P(D) = Xa, D" be an N-ultradifferential operator, then VA > 0, 3b > 0, such that

YEZLY N\a—i—'y\

< b > A(H)letIph

WGZi

hence for Hh < % we have

0*(P(D) ()] < ¢/ H"

which shows that (P(D)f.). € EXN>0(Q).

2) The fact that NMN20(Q) = NM(Q) N EMN2(Q) € EMN<(Q).

And NM(Q) is an ideal of £M(Q), then NMN> is an ideal of EMN(()

Definition 3.4.3 The algebra of N—ultrareqular generalized functions of class M = (Mp)pez, ,
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denoted GY7°(0), is the quotient algebra

EMN(Q)

M,00 _
N (Q) - NMvaoo(Q)

The basic properties of G'>(Q) are given by the following result
Proposition 3.4.4 The space Q%“’(Q) is a sheaf subalgebras of GM(Q).
This motivates the following definition

Definition 3.4.5 We define the Q%’m—singular support of a generalized ultradistribution
f€GM(Q), denoted by N — singsupp,(f) as the complement of the largest open set ' such that

f ey Q)
The following result is Paley-Wiener type characterization of Gy (€2).

Proposition 3.4.6 Let f = cl(f.). € GM(Q), then f is N—ultraregular if and only if

dky > 0, dko > 0, dec > 0, dey > 0, Ve < g4, such that
k
IF(E)] < cexp(M(Z) = N(ka[€])), V€ ER™ (3.13)

Proof. Suppose that f = cl(f.) € GM(Q) N Gr">(Q) then 3k > 0, 3¢ > 0, Jg; > 0,
Ve < ey, Va € Z7,

07 F.(2)] < co‘|+1.Na|.exp(M(§))

Consequently we have, V§ € R" Vo € Z1,

%1 F (O] <

/K exp(—ia€)0" f.(x)da
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Then

€% F(f)(E)] < mes(K) . Nig. eXp(M(g))

IF(f) )

IN

IN

IN

IN

Niqf

clot 1 mes(K)

lof A
c.mes(K).inf( ¢ " |a||a‘

1

su
ap( Cla‘N‘od

1
c.mes(K)

. ‘5"04 .ex

PN

exp(In(sup(

take ko = 1, C' = cmes(K), Ve < &

e )

(el Ny )

FUNE)] < € exp(—N (ks [e]). exp(0(2)

So we have (3.13).

Suppose now that (3.13) is valid. Then Ve < gq:

0% 2 ()]

IN

IN

IN

¢ | fion exp(iz€) € F(f2)(€)dE]

cexp(M (%)) fon 1671

exp(—N(kz [€]))dx

cexp(M (& ))sup(|¢*| exp(—N (k2 |£])))

¢l

C|a|“.N|a|. exp(M(kE—l))

With C = maz(c, ). i.e: f. € G =(Q).

ko
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Remark 3.4.7 Let f = cl(f.) € GM(Q), then Tky > 0, Jc > 0, Jgo > 0, Vky > 0, Ve < &,
k
F(f)O] < cexp(M(Z) + N(ka[€])),  VEER™ (3.14)

The algebra Q%’OO(Q) plays the same role as the Oberguggenberger subalgebra of regular

elements G*(£2) in the Colombeau algebra G(£2).

Theorem 3.4.8 We have

Garp (D) 0 Dy (2) = BMN7 (@),
Proof. Let S € Q%ﬁo_lp!(ﬁ) N Dy n (). For any fixed zo € , we take ¢ € DMN(Q), with ¢ =1
on a neighborhood U of 5. Then: T = ¢S € Ej,;,(Q). Let ¢, be a net mollifiers with ¢ = ¢
and let x = 1 on K = suppy. and x € DMV '7/(Q).

As [T] € Gynta,y (), Tk >0, Fkp > 0, 3oy > 0, Fey; >0, Ve < &
k -
FOUT * 6))(€)] < exexp(M () = MN7'pl(k [¢]))

[IFOX(T* 0 ))(&) = F(TNOI = [F(T*¢))(€) = FIXT)(E)]
= [(T(2), (x(z)e™) * 6. (x) — (x(2)e™"))|
As Eyn () C Ejyn-1,(€2), then 3L € € such that VA > 0,3c > 0 and

hlal

su
aGZQL_gEL%|a|!
Nal

[FOX(T* ¢)) (&) = F(T)(E)] < ¢ |02 (x(@)e ™ * ¢ (x) — x(x)e ™))
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We have e~y € DMN'P(Q)), we obtain Vks > 0, I, >0, I > 0,Ve <,

hlel
SU

P s Mol |02 (x(@)e™ x ¢ (2) — x(2)e™")| < crexp(=M(=))
aGZi,xELm|a|[

So there exists ¢ = ¢/(k3) > 0, such that

FOUT *6))(€) — FT)(E)] < ¢ exp(~M())

Let € < min(n,ey), then

IF(T)Q] < |[FI)NE = FX(T x¢.))| + [FX(T * ¢.))]
< ¢oexp(=M(B)) + ey exp(M(E) — MN'pl(k2[€])
klp!% ]ﬁ?"
Take ¢ = max(cy,c), € = T+, 7 €]0, k[ and k3 = , then 36 > 0, dc > 0 such
(k2 —r) [§| Ny 20

that

[ F(T) ()] < cexp(=MN~'p!(5[¢]))
Which means T = ¢S € EMN7'P(Q). As ¢» = 1 on the neighborhood U of z,, consequently

S € EMNT'PY(Q)). Which proves

GMeo Q)N D, (Q) C EMNTP(Q).

MN—1p!
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We have EMN™'7(Q) ¢ EMN(Q) € D)y (Q), EMY Q) C Gyrnt1,(Q) then
EMNTIPN(Q) ¢ gﬁﬁ‘ilp!(ﬂ) N D)y (2). Consequently we have
Garnan () N Dy n(Q) = EYN7P(Q).
O

3.5 Generalized Roumieu wave front

The aim of this section is to introduce the generalized Roumieu wave front of generalized Roumieu

ultradistribution and to give its main properties.

Definition 3.5.1 We define Zﬁ“v(f) C R™\{0}, f € GM(Q), as the complement of the set of

points having a conic neighborhood I' such that 3k; > 0, dky > 0, dc > 0, dgg € I, V€ € T,

VéE e T, Ve < g,

FUE)] < cexp(M() ~ Nk e])

The following essential properties of ZT’N( f) are sufficient to define later the generalized

Roumieu wave front of generalized Roumieu ultradistribution
Proposition 3.5.2 For every f € GM(Q) we have

1. The Set Z;W’N(f) is closed cone.

2. 5N (f) =0 = [ e gt

3. 0N wf) SN (F), Vi € EN(Q).



88 Generalized Roumieu ultradistributions

Proof. One can easily, from definition (3.5.1) and proposition (3.5.2), prove the assertion 1
and 2.
Let suppose that &, & Zﬁ/l’N(f), then 3I" a conic neighborhood of &,, 3k; > 0, Ik > 0, Je; > 0,

dey >0, V€ €T, Ve € gy,

PO < e exp(M() ~ Nk e])

Let x € DY(Q), x = 1 on neighborhood of supp(f), so x¢» € DN(Q), Vi € EN(Q) hence from

[27] dk3 > 0, dey > 0, V€ € R,

[F(x)(€)] < c.exp(=N (ks [¢]))
Let A be a conic neighborhood of &, such that A C T' we have for a fixed £ € A,

= [y F(f)n).Fx)(n — &dn + [5 F(fo) (). F(x)(n — £)dn

Where: A = {n: [{—n| < 6([¢| + [n)} and B = {n : [{ —n| > (|| + [n])} Take ¢ sufficient

small such that: 1<l <|nl < 2|, Vn e A, then 3¢ > 0, Ve < g4

|
2

[ F 0T 0~ an| < cvcaeap((2) - NG5 x [ exp-N sl - an

A
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then 3¢ > 0, 3k, > 0

k1
[ FEAF )0 = dn] < cesp(M () = N ¢D) (3.15)
As GM(Q), from remark (3.14), Jcg > 0, Fpuy > 0, Jeg > 0, Yy > 0, VE € R™, Ve < g9, such that
FUE)] < coxp(M(EL) + N(us )

Hence, for ¢ < min(ey,es), we have

|5 F( Fx)(n—&dn| < cacs.exp(M(%2)) | [ exp(N (g In]) — N (ks |n — €]))dn]

< coexp(M(%2)) | [ exp(N (uy [n]) — N(ks8(|&] + [n])dn|

Then takin: p, < k30, we obtain

[ F-F o) = dn| < cexp((2) - N ) (3.16)
Consequently, (3.15) and (3.16) give £, ¢ Z;WN(@Z)f) O
Definition 3.5.3 Let f € GM(Q) and xy € Q, the cone of N—singular directions of f at xy,
denoted Zg/fxév(f), is

SMN () — ﬂ{Eéw’N(cpf) c o € DM(Q) and ¢ =1 on a neighborood of x,}

9,0
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Lemma 3.5.4 Let f € GM(Q), then
Zyxév(f) =0 < x9 ¢ N — singsuppy(f)

Proof. Let zg ¢ N — singsuppy(f), i.e. 3U C Q an open neighborhood of z, such that
f e gy ), let ¢ € DM(U) such that ¢ = 1 on a neighborhood of z, then ¢f € Gr' ().
Hence, from the proposition (3.5.2), Zy’N(@f) =0, ie. ZM’N(f) = 0.

9,70

Suppose now S "PN(f) =, Ve € R"\{0}, IVe € V(z0), Jwe € € a conic neighborhood of .

9,20

3k, > 0, dky > 0, dc > 0, deg > 0, V§ € Wf, Ve < €0, V¢£ S DM(Q)

F(6e(©)] < e-exp(M(") ~ N (ks e])

Since the unit sphere |{| = 1 is a compact set, then one can find finite points §;,7 = 1,...,n in

R", W; € & and ¢; € DM(Q), ¢;(z) = 1in V}, ky >0, Fky > 0, Fe > 0, £ > 0, Ve < g
k
[F(6,£)(©)] < c.oxp(M(Z) = N(ka[¢])), £ €W,
Taking V =NV, and W =JW;, ¢ = ¢;...9,,, we have ¢ € DM(Q) and p(z) =1 on V.
J J

Fef)©)] < cop(M(h) - Nk ), €W

Consequently, (pf.) & Q%fo where: zg € N — singsupp,(f) O

Definition 3.5.5 A point (xo,&,) € WF"N(f) € QxR"\{0} If{, ¢ SOMN(F), de: there eists

9,0
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¢ € DM(Q),¢(x) = 1 neighborhood of xo, and conic neighborhood T of &,, Tk > 0, Jky > 0,

de > 0, deg > 0 such that: V¢ € T, Ve < &,

FO£)(E)] < cexp(M(2) ~ N(ka e))

The main proprieties of the generalized Roumieu wave front W F gM’N are subsumed in the fol-
lowing proposition:
Proposition 3.5.6 Let f € GM(Q), then

(1) The projection of WEF"N(f) on Q is N — sinsuppg(f).

(2) If f € GM(Q), The projection of WE}N(f) on R™\{0} is ZéwN(f)

(3) Va e 27, WEN(9f) € WEN(f).

(4) Yg € G\(Q), WEMN (gf) € WEMN(f).

Proof. (1) and (2) hold from the definition, Proposition (3.5.2) and lemma (3.5.4).
(3) Let (x0,&0) € WEMN(f), then 3p € DM (), ¢ = 1 on a neighborhood U of zq, there exist

a conic neighborhood T of £,, 3k; > 0, Tky > 0, ey > 0, Je¢ €]0, 1],such that V€ € T, e < ey,
k1
F(2f) O] < creap(M(Z) = N(k: [€])) (3.17)
We have for v € DM(U) such that ¢(zg) = 1.

[F@OL)E] = [FOW))E) = F(09)f(E)]
< [EHF@ef) ]+ 1F((09)of:)(E)]
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As WESEN (0 f) € WESN(f), (3.17) holds for both [F(f.)(€)] and [F((9¢)of:)(S)]-

So
ENF(of)(E)] < [€lexp(M (%) — N(ks [€]))
< exp(M(%) - N(ks [¢])
With ¢ > 0, ks > 0, such that €] < ¢ exp(M (ky |€]) — M (ks |€])) Which proves
(20, &) & WESN(0).
(4) Let (z0,&,) &€ WFMN(f) then 3¢ € DM(Q), ¢ = 1 on a neighborhood of zq, & & 0" (¢f)
by proposition (3.5.2), for g € Gy (), we have & & 37" (gof)

which proves: (zo,&y) € WF}"N(gf). O

Corollary 3.5.7 Let P(z,D) = 3 aq(z)D* be a partial differential operator with Ga ™ (Q)

la|<m

coefficient, then: WFgM’N(P(m, D)f) cC WFJW’N(f), VfegMQ).

Lemma 3.5.8 Let o € DM(B(0.2)), 0 < ¢ <1, and ¢ = 1 on B(0,1) and let ¢ € SM, then

de >0, Jv >0, Jgg > 0, Ve €]0, 5], V€ € R,

Where: 0c(z) = (2)".¢(%).o(x(Inel)), and 0 denoted the Fourier transform of 0.

Proof. We have, for ¢ sufficiently small, ¢ < [lne| " <1

Let £ € R", then

06) = = [ Ol — ) e B
= el [, (€ = M) + [y e — )@
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Where A = {n: ¢ —n| <d(|¢|+|n)} and B = {n: |€ —n| > §(|¢]+|n|)} We choose § sufficiently
small such that @ <|nl <2¢|, Vn € A.

Since ¢ € DM(Q), ¢ € SM then: Tky, ky > 0,3cy, ¢ > 0, VE € ‘R,

|[2(&)] < crexp(=M(k [£]))

And

BE)| < 2 exp(=M (ks [€]))

So

I, = |lng|™

L4 0lele = )2

< crcpexp(—M(%5eh) [ exp(—M(kie € —nl)dn

Let z = e(n — &), then

L < ceexp(—M(% e [€])) [exp(—M(ky |2]))dz

< ceMexp(—M(ve [€]))

For I, we have

I, = |lneg™

S $(e(€ = )@ ()

c16s [y exp(—=M (ke |€ = n]) — M (ko))

IA

IN

cexp(—M (kide [€])). [, exp(—M (kide [n]) — M(kz Ine| ™ |n]))dn

IA

cexp(—=M (k10 [€])). [ exp(—M (kge |n]))dn

IN

ce™" exp(—M (ve [€]))
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Consequently, 3¢ > 0, Jv > 0, Jgq > 0, Ve < gg such that

0.(6) < cemexp (—M(ueel),  VEER

Theorem 3.5.9 Let T € D),y (Q) N GM(Q) then WFMMN™'#(T) = W FMN'#(T)

Proof. Let § € Ej () C Bl () and ¢ € DNP(1), we have: [F($(S * 6.))(€) — F(1:S)(€)| =

}<S(x), (Y(z)e %) % ¢_(x) — ((z)e™¢))| Then 3L a compact of Q such that VA > 0, Jc > 0,

laf . . A
[F (S *9.))(§) = F(S)(§)] < C(}g;g];@ M}La' 02 (W (z)e ™ x . (z) — Y(z)e ™)

la|

We have e~%1) € DN¥P(Q), then, Jea, Vko > 0, I > 0, Ve < 7,

c : . ‘ kg
sup 52— 02 ((x)e " % d,(x) — wlx)e )| < cpe M)
(o}

So there exist ¢ > 0, Vko > 0, In > 0, Ve < 7, such that

IF(WS)(€) = F(S % 6.)(€))] < e M) (3.18)

M
Let T € Dy, n(Q)NGM(Q) and (o, yo) & WFgM’Np!(T), Then there exist y € D¥?(Q), x(z) = 1

in a neighborhood of g, and a conic neighborhood T" of &,, Ik; > 0, Fky > 0, Jc; > 0, Jgo €]0, 1],
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such that: V& € T', Ve < e,

k

FOAT #0.))(€)] < oM~ Rothale) (3.19)

Let ¢ € D%p!(Q) equal to 1 in neighborhood of xy such that for sufficiently small ¢ we have

X = 1 on suppy + B(0, %), and let ¢ € D¥?'(B(0,2)); 0 < ¢ < 1 and ¢ = 1 on B(0,1), then

Ine|

there exist g < 1, such that Ve < g,

P(Tx 0c) () = p(XT * 0c ) ().

Where 0.(z) = oz |Ine|)¢(2). As xT € Ejn (), then

P(Tx 0c)(x) = p(XT * 0c ) (x) = p(XT * ¢.) ()

Let ¢ < min(n,eo) and £ € I', we have

(FWT)E < |[FET)E) = FW(T +02))(E)] + [F (T 0:))(E)]
< JFWXT)E) = F(o(XT * 6.)) ()] + [F (T 62)) (8)]

Then by (3.18) and (3.19), we obtain

k, k

| F(T)(E)| < e M) 4 ¢y M ) MN T plkzle])
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1
kyp!» k
Take ¢ = max(cy,d), e = 1P =, 1 €0, ko[ and ko = &

(k2 —r) |¢| NF 2=

, then 36 > 0, dc > 0 such
that

IF(XT)(€)] < e NPOlD,

. Mo Mo M, p!
Which proves that (xg,&,) € WF~P(T).So WFE~P(T) C WE, N7 (T).
Suppose that (z9,&,) & WENP(T), then there exist x € D¥?(Q), x(z) = 1 in a neighborhood

of xy, a conic neighborhood I" of £, 3\ > 0, ¢; > 0, such that V{ € I’
IF(YT)(E)] < crem NPALD, (3.20)

Let ¢ € D%p!(Q) equals 1 in neighborhood of xq such that for sufficiently small € we have: y =1

on suppy + B(0, =), then there exist ey < 1, such that Ve < &,

[Ine|

¢<T * 6’5)(.T) - w(XT * 96)<I>

We have

F(T % 6.))(€) = / F)(E — n).FOT) (1) F(0.) ().

Let A be a conic neighborhood of &, such that, A C T'. For a fixed £ € A, we have:

F(xT*0.))(§) = /A F@)E—n).F(XT)(n).F(0:)(n)dn+ /B F@)E=n).F(XT)(n)-F(0:)(n)dn

Where A = {n : [{—n| < ([¢| + |[n)} and B = {n : [¢—n[ = 6(|¢] + n])}. We choose §

sufficiently small such that A C T" and |g—‘ < In| < 2]€|. Since ¢ € DM(Q), then Iu > 0, Jcg > 0,
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Ve € R™,

F)(©)] < exexp(—xepl(ul€).

Then Jc > 0, Jgq €]0, 1], Ve < ep;

V)& — 1) FOT) () F(0:) (n)dn| < cexp(~3pl(5 JeD)x

M
[ exv(= gl - €. F 0. 0
A
From Lemma (3.5.8), 3¢z > 0, Jv > 0, Jeg > 0, such that:
|F(02)(€)] < cse e NekD we e R™

then de > 0, such that

| [y F)(E = n).FT) (). F(0:)(m)dn| < ¢ e exp(—Fpl(A[E]))x

| [y exp(—3Lp! (e [ — €]). exp(—N (ve [n]))dn)|

We have 3k > 0, Ve €]0, g,

= exp(—N(ve ) < exp(M (%)), (3.21)

So

W&~ FOD) ) FO)mdn| < cenr(h) - iy 2
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As YT € E| v(Q) C E’Mp!(Q), then VI > 0, 3¢ > 0, V¢ € R”,

FOINE)] < coxpl(5piIe])
Hence, we have

| [ F) (& —mFXT)m)F @) (m)dn| < e [exp(Zpl(l|n]) — Lpl(u[€ —nl)). |F(6.)| dn
< e exp(—=§ipl(pd [€]))x

S exp(Fp((L = pd) n]) — N(ve [nl))

Then, taking [ — ud = —a < 0 and using (3.21), we obtain for a constant ¢ > 0

[ P~ ) FOTI0) F O n)dn| < cexp(M(2) = Tpul€D)

M M
Which gives that (zo,§,) & WF;V[’NP!(T), SO WFgM’Np!(T) c WF~P(T). O

3.6 Generalized Hormander’s theorem

To extend the generalized Hormander’s result on the wave front set of the product, define

WEMN(f) +WEFN(f), where f,g € GM(Q), as the set:
{(z, € +n) € WESN (), (x,7) € WE(g)}

The principal result of this section is the following theorem.
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Theorem 3.6.1 Let f,g € GM(Q), such that: Vo € Q,

(2.0) & WEMN(f) + WEMN(g) (3.23)

Then

WESN(f.9) © (WEN(f) + WES () UWFSY (f) U W (g).

Proof. Let (zq,&,) & (WEN(f) + WEFMN(g)) UWEM!N(f) UWFMN(g), then:
3¢ € DY(Q); d(z0) = 1, & & ("N (o) + Ty (¢g)) U B (0f) U B¢V (dg) From (3.23) we

have 0 & SN (¢ f) + XN (¢g) then by lemma (2.8.1) i), we have

€0 & (BVN(f) + SV (6g)) USIN (of) USMN (¢g) = SV (G F) + Ey’N(d)g)W\{O}

Let Iy be an open conic neighborhood of ZMN (¢ f) + SN (¢g) in R™\{0} such that: &, & Ty

then, from lemma (2.8.1) i7), there exist open cones I'y and I'y in R™\{0} such that

SaN(gf) c Ty SN(gg) € Ty

And

I'i+IyCTly

Define I' = R™"\I'y, so
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Let £ eT"and € € 1.

F(0f09:)(&) = (F(ofe) * Fege))(€)
= fFQ F(¢f€)(§ - 77)-~7:(¢ge)(77)d77
Jrg F(@F)(& = n)-F(ge) (n)dn = 1(€) + L2(€)

From (3.24), 3¢; > 0, 3k, ko > 0, Je; > 0, such that: Ve < e, Vi € Ty,
k1
FOL)(E— )] < e exp(M(L) ~ Nk € — )
And from remark (3.4.7), 3eo > 0, k3 > 0, Vky > 0, Jeo > 0, V € R", Ve < ey,
ks
[F(99:)(m)] < ezexp(M(Z) + N(ky [n]))
Let v > 0 sufficiently small such that

€ =nl >~ +Inl), Vnel

Hence for ¢ < min(eq,e2),

ki + ks

[11(§)] < c1.co exp(M( ) = N(k2v [€])) /GXP(—N(kw 1) + N (ks [n]))dn

Take k4 > koy, then

/

1)) < ¢ exp((D) — NGk e])
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Let r > 0,

L(§) = frgm{|n|§r|§\} F(of) (€ —n).F(og:)(n)dn + ff‘gm{m‘zr‘ﬂ} F(of) (& —n).F(pg:)(n)dn
= Di(§) + ().

Choose r sufficiently small such that {|n| <r ||} = & —n & T'y. Then
E—n| > (1 —=7r)El > (1 =2r)[¢] + |n|, Consequently: Jez > 0, I, Ay, A3 > 0, ez > 0 such

that: Ve < eq;

1L1(O)] < ezexp(M(2)) [exp(=N(Az € —n]) = N(As n]))dn
< czexp(M(3) = N IED) [ exp(=N (s [n]))

< dyexp(M(2) — N(Ay[€]))

If |n| > r|£|, we have |n| >

7] +27” \§|, and then Jcq > 0, Iy, pg > 0, Yy > 0, Je4 > 0 such that

Ve S &y,

[12(8)] < caexp(M () [ exp(N(pg € —nl) — N(pg|nl))dn

< caexp(M (1)) [ exp(N(ps 1€ = nl) = N (s nl) — N (5 [€])dn

If take py < %”(1 + 1), we obtain

/

k
ol < ¢hexp(M (=) = Nt €])

Which finishes the proof. U
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