

Contents

General Introduction

06

Chapter 1. Introduction to artificial intelligence
1. General definition of intelligence 08
2. Definition of artificial intelligence 08
2.1. AI: Definitions According to four Orientations 09
3. Applications of Artificial Intelligence 09
4. Importance of Artificial Intelligence 11
5. Evolution of Artificial Intelligence history 12
6. Artificial Intelligence Approaches 14

Exercises 17

Chapter 2. Logics and Reasoning

1. Introduction 20
2. Definitions 21
3. Logical Connectives 23
4. Language of Propositional Logic 26
5. Limits of Propositional Logic 27
6. First-order logic 28
7. Non-Classical Logics 31

Exercises 34

Chapter 3. Search Algorithms
1. Introduction 38
2. Definitions 39
3. The State Space 40
4. Steps in State Space Search 46
5. Measuring problem-solving performance 47
6. Types of search algorithms 48
6.1. Uninformed search algorithms 48
6.1.1. Breadth First Search (BFS) 49
6.1.2. Depth First Search (DFS) 51
6.1.3. Comparison between DFS and BFS 54
6.2. Informed search algorithms 55
6.2.1. Hill Climbing 56

6.2.2. Greedy Search 60
Exercises 65

Chapter 4. Game Theory

1. Introduction 67
2. What Is Game Theory? 67
3. Formulation of game theory 68
4. Game Representation 69
5. Types of Game Theory 70
6. Search and decision-making algorithms 72
6.1. The Minimax algorithm 72
6.2. Alpha–Beta pruning 75
7. Limitations of Game Theory 77

Exercises 80

Chapter 5. Metaheuristic

1. Introduction 83
2. Metaheuristic Search Methods 83
2.1. Definition 83
2.2. Characteristics of Metaheuristics 84
2.3. Advantages of Metaheuristics 85
2.4. Limitations of Metaheuristics 85
2.5. Example of Metaheuristics algorithms 86
2.6. Applications of Metaheuristics 86
3. Simulated Annealing 87
3.1. Annealing Process 87
3.2. How Simulated Annealing works 88
3.3. Algorithm Steps 89
3.4. Pseudocode 90
3.5. Example of Problem: Minimize a Mathematical Function 91
3.6. Advantages of Simulated Annealing 93
3.7. Limitations of Simulated Annealing 94
4. Genetic algorithms 94
4.1. Definition 94
4.2. Terminologies of Evolutionary Computation 94
4.3. Encoding/Decoding 95
4.4. Selection 96
4.5. Crossover 99
4.6. Mutation 101
4.7. Algorithm Structure 102
4.8. Advantages of Genetic Algorithms 104
4.9. Limitations of Genetic Algorithms 105

Exercises 106

Chapter 6. Machine Learning and Neural Networks
1. Introduction 108
2. What Is Machine Learning? 108
3. Goals of Machine Learning 109
4. Types of Machine Learning 110
5. Machine Learning Tasks 112
6. K-Nearest Neighbors (KNN) 113
6.1. Definition 113
6.2. Distance Metrics 113
6.3. How KNN Works 117
6.4. Example 118
6.5. Advantages of KNN 119
6.6. Limitations of KNN 120
7. Neural Networks 121
7.1. Biological Neuron 121
7.2. History 122
7.3. Artificial Neuron 123
7.3.1. Correspondence between Biological Neurons and Artificial

Neurons
123

7.3.2. Formal Neuron 125
7.3.3. Bias 126
7.3.4. Activation Functions (Transfer Functions) 127
7.4. Architecture of Artificial Neural Networks 128
7.4.1. Single-Layer Perceptron 129
7.4.2. Multilayer Perceptron 129
7.4.3. Recurrent neural network 130
7.5. Learning 132
7.6. Weight Update in a Neural Network 133
7.6.1. Widrow-Hoff rule 134
7.6.2. Backpropagation algorithm 137
7.6.3. Weight initialization 140
7.7. Advantages and Limitations of Neural Networks 142

Exercices 144

General Conclusion

Bibliography

General Introduction

6

General Introduction

Artificial Intelligence (AI) has emerged as one of the most transformative
technologies of the 21st century, reshaping industries, enhancing decision-making, and
pushing the boundaries of what machines can achieve. From virtual assistants and
recommendation systems to autonomous vehicles and advanced medical diagnostics,
AI is revolutionizing the way we interact with technology and process information.

This lecture notes provides a structured and comprehensive introduction to the

fundamental concepts of AI, guiding readers through its core principles,
methodologies, and applications. The chapters are designed to build a strong theoretical
foundation while also highlighting practical implementations.

 Chapter 1: Introduction to Artificial Intelligence – Offers an overview of AI, its

history, key milestones, and different branches, including narrow AI vs. general
AI.

 Chapter 2: Logics and Reasoning – Explores symbolic AI, propositional and first-
order logic, and rule-based systems that enable machines to perform deductive
and inductive reasoning.

 Chapter 3: Search Algorithms – Covers classical search techniques such as
breadth-first, depth-first, A, and heuristic-based methods used in problem-solving
and pathfinding.

 Chapter 4: Game Theory – Examines strategic decision-making in competitive
environments, including Nash equilibrium, minimax algorithms, and applications
in economics and AI.

 Chapter 5: Metaheuristics – Introduces optimization techniques like genetic
algorithms, simulated annealing, and swarm intelligence for solving complex,
real-world problems.

 Chapter 6: Machine Learning and Neural Networks– Delves into supervised,
unsupervised, and reinforcement learning, along with neural networks forming
the backbone of modern AI applications.

By the end of this lecture notes, students will have acquired a well-rounded

understanding of AI’s key components, enabling them to explore advanced topics or
apply these concepts in research and industry.

7 Pr. Meftah Boudjelal

Chapter 1
Introduction to Artificial Intelligence

8 Pr. Meftah Boudjelal

1. General definition of intelligence

Intelligence can be defined as the ability to understand, learn, and adapt to new

situations. This includes the ability to solve problems, reason logically, perceive
relationships, and use knowledge effectively. Intelligence is not just about acquired
knowledge, but also about how this knowledge is applied in different situations. It
can also be perceived as the faculty to process information to achieve specific goals.

 According to A. Turing: what makes it difficult to distinguish between a task
performed by a human or by a machine,

 According to C. Darwin: what allows the survival of the fittest individual,
perfectly adapted to its environment,

 According to Yam (1998): An exact definition of intelligence is probably
impossible; the most likely: the ability to manage complexity and solve
problems in a useful context.

 According to Voss (2004): The ability of an entity to achieve goals. Greater
intelligence.

2. Definition of artificial intelligence

Defining precisely and definitively what artificial intelligence (AI) corresponds to is a
challenging task. This term generally refers to the set of techniques that enable the
integration of intelligent behaviors into a machine. The conditions necessary for
creating such a machine thus involve a wide range of knowledge domains, including
robotics, biology, signal processing, logic, statistics, and constrained optimization.
The debate on the definition of intelligent behavior and the means to reproduce it is
lively within the research community: Can simple logical principles explaining
intelligent behaviors be formalized? Can intelligence be reproduced through
symbolic manipulations? Is knowledge of human or animal biology necessary for
understanding intelligence? These are questions about which no consensus has
emerged in recent decades, given the complexity of the subject of intelligence.
Artificial intelligence (AI) is a set of theories and techniques aimed at creating
machines capable of simulating human intelligence. It includes devices that imitate
or replace humans in certain implementations of their cognitive functions. The term
'artificial intelligence' was coined by John McCarthy, who defined it as 'the science
and engineering of making intelligent machines, especially intelligent computer
programs.
Artificial intelligence (AI) produces machines that imitate humans:

 Simulates the intelligent processes of humans
 Reproduces the methods or results of human reasoning or intuition.

9 Pr. Meftah Boudjelal

According to Marvin Minsky: « ... the science of making machines do things that
would require intelligence if done by humans»
According to E. Feigenbaum: «AI is the part of computer science concerned with
designing intelligent computer systems»

2.1. AI: Definitions According to four Orientations
AI is a discipline that systematizes and automates intellectual tasks to create
machines capable of:

THINK like a human
(cognitive science  cognitive modeling)

think RATIONALLY
(logical approach)

“The automation activities that we
associate with human thinking, activities
such as decision-making, problem-solving,
learning.”(Bellman, 1978)

“The study of mental faculties through
the use of computational models”
(Charniak and McDermott, 1985)

ACT like a human
(test of Turing)

Act RATIONALLY
(achieve a goal)

“The art of creating machines that perform
functions that require intelligence when
performed by people” (Kurzweil, 1990)

“Computational Intelligence is the study
of the design on intelligent agents”
(Pool, 1998)

3. Applications of Artificial Intelligence

Artificial intelligence is a versatile technology that finds applications in almost every
sector of our society. Its potential to improve efficiency, reduce costs, and provide
innovative solutions is immense, and its adoption continues to grow at a rapid pace.

3.1. Healthcare
AI is revolutionizing the healthcare sector by improving diagnosis, treatment, and
patient management. Machine learning algorithms are used to analyze medical
images, predict diseases, and personalize treatments. For example, AI helps detect
anomalies in X-rays and predict epidemics.

3.2. Finance
In the financial sector, AI is used to automate tasks, improve decision-making, and
reduce risks. Applications include fraud detection, portfolio management, and
predictive analysis of financial markets. AI algorithms also enable better account
management and the generation of financial reports.

10 Pr. Meftah Boudjelal

3.3. Transport
AI plays a crucial role in the development of autonomous vehicles and the
optimization of transportation systems. AI technologies are used for navigation,
traffic management, and predictive maintenance of vehicles. Intelligent
transportation systems improve the efficiency and safety of travel.

3.4. Commerce and Customer Service
Conversational agents (chatbots) and personalized recommendation systems are
examples of AI in commerce. These technologies enhance the customer experience by
making service more accessible and personalized. AI also helps analyze purchasing
behaviors and optimize marketing strategies.

3.5. Agriculture
AI is used to optimize agricultural yields, manage resources, and monitor crop
health. Drones equipped with sensors and data analysis systems enable precision
agriculture, thereby reducing costs and increasing productivity.

3.6. Security
In the field of security, AI is used for facial recognition, video surveillance, and the
detection of cyber threats. AI systems can analyze real-time data streams to identify
suspicious behaviors and prevent security incidents.

3.7. Education
AI is transforming education by personalizing learning paths and providing
automated assessment tools. Online learning platforms use algorithms to adapt
content to the individual needs of students, thereby improving teaching efficiency.

3.8. Industry
In the industrial sector, AI is used for process automation, predictive maintenance,
and supply chain optimization. Industrial robots equipped with AI can perform
complex tasks with high precision, increasing productivity and reducing errors.

3.9. Justice and Public Safety
AI is used to analyze criminal data, predict crimes, and improve the efficiency of law
enforcement. AI systems can help identify criminal patterns and optimize resources
for crime prevention and resolution.

3.10. Environment
AI contributes to the fight against climate change by optimizing the management of
natural resources and predicting extreme weather phenomena. AI technologies are
also used to monitor biodiversity and manage ecosystems."

11 Pr. Meftah Boudjelal

4. Importance of Artificial Intelligence

AI has the potential to transform many aspects of society and the economy,
improving efficiency, stimulating innovation, and solving complex problems.

4.1. Improvement of Efficiency and Productivity

 Automation: AI can automate repetitive and tedious tasks, freeing up time for
humans to focus on more creative and strategic activities.

 Optimization: AI algorithms can optimize production, logistics, and
management processes, reducing costs and increasing efficiency.

4.2. Improved Decision-Making

 Data Analysis: AI can process and analyze large amounts of data quickly and
accurately, providing valuable insights for decision-making.

 Predictions: AI models can make predictions based on historical data and
trends, helping businesses anticipate future needs and plan accordingly.

4.3. Innovation and Creativity
 New Products and Services: AI can help develop new products and services

by identifying market opportunities and quickly testing ideas.
 Personalization: AI systems can offer personalized experiences to customers,

thereby improving satisfaction and loyalty.

4.4. Health and Well-being
 Medical Diagnosis: AI can help diagnose diseases more quickly and accurately

by analyzing medical images and patient data.
 Medical Research: AI algorithms can accelerate medical research by

identifying patterns and correlations in health data.

4.5. Security and Surveillance

 Cybersecurity: AI can detect and respond to cybersecurity threats in real-time,
thereby protecting sensitive systems and data.

 Surveillance: AI systems can monitor critical infrastructures, transportation
networks, and public environments to ensure safety.

4.6. Education and Learning

 Personalized Learning: AI systems can tailor learning programs to the
individual needs of students, improving the effectiveness of teaching.

 Intelligent Tutoring: AI-based virtual assistants can provide real-time
educational support, helping students better understand concepts.

12 Pr. Meftah Boudjelal

4.7. Sustainable Development

 Resource Management: AI can help optimize the use of natural resources,
thereby reducing environmental impact.

 Renewable Energy: AI algorithms can improve the efficiency of renewable
energy systems, contributing to the transition to a more sustainable economy.

5. Evolution of Artificial Intelligence history

5.1. Maturation of Artificial Intelligence (1943-1952)

 Year 1943: The first work which is now recognized as AI was done by Warren
McCulloch and Walter pits in 1943. They proposed a model of artificial
neurons.

 Year 1949: Donald Hebb demonstrated an updating rule for modifying the
connection strength between neurons. His rule is now called Hebbian
learning.

 Year 1950: The Alan Turing who was an English mathematician and pioneered
Machine learning in 1950. Alan Turing publishes "Computing Machinery and
Intelligence" in which he proposed a test. The test can check the machine's
ability to exhibit intelligent behavior equivalent to human intelligence, called a
Turing test.

5.2. The birth of Artificial Intelligence (1952-1956)

 Year 1955: An Allen Newell and Herbert A. Simon created the "first artificial
intelligence program" Which was named as "Logic Theorist". This program

13 Pr. Meftah Boudjelal

had proved 38 of 52 Mathematics theorems, and find new and more elegant
proofs for some theorems.

 Year 1956: The word "Artificial Intelligence" first adopted by American
Computer scientist John McCarthy at the Dartmouth Conference. For the first
time, AI coined as an academic field.

 At that time high-level computer languages such as FORTRAN, LISP, or
COBOL were invented. And the enthusiasm for AI was very high at that time.

5.3. The golden years-Early enthusiasm (1956-1974)

 Year 1966: The researchers emphasized developing algorithms which can
solve mathematical problems. Joseph Weizenbaum created the first chatbot in
1966, which was named as ELIZA.

 Year 1972: The first intelligent humanoid robot was built in Japan which was
named as WABOT-1.

5.4. The first AI winter (1974-1980)

 The duration between years 1974 to 1980 was the first AI winter duration. AI
winter refers to the time period where computer scientist dealt with a severe
shortage of funding from government for AI researches.

 During AI winters, an interest of publicity on artificial intelligence was
decreased.

5.5. A boom of AI (1980-1987)

 Year 1980: After AI winter duration, AI came back with "Expert System".
Expert systems were programmed that emulate the decision-making ability of
a human expert.

 In the Year 1980, the first national conference of the American Association of
Artificial Intelligence was held at Stanford University.

5.6 The second AI winter (1987-1993)

 The duration between the years 1987 to 1993 was the second AI Winter
duration.

 Again Investors and government stopped in funding for AI research as due to
high cost but not efficient result. The expert system such as XCON was very
cost effective.

5.7. The emergence of intelligent agents (1993-2011)

 Year 1997: In the year 1997, IBM Deep Blue beats world chess champion, Gary
Kasparov, and became the first computer to beat a world chess champion.

14 Pr. Meftah Boudjelal

 Year 2002: for the first time, AI entered the home in the form of Roomba, a
vacuum cleaner.

 Year 2006: AI came in the Business world till the year 2006. Companies like
Facebook, Twitter, and Netflix also started using AI.

5.8 Deep learning, big data and artificial general intelligence (2011-present)

 Year 2011: In the year 2011, IBM's Watson won jeopardy, a quiz show, where
it had to solve the complex questions as well as riddles. Watson had proved
that it could understand natural language and can solve tricky questions
quickly.

 Year 2012: Google has launched an Android app feature "Google now", which
was able to provide information to the user as a prediction.

 Year 2014: In the year 2014, Chatbot "Eugene Goostman" won a competition in
the infamous "Turing test."

 Year 2018: The "Project Debater" from IBM debated on complex topics with
two master debaters and also performed extremely well.

 Google has demonstrated an AI program "Duplex" which was a virtual
assistant and which had taken hairdresser appointment on call, and lady on
other side didn't notice that she was talking with the machine. Now AI has
developed to a remarkable level. The concept of Deep learning, big data, and
data science are now trending like a boom. Nowadays companies like Google,
Face book, IBM, and Amazon are working with AI and creating amazing
devices. The future of Artificial Intelligence is inspiring and will come with
high intelligence.

6. Artificial Intelligence Approaches

Artificial intelligence is a constantly evolving field, with a multitude of approaches
tailored to different types of problems. Each approach has its own advantages and
disadvantages, and the choice of approach often depends on the specific context and
objectives of the application.

6.1. Symbolic Approach
The symbolic approach, also known as symbolic AI, relies on the manipulation of
symbols and explicit rules to represent knowledge and solve problems. This
approach is often associated with expert systems, which use predefined rules to
make decisions.

Advantages:

• Transparency and explainability of decisions.

15 Pr. Meftah Boudjelal

• Effective for well-defined tasks with clear rules.

Disadvantages:

• Difficulty in handling unexpected situations or unstructured data.
• Requires deep domain knowledge to define the rules.

6.2. Statistical Approach (Machine Learning)
Machine learning is a statistical approach that enables systems to learn from data.
This approach includes techniques such as neural networks, decision trees, and
Bayesian methods.

Advantages:

• Ability to handle large amounts of data and adapt to new information.
• Used in various fields such as image recognition, fraud detection, and trend

prediction.

Disadvantages:

• Opacity of complex models (black box).
• Requires large amounts of data for effective learning.

6.3. Cognitivist Approach
The cognitivist approach aims to reproduce human mental processes using
computational models. This approach is influenced by cognitive sciences and seeks
to explain intelligent behavior through mental processes that manipulate
representations.

Advantages:

• Allows for a better understanding of the mechanisms of human thought.
• Used for applications requiring human interaction, such as virtual assistants.

Disadvantages:

• Complexity of models and difficulty in implementing them.
• Epistemological and philosophical challenges related to modeling human

cognition."

6.4. Bioinspired Approach
Bioinspired approaches draw inspiration from biological mechanisms to develop AI
algorithms. This includes techniques such as genetic algorithms, artificial neural
networks, and swarm systems.

Advantages:

• Ability to solve complex and non-linear problems.

16 Pr. Meftah Boudjelal

• Flexibility and adaptability of algorithms.

Disadvantages:

• Requires a deep understanding of biological systems.
• Can be computationally expensive.

6.5. Generative Approach
Generative approaches, such as Generative Adversarial Networks (GANs), are used
to create new data from existing models. These techniques are particularly effective
for generating images, texts, and other types of data.

Advantages:

• Ability to generate realistic and diverse data.
• Used in creative fields such as art, music, and design.

Disadvantages:

• Ethical risks associated with generating deceptive content.
• Complexity of models and the need for significant computational resources.

17 Pr. Meftah Boudjelal

Exercises

A set of multiple-choice questions (MCQs) on Introduction to Artificial Intelligence
(AI). These questions cover fundamental concepts of AI, its applications, and key
techniques.

1. What is Artificial Intelligence (AI)?

a) A branch of computer science that focuses on building machines capable of
performing tasks that typically require human intelligence.

b) A type of software used only for gaming.
c) A programming language for building websites.
d) A tool for creating hardware devices.

2. Which of the following is NOT a goal of AI?

a) To create systems that can learn and adapt.
b) To develop machines that can perform tasks without human intervention.
c) To replace all human jobs with machines.
d) To enable machines to understand and process natural language.

3. What is the difference between Narrow AI and General AI?

a) Narrow AI is designed for specific tasks, while General AI can perform any
intellectual task that a human can.

b) Narrow AI is used in robotics, while General AI is used in gaming.
c) Narrow AI requires human supervision, while General AI does not.
d) Narrow AI is a subset of General AI.

4. Which of the following is an example of Narrow AI?

a) A self-driving car.
b) A robot that can cook, clean, and write novels.
c) A machine that can solve any mathematical problem.
d) A system that can understand and replicate human emotions.

5. Which of the following is an application of Natural Language Processing (NLP)?

a) Speech recognition.
b) Image classification.
c) Predicting stock prices.
d) Clustering customer data.

18 Pr. Meftah Boudjelal

6. Which of the following is a key challenge in AI?
a) Lack of data.
b) Overfitting in machine learning models.
c) Ethical concerns about AI decision-making.
d) All of the above.

7. Which of the following is a key component of an AI system?

a) Data.
b) Algorithms.
c) Computational power.
d) All of the above.

19 Pr. Meftah Boudjelal

Chapter 2

Logics and Reasoning

20 Pr. Meftah Boudjelal

1. Introduction
It is common to hear "it's logical" when someone tries to share their point of view.
This seemingly innocuous expression actually asks those who hear it to adopt the
reasoning of the person saying it. Typically, this phrase implies an obviousness in the
statement that precedes it, but in reality, behind it lies an entire chain of reasoning—
whether by deduction, proof by contradiction, or elimination.

1.1 Brief History
The philosophers of Ancient Greece laid the foundations of logic. In particular,
Aristotle established the basics of logic. Aristotelian logic was taught for a very long
time and dominated thought at least until the Middle Ages. It was only very recently
that modern logic emerged.
It was Frege who laid the foundations of modern logic. The essential difference
compared to Aristotelian logic is that Frege took a mathematical approach to logic,
whereas Aristotle's logic was infused with philosophy. Frege thus developed
propositional logic and predicate logic.
While Aristotle used everyday language to conduct logical reasoning, Frege used a
symbolic language: ideography.
Leibniz had already attempted to create a logical language he called the "universal
characteristic," but unfortunately without success, as he did not achieve something
that satisfied him. Today, modern logical language is no longer ideography, which is
no longer used, but some symbols in modern logic are derived from this language.

1.2. The Importance of Logic
Logic is the study of the art of thinking correctly. It has become a cornerstone of
philosophy and mathematics, and more recently, it has also become essential to
linguistics and computer science.
In philosophy, logic plays a central role by offering rigorous methods to evaluate
ideas, theories, and arguments. Philosophers rely on logical principles to clarify
concepts, identify inconsistencies, and build coherent systems of thought. Logic
ensures that philosophical discourse remains grounded in reason rather than mere
speculation or subjective opinion.
Similarly, in mathematics, logic forms the foundation upon which all mathematical
truths are built. Mathematical proofs depend heavily on logical deduction, allowing
mathematicians to establish results with absolute certainty.
More recently, logic has expanded its influence into other domains, including
linguistics and computer science. In linguistics, logic helps analyze the structure of
language, enabling researchers to understand how meaning is conveyed through
syntax and semantics. For instance, formal logic provides tools for studying sentence
formation, quantifiers, and relationships between statements. Meanwhile, in

21 Pr. Meftah Boudjelal

computer science, logic is integral to algorithm design, artificial intelligence, and
programming languages. Computers operate based on binary logic (true/false),
making logical operations the backbone of computation. Concepts like Boolean
algebra, propositional logic, and predicate logic are essential for developing
software, designing circuits, and creating intelligent systems capable of reasoning.
Beyond academia, logic is also crucial in everyday life. Critical thinking—a skill
rooted in logical analysis—empowers individuals to make informed decisions, solve
complex problems, and communicate ideas persuasively. Whether evaluating news
sources, debating ethical issues, or planning strategic solutions, logical reasoning
enhances clarity of thought and fosters intellectual rigor. In this sense, logic
transcends specific disciplines, serving as a universal guide for rational inquiry and
effective problem-solving.

2. Definitions
2.1. What is logic?
Logic comes from the Greek word "logos," which means "speech, discourse," and by
extension "rationality." Thus, logic is the science of reason. More specifically, it is the
science that studies the rules that must be followed for any valid reasoning, enabling
one to distinguish between valid reasoning and reasoning that is not valid.

2.2. Propositional Logic
Propositional logic, also known as sentential logic or statement logic, is the simplest
and most fundamental branch of classical logic. It deals with the study of logical

relationships between propositions (statements or declarative sentences) that can be
either true or false.
In propositional logic, propositions are treated as indivisible units, meaning their
internal structure (e.g., subjects, predicates) is not analyzed. Instead, the focus is on
how these propositions are combined using logical connectives (such as AND, OR,
NOT, IMPLIES) to form more complex statements.

2.3. Definition of a Proposition
A proposition is a declarative statement that is either true or false, but not both. In
other words, a proposition is a sentence that expresses a fact or a claim that can be
objectively evaluated as either true or false.

Characteristics of a Proposition

1. Declarative:
o A proposition must be a statement that declares something, not a

question, command, or exclamation.
o Example: "The sky is blue." (Declarative)

22 Pr. Meftah Boudjelal

o Non-example: "Is the sky blue?" (Interrogative)

2. Truth Value:
o A proposition must have a definite truth value: it is either true or false.
o Example: "2 + 2 = 4" is true, while "2 + 2 = 5" is false.

3. Objective:
o The truth value of a proposition should not depend on personal

opinion or perspective.
o Example: "Water boils at 100°C at sea level." (Objective fact)
o Non-example: "Chocolate ice cream is the best." (Subjective opinion)

4. Atomic:
o In propositional logic, a proposition is treated as an indivisible unit. Its

internal structure (e.g., subjects, predicates) is not analyzed.
o Example: "It is raining." (Atomic proposition)

This excludes, among others, questions (a), imperatives (b), exclamations (c), and
more generally all so-called non-assertive statements, such as certain performatives
(d), certain phatic function statements (e), or the entire class of modalized statements
(f).
a) Is Said attending the class?
b) Close the door!
c) How kind she is!
d) I promise you I will come.
e) Can you hear me?
f) The exam will take place tomorrow.

2.4. Truth table
A truth table is a mathematical table used in logic to determine the truth value of a
compound statement based on the truth values of its components. It systematically
lists all possible combinations of truth values for the input propositions (variables)
and shows the resulting truth value of the compound statement for each
combination.

2.5. Tautology
A tautology is a logical statement or formula that is always true, regardless of the
truth values of the individual propositions (variables) within it. In other words, a
tautology is a statement that is true in every possible interpretation or scenario.

2.6. Satisfiable Proposition
A satisfiable proposition (or satisfiable formula) is a logical statement or expression
that can be true under at least one interpretation of its variables. In other words,

23 Pr. Meftah Boudjelal

there exists at least one assignment of truth values to the variables that makes the
entire proposition true.

2.7. Unsatisfiable Proposition (Contradiction)
An unsatisfiable proposition (or contradiction) is a logical statement or formula that
is always false, regardless of the truth values of its variables. In other words, there is
no possible assignment of truth values to the variables that makes the proposition
true.

Example: 𝑃 ∧ ¬𝑃

2.8. Consistent Proposition
A consistent proposition (or consistent set of propositions) is a logical statement or
collection of statements that can all be true simultaneously under at least one
interpretation of their variables. In other words, there exists at least one assignment
of truth values to the variables that makes all the propositions in the set true at the
same time.

3. Logical Connectives
Logical connectives are symbols or words used to combine or modify propositions in
logic. They form the basis of constructing complex logical expressions from simpler
ones.

3.1. Negation (NOT)
The negation connective, represented by the symbol ¬ or ~, inverts the truth value of
a proposition. If a proposition P is true, then ¬P (read as "not P") is false, and vice
versa. For example:
if P represents "It is raining," then ¬P means "It is not raining."
Negation is a unary connective, meaning it operates on a single proposition.

P 𝑷ഥ
T F
F T

3.2. Disjunction (OR)
The disjunction connective, represented by the symbol ∨, combines two propositions
and is true if at least one of the propositions is true.

For example:

24 Pr. Meftah Boudjelal

If P represents "It is raining" and Q represents "I am at home," then P∨Q (read as "P
or Q") means "It is raining, or I am at home."
Disjunction is inclusive, meaning it allows for the possibility that both propositions
are true.

P Q 𝑷 ∨ 𝑸

T T T
T F T
F T T
F F F

3.3. Conjunction (AND)
The conjunction connective, represented by the symbol ∧, combines two
propositions and is true only if both propositions are true.
For example:
If P represents "It is raining" and Q represents "I am at home," then P∧Q (read as "P
and Q") means "It is raining, and I am at home."
Conjunction is a binary connective, meaning it operates on two propositions.

P Q 𝑷 ∧ 𝑸

T T T
T F F
F T F
F F F

3.4. Implication (IF...THEN)
The implication connective, represented by the symbol →, expresses a conditional
relationship between two propositions. The statement P→Q (read as "If P, then Q") is
false only when P is true and Q is false. In all other cases, the implication is true.
For example:
If P represents "It is raining" and Q represents "I will stay at home," then P→Q means
"If it is raining, then I will stay at home."

P Q 𝑷 ⇒ 𝑸

T T T
T F F
F T T
F F T

25 Pr. Meftah Boudjelal

3.5. Biconditional (IF AND ONLY IF)
The biconditional connective, represented by the symbol ↔, expresses a two-way
conditional relationship between two propositions. The statement P↔Q (read as "P if
and only if Q") is true if both propositions have the same truth value.
For example:
If P represents "It is raining" and Q represents "I will stay at home," then P↔Q means
"It is raining if and only if I will stay at home."

P Q 𝑷 ⟺ 𝑸

T T T
T F F
F T F
F F T

3.6. Exclusive OR (XOR)
The exclusive OR connective, represented by the symbol ⊕ or ⊻, combines two
propositions and is true if exactly one of the propositions is true, but not both.
For example:
If P represents "I will go to the park" and Q represents "I will go to the cinema," then
P⊕Q (read as "P xor Q") means "I will go to the park or the cinema, but not both."

P Q 𝑷 ⊕ 𝑸

T T F
T F T
F T T
F F F

3.7. NAND (NOT AND)
The NAND connective, represented by the symbol ↑, is a combination of negation
and conjunction. The statement P↑Q (read as "P nand Q") is true unless both P and Q
are true.
For example:
If P represents "It is sunny" and Q represents "I am outside," then P↑Q means "It is
not the case that it is sunny and I am outside."

P Q 𝑷 ∧ 𝑸 𝑷 ↑ 𝑸

T T T F
T F F T
F T F T
F F F T

26 Pr. Meftah Boudjelal

3.8. NOR (NOT OR)
The NOR connective, represented by the symbol ↓, is a combination of negation and
disjunction. The statement P Q (read as "P nor Q") is true only if both P and Q
are false. For example:
If P represents "It is sunny" and Q represents "I am outside," then P↓Q means "It is
neither sunny nor am I outside."

P Q 𝑷 ∨ 𝑸 𝑷 ↓ 𝑸

T T T F
T F T F
F T T F
F F F T

3.9. De Morgan's Laws
De Morgan's Laws are fundamental rules in logic and set theory that describe the
relationship between logical connectives (AND, OR) and negation (NOT). These laws
are essential for simplifying logical expressions and are widely used in mathematics,
computer science, and digital circuit design.

 First Law (Negation of a Conjunction):
The negation of a conjunction (AND) is equivalent to the disjunction (OR) of
the negations.

𝑃 ∧ 𝑄തതതതതതത ⟺ 𝑃 തതത ∨ 𝑄ത

 Second Law (Negation of a Disjunction):
The negation of a disjunction (OR) is equivalent to the conjunction (AND) of
the negations.

𝑃 ∨ 𝑄തതതതതതത ⟺ 𝑃 തതത ∧ 𝑄ത

4. Language of Propositional Logic
The language of propositional logic (also called sentential logic) is a formal system
used to represent and analyze logical relationships between propositions. It consists
of a set of rules for constructing well-formed formulas (WFFs) using propositional

variables, logical connectives, and parentheses.

Well-Formed Formulas (WFFs)
A well-formed formula is a syntactically correct expression in propositional logic.
The rules for constructing WFFs are:

1. Every propositional variable is a WFF.

27 Pr. Meftah Boudjelal

o Example: P, Q, R.
2. If P is a WFF, then ¬P is a WFF.

o Example: ¬P, ¬(P∧Q).
3. If P and Q are WFFs, then (P∧Q), (P∨Q), (P→Q), and (P↔Q) are WFFs.

5. Limits of Propositional Logic

Propositional logic is a fundamental and powerful tool for reasoning about simple
logical relationships, but it has several limitations when it comes to expressing more
complex or nuanced ideas.

 Cannot Analyze Internal Structure of Propositions: Propositional logic treats
propositions as indivisible units (atomic statements). It cannot analyze the
internal structure of propositions, such as subjects, predicates, or quantifiers.

 Limited Expressiveness: Propositional logic is limited to expressing

relationships between simple propositions using logical connectives (e.g.,
AND, OR, NOT). It cannot express more complex relationships or
dependencies.

 No Support for Quantifiers: Propositional logic cannot express statements

that involve quantifiers like "all," "some," or "none."

 Cannot Represent Relationships Between Objects: Propositional logic cannot
represent relationships or properties of objects.

 No Support for Modalities: Propositional logic cannot express modalities like

"necessarily," "possibly," "in the future," or "in the past."

 Scalability Issues: As the number of propositions increases, the complexity of
propositional logic grows exponentially. This makes it impractical for large-
scale problems.

 No Support for Reasoning About Change: Propositional logic is static and

cannot represent or reason about changes over time.

 Limited to Binary Truth Values: Propositional logic assumes that
propositions are either true or false. It cannot handle uncertainty, partial truth,
or degrees of truth.

28 Pr. Meftah Boudjelal

Extensions to Overcome Limitations
To address these limitations, more advanced logical systems have been developed:

 Predicate Logic: Extends propositional logic to include quantifiers, variables,
and predicates.

 Modal Logic: Adds modalities like "necessarily" and "possibly."
 Temporal Logic: Incorporates time and reasoning about change.
 Fuzzy Logic: Allows for degrees of truth between 0 and 1.
 First-Order Logic: Combines predicate logic with quantifiers and relations.

6. First-order logic

First-order logic, also known as predicate logic or first-order predicate calculus, is a
formal system used in mathematics, philosophy, linguistics, and computer science to
express statements about objects and their relationships. It extends propositional
logic by introducing quantifiers, variables, and predicates, allowing for a more
expressive and precise representation of real-world phenomena.
First-order logic builds upon the foundation of propositional logic but goes further
by enabling the representation of individual objects, properties, and relations
between those objects. In propositional logic, statements are treated as atomic units
(true or false), whereas first-order logic allows for the decomposition of these
statements into smaller components. This is achieved through the use of predicates,
which describe properties or relations, and terms, which represent objects or entities
in the domain of discourse.
One of the main advantages of first-order logic is its balance between expressiveness
and formal rigor. Unlike natural language, which can be ambiguous and context-
dependent, first-order logic provides a precise and unambiguous framework for
representing knowledge. This makes it particularly useful in fields such as artificial
intelligence, where automated reasoning systems rely on formal representations to
draw conclusions from given premises. However, first-order logic also has
limitations, such as its inability to directly express certain higher-level concepts like
sets of sets or self-referential statements. These limitations led to the development of
second-order logic and other extensions, but first-order logic remains a cornerstone
of modern logic due to its wide applicability and well-understood properties.

6.1. Predicate
A predicate is a fundamental concept in logic that represents a property or relation
involving one or more objects (or variables) within a domain of discourse. It is used
to make statements about these objects by expressing whether a particular property
holds true for them or whether certain relationships exist between them.

29 Pr. Meftah Boudjelal

In formal terms, a predicate is a function that maps elements (or tuples of elements)
from a domain to truth values: true or false. Predicates are typically denoted by
uppercase letters such as P, Q, or R, and they may take one or more arguments,
which are usually represented by variables or constants.
Examples:

1. Unary Predicate:
o T(x): "x is tall." Here, T is a predicate that evaluates to true if the object x

has the property of being tall, and false otherwise.
2. Binary Predicate:

o L(x,y): "x meets y." This predicate expresses a relationship between two
individuals x and y. For example, L(Ahmed, Ali) means "Ahmed meets
Ali."

3. Ternary Predicate:
o G(x,y,z): "x is the sum of y and z." This predicate describes a three-way

relationship, where x is the result, y and z are numbers.

6.2. Quantifiers
Quantifiers are essential components of first-order logic that allow us to make
generalizations or specify the existence of elements within a domain of discourse.
They extend the expressiveness of propositional logic by enabling statements about
entire sets of objects, rather than just individual ones. There are two primary types of
quantifiers: the universal quantifier (∀) and the existential quantifier (∃). Below is a
detailed explanation of these quantifiers.

6.2.1. Universal Quantifier (∀)
The universal quantifier (∀) is used to express that a property or relation holds for all

elements in a given domain. It can be read as "for all," "for every," or "for any."
 The universal quantifier asserts a property universally across the entire

domain.
 If the domain is empty, ∀𝑥𝑃(𝑥) is vacuously true because there are no

counterexamples.

Definition:

 ∀𝑥𝑃(𝑥): This means "For all x, P(x) is true."
 In other words, the predicate P(x) must hold for every possible value of x in

the domain.

Example:

 Let H(x) mean "x is human" and M(x) mean "x is mortal." The statement "All
humans are mortal" can be written as:

∀𝑥(𝐻(𝑥) → 𝑀(𝑥))

30 Pr. Meftah Boudjelal

This reads: "For all x, if x is human, then x is mortal."

Existential Quantifier (∃)
The existential quantifier (∃) is used to express that there exists at least one element
in the domain for which a property or relation holds. It can be read as "there exists,"
"for some," or "there is."

 The existential quantifier asserts the existence of at least one element
satisfying the property.

 If the domain is empty, ∃xP(x) is always false because there are no elements to
satisfy the property.

Definition:

 ∃𝑥𝑃(𝑥): This means "There exists at least one x such that P(x) is true."
 In other words, the predicate P(x) must hold for at least one value of x in the

domain.

Example:

 Let P(x) mean "x is a prime number." The statement "There exists a prime
number" can be written as:

∃𝑥𝑃(𝑥)
This reads: "There exists an x such that x is a prime number."

6.2.3. Combining Quantifiers
Quantifiers can be combined to express more complex statements. The order of
quantifiers matters and can significantly affect the meaning of a statement.

Example 1: Universal Quantifier Followed by Existential Quantifier

∀𝑥∃𝑦𝑅(𝑥, 𝑦)
 "For every x, there exists a y such that R(x,y) holds." This means that for each
x, we can find at least one y related to x.

Example 2: Existential Quantifier Followed by Universal Quantifier

∃𝑦∀𝑥𝑅(𝑥, 𝑦)

"There exists a y such that for all x, R(x,y) holds." This means there is a single y that is
related to every x.

Difference Between the Two:

 In ∀𝑥∃𝑦𝑅(𝑥, 𝑦), the y can depend on x.
 In ∃𝑦∀𝑥𝑅(𝑥, 𝑦), the y is fixed and independent of x.

31 Pr. Meftah Boudjelal

6.2.4. Negation of Quantifiers
The negation of quantifiers involves switching between universal and existential
quantifiers and applying De Morgan's laws.
Negation Rules:

1. ¬(∀𝑥𝑃(𝑥)) ≡ ∃𝑥¬𝑃(𝑥)
"Not all x satisfy P(x)" is equivalent to "There exists an x such that P(x) is false."

2. ¬(∃𝑥𝑃(𝑥)) ≡ ∀𝑥¬𝑃(𝑥)
"There does not exist an x such that P(x) is true" is equivalent to "For all x, P(x) is

false."

Example:
Let E(x) mean "x is even." The negation of "All numbers are even" (∀xE(x)) is:

¬(∀𝑥𝐸(𝑥)) ≡ ∃𝑥¬𝐸(𝑥)

This reads: "There exists a number that is not even."

7. Non-Classical Logics

Non-classical logics represent a family of formal systems that deviate from the
fundamental principles of classical logic, particularly the laws of excluded middle
and non-contradiction. While classical logic is grounded in a strict binary distinction
between true and false, non-classical logics aim to address situations where this
dichotomy is insufficient for adequately modeling reality or complex human
reasoning. These systems expand the traditional logical framework to meet specific
needs in various fields, such as philosophy, cognitive science, computer science, and
even social sciences.

Classical logic is based on two fundamental postulates: every proposition is either
true or false (the law of excluded middle), and no proposition can be both true and
false simultaneously (the law of non-contradiction). However, there are many
contexts where these assumptions do not align well with real-world phenomena or
human thought processes. For instance, vague statements, uncertain information,
incomplete knowledge, or paradoxical situations cannot always be adequately
captured within the rigid structure of classical logic. Non-classical logics were
developed to provide alternative frameworks that better accommodate such
complexities.

One of the defining characteristics of non-classical logics is their flexibility in relaxing
or modifying the principles of classical logic. These non-classical logics provide

32 Pr. Meftah Boudjelal

powerful tools for addressing complexities that classical logic cannot handle, making
them essential in fields ranging from philosophy and mathematics to computer
science and artificial intelligence. This can take several forms:

7.1. Many-Valued Logics

 Description: Extend the binary true/false values of classical logic to include
additional truth values, such as "unknown," "partially true," or values along a
continuum.

 Examples:
o Fuzzy Logic: Allows truth values to range between 0 (completely false)

and 1 (completely true), enabling reasoning about vagueness and
uncertainty.

o Three-Valued Logic (e.g., Łukasiewicz Logic): Introduces a third truth
value, often interpreted as "unknown" or "indeterminate."

7.2. Paraconsistent Logics

 Description: Allow for the existence of contradictions without leading to
triviality (i.e., not everything becomes true when a contradiction is present).

 Examples:
o Dialetheism: Accepts that some statements can be both true and false

simultaneously.
o Relevant Paraconsistent Logic (e.g., LP Logic) : Ensures that

contradictions do not spread uncontrollably throughout the system.

7.3. Intuitionistic Logic

 Description: Rejects the law of excluded middle and double negation
elimination, emphasizing constructivist principles where truth is tied to
provability rather than mere existence.

 Applications: Used in mathematical constructivism and computer science
(e.g., type theory and proof assistants like Coq).

7.4. Modal Logics

 Description: Introduce modal operators (e.g., necessity □ and possibility ◊) to
reason about concepts such as time, belief, obligation, or possible worlds.

 Examples:
o Alethic Modal Logic: Deals with necessity and possibility.
o Epistemic Logic: Models knowledge and belief.
o Deontic Logic: Studies obligation, permission, and prohibition.
o Temporal Logic: Reasons about time and temporal relationships.

33 Pr. Meftah Boudjelal

7.5. Relevance Logics
 Description: Require that the premises of an argument are relevant to its

conclusion, addressing issues with vacuous truths in classical logic.
 Example: Systems like R or RW ensure that irrelevant premises cannot lead to

valid conclusions.

7.6. Fuzzy Logic

 Description: A form of many-valued logic specifically designed to handle
vagueness and uncertainty by allowing partial membership in sets.

 Applications: Widely used in artificial intelligence, control systems, and
decision-making processes.

7.7. Quantum Logics

 Description: Developed to model the peculiarities of quantum mechanics,
where classical logical principles (e.g., distributivity) may fail.

 Example: Quantum propositional logic replaces classical Boolean algebra with
orthomodular lattices.

7.8. Substructural Logics

 Description: Relax structural rules of classical logic, such as contraction,
weakening, or exchange, to model resource-sensitive reasoning.

 Examples:
o Linear Logic: Focuses on resource management and consumption.
o Lambek Calculus: Used in linguistics to model syntactic structures.

7.9. Default Logic

 Description: A formalism for reasoning with incomplete information,
allowing for default assumptions unless contradicted by evidence.

 Applications: Common in artificial intelligence and expert systems.

7.10. Non-Monotonic Logics

 Description: Enable reasoning where adding new information can invalidate
previous conclusions, mimicking human common-sense reasoning.

 Examples:
o Autoepistemic Logic: Models self-referential reasoning about

knowledge.
o Circumscription: Minimizes the extension of predicates to avoid

unnecessary assumptions.

34 Pr. Meftah Boudjelal

Exercises
A) Exercises on Propositional Logic
1. Identify Propositions
Determine whether the following sentences are propositions. If they are, indicate
their truth value (if possible).

a) "Paris is the capital of France."
b) "What is your name?"
c) "2 + 2 = 5."
d) "This statement is false."
e) "It will rain tomorrow."

2. Negation of Propositions
Write the negation of the following propositions:

a) "The number 10 is even."
b) "All birds can fly."
c) "Some students like mathematics."
d) "If it rains, then the ground will be wet."

3. Logical Operators
Let P be "It is raining," and Q be "I will stay at home." Express the following
statements using logical operators:

a) "It is raining, and I will stay at home."
b) "If it is raining, then I will stay at home."
c) "I will stay at home if and only if it is raining."
d) "It is not raining, or I will not stay at home."

4. Truth Tables
Construct truth tables for the following compound propositions:

a) 𝑃 ∧ ¬ 𝑄
b) 𝑃 ∨ (𝑄 → 𝑅)
c) (𝑃 ↔ 𝑄) ∧ ¬ 𝑅
d) ¬(𝑃 ∨ 𝑄) → (𝑃 ∧ 𝑄)

5. Logical Equivalence
Determine whether the following pairs of propositions are logically equivalent:

a) 𝑃 → 𝑄 𝑎𝑛𝑑 ¬𝑃 ∨ 𝑄

b) ¬(𝑃 ∧ 𝑄) 𝑎𝑛𝑑 ¬𝑃 ∨ ¬𝑄

c) 𝑃 ↔ 𝑄 𝑎𝑛𝑑 (𝑃 → 𝑄) ∧ (𝑄 → 𝑃)

d) 𝑃 ∨ (𝑄 ∧ 𝑅) 𝑎𝑛𝑑 (𝑃 ∨ 𝑄) ∧ (𝑃 ∨ 𝑅)

35 Pr. Meftah Boudjelal

6. Translating Sentences into Propositional Logic
Translate the following sentences into propositional logic:

a) "If it is sunny, then I will go to the beach."
b) "I will go to the party only if I finish my homework."
c) "Either I will study for the exam, or I will fail."
d) "It is not true that both John and Mary are coming to the meeting."

7. Constructing Compound Propositions
Given the propositions:
- P: "It is cold."
- Q: "It is snowing."
- R: "I will wear a coat."
Construct compound propositions for the following scenarios:

a) "If it is cold and snowing, then I will wear a coat."
b) "I will wear a coat if and only if it is cold or snowing."
c) "It is not cold, but it is snowing, and I will not wear a coat."
d) "If it is not snowing, then I will wear a coat only if it is cold."

8. Analyzing Logical Statements
Analyze the following statements and determine whether they are tautologies,
contradictions, or contingencies:

a) 𝑃 ∨ ¬ 𝑃

b) 𝑃 ∧ ¬ 𝑃

c) (𝑃 → 𝑄) ↔ (¬Q → ¬ 𝑃)

d) (𝑃 ∧ 𝑄) ∨ (¬𝑃 ∧ ¬𝑄)

B) Exercises on Predicate Logic

1. Translating Sentences into Predicate Logic
Translate the following sentences into predicate logic. Define the predicates and
domains clearly.

a) "Every student in the class is intelligent."
b) "Some birds cannot fly."
c) "All cats are mammals, and some mammals are pets."
d) "There exists a person who is loved by everyone."
e) "No two people have the same birthday."

36 Pr. Meftah Boudjelal

2. Evaluating Truth Values
Given the following predicates and domains, determine whether the predicate logic
statements are true or false.

 Domain: All integers.
 P(x): "x is even."
 Q(x): "x is positive."
 R(x,y): "x is greater than y."

a) ∀ 𝑥 (𝑃(𝑥) → 𝑄(𝑥))
b) ∃ 𝑥 (𝑃(𝑥) ∧ 𝑄(𝑥))
c) ∀ 𝑥 ∃ 𝑦 𝑅(𝑥, 𝑦)
d) ∃ 𝑥 ∀ 𝑦 𝑅(𝑥, 𝑦)

3. Constructing Predicate Logic Statements
Given the following predicates and domains, construct predicate logic statements for
the given scenarios.

 Domain: All people.
 P(x): "x is a student."
 Q(x): "x is hardworking."
 R(x,y): "x likes y."

a) "Every student is hardworking."
b) "Some hardworking students like everyone."
c) "There is a student who is liked by all hardworking students."
d) "No student likes every hardworking student."

37 Pr. Meftah Boudjelal

Chapter 3

Search Algorithms for Problem Solving

38 Pr. Meftah Boudjelal

1. Introduction

Many AI problems are hard to solve because they are difficult to be characterized.
Not only the problem but a path to the solution is also hard to be characterized.
Problem solving basically involves doing the right thing at the right time. Given a
problem to solve the task is to select the right moves that would lead to the solution.
In this chapter we will learn the process of solving AI problems using state space
search. We will also see the difficulties a designer might face.

Importance of search algorithms for problem-solving

 Efficiency and Optimization: Search algorithms are essential for efficiently
managing resources and improving system performance. They help in
minimizing the use of computational resources like time and memory, making
systems faster and more reliable. By finding optimal solutions, search
algorithms enable efficient resource management and enhance overall
performance.

 Decision Making and Strategic Planning: Search algorithms play a crucial
role in informed decision-making by providing the best possible solutions
based on available data and constraints. They are used to explore different
scenarios and evaluate outcomes, aiding in strategic planning and risk
assessment. This capability is particularly valuable in fields like healthcare,
finance, and manufacturing, where optimal decisions can have significant
impacts.

 Problem-Solving in AI and Complex Problems: In artificial intelligence,
search algorithms are fundamental for pathfinding in robotics, game
development, and navigation systems. They are also used in planning and
scheduling tasks, such as job scheduling and logistics optimization.
Additionally, search algorithms are essential for solving complex
combinatorial problems like the traveling salesman problem and constraint
satisfaction problems, where the goal is to find solutions that satisfy all given
constraints.

 Data Retrieval and Pattern Recognition: Search algorithms are at the core of
information retrieval systems, such as search engines, databases, and
recommendation systems. They are also used in pattern recognition tasks,
such as image and speech recognition, where the goal is to find patterns in
data. This makes them indispensable for applications that rely on efficient
data retrieval and accurate pattern recognition.

39 Pr. Meftah Boudjelal

 Optimization and Real-World Applications: Search algorithms are used in

various optimization techniques, such as linear programming, dynamic
programming, and genetic algorithms. They help in finding global optima in
complex optimization problems, ensuring that the best possible solution is
found. In real-world applications, search algorithms are used in healthcare for
diagnosis and treatment planning, in finance for portfolio optimization and
risk management, and in manufacturing for supply chain optimization and
production planning.

 Scalability and Adaptability: Search algorithms can handle large-scale
problems efficiently, making them suitable for big data applications and real-
time systems. They can be designed to take advantage of parallel processing,
further enhancing their scalability and performance. Additionally, search
algorithms can adapt to dynamic environments, making them suitable for
real-time decision-making and problem-solving in changing conditions. They
are robust and can handle uncertainty and variability in data and problem
constraints.

2. Definitions

2.1. Problem definition
A problem is a situation, condition, or issue that is perceived as difficult, confusing,
or undesirable and requires a resolution or solution.

2.2. Problem for AI
A problem is a well-defined, often formalized, challenge or task that an AI system is
designed to address or solve. The definition and formulation of the problem are
crucial steps in designing and implementing effective AI solutions.

AI problems have several key characteristics:

 Well-Defined Objective: An AI problem typically has a clear, quantifiable
goal or objective that the AI system aims to achieve, such as maximizing a
reward signal, minimizing a cost function, or finding an optimal solution.

 Formalized Input and Output: AI problems are usually formalized with a
specific input format (e.g., data, state, or environment) and a desired output
format (e.g., prediction, decision, or action).

 Constraints and Rules: AI problems often have constraints, rules, or
limitations that the system must adhere to while solving the problem, such as
time limits, resource constraints, or domain-specific rules.

40 Pr. Meftah Boudjelal

 Data-Driven: Many AI problems involve processing and analyzing data to
extract insights, make predictions, or support decision-making.

 Uncertainty and Complexity: AI problems often involve dealing with
uncertainty, incomplete information, or complex environments, requiring the
AI system to make probabilistic inferences or learn from experience.

2.3. Examples of AI problems

 Classification: Assigning a label or category to input data, such as spam
detection or image recognition.

 Regression: Predicting a continuous value based on input data, such as
house price prediction.

 Planning and Scheduling: Finding an optimal sequence of actions to achieve
a goal, such as route planning or job scheduling.

 Optimization: Finding the best solution from a set of possible solutions, such
as resource allocation or portfolio optimization.

3. The State Space
3.1. Definition
A state space is a set of all possible configurations or states that a system can be in.
Each state represents a specific situation or condition of the system, and the state
space encompasses the entire range of these situations. The concept of a state space is
fundamental to various AI techniques, including search algorithms, planning, and
optimization.
The problem solver begins in a given or start state and has some desired state as a
goal state. The desired state can be a single state that is completely specified, or it
may be a set of states described by a common property.

Understanding and effectively navigating the state space is a crucial aspect of solving
many AI problems. The design of the state space, the choice of operators, and the

41 Pr. Meftah Boudjelal

selection of search strategies are all critical factors in developing efficient and
effective AI solutions.

3.2. Components of a State Space

a) States: Individual configurations or conditions of the system. Each state is a
unique snapshot of the system at a particular point in time.

b) Initial State: The starting point or the initial configuration of the system. This
is where the search or problem-solving process begins.

c) Goal State: The desired outcome or the final configuration that the system
aims to reach. The objective of the search or problem-solving process is to find
a path from the initial state to the goal state.

d) Operators or Actions: The set of actions or transitions that can be applied to
move from one state to another. These operators define how the system can
change from one state to another.

e) Transitions: The rules or functions that describe how applying an operator
changes the state of the system. Transitions define the relationships between
states.

Example
Consider a real-world example of a state space search problem: Navigating a Maze.

 State: The current position of the agent (e.g., a robot) within the maze.
 Initial State: The starting position of the agent at the entrance of the maze.
 Goal State: The target position, usually the exit of the maze.
 Transition: Moving from one position to an adjacent position (up, down, left,

or right) within the maze.
 Path: A sequence of moves from the initial state to the goal state.

Imagine a simple grid maze where the agent starts at the top-left corner (0,0) and
needs to reach the bottom-right corner (3,3). The agent can move in four directions:
up, down, left, and right, but cannot pass through walls.

1. Initial State: (0,0)
2. Goal State: (3,3)
3. Possible Transitions:

o From (0,0) to (0,1) or (1,0)
o From (0,1) to (0,2) or (1,1) or back to (0,0)

42 Pr. Meftah Boudjelal

o And so on…
The agent will explore different paths, keeping track of visited states to avoid cycles,
until it finds a path that leads to the goal state.

3.3. Problem solving by State space search
State space search in AI is a fundamental technique used to solve problems by
navigating through a series of states and transitions. In this approach, a problem is
represented as a collection of states, each depicting a specific configuration, and the
transitions represent possible actions or moves between these states. The objective is
to find a sequence of actions that leads from an initial state to a goal state.
This concept is analogous to finding a path through a complex maze: each decision
or action leads to a new state, and the goal is to discover the optimal sequence of
actions that leads to a desired outcome.
By applying state space search, AI systems can effectively tackle a diverse array of
problems, ranging from robotics and game-playing to natural language processing
and scheduling. It serves as a crucial tool for enabling machines to make intelligent
decisions and find optimal solutions in complex, dynamic environments.

3.4. Principles and Features of State Space Search
The efficiency and effectiveness of state space search are heavily dependent on
several principles and characteristics. Understanding these elements is crucial for
selecting the right search strategy and optimizing the search process.

a) Expansiveness: The number of successors that each state can generate. This
impacts how many new states are explored from a given state.

b) Branching Factor: The average number of successors in each state. It
influences the width of the search tree and the overall complexity of the
search.

c) Depth: The length from the initial state to the goal state in the search tree.
Deeper search trees can increase the time required to find a solution.

d) Completeness: A search strategy is complete if it guarantees finding a
solution, assuming one exists.

e) Optimality: A search strategy is optimal if it guarantees finding the best
solution according to a specified criterion.

f) Time Complexity: The duration of the state space exploration. It is influenced
by the branching factor and the depth of the search tree.

g) Space Complexity: The amount of memory required to carry out the search.
This depends on the number of states that need to be stored in memory
simultaneously.

3.5. Problem Representation

43 Pr. Meftah Boudjelal

A number of factors need to be taken into consideration when developing a state
space representation. Factors that must be addressed are:

• What is the goal to be achieved?
• What are the legal moves or actions?
• What knowledge needs to be represented in the state description?
• Type of problem - There are basically three types of problems. Some problems

only need a representation, e.g. crossword puzzles. Other problems require a
yes or no response indicating whether a solution can be found or not. Finally,
the last type problem are those that require a solution path as an output, e.g.
mathematical theorems, Towers of Hanoi. In these cases, we know the goal
state and we need to know how to attain this state

• Best solution vs. Good enough solution - For some problems a good enough
solution is sufficient. For example, theorem proving, eight squares.

 However, some problems require a best or optimal solution, e.g. the traveling
salesman problem.

3.6. Representation of a State Space
Representing a state space is a fundamental step in designing algorithms for
problem-solving, planning, and optimization in Artificial Intelligence (AI). The
representation of a state space involves defining the states, the transitions between
states, and the structure of the space. The choice of representation depends on the
nature of the problem and the specific requirements of the AI system.

3.6.1. Graph Representation
A graph is a natural and widely used representation for a state space. In this
representation:

 Nodes: Represent the states of the system.
 Edges: Represent the transitions or actions that move the system from one

state to another.
 Labels: Edges can be labeled with the actions or costs associated with the

transitions.

44 Pr. Meftah Boudjelal

3.6.2. Tree Representation
A tree is a special type of graph where each node has a single parent (except the root
node) and can have multiple children. Trees are useful for representing hierarchical
or recursive state spaces.

 Root Node: Represents the initial state.
 Leaf Nodes: Represent terminal states, including the goal state.
 Internal Nodes: Represent intermediate states.
 Edges: Represent transitions between states.

Example: Eight-Puzzle Problem state space representation by a tree

45 Pr. Meftah Boudjelal

3.6.3. State Vectors
In some cases, states can be represented as vectors of attributes or features. This is
common in problems where the state can be described by a fixed set of variables.

 State Vector: A tuple or array of values representing the state.
 Transitions: Functions that modify the state vector based on actions.

3.6.4. Matrix Representation
For problems with a fixed, discrete state space, a matrix can be used to represent the
states and transitions.

 Matrix: A 2D array where each cell represents a state.
 Transitions: Rules or functions that define how to move from one cell to

another.

3.6.5. Symbolic Representation
In some cases, states can be represented symbolically using logical expressions or
other formal languages.

 States: Symbolic expressions or formulas.
 Transitions: Rules or axioms that define how to transform one expression into

another.

3.6.6. Object-Oriented Representation
In object-oriented programming, states can be represented as objects with attributes
and methods.

46 Pr. Meftah Boudjelal

 State Object: An object with attributes representing the state.
 Methods: Functions that define transitions between states.

4. Steps in State Space Search
The following steps are often involved in the state space search process:

Step 1: Define the State Space
Determine the collection of all potential states and their interchanging states. To do
this, the problem must be modelled in a fashion that encompasses all pertinent
configurations and actions.

Step 2: Pick a Search Strategy
Decide how to comb over the state space. Typical tactics consist of:

 Before going on to nodes at the following depth level, the Breadth-First

Search (BFS) method investigates every node at the current depth level. Full
and ideal for graphs without weights.

 Depth-First Search (DFS) investigates a branch as far as it can go before
turning around. less memory-intensive, although completeness and optimality
are not assured.

 The best method for locating the lowest-cost solution is Uniform Cost Search

(UCS), which expands the least expensive node first.
 Greedy Best-First Search expands the node that seems to be closest to the

objective using a heuristic.
 A* Search Algorithm assures completeness and optimality with an admissible

heuristic by combining the cost to reach the node with a heuristic calculating
the cost to the target.

Step 3: Start the Search
Add the initial state to the frontier (the collection of states to be investigated) by
starting there.

Step 4: Extend the Nodes
Using the selected search technique, iteratively expands nodes from the frontier,
producing successor states and appending them to the frontier. After each node has
been expanded, determine whether it now corresponds to the desired state. If so,
retrace your route to the objective and call off the hunt.

Step 5: Address State Repetition
Put in place safeguards to prevent revisiting the same state, including keeping track
of the states you’ve been to.

47 Pr. Meftah Boudjelal

Step 6: End the Search
The search comes to an end when the desired state is discovered or, in the event that
no viable solution is identified, when every state has been investigated.
AI systems are able to tackle complicated issues in an organized and methodical
manner by employing these methods to systematically explore the state space.

5. Measuring problem-solving performance

The performance of the search algorithms is evaluated on the following four criteria.

 Completeness. An algorithm is said to be complete if it is guaranteed to find a
goal state if one is reachable. We also call such algorithms as being systematic.
By this we mean that the algorithm searches the entire space and returns fail
only if a goal state is not reachable.

 Quality of solution (optimality). We may optionally specify a quality
measure for the algorithm. We begin with the length of the path found as a
measure of quality. Later, we will associate edge costs with each move, and
then the total cost of the path will be the measure.

 Space complexity. This looks at the amount of space the algorithm requires to
execute. We will see that this will be a critical measure, as the number of
candidates in the search space often grows exponentially.

 Time complexity. This describes the amount of time needed by the algorithm,
measured by the number of candidates inspected. The most desirable
complexity will be linear in path length, but one will have to often contend
with exponential complexity.

48 Pr. Meftah Boudjelal

6. Types of search algorithms

Search algorithms are fundamental tools in computer science and artificial
intelligence used to find specific data or solutions within a dataset or problem space.
They can be broadly categorized into two main types: uninformed search

algorithms and informed search algorithms. Each type has its own characteristics,
advantages, and use cases, depending on the nature of the problem and the available
information.

1. Uninformed search algorithm (Blind search): is a search that has no
information about its domain or nature of the problem.

2. Informed search algorithm (Heuristic search): have further information about
the cost of the path between any state in search space and the goal state.

6.1. Uninformed search algorithms
Uninformed search algorithms are a fundamental class of search strategies in
artificial intelligence (AI). These algorithms operate without any additional
information about the problem domain beyond what is explicitly provided in the
problem definition. With these approaches, nothing is presumed to be known about
the state space. Instead, they rely only on the structure of the problem space and the
goal state.

The principal algorithms that fall under this heading are the depth first search (DFS)

and Breadth first search (BFS). These algorithms share two properties:

Search algorithms

Ininformed
search

depth first
search

.......

breadth first
search

Informed
search

Hill Climbing

Greedy
search

........

49 Pr. Meftah Boudjelal

 They do not use heuristic measures in which the search would proceed along
the most promising path.

 Their aim is to find some solution to the given problem.

Challenges and limitations
Despite their simplicity and versatility, uninformed search algorithms face several
challenges and limitations.

 inefficient in complex problems with large search spaces, leading to an
exponential increase in the number of states explored. They may also consume
significant computational resources and memory.

 Lack of Optimality: Uninformed search algorithms do not guarantee an
optimal solution, as they do not consider the cost of reaching the goal or other
relevant information.

 Potential for Infinite Loops: Algorithms like DFS can become trapped in
infinite loops if the search space is too deep or if there are cycles in the graph.

6.1.1. Breadth First Search (BFS)
Breadth-first search (BFS) is a simple strategy in which the root node is expanded
first, then all the successors of the root node are expanded next, then their successors,
and so on. In general, all the nodes are expanded at a given depth in the search tree
before any nodes at the next level are expanded.
In BFS, nodes are visited level by level from the top of the tree to the bottom, in left to
right. All nodes at level i are visited before any nodes at level i+1 are encountered.
BFS is achieved very simply by using a FIFO queue for the frontier. Thus, new nodes
(which are always deeper than their parents) go to the back of the queue, and old
nodes, which are shallower than the new nodes, get expanded first.

Breadth-first search Pseudocode
function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node ←a node with STATE = problem.INITIAL-STATE, PATH-COST = 0
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
frontier ←a FIFO queue with node as the only element
explored ←an empty set
loop do

if EMPTY?(frontier) then return failure
node←POP(frontier) /* chooses the shallowest node in frontier */
add node.STATE to explored
for each action in problem.ACTIONS(node.STATE) do

child ←CHILD-NODE(problem, node, action)
if child .STATE is not in explored or frontier then

50 Pr. Meftah Boudjelal

if problem.GOAL-TEST(child .STATE) then return SOLUTION(child)
frontier ←INSERT(child , frontier)

Figure bellow shows the progress of the search on a simple binary tree.

The Figure below shows Breadth-first traversal of a tree.

The nodes will be visited in the order: A, B, C, D, E, F, G.

How does breadth-first search rate according to the four criteria from the previous
section? We can easily see that it is complete—if the shallowest goal node is at some
finite depth d, breadth-first search will eventually find it after generating all
shallower nodes (provided the branching factor b is finite). Note that as soon as a
goal node is generated, we know it is the shallowest goal node because all shallower
nodes must have been generated already and failed the goal test. Now, the shallowest
goal node is not necessarily the optimal one; technically, breadth-first search is
optimal if the path cost is a nondecreasing function of the depth of the node. The
most common such scenario is that all actions have the same cost.
So far, the news about breadth-first search has been good. The news about time and
space is not so good. Imagine searching a uniform tree where every state has b
successors.
The root of the search tree generates b nodes at the first level, each of which
generates b more nodes, for a total of 𝑏ଶ at the second level. Each of these generates b
more nodes, yielding 𝑏ଷ nodes at the third level, and so on. Now suppose that the
solution is at depth d. In the worst case, it is the last node generated at that level.
Then the total number of nodes generated is

51 Pr. Meftah Boudjelal

𝑏 + 𝑏ଶ + 𝑏ଷ +⋯+ 𝑏ௗ = 𝑂(𝑏ௗ)

An exponential complexity bound such as 𝑂(𝑏ௗ) is scary. Table shows why. It lists,
for various values of the solution depth d, the time and memory required for a
breadth first search with branching factor b = 10. The table assumes that 1 million
nodes can be
generated per second and that a node requires 1000 bytes of storage. Many search
problems fit roughly within these assumptions (give or take a factor of 100) when run
on a modern personal computer.

Depth Nodes Time Memory

2 110 0.11 milliseconds 107 kilobytes
4 11100 11 milliseconds 10.6 megabytes
6 106 1.1 seconds 1 gigabyte
8 108 2 minutes 103 gigabytes
10 1010 3 hours 10 terabytes
12 1012 13 days 1 petabyte
14 1014 3.5 years 99 petabytes
16 1016 350 years 10 exabytes

6.1.2 Depth First Search (DFS)
Depth first search (DFS) attempts to plunge as deeply into a tree as quickly as
possible.
Whenever the search can make a choice, it selects the far left (or far right).
A DFS plunges depth first into a graph without regard for which edge it takes next
until it cannot go any further at which point it backtracks and continues.

The progress of the search is illustrated in Figure bellow. The search proceeds
immediately to the deepest level of the search tree, where the nodes have no
successors. As those nodes are expanded, they are dropped from the frontier, so then
the search “backs up” to the next deepest node that still has unexplored successors.

52 Pr. Meftah Boudjelal

As an example of DFS, consider the tree in the Figure below. Tree traversal
algorithms often “visit” a node several times.

The DFS encounters nodes in the following order: A, B, D, E, C, F, G.

whereas breadth-first-search uses a FIFO queue, depth-first search uses a LIFO
queue. A LIFO queue means that the most recently generated node is chosen for
expansion.

53 Pr. Meftah Boudjelal

Depth-first search Pseudocode

DFS-iterative (G, s): //Where G is graph and s is source vertex
 let S be stack
 S.push(s) //Inserting s in stack
 mark s as visited.
 while (S is not empty):
 //Pop a vertex from stack to visit next
 v = S.top()
 S.pop()
 //Push all the neighbours of v in stack that are not visited
 for all neighbours w of v in Graph G:
 if w is not visited :
 S.push(w)
 mark w as visited

 DFS-recursive(G, s):
 mark s as visited
 for all neighbours w of s in Graph G:
 if w is not visited:
 DFS-recursive(G, w)

The properties of depth-first search depend strongly on whether the graph-search or
tree-search version is used. The graph-search version, which avoids repeated states
and redundant paths, is complete in finite state spaces because it will eventually
expand every node. The tree-search version, on the other hand, is not complete.

For similar reasons, both versions are nonoptimal. For example, in the first Figure,
depth first search will explore the entire left subtree even if node C is a goal node. If
node J were also a goal node, then depth-first search would return it as a solution
instead of C, which would be a better solution; hence, depth-first search is not
optimal.

The time complexity of depth-first graph search is bounded by the size of the state
space (which may be infinite, of course). A depth-first tree search, on the other hand,
may generate all of the 𝑂(𝑏௠) nodes in the search tree, where 𝑚 is the maximum
depth of any node; this can be much greater than the size of the state space. Note that

54 Pr. Meftah Boudjelal

m itself can be much larger than d (the depth of the shallowest solution) and is
infinite if the tree is unbounded.

6.1.3. Comparison between DFS and BFS
The choice between DFS and BFS depends on the specific problem you are trying to
solve. DFS is often used for tasks like cycle detection and topological sorting, while
BFS is preferred for finding the shortest path in unweighted graphs and for
pathfinding tasks in networks.

Traversal Order

 DFS: Explores nodes as deep as possible along each branch before
backtracking.

 BFS: Explores all neighboring nodes at the present depth level before moving
on to nodes at the next depth level.

Memory Usage

 DFS: Uses a stack (or recursion), which can be problematic for very deep
graphs due to the depth of recursion.

 BFS: Uses a queue, which can be problematic for very wide graphs due to the
width of the queue.

Time Complexity

 DFS and BFS: Both algorithms have a time complexity of O(V+E), where V is
the number of nodes and E is the number of edges.

Applications

 DFS:
o Cycle detection in a graph.
o Topological sorting.
o Traversing undirected graphs.

 BFS:
o Finding the shortest path in an unweighted graph.
o Detecting connected components in an undirected graph.
o Pathfinding algorithms in networks.

Advantages and Disadvantages

 DFS:
o Advantages: Less memory required for deep graphs.
o Disadvantages: Can enter infinite loops if the graph contains cycles.

55 Pr. Meftah Boudjelal

 BFS:
o Advantages: Finds the shortest path in an unweighted graph.
o Disadvantages: Requires more memory for wide graphs.

6.2. Informed search algorithms
Informed search algorithms, also known as heuristic search algorithms, are a crucial
component of artificial intelligence (AI). These algorithms leverage additional
information, often in the form of heuristics, to guide the search process more
efficiently towards a solution.
Informed search algorithms use domain-specific knowledge to improve the efficiency
of the search process. This additional information, typically provided by heuristic
functions, helps the algorithm make educated guesses about which paths to explore,
thereby reducing the time and computational resources required to find a solution.
The goal of heuristic search methods is to greatly reduce the number of nodes
considered in order to reach a goal state. They are ideally suited for problems whose
combinatorial complexity grows very quickly.
Heuristic search is useful in solving problem which:

 Could not be solved any other way
 Solution takes an infinite time or very long time to compute

Local search algorithms
The search algorithms that we have seen before are designed to explore search spaces
systematically.
This systematicity is achieved by keeping one or more paths in memory and by
recording which alternatives have been explored at each point along the path. When
a goal is found, the path to that goal also constitutes a solution to the problem. In
many problems, however, the path to the goal is irrelevant.

If the path to the goal does not matter, we might consider a different class of
algorithms, ones that do not worry about paths at all. Local search algorithms
operate using a single current node (rather than multiple paths) and generally move
only to neighbors of that node. Typically, the paths followed by the search are not
retained. Although local search algorithms are not systematic, they have two key
advantages:

 they use very little memory—usually a constant amount; and
 they can often find reasonable solutions in large or infinite (continuous) state

spaces for which systematic algorithms are unsuitable.

To understand local search, we find it useful to consider the state-space landscape

(as in Figure below). A landscape has both “location” (defined by the state) and

56 Pr. Meftah Boudjelal

“elevation” (defined by the value of the heuristic cost function or objective function).
If elevation corresponds to cost, then the aim is to find the lowest valley—a global

minimum; if elevation corresponds to an objective function, then the aim is to find
the highest peak—a global maximum. Local search algorithms explore this
landscape. A complete local search algorithm always finds a goal if one exists; an
optimal algorithm always finds a global minimum/maximum.

 Global Maximum: It is the highest point on the hill, which is the goal state.
 Local Maximum: It is the peak higher than all other peaks but lower than the

goal maximum.
 Flat Local Maximum: It is a region in the search space where the objective

function reaches a maximum value and remains relatively constant over a
range of input values.

 Shoulder (Plateau) : It refers to a region in the search space where the objective
function has a relatively flat gradient, meaning that small changes in the
variables do not significantly affect the function's value.

6.2.1. Hill Climbing

The hill-climbing search is an iterative algorithm that continually moves in the
direction of increasing value. It terminates when it reaches a “peak” where no
neighbor has a higher value.
It starts with an arbitrary solution to a problem and iteratively makes small changes
to improve the solution. It only considers the local neighborhood of the current
solution.
The algorithm does not maintain a search tree, so the data structure for the current
node need only record the state and the value of the objective function. Hill climbing

57 Pr. Meftah Boudjelal

does not look ahead beyond the immediate neighbors of the current state. This
resembles trying to find the top of Mount in a thick fog.
Hill climbing is very useful in routing-related problems like travelling salesmen
problem, job scheduling, chip designing, and portfolio management.

Algorithm for Simple Hill Climbing:

Step 1: Start with an initial state.
Step 2: Check if the initial state is the goal. If so, return success and exit.
Step 3: Enter a loop to search for a better state continuously.

 Select a neighboring state within the loop by applying an operator to the
current state.

 Evaluate this new state:
o If it’s the goal state, return success and exit.
o If it’s better than the current state, update the current state to this new

state.
o If it’s not better, discard it and continue the loop.

Step 4: End the process if no better state is found and the goal isn’t achieved.

Pseudocode for Hill Climbing
function HillClimbing(initial_solution):
 current_solution = initial_solution
 while True:
 neighbors = generate_neighbors(current_solution)
 best_neighbor = current_solution
 for neighbor in neighbors:
 if evaluate(neighbor) > evaluate(best_neighbor):
 best_neighbor = neighbor
 if evaluate(best_neighbor) <= evaluate(current_solution):
 break
 current_solution = best_neighbor
 return current_solution

58 Pr. Meftah Boudjelal

Open Stack Closed

[a] a []
[b4, c3, d5] c [a]
[f4, g1, b4, d5] g [a, c]
[l6, m3, f4, b4, d5] m [a, c, g]
[r6, s4, l6, f4, b4, d5] s [a, c, g, m]
 [a, c, g, m, s]

Goal found: [a, c, g, m, s]

Variants of Hill Climbing
- Simple Hill Climbing: The basic version described above, where the first better
neighbor found is accepted.
- Steepest Ascent Hill Climbing: Instead of accepting the first better neighbor, this
algorithm examines all the neighboring nodes of the current state and selects the one
that provides the greatest improvement in the objective function. This algorithm
consumes more time as it searches for multiple neighbors.
- Stochastic Hill Climbing: This variant introduces randomness by selecting a
random neighbor and accepting it if it is better than the current solution.

Advantages and Disadvantages
Advantages:
- Simple and easy to implement.
- Effective for finding local optima.

59 Pr. Meftah Boudjelal

Disadvantages:
- Can get stuck in local optima and fail to find the global optimum.
- Performance depends heavily on the initial solution and the neighborhood function.

Problems in Hill Climbing Algorithm
1. Local Maximum: A local maximum is a peak state in the landscape which is better
than each of its neighboring states, but there is another state also present which is
higher than the local maximum.
Solution: Backtracking technique can be a solution of the local maximum in state
space landscape. Create a list of the promising path so that the algorithm can
backtrack the search space and explore other paths as well.

2. Plateau: A plateau is the flat area of the search space in which all the neighbor
states of the current state contains the same value, because of this algorithm does not
find any best direction to move. A hill-climbing search might be lost in the plateau
area.
Solution: The solution for the plateau is to take big steps or very little steps while
searching, to solve the problem. Randomly select a state which is far away from the
current state so it is possible that the algorithm could find non-plateau region.

3. Ridges: A ridge is a special form of the local maximum. It has an area which is
higher than its surrounding areas, but itself has a slope, and cannot be reached in a
single move.
Solution: With the use of bidirectional search, or by moving in different directions,
we can improve this problem.

60 Pr. Meftah Boudjelal

6.2.2. Greedy Search
Greedy Best-First Search attempts to find the most promising path from a given
starting point to a goal. It prioritizes paths that appear to be the most promising,
regardless of whether or not they are actually the shortest path. The algorithm works
by evaluating the cost of each possible path and then expanding the path with the
lowest cost. This process is repeated until the goal is reached.
The algorithm works by using a heuristic function 𝒇(𝒏) = 𝒉(𝒏) to determine which
path is the most promising. The heuristic function takes into account the cost of the
current path and the estimated cost of the remaining paths.
If the cost of the current path is lower than the estimated cost of the remaining paths,
then the current path is chosen. This process is repeated until the goal is reached.

Example of heuristic function (estimated time to reach the bank).

Algorithm

1. Initialize a tree with the root node being the start node in the open list.
2. If the open list is empty, return a failure, otherwise, add the current node to

the closed list.
3. Remove the node with the lowest h(x) value from the open list for exploration.

61 Pr. Meftah Boudjelal

4. If a child node is the target, return a success. Otherwise, if the node has not
been in either the open or closed list, add it to the open list for exploration.

Pseudocode
function GreedyBestFirstSearch(start, goal, h):
 open_set = PriorityQueue()
 open_set.add(start, h(start))
 came_from = {}

 while not open_set.is_empty():
 current = open_set.pop()

 if current == goal:
 return reconstruct_path(came_from, current)

 for neighbor in current.neighbors():
 if neighbor not in came_from:
 came_from[neighbor] = current
 open_set.add(neighbor, h(neighbor))
 return failure

function reconstruct_path(came_from, current):
 total_path = [current]
 while current in came_from:
 current = came_from[current]
 total_path.append(current)
 return total_path.reverse()
Exemple
Consider finding the path from P to S in the following graph:

62 Pr. Meftah Boudjelal

In this example, the cost is measured strictly using the heuristic value.

C has the lowest cost of 6. Therefore, the search will continue like so:

63 Pr. Meftah Boudjelal

U has the lowest cost compared to M and R, so the search will continue by exploring
U. Finally, S has a heuristic value of 0 since that is the target node:

The total cost for the path (P -> C -> U -> S) evaluates to 11. The potential problem
with a greedy best-first search is revealed by the path (P -> R -> E -> S) having a cost
of 10, which is lower than (P -> C -> U -> S). Greedy best-first search ignored this
path because it does not consider the edge weights.

Advantages of Greedy Best-First Search

 Simple and Easy to Implement: Greedy Best-First Search is a relatively
straightforward algorithm, making it easy to implement.

64 Pr. Meftah Boudjelal

 Fast and Efficient: Greedy Best-First Search is a very fast algorithm, making it
ideal for applications where speed is essential.

 Low Memory Requirements: Greedy Best-First Search requires only a small
amount of memory, making it suitable for applications with limited memory.

 Flexible: Greedy Best-First Search can be adapted to different types of
problems and can be easily extended to more complex problems.

 Efficiency: If the heuristic function used in Greedy Best-First Search is good to
estimate, how close a node is to the solution, this algorithm can be a very
efficient and find a solution quickly, even in large search spaces.

Disadvantages of Greedy Best-First Search

 Inaccurate Results: Greedy Best-First Search is not always guaranteed to find
the optimal solution, as it is only concerned with finding the most promising
path.

 Local Optima: Greedy Best-First Search can get stuck in local optima, meaning
that the path chosen may not be the best possible path.

 Heuristic Function: Greedy Best-First Search requires a heuristic function in
order to work, which adds complexity to the algorithm.

 Lack of Completeness: Greedy Best-First Search is not a complete algorithm,
meaning it may not always find a solution if one exists. This can happen if the
algorithm gets stuck in a cycle or if the search space is a too much complex.

65 Pr. Meftah Boudjelal

Exercises
Exercise 1
Apply Hill Climbing Search to find the highest-value path in the following graph,
where each node has an associated heuristic value (estimating how close it is to the
goal d).

Exercise 2
Compare Hill Climbing (HC) and Greedy Best-First Search (GBFS) on the graph
bellow to observe their differences in path selection and optimality.

66 Pr. Meftah Boudjelal

Chapter 4

Game Theory

67 Pr. Meftah Boudjelal

1. Introduction

Introduced by Von Neumann and Morgenstern in 1940, game theory is a tool used
by both economists and strategists to predict and analyze the behaviors and choices
of rational individuals seeking to maximize their gains and minimize their losses in
strategic interaction situations, without knowing the choices of others. Indeed, the
choices of some determine and influence the gains of others in strategic interaction
situations, and game theory will allow for predicting the strategy to be adopted by
the agent.
In this chapter we cover competitive environments, in which the agents’ goals are in
conflict, giving rise GAME to adversarial search problems—often known as games.
Mathematical game theory, a branch of economics, views any multiagent
environment
as a game, provided that the impact of each agent on the others is “significant,”
regardless of whether the agents are cooperative or competitive.
Games are interesting because they are too hard to solve. For example, chess has an
average branching factor of about 35, and games often go to 50 moves by each player,
so the search tree has about 35100 or 10154 nodes (although the search graph has
“only” about 1040 distinct nodes). Games, like the real world, therefore require the
ability to make some decision even when calculating the optimal decision is
infeasible.

2. What Is Game Theory?
Game theory is the study of how and why individuals and entities (called players)
make decisions about their situations. It is a theoretical framework for conceiving
social scenarios among competing players.

The goal of game theory is to explain the strategic actions of two or more players in a
given situation with set rules and outcomes. Any time a situation with two or more
players involves known payouts or quantifiable consequences, we can use game
theory to help determine the most likely outcomes.
The key to game theory is that one player's payoff is contingent on the strategy
implemented by the other player.

Game theory is the science of strategy, or at least of the optimal decision-making of
independent and competing actors in a strategic setting.

Game theory has several main objectives, which can be summarized as follows:

68 Pr. Meftah Boudjelal

1. Modeling Strategic Interactions: Game theory aims to model situations
where the actions of one individual or entity affect the outcomes of others.
This is often referred to as strategic interaction.

2. Predicting Behavior: By analyzing the incentives and possible actions of
players, game theory seeks to predict how individuals or entities will behave
in strategic situations.

3. Identifying Optimal Strategies: One of the primary goals is to determine the
best strategies for players to maximize their payoffs or minimize their losses,
given the strategies of other players.

4. Understanding Equilibria: Game theory aims to identify and understand
equilibrium points, such as the Nash equilibrium, where no player has an
incentive to deviate from their chosen strategy.

5. Analyzing Conflict and Cooperation: It provides tools to analyze situations
of conflict and cooperation, helping to understand when and why players
might choose to cooperate or compete.

6. Designing Mechanisms: Game theory is used to design mechanisms and
institutions that can achieve desired outcomes, such as auctions, voting
systems, and market structures.

7. Applied to Various Fields: The theory is applied across various disciplines,
including economics, political science, biology, computer science, and military
strategy, to provide insights and solutions to real-world problems.

8. Normative and Descriptive Analysis: Game theory can be used both
normatively (to prescribe what players should do) and descriptively (to
describe what players actually do) in strategic situations.

By achieving these objectives, game theory offers a powerful framework for
understanding and influencing strategic decision-making in a wide range of contexts.

3. Formulation of game theory

Game theory is a mathematical framework used to model and analyze strategic
interactions between rational decision-makers. It can be formally defined as a kind of
search problem with the following elements:

1. Players: The individuals or entities making decisions in the game. Typically
denoted by P1,P2,…,Pn.

2. Strategies: The set of actions or choices available to each player. For player i,

the set of strategies is denoted by Si.

3. Payoffs: The payoff matrix provides a clear visualization of possible outcomes
or rewards that players receive based on the combination of strategies chosen

69 Pr. Meftah Boudjelal

by all players. Each cell in the matrix contains the payoffs for each player,
typically in the form of a pair of numbers.

Structure

 Rows: Represent the strategies of Player 1.
 Columns: Represent the strategies of Player 2.
 Cells: Contain the payoffs for each combination of strategies, usually in the

form (Player 1's payoff, Player 2's payoff).

4. Game Representation
 Normal Form (Strategic Form): A matrix or table that lists the strategies of

each player and the corresponding payoffs for each combination of strategies.
 Extensive Form: A tree diagram that represents the sequence of moves and

the information available to players at each decision point.

Figure below shows part of the game tree for tic-tac-toe (noughts and crosses).
Players take turns, with Player 1 placing an X and Player 2 placing an O. From the
initial state, Player 1 has nine possible moves.

Example: The Prisoner's Dilemma
The prisoner's dilemma is the most well-known example of game theory. Consider
the example of two criminals arrested for a crime. Prosecutors have no hard evidence

70 Pr. Meftah Boudjelal

to convict them. However, to gain a confession, officials remove the prisoners from
their solitary cells and question each one in separate chambers. Neither prisoner has
the means to communicate with the other. Officials present four deals, often
displayed as a 2 x 2 box.
 If both confess, they will each receive a three-year prison sentence.
 If Prisoner 1 confesses, but Prisoner 2 does not, Prisoner 1 will be free and

Prisoner 2 will get five years.
 If Prisoner 2 confesses, but Prisoner 1 does not, Prisoner 1 will get five years,

and Prisoner 2 will be free.
 If neither confesses, each will serve one year in prison.

 Cooperate (Player

2)
Defect (Player 2)

Cooperate (Player 1) (3, 3) (0, 5)
Defect (Player 1) (5, 0) (1, 1)

The payoff matrix is used to analyze optimal strategies and determine Nash

equilibrium.
The Nash equilibrium is for both players to defect, as this is the best strategy for
each player regardless of the other's choice.

5. Types of Game Theory
Although there are many types of game theory, such as symmetric/asymmetric,
simultaneous/sequential, and so on, cooperative and non-cooperative game theories
are the most common.

5.1. Cooperative vs. Non-Cooperative Games
Cooperative game theory deals with how coalitions, or cooperative groups, interact
when only the payoffs are known. It is a game between coalitions of players rather
than between individuals, and it questions how groups form and how they allocate
the payoff among players.

Non-cooperative game theory deals with how rational economic agents deal with
each other to achieve their own goals. The most common non-cooperative game is
the strategic game, in which only the available strategies and the outcomes that result
from a combination of choices are listed. A simplistic example of a real-world non-
cooperative game is rock-paper-scissors.

71 Pr. Meftah Boudjelal

5.2. Complete Information vs. Incomplete Information
A game of complete information is a game where you know the structure of the
game, that is, the identity of all players, the number of players, the order of decisions,
the possible actions or strategies, and the payoffs; typically, the game of chess is a
game of complete information.
If one of the indicated elements is not present, the game is of incomplete information.
Poker is an example of a game of incomplete information.

5.3. Symmetric vs.Asymmetric
A game is said to be symmetric if the roles of the players are interchangeable,
meaning that the payoffs and available strategies are the same for all players. In a
symmetric game, no player has an intrinsic advantage or disadvantage over the
others.
The Prisoner's Dilemma is an example of a symmetric game. Both players have the
same choices (cooperate or defect) and the same payoffs associated with these
choices.

A game is said to be asymmetric if the roles of the players are not interchangeable,
meaning that the payoffs and available strategies differ among the players. In an
asymmetric game, some players may have specific advantages or disadvantages.
A negotiation game between an employer and an employee can be asymmetric. The
employer and the employee have different positions and different payoffs based on
their actions.

5.4. Zero-Sum vs. Non-Zero-Sum Games
When multiple parties are in direct competition for the same result, it is often
referred to as a zero-sum game.
This means that for every winner, there is a loser. Alternatively, it means that the
collective net benefit received is equal to the collective net benefit lost. Lots of
sporting events are a zero-sum game as one team wins and another team loses.

A non-zero-sum game is one in which all participants can win or lose at the same
time. Consider business partnerships that are mutually beneficial and foster value for
both entities. Instead of competing and attempting to win at the expense of the other,
both parties benefit.

5.5. Simultaneous Move vs. Sequential Move Games
Simultaneous move situations, which occur frequently in life, mean each participant
must continually make decisions at the same time that their opponent is making
decisions. As companies devise their marketing, product development, and
operational plans, competing companies are doing the same thing at the same time.

72 Pr. Meftah Boudjelal

In some cases, there is an intentional staggering of decision-making steps, enabling
one party to see the other party's moves before making their own. This is usually
present in negotiations; one party lists their demands, then the other party has a
designated amount of time to respond and list their own.

5.6. One Shot vs. Repeated Games
These are games that are played only once. Players make their decisions
simultaneously and independently, without knowledge of the other players' choices.
This is often the case with equity traders, who must wisely choose their entry point
and exit point, as their decision may not easily be undone or retried.

On the other hand, repeated games are games that are played multiple times by the
same players. It could be a finite number of times (known or unknown) or an infinite
number of times.
For example, consider rival companies trying to price their goods. Whenever one
makes a price adjustment, so may the other. This circular competition repeats itself
across product cycles or sale seasonality.

6. Search and decision-making algorithms

In the context of game theory, search and decision-making algorithms are crucial for
modeling and solving strategic situations where players interact competitively or
cooperatively.
The Minimax algorithm and its optimizations, such as Alpha-Beta Pruning, are
fundamental for perfect information games. For games with larger search spaces or
imperfect information, techniques like Monte Carlo Tree Search and reinforcement

learning algorithms are often used. These algorithms enable optimal decision-
making in complex and dynamic environments.

6.1. The Minimax algorithm
The Minimax is a tree search algorithm used in two-player, zero-sum games with
alternating friendly and enemy moves. It assumes the existence of an evaluation
function called at a given depth and common to both players. The friendly player
seeks to maximize the evaluation, and the enemy player seeks to minimize it. At a
friendly node (respectively enemy node), the minimax value is the maximum
(respectively minimum) of the minimax values of the child nodes.

1. Maximizing Player (Maximizer): The player who aims to maximize their
gain.

73 Pr. Meftah Boudjelal

2. Minimizing Player (Minimizer): The player who aims to minimize the gain of
the maximizing player.

3. Game Tree: A tree structure representing all possible moves and
countermoves in the game.

4. Terminal Nodes: Nodes in the game tree that represent the end of the game,
with associated payoffs.

How the Minimax Algorithm Works

1. Generate the Game Tree: Create a tree of all possible moves and
countermoves.

2. Evaluate Terminal Nodes: Assign a value to each terminal node based on the
payoff for the maximizing player.

3. Propagate Values Up the Tree:
o For the maximizing player's turn, choose the maximum value among

the child nodes.
o For the minimizing player's turn, choose the minimum value among

the child nodes.
4. Determine the Optimal Move: The value at the root of the tree represents the

best possible outcome for the maximizing player, assuming optimal play by
both players.

Example

74 Pr. Meftah Boudjelal

Pseudocode
def minimax(node, depth, maximizingPlayer):
 if node is a terminal node or depth == 0:
 return evaluate(node)

 if maximizingPlayer:
 maxEval = -infinity
 for child in node.children:
 eval = minimax(child, depth - 1, False)
 maxEval = max(maxEval, eval)
 return maxEval
 else:
 minEval = +infinity
 for child in node.children:
 eval = minimax(child, depth - 1, True)
 minEval = min(minEval, eval)
 return minEval

Limitations

 Computational Complexity: The Minimax algorithm can be computationally
expensive for large game trees.

 Perfect Information: It assumes perfect information, which may not be the
case in many real-world scenarios.

Optimizations

 Alpha-Beta Pruning: An optimization technique that reduces the number of
nodes evaluated by the Minimax algorithm, making it more efficient.

75 Pr. Meftah Boudjelal

6.2. Alpha–Beta pruning
The problem with minimax search is that the number of game states it has to
examine is exponential in the depth of the tree.
For tic-tac-toe the game tree is relatively small—fewer than 9! = 362 880 terminal
nodes. But for chess there are over 10ସ଴ nodes, so the game tree is best thought of as
a theoretical construct that we cannot realize in the physical world.

Unfortunately, we can’t eliminate the exponent, but it turns out we can effectively
cut it in half. The trick is that it is possible to compute the correct minimax decision
without looking at every node in the game tree. That is, we can borrow the idea of
pruning to eliminate large parts of the tree from consideration. When applied to a
standard minimax tree, it returns the same move as minimax would, but prunes
away branches that cannot possibly influence the final decision.

Alpha-Beta Pruning is an optimization technique for the Minimax algorithm that
reduces the number of nodes evaluated in the game tree. It eliminates branches that
cannot influence the final decision, thereby improving the efficiency of the search
process. This involves two threshold parameters alpha and beta for future expansion,
so it is called alpha-beta pruning.

Alpha-beta pruning can be applied at any depth of a tree, and sometimes it not only
prunes the tree leaves but also entire sub-tree.

The two-parameter can be defined as:

1. Alpha: Represents the minimum score that the maximizing player is assured
of.

2. Beta: Represents the maximum score that the minimizing player is assured of.

The main condition which required for alpha-beta pruning is: α>=β

How Alpha-Beta Pruning Works

1. Initialize Alpha and Beta: Start with alpha as negative infinity (−∞) and beta
as positive infinity (+∞).

2. Propagate Alpha and Beta:

o At a maximizing node, update alpha to the maximum of alpha and the
current node's value.

o At a minimizing node, update beta to the minimum of beta and the
current node's value.

3. Prune Branches:

76 Pr. Meftah Boudjelal

o If at any point, beta ≤ alpha, prune the remaining branches because
they cannot affect the final decision.

Pseudo-code for Alpha-Beta Pruning

function minimax(node, depth, alpha, beta, maximizingPlayer) is
if depth ==0 or node is a terminal node then
return static evaluation of node

if MaximizingPlayer then // for Maximizer Player
 maxEva= -infinity
 for each child of node do
 eva= minimax(child, depth-1, alpha, beta, False)
 maxEva= max(maxEva, eva)
 alpha= max(alpha, maxEva)
 if beta<=alpha
 break
 return maxEva

else // for Minimizer player
 minEva= +infinity
 for each child of node do
 eva= minimax(child, depth-1, alpha, beta, true)
 minEva= min(minEva, eva)
 beta= min(beta, eva)
 if beta<=alpha
 break
 return minEva

77 Pr. Meftah Boudjelal

Advantages

 Efficiency: Significantly reduces the number of nodes evaluated compared to
the standard Minimax algorithm.

 Optimal Decisions: Maintains the optimality of the Minimax algorithm while
improving performance.

Limitations

 Complexity: Still computationally intensive for very large game trees.
 Perfect Information: Assumes perfect information, which may not be the case

in many real-world scenarios.

7. Limitations of Game Theory

While game theory provides a valuable framework for analyzing strategic
interactions, it is important to recognize its limitations and apply it judiciously.
Combining game theory with other analytical tools and considering the specific
context and constraints of the situation can help to mitigate some of these limitations
and provide more robust insights.

1. Assumption of Rationality
Game theory often assumes that all players are perfectly rational and will
always make decisions that maximize their utility. In reality, human behavior
is often influenced by emotions, biases, and limited information, leading to
decisions that may not be strictly rational.

2. Perfect Information

Many game theory models assume that players have perfect information
about the game's structure, the actions of other players, and the possible
outcomes. In real-world scenarios, information is often incomplete or
uncertain, making it difficult to apply these models directly.

78 Pr. Meftah Boudjelal

3. Complexity
Game theory can become extremely complex, especially in games with many
players, multiple rounds, or a large number of possible actions. Analyzing
such games can be computationally intensive and may not be feasible in
practical applications.

4. Static vs. Dynamic Environments

Game theory often focuses on static or one-shot games, where players make a
single decision. However, many real-world situations are dynamic, with
players making multiple decisions over time. This dynamic nature can
introduce additional complexities that are not fully captured by static models.

5. Bounded Rationality

Players in real-world situations often have limited cognitive abilities and
resources, leading to bounded rationality. This means they may not be able to
consider all possible outcomes and may make decisions based on heuristics or
rules of thumb rather than optimal strategies.

6. Simplified Models

Game theory models often simplify real-world situations to make them
controllable. This simplification can lead to models that do not fully capture
the nuances and complexities of real-world interactions. For example, models
may assume that players have fixed preferences or that the game has a fixed
number of rounds.

8. Equilibrium Assumptions

Many game theory models focus on finding equilibrium points, such as Nash
equilibria, where no player can improve their outcome by unilaterally
changing their strategy. However, in real-world situations, players may not
always reach or maintain equilibrium, especially if the game is repeated or if
players can learn and adapt over time.

7. Ethical and Social Considerations

Game theory often focuses on individual utility maximization and may not
fully account for ethical, social, or cooperative considerations. In real-world
situations, players may be influenced by factors such as justice, mutuality, and
social norms, which are not always captured by game theory models.

8. Limited Predictive Power

Game theory models can provide insights into possible outcomes and
strategies, but they often have limited predictive power. Real-world outcomes

79 Pr. Meftah Boudjelal

are influenced by a wide range of factors, many of which may not be captured
by the model.

9. Assumption of Common Knowledge

Many game theory models assume that players have common knowledge of
the game's structure, the rules, and the possible outcomes. In real-world
situations, players may have different levels of knowledge or may interpret
the rules and outcomes differently.

80 Pr. Meftah Boudjelal

Exercises

Exercise 1: Quiz on Game Theory

1. Game theory studies how people make decisions in competitive situations.
a. () True
b. () False

2. In the Prisoner’s Dilemma, both players cooperating is the best outcome for

society.
a. () True
b. () False

3. A Nash Equilibrium is when all players use the best strategy possible, no

matter what others do.
a. () True
b. () False

4. Which of these is an example of a zero-sum game?

a. () Chess
b. () The Prisoner’s Dilemma
c. () Both

5. In the Prisoner’s Dilemma, what happens if both players defect?

a. () They both get the worst possible outcome.
b. () They both get a medium outcome.
c. () One wins, and the other loses.

6. What is a "dominant strategy"?

a. () A strategy that always works, no matter what the opponent does.
b. () A strategy that only works if the opponent makes a mistake.
c. () A strategy that changes based on the opponent’s moves.

7. What is a "Nash Equilibrium"?

a) A strategy where no player can benefit by unilaterally changing their
strategy.
b) A strategy that maximizes the total payoff of all players.
c) A strategy where players take turns optimizing their moves.

8. In the Prisoner’s Dilemma, why do players often defect (confess)?
a) Because cooperation is irrational in a one-shot game.
b) Because the police force them to confess.
c) Because it maximizes social welfare.

9. What is a "dominant strategy"?
a) A strategy that always gives a higher payoff, regardless of opponents’
choices.
b) A strategy that only works against weak opponents.
c) A strategy that requires cooperation.

81 Pr. Meftah Boudjelal

Exercise 2

Consider the following game tree where the goal is to maximize the score.

1. Use the minimax algorithm to determine the best move for the maximizing player
2. Use the alpha-beta pruning algorithm to determine the best move for the maximizing

player

82 Pr. Meftah Boudjelal

Chapter 5

Metaheuristic

83 Pr. Meftah Boudjelal

1. Introduction

Heuristic and metaheuristic methods are both used to solve optimization problems,
particularly when finding an exact solution is computationally expensive or
impractical. While they share some similarities, they differ mainly in their generality,
approach, and adaptability to different types of problems.

A metaheuristic search refers to a high-level, generalized method or strategy
designed to find approximate solutions to complex optimization problems. Unlike
problem-specific algorithms (like exact optimization methods), metaheuristics are
designed to be adaptable and applicable to a wide range of problems, often without
requiring detailed knowledge of the problem’s specific structure. The key advantage
of metaheuristics is their ability to explore large solution spaces and avoid getting
stuck in local optima, potentially finding near-optimal solutions in reasonable time.

Metaheuristics provide “acceptable” solutions in a reasonable time for solving hard
and complex problems in science and engineering.
Unlike exact optimization algorithms, metaheuristics do not guarantee the optimality
of the obtained solutions. Instead of approximation algorithms, metaheuristics do not
define how close are the obtained solutions from the optimal ones.

The word heuristic has its origin in the old Greek word heuriskein, which means the
art of discovering new strategies (rules) to solve problems. The suffix meta, also a
Greek word, means “upper-level methodology.” The term metaheuristic was
introduced by F. Glover. Metaheuristic search methods can be defined as upper-level
general methodologies (templates) that can be used as guiding strategies in
designing underlying heuristics to solve specific optimization problems.

2. Metaheuristic Search Methods

Heuristic search methods and metaheuristic search methods are both valuable tools
for solving optimization problems, but they differ in their approach and scope.
Heuristic methods are problem-specific and aim to find acceptable solutions quickly,
while metaheuristics offer a general and flexible approach to exploring the search
space and finding near-optimal solutions.

2.1. Definition
Metaheuristic search methods are high-level, problem-independent strategies
designed to guide the search process for finding near-optimal solutions in complex

84 Pr. Meftah Boudjelal

search spaces. They provide a general framework that can be applied to a wide range
of optimization problems.
Unlike heuristics, which are problem-specific and often provide quick but not
necessarily optimal solutions, metaheuristics offer a more general approach that can
be applied to a wide range of problems.

Generality
Metaheuristics are not specific to any particular problem but can be adapted to
various types of problems. They offer a flexible approach to exploring the search
space and avoiding local optima.

Objective
The objective of metaheuristic search methods is to find near-optimal solutions by
effectively exploring the search space. They aim to balance exploration (searching
new areas) and exploitation (refining known good solutions).

Approach
Metaheuristics use a combination of exploration and exploitation strategies to
navigate the search space. They often incorporate randomness and stochastic
elements to escape local optima and explore different regions of the solution space.

2.2. Characteristics of Metaheuristics

1. Problem-Independent: Metaheuristics are not tailored to a specific problem
but can be adapted to various optimization problems. This makes them
versatile and applicable to a broad spectrum of challenges.

2. Global Search: They aim to explore the entire solution space to avoid getting

trapped in local optima. This global search capability is crucial for finding
near-optimal solutions in complex landscapes.

3. Iterative Improvement: Metaheuristics typically involve iterative processes

that improve the solution over time. This iterative nature allows for
continuous refinement and exploration of the solution space.

4. Stochastic Nature: Many metaheuristics incorporate randomness to explore

the solution space more effectively. This stochastic element helps in escaping
local optima and discovering new regions of the solution space.

85 Pr. Meftah Boudjelal

5. Balance Between Exploration and Exploitation: Metaheuristics balance
between exploring new areas of the solution space (exploration) and refining
known good solutions (exploitation). This balance is essential for finding high-
quality solutions efficiently.

 2.3. Advantages of Metaheuristics

1. Versatility: Metaheuristics can be applied to a wide range of optimization
problems, making them a valuable tool in various fields such as engineering,
computer science, operations research, and finance.

2. Effectiveness in Complex Problems: They are particularly effective in solving

complex, high-dimensional problems where traditional optimization methods
may fail. Metaheuristics can handle non-linear, non-convex, and
discontinuous solution spaces.

3. Flexibility: Metaheuristics can be combined with other optimization

techniques to enhance performance. This flexibility allows for the
development of hybrid methods that leverage the strengths of multiple
approaches.

4. Robustness: Metaheuristics are robust to changes in the problem formulation

and can adapt to different types of constraints and objectives. This robustness
makes them suitable for real-world applications where the problem may
evolve over time.

2.4. Limitations of Metaheuristics

1. Computational Complexity: Metaheuristics can be computationally intensive,
especially for large-scale problems. The iterative nature and the need to
explore a vast solution space can require significant computational resources.

2. Parameter Sensitivity: The performance of metaheuristics can be sensitive to

the choice of parameters and initial conditions. Fine-tuning these parameters
can be challenging and may require extensive experimentation.

3. Convergence Issues: Metaheuristics may require a large number of iterations

to converge to a good solution. Premature convergence to local optima can be
a problem, especially if the balance between exploration and exploitation is
not well-managed.

86 Pr. Meftah Boudjelal

4. Limited Theoretical Guarantees: Unlike some traditional optimization

methods, metaheuristics often lack theoretical guarantees of convergence to
the global optimum. This can make it difficult to assess the quality of the
solutions obtained.

2.5. Example of Metaheuristics algorithms

 Genetic Algorithms (GA): Use techniques such as selection, crossover, and
mutation to evolve a population of solutions.

 Simulated Annealing (SA): Allows for occasional moves to worse solutions to
escape local optima, with a decreasing probability over time.

 Particle Swarm Optimization (PSO): Uses a population of particles that move
through the solution space, adjusting their positions based on their own best-
known positions and the best-known positions of their neighbors.

 Ant Colony Optimization (ACO): Inspired by the pheromone trail laying and
following behavior of real ants, used to find optimal paths in graphs.

 Tabu Search (TS): Uses memory structures to avoid revisiting previously
explored solutions and to escape local optima.

2.6. Applications of Metaheuristics

Metaheuristics are widely used in various fields to solve complex optimization
problems.

Engineering:
 Design Optimization: Optimizing the design parameters of mechanical,

electrical, and civil engineering systems to improve performance, reduce costs,
and enhance reliability.

 Scheduling and Resource Allocation: Optimizing the scheduling of tasks,
allocation of resources, and management of projects to maximize efficiency and
minimize costs.

Computer Science:
 Machine Learning: Optimizing the parameters of machine learning models to

improve accuracy and generalization.
 Data Mining: Finding patterns and structures in large datasets to extract

valuable insights.
 Network Optimization: Designing and optimizing communication networks,

routing protocols, and data transmission paths.

87 Pr. Meftah Boudjelal

Operations Research:
 Supply Chain Management: Optimizing the flow of goods, information, and

finances from the point of origin to the point of consumption to maximize
efficiency and minimize costs.

 Logistics: Planning and optimizing the transportation and storage of goods to
ensure timely and cost-effective delivery.

 Inventory Control: Managing the stock levels of products to meet demand
while minimizing holding and shortage costs.

Finance:
 Portfolio Optimization: Selecting and allocating investments to maximize

returns while minimizing risk.
 Risk Management: Identifying and mitigating financial risks to protect

investments and ensure stability.
 Trading Strategies: Developing and optimizing trading algorithms to maximize

profits and minimize losses in financial markets.

Biology:
 Protein Folding: Predicting the three-dimensional structure of proteins to

understand their function and behavior.
 Drug Design: Optimizing the molecular structure of drugs to enhance their

efficacy and reduce side effects.
 Genetic Sequencing: Analyzing and interpreting genetic data to understand

biological processes and diseases.

3. Simulated Annealing algorithm

Simulated Annealing (SA) is a probabilistic optimization algorithm inspired by the
annealing process in metallurgy. It is used to find near-optimal solutions to complex
optimization problems, especially those with large search spaces. The algorithm
mimics the process of heating and then slowly cooling a material to decrease defects
and minimize the system's energy. While it has some limitations, such as
computational complexity and parameter sensitivity, its flexibility and robustness
make it suitable for a wide range of optimization problems.

3.1. Annealing Process

In metallurgy, annealing involves heating the material to a high temperature and
then slowly cooling it, which allows the atoms to rearrange themselves into a more
stable crystalline structure. This reduces internal stresses and defects, resulting in a
material with improved properties.

88 Pr. Meftah Boudjelal

3.2. How Simulated Annealing works?

Simulated Annealing (SA) is a metaheuristic algorithm inspired by the annealing
process in metallurgy. It is designed to find near-optimal solutions to complex
optimization problems, especially those with large search spaces.

Simulated Annealing introduces a probability of accepting worse solutions (downhill
step), especially early in the search process. This helps the algorithm escape local
optima and explore the solution space more effectively.
It starts with a high "temperature" (which controls the probability of accepting worse
solutions) and gradually reducing it.

Temperature Schedule
The temperature schedule defines how the temperature decreases over time. The
initial temperature is set high enough to allow for significant exploration of the
solution space, while the final temperature is low enough to focus on exploitation.

89 Pr. Meftah Boudjelal

Acceptance Probability
The Metropolis criterion determines whether a new solution should be accepted
based on the change in the objective function value and the current temperature. The
criterion allows for occasional moves to worse solutions (uphill moves), which helps
the algorithm escape local optima and explore the solution space more effectively.

The acceptance probability determines whether a new solution is accepted. It is given
by the Metropolis criterion:

𝑃(𝑎𝑐𝑐𝑒𝑝𝑡) = ቊ
1 𝑖𝑓 ∆𝐸 ≤ 0

𝑒
ష∆ಶ

೅ 𝑖𝑓 ∆𝐸 > 0

where ∆𝐸 is the change in the objective function value, and 𝑇 is the current
temperature.
 If the new solution improves the objective function value (∆𝐸 ≤ 0), it is always

accepted.
 If the new solution worsens the objective function value (∆𝐸 > 0), it is accepted

with a probability that decreases exponentially with the magnitude of (∆𝐸 and
the current temperature 𝑇).

Cooling Schedule
The cooling schedule specifies how the temperature is reduced over time. It is crucial
for the performance of the algorithm.
Common cooling schedules include exponential decay, linear decay, and logarithmic
decay:

 Exponential Decay: 𝑇௡௘௪ = 𝛼. 𝑇௢௟ௗ where 0 < 𝛼 < 1.
 Linear Decay: 𝑇௡௘௪ = 𝑇௢௟ௗ − 𝛽. 𝑡 where 𝛽 is a constant and 𝑡 is the iteration

number.

 Logarithmic Decay: 𝑇௡௘௪ =
்೚೗೏

ଵାఊ.௧
 where 𝛾 is a constant.

3.3. Algorithm Steps

1. Initialization
 Start with an initial solution 𝑆଴ and an initial temperature 𝑇଴.
 Set the cooling schedule parameters (e.g., α for exponential decay).

2. Iterative Process

 While the temperature T is above a minimum threshold 𝑇௠௜௡:
1. Perturbation: Generate a new solution 𝑆௡௘௪ by making a small

random change to the current solution S.

90 Pr. Meftah Boudjelal

2. Evaluation: Calculate the change in the objective function value
∆𝐸 = 𝑓(𝑆௡௘௪) − 𝑓(𝑆)

3. Acceptance: Accept the new solution 𝑆௡௘௪ with a probability given
by the Metropolis criterion.

4. Update: If the new solution is accepted, update the current solution
𝑆 = 𝑆௡௘௪

5. Cooling: Reduce the temperature according to the cooling schedule.

3. Termination
 The algorithm terminates when the temperature reaches the minimum

threshold 𝑇௠௜௡ or a maximum number of iterations is reached.

3.4. Pseudocode
def simulated_annealing(initial_solution, initial_temperature, cooling_schedule,
objective_function, max_iterations):

 current_solution = initial_solution
 current_temperature = initial_temperature
 best_solution = current_solution
 best_value = objective_function(current_solution)

 for iteration in range(max_iterations):

91 Pr. Meftah Boudjelal

 new_solution = perturb(current_solution)
 delta_e = objective_function(new_solution) -objective_function(current_solution)

 if delta_e < 0 or random.uniform(0, 1) < math.exp(-delta_e / current_temperature):
 current_solution = new_solution

 if objective_function(current_solution) < best_value:
 best_solution = current_solution
 best_value = objective_function(current_solution)

 current_temperature = cooling_schedule(current_temperature, iteration)
 return best_solution, best_value
def perturb(solution):
 # Generate a new solution by making a small random change to the current
solution
 # This function is problem-specific and needs to be implemented accordingly
 pass

def cooling_schedule(current_temperature, iteration):
 # Define the cooling schedule
 # Example: Exponential decay
 alpha = 0.9
 return alpha * current_temperature

3.5. Example of Problem: Minimize a Mathematical Function
We aim to minimize the function:

𝑓(𝑥) = 𝑥ଶ + 4 sin(5𝑥) + 2cos (3𝑥)

where 𝑥 ∈ [−10,10]. This function has several local minima and maxima, making it
an ideal candidate for demonstrating how simulated annealing can escape local
minima to find a better solution.

The graph below clearly shows a series of local minima and maxima within the range
[−10,10]. This makes the function a good example to demonstrate how the simulated
annealing algorithm can navigate such a landscape to find a global minimum.

92 Pr. Meftah Boudjelal

Steps of the Simulated Annealing Algorithm

1. Initialization

 Start with a random solution, e.g., 𝑥௖௨௥௥௘௡௧ = 0
 Set a high initial temperature, 𝑇 = 𝑇௜௡௜௧ = 100
 Define a cooling schedule, such as 𝑇௡௘௪ = 0.95 ∗ 𝑇௖௨௥௥௘௡௧
 Decide on the stopping criteria (e.g., when the temperature T drops below a

small value, such as 𝑇௠௜௡ = 0.01

2. Exploration
At each temperature:

1. Generate a new solution, 𝑥௡௘௪ by making a small random change near the
current solution,

𝑥௖௨௥௥௘௡௧(e.g. 𝑥௡௘௪ = 𝑥௖௨௥௥௘௡௧ + ∆, 𝑤ℎ𝑒𝑟𝑒 ∆ 𝑖𝑠 𝑎 𝑠𝑚𝑎𝑙𝑙 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑡𝑒𝑝

2. Evaluate the change in the objective function:
∆𝐸 = 𝑓(𝑥௡௘௪) − 𝑓(𝑥௖௨௥௥௘௡௧)

3. Acceptance Rule

 If the new solution is better (∆𝐸 <0), accept it immediately:
𝑥௖௨௥௥௘௡௧ = 𝑥௡௘௪

 If the new solution is worse (∆𝐸 >0), accept it with a probability:

𝑃 = 𝑒ି∆ா/்
This probabilistic acceptance helps the algorithm escape local minima early in the
process when 𝑇 is high.

93 Pr. Meftah Boudjelal

4. Cooling
 After a certain number of iterations, reduce the temperature T according to the

cooling schedule.

5. Stopping

 The algorithm stops when the temperature becomes very small (𝑇 < 𝑇௠௜௡) or
after a fixed number of iterations.

Example Walkthrough

1. Starting Point: Suppose 𝑥௖௨௥௥௘௡௧ = 0, and the function value is 𝑓(0) = 0ଶ +

4 sin(5 ∗ 0) + 2 cos(3 ∗ 0) = 2

2. First Move: Generate a new 𝑥௡௘௪ = 0.3. Calculate 𝑓(0.3) and ∆𝐸 = 𝑓(0.3) −

𝑓(0). Decide whether to accept or reject 𝑥௡௘௪ based on the acceptance rule.

3. Iterate: Continue exploring and updating 𝑥௖௨௥௥௘௡௧ as the temperature 𝑇
decreases, allowing the algorithm to transition from broad exploration to fine
exploitation.

4. Final Result: After many iterations, the algorithm converges to a solution near

a global minimum, such as 𝑥 ≈ −2.5

3.6. Advantages of Simulated Annealing
1. Global Optimization: Simulated Annealing is effective in finding near-

optimal solutions in complex, high-dimensional search spaces. It can handle
non-linear, non-convex, and discontinuous solution spaces.

94 Pr. Meftah Boudjelal

2. Flexibility: The algorithm can be applied to a wide range of optimization
problems, including continuous, discrete, and combinatorial problems.

3. Robustness: Simulated Annealing is robust to changes in the problem
formulation and can adapt to different types of constraints and objectives.

4. Escape from Local Optima: The ability to accept worse solutions early in the
process helps in escaping local optima and exploring the solution space more
effectively.

3.7. Limitations of Simulated Annealing
1. Computational Complexity: Simulated Annealing can be computationally

intensive, especially for large-scale problems. The iterative nature and the
need to explore a vast solution space can require significant computational
resources.

2. Parameter Sensitivity: The performance of Simulated Annealing is sensitive
to the choice of parameters, such as the initial temperature, cooling schedule,
and acceptance probability. Fine-tuning these parameters can be challenging
and may require extensive experimentation.

3. Convergence Issues: The algorithm may require a large number of iterations
to converge to a good solution. Premature convergence to local optima can be
a problem if the cooling schedule is not well-managed.

4. Limited Theoretical Guarantees: Unlike some traditional optimization
methods, Simulated Annealing often lacks theoretical guarantees of
convergence to the global optimum. This can make it difficult to assess the
quality of the solutions obtained.

4. Genetic algorithms

4.1. Definition
Genetic algorithms (GAs) are adaptive search algorithms based on the principles of
natural selection and genetics. By simulating the process of evolution, GAs utilize
mechanisms such as selection, crossover, and mutation to iteratively refine potential
solutions, making them particularly effective for optimization tasks that traditional
methods struggle to address.

4.2. Terminologies of Evolutionary Computation

 Population. A set of individuals in a generation is called a population, 𝑃(𝑡) =

{𝑥ଵ, 𝑥ଶ, … , 𝑥௡}, where 𝑥௜ , is the 𝑖𝑡ℎ individual.

95 Pr. Meftah Boudjelal

 Chromosome. Each individual 𝑥௜ in a population is a single chromosome. A
chromosome, sometimes called a genome, is a set of parameters that define a
solution to the problem.

 Gene. Each chromosome 𝑥 comprises of a string of elements 𝑔௜ , called genes,
i.e., 𝑥 = (𝑔ଵ, 𝑔ଶ, … , 𝑔௡), where 𝑛 is the number of genes in the chromosome.
Each gene encodes a parameter of the problem into the chromosome. A gene is
usually encoded as a binary string or a real number.

 Alleles are the smallest information units in a chromosome

 Genotype. A genotype is biologically referred to the underlying genetic coding
of a living organism, usually in the form of DNA. In EAs, a genotype represents
a coded solution, that is, an individual’s chromosome.

 Fitness. Fitness in biology refers to the ability of an individual of certain
genotype to reproduce. The set of all possible genotypes and their respective
fitness values is called a fitness landscape.

4.3. Encoding/Decoding
coding and encoding are fundamental aspects of genetic algorithms that determine
how solutions are represented and manipulated. The choice of encoding scheme can
greatly influence the performance and effectiveness of the GA.

Coding: The general process of transforming a problem's solution into a format
suitable for a genetic algorithm.
Encoding: The specific method or scheme used to represent the solution. Encoding is
a more detailed aspect of coding, specifying how the solution is structured and what
data types are used.

Types of Encoding

 Binary coding: Solutions are represented as binary strings (sequences of 0 and
1). Example: For a problem with three binary parameters, a solution might be
encoded as [1, 0, 1].

96 Pr. Meftah Boudjelal

Advantages: Simple to implement, easy to apply genetic operators.
Disadvantages: May not be efficient for problems with large or continuous
parameter spaces.

 Real-Valued Encoding: Solutions are represented as vectors of real numbers.
Example: For a problem with three real-valued parameters, a solution might be
encoded as [0.5, 1.2, 0.8].
Advantages: More natural for problems with continuous parameters, can
handle a wider range of values.
Disadvantages: Requires more complex genetic operators.

 Integer Encoding: Solutions are represented as vectors of integers. Example:
For a problem with three integer parameters, a solution might be encoded as [3,
7, 2].

Advantages: Suitable for problems with discrete parameters.
Disadvantages: May require special handling for genetic operators.

Example of Encoding in a Genetic Algorithm
Let's consider a simple optimization problem where we want to maximize the
function 𝑓(𝑥, 𝑦) = 𝑥ଶ + 𝑦ଶ over the range −10 ≤ 𝑥, 𝑦 ≤ 10

 Binary Encoding: If we use 10 bits for each parameter, a solution might be
encoded as [1010101010, 0101010101]. For decoding, convert the binary strings
back to real numbers within the range [-10, 10].

 Real-Valued Encoding: A solution might be encoded as [3.5, -2.7].

4.4. Selection
Selection, also known as reproduction, is a critical step in genetic algorithms (GAs)
that determines which individuals (solutions) from the current population will
contribute to the next generation. The goal of selection is to favor the reproduction of
fitter individuals, thereby increasing the likelihood that their beneficial traits will be
passed on to future generations. This process mimics natural selection in biological
evolution.

Purpose of Selection

 Fitness Propagation: Ensures that individuals with higher fitness scores have a
higher probability of contributing to the next generation, thereby propagating
their beneficial traits.

 Population Improvement: Over successive generations, selection helps
improve the overall fitness of the population by favoring better solutions.

97 Pr. Meftah Boudjelal

 Diversity Maintenance: Balances the need to exploit good solutions with the
need to explore new areas of the search space, maintaining genetic diversity.

Types of Selection Methods

1. Roulette Wheel Selection (Fitness Proportionate Selection):
o Each individual's probability of being selected is proportional to its

fitness score.
 Calculate the total fitness of the population. Assign a portion of

the roulette wheel to each individual proportional to its fitness.

𝑃௜ =
𝑓(𝑥௜)

∑ 𝑓(𝑥௜)
ே
௜ୀଵ

 Spin the roulette wheel to select individuals.

o Advantages: Simple to implement.
o Disadvantages: Can lead to premature convergence if a few

individuals have significantly higher fitness.

2. Tournament Selection:
o Randomly select a subset of individuals (tournament size) and choose

the one with the highest fitness.
 Randomly pick a subset of individuals from the population.
 Select the individual with the highest fitness from the subset.

98 Pr. Meftah Boudjelal

In this case, the tournament size is set to 3
o Advantages: Easy to implement, allows control over selection pressure

by adjusting the tournament size.
o Disadvantages: May not always select the best individuals if the

tournament size is small.

3. Rank Selection:
o Individuals are ranked based on their fitness, and selection

probabilities are assigned based on these ranks.
 Rank individuals from best to worst in descending order.
 Convert ranks into selection probabilities. Commonly, higher

ranks are assigned higher probabilities, often using linear or
exponential scaling

 Assign selection probabilities based on ranks (e.g., linear or
exponential ranking).

Example: Linear Rank Probability

𝑃௜ =
1

𝑁
൬𝛽 − 2(𝛽 − 1)

𝑖 − 1

𝑁 − 1
൰ , 𝑖 = 1, 2, … , 𝑁

Where 𝛽 is selected in [0, 2], i is the rank, and N is the population size

o Advantages: Reduces the risk of premature convergence, as it spreads
selection pressure more evenly.

o Disadvantages: May not exploit the best solutions as effectively as
other methods.

99 Pr. Meftah Boudjelal

4. Elitism:
o The best individuals from the current generation are directly copied to

the next generation without modification.
 Identify the top-performing individuals.
 Copy these individuals to the next generation.

o Advantages: Ensures that the best solutions are preserved, preventing
loss of good solutions.

o Disadvantages: May reduce genetic diversity if too many elite
individuals are preserved.

5. Truncation Selection:
o Only the top fraction of the population is selected for reproduction.

 Rank individuals based on fitness in descending order.
 Select the top fraction (e.g., top 50%) for reproduction.

o Advantages: Strong selection pressure, ensures that only the best
individuals contribute to the next generation.

o Disadvantages: May lead to premature convergence and loss of genetic
diversity.

4.5. Crossover
Crossover, also known as recombination, is a fundamental genetic operator in
genetic algorithms (GAs) that combines parts of two parent solutions to produce
offspring. This process mimics the biological recombination of genetic material
during reproduction. Crossover is crucial for exploring the search space and
generating new solutions that inherit characteristics from both parents.
Purpose of Crossover

 Exploration: Crossover helps explore the search space by combining different
parts of parent solutions, potentially leading to better solutions.

 Inheritance: It allows offspring to inherit beneficial traits from both parents,
which can improve the overall fitness of the population.

 Diversity: Crossover maintains genetic diversity in the population, preventing
premature convergence to suboptimal solutions.

Types of Crossover

1. Single-Point Crossover :
o A single crossover point is randomly chosen, and the genetic material is

exchanged between the two parents at this point.
Example: For binary-encoded chromosomes. Crossover point: 5

100 Pr. Meftah Boudjelal

2. Two-Point Crossover:
o Two crossover points are randomly chosen, and the genetic material

between these points is exchanged between the two parents.
Example: For binary-encoded chromosomes. Crossover points: 2 and 5

3. Uniform Crossover:
o Each gene in the offspring is randomly chosen from one of the two

parents with a certain probability.
Example: For binary-encoded chromosomes:

4. Order Crossover (OX):
o Used for permutation-encoded chromosomes, such as in scheduling

problems. A segment of one parent is copied to the offspring, and the
remaining genes are filled in the order they appear in the other parent.

From Parent 1: F-E-C-D-H-B-G-A
Remove A-F-H
Remain: E-C-D-B-G

From Parent 2: C-G-D-B-E-A-F-H
Remove B-G-A
Remain: C-E-D-E-F-H

101 Pr. Meftah Boudjelal

4.6. Mutation
Mutation is a fundamental genetic operator in genetic algorithms (GAs) that
introduces random changes to the genetic material of individuals (solutions) in the
population. This process mimics the biological phenomenon of mutation, where
random changes occur in the DNA of organisms. In the context of GAs, mutation
helps maintain genetic diversity, explore new areas of the search space, and prevent
premature convergence to suboptimal solutions.

Purpose of Mutation

 Diversity: Introduces new genetic material into the population, maintaining
diversity and preventing the population from becoming too homogeneous.

 Exploration: Helps explore new areas of the search space by randomly
altering solutions, potentially leading to the discovery of better solutions.

 Escape from Local Optima: Allows the algorithm to escape from local optima
by introducing random changes, which can help the population move towards
the global optimum.

Types of Mutation

1. Bit-Flip Mutation (Binary Encoding):
o Randomly flips one or more bits in a binary-encoded chromosome.

 For each bit in the chromosome, flip the bit (change 0 to 1 or 1 to
0) with a certain probability (mutation rate).

2. Uniform Mutation (Real-Valued Encoding):
o Randomly selects a gene and replaces it with a uniformly random value

within the allowed range.
 For each gene in the chromosome, replace the gene with a

random value within the specified range with a certain
probability.

3. Swap Mutation (Permutation Encoding):
o Randomly selects two genes and swaps their positions.

 Randomly select two positions in the chromosome and swap the
genes at these positions.

102 Pr. Meftah Boudjelal

4. Inversion Mutation (Permutation Encoding):
o Randomly selects a segment of the chromosome and reverses the order

of the genes within that segment.

Mutation Rate
The probability that a gene in a chromosome will be mutated.

 High Mutation Rate: Can introduce too much randomness, leading to a loss of
good solutions and slowing down convergence.

 Low Mutation Rate: May not introduce enough diversity, leading to
premature convergence and stagnation.

 Balance: Finding the right mutation rate is crucial for balancing exploration
and exploitation in the genetic algorithm.

4.7. Algorithm Structure
The structure of a genetic algorithm consists of several key components and steps
that guide the evolution of potential solutions.

103 Pr. Meftah Boudjelal

4.7.1. Basic flow

4.7.2. Steps of a Genetic Algorithm
1. Initialization:

The first step in the genetic algorithm process involves the initialization of a
random population of individuals, each representing a potential solution to
the problem at hand. Each solution is represented as a chromosome, which
can be encoded. The number of individuals in the population is typically fixed
but can vary based on the problem and computational resources.
The diversity of this initial population is crucial, as it allows the algorithm to
explore a broad range of possible solutions, some of which may be closer to
the optimal solution than others.

2. Fitness Evaluation:
Once the population is initialized, each individual's fitness is evaluated using
a predefined fitness function. This function assesses how well each solution
addresses the problem's objectives. Each individual is assigned a fitness score
based on its performance, which helps guide the algorithm toward better
solutions by favoring individuals with higher scores.

104 Pr. Meftah Boudjelal

3. Selection:

The selection process involves choosing individuals from the current
population to serve as parents for the next generation. This is typically based
on their fitness scores, with fitter individuals having a higher chance of being
selected. This process is commonly referred to as "survival of the fittest,"
which emphasizes the principle that only the best solutions will contribute to
the next generation.

4. Crossover (Recombination):
Once the parents are selected, the crossover operator is applied. This operator
combines the genetic information of two parent solutions to produce one or
more offspring. The offspring inherit a mixture of genes from both parents,
potentially leading to new and improved solutions.

5. Mutation:
A mutation operator may introduce random changes to the genes of the
offspring, maintaining genetic diversity within the population and helping the
algorithm to escape local optima.

6. Termination:
The algorithm stops when one of the defined termination conditions is met.
These conditions can include a maximum number of generations produced or
the attainment of a fitness score that meets or exceeds a set threshold. This
iterative process ensures that with each generation, the population evolves,
becoming increasingly adapted to solve the problem at hand.

7. Iteration:
The genetic algorithm follows an iterative cycle of evaluation, selection,
crossover, and mutation. This cycle continues until a termination condition is
met. Common termination conditions include reaching a predefined number
of generations or achieving a satisfactory fitness level, indicating that an
optimal or near-optimal solution has been found.

4.8. Advantages of Genetic Algorithms

 Flexibility: Genetic algorithms can be applied to a wide range of optimization
problems, including those with non-linear, discontinuous, or multimodal
objective functions.

 Global Optimization: Genetic algorithms can explore the search space more
effectively than traditional optimization methods, reducing the risk of getting
stuck in local optima.

105 Pr. Meftah Boudjelal

 Parallelism: Genetic algorithms can be easily parallelized, allowing for
efficient computation on modern hardware.

 Adaptability: Genetic algorithms can adapt to changing environments or
problem constraints by modifying the fitness function or the genetic operators.

4.9. Limitations of Genetic Algorithms

 Computational Complexity: Genetic algorithms can be computationally
intensive, especially for large-scale problems.

 Parameter Tuning: The performance of genetic algorithms can be sensitive to
the choice of parameters, such as population size, crossover rate, and mutation
rate.

 Premature Convergence: Genetic algorithms may converge to a suboptimal
solution if the population lacks diversity or the fitness function is not well-
designed.

106 Pr. Meftah Boudjelal

Exercises

Exercise 1
Use Simulated Annealing (SA) to find the global maximum of the function:

𝑓(𝑥) = −𝑥2 + 4𝑥 + 10
within the range 𝑥 ∈ [0,5]

Exercise 2
Use Simulated Annealing to find a near-optimal solution for a 5-city TSP. The
distances between cities are given in the table below:

 A B C D E

A 0 2 9 10 7
B 2 0 6 8 3
C 9 6 0 5 4
D 10 8 5 0 6
E 7 3 4 6 0

Exercise 3
Use a Genetic Algorithm (GA) to find a near-optimal solution for the same 5-city TSP
from the previous exercise.

107 Pr. Meftah Boudjelal

Chapter 6
Machine Learning and Neural Networks

108 Pr. Meftah Boudjelal

1. Introduction
Difference Between Data Science, Machine Learning, Artificial Intelligence, Deep
Learning
Data science, artificial intelligence, machine learning, and deep learning are closely
related terminologies. However, these are distinctly separate fields of technology.
Machine learning falls within the subset of artificial intelligence, while deep learning
is considered to fall within the subset of machine learning, as is demonstrated by
Figure below.

The difference between ML and deep learning is in the fact that deep learning
requires more computing resources and very large datasets. Deep learning is
especially helpful in handling large volumes of text or images.

Data science is an interdisciplinary field that involves identifying data patterns and
making inferences, predictions, or insights from the data. Data science is closely
related to deep learning, data mining, and big data. Here, data mining is the field
that
deals with identifying patterns and extracting information from big datasets using
techniques that combine ML, statistics, and database systems, and by definition, big
data refers to vast and complex data that are too huge to be processed by traditional
systems using traditional algorithms. ML is one of the primary tools used to aid the
data analysis process in data science, particularly for making extrapolations or
predictions on future data trends.

2. What Is Machine Learning?

Machine Learning (ML) is a field of artificial intelligence that focuses on the
development of algorithms and statistical models that enable computers to perform
specific tasks without explicit instructions, relying on patterns and inference instead.

109 Pr. Meftah Boudjelal

The primary goal of machine learning is to allow computers to learn from and make
predictions or decisions based on data.

 The computer scientist and machine learning pioneer Arthur Samuel defined
machine learning as the “field of study that gives computers the ability to
learn without being explicitly programmed”.

 Tom Mitchell’s defined machine learning as “the study of computer
algorithms that allows computer programs to automatically improve through
experience”.

 He defines learning as follows: “A computer program is said to learn from
experience E with respect to some class of tasks T and performance measure P,
if its performance at tasks in T, as measured by P, improves with experience
E.”

3. Goals of Machine Learning
The primary goal of Machine Learning (ML) is to enable computers to learn from and
make predictions or decisions based on data, without being explicitly programmed
for each specific task.

 Pattern Recognition: Identify and understand patterns within data to make
informed decisions or predictions.

 Automation: Automate tasks that would typically require human intelligence,
such as image recognition, speech recognition, and natural language
processing.

 Generalization: Develop models that can generalize well from training data to
new, unseen data, ensuring robust performance in real-world applications.

 Optimization: Improve the efficiency and effectiveness of processes by
optimizing parameters and making data-driven decisions.

 Adaptation: Create systems that can adapt and improve over time as they are
exposed to more data, allowing for continuous learning and improvement.

 Insight Generation: Extract valuable insights and knowledge from large
datasets, helping to uncover hidden trends, correlations, and anomalies.

 Personalization: Tailor experiences and recommendations to individual users
based on their preferences and behaviors, enhancing user satisfaction and
engagement.

By achieving these goals, machine learning enables the development of intelligent
systems that can solve complex problems, enhance decision-making, and drive
innovation across various industries.

110 Pr. Meftah Boudjelal

4. Types of Machine Learning
Machine Learning (ML) can be categorized into several types based on the nature of
the learning process and the data used.
Each type of machine learning has its own strengths and is suited to different kinds
of problems and datasets. The choice of which type to use depends on the specific
application and the nature of the data available.

4.1. Supervised Learning
In this approach, the algorithm learns from labeled data, where each training
example is paired with an output label. The goal is to learn a mapping from inputs
to outputs so that the model can accurately predict the output for new, unseen data.
Common algorithms used in supervised learning include Linear Regression, Logistic
Regression, Support Vector Machines (SVM), Decision Trees, Random Forests, and
Neural Networks.

4.2. Unsupervised Learning
Unsupervised Learning involves training algorithms on data without labeled

responses. The goal is to infer the natural structure present within a set of data
points. This type of learning is useful for tasks such as clustering and dimensionality
reduction.

 Clustering aims to group similar data points together based on their features,
which is useful in applications like customer segmentation and anomaly
detection.

 Dimensionality reduction techniques, such as Principal Component Analysis
(PCA), help in reducing the number of input variables while retaining as
much variance as possible, making the data easier to visualize and analyze.

Common algorithms in unsupervised learning include K-Means Clustering,
Hierarchical Clustering, and t-SNE.

4.3. Semi-Supervised Learning
Semi-Supervised Learning combines a small amount of labeled data with a large
amount of unlabeled data. This approach is particularly useful when obtaining
labeled data is expensive or time-consuming. By leveraging both labeled and
unlabeled data, semi-supervised learning can improve the accuracy and robustness
of the model. Common algorithms include self-training, co-training, and multi-view
training, where the model iteratively labels the unlabeled data and uses it to improve
its predictions.

111 Pr. Meftah Boudjelal

4.4. Reinforcement Learning
Reinforcement Learning focuses on training algorithms to make a sequence of
decisions by performing actions in an environment to achieve a goal. The agent
receives rewards or penalties for the actions it performs, learning to optimize its
behavior over time.
This type of learning is widely used in applications such as game playing (e.g.,
AlphaGo), robotics, and autonomous vehicles.
Common algorithms in reinforcement learning include Q-Learning, Deep Q-
Networks (DQN), Proximal Policy Optimization (PPO), and Actor-Critic Methods.

4.5. Transfer Learning
Transfer Learning involves applying knowledge gained from one task to improve
learning on a related but different task. This approach is particularly useful in
scenarios where there is a limited amount of data for the target task. By leveraging
pre-trained models, transfer learning can significantly reduce the time and data
required to train a new model.
For example, a model pre-trained on a large dataset of images can be fine-tuned for a
specific task, such as medical image analysis. Common techniques include fine-
tuning and feature extraction.

4.6. Ensemble Learning
Ensemble Learning combines the predictions from multiple models to improve
overall performance. The idea is that a group of weak learners can collectively make
better predictions than any single model. Ensemble methods can be categorized into
bagging, boosting, and stacking.

 Bagging involves training multiple models on different subsets of the data and
averaging their predictions, as seen in Random Forests.

 Boosting sequentially trains models to correct the errors of previous models,
as in AdaBoost and Gradient Boosting.

 Stacking combines the predictions of multiple models using a meta-learner.

4.7. Deep Learning
Deep Learning is a subset of machine learning that uses neural networks with many
layers to model complex patterns in data. These networks, known as deep neural
networks, can automatically learn and extract features from raw data, making them
highly effective for tasks such as image recognition, speech recognition, and natural
language processing.
Common algorithms in deep learning include Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM)
networks, and Generative Adversarial Networks (GANs).

112 Pr. Meftah Boudjelal

Deep learning has revolutionized various fields by achieving state-of-the-art
performance in many applications.

5. Machine Learning Tasks

5.1. Regression
Regression is a statistical method used to model and analyze the relationship
between a dependent variable (output) and one or more independent variables
(inputs).
The primary goal of regression is to find a mathematical function that best describes
this relationship, allowing for the prediction of continuous output values.
For example, linear regression models the relationship as a linear equation, while
polynomial regression includes polynomial terms to capture more complex
relationships.
Other types of regression, such as ridge and lasso regression, incorporate
regularization techniques to prevent overfitting and improve model generalization.
Regression is widely used in various fields, including finance for predicting stock
prices, healthcare for predicting patient outcomes, and real estate for estimating
property values.

5.2. Classification
Classification is a supervised learning task that involves assigning input data into
predefined categories or classes.
The primary goal of classification is to learn a mapping from input features to output
labels, allowing the model to predict the class of new, unseen data points.
For example, in email spam detection, a classification algorithm learns to distinguish
between "spam" and "not spam" emails based on their content and metadata.
Common classification algorithms include logistic regression, decision trees, support
vector machines (SVM), and neural networks.
Classification is used in a wide range of applications, such as image recognition for
identifying objects in images, sentiment analysis for categorizing text sentiments, and
medical diagnosis for classifying diseases based on patient data.
The performance of classification models is often evaluated using metrics like
accuracy, precision, recall, and the F1 score.

5.3. Prediction
Prediction is a broad term that encompasses various methods used to forecast future
values or outcomes based on historical data.
It includes both regression and classification tasks, as well as other types of
forecasting techniques.

113 Pr. Meftah Boudjelal

The goal of prediction is to make informed decisions by leveraging data to anticipate
future trends, events, or behaviors.
For example, time series prediction involves analyzing historical time series data to
forecast future values, such as stock prices or weather conditions.
Anomaly detection is another form of prediction that identifies unusual patterns or
outliers in data, which is crucial in fields like fraud detection and network security.
Prediction models can produce continuous values (regression), discrete labels
(classification), probabilities, or other types of outputs, making them versatile tools
for data-driven decision-making.

6. K-Nearest Neighbors (KNN)

6.1. Definition
K-Nearest Neighbors (KNN) is a simple and effective machine learning method used
for classification and regression tasks. It is particularly popular for classification tasks
due to its simplicity and efficiency.
KNN is a supervised learning method that classifies a data point based on the
majority class of its k nearest neighbors in the feature space.

6.2. Distance Metrics
Distance metrics can be used to get an idea about the distance between two places,
points, objects, etc. For example, distance metrics can tell how close or how far two
points are from each other.
Furthermore, some machine learning algorithms, such as KNN classification, K-
means clustering, self-organizing map (SOM), SVM, etc., rely on the closeness
between data points. Therefore, this “closeness” estimation can be considered a
“distance” calculation.
Many algorithms such as the k-nearest neighbors algorithm and k-means algorithm
use Euclidean distance as the objective function where the data dimension is low.
However, in the case of higher dimensionality, the Euclidean distance may not
perform effectively.

6.2.1. Euclidean Distance
The Euclidean function calculates the square root of the sum of the differences
between two different data objects. Assume two data objects a and b, where each
data object has n attributes, 𝑎 = (𝑥ଵ, 𝑥ଶ, 𝑥ଷ, . . . , 𝑥௡) and 𝑏 = (𝑦ଵ, 𝑦ଶ, 𝑦ଷ, . . . , 𝑦௡). The
function to calculate the Euclidean distance between a and b is given by:

𝑑(𝑎, 𝑏) = ඥ(𝑥ଵ − 𝑦ଵ)ଶ + (𝑥ଶ − 𝑦ଶ)ଶ + (𝑥ଷ − 𝑦ଷ)ଶ + ⋯ + (𝑥௡ − 𝑦௡)ଶ

114 Pr. Meftah Boudjelal

Figure below depicts the Euclidean distance between two data points A(x1, y1) and
B(x2, y2) with two features x and y.

6.2.2. Manhattan Distance
Another popular distance metric is the Manhattan distance, also referred to as city
block distance or taxicab metric. The intuition behind these names derives from
calculating the shortest distance between any two blocks along the vertical and
horizontal axes. The summation of absolute differences between two points is the
Manhattan distance. The formula for calculating the Manhattan distance between
two data points 𝑎 = (𝑥ଵ, 𝑥ଶ, 𝑥ଷ, . . . , 𝑥௡) and 𝑏 = (𝑦ଵ, 𝑦ଶ, 𝑦ଷ, . . . , 𝑦௡) is given by
Equation below:

𝑑(𝑎, 𝑏) = |𝑥ଵ − 𝑦ଵ| + |𝑥ଶ − 𝑦ଶ| +· · · +|𝑥௡ − 𝑦௡|

Figure below depicts the Manhattan distance between two data points A and B with
two features, x and y. The Manhattan distance is preferred over the Euclidean
distance in the case of higher dimensionality. It also works best for discrete
attributes.

6.2.3. Chebyshev Distance

115 Pr. Meftah Boudjelal

Chebyshev distance, also referred to as the supremum distance, is the maximum
difference in the attributes between two data objects. The formula for calculating the
Chebyshev distance between two data points 𝑎 = (𝑥ଵ, 𝑥ଶ, 𝑥ଷ, . . . , 𝑥௡) and 𝑏 =

 (𝑦ଵ, 𝑦ଶ, 𝑦ଷ, . . . , 𝑦௡) is given by Equation below:

𝑑(𝑎, 𝑏) = 𝑚𝑎𝑥(|𝑥ଵ − 𝑦ଵ|, |𝑥ଶ − 𝑦ଶ|, . . . , |𝑥௡ − 𝑦௡|)

Figure below depicts the Chebyshev distance for two points A and B. The Chebyshev
distance can be applied to specific logistical problems only. For instance,
it can determine the minimum moves required by the king on a chessboard to move
from one square to another.

6.2.4. Cosine Similarity and Cosine Distance
Cosine similarity gives an estimation of the similarity between two or more vectors.
The mathematical concept of cosine similarity is quite simple. It is the cosine of the
angle between two vectors. Cosine similarity can be calculated by dividing the dot
product of two vectors by the product of the magnitude of the two vectors. If 𝜃 is the

angle between two vectors 𝐴 and 𝐵ሬ⃗ , the cosine similarity can be calculated using
Equation below:

𝑐𝑜𝑠(𝜃) =
𝐴. 𝐵ሬ⃗

ฮ𝐴ฮ ฮ𝐵ሬ⃗ ฮ
=

∑ 𝐴௜ 𝐵௜
௡
௜ୀଵ

ට∑ 𝐴௜
ଶ௡

௜ୀଵ ට∑ 𝐵௜
ଶ௡

௜ୀଵ

The two vectors 𝐴 and 𝐵ሬ⃗ are non-zero, and they exist within an inner product space.
The value of the cosine similarity metric ranges from −1 to 1, where −1 means total
dissimilarity and 1 means total similarity between the two vectors.
Cosine distance can be calculated from cosine similarity. Cosine distance is opposite
to cosine similarity. The greater the distance, the less the similarity between data

116 Pr. Meftah Boudjelal

objects. The cosine distance is calculated as shown in Equation below:

𝑑൫𝐴, 𝐵ሬ⃗ ൯ = 1 − 𝑐𝑜𝑠(𝜃) = 1 −
𝐴. 𝐵ሬ⃗

ฮ𝐴ฮ ฮ𝐵ሬ⃗ ฮ

Figure below depicts the different cases of determining cosine similarity. Cosine
similarity is preferable when two data objects vary in their size. The Euclidean
distance between these two data objects could be huge due to their length mismatch,
even if they have similarities. This similarity can be captured by cosine similarity
because the angle remains constant regardless of the size of the data objects.

Cosine similarity between two (a) similar, (b) unrelated, and (c) opposite vectors. The
similar vectors have nearly 0◦ angle between them. The angle between unrelated
vectors would be around 90◦ or a bit more. Two opposite vectors would have nearly
180◦ angle between them. There is no correlation between the length of the vectors
and their cosine similarity

Example
Suppose we have two vectors A=[1, 2, 3] and B=[4, 5, 6]

Dot Product:

𝐴. 𝐵 = 1 × 4 + 2 × 5 + 3 × 6 = 32
Magnitudes:

‖𝐴‖ = ඥ1ଶ + 2ଶ + 3ଶ = √14

‖𝐵‖ = ඥ4ଶ + 5ଶ + 6ଶ = √77

Cosine Similarity:

117 Pr. Meftah Boudjelal

𝑐𝑜𝑠(𝜃) =
32

√14 √77
=

32

√1078

Cosine Distance:

𝑑(𝐴, 𝐵) = 1 − 𝑐𝑜𝑠(𝜃) = 1 −
32

√1078

Euclidean distance

𝑑𝑒(𝐴, 𝐵) = ඥ(1 − 4)ଶ + (2 − 5)ଶ + (3 − 6)ଶ = √9 + 9 + 9 = √27

Manhattan distance

𝑑𝑚(𝐴, 𝐵) = |1 − 4| + |2 − 5| + |3 − 6| = 9

Chebyshev distance

𝑑𝑐(𝐴, 𝐵)𝑑𝑚(𝐴, 𝐵) = max(|1 − 2| + |2 − 4| + |3 − 6|) = 3

6.3. How KNN Works

1. Distance Metric: KNN uses a distance metric (such as Euclidean distance,
Manhattan distance, or Minkowski distance) to measure the similarity
between data points.

2. Neighbor Selection: For a given data point, KNN identifies the k nearest
neighbors in the training dataset.

3. Voting (for Classification): In classification tasks, KNN assigns the most
common class among the k nearest neighbors to the data point.

4. Averaging (for Regression): In regression tasks, KNN predicts the value by
averaging the values of the k nearest neighbors.

118 Pr. Meftah Boudjelal

Guidelines for Choosing k
Choosing the optimal value of k in K-Nearest Neighbors (KNN) is crucial for the
performance of the algorithm. The value of k determines how many neighbors
influence the prediction for a given data point.

1. Small k Values:
Pros: Captures local patterns and variations in the data.
Cons: More sensitive to noise and outliers, which can lead to overfitting.

2. Large k Values:
Pros: Smooths out the effect of noise and outliers, leading to more stable
predictions.
Cons: May overlook local patterns and variations, leading to underfitting.

3. Odd vs. Even k:
For classification tasks, it is often beneficial to choose an odd value of k to
avoid ties in voting.
For regression tasks, the choice of odd or even k is less critical.

6.4. Example
A dataset is given with two features “A” and “B” and respective labels as True or
False. Using the KNN algorithm, classify the new data point (6, 5) where k = 3.

Feature A Feature B Label

5 2 true
5 4 true
7 4 false
8 6 false
7 3 false

119 Pr. Meftah Boudjelal

We will calculate the Euclidean distance of the new data point (6, 5) from every data
point in the dataset.

Feature A Feature B Label Euclidian distance

5 2 true ඥ(5 − 6)ଶ + (2 − 5)ଶ = 3.16
5 4 true ඥ(5 − 6)ଶ + (4 − 5)ଶ = 1.41
7 4 false ඥ(7 − 6)ଶ + (4 − 5)ଶ = 1.41
8 6 false ඥ(8 − 6)ଶ + (6 − 5)ଶ = 2.24
7 3 false ඥ(7 − 6)ଶ + (3 − 5)ଶ = 2.24

Now we will rank it in ascending order of the Euclidean distances.

Feature A Feature B Label Euclidian distance

5 4 true ඥ(5 − 6)ଶ + (4 − 5)ଶ = 1.41
7 4 false ඥ(7 − 6)ଶ + (4 − 5)ଶ = 1.41
8 6 false ඥ(8 − 6)ଶ + (6 − 5)ଶ = 2.24
7 3 false ඥ(7 − 6)ଶ + (3 − 5)ଶ = 2.24
5 2 true ඥ(5 − 6)ଶ + (2 − 5)ଶ = 3.16

Since k = 3, we will pick the three nearest data points according to their Euclidean
distance.
The three nearest data points to the new data point are (5, 4), (7, 4), and (8, 6).
Now according to their respective labels, we have to classify the new data point.
Data point (5, 4) classifies the data point as “True,” whereas both the data points (7,
4) and (8, 6) classify the new data point as “False.”
Since most of the k-nearest neighbor is classifying the new data point as “False,” the
new data point (6, 5) is “False.”

6.5. Advantages of KNN

1. Simplicity: KNN is easy to understand and implement. It does not require an
explicit training phase, making it quick to deploy.

2. Non-Parametric: KNN is a non-parametric method, meaning it does not make
assumptions about the underlying data distribution.

3. Efficiency for Small Datasets: KNN can be very efficient for small datasets
where the relationships between data points are clear.

4. Flexibility: KNN can be used for both classification and regression tasks and
can handle multidimensional data.

120 Pr. Meftah Boudjelal

 6.6. Limitations of KNN

1. Computational Complexity: KNN can be computationally expensive for large
datasets, as it requires calculating the distance between the test data point and
all training data points.

2. Sensitivity to Irrelevant Features: KNN can be sensitive to irrelevant or noisy
features, which can affect the accuracy of the classification.

3. Choice of k: The choice of the number of neighbors (k) is crucial and can
impact the model's performance. A small k can lead to overfitting, while a
large k can lead to underfitting.

4. Sensitivity to Feature Scaling: KNN is sensitive to the scale of the features.
Features need to be normalized or standardized to prevent certain features
from dominating others.

121 Pr. Meftah Boudjelal

7. Neural Networks
7.1. Biological Neuron

The total number of neurons in the human brain is estimated to be between 86 and
100 billion. Each neuron can be described as a very simple processor that receives
signals in the form of electrical potentials, computes the summation of the received
potentials relative to a threshold, and, if the threshold is exceeded, emits a signal in
turn. These billions of elementary processors are highly interconnected and operate
in parallel.
The neuron is composed of a cell body called the soma and two types of extensions:
the axon, which is singular and acts as the transmitter, conducting the action
potential in a centrifugal manner, and the dendrites, which average around 7,000 per
neuron and serve as the receptors for the action potential.
Between neurons, there exists a discontinuity called the synapse, which is the
primary relay ensuring the transmission of the nerve impulse (action potential). Each
neuron has between 1 and over 100,000 synapses, with an average of 10,000.
Dendrites and synapses work together to facilitate communication between neurons.
A single dendrite can host hundreds or even thousands of synapses, depending on
its branching complexity. Synapses can also form on the soma (cell body) and axon,
not just on dendrites.
The high number of dendrites and synapses reflects the brain's need for massive

parallel processing and information integration.
This complexity allows neurons to:

 Receive and integrate inputs from thousands of other neurons.
 Adapt and rewire connections (synaptic plasticity), which is the basis of

learning and memory.
 Maintain redundancy and robustness in neural circuits, ensuring functionality

even if some connections are lost.

The morphology, location, and number of these extensions, as well as the shape of
the soma, vary and contribute to defining different morphological families of
neurons.

122 Pr. Meftah Boudjelal

When a relatively weak current is injected into a neuron, its potential changes in

proportion to the current. However, if the current is sufficiently strong, a sudden rise
in potential (depolarization) is observed, reaching a typical value of 40 mV, followed
by a rapid decline (hyperpolarization). This phenomenon is referred to as the action
potential.

7.2. History

Artificial Intelligence (AI) has evolved with the objective of simulating the behaviors
of the human brain. Early attempts to model the brain date back to a time even
before the computer era.

The origin of the inspiration for artificial neural networks can be traced to 1890, when
William James introduced the concept of associative memory. He proposed what
would later become a fundamental principle for the learning process of neural
networks, known as Hebb's rule. A few decades later, in 1949, Warren McCulloch
and Walter Pitts lent their names to a model of the biological neuron (a neuron with
binary behavior). They were the first to demonstrate that simple formal neural
networks could perform complex logical, arithmetic, and symbolic functions.

The first successes in this field date back to 1957, when Frank Rosenblatt developed
the Perceptron model. He built the first neurocomputer based on this model and
applied it to the field of pattern recognition. Shortly thereafter, in 1960, the control
engineer Bernard Widrow introduced the Adaline (Adaptive Linear Element) model.

123 Pr. Meftah Boudjelal

In its structure, Adaline resembles the Perceptron; however, its learning rule is
different.

In 1969, Marvin Minsky and Seymour Papert published a seminal work that
highlighted the theoretical limitations of the Perceptron. These limitations primarily
concern the model's inability to handle non-linear problems, which significantly
constrained its applicability to more complex tasks.

Following a period of relative stagnation from 1967 to 1982, the field experienced a
revival in 1982 thanks to John J. Hopfield. He introduced a theory on the functioning
and capabilities of neural networks. Hopfield first defined the desired behavior of his
model and then constructed the corresponding structure and learning rule to achieve
the intended outcome.

Subsequently, in 1985, the backpropagation algorithm emerged. This learning
algorithm was specifically designed for Multi-Layer Perceptrons. With this
breakthrough, it became possible to implement a non-linear input/output function
on a network by decomposing the function into a series of linearly separable steps.

After being overshadowed in the mid-1990s by other machine learning or statistical
algorithms—such as boosting and support vector machines—neural networks have
experienced a resurgence of interest and even widespread media attention under the
name of deep learning. The availability of large-scale datasets, particularly image
datasets sourced from the internet, combined with significant advances in
computational power, has enabled the estimation of millions of parameters in
perceptrons that stack dozens or even hundreds of layers of neurons with highly
specialized properties. This media success is a direct result of the remarkable
achievements of these networks in areas such as image recognition, Go gameplay,
natural language processing, and more.

7.3. Artificial Neuron

7.3.1. Correspondence Between Biological Neurons and Artificial Neurons

Figure below illustrates the structure of an artificial neuron. Each artificial neuron
functions as an elementary processor. It receives a variable number of inputs from
upstream neurons. Each of these inputs is associated with a weight w (weight),
which represents the strength of the connection. Each elementary processor has a
single output, which then branches out to feed a variable number of downstream
neurons.

124 Pr. Meftah Boudjelal

The structure and functionality of artificial neurons are inspired by their biological
counterparts.

 Inputs (Dendrites)
- Biological Neuron: Dendrites receive electrical signals (action potentials) from

other neurons via synapses.
- Artificial Neuron: Inputs represent the signals received from other artificial

neurons, analogous to the role of dendrites.

 Weights (Synaptic Strength)
- Biological Neuron: The strength of the connection between neurons is

determined by the efficiency of synaptic transmission, which can be modulated
(e.g., through synaptic plasticity).

125 Pr. Meftah Boudjelal

- Artificial Neuron: Each input is associated with a weight w, which represents
the strength or importance of the connection. These weights are adjustable and
are optimized during the learning process.

 Soma (Cell Body)
- Biological Neuron: The soma integrates incoming signals from dendrites. If the

summed signal exceeds a certain threshold, the neuron generates an action
potential.

- Artificial Neuron: The processing unit of the artificial neuron performs a
weighted sum of the inputs and applies an activation function to determine the
output.

 Activation Function (Threshold Mechanism)
- Biological Neuron: The neuron's firing mechanism is governed by a threshold;

if the membrane potential exceeds this threshold, an action potential is
triggered.

- Artificial Neuron: An activation function (e.g., sigmoid) is applied to the
weighted sum of inputs to produce the output. This function introduces non-
linearity and determines whether the neuron "fires."

 Output (Axon)
- Biological Neuron: The axon transmits the action potential to other neurons via

synaptic connections.
- Artificial Neuron: The output of the artificial neuron is sent to other neurons in

the network, mimicking the role of the axon.

 Synapses (Connections)
- Biological Neuron: Synapses are the junctions between neurons where

neurotransmitters facilitate signal transmission.
- Artificial Neuron: The connections between artificial neurons, represented by

weights, simulate the role of synapses in transmitting and modulating signals.

7.3.2. Formal Neuron

A neuron is essentially composed of an integrator that performs the weighted sum of
its inputs. The result S of this summation is then transformed by a transfer function f,
which produces the output y of the neuron. The inputs X of the neuron correspond to
the vector X[xଵ, xଶ, … , x୬]୘, while W[wଵ, wଶ, … , w୬]୘ represents the vector of the
neuron's weights.

The output S is given by the following equation:

126 Pr. Meftah Boudjelal

𝑆 = ෍ 𝑤௜𝑥௜

௡

௜ୀଵ

+ 𝑏

= 𝑤ଵ𝑥ଵ + 𝑤ଶ𝑥ଶ + ⋯ + 𝑤௡𝑥௡ + 𝑏

which can also be expressed in matrix form as:

𝑆 = 𝑊்𝑋 + 𝑏

This output corresponds to a weighted sum of the weights and inputs, plus what is
called the bias b of the neuron. The result S of the weighted sum is referred to as the
activation level of the neuron.

A bias b can be defined as the constant added to the product of the inputs and
weights. It is used to adjust the output, helping models to shift the activation
function toward the positive or negative side. This adjustment allows the model to
better fit the data by providing additional flexibility in the learning process.

Finally, the output y of the neuron is computed by applying the activation function f.

𝑦 = 𝑓(𝑆)
= 𝑓(𝑊்𝑋 + 𝑏)

The activation function f acts as a filter that adjusts the value of the previous sum to
align with the characteristics of the desired output.

7.3.3. Bias

Bias refers to an additional learnable parameter in a model that allows the output of a
neuron or layer to be shifted independently of the inputs. It is added to the weighted
sum of inputs before applying the activation function, enabling the model to better fit
the data.
The role of bias in neural networks is crucial for several reasons:

1. Shifts the Activation Function: Allows the model to adjust the position of the
decision boundary or activation curve.

2. Enables Non-Zero Outputs: Ensures that neurons can produce meaningful
outputs even when all inputs are zero.

3. Improves Flexibility: Increases the model's ability to represent complex
relationships in the data.

4. It enhances convergence during training and aids in better generalization.

127 Pr. Meftah Boudjelal

7.3.4. Activation Functions (Transfer Functions)

An activation function in neural networks is a mathematical function applied to the
output of a neuron in order to introduce non-linearity into the model. Without
activation functions, neural networks would only be able to learn and represent
linear relationships between inputs and outputs, which severely limits their ability to
solve complex real-world problems.

Different transfer functions can be used as activation functions for the neuron. The
choice of activation function depends on the problem being solved and the
architecture of the neural network. The most commonly used ones are the threshold,
linear, and sigmoid functions.

 Threshold Function (Heaviside Step Function)
This function outputs 1 if the input is greater than or equal to a threshold
(usually 0), and 0 otherwise. It is rarely used in modern neural networks due
to its discontinuity. Rarely used in modern neural networks due to its binary
nature and lack of gradient for optimization.

൜
𝑓(𝑥) = 0 𝑠𝑖 𝑥 < 0

𝑓(𝑥) = 1 𝑠𝑖 𝑥 ≥ 0

 Linear Function
The output is directly proportional to the input. While simple, it lacks the
ability to introduce non-linearity, limiting its use in deep learning

f (x) = ax + b

128 Pr. Meftah Boudjelal

 Sigmoid Function
This function maps input values to a range between 0 and 1, making it useful
for binary classification tasks. However, it can suffer from the vanishing
gradient problem. It suffers from the "vanishing gradient" problem when x is
very large or very small.

f (x) =
1

1 + eି୶

 Hyperbolic Tangent (Tanh) Function
Similar to the sigmoid but maps inputs to a range between -1 and 1. It is also
prone to the vanishing gradient problem. It suffers from the "vanishing

gradient" problem when x is very large or very small.

f (x) =
e୶ − eି୶

e୶ + eି୶

7.4. Architecture of Artificial Neural Networks

The architecture of an artificial neural network is defined by the structure of its
neurons and their connectivity. It is specified by the number of inputs, outputs,
nodes, and the way these nodes are interconnected and organized. the architecture of
an artificial neural network is a critical factor in its performance and applicability.

129 Pr. Meftah Boudjelal

The choice of architecture depends on the problem at hand, the nature of the data,
and the available computational resources. Several architectures are therefore
possible.

7.4.1. Single-Layer Perceptron
Developed by Rosenblatt in 1958, it is the first network to have been created. As a
feedforward network, it consists of only one input layer and one output layer. All
neurons in the input layer are connected to those in the output layer. They process
only binary values, and the activation function is a simple threshold. It is capable of
simulating simple logical operations such as AND or OR gates, which are linearly
separable. Its learning is based on Hebb's reinforcement rule.

7.4.2. Multilayer Perceptron
The Multilayer Perceptron (MLP) is a multi-layered neural network composed of a
sequence of layers, each of which takes its inputs from the outputs of the previous
layer. It consists of an input layer, an output layer, and one or more hidden layers
with numerous stacked neurons. Information flows from one layer to the next
(feedforward network).
The topological characteristic of this network is that all neurons in one layer are
connected to all neurons in the next layer. Each neural connection is associated with
a weight w.

The multilayer perceptron neural network is composed of:

- Inputs i ranging from 1 to N,
- Outputs j ranging from 1 to M,
- Neuron l in hidden layer k, with k ranging from 1 to P,
- Bias of neuron l in hidden layer k,
- f, an activation function.

130 Pr. Meftah Boudjelal

7.4.3. Recurrent neural network
A recurrent neural network (RNN) is composed of interconnected neurons that
interact non-linearly, with at least one cycle present in its structure.
Recurrent neural networks are well-suited for input data of variable size. They are
particularly effective for analyzing time series data.

7.4.3.1. Elman Recurrent Neural Network
An Elman network is a three-layer network supplemented with a set of context units.
The hidden layer is connected to these context units and has associated weights. At
each time step, the input is propagated forward, and a learning rule is applied. The
fixed feedback connections store a copy of the previous values of the hidden neurons
in the context units (since they propagate the connections before the learning rule is
applied). As a result, the network can maintain a kind of state, enabling it to perform
tasks such as sequential prediction, which is beyond the capabilities of a standard
multilayer perceptron.

131 Pr. Meftah Boudjelal

7.4.3.2. Jordan Recurrent Neural Network
Jordan networks are similar to Elman networks. However, the context units are fed
by the output layer instead of the hidden layer. The context units in a Jordan network
also represent the state layer. They have a recurrent connection to themselves.

132 Pr. Meftah Boudjelal

7.5. Learning

One of the most complex aspects of our brain's functioning is the learning phase. This
is a phase during which certain modifications occur in the connections between
neurons: some are strengthened, while others are weakened or even become
inhibitory.
For artificial neural networks, learning involves calculating the parameters in such a
way that the network's outputs, for the examples used during training, are as close as
possible to the "desired" outputs. The learning techniques for artificial neural
networks are optimization algorithms: they aim to minimize the discrepancy
between the network's actual responses and the desired responses by adjusting the
parameters through successive steps (called "iterations"). The output of the neural
network progressively adapts better to the data as the learning process unfolds.
However, the error made by the neural network at the end of the learning process is
not zero.

The learning phase of artificial neural networks is a process that determines or
adjusts the network's parameters to achieve a desired behavior. Several learning
algorithms have been developed since the first learning rule proposed by Hebb in
1949.
Similar to the human brain, artificial neural networks cannot be directly
programmed but must learn by studying and analyzing examples. There are three
main learning methods:

- Supervised learning,
- Unsupervised learning,
- Reinforcement learning.

7.5.1. Supervised learning
The algorithm trains on labeled data. To perform the task, it adjusts itself until it can
process the dataset to produce the expected result. A specific outcome must be
defined for each input option. Supervised learning enables modifications to the
system to optimize the algorithm's performance.

7.5.2. Unsupervised learning
The neural network must analyze a set of unlabeled data. A specific function informs
it to what extent it deviates from or approaches the expected result. The network
then adapts accordingly. The outcome of the task is not predetermined, but the
system itself makes its diagnosis based on the information obtained. The system
relies, among other things, on adaptive resonance theory.

133 Pr. Meftah Boudjelal

7.5.3. Reinforcement learning
This is a method that involves reinforcement and penalties depending on whether
the results are positive or negative. Like the human brain, which learns through trial
and error, the neural network gradually learns as it processes the data it is given.

7.5.4. Notion of Generalization

The ability to generalize is one of the key motivations behind the study and
development of artificial neural networks. It can be defined as the capacity to extend
the knowledge acquired during training to new, previously unseen data encountered
by the neural network. This is how neural networks are able to approximate a
function based on only a subset of the data or to associate a new input vector, which
was not part of the training set, with a given class.

7.5.5. Notion of Overfitting
Overfitting occurs when the network learns the training examples too perfectly, to
the point where it becomes incapable of generalizing to new, unseen data.

The following figure clearly illustrates the trade-off between overfitting, underfitting,
and good generalization.

7.6. Weight Update in a Neural Network

Updating weights in a neural network is a fundamental step in the learning process.
It involves adjusting the parameters of the model (weights w) and biases (b) to
minimize a cost (or loss) function that measures the error between the network's
predictions and the target values. This update is typically performed using an
optimization method such as Widrow-Hoff rule, Gradient Descent or its variants.

134 Pr. Meftah Boudjelal

7.6.1. Widrow-Hoff rule

The Perceptron Learning Rule (also known as the Widrow-Hoff rule or delta rule)
is a supervised learning method used to adjust the weights of a neural network based
on the error between the predicted output and the desired output.
This rule was introduced by Frank Rosenblatt for the perceptron and later
generalized by Bernard Widrow and Ted Hoff in the context of linear neural
networks (ADALINE).
The goal of learning is to minimize the error between the predicted output 𝑦ො of the
perceptron and the target output y. The learning rule updates the weights w and bias
b based on this error.

Algorithm Steps for the Widrow-Hoff Rule
1. Initialize Parameters

 Initialize the weights 𝑤௜ and bias b to small random values or zeros.

𝑤௜ = 0 (or small random values), b=0
 Set the learning rate η (a hyperparameter positive constant that controls the

step size during updates).

2. Input Data

 Let the dataset consist of m examples: {(𝑥(ଵ), 𝑦(ଵ)), (𝑥(ଶ), 𝑦(ଶ)), … , (𝑥(௠), 𝑦(௠))}
Where:

o 𝑥(௜) Input vector for example i.
o 𝑦(௜): Target output for example i.

3. Forward Pass (Prediction)

For each input 𝑥(௜), compute the predicted output 𝑦ො(௜) using the current weights and
bias:

𝑧(௜) = ෍ 𝑤௝ ∗

௡

௝ୀଵ

𝑥௝
(௜)

+ 𝑏

𝑦ො(௜) = 𝑓(𝑧(௜))

Where:

 n: Number of inputs.
 𝑓(𝑧(௜)) : Activation function. For the Widrow-Hoff rule, this is typically a

linear activation function (𝑓(𝑧) = 𝑧).

135 Pr. Meftah Boudjelal

4. Compute Error

Calculate the error 𝑒(௜) between the target output 𝑦(௜) and the predicted output 𝑦ො(௜):
𝑒(௜) = 𝑦(௜) − 𝑦ො(௜)

5. Update Weights and Bias
Update the weights 𝑤௝ and bias b using the Delta Rule:

𝑤௝ = 𝑤௝ + 𝜂 ∗ 𝑒(௜) ∗ 𝑥௝
(௜)

 (𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 = 1,2, … , 𝑛)

𝑏 = 𝑏 + 𝜂 ∗ 𝑒(௜)

6. Repeat for All Examples

 Perform steps 3–5 for each example in the dataset (one epoch).
 Optionally, repeat the process for multiple epochs until convergence or until

the error is minimized.

7. Check Convergence

 Stop the training if the error is below a predefined threshold or if the weights
stabilize (no significant changes after an epoch).

Geometric Interpretation
In an n-dimensional space, the perceptron defines a decision hyperplane given by:

෍ 𝑤௜ ∗

௡

௜ୀଵ

𝑥௜ + 𝑏

When the weights are updated, this hyperplane is adjusted to better separate the
classes in the feature space.

Convergence Conditions
The perceptron converges if the data is linearly separable, meaning there exists a
hyperplane that can perfectly separate the classes. If the data is not linearly
separable, the perceptron may not converge, and more advanced techniques (e.g.,
multi-layer networks or non-linear activation functions) are required.

Batch vs. Stochastic Weight Updates
The difference between batch weight update and stochastic weight update using the
delta rule lies in how the weights are adjusted based on errors.

Batch Weight Update:

 The delta rule is applied to all examples in the dataset before updating the
weights.

136 Pr. Meftah Boudjelal

 Gradients are accumulated over the entire dataset, and a single update is
performed.

For each weight 𝑤௝:

𝑤௝ = 𝑤௝ + 𝜂 ∗
1

𝑚
෍ 𝑒(௜)

௠

௜ୀଵ

∗ 𝑥௝
(௜)

For the bias b:

𝑏 = 𝑏 + 𝜂 ∗
1

𝑚
෍ 𝑒(௜)

௠

௜ୀଵ

Advantages:

 The update direction is more accurate, as it is based on the entire dataset.
 Less fluctuation in convergence.

Disadvantages:

 Slow for large datasets, as all data must be processed before updating the
weights.

 Requires a lot of memory to store the entire dataset.

Stochastic Weight Update:

 The delta rule is applied to one example at a time.
 Weights are updated after each example.

For each weight 𝑤௝:

𝑤௝ = 𝑤௝ + 𝜂 ∗ 𝑒(௜) ∗ 𝑥௝
(௜)

For the bias b:
𝑏 = 𝑏 + 𝜂 ∗ 𝑒(௜)

Advantages:

 Fast, as weights are updated frequently.
 Can escape local minima due to gradient fluctuations.
 Suitable for large datasets.

Disadvantages:

 Gradient fluctuations can make convergence unstable.
 Less precise, as the gradient direction is calculated on a single example.

137 Pr. Meftah Boudjelal

Comparison:

Aspect Batch Update Stochastic Update

Batch Size Entire dataset Single example

Update Frequency Once per epoch After each example

Speed Slow (especially for large
datasets)

Fast

Stability Stable (precise gradient) Unstable (gradient
fluctuations)

Memory
Requirement

High (stores entire dataset) Low (one example at a time)

Convergence Converges directly to the
minimum

May oscillate around the
minimum

7.6.2. Backpropagation algorithm
Backpropagation is a fundamental algorithm in training neural networks. It is the
process of training a neural network by iteratively updating its weights and biases to
minimize the loss function via gradient descent.
Backpropagation is an application of the chain rule from calculus. It works by
propagating the error backward through the network, layer by layer, to compute the
gradients of the loss function with respect to each weight.

7.6.2.1. What is a Loss Function?
A loss function (also known as a cost function or objective function) is a
mathematical function that measures the difference between the predicted output of
a model and the actual target values. The primary goal during training is to minimize
this loss function, which helps the model learn to make better predictions.

1. Quantify Error: It evaluates how well the model's predictions match the true
values.

2. Guide Optimization: It provides a metric for the optimization algorithm (e.g.,
gradient descent) to adjust the model's parameters (weights and biases) in
order to improve performance.

General Form:
For a dataset with n samples, the loss function J can be expressed as:

𝐽(𝜃) =
1

𝑛
෍ 𝐿(𝑦௜, 𝑦ො௜)

௡

௜ୀଵ

Where:
 𝑦௜: True label for the i-th sample.
 𝑦ො௜: Predicted output by the model for the i-th sample.

138 Pr. Meftah Boudjelal

 L: A specific loss function that calculates the error for a single prediction.
 𝜃: Model parameters (e.g., weights and biases).

The cost function averages the loss over all samples in the dataset.

Types of loss Functions: There are many types of loss functions to choose from.
Popular options include the Mean Squared Error, Squared Error, Root Mean Square
Error and Sum of Square Errors. Other loss functions include Cross-Entropy,
Exponential, Hellinger Distance, and the Kullback-Leibler Divergence.

7.6.2.2. What is a Partial Derivative?
In neural networks, partial derivatives are a fundamental concept used in the
process of training the model through an optimization algorithm such as gradient

descent. They allow us to compute how much each parameter (e.g., weights and
biases) affects the overall cost function, enabling the network to learn by adjusting
these parameters to minimize the error.
In mathematics, a derivative represents the rate of change of a function at a single
point.
A partial derivative measures the rate of change of a multivariable function with
respect to one of its variables while keeping all other variables constant.
In the context of neural networks, the cost function 𝐽(𝜃) depends on many
parameters (weights w and biases b), and partial derivatives help determine how
sensitive the cost function is to small changes in each parameter.
For example:

∂J

𝜕𝑤
 𝑎𝑛𝑑

∂J

𝜕𝑏

Why is a partial derivative used?
To update the weights of a neural network we need to know how much a change in a
specific weight affects the total error. That is, we want to find the rate of change
between two variables: a specific weight and the total error. Within neural networks,
the partial derivative is often described as a gradient.
Partial derivatives are used primarily to compute the gradients of the loss function
with respect to the model's parameters (weights and biases). These gradients guide
the optimization process, enabling the network to learn by adjusting its parameters
to minimize the error.

7.6.2.3. Gradient descent
Gradient descent is a fundamental optimization algorithm used in training neural
networks. It works by iteratively adjusting the weights and biases of the network to
minimize the loss function.

139 Pr. Meftah Boudjelal

The goal of training a neural network is to find the optimal values of its parameters
(weights W and biases b) that minimize the loss function L.

Gradient descent uses the gradient (partial derivatives) of the loss function with
respect to each parameter to determine the direction and magnitude of the update.
Specifically:

𝜃 = 𝜃 − 𝜂 ∗ ∇ఏ𝐿

Where:

 𝜃: A parameter (e.g., weight or bias).
 𝜂: Learning rate, controlling the step size of each update.
 ∇ఏ𝐿: Gradient of the loss function with respect to θ.

The negative sign ensures that the parameters are updated in the direction of
decreasing loss.

Steps of Gradient Descent

Step 1: Compute Gradients
Using backpropagation, the gradients of the loss function with respect to all
parameters (weights and biases) are computed:

 For weights: డ௅

డௐ(೗)

 For biases: డ௅

డ௕(೗)

These gradients indicate how much the loss changes with respect to small changes in
the parameters.

Step 2: Update Parameters
Once the gradients are computed, the parameters are updated as follows:

𝑊(௟) = 𝑊(௟) − 𝜂 ∗
𝜕𝐿

𝜕𝑊(௟)

𝑏(௟) = 𝑏(௟) − 𝜂 ∗
𝜕𝐿

𝜕𝑏(௟)

This process adjusts the weights and biases to reduce the loss.

Step 3: Repeat
The forward pass, backward pass (gradient computation), and parameter update
steps are repeated for multiple iterations (epochs) until the loss converges or reaches
a predefined threshold.

140 Pr. Meftah Boudjelal

Learning Rate (𝜂)
The learning rate determines the step size of each parameter update. Choosing an
appropriate learning rate is crucial:

 Too Large: May cause the loss to oscillate or diverge.
 Too Small: May result in slow convergence or getting stuck in local minima.

7.6.3. Weight initialization

Weight initialization is a crucial step in training neural networks, as it sets the
starting point for the optimization process and significantly impacts the network's
ability to learn effectively. Proper initialization helps avoid common issues such as
vanishing gradients, exploding gradients, and symmetry breaking, all of which can
hinder the training process. When weights are initialized poorly, the network may
struggle to converge or may converge very slowly, leading to suboptimal
performance. Therefore, choosing the right initialization strategy is essential for
ensuring stable and efficient training.

Why is Weight Initialization Important?

 Symmetry Breaking: If all weights in a layer are initialized to the same value
(e.g., zero), each neuron in that layer will compute the same output during
forward propagation and receive the same gradient during backpropagation.
This results in all neurons updating identically, effectively making them
redundant. Proper initialization breaks this symmetry, allowing neurons to
learn different features.

 Vanishing Gradients: If weights are initialized too small, the gradients during
backpropagation can become extremely small as they propagate through the
network. This slows down or even halts learning, especially in deep networks.

 Exploding Gradients: If weights are initialized too large, the gradients can
grow exponentially during backpropagation, leading to unstable updates and
divergence.

 Faster Convergence: Good initialization helps the network start in a favorable
state, enabling faster convergence to a good solution.

Common Weight Initialization Techniques
1. Zero Initialization

 All weights are initialized to zero.
 Problem: Leads to symmetry breaking, as all neurons in a layer behave

identically.
 Not recommended for neural networks.

141 Pr. Meftah Boudjelal

2. Random Initialization

 Weights are initialized with small random values, typically sampled from a
uniform or normal distribution.

 Advantage: Breaks symmetry, allowing neurons to learn different features.
 Disadvantage: If the weights are too small or too large, it can lead to

vanishing or exploding gradients.

3. Xavier/Glorot Initialization

 Designed for activation functions like sigmoid or tanh.
 Scales the weights based on the number of input and output neurons to

ensure that the variance of the outputs is approximately equal to the variance
of the inputs.

 Helps maintain stable gradients throughout the network.
 Formula:

o For uniform distribution:

𝑊~𝑢 ቌ−ඨ
6

𝑛௜௡ + 𝑛௢௨௧
, ඨ

6

𝑛௜௡ + 𝑛௢௨௧
ቍ

o For normal distribution:

𝑊~𝑢 ቌ0, ඨ
6

𝑛௜௡ + 𝑛௢௨௧
ቍ

4. He Initialization
 Designed for activation functions like ReLU (Rectified Linear Unit) and its

variants (e.g., Leaky ReLU, Parametric ReLU).
 Scales the weights based on the number of input neurons only, as ReLU

activations zero out negative inputs, which can lead to uneven variance in the
outputs.

 Formula:
o For uniform distribution:

𝑊~𝑢 ቌ−ඨ
6

𝑛௜௡
, ඨ

6

𝑛௜௡
ቍ

o For normal distribution:

142 Pr. Meftah Boudjelal

𝑊~𝑢 ቌ0, ඨ
2

𝑛௜௡
ቍ

7.7. Advantages and Limitations of Neural Networks

7.7.1. Advantages of Neural Networks
Neural networks offer the following advantages:

- Empirical Knowledge: Learning from examples (empirical learning method) is
relatively straightforward and often yields better results compared to other machine
learning techniques.
- Fewer Adjustable Parameters: They generally require fewer adjustable parameters
to achieve a nonlinear model of a given accuracy.
- Graceful Degradation: The responses provided by neural networks degrade
gradually in the presence of noisy inputs. They generalize well from the knowledge
present in the training dataset and are less sensitive to disturbances than symbolic
systems. Working with a 'numeric' representation of knowledge makes neural
networks better suited for handling quantitative data (continuous values). They are
less vulnerable to approximate data and the presence of incorrect data in the training
dataset.
- Massive Parallelism: Neural networks consist of a set of information processing
units that can operate in parallel. Although most implementations of neural
networks are sequential simulations, it is possible to create (software or hardware)
implementations that exploit the ability to activate units simultaneously. Most neural
network implementations can be easily converted from a sequential version to a
parallel one.

7.7.2. Limitations of Neural Networks
Neural networks also have several disadvantages, such as:

- Architecture and Parameters: There is no automatic method to choose the best
possible architecture for a given problem. It is quite challenging to determine the
optimal network topology and the right parameters for the learning algorithm. The
evolution of the learning process is heavily influenced by these two factors (network
architecture and parameter settings) and depends significantly on the type of
problem being addressed. Simply changing the training dataset may require
reconfiguring the entire network.
- Initialization and Encoding: Connectionist learning algorithms are generally
highly dependent on the initial state of the network (random initialization of

143 Pr. Meftah Boudjelal

weights) and the configuration of the training dataset. Poor choices in weight
initialization, data encoding methods, or even the order of the data can hinder
learning or cause issues with the network's convergence to a good solution.
- Black Box: The knowledge acquired by the network is encoded in the values of the
synaptic weights and the way the units are interconnected. It is very difficult for
humans to interpret this directly. Neural networks are black boxes, where knowledge
remains enclosed and unintelligible to the user or expert. A network cannot explain
the reasoning that led it to a specific solution.
- Theoretical Knowledge: Classical neural networks do not allow leveraging
theoretical knowledge available about the problem domain. Like decision trees, they
are dedicated to handling empirical knowledge. A simplistic way to incorporate
theoretical knowledge is to convert rules into examples (prototypes). However, this
method does not guarantee that these examples will be well-represented in the
network's knowledge after training, as we are forced to go through a learning phase
where empirical knowledge and theoretically encoded examples are mixed
indiscriminately.

144 Pr. Meftah Boudjelal

Exercises
Exercise 1
Given two data objects: A(7, 30, 0, 9, 87) and B(4, 67, 2, 54, 5).
Calculate:

1) Euclidean distance
2) Manhattan distance
3) Chebyshev distance
4) Cosine distance

Exercise 2
Use Euclidean distance, Manhattan distance, Chebyshev distance, Cosine distance
for each prediction.

Flower Petal Length (x1) Petal Width (x2) Species
A 1.5 0.3 Setosa
B 4.5 1.5 Versicolor
C 1.4 0.2
D 4.3 1.3

1. Calculate the Chebyshev distance between points C and A, then between C
and B.

2. Calculate the Chebyshev distance between points D and A, then between D
and B.

3. Use the k-NN algorithm with k=1 to predict the species of flowers C and D
based on the calculated distances.

Exercise 3
For a neural network composed of:

 Input layer: 2 neurons (features x1,x2).
 Hidden layer: 2 neurons (sigmoid activation).
 Output layer: 1 neuron (sigmoid activation).
 Loss function: Mean Squared Error (MSE).

Given:
 Input: x=[0.6, 0.2].
 True output: 𝑦௧௥௨௘=0.9.
 Initial weights:

𝑊ଵ = ቂ
0.1 −0.3
0.4 0.2

ቃ

𝑊ଶ = ቂ
0.5

−0.1
ቃ

Biases: Assume all zeros for simplicity.
Tasks:

1. Forward Pass: Compute the predicted output 𝑦ො.
2. Backward Pass:

o Calculate the loss gradient w.r.t. output (∂L/∂𝑦ො).
o Propagate errors backward to update 𝑊ଶ and 𝑊ଵ (use learning rate

η=0.1).

General Conclusion

146

General Conclusion

Artificial Intelligence has evolved from a theoretical concept to a driving force
behind technological innovation, influencing nearly every aspect of modern life.
Throughout this lecture notes, we have explored the foundational principles that make
AI possible—from logical reasoning and search algorithms to game theory,
metaheuristics, and machine learning. Each of these components plays a crucial role in
developing intelligent systems capable of solving complex problems, optimizing
decisions, and even mimicking human cognition.

As AI continues to advance, its applications are expanding into areas such as

healthcare, finance, robotics, and climate science, offering unprecedented opportunities
for automation, efficiency, and discovery. However, with these advancements come
significant challenges, including ethical concerns, bias in algorithms, and the societal
impact of automation. The future of AI will depend not only on technological progress
but also on responsible development, ensuring that these systems are transparent, fair,
and aligned with human values.

This lecture notes have provided a structured pathway to understanding AI’s core

mechanisms, equipping readers with the knowledge to engage critically with the field.
Whether you aim to pursue further research, develop AI applications, or simply
comprehend the technology shaping our world, the principles discussed here serve as a
vital foundation. The journey of AI is far from over, and its next breakthroughs will be
driven by those who can harness its potential while navigating its challenges with
wisdom and foresight.

As we stand at the forefront of this transformative era, one thing is certain:

artificial intelligence will continue to redefine what is possible, and the choices we make
today will shape its impact for generations to come.

Bibliography

150

Bibliography

1. Baum, H. Introduction to artificial intelligence. AG Printing & Publishing, 2023.
2. Bishop, C. M. Pattern Recognition and Machine Learning. Springer, 2006.
3. Castaño, A. P. Practical Artificial Intelligence: Machine Learning, Bots, and

Agent Solutions Using C. Apress, 2018.
4. Edelkamp, S., & Schrödl, S. Heuristic Search: Theory and Applications. Morgan

Kaufmann, 2012.
5. Eiben, A. E., & Smith, J. E. Introduction to Evolutionary Computing (2nd ed.).

Springer, 2015.
6. Fudenberg, D., & Tirole, J. Game Theory. MIT Press, 1991.
7. Goldberg, D. E. Genetic Algorithms in Search, Optimization, and Machine

Learning. Addison-Wesley, 1989.
8. Hastie, T., Tibshirani, R., & Friedman, J. The Elements of Statistical Learning (2nd

ed.). Springer, 2009.
9. Koza, J. R. Genetic Programming: On the Programming of Computers by Means

of Natural Selection. MIT Press, 1992.
10. Leyton-Brown, K., & Shoham, Y. Essentials of Game Theory: A Concise,

Multidisciplinary Introduction. Morgan & Claypool, 2008.
11. Mitchell, M. An Introduction to Genetic Algorithms. MIT Press, 1998.
12. Murphy, K. P. Probabilistic Machine Learning: An Introduction. MIT Press, 2022.
13. Nils J. Nilson. Principles of Artificial Intelligence, Springer-Verlag Berlin

Heidelberg, 1982.
14. Myerson, R. B. Game Theory: Analysis of Conflict. Harvard University Press,

1991.
15. Pearl, J. Heuristics: Intelligent Search Strategies for Computer Problem Solving.

Addison-Wesley, 1984.
16. Nils J. Nilson. Essentials of Artificial Intelligence, Morgan Kaufmann, 1993.
17. Nils Nilson. Artificial Intelligence: A new synthesis, Elsevier, 1997.
18. Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach, Ed.

Pearson, 2016

	6d3c943a58faaa7fbb0c96dcc76fd9e7ab15a3f18d0bc8a1e51e4a5b5d451abf.pdf
	d38f28b0ae3e7087b9356bc6c29a793d36a11240938eb8d9260c7d8307e3b73d.pdf

