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Preface 

The course Fluid Mechanics is intended for second-year engineering students in the 

core science and technology program (Semester 3). It forms a fundamental component of the 

engineering curriculum, providing the theoretical and practical foundations for understanding 

the behavior of fluids—both liquids and gases—at rest and in motion. 

Fluid Mechanics plays a central role in various branches of engineering, including me-

chanical, civil, chemical, and aerospace engineering. The principles covered in this course are 

essential for analyzing and designing systems involving fluid flow, such as pipelines, pumps, 

turbines, aircraft, and hydraulic structures. A solid grasp of these principles equips future engi-

neers with the analytical and problem-solving tools needed to tackle real-world engineering 

challenges. 

This course is organized into four comprehensive chapters, each addressing a major aspect of 

fluid behavior: 

Chapter I: Fluid Statics introduces the basic definitions and properties of fluids, the con-

cept of pressure, and the principles governing fluids at rest, including hydrostatic forces and 

buoyancy. 

Chapter II: Fluid Kinematics focuses on describing fluid motion without reference to 

the forces that cause it, emphasizing flow visualization, the continuity equation, and different 

types of flow. 

Chapter III: Dynamics of Ideal Incompressible Fluids develops the fundamental equa-

tions of motion, including Euler’s and Bernoulli’s equations, and illustrates their applications 

to ideal fluid flow problems. 

Chapter IV: Real Incompressible Fluid Dynamics extends the discussion to real fluids, 

introducing the effects of viscosity, flow regimes characterized by the Reynolds number, head 

losses, and the concept of the boundary layer. 

The objective of this course is to enable students to understand and apply the fundamen-

tal laws governing fluid behavior, develop physical intuition, and acquire the analytical skills 

necessary to model and solve engineering problems involving fluid systems. 

It is hoped that these materials will serve as a clear and coherent introduction to Fluid 

Mechanics and provide a strong foundation for subsequent studies in areas such as mechanical 

engineering, hydraulics, and advanced fluid dynamics. 
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Chapter I Fluid statics 

Fluid statics, a foundational branch of fluid mechanics, focuses on the behavior of fluids—

liquids and gases—at rest. Unlike fluid dynamics, which examines flowing fluids, fluid statics 

analyzes the forces and pressures within and on surfaces submerged in static fluids, as well as 

the principles governing buoyancy and hydrostatic pressure.  

I.1 Definition of a fluid 

A fluid can be considered as a substance made up of a large number of very small material 

particles, free to move relative to one another. It is therefore a continuous, deformable, non-

rigid material medium that can flow. 

I.2 Physical properties of a fluid 

I.2.1 Density 

The density of a fluid is its mass per unit volume, represented by the letter . Density has di-

mensions of M/L3 

𝜌 =
𝑀

𝑉
          I.1 

If the mass of 1 m3 of liquid is 820 kg, its density is  = 820 kg/m3. 

Table I.1: Density of some Gases at Room Temperature and Pressure 

Gas  (kg/m3) 

Air  1.19 

Carbon dioxide 1.82 

Hydrogen  0.082 6 

Oxygen 1.31 

Table I.2: Density of Dry Air at Atmospheric Pressure 

Temperature °C  (kg/m3) 

23.15 1.413 

16.85 1.218 

46.85 1.103 

146.85 0.840 

I.2.2 Specific weight  

The specific weight is weight per unit volume with dimension F/L3 (N/m3). Specific weight is 

related to density by: 

𝛾 =
𝑚𝑔

𝑉
= 𝜌𝑔         I.2 
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I.2.3 Specific gravity 

The specific gravity of a substance is the ratio of its density to the density of water w at 4° C: 

𝑆𝑔 =
𝜌

𝜌𝑊
         I.3 

It is a dimensionless quantity, meaning it has no units. 

Table I.3: Specific Gravity of some Common Liquids at 1.0 atm Pressure, (25° C) 

Name Specific gravity 

Acetone 0.787 

Water  1 

Fluorine refrigerant R-22 1.197 

Mercury 13.6 

Table I.4: Specific Gravity of Water at Atmospheric Pressure 

Temperature °C Sg 

0 0.9999 

4 1.0000 

12 0.9995 

18 0.9986 

100 0.9584 

Table I.5: Specific Gravity of some Solids at Ordinary Atmospheric Temperature 

Substance   Specific gravity 

Balsa wood 0.11–0.14 

Cardboard 0.69 

Ice  0.917 

Marble (رخام) 2.84–2.6 

Emery ( صنفرة) 4 

I.2.4 Viscosity 

Viscosity describes how much a fluid resists moving when a thin layer slides over another; this 

resistance is felt only when a shear force acts on the fluid. Different fluids deform at different 

speeds — low-viscosity fluids like water or gasoline flow easily, while high-viscosity fluids 

like tar or syrup flow much more slowly. 

I.3 Fluid classification 

I.3.1 Compressible and incompressible fluids 

Compressible fluid: A fluid is said to be compressible when the volume occupied by a given 

mass varies as a function of external pressure. Gases are compressible fluids. For example, air, 

hydrogen and methane in their gaseous state are considered compressible fluids. 
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Incompressible fluid: A fluid is said to be incompressible when the volume occupied by a 

given mass does not vary as a function of external pressure. Liquids can be considered incom-

pressible fluids (water, oil, etc.). 

I.3.2 Ideal and real fluids (viscous fluid) 

Ideal fluid: An ideal fluid is one in which cohesive forces are zero. 

Real fluid (viscous fluid): In a real fluid, the tangential forces of internal friction opposing the 

relative sliding of the fluid layers are taken into account. This phenomenon of viscous friction 

occurs as the fluid moves. 

Real fluids (viscous fluids) include both Newtonian and Non-Newtonian fluids, which are dis-

tinguished by how their viscosity responds to applied forces and flow conditions. The concepts 

of Newtonian and non-Newtonian fluids will be discussed in section IV.1 

I.4. General principles and theorems 

I.4.1. Concept of pressure and pressure scale 

Definition of pressure 

Pressure is defined as the force acting normal to an area divided by this area. If we assume the 

fluid to be a continuum, then at a point within the fluid the area can approach zero, Fig. I.1a, 

and so the pressure becomes 

𝑝 = lim
∆𝐴→0

∆𝐹

∆𝐴
=

𝑑𝐹

𝑑𝐴
         I.4 

If the surface has a finite area and the pressure is uniformly distributed over this area, Fig. I.1b, 

then the average pressure is 

𝑝𝑎𝑣𝑔 =
𝐹

𝐴
          I.5 

From the definition, pressure has the dimension of FL-2 and in SI units is expressed as N/m2, 

defined as a pascal, abbreviated as Pa, and pressures are commonly specified in pascals. 

  

Figure I.1 

Atmospheric pressure 

Atmospheric pressure patm also known as barometric pressure is the normal force per unit area 

that the air exerts on a surface due to the weight of the column of air above it and the molecules’ 

impacts. Its standard mean value at sea level is 1 atmosphere, defined as 101,3 pascals. 
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Absolute pressure and gage pressure 

The pressure at a point within a fluid mass will be designated as either an absolute pressure 

pabs or a gage pressure pgage.  

If a fluid such as air were removed from its container, a vacuum would exist and the pressure 

within the container would be zero. This is commonly referred to as zero absolute pressure.  

Any pressure that is measured above this value is referred to as the absolute pressure, pabs. For 

example, standard atmospheric pressure is the absolute pressure that is measured at sea level 

and at a temperature of 15°C. Its value is patm = 101.3 kPa. 

The gage pressure is measured relative to the standard atmospheric pressure. Thus, a gage 

pressure of zero corresponds to a pressure that is equal to the standard atmospheric pressure. 

Absolute pressures are always positive, but gage pressures can be either positive or negative 

depending on whether the pressure is above atmospheric pressure (a positive value) or below 

atmospheric pressure (a negative value). A negative gage pressure is also referred to as a suction 

or vacuum pressure.  

Absolute pressure is measured relative to a perfect vacuum absolute zero pressure, whereas 

gage pressure is measured relative to the local atmospheric pressure. Thus, a gage pressure of 

zero corresponds to a pressure that is equal to the local atmospheric pressure. Absolute pres-

sures are always positive, but gage pressures can be either positive or negative depending on 

whether the pressure is above atmospheric pressure (a positive value) or below atmospheric 

pressure (a negative value). A negative gage pressure is also referred to as a suction or vacuum 

pressure.  

The absolute pressure and the gage pressure are related by: 

pabs = pgage + patm      I.6 

For example, 151,3 pascals (abs) could be expressed as - 50 pascals (gage), if the local atmos-

pheric pressure is 101,3 pascals, or alternatively 50 pascals suction or 50 pascals vacuum.  

The concept of gage and absolute pressure is illustrated graphically in Fig. I.2 for two typical 

pressures located at points 1 and 2 

 

Figure I.2 Graphical representation of gage and absolute pressure (Pressure Scale). 
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I.4.2 Pressure forces at a point in a fluid 

In a fluid, forces are classified as either body forces or surface forces (Figure I.3). These forces 

determine how the fluid behaves, whether it is static or moving. Body forces act throughout the 

entire volume of the fluid, while surface forces are applied to the fluid's boundaries. 

 
Figure I.3 Forces acting on a control volume 

Body Forces 

Body forces act uniformly across the fluid's volume, such as gravitational force (that is con-

sidered here) which pulls the fluid downward. These forces are proportional to the fluid’s den-

sity and affect every part of the fluid equally. Other examples include electromagnetic forces 

or centrifugal forces in rotating fluids. 

FV = m. f = ρ. f.dv       I.7 

where: 

FV is the volume force or total body force acting on the fluid element, 

m is the mass of the fluid element, 

f is the body force per unit mass (gravitational acceleration), 

ρ is the density of the fluid, 

dv is the differential volume of the fluid element. 

Surface Forces 

Surface forces act on the boundaries of a fluid element. The most common surface force is 

pressure, which acts perpendicular to the fluid’s surface. In moving fluids, surface forces also 

include viscous stresses, which arise from friction between fluid layers. 

FS = P.dS        I.8 

FS represents the total force acting on a surface due to the pressure exerted by the fluid. 

P is the pressure at a specific point within the fluid (measured in pascals, N/m²). 

dS is a differential element of surface area (in m²) on which the pressure is acting. 
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I.4.3 Fundamental principle of fluid statics 

Imagine a small cubic fluid element with side lengths dx, dy, and dz. The fluid is subjected to: 

• Pressure forces acting on its surfaces. 

• Body forces (e.g., gravitational force) acting throughout its volume. 

We aim to find the net force per unit volume acting on this element and relate it to the pressure 

gradient. 

 
Figure I.4 Surface and body forces acting on small fluid element 

Pressure Forces 

Pressure acts perpendicular to the surfaces of the fluid element, and we consider the pressure 

forces along the x, y, and z directions. 

• At the left face: the pressure force is (𝑝 −
𝜕𝑝

𝜕𝑦

𝑑𝑦

2
) 𝑑𝑥𝑑𝑧. 

• At the right face: the pressure force is (𝑝 +
𝜕𝑝

𝜕𝑦

𝑑𝑦

2
) 𝑑𝑥𝑑𝑧. 

The net pressure force along the y-direction is the difference between the forces on the two 

faces: 

Pressure force along y = (𝑝 −
𝜕𝑝

𝜕𝑦

𝑑𝑦

2
) 𝑑𝑥𝑑𝑧 −  (𝑝 +

𝜕𝑝

𝜕𝑦

𝑑𝑦

2
) 𝑑𝑥𝑑𝑧 = −

𝜕𝑝

𝜕𝑦
𝑑𝑥𝑑𝑦𝑑𝑧 

Similarly, we can compute the net pressure forces in the z and x directions: 

Pressure force along z = −
𝜕𝑝

𝜕𝑧
𝑑𝑥𝑑𝑦𝑑𝑧  

Pressure force along x = −
𝜕𝑝

𝜕𝑥
𝑑𝑥𝑑𝑦𝑑𝑧 

 

Body Forces 

Body forces (gravity) act uniformly throughout the volume of the element. Let the body force 

per unit mass be denoted by fx, fy, and fz in the x-, y-, and z-directions, respectively. 

The total body force acting on the fluid element is given by: 
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Body force along x = 𝜌𝑓𝑥𝑑𝑥𝑑𝑦𝑑𝑧  

Body force along y = 𝜌𝑓𝑦𝑑𝑥𝑑𝑦𝑑𝑧 

Body force along z = 𝜌𝑓𝑧𝑑𝑥𝑑𝑦𝑑𝑧 

For the fluid element to be in equilibrium, the sum of the forces in each direction must be zero. 

Using Newton’s second law, the net force per unit volume in the x-, y-, and z-directions must 

equal zero. 

In the x-direction: −
𝜕𝑝

𝜕𝑥
𝑑𝑥𝑑𝑦𝑑𝑧 + 𝜌𝑓𝑥𝑑𝑥𝑑𝑦𝑑𝑧 = 0 and 𝑓𝑥 =

1

𝜌

𝜕𝑝

𝜕𝑥
 

Similarly, we get: 

In the y-direction: 𝑓𝑦 =
1

𝜌

𝜕𝑝

𝜕𝑦
 

In the z-direction: 𝑓𝑧 =
1

𝜌

𝜕𝑝

𝜕𝑧
 

Now, multiplying the forces fx, fy, and fz by the differentials dx, dy, and dz respectively, we get: 

𝑓𝑥𝑑𝑥 + 𝑓𝑦𝑑𝑦 + 𝑓𝑧𝑑𝑧 =
1

𝜌
(

𝜕𝑝

𝜕𝑥
𝑑𝑥 +

𝜕𝑝

𝜕𝑦
𝑑𝑦 +

𝜕𝑝

𝜕𝑧
𝑑𝑧)     I.9 

From the total derivative of the pressure p, we know: 

𝑑𝑝 =
𝜕𝑝

𝜕𝑥
𝑑𝑥 +

𝜕𝑝

𝜕𝑦
𝑑𝑦 +

𝜕𝑝

𝜕𝑧
𝑑𝑧 

Substituting this into the previous expression, we get:  

1

𝜌
𝑑𝑝 = 𝑓𝑥𝑑𝑥 + 𝑓𝑦𝑑𝑦 + 𝑓𝑧𝑑𝑧    I.10 

This is a fundamental equation of fluid statics, which defines the mode of variation of pres-

sure with the coordinates x, y and z, the solution of many practical problems in fluid static 

depends on this equation.  

Pressure Variation in a Fluid at Rest 

For a fluid at rest 𝑓𝑥 = 0 𝑎𝑛𝑑 
1

𝜌

𝜕𝑝

𝜕𝑥
= 0, 𝑓𝑦 = 0 𝑎𝑛𝑑 

1

𝜌

𝜕𝑝

𝜕𝑦
= 0, 𝑓𝑧 = −𝑔 𝑎𝑛𝑑 

1

𝜌

𝜕𝑝

𝜕𝑧
≠ 0 and Eq. 

I.9 reduces to 

0 + 0 − g𝑑𝑧 =
1

𝜌
(0 + 0 +

𝜕𝑝

𝜕𝑧
𝑑𝑧) 

𝜕𝑝

𝜕𝑧
= −𝜌𝑔          I.11 

Since p depends only on z, Eq. I.11 can be written as the ordinary differential equation 

𝑑𝑝

𝑑𝑧
= −𝜌𝑔          I.12 

Rearranging: 

𝑑𝑝 = −𝜌𝑔𝑑𝑧          I.13 
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Therefore, pressure does vary in a static fluid in the z-direction—it increases with depth, as 

shown by Equation I.13. Integrating both sides yields (Figure I.5) 

∫ 𝑑𝑝
𝑃2

𝑃1

= − ∫ 𝜌𝑔𝑑𝑧
𝑍2

𝑍1

 

 is constant because we consider incompressible fluid. 

∫ 𝑑𝑝
𝑃2

𝑃1

= −𝜌𝑔 ∫ 𝑑𝑧
𝑍2

𝑍1

 

to yield 

𝑃2 − 𝑃1 = −𝜌𝑔(𝑍2 − 𝑍1) 

Or 

𝑃1 − 𝑃2 = 𝜌𝑔(𝑍2 − 𝑍1)        I.14 

Where P1 and P2 are pressures at the vertical elevations Z1 and Z2 as is illustrated in Fig. I.4. 

Equation I.14 can be written in the compact form 

𝑃1 − 𝑃2 = 𝜌𝑔ℎ          I.15 

Or 

𝑃1 = 𝑃2 + 𝛾ℎ           I.16 

 
Figure I.5 Notation for pressure variation in a fluid at rest with a free surface (pressure scale).  

where h is the distance, which is the depth of fluid measured downward from the location of p2. 

This type of pressure distribution is commonly called a hydrostatic distribution, and Eq. I.16 

shows that in an incompressible fluid at rest the pressure varies linearly with depth. The pressure 

must increase with depth to “hold up” the fluid above it. 

It can also be observed from Eq. I.15 that the pressure difference between two points can be 

specified by the distance h since 

ℎ =
𝑃1−𝑃2

𝜌𝑔
=

𝑃1−𝑃2

𝛾
         I.17 
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In this case h is called the pressure head and is interpreted as the height of a column of fluid of 

specific weight required to give a pressure difference. 

When one works with liquids there is often a free surface, as is illustrated in Fig. I.4, and it is 

convenient to use this surface as a reference plane. The reference pressure would correspond to 

the pressure acting on the free surface (which would frequently be atmospheric pressure), it 

follows that the pressure p at any depth h below the free surface is given by the equation: 

𝑃 = 𝑃0 + 𝛾ℎ          I.18 

As is demonstrated by Eq. I.16 or I.18, the pressure in a homogeneous, incompressible fluid at 

rest depends on the depth of the fluid relative to some reference plane, and it is not influenced 

by the size or shape of the tank or container in which the fluid is held. Thus, in Fig. I.6 the 

pressure is the same at all points along the line AB, even though the containers have very irreg-

ular shapes. The actual value of the pressure along AB depends only on the depth, h, the surface 

pressure p0, and the specific weight , of the liquid in the container. 

 
Figure I.6 Fluid pressure in containers of arbitrary shape. 

I.5. Hydrostatic thrust 

I.5.1 Definition 

Hydrostatic thrust is "the resultant force produced by the distribution of hydrostatic pressure 

over a given surface, acting normal to that surface and derived from the weight of the fluid 
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column above or adjacent to it". This concept is crucial whenever a static fluid exerts pressure, 

such as in underwater engineering and fluid mechanics studies. 

I.5.2 Pressure distribution 

When a surface is submerged in a fluid, forces develop on the surface due to the fluid. The 

determination of these forces is important in the design of storage tanks, ships, dams, and other 

hydraulic structures. For fluids at rest, we know that the force must be perpendicular to the 

surface since there are no shearing stresses present. We also know that the pressure will vary 

linearly with depth as shown in Fig. I.7 if the fluid is incompressible. For a horizontal surface, 

such as the bottom of a liquid filled tank (Fig. I.7a), the magnitude of the resultant force is 

simply FR = pA, where p is the uniform pressure on the bottom and A is the area of the bottom. 

For the open tank shown p = h. Note that if atmospheric pressure acts on both sides of the 

bottom, as is illustrated, the resultant force on the bottom is simply due to the liquid in the tank. 

Since the pressure is constant and uniformly distributed over the bottom, the resultant force acts 

through the centroid of the area as shown in Fig. I.7a. As shown in Fig. I.7b, the pressure on 

the ends of the tank is not uniformly distributed. Determination of the resultant force for situa-

tions such as this is presented in sections I.5.3 and I.5.4. 

 
Figure I.7 (a) Pressure distribution and resultant hydrostatic force on the bottom of an open 

tank. (b) Pressure distribution on the ends of an open tank. 

I.5.3 Hydrostatic force on a plane surface 

Hydrostatic force magnitude and direction 

For the more general case in which a submerged plane surface is inclined, as is illustrated in 

Fig. I.8, the determination of the resultant force acting on the surface is more involved. For the 

present we will assume that the fluid surface is open to the atmosphere. Let the plane in which 

the surface lies intersect the free surface at 0 and make an angle  with this surface as in Fig. 

I.8. The x–y coordinate system is defined so that 0 is the origin and y = 0 (i.e., the x axis) is 

directed along the surface as shown. The area can have an arbitrary shape as shown. We wish 

to determine the magnitude and direction of the resultant force acting on one side of this area 

due to the liquid in contact with the area. 
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Figure I.8 Notation for hydrostatic force on an inclined plane surface of arbitrary shape. 

At any given depth, h, the force acting on dA (the differential area of Fig. I.8) is: 

𝑑𝐹 = 𝑝𝑑𝐴 = 𝛾ℎ𝑑𝐴 

This force is perpendicular to the surface. Thus, the magnitude of the resultant force can be 

found by summing these differential forces over the entire surface. In equation form: 

𝐹𝑅 = ∫ 𝛾ℎ𝑑𝐴 = ∫ 𝛾𝑦𝑠𝑖𝑛𝜃𝑑𝐴
𝐴𝐴

 

Where ℎ = 𝑦𝑠𝑖𝑛𝜃. For constant 𝛾 and 𝜃 

𝐹𝑅 = 𝛾𝑠𝑖𝑛𝜃 ∫ 𝑦𝑑𝐴
𝐴

         I.19 

The integral appearing in Eq. I.19 is the first moment of the area with respect to the x axis, so 

we can write 

∫ 𝑦𝑑𝐴
𝐴

= 𝑦𝑐𝐴 
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Where yc is the y coordinate of the centroid of area A measured from the x axis which passes 

through 0. 

Equation I.19 can thus be written as 

𝐹𝑅 = 𝛾𝑠𝑖𝑛𝜃𝑦𝑐𝐴 

𝐹𝑅 = 𝛾ℎ𝑐𝐴          I.20 

Since all the differential forces that were summed to obtain 𝐹𝑅 are perpendicular to the surface, 

the resultant 𝐹𝑅 must also be perpendicular to the surface. 

Hydrostatic Force location 

The location of hydrostatic force on a submerged surface refers to the specific point, known as 

the center of pressure, where the resultant force due to hydrostatic pressure acts upon the sur-

face. This point is always found below the centroid of the submerged surface because the pres-

sure increases with depth. 

The y coordinate, yR, of the resultant force can be determined by summation of moments around 

the x axis. That is, the moment of the resultant force must equal the moment of the distributed 

pressure force, or 

𝐹𝑅𝑦𝑅 = ∫ 𝑦𝑑𝐹 = ∫ 𝑦 (𝛾 𝑦𝑠𝑖𝑛𝜃 𝑑𝐴) =
𝐴

∫ 𝛾𝑠𝑖𝑛𝜃 𝑦2 𝑑𝐴
𝐴𝐴

 

where 𝑑𝐹 = 𝛾ℎ𝑑𝐴 = 𝛾 𝑦𝑠𝑖𝑛𝜃 𝑑𝐴 

and, therefore, since 𝐹𝑅 = 𝛾𝑠𝑖𝑛𝜃𝑦𝑐𝐴 

𝛾𝑠𝑖𝑛𝜃𝑦𝑐𝐴 𝑦𝑅 = ∫ 𝛾𝑠𝑖𝑛𝜃 𝑦2 𝑑𝐴
𝐴

 

𝑦𝑅 =
∫  𝑦2 𝑑𝐴𝐴

𝑦𝑐𝐴
 

The integral in the numerator is the second moment of the area (moment of inertia), with respect 

to an axis formed by the intersection of the plane containing the surface and the free surface (x 

axis) 𝐼𝑥 = ∫  𝑦2 𝑑𝐴
𝐴

. Thus, we can write 

𝑦𝑅 =
𝐼𝑥

𝑦𝑐𝐴
 

One can now be made of the parallel axis theorem to express as: 𝐼𝑥 = 𝐼𝑥𝑐 + 𝐴𝑦𝑐
2 

Where 𝐼𝑥𝑐 is the second moment of the area with respect to an axis passing through its centroid 

and parallel to the x axis. Thus, 

𝑦𝑅 = 𝑦𝑐 +
𝐼𝑥𝑐

𝑦𝑐𝐴
          I.21 
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Figure I.9 Geometric properties of some common shapes. 

I.5.4 Hydrostatic Force on a Curved Surface 

Another important area of interest involves determining forces on submerged curved surfaces. 

The hull of a floating ship is a curved surface in contact with liquid, as is the wall or sides of a 

drinking glass or funnel or culvert. To develop equations for these cases, consider the configu-

ration illustrated in Figure I.10a. A curved surface is shown in profile and projected frontal 

views. Let us examine the element of area dA. The force acting is p dA (Figure I.10b). It is 

convenient to resolve this force into horizontal and vertical components, dRh and dRy, respec-

tively.  

The horizontal component magnitude 

We write the horizontal component of this force directly as: 

𝑑𝑅ℎ = 𝑝𝑑𝐴 𝑐𝑜𝑠𝜃 

where dAcos is the vertical projection of dA. Integrating this expression gives a result similar 

to that for a submerged plane: 

𝑅ℎ = 𝛾ℎ𝑐𝐴𝑣          I.22 

where: hc = pressure at the centroid of the surface 

Av = its area projected onto a vertical plane 
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Figure I.10 A submerged, curved surface. 

The horizontal component location 

The line of action, or location, of the horizontal force Rh is found by summing moments as was 

done for the plane surfaces in Section I.5.3. The result is the same equation as was derived there 

except that we are now working with the vertical projection of the area—namely, Av: 

𝑦𝑅 = 𝑦𝑐 +
𝐼𝑥𝑐

𝑦𝑐𝐴𝑣
 

Here hc is the distance from the free surface to the centroid of the area Av. The second moment 

of inertia Ixxc also applies to the vertical projected area Av. 

The vertical component magnitude 

Next consider the vertical component of force, which is given by 

𝑑𝑅𝑣 = 𝑝𝑑𝐴 𝑠𝑖𝑛θ 

where 𝑑𝐴 𝑠𝑖𝑛θ is the horizontal projection of dA. Combining this result with the hydrostatic 

equation, we obtain 

𝑑𝑅𝑣 = 𝛾ℎ𝑐𝑑𝐴 𝑠𝑖𝑛θ             I.23 

where again hc, as shown in Figure I.10c, is the vertical distance from the liquid surface to the 

centroid of dA. The quantity ℎ𝑐𝑑𝐴 𝑠𝑖𝑛θ is the volume of liquid above dA. Equation I.23 thus 

becomes 

𝑑𝑅𝑣 = 𝛾𝑑𝑉 

and, after integration, yields 

𝑅𝑣 = 𝛾𝑉          I.24 

Therefore, the vertical component of force acting on a submerged curved surface equals the 

weight of the liquid above it. 



 

15 

 

I.6 Relative equilibrium 

I.6.1 Constant translational acceleration of a liquid 

In this section we will discuss both horizontal and vertical constant accelerated motion of a 

container of liquid, and we will study how the pressure varies within the liquid for these two 

motions. 

Constant horizontal acceleration 

Here we consider a differential element that has a length x and cross-sectional area A, Fig. I.11. 

The only horizontal forces acting on it are caused by the pressure of the adjacent liquid on each 

of its ends. 

 
Figure I.11  

Since the mass of the element is m = W/g = (xA)/g, (W is the weight of the contained 

liquid) the equation of motion becomes 

→+ Σ𝐹𝑥 = 𝑚𝑎𝑥;                      𝑝2Δ𝐴 − 𝑝1Δ𝐴 =
𝛾(𝑥Δ𝐴)

𝑔
𝑎𝑐 

𝑝2 − 𝑝1 =
𝛾𝑥

𝑔
𝑎𝑐        I.25 

Using p1 = h1 and p2 = h2, we can also write this expression as 
ℎ2−ℎ1

𝑥
=

𝑎𝑐

𝑔
         I.26 

As noted in Fig. I.11, the term on the left of Eq. I.26 represents the slope of the liquid’s free 

surface. Since this is equal to tan , then 

𝑡𝑎𝑛 𝜃 =
𝑎𝑐

𝑔
 

Constant Vertical Acceleration 

The forces acting on the vertical element of depth h and cross section A, Fig. I.12, consist of 

the element’s weight W = V = (hA) and the pressure force on its bottom. Since the mass 

of the element is m = W /g =  (hA)/g, application of the equation of motion yields 

+↑ Σ𝐹𝑦 = 𝑚𝑎𝑦;                         𝑝Δ𝐴 − 𝛾(ℎΔ𝐴) =
𝛾(ℎΔ𝐴)

𝑔
𝑎𝑐 

𝑝 = 𝛾ℎ (1 +
𝑎𝑐

𝑔
)        I.27 
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Figure I.12 

Thus, the pressure within the liquid will increase by h(ac/g) when the container is accelerated 

upward.  

I.6.2 Steady Rotation of a Liquid 

If a liquid is placed into a cylindrical container that rotates at a constant angular velocity , Fig. 

I.13, the shear stress developed within the liquid will begin to cause the liquid to rotate with the 

container. Eventually, no relative motion within the liquid will occur, and the system will then 

rotate as a solid body. When this happens, the velocity of each fluid particle will depend on its 

distance from the axis of rotation. Those particles that are closer to the axis will move slower 

than those farther away. This motion will cause the liquid surface to form the shape of a forced 

vortex. 

 
Figure I.13 

The constant angular rotation  of the cylinder–liquid system produces a pressure difference or 

gradient in the radial direction due to the radial acceleration of the liquid particles. This accel-

eration is the result of the changing direction of the velocity of each particle. If a particle is at 

a radial distance r from the axis of rotation, then from dynamics (or physics), its acceleration 
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has a magnitude of ar = 2r, and it acts toward the center of rotation. To study the radial pressure 

gradient, we will consider a ring element having a radius r, thickness r, and height h, Fig. I.14b. 

The pressures on the inner and outer sides of the ring are p and p + (p/r) r, respectively. 

 

 

Fig. I.14 

Since the mass of the ring is m = W/g =  V/g = (2r) rh/g, the equation of motion in 

the radial direction gives 

Σ𝐹𝑟 = 𝑚𝑎𝑟; − [𝑝 + (
𝜕𝑝

𝜕𝑟
) Δ𝑟] (2𝜋𝑟Δℎ) + 𝑝(2𝜋𝑟Δℎ) = −

𝛾(2𝜋𝑟)Δ𝑟Δℎ

𝑔
𝜔2𝑟

𝜕𝑝

𝜕𝑟
= (

𝛾𝜔2

𝑔
) 𝑟

 

Integrating, we obtain 

𝑝 = (
𝛾𝜔2

2𝑔
) 𝑟2 + 𝐶 

We can determine the constant of integration provided we know the pressure in the fluid at a 

specific point. Consider the point on the vertical axis at the free surface, where r = 0 and p0 = 

0, Fig. I.14c. Then C = 0, and so 

𝑝 = (
𝛾𝜔2

2𝑔
) 𝑟2 

The pressure increases with the square of the radius. Since p = gh, the equation of the free 

surface of the liquid, Fig. I.13c, becomes 

ℎ = (
𝜔2

2𝑔
) 𝑟2 

This is the equation of a parabola. 
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I.7 Archimedes' principle 

The Greek scientist Archimedes discovered the principle of buoyancy, which states that when 

a body is placed in a static fluid, it is buoyed up by a force that is equal to the weight of the 

fluid that is displaced by the body. 

1.7.1. Submerged body 

We consider the submerged body in Fig. I.15. Due to fluid pressure, the vertical resultant force 

acting upward on the bottom surface of the body, ADC, is equivalent to the weight of fluid 

contained above this surface, that is, within the volume ADCyx. Likewise, the resultant force 

due to pressure acting downward on the top surface of the body, ABC, is equivalent to the 

weight of fluid contained within the volume ABCyx. The difference in these forces acts upward, 

and is the buoyant force. It is equivalent to the weight of an imaginary amount of fluid con-

tained within the volume of the body, ABCDA. This force Fb acts through the center of buoy-

ancy, Cb, which is located at the centroid of the volume of liquid displaced by the body. If the 

density of the fluid is constant, then this force will remain constant, regardless of how deep the 

body is placed within the fluid. 

 
Figure I.15 Submerged body 

From the diagram: 

- Looking at the horizontal forces (PHL and PHR in the diagram): 

The horizontal forces acting on the body ABCD are equal and opposite, so they cancel each 

other out. 

- Looking at the vertical forces: 

PADC = weight of volume ADCyx = .(volume ADCyx) 

PABC = weight of volume ABCyx = .(volume ABCyx) 

The net vertical force (buoyant force) PV = PADC - PABC = weight of the body's volume in liquid  

PV = .V 

PV is called Archimedes' thrust or buoyant force. 

This principle explains why objects float or sink in fluids, and it's fundamental to understanding 

ship design, hot air balloons, and many other applications in fluid mechanics. 
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1.7.2. Floating body 

The same arguments of the previous section can also be applied to a floating body, as in Fig. 

I.16. Here the displaced amount of fluid is within the region ABC, the buoyant force is equal to 

the weight of fluid within this displaced volume, and the center of buoyancy Cb is at the centroid 

of this volume. 

 
Figure I.16 Floating body 
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Chapter II Fluid Kinematics 

Fluid Kinematics deals with the motion of fluids without necessarily considering the forces and 

moments which create the motion. 

II.1 Description of fluid motion 

II.1.1 Lagrangian Description 

In the Lagrangian description, individual fluid particles are tracked from their starting positions 

as they move through space and time. Each particle’s position, velocity, and acceleration are 

observed as they change over time. The particle’s position vector r, varies with time, and its 

time derivative gives the particle’s velocity. 

𝑉 = 𝑉(𝑡) =
𝑑r(𝑡)

𝑑𝑡
         II.1 

 
Figure II.1 Lagrangian description of motion follows a single fluid particle as it moves about 

within the system  

II.1.2 Eulerian Description 

In the Eulerian description, fluid velocity is measured at fixed points in space (x0, y0, z0) within 

small surrounding volumes. To analyze the entire system, control volumes are placed at every 

point (x, y, z), allowing measurement of particle velocities across all points over time. 

 

Figure II.2 Eulerian description of motion specifies a point or region within the system, and it 

measures the velocity of the particles that pass through this point or control volume  
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II.1.3 Graphical descriptions of fluid flow 

Pathlines: The pathline for a fluid particle defines the “path” the particle travels over a period 

of time (Figure II.3a). 

Streaklines: A streakline is defined as the position of all fluid particles that have all come from 

the same point of origin (Figure II.3b). 

 
Figure II.3 

Streamlines: A streamline is an instantaneous curve in a fluid flow field where the tangent at 

any point is parallel to the local velocity vector at that point. In other words, it's a curve that is 

always parallel to the direction of fluid motion at any given instant. There is no flow across a 

streamline. 

 
Figure II.4 

As long as the flow is steady, the streamlines, pathlines, and streaklines will all coincide. 

 
Figure II.5 

Streamtubes: For some types of analysis, it is convenient to consider a bundle of streamlines 

that surround a region of flow, (Fig. II.6). Such a circumferential grouping is called a 

streamtube. Here the fluid flows through the streamtube as if it were contained within a curved 

conduit. 



 

22 

 

 
Figure II.6: A streamtube consists of a bundle of individual streamlines. 

II.2 Continuity equation 

II.2.1 The concept of flow rate 

Volumetric Flow: The rate at which a volume of fluid flows through a cross-sectional area A 

is called the volumetric flow, or simply the flow or discharge. It can be determined provided we 

know the velocity profile for the flow across the area. For example, consider the flow of a 

viscous fluid through a pipe, such that its velocity profile has the axisymmetric shape shown in 

figure (Figure II.7).  

 
Figure II.7 

If particles passing through the differential area dA have a velocity v, then during the time dt, a 

volume element of fluid of length vdt will pass through the area. Since this volume is dV = 

(vdt)(dA), then the volumetric flow dQ through the area is determined by dividing the volume 

by dt, which gives dQ = dV /dt = vdA. If we integrate this over the entire cross-sectional area A, 

we have 

𝑄 = ∫ 𝑣𝑑𝐴
𝐴

          II.2 

Q (m3/s) 

When calculating Q, it is important to remember that the velocity must be normal to the cross-

sectional area through which the fluid flows.  

 
Figure II.8 
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If this is not the case, as in figure II.8, then we must consider the velocity’s normal component 

vcos for the calculation. By considering the area as a vector, dA, where its normal is positive 

outward, we can use the dot product, v·dA = vcos dA, to express the integral in the previous 

equation in a more general form, namely 

𝑄 = ∫ 𝐯. 𝑑𝐀
𝐴

          II.3 

 

Mass Flow: Since the mass of the element in Fig. II.7 is dm = dV =  (vdt)dA, the mass flow 

or mass discharge of the fluid through the entire cross section becomes 

𝑚̇ =
𝑑𝑚

𝑑𝑡
= ∫ 𝝆𝐯. 𝑑𝐀

𝐴
         II.4 

II.2.2 Derivation of the continuity equation 

- Fluid Property Description 

Extensive Property: An extensive property is a property that depends on the amount of mass 

or volume in a system. It "extends" throughout the system. For example, momentum is an ex-

tensive property since it represents mass times velocity, N = mV. 

Intensive Property: Fluid properties that are independent of the system’s mass are called in-

tensive properties,  (eta). Examples include temperature and pressure. 

We can represent an extensive property N as an intensive property  simply by expressing it 

per unit mass, that is,  = N/m. 

- Reynolds transport theorem: this theorem relates the time rate of change of any extensive 

property N of a system of fluid particles, defined from a Lagrangian description, to the changes 

of the same property from the viewpoint of the control volume, that is, as defined from a Eu-

lerian description.  

(
𝐷𝑁

𝐷𝑡
)

syst
=

𝜕

𝜕𝑡
∫  

cv
𝜂𝜌𝑑∀ + ∫  

cs
𝜂𝜌𝐕 ⋅ 𝑑𝐀      II.5 

The first term on the right side is the local change, since it represents the time rate of change in 

the intensive property within the control volume. The second term on the right is the convective 

change, since it represents the net flow of the intensive property through the control surfaces. 

- Continuity equation 

Integral form 

The conservation of mass states that within a region, apart from any nuclear process, matter can 

neither be created nor destroyed. From a Lagrangian point of view, the mass of all the particles 

in a system of particles must be constant over time, and so we require the change in the mass 

to be (dm/dt)sys = 0. In order to develop a similar statement that relates to a control volume, we 

must use the Reynolds transport theorem, Eq. II.6. Here the extensive property N = m, and so 

the corresponding intensive property is mass per unit mass, or  = m/m = 1. Therefore, the 

conservation of mass requires 
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𝜕

𝜕𝑡
∫  

cv
𝜌𝑑∀ + ∫  

cs
𝜌𝐕 ⋅ 𝑑𝐀 = 0     II.6 

This equation is often called the continuity equation in integral form. It states that the local 

rate of change of mass within the control volume, plus the net convective rate at which mass 

enters and exits the open control surfaces, must equal zero, Fig. II.9. 

 
Figure II.9 

Special Cases: 

Provided we have a control volume with a fixed size that is completely filled with an incom-

pressible fluid, then there will be no local change of the fluid mass within the control volume. 

In this case, the first term in Eq. II.6 is zero, and so the net mass flow into and out of the open 

control surfaces must be zero. In other words, “what flows in must flow out”. Thus, for both 

steady and unsteady flow, 

∫ 𝜌
сs

𝐕 ⋅ 𝑑𝐀 = 𝛴𝑚̇out − 𝛴𝑚̇in = 0       II.7 

Assuming the average velocity occurs through each control surface, then V will be constant, 

and integration yields, 

𝜌𝐕 ⋅ 𝐀 = 𝛴𝑚̇out − 𝛴𝑚̇in = 0       II.8 

Finally, if the same fluid is flowing at a steady rate into and out of the control volume, then the 

density can be factored out, and we have for incompressible steady flow, 

𝐕 ⋅ 𝐀 = 𝛴𝑄out − 𝛴Qin = 0        II.9 

A conceptual application of this equation is shown in Fig. II.10. By our sign convention, notice 

that whenever fluid exits a control surface, V and Aout are both directed outward, and by the dot 

product this term is positive. If the fluid enters a control surface, V is directed inward and Ain 

is directed outward, and so their dot product will be negative. 

𝛴𝑉 ⋅ 𝐴 = 0
−𝑉𝐴𝐴𝐴 − 𝑉𝐵𝐴𝐵 + 𝑉𝐶𝐴𝐶 = 0
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Figure II.10 

Differential form 

In this section we will derive the continuity equation (in differential form) for an element of 

fluid flowing through a fixed differential control volume that only has open control surfaces, 

Fig. II.11. We will assume three-dimensional flow, where the velocity field has components u 

= u(x, y, z, t), v = v(x, y, z, t), w = w(x, y, z, t). Point (x, y, z) is at the center of the control volume, 

and at this point the density is defined by the scalar field  =  (x, y, z, t). 

 
Fig. II.11 

Within the control volume, local changes to the mass can occur due to the fluid’s compressibil-

ity. Also, convective changes can occur from one control surface to another due to nonuniform 

flow. In Fig. II.11 these convective changes are considered only in the x direction, as noted by 

the partial derivatives at each control surface. 

If we apply the continuity equation, Eq. II.6, to the control volume in the x direction, we have 

 

 

𝜕

𝜕𝑡
∫  

cv

𝜌𝑑𝑉 + ∫  
cs

𝜌𝐕 ⋅ 𝑑𝐀 = 0

𝜕𝜌

𝜕𝑡
Δ𝑥Δ𝑦Δ𝑧 + (𝜌𝑢 +

𝜕(𝜌𝑢)

𝜕𝑥

Δ𝑥

2
) Δ𝑦Δ𝑧 − (𝜌𝑢 −

𝜕(𝜌𝑢)

𝜕𝑥

Δ𝑥

2
) Δ𝑦Δ𝑧 = 0

 

Dividing by x y z, and simplifying, we get 
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𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑢)

𝜕𝑥
= 0         II.10 

If we include the convective changes in the y and z directions, then the continuity equation 

becomes 
𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑢)

𝜕𝑥
+

𝜕(𝜌𝑣)

𝜕𝑦
+

𝜕(𝜌𝑤)

𝜕𝑧
= 0       II.11 

Finally, using the gradient operator  = /xi + /yj + /zk, and expressing the velocity as V 

= ui + vj + wk, we can write the continuity equation for the differential element in vector form 

as 
𝜕𝜌

𝜕𝑡
+ ∇. 𝜌𝑽 = 0         II.12 

Two-Dimensional Steady Flow of an Ideal Fluid.  

Although we have developed the continuity equation in its most general form, often it has ap-

plications to two-dimensional steady-state flow of an ideal fluid. For this special case, the fluid 

is incompressible and so  is constant. 

As a result Eq. II.11 then becomes 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0          II.13 

Or, from Eq. II.12, we can write 

∇. 𝑽 = 0          II.14 

II.3 The Stream Function 

II.3.1 Definition 

In two dimensions, one method for satisfying the equation of continuity is to replace the two 

unknown velocity components u and v by a single unknown function, thus reducing the number 

of unknowns, and thereby simplifying the analysis of an ideal fluid flow problem. In this section 

we will use the stream function as a means for doing this. 

The stream function  (psi) is the equation that represents all the equations of the streamlines. 

In two dimensions, it is a function of x and y, and for the equation of each streamline it is equal 

to a specific constant  (x, y) = C.  

II.3.2 Velocity Components 

By definition, the velocity of a fluid particle is always tangent to the streamline along which it 

travels, Fig. II.12. As a result, we can relate the velocity components u and v to the slope of the 

tangent by proportion. 
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Fig. II.12 

 As shown in the figure, dy/dx = v/u, or 

udy - vdx = 0         II.15 

Now, if we take the total derivative of the streamline equation (x, y) = C, which describes the 

streamline in Fig. II.12, we have 

𝑑𝜓 =
𝜕𝜓

𝜕𝑥
𝑑𝑥 +

𝜕𝜓

𝜕𝑦
𝑑𝑦 = 0       II.16 

Comparing this with Eq. II.15, the two components of velocity can be related to . We require 

𝑢 =
𝜕𝜓

𝜕𝑦
  and 𝑣 = −

𝜕𝜓

𝜕𝑥
        II.17 

Therefore, if we know the equation of any streamline, (x, y) = C, we can obtain the velocity 

components of a particle that travels along it by using these equations. By obtaining the velocity 

components in this way, we can show that for steady flow the stream function automatically 

satisfies the equation of continuity. By direct substitution into Eq. II.13, we find 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0;

𝜕

𝜕𝑥
(

𝜕𝜓

𝜕𝑦
) +

𝜕

𝜕𝑦
(−

𝜕𝜓

𝜕𝑥
) = 0

𝜕2𝜓

𝜕𝑥𝜕𝑦
−

𝜕2𝜓

𝜕𝑦𝜕𝑥
= 0

 

II.4 Types of Fluid flow 

II.4.1 Steady and Unsteady Flows 

- Steady Flow: In steady flow, fluid properties (velocity, pressure, and density) at any given 

point in space remain constant over time. Mathematically, ∂/∂t = 0 for any fluid property. Ex-

amples include water flowing at a constant rate through a pipe or air flowing steadily over an 

aircraft wing. 
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- Unsteady Flow: In unsteady flow, fluid properties at a given point in space change over time. 

Mathematically, ∂/∂t ≠ 0 for any fluid property. An example would be the flow of water through 

a pipe during the closing or opening of a valve. 

II.4.2 Uniform Flow and non-uniform Flow 

- Uniform Flow is a fluid flow in which characteristics and parameters remain unchanged with 

distance along the flow path. A steady flow through a long straight pipe of a constant diameter 

is an example of uniform flow.  

In a steady uniform flow, an ideal fluid maintains the same velocity at all times and at each 

point (Fig. II.13), mathematically: 
𝑑𝑣

𝑑𝑡
= 0 and 

𝑑𝑣

𝑑𝑥
= 0. 

 
Fig. II.13: Steady uniform flow 

In an unsteady uniform flow (Fig. II.14), the velocity of an ideal fluid is the same at all points 

at any given instant but changes with time, as is the case when a valve is slowly opened, math-

ematically: 
𝑑𝑣

𝑑𝑡
≠ 0 and 

𝑑𝑣

𝑑𝑥
= 0. 

 
Fig. II.14: Unsteady uniform flow 

- Non-uniform Flow is a flow in which characteristics and parameters vary and are different at 

different locations along the flow path. A steady flow through a pipe with a variable diameter 

exemplifies a non-uniform flow. 

In a steady nonuniform flow (Fig. II.15), the velocity remains constant with time, but it is dif-

ferent from one location to the next, mathematically: 
𝑑𝑣

𝑑𝑡
= 0 and 

𝑑𝑣

𝑑𝑥
≠ 0. 
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Fig. II.15: Steady nonuniform flow 

In an unsteady nonuniform flow (Fig. II.16), the velocity is different at each point and changes 

at each time, such as when a valve is slowly opened in a pipe with a changing cross-section, 

mathematically: 
𝑑𝑣

𝑑𝑡
≠ 0 and 

𝑑𝑣

𝑑𝑥
≠ 0. 

 
Fig. II.16: Unsteady nonuniform flow 

II.4.3 Irrotational flow and Rotational flow  

- Irrotational flow is flow in which fluid particles moving along the flow path do not undergo 

rotation. Mathematically: 
𝜕𝑢

𝜕𝑦
=

𝜕𝑣

𝜕𝑥
 (irrotational two-dimensional flow). 

Ideal fluids exhibit irrotational flow because no viscous friction forces act on ideal fluid ele-

ments, only pressure and gravitational forces. No rotation occurs in the ideal fluid because the 

entire element moves with the same velocity. 

 
Fig. II.17: Irrotational flow (ideal fluid)  

- Rotational flow is a fluid flow in which fluid particles moving along the flow path also rotate 

about their respective axes. Mathematically: 
𝜕𝑢

𝜕𝑦
≠

𝜕𝑣

𝜕𝑥
 (rotational two-dimensional flow). 
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In the figure bellow, the top and bottom surfaces of the element in the viscous fluid move at 

different velocities, and this will cause the vertical sides to rotate clockwise at the rate . As a 

result, this produces rotational flow. 

 
Fig. II.18: Rotational flow (viscous fluid)  
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Chapter III Dynamics of Ideal Incompressible Fluids 

III.1 Forces acting on a fluid particle 

Recall that the forces acting on a fluid element may be classified as surface forces and body 

forces; surface forces include both normal forces and tangential (shear) forces. 

We shall consider the x component of the force acting on a differential element of mass dm and 

volume dV = dx dy dz. Only those stresses that act in the x direction will give rise to surface 

forces in the x direction. If the stresses at the center of the differential element are taken to be 

σxx, τyx, and τzx, then the stresses acting in the x direction on all faces of the element (obtained 

by a Taylor series expansion about the center of the element) are as shown in Fig. III.1. 

 
Fig. III.1 Stresses in the x direction on an element of fluid. 

To obtain the net surface force in the x direction, 𝒅𝑭𝑺𝒙, we must sum the forces in the x direc-

tion. Thus, 

𝑑𝐹𝑆𝑥 = (𝜎𝑥𝑥 +
𝜕𝜎𝑥𝑥

𝜕𝑥

𝑑𝑥

2
) 𝑑𝑦𝑑𝑧 − (𝜎𝑥𝑥 −

𝜕𝜎𝑥𝑥

𝜕𝑥

𝑑𝑥

2
) 𝑑𝑦𝑑𝑧

+ (𝜏𝑦𝑥 +
𝜕𝜏𝑦𝑥

𝜕𝑦

𝑑𝑦

2
) 𝑑𝑥𝑑𝑧 − (𝜏𝑦𝑥 −

𝜕𝜏𝑦𝑥

𝜕𝑦

𝑑𝑦

2
) 𝑑𝑥𝑑𝑧

+ (𝜏𝑧𝑥 +
𝜕𝜏𝑧𝑥

𝜕𝑧

𝑑𝑧

2
) 𝑑𝑥𝑑𝑦 − (𝜏𝑧𝑥 −

𝜕𝜏𝑧𝑥

𝜕𝑧

𝑑𝑧

2
) 𝑑𝑥𝑑𝑦

 

On simplifying, we obtain 

𝑑𝐹𝑆𝑥 = (
𝜕𝜎𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑦𝑥

𝜕𝑦
+

𝜕𝜏𝑧𝑥

𝜕𝑧
) 𝑑𝑥𝑑𝑦𝑑𝑧 

 

Apart from these forces, there is also the body force due to the weight of the particle. If m is the 

particle’s mass, this force is dFB = (dm)g = gdx dy dz.  
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The net force in the x direction, dFx, is given by 

𝑑𝐹𝑥 = 𝑑𝐹𝑆𝑥 + 𝑑𝐹𝐵𝑥 = (
𝜕𝜎𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑦𝑥

𝜕𝑦
+

𝜕𝜏𝑧𝑥

𝜕𝑧
+ 𝜌𝑔𝑥) 𝑑𝑥𝑑𝑦𝑑𝑧   III.1 

We can derive similar expressions for the force components in the y and z directions: 

𝑑𝐹𝑦 = 𝑑𝐹𝑆𝑦 + 𝑑𝐹𝐵𝑦 = (
𝜕𝜎𝑦𝑦

𝜕𝑦
+

𝜕𝜏𝑥𝑦

𝜕𝑥
+

𝜕𝜏𝑧𝑦

𝜕𝑧
+ 𝜌𝑔𝑦) 𝑑𝑥𝑑𝑦𝑑𝑧   III.2 

𝑑𝐹𝑧 = 𝑑𝐹𝑆𝑧 + 𝑑𝐹𝐵𝑧 = (
𝜕𝜎𝑧𝑧

𝜕𝑧
+

𝜕𝜏𝑥𝑧

𝜕𝑥
+

𝜕𝜏𝑦𝑧

𝜕𝑦
+ 𝜌𝑔𝑧) 𝑑𝑥𝑑𝑦𝑑𝑧    III.3 

III.2 Equations of Motion 

A dynamic equation describing fluid motion may be obtained by applying Newton’s second 

law to a particle. Then, for an infinitesimal system of mass dm, Newton’s second law can be 

written 

𝑑𝐹⃗ = 𝑑𝑚
d𝑉⃗⃗

𝑑𝑡
|

𝑠𝑦𝑠𝑡𝑒𝑚

 

Provided the particle’s velocity is expressed as a velocity field, V = V(x, y, z, t), then the mate-

rial derivative is used to determine the acceleration:  

𝑎 =
𝑑𝐕

𝑑𝑡
=

𝜕𝐕

𝜕𝑡
+

𝜕𝐕

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝐕

𝜕𝑦

𝑑𝑦

𝑑𝑡
+

𝜕𝐕

𝜕𝑧

𝑑𝑧

𝑑𝑡
 

Thus 

𝑑𝐹 = 𝑑𝑚
𝑑𝐕

𝑑𝑡
= (𝜌𝑑𝑥 𝑑𝑦 𝑑𝑧) [

𝜕𝐕

𝜕𝑡
+ 𝑢

𝜕𝐕

𝜕𝑥
+ 𝑣

𝜕𝐕

𝜕𝑦
+ 𝑤

𝜕𝐕

𝜕𝑧
] 

When V = ui + vj + wk, the x, y, z components of this equation become 

  
𝜕𝜎𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑦𝑥

𝜕𝑦
+

𝜕𝜏𝑧𝑥

𝜕𝑧
+ 𝜌𝑔𝑥 = 𝜌 (

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
)

𝜕𝜎𝑦𝑦

𝜕𝑥
+

𝜕𝜏𝑥𝑦

𝜕𝑦
+

𝜕𝜏𝑧𝑦

𝜕𝑧
+ 𝜌𝑔𝑦 = 𝜌 (

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
)

𝜕𝜎𝑧𝑧

𝜕𝑥
+

𝜕𝜏𝑥𝑧

𝜕𝑦
+

𝜕𝜏𝑦𝑧

𝜕𝑧
+ 𝜌𝑔𝑧 = 𝜌 (

𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
)

    III.4 

Or: 
𝜕𝜎𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑦𝑥

𝜕𝑦
+

𝜕𝜏𝑧𝑥

𝜕𝑧
+ 𝜌𝑔𝑥 = 𝜌

𝑑𝑢

𝑑𝑡

𝜕𝜎𝑦𝑦

𝜕𝑥
+

𝜕𝜏𝑥𝑦

𝜕𝑦
+

𝜕𝜏𝑧𝑦

𝜕𝑧
+ 𝜌𝑔𝑦 = 𝜌

𝑑𝑣

𝑑𝑡

𝜕𝜎𝑧𝑧

𝜕𝑥
+

𝜕𝜏𝑥𝑧

𝜕𝑦
+

𝜕𝜏𝑦𝑧

𝜕𝑧
+ 𝜌𝑔𝑧 = 𝜌

𝑑𝑤

𝑑𝑡

        III.5 

III.3 The Euler Equations 

If we consider the fluid to be an ideal fluid, then the equations of motion will reduce to a simpler 

form. In particular, there will be no viscous shear stress on the particle (element), and the three 

normal stress components will represent the pressure. Since these normal stresses have all been 

defined in Fig. III.1 as positive outward, and as a convention, positive pressure produces a 

compressive stress, then xx = yy = zz = -p. As a result, the general equations of motion for an 

ideal fluid particle become 
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−
𝜕𝑝

𝜕𝑥
+ 0 + 0 + 𝜌𝑔𝑥 = 𝜌

𝑑𝑢

𝑑𝑡

−
𝜕𝑝

𝜕𝑥
+ 0 + 0 + 𝜌𝑔𝑦 = 𝜌

𝑑𝑣

𝑑𝑡

−
𝜕𝑝

𝜕𝑥
+ 0 + 0 + 𝜌𝑔𝑧 = 𝜌

𝑑𝑤

𝑑𝑡

 

−
𝜕𝑝

𝜕𝑥
+ 𝜌𝑔𝑥 = 𝜌 (

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
)

−
𝜕𝑝

𝜕𝑦
+ 𝜌𝑔𝑦 = 𝜌 (

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
)

−
𝜕𝑝

𝜕𝑧
+ 𝜌𝑔𝑧 = 𝜌 (

𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
)

     III.6 

These equations are called the Euler equations of motion, expressed in x, y, z coordinates. 

Using the gradient operator, we can also write these equations in a more compact form, namely 

−𝛻𝑝 + 𝜌𝑔 = 𝜌 [
𝜕𝑽

𝜕𝑡
+ (𝑽. 𝛻)𝑽]       III.7 

Two-Dimensional Steady Flow. In many cases we will have steady two-dimensional flow, and 

the z component of velocity w = 0. With gy = -g, the Euler’s equations become 

−
1

𝜌

𝜕𝑝

𝜕𝑥
= 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦

−
1

𝜌

𝜕𝑝

𝜕𝑦
− 𝑔 = 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦

        III.8 

III.4 The Bernoulli Equation and its Applications  

III.4.1 The Bernoulli Equation 

Assume we have irrotational two-dimensional flow so that: 
𝜕𝑢

𝜕𝑦
=

𝜕𝑣

𝜕𝑥
 

 If we substitute this condition into obtained equations for Two-Dimensional Steady Flow, we 

get 

−
1

𝜌

𝜕𝑝

𝜕𝑥
= 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑥

−
1

𝜌

𝜕𝑝

𝜕𝑦
− 𝑔 = 𝑢

𝜕𝑢

𝜕𝑦
+ 𝑣

𝜕𝑣

𝜕𝑦

 

Since  (u2)/ x = 2u(u/x),  (v2)/ x = 2v(v/x),  (u2)/ y = 2u(u/y), and  (v2)/ y = 

2v(v/y), the above equations become 

−
1

𝜌

𝜕𝑝

𝜕𝑥
=

1

2

𝜕(𝑢2 + 𝑣2)

𝜕𝑥

−
1

𝜌

𝜕𝑝

𝜕𝑦
− 𝑔 =

1

2

𝜕(𝑢2 + 𝑣2)

𝜕𝑦

 

Integrating with respect to x in the first equation, and with respect to y in the second equation, 

yields 
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−
𝑝

𝜌
+ 𝑓(y) =

1

2
(𝑢2 + 𝑣2) =

1

2
𝑉2

−
𝑝

𝜌
− 𝑔𝑦 + ℎ(𝑥) =

1

2
(𝑢2 + 𝑣2) =

1

2
𝑉2

 

Here V is the fluid particle’s velocity found from its components, V2 = u2 + v2. Equating these 

two results, it is then necessary that f(y) = -gy + h(x). The solution requires that h(x) = Const., 

since x and y can vary independent of one another. As a result, the unknown function f(y) = -gy 

+ Const. Substituting this and h(x) = Const. into the above two equations, we obtain in either 

case the Bernoulli equation, that is, 

𝑝

𝜌
+

𝑉2

2
+ gy = 𝐶𝑜𝑛𝑠𝑡         III.9 

Or 

y +
𝑝

𝛾
+

𝑉2

2𝑔
= 𝐶𝑜𝑛𝑠𝑡          III.10 

Thus, if the flow is irrotational, then the Bernoulli equation may be applied between any two 

points (x1, y1) and (x2, y2). Of course, as noted, we must also require the fluid to be ideal and 

the flow to be steady. 

III.4.2 Applications of the Bernoulli Equation 

a) Venturi meter. A venturi meter is a device that can be used to measure the average veloc-

ity or the flow of an incompressible fluid through a pipe, Fig. III.2. 

 

Fig. III.2 Venturi meter 

y1 +
𝑝1

𝛾
+

𝑉1
2

2𝑔
= y2 +

𝑝2

𝛾
+

𝑉2
2

2𝑔
 

0 +
𝑝1

𝜌𝑔
+

𝑉1
2

2𝑔
= 0 +

𝑝2

𝜌𝑔
+

𝑉2
2

2𝑔
 

In addition, the continuity equation can be applied at points 1 and 2. For steady flow we have 

𝑉1

𝜋𝑑1
2

4
= 𝑉2

𝜋𝑑2
2

4
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Combining these two results and solving for V1, we get  

The static pressure difference (p2 - p1) is often measured using a pressure transducer or a ma-

nometer. For example, if a manometer is used, as in Fig. III.2, and  is the density of the fluid 

in the pipe, and 0 is the density for the fluid in the manometer, then applying the manometer 

rule, we have 

𝑝1 + 𝜌𝑔ℎ′ − 𝜌0𝑔ℎ − 𝜌𝑔(ℎ′ − ℎ) = 𝑝2 

𝑝2 − 𝑝1 = (𝜌 − 𝜌0)𝑔ℎ        III.11 

b) Flow from a Large Reservoir.  

b.1 Expression of velocity 

When water flows from a tank or reservoir through a drain, (figure bellow), the flow is unsteady. 

If we assume that water is an ideal fluid, then the Bernoulli equation can be applied between 

points A and B. Setting the gravitational datum at B, and using gage pressures, where pA = pB = 

0, we have 

y𝐴 +
𝑝𝐴

𝛾
+

𝑉𝐴
2

2𝑔
= y𝐵 +

𝑝𝐵

𝛾
+

𝑉𝐵
2

2𝑔
 

ℎ + 0 + 0 = 0 + 0 +
𝑉𝐵

2

2
 

𝑉𝐵 = √2𝑔ℎ          III.12 

 
Fig. III.3 Flow from a Large Reservoir 

This result is known as Torricelli’s law since it was first formulated by Evangelista Torricelli 

in the 17th century.  

 

b.2 Tank emptying time 

The tank emptying process applies Bernoulli’s equation to relate fluid velocity to height. It 

enables calculating the discharge rate and the time required for the tank to empty. 
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Fig. III.4 Tank emptying time 

𝑣 = √2𝑔ℎ 

The instantaneous flow rate is 

𝑄 = 𝑣𝐴𝑜 = √2𝑔ℎ𝐴𝑜 

Ao is the orifice area 

In the time interval dt, the small volume flow dV is written as Qdt. In the same time interval, 

the head height decreases by dh and the discharged volume is equal to the tank surface area AT 

multiplied by dh. By equating these values, we obtain: 

𝑄𝑑𝑡 = √2𝑔ℎ𝐴𝑜𝑑𝑡 = −𝐴𝑇𝑑ℎ 

where the negative sign indicates that h decreases when t increases. Solving for t, we obtain 

2 2

1 1

1/2

2

t h
T

t h
o

A
t dt h dh

A g

−−
= = 

 
Or 

( )1/2 1/2

2 1 1 2

2

2

T

o

A
t t t h h

A g
= − = −

 

Equation of t can be rewritten by multiplying and dividing by. It results in 

𝑡 = 𝑡2 − 𝑡1 =
𝐴𝑇(ℎ1−ℎ2)

1

2
(𝐴𝑜√2𝑔ℎ1+𝐴𝑜√2𝑔ℎ2)

       III.13 
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c) Pitot tube.  

c.1 Flow in an Open Channel. 

One method of determining the velocity of a moving liquid in an open channel, such as a river, 

is to immerse a bent tube into the stream and observe the height h to which the liquid rises 

within the tube, Fig. III.5. Such a device is called a stagnation tube, or a Pitot tube, named after 

Henri Pitot who invented it in the early 18th century. 

 
Fig. III.5 Flow in an Open Channel 

To show how it works, consider the two points A and B located on the horizontal streamline. 

Point A is upstream within the fluid, where the velocity of flow is VA and the pressure is pA = 

gd. Point B is at the opening of the tube. It is the stagnation point, since the velocity of flow 

has momentarily been reduced to zero due to its impact with the liquid within the tube. The 

liquid at this point produces both a static pressure, which causes the liquid in the tube to rise to 

a level d, and a dynamic pressure, which forces additional liquid farther up the vertical segment 

to a height h above the liquid surface. Thus the total pressure of the liquid at B is pB = g(d + 

h). Applying the Bernoulli equation with the gravitational datum on the streamline, we have 

y𝐴 +
𝑝𝐴

𝛾
+

𝑉𝐴
2

2𝑔
= y𝐵 +

𝑝𝐵

𝛾
+

𝑉𝐵
2

2𝑔
 

0 +
𝛾𝑑

𝛾
+

𝑉𝐴
2

2𝑔
= 0 +

𝛾(𝑑 + ℎ)

𝛾
+ 0 

𝑉𝐴 = √2𝑔ℎ          III.14 

c.2 Flow in a Closed Conduit. Hence, by measuring h on the Pitot tube, the velocity of the 

flow can be determined. If the liquid is flowing in a closed conduit or pipe, Fig. III.6, then it 

will be necessary to use both a piezometer and a Pitot tube to determine the velocity of the flow. 

The piezometer measures the static pressure at A. This pressure is caused by the internal pres-

sure in the pipe, gh, and the hydrostatic pressure gd, caused by the weight of the fluid. The 

total pressure at A is therefore g(h + d). The total pressure at the stagnation point B will be 

larger than this, due to the dynamic pressure 𝑉𝐴
2/2. If we apply the Bernoulli equation at points 
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A and B on the streamline, using the measurements h and (l + h) from these two tubes, the 

velocity VA can be obtained. 

 
Fig. III.6 Flow in a Closed Conduit 

y𝐴 +
𝑝𝐴

𝛾
+

𝑉𝐴
2

2𝑔
= y𝐵 +

𝑝𝐵

𝛾
+

𝑉𝐵
2

2𝑔
 

0 +
𝛾(ℎ + 𝑑)

𝛾
+

𝑉𝐴
2

2𝑔
= 0 +

𝛾(ℎ + 𝑑 + 𝑙)

𝛾
+ 0 

𝑉𝐴 = √2𝑔𝑙         III.15 

III.5 Momentum Equation 

III.5.1 General Momentum Equation 

The design of many hydraulic structures, such as floodgates and flow diversion blades, as well 

as pumps and turbines, depends upon the forces that a fluid flow exerts on them. In this section 

we will obtain these forces by using a linear momentum analysis, which is based on Newton’s 

second law of motion, written in the form F = ma = d(mV)/dt. For application of this equation, 

it is important to measure the time rate of change in the momentum, mV, from an inertial or 

nonaccelerating frame of reference, that is, a reference that either is fixed or moves with con-

stant velocity. 

Because of the fluid flow, a control volume approach works best for this type of analysis, and 

so we will apply the Reynolds transport theorem to determine the time derivative d(mV)/dt 

before we apply Newton’s second law. Linear momentum is an extensive property of a fluid, 

where 

N = mV, and so  = mV/m = V. Therefore, Eq. II.5 becomes 

 

(
𝑑𝑁

𝑑𝑡
)

syst

=
∂

∂𝑡
∫ 𝜂𝜌 𝑑∀

cv

+ ∫ 𝜂𝜌𝐕 ⋅ 𝑑𝐀
cs

 

(
𝑑(𝑚𝐕)

𝑑𝑡
)

syst

=
∂

∂𝑡
∫ 𝐕𝜌 𝑑∀

cv

+ ∫ 𝐕𝜌𝐕 ⋅ 𝑑𝐀
cs
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Now, substituting this result into Newton’s second law of motion, we obtain our result, the 

linear momentum equation. 

𝐅 =
∂

∂𝑡
∫ 𝐕𝜌 𝑑∀

cv
+ ∫ 𝐕𝜌𝐕 ⋅ 𝑑𝐀

cs
                          III.16 

It is very important to realize how the velocity V is used in the last term of this equation. It 

stands alone as a vector quantity V, and as a result it has components along the x, y, z axes. But 

it is also involved in the dot product operation with dA in order to define the mass flow 

through an open control surface, that is, 𝜌𝐕 ⋅ 𝑑𝐀. This is a scalar quantity, and so it does not 

have components.  

III.5.2 Steady-state momentum theorem 

If the flow is steady, then no local change of momentum will occur within the control volume, 

and the first term on the right of Eq. III.11 will be equal to zero. Therefore 

𝐅 = ∫ 𝐕𝜌𝐕 ⋅ 𝑑𝐀                                                                      
cs

 III.17  

Furthermore, if we have an ideal fluid, then  is constant and viscous friction is zero. Thus the 

velocity will be uniformly distributed over the open control surfaces, and so integration of Eq. 

III.12 gives 

𝐅 = 𝐕𝜌𝐕 ⋅ 𝐀                                                                               III.18 

The above equations are often used in engineering, to obtain the fluid forces acting on various 

types of surfaces that deflect or transport the flow. 

If there is only one entrance and one exit, as in Fig. III.7, the momentum equation becomes 

𝐅 = (𝑉𝑖𝑛)𝑥(−𝜌𝑉𝑖𝑛𝐴𝑖𝑛) + (𝑉𝑜𝑢𝑡)𝑥(𝜌𝑉𝑜𝑢𝑡𝐴𝑜𝑢𝑡)     III.19 

Here, (𝑉𝑖𝑛)𝑥 and (𝑉𝑜𝑢𝑡)𝑥 are the x components of  𝐕𝑖𝑛 and 𝐕𝑜𝑢𝑡. They both act in the +𝑥 direc-

tion, Fig. III.7. When writing the expression for the dot products, we have followed our positive 

sign convention, that is, 𝐴𝑖𝑛 and 𝐴𝑜𝑢𝑡 are both positive out, but 𝑉𝑖𝑛 is negative, since it is di-

rected into the control volume. For this reason, 𝜌𝑉𝑖𝑛𝐴𝑖𝑛 is a negative quantity. 

Using continuity, 

𝑚̇ = 𝜌𝑉𝑖𝑛𝐴𝑖𝑛 = 𝜌𝑉𝑜𝑢𝑡𝐴𝑜𝑢𝑡                                                          III.20 

the momentum equation takes the simplified form 

𝐅 = 𝑚̇((𝑉𝑜𝑢𝑡)𝑥 − (𝑉𝑖𝑛)𝑥)                                                            III.21 
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Fig. III.7 

 

 

III.5.3 Momentum Equation Applied to Stationary Deflector (Impact of jets on surfaces 

and reactions) 

Let us first consider the stationary deflector, illustrated in Fig. III.8. Bernoulli’s equation allows 

us to conclude that the magnitudes of the velocity vectors are equal (i.e., 𝑉2 = 𝑉1), since the 

pressure is assumed to be constant external to the fluid jet and elevation changes are negligible 

(see Eq. III.10). Assuming steady, uniform flow, the momentum equation takes the form of Eq. 

III.16, which for the x- and y-directions becomes 

Momentum in x-direction: 

−𝑅𝑥 = 𝑚̇(𝑉2𝑥 − 𝑉1) = 𝑚̇(𝑉2cos 𝛼 − 𝑉1) = 𝑚̇𝑉1(cos 𝛼 − 1) 

Momentum in y-direction: 

𝑅𝑦 = 𝑚̇𝑉2𝑦 = 𝑚̇𝑉2sin 𝛼 = 𝑚̇𝑉1sin 𝛼 

For given jet conditions the reaction force components 𝑅𝑥 and 𝑅𝑦 can be calculated. 

 
Fig. III.8 Stationary Deflector 
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Chapter IV: Real incompressible fluid dynamics 

IV.1 Viscosity 

IV.1.1 Dynamic viscosity 

Consider a fluid-filled space formed by two horizontal parallel plates (Figure IV.1). The upper 

plate has an area A in contact with the fluid and is pulled to the right with a force F1 at a velocity 

V1. A velocity distribution like that illustrated in Figure IV.1 would result. 

 
Figure IV.1 Shear stress applied to a fluid. 

The fluid velocity at the moving plate is V1 because the fluid adheres to that surface. This phe-

nomenon is called the nonslip condition. At the bottom, the velocity is zero with respect to the 

boundary, owing again to the nonslip condition. 

The slope of the velocity distribution is dV1/dy. If this experiment is repeated with F2 as the 

force, a different slope or strain rate results: dV2/dy. In general, to each applied force there 

corresponds only one shear stress ( = F/A) and only one strain rate (dV/dy). 

If data from a series of these experiments were plotted as  versus dV/dy, Figure IV.1 would 

result for a fluid such as water. 

The points lie on a straight line that passes through the origin. The slope of the resulting line in 

Figure IV.1 is the viscosity (µ) of the fluid because it is a measure of the fluid’s resistance to 

shear. In other words, viscosity indicates how a fluid will react (dV/dy) under the action of an 

external shear stress (). 

The plot of Figure 1.2 is a straight line that passes through the origin. This result is characteristic 

of a Newtonian fluid. Examples of Newtonian fluids are water, oil, and air. 

Newtonian fluids follow Newton’s law of viscosity and are represented by the equation: 

𝜏 = 𝜇
𝑑𝑉

𝑑𝑦
          IV.1 

where:  

 = the applied shear stress in dimensions of F/L2 (N/m2) 

µ is called the absolute or dynamic viscosity of the fluid in dimensions of F.T/L2 (N.s/m2) 

dV/dy = the strain rate in dimensions of 1/T (1/s) 
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Figure IV.2 A plot of  versus dV/dy (a rheological diagram) for Newtonian fluids. 

If a fluid cannot be described by Equation IV.1, it is called a non-Newtonian fluid. A graph of 

 versus dV/dy, called a rheological diagram, is shown in Figure IV.3 for several types of fluids. 

 

Figure IV.3 A rheological diagram for Newtonian and non-Newtonian fluids. 

IV.1.2 Kinematic viscosity 

The ratio of absolute viscosity to density is called the kinematic viscosity : 

 =
𝜇

𝜌
          IV.2 

The dimensions of kinematic viscosity are L2/T (m2/s). 

It is important to note that the viscosity and density of fluids both change with temperature. 
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IV.2 Stress–Deformation Relationships 

For incompressible Newtonian fluids it is known that the stresses are linearly related to the rates 

of deformation and can be expressed in Cartesian coordinates as  

For normal stresses: 

𝜎𝑥𝑥 = −𝑝 + 2𝜇
∂𝑢

∂𝑥
         IV.3 

𝜎𝑦𝑦 = −𝑝 + 2𝜇
∂𝑣

∂𝑦
         IV.4 

𝜎𝑧𝑧 = −𝑝 + 2𝜇
∂𝑤

∂𝑧
          IV.5 

For shearing stresses 

𝜏𝑥𝑦 = 𝜏𝑦𝑥 = 𝜇 (
∂𝑢

∂𝑦
+

∂𝑣

∂𝑥
)        IV.6 

𝜏𝑦𝑧 = 𝜏𝑧𝑦 = 𝜇 (
∂𝑣

∂𝑧
+

∂𝑤

∂𝑦
)        IV.7 

𝜏𝑧𝑥 = 𝜏𝑥𝑧 = 𝜇 (
∂𝑤

∂𝑥
+

∂𝑢

∂𝑧
)        IV.8 

where 𝑝 is the pressure, the negative of the average of the three normal stresses; that is, as 

indicated by the figure in IV.4,  

−𝑝 =
1

3
(𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧) 

 
Figure: IV.4 

For viscous fluids in motion the normal stresses are not necessarily the same in different direc-

tions, thus, the need to define the pressure as the average of the three normal stresses. For fluids 

at rest, or frictionless fluids, the normal stresses are equal in all directions.  

In cylindrical polar coordinates the stresses for incompressible Newtonian fluids are expressed 

as (for normal stresses) 
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𝜎𝑟𝑟 = −𝑝 + 2𝜇
∂𝑣𝑟

∂𝑟
         IV.9 

𝜎𝜃𝜃 = −𝑝 + 2𝜇 (
1

𝑟

∂𝑣𝜃

∂𝜃
+

𝑣𝑟

𝑟
)         IV.10 

𝜎𝑧𝑧 = −𝑝 + 2𝜇
∂𝑣𝑧

∂𝑧
         IV.11 

(for shearing stresses) 

𝜏𝑟𝜃 = 𝜏𝜃𝑟 = 𝜇 [𝑟
∂

∂𝑟
(

𝑣𝜃

𝑟
) +

1

𝑟

∂𝑣𝑟

∂𝜃
]        IV.12 

𝜏𝜃𝑧 = 𝜏𝑧𝜃 = 𝜇 (
∂𝑣𝜃

∂𝑧
+

1

𝑟

∂𝑣𝑧

∂𝜃
)         IV.13 

𝜏𝑧𝑟 = 𝜏𝑟𝑧 = 𝜇 (
∂𝑣𝑟

∂𝑧
+

∂𝑣𝑧

∂𝑟
)         IV.14 

 

The double subscript has a meaning similar to that of stresses expressed in Cartesian coordi-

nates— that is, the first subscript indicates the plane on which the stress acts and the second 

subscript the direction. Thus, for example, 𝜎𝑟𝑟 refers to a stress acting on a plane perpendicular 

to the radial direction and in the radial direction (thus a normal stress). Similarly, 𝜏𝑟𝜃 refers to 

a stress acting on a plane perpendicular to the radial direction but in the tangential (𝜃 direction) 

and is therefore a shearing stress. 

IV.3 The Navier–Stokes Equations 

The stresses as defined in the preceding section can be substituted into the differential equations 

of motion (Eqs. III.4) and simplified by using the continuity equation for incompressible flow 

(Eq. II.11). For rectangular coordinates (Figure IV.5) the results are: 

• (x direction) 

𝜌 (
∂𝑢

∂𝑡
+ 𝑢

∂𝑢

∂𝑥
+ 𝑣

∂𝑢

∂𝑦
+ 𝑤

∂𝑢

∂𝑧
) = −

∂𝑝

∂𝑥
+ 𝜌𝑔𝑥 + 𝜇 (

∂2𝑢

∂𝑥2 +
∂2𝑢

∂𝑦2 +
∂2𝑢

∂𝑧2)  IV.15 

 

• (y direction) 

𝜌 (
∂𝑣

∂𝑡
+ 𝑢

∂𝑣

∂𝑥
+ 𝑣

∂𝑣

∂𝑦
+ 𝑤

∂𝑣

∂𝑧
) = −

∂𝑝

∂𝑦
+ 𝜌𝑔𝑦 + 𝜇 (

∂2𝑣

∂𝑥2
+

∂2𝑣

∂𝑦2
+

∂2𝑣

∂𝑧2
)  IV.16 

 

• (z direction) 

𝜌 (
∂𝑤

∂𝑡
+ 𝑢

∂𝑤

∂𝑥
+ 𝑣

∂𝑤

∂𝑦
+ 𝑤

∂𝑤

∂𝑧
) = −

∂𝑝

∂𝑧
+ 𝜌𝑔𝑧 + 𝜇 (

∂2𝑤

∂𝑥2 +
∂2𝑤

∂𝑦2 +
∂2𝑤

∂𝑧2 ) IV.17 

where 𝑢, 𝑣, and 𝑤 are the 𝑥, 𝑦, and 𝑧 components of velocity as shown in the figure in the mar-

gin of the previous page. 

 
Figure: IV.5 
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These equations are commonly called the Navier–Stokes equations, when combined with the 

conservation of mass equation (Eq. II.11), provide a complete mathematical description of the 

flow of incompressible Newtonian fluids. We have four equations and four unknowns and 

therefore the problem is “well-posed” in mathematical terms. 

In terms of cylindrical polar coordinates (Figure IV.6), the Navier–Stokes equations can be 

written as 

(r direction) 

𝜌 (
∂𝑣𝑟

∂𝑡
+ 𝑣𝑟

∂𝑣𝑟

∂𝑟
+

𝑣𝜃

𝑟

∂𝑣𝑟

∂𝜃
−

𝑣𝜃
2

𝑟
+ 𝑣𝑧

∂𝑣𝑟

∂𝑧
) = −

∂𝑝

∂𝑟
+ 𝜌𝑔𝑟 + 𝜇 [

1

𝑟

∂

∂𝑟
(𝑟

∂𝑣𝑟

∂𝑟
) −

𝑣𝑟

𝑟2 +
1

𝑟2

∂2𝑣𝑟

∂𝜃2 −
2

𝑟2

∂𝑣𝜃

∂𝜃
+

∂2𝑣𝑟

∂𝑧2
]            IV.18 

(θ direction) 

𝜌 (
∂𝑣𝜃

∂𝑡
+ 𝑣𝑟

∂𝑣𝜃

∂𝑟
+

𝑣𝜃

𝑟

∂𝑣𝜃

∂𝜃
+

𝑣𝑟𝑣𝜃

𝑟
+ 𝑣𝑧

∂𝑣𝜃

∂𝑧
) = −

1

𝑟

∂𝑝

∂𝜃
+ 𝜌𝑔𝜃 + 𝜇 [

1

𝑟

∂

∂𝑟
(𝑟

∂𝑣𝜃

∂𝑟
) −

𝑣𝜃

𝑟2 +
1

𝑟2

∂2𝑣𝜃

∂𝜃2 +

2

𝑟2

∂𝑣𝑟

∂𝜃
+

∂2𝑣𝜃

∂𝑧2
]            IV.19 

(z direction) 

𝜌 (
∂𝑣𝑧

∂𝑡
+ 𝑣𝑟

∂𝑣𝑧

∂𝑟
+

𝑣𝜃

𝑟

∂𝑣𝑧

∂𝜃
+ 𝑣𝑧

∂𝑣𝑧

∂𝑧
) = −

∂𝑝

∂𝑧
+ 𝜌𝑔𝑧 + 𝜇 [

1

𝑟

∂

∂𝑟
(𝑟

∂𝑣𝑧

∂𝑟
) +

1

𝑟2

∂2𝑣𝑧

∂𝜃2 +
∂2𝑣𝑧

∂𝑧2 ]  IV.20 

 
Figure: IV.6 

IV.4 Steady, Laminar Flow in Circular Tubes (Poiseuille flow) 

Consider the flow through a horizontal circular tube of radius 𝑅. Because of the cylindrical 

geometry it is convenient to use cylindrical coordinates. We assume that the flow is parallel to 

the walls so that 𝑣𝑟 = 0 and 𝑣𝜃 = 0.  

For steady, incompressible flow, the differential form of the continuity equation in cylindrical 

coordinates is 

1

𝑟

∂(𝑟𝑣𝑟)

∂𝑟
+

1

𝑟

∂𝑣𝜃

∂𝜃
+

∂𝑣𝑧

∂𝑧
= 0 
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From this equation ∂𝑣𝑧/ ∂𝑧 = 0. Also, for steady, axisymmetric flow, 𝑣𝑧 is not a function 

of 𝑡 or 𝜃, so the velocity, 𝑣𝑧, is only a function of the radial position within the tube—that 

is, 𝑣𝑧 = 𝑣𝑧(𝑟). Under these conditions the Navier–Stokes equations (Eqs. IV.18, IV.19 and 

IV.20) reduce to: 

0 = −𝜌𝑔sin 𝜃 −
∂𝑝

∂𝑟
         IV.21 

0 = −𝜌𝑔cos 𝜃 −
1

𝑟

∂𝑝

∂𝜃
         IV.22 

0 = −
∂𝑝

∂𝑧
+ 𝜇 [

1

𝑟

∂

∂𝑟
(𝑟

∂𝑣𝑧

∂𝑟
)]         IV.23 

where we have used the relationships 𝑔𝑟 = −𝑔sin 𝜃 and 𝑔𝜃 = −𝑔cos 𝜃. 

Equations IV.21 and IV.22 can be integrated to give: 

𝑝 = −𝜌𝑔(𝑟sin 𝜃) + 𝑓1(𝑧) 

or 

𝑝 = −𝜌𝑔𝑦 + 𝑓1(𝑧)         IV.24 

Equation IV.24 indicates that the pressure is hydrostatically distributed at any particular cross 

section, and the 𝑧 component of the pressure gradient, ∂𝑝/ ∂𝑧, is not a function of 𝑟 or 𝜃. 

The equation of motion in the 𝑧 direction (Eq. IV.23) can be written in the form: 

1

𝑟

∂

∂𝑟
(𝑟

∂𝑣𝑧

∂𝑟
) =

1

𝜇

∂𝑝

∂𝑧
 

and integrated (using the fact that ∂𝑝/ ∂𝑧 = constant) to give 

𝑟
∂𝑣𝑧

∂𝑟
=

1

2𝜇
(

∂𝑝

∂𝑧
) 𝑟2 + 𝑐1 

Integrating again we obtain 

𝑣𝑧 =
1

4𝜇
(

∂𝑝

∂𝑧
) 𝑟2 + 𝑐1ln 𝑟 + 𝑐2       IV.25 

Since we wish 𝑣𝑧 to be finite at the center of the tube (𝑟 = 0), it follows that 𝑐1 =

0 [since ln (0) = −∞]. At the wall (𝑟 = 𝑅) the velocity must be zero so that 

𝑐2 = −
1

4𝜇
(

∂𝑝

∂𝑧
) 𝑅2 

and the velocity distribution becomes 

𝑣𝑧 =
1

4𝜇
(

∂𝑝

∂𝑧
) (𝑟2 − 𝑅2)        IV.26 

Thus, at any cross section the velocity distribution is parabolic. 
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To obtain a relationship between the volume rate of flow, 𝑄, passing through the tube and the 

pressure gradient, we consider the flow through the differential, washer-shaped ring of Fig. 

6.34b. Since 𝑣𝑧 is constant on this ring, the volume rate of flow through the differential 

area 𝑑𝐴 = (2𝜋𝑟)𝑑𝑟 is 

𝑑𝑄 = 𝑣𝑧(2𝜋𝑟)𝑑𝑟 

and therefore 

𝑄 = 2𝜋 ∫ 𝑣𝑧𝑟𝑑𝑟
𝑅

0
         IV.27 

Equation IV.26 for 𝑣𝑧 can be substituted into Eq. IV.27, and the resulting equation integrated 

to yield 

𝑄 = −
𝜋𝑅4

8𝜇
(

∂𝑝

∂𝑧
)          IV.28 

This relationship can be expressed in terms of the pressure drop, Δ𝑝, which occurs over a 

length, ℓ, along the tube, since 

Δ𝑝

ℓ
= −

∂𝑝

∂𝑧
 

and therefore 

𝑄 =
𝜋𝑅4Δ𝑝

8𝜇ℓ
           IV.29 

For a given pressure drop per unit length, the volume rate of flow is inversely proportional to 

the viscosity and proportional to the tube radius to the fourth power. A doubling of the tube 

radius produces a 16-fold increase in flow! Equation IV.29 is commonly called Poiseuille’s 

law. 

In terms of the mean velocity, 𝑉, where 𝑉 = 𝑄/𝜋𝑅2, Eq. IV.29 becomes 

𝑉 =
𝑅2Δ𝑝

8𝜇ℓ
           IV.30 

The maximum velocity 𝑣max occurs at the center of the tube, where from Eq. IV.26 

𝑣max = −
𝑅2

4𝜇
(

∂𝑝

∂𝑧
) =

𝑅2Δ𝑝

4𝜇ℓ
         IV.31 

so that 

𝑣max = 2𝑉 

The velocity distribution, as shown by the figure in the margin, can be written in terms 

of 𝑣max as 

𝑣𝑧

𝑣max
= 1 − (

𝑟

𝑅
)

2

         IV.32 
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IV.5 Fluid flow regimes - Reynolds number 

The flow of a fluid in a pipe may be laminar flow or it may be turbulent flow. Osborne Reynolds 

(1842–1912), a British scientist and mathematician, was the first to distinguish the difference 

between these two classifications of flow by using a simple apparatus as shown by the figure 

(a), which is a sketch of Reynolds’ dye experiment. Reynolds injected dye into a pipe in which 

water flowed due to gravity. If water runs through a pipe of diameter D with an average velocity 

V, the following characteristics are observed by injecting neutrally buoyant dye as shown. For 

“small enough flowrates” the dye streak (a streakline) will remain as a well-defined line as it 

flows along, with only slight blurring due to molecular diffusion of the dye into the surrounding 

water. For a somewhat larger “intermediate flowrate” the dye streak fluctuates in time and 

space, and intermittent bursts of irregular behavior appear along the streak. On the other hand, 

for “large enough flowrates” the dye streak almost immediately becomes blurred and spreads 

across the entire pipe in a random fashion. These three characteristics, denoted as laminar, 

transitional, and turbulent flow, respectively, are illustrated in Figure b. 

 
Figure IV.7 (a) Experiment to illustrate type of flow. (b) Typical dye streaks. 

Reynolds showed that the parameter used to determine whether flow is laminar or turbulent is 

a dimensionless number called the Reynolds number given by the following expression:   

𝑅𝑒 =
𝑢𝐷

𝜈
         IV.33 

u: Average flow velocity through the section under consideration in (m/s)  

D: Pipe diameter or width of the fluid stream in (m).  

ν: Kinematic viscosity of the fluid (m2/s).  

The different flow regimes can be classified according to Reynolds number (as an indication) 

as follows:  

If Re < 2000, flow is laminar  

If Re > 2000, flow is turbulent:   

- Smooth turbulent if 2000 < Re < 100000  

- Rough turbulent if Re > 100000 



 

49 

 

IV.6 Head losses 

Total head loss is the sum of linear (distributed) and singular (concentrated) head losses. 

IV.6.1 Linear head losses (Major losses or frictional losses) 

Linear pressure losses are pressure losses evenly distributed along a pipe. 

a. Concept of pipe roughness 

Unlike a smooth surface, a rough surface implies a surface condition whose irregularities 

have a direct effect on friction forces. A rough surface can be considered as being made 

up of a series of elementary protuberances characterized by a height, noted k, and called 

Roughness. In order to compare roughness with respect to pipe diameter, the ratio known 

as relative roughness is introduced: 𝜀 =
𝑘

𝐷
 

 
Figure IV.8 

b. Expression of linear head loss 

Linear head loss Jl is calculated using the Darcy-Weisbach formula: 

𝐽𝑙 = 𝑓
𝑙

𝐷

𝑣2

2𝑔
      IV.34 

l: Pipe length (m)  

D: Diameter of flow cross-section (m)  

v : Flow velocity (m/s)  

f: Coefficient of friction (unitless)  

c. Expressions of the coefficient of friction f 

In laminar flow, the coefficient of friction depends solely on the Reynolds number Re, accord-

ing to the formula: 

𝑓 =
64

𝑅𝑒
           IV.35 

In turbulent conditions, the Colebrook-White and Blasius formulas can be used: 

Colebrook-White for hydraulically rough flow: 

1

√𝑓
= 2𝑙𝑜𝑔 (

3.71𝐷

𝑘
)         IV.36 
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Colebrook-White for hydraulically smooth flow: 

1

√𝑓
= 2𝑙𝑜𝑔 (

𝑅𝑒√𝑓

2.51
)         IV.37 

Blasius for Re < 105 

𝑓 =
0.316

𝑅𝑒0.25
          IV.38 

d- Moody diagram 

Nikuradse's work on head loss in pipes has led to the development of a graph (Moody Diagram) 

(Figure IV.9) for determining the coefficient f as a function of Re for different types of flow 

and relative roughnesses k/D ranging from 1/30 to 1/1014: 

 
Figure IV.9: Moody diagram 

IV.6.2 Minor head losses (Local losses) 

Minor losses are the result of turbulent mixing of the fluid within the connection as the fluid 

passes through it. Minor losses occur when the flow geometry changes — for example, at bends, 

elbows, valves, expansions, contractions, and other fittings. These losses are localized at spe-

cific points in the system. 

They are caused by several factors: 

• Changes in flow direction: Bends and elbows create turbulence and result in pressure 

drops. 
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• Changes in flow area: Contractions and expansions lead to flow separation and energy 

dissipation. 

• Obstructions in the flow path: Valves, fittings, and other components interfere with the 

flow, increasing resistance. 

Minor losses are calculated using the following equation: 

𝑗𝑠 = 𝑘
𝑣2

2𝑔
          IV.39 

k is called the resistance or loss coefficient, which is determined from experiment. It is depend-

ent on the type and geometry of the fitting. 

 
Figure IV.10: Inlet and exit transitions 
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Figure IV.11: Expansion and Contraction. 

IV.7 Generalization of Bernoulli's theorem to real fluids 

IV.7.1 Bernoulli's equation with head losses 

The final form of Bernoulli's equation for a real liquid net is as follows: 

𝑧𝐴 +
𝑝𝐴


+

𝑣𝐴
2

2𝑔
= 𝑧𝐵 +

𝑝𝐵


+

𝑣𝐵
2

2𝑔
+ 𝐽       IV.40 

J = Jl + Js with: 
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J: Total head losses. 

Jl: Linear head losses. 

Js: Singular head losses. 

IV.7.2 Bernoulli's equation with energy production 

If the term 𝑊𝐴𝐵 denotes the mechanical work exchanged between the fluid and any machines 

present between points A and B, the Bernoulli equation can be expressed in the following gen-

eral form: 

𝑧𝐴 +
𝑝𝐴


+

𝑣𝐴
2

2𝑔
= 𝑧𝐵 +

𝑝𝐵


+

𝑣𝐵
2

2𝑔
+ ∑ (

𝐽𝑙+𝐽𝑠

𝐽
) + 𝑊𝐴𝐵    IV.41 

If the machine supplies energy to the fluid (pump), then: 𝑊𝐴𝐵 > 0  

If the machine receives energy from the fluid (turbine), then: 𝑊𝐴𝐵 < 0  

If there is no machine between points 1 and 2, then: 𝑊𝐴𝐵 = 0  

IV.8 Concept of boundary layer 

The boundary layer is the thin region of fluid near a solid surface where the effects of viscosity 

are significant. Within this layer, the fluid velocity changes from zero at the surface (due to the 

no-slip condition) to the free-stream velocity away from the surface. It plays a key role in fric-

tion, drag, and heat transfer in fluid flow. 

When a fluid moves over a flat surface, the layer of fluid particles next to the surface has zero 

velocity. As we move further away from the surface, each layer moves faster, eventually reach-

ing the free-stream velocity 𝑈. This phenomenon is due to the shear stress between fluid layers. 

In the case of a Newtonian fluid, this shear stress is directly proportional to the velocity gradient, 

described by 𝜏 = 𝜇 (
𝑑𝑢

𝑑𝑦
). 

The velocity gradient and corresponding shear stress are greatest at the surface itself and de-

crease gradually with distance from the surface, eventually becoming negligible far away. This 

means that, away from the surface, the flow becomes uniform, with little or no shear between 

fluid layers and almost no sliding. In 1904, Ludwig Prandtl identified this distinct behavior and 

named the variable velocity region near the surface the boundary layer. 

 
Fig. IV.12: Shear is proportional to the velocity gradient 
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