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Preface

The course Fluid Mechanics is intended for second-year engineering students in the
core science and technology program (Semester 3). It forms a fundamental component of the
engineering curriculum, providing the theoretical and practical foundations for understanding
the behavior of fluids—both liquids and gases—at rest and in motion.

Fluid Mechanics plays a central role in various branches of engineering, including me-
chanical, civil, chemical, and aerospace engineering. The principles covered in this course are
essential for analyzing and designing systems involving fluid flow, such as pipelines, pumps,
turbines, aircraft, and hydraulic structures. A solid grasp of these principles equips future engi-
neers with the analytical and problem-solving tools needed to tackle real-world engineering
challenges.

This course is organized into four comprehensive chapters, each addressing a major aspect of
fluid behavior:

Chapter I: Fluid Statics introduces the basic definitions and properties of fluids, the con-
cept of pressure, and the principles governing fluids at rest, including hydrostatic forces and
buoyancy.

Chapter II: Fluid Kinematics focuses on describing fluid motion without reference to
the forces that cause it, emphasizing flow visualization, the continuity equation, and different
types of flow.

Chapter III: Dynamics of Ideal Incompressible Fluids develops the fundamental equa-
tions of motion, including Euler’s and Bernoulli’s equations, and illustrates their applications
to ideal fluid flow problems.

Chapter IV: Real Incompressible Fluid Dynamics extends the discussion to real fluids,
introducing the effects of viscosity, flow regimes characterized by the Reynolds number, head

losses, and the concept of the boundary layer.

The objective of this course is to enable students to understand and apply the fundamen-
tal laws governing fluid behavior, develop physical intuition, and acquire the analytical skills

necessary to model and solve engineering problems involving fluid systems.

It is hoped that these materials will serve as a clear and coherent introduction to Fluid
Mechanics and provide a strong foundation for subsequent studies in areas such as mechanical

engineering, hydraulics, and advanced fluid dynamics.
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Chapter I Fluid statics

Fluid statics, a foundational branch of fluid mechanics, focuses on the behavior of fluids—
liquids and gases—at rest. Unlike fluid dynamics, which examines flowing fluids, fluid statics
analyzes the forces and pressures within and on surfaces submerged in static fluids, as well as
the principles governing buoyancy and hydrostatic pressure.

1.1 Definition of a fluid

A fluid can be considered as a substance made up of a large number of very small material
particles, free to move relative to one another. It is therefore a continuous, deformable, non-
rigid material medium that can flow.

1.2 Physical properties of a fluid
1.2.1 Density

The density of a fluid is its mass per unit volume, represented by the letter p. Density has di-
mensions of M/L?

I.1

M
P=

If the mass of 1 m® of liquid is 820 kg, its density is p = 820 kg/m°.

Table I.1: Density of some Gases at Room Temperature and Pressure

Gas p (kg/m?)
Air 1.19
Carbon dioxide 1.82
Hydrogen 0.082 6
Oxygen 1.31

Table 1.2: Density of Dry Air at Atmospheric Pressure

Temperature °C o (kg/m?)
23.15 1.413
16.85 1.218
46.85 1.103
146.85 0.840

1.2.2 Specific weight

The specific weight is weight per unit volume with dimension F/L? (N/m?). Specific weight is
related to density by:



I1.2.3 Specific gravity
The specific gravity of a substance is the ratio of its density to the density of water py at 4° C:

Sg:L 1.3

pPw

It is a dimensionless quantity, meaning it has no units.

Table 1.3: Specific Gravity of some Common Liquids at 1.0 atm Pressure, (25° C)

Name Specific gravity
Acetone 0.787
Water 1
Fluorine refrigerant R-22 1.197
Mercury 13.6

Table 1.4: Specific Gravity of Water at Atmospheric Pressure

Temperature °C Sg
0 0.9999
4 1.0000
12 0.9995
18 0.9986
100 0.9584

Table 1.5: Specific Gravity of some Solids at Ordinary Atmospheric Temperature

Substance Specific gravity
Balsa wood 0.11-0.14
Cardboard 0.69

Ice 0.917

Marble (pla)) | 2.6-2.84
Emery (tsua) | 4

1.2.4 Viscosity

Viscosity describes how much a fluid resists moving when a thin layer slides over another; this
resistance is felt only when a shear force acts on the fluid. Different fluids deform at different
speeds — low-viscosity fluids like water or gasoline flow easily, while high-viscosity fluids
like tar or syrup flow much more slowly.

1.3 Fluid classification

1.3.1 Compressible and incompressible fluids

Compressible fluid: A fluid is said to be compressible when the volume occupied by a given
mass varies as a function of external pressure. Gases are compressible fluids. For example, air,
hydrogen and methane in their gaseous state are considered compressible fluids.



Incompressible fluid: A fluid is said to be incompressible when the volume occupied by a
given mass does not vary as a function of external pressure. Liquids can be considered incom-
pressible fluids (water, oil, etc.).

1.3.2 Ideal and real fluids (viscous fluid)

Ideal fluid: An ideal fluid is one in which cohesive forces are zero.

Real fluid (viscous fluid): In a real fluid, the tangential forces of internal friction opposing the
relative sliding of the fluid layers are taken into account. This phenomenon of viscous friction
occurs as the fluid moves.

Real fluids (viscous fluids) include both Newtonian and Non-Newtonian fluids, which are dis-
tinguished by how their viscosity responds to applied forces and flow conditions. The concepts
of Newtonian and non-Newtonian fluids will be discussed in section IV.1

I.4. General principles and theorems

1.4.1. Concept of pressure and pressure scale

Definition of pressure

Pressure is defined as the force acting normal to an area divided by this area. If we assume the
fluid to be a continuum, then at a point within the fluid the area can approach zero, Fig. I.1a,
and so the pressure becomes

AF _ dF
p = lim —=—

= 1.4
AA—0 AA dA

If the surface has a finite area and the pressure is uniformly distributed over this area, Fig. 1.1b,
then the average pressure is

F
Pavg = n L5

From the definition, pressure has the dimension of FL and in SI units is expressed as N/m?,
defined as a pascal, abbreviated as Pa, and pressures are commonly specified in pascals.

AF F

Pavg
P

K\ Y
AA
Average pressure

(a) (b)

Figure 1.1
Atmospheric pressure
Atmospheric pressure pam also known as barometric pressure is the normal force per unit area
that the air exerts on a surface due to the weight of the column of air above it and the molecules’
impacts. Its standard mean value at sea level is 1 atmosphere, defined as 101,3 pascals.



Absolute pressure and gage pressure

The pressure at a point within a fluid mass will be designated as either an absolute pressure
Pabs O A gage pressure Pgage.

If a fluid such as air were removed from its container, a vacuum would exist and the pressure
within the container would be zero. This is commonly referred to as zero absolute pressure.
Any pressure that is measured above this value is referred to as the absolute pressure, pays. For
example, standard atmospheric pressure is the absolute pressure that is measured at sea level
and at a temperature of 15°C. Its value is pam = 101.3 kPa.

The gage pressure is measured relative to the standard atmospheric pressure. Thus, a gage
pressure of zero corresponds to a pressure that is equal to the standard atmospheric pressure.
Absolute pressures are always positive, but gage pressures can be either positive or negative
depending on whether the pressure is above atmospheric pressure (a positive value) or below
atmospheric pressure (a negative value). A negative gage pressure is also referred to as a suction
Of vacuum pressure.

Absolute pressure is measured relative to a perfect vacuum absolute zero pressure, whereas
gage pressure is measured relative to the local atmospheric pressure. Thus, a gage pressure of
zero corresponds to a pressure that is equal to the local atmospheric pressure. Absolute pres-
sures are always positive, but gage pressures can be either positive or negative depending on
whether the pressure is above atmospheric pressure (a positive value) or below atmospheric
pressure (a negative value). A negative gage pressure is also referred to as a suction or vacuum
pressure.

The absolute pressure and the gage pressure are related by:

Pabs = Pgage T Patm 1.6

For example, 151,3 pascals (abs) could be expressed as - 50 pascals (gage), if the local atmos-
pheric pressure is 101,3 pascals, or alternatively 50 pascals suction or 50 pascals vacuum.

The concept of gage and absolute pressure is illustrated graphically in Fig. 1.2 for two typical
pressures located at points 1 and 2

| 1

A 8 A

Gage pressure @ 1

Standard atmospheric
pressure reference

Pressure

- é vy Gage pressure @ 2

Absolute pressure (suction or vacuum)

@l
Absolute pressure
@2

Zero absolute pressure reference

Figure 1.2 Graphical representation of gage and absolute pressure (Pressure Scale).
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1.4.2 Pressure forces at a point in a fluid

In a fluid, forces are classified as either body forces or surface forces (Figure 1.3). These forces
determine how the fluid behaves, whether it is static or moving. Body forces act throughout the
entire volume of the fluid, while surface forces are applied to the fluid's boundaries.

Control volume (CV)

«Q,

_——f - -

Control surface (CS)A
Figure 1.3 Forces acting on a control volume
Body Forces
Body forces act uniformly across the fluid's volume, such as gravitational force (that is con-
sidered here) which pulls the fluid downward. These forces are proportional to the fluid’s den-

sity and affect every part of the fluid equally. Other examples include electromagnetic forces
or centrifugal forces in rotating fluids.

Fy=m.f=p. fdv 1.7
where:
Fy is the volume force or total body force acting on the fluid element,
m is the mass of the fluid element,
/s the body force per unit mass (gravitational acceleration),
p is the density of the fluid,
dv is the differential volume of the fluid element.

Surface Forces

Surface forces act on the boundaries of a fluid element. The most common surface force is
pressure, which acts perpendicular to the fluid’s surface. In moving fluids, surface forces also
include viscous stresses, which arise from friction between fluid layers.

Fs=P.dS I.8

F’s represents the total force acting on a surface due to the pressure exerted by the fluid.
P is the pressure at a specific point within the fluid (measured in pascals, N/m?).
dS is a differential element of surface area (in m?) on which the pressure is acting.



1.4.3 Fundamental principle of fluid statics

Imagine a small cubic fluid element with side lengths dx, dy, and dz. The fluid is subjected to:
o Pressure forces acting on its surfaces.
o Body forces (e.g., gravitational force) acting throughout its volume.

We aim to find the net force per unit volume acting on this element and relate it to the pressure

gradient.
dpdz
Z e My
( +3,2 )dxdy
Y
| dz d
opdy I ( _p_y)
Ml —— | e | P+ dxd
( 3y 2 )dxdz . e -+ v 2
7 %:: —
/
// A i pfzdxdydz
dy
dpdz
(p - 53) dxdy

X
Figure 1.4 Surface and body forces acting on small fluid element

Pressure Forces
Pressure acts perpendicular to the surfaces of the fluid element, and we consider the pressure
forces along the x, y, and z directions.

. ap d
e At the left face: the pressure force is (p — %%) dxdz.
a—pd—y) dxdz.
dy 2
The net pressure force along the y-direction is the difference between the forces on the two
faces:

o At the right face: the pressure force is (p +

Pressure force along y = (p — Z—zdz—y) dxdz — (p + g—f]c;—y) dxdz = — Z—z dxdydz

Similarly, we can compute the net pressure forces in the z and x directions:

Pressure force along z = — Z_Z dxdydz
Pressure force along x = — Z—Z dxdydz
Body Forces

Body forces (gravity) act uniformly throughout the volume of the element. Let the body force
per unit mass be denoted by fx, fy, and fz in the x-, y-, and z-directions, respectively.

The total body force acting on the fluid element is given by:
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Body force along x = pf,, dxdydz
Body force along y = pf, dxdydz
Body force along z = pf,dxdydz

For the fluid element to be in equilibrium, the sum of the forces in each direction must be zero.
Using Newton’s second law, the net force per unit volume in the x-, y-, and z-directions must
equal zero.

In the x-direction: — 52 dxdydz + pfydxdydz = 0 and  f, ==

p ox
Similarly, we get:

. . 1 ap

In the y-direction: f, = =—
4 Iy p oy
irection: f, = 122

In the z-direction: f, = 2

Now, multiplying the forces fx, fy, and fz by the differentials dx, dy, and dz respectively, we get:
1 (dp ap op
fxdx+fydy+fzdz=;(adx+5dy+a—zdz) L9
From the total derivative of the pressure p, we know:

op op op
dp —adx+@dy+adz

Substituting this into the previous expression, we get:
%dp = fodx + f,dy + f,dz 110

This is a fundamental equation of fluid statics, which defines the mode of variation of pres-
sure with the coordinates x, y and z, the solution of many practical problems in fluid static
depends on this equation.

Pressure Variation in a Fluid at Rest

i - 19p _ - 10p _ - _ 1op
For a fluid at rest f,, = 0 and pax—O,fy—Oand pay—O,fZ— g and paz¢0anqu.

1.9 reduces to

1 dp
O+O—gdz=—(0+0+—dz)
p 0z

6p__
5, = P9 L11

Since p depends only on z, Eq. I.11 can be written as the ordinary differential equation

dp _ _

- = P9 .12
Rearranging:

dp = —pgdz 1.13



Therefore, pressure does vary in a static fluid in the z-direction—it increases with depth, as
shown by Equation 1.13. Integrating both sides yields (Figure 1.5)

P, Z,
dp = — f pgdz

Py Z1

p is constant because we consider incompressible fluid.

P, Zy

dp=—pg | dz
to yield
P, =Py = —pg(Z, — Z1)
Or
P, — P, = pg(Z, — Z) 114

Where P; and P, are pressures at the vertical elevations Z; and Z; as is illustrated in Fig. [.4.
Equation I.14 can be written in the compact form

P, — P, = pgh .15
Or
P, =P, +yh .16

Free surface
(pressure = p;)

\V4

— = —
I
(&
N
|
A
2

P1

R

—

X

Figure 1.5 Notation for pressure variation in a fluid at rest with a free surface (pressure scale).

where 4 is the distance, which is the depth of fluid measured downward from the location of p».
This type of pressure distribution is commonly called a hydrostatic distribution, and Eq. 1.16
shows that in an incompressible fluid at rest the pressure varies linearly with depth. The pressure
must increase with depth to “hold up” the fluid above it.

It can also be observed from Eq. I.15 that the pressure difference between two points can be
specified by the distance 4 since

hzw—@ L17

Pg 14



In this case 4 is called the pressure head and is interpreted as the height of a column of fluid of
specific weight required to give a pressure difference.

When one works with liquids there is often a free surface, as is illustrated in Fig. 1.4, and it is
convenient to use this surface as a reference plane. The reference pressure would correspond to
the pressure acting on the free surface (which would frequently be atmospheric pressure), it
follows that the pressure p at any depth /4 below the free surface is given by the equation:

P=Py+yh 118

As is demonstrated by Eq. .16 or 1.18, the pressure in a homogeneous, incompressible fluid at
rest depends on the depth of the fluid relative to some reference plane, and it is not influenced
by the size or shape of the tank or container in which the fluid is held. Thus, in Fig. 1.6 the
pressure is the same at all points along the line AB, even though the containers have very irreg-
ular shapes. The actual value of the pressure along AB depends only on the depth, 4, the surface
pressure po, and the specific weight y, of the liquid in the container.

Liquid surface
(P =po)

Specific weight y

Figure 1.6 Fluid pressure in containers of arbitrary shape.
L.5. Hydrostatic thrust

1.5.1 Definition

Hydrostatic thrust is "the resultant force produced by the distribution of hydrostatic pressure
over a given surface, acting normal to that surface and derived from the weight of the fluid

9



column above or adjacent to it". This concept is crucial whenever a static fluid exerts pressure,
such as in underwater engineering and fluid mechanics studies.

1.5.2 Pressure distribution

When a surface is submerged in a fluid, forces develop on the surface due to the fluid. The
determination of these forces is important in the design of storage tanks, ships, dams, and other
hydraulic structures. For fluids at rest, we know that the force must be perpendicular to the
surface since there are no shearing stresses present. We also know that the pressure will vary
linearly with depth as shown in Fig. 1.7 if the fluid is incompressible. For a horizontal surface,
such as the bottom of a liquid filled tank (Fig. 1.7a), the magnitude of the resultant force is
simply Fr = pA, where p is the uniform pressure on the bottom and 4 is the area of the bottom.
For the open tank shown p = y4. Note that if atmospheric pressure acts on both sides of the
bottom, as is illustrated, the resultant force on the bottom is simply due to the liquid in the tank.
Since the pressure is constant and uniformly distributed over the bottom, the resultant force acts
through the centroid of the area as shown in Fig. 1.7a. As shown in Fig. 1.7, the pressure on
the ends of the tank is not uniformly distributed. Determination of the resultant force for situa-
tions such as this is presented in sections 1.5.3 and 1.5.4.

Free surface Free surface
] p=0 ] ] p=0 ]
I NV i N - A
Specific weight =y Specific weight =y
h Fp p=vh

I
N\ p /N A p=0 A

(a) Pressure on tank bottom (£) Pressure on tank ends

p=rh
F 9 r 9 r 9 -
=0

Figure 1.7 (a) Pressure distribution and resultant hydrostatic force on the bottom of an open
tank. (b) Pressure distribution on the ends of an open tank.

1.5.3 Hydrostatic force on a plane surface

Hydrostatic force magnitude and direction

For the more general case in which a submerged plane surface is inclined, as is illustrated in
Fig. 1.8, the determination of the resultant force acting on the surface is more involved. For the
present we will assume that the fluid surface is open to the atmosphere. Let the plane in which
the surface lies intersect the free surface at 0 and make an angle @ with this surface as in Fig.
[.8. The x—y coordinate system is defined so that 0 is the origin and y = 0 (i.e., the x axis) is
directed along the surface as shown. The area can have an arbitrary shape as shown. We wish
to determine the magnitude and direction of the resultant force acting on one side of this area
due to the liquid in contact with the area.

10



Free surface
\V4 oL sc 0

Centroid, «

Location of
resultant force
R (center of pressure, CP)

Figure 1.8 Notation for hydrostatic force on an inclined plane surface of arbitrary shape.
At any given depth, /4, the force acting on dA4 (the differential area of Fig. 1.8) is:

dF = pdA = yhdA

This force is perpendicular to the surface. Thus, the magnitude of the resultant force can be
found by summing these differential forces over the entire surface. In equation form:

Fr = f yhdA = j yysinfdA
A A
Where h = ysinf. For constant y and 6
Fr =ysind [, ydA L.19

The integral appearing in Eq. 1.19 is the first moment of the area with respect to the x axis, so
we can write

f ydA =y A
A

11



Where y. is the y coordinate of the centroid of area 4 measured from the x axis which passes
through 0.
Equation 1.19 can thus be written as

Fr = ysinfy A
Fr =yh A 1.20

Since all the differential forces that were summed to obtain Fy are perpendicular to the surface,
the resultant Fr _must also be perpendicular to the surface.

Hydprostatic Force location

The location of hydrostatic force on a submerged surface refers to the specific point, known as

the center of pressure, where the resultant force due to hydrostatic pressure acts upon the sur-
face. This point is always found below the centroid of the submerged surface because the pres-
sure increases with depth.

The y coordinate, yr, of the resultant force can be determined by summation of moments around
the x axis. That is, the moment of the resultant force must equal the moment of the distributed
pressure force, or

Fryr =f ydF =f y (y ysin8 dA) =f ysind y? dA
A A A

where dF = yhdA = y ysinf dA
and, therefore, since Fr = ysinfy _A

ysinfy A yp = f ysind y? dA
A

s y2 dA

YR VoA

The integral in the numerator is the second moment of the area (moment of inertia), with respect
to an axis formed by the intersection of the plane containing the surface and the free surface (x

axis) I, = fA y? dA. Thus, we can write

I
y =
Ry A

One can now be made of the parallel axis theorem to express as: I, = I, + Ay?
Where [, is the second moment of the area with respect to an axis passing through its centroid
and parallel to the x axis. Thus,

Ixc
YR=Yc t VoA [.21

12
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Figure 1.9 Geometric properties of some common shapes.

1.5.4 Hydrostatic Force on a Curved Surface

Another important area of interest involves determining forces on submerged curved surfaces.
The hull of a floating ship is a curved surface in contact with liquid, as is the wall or sides of a
drinking glass or funnel or culvert. To develop equations for these cases, consider the configu-
ration illustrated in Figure I.10a. A curved surface is shown in profile and projected frontal
views. Let us examine the element of area d4. The force acting is p dA (Figure 1.10b). It is
convenient to resolve this force into horizontal and vertical components, dR; and dR,, respec-
tively.

The horizontal component magnitude

We write the horizontal component of this force directly as:

dRy, = pdA cosO

where dAcos@is the vertical projection of dA4. Integrating this expression gives a result similar
to that for a submerged plane:

Ry, =yh A, 1.22

where: yi. = pressure at the centroid of the surface
A, = its area projected onto a vertical plane
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Volume of liquid

p above dA
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Profile view

(a) Frontal view (b) (c)

Figure [.10 A submerged, curved surface.

The horizontal component location

The line of action, or location, of the horizontal force R is found by summing moments as was
done for the plane surfaces in Section 1.5.3. The result is the same equation as was derived there
except that we are now working with the vertical projection of the area—namely, A,:

IXC

YeAy

YR=DYct+

Here 4. is the distance from the free surface to the centroid of the area A,. The second moment
of inertia [« also applies to the vertical projected area A,.

The vertical component magnitude
Next consider the vertical component of force, which is given by

dR, = pdA sin®

where dA sin® is the horizontal projection of d4. Combining this result with the hydrostatic
equation, we obtain

dR, = yh.dA sin® 1.23

where again 4., as shown in Figure 1.10c, is the vertical distance from the liquid surface to the
centroid of d4. The quantity h.dA sin8 is the volume of liquid above dA. Equation 1.23 thus
becomes

dR, = ydV
and, after integration, yields

R, =7yV 1.24

Therefore, the vertical component of force acting on a submerged curved surface equals the
weight of the liquid above it.
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1.6 Relative equilibrium

1.6.1 Constant translational acceleration of a liquid

In this section we will discuss both horizontal and vertical constant accelerated motion of a
container of liquid, and we will study how the pressure varies within the liquid for these two
motions.

Constant horizontal acceleration

Here we consider a differential element that has a length x and cross-sectional area 4, Fig. I.11.
The only horizontal forces acting on it are caused by the pressure of the adjacent liquid on each
of its ends.

Constant acceleration

Figure .11

Since the mass of the element is Am = AW/g = y(xAA)/g, (AW is the weight of the contained
liquid) the equation of motion becomes

xAA
->* IF, = may; p.AA — pAA = v 7 )ac
P2 —pP1 = );Txac 1.25

Using p1 = yh:1 and p> = yh2, we can also write this expression as
ha—hy _ ac

== 1.26
x g

As noted in Fig. I.11, the term on the left of Eq. 1.26 represents the slope of the liquid’s free
surface. Since this is equal to tan 6, then

a
tan @ = —=<

Constant Vertical Acceleration

The forces acting on the vertical element of depth /4 and cross section A4, Fig. .12, consist of
the element’s weight AW = yAV = y(hAA) and the pressure force on its bottom. Since the mass
of the element is Am = AW /g =y (hAA)/g, application of the equation of motion yields

y (hAA)
+1T2F, = ma,y; pAA —y(hAA) = 4 a.

p=vh (1 + “;) 1.27
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Constant acceleration
Figure 1.12
Thus, the pressure within the liquid will increase by yh(a./g) when the container is accelerated
upward.

1.6.2 Steady Rotation of a Liquid

If a liquid is placed into a cylindrical container that rotates at a constant angular velocity o, Fig.
.13, the shear stress developed within the liquid will begin to cause the liquid to rotate with the
container. Eventually, no relative motion within the liquid will occur, and the system will then
rotate as a solid body. When this happens, the velocity of each fluid particle will depend on its
distance from the axis of rotation. Those particles that are closer to the axis will move slower
than those farther away. This motion will cause the liquid surface to form the shape of a forced
vortex.

e

Liquid surface level
forw =0

o o

\-_//

Figure 1.13

The constant angular rotation @ of the cylinder—liquid system produces a pressure difference or
gradient in the radial direction due to the radial acceleration of the liquid particles. This accel-
eration is the result of the changing direction of the velocity of each particle. If a particle is at
a radial distance r from the axis of rotation, then from dynamics (or physics), its acceleration

16



has a magnitude of a- = @’r, and it acts toward the center of rotation. To study the radial pressure
gradient, we will consider a ring element having a radius r, thickness 7, and height 4, Fig. .14b.
The pressures on the inner and outer sides of the ring are p and p + (Op/0r) Ar, respectively.

<+,

bt

Fig. 1.14

Since the mass of the ring is Am = AW/g =y AV/g = y(2nr) ArAh/g, the equation of motion in
the radial direction gives

op y(@mr)ArAh
LF. = ma,; — [p + (E) Ar] (2nrAh) + p(2nrAh) = —Tw
I (rw?
ar \ g 4
2
—(Y®) 2
p= ( 29 )r +C
We can determine the constant of integration provided we know the pressure in the fluid at a

specific point. Consider the point on the vertical axis at the free surface, where » = 0 and po =
0, Fig. I.14¢. Then C =0, and so
p 29

The pressure increases with the square of the radius. Since p = gh, the equation of the free
surface of the liquid, Fig. 1.13¢, becomes

(1)2
— 2
h= (Zg)r
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Integrating, we obtain

This is the equation of a parabola.



1.7 Archimedes' principle

The Greek scientist Archimedes discovered the principle of buoyancy, which states that when
a body is placed in a static fluid, it is buoyed up by a force that is equal to the weight of the
fluid that is displaced by the body.

1.7.1. Submerged body

We consider the submerged body in Fig. I.15. Due to fluid pressure, the vertical resultant force
acting upward on the bottom surface of the body, ADC, is equivalent to the weight of fluid
contained above this surface, that is, within the volume ADCyx. Likewise, the resultant force
due to pressure acting downward on the top surface of the body, ABC, is equivalent to the
weight of fluid contained within the volume A BCyx. The difference in these forces acts upward,
and is the buoyant force. It is equivalent to the weight of an imaginary amount of fluid con-
tained within the volume of the body, ABCDA. This force Fj acts through the center of buoy-
ancy, Cp, which is located at the centroid of the volume of liquid displaced by the body. If the
density of the fluid is constant, then this force will remain constant, regardless of how deep the
body is placed within the fluid.

X Pasc y
\ 4
P A C PHr
—_— . <
Cyp
D
Papoc

Figure I.15 Submerged body

From the diagram:

- Looking at the horizontal forces (Pur and Pur in the diagram):
The horizontal forces acting on the body ABCD are equal and opposite, so they cancel each
other out.

- Looking at the vertical forces:
P4pc = weight of volume ADCyx = y.(volume ADCyx)
P4pc = weight of volume ABCyx = y.(volume ABCyx)
The net vertical force (buoyant force) Py = Papc - P4pc = weight of the body's volume in liquid

Py = Y. |14

Py is called Archimedes' thrust or buoyant force.
This principle explains why objects float or sink in fluids, and it's fundamental to understanding
ship design, hot air balloons, and many other applications in fluid mechanics.
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1.7.2. Floating body

The same arguments of the previous section can also be applied to a floating body, as in Fig.
1.16. Here the displaced amount of fluid is within the region ABC, the buoyant force is equal to
the weight of fluid within this displaced volume, and the center of buoyancy Cj is at the centroid

of this volume.

Figure 1.16 Floating body
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Chapter II Fluid Kinematics

Fluid Kinematics deals with the motion of fluids without necessarily considering the forces and
moments which create the motion.

I1.1 Description of fluid motion

I1.1.1 Lagrangian Description

In the Lagrangian description, individual fluid particles are tracked from their starting positions
as they move through space and time. Each particle’s position, velocity, and acceleration are
observed as they change over time. The particle’s position vector r, varies with time, and its
time derivative gives the particle’s velocity.

dr(t)

V=V(k)= o

IL.1

X y
Figure II.1 Lagrangian description of motion follows a single fluid particle as it moves about
within the system

I1.1.2 Eulerian Description

In the Eulerian description, fluid velocity is measured at fixed points in space (xo, yo, zo) wWithin
small surrounding volumes. To analyze the entire system, control volumes are placed at every
point (x, y, z), allowing measurement of particle velocities across all points over time.

™

Control
volume

V = V(.\’Q, Yo, 20, I)

<0

.\.

Xp

Figure I1.2 Eulerian description of motion specifies a point or region within the system, and it
measures the velocity of the particles that pass through this point or control volume
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I1.1.3 Graphical descriptions of fluid flow

Pathlines: The pathline for a fluid particle defines the “path” the particle travels over a period
of time (Figure I1.3a).

Streaklines: A streakline is defined as the position of all fluid particles that have all come from
the same point of origin (Figure 11.3b).

/

The pathline shows the path of a single particle The streakline shows the path of
using a time exposure photograph forO<7=1  many particles at the instant t = 1,
b
(a) (b)
Figure 11.3

Streamlines: A streamline is an instantaneous curve in a fluid flow field where the tangent at
any point is parallel to the local velocity vector at that point. In other words, it's a curve that is
always parallel to the direction of fluid motion at any given instant. There is no flow across a
streamline.

Streamline

™

(b)

(a) Velocity vector at a point on a streamline. (b) Streamlines in a diverging duct.

Figure 11.4

As long as the flow is steady, the streamlines, pathlines, and streaklines will all coincide.

o
The streamlines, pathlines, y ‘\\\
streaklines all coincide

for steady flow
Figure I1.5

Streamtubes: For some types of analysis, it is convenient to consider a bundle of streamlines
that surround a region of flow, (Fig. I11.6). Such a circumferential grouping is called a
streamtube. Here the fluid flows through the streamtube as if it were contained within a curved
conduit.
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Streamlines

A —
=

S

Figure I1.6: A streamtube consists of a bundle of individual streamlines.

I1.2 Continuity equation

I1.2.1 The concept of flow rate

Volumetric Flow: The rate at which a volume of fluid flows through a cross-sectional area 4
is called the volumetric flow, or simply the flow or discharge. It can be determined provided we
know the velocity profile for the flow across the area. For example, consider the flow of a
viscous fluid through a pipe, such that its velocity profile has the axisymmetric shape shown in
figure (Figure I1.7).

Figure I1.7

If particles passing through the differential area d4 have a velocity v, then during the time dt, a
volume element of fluid of length vdt will pass through the area. Since this volume is dV =
(vdt)(dA), then the volumetric flow dQ through the area is determined by dividing the volume
by dt, which gives dQ = dV /dt = vdA. If we integrate this over the entire cross-sectional area A4,
we have

Q=J, vdA 1.2
0 (m’/s)

When calculating Q, it is important to remember that the velocity must be normal to the cross-
sectional area through which the fluid flows.

e
Streamline

Figure I1.8
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If this is not the case, as in figure I1.8, then we must consider the velocity’s normal component
vcos @ for the calculation. By considering the area as a vector, dA, where its normal is positive
outward, we can use the dot product, v-dA = vcos@ dA, to express the integral in the previous
equation in a more general form, namely

Q=/, v.dA 1.3

Mass Flow: Since the mass of the element in Fig. I1.7 is dm = pdV = p (vdf)dA, the mass flow
or mass discharge of the fluid through the entire cross section becomes

dm

m=—=[ pv.dA 11.4

I1.2.2 Derivation of the continuity equation

- Fluid Property Description

Extensive Property: An extensive property is a property that depends on the amount of mass
or volume in a system. It "extends" throughout the system. For example, momentum is an ex-
tensive property since it represents mass times velocity, NV =mV.

Intensive Property: Fluid properties that are independent of the system’s mass are called in-
tensive properties, 7 (eta). Examples include temperature and pressure.

We can represent an extensive property /V as an intensive property 7 simply by expressing it

per unit mass, that is, n = N/m.

- Reynolds transport theorem: this theorem relates the time rate of change of any extensive
property N of a system of fluid particles, defined from a Lagrangian description, to the changes
of the same property from the viewpoint of the control volume, that is, as defined from a Eu-
lerian description.

DN d
(E)Syst =3 JeympdY + [ mpV - dA IL5

The first term on the right side is the local change, since it represents the time rate of change in

the intensive property within the control volume. The second term on the right is the convective
change, since it represents the net flow of the intensive property through the control surfaces.

- Continuity equation

Integral form

The conservation of mass states that within a region, apart from any nuclear process, matter can
neither be created nor destroyed. From a Lagrangian point of view, the mass of all the particles
in a system of particles must be constant over time, and so we require the change in the mass
to be (dm/df)sys = 0. In order to develop a similar statement that relates to a control volume, we
must use the Reynolds transport theorem, Eq. I1.6. Here the extensive property N = m, and so
the corresponding intensive property is mass per unit mass, or 77 = m/m = 1. Therefore, the
conservation of mass requires
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?
~Jo, PV + [ pV-dA=0 IL.6

This equation is often called the continuity equation in integral form. It states that the local
rate of change of mass within the control volume, plus the net convective rate at which mass
enters and exits the open control surfaces, must equal zero, Fig. IL.9.

Local change

of fluid mass

occurs within
the control volume.

Convective
change in fluid
mass occurs at

control surfaces.

Figure I1.9
Special Cases:
Provided we have a control volume with a fixed size that is completely filled with an incom-
pressible fluid, then there will be no local change of the fluid mass within the control volume.
In this case, the first term in Eq. I1.6 is zero, and so the nef mass flow into and out of the open
control surfaces must be zero. In other words, “what flows in must flow out”. Thus, for both
steady and unsteady flow,

J PV dA = Zrgy — Z1i, = 0 I1.7

Assuming the average velocity occurs through each control surface, then J will be constant,

and integration yields,
2pV - A =My — 2my, =0 1.8

Finally, if the same fluid is flowing at a steady rate into and out of the control volume, then the
density can be factored out, and we have for incompressible steady flow,

SV-A=20uu—2Qi, =0 1.9

A conceptual application of this equation is shown in Fig. I1.10. By our sign convention, notice
that whenever fluid exits a control surface, V and Aou are both directed outward, and by the dot
product this term is positive. If the fluid enters a control surface, V' is directed inward and Ai,
is directed outward, and so their dot product will be negative.

XV -A=0
_VAAA - VBAB + VCAC = O
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Fixed
control volume

Figure 11.10

Differential form

In this section we will derive the continuity equation (in differential form) for an element of
fluid flowing through a fixed differential control volume that only has open control surfaces,
Fig. I1.11. We will assume three-dimensional flow, where the velocity field has components u
=u(x,y,z,t),v=v(x,y,z, 1), w=wx,Y, z, f). Point (x, y, z) is at the center of the control volume,
and at this point the density is defined by the scalar field p= p (x, y, z, ?).

" 'J j‘.
(pu — M)jﬂ)m. Az | (pu + %} 7‘}&_\; Az
ax 2777 e (x,y,2) —_— .
Az | *
Ay
Ax
Fig. I1.11

Within the control volume, local changes to the mass can occur due to the fluid’s compressibil-
ity. Also, convective changes can occur from one control surface to another due to nonuniform
flow. In Fig. I1.11 these convective changes are considered only in the x direction, as noted by
the partial derivatives at each control surface.

If we apply the continuity equation, Eq. IL.6, to the control volume in the x direction, we have

d
—f pdV+f pV-dA =0
at cv Cs
ap d(pu) Ax d(pu) Ax
EAxAyAZ + (pu + W?) AyAz — (pu ~ Tox 7) AyA

z=0

Dividing by Ax Ay Az, and simplifying, we get
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ap |, 0(pw) _
E-'_? =0 I1.10

If we include the convective changes in the y and z directions, then the continuity equation
becomes

ap |, Apw) | B(pv) | A(pw) _
et e T =0 .11

Finally, using the gradient operator V = 0/0xi + 0/0yj + 0/0zk, and expressing the velocity as V
= ui + vj + wk, we can write the continuity equation for the differential element in vector form
as

2 4+V.pV =0 IL12

Two-Dimensional Steady Flow of an Ideal Fluid.

Although we have developed the continuity equation in its most general form, often it has ap-
plications to two-dimensional steady-state flow of an ideal fluid. For this special case, the fluid
is incompressible and so p is constant.

As aresult Eq. II.11 then becomes

du . dv
et = 0 II.13
Or, from Eq. I1.12, we can write

vVIV=0 11.14
I1.3 The Stream Function

11.3.1 Definition

In two dimensions, one method for satisfying the equation of continuity is to replace the fwo
unknown velocity components u and v by a single unknown function, thus reducing the number
of unknowns, and thereby simplifying the analysis of an ideal fluid flow problem. In this section
we will use the stream function as a means for doing this.

The stream function y (psi) is the equation that represents all the equations of the streamlines.
In two dimensions, it is a function of x and y, and for the equation of each streamline it is equal
to a specific constant y (x,y) = C.

I1.3.2 Velocity Components

By definition, the velocity of a fluid particle is always tangent to the streamline along which it
travels, Fig. I1.12. As a result, we can relate the velocity components u and v to the slope of the
tangent by proportion.

26



dy

\ ¥4 dx

v P 4

P Uy =C
u
Velocity is tangent to streamline
Fig. 11.12
As shown in the figure, dy/dx = v/u, or
udy - vdx =0 IL.15

Now, if we take the total derivative of the streamline equation y(x, y) = C, which describes the
streamline in Fig. I1.12, we have

d¢=2—fdx+g—fdy=o IL16

Comparing this with Eq. II.15, the two components of velocity can be related to . We require

u="Landv = -2 1.17
Therefore, if we know the equation of any streamline, y(x, y) = C, we can obtain the velocity
components of a particle that travels along it by using these equations. By obtaining the velocity
components in this way, we can show that for steady flow the stream function automatically
satisfies the equation of continuity. By direct substitution into Eq. 11.13, we find

du OJv a (oY d oy
a2 a--
dx 0dy dx \dy dy\ oOx
0%y 0%y _ 0
dxdy 0dydx

I1.4 Types of Fluid flow

I1.4.1 Steady and Unsteady Flows

- Steady Flow: In steady flow, fluid properties (velocity, pressure, and density) at any given
point in space remain constant over time. Mathematically, 0/0t = 0 for any fluid property. Ex-
amples include water flowing at a constant rate through a pipe or air flowing steadily over an
aircraft wing.
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- Unsteady Flow: In unsteady flow, fluid properties at a given point in space change over time.
Mathematically, 0/0t # 0 for any fluid property. An example would be the flow of water through
a pipe during the closing or opening of a valve.

11.4.2 Uniform Flow and non-uniform Flow

- Uniform Flow is a fluid flow in which characteristics and parameters remain unchanged with
distance along the flow path. A steady flow through a long straight pipe of a constant diameter
is an example of uniform flow.

In a steady uniform flow, an ideal fluid maintains the same velocity at all times and at each

point (Fig. I1.13), mathematically: % = 0 and % = 0.

Fig. I1.13: Steady uniform flow

In an unsteady uniform flow (Fig. I1.14), the velocity of an ideal fluid is the same at all points
at any given instant but changes with time, as is the case when a valve is slowly opened, math-

ematically: % # 0 and % =0.

Time t + At

Fig. I1.14: Unsteady uniform flow

- Non-uniform Flow is a flow in which characteristics and parameters vary and are different at
different locations along the flow path. A steady flow through a pipe with a variable diameter
exemplifies a non-uniform flow.

In a steady nonuniform flow (Fig. I1.15), the velocity remains constant with time, but it is dif-

. . d d
ferent from one location to the next, mathematically: d—: = 0 and d—z * 0.
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Fig. I1.15: Steady nonuniform flow

In an unsteady nonuniform flow (Fig. I1.16), the velocity is different at each point and changes
at each time, such as when a valve is slowly opened in a pipe with a changing cross-section,

mathematically: % # 0 and % * 0.

Time r + At
Fig. I11.16: Unsteady nonuniform flow
11.4.3 Irrotational flow and Rotational flow
- Irrotational flow is flow in which fluid particles moving along the flow path do not undergo
rotation. Mathematically: Z—Z = Z—Z (irrotational two-dimensional flow).

Ideal fluids exhibit irrotational flow because no viscous friction forces act on ideal fluid ele-
ments, only pressure and gravitational forces. No rotation occurs in the ideal fluid because the
entire element moves with the same velocity.

Fig. I1.17: Irrotational flow (ideal fluid)

- Rotational flow is a fluid flow in which fluid particles moving along the flow path also rotate

. . . 0 d . . .
about their respective axes. Mathematically: % * é (rotational two-dimensional flow).
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In the figure bellow, the top and bottom surfaces of the element in the viscous fluid move at
different velocities, and this will cause the vertical sides to rotate clockwise at the rate £. As a
result, this produces rotational flow.

Fig. I1.18: Rotational flow (viscous fluid)
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Chapter I1II Dynamics of Ideal Incompressible Fluids

ITI.1 Forces acting on a fluid particle

Recall that the forces acting on a fluid element may be classified as surface forces and body
forces; surface forces include both normal forces and tangential (shear) forces.

We shall consider the x component of the force acting on a differential element of mass dm and
volume dV = dx dy dz. Only those stresses that act in the x direction will give rise to surface
forces in the x direction. If the stresses at the center of the differential element are taken to be
Oxx, Tyx, and T, then the stresses acting in the x direction on all faces of the element (obtained
by a Taylor series expansion about the center of the element) are as shown in Fig. III.1.

y T dy
1 Tyx + e")"_'l.' E
1 L, - !}T:r E.Ir.:
| " zx F ?
S :’f]-:’T” E 1'..4.. = /
I Ix 2 | e Jv
-—= | —_—t— 7+ ,'“—'\
,J i xx l':-".l' 2

f// T == _ e" Ty EJI_\
Tyx rh 2
. g /
4 Tl dz

Fig. III.1 Stresses in the x direction on an element of fluid.

To obtain the net surface force in the x direction, dF s,, we must sum the forces in the x direc-
tion. Thus,

00, dx 00, dx
dFSx = (O-xx + W?) dde - (O-xx - W?) dde

0Ty, d 0Ty, d
+ (Tyx + il) dxdz — <’L'yx — = _y) dxdz

dy 2 dy 2
07T, dz 07, dz
+ (sz + 3, 7) dxdy — (sz 3, 7) dxdy
On simplifying, we obtain

Apart from these forces, there is also the body force due to the weight of the particle. If m is the
particle’s mass, this force is dF'p = (dm)g = pgdx dy dz.
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The net force in the x direction, dFY, is given by

dF, = dFs, + dFg, = (agf‘ + a;i'/x + arz" + pgx) dxdydz I11.1

We can derive similar expressions for the force components in the y and z directions:

dF, = dFs, + dFg, = (

doyy n 0Tyxy

07zy
3y > T3, +pgy) dxdydz I11.2

a d a
dF, = dFs, + dFg, = (22 + 22 + -

+ pgz) dxdydz 1.3

I11.2 Equations of Motion

A dynamic equation describing fluid motion may be obtained by applying Newton’s second
law to a particle. Then, for an infinitesimal system of mass dm, Newton’s second law can be
written

dF = d dv
BT

system

Provided the particle’s velocity is expressed as a velocity field, V = V(x, y, z, ), then the mate-
rial derivative is used to determine the acceleration:

dV OV av dx av dy ovVdz
C=G T 9t Toxde oyde ozde
Thus
dv v av av oV
dF=de=(pdxdde)[a +ua—+v@+wa—z

When V = ui + vj + wk, the x, y, z components of this equation become

0y | OTyx | 0Ty ou ou )
ax+ay+ +pgx—p(at+ +U +WZ
00yy  OTyy arzy _ (a_v ov v 6_17)
6x+6y+6 +pgy =p at+u +va +Waz 111.4
aO'ZZ asz Tyz ( ow ow )
6x+6y+ +,0gz—,0 +u6x+ + 0z
Or:
00xy | OTyx asz

du

00yy  OTxy a‘czy _ dv
ox + 3y + Py +pgy =P II1.5
0027 0Txz Jt yz d_W
dx + oy + tPg:=p dt

II1.3 The Euler Equations

If we consider the fluid to be an ideal fluid, then the equations of motion will reduce to a simpler
form. In particular, there will be no viscous shear stress on the particle (element), and the three
normal stress components will represent the pressure. Since these normal stresses have all been
defined in Fig. IIl.1 as positive outward, and as a convention, positive pressure produces a
compressive stress, then ow = 0,y = 0z = -p. As a result, the general equations of motion for an
ideal fluid particle become
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dp du
———+0+0+pg, =

dx pE
P 4 0+04pg,=p
dx pgy_pdt
6p+0+0+ _
dp _ u 6_u ou ou
_£+pgx_p( +uax+ +Waz)
ap _ v
—5+pgy—p(—+u—+v—+w£) 11L6

_a_p _ ( aw aw 6w)
aZ+pgz—,0 +uax+ +Waz

These equations are called the Euler equations of motion, expressed in x, y, z coordinates.
Using the gradient operator, we can also write these equations in a more compact form, namely

—Vp+pg = p[ + (V. V)V] 1.7

Two-Dimensional Steady Flow. In many cases we will have steady two-dimensional flow, and
the z component of velocity w = 0. With gy = -g, the Euler’s equations become

10p _ _0du Ju

pax_ua +vay

1dp IIL.8
—_———_—— — _+v_

p oy g 9y

I11.4 The Bernoulli Equation and its Applications
I11.4.1 The Bernoulli Equation
du  Ov

Assume we have irrotational two-dimensional flow so that: P =

If we substitute this condition into obtained equations for 7wo-Dimensional Steady Flow, we

get
1dp  du av

pox “ox ' Uox

10p au dav

p oy Yoy Ty
Since 0 (u?)/ &x = 2u(0u/ox), & (V*)/ 0x = 2v(0v/dx), 0 (u?)/ Oy = 2u(ou/dy), and & (V*)/ oy =
2v(0v/0y), the above equations become

10p 10(u*+v?)

pax_i dx
10p _10@® +v?)
pdy ° 2 0y

Integrating with respect to x in the first equation, and with respect to y in the second equation,
yields

33



_P Lz o2ty
=50+ v =5V

_P_ 1o a1
’ gy+h(x)—2(u +v)—2V

Here V is the fluid particle’s velocity found from its components, V2 = 1> + v2. Equating these
two results, it is then necessary that f{y) = -gy + A(x). The solution requires that /(x) = Const.,
since x and y can vary independent of one another. As a result, the unknown function f{y) = -gy
+ Const. Substituting this and /4(x) = Const. into the above two equations, we obtain in either
case the Bernoulli equation, that is,

2
%+ V? + gy = Const 1.9
Or
2
y+£+V— = Const .10
Y 29

Thus, if the flow is irrotational, then the Bernoulli equation may be applied between any two
points (x1, y1) and (x2, y2). Of course, as noted, we must also require the fluid to be ideal and
the flow to be steady.

I11.4.2 Applications of the Bernoulli Equation

a) Venturi meter. A venturi meter is a device that can be used to measure the average veloc-
ity or the flow of an incompressible fluid through a pipe, Fig. I11.2.
dl

ds Datumv

Fig. I11.2 Venturi meter

P1 V12_ P, V3
Iy g T T T
L P R 4

pg 29 pPg 29

In addition, the continuity equation can be applied at points 1 and 2. For steady flow we have

wd? md3

17y — 72y
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Combining these two results and solving for V1, we get
The static pressure difference (p2 - p1) is often measured using a pressure transducer or a ma-
nometer. For example, if a manometer is used, as in Fig. 1.2, and p is the density of the fluid
in the pipe, and pyv is the density for the fluid in the manometer, then applying the manometer
rule, we have
p1+ pgh' — pogh —pg(h' —h) =p,
P2 —p1 = (p— po)gh 111

b) Flow from a Large Reservoir.

b.1 Expression of velocity

When water flows from a tank or reservoir through a drain, (figure bellow), the flow is unsteady.
If we assume that water is an ideal fluid, then the Bernoulli equation can be applied between
points 4 and B. Setting the gravitational datum at B, and using gage pressures, where p4 = pp =

0, we have

Pa VAZ_ pg  VE
YA+y+Zg_YB+ +2g

1
Vi
h+0+0=0+0+->

Vs = /2gh 1112

A

Datum =
=

Fig. I11.3 Flow from a Large Reservoir

This result is known as Torricelli’s law since it was first formulated by Evangelista Torricelli
in the 17th century.

b.2 Tank emptying time

The tank emptying process applies Bernoulli’s equation to relate fluid velocity to height. It
enables calculating the discharge rate and the time required for the tank to empty.
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Fig. I11.4 Tank emptying time

v=,/2gh

Q = vA, = \/2gh4,

The instantaneous flow rate is

Ao is the orifice area

In the time interval dt, the small volume flow dV is written as Qdt. In the same time interval,
the head height decreases by dh and the discharged volume is equal to the tank surface area Ar
multiplied by dh. By equating these values, we obtain:

Qdt = ,/2ghA,dt = —Ardh
where the negative sign indicates that & decreases when ¢ increases. Solving for ¢, we obtain

_AT

i

t=("dt = jh'” nV2dh

Or

24, V2 12
t=t,—t,=—— h
27 h > (hl 2 )

[

Equation of # can be rewritten by multiplying and dividing by. It results in

Ar(hi—h3)
t=t, —t; = .13
2T Loy 2ghs+A02gR;)
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¢) Pitot tube.

c.1 Flow in an Open Channel.

One method of determining the velocity of a moving liquid in an open channel, such as a river,
is to immerse a bent tube into the stream and observe the height /4 to which the liquid rises
within the tube, Fig. IIL.5. Such a device is called a stagnation tube, or a Pitot tube, named after
Henri Pitot who invented it in the early 18th century.

Due to
I | dynamic
h ¢ pressure

_T_ Due to
4\ static
__._‘y;' | | pressure

- A B Datum

Fig. IIL.5 Flow in an Open Channel

To show how it works, consider the two points 4 and B located on the horizontal streamline.
Point A4 is upstream within the fluid, where the velocity of flow is V4 and the pressure is p4 =
pgd. Point B is at the opening of the tube. It is the stagnation point, since the velocity of flow
has momentarily been reduced to zero due to its impact with the liquid within the tube. The
liquid at this point produces both a static pressure, which causes the liquid in the tube to rise to
a level d, and a dynamic pressure, which forces additional liquid farther up the vertical segment
to a height 4 above the liquid surface. Thus the total pressure of the liquid at B is ps = pg(d +
h). Applying the Bernoulli equation with the gravitational datum on the streamline, we have

2 2
Pa  Va _ ps , Vi
AT T g TPy Mg
d V? d+nh
PR/ W S A G DR
Y 29 Y

Vy = J2gh 11114

c.2 Flow in a Closed Conduit. Hence, by measuring / on the Pitot tube, the velocity of the
flow can be determined. If the liquid is flowing in a closed conduit or pipe, Fig. 111.6, then it
will be necessary to use both a piezometer and a Pitot tube to determine the velocity of the flow.
The piezometer measures the static pressure at A. This pressure is caused by the internal pres-
sure in the pipe, pgh, and the hydrostatic pressure pgd, caused by the weight of the fluid. The
total pressure at A is therefore pg(h + d). The total pressure at the stagnation point B will be
larger than this, due to the dynamic pressure V,2/2. If we apply the Bernoulli equation at points
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A and B on the streamline, using the measurements /# and (/ + /) from these two tubes, the
velocity V4 can be obtained.

Static
pressure

Dynamic ; b
pressure

h Due to pipe
internal pressure

Due to weight

(: r of ﬂuu/ Datum

_

Fig. I11.6 Flow in a Closed Conduit

Pa VZ Ps Vg
4244 Ay + 248
Ya ” > g YB ” 29
h+d h+d+1
V( ) _O+Y( )+0
Y 29 14

V= /291 1115

II1.5 Momentum Equation

IIL.5.1 General Momentum Equation

The design of many hydraulic structures, such as floodgates and flow diversion blades, as well
as pumps and turbines, depends upon the forces that a fluid flow exerts on them. In this section
we will obtain these forces by using a linear momentum analysis, which is based on Newton’s
second law of motion, written in the form F = ma = d(mV)/dt. For application of this equation,
it is important to measure the time rate of change in the momentum, mV, from an inertial or
nonaccelerating frame of reference, that is, a reference that either is fixed or moves with con-
stant velocity.

Because of the fluid flow, a control volume approach works best for this type of analysis, and
so we will apply the Reynolds transport theorem to determine the time derivative d(mV)/dt
before we apply Newton’s second law. Linear momentum is an extensive property of a fluid,
where

N =mV, and so n=mV/m = V. Therefore, Eq. I11.5 becomes

dN d
(E>syst atf np dv + anV -dA
(d(mV)) 0 f Vp dV+prV-dA
dt /ey ot os
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Now, substituting this result into Newton’s second law of motion, we obtain our result, the
linear momentum equation.

a
3F = " L Vpav+ fCSVpV -dA 11.16
It is very important to realize how the velocity V is used in the last term of this equation. It
stands alone as a vector quantity V, and as a result it has components along the x, y, z axes. But
it is also involved in the dot product operation with dA in order to define the mass flow
through an open control surface, that is, pV - dA. This is a scalar quantity, and so it does not

have components.

I11.5.2 Steady-state momentum theorem
If the flow is steady, then no local change of momentum will occur within the control volume,
and the first term on the right of Eq. III.11 will be equal to zero. Therefore

2F = [ VpV-dA I1.17

Furthermore, if we have an ideal fluid, then p is constant and viscous friction is zero. Thus the
velocity will be uniformly distributed over the open control surfaces, and so integration of Eq.
III.12 gives

SF=2VpV-A I1.18

The above equations are often used in engineering, to obtain the fluid forces acting on various
types of surfaces that deflect or transport the flow.
If there is only one entrance and one exit, as in Fig. III.7, the momentum equation becomes

2F = (Vin)x(—PVinAin) + Vour) x(0VoutAout) .19

Here, (Vi) and (V,,¢), are the x components of V;,, and V,,,;. They both act in the +x direc-
tion, Fig. II1.7. When writing the expression for the dot products, we have followed our positive
sign convention, that is, A;;, and A, are both positive out, but V/;;,, is negative, since it is di-
rected into the control volume. For this reason, pV;, A;, is a negative quantity.

Using continuity,

m = pVipnAin = pVoutAout 11.20
the momentum equation takes the simplified form

ZF = m((Vour)x — (Vin)x) .21
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II1.5.3 Momentum Equation Applied to Stationary Deflector (Impact of jets on surfaces
and reactions)
Let us first consider the stationary deflector, illustrated in Fig. I11.8. Bernoulli’s equation allows
us to conclude that the magnitudes of the velocity vectors are equal (i.e., V, = V;), since the
pressure is assumed to be constant external to the fluid jet and elevation changes are negligible
(see Eq. II1.10). Assuming steady, uniform flow, the momentum equation takes the form of Eq.
II1.16, which for the x- and y-directions becomes
Momentum in x-direction:

—R, = m(V,,, — V;) = m(Vocos a — V) = mV;(cos a — 1)
Momentum in y-direction:

R, = mV,, = mV,sin @ = mV;sin a

For given jet conditions the reaction force components R, and R,, can be calculated.

Liquid jet

Deflector R

Fig. I11.8 Stationary Deflector
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Chapter 1V: Real incompressible fluid dynamics

IV.1 Viscosity

IV.1.1 Dynamic viscosity

Consider a fluid-filled space formed by two horizontal parallel plates (Figure IV.1). The upper
plate has an area 4 in contact with the fluid and is pulled to the right with a force F at a velocity
V1. A velocity distribution like that illustrated in Figure IV.1 would result.

>~ Slope = dV1/dy

1 Ll= —

e
Figure IV.1 Shear stress applied to a fluid.

The fluid velocity at the moving plate is V1 because the fluid adheres to that surface. This phe-
nomenon is called the nonslip condition. At the bottom, the velocity is zero with respect to the
boundary, owing again to the nonslip condition.

The slope of the velocity distribution is dVi/dy. If this experiment is repeated with F> as the
force, a different slope or strain rate results: dV>/dy. In general, to each applied force there
corresponds only one shear stress (7= F/A) and only one strain rate (dV/dy).

If data from a series of these experiments were plotted as 7z versus dV/dy, Figure IV.1 would
result for a fluid such as water.

The points lie on a straight line that passes through the origin. The slope of the resulting line in
Figure IV.1 is the viscosity («) of the fluid because it is a measure of the fluid’s resistance to
shear. In other words, viscosity indicates how a fluid will react (dV/dy) under the action of an
external shear stress (7).

The plot of Figure 1.2 is a straight line that passes through the origin. This result is characteristic
of a Newtonian fluid. Examples of Newtonian fluids are water, oil, and air.

Newtonian fluids follow Newton’s law of viscosity and are represented by the equation:

r=u V.1

where:

7= the applied shear stress in dimensions of F/L? (N/m?)

u is called the absolute or dynamic viscosity of the fluid in dimensions of F.T/L* (N.s/m?)
dV/dy = the strain rate in dimensions of 1/7 (1/s)
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Figure IV.2 A plot of zversus dV/dy (a rheological diagram) for Newtonian fluids.

If a fluid cannot be described by Equation IV.1, it is called a non-Newtonian fluid. A graph of
rversus dV/dy, called a rheological diagram, is shown in Figure IV.3 for several types of fluids.

TA
Bingham
Pseudoplastic
B
I
2
o Newtonian
©
3!
Dilatant
To
Inviscid (w=0)
0 > dV/dy

Figure IV.3 A rheological diagram for Newtonian and non-Newtonian fluids.

IV.1.2 Kinematic viscosity
The ratio of absolute viscosity to density is called the kinematic viscosity v:

y=E V.2
p

The dimensions of kinematic viscosity are L*/T (m?*/s).
It is important to note that the viscosity and density of fluids both change with temperature.
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IV.2 Stress—Deformation Relationships

For incompressible Newtonian fluids it is known that the stresses are linearly related to the rates
of deformation and can be expressed in Cartesian coordinates as

For normal stresses:

Oux = —p + 215> V.3
d

Oyy = —p + Zué V4

0, = —p + 202" V.5

For shearing stresses

ou  ov

Txy = Tyx = U (E + a) IV.6
ov = ow

Tyz = sz =u (E + E) V.7
a a

Ty = Tyzg = U (% + 6—1:) IV.8

where p is the pressure, the negative of the average of the three normal stresses; that is, as
indicated by the figure in IV 4,

1
—pP = 3 (Oxx + Oyy + 022)

J—C:
o,
P
x 1
pP== g[{]’_u_ t0,,+ J::_}
Figure: IV.4

For viscous fluids in motion the normal stresses are not necessarily the same in different direc-
tions, thus, the need to define the pressure as the average of the three normal stresses. For fluids
at rest, or frictionless fluids, the normal stresses are equal in all directions.

In cylindrical polar coordinates the stresses for incompressible Newtonian fluids are expressed
as (for normal stresses)
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0 = —p + 2u 2 V.9

or
__ 10vg  vr
dog = —p +2u (32 + %) V.10
azz=—p+2u% V.11

(for shearing stresses)

Ty = Tor = 1|1 o= (2) + 27| V.12
Toy = Tz9 = M(‘;L;u.%%) V.13
Ty =T = p (52 +22) V.14

The double subscript has a meaning similar to that of stresses expressed in Cartesian coordi-
nates— that is, the first subscript indicates the plane on which the stress acts and the second
subscript the direction. Thus, for example, o, refers to a stress acting on a plane perpendicular
to the radial direction and in the radial direction (thus a normal stress). Similarly, 7, refers to
a stress acting on a plane perpendicular to the radial direction but in the tangential (8 direction)
and is therefore a shearing stress.

IV.3 The Navier—Stokes Equations
The stresses as defined in the preceding section can be substituted into the differential equations
of motion (Eqgs. I11.4) and simplified by using the continuity equation for incompressible flow
(Eq. II.11). For rectangular coordinates (Figure IV.5) the results are:

e (xdirection)

u 0w 0w owy b (Zuy 2y o)
p(6t+uax+vdy+waz)_ ox T PIx TH 0x2+0y2+622 V.15
e (ydirection)
LB T T (L4 204 20)
p(at+uax+vay+waz)— ay+pgy+u 0x2+0y2+622 IV.16

e (zdirection)

w o ow . dw o ow)_ _dp (
p(6t+uax+v6y+waz)_ 62+pgz+’u

’w | *w | 9%w

EHIEHTE) Va7

where u, v, and w are the x, y, and z components of velocity as shown in the figure in the mar-
gin of the previous page.

Figure: IV.5
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These equations are commonly called the Navier—Stokes equations, when combined with the
conservation of mass equation (Eq. II.11), provide a complete mathematical description of the
flow of incompressible Newtonian fluids. We have four equations and four unknowns and
therefore the problem is “well-posed” in mathematical terms.

In terms of cylindrical polar coordinates (Figure IV.6), the Navier—Stokes equations can be
written as

(» direction)

p(Br+v Qor | Vo OV _ Vo4, a"T)=—Z—i+pgr+u[li(r%)—&+iazw—iaﬁ+

ot T or r 00 T Z 97 ror rZ2  r2 992 rZ 060
= V.18
0z2 )
(0 direction)

dvg dvg | vg Vg | Vyrvg 6v9) _ 1dp [1 i) ( 6179) vg . 1 d%vg
p(6t+vr 6r+r69+ r vzaz - r66+pge+‘u r or rar T2 r2662+
2 dvy 02179]
Ry 572 IV.19
(z direction)

v, v, | vy Oy, Ovz) _ avz) 1 9%v, 62vz]

(6t YU T e T2, ) T "or) T2oee T o Iv.20

Figure: IV.6

IV.4 Steady, Laminar Flow in Circular Tubes (Poiseuille flow)

Consider the flow through a horizontal circular tube of radius R. Because of the cylindrical
geometry it is convenient to use cylindrical coordinates. We assume that the flow is parallel to
the walls so that v, = 0 and vy = 0.

For steady, incompressible flow, the differential form of the continuity equation in cylindrical
coordinates is

10(rv;)  10ve  0v, 0
r or r 060 oz
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From this equation dv,/ dz = 0. Also, for steady, axisymmetric flow, v, is not a function
of t or 8, so the velocity, v,, is only a function of the radial position within the tube—that
is, v, = v,(r). Under these conditions the Navier—Stokes equations (Egs. IV.18, IV.19 and
IV.20) reduce to:

— i _9
0 = —pgsin 6 P Iv.21
0 = —pgcos 6 — %g—z v.22
__9o% 19 (.9
0= oz THFor (r ar)] Iv.23
where we have used the relationships g, = —gsin 6 and gg = —gcos 6.

Equations IV.21 and IV.22 can be integrated to give:

p = —pg(rsin ) + f,(z)
or

p=-—pgy + f1(2) V.24

Equation I'V.24 indicates that the pressure is hydrostatically distributed at any particular cross
section, and the z component of the pressure gradient, dp/ 0z, is not a function of  or 6.

The equation of motion in the z direction (Eq. IV.23) can be written in the form:

10 ( 6172) _1op
ror r or) poz
and integrated (using the fact that dp/ 0z = constant) to give

dv, 1 (dp\ ,
rar_ﬂ<£> ta

Integrating again we obtain

1 (0
v, = E(G_Z) r’+clnr+c, IV.25

Since we wish v, to be finite at the center of the tube (r =0), it follows thatc,; =
0 [since In (0) = —oo]. At the wall (r = R) the velocity must be zero so that

1 s0p
=——|(—)R?
“ 4u (62)

and the velocity distribution becomes

_ 1 (9,2 _ p2
vz_4u(6z) (r? — R?) V.26

Thus, at any cross section the velocity distribution is parabolic.
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To obtain a relationship between the volume rate of flow, Q, passing through the tube and the
pressure gradient, we consider the flow through the differential, washer-shaped ring of Fig.
6.34b. Since v, is constant on this ring, the volume rate of flow through the differential
area dA = (2mr)dr is

dQ = v,(2nr)dr
and therefore

Q =2r [, v,rdr V.27

Equation IV.26 for v, can be substituted into Eq. IV.27, and the resulting equation integrated
to yield

Q=— ’;—T (Z—Z) V.28

This relationship can be expressed in terms of the pressure drop, Ap, which occurs over a
length, £, along the tube, since

Ap  dp
¢~ 0z
and therefore
— mR'p V.29
Q=" .

For a given pressure drop per unit length, the volume rate of flow is inversely proportional to
the viscosity and proportional to the tube radius to the fourth power. A doubling of the tube
radius produces a 16-fold increase in flow! Equation IV.29 is commonly called Poiseuille’s
law.

In terms of the mean velocity, V, where V = Q/mR?, Eq. IV.29 becomes

__ R%Ap

8ul V.30
The maximum velocity v,,,, occurs at the center of the tube, where from Eq. IV.26
_ R (0p) _ R
Vmax = 4u (62) T oaue V.3l

so that
Vmax = 2V

The velocity distribution, as shown by the figure in the margin, can be written in terms

of Upax @S
2
V2 _ 4 (T
2=t (3) V.32
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IV.5 Fluid flow regimes - Reynolds number

The flow of a fluid in a pipe may be laminar flow or it may be turbulent flow. Osborne Reynolds
(1842—-1912), a British scientist and mathematician, was the first to distinguish the difference
between these two classifications of flow by using a simple apparatus as shown by the figure
(a), which is a sketch of Reynolds’ dye experiment. Reynolds injected dye into a pipe in which
water flowed due to gravity. If water runs through a pipe of diameter D with an average velocity
V, the following characteristics are observed by injecting neutrally buoyant dye as shown. For
“small enough flowrates” the dye streak (a streakline) will remain as a well-defined line as it
flows along, with only slight blurring due to molecular diffusion of the dye into the surrounding
water. For a somewhat larger “intermediate flowrate” the dye streak fluctuates in time and
space, and intermittent bursts of irregular behavior appear along the streak. On the other hand,
for “large enough flowrates” the dye streak almost immediately becomes blurred and spreads
across the entire pipe in a random fashion. These three characteristics, denoted as laminar,
transitional, and turbulent flow, respectively, are illustrated in Figure b.

|
—— Dye ) Turbulent
) Transitional
) Laminar

Figure IV.7 (a) Experiment to illustrate type of flow. (b) Typical dye streaks.

—

=

/VfV\Smooth. well-rounded l
entrance g

(a) (b)

Reynolds showed that the parameter used to determine whether flow is laminar or turbulent is
a dimensionless number called the Reynolds number given by the following expression:

Re = — 1V.33

u: Average flow velocity through the section under consideration in (m/s)

D: Pipe diameter or width of the fluid stream in (m).

v: Kinematic viscosity of the fluid (m?/s).

The different flow regimes can be classified according to Reynolds number (as an indication)
as follows:

If Re <2000, flow is laminar

If Re > 2000, flow is turbulent:

- Smooth turbulent if 2000 < Re < 100000

- Rough turbulent if Re > 100000
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I1V.6 Head losses

Total head loss is the sum of linear (distributed) and singular (concentrated) head losses.

IV.6.1 Linear head losses (Major losses or frictional losses)

Linear pressure losses are pressure losses evenly distributed along a pipe.

a. Concept of pipe roughness

Unlike a smooth surface, a rough surface implies a surface condition whose irregularities
have a direct effect on friction forces. A rough surface can be considered as being made
up of a series of elementary protuberances characterized by a height, noted £, and called
Roughness. In order to compare roughness with respect to pipe diameter, the ratio known

. . k
as relative roughness is introduced: ¢ = >

NN A ANAN AN AN AN | — k

Rugosité D

AV AVAVAAYA VALY A AYA il s

Conduite
Figure IV.8

b. Expression of linear head loss
Linear head loss J; is calculated using the Darcy-Weisbach formula:

1 v?
Li=f 529 V.34
[: Pipe length (m)
D: Diameter of flow cross-section (m)
v : Flow velocity (m/s)
f: Coefficient of friction (unitless)

c. Expressions of the coefficient of friction f
In laminar flow, the coefficient of friction depends solely on the Reynolds number Re, accord-

ing to the formula:

_ 64

f= o 1V.35
In turbulent conditions, the Colebrook-White and Blasius formulas can be used:
Colebrook-White for hydraulically rough flow:
1 3.71D
= 2log (222) V.36
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Colebrook-White for hydraulically smooth flow:

_ Rey/f
7o 2log ( > ) Iv.37
Blasius for Re < 10°
0316
f=22 V.38

d- Moody diagram

Nikuradse's work on head loss in pipes has led to the development of a graph (Moody Diagram)
(Figure IV.9) for determining the coefficient f'as a function of Re for different types of flow
and relative roughnesses &/D ranging from 1/30 to 1/1014:

0.1 Y,
0.09 \ Wholly turbulent flow
\
0.07 0.05
0.04
0.06
0.03
0.05
0.02
0.015
0.04
0.01
0.008
0.006
f 003 k
0.004 D
0.025
0.002
0.02 0.001
0.0008
Laminar 0.0006
flow 0.0004
0.015p~ |
. 0.0002
Transition range 0.0001
00005
] 0.0000
0.009 -
0.008 | (IANEN | (NN | (1NN N | HEH) 0.00001
210 4 6 sl 20109 4 6 8[ 2(10% 4 6 8[ 2(105% 4 6 2010 4 6 8
10° 10 10° 108 107
Resm !H'l)

Figure IV.9: Moody diagram

IV.6.2 Minor head losses (Local losses)

Minor losses are the result of turbulent mixing of the fluid within the connection as the fluid
passes through it. Minor losses occur when the flow geometry changes — for example, at bends,
elbows, valves, expansions, contractions, and other fittings. These losses are localized at spe-
cific points in the system.

They are caused by several factors:

e Changes in flow direction: Bends and elbows create turbulence and result in pressure
drops.

50



e Changes in flow area: Contractions and expansions lead to flow separation and energy
dissipation.

e Obstructions in the flow path: Valves, fittings, and other components interfere with the
flow, increasing resistance.

Minor losses are calculated using the following equation:

2

Js=k— V.39

k is called the resistance or loss coefficient, which is determined from experiment. It is depend-
ent on the type and geometry of the fitting.

K, =004

Well-rounded entrance Flush entrance

(a) (b)

KL = 1.0

r=1(

KL - l.-ﬁ

Re-entrant pipe Discharge pipe
(c) (d)

Figure IV.10: Inlet and exit transitions
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Figure IV.11: Expansion and Contraction.

IV.7 Generalization of Bernoulli's theorem to real fluids

IV.7.1 Bernoulli's equation with head losses

The final form of Bernoulli's equation for a real liquid net is as follows:

2 2

PA |, Va PB VB
Zp+ 2+ A=+ 2+ 2+
ATy T2gT BTy T J

J=J;+ J; with:

52

0.13
0.40
0.80

IV.40



J: Total head losses.
Ji: Linear head losses.
Js: Singular head losses.

IV.7.2 Bernoulli's equation with energy production

If the term W,5 denotes the mechanical work exchanged between the fluid and any machines
present between points A and B, the Bernoulli equation can be expressed in the following gen-
eral form:

Pa L VA _ P | VB Jit)s
za+Ph4 2= gy P g (1) 1w V.41
If the machine supplies energy to the fluid (pump), then: Wz > 0

If the machine receives energy from the fluid (turbine), then: W,z < 0

If there is no machine between points 1 and 2, then: Wz = 0

IV.8 Concept of boundary layer

The boundary layer is the thin region of fluid near a solid surface where the effects of viscosity
are significant. Within this layer, the fluid velocity changes from zero at the surface (due to the
no-slip condition) to the free-stream velocity away from the surface. It plays a key role in fric-
tion, drag, and heat transfer in fluid flow.

When a fluid moves over a flat surface, the layer of fluid particles next to the surface has zero
velocity. As we move further away from the surface, each layer moves faster, eventually reach-
ing the free-stream velocity U. This phenomenon is due to the shear stress between fluid layers.
In the case of a Newtonian fluid, this shear stress is directly proportional to the velocity gradient,

described by T = (Z—;).

The velocity gradient and corresponding shear stress are greatest at the surface itself and de-
crease gradually with distance from the surface, eventually becoming negligible far away. This
means that, away from the surface, the flow becomes uniform, with little or no shear between
fluid layers and almost no sliding. In 1904, Ludwig Prandtl identified this distinct behavior and
named the variable velocity region near the surface the boundary layer.

v

Viscous shear
in this region
U -
du_q =
=1/ dy
.| Boundary layer
— —/~di gmall, 7 small
dy
| f .
\1
X dU large, 7 large
: dy

Fig. IV.12: Shear is proportional to the velocity gradient
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