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PREFACE

The course Control Systems(Asservissement) 02 continues the automation training of third-year engineering
students. It aims to deepen the understanding of control systems, particularly in their modeling, analysis, and
synthesis, both in continuous and discrete time. In an industrial context where performance, stability, and
precision of automated systems are essential requirements, mastering control techniques becomes a key skill

for any engineer in automation, electromechanics, or electrical engineering.

This module enables students to develop advanced skills in the design of controllers (P, PI, PD, PID),
processing of sampled signals, use of digital regulators, as well as analysis and synthesis in state space. It
prepares future engineers to tackle real-world control problems in various industrial sectors: electric machines,

automated processes, embedded systems, etc.

This course material is structured into five chapters that support a clear pedagogical progression:
Chapter 1: Introduction to Control

Chapter 2: Compensation of Linear Control Systems

Chapter 3: Analysis of Sampled Systems

Chapter 4: Synthesis of Sampled Control Systems

Chapter 5: Analysis and Synthesis in State Space

Each chapter combines theoretical reviews, design methods, and practical applications to promote both

analytical and hands-on understanding of control systems.

This coursebook thus serves as a reference tool for final-year engineering students and may also be useful to

anyone wishing to strengthen their knowledge in automatic control and regulation.
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© Objectives

Master the principle and structure of control loops and choice of appropriate regulator.

Study of sampled systems. Analyze discrete systems and synthesize discrete regulators (PID, RST and
state feedback)



I Introduction to control systems

1. Regulation Concepts

A controlled system is a system that takes into account, during its operation, the evolution of its outputs
to modify them and maintain them in accordance with a setpoint.

This branch of automation is divided into two other sub-branches (artificially separated by use):

¢ Regulation: maintaining a determined variable, constant and equal to a value, called a setpoint,
without human intervention. Example: Regulation of the temperature of a room.

e Servo-controlled systems: varying a determined quantity according to a law imposed by a
comparison element. Example: Regulation of the speed of an engine, Trajectory tracking of a
missile.

The goal of an automated system is to replace humans in a given task. To establish the structure of an
automated system, we will begin by studying the operation of a system in which humans are the "control
party".

Example: driver of a vehicle

The driver must follow the road. To do this, he observes the road and its environment and assesses the
distance between his vehicle and the edge of the road. He determines, depending on the context, the
angle he must give to the steering wheel to follow the road. He acts on the steering wheel (therefore on
the system); then again, he begins his observation throughout the duration of the trip. If a gust of wind
deviates the vehicle, after observing and measuring the deviation, he acts to oppose this disturbance.

If we want a servo to replace man in various tasks, it will have to have behavior and organs similar to
those of a human being. That is to say, it will have to be able to appreciate, compare and act.

Any servo-system will include these three categories of elements that fulfill the 3 major functions
necessary for its proper functioning (fig. 1-1):

e Measurement (or observation)
e Comparison between the goal to be achieved and the current position (Reflection)

e Power action

-

Action >

Effect of the action
L Observation |«

Figure 1.1: General control loop

Reflection

Y

Task to be completed

closed loop and open loop systems

To better understand the concept of a closed-loop system, let's consider an example with two cases. In
the first case, we examine an open-loop system and highlight its weaknesses. In the second case, we
demonstrate the advantages provided by closing the loop.

First Case: Cannon Fire at a Target

We consider a target to be destroyed and a cannon. To achieve the objective, the firing angle of the
cannon and the gunpowder charge of the shell are adjusted based on the target's coordinates and other
known parameters at the moment of firing. Once the shell is launched, if these external parameters
change, for example, if the target moves, no further adjustments can be made to its trajectory. The shell
is essentially left on its own.
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Second Case: Cannon Fire at a Target Using a Guided Missile and Radar

Now, consider the same target, but this time with a guided missile. In this case, even if the target moves
or a crosswind diverts the missile from its initial trajectory, it will still reach its goal. This is because, at
every moment, a radar system provides the respective positions of the missile and the target. By
comparing these positions, the trajectory error can be calculated and corrections can be made by
adjusting the missile's control surfaces to rectify the error.

In this scenario, the system is no longer left to its own devices because it includes a feedback loop. This
loop consists of the radar, which "measures” the missile's position and communicates this information to
the operator, and a telecommunication system that allows the trajectory to be adjusted by acting on the
missile's control surfaces.

The feedback loop, although introducing a certain level of complexity, provides an enormous gain in
precision.

Open Loop System

Command Inp Controller Contral Signal Motor Output/Position

Closed Loop System

Figure 1.3: open loop Vs closed loop

2. Components of a Control Loop

S Output Variable

The regulated output represents the physical phenomenon the system is designed to control—it is the
system's purpose. This can include voltage, displacement, rotation angle, level, speed, etc.

E Input Variable (or reference, or setpoint)

The setpoint is the action input, serving as the controlling variable of the system. Its nature can differ
from that of S; only its numerical value matters. If E and S have different natures, a numerical
correspondence between these two variables must be defined. For instance, one might specify that one
volt at the input represents 100 revolutions per minute.

¢ Error or Deviation (input - output)

The error, or deviation, is the difference between the setpoint and the output. This measurement can only
be made on comparable quantities, so it is generally performed between the setpoint and the measured
output. The comparator provides this value, which is proportional to the difference (E - S'). It may have a
different nature. For example, if E and §' are voltages, ¢ could be expressed as a current, such as ¢ = (E -
S) / R, where R is a resistance

S' Measured Output

The measured output is provided by the feedback chain, generally after some transformation. S' must
necessarily have the same physical nature as E, which is essential to give meaning to the difference (E -
S'). One of the roles of the feedback chain is thus to ensure the conversion of the measurement of S into
the physical quantity of E.
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In general, the system includes:

1
Erreur ou i’"‘ i Perturbations
Ecart Y Chaine directe (ou d'action) éventuelles
: \ _/\ :  (disturbances)
/— Régulateur ~‘. - \
'___a‘.________ v
. .
Entrée de (controller) i Actionneur , Sortie
référence Correcteur I + asservie
i rocessus
(consigne) I—h -—e— e mm mm Em Em = o= P
setpoint S
| ! Mesure
ponsd Capteur (¢
Comparateur ! (Measurement) (sensor)
feedback chaN

Chaine de retour (ou d‘observation)

Figure 1.2: Detailed control loop

In any control system, especially in industrial applications, the control loop consists of several
interconnected components. Each of these plays a vital role in ensuring the desired output is achieved

despite disturbances or variations in system b

1. The Industrial Process (Plant)

e The process is the part of the system being controlled. It could be a heating system, a motor, a

chemical reactor, a tank level system, et

e The goal is to maintain a specific variable (temperature, speed, pressure, level, etc.) at a desired

value.

2. Actuators

ehavior.

C.

¢ Actuators are devices that directly influence the process.

e Examples: valves, motors, heaters, pumps.

e They receive control signals from the controller and act upon the process accordingly.

3. Sensors (Measurement Devices)

e Sensors measure the current state or output of the process.

e They convert physical quantities (temperature, speed, pressure) into electrical signals.

e Examples: thermocouples, flowmeters, strain gauges.

4. Controllers

e The controller compares the measured output to the desired value (setpoint) and computes the

control action needed.

¢ |t can be implemented using analog electronics, digital computers, or PLCs.

e Common control types: PID controllers (Proportional, Integral, Derivative).

5. Signal Conditioning

¢ Signal conditioning devices prepare sensor outputs for the controller.

o They amplify, filter, or convert signals (e.g., analog to digital conversion).

e Important for ensuring accurate and reliable data processing.

6. Setpoint or Reference Signal

¢ The setpoint is the desired value of the output variable.

e Itis provided by the user or system and serves as a reference for the controller.

7. Disturbances
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o Disturbances are unwanted inputs that affect the process output.
e They may come from external sources (e.g., changes in load, temperature) or internal dynamics.

¢ The control system must compensate for these to maintain stability and performance.

3. Key Variables in Control Systems

To understand how a control system functions, it's essential to identify and distinguish the various types
of variables involved. These variables define the behavior of the system and how the control loop reacts
to achieve desired performance.

1. Manipulated Variables (Control Variables)
e These are the variables that the controller adjusts to influence the process.
e Example: In a heating system, the manipulated variable could be the power supplied to the heater.
¢ |t is the output of the controller and input to the process via the actuator.
2. Controlled Variables (Regulated Variables)
o These are the variables that the system aims to maintain at a desired value (setpoint).
e Example: The room temperature in a climate control system.
¢ The measured output of the process that is fed back to the controller.
3. Disturbance Variables
¢ Disturbances are unwanted inputs that affect the controlled variable.
e Example: An open window introducing cold air in a heated room.
e They are not controlled, but the control system must compensate for them.
4. Reference Signal (Setpoint)
¢ The desired value of the controlled variable.
¢ |tis compared to the measured output to compute the error signal used by the controller.
5. Error Signal
e Calculated as:
e(t)=r(t)-y()
where:
o e(t): error signal
o r(t): reference (setpoint)
o y(t): measured output
¢ This signal guides the control action.

4. Representation of a Controlled System

To understand and analyze a control system, it is essential to use schematic representations
(represented above in figure 1.2)and identify the elements of a control loop. These representations make
it easier to model, simulate, and optimize control behavior.

Elements of a Control Loop

Component Function

The system or equipment being controlled

Process (e.g., a tank, motor, heater).
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Actuator Executes the control signal (e.g., motor,

valve).

Measures the actual output (e.g.,
Sensor

temperature sensor, flowmeter).

Calculates the correction based on the error
Controller

between setpoint and feedback.

External factors that affect the process

Disturbance (e.g., load, temperature).

Returns the measured output to the

Feedback Loo . )
P controller for continuous correction.

Functional Diagrams and Types of Loops
There are two main types of control loops:
¢ Open-loop: no feedback, control action is independent of the output.

¢ Closed-loop (Feedback): output is measured and compared to setpoint; the error is corrected in
real-time.

Performance Criteria of a Control System

To evaluate how well a control system performs, several quantitative and qualitative criteria are used.
These determine if the system is stable, accurate, fast, and robust.

Stability

Stability refers to the ability of a control system to return to a steady state after a disturbance. A stable
system ensures that the output does not diverge over time.

¢ BIBO Stability (Bounded Input, Bounded Output):
A system is BIBO stable if, for any bounded input, the output remains bounded.

In the context of transfer functions, the system is stable if all poles of the transfer function have negative
real parts.

Accuracy

Accuracy is a measure of how well the output of the system follows the desired input, often quantified by
the steady-state error.

o Steady-State Error:
€ss = hmt—>oo [T(t) - y(t)]
Response Time

Response time measures how quickly the system reaches a steady state after a disturbance or input
change.

Key performance metrics related to response time include:
¢ Rise Time (tr): The time it takes for the output to rise from 10% to 90% of its final value.

o Settling Time ( ts ): The time required for the system output to remain within a certain percentage
(usually 2% or 5%) of its final value.

For a second-order system, the settling time tst_sts is approximately:
4

(wn,

ts ~2
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Where:
e (is the damping ratio
¢ on is the natural frequency
o Peak Time (tp ): The time it takes to reach the first peak of the overshoot.

For a second-order system, the peak time is:
R
¢ Overshoot ( Mp ): The amount by which the system exceeds the desired value, usually expressed
as a percentage.

The overshoot for a second-order system is:

__gm
M,=e Vi x 100
Bandwidth

Bandwidth refers to the range of frequencies over which the system can effectively respond to an input.
A system with a larger bandwidth can handle a wider range of frequencies, meaning it responds more
quickly to changes in the input.

Bandwidth Definition:

The 3 dB bandwidth is defined as the frequency range where the magnitude of the system’s transfer
function remains within 3 dB of its peak value.

Robustness
¢ The system'’s ability to maintain performance in the face of disturbances or model uncertainties.
e Important in real-world applications where conditions may vary.
Disturbance Rejection
¢ How well the system can reject external disturbances and restore output to the desired value.
Control Effort
¢ Refers to how much energy or actuation is required to maintain control.

¢ A good system achieves performance with minimal actuator effort.

10



II Correction of Linear Feedback Systems

Introduction

The correction of linear feedback systems involves adjusting their performance to meet specific criteria
such as stability, precision, speed, and robustness.

1. Specifications of a Control System

A specifications document for a control system outlines the functional and technical requirements that
the system must fulfill. This is a critical step in designing a feedback control system, as it ensures the
system meets its intended purpose efficiently and reliably.

Main Components of the Specifications
1. System Objectives

Define the purpose of the system, such as maintaining a specific temperature, regulating speed,
controlling position, or ensuring stability in dynamic conditions.

2. Performance Criteria

Specify quantitative measures to evaluate the system, including:
¢ Precision: The acceptable level of steady-state error or accuracy.
¢ Stability: The system should not oscillate or diverge when subjected to disturbances.
o Speed of Response: Characteristics like rise time, settling time, and delay.

¢ Robustness: The system’s ability to maintain performance despite variations in parameters or
disturbances.

3. Input/Output Specifications
« Inputs: Define the type (e.g., voltage, position, force) and range of input signals.
e Outputs: Specify the expected range, accuracy, and nature of the system's output.
4. Operating Conditions
Outline the environmental and operational constraints, such as:
e Temperature ranges.
e Humidity levels.
e Power supply requirements.
¢ Physical dimensions and limitations.
5. Constraints and Limits
¢ System Constraints: Maximum load, bandwidth, or other physical/technical limits.

o Safety Constraints: Ensure safe operation under all conditions, avoiding failures that could cause
damage or harm.

6. Disturbance Rejection

Specify how the system should handle external disturbances while maintaining output stability and
accuracy.

7. Control Architecture

11
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Define whether the system will use specific control laws or strategies, such as:
e PID controllers.
e Adaptive control.
e Feedforward or feedback control loops.

Purpose of the Specifications Document

By detailing these requirements, the specifications serve as a blueprint for system design, allowing
engineers to:

e Evaluate system performance.
¢ Ensure compatibility between components.
¢ Plan for testing and validation phases.

This ensures the system functions correctly in real-world conditions and meets user expectations.

2. Necessity of Correction in Control Systems

Stability and Precision in Control Systems
In the study of control systems, stability and precision are key specifications, often creating a trade-off:
1. Stability:
o Improved by reducing the open-loop gain or bandwidth.

o Defined by gain margin (lower gain = better stability) and phase margin (lower phase shift =
better stability).

2. Precision:

o Static Precision: Requires integration in the open-loop transfer function to eliminate steady-
state error.

o Dynamic Precision: Improved by increasing the gain or bandwidth.

However, increasing gain for precision reduces stability making it challenging to achieve both
simultaneously. To address this, compensators or controllers adjust the gain in specific frequency
ranges to balance stability and precision.

Additionally, a good control system must:
¢ Be robust to disturbances (narrow bandwidth).
¢ Respond quickly to input changes (wide bandwidth).

These conflicting requirements necessitate correctors that shape frequency response (e.g., Bode or
Nyquist plots) to:

¢ Ensure stability with adequate gain and phase margins.

¢ Maintain high precision at low frequencies.

¢ Minimize the impact of disturbances without limiting overall bandwidth.
Correctors (electrical, mechanical, or hydraulic) act as filters to balance these requirements effectively.
Controlled systems without proper correction often face limitations, including:

¢ Instability: Poorly designed feedback loops can lead to uncontrolled oscillations.

« Significant residual error: Even with feedback, the error between the setpoint and the output may
remain high.

» Slow or imprecise response: Without correction, dynamic performance (response time, overshoot,
damping) may not meet the requirements.

12
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Correction is introduced to address these issues, enhancing both dynamic and static performance of the
system.

Objectives of Correction
The goal of correction in controlled systems is to:
» Minimize or eliminate steady-state error for specific input types (step, ramp, or parabolic inputs).
¢ Stabilize the system by reducing oscillations and avoiding divergence.
¢ Improve dynamic performance by adjusting:
o Risetime.
o Overshoot.
o Settling time.
o Bandwidth.
¢ Enhance robustness against disturbances and parameter variations.

Correction is essential in controlled systems to meet industrial requirements and performance
standards. It ensures the system achieves the specifications of the design while remaining stable and
robust under unexpected conditions.

3. Correction (or Compensation) Strategy for Control Systems

3.1. Correction Methods

Summary: Designing Controllers for Feedback Systems

The purpose of control system analysis tools is to guide the synthesis of corrected or compensated
systems, focusing on designing suitable controllers or compensators. This process involves three main
steps:

1. Define System Specifications:

o ldentify the desired behavior of the controlled system as outlined in the requirements.
2. Select Controller Configuration:

o Decide how the controller will be integrated with the system (e.g., series or parallel).
3. Tune Controller Parameters:

o Calculate the values of the controller's parameters to meet the specified goals.

The ultimate goal is for the output, s(t)s(t), to achieve the desired behavior within a specific time interval
by determining the command signal u(t)u(t) that ensures this outcome.

Common Controller Configurations:

e(t) &(t) u(t) s(t)
. . —+’®—> Correcteur —® Processus —1—*
Cascade (Series) Correction:

e The controller is placed in series with other elements

of the system for direct compensation. Figure 2.1: Feedback (Parallel)

Correction:

13
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e(t) e(t) u(t) R
- T Processus »
Feedback (Parallel) Correction: % —
N - Correcteur +—————

e The controller operates in parallel with an
element of the system, forming a secondary loop

for enhanced correction. Figure 2.2: Feedback (Parallel) Correction with
inner loop
i’)’ Corrse;taur + Tﬂ Corr;zteur i(tl Processus :’&x
Other configurations, such as feedforward correction, are S
also widely used depending on the system's requirements. +
e(t) (t) s(t)

u(t
® Correcteur
T —> Ge ¥ Processus T >

Figure 2.3: Other control loop

4. Structure of P,I,D, PI, PD, PID correctors

4.1. structure of P,I,D, PI, PD, PID correctors

After selecting a correction configuration, the designer must choose the type of controller that, once its
parameters are determined, will meet the specifications outlined in the design requirements. However,
even here, there is a wide variety of controllers available. In practice, the simplest option is often
preferred. The more complex a controller, the higher its cost, the less reliable it is, and the more
challenging it is to implement.

The choice of a specific controller for a given application is always based on the designer's experience
and, at times, intuition.

Once the controller is selected, the next step is to determine the values of its parameters. These are the
coefficients of one or more transfer functions that make up the controller. The fundamental approach
involves using the analytical tools discussed in Chapter 5 (Control System Performance) to evaluate how
each individual parameter affects the system's overall behavior and, consequently, its performance.
Based on this analysis, the controller's parameters are adjusted to ensure all specifications are met.

While this procedure often yields the desired results directly, it frequently requires multiple iterations
since certain parameters interact with each other and influence the overall system behavior. For
instance, a specific parameter value may satisfy the overshoot requirement, but when another parameter
is adjusted to achieve the desired rise time, the overshoot may no longer be acceptable.

It becomes clear that the more specifications there are, the more controller parameters need to be
adjusted, and the more complex the design process becomes.

a) General principles

Theoretically, the placement of the controller within the overall system diagram has little impact, as it
globally modifies the open-loop transfer function. However, in practice, it cannot be placed arbitrarily.

At the end of the action chain, high-power components are present, making it impractical and
uneconomical to position a controller there. On the other hand, the feedback loop carries measurement
signals, making it a viable location for a controller, provided it does not significantly alter the output.

14
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In general, cascade controllers are typically placed either at the output of the comparator in the forward
chain (before amplification) or within the feedback loop. Controllers are not perfect implementations.
Given the desired performance, the actual system design may only approximate the mathematical model
within a specific frequency range, and the system's behavior in other domains may differ significantly.
This must be considered when integrating the controller into the system.

To determine the type of controller and parameter values, several methods can be used:

¢ Analyze the time-domain response and evaluate the static and dynamic performance before and
after compensation.

e Use the Nyquist curve of the compensated system to deduce the controller structure and
parameters by comparison with the desired curve.

¢ Follow a similar process using Bode plots.
¢ Use root locus techniques, as the controller introduces new poles and zeros.

In many examples, a simple amplifier with a constant gain KK has been used as the controller. This type
of control, known as proportional correction, produces an output u(t)u(t) proportional to the input
g(t)\varepsilon(t).

Additionally, the controller can incorporate the derivative or integral of the input signal ¢(t)\varepsilon(t)
alongside proportional action. Thus, controllers can generally be viewed as a combination of
components such as comparators (adders or subtractors), amplifiers, attenuators, differentiators, and
integrators.

To quickly understand the PID controller, each of its actions—Proportional (P), Integral (I), Pl
(Proportional-Integral), Derivative (D), and PD (Proportional-Derivative)—should be analyzed individually.

b) Proportional action corrector (P)

The relationship between the output u(t) and the error signal &(t) is:
u(t) = Kp - e(t)

That is:

Up) _
T = K

Regardless of the mechanism and the energy source used, the proportional controller is essentially a
variable-gain amplifier. Its functional diagram is shown in the figure.

e(t) e(t) K, u(t)

—P%()—b —>
+

Figure 2.4: Proportional controller

The proportional action P generates a control signal u(t) that is proportional to the error signal £(t). It
primarily influences the system gain and significantly improves accuracy.

The proportional action:
* Increases the gain, which reduces the steady-state error (improving accuracy), but
¢ Increases the system bandwidth, which
e Improves system speed, and
¢ Increases system instability.

The proportional corrector P is generally not used alone. We will see that any corrector has at least the
proportional action.

15
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© Example

The figure below shows the functional diagram of an example of proportional correction.

e(t) e(t) u(t) 1 s(t)
- Ko [ > (p+1)(0.5p+1) >

1

Figure 2.5: Proportional controller in control process

Step Respaonse
< Kp=19 (d%=46.4 :Tr=0.2955:Ts=1.725)
Kp=9 (d%=32.7:Tr=04545:Ts=1.77s)

14

1.2+

Consigne £=5%

| v [

N A T B e=30%
o 08¢t ? ¢ |
o e=10%
= R R N .. —
S 06l @— Kp=7/3 (d%=10.6:Tr=1.04s;Ts=2.045) |
<

044t
e=50%
Kp=1 (d%=2.84 ; Tr=1.56 5 : Ts=1.83 s)
02 -
O | | | 1 1 [ |
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Figure 2.6: Effect of the proportional action
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Figure 2.7: Effect of the proportional controller on stability margins

It is observed that increasing Kp leads to:

« An improvement in static error,

16
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» A decrease in rise time,
* A slight improvement in settling time,
* But also a reduction in phase margin and an increase in overshoot (increased system instability).

c) Integral Action Controller (I)
The relationship between the output u(t)u(t)u(t) and the error signal (t)\varepsilon(t)(t) is:

du(t
W0 _ Ke(t)

or equivalently,
u(t) = K; fot e(t)dt That is to say,

Up) _ K _ 1
z(p) P Tip
where

e K, is called the integral gain
e T; is called the integration time constant
The main advantage of this controller is that it introduces integration into the control loop.

We know that the presence of integration in the open-loop transfer function (OLTF) increases the
system's order and reduces or eliminates, depending on the type of input, the system's steady-state error.

The pure integral action:
e Improves accuracy by reducing or eliminating the steady-state error, but
¢ Introduces a -90° phase shift, which may destabilize the system (reducing the phase margin).

A controller with purely integral action is rarely used in practice due to its slow response and
destabilizing effect. It is generally combined with the proportional controller.

d) derivative action corrector (D)

The relationship between the output u(t) and the error signal «(t) is:

u(t) = K29

That is to say,

U(p)
e(p)

Where:

K is called "derivative gain",

:Kd-p:Td-p

T, is called "derivative time constant

e(t) g(t) u(t)

+

Figure 2.8: Pure Derivative Action Correction
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Pure Derivative Action:

¢ Improves the stability of the system by introducing an additional phase lead of +90° (increasing
the phase margin),

e But decreases the system's accuracy,
¢ And amplifies high-frequency noise.

A controller with exclusively derivative action is almost never used. It is generally combined with a
Proportional controller.

e) Proportional, Integral, and Derivative (PID) Controller
The PID corrector combines the actions of the 3 correctors P, | and D.

The relationship between the output u(t)u(t) and the error signal g(t)s(t) is:

u(t) = K, - e(t) + K, [Le(t) dt + K, 20

In the Laplace domain:

U(p) K;

(p) = Kp+ P + Kap
Alternatively:

Up) Ky (Kq 2 K;
elp) — pp(KZp TP Kp)

Or equivalently:

29— Ky (1+ Tup+ o)

T K, + ﬁ+de —»

Figure 2.9: Proportional, integral and derivative (PID) correction

This corrector, easy to implement, allows to cancel the static error signal e and to have a relatively fast
and well-damped response. Indeed, the PID corrector increases the system class by one unit and
introduces 2 zeros that can be used to improve the transient response.

The root locus method can be used to locate these zeros in order to satisfy a specification on the static
and dynamic regimes.

We have seen that a P corrector (Kp) brings speed to the system by reducing the rise time. It also
reduces the static error, but does not eliminate it. The integral action (Ki) will have the effect of
eliminating the static error. It therefore brings back precision, but degrades the transient response. The
derivative action (Kd) improves the stability of the system, reduces overshoots and improves the
transient regime.

The effects of each corrector (Kp, Ki and Kd) on the closed-loop response of the system are grouped in
Table bellow:

Rise Time Overshoot  Settling Time Steady-State Error
If K}, increases Decreases Increases (Little change) Decreases
If K; increases Decreases Increases Increases Eliminated
If K increases (Little change) Decreases Decreases (Little change)

Figure 2.10: Effect of each action: P 1 D
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There are analytical methods for calculating the components of the PID controller, but they are quite
complex and rarely used. Empirical methods exist and greatly simplify the determination of PID
controllers (Ziegler-Nichols method, Chien-Hrones method, etc.).

Finally, it is important to remember that it is not mandatory to include all three controllers in a system if it
is not necessary. If a Pl controller provides satisfactory performance for the output, there is no need to
add a D controller to the system. The controller should be designed as simply as possible.

5. Phase delay corrector

The phase lag compensator is a compensator that, despite its name, increases the gain only at low
frequencies. It is therefore used to improve the precision of a controlled system.

Its transfer function is:

Clp) = 472 witha > 1

To better understand the effect of this compensator, we plot its Bode diagram. There are two cutoff
frequencies:

1 1
T and T

such that :
1 1
9T < T

we have

C(U)) _ aV1+T?%w?
 V1ta?T2?

and

¢(w) = arctan(Tw) — arctan(aTw)

When w — 0w — 0w — 0, we get:

Cw) —a

This zero-slope equivalent is valid from 0 up to the first cutoff frequency, which is expressed as: (%T

The asymptotic slope of the Bode diagram then decreases by one unit, and this new equivalent is valid
until the second cutoff frequency % beyond which we recover a zero slope.

Whenw — +oo
we have 201log C(w) — 0 dB

Examining the Bode diagram allows us to predict the effect of this compensator. When placed in
cascade with the system to be corrected, the two Bode diagrams will add up. The static gain is thus
increased by 20log a which improves precision. By setting the parameter T to a sufficiently small value,
this correction only affects low frequencies; the gain at high frequencies is practically unaffected. The
additional negative phase shift introduced by the compensator also occurs at low frequencies.
Therefore, it does not influence the stability margin, since the 0 dB crossover frequencies are generally
located at higher frequency ranges.

In any case, to adjust the phase lag compensator, we choose the value of a to obtain the desired static
gain, and then select T such that + < w;
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20logC(w)

i | o
VaT!  UTi|1 10 100
A 0(0)
S o
__‘_5\\ //f_}______
e Pinin
T-n2

Figure 2.11: Bode plot of a phase delay corrector

© Example

Let us consider a system with the transfer function G(p) placed in a unit feedback loop, given by:
G(p) = £

(1+45)°

The parameter K, the open-loop static gain of the system, is positive and adjustable. We want the
closed-loop system to have a position error of ¢, = 5% while maintaining a phase margin of

Ap = 45°.
We start by adjusting K to satisfy the phase margin condition:
Since:

G(jw) = K 3
T s)

we have

w, U

Ap = m — 3arctan 53~ =

which gives :

weo = 10rad/s

thus we get

Glwe) = —E== =1

w2
0
3]

solving for K

K= (\/5)3 —28 = 20logK —8.9dB

Let us now calculate the position error obtained in closed-loop under these conditions:

ep = lim, o[l — H(p)] = lim, 9 {1 - #—&-%)3]

which gives
ep = T = 0.26 = 26%

20



Correction of Linear Feedback Systems

The observed accuracy does not meet the design specifications. To achieve a position error of 5%,
it is necessary to have a static gain K' such that:

gp:ﬁzo_og, = K' =19 = 20logK'=25.6dB

Let us introduce a phase lag compensator in the direct path

Ep)
4.@_@.8['9). C(p) »  Gip)

‘ -

Figure 2.12: Proportional gain control

S

we have :

C(p) = % witha > 1

The new open-loop transfer function is:

a(14T: .
Gep) = C)G(p) = “Tregy- * Thgr witha>1

The new static gain is:

K'=2.8a.

Therefore, it is necessary to adjust the parameter a such that:

a=9% =68 = 20loga=16.7dB

Finally, we just need to choose T so that 1/TT is much lower than the cutoff frequency at 0 dB.
For example, we can take T=10 s.

Thus, we finally get:

_ 6.8(1+10p)
Clp) = “Tresp

Figure below presents the Bode diagrams comparing the initial system and the corrected system.

Remember that the Bode diagrams of G(p) and C(p) add up to form that of the corrected system
G.(p).

P 20logC(w) —— -
20logG(w) ——
20logG () —
25,6 dB
16,7 dB
\ ®

1 10\ 100

Figure 2.13: Bode margins 1
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6. Phase advance corrector

The phase lead compensator is a compensator that, as its name suggests, increases the phase margin
of a system. It compensates for insufficient phase shift around the cutoff frequency at 0 dB.

We take:

C(p) = lltaTTIf’ witha > 1

To better understand the effect of this compensator, let’s plot its Bode diagram. There are two cutoff
frequencies: 1/T and 1/aT with:

1 1
o < T
We have:

C(CL)) _ AV/1+a?T2w?
VT2

and

¢(w) = arctan aTw — arctan Tw
When ©—0, we get:

Clw) —1

This zero-slope equivalent is valid from 0 up to the first cutoff frequency, which is expressed as:

1
aT

At this point, the asymptotic slope of the Bode diagram increases by one unit. This new equivalent

remains valid up to the second cutoff frequency (1/T), beyond which the slope returns to zero (Figure
below).

When yo—+w, we get:

201og C(w) — 20loga

The advantage of this compensator is visible in its phase diagram: at the frequency
1

Wmax = TvVa

the phase shift reaches a maximum that we can easily calculate:

a—1
a+1

(Pmax = arcsin

20logC(w)
20loga .
20 dB +
L AR °
1 R V&
() P
m/2 ; : i
Prnax /"‘\
1
o ______——'—“— H \“‘.\_\_\_____ ®

max

Figure 2.14: Bode margins 2
The principle of corrective action is to align emax\omega_{\max}omax with the cutoff frequency at 0 dB,

w.0, of the system to be corrected, and to adjust pmazym.xpmaz, known as the phase boost, to achieve
the desired phase margin.
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© Example

Consider a system with a transfer function G(p)G(p)G(p) placed in a unit feedback loop, given by:

G(p) = (pl_ef)z

We want to correct this system so that its phase margin equals 45°. Let's compute the phase
margin before correction.

We have:

G(w) = —lfgg =1

from which:

wo = v/99 = 9.95 rad/s
thus

Ap =7 — 2arctanwy = 0.2 rad = 11°

The phase margin is insufficient. To correct it, we need to introduce a phase boost of 340 at
frequency w.0.

We introduce a phase lead compensator adjusted such that:

a—1

1
a a+1

Tvs — W0 = 9.95rad/s and max = 34° = arcsin

thus:

s oa—1 __ o
arcsin -y = 34

which gives:
__ 1+sin34° __
a = T3 = 394

or equivalently:
20loga = 11 dB

then

L —wy, => T=-—-=—L1_ —0053s
TVa 0 woa 9.95v/3.54

o)

T =189rad/s and aT =5.3rad/s
Finally:

_ 14019
C(p) = Hg_—og;?ﬁ,

The new open-loop transfer function is:
Ge(p) = C(P)G(P) = Tromets - T

110.053p ~ (p+1)?
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20logC(w) ===+
20logG(em)
20logG (m)

2081 \ 150
11dB [ h === =—====---

Ta::

o(w)
/2
‘pmu

Figure 2.15: Bode margins 3

7. Selection Criteria and Tuning Methods
When designing a control system, selecting the appropriate controller parameters is crucial for ensuring
good performance. This process involves:

¢ Choosing a suitable performance criterion

¢ Applying a tuning (dimensioning) method based on system response characteristics
Performance Criteria

Performance criteria help define what makes a controller “good” based on desired behaviors (like fast
response, minimal overshoot, etc.).

a. Flatness Criterion (Critere Méplat)

This criterion focuses on minimizing oscillations in the system’s step response. A flat response implies
low overshoot and a stable approach to the steady-state.

o Preferred in systems where overshoot is undesirable.
e May result in slower response, but higher robustness.
b. Symmetrical Criterion (Critére Symétrique)

The symmetrical criterion aims to balance rise time and overshoot for a well-proportioned transient
response.

e Useful when both speed and stability are important.

e Often results in a compromise between rapidity and damping.
Controller Tuning Methods
These are practical techniques used to determine the parameters of P, PI, or PID controllers.
a. Ziegler—Nichols Method

A widely used empirical method to tune PID controllers based on the system’s ultimate gain and
oscillation period.

Steps (Ultimate Gain Method):
1. Set the controller to P-only mode.

2. Increase the gain until the output oscillates with constant amplitude.
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3. Record:
o Ku: Ultimate gain

o Tu: Oscillation period

rt)

u(r)
| Plant

o)

Y

Figure 2.16: proportional gain feedback

Tuning Formulas:

Controller —

Type KpK_pKp TiT_iTi TdT_dTd

p 0.5Ku0.5 B B
K_u0.5Ku

o 0.45Ku0.45 | 3 21|
K_u0.45Ku 192

PID 0.6Ku0.6 Tu/2T_u/ | Tu/8T_u
K_u0.6Ku 2Tu/2 / 8Tu/8

8. Controller Tuning by Imposing a Reference Model

1. Objective

This method consists of designing a controller so that the closed-loop system behaves like a desired
reference model (also called a tracking model).

The idea is to impose a performance model with known, desirable properties (such as fast response and
good stability), and then calculate the controller parameters so that the actual system matches this

model.

2. Reference Model Definition

Let the desired closed-loop transfer function (model of tracking) be:

M(s) = Ya(s) _ bm

R(s) 8240718+ Ao

Where:

e R(s) is the Laplace transform of the input (reference)

e Y_d(s) is the desired output

¢ M(s) defines the ideal system behavior

3. Example: Second-Order Tracking Model

A common choice for M(s) is a second-order system:

M(s) = 52—
(8) T 824 2(wns+w?

Where:
e \omega_n : natural frequency

e \zeta: damping ratio
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This model allows control over:
e Speed of response (wx,)
e Overshoot and stability (¢)
4. Designing the Controller
Let the process (plant) be:
_ b
G(s) = rasrar

We want the closed-loop transfer function:

_ _CB)G)
T(S) = m = M(S)
Solving for C(s) :

M(s)
C(s) = gmu-am

5. Implementation Strategy
¢ Choose a desired model M(s)
« |dentify or approximate the system G(s)
o Compute the controller C(s) using the formula above
¢ Simplify and implement the controller
o -

6. Advantages

Precise control over desired performance

Simple mathematical formulation

Suitable for analog and digital implementation
. -

7. Limitations

Sensitive to modeling errors in G(s)

Can lead to complex (high-order) controllers

Performance affected by disturbances and noise

9. Application: Speed Control of a DC Motor

1. Introduction

DC motors are widely used in industrial systems, robotics, and automation. One of the most important
control tasks is to regulate the speed of a DC motor to follow a desired reference value, despite
disturbances or load variations.

This section introduces the mathematical model of a DC motor, and explains how to design a controller
to regulate its speed.

2. Mathematical Model of the DC Motor
A simplified linear model of a DC motor can be described by the following equations:
Electrical Equation:

. di
V() =R-i(t) + L- E0 4 K, - w(t)
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Mechanical Equation:

J- 20 4 Blwt) = K, -i(t)
Where:

e V(1) :input voltage [V]

i(t) : armature current [A]

w(t) : angular speed [rad/s]

R : armature resistance [Q]

L : armature inductance [H]
Ke : back EMF constant [V-s/rad]

K; : torque constant [N-m/A]

e J:moment of inertia [kg-m?]

e B :viscous friction coefficient [N-m-s]
3. Transfer Function

Taking Laplace transforms and assuming zero initial conditions, we can derive the transfer function from
input voltage V(s) to output speed \Omega(s) :

Q(s) _ Ky
V(s) = (JLs?+(JL)Bs+(K.K;+RB)s+RK,B)

For simplification, assuming a dominant time constant and neglecting inductance L, we get a first-order
model:

Q) _ K
V(s) = 7s+1
Where:

e K:system gain
e \tau:time constant
4. Speed Control Using a PI Controller
A common solution for speed control is to use a Proportional-Integral (PI) controller:
C(s) =K, + %
The closed-loop transfer function becomes:

C(s)G(s)

T(s) = 1+C(5)G(s)

Where G(s) is the DC motor transfer function.
® -
5. Tuning the PI Controller

Using methods like Ziegler—Nichols, pole placement, or model-following, we tune K_p and K.i to
achieve:

e Fastresponse

¢ Minimal overshoot

e Good disturbance rejection
Example of pole placement:

If the desired pole is at s = —a , then solve for K_p, K_i such that the characteristic equation of the
closed-loop system equals:

s2+2as+a’=0
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6. Practical Considerations

¢ Sensor noise filtering may be needed for derivative terms.

¢ Add current limitation to protect the motor.

¢ Use anti-windup for integrators to prevent saturation issues.
7. Simulation and Validation
Simulate the system using MATLAB/Simulink to:

¢ Validate the performance

e Test against step inputs and disturbances

e Compare open-loop vs. closed-loop responses
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1. Signals sampling

In industrial reality, the complexity of the systems, as well as that of the processing to be carried out,
often requires the use of digital processing tools: computers, calculators, digital systems of all kinds.
Such tools cannot in any case accommodate continuous signals; these must be transformed into
sequences of numbers in order to be processed (figure ....). Similarly, these systems deliver, at their
output, sequences of digital values, in other words, digital signals.

The operation of digital control is carried out as follows:

1. Conversion of an analog signal into a digital signal: This involves converting the information from
the analog signal into a digital value so that it can be processed by the controller (ADC block).

2. Synthesis of a calculation algorithm: This step involves establishing a digital control law to allow
the controlled system to meet the specifications provided by the user (Algorithm block).

3. Conversion of a digital signal into an analog signal: In order to control the physical system, this
step consists of transforming the digital signal from the controller into an analog control signal
present throughout the sampling period (DAC block).

. | 0
O CAN ’—-| Algorithme H CNA H Systéme & commandaﬁ)—

Figure 3.1: discret-continus converters

1.1. The principle of sampling

Sampling a time signal s(t) consists of transforming it into a discrete sequence s(nT,) , with values taken
at specific times nT.

Te is called the sampling period, and the times nT,, are referred to as the sampling instants.

In practice, sampling a signal involves multiplying it by a sampling function p(t) , which is zero
everywhere except near the times nT, . This function is often called a "comb" function.
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p(1)

NN NE
0 71, 2T nt,
s(1)
- :!
0
5 (1)

| ‘ | | """" I | ‘;f
o' 7. 2T, nT,

Figure 3.2: sampling steps in Te sampling period
Sampling produces, from a signal s(t)s(t), the sequence
5(0), s(Te), s(2Te), . . ., s(nTe)
which is generally denoted as:
s*(t) = {s0, 81, 82,---,8n}
or alternatively as:

s(k) = {s0, 51,82,---,8n}

1.2. Shannon's Theorem

In order to reconstruct the original signal from the spectrum of the sampled signal, the primary goal of
sampling is to ensure no information is lost during the discretization of the continuous signal.

A simple observation of the spectrum \( |[U(f)| \) in the figure shows that this is possible if there is no
overlap between the different segments of the spectrum.

i(f)

‘if‘\“'

o A -B0 B f.-B T,

Figure 3.3: signal bandwitdh
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If B is the bandwidth of the signal s(t) , in other words, its upper frequency limit, the first shifted segment
in the spectrum of s*(t) , which is centered around the frequency f_e, extends from f_-B to f_+B.

The condition for no overlap is therefore, quite clearly:
B< (fe-B)=>f.> 2B
This inequality constitutes Shannon's theorem, which can also be stated as follows:

To preserve the information contained in a signal during sampling, the sampling frequency f, must be
greater than twice the bandwidth of the signal.

4 N
© Example

If we want to digitize the analog signal of the telephone network, which has a bandwidth extending

from 300 to 3400 Hz, what should be the minimum sampling frequency?

The formula of Shannon's theorem immediately shows us that the sampling frequency must be
greater than twice the maximum frequency, which is 6800 Hz. The standard frequency that has
been chosen for the digital network is 8 kHz, which satisfies the above conditions.

2. The Z transform -properties and applications

Let us take an analog signal u(t) that we sample at a sampling frequency fe while respecting Shannon's
theorem.

We have: u(k) = u0, u1, u2, . . ., Un this sequence is the sum of the product of the unit pulses shifted from
one another by a period Te and the coefficient uk.

w*(t) = upd(t) + urd(t — To) + uad(t — 2T.) + - - -

= wd(t — kT.)
k=0

u* (t) = Z ULOL
k=0

The Laplace transform of the sampled signal u*(t) is:
u*(s) = D op_o ure "M

By setting z = exp(sTe), the Z transform of the signal u(t) is defined by
U(z) = Yiourz "
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p
| —x(t) |
os b -xefkTe),
0.6
2471
Q.2
. .
0 1 2 3 4 5 6 T g
Figure 3.4: square signal sampling
Y(2) =Y, 0w =202 +x27t Hagr t taged tagrt tased Haer 0 =
N

© Example

22423 p 24275

L 26

J

2.1. Properties of the Z transform

e Linearity

aui(t) + Pua(t) P alUi(z) + pU2(2)
e Time shifts

Delay theorem: The Z transform of the signal u(t) delayed by one time is:

u(t — aT,) LR z7U(2)
Advance theorem: The Z transform of the signal u(t) advanced by a time aTe, is:

e Derivative with respect to Z

tu(t) P —Tz%ﬁz)
e Complex scaling

Ty = G,k
z

e Convolution product

u(t) xy(t) & U(2)Y(2)
e Accumulation

n Z 4
> ko Uk < 27U(2)

2.2. Z-transform of usual signals

Unit Impulse
0, = 0 ailleurs

Z-transform of Unit Impulse
Alz) =Y otz b =20=1
Unit Step
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T'r=1 VkE>0
I'y =0 ailleurs
Z-transform of Unit Step

\(\Gamma(z) = \sum_{k=0}*{\infty} z*{-k} = \sum_{k=0}*{\infty} \left( \frac{1}{z} \right)*k = \frac{1}{1 -
\frac{1}{z}} = \frac{z}{z-1\)

Unit Ramp Definition
{v(t) =t Vt>0

v(t) =0 elsewhere

Unit Ramp Expressed with Unit Step

v(t) =t -T'(t)
Z-transform of Unit Ramp Using Differentiation
V(2) = ~Te 2 = —Tef (F)

% Final Z-transform of Unit Ramp

V(z) = (zz_Tle)z

Exponential Decreasing
Let u(t) be the signal defined by

u(t)=e ™, Vt>0
u(t) =0, elsewhere

Z-transform of the Signal
U(z) = 052 g e ek

Simplification of the Z-transform

k
= Zzio (26+Te)
Final Z-transform

U(z) =

z—eTe

2.3. Initial Value and Final Value Theorem of a Sampled System

initial Value Theorem

Let U(Z) be the Z-transform of the signal u(t). The sampling of the signal u(t) gives us the sequence wuy,
Initial Value Theorem

The initial value u(0) can be evaluated directly from its Z-transform according to the formula:
U(O) = limzﬁjtoo U(Z)
finall Value Theorem

The final value theorem allows us to know the value towards which the sequence uk tends when k tends
to infinity

limy s oo up = lim, . [(1 - zfl)U(z)] = lim,_ [Z;Zl U(z)]
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2.4. Inverse Z Transform

The discrete-time Z-transform plays the same role as the Laplace transform in the continuous domain.
Using the Z-transform requires us to be familiar with methods for finding the inverse Z-transform.

The inverse Z-transform of a signal U(z) provides us with the time sequence corresponding to u(kT).

It is very important to note that the inverse Z-transform only provides the sequence u(kT) at sampling
times O, T, 2T, . . ., KkT.

This sequence u(kT) is unique. However, the signal u(t) may not be unique.

The following figure shows an example for which we have a sequence u(kT) that is the same for two
different signals u7(t) and u2(t).

g T 3T 3T aT 5T

Figure 3.5: sinusoidal signal sampling

There are four methods of inverting the Z transform. Two analytical methods allow us to obtain the
original signal as a function of time t, the other two methods are of the digital type which only give the
digital values at sampling times of the signal u(t).

a) Analytical methods

Residue Method

let

u(z) = Y222 u(nT)z "

with

u(nT) =3, [Residue.—, (2" YU(z))]

where z; are the poles of U(z)

4 )

© Example

Let a signal U(z) be given by:

U(z) = (zzizln)z

This function has a double pole at z=1.

(nT) = |Residue at z = z; (z("*l)(z’f_i)?)] — % [(z _ 1)2(ZT__21")2:|

Therefore:
U(z) =T Y onz ", and U(t)=t-T(t)
b) Method of decomposition into simple elements

This method consists of decomposing U(z) into simple elements whose originals are found in the Z
transform table.

Example:

Let a signal U(z) be given by the following equation:

_ 2(52—3.6)
U(z) = 21421048
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This function has two poles: z=0.8z2 = 0.6
The simple element decomposition of U(z)gives us:

U(z) = 25 + 55

Using the Z transform tables we find:

—0.223

u(t) =2e"7

—0.511

t 4 3e—T ¢

Numerical methods

Division by increasing powers of z-1

This method is used when U(z) is in the form of rational fractions in z (or in z-1), it is sufficient to
divide

the numerator by the denominator to obtain a series in z-1, whose coefficients are the desired
values

of u(nT).

© Example

Let a sampled signal have the following Z-transform:
Ule) = 752

The division of the polynomial numerator by that of the denominator leads to:
U(z) =21 +32 2+ 7234+ 15274+ 3125+ ...

w*(t) = 8(t — T) + 38(t — 2T') + 76(t — 3T) + 156(t — 4T) + 318(t — 5T) + . ..
therefore

u(kT) =2F — 1

Method of recurrent equations

This method consists of deducing the value of the sample u(nT) from the knowledge of the
previous samples at the times: (n - 1)T, (n - 2)T,(n - 3)T, - - -

We proceed in this way iteratively by progressing step by step from period to period.

© Example

Let a system have the following discrete transfer function:

ggi; - 2—10.5 = Y(z) - 0.5271Y(z) — z*lU(z
we then find:

y(kT) = 0.5y[(k — 1)T] + u[(k — 1)T]
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Discret time system

3. Sampled transfert functions

Recurrence equations

We call a linear recurrence equation of order 1 with constant coefficients any equation of the type:
Uy + oy = f(k)

Witha € R x o € R*a € R+ and f a function with values in R\mathbb{R}R.

The solution to this equation is the real sequenceu(k)u(k)u(k)withk € Nk € Nk € N, whose terms
ukuuk satisfy the equality for all indices k.

In the general case, a recurrence equation of order n is of the form:

S axy(n — k) = i byu(m — k)

The development of this equation gives us:

aoy(n) + ary(n — 1) + - -+ + apy(0) = bou(m) + byu(m — 1) + - - - + byu(0)

In control systems, a sampled system of order n, governed by a recurrence equation of the form above,
where y represents the output and u represents the input, must satisfy the condition for causality.

For this system to be causal, it is required that n>m.
Sampled transfer function
Applying the Z transform to the recurrent equation leads us to find the sampled transfer function.

Assuming that the initial conditions are zero, the Z transform of equation in the general form above gives
us:

(@n2" + ap 12"+ a2+ ag)Y(2) = (byp2™ + by 12™ L+ -+ b1z + b)U(2)
and

G(z) _ bma™ by 12" e by 24by
T ap2ta, 12" M- tajztag

This is defined as the Z-domain transfer function representing a sampled system.

The transfer function can also be represented by the following model:

G(z) _ b (2—21)(2—22)" * (2= 2m)

an(z—s1)(z—s2) - -(z—sn)
Where
iy € [1,m] represents the zeros of the system.

si,i € [1,n| represents the poles of the system.

( N

© Example

Let a discrete system be represented by the following recurrence equation:

yk)=ylk—1) —ay(k — 1) + ae(k — 1)

We assume that the input of the system is eee and its output is yyy. The Z transform of this
equation is given by:

Y(2) = 27Y(2) —az7'Y(2) + az 'E(2) = [1 + (a — 1)27 1Y (2) = a2z 1E(2)

So the transfer function of this system is given by:

_ Y(2) _ az” ! _ a
G(2) = Bz  1t@1DzT — @1’
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4. Association of sampled systems

Simplification Rules

a) Rule 1: Elements in cascade or serie

G=G, G, .-G, :ﬁG,.
=1

E
E— G_1 Gz —

Figure 3.7: cascade

b) Rule 2: Elements in parallel

G=G+G,+..+G,=> G,

i=1

G,

Figure 3.8: parallel representation

c) Rule 3: Removal of an element from an action chain

6,6,

la

. i - : G Y

X b +

—_— G L

+ 2 G g
— - -
Gl
Figure 3.9: summing action
d) Rule 4: Elimination of a feedback loop
X +C D G, Y
+ e X G, Y
— 1+ GG,

G,

Figure 3.10: feedback loop
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There are other rules that we covered in Asservis -1, which apply equally to both continuous and discrete-
time systems.

Example

Determine the transfer function of the following system.

X(el G, (p)

Y(p)

| G,(p) Gs(p)

H,(p) =

H(p)

Hi(p) =

Figure 3.11: complex control schema 1
Solution

X(p) Y(p)

G,(p)Galp

H;(p)-H.(p)+Hs(p)

Figure 3.12: complex control schema 2

5. Harmonic, impulse, and step response

A discrete-time system can be characterized by its impulse response s(k) and step response u(k), as
shown in Figure below. The impulse response corresponds to the system's output when the input is a
discrete impulse §(k). In the case of the step response, it is obtained when the input is a discrete unit
step u(k).

oK) Jsth
: Impulse response
- . —o0—0 T ]’ T ? ?“. »
S50 1 5 5 | discrettime | - oo T s ik
»| system >
ull) (k) Step response
1 |
LN R A T S o4k

Figure 3.13: complex control schema 3
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© Example

Consider the transfer function of the system F(z) given by:

F(2) = 753
since
S(z
F(z) = 353 = 8(2) = B(2) - 7575

We apply an impulse input e(k)=5(k).

The Z-transform of the impulse signal 5(k) is E(z)=1.
Thus:

S(z) = E(2) - L = S(z) =

22—32+2

1
223242

The partial fraction decomposition of S(z)/z is:
1 1

1 _ 1

2(22-32+2) % + 232 Toz—1

S(z) =
Thus, we obtain:

$(2) =% + wm — =1

The inverse Z-transform is obtained directly using the transform pairs from Table
sth) = 27 { & + 52 - =7}

Applying inverse transformation:

s(k) = +0p + 328 —1F = 16, + 281 —1

Thus, we get:
1
s(o):§+2*1 1=0
s(1)=2"-1=0
s(2)=2'-1=
s(3)=2>-1=
s(4)=2-1=
\\ J

6. Z-domain Transmittance and Frequency Response of a Zero-
Order Hold

1. Transmittance in Z of the Zero-Order Hold

The Zero-Order Hold (ZOH) is a device used to maintain a constant value between two successive
samples in a discrete-time system. It is often used in digital-to-analog conversion.

Its transfer function in the sss-domain is given by:
H(s) = 12—

S

where T is the sampling period.
Applying the Z-transform,the ZOH transfer function in the Z-domain is:

H(z) = =

-1
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Discret time system

which simplifies to:

1
H(z) = ! T

2. Frequency Response
The frequency response is obtained by evaluating H(z) on the unit circle, i.e., replacing z with e/*:

H(eij) — lfz;ij

Simplifying:

H(eT) = =22

Jw
This function shows that the ZOH acts as a low-pass filter, smoothing out rapid variations in the signal.
Its magnitude and phase are given by

i sin(wT'/2
H(eT)| = |22

Arg(H(e*T)) = =

This means that the ZOH introduces attenuation at high frequencies and a phase delay that increases
with frequency.

7. Analysis of sampled systems, sampled stability
The study of the stability of a closed-loop system consists in locating the poles of the latter in the
complex plane.

In the case of a continuous system, the system is stable if and only if the poles of the latter are in the left
half-plane.

For discrete systems, we will begin the study of stability by the relationship between the S plane and the
Z plane in order to locate the stability domain in the Z plane.

Let:

Z = e*T with s = 0 + jw = Z = e Te*IT

Then Z can be written as:

7 — 0T oi(wT+2k)

And thus:

2| =T

The relationship between the stability region in continuous and discrete systems is given by:
c<0=1Z]<1

Calculating poles can be complex for high-order systems, so algebraic methods such as the Routh
criterion or De Jury criterion are often used.
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Figure 3.6: complex plane for poles stability
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IV Synthesis of sampled control systems

Introduction

The synthesis of sampled control systems plays a crucial role in modern digital control, where signals
are processed in discrete-time rather than continuous-time. With the increasing use of microcontrollers
and digital processors, the need for effective digital control strategies has become essential.

This chapter focuses on the fundamental concepts and methods for designing sampled control systems,
emphasizing stability, speed, and steady-state accuracy. It explores various control techniques, including
standard PID controllers, digital controllers, and pseudo-frequency synthesis with bilinear
transformation. Additionally, it covers the selection and tuning of regulators using classical, modern,
and empirical methods to ensure optimal system performance.

By understanding these techniques, engineers can design efficient digital control systems that meet the
performance requirements of various industrial and technological applications.

1. Stability, Speed (Rapidity), Static Precision

Key performance aspects to evaluate and design control systems:
o Stability: Ensuring the output remains bounded for any bounded input.

o Speed (Rapidity): How fast the system responds to input changes.

2. Precision

A system is robust if it is characterized by the following three qualities: stability, speed and precision.
In this part we will study the precision of a digital servo system.
The looped systems considered here are assumed to be stable.

Precision can be defined by the ability of a system to follow a given particular instruction with a certain
error that must be limited by the specifications.

In this part we are interested in the so-called static precision which is defined by: the error limit after a
sufficiently long time (greater than the free response time).

To study static precision, we consider the servo system represented by the following block diagram:

1

Figure 4.3: sampling system
The Z-transform of the error(e(t) is given by:

e(z) = H;T(Z)E(z) where T'(z) is the Z-transform of [By(s)G(s)].

We consider the system to be stable, so the final value theorem gives us:

limy,_, o e(kT) = lim,_,; (1 — z‘l)e(z) = limy o e(kT) = lim, ,; (%) ( L >E(z)

We clearly see that the steady-state error depends on the input E(z).
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Synthesis of sampled control systems

The transfer function G(s)is of the form:

Gls) = £ 53 = £G,(s).

wherecis the number of integrators in G(s), indicating the system'’s order.
(T(2) can have the following form:
T(z)=1-2zYZ [%Gp(s)].

According to the input E(z) , the type of steady-state error can be defined as follows:

e If the input is a unit step: this is called position steady-state error.
e If the input is a ramp: this is called velocity steady-state error.
¢ If the input is a parabola: this is called acceleration steady-state error.

The value of the steady-state error can be summarized in the following table:

c=0 c=1 c=2 c<2

Position
Steady- )
State Error | T9% 0 0 0

varepsilon,

Velocity
Steady- - 0 0
State Error o0 i

varepsilon,

Acceleration
Steady- T2
State Error

varepsilon,

where c: the number of integrators in G(z).

Example Suppose that G(s) = ks + 1G(s) = -£-G(s) = s + 1k and we want a position steady-state error

s+1
less than or equal to 0.05.
G(s) = <4 = T(2) = (1- 27 [ | (2)
where:
k
[s(s+1) ] (2)
is the Z-transform of
k

s(s+1)
thus :

e 1)1 el
T(Z) = k(l - Z_l) (172(}1)(17)6—12—1) =k (176—1)
The steady-state error is given by:

(z—1) (z—e!) z

z—e”1 .
£(2) = WE(Z) =€, = lim, ,;

z  (z—e Dtk(l—e 1) 2—1
which simplifies to:

(1—e?)
1+k

To ensure ¢p<0.05
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Synthesis of sampled control systems

1
- <0.05

Therefore, kkk must be greater than or equal to 19.

3. Standard Controllers (PID) and P-Plane Design

¢ PID Controllers: Widely used due to simplicity and robustness. The transfer function is:
C(s) = K, + &+ Kys

¢ Design in the P-Plane (Pole Placement):
Place the closed-loop poles to achieve the desired dynamics.
For a discrete-time system with sampling period T_s design in the Z-plane via mapping:

z=eMsT_s}

4. Numerical controller

Polynomial methods are among the most commonly used techniques for designing digital controllers.
They are highly flexible and relatively easy to implement.

The polynomial RST regulator is described by the canonical structure shown in Figure below), where
R(z71), S(271), and T'(z~!)are polynomials. Such a regulator is called "3-element" (referring to these three
polynomials) or "2 degrees of freedom." It can be used for both stable and unstable systems.

w(k) e(k) 1 u(k)

Bz y(k)
n S(Z_l) >

-1
e aG

G(z ) =

h 4

discret system

R(z™)

polynomial controller

Figure 4.1: polynomial control schema

The transfer function G(z*{-1}) of the process to be controlled can be expressed as follows:

— B(z!
G(=™) = 3=

where

Az ) =1+aiz7 4+ az 2+ +az™
B(z)=biz7l+bez7 2+ -+ bz ™

The function G(z1) is assumed to be strictly proper, meaning:
deg A > deg B

The closed-loop transfer function is given as follows:

“1y T(z"HB(z™)
Hpp(z™") = A(z"1)S(z 1) +2z 4B(z 1)R(z"))

The characteristic polynomial of Hpr(z ') is defined as:
Pz =A(z"HS(=")+ Bz H)R(z1)

Thus, the closed-loop transfer function simplifies to:

_ T(zHB(z!
Hpp(z) = g
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where

Rz Y =ro+rzt+...
Sz =s0+s1271+...
T(zY)=to+tiz7t+...

The synthesis of the RST polynomial regulator is based on the pole placement strategy in the closed-
loop system.

Pole placement means specifying the closed-loop poles, which correspond to the roots of the
polynomial P(z71):

P(z71) = A(z"1HS(z7 1) + B(z"H)R(z71)
Pz =1+pizt +paz?+...

The choice of the denominator P(z ') of the closed-loop transfer function allows imposing the system's
poles.

The polynomialsR(z~') and S(z~!) must be selected with degrees compatible with the desired degree of
P(z7h).

To ensure a proper regulator, we impose the following conditions:
degP =2degA—1, degS=degR=degA—1

The resolution of equation above, known as Bezout's identity or a Diophantine equation, provides the
polynomialsR(z!) and S(z~!)by solving the following matrix system.

Sp—P
<
N 0 0 0O 0 ... 0 07
ai ao 0 0 0 oo 0 b1 - - . -
. 50 Po
aq Qo 0 0 e b2 bl
pn-1 Qn-2 Qp-3 ... ay by by
Sr—1| _ | Pr-1
an n-1 Qp-2 ... a1 b, by r =
0 anp Qp-1 ... a2 by, by 0 Pn
0 0 a, e as bn bn—l
: : [7r—11 LP2n—1]
0 0 0 ... an by bua b

With S being the Sylvester matrix, ¢ representing the vector defining the tuning parameters, and P the
vector defining the coefficients of the imposed polynomial.

In fact, in this system, r=max(n,m), a0=1, s0=1, and P, = 1. For the Sylvester matrix to be invertible, it is
necessary and sufficient that the two polynomials B(z~1) and A(z~!)are coprime.

It follows that:

Sp=P=¢=85"'P

On the other hand, the polynomial T'(z2~!) can be chosen as follows:
T(z™') = kpP(z7!

where

kp = 5y if B(1) #0, and kp=1if B(1) = 0.

Example: Designing an RST Controller for a Discrete-Time System
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Given:

A discrete-time system with the following transfer function:

— 0.52~1
G(z 1) = 1—0.28,2*1

Choose a desired closed-loop characteristic polynomial P(z*{-1}) that places the poles at desired
locations for stability and performance. For instance, selecting a pole at z=0.5:

P(z')=1-052""

solution

A(zl)=1-0.827""1

B(z!) = 0.5z

Formulate the Diophantine Equation:

The Diophantine equation relates the polynomials A, B, R,and S
Az H)S(z7Y) + 279B(z"Y)R(z7!) = P(z7)
Assuming a system delay d=1:

(1-0.8271)S(z7 1)+ 2710527 )R(27 1) =1 - 0.5z
Determine the Degrees of R and S:

To match the degrees on both sides, choose:

deg(S) =0 and deg(R)=0

let

S(z71) = s
R(zY) =mr,
Solve for R and S:

Substitute S(27!) and R(z™!) into the Diophantine equation:
(1-0.82")sg+2 5052 )rg=1-0.5z"

Equate coefficients of corresponding powers of z71:

Forz?:

s =1

—0.8s5¢p + 0.5rg = —0.5

Substitute s0=1:

—0.8(1) + 0.5rg = —0.5

0.5rg = 0.3
ro = 0.6
thus
SizhH=1
R(271)=0.6

Determine the T Polynomial:

The T polynomial is typically chosen to ensure proper reference tracking. A common choice is:
T(z7') = kpP(z71)

Where kp is a gain factor. Assuming kg = 1:

T(z')=1-052"
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The designed RST controller has the following polynomials:
R(271)=0.6

Szl =1

T(z1)=1-05z"1

5. Pseudo-Frequency Synthesis & Bilinear Transformation

This sub-chapter focuses on how to design digital controllers using frequency-domain methods,
particularly by adapting continuous-time designs to discrete-time systems using bilinear (Tustin)
transformation.

When designing control systems digitally, we often begin with a continuous-time (analog) model and
transform it into a discrete-time equivalent. The frequency response of digital systems is not linear with
respect to the s-plane due to the nonlinear mapping s <+ z. To handle this, pseudo-frequency synthesis
methods are used.

Due to the nonlinear transformation from the s -domain to the z -domain, frequency warping occurs. The
true frequency w in the analog domain is not directly equivalent to the frequency €2 in the digital domain.

The transformation is defined as:

_ 2 1
S§= T, 2

This is the bilinear (Tustin) transformation, which maps:
¢ The left half of the s-plane into the inside of the unit circle in the z-plane.
¢ The imaginary axis (jo) to the unit circle (|z| = 1).
Im{s} Im{z}

J
\‘\\:: Re{s} &\\&\%EQ Re{z}
NE 1 \ t\\%\ |

i

(a) s plane (b) z plane

Figure 4.4: stability

To analyze the system as if it were still in continuous-time, we define a pseudo-frequency w, as follows:

— 2 QT
wp—T—s-tan( > )

Where:
e Qs the digital (discrete-time) frequency

e Tiis the sampling period

This transformation allows us to apply Bode plot design techniques on the digital system by plotting
against wy, instead of Q.
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5.1. Discretization of a continuous transfer

The discretization of a continuous transfer consists of performing a transformation P -> Z.

This transformation is done using an approximation of the relation: Z = eST .
Several approximation methods allow the transition from the continuous domain to the discrete domain.

The choice of one or the other of these methods depends on the advantages and disadvantages
presented by each of these methods, as well as the validity of the results in terms of time and frequency
response. Two categories of methods are presented:

— By approximations of the integral operator.

— By invariant techniques.

Approximation of the Integral Operator

This approximation includes the following methods

« Euler’s Method for which s = (1)

e Tustin's Method .s = (fp(('z 111)) )

© Example

Consider the following continuous-time transfer function in the s-domain

__ _2s+H
(H(S) - 32-‘:-8334-4

Using the Tustin then Euler transformation, find the discrete-time transfer function H(z)

\\ J/

5.2. Relationship between continuous systems and sampled systems

We consider the controlled system represented by the following block diagram:

w(k)

e(k) 1 u(k) L BEY | yw
n S(z Y > G(z 1) _A(Zfl) »

Y

T(z™1)

discret system

R(z™Y)

polynomial controller

Figure 4.1: polynomial control schema
This is a controlled system with unitary feedback and a single sampler.

For this type of system we have:

(e(t) = e(t) — y(?)

— et~y ()

Let:

(T'(s) = Bo(s)G(s) = T(z) = Z-transform of [By(s)G(s)]
We have:

{s(z) =E(z) - Y(2)
Y(2) =T(2) - e(z)
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Therefore, the transfer function of the closed-loop system is given by:
Y(2) T(z)

E(z) — 1+T(2)

6. Controller Design in Discrete Time: Classical, Modern, and
Empirical Methods

This section addresses how digital controllers are designed using classical, modern, and empirical
approaches. All designs assume discrete-time implementation with a fixed sampling period T_s .
Classical Discrete-Time Design Methods

These methods are direct extensions of continuous-time techniques using z-domain analysis and
difference equations.

1. Discrete-Time Root Locus

Given a plant:

G(2) = 7

The root locus is plotted for the closed-loop system:
_ _KG(»)

T(z) T 1+KG(2)

We adjust gain \K to achieve desired pole placement inside the unit circle.

Figure 4.5: complex plane

2.Discrete-Time Bode/Nyquist Design
For frequency domain design:

e Compute the frequency response of G(e*{j\Omega})

¢ Use Bode plots to design discrete compensators like lead/lag.
Compensator in z -domain:
Cle)=K- v
Design aims to adjust gain margin, phase margin, and bandwidth.
3. Discrete PID Control
A general digital PID controller:

u(k) = u(k — 1) + K [e(k) — e(k — 1)] + KTye(k) + K B2l Urelt2)
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Or in transfer function form:

. _ -1
C(2) = Kp+ 25 + Ky - 25—

Modern Discrete-Time Control
Modern approaches use state-space and optimal control theory for sampled-data systems.

1. Discrete State-Space Feedback

Given:
z(k+ 1) = Az(k) + Bu(k), y(k) = Cz(k)
We apply state feedback:

u(k) = —Kz(k) + r(k)
The gain matrix K is designed to place the eigenvalues of A — BKinside the unit circle.
2. Discrete Linear Quadratic Regulator (DLQR)
Minimizes cost:
J = 38 [2(K)"Qa(k) + u(k)" Ru(k)]
Solve the Discrete Algebraic Riccati Equation (DARE):
P=ATPA - ATPB(R+ B"PB)'BTPA+Q
Then compute:
K = (R+ BTPB)"'BTPA
3. Discrete MPC (Model Predictive Control)
¢ Predicts future outputs using the system model
¢ Solves an optimization problem at each step
¢ Handles constraints on u(k) , y(k)

Toolboxes like MATLAB MPC Toolbox support this with automatic discretization and constraint
handling.

Empirical Discrete-Time Methods
1. Relay Auto-Tuning (Discrete)
« Inject a discrete relay signal (tamplitude)
e Measure output oscillation period T, and amplitude a
e Estimate ultimate gain K, and period T,
Then apply discrete Ziegler-Nichols tuning rules for K, T;, Ty
2. Step Response Tuning
e Apply a step input to the plant
e Fit the result to a First-Order Plus Dead-Time (FOPDT) model

From model:

d
G(2) ~ 5~

Use this to calculate PID gains.

3. Auto-Tuning Software

50



Synthesis of sampled control systems

Most industrial PLCs and digital controllers (Siemens, Omron, etc.) include PID autotuning options:
e Perform closed-loop excitation
e Fit a discrete model

e Automatically assign discrete PID parameters
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V Analysis and synthesis in state space

Introduction

In this chapter, we explore modern control system design using the state-space approach. Unlike
classical methods that rely on transfer functions, the state-space framework allows for a more general
and flexible representation of dynamic systems, especially when dealing with multiple inputs and
outputs.

We begin by analyzing the internal behavior of systems through key concepts such as stability,
controllability, and observability. These properties help determine whether a system can be stabilized,
controlled to a desired state, or observed from its outputs.

Once the system is properly analyzed, we move on to synthesis—designing state feedback controllers
and observers to achieve specific performance objectives. This approach forms the foundation for
modern digital and optimal control strategies.

1. Definition : State-Space Representation
Where:

- X(t) : State vector (describes the internal state of the system)
- u(t) : Input vector (external inputs to the system)

- y(t) : Output vector (measured outputs)

- A : System matrix

- B : Input matrix

- C : Output matrix

- D : Feedthrough (or direct transmission) matrix

In the continuous domain, the dynamic aspect of the systems is described by differential equations that
we assume in this course to be linear and stationary equations (constant coefficients). Among the
representations of dynamic systems,we are interested in this part in the state representation that allows
us to use the calculation techniques available in linear algebra, as well as powerful control law synthesis
tools such as pole placement, optimal linear quadratic control, Gaussian linear quadratic control, H1
control, p-synthesis, . . .

In this part we will study the systems in the state space, for this we will start by implementing the state
representation through a continuous example.

Example Let the series RLC circuit be represented by the following figure:

() & qm

VR VL

u() c==%)

Figure 5.1: RLC circuit

This system can be represented by the following differential equation:

u(t) = Ri(t) + LEL 4+ y(t)
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and
y(t) = & [i(t)d(t) = i(t) = C 4L

By substituting i(t)i(t)i(t) with its expression in equation (2.1), we obtain the following differential
equation:

LCij+RCy+y—u=0

we define
1 =Y
Tro = y

{il = Ty
=94 1 R 1
Ty =—Ig%1 — 7%+ oY

These equations can be written as follows:

Do R Y B
y=11 o

This representation, called the state-space representation of the system.

} +OU()

Lo

The state-space representation is a mathematical model of a physical system expressed as a set of first-
order differential (or difference) equations. It describes the system using a state vector, input vector, and
output vector.

The general form of the continuous-time state-space representation is:
State equation:

#(t) = Az(t) + Bu(t) n Output equation:

y(t) = Cz(t) + Du(t)

where:

S

: The input vector of the system, with dimensions n x m, where n is the order of the system and m is the number
: The output vector of the system, with dimensions n x p (y € R"*P), where p is the number of outputs.

: The state vector, with dimensions n x 1 (z € R").

: State matrix, with dimensions n x n (A € R™").

: Input matrix, with dimensions n x m (B € R™*™).

: Output matrix, with dimensions p x n (C € RP*™).

O Q ™~ 8 «

: Feedthrough (coupling) matrix, with dimensions p x m (D € RP*™).

The state model can be represented by the following diagram:

Figure 5.2: state space model
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2. Stability in State-Space Systems

Stability is a fundamental property of dynamic systems. In the state-space framework, we determine the
stability of a system by examining the eigenvalues of the system matrix A . For a linear time-invariant
(LTI) system:

State equation (without input):

z(t) = Axz(t)

The stability of the system depends on the eigenvalues of the matrix A:

- The system is **asymptotically stable** if all eigenvalues of Ahave strictly negative real parts.

- The system is **marginally stable** if all eigenvalues have non-positive real parts, and any eigenvalues
on the imaginary axis are simple (i.e., no repeated eigenvalues).

- The system is **unstable** if any eigenvalue of Ahas a positive real part.
The general solution to the homogeneous state equation is given by:
z(t) = etz (0)

( N

© Example

A:B ﬂ B:E], c=00 1

The poles of this system are given by:

b -3l
[;:_—31 Z—_42H o
— (z—1)(z—2) — (—3)(~4) = 0

— 22-32-10=0

|2 — Al =0 =

—

_ 331
= Ay =

Thus, the system is not stable.

3. Controllability and Observability
For the study of controllability and observability, we consider the system represented by the following
state model:

x = Az + Bu
y=Cz+ Du

Controllability

One of the objectives of control in the state-space is to transfer the system from any initial state to a
desired state. This can only be achieved if the system is controllable.

A necessary and sufficient condition for the system to be controllable is that the rank of the
controllability matrix equals the order of the system. In this case, the controllability matrix is said to be of
full rank, and the system is completely controllable.

The controllability matrix is given by:
¢o=[B AB A’B A3B ... A"lP]
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For the system to be controllable, it must satisfy:
rank(p) =n
Observability

The observability of a system in the state space allows us to reconstruct one or more non-measurable
states.

For the system to be observable, the observability matrix must be of full rank, i.e.:
rank(d) = n
Where 9\vartheta$ is the observability matrix, defined as:

C
cA
9= | CA?

[CA™]

© Example

Controllability

Let's consider the example of the system governed by the following state equations:
z(t) = [A] z(t) + [Bl e(t)

with:

[A]:[:i :z] and [B]:<_12>

The controllability matrix is formed by two vectors:
[Claym) = [[B] [A][B]]

Now:

4)(B] = [j :2] <_12> - @

Hence:

. 12
[Claansy =|_5 &

This matrix is indeed of rank 2, since its determinant is non-zero:
1 2
-2 5

det ([C(ay8)) = =9

Therefore, the system is fully controllable.

Observability

Let's consider a system defined by the following state-space representation:
(t) = [A] z(t) + [B] u(t)

y(t) = [Cla(t)

where:
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The observability matrix is given by:

0" [06:4]

We compute:

C=[1 0, CA=[1 0 [_02 _13}:[0 1]

Thus:

o=l 1]

Since the observability matrix has full rank (rank = 2), the system is fully observable.

. J

3.1. Controllable Modes and Observable Modes

If a system is not completely controllable, that is: rank(p) = r < n This means there are r controllable
modes and n-r uncontrollable modes.

If a system is not completely observable, that is: rank(d) = » < n This means there are r observable
modes and n-r unobservable modes.

Example
Consider a system represented in the state-space by:

{x(k +1) = Az(k) + Bu(k)
y(k) = Cz(k) + Du(k)

-05 0 O -1
A=|0 1 0|, B=|0o|, Cc=[0 1 1]
0 0 05 1
The controllability matrix is:
-1 05 —-0.25
=10 0 0 —  rank(p) =2
1 05 0.25

Thus, we have two controllable modes: z=-0.5and z=1 and one uncontrollable mode: z=0.5

The observability matrix is:

01 1
9=10 0 0.5 = rank(¥) =2
0 0 0.25

Thus, we have two observable modes: z=1 and z=0.5, and one unobservable mode: z=-0.5.
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