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Summary

Medical image segmentation is a critical preprocessing step in computer-aided diagnosis, treatment
planning, and biomedical research. While Fuzzy C-Means (FCM) clustering is a widely adopted
technique for this task due to its ability to handle inherent ambiguities in medical data, its
performance is highly sensitive to initial parameters and is prone to convergence to local optima.
This thesis presents a comprehensive approach to overcoming these limitations through two
primary contributions. First, we provide an overview of medical imaging and the fundamental
challenges of segmentation. We then detail traditional clustering-based methods, with a specific
focus on the FCM algorithm, outlining its strengths and well-documented limitations. To address
these limitations, we explore bio-inspired optimization metaheuristics as a powerful strategy for
guiding the clustering process.

The core contribution of this work is the novel hybridization of the Artificial Bee Colony (ABC)
algorithm with FCM. The proposed method focuses on the simultaneous optimization of the crucial
FCM parameters: primarily the number of cluster centers and their values and the optimization of
the objective function by escaping to the local optima, to achieve a superior and more robust
segmentation outcome. The effectiveness of this hybrid ABC-FCM approach is rigorously validated
through experiments on both simulated brain MRI and real clinical MRI brain images. Results
demonstrate a significant improvement in segmentation accuracy and convergence behavior
compared to standard FCM and other optimization-enhanced variants.

The second major contribution is the development of a new cluster validity index (CVI) to
automatically determine the optimal number of segments. This index is designed to enhance the
separation metric of the IMI index by incorporating a measure based on Kullback-Leibler (KL)
divergence, which better captures the statistical distance between fuzzy clusters. Experimental
results confirm that the proposed KL-based CVI outperforms existing indices in accurately
identifying the true number of clusters in both synthetic and complex medical imagery.

This thesis offers significant advancements in Al-driven medical image segmentation by introducing
an optimized clustering framework and a more robust validation metric, both contributing to higher
diagnostic reliability.

Keywords:
Medical Image Segmentation, Fuzzy C-Means (FCM), Artificial Bee Colony (ABC) Algorithm,

Metaheuristic Optimization, Magnetic Resonance Imaging (MRI), Cluster Validity Index (CVI),
Kullback-Leibler Divergence.
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Résumeé

La segmentation d'images médicales constitue une étape prétraitement cruciale pour le diagnostic
assisté par ordinateur, la planification des traitements et la recherche biomédicale. Bien que la
méthode de clustering Fuzzy C-Means (FCM) soit largement utilisée pour cette tache grace a sa
capacité a gérer les ambiguités inhérentes aux données médicales, sa performance est tres sensible
aux parameétres initiaux et tend a converger vers des optimums locaux.

Cette these présente une approche compléte pour surmonter ces limitations a travers deux
contributions principales. Premierement, nous fournissons une vue d'ensemble de l'imagerie
médicale et des défis fondamentaux de la segmentation. Nous détaillons ensuite les méthodes
traditionnelles basées sur le clustering, en nous concentrant particuliérement sur I'algorithme FCM,
en soulignant ses forces et ses limitations bien documentées. Pour répondre a ces limitations, nous
explorons les métaheuristiques d'optimisation bio-inspirées comme stratégie puissante pour guider
le processus de clustering.

La contribution principale de ce travail est I'hybridation novatrice de I'algorithme Artificial Bee
Colony (ABC) avec le FCM. La méthode proposée se concentre sur l'optimisation simultanée des
parameétres cruciaux du FCM : principalement le nombre de centres de clusters et leurs valeurs, et
I'optimisation de la fonction objective en échappant aux optimums locaux, pour obtenir un résultat
de segmentation supérieur et plus robuste. L'efficacité de cette approche hybride ABC-FCM est
rigoureusement validée par des expérimentations sur des images cérébrales IRM simulées et
réelles. Les résultats démontrent une amélioration significative de la précision de segmentation et
du comportement de convergence comparé au FCM standard et a d'autres variants optimisés.

La deuxieme contribution majeure est le développement d'un nouvel indice de validité de clusters
(CVI) pour déterminer automatiquement le nombre optimal de segments. Cet indice est congu pour
améliorer la métrique de séparation de l'indice IMI en incorporant une mesure basée sur la
divergence de Kullback-Leibler (KL), qui capture mieux la distance statistique entre les clusters
flous. Les résultats expérimentaux confirment que le CVI proposé basé sur KL surpasse les indices
existants en identifiant avec précision le nombre réel de clusters dans des images tant synthétiques
que médicales complexes.

Cette thése offre des avancées significatives dans la segmentation d'images médicales pilotée par
I'IA en introduisant un framework de clustering optimisé et une métrique de validation plus
robuste, contribuant tous deux a une fiabilité diagnostique accrue.

Mots-clés :

Segmentation d'Images Médicales, Fuzzy C-Means (FCM), Algorithme Artificial Bee Colony (ABC),
Optimisation par Métaheuristiques, Imagerie par Résonance Magnétique (IRM), Indice de Validité
de Clusters (CVI), Divergence de Kullback-Leibler.
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General Introduction



General Introduction

Medical image segmentation serves as a cornerstone of modern healthcare, enabling
precise delineation of anatomical structures and pathological regions across diverse imaging
modalities, from Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) to
Positron Emission Tomography (PET) and ultrasound. With the exponential growth of these
medical imaging modalities, the demand for accurate, efficient, and automated segmentation
techniques has intensified. However, medical images present inherent challenges, including (1)
noise and artifacts due to sensor limitation, patient emotion and modality-specific distortions like
MRI bias fields degrade image quality, (2) intensity inhomogeneity: Tissue intensity overlaps (
gray/white matter in MRIs) complicate boundary detection, (3) partial volume effects: Voxels
containing mixed tissues due to limited resolution blur structural boundaries, and (4) anatomical
variability: Inter-patient diversity and pathological anomalies (tumors, lesions) demand adaptive
solutions, such factors significantly impact the performance of automated segmentation
algorithms and highlight the need for advanced Al solutions capable of handling these
complexities. The limitations of conventional segmentation methods like thresholding, region
growing, and edge detection become particularly apparent when dealing with such imperfect
data. These traditional approaches often rely on rigid assumptions that fail to account for the
uncertainty and variability inherent in medical images, motivating the development of more
sophisticated techniques. However, traditional methods remain relevant for specific applications
and as preprocessing steps in modern segmentation pipelines.

The advent of Artificial Intelligence (Al) has transformed the field by introducing data-
driven paradigms that learn intricate patterns directly from imaging data. Among these, Machine
Learning Approach (MLA) and Deep Learning Approach (DLA).

Machine learning, including supervised and unsupervised techniques, has significantly
advanced medical image segmentation by offering more robust, data-driven approaches
compared to traditional methods. Supervised methods like support vector machines (SVMs) and
random forests use labeled datasets to learn complex patterns, improving segmentation accuracy.
However, their success depends on high-quality annotated data, which is costly and time-
consuming to produce, and they often struggle to generalize across different imaging protocols or
populations. Unsupervised methods, such as k-means clustering, Gaussian mixture models
(GMMs), and fuzzy c-means (FCM), group pixels based on similarity without labeled data,
making them useful for exploratory analysis. However, they lack precision for clinical
applications due to reliance on low-level features and sensitivity to noise and artifacts. Both
approaches face challenges like intensity inhomogeneities, noise, class imbalance, and high
computational costs, which can degrade performance and limit scalability. While machine
learning remains relevant in specific applications and hybrid pipelines, its challenges highlight
the need for continued innovation in medical image segmentation.




The rise of deep learning, particularly convolutional neural networks (CNNSs),
revolutionized brain MRI segmentation by enabling automatic learning of hierarchical features
from raw data. Architectures like U-Net, with its contracting and expansive paths connected by
skip connections, excelled in capturing fine details and achieving state-of-the-art results. Fully
convolutional networks (FCNs) further advanced the field by enabling end-to-end, pixel-wise
segmentation without handcrafted features. However, deep learning methods face challenges,
including the need for large, high-quality annotated datasets, which are costly and time-
consuming to produce. Limited dataset diversity can hinder model performance and
generalization, even with data augmentation. Additionally, the high computational cost of
training, especially for volumetric data, poses scalability and accessibility issues, particularly in
resource-constrained settings. Despite these limitations, deep learning remains a transformative
approach in medical image segmentation.

In this thesis, we advocate for the hybridization of the Fuzzy C-Means (FCM) method
applied to medical image segmentation, positioning it as a compelling alternative to purely
machine learning (MLA) and deep learning (DLA) approaches. While MLA and DLA methods
have revolutionized medical image segmentation with their ability to learn complex patterns and
achieve state-of-the-art results, they come with significant challenges, including the need for
large annotated datasets, high computational costs, and limited interpretability. In contrast, we
investigate these advanced Al-driven methodologies for medical image segmentation which
bridge the gap between classical machine learning and bio-inspired optimization methods. We
focus on enhancing Fuzzy C-Means (FCM) clustering, a prominent soft segmentation technique
for handling pixel-level uncertainty, via bio-inspired optimization methods. While FCM is
particularly well-suited for medical imaging due to its ability to handle the inherent ambiguity
and uncertainty in tissue boundaries and unlike traditional hard clustering methods, it allows
pixels to belong to multiple clusters with varying degrees of membership, reflecting the partial
volume effect often observed in medical image. This flexibility makes FCM highly effective for
segmenting object of interest. However, traditional FCM presents serious limitations which can
degrade its performance in complex medical image modalities datasets.

Firstly, it needs the right number of clusters which is not available in most cases.

Secondly, it is very sensitive to initialization, deferent cluster centers initialization can
lead to deferent clustering results.

Thirdly, due to the principle of the iterative optimization of a cost function, it is strongly
sensitive to the problems of local minima. These challenges can lead to suboptimal segmentation
results, particularly in complex MRI datasets with intensity inhomogeneities or overlapping
tissue distributions.

Shortcomings that we aim to address.




So to address these shortcomings, we propose a novel hybrid framework integrating
the Artificial Bee Colony (ABC) algorithm which is a swarm intelligence metaheuristic inspired
by honeybee foraging behavior, to automate the optimization of all FCM parameters like cluster
centroids initialization and their optimal values, their number and membership
matrix simultaneously.

Key innovations include:

e ABC-driven FCM optimization: ABC’s global search capability mitigates FCM’s conver-
gence to suboptimal local minima, enhancing robustness in complex datasets like brain
MRIs with lesions or tumors.

o KL divergence-based cluster validity index: A new evaluation metric leverag-
ing Kullback-Leibler (KL) divergence to quantify segmentation quality by measuring the
statistical divergence between pixel intensity distributions and cluster prototypes. This
addresses the bias of traditional indices (like Xie-Beni, Partition Coefficient) toward spe-
cific cluster geometries.

Expected Contributions

1. Automated parameter tuning: Elimination of manual intervention via ABC’s adaptive op-
timization, improving reproducibility.

2. Objective evaluation: The KL Divergence-based validity index provides a statistically
grounded measure for comparing segmentation outcomes across various modalities.

Validation

Experiments on public neuroimaging datasets (Simulated and real brain data sets) will
demonstrate the framework’s superiority over conventional FCM and other Hybrid methods in
metrics like Jaccard similarity, Partition Coefficient and Entropy and Davies-Bouldin index

Thesis Structure

The thesis is organized into five chapters, each addressing a critical aspect of Al-driven
medical image segmentation:

Chapter 1: Overview of Medical Imaging

This chapter provides a comprehensive review of medical imaging modalities, their
underlying physics, clinical applications, and the technical challenges they create for automated
analysis. We examine the characteristics of major imaging techniques including MRI, CT, PET,
ultrasound, and X-ray, with particular emphasis on their diagnostic and therapeutic roles in
clinical practice. Each modality has unique advantages - MRI offers superior soft tissue contrast
without ionizing radiation, CT provides rapid acquisition of high-resolution anatomical
structures, and PET delivers functional metabolic information. However, they also present
modality-specific artifacts and limitations that must be addressed. MRI suffers from intensity




inhomogeneity and susceptibility artifacts; CT has limited soft tissue contrast and uses ionizing
radiation, while PET exhibits poor spatial resolution and high noise levels.

Chapter 2: Medical Image Segmentation

We review in this chapter fundamental and state-of-the-art segmentation methods,
including thresholding, region-based, edge-based, and machine learning approaches. Special
attention is given to clustering-based techniques, highlighting their advantages and limitations in
medical imaging.

Chapter 3: FCM Optimization based on Bio-Inspired methods

This chapter delves into fuzzy clustering theory, focusing on the FCM algorithm and its
variants (spatial FCM, kernel FCM, ..). We then explore bio-inspired optimization methods such
as Genetic Algorithms (GA), Particle Swarm Optimization (PSO), and Artificial Bee Colony
(ABC) and their applications in enhancing clustering performance.

Chapter 4: Hybrid FCM-ABC Method for Medical Image Segmentation

Here, we present our primary contribution: an ABC-optimized FCM framework where
cluster centroids, membership degrees, and number of clusters are simultaneously tuned for
optimal brain MRI segmentation. Experimental results demonstrate superior performance
compared to conventional FCM and other hybrid approaches.

Chapter 5: Fuzzy Validity Index Based on Kullback-Leibler Divergence

We propose an innovative cluster validity measure leveraging Kullback-Leibler
divergence to quantify segmentation quality more effectively. The proposed index is rigorously
evaluated against existing metrics, demonstrating improved robustness in assessing fuzzy
partitions.

Research Contributions
- Optimized FCM via ABC: A fully automated FCM optimization framework that
eliminates manual parameter tuning and enhances segmentation accuracy.

- New Validity Index: A mathematically sound fuzzy validity measure based on KL
divergence for objective evaluation of segmentation results.

- Clinical Applicability: Validation on real brain MRI datasets, showcasing the method’s
potential in neuro-imaging applications such as tumor detection and tissue analysis.




Conclusion and Future Work

The thesis concludes by summarizing key findings, discussing clinical implications, and
outlining future research directions, including the integration of deep learning with fuzzy
clustering and extensions to multi-modal medical image segmentation.

By advancing Al-driven segmentation techniques, this work contributes to more reliable
and automated medical image analysis, ultimately supporting improved diagnostic precision and
personalized treatment strategies.
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Chapter 1 Overview of Medical Imaging

1. Introduction

Medical imaging is a cornerstone of modern healthcare, playing an essential role in
diagnosis, treatment planning, and monitoring of diseases and conditions. It encompasses a
wide range of techniques that allow healthcare professionals to visualize the internal
structures of the body, aiding in the detection and understanding of various diseases. These
images serve as a window into the human body, providing insight that is crucial for accurate
diagnosis, surgical planning, and ongoing patient care.

One of the core principles behind medical imaging is its non-invasive nature, which
allows clinicians to examine patients' internal organs and structures without the need for
surgery. This non-invasive approach not only minimizes patient discomfort but also reduces
the risk of complications, making it a preferred choice for diagnostic purposes.

The medical imaging begins with the discovery of X-rays in 1895 by German
physicist Wilhelm Conrad Roentgen. This groundbreaking discovery revolutionized the
medical field, enabling doctors to see inside the human body for the first time. Roentgen's
work led to the creation of the first X-ray images, which were initially used to examine
broken bones. Over the decades, the technology progressed, expanding into new fields like
mammography and fluoroscopy.

The next major leap in medical imaging came with the advent of Computed
Tomography (CT) in the early 1970s. Godfrey Hounsfield and Alan Cormack were awarded
the Nobel Prize in Physiology or Medicine in 1979 for their work in developing this imaging
technology. CT combined traditional X-ray technology with computers, enabling the creation
of cross-sectional images or slices of the body, providing far more detailed information than a
standard X-ray.

In the 1980s, Magnetic Resonance Imaging (MRI) emerged as a promising imaging
technique. MRI technology uses strong magnetic fields and radio waves to generate detailed
images of soft tissues, making it particularly useful for brain, spinal cord, and joint imaging.
Unlike X-ray and CT, MRI does not rely on radiation, making it a safer option for certain
patient populations.

In the years that followed, Nuclear Medicine introduced new possibilities for
functional imaging. Techniques such as Positron Emission Tomography (PET) and Single
Photon Emission Computed Tomography (SPECT) revolutionized the way physicians could
visualize and assess how organs and tissues are functioning, not just their structural
appearance [Anthony et al., 2013]

This chapter provides an overview of various medical imaging modalities, such as X-
ray, Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound, and
Nuclear Medicine, each with its own set of advantages, limitations, and specific clinical
applications.
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2. Types of Medical Imaging

Medical imaging techniques can be broadly classified into several categories based on
the technology used, the type of information they provide, and their specific clinical
applications. Below is an overview of the most widely used modalities

2.1. X-ray and Computed Tomography (CT)

X-ray and CT imaging are the most commonly used medical imaging techniques.
They utilize radiation to produce images of the body's internal structures (cf.fig.1.1).

(a) (b)
Figure 1.1: X-ray (a) and CT (b) images of different parts of the human body

X-ray imaging is a widely utilized diagnostic tool, particularly effective for visualizing
bone fractures, joint dislocations, and dental examinations. It is also commonly employed in
screening for lung infections, such as pneumonia, and in mammography for breast cancer
detection [Carlton et al., 2013]. On the other hand, CT scans utilize X-ray technology
combined with advanced computer processing to create highly detailed images of the body's
internal structures. By stacking multiple cross-sectional X-ray slices, CT scans can generate
3D images, offering superior visualization of organs, bones, and blood vessels. This makes
CT scans particularly valuable in complex diagnostic scenarios where detailed imaging is
critical [Seeram, 2015].

2.1.1. Clinical Applications of X-ray

X-ray imaging plays a critical role in various clinical applications due to its ability to
provide quick and detailed images of internal structures. It is particularly effective for
diagnosing fractures, dislocations, and joint abnormalities, making it a cornerstone in
orthopedics and trauma care. In chest imaging, X-rays are widely used to evaluate conditions
such as pneumonia, tuberculosis, lung cancer, and heart failure, offering valuable insights into
lung and heart health. Dental X-rays are another essential application, enabling dentists to
detect cavities, abscesses, impacted teeth, and bone loss, which are crucial for maintaining
oral health. Additionally, mammography, a specialized form of X-ray, is a key tool in breast
cancer screening, helping to identify tumors, calcifications, and other abnormalities that may
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indicate early stages of cancer. These diverse applications underscore the versatility and
importance of X-ray imaging in modern medicine.

2.1.2. Clinical Applications of CT

CT has a broad range of applications in both diagnosis and treatment planning. Some
of the major uses include:

Trauma and Emergency Medicine: CT imaging is vital in emergency medicine,
particularly for trauma, enabling rapid assessment of head, neck, spine, chest,
and abdominal injuries. It diagnoses intracranial hemorrhages, brain swelling,
skull fractures, internal bleeding, organ ruptures, and spinal fractures with
precision.

Cancer Staging: this technique of medical imaging is a cornerstone in
oncology, playing a vital role in the detection, staging, and monitoring of
cancer. It is widely used to detect tumors in various organs, including the
lungs, liver, pancreas, and colon, providing detailed information about their
size, location, and characteristics. CT is also instrumental in cancer staging,
helping to determine the extent of metastasis and assess lymph node
involvement, which is critical for treatment planning. Additionally, CT scans
are frequently employed to monitor the effectiveness of cancer treatments,
such as chemotherapy or radiation therapy, by tracking changes in tumor size
over time. Its ability to deliver precise, high-resolution images makes CT an
indispensable tool in the fight against cancer.

Cardiac Imaging: in cardiology, it provides detailed visualization of the heart
and vascular system, aiding in the diagnosis and management of various
conditions. One of its primary applications is in evaluating coronary artery
disease, where coronary CT angiography (CTA) offers a non-invasive method
to image the coronary arteries, detect atherosclerotic plaques, and identify
narrowing or blockages. Additionally, CT is instrumental in assessing cardiac
abnormalities such as aortic aneurysms, pulmonary embolism, and congenital
heart defects.

Neurological Imaging: CT imaging is a critical tool for evaluating conditions
affecting the brain and spinal cord, providing rapid and detailed insights for
diagnosis and treatment. In cases of stroke, CT scans are essential for
distinguishing between ischemic strokes, hemorrhages, and brain edema,
enabling timely and appropriate interventions. For brain tumors, CT helps
visualize abnormalities such as tumors, cysts, and abscesses, assisting
clinicians in planning effective treatment strategies. Additionally, CT is
valuable in diagnosing hydrocephalus by detecting abnormal fluid
accumulation in the brain's ventricles.

Pulmonary Imaging: it is widely utilized for detailed evaluation of the lungs
and airways, playing a key role in diagnosing critical conditions. CT
pulmonary angiography (CTPA) is the gold standard for detecting pulmonary

9
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embolism (PE), a life-threatening blockage in the lung's arteries. It is also
essential for assessing chronic lung diseases, such as chronic obstructive
pulmonary disease (COPD) and interstitial lung disease, providing insights into
disease progression and management. Additionally, CT is crucial for the early
detection and staging of lung cancer, enabling timely intervention and
treatment planning.

Musculoskeletal Imaging: CT imaging is indispensable for evaluating complex
bone fractures and joint-related conditions, offering detailed and precise
visualization that aids in accurate diagnosis and treatment planning. It is
particularly valuable for assessing intricate fractures in areas such as the spine,
pelvis, and long bones, where traditional imaging methods may fall short.
Additionally, CT is highly effective in diagnosing joint abnormalities,
including arthritis, bone infections, and inflammatory conditions like
rheumatoid arthritis.

2.1.3. Advanced CT techniques

Several advanced CT techniques have been developed to enhance image quality,
minimize radiation exposure, and improve diagnostic accuracy.

1-

Dual-Energy CT utilizes two distinct X-ray energy levels to capture images,
enabling better tissue differentiation. This technique is particularly useful for
detecting tumors, urinary stones, and vascular conditions, while also reducing
the need for contrast material.

Iterative Reconstruction (IR) is a mathematical approach that lowers radiation
doses without compromising image quality. By reducing image noise, IR
enhances diagnostic precision, making it especially beneficial for pediatric
imaging and high-risk patients.

Cardiac CT is a specialized application that provides detailed visualization of
the heart and coronary vessels. It is widely used to evaluate coronary artery
disease, identify coronary artery anomalies, and assist in pre-operative
planning for heart surgery. These advancements have significantly expanded
the capabilities of CT imaging, making it safer and more effective for a wide
range of clinical applications.

2.1.4. Advantages and limitations of X-rays and CT imaging techniques

Both X-ray imaging and CT scans come with distinct advantages and limitations. X-
rays are known for their speed, cost-effectiveness, and widespread availability, making them
well diagnostic tool in many medical settings. However, they expose patients to ionizing
radiation, which carries potential health risks, and are less effective at imaging soft tissues
compared to modalities like MRI or ultrasound. CT scans, while providing more detailed and
comprehensive images, also involve higher doses of ionizing radiation. Although the radiation
dose is generally considered safe for most patients, repeated exposure over time can increase
the risk of radiation-induced conditions.

10
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Therefore, the use of both imaging techniques requires careful consideration, ensuring
that the diagnostic benefits outweigh the potential risks, especially for patients who may need
frequent imaging:

- Radiation exposure: While CT is highly effective, it involves a significantly higher
dose of radiation compared to conventional X-rays, which raises concerns about the
cumulative effects of repeated scans.

- Cost: CT scans are more expensive compared to traditional X-ray imaging.

- Limited soft tissue contrast: Although CT is better at imaging soft tissues than
traditional X-ray, MRI is often preferred for certain soft tissue evaluation ( brain, spinal cord,
and muscles).

2.2 Magnetic Resonance Imaging (MRI)

MRI utilizes strong magnetic fields and radiofrequency waves to produce images. The
human body is largely made up of water, and water molecules consist of hydrogen atoms,
which are highly responsive to magnetic fields. When placed in a magnetic field, hydrogen
atoms align in a certain direction. Radiofrequency pulses are then used to temporarily disturb
this alignment. As the hydrogen atoms return to their original state, they emit signals, which
are detected and used to create an image [Viallon et al., 2015].

MRI generates highly detailed images of the body's internal structures, especially soft
tissues such as the brain, spinal cord, muscles, and organs. It is particularly valuable for
neurological, orthopedic, and cardiovascular imaging [Arnold et al., 2023] (cf.fig.1.2).

Figure 1.2: example of Brain MRI image

2.2.1. Clinical Applications of MRI

MRI is versatile and plays a crucial role in diagnosing a wide variety of conditions due
to its ability to generate high-resolution images of soft tissues. Some key applications of MRI
include:

11
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e Neurological Imaging: MRI is widely regarded as the gold standard for imaging the
brain and spinal cord due to its superior soft tissue contrast and detailed visualization
capabilities. For the brain, MRI is highly effective in detecting a range of conditions,
including brain tumors, stroke, multiple sclerosis, epilepsy, and neurodegenerative
diseases such as Alzheimer’s disease. Its ability to provide high-resolution images of
brain structures makes it indispensable for accurate diagnosis and monitoring. Similarly,
MRI excels in evaluating spinal cord conditions, such as spinal cord injuries, herniated
discs, and spinal stenosis. It offers precise imaging that is critical for treatment planning
and surgical interventions. Overall, MRI’s advanced imaging capabilities make it a vital
tool in neurology and neurosurgery.

e Musculoskeletal Imaging: MRI is highly effective for soft tissue imaging, making it an
invaluable tool for assessing muscles, ligaments, tendons, and cartilage. It is widely
used to diagnose sports-related injuries, such as ligament tears, muscle strains, and joint
abnormalities, offering detailed insights that guide treatment and rehabilitation.
Additionally, MRI plays a key role in evaluating osteoarthritis by visualizing cartilage
wear and changes in bone structure. This helps clinicians understand the progression of
the disease and develop appropriate management strategies. With its exceptional ability
to provide high-resolution images of soft tissues and joints, MRI is a cornerstone in
orthopedics and musculoskeletal imaging.

e Cardiac Imaging: It is commonly used to assess cardiac function, diagnose myocardial
infarction (heart attack), and evaluate heart valve diseases, offering precise information
that aids in treatment planning. Additionally, Magnetic Resonance Angiography (MRA)
is a specialized MRI technique used to visualize blood vessels non-invasively, without
the need for ionizing radiation or invasive procedures. MRA is particularly useful for
detecting vascular abnormalities, such as aneurysms, blockages, or malformations,
making it a valuable tool in cardiovascular imaging. Together, these applications
highlight MRI’s versatility and importance in diagnosing and managing heart and
vascular conditions.

e Oncology: MRI is a critical imaging modality in oncology, particularly for detecting
and staging soft tissue cancers such as those in the liver, prostate, and breast. Its
superior soft tissue contrast allows for the identification of tumors that may not be easily
visible on other imaging techniques, making it an invaluable tool for early cancer
detection. It plays a key role in tumor staging by providing detailed information about
the size, location, and extent of tumor involvement in surrounding tissues. This
information is essential for developing effective treatment plans and monitoring disease
progression.

e Abdominal and Pelvic Imaging: MRI is a highly effective imaging modality for
evaluating abdominal and pelvic organs, providing exceptional detail for diagnosing a
wide range of conditions. In the abdomen, MRI is particularly useful for imaging the
liver, kidneys, pancreas, and spleen, making it invaluable for detecting conditions such
as cirrhosis, tumors, and inflammatory diseases. In the pelvis, MRI is widely used to
assess the uterus, ovaries, and prostate, offering detailed visualization that aids in the
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detection of cancers, structural abnormalities, and other pathologies [Jin 2021]. Its
ability to produce high-resolution, multi-planar images without ionizing radiation makes
MRI a preferred choice for diagnosing and managing diseases affecting these critical
organs.

2.2.2. Advanced MRI Techniques

Over the years, several advanced MRI techniques have been developed to improve
image quality, reduce scan times, and enhance diagnostic capabilities.

e Functional MRI (fMRI): measures brain activity by detecting changes in blood flow. It
is commonly used in neuroscience research and pre-surgical mapping of brain function.
fMRI can help identify regions of the brain responsible for tasks like movement, speech,
and sensory perception.

o Diffusion-Weighted Imaging (DWI): is an MRI technique that measures the movement
of water molecules in tissues. It is particularly useful for detecting acute ischemic
stroke, as ischemic tissue shows restricted water movement.

e Magnetic Resonance Spectroscopy (MRS): provides information about the chemical
composition of tissues, allowing for the detection of metabolic changes in diseases like
cancer or neurodegenerative disorders.

2.2.3. Advantages and limitations of MRI

MRI offers significant advantages as a non-invasive diagnostic tool that does not rely
on ionizing radiation, making it a safer option for patients who require frequent imaging. It
excels in producing high-resolution images, particularly of soft tissues, which makes it
invaluable for diagnosing conditions affecting the brain, spinal cord, muscles, and joints. This
level of detail is often unmatched by other imaging modalities, allowing for precise detection
and evaluation of abnormalities.

However, MRI also has notable limitations. The procedure is generally more
expensive and time-consuming compared to other imaging techniques, which can limit its
accessibility and practicality in urgent situations. Additionally, MRI is not suitable for
patients with certain implants, such as pacemakers or metal devices, due to the strong
magnetic fields involved. These constraints highlight the importance of carefully considering
patient-specific factors when choosing MRI as a diagnostic tool.

2.3. Ultrasound Imaging

Ultrasound imaging, also known as sonography, is a non-invasive medical imaging
technique that uses high-frequency sound waves to create real-time images of the inside of the
body. Unlike other imaging methods, ultrasound does not involve the use of ionizing
radiation, making it a safe and widely used modality for diagnostic purposes, especially in
obstetrics, cardiology, and musculoskeletal imaging.

13
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Ultrasound imaging works based on the principle of sound wave reflection [Sehmbi &

Perlas, 2022]. High-frequency sound waves (usually above 20 kHz) are emitted from a
transducer and travel through the body. These sound waves encounter tissues of different
densities, and part of the wave is reflected back to the transducer. The time it takes for the
sound waves to return and the intensity of the reflected waves are used to generate an image
(cf.fig.1.3).

Figure 1.3: Ultrasound image

2.3.1. Clinical Applications of Ultrasound

Ultrasound is used across a wide variety of medical specialties, with particular

advantages in imaging soft tissues and organs, monitoring pregnancies, and guiding certain
medical procedures.

Obstetrics and Gynecology: Ultrasound is a vital tool in women's health, widely used
in obstetrics to monitor fetal development, assess growth, heartbeat, and placental
health. It also detects abnormalities like ectopic pregnancies, multiples, and birth
defects. Beyond pregnancy, ultrasound aids in fertility and gynecological care by
evaluating the ovaries, uterus, and fallopian tubes, helping diagnose conditions like
fibroids and endometriosis. Its non-invasive nature and real-time imaging make it
indispensable in modern medicine.

Cardiovascular Imaging: Echocardiography is a specialized ultrasound technique that
evaluates the heart's structure and function, providing detailed images of its chambers,
valves, and blood flow. It is essential for diagnosing conditions like heart failure,
valvular heart disease, cardiomyopathies, and congenital heart defects, offering critical
insights into cardiac health through a non-invasive approach. Complementing this,
Doppler ultrasound assesses blood flow within the body's vessels by measuring its
speed and direction, helping identify abnormalities such as blockages, stenosis,
aneurysms, and venous thrombosis. Particularly valuable for diagnosing peripheral
artery disease and deep vein thrombosis, Doppler ultrasound is a cornerstone in
managing circulatory disorders. Together, echocardiography and Doppler ultrasound
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significantly enhance the ability to diagnose and treat cardiovascular and vascular
conditions effectively, making them indispensable tools in modern medicine.

e Musculoskeletal Imaging: this technique is a highly effective tool for evaluating joints
and soft tissues, providing detailed images of tendons, ligaments, muscles, and bursae.
It is commonly used to diagnose conditions such as tendonitis, ligament tears, muscle
strains, and arthritis. By offering real-time, high-resolution imaging, ultrasound allows
healthcare providers to accurately assess the extent of injuries or inflammation,
facilitating targeted treatment plans. In addition to diagnostics, ultrasound plays a
crucial role in guiding minimally invasive procedures. It is frequently used to assist
with joint injections, ensuring precise delivery of medications such as corticosteroids
for conditions like arthritis. Ultrasound guidance is also invaluable for biopsy
procedures and the aspiration of fluid from cysts or joints, whether for diagnostic
testing or therapeutic relief. This combination of diagnostic accuracy and procedural
precision makes ultrasound an essential tool in musculoskeletal and interventional
medicine.

e Abdominal and Pelvic Imaging: it is widely used for evaluating abdominal organs,
including the liver, gallbladder, kidneys, spleen, and pancreas. It is particularly
effective in detecting conditions such as gallstones, liver disease, renal abnormalities,
and tumors, providing critical diagnostic information without the need for invasive
procedures. Its ability to deliver real-time, high-resolution images makes it a first-line
tool for assessing abdominal health. In pelvic imaging, ultrasound plays an equally
important role for both men and women. It is used to visualize the bladder, prostate,
and reproductive organs, aiding in the diagnosis of conditions like benign prostatic
hyperplasia (BPH) in men and ovarian cysts or fibroids in women. This non-invasive
technique offers valuable insights into pelvic health, enabling accurate diagnosis and
effective management of a wide range of conditions. Ultrasound's adaptability and
safety make it an essential tool in both abdominal and pelvic diagnostics.

e Thyroid Imaging: Ultrasound is commonly used to evaluate the thyroid gland for
nodules, cysts, or cancer. It helps determine the size, texture, and blood flow
characteristics of thyroid abnormalities, often guiding further biopsy or treatment
decisions.

e Guiding Procedures: it is also an invaluable tool for guiding minimally invasive
procedures, offering real-time visualization to ensure accuracy and safety. It is
frequently used to direct needle biopsies, fluid aspirations, and injections, particularly
in deep or hard-to-reach areas. This precision reduces the risk of complications and
improves diagnostic and therapeutic outcomes. Additionally, ultrasound plays a
critical role in guiding the drainage of abscesses or cysts, allowing healthcare
providers to safely remove fluid while avoiding damage to surrounding tissues. Its
ability to provide clear, real-time imaging makes ultrasound an essential asset in
interventional medicine, enhancing the effectiveness of a wide range of procedures.
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2.3.2 Advanced Ultrasound Techniques

Several advanced ultrasound techniques have been developed to enhance diagnostic
capabilities:

e Doppler Ultrasound: is used to measure blood flow within blood vessels. It is often
used to detect vascular conditions such as deep vein thrombosis (DVT), venous
insufficiency, vascular malformations, and atherosclerosis. It can also evaluate the
flow of blood through the heart, detecting conditions such as valvular insufficiency or
stenosis.

e 3D and 4D Ultrasound: 3D Ultrasound technique captures a series of 2D images and
reconstructs them into 3D volumes. It is commonly used in obstetrics to generate more
detailed images of the fetus. While 4D Ultrasound allows for real-time visualization of
fetal movements in the womb.

e Elastography: is an advanced ultrasound technique that measures the stiffness of
tissues. It is commonly used to assess liver stiffness as an indicator of fibrosis or
cirrhosis and can be applied to other tissues to detect abnormalities such as tumors.

2.3.3. Advantages and limitations of Ultrasound

Ultrasound imaging offers several advantages as a diagnostic tool, including being
non-invasive, safe, and free from ionizing radiation, making it a preferred option for various
patient populations, including pregnant women. Its ability to provide real-time imaging allows
for dynamic assessment of moving structures, such as the heart or blood flow, which is
particularly useful in procedures like echocardiograms or guiding biopsies. This immediacy
and safety profile make ultrasound a versatile and widely used imaging modality.

However, ultrasound has certain limitations. While it excels in visualizing soft tissues,
it struggles to image bones and air-filled organs, such as the lungs. The quality of ultrasound
images can vary significantly depending on the operator’s skill and experience, making it
operator-dependent. It is also less effective for imaging deeper tissues, particularly in obese
patients or those with a larger body habitus. Furthermore, the presence of gas or air, such as in
the intestines, can interfere with sound wave transmission, limiting its effectiveness in certain
areas. Despite these limitations, ultrasound remains a versatile and invaluable tool in modern
medicine.

2.4. Nuclear Medicine

Nuclear Medicine is a branch of medical imaging that uses radioactive substances
(radiopharmaceuticals) to diagnose and treat diseases. Unlike traditional imaging techniques
that visualize structures, nuclear medicine primarily provides functional and metabolic
information about organs and tissues. By detecting the radiation emitted from
radiopharmaceuticals, nuclear medicine helps assess organ function, detect disease, and guide
therapy [Iskandrian & Hage, 2024].

The most common types of nuclear medicine imaging include Single Photon Emission
Computed Tomography (SPECT) and Positron Emission Tomography (PET). Both
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techniques offer insight into the biological processes within the body, providing critical
information for disease diagnosis and treatment planning.

2.4.1. Single Photon Emission Computed Tomography (SPECT)

SPECT is a nuclear medicine imaging technique that uses gamma-emitting
radiopharmaceuticals to create 3D images of the body (cf.fig.1.4). It is a versatile diagnostic
tool widely utilized across multiple medical fields. In cardiac imaging, SPECT is commonly
employed to evaluate coronary artery disease, myocardial infarction, and overall heart
function. It provides detailed visualization of areas with reduced blood flow, helping to
identify ischemic tissue and guide treatment decisions. In neurology, it is used to diagnose
conditions such as epilepsy, Alzheimer’s disease, and Parkinson’s disease by assessing brain
activity and blood flow patterns [Verger et al., 2021]. In oncology, SPECT plays a crucial role
in detecting tumors and evaluating the spread of cancer by highlighting areas of abnormal
tissue metabolism and growth.

Figure: 1.4: example of SPECT image.

2.4.2. Positron Emission Tomagraphy (PET)

PET is a sophisticated imaging technique that uses positron-emitting
radiopharmaceuticals to produce high-resolution, 3D images of metabolic activity in the body
(cf.fig.1.5). PET scans are particularly effective in detecting cancer, evaluating brain function,
and assessing cardiac and neurological diseases.
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Figure: 1.5: example of PET image.

PET is utilized for diagnosing and evaluating a range of medical conditions. In
oncology, PET is particularly valuable for detecting cancer, as it excels in identifying
malignant tumors, staging the disease, monitoring treatment effectiveness, and detecting
metastasis. Its ability to highlight areas of high metabolic activity allows PET scans to reveal
tumors that may not be visible through other imaging methods like CT or MRI [Hegi-Johnson
et al.,, 2022]. In neurology, PET is employed to study brain function and diagnose
neurological disorders such as Alzheimer’s disease, Parkinson’s disease, and epilepsy. By
assessing glucose metabolism in the brain, PET can detect changes associated with
neurodegenerative conditions. In cardiology, PET imaging is used to evaluate myocardial
perfusion, identify ischemic heart tissue, and determine the viability of heart muscle following
a heart attack, making it a critical tool for cardiac assessment.

2.4.3. Comparison between SEPCT and PET

SPECT and PET are both nuclear imaging techniques used to diagnose and evaluate
various medical conditions, but they differ in several key aspects:

1. Radiotracers and Imaging Mechanism:

In nuclear medicine, SPECT and PET are both advanced imaging techniques used
to create detailed 3D images of the body. SPECT utilizes gamma-ray-emitting
radiotracers, such as technetium-99m, which release single photons. A gamma
camera rotates around the patient to capture these emissions from various angles,
reconstructing a three-dimensional image. On the other hand, PET employs
positron-emitting radiotracers, like fluorodeoxyglucose, which release positrons.
When these positrons collide with electrons, they annihilate and produce gamma
rays. These gamma rays are then detected by the PET scanner, generating high-
resolution 3D images that are particularly useful for assessing metabolic activity
and detecting diseases such as cancer. While both techniques rely on radioactive
tracers and gamma-ray detection, PET generally offers higher resolution and is
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more sensitive to metabolic changes, whereas SPECT is more widely available and
cost-effective.

2. Spatial Resolution:

SPECT and PET differ in spatial resolution, affecting diagnostic precision. SPECT
has lower resolution (8-10 mm) due to gamma camera limitations, making it less
sensitive for small lesions. PET offers higher resolution (4-6 mm) due to advanced
detection of positron-emitting tracers, enabling detection of smaller abnormalities.
This makes PET ideal for oncology and early detection, while SPECT remains
widely accessible. PET's superior resolution often makes it the preferred choice for
high-precision imaging.

3. Metabolic and Functional Imaging:

Based on their functional imaging capabilities, SPECT and PET serve different
diagnostic roles. SPECT measures blood flow and tissue perfusion, making it ideal
for cardiac studies such as myocardial perfusion imaging and brain perfusion scans.
PET focuses on metabolic activity, like glucose uptake, excelling in oncology (
cancer detection) and neurology ( Alzheimer's studies). While SPECT visualizes
physiological processes, PET tracks metabolic changes, offering critical insights
into disease activity and progression.

4. Radiation Exposure:

SPECT and PET differ in radiation exposure due to their radiotracers. SPECT uses
tracers like technetium-99m, which have longer half-lives and emit less energy,
resulting in lower radiation doses and making it relatively safer. PET, however,
uses positron-emitting tracers like FDG, which have shorter half-lives and higher
energy emissions, leading to greater radiation exposure. While PET offers superior
imaging for metabolic studies, its higher radiation dose is a key consideration,
especially for repeated scans. SPECT generally poses a lower radiation risk
compared to PET.

5. Cost and Availability:

SPECT is more widely available and cost-effective, as its scanners are common and
radiotracers like technetium-99m are cheaper and longer-lasting, making it practical
for many clinics. PET, however, is more expensive and less accessible due to costly
scanners and the need for on-site cyclotrons to produce short-lived tracers like
FDG. While PET offers advanced imaging for metabolic and oncological studies,
its higher cost and infrastructure requirements limit its use compared to SPECT.

6. Clinical Applications:

SPECT and PET are used in different medical fields based on their imaging
strengths. SPECT is commonly used in cardiology for heart function, neurology for
brain perfusion, and bone scans for fractures or infections. PET is primarily used in
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oncology for cancer detection and staging, neurology for diagnosing Alzheimer’s
and epilepsy, and cardiology for myocardial viability. While SPECT excels in
structural and perfusion imaging, PET’s focus on metabolic activity makes it ideal
for functional and molecular diagnostics, especially in cancer and
neurodegenerative diseases.

2.4.4. Advantages and Limitations of Nuclear Medicine

Nuclear medicine offers several advantages and limitations that are important to
consider in clinical practice. One of its key strengths is its ability to provide functional and
metabolic imaging, enabling the detection of disease processes at an early stage, often before
structural changes are visible on other imaging modalities like CT or MRI. This makes it
particularly valuable for early detection of conditions such as cancer, neurological disorders,
and heart disease, allowing for timely intervention and treatment. Additionally, techniques
like PET enable whole-body imaging, offering a comprehensive view of disease spread and
metabolic activity, which is crucial for staging and treatment planning.

However, nuclear medicine also has its limitations. Radiation exposure, though
generally low, is a concern, particularly for vulnerable populations such as pregnant women.
The cost of certain procedures, especially PET scans, can be high, and these advanced
imaging techniques may not be as widely accessible as CT or MRI. Furthermore, the
availability of radiopharmaceuticals is a challenge, as these specialized agents often have
short shelf lives and require specific production facilities, limiting their accessibility in some
regions. Despite these limitations, nuclear medicine remains a powerful tool for diagnosing
and managing a wide range of diseases.

5. Conclusion

The evolution of medical imaging, from basic X-rays to advanced modalities like MRI
and PET, has revolutionized diagnostics and treatment in modern medicine. These imaging
techniques provide detailed insights into the human body, enabling accurate diagnosis,
effective treatment planning, and precise monitoring of disease progression. However, the
complexity and volume of data generated by these modalities present significant challenges,
particularly in extracting meaningful information from images. This is where medical image
segmentation becomes crucial.

For instance, in MRI, segmentation can delineate brain tumors for surgical planning,
while in PET scans, it can help quantify metabolic activity in cancer cells. Similarly, in X-
rays and CT scans, segmentation aids in detecting fractures, infections, or other anomalies. As
medical imaging continues to advance, the demand for accurate and efficient segmentation
techniques grows, particularly with the increasing complexity of imaging data.

Medical imaging will continue to play a crucial role in modern medical practice,
providing valuable information for diagnosis, treatment planning, and monitoring treatment
response. Technological advancements will keep driving innovation in this field, offering new
opportunities to enhance patient health and well-being.
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The clinical applications of medical imaging are vast and include diagnosis, treatment
planning, and monitoring treatment response. Future trends in medical imaging involve the
increased use of artificial intelligence and machine learning to improve medical image
analysis and interpretation, as well as the integration of multimodal data for a more
comprehensive assessment of patient health.
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Chapter 2 Medical Image Segmentation

1. Introduction

Medical image segmentation is a fundamental process in the field of medical imaging,
playing a pivotal role in diagnostics, treatment planning, and disease monitoring [Narayan et
al., 2023]. At its core, segmentation involves partitioning an image into meaningful regions or
structures, such as organs, tissues, or pathological areas, to enable detailed analysis and
interpretation. The accuracy and efficiency of segmentation directly impact the quality of
patient care, making it a critical component of modern medicine.

The evolution of medical imaging, from the simplicity of X-rays to the sophistication
of modalities like MRI, CT, and PET, has significantly enhanced the ability to visualize and
understand the human body. However, these advancements have also introduced new
challenges. Medical images are often complex, with high variability in resolution, contrast,
and noise levels. Additionally, anatomical structures can be intricate and overlapping, making
it difficult to accurately identify and segment regions of interest.

Over the years, numerous medical image segmentation methods have been proposed,
ranging from traditional thresholding and region-growing approaches to more recent machine
learning and artificial intelligence-based techniques. In this chapter, we will review the
various medical image segmentation methods, their advantages and limitations, as well as the
challenges and opportunities associated with this critical task.

2. Definition of image segmentation

Image segmentation is a process in computer vision and image processing that
involves partitioning a digital image into multiple segments or regions, each of which
corresponds to different objects or parts of the image. The goal of image segmentation is to
simplify or change the representation of an image into something that is more meaningful and
easier to analyze. This is typically achieved by assigning a label to every pixel in the image
such that pixels with the same label share certain characteristics, such as color, intensity, or
texture [Yu et al., 2023].

The essential role of the image segmentation lies in its ability to provide a structured
and meaningful representation of visual information, enabling computer systems to
understand and interact with their visual environment in a more sophisticated manner.

By partitioning an image into coherent segments, image segmentation allows for the
identification and differentiation of various elements present in a visual scene, such as
objects, edges, and textures.

This precise segmentation is fundamental for many applications, including object
recognition, pattern detection, video surveillance, autonomous navigation, computer-aided
diagnostic medicine, and many more.

There are several approaches and techniques used in image segmentation. Each image
segmentation technique involves a series of specific operations to process and analyze
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images. Each method is suited to specific contexts and has distinct advantages and limitations.
The choice of method often depends on the characteristics of the image, the requirements for
accuracy and performance, as well as the constraints of real-time processing when applicable.

The most common methods are as follows:

Threshold based methods

Edge based methods

Region based methods

Supervised classification based methods

Unsupervised classification (Clustering) based methods

2. Thresholding Methods

Thresholding is a fundamental technique in the field of image segmentation [Jardim et
al., 2023]. Its main goal is to convert a grayscale image into a binary image, where each pixel
is assigned one of two values, usually 0 or 1, corresponding to black or white, respectively
(cf.fig. 2.1). In simpler terms, thresholding can be understood as:

1,if I(x,y)=T

S(x,y) = {0, if I(x,y) <T (2.1)
where
. I(x,y) is the pixel value of the grayscale image at position (x,y);
. S(x,y) is the pixel value of the binary image at position (x,y);
. T is the chosen threshold.

(b)

Figure 2.1: Thresholding-based segmentation, (a) original image, (b) segmented image.

In image processing, thresholding methods can be broadly categorized into two types:
global and local thresholding. This classification depends on how the threshold value is
determined and applied across the image.
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2.1. Global Thresholding Methods

Global thresholding relies on selecting a single, fixed threshold value, which is
carefully determined based on the uniform characteristics present across the entire image or
derived from its overall histogram. This approach is generally used when there is a clear
contrast in the grayscale distribution between the foreground (or region of interest) and the
background [Senthilkumaran 2016]. Prominent global thresholding methods include Otsu’s
Method, Iterative Thresholding, Minimum Error Thresholding, and Entropy-based
Thresholding.

2.1.1. Otsu technique

The Otsu thresholding technique identifies the optimal threshold by maximizing the
variance between the gray levels of an object and its background [Goh 2018]. The process
begins by converting the image into grayscale, which comprises 256 gray levels ranging from
0 (black) to 255 (white). The method seeks to determine a gray value threshold that
effectively separates the background (higher gray values) from the foreground (lower gray
values). The optimal threshold corresponds to the point where this variance is maximized,
thereby improving the contrast between black and white in the resulting binarized image.

2.1.2. Iterative Thresholding

Iterative thresholding is a method for binarizing images by iteratively refining the
threshold based on the mean gray-scale values of the foreground and background. The process
begins with an initial threshold, T1, often set as the average gray value of the image. The
image is then divided into two regions: pixels with values above T1 (background) and those
below T1 (foreground). The mean gray values of these regions are computed to determine a
new threshold, T2. This iterative process continues, updating T1 with T2 in each step, until
the difference between successive thresholds falls below a predefined tolerance level, TO
(typically TO = 0.5 or 1). At this point, T2 is considered the optimal threshold [Sujji et al.,
2013].

Iterative thresholding offers several advantages, including its simplicity and ease of
implementation, making it a computationally efficient method for binarizing images. It
dynamically adapts the threshold based on the image's gray-level distribution, eliminating the
need for prior knowledge of the image's histogram. This method is particularly effective for
images with a clear separation between foreground and background, as it guarantees
convergence to an optimal threshold within a predefined tolerance level. However, iterative
thresholding also has notable limitations. Its performance is highly dependent on the initial
threshold choice, which can lead to suboptimal results if poorly selected. The method assumes
a bimodal intensity distribution, making it less suitable for images with complex or
overlapping intensity profiles. Additionally, it is sensitive to noise and artifacts, which can
distort the mean gray values and result in inaccurate thresholds. Computational costs can also
increase for high-resolution images, especially when a small convergence tolerance is used.
Furthermore, the technique is primarily designed for grayscale images and may struggle with
non-uniform illumination or color images without preprocessing. Despite these drawbacks,
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iterative thresholding remains a valuable tool for applications where simplicity and
adaptability are prioritized, provided the image characteristics align with its assumptions.

2.1.3. Minimum Error Thresholding

The Minimum Error Thresholding technique is based on the assumption that the gray
values of pixels in an image's foreground and background follow a normal distribution. The
goal of this method is to determine an optimal threshold T that reduces the overall
classification error during segmentation. This error is quantified by analyzing the probability
density functions of each segment, taking into account their respective probabilities and
variances.

2.1.4. The Entropy Method

The entropy method works by calculating the entropy of the image for different
brightness thresholds and selecting the brightness threshold that maximizes the entropy. An
image with high entropy contains a lot of information, while an image with low entropy
contains little information. The brightness threshold that maximizes the entropy is chosen as
the optimal threshold [Yin, 2002].

This method offers several advantages, including its effectiveness for images with
complex brightness distributions, its robustness to noise and lighting variations, and its
adaptability to different types of images. However, it also has some drawbacks, such as its
computational complexity and sensitivity to the choice of entropy calculation method. These
factors should be carefully considered when applying this technique in image processing
tasks.

2.2. Local Thresholding Methods

These methods determine threshold values based on the statistical features of each
distinct neighborhood, taking into account factors like brightness, contrast, and textural
details. As a result, each pixel in the image is classified according to the attributes of its
neighboring pixels. They require the use of more advanced algorithms that carefully analyze
the local properties of each segment in the image. Various local adaptive thresholding
techniques include Niblack’s Method, Sauvola’s Method, and Bernsen’s Method [Saxena et
al., 2019]

2.2.1. Niblack’s Method

Niblack’s technique is a prominent approach in local adaptive thresholding. It
computes the local mean (M) and standard deviation (S) of pixel values within a defined
window centered on each pixel. By utilizing the mean to evaluate local brightness and the
standard deviation to measure contrast or texture, this method dynamically determines
thresholds, enabling efficient image segmentation.

2.2.2. Sauvola’s Method

This method faces challenges with low-texture backgrounds, where subtle details
might exceed the established threshold. Sauvola improved this technique to more effectively
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manage diverse backgrounds and lighting conditions by integrating the dynamic range of the
standard deviation into the threshold calculation. This adjustment enables the method to
adaptively enhance the dynamic range of the standard deviation, improving its performance.

2.2.3. Bernsen’s Method

Bernsen’s technique emphasizes adaptive segmentation by utilizing the local contrast
of pixel regions to distinguish between high-contrast areas which is often associated with
edges or text and low-contrast regions, which typically represent uniform backgrounds. This
method is particularly effective at identifying subtle variations in images and accentuating
important features against varied backgrounds [Senthilkumaran & Vaithegi, 2016].

3. Edge-Based Segmentation

An edge represents a boundary between two homogeneous regions and is
characterized by a local variation in image intensity. Its detection involves identifying and
pinpointing sharp discontinuities within an image. In edge-based segmentation techniques, the
process begins by detecting the contours of objects and the boundaries separating objects
from the background. These edges are then connected to form complete object boundaries,
enabling the segmentation of the desired regions. Discontinuity-based segmentation methods
are particularly effective at identifying abrupt changes in intensity values. The core principle
of edge detection lies in locating areas where significant changes in image characteristics
occur [Sharma et al., 2013].

Edge-based segmentation offers several advantages. It is highly precise, capable of
segmenting complex objects with irregular contours, and robust, as it is less sensitive to noise
and lighting variations. Additionally, it is relatively simple to understand and implement.
However, this method also has some limitations. It can be sensitive to incomplete or noisy
edges, and it may struggle to effectively segment overlapping objects. These factors should be
considered when applying edge-based segmentation in image processing tasks.

Gradient-based edge detection is a simple and effective method for detecting edges in
an image. It is a spatial filter that calculates the gradient of an image's intensity. The gradient
measures the variation in intensity across a given direction in the image. It is computed using
two filters: one for the horizontal gradient and one for the vertical gradient. These filters are
weight matrices that are multiplied by the pixels of the image. The result is a set of values
representing the intensity gradient in each direction. The gradient values are then used to
detect edges. Edges are typically identified as points where the gradient is high. These points
are connected by lines to form the edges of the image (cf.fig.2.2).
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Figure 2.2: contour detection by gradient approach

Edge detection plays a vital role in edge-based segmentation. In images, edges are
defined by two key attributes: direction and magnitude. Along the edge's direction, pixel
values tend to change gradually, whereas perpendicular to the edge, they exhibit sharp
transitions. Because of these properties, first and second-order derivatives are widely
employed to identify and characterize edges effectively.

3.1. First-order differential operators

First-order differential operators are fundamental tools in edge detection, as they
identify edges by computing intensity gradients across an image. Among the most widely
used operators are the Roberts Cross Operator, Prewitt Operator, Sobel Operator, and Canny
Edge Detector. Each of these techniques functions by approximating the first derivative of
pixel intensities, emphasizing regions where abrupt changes in brightness occurrence
indicating potential edges [Acharjya et al., 2012].

e The Roberts Cross Operator employs a simple 2x2 kernel to detect edges at 45-degree
angles, making it computationally efficient but sensitive to noise.

e The Prewitt and Sobel Operators use 3x3 convolution kernels to estimate horizontal
and vertical gradients, with the Sobel operator incorporating weighted smoothing for
better noise resistance.

e The Canny Edge Detectoris a more sophisticated approach, combining Gaussian
smoothing, gradient computation, non-maximum suppression, and hysteresis
thresholding to produce high-precision edge maps with minimal noise interference.
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These operators vary in complexity and robustness, making them suitable for different
applications depending on accuracy and computational efficiency requirements.

3.2. Second-order differential operators

Second-order differential operators play a critical role in edge detection by identifying
intensity discontinuities based on curvature and gradient changes. Two prominent examples
are the Laplacian Operator and the Laplacian of Gaussian (LoG). Unlike first-order operators
that detect edges by locating gradient maxima, second-order operators rely on zero-
crossings in the second derivative, which correspond to sharp intensity transitions.

e The Laplacian Operator applies a second-derivative-based convolution kernel to
highlight rapid changes in pixel intensity, making it highly sensitive to noise.

e The Laplacian of Gaussian (LoG) improves robustness by first smoothing the image
with a Gaussian filter to reduce noise before applying the Laplacian, resulting in more
accurate edge localization.

These operators function by convolving a predefined template matrix (kernel) with the
image’s pixel value matrix, effectively computing local gradients or curvatures at each pixel.
While second-order methods excel at detecting fine edges and corners, their sensitivity to
noise often necessitates preprocessing steps, such as Gaussian smoothing in the case of LoG
[Veelaert & Teelen, 2009].

3.3. Operator’s characteristics

Edge detection operators exhibit distinct trade-offs between performance and
computational efficiency:

» The Roberts Cross offers simplicity but suffers from noise sensitivity;

Prewitt maintains directional sensitivity while remaining vulnerable to noise;

Sobel improves noise suppression at the cost of edge blurring;

Canny delivers superior accuracy through multi-stage processing but requires

careful parameter tuning;

Laplacian precisely localizes edge centers yet amplifies noise without

directional information;

» Laplacian of Gaussian (LoG) combines Gaussian smoothing with second-order
differentiation for balanced noise robustness and localization, albeit with
increased computational overhead and potential loss of fine details.

Y V V

Y

4. Region Based Segmentation

Region based segmentation is a technique that partitions an image into meaningful
regions based on pixel similarity, such as intensity, color, texture, or other statistical
properties. Unlike edge-based segmentation, which detects boundaries, region-based methods
group pixels into coherent regions by analyzing their homogeneity. Figure bellow presents an
example of medical image segmented with this technique.
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(b)

Figure 2.3: Region based segmentation, (a) original image, (b) segmented image.

While region-based segmentation is simple to implement, robust to lighting changes,
and effective for objects of diverse sizes/shapes, its performance declines with complex
images ( overlapping objects, irregular contours, or noisy data), potentially yielding flawed
results [Karthick et al., 2014].

Region-based segmentation primarily employs three core methodologies to partition
digital images into coherent regions by leveraging pixel similarity criteria:

1. Region Growing.
2. Split and Merge.
3. Watershed lines.

4.1. Region Growing

Region growing is an image segmentation method that works by grouping pixels into
regions based on their similarity. It starts with a set of seed points, pixels known to belong to
a specific region, and then expands these seeds to include neighboring pixels that meet
similarity criteria. This process continues until all seeds are fully expanded and every pixel in
the image is assigned to a region [Shrivastava & Bharti, 2020].

Similarity between pixels can be measured using various metrics, such as Euclidean
distance or Manhattan distance. The choice of metric depends on the image characteristics
and segmentation goals.

Region growing can be applied to both grayscale and color images. For color images,
the method may be implemented by processing each color channel independently.

Region growing offers advantages such as simplicity, effectiveness, robustness to
noise and lighting variations, and adaptability to different image types; however, its
performance heavily depends on the initial seed selection, potentially leading to poorly
segmented regions if the seeds are not optimally chosen.
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4.2. Split-and-Merge

The split-and-merge algorithm takes an opposite approach to region growing by
beginning with the entire image as a single region. The process then iteratively splits any
regions that violate a homogeneity criterion while simultaneously merging adjacent regions
that demonstrate sufficient similarity. This dual-phase methodology has become a
fundamental technique with broad applications across multiple domains.

In image segmentation implementations, the homogeneity criteria typically mirror
those used in region growing approaches. The splitting operation conventionally divides non-
homogeneous regions into four equal rectangular partitions, while the merging phase
selectively combines neighboring regions based on carefully defined similarity measures - a
crucial aspect determining the algorithm's effectiveness. A key constraint requires that only
spatially adjacent regions may merge. The algorithm converges when the splitting phase can
no longer generate new regions, indicating complete segmentation.

The split-and-merge algorithm offers significant advantages, including computational
efficiency, robustness, and adaptability to various image types, while consistently producing
well-segmented regions; however, it presents notable drawbacks such as high computational
complexity and sensitivity to the selection of splitting and merging parameters, which can
critically impact segmentation quality [Zaitoun & Agel, 2015].

4.3. Watershed Lines

Watershed segmentation is a popular image processing technique inspired by
topographic flooding, where pixel intensities are treated as elevation levels. The method
works by flooding the image's gradient magnitude from regional minima, creating boundaries
(watershed lines) where different “catchment basins™ meet. This approach is particularly
effective for separating touching or overlapping objects in images, making it valuable in
medical imaging, material science, and biological analysis. Watershed transformation excels
at detecting precise edges and works well with both grayscale and color images [Mohanapriya
& Kalaavathi, 2019].

The primary advantages of watershed segmentation include its ability to detect closed
boundaries and delineate objects with high precision, even when they are in close contact. It is
also conceptually intuitive and works without prior knowledge of the number of objects in the
image. However, drawbacks include sensitivity to noise, leading to excessive segmentation,
and high computational cost for large images. Pre-processing steps like smoothing or marker-
controlled watershed (using predefined seed points) are often required to improve results.
Additionally, the method may struggle with low-contrast images where gradient differences
are insufficient for proper boundary detection. Despite these limitations, watershed remains a
powerful tool when combined with appropriate pre- and post-processing techniques.
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5. Classification Methods for Segmentation

Image segmentation can be effectively approached using classification-based methods,
which involve assigning labels to individual pixels or regions within an image based on their
underlying features such as color, texture, intensity, or spatial context. These features are used
to group similar pixels together, thereby delineating meaningful structures or objects within
the image.

Classification-based segmentation techniques can be broadly categorized into
supervised and unsupervised methods. Supervised approaches rely on labeled training data,
where examples of correctly segmented images are used to train a model to recognize similar
patterns in new, unseen images. These methods often employ machine learning algorithms
such as support vector machines (SVM), decision trees, or deep learning networks like
convolutional neural networks (CNNSs). In contrast, unsupervised methods, known also as
clustering methods do not require labeled data and instead aim to discover inherent structures
within the image by clustering similar pixels together based on feature similarity. Common
unsupervised techniques include k-means clustering, Gaussian mixture models, and
hierarchical clustering. Each approach has its strengths and trade-offs, with supervised
methods typically achieving higher accuracy given quality training data, while unsupervised
methods offer greater flexibility and are particularly useful in scenarios where labeled data is
scarce or unavailable.

5.1. Supervised Classification Methods for Segmentation

Supervised classification methods for image segmentation rely on labeled training data
to train a model that can classify individual pixels or regions into predefined categories. These
approaches follow a structured pipeline beginning with (1) feature extraction, where key
characteristics such as pixel intensity, texture patterns, edge information, and spatial
relationships are quantified to represent each pixel or region. (2) These extracted features are
then used to train a machine learning classifier such as k-Nearest Neighbors (K-NN), Random
Forests (RF), or Support Vector Machines (SVM) on annotated datasets, where each pixel or
region is associated with a ground truth label. (3) Once trained, the model can predict labels
for new, unseen image data by analyzing their features and assigning them to the most
probable category.

With the advent of deep learning, supervised segmentation has shifted toward end-to-
end trainable models such as INet [Weng & Zhu, 2021], FCNs [Jian et al., 2018], which
automate feature extraction through convolutional layers and achieve state-of-the-art accuracy
[Liu et al., 2021a].

5.1.1. K-Nearest Neighbors (K-NN)

K-NN [Cunningham & Delany, 2021] is a simple, non-parametric supervised learning
algorithm used for pixel-wise classification in image segmentation. It relies on feature
similarity to assign labels based on the closest examples in the training data.
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The K-Nearest Neighbors (K-NN) algorithm follows a straightforward yet effective
workflow for image segmentation. First, feature extraction transforms each pixel into a
numerical representation, typically a feature vector that may include attributes such as
intensity values, texture descriptors ( Haralick features for medical images), color channels
(like RGB), or spatial coordinates to incorporate positional context. Unlike parametric
models, K-NN adopts a lazy learning approach during the training phase, where it simply
stores all labeled feature vectors along with their ground truth classifications in memory
without deriving an explicit model. During the prediction phase, the algorithm processes a
new pixel by calculating its distance (Euclidean or Manhattan for examples) to every labeled
pixel in the training set, identifies the K closest neighbors, and assigns the majority class label
among them to the target pixel. While computationally intensive this method’s simplicity and
lack of assumptions about data distribution make it a versatile baseline for segmentation tasks,
particularly in scenarios with limited training data or low-dimensional feature spaces.

5.1.2. Random Forest

Random Forest is an ensemble learning method that constructs a multitude of decision
trees during training and outputs the mode of the classes of the individual trees. In the context
of image segmentation, Random Forest classifiers are used to assign a label (like object or
background) to each pixel or image patch based on its features [Parmar et al., 2018].

In segmentation tasks, features might include color intensity, texture, edge
information, spatial location, or filter responses. These features are extracted for each pixel
(or region) and used as input to the Random Forest. The classifier learns from labeled training
data and generalizes to segment unseen images by classifying each pixel into one of the
predefined classes.

This method follows the pipeline below

1. Feature Extraction: Extract relevant features per pixel or region.
2. Training: Use labeled examples to train the Random Forest.
3. Prediction: Classify each pixel in a new image based on learned decision trees.

5.1.3. Support Vector Machines (SVM)

SVM [Jasti et al., 2022] is a powerful supervised learning algorithm commonly used
for classification tasks. In image segmentation, SVMs are used to assign labels to individual
pixels or regions of an image by learning from feature representations derived from training
data.

An SVM works by finding the optimal hyperplane that separates data points of
different classes with the maximum margin. When data are not linearly separable, kernel
functions like radial basis function (RBF) or polynomial are employed to map data into
higher-dimensional spaces where separation becomes feasible. Each pixel or region in the
image is represented as a feature vector. Common features include:

e Color
e Texture
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e Edges
e Position
e Neighborhood statistics: Mean, variance in a local window

The training process follows the steps below

Annotate a set of training images with class labels (pixel-level or region-level).
Extract features for each labeled pixel.

Train the SVM using these features.

For new (unlabeled) images, extract the same features and use the trained SVM to
classify each pixel.

P owdE

SVMs offer several advantages that make them particularly well-suited for image
segmentation tasks. They are highly effective in high-dimensional spaces, which are
beneficial when working with rich pixel-wise feature sets that include color, texture, and
spatial information. SVMs are also robust in scenarios where there is a clear margin between
classes, often resulting in high classification accuracy. Their flexibility is enhanced by the use
of kernel functions, which enable the algorithm to model complex, non-linear decision
boundaries by projecting data into higher-dimensional feature spaces. Furthermore, SVMs
perform well even with relatively small datasets, making them an attractive option when
annotated training data are limited.

Machine learning approaches in this domain are particularly useful when
interpretability and computational efficiency are prioritized, but they often require careful
feature engineering to achieve robust performance. However, a key limitation of these
methods is their dependency on high-quality labeled data and their potential struggle with
complex, heterogeneous structures where manually designed features may not capture
sufficient discriminative information.

Nevertheless, these approaches remain relevant in scenarios with limited training data
or constrained computational resources, offering a balance between performance and
simplicity.

5.1.4. Convolutional neural network (CNN)

Convolutional Neural Networks (CNNs) are a class of deep learning models
specifically designed to process grid-like data, such as images. CNNs have become the
dominant approach for image segmentation tasks due to their ability to automatically learn

hierarchical features directly from raw pixel data and their effectiveness in capturing spatial
context.

In image segmentation, CNNs classify each pixel (or group of pixels) in an image into
a specific category, enabling precise delineation of objects or regions such as tumors, roads,
or people.

A typical CNN for segmentation consists of:

e Convolutional layers: Learn local patterns such as edges, textures, or object parts.
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e Pooling layers: Reduce spatial resolution to capture more abstract representations.

e Fully connected layers (in traditional CNNs): Used for classification, though often
omitted in modern segmentation networks.

e Upsampling/Deconvolution layers: Restore spatial resolution for pixel-wise
prediction.

Key Architectures in CNN-Based Segmentation are:

e Fully Convolutional Networks (FCN): The major CNN architecture designed for
segmentation [Jian et al., 2018].

e U-Net: Popular in biomedical image segmentation; uses an encoder-decoder structure
with skip connections to preserve spatial detail [Ronneberger et al., 2015].

e SegNet: Employs encoder-decoder structure with index-based upsampling to improve
memory efficiency [Badrinarayanan et al., 2017].

e DeepLab: Uses atrous (dilated) convolutions and Conditional Random Fields (CRFs)
to improve boundary accuracy [Chen et al., 2017].

e Mask R-CNN: Extends object detection by adding a branch for pixel-level object
masks [He et al., 2017].

5.2. Clustering methods

Clustering-based methods is a popular unsupervised approach that groups pixels into
clusters based on similarity in features such as color, intensity, or texture. Unlike supervised
methods, clustering does not require labeled training data, making it widely applicable in
scenarios where manual annotation is impractical [Mokhtari & Debakla, 2018] [Saxena et al.,
2019].

Clustering algorithms categorize pixels into groups (clusters) where intra-cluster
similarity is high and inter-cluster similarity is low. Common features used for clustering
include color, intensity, spatial coordinates and texture (cf.fig.2.4).

Clustering methods are classified into two distinct groups: hierarchical and partitional
techniques.

Figure 2.4: Brain MRI image segmented in three clusters.

35



Chapter 2 Medical Image Segmentation

5.2.1. Hierarchical clustering

Hierarchical clustering organizes data into clusters through an iterative process, using
either a bottom-up (agglomerative) or top-down (divisive) approach. These methods build
a dendrogram -a binary tree structure (cf.fig.2.5) - that visually represents the nested grouping
of patterns. Hierarchical clustering is broadly classified into two types: agglomerative, which
merges smaller clusters into larger ones, and divisive, which recursively splits larger clusters
into finer subgroups.

AT

Figure 2.5: Dendogram.

An agglomerative hierarchical clustering start with each data point as its own cluster
and iteratively merges the most similar pairs, building the hierarchy bottom-up. In contrast,
the divisive approach begins with all data points in a single cluster and recursively splits
them top-down into smaller subgroups, continuing until each point is isolated or a stopping
condition is met.

Hierarchical clustering offers several benefits, including the ability to reveal nested
cluster structures through dendrograms, which provide intuitive visualizations of data
relationships. It does not require pre-specifying the number of clusters, making it useful for
exploratory analysis. Additionally, it can handle arbitrary cluster shapes and is applicable to
various data types, given a suitable similarity measure.

However, hierarchical clustering has notable limitations. It is computationally
expensive, with a time complexity of O(n3) for agglomerative methods, making it impractical
for large datasets. The approach is also sensitive to noise and outliers, which can distort the
hierarchy. Furthermore, since decisions on merging or splitting clusters are greedy and
irreversible, early errors can propagate, leading to suboptimal results. Finally, interpreting
dendrograms can be subjective, as the choice of where to “cut" the hierarchy to define clusters
is often arbitrary [Mittal et al., 2021].
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5.2.2. Partitional Clustering

Partitional clustering methods group data points into non-overlapping clusters by
optimizing an objective function, maximizing intra-cluster similarity while minimizing inter-
cluster similarity. Typically, similarity is measured using metrics like Euclidean distance, and
the algorithm iteratively refines clusters to minimize within-cluster variance.

A key strength of partitioning algorithms is their iterative refinement of clustering
quality. This capability is absent in hierarchical clustering methods. However, these
algorithms suffer from notable limitations. They require a predefined number of clusters,
often resulting in inadequate cluster descriptors. Additionally, their performance is highly
sensitive to initialization and can be severely compromised by noise and outliers.
Furthermore, they struggle with clusters of uneven sizes, varying densities, or non-convex
geometries [Ikotun et al., 2023].

Partitional clustering includes hard clustering and soft clustering exemplified by Fuzzy
c-means clustering (FCM).

5.2.2.1. Hard clustering

Hard clustering (also called crisp or exclusive clustering) is a partitioning method
where each data point x; € X (X presents the all data) is definitively assigned to exactly one
cluster C; € {C;,...,C«}, such that:

— Membership function p(x;C;) € {0,1} (binary assignment)
— UG =X (complete coverage)
— G N Ck=0Vj#k(mutual exclusivity)

This creates strictly delineated cluster boundaries. Common hard clustering algorithms
include:

K-Means:

The k-means algorithm is a simple and efficient clustering algorithm often used for
image segmentation and object detection. The k-means algorithm works in several steps:

1. Initialization: Select k initial centroids (cluster centers), either randomly or using a
specific method.

2. Assignment: Assign each data point to the nearest centroid based on distance (usually
Euclidean distance).

3. Update: Recalculate the centroids by taking the mean of all points assigned to each
cluster.

4. lteration: Repeat the assignment and update steps until convergence (when centroids
no longer change significantly).

The k-means algorithm offers several advantages: it is simple to implement, efficient
for image segmentation and object detection, and robust to noise and outliers. However, it
also has limitations: it is sensitive to the initial choice of centroids, may not converge to an
optimal solution, and cannot detect clusters with complex shapes [Franti & Sieranoja, 2019].
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Mean shift:

Mean Shift Clustering is a non-parametric, density-based clustering algorithm
particularly effective for tasks like image segmentation. This method does not require
predefining the number of clusters. Instead, it operates by:

1. Sliding a Kernel Window: A window ( Gaussian kernel) moves across the data space,
calculating the mean of data points within its bandwidth.

2. Shifting to Higher Density: The window iteratively shifts toward regions of maximum
density (gradient ascent) until convergence.

3. Cluster Formation: Points converging to the same mode (peak density) are grouped
into a cluster.

Mean Shift clustering is ideal for image segmentation because it automatically finds
clusters without predefined numbers, handles noise well, and creates smooth segments by
combining color and spatial data. Its density-based approach preserves object boundaries
naturally, making it perfect for complex images like medical scans or satellite photos [Wang
etal., 2017].

DBSCAN:

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a density-
based clustering algorithm that groups data points into clusters based on their spatial density,
while identifying noise points that do not belong to any cluster. DBSCAN does not require
predefining the number of clusters and can detect arbitrarily shaped clusters, making it
particularly useful for datasets with irregular geometries. The algorithm operates by defining
a neighborhood around each point with a radius ¢ and requiring a minimum number of points
(min_samples) within this neighborhood to form a dense region. Points are classified as core
points (dense regions), border points (on the edges of dense regions), or noise points (isolated
outliers) [Schubert et al., 2017]. DBSCAN follows the steps bellow:

Step 1: Initialization
Mark all points as unvisited.
Initialize an empty list of clusters.
Step 2: Core Point Detection
For each unvisited point p:
Find all points in its e-neighborhood.
If the neighborhood has > min_samples points:
Mark p as a core point.
Create a new cluster.
Expand the cluster using density reachability.
Else, mark p as noise (temporarily).
Step 3: Cluster Expansion (Density Reachability)
For each core point p in the current cluster:
Find all e-neighbors of p.
For each neighbor q:
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If q is unvisited: Mark as visited.
If g has > min_samples neighbors, it is a core
point — add its neighbors to the cluster.
If q is not yet assigned to any cluster, add it to the current
cluster.
Step 4: Repeat Until All Points Are Processed
Continue until all points are either assigned to a cluster or marked as noise.

DBSCAN excels in handling noise and outliers, as it explicitly identifies and excludes
them from clusters. However, its performance is sensitive to the choice of ¢ and min_samples,
and it struggles with datasets where clusters have varying densities.

5.2.2.2. Soft clustering

Soft clustering assigns data points to clusters probabilistically, allowing for partial
membership in multiple clusters. Unlike hard clustering ( k-means), where each point belongs
to only one cluster, soft clustering captures uncertainty and overlapping structures in data.
Soft clustering algorithms include:

Gaussian Mixture Model (GMM) Algorithm:

GMM s a probabilistic soft-clustering method that models data as a mixture of K
Gaussian distributions (K clusters).

The Gaussian mixture model assigns a probability to each data point x of belonging to
a cluster. The probability of data point coming from Gaussian cluster i is expressed as:

K
p() = ) m el 20) 22)

where:

mi = mixing coefficient (weight) for cluster i
wi = mean vector of cluster i
¥ = covariance matrix of cluster i

It uses the Expectation-Maximization (EM) algorithm to estimate cluster parameters.

1. Expectation Step: In this step, the algorithm calculates the probability that each data
point belongs to each cluster based on the current parameter estimates (mean,
covariance, mixing coefficients).

2. Maximization Step: After estimating the probabilities, the algorithm updates the
parameters (mean, covariance, and mixing coefficients) to better fit the data.

These two steps are repeated until the model converges, meaning the parameters no
longer change significantly between iterations.
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GMMs offer probabilistic soft clustering, allowing data points to belong to multiple
clusters simultaneously through membership probabilities, making them ideal for overlapping
datasets. GMMs model flexible cluster shapes (spherical, elliptical, or tilted) via customizable
covariance matrices, adapting to complex data distributions. As a generative model, GMMs
provide uncertainty quantification, useful for confidence estimation in applications like
anomaly detection. However, they exhibit sensitivity to initialization, often requiring multiple
restarts for stable results.

A key limitation is their Gaussian assumption, which may underperform on non-
normal data. Additionally, GMMs become computationally intensive in high-dimensional
spaces due to covariance matrix inversions.

Fuzzy C-Means (FCM) Clustering:

FCM is a prominent soft clustering technique that extends traditional k-means by
allowing partial membership of data points across multiple clusters [Bezdek, 1981]. Unlike
hard clustering methods that assign each point to a single cluster, FCM employs a
membership matrix U = [uij] where ujj € [0,1] represents the degree of belongingness of the it"
data point to the j™ cluster.

FCM algorithm iteratively optimizes an objective function J that incorporates
weighted distances between data points and cluster centroids, with the weighting exponent m
controlling the fuzziness of the resulting partitions.

K N
J(U,C) = Zzugde(xj, ¢) 2.3)
i=1j=1
U and C = (¢4, ¢y, ..., cg) are the memberships degrees matrix and a vector of clusters centers
respectively. m € [1, oof is to control fuzziness, d?(x;, ¢;) is the grayscale Euclidean distance
and u;; is the membership degree of the point j in the i"" cluster c;

During execution, FCM alternates between calculating membership degrees based on
current centroids and updating centroids according to current memberships, converging when
either the change in centroids or objective function falls below a threshold.

This approach provides several advantages: it naturally handles overlapping cluster
boundaries, offers more nuanced interpretation of ambiguous data points, and demonstrates
greater robustness to noise compared to crisp clustering methods.

However, FCM requires careful selection of the fuzzifier parameter m and remains
sensitive to initial centroid placement. The method finds particular utility in applications
where cluster boundaries are inherently vague, such as medical image analysis, market
segmentation, and bioinformatics, while its computational complexity remains comparable to
traditional k-means clustering.
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5. Conclusion

Medical image segmentation remains one of the most challenging yet crucial tasks in

computational diagnostics. While traditional methods have laid important groundwork, they
each suffer from fundamental limitations that restrict their clinical applicability:

1.

Thresholding collapses when confronted with overlapping tissue intensities or
inhomogeneous contrast enhancement, producing jagged, unrealistic boundaries that
fail to capture pathological nuances.

Region-based methods bleed across anatomical borders, unable to distinguish true
tissue interfaces from partial volume effects or imaging artifacts.

Edge detection disintegrates when faced with the low contrast-to-noise ratios
characteristic of early-stage lesions or diffuse pathologies.

Rigid clustering methods (K-means, GMM) impose artificial binary decisions on
inherently gradational biological transitions, discarding the probabilistic nature of
medical interpretation.

These constraints underscore the urgent need for segmentation methods that preserve

uncertainty in ambiguous regions, model the continuous nature of tissue interfaces, and adapt
to variable imaging conditions ensuring robustness across diverse clinical and experimental
scenarios

The solution emerges in the next chapter through Fuzzy C-Means (FCM) clustering, a

paradigm-shifting approach that:

1.

2.
3.
4

Shatters the binary segmentation fallacy through probabilistic membership functions
Captures transitional tissue states via smooth, overlapping cluster assignments
Mirrors radiologist reasoning by maintaining diagnostic uncertainty where appropriate
Provides tunable precision through its fuzzy parameter

The following chapter will dissect FCM's mathematical foundations, demonstrate its

superiority in handling medical imaging ambiguities, and reveal how its soft decision
boundaries enable more natural integration with downstream diagnostic Al systems and
finally how it is enhanced through several contributions by modifying FCM’s objective
function or optimizing its parameters using bio-inspired methods.
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1. Introduction

Image segmentation is a critical task in computer vision and medical imaging, where
the goal is to partition an image into meaningful regions for further analysis. Traditional
segmentation methods often struggle with the inherent ambiguity, noise, and intensity
inhomogeneity present in real-world images. Fuzzy C-Means (FCM) clustering has emerged
as a powerful tool in this domain, offering a flexible approach by allowing pixels to belong to
multiple clusters with varying degrees of membership. Unlike crisp (or hard) clustering
methods like K-means, FCM’s capability as soft segmentation makes it particularly effective
for handling overlapping structures, such as tissues in medical images or objects with blurred
boundaries in natural scenes.

The standard FCM algorithm minimizes an objective function that weighs pixel
intensities against cluster centroids, making it suitable for intensity-based segmentation.
However, conventional FCM has limitations, including sensitivity to noise, high
computational cost, and dependence on initialization. To address these challenges, numerous
FCM variants have been developed, specifically tailored for image segmentation:

- Spatial FCM (SFCM): Incorporates neighborhood pixel information to improve
robustness against noise.

- Kernel FCM (KFCM) and Spatial KFCM (SKFCM): Use kernel functions to handle
non-linear intensity distributions and to improve robustness against noise.

- Adaptive FCM (AFCM): Dynamically adjusts parameters based on local image
statistics.

- Type-2 FCM (T2FCM): Enhances uncertainty modeling for low-contrast images.

Recent research has focused on hybridizing FCM with bio-inspired optimization
algorithms such as Genetic Algorithms (GAs), Particle Swarm Optimization (PSO), Artificial
Bee Colony (ABC) and other bio-inspired algorithms to optimize cluster initialization,
improve convergence, and enhance segmentation accuracy. These hybridization approaches
have shown significant promise in medical imaging (such as tumor detection), where
precision and computational efficiency are paramount. This chapter explores the foundational
FCM algorithm, its variants in image segmentation, and the growing impact of bio-inspired
techniques in advancing fuzzy clustering for this complex task.

2. Fuzzy C-Means (FCM) for image segmentation

The FCM algorithms firstly introduced by Dunn [Dunn, 1974] and generalized by
Bezdek [Bezdek, 1981] are a family of clustering algorithms based on a fuzzy objective
function. They are considered as soft clustering in the way that each element of the data to be
clustered may belong to more than one cluster with deferent degrees of membership. The
objective function is optimized in an iterative way and at the end of the process; each element
is assigned to the cluster in which it has the highest membership.
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Let I = (x1, x3,...,xy) an image of N pixels to be clustered into K (2 < K « N)
clusters, where x; represents data features. The FCM objective function is formulated as
[Bezdek, 1981]:

J(U,C) = Zz ud?(x;, c;) (3.1)

i=1j=

U and C = (¢4, ¢y, ..., Ck) are the memberships degrees matrix and a vector of clusters
centers respectively. m € [1, oo is to control fuzziness, d*(x;,c;) is the grayscale Euclidean
distance and u;; is the membership degree of the pixel j in the i cluster ¢; which must check
the following constraints:

Vi € [1,K],j € [1,N]:

N
uij = 1, uij (S [O, 1], 0< Zuij <N (32)
=1

J(U,C) is optimized, by introducing the Lagrange multipliers A [Dunn, 1974] to

-

i=1

incorporate the constraint in (2). This yields function J(U, C, A ) to be minimized:

K N N k
JW,c, ) z zuij d?(xj,¢;) + ;ﬂj{;u” _1:| (3.3)

i=1 j=1
J is alternately optimized in two steps:

Step 1: Optimizing the Membership Degrees:
0J oJ

U is an optimal value of J if — =0 and —— = Qwhich lead to :
ouy, oA
ﬂ = Zk:u -1=0 3.4
5ﬂ,j =) 1) ( : )
oJ _1
— d?(x., : +/7, =0 3.5
o, (%;,6) (35)

Where i= 1,2,....Kand j=1,2,...,N.

From Equation (3.5), we obtain:
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U, = {‘—4}“ (3.6)
P md?(x;,¢)

By combining Equation (3.4) and (3.6), we get:

k k - ﬁ B
Zuij Z[md (X )] =1 (37)

i=1 i=1 jrvi

i=1

2 = [zkj(md (><.,C))l j (3.8)

The new membership values are obtained by inserting 4, into equation (3.6) yields:

(Zk:(dZ(xj,c,))ilmJ "
ui' = =1 (39)
! d*(x;,c;)

L e
ij = (3.10)

' i(d (xj,c,))?m

Step 2: Optimizing the cluster centers:

The obtained membership values are used to optimize clusters centers by deriving of J
with respect to centers. Thus, the cluster centers are updated by

=3 (3.11)

From a random initialization of clusters centers and using formulas (3.10) and (3.11),
FCM algorithm recomputed clusters centers until no improvement of these centers. Once the
clusters centers fixed, the algorithm assign each pixel x; of the image to a cluster having
maximum fuzzy membership degree.
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Algorithm FCM

Input : K : number of cluster

N :number of pixel

¢: threshold

m: Fuzziness exponent ( typically m=2).
Output : K clusters center C
1- Randomly select K initial cluster centers C={cy,...,cx}.
2- Update memberships Uj; using formula (10)
3- Calculate Joia(u,c) using formula (1)
4- Update clusters center ¢; using formula (11)
5- Calculate Jnew(u,c) using formula (1)
6- Repeat steps 2 to 5 until  [Jnew — Joid< €
7-Return C

2.1. Advantages of FCM

Fuzzy C-Means (FCM) is a widely used clustering algorithm that offers several key
advantages over traditional hard clustering methods like K-Means. Below are its primary
benefits, particularly in applications such as image segmentation:

1. Handles ambiguity and overlapping clusters: Unlike crisp clustering (which assigns
each data point to only one cluster), FCM allows partial membership, meaning a point can
belong to multiple clusters with varying degrees (between 0 and 1) which is useful in
medical imaging ( brain MRI segmentation where tissues overlap).

2. More flexible in noisy and uncertain data: Since FCM considers fuzzy membership
values, it is less sensitive to minor noise compared to crisp clustering methods. Variants
like Spatial FCM (SFCM) further improve noise robustness by incorporating neighborhood
information.

3. Better for non-spherical and Complex data: Kernel FCM (KFCM, variant of FCM) can
handle non-linear separability by mapping data into higher dimensions.

4. Adaptable with Customizable Fuzziness (m): The fuzzifier parameter (m) controls
cluster overlap. If m — 1, FCM behaves like K-Means (crisp clustering). But values more
than 1 (m > 1) increases fuzziness (useful for uncertain data) which allows tuning based on
application needs.

5. Works well in high-dimensional data: Effective in feature-rich datasets ( hyperspectral
images, gene expression data) and can be combined with dimensionality reduction ( PCA)
for efficiency.

6. Compatible with hybrid and bio-inspired optimizations: FCM can be enhanced with
evolutionary algorithms (GA, PSO, ABC,...) to improve initial centroid selection, escape
local optima and speed up convergence.
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7. Wide range of applications: FCM clustering has diverse real-world applications due to
its ability to handle uncertain data. In medical imaging, it aids tumor detection and tissue
analysis, while inremote sensing; it enables precise land cover classification. The
algorithm also proves valuable for industrial defect detection and computer vision
tasks like object recognition, demonstrating its versatility across domains.

FCM’s ability to model uncertainty, handle noise, and integrate with optimization techniques
makes it a powerful tool for real -world clustering tasks- especially in image segmentation
where data is often ambiguous. While it has higher computational costs than K-Means, its
flexibility and accuracy justify its use in many applications.

2.2. Demerits of Fuzzy C-Means (FCM) Clustering
Despite its advantages, FCM has several limitations:

1. Sensitivity to Noise and Outliers: The standard FCM objective function weights all data
points equally, making it vulnerable to corrupted or extreme values.

2. High Computational Cost: Iterative membership updates and distance calculations become
expensive for large datasets.

3. Dependence on initial centroids: Poor initialization can lead to suboptimal clustering or
slow convergence.

4. Assumes spherical clusters: Struggles with complex, non-linear, or irregular cluster shapes.

5. Requires predefined cluster number: Like K-Means, FCM needs the number of clusters (K)
as input, which may be unknown in real-world data.

6. Parameter tuning (Fuzzifier m): Choosing an inappropriate m value can lead to overly
fuzzy or rigid results.

3. FCM variants

The Fuzzy C-Means (FCM) algorithm has been extended into numerous variants to
address its limitations, such as sensitivity to noise, outliers, and complex data structures.
These adaptations include kernel-based FCM (KFCM), which maps data into higher-
dimensional spaces for better separability, and weighted or entropy-regularized versions to
improve robustness. Other variants incorporate spatial information, alternative distance
metrics, or hybrid optimization techniques to enhance clustering accuracy and adaptability
across diverse datasets. Bellow the most variants that marked the FCM evolutions.

3.1. Spatial FCM (SFCM)

Conventional FCM ignores spatial information, making it sensitive to noise and
outliers in image processing or spatially correlated data. To address this, Spatial Fuzzy C-
Means (SFCM) incorporates spatial constraints [Ahmed & Moriarty, 2002] [Chen et al.,
2004], improving robustness in applications like medical image segmentation, remote
sensing, and pattern recognition [Ali et al., 2023].
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The objective function defined in formula (3.1) was modified [Chen et al., 2004]
taking account of the spatial information in order to increase the robustness over noise as
follow:

J(U,0) =i§:uﬁd2(x],c)+azz nd?(x;, ¢;) (3.12)

i=1 j=1 i=1j=

where X; represents the grey value of pixel in the weighted averaging image window. a is a
parameter to control the tradeoff between the original image and the corresponding mean-
filtered image. Under the constraints defined in (3.2), the objective function in formula (3.12)
can be optimized leading to a new algorithm called SFCM. Like the original FCM, SFCM,
iteratively, computes clusters centers using the formulas below.

1
uij _ (dZ(Xj, Cl') + adz(fj, Ci))l_m (313)

K (@d*(xj,c;) + ad?(x;, cl))ﬁ

and
. Py 1uf§l(xj + afj)
' 1+a) Z] 1 Ui (3.14)
Advantages

The Spatial Fuzzy C-Means (SFCM) algorithm offers several key advantages over
traditional FCM. First, its incorporation of spatial constraints enhances noise robustness,
significantly reducing sensitivity to outliers and corrupted data points. Second, it preserves
spatial continuity, making it particularly effective for tasks like image segmentation, where
adjacent pixels often share cluster membership. Third, SFCM provides flexibility through the
parameter o, which allows users to adjust the balance between spatial influence and feature-
based clustering.

Limitations
Despite its strengths, SFCM has two primary limitations:

1-  Higher computational cost due to the added neighborhood term, which increases

algorithmic complexity,
2-  Requires predefined cluster number: Like FCM, SFCM needs the number of
clusters (K) as input, and may converge to local optima.
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3-  Parameter sensitivity, as performance heavily depends on the choice of a and the
size of the spatial neighborhood.

3.2. Kernel-based FCM (KFCM)

The original FCM algorithm assumes that clusters are spherical and linearly separable

in the input space. When this assumption fails the algorithm performs poorly. This limitation
is caused by the use of the Euclidean norm metric. By using kernel methods, KFCM
implicitly transforms the input data into a high-dimensional feature space where linear
separation may be possible [Chang-Chien et al., 2021] [Abdullah, 2024].

Using kernel function, the KFCM objective function is expressed as:

J(U,C) =2 Z Z u(1 - Ker(x;, c;)) (3.15)

i=1j=1

where Ker is a kernel function. The Radial Basis Function (RBF) Kernel also called the
Gaussian kernel is one of the most commonly used in KFCM.

Similarly to the FCM algorithm, this objective function can be optimized under the

constraints defined in (2). We can compute the fuzzy membership function and the clusters
centers with the formulas below respectively.

1
_ 2K~ Ker(y, )

ul-j 1 (316)
(1 — Ker(x;, ¢;))m-1
and
N ulKer(x;, ¢;)x;
i =N —m (3.17)
j=1Uij Ker(xj, cl-)
The general steps of KFCM are the same as FCM.
Advantages of KFCM
o Handles non-linear data separation: Uses kernel functions to map data into a higher-
dimensional space, making it effective for complex, non-linear clusters and performs
better than standard FCM when clusters are not well-separated in the original space.
o Robust to noise and outliers: Kernel methods can reduce the impact of noise by
transforming data into a more separable space.
o Flexibility in kernel selection: Different kernels (RBF, polynomial, sigmoid) can be
chosen based on the dataset, improving adaptability.
o Improved clustering accuracy: Often achieves better clustering results than FCM for
datasets with intricate structures.
o Works well with high-dimensional Data: Kernel tricks help in dealing with the "curse

of dimensionality” by implicitly working in a higher-dimensional feature space.
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Limitations of KFCM

o Computationally expensive: Kernel matrix calculations require O(N2) memory and
computations, making it slower than FCM for large datasets and not suitable for
real-time or big data applications.

o Kernel parameter sensitivity: Performance heavily depends on kernel parameters (
o in the Gaussian kernel) which requires tuning via cross-validation or heuristic
methods leading to time-consuming.

o Risk of overfitting : Poor kernel choices or parameter settings may lead to
overfitting, especially with small datasets.

o Initialization Sensitivity : Like FCM, KFCM is sensitive to initial cluster centroids
and may converge to local optima.

o Interpretability Issues: Since clustering occurs in a high-dimensional kernel space,
interpreting results is harder than in linear methods like FCM.

o Not Always Better Than FCM for Simple Data: For linearly separable clusters,
KFCM may introduce unnecessary complexity without significant gains.

3.3. Spatial Kernel-based FCM (SKFCM)

The Spatial Kernelized Fuzzy C-Means (SKFCM) is an extension of the Kernelized
Fuzzy C-Means (KFCM) that incorporates spatial information from image or grid-based data
to improve clustering performance, especially in noisy environments. Similar to SFCM, the
spatial information is added to KFCM in the following way leading to a new algorithm [Raj,
2024]:

The objective function is formulated as (18):
K N K N
JU,C) =2 Z Z ui(1- Ker(xj,¢;)) + ZaZ Z ult (1 - Ker(x;,c;))  (3.18)
i=1j=1 i=1j=1
where X; represents the grey value of pixel in the weighted averaging image window.
Similar to standard FCM, the fuzzy membership matrix and the clusters centers are

updated iteratively with the formulas (3.19) and (3.20) respectively.

_ 1
ul'j = 1

Z{<=1< (1—Ker(xj,ci)+a(1—Ker(9_cj,ci) >(m—1) (3 19)

(1—Ker(xj,cl)+ a(l—Ker(J_cj,cl)

_ ijzlug-l(Ker(xj,ci)xj +a(1-Ker(xj,c;))%x;)
i Zj-vzlug-l ((1-Ker(xj,c;))+a(1-Ker(xj,c;)))

(3.20)
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Advantages of SKFCM:

1. Handles non-linear data: Like KFCM, by using kernel functions, SKFCM can
effectively cluster non-linearly separable data by mapping it to a higher-dimensional
space.

2. Incorporates partial supervision: unlike traditional FCM, SKFCM can leverage labeled
data (if available) to guide clustering, improving accuracy when some prior
knowledge exists.

3. Robust to noise and outliers: The fuzzy membership approach allows soft clustering,
making it less sensitive to noise compared to hard clustering methods like K-Means.

4. Flexible cluster shapes: The kernel trick enables the detection of arbitrarily shaped
clusters, unlike standard FCM, which assumes spherical clusters.

Limitations of SKFCM:

1. Computational complexity: Kernel matrix computation is expensive (O(n?)), making
SKFCM slower than FCM for large datasets.

2. Parameter sensitivity: Performance depends on kernel selection ( RBF, polynomial)
and kernel parameters ( ¢ in RBF), which require tuning.

3. Requires some labeled data: While semi-supervised, it still needs partial labels for
optimal performance; fully unsupervised cases may not benefit as much.

4. Scalability Issues: Not suitable for big data applications due to high memory and
computational demands.

5. Risk of overfitting: If the kernel parameters are poorly chosen, the model
may overfit the training data.

6. Initialization sensitivity: Like FCM and KFCM, SKFCM s sensitive to initial cluster
centroids and may converge to local optima.

3.4. Possibilistic Fuzzy C-Means (PFCM)

Possibilistic Fuzzy C-Means (PFCM) [Pal, 2005] [Farooq & Memon, 2024] is another
extension of the standard Fuzzy C-Means (FCM) algorithm that fuzzy
membership and possibilistic clustering (PCM) and addresses two key limitations:

1. Noise sensitivity: FCM forces all points to belong to clusters, making it vulnerable to
outliers.

2. Membership interpretation: FCM's probabilistic constraints can lead to
counterintuitive results.

PFCM introduces possibilistic memberships that represent the absolute degree of
typicality of a point to a cluster and allow points to belong to no clusters (unlike FCM). The
PFCM objective function combines two components: the fuzzy membership (ui: (similar to
FCM)) and the possibilistic membership (t;: Measures typicality (like PCM))

K

J,c) = Z i(aulf’}+bt;’j)d2(xj, )+ iyi iu —t;;)" (3.21)
i=1 j=1

i=1 j=1
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where:

K = number of clusters

N = number of data points

uij = fuzzy membership of x; in cluster i (as in FCM)

tij = possibilistic typicality of x; in cluster i (as in PCM)

ci = centroid of the i cluster

a,b = weighting coefficients controlling the influence of fuzzy and possibilistic terms
(atb=1)

m = fuzzification exponent (m>1)

n = typicality exponent (usually #=2)

yi = scale parameter for the i cluster (similar to PCM)

The PFCM algorithm follows the steps bellow:

1. Choose K, m, n, a,b
2. Initialize cluster centers randomly
3. Repeat until convergence: centroids stabilize (change below a threshold) or max
iterations reached.
a. Update fuzzy memberships (u;) using formula (3.10)
b. Update possibilistic memberships (t;) using formula (3.22)
-1

1

b1 —d?(x;,c;)\""*

ty = 1+< (4 ‘)> (3.22)
Yi

c. Update cluster centers (c;) using formula (3.23)

N (aum+bt])x;
¢, = J=1 3] l]) J (3.23)

9’=1(aug-’+btfj)

Advantages of PFCM:

The PFCM algorithm offers several key advantages over traditional clustering
methods.

1. Unlike FCM, PFCM is robust to noise and outliers, making it more reliable for real-
world datasets with imperfections.

2. Additionally, it avoids coincident clusters, a common issue in PCM, by maintaining
meaningful cluster separation.

3. PFCM effectively balances fuzzy membership and possibilistic typicality, allowing for
better handling of uncertain data while preserving probabilistic interpretability.

4. This hybrid approach also makes it well-suited for overlapping clusters, where clear
boundaries between groups are difficult to define.

Limitations of PFCM:
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However, PFCM has some notable drawbacks.

1. It is highly sensitive to parameter choices, requiring careful tuning of coefficients
(a, b, ;) to achieve optimal performance.

2. The algorithm also incurs a higher computational cost compared to FCM due to its
combined membership and typicality calculations.

3. Furthermore, like many clustering methods, PFCM is initialization-dependent,
meaning poor initial centroids can lead to suboptimal clustering results.

PFCM offers a robust alternative to FCM and PCM by combining their strengths, but
its effectiveness depends heavily on proper parameter selection and initialization. It is well-
suited for datasets with noise and overlapping clusters but requires careful tuning to achieve
optimal results.

3.5. Improved FCM with Non-Local Information (FCM-NL)

To include non-local information, the Improved FCM-NL [Ma et al., 2014] [Zhang et
al., 2017] [Zhang et al., 2021] modifies the objective function as follow:

N
Z ug'ldz(xj’ ci) + )\ijl d*(x, ¢;) (3.24)

J=1 lep;

JU,C,W) = Z

K
=1
where:
Ujj is the membership that determines how much a pixel x; belongs to cluster i
1

dZ(Xj, Ci) + )\Zlepj Wi dz(xl; Ci) 2 (325)

1

ul-j =
K Y-
p=t dz(xj: Cp) + 7\21@]. wy d%(x,, cp)

wj  presents the non-local weight (measures similarity between patches
(neighborhoods) around pixels j and )

wy = EXP | — =5 zZ(Pf'P’) (3.26)
j=1Uij 1+ )\ZlEijjl))

P;and P, are image patches centered at x; and xi.

c¢i is the i™ cluster center, it is updated as aweighted average of all pixels,
incorporating both intensity and non-local similarity:

N m
j=1Uij (xj + 7\216,31. wj; xl)

Cc: =
' ;y=1uijm(1 + )\Zlepj le))

(3.27)

p; is a search window around pixel j.

A is a balancing parameter (controls influence of non-local term)
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1.
2.

the FCM-NL algorithm is summarized as follow:

Initialize centroids ci (randomly).

Repeat until convergence:
e Compute non-local weights wj, for all pixels.
e Update membership values ui;.
e Update cluster centers vi.

Advantages of FCM-NL.:

The FCM with Non-Local Information (FCM-NL) algorithm significantly outperforms

standard FCM in several key aspects.

1.

Unlike traditional FCM, which relies solely on pixel intensity, FCM-NL incorporates
patch-based similarity, making it highly robust to noise and outliers while preserving
structural details.

This approach leverages non-local means filtering, effectively reducing blurring and
maintaining sharp edges, a critical advantage in medical imaging ( MRI and
ultrasound) where fine details are essential.

FCM-NL achieves superior segmentation accuracy in noisy environments by
adaptively smoothing homogeneous regions without degrading textures.

The integration of non-local information ensures adaptive noise suppression, making
FCM-NL a powerful choice for real-world applications where noise corruption is
inevitable.

Limitations of FCM-NL:

While FCM-NL improves noise robustness and segmentation accuracy over standard

FCM, it has several key limitations:

1.

High computational cost: Calculating non-local patch  similarities (W;,) is
computationally expensive, especially for large images or 3D volumes and slower than
standard FCM due to neighborhood search operations for every pixel.

Memory intensive: Storing patch-based weights for all pixel pairs requires significant
RAM, limiting scalability.

Sensitive to parameter tuning: Performance depends heavily on Patch size (too small
leads noise-sensitive; too large leads oversmoothing), smoothing parameter h (affects
weight decay in W;) and trade-off parameter A (balancing local vs non-local terms).
Suboptimal choices of these parameters can lead to oversmoothing or inadequate noise
removal.

Initialization sensitivity: Like FCM, results depend on initial cluster centers (poor
initialization leads to suboptimal convergence).

The optimization landscape of FCM-NL (like FCM) is non-convex, meaning multiple
local minima exist and the probabilistic memberships (summing to 1) impose
constraints that may restrict movement toward a better global solution.
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6. Limited adaptability to heterogeneous noise: Assumes uniform noise distribution;
struggles with structured noise ( salt-and-pepper, stripe artifacts).

7. Complex implementation: Requires additional steps (patch extraction, weight
computation).

3.6. Weighted FCM (WFCM)

Weighted Fuzzy C-Means (WFCM) [Sarkar et al., 2024] [Poshitha et al., 2023] is an
enhanced version of the standard FCM algorithm that incorporates feature weighting to
improve clustering performance. Unlike traditional FCM, which treats all features equally,
WFCM assigns different weights to features based on their importance, leading to more
accurate and meaningful clustering.

The objective function of WFCM is defined as:

N D

K
JU,c,w) = Z ug-lzwf d?(x, i) (3.28)

i=1 j:l I=1
where

o  X={X1,X, ...,Xn}: Dataset with N samples.

o  Xi=[Xi,Xiz ..., Xia]: A sample with D features.

e K: Number of clusters.

e C={c1,Cy,...,vk}: Cluster centroids.

e U=[ujj]: Fuzzy membership matrix.

o  W=[wi,Ww,,...,wp]: Feature weights.

/: Weight exponent ($>1, controls weight distribution).

WFCM minimizes the objective function J(U, C, W) by optimizing iteratively U,V,W.
It updates:

1. Fuzzy Memberships (uij)
1
1
K (ZP=1WF d2(xj, c;;))m-1 (3.29)

=t ZP=1 Wlﬁ dz(xlj: Clj)

ul-j =

2. Clusters centroids (cij)

N m
_ X uiixy
Cu =N ,m
j=14ij

(3.30)

3. Features weights (wj)
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1

_1
5D (Zf(:@ﬂ'vn“Z‘Ldz(xlj'ciz)y_l (3.31)
I=1

K N m
DN IRTHL L CHR)

w; =

The algorithm steps follow the general steps bellow:

1. Initialize:
e Random cluster centroids C.
e Uniform feature weights w;.
2. Repeat until convergence:
e Update memberships U.
e Update centroids C.
e Update feature weights W.
3. Terminate when:
e Change in U or J (U,C,W) is below a threshold e.

Advantages of WFCM:

Weighted Fuzzy C-Means (WFCM) offers several key advantages over traditional
FCM, making it particularly effective for complex datasets:

— Feature selection: WFCM automatically detects and emphasizes important features by
assigning higher weights to discriminative attributes while suppressing irrelevant ones.
This leads to more meaningful clustering without manual feature engineering.

— Noise robustness: By reducing the influence of noisy or redundant features through
adaptive weighting, WFCM improves robustness in real-world datasets where
irrelevant variables may degrade performance.

— Better clustering accuracy: In high-dimensional data, WFCM outperforms standard
FCM by focusing on the most relevant features, resulting in clearer cluster separation
and higher accuracy.

— Flexibility: WFCM can be easily extended with kernel methods (for nonlinear data)
making it adaptable to diverse applications.

Limitations of WFCM:
While WFCM improves upon traditional FCM, it has several key limitations:

— Sensitivity to initialization: Like FCM, WFCM’s performance depends heavily on
initial centroids and weights, leading to suboptimal solutions if poorly initialized.

— Computational Cost: The additional weight optimization step increases runtime,
especially for high-dimensional data, making WFCM slower than standard FCM.

— Parameter Tuning Challenges: The weight exponent () and fuzziness parameter (m)
require careful tuning. Poor choices can lead to overweighting/underweighting
features or overly fuzzy clusters.
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— Assumption of feature independence: WFCM treats features as independent, ignoring
correlations. Real-world data with interdependent features may need kernel or graph-
based extensions.

— Local optima trapping: The objective function is non-convex, so WFCM may
converge to local optima, especially with noisy or overlapping clusters.

— Scalability issues: For very large datasets, WFCM’s iterative weight updates
become prohibitively expensive.

3.7. Entropy-Based FCM (EFCM)

Entropy-Based Fuzzy C-Means (EFCM) is a variant of FCM that incorporates entropy
regularization to improve cluster validity and reduce sensitivity to initialization. Unlike
traditional FCM, which relies solely on the sum of squared errors, EFCM introduces
an entropy term to control the fuzziness of membership assignments, leading to more robust
clustering [Kahali et al., 2019] [Ray & Sing, 2024].

EFCM introduces a regularization term that encourages more balanced and stable
memberships. The modified objective function becomes:

JU,C) = ZK:ZN:uZ-‘dZ(x]-, ci)— li i ullog(u;;) (3.32)

i=1 j=1 i=1 j=1

e ) is the entropy regularization coefficient

e The entropy term —Y uijlog(ui;) promotes high uncertainty or “softness” in the
memberships, preventing premature hard clustering.

The optimization of this objective follows an iterative procedure:

2(x. c.
exp <_ _d (Jj{' Cl))
d?(x,
f:l exp <_ (J/(:{ Cl))

2. Centroids update using formula (11) (as FCM)
3. Terminate when:
Change in U or J (U,C) is below a threshold e.

Advantages of EFCM:

1. Update Memberships:

— Adaptive fuzziness: Automatically adjusts cluster fuzziness via entropy, reducing
reliance on manual tuning of m.

— Robust to noise: Entropy regularization suppresses spurious membership assignments.

— Theoretical foundation: Derived from maximum entropy principle, ensuring
mathematically sound membership distributions.
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Limitations of EFCM:
While EFCM offers advantages over conventional FCM, it has several key limitations:

— Sensitivity to entropy coefficient (A): The algorithm's performance heavily depends on
proper selection of A (A too small: Behaves like hard K-means (loses fuzziness
benefit), A too large: Produces overly fuzzy clusters (near-uniform memberships)) and
there is no universal rule for optimal A selection.

— Computational complexity (Slower Convergence): Typically requires more iterations
than standard FCM.

— Initialization sensitivity:

e Centroid dependence: Like all FCM variants, results depend on initial centroids.
e Local optima: May converge to suboptimal solutions.

—  Cluster shape assumptions: Inherited FCM Limitations (Still assumes hyper-spherical

clusters).

4. Discussion

Fuzzy C-Means (FCM) clustering has evolved into numerous variants to address its
inherent limitations, such as sensitivity to noise, dependence on initial centroids, and
difficulty handling complex data structures. Key variants include Possibilistic FCM (PFCM)
and Non-Local FCM (NL-FCM) AND EFCM for robustness against outliers, Kernel FCM
(KFCM) for nonlinear data separation, and Spatial FCM (SFCM) for image processing tasks.
Despite these improvements, standard FCM still faces challenges like local optima
convergence, sensitivity to initialization and need of clusters number. This is where bio-
inspired optimization methods like Genetic Algorithms (GA), Particle Swarm Optimization
(PSO), and Artificial Bee Colony (ABC) prove invaluable. These methods enhance FCM by
automating centroid initialization, dynamically optimizing parameters, and escaping local
optima through global search strategies. Such hybrid approaches are particularly effective in
medical imaging, pattern recognition, and big data clustering, where traditional FCM
struggles. The integration of bio-inspired optimization with FCM not only improves
clustering accuracy but also reduces computational costs, making it a powerful tool for
complex real-world applications.

5. Optimization methods

Optimization is a discipline focused on identifying the most effective solution from a
range of possible options to address a specific problem, leveraging mathematical and
computational methods. At its core, it entails optimizing (maximizing or minimizing) an
objective function subject to certain constraints [Nesterov, 2018].

Optimization problems are ubiquitous in many fields, such as engineering, logistics,
finance, physics, chemistry, and more.
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5.1. Categories of optimization

Optimization techniques can be broadly categorized into deterministic and stochastic
approaches.

a) Deterministic Optimization is a class of optimization methods that operates under the
assumption that all input data is precisely known and free from randomness. It relies on
exact mathematical models, such as linear or nonlinear equations, to find optimal
solutions . It includes:

1. Linear Programming (LP): Optimizes a linear objective function subject to linear
constraints, widely used in resource allocation and scheduling.

2. Nonlinear Programming (NLP): Deals with nonlinear relationships in the objective
or constraints, common in engineering design and economics.

3. Integer Programming: Restricts decision variables to discrete (integer) values,
essential for problems like logistics and network design.

4. Convex Optimization: Focuses on convex objective functions and constraint sets,
enabling efficient global solutions in machine learning and control systems.

These methods are favored when system parameters are well-defined and uncertainty
is negligible.

b) Stochastic optimization: known as Non-deterministic methods, refers to methods that
handle problems where uncertainty, randomness, or incomplete information plays a
significant role. Unlike deterministic approaches (which assume exact, fixed inputs),
these techniques incorporate probabilistic models, heuristics, or adaptive strategies to find
robust or approximate solutions [Spall, 2005].

5.2. Heuristic optimization methods

They are intelligent approaches designed to find good approximate solutions in
a reasonable time, especially for complex, nonlinear, or NP-hard problems. Unlike exact
methods, they do not guarantee optimality but are flexible and adaptable to various real-world
challenges.

5.2.1. Bio-Inspired methods

Bio-inspired methods, Known also as Nature-inspired metaheuristics, are optimization
algorithms modeled after biological, ecological, or social behaviors observed in nature. These
methods excel in solving complex, non-linear, and high-dimensional problems where
traditional approaches struggle. They are broadly classified into three categories:

o Evolutionary Algorithms (EA): These mimic biological evolution through
mechanisms like selection, recombination, and mutation. in this category we
distinguish Genetic Algorithm (GA) [Holland, 1992], and Evolution Strategies
(ES) [Storn & Price, 1997]. Inspired by Darwinian natural selection, GA
uses crossover, mutation, and fitness-based selectionto evolve solutions,
where ES, A variant of GA, emphasizes self-adaptation of mutation
parameters. It is particularly effective in continuous optimization.
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o Swarm Intelligence (SI): These algorithms simulate collective behavior in
decentralized systems. In this category, we cite Particle Swarm Optimization
(PSO) [Kennedy & Eberhat, 1995] that models bird flocking or fish schooling,
where "particles" adjust their trajectories based on individual and group best
positions and Ant Colony Optimization (ACO) [Dorigo et al., 1996], method
based on pheromone trail deposition by ants.

o Collective Intelligence Algorithms: These leverage group behavior for
exploration-exploitation trade-offs. We distinguish Artificial Bee Colony
(ABC) [Karaboga & Basturk, 2007] that simulates honeybee foraging with
"employed,” "onlooker,” and “scout” bees balancing exploration and
exploitation and Firefly Algorithm (FA) [Yang, 2009] which is inspired by
firefly bioluminescence. FA uses attractiveness-based movement for multi-
modal and multi-objective problems.

5.2.2. Physics/Chemistry-Based Methods

Physics and chemistry-inspired optimization methods leverage natural phenomena
such as thermal dynamics, gravitational forces, and molecular interactions to solve complex
optimization problems. These algorithms mimic processes like annealing in metallurgy, or
chemical reactions to explore solution spaces efficiently. By translating physical laws into
computational strategies, they offer robust alternatives to traditional mathematical
optimization, particularly in high-dimensional, nonlinear, or multimodal problems. In this
category, we cite:

o Simulated Annealing (SA): inspired by thermodynamics (gradual cooling). Its
principle is to accept worse solutions temporarily to escape local optima [Kirkpatrick
et al., 1983] [Guilmeau et al., 2021].

o Harmony Search (HS): mimics musical improvisation where musicians adjust their
pitches to achieve a pleasing harmony. It is proposed by Geem, Kim, and
Loganathan in 2001 [Geem et al., 2001].

o Gravitational Search Algorithm (GSA): based on the law of gravity and mass
interactions, proposed by Rashedi, Nezamabadi-pour, and Saryazdi in 2009 . It mimics
Newtonian physics, where masses (solutions) attract each other due to gravitational
force, leading to global optimization [Mittal et al., 2021].

5.2.3. Local and Guided Search Methods

Local search methods focus on improving a solution by exploring its immediate
neighborhood. They are efficient but may get stuck in local optima, while Guided Search
methods combine global exploration with local refinement.

o Hill Climbing (Greedy Local Search): its concept is to iteratively move to the
best neighboring solution.

o Tabu Search (TS): is an advanced local search algorithm that enhances hill
climbing by using adaptive memory to escape local optima. It is introduced
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by Fred Glover in 1986. It uses memory (tabu list) to avoid revisiting solutions
[Prajapati et al., 2020].

o Variable Neighborhood Search (VNS): it systematically explores different
neighborhood structures to escape local optima. It is proposed by Hansen and
Mladenovi¢ in 1997 [Hansen & Mladenovi¢, 2001].

o lIterated Local Search (ILS): combines local search with periodic perturbations
to escape local optima. It operates by repeatedly:
1. Applying local search to reach a local optimum
2. Perturbing the current solution to escape the local optimum
3. Repeating the process to explore the search space effectively

o Guided Local Search (GLS): is an intelligent local search metaheuristic that
enhances traditional local search by dynamically modifying the objective
function to escape local optima. It is developed by Voudouris and Tsang in the
1990s [Voudouris & al., 2010].

5.2.4. Hyper-Heuristics Methods

Hyper-heuristics are high-level search methodologies that automate the selection,
combination, or generation of simpler heuristics (or components of heuristics) to solve
complex optimization problems. They operate on a "heuristic space™ rather than directly on
the solution space, making them highly flexible and adaptable across different problem
domains [Dokeroglu & al., 2024].

Hyper-heuristics can be classified into two main categories:

1. Selection Hyper-Heuristics that choose or switch between existing heuristics during
the search process like Simple Random (randomly selects heuristics), Greedy
Selection (picks the best-performing heuristic) or Markov Chain-based (uses transition
probabilities).

2. Generation Hyper-Heuristics that generate new heuristics or heuristic components
automatically such as Genetic Programming-based (evolves heuristic rules) and
Neural Program Synthesis (deep learning-based heuristic generation).

6. FCM Optimization based on Bio-Inspired Methods

As mentioned above, FCM clustering has proven valuable for pattern recognition,
medical imaging and data analysis, but its effectiveness is limited by four key challenges: (1)
high sensitivity to initial centroid selection, (2) number of clusters, (3) tendency to converge
to local optima, and (4) degraded performance with noisy or high-dimensional datasets. To
address these limitations, researchers have successfully integrated bio-inspired optimization
algorithms with FCM, vyielding significant improvements in clustering performance. These
nature-inspired computational techniques, including Genetic Algorithms (GA), Particle
Swarm Optimization (PSO), and others methods, enhance FCM through three primary
mechanisms: (i) intelligent initialization of cluster centroids, (ii) dynamic refinement of
membership functions, and (iii) robust global search capabilities that prevent premature
convergence. The evolution of these hybrid approaches has followed a clear trajectory in
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computational intelligence research, with each successive generation of bio-inspired methods
offering enhanced capabilities for FCM optimization. In the following section, we examine
key developments in this field, highlighting how various biological optimization paradigms
have advanced the state-of-the-art in fuzzy clustering.

6.1. Genetic Algorithm

The Genetic Algorithm (GA) is a metaheuristic optimization algorithm inspired by the
process of natural evolution [Holland, 1975]. It is based on the principle that solutions best
adapted to a given problem are more likely to survive and reproduce, passing their
characteristics to subsequent generations. A comprehensive can be found in [Katoch, 2021].

The operation of a genetic algorithm can be summarized as follows:

— Initialization: A starting population of solutions is randomly generated.

— Evaluation: The objective function of the problem is computed for each solution.
— Selection: The fittest solutions are selected for reproduction.

— Crossover: Selected solutions are combined to produce new offspring solutions.

— Mutation: New solutions may undergo random mutations to introduce diversity.
— Replacement: The new solutions replace the least fit individuals in the population.

These steps are repeated iteratively until either an optimal solution is found or a
predetermined number of generations is reached.

Genetic Algorithms (GA) significantly enhance Fuzzy C-Means (FCM) clustering by
addressing its key limitations, such as sensitivity to initial cluster centroids and tendency to
converge to local optima. GA improves FCM through global search capabilities, where
genetic operators like selection, crossover, and mutation explore the solution space more
effectively than traditional random initialization. By optimizing cluster centers and
membership matrices, GA-FCM hybrids achieve better convergence accuracy. Additionally,
GA can automatically determine the optimal number of clusters by optimizing validity
indices, eliminating the need for manual selection.

The authors in [Maulik & Bandyopadhyay, 2003] introduced an algorithm
called Fuzzy Partitioning Using a Real-Coded Variable-Length Genetic Algorithm (FVGA) to
automatically determine the optimal number of clusters along with their fuzzy clustering
results. In FVGA, they employed a genetic algorithm (GA) combined with the Xie-Beni
cluster validity index as a fitness function to guide chromosome evolution.

Building on this work, Saha and Bandyopadhyay [Saha & Bandyopadhyay,
2009] proposed a fuzzy dynamic clustering algorithm called the Fuzzy Variable-Length
Genetic Algorithm with Point Symmetry (Fuzzy-VGAPS). In their approach, they
incorporated a point symmetry-based validity measure, termed the fuzzy Sym-index, as the
objective function for clustering.

In [Jansi & Subashini, 2014] and [Das & De, 2017], GA is used to optimize the initial
clustering center firstly, and then FCM and KFCM algorithm respectively are availed to guide
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the categorization, so as to improve the clustering performance of the FCM and KFCM
algorithms.

Dong et al. [Dong et al., 2018] developed an adaptive fuzzy clustering approach that
integrates Fuzzy C-Means (FCM) with a multi-objective genetic algorithm. Their method
eliminates the need for predefined cluster numbers by employing an evolutionary
optimization framework. This adaptive mechanism automatically determines the right number
of clusters.

6.2. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population-based meta-heuristic algorithm
that mimics the collective intelligence observed in natural swarms, such as bird flocks or fish
schools [Kennedy & Eberhart, 1995].

The Key Components of this algorithm are:

e Particles: Potential solutions that move through the search space
e Swarm: The collection of all particles

e Velocity: Determines particle movement direction and speed

e pBest: A particle's personal best solution found

e gBest: The swarm's global best solution found

Based on these components, the algorithm performs the following steps:

1. Initialization: A population of candidate solutions (particles) is randomly generated within
the problem’s search space.
2. Particle Movement: Each particle moves through the search space based on two key
factors:
o Its own best-known position (pbest)
o The swarm’s global best-known position (gbest)

3. Position Update: The velocity and position of each particle are adjusted using these two
values, steering the swarm toward potentially better solutions.

4. Fitness Evaluation: The objective function evaluates each particle’s quality (fitness).

5. gbest Update: If a particle discovers a solution superior to the current gbest, the gbest is
updated.

6. Iteration: This process repeats for a set number of iterations, allowing the swarm to
converge toward optimal or near-optimal solutions.

Particle Swarm Optimization (PSO) offers several key advantages that contribute to its
popularity in optimization problems. First, it is straightforward to implement, requiring only a
few parameters while maintaining a simple conceptual framework that can be easily adapted
to various problem types. Second, PSO demonstrates strong global search capabilities through
its unique combination of personal best (pbest) and global best (gbest) mechanisms, enabling
effective exploration of the search space while avoiding local optima. Additionally, the
algorithm exhibits robustness against environmental variations, showing minimal sensitivity
to initial parameter settings and changing conditions. Finally, PSO boasts remarkable
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versatility, as it can be successfully applied to a wide range of optimization challenges,
including continuous, discrete, and multi-objective problems, making it a valuable tool across
numerous scientific and engineering domains.

PSO is successfully applied to overcome the shortcomings of FCM. In [Liu & al.,
2008] and [lzakian & Abraham, 2011], authors used PSO to overcome the problem of local
minima. Kang and Zhang [Kang, 2012] proposed a hybrid clustering approach that combines
FCM with PSO clustering problem. Their PSO-FCM algorithm addresses two key limitations:
(2) it prevents FCM from converging to local optima through PSO's global search capabilities,
while (2) simultaneously overcoming PSO's characteristic slow convergence by leveraging
FCM's efficient local search. This synergistic integration demonstrates improved performance
in clustering tasks compared to using either method independently. Also in [SK, 2021], PSO
is successfully applied with FCM for leaf diseases prediction and in [Pham, 2018] [Verma,
2021] to segment brain image overcoming the local optima FCM’s limit.

In [Tan et al., 2023], authors tackle the FCM initialization problem for image
segmentation task leading to optimal initialization, thus faster segmentation.

6.3. Ant Colony Optimization

Ant Colony Optimization (ACO) is a metaheuristic optimization technique inspired by
the foraging behavior of ants [Dorigo et al., 1996]. It is particularly effective for solving
combinatorial optimization problems such as the traveling salesman problem, knapsack
problem, and machine scheduling problems.

The fundamental principle of ACO relies on pheromone trail communication. Ants
deposit pheromones along their paths, which serve as indicators of path quality for subsequent
ants.

In ACO implementation:

1. A population of artificial ants is randomly initialized.
2. Each ant constructs a solution (path) by probabilistically following pheromone trails.
3. Solution quality is evaluated based on objective criteria (path length or value).

after each iteration:

e Pheromone trails are updated, with stronger reinforcement given to higher-quality
solutions
e This positive feedback mechanism progressively biases the colony toward optimal paths

The algorithm iterates until convergence to an optimal or near-optimal solution is
achieved.

Several studies have explored the hybridization of ACO and FCMto enhance
clustering performance by optimizing FCM parameters, particularly:

e Cluster centers initialization (avoiding local optima)
e Optimal cluster number (eliminating the need for predefined number)
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Shelokar et al. [Shelokar et al., 2004] introduced an ACO-FCM hybrid approach
where ACO is employed to optimize the initial cluster centers before applying FCM for final
refinement. While Saha and Sanghamitra [Saha, 2010] used ACO to determine the right
number of cluster in unsupervised fuzzy data clustering task ensuring cluster compactness
separation between clusters.

In [Wang & al, 2012] and [Raghtate & Salankar, 2015], authors used ACO to tackle the
problem of local optima in fuzzy image segmentation task and in [Kumar & al., 2024] to
optimize routing in flying Ad-Hoc network.

6.4. Bat Algorithm

The Bat Algorithm (BA) is a bio-inspired metaheuristic optimization technique
developed by Xin-She Yang [Yang, 2010]. It mimics the echolocation behavior of bats, which
use ultrasonic pulses to detect prey, avoid obstacles, and navigate in darkness. The algorithm
efficiently balances exploration (global search) and exploitation (local refinement) by
adjusting frequency, loudness, and pulse emission rates.

The BA Works as follows:

1. Initialization:

- A population of bats (potential solutions) is randomly generated within the search
space.
- Each bat is assigned a position, velocity, frequency, and loudness.
2. Movement:

- Bats move through the search space based on their velocity and frequency.
- Frequency is adjusted using a frequency-tuning technique to explore different
regions.
— Loudness gradually decreases to focus on more promising areas.
3. Local Search:
— Each bat generates a new solution randomly in a local search area around its current
position.
— Ifthe new solution is better, it replaces the previous one.
4. Evaluation:
— The quality (fitness) of each bat’s solution is evaluated.
5. Update:
— The velocities and positions of bats are updated based on their frequencies,
loudness, and the best solutions found so far.
— Loudness decreases as bats approach potential prey (optimal solutions).
6. lteration:
— Steps 2 to 5 are repeated for a set number of iterations or until a satisfactory
solution is found.

The Bat Algorithm (BA) stands out as a highly efficient metaheuristic optimization
technique due to several distinctive advantages. One of its most notable strengths is
its balanced exploration and exploitation mechanism, achieved through dynamically
adjustable frequency and loudness parameters. The frequency governs the search range, while
loudness and pulse emission rate systematically shift focus from global exploration to local
refinement as the algorithm progresses.
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The Bat Algorithm (BA) significantly improves the performance of Fuzzy C-Means
(FCM) clustering through two key mechanisms. First, it enables automatic cluster center
initialization by optimizing the initial centroids, thereby reducing FCM's sensitivity to random
initialization and improving solution consistency [Boulanouar & Lamiche, 2020] [Alhassan &
Wan Zainon, 2020]. Second, BA enhances convergence and accuracy through its global
search capabilities, which help FCM avoid local optima traps and produce more reliable
clustering results [Jai, 2021]. These combined improvements make BA-FCM hybrids
particularly effective for complex clustering tasks where traditional FCM struggles with
initialization dependency and suboptimal convergence.

6.5. Artificial Bee Colony (ABC) Algorithm

The Artificial Bee Colony (ABC) algorithm is a swarm intelligence optimization
technique inspired by the foraging behavior of honeybees [Karaboga & Basturk, 2007]. It is
designed to solve complex optimization problems across various domains, particularly those
involving high-dimensional variables and nonlinear objective functions.

The ABC Algorithm operates as follows

1. Initialization:
A population of potential solutions (“food sources") is randomly generated.

2. Employed Bees:
Each solution is assigned an "employed bee." These bees exploit their designated food
source by searching its neighborhood for improved solutions.

3. Onlooker Bees:
Onlooker bees select food sources based on fitness values and a "waggle dance”
communication (where employed bees share discovery information). They then
modify these sources through exploration, potentially identifying better solutions.

4. Scout Bees:
If a food source shows no improvement after a predefined number of iterations, it is
abandoned. A scout bee then randomly searches for a new food source.

5. Selection and Replacement:
The best solutions discovered by employed and onlooker bees are retained, replacing
abandoned sources.

6. lteration:
The process repeats for a fixed number of iterations or until a satisfactory solution is
found.

The Artificial Bee Colony (ABC) algorithm significantly improves Fuzzy C-Means
(FCM) clustering by addressing two critical limitations: sensitivity to initial cluster centroids
and tendency to converge to local optima. ABC's unique three-phase search mechanism -
employed bees for local exploitation, onlooker bees for solution refinement, and scout bees
for global exploration - provides a robust framework for optimizing FCM's initial cluster
centers [Karaboga & Ozturk, 2011]. The employed bees' neighborhood search helps fine-tune
centroid positions, while scout bees prevent stagnation by randomly exploring new solutions
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when improvements plateau [Alrosan & Norwawi, 2017]. This hybrid approach (ABC-FCM)
demonstrates superior performance in cluster validity indices (Xie-Beni, Davies-Bouldin)
compared to standard FCM, particularly for high-dimensional datasets where traditional FCM
often fails [Lingappa & al., 2018]. Furthermore, ABC's ability to maintain population
diversity through its abandonment-replacement mechanism enables more comprehensive
search space exploration, resulting in more accurate and stable clustering solutions
[Alomoush, 2022a] and his ability to be hybridized with others technics [Ni, 2024].

6.6. Firefly Algorithm

The Firefly Algorithm (FA), introduced by Yang [Yang, 2009], is a bio-inspired
metaheuristic optimization technique that mimics the flashing behavior and social interactions
of fireflies. This algorithm is particularly effective for solving complex multimodal
optimization problems by simulating how fireflies are attracted to brighter light sources,
which represent better solutions in the search space.

FA operates based on three key idealized rules:

1. Attraction Principle: All fireflies are unisex, and less bright fireflies move toward
brighter ones.

2. Brightness-Distance Relationship: The attractiveness between fireflies decreases with
increasing distance.

3. Objective-Dependent Brightness: A firefly's brightness is determined by the landscape
of the objective function.

The FA can be summed up as follows.

1. Initialization:

- Generate initial population of fireflies
- Evaluate initial brightness (objective function)
2. Main Loop:

— For each firefly, compare with all others
—  Move less bright fireflies toward brighter ones
— Update positions with attractiveness and randomization
-~ Re-evaluate brightness
3. Termination:

Repeat until stopping criteria met (max iterations or convergence).

FA improves FCM by optimizing the initial cluster centroids, overcoming FCM's
sensitivity to random initialization. The algorithm's attraction mechanism helps identify
promising regions in the search space, leading to better starting points for FCM iterations
[Kumar & Kumari, 2018].

FA-FCM hybrids can dynamically determine the optimal number of clusters by
leveraging Firefly Algorithm’s (FA) global search capabilities alongside cluster validity
indices. Unlike traditional FCM, which requires manual selection of the number of cluster,
FA optimizes validity indices to identify the best cluster count. This eliminates subjectivity
in cluster number-selection, enhancing automation and robustness in clustering tasks.
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The integration of FA with FCM enhances clustering performance by leveraging FA’s
global search capability, which helps FCM escape local optima which is the common
limitation of standard FCM. FA’s attraction-repulsion mechanism dynamically balances
exploration (searching new regions) and exploitation (refining existing solutions), ensuring a
more efficient convergence toward optimal cluster centroids. Empirical studies demonstrate
that FA-FCM hybrids achieve faster convergence and higher accuracy compared to traditional
FCM, particularly in complex or high-dimensional datasets where FCM alone stagnates in
suboptimal solutions [Alomoush, 2022b] [Thomas & Kumar, 2024].

6.7. Gray Wolf Optimizer

The Gray Wolf Optimizer (GWO) is a metaheuristic optimization technique inspired
by the social hierarchy and hunting behavior of gray wolves [Mirjalili et al., 2014]. It
simulates the leadership and cooperative hunting strategies of wolf packs to efficiently
explore the search space and find optimal solutions to complex problems.

The Gray Wolf Optimizer operates as follows:

1. Initialization:
— A population of wolves (potential solutions) is randomly initialized within the
search space.
— Four wolves are designated as the alpha (best solution), beta (second-
best), delta (third-best), and omega (remaining wolves).
2. Search:
— The alpha, beta, and delta wolves guide the search:

= The alpha moves randomly to explore new promising regions.
= The beta and delta refine solutions by gradually approaching the alpha's position.

— The omega wolves follow the leaders and adjust their positions based on the
hierarchy.
3. Attack (Exploitation):
— If a better solution than a current leader is found, it replaces that leader in the
hierarchy (solution).
4. Update:
— The wolves' positions are updated based on their roles and the leaders' positions.
— The hierarchy is dynamically adjusted according to solution quality.
5. lIteration:

o Steps 2-4 are repeated for a predefined number of iterations or until a
satisfactory solution is found.

The hierarchy-driven search mechanism in GWO ensures an effective balance
between exploration (led by the alpha wolf’s global search) and exploitation (guided by beta
and delta wolves’ local refinement), preventing premature convergence. This structure is
enhanced by adaptive leadership, where the hierarchy dynamically updates when better
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solutions emerge, ensuring continuous improvement. Additionally, the omega wolves’
subordinate role maintains population diversity, promoting efficient convergence across
complex search spaces.

The GWO significantly improves the performance of FCM clustering by addressing its
two major limitations: sensitivity to initial centroids and tendency to converge to local optima.
By optimizing the initial cluster centroids before FCM refinement, GWO ensures a
more robust initialization, reducing dependency on random starting points [Katarya & Verma,
2018]. Furthermore, GWO’s adaptive leadership update dynamically refines cluster centers
during iterations, enhancing convergence accuracy. Empirical studies show that the hybrid
GWO-FCM achieves superior results compared to standard FCM, particularly in complex
datasets where traditional FCM fails to identify optimal partitions [Mohammdian-Khoshnoud
et al., 2022]. This synergy combines FCM’s local search precision with GWO’s global
optimization strength, yielding faster convergence.

7. Summary

The integration of Fuzzy C-Means (FCM) with bio-inspired optimization algorithms
has emerged as a powerful approach to overcome FCM's limitations of sensitivity to
initialization and local optima convergence. Metaheuristics like Particle Swarm Optimization
(PSO), Genetic Algorithms (GA), Artificial Bee Colony (ABC), and Firefly Algorithm (FA)
enhance FCM by optimizing initial cluster centroids through global search mechanisms
inspired by natural behaviors. These hybrid systems combine FCM's local search precision
with bio-inspired algorithms' exploration capabilities, typically improving clustering accuracy
while maintaining interpretability. The hybridization framework generally follows a two-
phase process: bio-inspired methods first identify promising centroid positions, which FCM
then refines through iterative minimization of the objective function. This synergistic
approach has proven particularly effective in complex domains like medical image
segmentation and high-dimensional data clustering, where conventional FCM often
underperforms.

Key benefits include:

e Robustness to initialization

e Escape from local optima

e Automatic cluster number determination
e Improved convergence rates

Particularly, The Artificial Bee Colony (ABC) algorithm, inspired by the foraging
behavior of honeybees, can significantly enhance the performance of Fuzzy C-Means
(FCM) clustering. While FCM is effective for soft clustering, it suffers from sensitivity to
initial centroids and a tendency to converge to local optima. ABC helps mitigate these issues
by optimizing the initial cluster centers before FCM refinement. The ABC algorithm employs
three types of bees -employed, onlooker, and scout bees- to balance exploration and
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exploitation. Employed bees search for solutions (centroids), onlooker bees probabilistically
select promising solutions, and scout bees introduce randomness to avoid stagnation. In the
hybrid ABC-FCM approach, ABC first searches for optimal initial centroids by minimizing
FCM’s objective function, then FCM fine-tunes the membership degrees and cluster
assighments. The table below presents a detailed comparison between ABC and other bio-

inspired optimization techniques.

Table 3.1: ABC vs other bio-inspired methods

Category ,(Axgglal Bee Colony Other Methods
Inspiration Honeybee foraging PSO: Bird flocking
(employed, onlooker, ACO: Ant pheromones
scout bees) GA: Natural selection
FA: Firefly flashes
GO: Hierarchy and hunting behavior of grey wolves (a, B, 0)
Search Three phases: PSO: Velocity updates
Mechanism employed, onlooker, ACO: Probabilistic path selection
scout bees GA: Crossover/mutation
FA.: Attraction-based movement
GO: Three phases: Encircling, hunting, attacking prey - Guided
by alpha (best), beta, and delta wolves
Exploration High (scout bees enable | PSO: Moderate
random jumps) ACO: High (pheromone evaporation)
GA: High (mutation)
FA: High (automatic subdivision)
GO: Moderate (hierarchical leadership guides search)
Exploitation | Moderate (onlooker PSO: High (fast convergence)
bees refine solutions) ACO: High (positive feedback)
GA: Moderate
FA: Moderate
GO: Very High (precise attacking phase near prey)
Key Colony size, PSO: Inertia weight (w), \(c_1, \(c_2
Parameters abandonment limit ACO: alpha, beta, evaporation rate
GA: Crossover/mutation rates
FA: beta_0, gamma
GO: Convergence parameter ("a’) - Population size
Strengths Balances PSO: Simple/fast
exploration/exploitation; | ACO: Best for discrete problems
robust GA: Flexible
FA: Multi-modal optimization
GO: Few parameters, easy to implement - High precision in local
search - Good for unimodal problems
Weaknesses Slow convergence in PSO: Premature convergence
high dimensions ACO: Parameter-sensitive
GA: Computationally heavy
FA: Distance metric reliance
GO: May over-exploit local optima - Less effective in multimodal
problems
Best For Continuous optimization (| PSO: Continuous spaces
engineering design) ACO: Combinatorial
Multimodal optimization, | GA: Complex search spaces
Neural network training, FA: Image processing
SCPZTESIGX and noisy search GO: Unimodal optimization - Parameter tuning - Engineering
design (where precision matters)
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This hybridization offers key advantages, including better avoidance of local optima
and robustness to initialization, making it particularly useful for high-precision tasks like
medical image segmentation. However, ABC-FCM is computationally slower than some
alternatives, such as PSO-FCM or GWO-FCM, due to ABC’s inherent complexity. For
improved efficiency, ABC can be combined with faster optimizers like PSO in a two-phase
hybrid model -using PSO for a quick initial search and ABC for refinement. Despite its
slower convergence, ABC-FCM remains a strong choice when clustering accuracy is
prioritized over speed, especially for small to medium-sized datasets which the case of
medical image segmentation.

8. Conclusion

This chapter has explored the hybridization of Fuzzy C-Means (FCM) clustering with
bio-inspired optimization methods to overcome its inherent limitations of sensitivity to
initialization and susceptibility to local optima. Various bio-inspired algorithms, including
Particle Swarm Optimization (PSO), Genetic Algorithms (GA), Firefly Algorithm (FA), and
Artificial Bee Colony (ABC) and other methods have been examined for their ability to
enhance FCM by optimizing initial cluster centroids and guiding the search toward globally
optimal solutions. While each method offers distinct advantages, the Artificial Bee Colony
(ABC) algorithm emerges as particularly superior for hybridizing with FCM due to
its exceptional balance of exploration and exploitation, adaptability to high-dimensional
spaces, and efficient convergence properties.

ABC’s unique mechanisms, employed bees for local refinement, onlooker bees for
solution selection, and scout bees for escaping local optima, make it more robust and
reliable than PSO, GA, or FA when combined with FCM. Empirical studies consistently
demonstrate that ABC-FCM achieves higher clustering accuracy, faster convergence, and
better stability across diverse datasets, including noisy and complex real-world applications
such as medical imaging and pattern recognition. While other bio-inspired methods also
improve FCM, ABC'’s self-adaptive search strategy and reduced parameter dependency make
it the most effective choice for enhancing FCM’s performance.

ABC-FCM is favored Over other Hybrids for:

v Better Exploration-Exploitation Balance
v Fewer Control Parameters

v Superior Local Optima Avoidance

v Proven Higher Accuracy
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1. Introduction

Image segmentation plays a pivotal role in medical imaging, particularly in brain MRI
analysis, where accurate delineation of white matter (WM), gray matter (GM), and
cerebrospinal fluid (CSF) is essential for clinical diagnosis and research. Among the various
segmentation techniques, Fuzzy C-Means (FCM) clustering has been widely adopted due to
its ability to handle the inherent ambiguity in tissue boundaries. However, traditional FCM
suffers from several critical limitations: (1) sensitivity to initial cluster centers, (2)
dependence on a predefined number of clusters, and (3) susceptibility to local minima
convergence, especially in the presence of noise and intensity inhomogeneities. These
shortcomings often lead to suboptimal segmentation, necessitating the development of more
robust approaches.

To address these challenges, this chapter introduces a novel hybrid method that
combines FCM with the Artificial Bee Colony (ABC) optimization algorithm. The ABC
algorithm, inspired by the foraging behavior of honeybee colonies, is a powerful
metaheuristic known for its global search capabilities, adaptability, and robustness in solving
complex optimization problems. By integrating ABC with FCM, the proposed Hybrid FCM-
ABC method mitigates the weaknesses of conventional FCM. Specifically, ABC optimizes
the initial cluster centers, dynamically adjusts the number of clusters, and avoids local minima
through its explorative search mechanism. This hybridization not only enhances segmentation
accuracy but also improves computational efficiency and noise resilience.

The chapter begins by presenting the biological foundations of bee colony behavior
and its artificial counterpart, the ABC algorithm, highlighting its key components -employed
bees, onlooker bees, and scout bees- and their roles in optimization. Next, the hybrid FCM-
ABC framework is detailed, explaining how ABC’s global search capabilities are leveraged to
refine FCM’s clustering process. The experimental validation is conducted on both simulated
brain MRI images (with controlled noise and intensity variations) and real clinical MRI
datasets. Comparative analyses against standard FCM, Genetic Algorithm-based FCM (GA-
FCM), and FCM with Covariance Matrix Adaptation Evolution Strategy (FCMA-ES) and
other methods demonstrate the superiority of the proposed method in terms of segmentation
accuracy, robustness to noise, and computational stability.

The results underscore the clinical relevance of Hybrid FCM-ABC method,
particularly in scenarios where noise and artifacts compromise traditional methods. By
overcoming the pitfalls of FCM while maintaining its interpretability, the proposed approach
offers a promising tool for automated brain tissue segmentation, with potential applications in
neurodegenerative disease diagnosis, surgical planning, and longitudinal studies. This chapter
lays the groundwork for future research directions, including the integration of deep learning
for further refinement and extension to other medical imaging modalities.

73



Chapter 4: Hybrid FCM-ABC Method for Medical Image Segmentation

2. Biological Bee Colony

A honeybee colony is a highly organized social system where individual bees perform
specialized roles to ensure the survival and efficiency of the hive. The colony consists of three
primary castes, each with distinct biological functions: the Queen, the Drones and the
Workers bees [Winston, 1991]. The figure bellow presents these three kinds of bees.

Worker

Figure 4.1: Kind of bees. (image from https://www.britannica.com/animal/honeybee, 06/20/2025)

2.1. The Queen Bee: Heart of the Hive's Reproduction

The queen bee holds the vital role of reproduction as the sole egg-layer in the colony,
ensuring its survival and growth. Her biological functions are finely tuned for this purpose.
She regulates the entire colony's behavior through pheromones, which suppress worker bees'
ovary development and maintain social cohesion. During a single mating flight early in her
life, she mates with multiple drones and stores their sperm, enabling her to fertilize eggs
throughout her lifespan, typically two to five years. With a remarkable capacity to lay up to
2,000 eggs per day, she directly controls the colony's population dynamics and genetic
diversity. This prolific reproduction is essential for sustaining the hive's workforce, replacing
aging bees, and facilitating colony expansion through swarming. The queen's health and
productivity are so critical that worker bees will replace her if her egg-laying declines,
demonstrating the colony's intricate balance between individual specialization and collective
survival.

2.2. Drones: The Transient Males of the Hive

Drones serve one critical function: mating with virgin queens to ensure genetic
diversity. Unlike workers, they lack stingers and foraging ability, depending entirely on the
colony for sustenance. Their reproductive role ends dramatically - during mating, their
genitalia detach (a phenomenon called mating trauma), resulting in immediate death. As
winter approaches, workers expel surviving drones to conserve resources, demonstrating the
colony's ruthless efficiency in energy allocation.

2. 3. Worker Bees: The Industrious Backbone of the Hive

Worker bees, the sterile females of the colony, perform all labor-intensive tasks
necessary to sustain the hive. Their roles shift in a precise age-based progression known as
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temporal polyethism. In their first days (1-12), they serve as nurse bees, diligently feeding
larvae with nutrient-rich royal jelly, tending to the queen's needs, and maintaining hive
hygiene by cleaning brood cells. Between days 12 and 18 of their development, they take on
the role of hive builders, producing wax to build honeycombs and carefully storing the
gathered nectar and pollen. Approaching adulthood (days 18-21), they take on guard duties,
aggressively defending the hive entrance from predators by releasing alarm pheromones and
deploying their stingers when necessary. Finally, in the last stage of their lives (day 21+), they
become foragers, embarking on daily expeditions up to 5 kilometers from the hive to gather
nectar, pollen and water. These experienced bees communicate complex information about
food sources through their intricate waggle dances, enabling efficient resource collection for
the entire colony. This remarkable division of labor ensures optimal hive functioning, with
each bee contributing specialized skills at just the right time in their development.

2. 4. Biological Roles of Workers Bees in Colony Foraging

The minimal model of a honey bee colony comprises three groups: employed bees,
onlooker bees, and scout bees. Employed bees explore food sources and share information
with onlooker bees, which then evaluate and select food sources based on this information.
Higher-quality food sources have a greater probability of being chosen by onlooker bees,
while lower-quality ones are more likely to be abandoned. If an employed bee's food source is
rejected due to poor quality, it transitions into a scout bee and begins searching randomly for
new food sources.

Bees communicate food source information to their swarm through distinct dance
forms:

1. Round Dance: Performed when the food source is close to the hive.

2. Waggle Dance: Used for distant food sources; the speed of the dance indicates the
distance (faster mean closer).

3. Tremble Dance: Signals that the bee is struggling to unload nectar and lacks current
knowledge of the food source’s profitability.

Thus, exploitation is carried out by employed and onlooker bees, whereas exploration
is handled by scout bees. The next sub-section details how these bee-inspired mechanisms are
implemented in the Artificial Bee Colony (ABC) algorithm.

3. Artificial Bee Colony (ABC) Algorithm

3.1. Description of the algorithm

The ABC algorithm is an evolutionary algorithm bio-inspired [Karaboga & Basturk,
2007]. It imitates the honey bee swarms in food foraging. It assumes the existence of a set of
operations that may resemble some features of the honey bee behavior. For instance, each
solution within the search space includes a parameter set representing food source locations.
The “fitness value” refers to the food source quality that is strongly linked to the food’s
location. The process mimics the bee’s search for valuable food sources yielding an analogous
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process for finding the optimal solution. It operates through the collaboration of three types of
bees: employed bees, onlooker bees, and scout bees, each with distinct roles in the search for
nectar (or optimal solutions).

- -

yes Are there scoot
| bees in the colony?
I" ________________ |
|
| Scoot bee phase | an
| |

Is the termination no

criterion met?

P -

-~ e

Figure 4.2: Flowchart of ABC algorithm.

The employed bees are responsible for exploiting known food sources. Each employed
bee represents a potential solution and assesses its quality based on a fitness function. They
search in the vicinity of their assigned food source and can adjust their position to improve the
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solution. If a bee finds a better solution, it shares this information with the onlooker bees. The
later monitor the quality of food sources shared by employed bees. They utilize a probability-
based selection mechanism to choose which food source to explore based on its fitness. By
concentrating on the most promising sources, onlooker bees contribute to the exploitation
phase of the algorithm called also local search, further refining the search for optimal
solutions. The scout bees present the explorative phase and they are responsible for exploring
new areas of the search space to discover new food sources.

Their random search helps maintain diversity in the population and prevents the algorithm
from getting trapped in local optima. Through the coordinated efforts of these three types of
bees, the ABC algorithm efficiently explores and exploits the solution space. Figure 4.1
presents the flowchart of the ABC algorithm.

3.2. ABC Algorithm operation

The ABC algorithm operates throws a set of steps. It begins food foraging (solution
search) by producing randomly an initial population of NS (number) food sources (bees) in
search space which are uniformly distributed between the pre-specified lower and upper
values.

Each bee is created according to the equation (4.1):
bi = bmin + rand(O,l) * (bmax - bmin) I = 1, ,NS (41)

where b; is a bee, b,,;, and b,,,, are the upper and the lower values of the search space
respectively.

Additionally, a counter that tracks the number of solution attempts is reset to zero for
each bee in this phase. After initialization, the initial food sources (solutions) undergo
repeated improvement cycles, where employed bees and onlooker bees explore the
neighborhood and enhance the solutions.

After the initialization phase, the ABC algorithm evaluates the initial population and
performs the three following steps until convergence to the optimal global solution
(satisfactory fitness) or maximum iterations.

Step 1: Send Employed Bees (Employed bee phase)

There are as many employed bees as there are food sources. In this stage, each
employed bee creates a new food source in the vicinity of its current position using the
following equation:

U = bi + (pi(bi — bk) i = 1, ,NS (42)

where the scale factor «; is uniformly distributed random number between [—1,1], b; and b,
are the i"™ food source (solution) and one of NS food source in the vicinity respectively (i #
k). v; represents the new generated food source (solution).
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Once a new solution v; is generated, its fitness value (nectar amount), representing the
solution's profitability, is calculated. The fitness value of a solution v; can be represented by
the objective function or computed using the following equation:

1 |
F(b) = {14, Y20 4.3)
1+abs() if];<0

J; represents the objective function to be optimized.

A greedy selection is applied between v; and b;. If v; has a better fitness, b; is
replaced by v;; otherwise, b; is retained

Step 2: Select the Food Sources by the Onlooker Bees (Onlooker bee phase)

Each onlooker bee (the number of onlooker bees corresponds to the food source
number) selects a food source b; with a probability proportionally to the nectar amount. The
probability P; that the food source b; will be selected is calculated according to the following
equation:

f(by)

S A2 =1,..,NS .
NI N @4

where f(b;) is the fitness of the solution b;.

The probability of a food source being selected by onlooker bees increases with an
increase in the fitness value of the food source. Upon selection, onlooker bees visit the food
source and generate a new candidate position within its vicinity, as defined by equation (4.2).
If the new solution’s fitness (nectar amount) improves upon the previous value, the position is
updated. Otherwise, the original solution is kept.

Step 3: Determine the Scout Bees (Scout bee phase)

When a food source (a candidate solution) fails to improve after a set number of trials
(called the limit), it is considered exhausted. The employed bee abandon the food source
associated with it and becomes a scout bee. Scout bees explore the search space without prior
knowledge, generating a new solution randomly using equation (4.1).

To track whether a candidate solution has reached the limit, each bee b; associated
with this food source has a counter. This counter increases each time a bee fails to enhance
the food source’s fitness.

Occasionally, scout bees may discover highly promising, previously unknown food
sources by chance.

Step 4: Termination

If the stopping criterion is met or the maximal iteration number is reached, return the
best bee (optimal solution).
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To reach the global optimum, the ABC Algorithm balance between exploitative search
and exploratory search and the both in random manner.

Algorithm 1 bellow describes the ABC algorithm

Algorithm 1: ABC algorithm

1: Define SN (population size), b,,;, (lower value) and b,,,,, (upper value), limit
(control parameter), MaxIt (maximum iteration number)

2:  Generate randomly SN bees (b;, i=1...SN) in the search space to form an

initial population using equation (4.1)

Evaluate the fitness function of all the bees f(b;)

Keep the best bee (best solution in the population) byest

For each bee b;, fix “no-improvement-cycle;” to 0.

Set Iteration=1

Generate a candidate solution v; for each bee b; by equation (4.2)

Evaluate the fitness function of all the candidate solutions f(v;)

If £ (v;) is better than f(b;), b; = v;, set no-improvement-cycle; to 0; otherwise

increment no-improvement-cycle;

10: Calculate the probability values P; by equation (4.4)

11: For each bee b; selected depending on its probability P;, generate a new
solution v,

12: Evaluate the fitness function of all the new solutions f(v;)

13: If f(v;) is better than f(b;), b; = v;, set no-improvement-cycle; to 0; otherwise
increment no-improvement-cycle;

14: For each bee b; if no-improvement-cycle; > limit generate a new solution for b;
according to equation (4.1).

15: Keep the best bee (best solution in the population) by;

16: iteration =iteration +1

17: If iteration > MaxIt return the best solution achieved so far (b,.,;) and Stop,
otherwise go to 7.

4. Hybrid FCM-ABC Method for Medical Image Segmentation

In this section, a new enhancement of FCM called Hybrid FCM-ABC method is
introduced,; it is based on the ABC Algorithm [Mokhtari et al., 2025]. Although the FCM has
advantages like efficacy, simplicity and computational efficiency, it nonetheless has major
drawbacks such as number of clusters, cluster centers values and is easily trapped in local
optima. So, the main objective is to overcome these major drawbacks that will affect the
clustering in term of precision. For this purpose, we improve the FCM clustering by
exploiting ABC algorithm in order to find simultaneously the right number of clusters and the
optimal clusters centers for a given image | of N pixels. The right values of these parameters
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leads to the optimal solution. ABC algorithm combines between exploitation and exploration
to find the optimal values of FCM parameters. It ensures the searching in all directions in the
solution space.

The problem is regarded as follow. From the hive, the center of the search space, bees
search food source in different areas around it. The areas present subspaces of search. Each
subspace of search is far from the hive with a distance that represents the number of clusters.
Subspace with distance 2 from the hive contains all bees (probable solutions) having 2 cluster
centers values and subspace with distance k from the hive contains all bees (probable
solutions) having k cluster centers values (cf.fig.4.3). The quantity of food in each
emplacement within subspace represents cluster centers values.

Entire search space

The hive Sub search spaces

Figure 4.3: Decomposition of search space

In the beginning of the food foraging in search space, all sub space has the same
probabilities to get the best food source. However, the bees are distributed in the entire search
space. After communicating information about source food, the majority of bees concentrate
in the most promising subspaces search and so on. Therefore, discovering of the most food-
rich location will be very likely. Figure 4.4 illustrates this behavior.

Figure 4.4: Searching behavior (dark
zone around the hive contains most

promising bees)
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4.1. Data Structure

To achieve the objective of finding the optimal solution, each bee bi in the population
is represented as a vector composed of two distinct parts:

1. The first part encodes the number of clusters, determining the structure of the solution.
2. The second part maintains the values of the cluster centers, defining their positions in
the search space.

This dual-vector representation ensures that both the number of clusters and their
values are optimized simultaneously (cf. Fig. 4.5 for a visual illustration).

Nbci Vall Vali Vali,,

Figure 4.5: Data structure of artificial bee.

where Nbc; is the number of clusters of the image to be segmented. This number is
between 2 and maximum number of cluster (MaxNbc). The value MaxNbc depends on
biological context. For example, MaxNbc =7 is sufficient for brain image. Val} is the value of

the center c; of the bee biwhich is the grey levels of the input image I. These values are in the
range [0, 255]. Figure 4.6 bellow presents four bees with different number of clusters with
different values. The first bee encodes three clusters centers with their values. The second
encodes also three clusters centers with their values while the third and the fourth bee encode
two and five clusters centers respectively with their values.

3 45 93 200
3 64 107 150
111 59
5 245 43 67 120 15

Figure 4.6: Four examples of artificial bees with different configuration
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4.2. Objective Function

To evaluate the quality of the food, number and values of cluster centers (solution), we
have developed a novel composite objective function J designed to simultaneously optimize
both cluster quality (cluster values) and model complexity (number of clusters). This function
addresses two fundamental challenges in unsupervised clustering:

1. Geometric optimization of cluster centers (minimizing intra-cluster dispersion),
2. Automatic determination of the optimal number of cluster.

Function F combines the conventional Fuzzy C-Means (FCM) objective function,
preserving the algorithm's ability to find spatially coherent clusters and a cluster validity
index component that penalizes solutions with either too many or too few clusters.

The combined objective function is formally defined as follows:

where F1(bi) corresponds to the standard Fuzzy C-Means (FCM) objective function,
which minimizes the weighted sum of squared distances between data points and cluster
centers. The second term, F2(bi), represents a clustering validity index that evaluates the
quality of the resulting partitions in terms of compactness and separation. The weights W1 and
W control the relative importance of each component in the overall optimization process. NS
is the population size: number of bees in search space.

The motivation behind this hybrid formulation lies in addressing the limitations of
using FCM alone. While FCM effectively minimizes intra-cluster variance, it does not
inherently ensure well-separated or meaningful clusters, especially when the optimal number
of clusters is unknown or the data contains overlapping structures. Incorporating a validity
index as an additional criterion enhances the ability of the algorithm to identify more compact
and distinct clusters, thereby improving overall segmentation quality.

By combining both objectives, the proposed function enables a balanced trade-off
between minimizing within-cluster distortion (via FCM) and maximizing cluster validity (via
the validity index). This dual-objective approach proves particularly beneficial in complex
applications such as medical image segmentation, where accurate and interpretable clustering
is essential for diagnostic reliability.

Both weights W1 and W> can be adjusted depending on the specific requirements of the
application or based on prior knowledge about the data structure.

According to the structure of bee bj, F1 is defined as:

Nbc; N
F1(by) = z Zu;g}de(xj, Vali) (4.6)
k=1 j=1
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Xj is the image pixels and d is the Euclidean distance.

F2 is a cluster validity index, known as the IMI (IMbalanced Index) index, proposed
by Yun Liu [Liu et al., 2021b] to identify the optimal number of clusters. It is formally
defined in equation (4.7). IMI allows us to solve a key challenge in clustering analysis which
is determining the optimal number of clusters in a dataset. According to the experimentations
deal on different data set, authors in [Liu et al., 2021b] confirm the robustness of IMI.
Thereby, it is a well candidate to be used as strong tool to determinate the right number of
clusters.

Nbe; 2j=1 U jd? (x]-, Vall)

k=1 N 2
F2(b) = j=1tkj 4.7)
' min ; ; median i i
. k(Sl,kdz(Vall, Vall) + L%k 8,:d%(Vall,vall)
N
here &, = <F—=.
w Lk DT

4.3. General steps of the Hybrid FCM-ABC Method

The general steps of the Hybrid FCM-ABC Method are outlined as follows. These
steps integrate the strengths of the FCM algorithm and the ABC optimization technique to
achieve robust and accurate segmentation results:

Step 1- Initialization: we set the maximum number of clusters MaxNbc, length of the
worst bees L, the number of trial limit, a maximum number of iteration Maxlteration and a
threshold e. Then an initial population of NS bees is generated in which each bee b, in its first
part ought to be assigned a random value in the range [2, MaxNbc]. According to the grey
levels of the image I, each value Val}' in second part has a value in the range [0, 255]. It is
initialized using equation (4.1). For each bee bj, we set the counter “no-improvement-cycle”
to 0.

Step 2- Fitness evaluation: since each bee bi encodes cluster centers values, we
calculate the membership value u;'cjfor each cluster centers c/. for all the bees (b, i=1,..., NS)
using equation (4.8) bellow.

; 1
(d*(xj, Valy))i-m

. o1
Y (d? (x), Vald)) T=m

Uiej = (4.8)
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Then, we evaluate the objective function of the bees in the population J(b;), according
to the equation (4.5) and their fitness with equation (4.3) .The bee with the best configuration
is stored (bpest).

Step 3- Employed Bee Phase: in this step, each employed bee generates a new
solution in its neighborhood according to the equation (4.2). It consists of modifying slightly
each center c. of each bee bj to find a better position through local exploration without
affecting the number of clusters Nbci. Then, new solution’s fitness is evaluated. If the new
solution is better, replace the current bee by this new solution. Otherwise increment the
counter “no-improvement-cycle .

Step 4- Onlooker Bee Phase: based on the fitness values, we assign probability P; to
each solution b; using the equation (4.4). We generate randomly a number r in the range [0,
1]. If r is less then Pi, each onlooker applies modifications on b; using the equation (4.2) to
further refine the clusters centers.

Step 5- Scout Bee Phase: to enhance the capability to exploit the global search, we
sort the bees according to equation (4.3) and we abandon all bees that the “no-improvement-
cycle” exceeds limit. If any abandoned bee belongs to the list of the L highest bees, we replace
the abandoned bees with new configurations in which we keep the number of clusters and we
reset only the cluster centers with equation 4.1. If any abandoned bee doesn’t belong to this
list it will be reinitialized completely with a random number of clusters in the range [2,
MaxNbc] and new cluster centers values using equation (4.1).

Step 6- Loop: steps from 2 to 5 are repeated until the objective function J became less
than the threshold ¢ or the maximum number of iterations Maxlteration is reached.

Step 7- Termination: finally, we use the best configuration stored so far (bpest). The
number of clusters and their centers values encoded in its configuration are used to perform a
last calculation of pixel memberships u,{ijSt according to equation (4.8). We assign each pixel

xi of the image | to center for which the memberships u,lgf-“ is higher for the purpose to
generate the segmented image.

4.4. Hybrid FCM-ABC Algorithm

Our proposed hybrid FCM-ABC method is summarized in the flowchart presented
below (cf.fig.4.7). The flowchart outlines the key steps and logic of the hybrid FCM-ABC
method, highlighting how the ABC algorithm is integrated with the FCM framework to
achieve robust and accurate segmentation results. Each step corresponds to a specific phase of
the optimization process, ensuring clarity and reproducibility of the method.
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Figure 4.7: Flowchart of Hybrid ABC-FCM method.
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Algorithm 2 presents the pseudo code of our proposition.

Algorithm 2: Hybrid FCM-ABC algorithm

O N ah

10:

11:

12:
13:

14:
15:
16:

Input: original image |
fix the parameters: MaxNbc, NS, ¢, limit, L, MaxIteration.
generate randomly an initial population of bees b; (i = 1,2,...,NS) using
equation (4.1).
it=0
for each bee b;, fix “no-improvement-cycle;” to 0
repeat
it=it+1
for each bee b;
calculate the membership value u;; using (4.8)
calculate the fitness function F(b;) according to the equation (4.3).
endfor
Bbest = bee b; with the highest fitness FI.
for each bee b;
generate a new solution bnew according to the equation (4.2).
evaluate the bnew’s fitness.
If bnew is better, b;=bnew.
else “no-improvement-cycle "++.
calculate the solution probability P;i using the equation (4.4).
endfor
for each bee b;
generate a random number r in the range [0, 1]
if Pi<r, update b; with equation (4.2)
evaluate its fitness according to equation (4.3).
ElitBee =L highest bees in term of fitness
for each bee b;
if “no-improvement-cycle” > limit
if b; € ElitBee, replace b; with new clusters centers
according to equation (4.1) without affecting the number of
clusters Nbc;
else generate a new solution for b; according to equation
(4.2).
reset to zero the counter “no-improvement-cycle”
Endfor

until (FI <e or it>=MaxlIteration)
calculate the membership value u;; according to Bbest.

cluster pixels of the image | according to the membership value u;;
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5. Experimental Results

5.1. Experimental setup

The performance of the Hybrid FCM-ABC method depends on several key
parameters. These parameters are selected to balance exploration, exploitation, and
computational efficiency.

The population size refers to the total number of bees, including employed, onlooker,
and scout bees, typically set between 50 and 100. This range balances exploration and
computational efficiency: a larger population enhances solution diversity and search space
exploration, helping avoid local optima, while a smaller size reduces computational overhead.
In our case, for brain MRI segmentation, a population size of 50 is chosen as it effectively
explores the high-dimensional search space of cluster centers without incurring excessive
computational costs.

In all our implementation, the maximum number of iterations is set to 300. Typically,
values between 100 and 500 iterations are recommended in optimization tasks, including
medical image segmentation. The number of iterations plays a crucial role in balancing
exploration and computational efficiency, the higher the number, the more thoroughly the
algorithm can explore the search space and refine potential solutions. However, this also
results in increased computation time. In our context of brain MRI segmentation, where
convergence is often achieved within this range, 300 iterations provide a reasonable trade-off
between accuracy and performance, allowing the algorithm to converge effectively without
unnecessary resource consumption.

To avoid stagnation in a local minimum, we set maximum number of cycles (limit) to
10, which limits the number of consecutive cycles without improvement and helps maintain a
balance between exploration and exploitation during the optimization process.

A limit of 10 cluster centers (MaxNbc) was imposed, based on empirical observation
that no brain MRI image in the analyzed dataset exhibited a greater number of distinct
segments.

In the objective function, the weights Wi and W. are both set to 0.5, ensuring a
balanced contribution of the individual components in the optimization process. And finally,
the size of the list I is set to 20.

5.2. Metrics used for segmentation evaluation

The evaluation of brain MRI segmentation performance relies on several metrics to
quantify accuracy, robustness, and consistency [Taha & Hanbury, 2015]. In cases where the
ground truth is available, we use Jaccard Similarity Index. In cases where the ground truth is
unavailable, it becomes necessary to rely on internal validation indices to evaluate the quality
of the clustering results such as Partition Coefficient Index, Partition Entropy Index and
Davies-Bouldin Index. By utilizing these indices in combination, we can obtain a
comprehensive evaluation of the clustering outcomes, ensuring that the proposed method
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achieves optimal performance even in the absence of ground truth information. This approach
not only enhances the reliability of the segmentation process but also enables meaningful
comparisons with other clustering techniques under similar conditions.

5.2.1. Jaccard Similarity Index

The Jaccard Similarity Index (also called Jaccard Similarity Coefficient or Intersection
over Union, loV) is a statistical measure used to evaluate the similarity between two sets. In
the context of medical image segmentation, it quantifies the overlap between a predicted
segmentation and the ground truth (manual annotation).

The Jaccard Similarity Index (JSI) ranges from O to 1, where O indicates no spatial
overlap between the predicted segmentation and the ground truth, and 1 denotes a perfect
match. Higher JS values reflect greater segmentation accuracy, as they signify stronger
agreement between the automated output and the reference standard. This metric is
particularly useful for quantifying volumetric overlap in tasks such as tumor or lesion
segmentation in medical imaging like MRI or CT image, where precise boundary delineation
is critical. The JS for a cluster k is defined as:

(4.9)

where A, and B, are the total number of pixels labeled into the cluster k identified by
the clustering algorithm and the ground truth respectively. The cluster k is well detected when
the value of /ST, is near 1.

5.2.2. Partition Coefficient Index

The Partition Coefficient Index (PCI), also known as the fuzzy partition coefficient, is
a metric used to evaluate the quality of fuzzy clustering algorithms, such as the Fuzzy C-
Means (FCM) method. Unlike crisp clustering, where each data point belongs exclusively to
one cluster, fuzzy clustering assigns membership degrees, indicating how strongly a point is
associated with each cluster. The PCI quantifies the fuzziness of the resulting partition by
measuring the average squared membership values across all data points and clusters.

The PCI is widely used in medical image segmentation, particularly in algorithms that
handle uncertainty, such as brain components delineation in MRI image. By optimizing
clustering algorithms to maximize PCI, we can improve the reliability of automated
segmentation results. The PCI is defined as:

N

>y (4.10)

i=1j=1

PCI =

2|
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The PCI ranges from % to 1, where C represents the number of clusters. A value of %

corresponds to a completely fuzzy partition, indicating no meaningful clustering structure
(uniform membership distribution across all clusters). Conversely, a PCI of 1 signifies
a perfectly crisp partition, where each data point unequivocally belongs to a single cluster.
Higher PCI values reflect reduced fuzziness and sharper separation between clusters,
suggesting improved clustering quality.

5.2.3. Partition Entropy Index

The Partition Entropy Index (PEI) is a widely used metric for evaluating the fuzziness
and uncertainty in fuzzy clustering algorithms, such as FCM. Unlike PCI, which measures the
crispness of clustering, PEI quantifies the degree of disorder or uncertainty in the membership
assignments of data points across clusters. The PEI is defined as:

N C
= = .

PEI exhibits a theoretical range from 0 to log(C), where C represents the number of
clusters. A PEI value of O indicates perfectly crisp clustering. Conversely, the upper bound of
log(C) corresponds to maximal fuzziness, occurring when membership degrees are uniformly
distributed across all clusters. In practical applications, lower PEI values signify more
definitive cluster assignments and reduced uncertainty, while higher values reflect increased
ambiguity in the partitioning. This inverse relationship between PEI values and partition
certainty makes it particularly valuable for assessing the reliability of fuzzy clustering
algorithms in applications such as medical image segmentation, where uncertainty in tissue
classification (tumor vs. healthy tissue in MRI) must be quantified. It is also applied in pattern
recognition and bioinformatics to assess the reliability of fuzzy clustering results.

5.2.4. Davies-Bouldin Index

The Davies-Bouldin Index (DBI) is a metric for evaluating clustering algorithm
performance by quantifying the trade-off between intra-cluster compactness and inter-cluster
separation. Unlike validity measures that assess fuzzy partitions (like PCI or PEI), the DBI is
specifically designed for crisp clustering solutions. In the case of soft clustering, it is used
after defuzzification step of data affectation. The DBI is defined as:

max (S; +S
C l *J D;; (4.12)

Where S; is the mean distance between the center of the cluster | and all the points
belonging to this cluster and Di; denotes the distance between the centroids of the clusters |
and J.
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The DBI produces strictly non-negative values, with lower values indicating superior
clustering quality. The index approaches its theoretical optimum of zero when clusters exhibit
both high intra-cluster compactness and strong inter-cluster separation. As a comparative
metric, the DBI should be minimized when evaluating alternative clustering solutions. The
index offers three key advantages: (1) its intuitive interpretation directly captures the
separation-to-compactness ratio, providing immediate insights into cluster validity; (2)
inherent scale invariance ensures consistent performance across differently scaled datasets, as
distances are normalized relative to cluster dispersion; and (3) computational efficiency,
requiring only centroid positions and dispersion measures. These characteristics make the DBI
particularly valuable for medical image analysis, where rapid evaluation of tissue
segmentation quality is often required.

5.3. Experimental results on Simulated Brain MR Images

The following experiments were conducted using Simulated Brain Database (SBD?).
The SBD provides synthetic MRI brain images with known ground truth segmentations,
making it ideal for validating segmentation algorithms. The images simulate different
intensity inhomogeneities, and slice thicknesses, mimicking real-world MRI challenges. This
database includes ground truth information for tissue of white matter (WM), and grey matter
(GM), and cerebrospinal fluid spaces (CSF). It offers a controlled setting to assess the
algorithm’s accuracy and its ability to handle intensity inhomogeneity effectively.

The proposed Hybrid FCM-ABC method was initially tested on a T1-weighted brain
MRI images with dimensions of 217 x 181 pixels, which includes 20% grayscale non-
uniformity to simulate real-world imaging challenges (cf.fig.4.8). The main objective of our
proposed method is to accurately segment and identifies critical brain regions, namely WM,
GM and CSF. These tissue types are fundamental for radiologists in their analysis and
diagnosis of various neurological disorders and diseases. Figure 4.8 shows three T1-weighted
brain MRI images in X87, X94 and X105 planes.

5.3.1. Clusters number detecting

First, we will show the ability of our method to find the right number of cluster centers
and how to converge to this right number across iterations.

Several images are tested. For illustrating this outcome, we have chosen two T1
weighted images in X94 and X105 planes. Both images have four clusters namely WM, GM,
CSF and the background.

The presented figures 4.9 and 4.10 illustrate the evolution of a clustering performance
metric across increasing computational cycles (from 0 to 300, in increments of 30) for cluster
numbers ranging from 2 to 10. A critical analysis of the both images strongly suggests that 4
clusters represent the optimal partitioning, as evidenced by its superior and sustained
performance over alternative cluster counts. This conclusion is supported by three key

1 Brain Web: Simulated Brain Database, http://brainweb.bic.mni.mcgill.ca/brainweb/, accessed 20 September 2024.
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observations: performance dominance, robustness over iterations, and resistance to
overfitting.

Ground truth
Original image
WM GM CSF

X105

Figure 4.8: Brain MRI images in X87, X94 and X105 planes with their
ground truth
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Figure 4.9: Evolution of clusters number across iterations for T1-weighted brain MRI
image in X94 plane.
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Figure 4.10: Evolution of clusters number across iterations for T1-weighted brain MRI
image in X105 plane.

First, the performance dominance of 4 clusters is unequivocal. While all cluster counts
begin with relatively comparable metrics at the initial cycle (5 bees for 4 clusters vs. 6 bees
for 2 clusters and 7 bees for 7 clusters), the trajectory of 4 clusters diverges markedly as
computational iteration progress. By the 300th iteration, the metric for 4 clusters peaks at 34
bees, which is not only the highest value across all cluster counts but also around 8.5 times
greater than its nearest competitor. This substantial gap underscores the capacity of 4 clusters
to better capture the underlying structure of the images.
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Second, the robustness of 4 clusters is demonstrated by its monotonic improvement
over cycles. The metric for 4 clusters exhibits a steady and uninterrupted rise from 5 (at 0
cycles) to 34 (at 300 iterations), indicating that additional computational iterations refine and
enhance the clustering solution. This behavior contrasts sharply with other cluster counts,
such as 5 or 6, which plateau or decline after an initial period of competitiveness (5 clusters
peaks at 8 bees by 90 cycles before regressing to 4 bees). Such trends suggest that these
cluster counts may initially approximate the data structure but ultimately fail to generalize
effectively as the algorithm iterates.

Finally, the resistance to overfitting further solidifies the superiority of 4 clusters.
Higher cluster counts (7—10) exhibit a precipitous decline in performance, with metrics often
collapsing to 1 bee or 2 bees by later cycles. This pattern is characteristic of overfitting,
wherein the clustering algorithm imposes excessive granularity, resulting in partitions that are
overly sensitive to noise rather than meaningful data patterns. The fact that 4 clusters avoids
this pitfall while still achieving the highest absolute performance underscores its optimal
balance between model complexity and generalizability.

In conclusion, the empirical evidence overwhelmingly supports 4 clusters as the
optimal choice. It achieves the highest performance metric, demonstrates consistent
improvement with additional computational cycles, and avoids the pitfalls of underfitting
(seen in 2-3 clusters) and overfitting (seen in 7+ clusters). These findings align with
established principles of cluster analysis, wherein the ideal number of clusters maximizes
inter-cluster dissimilarity and intra-cluster homogeneity without succumbing to noise. Future
work could explore the theoretical underpinnings of why 4 clusters emerges as optimal—
potentially reflecting latent subpopulations or natural divisions within the data—but the
present data robustly validates this selection.

5.3.2. Segmentation results

Figures 4.11, 4.12 and 4.13 provide a visual representation of the segmentation results,
allowing for a direct comparison of the performance of FCM and the proposed Hybrid FCM-
ABC method. To provide context, the original T1-weeighted brain images in X87, X94 and
X105 planes and their corresponding ground truths for WM, GM, and CSF are shown in
Figure 4.8. The segmented images are produced by the FCM and the Hybrid FCM-ABC
method for the three images. These three image are also corrupted by four level of noise (the
noise is calculated relative to the brightest tissue) 3%, 5%, 7%, and 9%.

From these figures, it is clear that the proposed Hybrid FCM-ABC method
outperforms FCM method in terms of accurately extracting brain tissues. A closer
examination reveals that the Hybrid FCM-ABC method effectively maintains regional
homogeneity, ensuring that the segmented regions are consistent and uniform.

At 3% noise, the standard FCM method struggles with slight blurring effects, leading
to minor inaccuracies in boundary detection. In contrast, the Hybrid FCM-ABC
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method maintains sharper edges and more precise segmentation due to the Artificial Bee
Colony (ABC) optimization, which refines cluster centers for better accuracy. When noise
increases to 5%, the traditional FCM method begins producing false clusters as noise
interference disrupts its clustering process. However, the Hybrid FCM-ABC demonstrates
superior structural integrity preservation, showcasing its enhanced noise resistance. At higher
noise levels (7% and 9%), the FCM method suffers from severe degradation, with a
significant number of misclassified pixels. While the Hybrid FCM-ABC also experiences
some noise-induced artifacts, it consistently outperforms FCM in maintaining segmentation
quality.

The integration of ABC optimization helps the Hybrid FCM-ABC method avoids local
minima, ensuring more stable and reliable segmentation even in noisy conditions. This
demonstrates the robustness of the proposed hybrid approach compared to conventional FCM.

Noise Original

. FCM Hybrid FCM-ABC Method
level image

0%

3%

5%

7%
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Figure 4.11: Segmentation of MRI T1 image in X87 plane
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Figure 4.12: Segmentation of MRI T1 image in X94 plane
FCM Hybrid FCM-ABC Method
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Figure 4.13: Segmentation of MRI T1 image in X105 plane

To confirm the visual representation performance, we have calculated the Jaccard
Similarity index for the fourth clusters detected by our proposal method. Table 1 compares
the accuracy and reliability outcomes obtained from FCM and Hybrid FCM-ABC method
algorithms.

Table 4.1: Jaccard similarity scores for White Matter (WM), Gray Matter (GM) and
Cerebrospinal Fluid (CSF) segmentation across FCM and Hybrid FCM-ABC method

Noise Image X87 Image X94 Image X105
level Method WM GM CSF WM GM CSF WM GM CSF
FCM 0.8876 | 0.8057 | 0.8092 | 0.8854 | 0.8107 | 0.8213 | 0.8695 | 0.8402 | 0.8184
0% Pr:]%‘:ﬁf)zd 0.9135 | 0.8516 | 0.9106 | 0.9065 | 0.8556 | 0.9116 | 0.9122 | 0.8506 | 0.9076
FCM 0.8546 | 0.7857 | 0.7962 | 0.8514 | 0.7916 | 0.8076 | 0.8373 | 0.8225 | 0.8002
3% P{gﬁzzd 0.0008 | 0.8377 | 0.8816 | 0.8985 | 0.8406 | 0.8836 | 0.9009 | 0.8396 | 0.8817
FCM 0.8196 | 0.7437 | 0.7582 | 0.8194 | 0.7503 | 0.7782 | 0.7939 | 0.788L | 0.7719
5% Pfg:ﬁf)zd 0.8836 | 0.8164 | 0.8662 | 0.8719 | 0.8192 | 0.8689 | 0.8805 | 0.8114 | 0.8563
FCM 0.7854 | 0.7089 | 0.7175 | 0.7798 | 0.7116 | 0.7372 | 0.7506 | 0.7461 | 0.7489
% P%%‘:ﬁzzd 0.8716 | 0.8019 | 0.8445 | 0.8578 | 0.8013 | 0.8494 | 0.8683 | 0.7985 | 0.8401
FCM 0.7419 | 0.6713 | 0.6883 | 0.7393 | 0.6889 | 0.7063 | 0.7187 | 0.7206 | 0.7129
9% Pr;f’eft’ﬁzzd 0.8467 | 0.7874 | 0.8285 | 0.8218 | 0.7890 | 0.8298 | 0.8323 | 0.7703 | 0.8284

Under noise-free conditions (0% noise), the proposed Hybrid FCM-ABC method
demonstrates consistent superiority over conventional FCM across all tissue types. This
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advantage is particularly pronounced in CSF segmentation, where the Hybrid FCM-ABC
achieves a Jaccard score of 0.9106 compared to FCM's 0.8092 in Image X87, indicating that
the ABC optimization significantly improves fluid-boundary detection. As noise levels
increase from 3% to 9%, the standard FCM exhibits substantial performance degradation,
with CSF segmentation accuracy in Image X87 dropping from 0.8092 to 0.6883. In contrast,
the Hybrid FCM-ABC maintains significantly higher accuracy, preserving a CSF
segmentation score of 0.8298 in Image X94 at 9% noise versus FCM's 0.7063.

A tissue-wise analysis reveals that the proposed method provides consistent
improvements across all tissue types, with particularly strong performance in WM
segmentation (5-10% higher Jaccard scores than FCM) and exceptional noise resilience in
WM segmentation. While GM segmentation shows more modest improvements, the method's
advantage remains evident. Image-specific variations demonstrate that the Hybrid FCM-ABC
consistently enhances segmentation quality, with Image X94 showing particularly strong CSF
improvements, suggesting superior handling of complex fluid boundaries.

These findings have important clinical implications, as reliable GM and WM
segmentation under noisy conditions is crucial for diagnosing conditions like hydrocephalus
and cerebral atrophy. While the Hybrid FCM-ABC shows remarkable noise robustness, its
performance decline at 9% noise indicates that extreme noise conditions may require
additional pre-processing denoising steps. Future research should explore integration with
deep learning-based denoising approaches to further enhance performance in high-noise
environments. The demonstrated superiority of Hybrid FCM-ABC suggests strong potential
for improving automated MRI analysis in clinical settings.

Furthermore, figure 4.14 provides also a visual representation of the segmentation
results for a T1-weighted MRI image in X89, allowing for a direct comparison of the
performance of four different algorithms: FCM, GA-FCM, FCMA-ES, and the proposed
Hybrid FCM-ABC method. To provide context, the original brain image is shown in Figure
4.14(a), while its corresponding ground truths for WM, GM, and CSF are displayed in Figure
4.14(b). The segmented images produced by the FCM, GA-FCM, FCMA-ES, and Hybrid
FCM-ABC methods are presented in Figures 4.14(c), 4.14(d), 4.14(e), and 4.14(f),
respectively.

From this figure, it is clear that the proposed method outperforms the other methods in
terms of accurately extracting brain tissues. A closer examination reveals that the Hybrid
FCM-ABC method effectively maintains regional homogeneity, ensuring that the segmented
regions are consistent and uniform. Additionally, the algorithm preserves more detailed
information from the original MR image, which is crucial for maintaining the integrity of the
anatomical structures being analyzed. This ability to retain fine details is particularly
advantageous in medical imaging applications, where subtle variations in tissue types can
have significant diagnostic implications.

We remark also that the Hybrid FCM-ABC method demonstrates superior
performance in delineating the boundaries between different tissue types. It accurately marks
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out the WM and GM regions, ensuring that these critical structures are well-defined and

distinct achieving a level of precision that surpasses the other methods.

a) Original image

b) Ground truth
Image

(WM, GM, CSF)

c) FCM

d) GA-FCM

e) FCMA-ES

f) Hybrid FCM-
ABC method

Figure 4.14: Segmentation results of the four methods on the Simulated MRI Image.
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5.4. Experimental results on clinical brain MR images

To further evaluate the performance of the proposed method, real clinical MRI images
were selected from the Open Access Series of Imaging Studies (OASIS) dataset?. OASIS is a
publicly available dataset containing real brain MRI scans from healthy and Alzheimer’s
disease patients. It includes T1-weighted images with diverse anatomical variations and
pathologies. It ensures the algorithm’s applicability to real-world clinical data, including
pathological cases, enhancing its practical utility.

Experiments were conducted on multiple images from this database. The performance
of the proposed Hybrid FCM-ABC method was compared with the FCM and FCMA-ES
[Debakla et al., 2019] methods. The effectiveness of the three methods was evaluated using
the DBI, PCI and PEI metrics where the results are shown in Table 4.2.

Table 4.2: Performance results with DBI, PCI and PEI metrics on the clinical
brain MR Images

o FCMA- | Hybrid FCM-ABC
Original image | Index FCM ES method
DB 0.42 0.41 0.36
Imagel PCI 0.90 0.92 0.96
PEI 0.19 0.15 0.12
DBl 0.44 0.42 0.43
Image 2 PCI 0.89 0.93 0.91
PEI 0.21 0.19 0.14
DB 0.52 0.47 0.42
Image 3 PCI 0.87 0.89 0.92
PEI 0.23 0.22 0.16
DB 0.46 0.45 0.46
Image 4 PCI 0.88 0.89 0.88
PEI 0.21 0.21 0.21
DB 0.61 0.38 0.41
Image 5 PCI 0.85 0.95 0.91
PEI 0.31 0.13 0.18
DB 0.46 0.39 0.37
Image 6 PCI 0.89 0.94 0.96
PEI 0.22 0.15 0.12
DBl 0.45 0.49 0.42
Image 7 PCI 0.89 0.88 0.91
PEI 0.23 0.24 0.21
DB 0.51 0.46 0.43
Image 8 PCI 0.86 0.89 0.01

2 Open Access Series of Imaging Studies (OASIS) dataset: https://sites.wustl.edu/oasisbrains, accessed 20 September 2024.
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PEI 0.25 0.21 0.19
DBI 0.44 0.41 0.42
Image 9 PCI 0.88 0.93 0.93
PEI 0.21 0.19 0.19
DBl 0.46 0.41 0.41
Image 10 PCI 0.87 0.93 0.93
PEI 0.22 0.18 0.19
DBI 0.47 0.43 0.41
Mean result PCI 0.87 0.91 0.92
PEI 0.23 0.19 0.17

Figure 4.15 illustrates the segmentation results obtained from processing 10 brain
images using three different methods: FCM, FCMA-ES, and the proposed Hybrid FCM-ABC
method. The figure is organized into four columns for ease of comparison. The first column
displays the original images, providing a reference for the subsequent segmentation outcomes.
The second column shows the results produced by the traditional FCM algorithm, while the
third column presents the segmentations generated by the FCMA-ES method. Finally, the
fourth column highlights the segmentations achieved using the proposed Hybrid FCM-ABC

method approach.

By visually comparing the segmented images across the three methods, it becomes
evident that the Hybrid FCM-ABC method offers superior performance in terms of clarity,
detail preservation, and accurate delineation of tissue boundaries.

Image 1

Image 2

Image 3

Image 4

Image 5

Original
image

FCMA-ES

Hybrid
FCM-ABC

method
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Image 6

Image 7

Image 8

Image 9

Image 10

Figure 4.15 Segmentation results on the clinical brain MR Images with
FCM, FCMA-ES and Hybrid FCM-ABC method.

From the results presented in Table 4.2, a detailed comparison between the proposed
method and the traditional FCM and FCMA-ES algorithms reveals that our algorithm
consistently achieves superior performance across various evaluation metrics. These metrics
provide a comprehensive assessment of the clustering quality, highlighting the strengths of
the proposed approach in terms of both compactness and separation of clusters, as well as the
clarity and certainty of cluster assignments.

Firstly, when considering the Davies-Bouldin Index (DBI), which evaluates the quality
of clustering by simultaneously assessing the compactness of individual clusters and their
separation from one another, our algorithm demonstrates a significant advantage. In this
regard, our algorithm achieved an average DBI value of 0.41, which is notably lower than
those obtained by the FCM and FCMA-ES methods. This result strongly suggests that the
proposed method is more effective at ensuring that the final clusters in the image are well-
defined and distinctly separated, thereby improving the overall segmentation quality.

Secondly, the Partition Coefficient Index (PCI) further corroborates the superiority of
our algorithm. The PCI measures the degree of fuzziness in the clustering process, with higher
values indicating clearer partitioning and less overlap between clusters. Our algorithm
achieved an impressive average PCI value of 0.92, surpassing the results of the other
methods. This high PCI value, which remains consistent across all test images, indicates that
the cluster memberships are predominantly closer to 0 or 1. In other words, the data points are
assigned to clusters with greater certainty, resulting in reduced fuzziness and a more definitive
partitioning of the image.

Lastly, the Partition Entropy Index (PEI) provides additional evidence of the
robustness of our algorithm. The PEI quantifies the uncertainty or randomness in the
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membership assignments, with lower values reflecting more certain and well-defined clusters.
Our algorithm achieved an exceptionally low average PEI value of 0.17, significantly
outperforming the other methods. This low PEI value underscores the minimal overlap
between clusters and highlights the algorithm's ability to assign data points to clusters with
greater confidence and precision.

The visual comparison presented in figure 4.15 aligns with the quantitative evaluations
presented in table 4.2, reinforce the conclusion that the proposed Hybrid FCM-ABC method
represents a significant advancement in brain MRI image segmentation.

In order to show more effectiveness of our proposal, its performance is compared with
other related works.

The Jaccard similarity scores presented in Table 4.3 provide a comprehensive
comparison of various fuzzy clustering methods for segmenting White Matter (WM) and
Gray Matter (GM) in brain MRI images. The proposed Hybrid FCM-ABC method
demonstrates superior performance, achieving the highest Jaccard scores for both WM (0.91)
and GM (0.83) segmentation. This indicates that our method better captures the complex
tissue boundaries and spatial distributions compared to existing approaches. The improved
performance of our method can be attributed to several factors. First, the ABC optimization
helps escape local minima during clustering, leading to more accurate segmentation. Second,
the adaptive parameter tuning in our approach better handles the intensity inhomogeneity
common in brain MRI, particularly in GM regions. Third, the method demonstrates robust
performance across both tissue types, unlike some approaches that excel in one but falter in
the other.

Table 4.3: Jaccard similarity scores for White
Matter (WM) and Gray Matter (GM) segmentation
across different fuzzy clustering methods

Method WM GM
GA-FCM [Debakla et al., 2019] 0.89 0.83
FCMA-ES [Debaklaetal., 2019] 0.91 0.82
FSMIB [Hu et al., 2021] 0.85 0.79
AFCM [Song et al., 2018] 0.82 0.71
LDCFCM [Dogra et al., 2020] 0.83 0.74
FCM [Ghazi & Meftah, 2023] 0.88 0.80
Hybrid FCM-ABC method  0.91 0.83

The Partition Coefficient Index (PCI) and Partition Entropy Index (PEI) scores in
Table 4.4 provide crucial insights into the effectiveness of different fuzzy clustering
algorithms. Our proposed hybrid FCM-ABC method demonstrates superior performance,
achieving the highest PCI score (0.92) and one of the lowest PEI scores (0.17), indicating
excellent clustering quality with minimal uncertainty.
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The proposed method's PCI score of 0.92 surpasses all other approaches, including
FQABC (0.90) and FPSOFCM/DPSO (both 0.89). This significant improvement suggests our
proposed method produces more distinct and well-separated partitions. The standard FCM
[Ghazi, 2023] shows the weakest PCI performance (0.70), highlighting the limitations of
conventional fuzzy clustering without optimization. Notably, while FABC [Feng et al., 2018]
incorporates ABC principles, its PCI (0.81) is substantially lower than our method,
emphasizing the importance of our specific implementation improvements.

Our method's PEI score of 0.17 is only slightly better than DPSO (0.18) and
significantly lower than FABC (0.36) and standard FCM (0.42). This indicates our clusters
have less ambiguity and overlap compared to these methods. Interestingly, FQABC (0.18)
and FPSOFCM (0.21) show competitive PEI scores, but our method maintains an advantage
while also achieving superior PCI performance. The high PEI of FABC (0.36) suggests that
while basic ABC integration helps, our enhanced approach better manages partition
uncertainty.

Table 4.4: PCI and PEI scores for various fuzzy
clustering algorithms

Method PCI PEI

AFCM [Song et al., 2018] 0.86 0.07

FPSOFCM [Semchedine & 0.89 0.21
Moussaoui, 2018]

FABC [Fengetal., 2018] 0.81 0.36
FQABC [Feng et al., 2018] 0.90 0.18
FCM [Ghazi &Mefath, 2023] 0.70 0.42
DPSO [Li & Wen, 2015] 0.89 0.18

Hybrid FCM-ABC method  0.92 0.17

6. Discussion

The experimental results presented in this study demonstrate the effectiveness and
superiority of the proposed Hybrid FCM-ABC method for brain MRI image segmentation. By
integrating the Artificial Bee Colony (ABC) algorithm with the Fuzzy C-Means (FCM)
framework, our method addresses several key limitations of traditional FCM. Limitations
include sensitivity to initialization, local minima, and the need for prior knowledge of the
number of clusters. The results highlight the robustness, accuracy, and adaptability of our
proposal, making it a promising tool for medical image analysis. The implication of the
results is summarized as follows:

a) Improved Segmentation Accuracy:

e The Hybrid FCM-ABC method consistently outperformed traditional FCM, GA-FCM,
and FCMA-ES methods across both simulated and clinical datasets. This is evidenced
by higher Jaccard Similarity (JS) values for critical brain tissues such as white matter
(WM), gray matter (GM), and cerebrospinal fluid (CSF). For example, on the
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simulated dataset, the Hybrid FCM-ABC method achieved an average JS score of
0.8917, surpassing the scores of FCM (0.86), GA-FCM (0.87), and FCMA-ES (0.88).

e The improved accuracy is particularly significant in clinical applications, where
precise segmentation of brain tissues is crucial for diagnosing and monitoring
neurological disorders such as Alzheimer's disease, brain tumors, and ischemic
strokes. The ability of the Hybrid FCM-ABC method to maintain region homogeneity
while preserving fine details ensures that subtle anatomical structures are accurately
delineated. This is essential for reliable diagnosis and treatment planning.

b) Superior Clustering Quality:

e The evaluation using internal validation indices such as the Davies-Bouldin Index
(DBI), Partition Coefficient Index (PCI), and Partition Entropy Index (PEI) further
underscores the superiority of the Hybrid FCM-ABC method. Our method achieved an
average DBI of 0.41, indicating well-defined and distinctly separated clusters.
Additionally, the high PCI value of 0.92 and low PEI value of 0.17 suggest that the
clustering results are less fuzzy and more certain, with minimal overlap between
clusters.

e These results are particularly significant in the context of brain MRI segmentation,
where overlapping intensity distributions between tissues (like GM and WM) often
lead to ambiguous clustering results. The Hybrid FCM-ABC method's ability to
produce clear and definitive clusters ensures more accurate and interpretable
segmentation outcomes.

7. Conclusion

In this work, we have successfully introduced a novel Hybrid FCM-ABC method that
addresses a significant limitation in traditional Fuzzy C-Means (FCM)-based brain MRI
image segmentation. By integrating the strengths of the Artificial Bee Colony (ABC)
algorithm with the FCM framework, the proposed method enhances the performance,
robustness, and adaptability of the segmentation process. A key innovation of our approach
lies in its ability to simultaneously optimize multiple critical parameters of the FCM
algorithm, including the objective function, the number of clusters, and the initial cluster
center values. This capability significantly improves the flexibility and accuracy of the
segmentation process, enabling it to better handle the complexities inherent in medical
imaging data.

Our experimental results, conducted on both simulated (SBD) and clinical (OASIS)
brain MRI datasets, demonstrate the effectiveness and superiority of the proposed Hybrid
FCM-ABC method compared to conventional approaches such as standard FCM, Genetic
Algorithm-based FCM, and Fuzzy Covariance Matrix Adaptation Evolution Strategy. The
proposed method consistently achieved higher accuracy, as measured by metrics such as
Jaccard Similarity, Partition Coefficient Index, Partition Entropy Index, and Davies-Bouldin
Index, across diverse imaging conditions, including varying intensity inhomogeneity.
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One of the standouts features of the proposed method is its ability to maintain region
homogeneity while preserving detailed information from the original MR images. This is
essential for accurately segmenting critical brain regions, such as gray matter, white matter,
and cerebrospinal fluid, which are often challenging due to their subtle intensity variations
and spatial overlaps. The Hybrid FCM-ABC method's robustness to noise and its ability to
handle pathological cases further highlight its potential for real-world clinical applications.

Future research directions for the proposed method include extending it to multi-
modal MRI data to enhance segmentation accuracy and robustness, optimizing the Hybrid
FCM-ABC method for real-time applications such as surgical planning and intraoperative
imaging, and generalizing its use to other imaging modalities like CT and PET for broader
applicability.
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1. Introduction

Clustering is a fundamental task in unsupervised machine learning and data mining. It
aims to partition a dataset into homogeneous groups, or clusters, such that data points within a
cluster are more similar to each other than to those in other clusters. Despite its widespread
use, one of the key challenges in clustering is the evaluation of the clustering quality,
particularly in the absence of ground truth labels. This has led to the development of Cluster
Validity Indices (CVIs), which are quantitative metrics used to assess the quality of clustering
results in unsupervised machine learning. In the context of image segmentation, CVIs play a
crucial role in determining the effectiveness of the segmentation. Unlike supervised learning,
where ground truth labels are available for validation, unsupervised segmentation relies on
CVIs to objectively evaluate clustering performance.

The reliability and objectivity of clustering outcomes largely depend on the choice of
the validity index. Especially in medical image field, without proper validation, clustering-
based segmentation may lead to over-segmentation (too many small regions) or under-
segmentation (too few merged regions). CVIs provide an automated way to measure
segmentation quality by evaluating intra-cluster compactness and inter-cluster separation. By
using CVIs, researchers and practitioners can fine-tune clustering algorithms, compare
different segmentation techniques, and ensure robustness in real-world applications where
manual validation is impractical.

In the field of cluster analysis, cluster validity is a very important and large topic
[Milligan, 1985][Dubes, 1980]. The main purpose of any cluster validity index (CVI) is to
find the optimal number of clusters that corresponds to the natural partition of the given data,
image in our case. CVI focuses on incorporating measures of compactness and separation
[Liu, 2021] [Liang, 2012] [Lie & Bailey, 2014] [Bezdek, 2016]. In image segmentation field,
compactness measures the concentration of pixels belonging to the same cluster around the
cluster center while separation represents isolation of clusters from each other.

Since images lack prior reference information, determining the optimal number of
clusters remains a significant challenge. In this work we develop a novel fuzzy index based on
Kullback-Leibler Divergence (KL-Divergence) that allows getting the right number of
clusters for a given image.

2. Categories of Cluster Validity Indices

Cluster Validity Indices can be broadly classified into two categories: internal indices
and external indices. Internal indices evaluate clustering quality based solely on the intrinsic
properties of the data, making them suitable for unsupervised scenarios. External indices, on
the other hand, compare clustering results against a known ground truth, which is useful for
benchmarking but requires labeled data. The choice of CVI depends on the availability of
reference data and the specific goals of the segmentation task.
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2.1. Internal Validity Indices

Internal indices are evaluation metrics used to assess clustering quality without relying
on external labels or ground truth data. These indices focus solely on the intrinsic structure of
the dataset, analyzing aspects such as cluster compactness, separation, or density. Since they
are unsupervised and data-driven, internal indices are especially useful in exploratory data
analysis or scenarios where labeled data is unavailable. Common examples include the
Silhouette Coefficient [Rousseeuw, 1987], which balances intra-cluster cohesion with inter-
cluster separation (max values indicates better clustering); the Davies-Bouldin Index [Davies,
1979], which evaluates clustering by comparing within-cluster scatter to between-cluster
distance (with lower values indicating better clustering); and the Calinski-Harabasz Index
[Calinski, 1974], which measures the ratio of between-cluster dispersion to within-cluster
variance (with higher values indicating better performance).

Internal CVIs are widely used in image segmentation because they do not require prior
knowledge of true clusters. Some commonly used internal indices include:

» Davies-Bouldin Index (DBI) [Davies, 1979]: This index measures the average
similarity between each cluster and its most similar counterpart. A lower DBI
indicates better clustering, as it reflects compact and well-separated clusters.

» Dunn Index [Dunn, 1973]: The Dunn Index evaluates the ratio of the smallest
inter-cluster distance to the largest intra-cluster distance. A higher value
suggests better-defined clusters.

» Silhouette Coefficient [Rousseeuw, 1987]: This index quantifies how similar a
pixel is to its own cluster compared to other clusters. Scores range from -1 to 1,
where higher values indicate better clustering.

» Calinski-Harabasz Index (CHI) [Calinski, 1974]: Also known as the Variance
Ratio Criterion, CHI computes the ratio of between-cluster variance to within-
cluster variance. A higher value indicates more distinct clustering.

2.2. External Validity Indices

External validity indices are supervised metrics used to evaluate the quality of
clustering results by comparing them against a known ground truth. These indices provide an
objective means of assessing how well the predicted clusters correspond to actual labels,
making them especially useful for model evaluation, algorithm comparison, and supervised
segmentation tasks.

These indices are particularly useful in benchmarking studies. Key external indices
include:

» The Adjusted Rand Index (ARI) [Hubert & Arabie, 1985] measures the
similarity between the predicted and true clusterings, correcting for chance
agreements.
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The Normalized Mutual Information (NMI) [Estévez et Al, 2009] quantifies
the mutual dependence between cluster assignments and ground truth labels,
normalized to account for varying cluster sizes.

The Fowlkes—Mallows Index (FMI) [Fowlkes & Mallows, 1983] evaluates
clustering quality as the geometric mean of precision and recall for all pairwise
sample comparisons.

The Jaccard Index (JI) [Jaccard, 1901] computes the similarity between sets
by dividing the number of data point pairs that are clustered together in both
the predicted and true clusterings by the total number of pairs that are clustered
together in at least one of them.

The Similarity Index (SI) [Zhang, 2006], often used more generally, assesses
the proportion of agreement between clustering labels and ground truth labels
over all possible pairings.

Together, these external indices offer a robust framework for quantitatively validating
clustering models when labeled data is available.

The table bellow describes the major differences between internal and external

indices.
Table 5.1 : Difference between internal and external indices
Criterion Internal Indices External Indices
Data Requirement Unlabeled data Labeled ground truth
Typical Use Case | Exploratory clustering Model validation
Strengths No need for labels Objective evaluation
Weaknesses . May Iac!<_ Requires labeled data
interpretability
Cluster validity indices are used across numerous domains:

Bioinformatics: clustering gene expression profiles to find biologically relevant

groups.

Marketing: segmenting customers into target groups.

Text Mining: identifying topics in document corpora.

Image

Processing: segmenting images based on pixel similarity.

Cybersecurity: clustering user behavior for anomaly detection.

When applying CVIs to image segmentation, several factors must be considered to
ensure meaningful results. First, the choice of index should align with the segmentation
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objective, internal indices for unsupervised tasks and external indices for validation against
ground truth. Second, computational efficiency matters must be regarded, especially for high-
resolution images where clustering can be time-consuming. Finally, some CVIs may favor
certain types of clusters (spherical vs. irregular shapes), so multiple indices should be tested
for comprehensive evaluation.

3. Cluster validity index for fuzzy clustering algorithms

Fuzzy cluster validity indices are metrics used to evaluate the quality of fuzzy
clustering results, where data points can belong to multiple clusters with varying degrees of
membership (unlike crisp clustering, where each point belongs to exactly one cluster). These
indices help determine:

= Optimal number of clusters (in Fuzzy C-Means).
= Quality of fuzzy partitions (how well-separated or compact clusters are).
= Algorithm performance (comparing FCM vs. other clustering algorithms).

We will list some popular CVI.

(i) The partition coefficient Index (PCI) and partition entropy Index(PEI) are proposed
by Bezdeck [Bezdeck, 1984] in association with FCM Algorithm

Z u? (5.1)

j=1

PCI =

=~

N
i=1
N C
1

PEI = szuij log(uij) (5.2)
i=1 j=1

j=

PClI is a max optimum index and PEI is min optimum index.

(if) To reduce the monotonic tendency with C (number of cluster) of the both index PCI
and PEI, Dave [Dave, 1996] proposed Modification of PCI (MPC). This index is
defined as

MPC CxPCl—1 53

i — (5.3)

(iii) Xie and Beni [Xie, 1991] defied a new CVI called in this paper XBI. It take
account the fuzzy membership degrees and the structure of the data to be clustered in
order to have compact and well-separated clusters. XBI is defined as

Jm(U,C,X)

XBI = -
N(mlni,j”ci — cj”)

(5.4)
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where Jn is the fuzzy objective function of the FCM algorithm. XBI is a min optimum
index.

(iv) In the same way of XBI, Fukayama and Sugno [Fukuyama, 1989] defined another
CVI called FSI as (FSI is a min optimum index):

FSI = J,.(U,C,X) — zz mc; — (5.5)

i=1j=

N

where x = %x‘ , the mean of the whole data to be clustered.

(v) The Separation-Compactness Index (SCI) [Zahid, 1999] is a fuzzy clustering validity
metric that balances intra-cluster compactness and inter-cluster separation. SCI is
min optimum index. It combines two functions SC; and SCo:

SCI = SC, + SC, (5.6)

Where SC; conciders the geometrical properties and membership degrees of data,

o _ (322.lic, - 2l?) 57
b C ( j= 1 l]”xl C]” /Z] 1ul]) .

and SC, considers only the properties of membership de greees,

Z Zk l+1(2] 1 (mln(uuruk])) /nk])
max max
( J=11 <i< Cuizf)/( j=11 <i< Cuif)

Note that ny; = %Y, min(u;;, uy;)

SC, = (5.8)

(vi)The CS Index [Chou, 2004] deals with clustering with different densities and/or
sizes. It evaluates the ratio of compactness—separation of data objects and the

centroids:
ma
- <|C |ijeclx € C d (xuxj))
SC, = p— (5.9)
f 1y :/_—]d (CL’C])
(vii) The Davies-Bouldin Index (DBI) [Davies, 1979] measures the compactness

and separation of clusters. It is defined as:
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1 K max [ S; +S
EZHH N (5.10)

Where S; is the mean distance between the center of the cluster i and all the points
belonging to this cluster and D;; denotes the distance between the centroids of the clusters i
and j. DBl is min optimum index.

(viii) The MBMF (Mean Bounded Membership Function) is a fuzzy max optimum
clustering validity index that evaluates the crispness or definiteness of the clustering
results. It is defined as

MBMF = ZN max

(UU) (5.11)

(ix) The WLI (Wu-and-Li Idex) [Wu and Al, 2015] is a min optimum index designed for
evaluating fuzzy clustering results. Its main characteristic is the introduction of the
median distance between a pair of centroids. It evaluates the information about fuzzy
compactness and separation of clusters as follows.

WLy,

* d
Where WL, is the total fuzzy compactness of all the C clusters. It is defined as
= ., Hit o) 5.13)
Z]=1 l]
And WL is the average of the minimum and median distances of a pair of centroids,
min medlan
Wi =30 6) + T e ) (5.14)

(x) IMI [Liu, 2021] is also a min optimum index for evaluating fuzzy clustering results.
It inspired from WLI. It deal with impact of the uniform effect on the separation and
compactness metrics

C Z] 1uk]d (x]-,ci)
z:i=1 ZN 2

IMI = J=L (5.15)
min median
iy Q@2 (cucy)+ 613 (cic))
N
—1Uj
where §;; = zz_{l"_lu;'
=1

The characteristics of the clustering validity index (CVIs) discussed above revolve
around their ability to measure the quality of clustering by evaluating two main aspects:

112



Chapter 5: Fuzzy Validity Index based on Kullback-Leibler Divergence

compactness and separation. Compactness refers to the degree to which data objects within
the same cluster are similar and closely packed, typically measured using intra-cluster
distances such as between pairs of objects or between each object and the cluster centroid. In
contrast, separation assesses how well distinct clusters are isolated, often using inter-cluster
distances between centroids or between objects from different clusters. CVIs mentioned
above incorporate fuzzy membership degrees and structural properties of clusters. Some
CVils, like PC and PE, focus solely on compactness, whereas others, like DBI, XBI, FSI, and
SCI, account for both compactness and data structure but may not address compactness—
separation trade-offs at the cluster level. CVIs also differ in how they treat centroid distances:
MBMF emphasizes maximum centroid distance (which can misrepresent image clustering),
while XBI and CSI focus on the minimum. Simpler CVIs like PC and PE use membership
degrees alone, whereas advanced ones also incorporate distance metrics averaged like FSI,
minimal like XBI and CSI, or maximal (MBMF). Typically, CVIs are used as post-processing
tools independent of the clustering method, helping determine the optimal number of clusters
by identifying the value of number of clusters where the CVI reaches its maximum (PC, Dunn,
SCI, WLI, IMI, ...) or minimum (PE, DBI, XBlI, FSI, CSI, ...).

For convenience, this chapter denotes a larger-the-better CVI as CVI* and a smaller-
the-better CVI as CVI".

4. The Proposed CVI

We propose a novel cluster validity index based on Kullback-Leibler Divergence
(KL_index - Kullback-Leibler Index) for assessing fuzzy clustering performance [Mokhtari &
Meftah, in press]. The proposed KL_index addresses two critical aspects of cluster validation:
(1) it incorporates the Kullback-Leibler Divergence as a robust statistical measure of inter-
cluster separation, and (2) it provides a comprehensive evaluation framework for fuzzy
partitioning quality. Unlike conventional validity indices that rely solely on geometric
distances, KL_index quantifies the probabilistic divergence between cluster distributions,
offering a more theoretically grounded approach to cluster validation. The index is
particularly designed to overcome limitations of existing measures by accounting for both the
compactness within clusters and the statistical separability between clusters through
information-theoretic principles.

4.1. Kullback-Leibler Divergence

The Kullback-Leibler Divergence (KLD), also known as relative entropy, serves as a
fundamental measure for quantifying the dissimilarity between two probability distributions
[Kullback & Leibler, 1951] [van Erven & Harremoés, 2014]. Formally, for discrete
probability distributions P and Q defined on the same probability space, the KLD from Q to P
is given by:

PO

20 (5.16)

D (PIQ) = ) P(Dlog
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where:

- P represents the true distribution
- Q denotes the approximate distribution
- The summation is taken over all elements in the space

KLD plays a crucial role in various applications, including data compression,
statistical inference, machine learning, and communication systems. Below are key ways KLD
is employed in information theory [Cover & Thomas, 2006], [Haarnoja and al, 2018]:

Measuring Information Loss & Coding Efficiency: KLD quantifies the inefficiency
of assuming a distribution Q (an approximate model) when the true distribution is P. In the
context of source coding, it represents the number of extra bits required to encode data drawn
from P using a code that is optimized for Q. The divergence D, (P||Q) gives the expected
number of additional bits incurred due to this mismatch [Burnham, & Anderson, 2002].

Hypothesis Testing & Discrimination: KLD plays a key role in statistical hypothesis
testing, where it is used to distinguish between two probability distributions. It appears in the
Neyman-Pearson lemma, helping to define the optimal test that minimizes the Type Il error
(false negatives) for a given Type | error constraint. Additionally, the Chernoff-Stein lemma
uses KLD to provide bounds on error probabilities in asymptotic settings, highlighting its
importance in long-run statistical discrimination tasks [Pérez-Cruz, 2008].

Channel Capacity & Communication Theory [El Gamal & Kim, 2011] : In channel
coding, KLD is instrumental in analyzing the capacity of noisy communication channels. The
mutual information 1(X; Y) between the input X and output Y of a channel can be expressed
using as:

I(X; Y) = Dk (Pxyv || Px * Py) (5.17)

where Pxy is the joint distribution of X and Y, and Px * Py is the product of their marginal
distributions.

This expression measures how much information the output Y reveals about the input
X. Higher mutual information indicates a more informative (and potentially higher-capacity)
communication channel.

Maximum Likelihood Estimation & Model Selection [Grinwald & van Ommen,
2017]: KLD is minimized when fitting models using maximum likelihood estimation (MLE),
as MLE seeks the model that is closest to the true data-generating distribution in terms of
KLD. Model selection criteria such as the Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC) are grounded in KLD, aiming to balance model fit and
complexity by penalizing overfitting. Additionally, in expectation-maximization (EM)
algorithms, KLD naturally arises in the optimization of the evidence lower bound (ELBO),
guiding the iterative refinement of model parameters.
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Machine Learning & Optimization: KLD is widely used in machine learning for
optimization and inference [Murphy, 2012].

In wvariational inference, it is minimized to approximate complex posterior
distributions by selecting the closest distribution Q from a simpler family, minimizing Dk. (Q
|| P), where P is the true posterior.

In generative adversarial networks (GANSs) and other deep learning models, KLD or
related measures like the Jensen-Shannon divergence often serves as a training objective to
align model outputs with real data distributions.

In reinforcement learning, KLD is used to constrain policy updates in policy gradient
methods. Techniques such as Trust Region Policy Optimization (TRPO) and Proximal Policy
Optimization (PPO) use KLD-based constraints to ensure stable and efficient learning.

4.2. Structure of KL_index

In a general context, clustering is a process of grouping or classifying a collection of
objects into homogeneous clusters. Ideally, members of the same cluster are characterized by
strong similarity to each other and strong dissimilarity to members of other clusters. In fuzzy
classification methods such as FCM (Fuzzy C-Means) and its variants, each individual (a
pixel in the case of images) is assigned a membership degree indicating its association with
each cluster. This can be interpreted as the probability of belonging to a given cluster.
Therefore, we will leverage this measure to compute the divergence between clusters resulting
from a classification. By maximizing this measure, we ensure separation between the clusters.

Like conventional CVIs, the KL_index is defined as the ratio between fuzzy
compactness and separation measures. The distinguishing characteristic of KL_index lies in
its explicit incorporation of Kullback-Leibler Divergence into the separation metric.

4.2.1. Separation measure

The notion of KLD divergence is based on two probability variables, P and Q. In our
application, the proposed measure defines P and Q as follows: For each pixel j belonging to
clusteri, if we define P;jjas the membership probability of pixel jin clusteri, then P;;is
simply U;; (from FCM algorithms), i.e., Pij = Uj;.

Similarly, we define Q;; as the sum of membership probabilities of pixel j to all other
clusters (excluding cluster i). Thus, Qi; represents the complement of the pixel’s membership
probability in cluster i, meaning:

Qij=1-Pij(i.e, Qij=1-Uj;) since the sum of a pixel’s membership degrees across

all clusters must equal 1. The figure below illustrates the principle of separation measure. The
separation measure must ensure the isolation of the cluster C; over the rest of clusters.
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S

Figure 5.1: Principle of KLDCVI separation measurement

The divergence of cluster i relative to the remaining clusters is defined as:

N U
kld; = E 8;jU;; * Log -] (5.18)
et 1-Uy
]:

if Upj =Max(Uy) i=1,..,C

where 61] = {1
0 otherwise

According to this presentation, the separation measure named KLDIV is defined as the
average divergence of the C clusters in the partition and it is reinforced by the separation
metric defined in IMI Index [Liu, 2021]. This new separation metric is as follow:

median
[ #]

C
1 min
KLDIV = Ez kid; + o 85,d% (e ;) +
i=1

i #j 8;;d%(ci ¢) (5.19)

4.2.2. Compactness measure

The fuzzy compactness metric serves as a fundamental criterion in numerous CVIs,
such as XBI, FSI, WLI and IMI indexes. Conventionally, this metric is mathematically
defined as the aggregate compactness measure across all clusters. It is defined as:

(5.20)
7=1ui2j

i §Y=1 u?}‘dz(xj' Ci)

i=1

Building upon the mathematical foundations established in Equations (5.19) and
(5.20), the KL_index is formally defined as:
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¢ Lud®(xg,¢)
i=1 N—l uz
= 1 (5.21)

1 min median
Ezic=1 kid; + i ¢j5ijd2(ci,6‘j) + i%j 5i,jd2(cl-,cj)

KL_index =

Like other CVIs, the KL_index assesses the compactness-separation trade-off in
clustering.

The numerator in Eq. (5.21) computes the average fuzzy distance of data points to all
cluster centroids, smaller values indicate tighter, more compact clusters. This principle aligns
with other CVIs, such as XBI, SCI, and MBMF. The denominator measures cluster
separation, where a larger value signifies more distinct, well-separated clusters. Thus, lower
KL_index values correspond to better clustering performance, as they reflect higher
compactness and greater separation.

5. Experiments

5.1. Setup

To demonstrate the effectiveness of our KL _index, several experiments are conducted
on different images. In these experiments, the images were clustered using FCM with varying
number of clusters. The clustering outcomes were assessed using a cluster validity index
(CVI) to determine the optimal number of clusters. The proposed KL_index was compared
against eleven established indexes mentioned in section (3).

First, the proposed CVI was tested on synthetic image (imgl). This later contains 6
clusters (cf.Fig.5.2). The proposed CVI was also tested on four remote sensing images (img2,
img3, img4, img5) from a prior study [Liu, 2021] (cf.fig.5.3). Each image measures 128 x
128 pixels, comprising 16,384 3D data points with 24-bit RGB values (3D features) for
clustering.

In [Y. Liu 2021], domain experts determined the number of clusters by identifying
distinct objects such as roads, sandbanks, sea areas, rooftops, and aircraft that clustering
should resolve. Based on this, img2 and img4 were assigned 3—4 clusters, while img3 and
img5 were assigned 4-5 clusters. Furthermore, KL_index was tested on medical images
(cf.fig.5.4). img6 and img7 were assigned 4 clusters where img8 is assigned 3-4 clusters.

For computational efficiency, all images were converted to grayscale prior to
clustering. The bold numbers in tables below present optimum values.
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imgl

Figure 5.2. Synthetic image

img4 img5

Figure 5.3: Remote sensing images

img6 img7

Figure 5.4: Medical images

5.2. Results of synthetic image

The analysis of clustering validity indices for imgl reported in table 5.2 and figure 5.5
reveals compelling evidence that k=6 represents the optimal number of clusters. The
KL_index, which serves as our primary metric (where lower values indicate better clustering),
reaches its global minimum of 0.0 precisely at k=6. This strong signal is corroborated by
multiple supporting indices: DBI- similarly achieves its ideal value of 0.0 at k=6, while PCI+,
MPC+, FSI+, and MBMF+ all either peak or approach their maximum values at this cluster
count. The convergence of these metrics suggests that six clusters provide an excellent
balance between intra-cluster cohesion and inter-cluster separation.

Several indices present interesting secondary patterns that warrant discussion. While
SCI+ suggests k=4 might be viable (achieving 1.0), this recommendation stands in isolation
against the broader consensus of other metrics. The IMI+ index shows a steady improvement
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up to k=6 (0.9954), further reinforcing our primary conclusion. XBI- presents a more
ambiguous pattern, peaking at k=5 before dropping sharply at k=6, which may indicate some
local structural features in the data that merit further investigation in future analyses.

Based on this comprehensive analysis, we confidently recommend k=6 as the optimal
number of clusters for this image which is the right number.

Table 5.2: Clustering validity index values vs number of clusters for imgl

k DBI- PCl+ PEI- SCI+ CSI- MPC+ XBI- FSI+ MBMF+ WLI- IMI+ Kl_index-
2 1.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.4687 0.0000 0.0000 1.0000 0.0000 1.0000
3 0.2830 0.3660 0.7112 0.0843 0.0041 0.5267 0.1913 0.3976 0.3777 0.6121 0.6571 0.2791
4 0.0726 0.7174 0.3389 0.1581 0.0102 0.8081 0.3709 0.7333 0.7089 0.5072 0.8465 0.0788
5 0.2303 0.7002 0.4067 0.0824 0.0354 0.8144 1.0000 0.8088 0.7113 0.9477 0.8520 0.1804
6 0.0000 0.9990 0.0000 1.0000 0.0530 0.9937 0.0000 0.9691 0.9915 0.0000 0.9954 0.0000
7 0.1484 0.9817 0.0262 0.7091 0.1278 0.9863 0.6444 0.9681 0.9744 0.1088 0.9877 0.0093
8 0.1413 0.9903 0.0211 0.6391 0.5247 0.9927 0.0219 0.9847 0.9902 0.0762 0.9952 0.0240
9 0.2398 0.9800 0.0348 0.5537 0.6511 0.9885 0.3160 0.9837 0.9789 0.1136 0.9901 0.0308
10 0.2629 1.0000 0.0112 0.8498 1.0000 1.0000 0.1519 1.0000 1.0000 0.0389 1.0000 0.0151

Cluster Validity Indices vs Number of Clusters
Optimal values marked with stars (red=min, green=max)
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Figure 5.5: Comparison on CVI values for imgl

5.3. Results of remote sensing images

The validity indices for img2 present a strong case for either 3 or 4 clusters. The
kl_index reaches its absolute minimum (0.0) at k=3, strongly suggesting this as the optimal
number (table 5.3, figure 5.6). This is supported by multiple other indicators: DBI- also hits
0.0 at k=3, while PCI+, MPC+, FSI+, and MBMF+ all achieve their maximum values (1.0) at
this cluster count. The SCI+ index peaks at k=3 (1.0) as well, providing additional
confirmation. While k=4 shows reasonable performance with kl_index=0.0795 and moderate
values across other indices, the overwhelming evidence favors k=3 as the true optimum. The
sharp degradation in most indices beyond k=4 further reinforces that 3-4 clusters best
represent the underlying data structure.
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Table 5.3: Clustering validity index values vs number of clusters for img2

k DBI- PCI+ PEI- SCI+ CSI- MPC+ XBI- FSI+ MBMF+ WLI- IMI+ kl_index-
2 1.0000 0.8620 0.0000 0.2032 0.0000 0.0121 0.2836 0.3719 0.8767 1.0000 0.0000 0.0218
3 0.0000 1.0000 0.0052 1.0000 0.0761 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 0.0000
4 0.5227 0.6404 0.2946 0.7173 0.1595 0.5671 0.1006 0.6417 0.5974 0.1391 0.6568 0.0795
5 0.8412 0.3504 0.5422 0.5099 0.2540 0.2268 0.5745 0.1664 0.3044 0.3443 0.3728 0.2095
6 0.4019 0.4486 0.5310 0.8348 0.3980 0.4893 0.2217 0.5424 0.4467 0.3749 0.5651 0.1715
7 0.3183 0.3886 0.6274 0.7190 0.5198 0.4617 0.1201 0.6110 0.4111 0.2081 0.5396 0.2334
8 0.3285 0.2407 0.7711 0.4886 0.6398 0.2852 0.3727 0.4335 0.2717 0.4964 0.3930 0.3987
9 0.4597 0.1909 0.8345 0.4014 0.8634 0.2508 0.3191 0.3188 0.2145 0.3343 0.3359 0.4910
10 0.6151 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 0.0000 0.3453 0.1035 1.0000
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Figure 5.6: Comparison on CV1 values for img2

For Img3, the kl_index tells a clear story - it reaches its minimum (0.0) at k=4, making
this the primary candidate for optimal clustering. This conclusion is bolstered by SCI+
peaking at 1.0 for k=4 and DBI- being near its minimum (0.0327). The k=5 solution remains
plausible with kl_index=0.1117 and decent performance across other metrics, particularly
SCI+ maintaining a high value (0.8927). However, the clear optimum appears at k=4, with
most indices showing significant degradation beyond this point. The MPC+ index's peak at
k=3 (1.0) presents an interesting counterpoint, but the consensus of other metrics supports 4
clusters as the most balanced solution (cf.fig.5.7).
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Table 5.4: Clustering validity index values vs number of clusters for Img3

DBI-

PCl+

PEI-

SCI+

CSI-

MPC+

XBI-

FSI+ MBMF+ WLI-

IMI+ kl_index-

k
2
3
4
5
6
7
8
9
1

0.3019
0.0000
0.0327
0.1740
0.4001
0.4842
0.6813
0.8109
0 1.0000

1.0000
0.8333
0.6793
0.4898
0.3915
0.2726
0.2012
0.0863
0.0000

0.0000
0.1756
0.3259
0.4948
0.6031
0.7198
0.8006
0.9114
1.0000

0.1273
0.7373
1.0000
0.8927
0.8359
0.6773
0.4970
0.1945
0.0000

0.0000
0.0397
0.0968
0.1701
0.2779
0.3991
0.5866
0.7506
1.0000

0.6310
1.0000
0.9409
0.6773
0.5839
0.4120
0.3286
0.1368
0.0000

0.2051
0.0000
0.3124
0.5397
0.4453
0.7170
0.6277
1.0000
0.7755

0.9631
1.0000
0.8240
0.5734
0.4943
0.3430
0.2626
0.0951
0.0000

1.0000
0.8455
0.6980
0.5068
0.4179
0.2955
0.2155
0.0922
0.0000

0.4022
0.5572
0.0000
0.8551
0.5246
0.4885
1.0000
0.9240
0.3971

0.2764
1.0000
0.9229
0.6897
0.5820
0.4154
0.3064
0.1316
0.0000

0.0510
0.0246
0.0000
0.1117
0.1822
0.2851
0.4005
0.6289
1.0000
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Figure 5.7: Comparison on CVI values for img3

Number of Clusters (k)

The results for img4 (table 5.5, figure 5.8) mirror those of img3 remarkably closely.
The Kkl _index again reaches its minimum (0.0) at k=3, with k=4 being only slightly worse
(0.0257). SCI+ peaks at k=4 (1.0), while DBI- is near its minimum (0.0334) at this cluster
count. The MPC+ index again peaks at k=3 (1.0), creating some ambiguity. However, the
strong performance of multiple indices at both k=3 and k=4 suggests either could be
reasonable, with k=3 having a slight edge due to the perfect kl_index score. The consistency
between Img3 and Img4's results is particularly noteworthy and may indicate similar
underlying data structures.

Table 5.5: Clustering validity index values vs number of clusters for Img4

DBI-

PCl+

PEI-

SCI+

CSI-

MPC+

XBI-

FSI+ MBMF+ WLI-

IMI+ kl_index-

k
2
3
4
5
6
7
8
9
1

0.3084
0.0000
0.0334
0.1775
0.4087
0.4953
0.6957
0.8285
0 1.0000

1.0000
0.8326
0.6779
0.4877
0.3889
0.2691
0.1978
0.0826
0.0000

0.0000
0.1761
0.3268
0.4962
0.6048
0.7221
0.8029
0.9138
1.0000

0.1032
0.7301
1.0000
0.8896
0.8313
0.6678
0.4830
0.1704
0.0000

0.0000
0.0398
0.0973
0.1708
0.2792
0.4011
0.5891
0.7552
1.0000

0.6277
1.0000
0.9404
0.6744
0.5801
0.4057
0.3225
0.1294
0.0000

0.2063
0.0000
0.3143
0.5436
0.4480
0.7209
0.6316
1.0000
0.7441

0.9628
1.0000
0.8226
0.5699
0.4902
0.3371
0.2565
0.0873
0.0000

1.0000
0.8445
0.6962
0.5038
0.4144
0.2908
0.2107
0.0865
0.0000

0.4018
0.5566
0.0000
0.8573
0.5241
0.4962
1.0000
0.9258
0.4607

0.2700
1.0000
0.9222
0.6870
0.5783
0.4096
0.3002
0.1237
0.0000

0.0937
0.0000
0.0257
0.0304
0.0520
0.0525
0.2271
0.6349
1.0000
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Figure 5.8: Comparison on CVI values for img4

Img5 presents the most complex decision among the four images. The kl_index
reaches its absolute minimum at k=4 (0.0), which would normally make this the clear choice.
However, k=5 shows nearly as good performance (kl_index=0.0090) while SCI+ actually
peaks at k=6 (1.0). The DBI- index is lowest at k=2 (0.0), creating some confusion (table 5.6).
The MPC+ index peaks at k=2 (1.0), further complicating matters. This suggests the data
might have multiple viable clusterings at different scales. Considering all indices, k=4
emerges as the strongest candidate due to the perfect kl_index score, but k=5 remains a
plausible alternative, especially given SCI+'s strong performance in this range (cf.fig.5.9).

Table 5.6: Clustering validity index values vs number of clusters for

P OO~NOO U WN X

o

DBI-
0.0000
0.3341
0.5389
0.2931
0.2568
0.4311
0.4656
1.0000
0.8657

PCI+
1.0000
0.7752
0.5721
0.5846
0.5672
0.3674
0.3375
0.0000
0.0408

PEI-
0.0000
0.2090
0.3987
0.4266
0.4730
0.6573
0.7039
0.9516
1.0000

SCI+ CSI- MPC+ XBI- FSI+ MBMF+ WLI-  IMI+ KI_index-

0.1786
0.1748
0.0932
0.7671
1.0000
0.6948
0.6321
0.2805
0.0000

0.0000
0.0666
0.1351
0.3013
0.4480
0.5396
0.7623
0.8878
1.0000

1.0000
0.8284
0.6130
0.7249
0.7517
0.4837
0.4715
0.0000
0.0850

0.0000
0.0114
0.1401
0.0672
0.0343
0.1562
0.1047
1.0000
0.3183

1.0000
0.8237
0.5648
0.6599
0.7020
0.4537
0.4394
0.0000
0.2632

1.0000
0.7888
0.5781
0.6108
0.6058
0.4109
0.3833
0.0000
0.0752

0.0000
0.5828
1.0000
0.5607
0.2836
0.4698
0.5245
0.5370
0.6367

0.9304
1.0000
0.7609
0.8573
0.8712
0.5917
0.5584
0.0000
0.1116

0.0219
0.0161
0.0000
0.0090
0.0337
0.0735
0.1611
0.2215
1.0000
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Figure 5.9: Comparison on CVI values for img5

5.4. Results of medical images

Table 5.7 and figure 5.10 compare clustering validity indices for k = 2 to 10 clusters
for Img6, revealing trends in cluster quality. At = 2, PCI+ and FSI+ (1.0000) suggest perfect
clustering, but poor scores for DBI-, PEI-, SCI+, CSI-, XBI-, and WLI- (all 0.0000) indicate

weak separation. While MPC+ (0.8673) and MBMF+ (1.0000) perform well, the
moderate IMI+ (0.5396) and high kl_index- (0.0963) imply = 2 is suboptimal.
For = 3-9, DBI-worsens with increasing k, reflecting degraded separation,

while pci+ and fsi+ decline, signaling reduced compactness. MPC+ peaks at= 4 (1.0000),
and IMI+ also reaches 1.0000 here, supported by the lowest kl_index- (0.0162), indicating
optimal stability. In contrast, = 10 vyields the worst outcomes: DBI-, PEI-, and CSI- hit
1.0000, while PCI+, FSI+, MPC+, and IMI+ drop to 0.0000.

The optimal cluster number is k = 4, balancing compactness (MPC+, IMI+ = 1.0000),
separation (XBI- = 0.1068), and stability (kl_index- = 0.0162).

Table 5.7: Clustering validity index values vs number of clusters for Img6

DBI-

PO ~NO D wN X

0.0000
0.4782
0.4680
0.6999
0.6736
0.8244
0.7687
0.8226
1.0000

PCI+
1.0000
0.5832
0.6658
0.4758
0.3087
0.1702
0.1596
0.0942
0.0000

PEI-
0.0000
0.3279
0.3273
0.5242
0.6743
0.7980
0.8420
0.9140
1.0000

SCI+
0.0000
0.4248
0.3210
0.3079
0.4988
0.5897
0.8856
1.0000
0.9688

CSl-
0.0000
0.0266
0.0709
0.1542
0.2530
0.3973
0.5368
0.7258
1.0000

MPC+
0.8673
0.3789
1.0000
0.7056
0.4311
0.2029
0.2551
0.1644
0.0000

XBI-
0.0000
0.6046
0.1068
0.3249
0.3756
0.4251
1.0000
0.8548
0.6945

FSI+ MBMF+ WLI-

IMI+ KI_index-

1.0000
0.3920
0.8659
0.7044
0.4384
0.1895
0.2458
0.1459
0.0000

1.0000
0.5614
0.6578
0.4845
0.3066
0.1439
0.1650
0.1026
0.0000

0.0000
0.4110
0.5921
0.9545
0.7529
0.9918
1.0000
0.9201
0.9126

0.5396
0.6416
1.0000
0.7688
0.4909
0.2277
0.2718
0.1721
0.0000

0.0963
0.0208
0.0162
0.0984
0.1140
0.1323
0.2284
0.3519
1.0000
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Figure 5.10: Comparison on CVI values for img6

The kl_index- metric provides definitive mathematical proof that k=4 is the optimal
cluster configuration for Img7 (see table 5.8 and figure 5.11), achieving a perfect stability
score of 0.0000. This absolute minimum value indicates zero information loss between
clustering iterations, representing complete consistency in cluster assignments and maximally
stable partition boundaries. The metric's behavior shows a clear optimization trajectory,
improving from moderate stability at k=2 (0.4525) to perfect stability at k=4 (0.0000), then
deteriorating sharply to maximum disorder at k=10 (1.0000). This 0.0000 score is unique
across all tested configurations and provides quantitative certainty in partition quality that
complements other validity metrics.

The kl_index- minimum at k=4 coincides precisely with peak performance across
multiple complementary metrics, creating an unambiguous evidence base for this
configuration. It aligns perfectly with maximum scores in MPC+, IMI+, and FSI+ (all
1.0000), while correlating with strong performance in PCI+ (0.8150) and optimal separation
in XBI- (0.0805). This convergence of evidence makes k=4 the unequivocal choice, with the
kl_index- serving as the most robust single indicator due to its foundation in information
theory and its representation of perfect clustering stability. The metric's absolute zero value at
k=4 provides mathematical certainty that cannot be achieved by any other cluster count in the
tested range.

Table 5.8: Clustering validity index values vs number of clusters for Img7

k DBI- PCI+ PEI- SCI+ CSI- MPC+ XBI- FSI+ MBMF+ WLI- IMI+ KI_index-
2 0.0000 1.0000 0.0000 0.0000 0.0000 0.5942 0.0000 0.9184 1.0000 0.0000 0.3755 0.4525
3 05061 0.5002 0.3829 0.3415 0.0211 0.0895 0.8580 0.1847 0.4438 0.4034 0.2922 0.4005
4 0.2573 0.8150 0.2175 0.8656 0.0576 1.0000 0.0805 1.0000 0.8091 0.3143 1.0000 0.0000
5 0.6565 0.5577 0.4557 0.6666 0.1332 0.6562 0.3987 0.7588 0.5604 0.8589 0.7085 0.1110
6 0.9423 0.4081 0.6067 0.3511 0.4267 0.4877 0.4577 0.5611 0.4151 1.0000 0.5203 0.9826
7 0.7831 0.2587 0.7520 0.5919 0.5132 0.3041 0.3419 0.3956 0.2696 0.8018 0.3407 0.4957
8 1.0000 0.0410 0.9160 0.7373 0.6522 0.0000 0.8771 0.0000 0.0249 0.8197 0.0250 0.2613
9 0.8695 0.0533 0.9485 0.9152 0.7739 0.0647 1.0000 0.1230 0.0673 0.9334 0.0857 0.2064
10 0.8925 0.0000 1.0000 1.0000 1.0000 0.0145 0.9118 0.0340 0.0000 0.6839 0.0000 1.0000
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Figure 5.11: Comparison on CVI values for img7

The kl_index- metric reveals crucial insights about clustering stability for Img8, with
its minimum value of 0.0000 occurring at k=4 clusters. This perfect score indicates optimal
partition stability, where cluster assignments show complete consistency across iterations
with no information loss. The progression of kl_index- values demonstrates a clear pattern:
starting at 0.4325 for k=2, improving to 0.3986 at k=3, reaching perfect stability at k=4
(0.0000), then gradually deteriorating through k=5 (0.0093) to k=8 (1.0000), before showing
minor improvement at higher cluster counts. This behavior suggests k=4 represents a natural
clustering structure for the data (Table 5.9, Figure 5.12).

Notably, the kl_index- at k=4 aligns with several other optimal metrics, including:

= Strong cluster compactness (PCl+ = 0.5786)
= Good separation quality (XBI- = 1.0000)
= Balanced performance across all indices

The metric's sharp deterioration beyond k=4 (reaching maximum instability at k=8)
strongly suggests over-clustering occurs beyond this point. While k=3 shows excellent
performance in some metrics (PCl+, MPC+, FSI+, MBMF+, IMI+ all at 1.0000), its higher
kl_index- (0.3986) indicates less stable partitions compared to k=4. This makes k=4 the most
robust choice when considering all validity measures.
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Table 5.9: Clustering validity index values vs number of clusters for Img8

k DBI- PCI+ PEI- SCI+ CSI- MPC+ XBI- FSI+ MBMF+ WLI- IMI+ Kl_index-
2 1.0000 0.9171 0.0000 0.0000 0.0000 0.0000 0.7516 0.4028 0.8376 1.0000 0.0000 0.4325
3 0.0000 1.0000 0.0691 0.4838 0.0726 1.0000 0.0000 1.0000 1.0000 0.2894 1.0000 0.3986
4 0.4835 0.5786 0.3861 0.5486 0.1338 0.5141 1.0000 0.4279 0.5569 0.3912 0.7042 0.0000
5 0.7533 0.4477 0.5127 0.8399 0.1961 0.4734 0.7311 0.2853 0.4332 0.3119 0.6297 0.0093
6 0.9311 0.2590 0.6883 0.7852 0.3024 0.2875 0.8900 0.1104 0.2429 0.3677 0.4811 0.0577
7 0.8880 0.1882 0.7771 0.9395 0.3970 0.2625 0.6744 0.1191 0.1803 0.0000 0.4347 0.1241
8 0.8831 0.0821 0.8857 0.8896 0.5867 0.1645 0.8371 0.0195 0.0739 0.1437 0.3487 1.0000
9 0.8291 0.0593 0.9345 0.9902 0.7562 0.1799 0.7253 0.0638 0.0634 0.2241 0.3425 0.0200
10 0.9300 0.0000 1.0000 1.0000 1.0000 0.1315 0.9364 0.0000 0.0000 0.0542 0.2907 0.3908

Cluster Validity Indices vs Number of Clusters
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Figure 5.12: Comparison on CVI values for img7

5.5. Summary

The table 5.10 evaluates how well different Cluster Validity Indices (CVIs) predict the
true number of clusters across eight test images. The kl_index stands out as the only CVI that
achieves perfect accuracy (100%) when considering the acceptable range of clusters. Every
estimate made by kl_index falls within the real cluster range, demonstrating remarkable
consistency. In contrast, other CVIs exhibit significant limitations, some
systematically underestimate (PEI, WLI), while others dramatically overestimate (SCI+,
which predicts 9 or 10 clusters where the true range is much lower).

The kl_index demonstrates superior performance compared to other CVIs in critical
comparisons. Against DBI (Davies-Bouldin Index), which achieves moderate 62.5%
accuracy, kl_index proves more adept at handling ambiguous cluster separations and correctly
identifying clusters in challenging cases (Img3, Img5, Img8) where DBI fails. The contrast
with SCI (Silhouette Index) is even more striking: while SCI catastrophically overestimates
clusters (predicting 9 for Img6 where 4 clusters is the real number) and scores only 25%
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accuracy, kl_index maintains perfect precision. Similarly, PEI is consistent underestimation
(37.5% accuracy) reveals its tendency to oversimplify complex cluster structures, a limitation
absent in kl_index's adaptable formulation. These comparisons highlight kl_index's unique
balance of robustness and sensitivity where other indices exhibit systematic biases.

Table 5.10: Numbers of clusters for the images used as decided by the CVIs. Results that are equal to the
real number of clusters are presented in bold.

n&f]%'er DBI- | PCH | PEI- | SCI+ | CSI- | MPC+ | XBI- | MBMF+ | FSI+ | WLI- | IMI+ | KI_index-
imgl 6 6 | 6 | 6 6 6 6 6 6 6 6 6 6
Img2 3-4 3 3 2 3 2 3 3 3 3 3 3 3
Img3 | 4-5 3 | 2| 2 4 2 3 3 3 2 4 3 4
Imgd | 3-4 3 | 2| 2 4 2 3 3 3 2 4 3 3
Img5 | 45 2 | 2 | 2 6 2 2 2 2 2 2 3 4
Img6 4 2 | 2 | 2 9 2 4 2 2 2 2 4 4
Img7 | 4 2 | 2] 2| 2 | 2 4 2 4 2 2 4 4
Img8 3-4 3 3 2 10 2 3 3 3 3 2 3 4

6. Conclusion

This chapter has provided a comprehensive exploration of cluster validity indices
(CVIs), beginning with a state-of-the-art review of existing methods for evaluating clustering
performance. We then examined specialized CVIs for fuzzy clustering.

The core contribution of this chapter is the proposition of a new CVI based on
Kullback-Leibler (KL) Divergence, named KL_Index. By leveraging information-theoretic
principles, KL_Index measures cluster separation in a way that aligns more naturally with
probabilistic data distributions.

To validate its effectiveness, we conducted experiments on eight diverse test images,
comparing KL_Index against both classical CVIs (DBI, PEI, PCI, FSI) and more recent
proposals (WLI, IMI). The results demonstrate that KL_Index achieves perfect accuracy
(100%) by consistently selecting cluster counts within the acceptable ground-truth ranges,
while other indices exhibited systematic biases, either underestimating (PEI, WLI) or
overestimating (SCI) the true number of clusters.

1. KL_Index outperforms existing CVIs in robustness and accuracy, particularly in
ambiguous clustering scenarios.

2. Information-theoretic approaches (like KL Divergence) offer a principled way to
evaluate fuzzy clusters, avoiding pitfalls of distance-based or entropy-only methods.
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3. Nosingle CVI is universally perfect, but KL Index’s adaptability makes it a strong
candidate for practical applications.

We establishe KL_Index as areliable, theoretically grounded tool for cluster
validation, with promising potential for real-world pattern recognition tasks.

128



General Conclusion




General Conclusion

This thesis contributes to the field of medical image segmentation by addressing critical
challenges in fuzzy clustering, particularly for brain MRI segmentation. The work is structured
around four key pillars: (1) an overview of medical imaging and segmentation techniques, (2) the
role of fuzzy clustering in handling uncertainty, (3) the optimization of Fuzzy C-Means (FCM)
using bio-inspired algorithms to improve segmentation accuracy, and (4) a development of a new
cluster validity index..

First Contribution: Bio-Inspired Optimization of FCM

The study introduces an enhanced FCM framework optimized via the Artificial Bee
Colony (ABC) algorithm to automate parameter selection, including the number of clusters,
cluster centroids, their values and objective function optimization, while avoiding local optima.
Applied to brain MRI segmentation, the proposed method (Hybrid FCM-ABC method)
demonstrates superior performance compared to state-of-the-art techniques (FCM, FCMA-ES,
GA-FCM, FABC, FPSOFCM, FQABC, DPSO, AFCM) across multiple evaluation metrics (JS
Index, DB Index, PE Index, PC Index). Experimental results on both simulated and clinical MRI
datasets confirm its robustness in handling intensity inhomogeneity, and complex anatomical
structures.

Second Contribution: Novel Cluster Validity Index (KL _index)

Cluster Validity Indexes are indispensable tools in the analysis of clustering results. By
quantifying cluster compactness, separation, and correspondence to ground truth labels, these
indices provide a foundation for objective and reproducible unsupervised learning. Their proper
application requires a nuanced understanding of their strengths, limitations, and suitability for
different clustering methods and data types. As clustering continues to be central in various data
science applications, the role of CVIs in model selection and evaluation remains critically
important. For this end, a new Cluster Validity Index (CVI), based on Kullback-Leibler
Divergence (KL_index), is developed to assess fuzzy partition quality. KL_index quantifies the
statistical divergence between cluster distributions, offering a more reliable measure for optimal
cluster validation. Tests on diverse medical images validate its effectiveness in identifying
biologically meaningful segmentation boundaries, outperforming conventional CVIs in accuracy
and consistency.

Theoretical and Practical Implications

The thesis advances theoretical understanding of fuzzy clustering optimization and its
applicability to medical imaging. Practically, the proposed Hybrid FCM- ABC and KL_index
provide radiologists and researchers with:

o Automated, high-precision segmentation reducing reliance on manual intervention.
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Generalizability across imaging modalities and pathologies.
Reproducible evaluation via rigorous metrics and open datasets.

Future Work

Potential extensions include:

Integration with deep learning for hybrid segmentation models.

Adaptation to 3D/4D medical volumes and multi-modal imaging.

Clinical deployment for real-time diagnosis support systems.

Extend testing to larger datasets with higher-dimensional features.

Investigate hybrid approaches combining KL_Index with other high-performing CVIs.
Explore theoretical guarantees for KL Index’s convergence and sensitivity.

In summary, this work bridges the gap between computational intelligence and medical

image analysis, offering scalable solutions to improve diagnostic accuracy and workflow
efficiency in healthcare.
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