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Summary 

Medical image segmentation is a critical preprocessing step in computer-aided diagnosis, treatment 
planning, and biomedical research. While Fuzzy C-Means (FCM) clustering is a widely adopted 
technique for this task due to its ability to handle inherent ambiguities in medical data, its 
performance is highly sensitive to initial parameters and is prone to convergence to local optima. 
This thesis presents a comprehensive approach to overcoming these limitations through two 
primary contributions. First, we provide an overview of medical imaging and the fundamental 
challenges of segmentation. We then detail traditional clustering-based methods, with a specific 
focus on the FCM algorithm, outlining its strengths and well-documented limitations. To address 
these limitations, we explore bio-inspired optimization metaheuristics as a powerful strategy for 
guiding the clustering process. 
The core contribution of this work is the novel hybridization of the Artificial Bee Colony (ABC) 
algorithm with FCM. The proposed method focuses on the simultaneous optimization of the crucial 
FCM parameters: primarily the number of cluster centers and their values and the optimization of 
the objective function by escaping to the local optima, to achieve a superior and more robust 
segmentation outcome. The effectiveness of this hybrid ABC-FCM approach is rigorously validated 
through experiments on both simulated brain MRI and real clinical MRI brain images. Results 
demonstrate a significant improvement in segmentation accuracy and convergence behavior 
compared to standard FCM and other optimization-enhanced variants. 
The second major contribution is the development of a new cluster validity index (CVI) to 
automatically determine the optimal number of segments. This index is designed to enhance the 
separation metric of the IMI index by incorporating a measure based on Kullback-Leibler (KL) 
divergence, which better captures the statistical distance between fuzzy clusters. Experimental 
results confirm that the proposed KL-based CVI outperforms existing indices in accurately 
identifying the true number of clusters in both synthetic and complex medical imagery. 
This thesis offers significant advancements in AI-driven medical image segmentation by introducing 
an optimized clustering framework and a more robust validation metric, both contributing to higher 
diagnostic reliability. 

Keywords: 

Medical Image Segmentation, Fuzzy C-Means (FCM), Artificial Bee Colony (ABC) Algorithm, 
Metaheuristic Optimization, Magnetic Resonance Imaging (MRI), Cluster Validity Index (CVI), 
Kullback-Leibler Divergence. 
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 ملخص

تعد تقسيمة الصور الطبية خطوة معالجة مسبقة حاسمة في التشخيص بمساعدة الكمبيوتر، وتخطيط العلاج، والبحث 

معتمدة على  هي تقنية (Fuzzy C-Means - FCM) الضبابي التجميعالطبي الحيوي. على الرغم من أن خوارزمية 

نطاق واسع لهذه المهمة بسبب قدرتها على التعامل مع الغموض الكامن في البيانات الطبية، إلا أن أداءها حساس للغاية 

 .ت الأولية وعرضة للتقارب نحو القيم المثلى المحليةلاماللمع

ن. أولاً، نقدم نظرة عامة على تقدم هذه الأطروحة نهجًا شاملاً للتغلب على هذه القيود من خلال مساهمتين رئيسيتي

التصوير الطبي والتحديات الأساسية للتقسيمة. ثم نقوم بتفصيل الطرق التقليدية القائمة على التجميع، مع التركيز بشكل 

 نقاط قوتها وقيودها الموثقة جيداً. لمعالجة هذه القيود، نستكشف على التأكيد ، مع FCMخاص على خوارزمية

metaheuristics حسين المستوحاة من الطبيعةالت (bio-inspired) التجميع قوية لتوجيه عملية كإستراتيجية. 

 Artificial Bee Colony) بين خوارزمية مستعمرة النحل الاصطناعية المساهمة الأساسية لهذا العمل هي التهجين

- ABC) وخوارزمية .FCM  الحاسمة لـ ملات للمعاتركز الطريقة المقترحة على التحسين المتزامن FCM مثل 

وقيمها وتحسين دالة الهدف من خلال الهروب من القيم المثلى المحلية، لتحقيق نتيجة تقسيمة التجمعات عدد مراكز 

تجارب على صور الرنين المغناطيسي  عبر الهجين هذا بدقة ABC-FCM يتم التحقق من فعالية نهج.  متفوقة أكثر

 .يمالحقيقية. تظهر النتائج تحسناً كبيرًا في دقة التقسالمحاكاة والسريرية بللدماغ 

يهدف إلى تحديد العدد الأمثل  (CVI) تتمثل المساهمة الرئيسية الثانية في تطوير مؤشر جديد لصلاحية التجمعات

، من خلال دمج مقياس IMI للتجمعات بشكل تلقائي. وقد تم تصميم هذا المؤشر لتحسين مقياس الفصل الخاص بمؤشر

، الذي يوفرّ تمثيلًا أدق للمسافة الإحصائية بين التجمعات الضبابية. وتؤكد Kullback-Leiblerعتمد على تباعد ي

، يتفوق على المؤشرات الحالية من حيث  Kullback-Leiblerالمقترح، المبني على تباعد النتائج التجريبية أن مؤشر

 .صور التركيبية أو الصور الطبية المعقدةالدقة في تحديد العدد الحقيقي للتجمعات، سواء في ال

تقُدمّ هذه الأطروحة إسهامات بارزة في مجال تقسيم الصور الطبية المدعوم بالذكاء الاصطناعي، من خلال اقتراح 

 .إطار تجميع محسّن، ومقياس تحقق أكثر قوة، مما يساهم في تعزيز موثوقية التشخيص بشكل ملحوظ

 :المفتاحية الكلمات

، التحسين باستخدام  (ABC) ، خوارزمية مستعمرة النحل الاصطناعية Fuzzy C-Means (FCM) الصور الطبية، خوارزميةتقسيم 

 Kullback-.Leibler، تباعد  (CVI) ، مؤشر صلاحية التجمعات (MRI/IRM) استراتيجيات، التصوير بالرنين المغناطيسي-الميتا
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Résumé 
La segmentation d'images médicales constitue une étape prétraitement cruciale pour le diagnostic 
assisté par ordinateur, la planification des traitements et la recherche biomédicale. Bien que la 
méthode de clustering Fuzzy C-Means (FCM) soit largement utilisée pour cette tâche grâce à sa 
capacité à gérer les ambiguïtés inhérentes aux données médicales, sa performance est très sensible 
aux paramètres initiaux et tend à converger vers des optimums locaux. 
Cette thèse présente une approche complète pour surmonter ces limitations à travers deux 
contributions principales. Premièrement, nous fournissons une vue d'ensemble de l'imagerie 
médicale et des défis fondamentaux de la segmentation. Nous détaillons ensuite les méthodes 
traditionnelles basées sur le clustering, en nous concentrant particulièrement sur l'algorithme FCM, 
en soulignant ses forces et ses limitations bien documentées. Pour répondre à ces limitations, nous 
explorons les métaheuristiques d'optimisation bio-inspirées comme stratégie puissante pour guider 
le processus de clustering. 
La contribution principale de ce travail est l'hybridation novatrice de l'algorithme Artificial Bee 
Colony (ABC) avec le FCM. La méthode proposée se concentre sur l'optimisation simultanée des 
paramètres cruciaux du FCM : principalement le nombre de centres de clusters et leurs valeurs, et 
l'optimisation de la fonction objective en échappant aux optimums locaux, pour obtenir un résultat 
de segmentation supérieur et plus robuste. L'efficacité de cette approche hybride ABC-FCM est 
rigoureusement validée par des expérimentations sur des images cérébrales IRM simulées et 
réelles. Les résultats démontrent une amélioration significative de la précision de segmentation et 
du comportement de convergence comparé au FCM standard et à d'autres variants optimisés. 
La deuxième contribution majeure est le développement d'un nouvel indice de validité de clusters 
(CVI) pour déterminer automatiquement le nombre optimal de segments. Cet indice est conçu pour 
améliorer la métrique de séparation de l'indice IMI en incorporant une mesure basée sur la 
divergence de Kullback-Leibler (KL), qui capture mieux la distance statistique entre les clusters 
flous. Les résultats expérimentaux confirment que le CVI proposé basé sur KL surpasse les indices 
existants en identifiant avec précision le nombre réel de clusters dans des images tant synthétiques 
que médicales complexes. 
Cette thèse offre des avancées significatives dans la segmentation d'images médicales pilotée par 
l'IA en introduisant un framework de clustering optimisé et une métrique de validation plus 
robuste, contribuant tous deux à une fiabilité diagnostique accrue. 

Mots-clés : 
Segmentation d'Images Médicales, Fuzzy C-Means (FCM), Algorithme Artificial Bee Colony (ABC), 
Optimisation par Métaheuristiques, Imagerie par Résonance Magnétique (IRM), Indice de Validité 
de Clusters (CVI), Divergence de Kullback-Leibler. 

 

 

 

 



Contents 

 
Dedicat            iii 

Acknowledgments           iv  

Abstract             v  

 vi            ملخص

 Resumé              vii 

List of Figures            viii  

List of Tables            x 

 
 

General Introduction…………………………………………………………….2 

 

 Chapter 1: Overview of Medical imaging  

1. Introduction .............................................................................................................7 

2. Types of Medical Imaging .......................................................................................8 

2.1. X-ray and Computed Tomography (CT) ...........................................................8 

2.1.1. Clinical Applications of X-ray ...................................................................8 

2.1.2. Clinical Applications of CT .......................................................................9 

2.1.3. Advanced CT techniques ......................................................................... 10 

2.1.4. Advantages and limitations of X-rays and CT imaging techniques ........... 10 

2.2 Magnetic Resonance Imaging (MRI) ............................................................... 11 

2.2.1. Clinical Applications of MRI ................................................................... 11 

2.2.2. Advanced MRI Techniques ...................................................................... 13 

2.2.3. Advantages and limitations of MRI .......................................................... 13 

2.3. Ultrasound Imaging ........................................................................................ 13 

2.3.1. Clinical Applications of Ultrasound ......................................................... 14 



2.3.2 Advanced Ultrasound Techniques ............................................................. 16 

2.3.3. Advantages and limitations of Ultrasound ................................................ 16 

2.4. Nuclear Medicine ........................................................................................... 16 

2.4.1. Single Photon Emission Computed Tomography (SPECT) ...................... 17 

2.4.2. Positron Emission Tomagraphy (PET) ..................................................... 17 

2.4.3. Comparison between SEPCT and PET ..................................................... 18 

2.4.4. Advantages and Limitations of Nuclear Medicine ........................................ 20 

3. Conclusion ............................................................................................................ 20 

 

Chapter 2: Medical Image Segmentation 

1. Introduction ........................................................................................................... 23 

2. Definition of image segmentation .......................................................................... 23 

2. Thresholding Methods ........................................................................................... 24 

2.1. Global Thresholding Methods......................................................................... 25 

2.1.1. Otsu technique ......................................................................................... 25 

2.1.2. Iterative Thresholding .............................................................................. 25 

2.1.3. Minimum Error Thresholding .................................................................. 26 

2.1.4. The Entropy Method ................................................................................ 26 

2.2. Local Thresholding Methods .......................................................................... 26 

2.2.1. Niblack’s Method .................................................................................... 26 

2.2.2. Sauvola’s Method .................................................................................... 26 

2.2.3. Bernsen’s Method .................................................................................... 27 

3. Edge-Based Segmentation ..................................................................................... 27 

3.1. First-order differential operators ..................................................................... 28 

3.2. Second-order differential operators ................................................................. 29 

3.3. Operator’s characteristics ............................................................................... 29 

4. Region Based Segmentation .................................................................................. 29 

4.1. Region Growing ............................................................................................. 30 

4.2. Split-and-Merge ............................................................................................. 31 



4.3. Watershed Lines ............................................................................................. 31 

5. Classification Methods for Segmentation .............................................................. 32 

5.1. Supervised Classification Methods for Segmentation ...................................... 32 

5.1.1. K-Nearest Neighbors (K-NN) .................................................................. 32 

5.1.2. Random Forest......................................................................................... 33 

5.1.3. Support Vector Machines (SVM) ............................................................. 33 

5.1.4. Convolutional neural network (CNN) ...................................................... 34 

    5.2. Clustering methods………………………………………………………….…35 

    5.2.1. Hierarchical clustering ............................................................................. 36 

    5.2.2. Partitional Clustering ............................................................................... 37 

6. Conclusion ............................................................................................................ 41 

 

Chapter 3: FCM Optimisation based on Bio-Inspired Methods 

1. Introduction ........................................................................................................... 43 

2. Fuzzy C-Means (FCM) for image segmentation .................................................... 43 

2.1. Advantages of FCM ....................................................................................... 46 

2.2. Demerits of Fuzzy C-Means (FCM) Clustering............................................... 47 

3. FCM variants ........................................................................................................ 47 

3.1. Spatial FCM (SFCM) ..................................................................................... 47 

3.2. Kernel-based FCM (KFCM) ........................................................................... 49 

3.3. Spatial Kernel-based FCM (SKFCM) ............................................................. 50 

3.4. Possibilistic Fuzzy C-Means (PFCM) ............................................................. 51 

3.5. Improved FCM with Non-Local Information (FCM-NL) ................................ 53 

3.6. Weighted FCM (WFCM) ................................................................................ 55 

3.7. Entropy-Based FCM (EFCM) ......................................................................... 57 

4. Discussion ............................................................................................................. 58 

5. Optimization methods ........................................................................................... 58 

5.1. Categories of optimization .............................................................................. 59 

5.2. Heuristic optimization methods ...................................................................... 59 



5.2.1. Bio-Inspired methods ............................................................................... 59 

5.2.2. Physics/Chemistry-Based Methods .......................................................... 60 

5.2.3. Local and Guided Search Methods ........................................................... 60 

5.2.4. Hyper-Heuristics Methods ....................................................................... 61 

6. FCM Optimization based on Bio-Inspired Methods ............................................... 61 

6.1. Genetic Algorithm .......................................................................................... 62 

6.2. Particle Swarm Optimization .......................................................................... 63 

6.3. Ant Colony Optimization ................................................................................ 64 

6.4. Bat Algorithm................................................................................................. 65 

6.5. Artificial Bee Colony (ABC) Algorithm ......................................................... 66 

6.6. Firefly Algorithm ........................................................................................... 67 

6.7. Gray Wolf Optimizer ...................................................................................... 68 

7. Summary ............................................................................................................... 69 

8. Conclusion ............................................................................................................ 71 

 

Chapter 4: Hybrid FCM-ABC Method for Medical Image Segmentation 

1. Introduction ........................................................................................................... 73 

2. Biological Bee Colony .......................................................................................... 74 

2.1. The Queen Bee: Heart of the Hive's Reproduction .......................................... 74 

2.2. Drones: The Transient Males of the Hive ........................................................ 74 

2. 3. Worker Bees: The Industrious Backbone of the Hive ..................................... 74 

2. 4. Biological Roles of Workers Bees in Colony Foraging .................................. 75 

3. Artificial Bee Colony (ABC) Algorithm ................................................................ 75 

3.1. Description of the algorithm ........................................................................... 75 

3.2. ABC Algorithm operation............................................................................... 77 

4. Hybrid FCM-ABC Method for Medical Image Segmentation ................................ 79 

4.1. Data Structure................................................................................................. 81 

4.2. Objective Function ......................................................................................... 82 

4.3. General steps of the Hybrid FCM-ABC Method ............................................. 83 



4.4. Hybrid FCM-ABC Algorithm ......................................................................... 84 

5. Experimental Results ............................................................................................. 87 

5.1. Experimental setup ......................................................................................... 87 

5.2. Metrics used for segmentation evaluation ....................................................... 87 

5.2.1. Jaccard Similarity Index........................................................................... 88 

5.2.2. Partition Coefficient Index ....................................................................... 88 

5.2.3. Partition Entropy Index ............................................................................ 89 

5.2.4. Davies-Bouldin Index .............................................................................. 89 

5.3. Experimental results on Simulated Brain MR Images ..................................... 90 

5.3.1. Clusters number detecting ........................................................................ 90 

5.3.2. Segmentation results ................................................................................ 93 

5.4. Experimental results on clinical brain MR images .......................................... 99 

6. Discussion ........................................................................................................... 103 

7. Conclusion .......................................................................................................... 104 

 

Chapter 5: Fuzzy Validity Index based on Kullback-Leibler Divergence 

1. Introduction ......................................................................................................... 107 

2. Categories of Cluster Validity Indices ................................................................. 107 

2.1. Internal Validity Indices ............................................................................... 108 

2.2. External Validity Indices .............................................................................. 108 

3. Cluster validity index for fuzzy clustering algorithms .......................................... 110 

4. The Proposed CVI ............................................................................................... 113 

4.1. Kullback-Leibler Divergence ........................................................................ 113 

4.2. Structure of KL_index .................................................................................. 115 

4.2.1. Separation measure ................................................................................ 115 

4.2.2. Compactness measure ............................................................................ 116 

5. Experiments ........................................................................................................ 117 

5.1. Setup ............................................................................................................ 117 

5.2. Results of synthetic image ............................................................................ 118 



5.3. Results of remote sensing images ................................................................. 119 

5.4. Results of medical images ............................................................................ 123 

5.5. Summary ...................................................................................................... 126 

6. Conclusion .......................................................................................................... 127 

  

General Conclusion…………………………………………………... 130 

 References………………………..……………………………………133 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

List of Figures 

 

Figure 1.1: X-ray (a) and CT (b) images of different parts of the human body ..................8 

Figure 1.2: example of Brain MRI image ....................................................................... 11 

Figure 1.3: Ultrasound image ......................................................................................... 14 

Figure: 1.4: example of SPECT image. .......................................................................... 17 

Figure: 1.5: example of PET image. ............................................................................... 18 

Figure 2.1: Thresholding-based segmentation, (a) original image, (b) segmented image. 24 

Figure 2.2: contour detection by gradient approach ........................................................ 28 

Figure 2.3: Region based segmentation, (a) original image, (b) segmented image. ......... 30 

Figure 2.4: Brain MRI image segmented in three clusters. ............................................. 35 

Figure 2.5: Dendogram. ................................................................................................. 36 

Figure 4.1: Kind of bees. (image from https://www.britannica.com/animal/honeybee, 

06/20/2025) ................................................................................................................... 74 

Figure 4.2: Flowchart of ABC algorithm. ....................................................................... 76 

Figure 4.3: Decomposition of search space .................................................................... 80 

Figure 4.4: Searching behavior (dark zone around the hive contains most promising bees)80 

Figure 4.5: Data structure of artificial bee. ..................................................................... 81 

Figure 4.6: Four examples of artificial bees with different configuration ........................ 81 

Figure 4.7: Flowchart of Hybrid ABC-FCM method. ..................................................... 85 

Figure 4.8: Brain MRI images in X87, X94 and X105 planes with their ground truth ..... 91 

Figure 4.9: Evolution of clusters number across iterations for T1-weighted brain MRI image 

in X94 plane. ................................................................................................................. 92 

Figure 4.10: Evolution of clusters number across iterations for T1-weighted brain MRI image 

in X105 plane. ............................................................................................................... 92 

Figure 4.11: Segmentation of MRI T1 image in X87 plane ............................................ 95 

Figure 4.12: Segmentation of MRI T1 image in X94 plane ............................................ 95 

Figure 4.13: Segmentation of MRI T1 image in X105 plane .......................................... 96 

Figure 4.14: Segmentation results of the four methods on the Simulated MRI Image. .... 99 



ix 
 

Figure 4.15 Segmentation results on the clinical brain MR Images with FCM, FCMA-ES and 

Hybrid FCM-ABC method. ......................................................................................... 101 

 Figure 5.1: Principle of KLDCVI separation measurement ......................................... 116 

Figure 5.2. Synthetic image ......................................................................................... 118 

Figure 5.3: Remote sensing images .............................................................................. 118 

Figure 5.4: Medical images .......................................................................................... 118 

Figure 5.5:   Comparison on CVI values for img1 ........................................................ 119 

Figure 5.6: Comparison on CVI values for img2 .......................................................... 120 

Figure 5.7:  Comparison on CVI values for img3 ......................................................... 121 

Figure 5.8:  Comparison on CVI values for img4 ......................................................... 122 

Figure 5.9:  Comparison on CVI values for img5 ......................................................... 123 

Figure 5.10: Comparison on CVI values for img6 ........................................................ 124 

Figure 5.11: Comparison on CVI values for img7 ........................................................ 125 

Figure 5.12: Comparison on CVI values for img8 ........................................................ 126 

 

 



x 
 

List of Tables 

 

Table 3.1: ABC vs other bio-inspired methods ................................................................. 70 

Table 4.1: Jaccard similarity scores for White Matter (WM), Gray Matter (GM) and 

Cerebrospinal Fluid (CSF) segmentation across FCM and Hybrid FCM-ABC method ... 96 

Table 4.2: Performance results with DBI, PCI and PEI metrics on the clinical brain MR 

Images ................................................................................................................................ 99 

Table 4.3: Jaccard similarity scores for White Matter (WM) and Gray Matter (GM) 

segmentation across different fuzzy clustering methods ................................................. 102 

Table 4.4: PCI and PEI scores for various fuzzy clustering algorithms .......................... 103 

Table 5.1: Difference between internal and external indices ........................................... 109 

Table 5.2: Clustering validity index values vs number of clusters for img1 ................... 119 

Table 5.3: Clustering validity index values vs number of clusters for img2 ................... 120 

Table 5.4: Clustering validity index values vs number of clusters for Img3 ................... 121 

Table 5.5: Clustering validity index values vs number of clusters for Img4 ................... 121 

Table 5.6: Clustering validity index values vs number of clusters for Img5 ................... 122 

Table 5.7: Clustering validity index values vs number of clusters for Img6 ................... 123 

Table 5.8: Clustering validity index values vs number of clusters for Img7 ................... 124 

Table 5.9: Clustering validity index values vs number of clusters for Img8 ................... 126 

Table 5.10: Numbers of clusters for the images used as decided by the CVIs.. .............. 127 



 

 

 

 

 

 

General Introduction 
 



 

 

2 

 

General Introduction 

Medical image segmentation serves as a cornerstone of modern healthcare, enabling 

precise delineation of anatomical structures and pathological regions across diverse imaging 

modalities, from Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) to 

Positron Emission Tomography (PET) and ultrasound. With the exponential growth of these 

medical imaging modalities, the demand for accurate, efficient, and automated segmentation 

techniques has intensified. However, medical images present inherent challenges, including (1) 

noise and artifacts due to sensor limitation, patient emotion and modality-specific distortions like 

MRI bias fields degrade image quality, (2) intensity inhomogeneity: Tissue intensity overlaps ( 

gray/white matter in MRIs) complicate boundary detection, (3) partial volume effects: Voxels 

containing mixed tissues due to limited resolution blur structural boundaries, and (4) anatomical 

variability: Inter-patient diversity and pathological anomalies (tumors, lesions) demand adaptive 

solutions, such factors significantly impact the performance of automated segmentation 

algorithms and highlight the need for advanced AI solutions capable of handling these 

complexities. The limitations of conventional segmentation methods like thresholding, region 

growing, and edge detection become particularly apparent when dealing with such imperfect 

data. These traditional approaches often rely on rigid assumptions that fail to account for the 

uncertainty and variability inherent in medical images, motivating the development of more 

sophisticated techniques. However, traditional methods remain relevant for specific applications 

and as preprocessing steps in modern segmentation pipelines. 

The advent of Artificial Intelligence (AI) has transformed the field by introducing data-

driven paradigms that learn intricate patterns directly from imaging data. Among these, Machine 

Learning Approach (MLA) and Deep Learning Approach (DLA).  

Machine learning, including supervised and unsupervised techniques, has significantly 

advanced medical image segmentation by offering more robust, data-driven approaches 

compared to traditional methods. Supervised methods like support vector machines (SVMs) and 

random forests use labeled datasets to learn complex patterns, improving segmentation accuracy. 

However, their success depends on high-quality annotated data, which is costly and time-

consuming to produce, and they often struggle to generalize across different imaging protocols or 

populations. Unsupervised methods, such as k-means clustering, Gaussian mixture models 

(GMMs), and fuzzy c-means (FCM), group pixels based on similarity without labeled data, 

making them useful for exploratory analysis. However, they lack precision for clinical 

applications due to reliance on low-level features and sensitivity to noise and artifacts. Both 

approaches face challenges like intensity inhomogeneities, noise, class imbalance, and high 

computational costs, which can degrade performance and limit scalability. While machine 

learning remains relevant in specific applications and hybrid pipelines, its challenges highlight 

the need for continued innovation in medical image segmentation. 
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The rise of deep learning, particularly convolutional neural networks (CNNs), 

revolutionized brain MRI segmentation by enabling automatic learning of hierarchical features 

from raw data. Architectures like U-Net, with its contracting and expansive paths connected by 

skip connections, excelled in capturing fine details and achieving state-of-the-art results. Fully 

convolutional networks (FCNs) further advanced the field by enabling end-to-end, pixel-wise 

segmentation without handcrafted features. However, deep learning methods face challenges, 

including the need for large, high-quality annotated datasets, which are costly and time-

consuming to produce. Limited dataset diversity can hinder model performance and 

generalization, even with data augmentation. Additionally, the high computational cost of 

training, especially for volumetric data, poses scalability and accessibility issues, particularly in 

resource-constrained settings. Despite these limitations, deep learning remains a transformative 

approach in medical image segmentation. 

In this thesis, we advocate for the hybridization of the Fuzzy C-Means (FCM) method 

applied to medical image segmentation, positioning it as a compelling alternative to purely 

machine learning (MLA) and deep learning (DLA) approaches. While MLA and DLA methods 

have revolutionized medical image segmentation with their ability to learn complex patterns and 

achieve state-of-the-art results, they come with significant challenges, including the need for 

large annotated datasets, high computational costs, and limited interpretability. In contrast, we 

investigate these advanced AI-driven methodologies for medical image segmentation which 

bridge the gap between classical machine learning and bio-inspired optimization methods. We   

focus on enhancing Fuzzy C-Means (FCM) clustering, a prominent soft segmentation technique 

for handling pixel-level uncertainty, via bio-inspired optimization methods. While FCM is 

particularly well-suited for medical imaging due to its ability to handle the inherent ambiguity 

and uncertainty in tissue boundaries and unlike traditional hard clustering methods, it allows 

pixels to belong to multiple clusters with varying degrees of membership, reflecting the partial 

volume effect often observed in medical image. This flexibility makes FCM highly effective for 

segmenting object of interest. However, traditional FCM presents serious limitations which can 

degrade its performance in complex medical image modalities datasets.  

Firstly, it needs the right number of clusters which is not available in most cases.  

Secondly, it is very sensitive to initialization, deferent cluster centers initialization can 

lead to deferent clustering results.  

Thirdly, due to the principle of the iterative optimization of a cost function, it is strongly 

sensitive to the problems of local minima. These challenges can lead to suboptimal segmentation 

results, particularly in complex MRI datasets with intensity inhomogeneities or overlapping 

tissue distributions. 

Shortcomings that we aim to address. 
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So to address these shortcomings, we propose a novel hybrid framework integrating 

the Artificial Bee Colony (ABC) algorithm which is a swarm intelligence metaheuristic inspired 

by honeybee foraging behavior, to automate the optimization of all FCM parameters like cluster 

centroids initialization and their optimal values, their number and membership 

matrix simultaneously.  

Key innovations include: 

 ABC-driven FCM optimization: ABC’s global search capability mitigates FCM’s conver-

gence to suboptimal local minima, enhancing robustness in complex datasets like brain 

MRIs with lesions or tumors. 

 KL divergence-based cluster validity index: A new evaluation metric leverag-

ing Kullback-Leibler (KL) divergence to quantify segmentation quality by measuring the 

statistical divergence between pixel intensity distributions and cluster prototypes. This 

addresses the bias of traditional indices (like Xie-Beni, Partition Coefficient) toward spe-

cific cluster geometries. 

Expected Contributions 

1. Automated parameter tuning: Elimination of manual intervention via ABC’s adaptive op-

timization, improving reproducibility. 

2. Objective evaluation: The KL Divergence-based validity index provides a statistically 

grounded measure for comparing segmentation outcomes across various modalities. 

Validation 

Experiments on public neuroimaging datasets (Simulated and real brain data sets) will 

demonstrate the framework’s superiority over conventional FCM and other Hybrid methods in 

metrics like Jaccard similarity, Partition Coefficient and Entropy and Davies-Bouldin index 

Thesis Structure   

The thesis is organized into five chapters, each addressing a critical aspect of AI-driven 

medical image segmentation:   

Chapter 1: Overview of Medical Imaging   

This chapter provides a comprehensive review of medical imaging modalities, their 

underlying physics, clinical applications, and the technical challenges they create for automated 

analysis. We examine the characteristics of major imaging techniques including MRI, CT, PET, 

ultrasound, and X-ray, with particular emphasis on their diagnostic and therapeutic roles in 

clinical practice. Each modality has unique advantages - MRI offers superior soft tissue contrast 

without ionizing radiation, CT provides rapid acquisition of high-resolution anatomical 

structures, and PET delivers functional metabolic information. However, they also present 

modality-specific artifacts and limitations that must be addressed. MRI suffers from intensity 
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inhomogeneity and susceptibility artifacts; CT has limited soft tissue contrast and uses ionizing 

radiation, while PET exhibits poor spatial resolution and high noise levels. 

Chapter 2: Medical Image Segmentation   

We review in this chapter fundamental and state-of-the-art segmentation methods, 

including thresholding, region-based, edge-based, and machine learning approaches. Special 

attention is given to clustering-based techniques, highlighting their advantages and limitations in 

medical imaging.   

Chapter 3: FCM Optimization based on Bio-Inspired methods 

This chapter delves into fuzzy clustering theory, focusing on the FCM algorithm and its 

variants (spatial FCM, kernel FCM, ..). We then explore bio-inspired optimization methods such 

as Genetic Algorithms (GA), Particle Swarm Optimization (PSO), and Artificial Bee Colony 

(ABC) and their applications in enhancing clustering performance.   

Chapter 4: Hybrid FCM-ABC Method for Medical Image Segmentation  

Here, we present our primary contribution: an ABC-optimized FCM framework where 

cluster centroids, membership degrees, and number of clusters are simultaneously tuned for 

optimal brain MRI segmentation. Experimental results demonstrate superior performance 

compared to conventional FCM and other hybrid approaches.   

Chapter 5: Fuzzy Validity Index Based on Kullback-Leibler Divergence   

We propose an innovative cluster validity measure leveraging Kullback-Leibler 

divergence to quantify segmentation quality more effectively. The proposed index is rigorously 

evaluated against existing metrics, demonstrating improved robustness in assessing fuzzy 

partitions.   

Research Contributions   

- Optimized FCM via ABC: A fully automated FCM optimization framework that 

eliminates manual parameter tuning and enhances segmentation accuracy.   

- New Validity Index: A mathematically sound fuzzy validity measure based on KL 

divergence for objective evaluation of segmentation results.   

- Clinical Applicability: Validation on real brain MRI datasets, showcasing the method’s 

potential in neuro-imaging applications such as tumor detection and tissue analysis.   
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Conclusion and Future Work   

The thesis concludes by summarizing key findings, discussing clinical implications, and 

outlining future research directions, including the integration of deep learning with fuzzy 

clustering and extensions to multi-modal medical image segmentation.   

By advancing AI-driven segmentation techniques, this work contributes to more reliable 

and automated medical image analysis, ultimately supporting improved diagnostic precision and 

personalized treatment strategies. 
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1. Introduction 

Medical imaging is a cornerstone of modern healthcare, playing an essential role in 

diagnosis, treatment planning, and monitoring of diseases and conditions. It encompasses a 

wide range of techniques that allow healthcare professionals to visualize the internal 

structures of the body, aiding in the detection and understanding of various diseases. These 

images serve as a window into the human body, providing insight that is crucial for accurate 

diagnosis, surgical planning, and ongoing patient care. 

One of the core principles behind medical imaging is its non-invasive nature, which 

allows clinicians to examine patients' internal organs and structures without the need for 

surgery. This non-invasive approach not only minimizes patient discomfort but also reduces 

the risk of complications, making it a preferred choice for diagnostic purposes. 

The medical imaging begins with the discovery of X-rays in 1895 by German 

physicist Wilhelm Conrad Roentgen. This groundbreaking discovery revolutionized the 

medical field, enabling doctors to see inside the human body for the first time. Roentgen's 

work led to the creation of the first X-ray images, which were initially used to examine 

broken bones. Over the decades, the technology progressed, expanding into new fields like 

mammography and fluoroscopy. 

The next major leap in medical imaging came with the advent of Computed 

Tomography (CT) in the early 1970s. Godfrey Hounsfield and Alan Cormack were awarded 

the Nobel Prize in Physiology or Medicine in 1979 for their work in developing this imaging 

technology. CT combined traditional X-ray technology with computers, enabling the creation 

of cross-sectional images or slices of the body, providing far more detailed information than a 

standard X-ray. 

In the 1980s, Magnetic Resonance Imaging (MRI) emerged as a promising imaging 

technique. MRI technology uses strong magnetic fields and radio waves to generate detailed 

images of soft tissues, making it particularly useful for brain, spinal cord, and joint imaging. 

Unlike X-ray and CT, MRI does not rely on radiation, making it a safer option for certain 

patient populations. 

In the years that followed, Nuclear Medicine introduced new possibilities for 

functional imaging. Techniques such as Positron Emission Tomography (PET) and Single 

Photon Emission Computed Tomography (SPECT) revolutionized the way physicians could 

visualize and assess how organs and tissues are functioning, not just their structural 

appearance [Anthony et al., 2013] 

This chapter provides an overview of various medical imaging modalities, such as X-

ray, Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound, and 

Nuclear Medicine, each with its own set of advantages, limitations, and specific clinical 

applications. 
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 2. Types of Medical Imaging 

Medical imaging techniques can be broadly classified into several categories based on 

the technology used, the type of information they provide, and their specific clinical 

applications. Below is an overview of the most widely used modalities 

2.1. X-ray and Computed Tomography (CT) 

X-ray and CT imaging are the most commonly used medical imaging techniques. 

They utilize radiation to produce images of the body's internal structures (cf.fig.1.1).  

 
 

(a) (b) 

Figure 1.1: X-ray (a) and CT (b) images of different parts of the human body  

X-ray imaging is a widely utilized diagnostic tool, particularly effective for visualizing 

bone fractures, joint dislocations, and dental examinations. It is also commonly employed in 

screening for lung infections, such as pneumonia, and in mammography for breast cancer 

detection [Carlton et al., 2013]. On the other hand, CT scans utilize X-ray technology 

combined with advanced computer processing to create highly detailed images of the body's 

internal structures. By stacking multiple cross-sectional X-ray slices, CT scans can generate 

3D images, offering superior visualization of organs, bones, and blood vessels. This makes 

CT scans particularly valuable in complex diagnostic scenarios where detailed imaging is 

critical [Seeram, 2015]. 

2.1.1. Clinical Applications of X-ray 

X-ray imaging plays a critical role in various clinical applications due to its ability to 

provide quick and detailed images of internal structures. It is particularly effective for 

diagnosing fractures, dislocations, and joint abnormalities, making it a cornerstone in 

orthopedics and trauma care. In chest imaging, X-rays are widely used to evaluate conditions 

such as pneumonia, tuberculosis, lung cancer, and heart failure, offering valuable insights into 

lung and heart health. Dental X-rays are another essential application, enabling dentists to 

detect cavities, abscesses, impacted teeth, and bone loss, which are crucial for maintaining 

oral health. Additionally, mammography, a specialized form of X-ray, is a key tool in breast 

cancer screening, helping to identify tumors, calcifications, and other abnormalities that may 
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indicate early stages of cancer. These diverse applications underscore the versatility and 

importance of X-ray imaging in modern medicine. 

2.1.2. Clinical Applications of CT 

CT has a broad range of applications in both diagnosis and treatment planning. Some 

of the major uses include: 

 Trauma and Emergency Medicine: CT imaging is vital in emergency medicine, 

particularly for trauma, enabling rapid assessment of head, neck, spine, chest, 

and abdominal injuries. It diagnoses intracranial hemorrhages, brain swelling, 

skull fractures, internal bleeding, organ ruptures, and spinal fractures with 

precision. 

 Cancer Staging: this technique of medical imaging is a cornerstone in 

oncology, playing a vital role in the detection, staging, and monitoring of 

cancer. It is widely used to detect tumors in various organs, including the 

lungs, liver, pancreas, and colon, providing detailed information about their 

size, location, and characteristics. CT is also instrumental in cancer staging, 

helping to determine the extent of metastasis and assess lymph node 

involvement, which is critical for treatment planning. Additionally, CT scans 

are frequently employed to monitor the effectiveness of cancer treatments, 

such as chemotherapy or radiation therapy, by tracking changes in tumor size 

over time. Its ability to deliver precise, high-resolution images makes CT an 

indispensable tool in the fight against cancer. 

 Cardiac Imaging: in cardiology, it provides detailed visualization of the heart 

and vascular system, aiding in the diagnosis and management of various 

conditions. One of its primary applications is in evaluating coronary artery 

disease, where coronary CT angiography (CTA) offers a non-invasive method 

to image the coronary arteries, detect atherosclerotic plaques, and identify 

narrowing or blockages. Additionally, CT is instrumental in assessing cardiac 

abnormalities such as aortic aneurysms, pulmonary embolism, and congenital 

heart defects.  

 Neurological Imaging: CT imaging is a critical tool for evaluating conditions 

affecting the brain and spinal cord, providing rapid and detailed insights for 

diagnosis and treatment. In cases of stroke, CT scans are essential for 

distinguishing between ischemic strokes, hemorrhages, and brain edema, 

enabling timely and appropriate interventions. For brain tumors, CT helps 

visualize abnormalities such as tumors, cysts, and abscesses, assisting 

clinicians in planning effective treatment strategies. Additionally, CT is 

valuable in diagnosing hydrocephalus by detecting abnormal fluid 

accumulation in the brain's ventricles.  

 Pulmonary Imaging: it is widely utilized for detailed evaluation of the lungs 

and airways, playing a key role in diagnosing critical conditions. CT 

pulmonary angiography (CTPA) is the gold standard for detecting pulmonary 
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embolism (PE), a life-threatening blockage in the lung's arteries. It is also 

essential for assessing chronic lung diseases, such as chronic obstructive 

pulmonary disease (COPD) and interstitial lung disease, providing insights into 

disease progression and management. Additionally, CT is crucial for the early 

detection and staging of lung cancer, enabling timely intervention and 

treatment planning.  

 Musculoskeletal Imaging: CT imaging is indispensable for evaluating complex 

bone fractures and joint-related conditions, offering detailed and precise 

visualization that aids in accurate diagnosis and treatment planning. It is 

particularly valuable for assessing intricate fractures in areas such as the spine, 

pelvis, and long bones, where traditional imaging methods may fall short. 

Additionally, CT is highly effective in diagnosing joint abnormalities, 

including arthritis, bone infections, and inflammatory conditions like 

rheumatoid arthritis.  

2.1.3. Advanced CT techniques 

Several advanced CT techniques have been developed to enhance image quality, 

minimize radiation exposure, and improve diagnostic accuracy.  

1- Dual-Energy CT utilizes two distinct X-ray energy levels to capture images, 

enabling better tissue differentiation. This technique is particularly useful for 

detecting tumors, urinary stones, and vascular conditions, while also reducing 

the need for contrast material.  

2- Iterative Reconstruction (IR) is a mathematical approach that lowers radiation 

doses without compromising image quality. By reducing image noise, IR 

enhances diagnostic precision, making it especially beneficial for pediatric 

imaging and high-risk patients. 

3- Cardiac CT is a specialized application that provides detailed visualization of 

the heart and coronary vessels. It is widely used to evaluate coronary artery 

disease, identify coronary artery anomalies, and assist in pre-operative 

planning for heart surgery. These advancements have significantly expanded 

the capabilities of CT imaging, making it safer and more effective for a wide 

range of clinical applications. 

2.1.4. Advantages and limitations of X-rays and CT imaging techniques 

Both X-ray imaging and CT scans come with distinct advantages and limitations. X-

rays are known for their speed, cost-effectiveness, and widespread availability, making them 

well diagnostic tool in many medical settings. However, they expose patients to ionizing 

radiation, which carries potential health risks, and are less effective at imaging soft tissues 

compared to modalities like MRI or ultrasound. CT scans, while providing more detailed and 

comprehensive images, also involve higher doses of ionizing radiation. Although the radiation 

dose is generally considered safe for most patients, repeated exposure over time can increase 

the risk of radiation-induced conditions.  
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Therefore, the use of both imaging techniques requires careful consideration, ensuring 

that the diagnostic benefits outweigh the potential risks, especially for patients who may need 

frequent imaging: 

  - Radiation exposure: While CT is highly effective, it involves a significantly higher 

dose of radiation compared to conventional X-rays, which raises concerns about the 

cumulative effects of repeated scans. 

  - Cost: CT scans are more expensive compared to traditional X-ray imaging. 

  - Limited soft tissue contrast: Although CT is better at imaging soft tissues than 

traditional X-ray, MRI is often preferred for certain soft tissue evaluation ( brain, spinal cord, 

and muscles). 

2.2 Magnetic Resonance Imaging (MRI) 

MRI utilizes strong magnetic fields and radiofrequency waves to produce images. The 

human body is largely made up of water, and water molecules consist of hydrogen atoms, 

which are highly responsive to magnetic fields. When placed in a magnetic field, hydrogen 

atoms align in a certain direction. Radiofrequency pulses are then used to temporarily disturb 

this alignment. As the hydrogen atoms return to their original state, they emit signals, which 

are detected and used to create an image [Viallon et al., 2015]. 

MRI generates highly detailed images of the body's internal structures, especially soft 

tissues such as the brain, spinal cord, muscles, and organs. It is particularly valuable for 

neurological, orthopedic, and cardiovascular imaging [Arnold et al., 2023] (cf.fig.1.2). 

 

 

Figure 1.2: example of Brain MRI image   

2.2.1. Clinical Applications of MRI 

MRI is versatile and plays a crucial role in diagnosing a wide variety of conditions due 

to its ability to generate high-resolution images of soft tissues. Some key applications of MRI 

include: 
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 Neurological Imaging: MRI is widely regarded as the gold standard for imaging the 

brain and spinal cord due to its superior soft tissue contrast and detailed visualization 

capabilities. For the brain, MRI is highly effective in detecting a range of conditions, 

including brain tumors, stroke, multiple sclerosis, epilepsy, and neurodegenerative 

diseases such as Alzheimer’s disease. Its ability to provide high-resolution images of 

brain structures makes it indispensable for accurate diagnosis and monitoring. Similarly, 

MRI excels in evaluating spinal cord conditions, such as spinal cord injuries, herniated 

discs, and spinal stenosis. It offers precise imaging that is critical for treatment planning 

and surgical interventions. Overall, MRI’s advanced imaging capabilities make it a vital 

tool in neurology and neurosurgery. 

 Musculoskeletal Imaging: MRI is highly effective for soft tissue imaging, making it an 

invaluable tool for assessing muscles, ligaments, tendons, and cartilage. It is widely 

used to diagnose sports-related injuries, such as ligament tears, muscle strains, and joint 

abnormalities, offering detailed insights that guide treatment and rehabilitation. 

Additionally, MRI plays a key role in evaluating osteoarthritis by visualizing cartilage 

wear and changes in bone structure. This helps clinicians understand the progression of 

the disease and develop appropriate management strategies. With its exceptional ability 

to provide high-resolution images of soft tissues and joints, MRI is a cornerstone in 

orthopedics and musculoskeletal imaging. 

 Cardiac Imaging: It is commonly used to assess cardiac function, diagnose myocardial 

infarction (heart attack), and evaluate heart valve diseases, offering precise information 

that aids in treatment planning. Additionally, Magnetic Resonance Angiography (MRA) 

is a specialized MRI technique used to visualize blood vessels non-invasively, without 

the need for ionizing radiation or invasive procedures. MRA is particularly useful for 

detecting vascular abnormalities, such as aneurysms, blockages, or malformations, 

making it a valuable tool in cardiovascular imaging. Together, these applications 

highlight MRI’s versatility and importance in diagnosing and managing heart and 

vascular conditions. 

 Oncology: MRI is a critical imaging modality in oncology, particularly for detecting 

and staging soft tissue cancers such as those in the liver, prostate, and breast. Its 

superior soft tissue contrast allows for the identification of tumors that may not be easily 

visible on other imaging techniques, making it an invaluable tool for early cancer 

detection. It plays a key role in tumor staging by providing detailed information about 

the size, location, and extent of tumor involvement in surrounding tissues. This 

information is essential for developing effective treatment plans and monitoring disease 

progression.  

 Abdominal and Pelvic Imaging: MRI is a highly effective imaging modality for 

evaluating abdominal and pelvic organs, providing exceptional detail for diagnosing a 

wide range of conditions. In the abdomen, MRI is particularly useful for imaging the 

liver, kidneys, pancreas, and spleen, making it invaluable for detecting conditions such 

as cirrhosis, tumors, and inflammatory diseases. In the pelvis, MRI is widely used to 

assess the uterus, ovaries, and prostate, offering detailed visualization that aids in the 
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detection of cancers, structural abnormalities, and other pathologies [Jin 2021]. Its 

ability to produce high-resolution, multi-planar images without ionizing radiation makes 

MRI a preferred choice for diagnosing and managing diseases affecting these critical 

organs. 

2.2.2. Advanced MRI Techniques 

Over the years, several advanced MRI techniques have been developed to improve 

image quality, reduce scan times, and enhance diagnostic capabilities. 

 Functional MRI (fMRI): measures brain activity by detecting changes in blood flow. It 

is commonly used in neuroscience research and pre-surgical mapping of brain function. 

fMRI can help identify regions of the brain responsible for tasks like movement, speech, 

and sensory perception. 

 

 Diffusion-Weighted Imaging (DWI): is an MRI technique that measures the movement 

of water molecules in tissues. It is particularly useful for detecting acute ischemic 

stroke, as ischemic tissue shows restricted water movement. 

 

 Magnetic Resonance Spectroscopy (MRS): provides information about the chemical 

composition of tissues, allowing for the detection of metabolic changes in diseases like 

cancer or neurodegenerative disorders. 

2.2.3. Advantages and limitations of MRI 

MRI offers significant advantages as a non-invasive diagnostic tool that does not rely 

on ionizing radiation, making it a safer option for patients who require frequent imaging. It 

excels in producing high-resolution images, particularly of soft tissues, which makes it 

invaluable for diagnosing conditions affecting the brain, spinal cord, muscles, and joints. This 

level of detail is often unmatched by other imaging modalities, allowing for precise detection 

and evaluation of abnormalities. 

However, MRI also has notable limitations. The procedure is generally more 

expensive and time-consuming compared to other imaging techniques, which can limit its 

accessibility and practicality in urgent situations. Additionally, MRI is not suitable for 

patients with certain implants, such as pacemakers or metal devices, due to the strong 

magnetic fields involved. These constraints highlight the importance of carefully considering 

patient-specific factors when choosing MRI as a diagnostic tool. 

2.3. Ultrasound Imaging 

Ultrasound imaging, also known as sonography, is a non-invasive medical imaging 

technique that uses high-frequency sound waves to create real-time images of the inside of the 

body. Unlike other imaging methods, ultrasound does not involve the use of ionizing 

radiation, making it a safe and widely used modality for diagnostic purposes, especially in 

obstetrics, cardiology, and musculoskeletal imaging. 
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Ultrasound imaging works based on the principle of sound wave reflection [Sehmbi & 

Perlas, 2022]. High-frequency sound waves (usually above 20 kHz) are emitted from a 

transducer and travel through the body. These sound waves encounter tissues of different 

densities, and part of the wave is reflected back to the transducer. The time it takes for the 

sound waves to return and the intensity of the reflected waves are used to generate an image 

(cf.fig.1.3). 

 

 

Figure 1.3: Ultrasound image   

 

2.3.1. Clinical Applications of Ultrasound 

Ultrasound is used across a wide variety of medical specialties, with particular 

advantages in imaging soft tissues and organs, monitoring pregnancies, and guiding certain 

medical procedures. 

 Obstetrics and Gynecology: Ultrasound is a vital tool in women's health, widely used 

in obstetrics to monitor fetal development, assess growth, heartbeat, and placental 

health. It also detects abnormalities like ectopic pregnancies, multiples, and birth 

defects. Beyond pregnancy, ultrasound aids in fertility and gynecological care by 

evaluating the ovaries, uterus, and fallopian tubes, helping diagnose conditions like 

fibroids and endometriosis. Its non-invasive nature and real-time imaging make it 

indispensable in modern medicine. 

 Cardiovascular Imaging: Echocardiography is a specialized ultrasound technique that 

evaluates the heart's structure and function, providing detailed images of its chambers, 

valves, and blood flow. It is essential for diagnosing conditions like heart failure, 

valvular heart disease, cardiomyopathies, and congenital heart defects, offering critical 

insights into cardiac health through a non-invasive approach. Complementing this, 

Doppler ultrasound assesses blood flow within the body's vessels by measuring its 

speed and direction, helping identify abnormalities such as blockages, stenosis, 

aneurysms, and venous thrombosis. Particularly valuable for diagnosing peripheral 

artery disease and deep vein thrombosis, Doppler ultrasound is a cornerstone in 

managing circulatory disorders. Together, echocardiography and Doppler ultrasound 
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significantly enhance the ability to diagnose and treat cardiovascular and vascular 

conditions effectively, making them indispensable tools in modern medicine. 

 Musculoskeletal Imaging: this technique is a highly effective tool for evaluating joints 

and soft tissues, providing detailed images of tendons, ligaments, muscles, and bursae. 

It is commonly used to diagnose conditions such as tendonitis, ligament tears, muscle 

strains, and arthritis. By offering real-time, high-resolution imaging, ultrasound allows 

healthcare providers to accurately assess the extent of injuries or inflammation, 

facilitating targeted treatment plans. In addition to diagnostics, ultrasound plays a 

crucial role in guiding minimally invasive procedures. It is frequently used to assist 

with joint injections, ensuring precise delivery of medications such as corticosteroids 

for conditions like arthritis. Ultrasound guidance is also invaluable for biopsy 

procedures and the aspiration of fluid from cysts or joints, whether for diagnostic 

testing or therapeutic relief. This combination of diagnostic accuracy and procedural 

precision makes ultrasound an essential tool in musculoskeletal and interventional 

medicine. 

 Abdominal and Pelvic Imaging: it is widely used for evaluating abdominal organs, 

including the liver, gallbladder, kidneys, spleen, and pancreas. It is particularly 

effective in detecting conditions such as gallstones, liver disease, renal abnormalities, 

and tumors, providing critical diagnostic information without the need for invasive 

procedures. Its ability to deliver real-time, high-resolution images makes it a first-line 

tool for assessing abdominal health. In pelvic imaging, ultrasound plays an equally 

important role for both men and women. It is used to visualize the bladder, prostate, 

and reproductive organs, aiding in the diagnosis of conditions like benign prostatic 

hyperplasia (BPH) in men and ovarian cysts or fibroids in women. This non-invasive 

technique offers valuable insights into pelvic health, enabling accurate diagnosis and 

effective management of a wide range of conditions. Ultrasound's adaptability and 

safety make it an essential tool in both abdominal and pelvic diagnostics. 

 Thyroid Imaging: Ultrasound is commonly used to evaluate the thyroid gland for 

nodules, cysts, or cancer. It helps determine the size, texture, and blood flow 

characteristics of thyroid abnormalities, often guiding further biopsy or treatment 

decisions. 

 Guiding Procedures: it is also an invaluable tool for guiding minimally invasive 

procedures, offering real-time visualization to ensure accuracy and safety. It is 

frequently used to direct needle biopsies, fluid aspirations, and injections, particularly 

in deep or hard-to-reach areas. This precision reduces the risk of complications and 

improves diagnostic and therapeutic outcomes. Additionally, ultrasound plays a 

critical role in guiding the drainage of abscesses or cysts, allowing healthcare 

providers to safely remove fluid while avoiding damage to surrounding tissues. Its 

ability to provide clear, real-time imaging makes ultrasound an essential asset in 

interventional medicine, enhancing the effectiveness of a wide range of procedures. 
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2.3.2 Advanced Ultrasound Techniques 

Several advanced ultrasound techniques have been developed to enhance diagnostic 

capabilities: 

 Doppler Ultrasound: is used to measure blood flow within blood vessels. It is often 

used to detect vascular conditions such as deep vein thrombosis (DVT), venous 

insufficiency, vascular malformations, and atherosclerosis. It can also evaluate the 

flow of blood through the heart, detecting conditions such as valvular insufficiency or 

stenosis. 

  3D and 4D Ultrasound: 3D Ultrasound technique captures a series of 2D images and 

reconstructs them into 3D volumes. It is commonly used in obstetrics to generate more 

detailed images of the fetus. While 4D Ultrasound allows for real-time visualization of 

fetal movements in the womb. 

 Elastography: is an advanced ultrasound technique that measures the stiffness of 

tissues. It is commonly used to assess liver stiffness as an indicator of fibrosis or 

cirrhosis and can be applied to other tissues to detect abnormalities such as tumors. 

2.3.3. Advantages and limitations of Ultrasound 

Ultrasound imaging offers several advantages as a diagnostic tool, including being 

non-invasive, safe, and free from ionizing radiation, making it a preferred option for various 

patient populations, including pregnant women. Its ability to provide real-time imaging allows 

for dynamic assessment of moving structures, such as the heart or blood flow, which is 

particularly useful in procedures like echocardiograms or guiding biopsies. This immediacy 

and safety profile make ultrasound a versatile and widely used imaging modality. 

However, ultrasound has certain limitations. While it excels in visualizing soft tissues, 

it struggles to image bones and air-filled organs, such as the lungs. The quality of ultrasound 

images can vary significantly depending on the operator’s skill and experience, making it 

operator-dependent. It is also less effective for imaging deeper tissues, particularly in obese 

patients or those with a larger body habitus. Furthermore, the presence of gas or air, such as in 

the intestines, can interfere with sound wave transmission, limiting its effectiveness in certain 

areas. Despite these limitations, ultrasound remains a versatile and invaluable tool in modern 

medicine. 

2.4. Nuclear Medicine 

Nuclear Medicine is a branch of medical imaging that uses radioactive substances 

(radiopharmaceuticals) to diagnose and treat diseases. Unlike traditional imaging techniques 

that visualize structures, nuclear medicine primarily provides functional and metabolic 

information about organs and tissues. By detecting the radiation emitted from 

radiopharmaceuticals, nuclear medicine helps assess organ function, detect disease, and guide 

therapy [Iskandrian & Hage, 2024]. 

The most common types of nuclear medicine imaging include Single Photon Emission 

Computed Tomography (SPECT) and Positron Emission Tomography (PET). Both 
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techniques offer insight into the biological processes within the body, providing critical 

information for disease diagnosis and treatment planning. 

2.4.1. Single Photon Emission Computed Tomography (SPECT) 

SPECT is a nuclear medicine imaging technique that uses gamma-emitting 

radiopharmaceuticals to create 3D images of the body (cf.fig.1.4). It is a versatile diagnostic 

tool widely utilized across multiple medical fields. In cardiac imaging, SPECT is commonly 

employed to evaluate coronary artery disease, myocardial infarction, and overall heart 

function. It provides detailed visualization of areas with reduced blood flow, helping to 

identify ischemic tissue and guide treatment decisions. In neurology, it is used to diagnose 

conditions such as epilepsy, Alzheimer’s disease, and Parkinson’s disease by assessing brain 

activity and blood flow patterns [Verger et al., 2021]. In oncology, SPECT plays a crucial role 

in detecting tumors and evaluating the spread of cancer by highlighting areas of abnormal 

tissue metabolism and growth. 

 

 

Figure: 1.4: example of SPECT image. 

 

2.4.2. Positron Emission Tomagraphy (PET) 

PET is a sophisticated imaging technique that uses positron-emitting 

radiopharmaceuticals to produce high-resolution, 3D images of metabolic activity in the body 

(cf.fig.1.5). PET scans are particularly effective in detecting cancer, evaluating brain function, 

and assessing cardiac and neurological diseases. 
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Figure: 1.5: example of PET image. 

PET is utilized for diagnosing and evaluating a range of medical conditions. In 

oncology, PET is particularly valuable for detecting cancer, as it excels in identifying 

malignant tumors, staging the disease, monitoring treatment effectiveness, and detecting 

metastasis. Its ability to highlight areas of high metabolic activity allows PET scans to reveal 

tumors that may not be visible through other imaging methods like CT or MRI [Hegi-Johnson 

et al., 2022]. In neurology, PET is employed to study brain function and diagnose 

neurological disorders such as Alzheimer’s disease, Parkinson’s disease, and epilepsy. By 

assessing glucose metabolism in the brain, PET can detect changes associated with 

neurodegenerative conditions. In cardiology, PET imaging is used to evaluate myocardial 

perfusion, identify ischemic heart tissue, and determine the viability of heart muscle following 

a heart attack, making it a critical tool for cardiac assessment. 

2.4.3. Comparison between SEPCT and PET 

SPECT and PET are both nuclear imaging techniques used to diagnose and evaluate 

various medical conditions, but they differ in several key aspects: 

1. Radiotracers and Imaging Mechanism: 

In nuclear medicine, SPECT and PET are both advanced imaging techniques used 

to create detailed 3D images of the body. SPECT utilizes gamma-ray-emitting 

radiotracers, such as technetium-99m, which release single photons. A gamma 

camera rotates around the patient to capture these emissions from various angles, 

reconstructing a three-dimensional image. On the other hand, PET employs 

positron-emitting radiotracers, like fluorodeoxyglucose, which release positrons. 

When these positrons collide with electrons, they annihilate and produce gamma 

rays. These gamma rays are then detected by the PET scanner, generating high-

resolution 3D images that are particularly useful for assessing metabolic activity 

and detecting diseases such as cancer. While both techniques rely on radioactive 

tracers and gamma-ray detection, PET generally offers higher resolution and is 
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more sensitive to metabolic changes, whereas SPECT is more widely available and 

cost-effective. 

2. Spatial Resolution: 

SPECT and PET differ in spatial resolution, affecting diagnostic precision. SPECT 

has lower resolution (8-10 mm) due to gamma camera limitations, making it less 

sensitive for small lesions. PET offers higher resolution (4-6 mm) due to advanced 

detection of positron-emitting tracers, enabling detection of smaller abnormalities. 

This makes PET ideal for oncology and early detection, while SPECT remains 

widely accessible. PET's superior resolution often makes it the preferred choice for 

high-precision imaging. 

3. Metabolic and Functional Imaging: 

Based on their functional imaging capabilities, SPECT and PET serve different 

diagnostic roles. SPECT measures blood flow and tissue perfusion, making it ideal 

for cardiac studies such as myocardial perfusion imaging and brain perfusion scans. 

PET focuses on metabolic activity, like glucose uptake, excelling in oncology ( 

cancer detection) and neurology ( Alzheimer's studies). While SPECT visualizes 

physiological processes, PET tracks metabolic changes, offering critical insights 

into disease activity and progression. 

4. Radiation Exposure: 

SPECT and PET differ in radiation exposure due to their radiotracers. SPECT uses 

tracers like technetium-99m, which have longer half-lives and emit less energy, 

resulting in lower radiation doses and making it relatively safer. PET, however, 

uses positron-emitting tracers like FDG, which have shorter half-lives and higher 

energy emissions, leading to greater radiation exposure. While PET offers superior 

imaging for metabolic studies, its higher radiation dose is a key consideration, 

especially for repeated scans. SPECT generally poses a lower radiation risk 

compared to PET. 

5. Cost and Availability: 

SPECT is more widely available and cost-effective, as its scanners are common and 

radiotracers like technetium-99m are cheaper and longer-lasting, making it practical 

for many clinics. PET, however, is more expensive and less accessible due to costly 

scanners and the need for on-site cyclotrons to produce short-lived tracers like 

FDG. While PET offers advanced imaging for metabolic and oncological studies, 

its higher cost and infrastructure requirements limit its use compared to SPECT. 

6. Clinical Applications: 

SPECT and PET are used in different medical fields based on their imaging 

strengths. SPECT is commonly used in cardiology for heart function, neurology for 

brain perfusion, and bone scans for fractures or infections. PET is primarily used in 
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oncology for cancer detection and staging, neurology for diagnosing Alzheimer’s 

and epilepsy, and cardiology for myocardial viability. While SPECT excels in 

structural and perfusion imaging, PET’s focus on metabolic activity makes it ideal 

for functional and molecular diagnostics, especially in cancer and 

neurodegenerative diseases. 

2.4.4. Advantages and Limitations of Nuclear Medicine 

Nuclear medicine offers several advantages and limitations that are important to 

consider in clinical practice. One of its key strengths is its ability to provide functional and 

metabolic imaging, enabling the detection of disease processes at an early stage, often before 

structural changes are visible on other imaging modalities like CT or MRI. This makes it 

particularly valuable for early detection of conditions such as cancer, neurological disorders, 

and heart disease, allowing for timely intervention and treatment. Additionally, techniques 

like PET enable whole-body imaging, offering a comprehensive view of disease spread and 

metabolic activity, which is crucial for staging and treatment planning. 

However, nuclear medicine also has its limitations. Radiation exposure, though 

generally low, is a concern, particularly for vulnerable populations such as pregnant women. 

The cost of certain procedures, especially PET scans, can be high, and these advanced 

imaging techniques may not be as widely accessible as CT or MRI. Furthermore, the 

availability of radiopharmaceuticals is a challenge, as these specialized agents often have 

short shelf lives and require specific production facilities, limiting their accessibility in some 

regions. Despite these limitations, nuclear medicine remains a powerful tool for diagnosing 

and managing a wide range of diseases. 

5. Conclusion 

The evolution of medical imaging, from basic X-rays to advanced modalities like MRI 

and PET, has revolutionized diagnostics and treatment in modern medicine. These imaging 

techniques provide detailed insights into the human body, enabling accurate diagnosis, 

effective treatment planning, and precise monitoring of disease progression. However, the 

complexity and volume of data generated by these modalities present significant challenges, 

particularly in extracting meaningful information from images. This is where medical image 

segmentation becomes crucial.  

For instance, in MRI, segmentation can delineate brain tumors for surgical planning, 

while in PET scans, it can help quantify metabolic activity in cancer cells. Similarly, in X-

rays and CT scans, segmentation aids in detecting fractures, infections, or other anomalies. As 

medical imaging continues to advance, the demand for accurate and efficient segmentation 

techniques grows, particularly with the increasing complexity of imaging data. 

Medical imaging will continue to play a crucial role in modern medical practice, 

providing valuable information for diagnosis, treatment planning, and monitoring treatment 

response. Technological advancements will keep driving innovation in this field, offering new 

opportunities to enhance patient health and well-being. 



Chapter 1                                                                                                    Overview of Medical Imaging 

21 

 

The clinical applications of medical imaging are vast and include diagnosis, treatment 

planning, and monitoring treatment response. Future trends in medical imaging involve the 

increased use of artificial intelligence and machine learning to improve medical image 

analysis and interpretation, as well as the integration of multimodal data for a more 

comprehensive assessment of patient health. 
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1. Introduction 

Medical image segmentation is a fundamental process in the field of medical imaging, 

playing a pivotal role in diagnostics, treatment planning, and disease monitoring [Narayan et 

al., 2023]. At its core, segmentation involves partitioning an image into meaningful regions or 

structures, such as organs, tissues, or pathological areas, to enable detailed analysis and 

interpretation. The accuracy and efficiency of segmentation directly impact the quality of 

patient care, making it a critical component of modern medicine. 

The evolution of medical imaging, from the simplicity of X-rays to the sophistication 

of modalities like MRI, CT, and PET, has significantly enhanced the ability to visualize and 

understand the human body. However, these advancements have also introduced new 

challenges. Medical images are often complex, with high variability in resolution, contrast, 

and noise levels. Additionally, anatomical structures can be intricate and overlapping, making 

it difficult to accurately identify and segment regions of interest. 

Over the years, numerous medical image segmentation methods have been proposed, 

ranging from traditional thresholding and region-growing approaches to more recent machine 

learning and artificial intelligence-based techniques. In this chapter, we will review the 

various medical image segmentation methods, their advantages and limitations, as well as the 

challenges and opportunities associated with this critical task. 

2. Definition of image segmentation 

Image segmentation is a process in computer vision and image processing that 

involves partitioning a digital image into multiple segments or regions, each of which 

corresponds to different objects or parts of the image. The goal of image segmentation is to 

simplify or change the representation of an image into something that is more meaningful and 

easier to analyze. This is typically achieved by assigning a label to every pixel in the image 

such that pixels with the same label share certain characteristics, such as color, intensity, or 

texture [Yu et al., 2023]. 

The essential role of the image segmentation lies in its ability to provide a structured 

and meaningful representation of visual information, enabling computer systems to 

understand and interact with their visual environment in a more sophisticated manner.   

By partitioning an image into coherent segments, image segmentation allows for the 

identification and differentiation of various elements present in a visual scene, such as 

objects, edges, and textures.   

This precise segmentation is fundamental for many applications, including object 

recognition, pattern detection, video surveillance, autonomous navigation, computer-aided 

diagnostic medicine, and many more.   

There are several approaches and techniques used in image segmentation. Each image 

segmentation technique involves a series of specific operations to process and analyze 
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images. Each method is suited to specific contexts and has distinct advantages and limitations. 

The choice of method often depends on the characteristics of the image, the requirements for 

accuracy and performance, as well as the constraints of real-time processing when applicable.   

The most common methods are as follows: 

 Threshold based methods 

 Edge based methods 

 Region based methods 

 Supervised classification based methods 

 Unsupervised classification (Clustering) based methods 

2. Thresholding Methods 

Thresholding is a fundamental technique in the field of image segmentation [Jardim et 

al., 2023]. Its main goal is to convert a grayscale image into a binary image, where each pixel 

is assigned one of two values, usually 0 or 1, corresponding to black or white, respectively 

(cf.fig. 2.1). In simpler terms, thresholding can be understood as: 

𝑆(𝑥, 𝑦) = {
1, 𝑖𝑓 𝐼(𝑥, 𝑦) ≥ 𝑇
0, 𝑖𝑓 𝐼(𝑥, 𝑦) < 𝑇

                                  (2.1) 

where  

 I(x,y) is the pixel value of the grayscale image at position (x,y); 

 S(x,y) is the pixel value of the binary image at position (x,y); 

 T is the chosen threshold. 

 

                

(a)                                          (b) 

Figure 2.1: Thresholding-based segmentation, (a) original image, (b) segmented image.  

 

In image processing, thresholding methods can be broadly categorized into two types: 

global and local thresholding. This classification depends on how the threshold value is 

determined and applied across the image. 
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2.1. Global Thresholding Methods 

Global thresholding relies on selecting a single, fixed threshold value, which is 

carefully determined based on the uniform characteristics present across the entire image or 

derived from its overall histogram. This approach is generally used when there is a clear 

contrast in the grayscale distribution between the foreground (or region of interest) and the 

background [Senthilkumaran 2016]. Prominent global thresholding methods include Otsu’s 

Method, Iterative Thresholding, Minimum Error Thresholding, and Entropy-based 

Thresholding. 

2.1.1. Otsu technique 

The Otsu thresholding technique identifies the optimal threshold by maximizing the 

variance between the gray levels of an object and its background [Goh 2018]. The process 

begins by converting the image into grayscale, which comprises 256 gray levels ranging from 

0 (black) to 255 (white). The method seeks to determine a gray value threshold that 

effectively separates the background (higher gray values) from the foreground (lower gray 

values). The optimal threshold corresponds to the point where this variance is maximized, 

thereby improving the contrast between black and white in the resulting binarized image.   

2.1.2. Iterative Thresholding  

Iterative thresholding is a method for binarizing images by iteratively refining the 

threshold based on the mean gray-scale values of the foreground and background. The process 

begins with an initial threshold, T1, often set as the average gray value of the image. The 

image is then divided into two regions: pixels with values above T1 (background) and those 

below T1 (foreground). The mean gray values of these regions are computed to determine a 

new threshold, T2. This iterative process continues, updating T1 with T2 in each step, until 

the difference between successive thresholds falls below a predefined tolerance level, T0 

(typically T0 = 0.5 or 1). At this point, T2 is considered the optimal threshold [Sujji et al., 

2013].   

Iterative thresholding offers several advantages, including its simplicity and ease of 

implementation, making it a computationally efficient method for binarizing images. It 

dynamically adapts the threshold based on the image's gray-level distribution, eliminating the 

need for prior knowledge of the image's histogram. This method is particularly effective for 

images with a clear separation between foreground and background, as it guarantees 

convergence to an optimal threshold within a predefined tolerance level. However, iterative 

thresholding also has notable limitations. Its performance is highly dependent on the initial 

threshold choice, which can lead to suboptimal results if poorly selected. The method assumes 

a bimodal intensity distribution, making it less suitable for images with complex or 

overlapping intensity profiles. Additionally, it is sensitive to noise and artifacts, which can 

distort the mean gray values and result in inaccurate thresholds. Computational costs can also 

increase for high-resolution images, especially when a small convergence tolerance is used. 

Furthermore, the technique is primarily designed for grayscale images and may struggle with 

non-uniform illumination or color images without preprocessing. Despite these drawbacks, 
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iterative thresholding remains a valuable tool for applications where simplicity and 

adaptability are prioritized, provided the image characteristics align with its assumptions.  

2.1.3. Minimum Error Thresholding 

The Minimum Error Thresholding technique is based on the assumption that the gray 

values of pixels in an image's foreground and background follow a normal distribution. The 

goal of this method is to determine an optimal threshold T that reduces the overall 

classification error during segmentation. This error is quantified by analyzing the probability 

density functions of each segment, taking into account their respective probabilities and 

variances. 

2.1.4. The Entropy Method 

The entropy method works by calculating the entropy of the image for different 

brightness thresholds and selecting the brightness threshold that maximizes the entropy. An 

image with high entropy contains a lot of information, while an image with low entropy 

contains little information. The brightness threshold that maximizes the entropy is chosen as 

the optimal threshold [Yin, 2002]. 

This method offers several advantages, including its effectiveness for images with 

complex brightness distributions, its robustness to noise and lighting variations, and its 

adaptability to different types of images. However, it also has some drawbacks, such as its 

computational complexity and sensitivity to the choice of entropy calculation method. These 

factors should be carefully considered when applying this technique in image processing 

tasks. 

2.2. Local Thresholding Methods 

These methods determine threshold values based on the statistical features of each 

distinct neighborhood, taking into account factors like brightness, contrast, and textural 

details. As a result, each pixel in the image is classified according to the attributes of its 

neighboring pixels. They require the use of more advanced algorithms that carefully analyze 

the local properties of each segment in the image. Various local adaptive thresholding 

techniques include Niblack’s Method, Sauvola’s Method, and Bernsen’s Method [Saxena et 

al., 2019] 

2.2.1. Niblack’s Method 

Niblack’s technique is a prominent approach in local adaptive thresholding. It 

computes the local mean (m) and standard deviation (s) of pixel values within a defined 

window centered on each pixel. By utilizing the mean to evaluate local brightness and the 

standard deviation to measure contrast or texture, this method dynamically determines 

thresholds, enabling efficient image segmentation. 

2.2.2. Sauvola’s Method 

This method faces challenges with low-texture backgrounds, where subtle details 

might exceed the established threshold. Sauvola improved this technique to more effectively 
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manage diverse backgrounds and lighting conditions by integrating the dynamic range of the 

standard deviation into the threshold calculation. This adjustment enables the method to 

adaptively enhance the dynamic range of the standard deviation, improving its performance. 

2.2.3. Bernsen’s Method 

Bernsen’s technique emphasizes adaptive segmentation by utilizing the local contrast 

of pixel regions to distinguish between high-contrast areas which is often associated with 

edges or text and low-contrast regions, which typically represent uniform backgrounds. This 

method is particularly effective at identifying subtle variations in images and accentuating 

important features against varied backgrounds [Senthilkumaran & Vaithegi, 2016]. 

3. Edge-Based Segmentation 

An edge represents a boundary between two homogeneous regions and is 

characterized by a local variation in image intensity. Its detection involves identifying and 

pinpointing sharp discontinuities within an image. In edge-based segmentation techniques, the 

process begins by detecting the contours of objects and the boundaries separating objects 

from the background. These edges are then connected to form complete object boundaries, 

enabling the segmentation of the desired regions. Discontinuity-based segmentation methods 

are particularly effective at identifying abrupt changes in intensity values. The core principle 

of edge detection lies in locating areas where significant changes in image characteristics 

occur [Sharma et al., 2013]. 

Edge-based segmentation offers several advantages. It is highly precise, capable of 

segmenting complex objects with irregular contours, and robust, as it is less sensitive to noise 

and lighting variations. Additionally, it is relatively simple to understand and implement. 

However, this method also has some limitations. It can be sensitive to incomplete or noisy 

edges, and it may struggle to effectively segment overlapping objects. These factors should be 

considered when applying edge-based segmentation in image processing tasks. 

Gradient-based edge detection is a simple and effective method for detecting edges in 

an image. It is a spatial filter that calculates the gradient of an image's intensity. The gradient 

measures the variation in intensity across a given direction in the image. It is computed using 

two filters: one for the horizontal gradient and one for the vertical gradient. These filters are 

weight matrices that are multiplied by the pixels of the image. The result is a set of values 

representing the intensity gradient in each direction. The gradient values are then used to 

detect edges. Edges are typically identified as points where the gradient is high. These points 

are connected by lines to form the edges of the image (cf.fig.2.2). 
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Figure 2.2: contour detection by gradient approach 

 

Edge detection plays a vital role in edge-based segmentation. In images, edges are 

defined by two key attributes: direction and magnitude. Along the edge's direction, pixel 

values tend to change gradually, whereas perpendicular to the edge, they exhibit sharp 

transitions. Because of these properties, first and second-order derivatives are widely 

employed to identify and characterize edges effectively.   

3.1. First-order differential operators 

First-order differential operators are fundamental tools in edge detection, as they 

identify edges by computing intensity gradients across an image. Among the most widely 

used operators are the Roberts Cross Operator, Prewitt Operator, Sobel Operator, and Canny 

Edge Detector. Each of these techniques functions by approximating the first derivative of 

pixel intensities, emphasizing regions where abrupt changes in brightness occurrence 

indicating potential edges [Acharjya et al., 2012]. 

 The Roberts Cross Operator employs a simple 2x2 kernel to detect edges at 45-degree 

angles, making it computationally efficient but sensitive to noise. 

 The Prewitt and Sobel Operators use 3x3 convolution kernels to estimate horizontal 

and vertical gradients, with the Sobel operator incorporating weighted smoothing for 

better noise resistance. 

 The Canny Edge Detector is a more sophisticated approach, combining Gaussian 

smoothing, gradient computation, non-maximum suppression, and hysteresis 

thresholding to produce high-precision edge maps with minimal noise interference. 
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These operators vary in complexity and robustness, making them suitable for different 

applications depending on accuracy and computational efficiency requirements. 

3.2. Second-order differential operators 

Second-order differential operators play a critical role in edge detection by identifying 

intensity discontinuities based on curvature and gradient changes. Two prominent examples 

are the Laplacian Operator and the Laplacian of Gaussian (LoG). Unlike first-order operators 

that detect edges by locating gradient maxima, second-order operators rely on zero-

crossings in the second derivative, which correspond to sharp intensity transitions. 

 The Laplacian Operator applies a second-derivative-based convolution kernel to 

highlight rapid changes in pixel intensity, making it highly sensitive to noise. 

 The Laplacian of Gaussian (LoG) improves robustness by first smoothing the image 

with a Gaussian filter to reduce noise before applying the Laplacian, resulting in more 

accurate edge localization. 

These operators function by convolving a predefined template matrix (kernel) with the 

image’s pixel value matrix, effectively computing local gradients or curvatures at each pixel. 

While second-order methods excel at detecting fine edges and corners, their sensitivity to 

noise often necessitates preprocessing steps, such as Gaussian smoothing in the case of LoG 

[Veelaert & Teelen, 2009]. 

3.3. Operator’s characteristics 

Edge detection operators exhibit distinct trade-offs between performance and 

computational efficiency:  

 The Roberts Cross offers simplicity but suffers from noise sensitivity;  

 Prewitt maintains directional sensitivity while remaining vulnerable to noise;  

 Sobel improves noise suppression at the cost of edge blurring;  

 Canny delivers superior accuracy through multi-stage processing but requires 

careful parameter tuning;  

 Laplacian precisely localizes edge centers yet amplifies noise without 

directional information;  

 Laplacian of Gaussian (LoG) combines Gaussian smoothing with second-order 

differentiation for balanced noise robustness and localization, albeit with 

increased computational overhead and potential loss of fine details. 

4. Region Based Segmentation 

Region based segmentation is a technique that partitions an image into meaningful 

regions based on pixel similarity, such as intensity, color, texture, or other statistical 

properties. Unlike edge-based segmentation, which detects boundaries, region-based methods 

group pixels into coherent regions by analyzing their homogeneity. Figure bellow presents an 

example of medical image segmented with this technique. 
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(a)                                           (b) 

 

Figure 2.3: Region based segmentation, (a) original image, (b) segmented image. 

 

While region-based segmentation is simple to implement, robust to lighting changes, 

and effective for objects of diverse sizes/shapes, its performance declines with complex 

images ( overlapping objects, irregular contours, or noisy data), potentially yielding flawed 

results [Karthick et al., 2014]. 

Region-based segmentation primarily employs three core methodologies to partition 

digital images into coherent regions by leveraging pixel similarity criteria:  

1. Region Growing.  

2. Split and Merge.  

3. Watershed lines. 

4.1. Region Growing 

Region growing is an image segmentation method that works by grouping pixels into 

regions based on their similarity. It starts with a set of seed points, pixels known to belong to 

a specific region, and then expands these seeds to include neighboring pixels that meet 

similarity criteria. This process continues until all seeds are fully expanded and every pixel in 

the image is assigned to a region [Shrivastava & Bharti, 2020]. 

Similarity between pixels can be measured using various metrics, such as Euclidean 

distance or Manhattan distance. The choice of metric depends on the image characteristics 

and segmentation goals. 

Region growing can be applied to both grayscale and color images. For color images, 

the method may be implemented by processing each color channel independently. 

Region growing offers advantages such as simplicity, effectiveness, robustness to 

noise and lighting variations, and adaptability to different image types; however, its 

performance heavily depends on the initial seed selection, potentially leading to poorly 

segmented regions if the seeds are not optimally chosen. 
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4.2. Split-and-Merge 

The split-and-merge algorithm takes an opposite approach to region growing by 

beginning with the entire image as a single region. The process then iteratively splits any 

regions that violate a homogeneity criterion while simultaneously merging adjacent regions 

that demonstrate sufficient similarity. This dual-phase methodology has become a 

fundamental technique with broad applications across multiple domains. 

In image segmentation implementations, the homogeneity criteria typically mirror 

those used in region growing approaches. The splitting operation conventionally divides non-

homogeneous regions into four equal rectangular partitions, while the merging phase 

selectively combines neighboring regions based on carefully defined similarity measures - a 

crucial aspect determining the algorithm's effectiveness. A key constraint requires that only 

spatially adjacent regions may merge. The algorithm converges when the splitting phase can 

no longer generate new regions, indicating complete segmentation. 

The split-and-merge algorithm offers significant advantages, including computational 

efficiency, robustness, and adaptability to various image types, while consistently producing 

well-segmented regions; however, it presents notable drawbacks such as high computational 

complexity and sensitivity to the selection of splitting and merging parameters, which can 

critically impact segmentation quality  [Zaitoun & Aqel, 2015]. 

4.3. Watershed Lines 

Watershed segmentation is a popular image processing technique inspired by 

topographic flooding, where pixel intensities are treated as elevation levels. The method 

works by flooding the image's gradient magnitude from regional minima, creating boundaries 

(watershed lines) where different "catchment basins" meet. This approach is particularly 

effective for separating touching or overlapping objects in images, making it valuable in 

medical imaging, material science, and biological analysis. Watershed transformation excels 

at detecting precise edges and works well with both grayscale and color images [Mohanapriya 

& Kalaavathi, 2019]. 

The primary advantages of watershed segmentation include its ability to detect closed 

boundaries and delineate objects with high precision, even when they are in close contact. It is 

also conceptually intuitive and works without prior knowledge of the number of objects in the 

image. However, drawbacks include sensitivity to noise, leading to excessive segmentation, 

and high computational cost for large images. Pre-processing steps like smoothing or marker-

controlled watershed (using predefined seed points) are often required to improve results. 

Additionally, the method may struggle with low-contrast images where gradient differences 

are insufficient for proper boundary detection. Despite these limitations, watershed remains a 

powerful tool when combined with appropriate pre- and post-processing techniques. 
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5. Classification Methods for Segmentation 

Image segmentation can be effectively approached using classification-based methods, 

which involve assigning labels to individual pixels or regions within an image based on their 

underlying features such as color, texture, intensity, or spatial context. These features are used 

to group similar pixels together, thereby delineating meaningful structures or objects within 

the image.  

Classification-based segmentation techniques can be broadly categorized into 

supervised and unsupervised methods. Supervised approaches rely on labeled training data, 

where examples of correctly segmented images are used to train a model to recognize similar 

patterns in new, unseen images. These methods often employ machine learning algorithms 

such as support vector machines (SVM), decision trees, or deep learning networks like 

convolutional neural networks (CNNs). In contrast, unsupervised methods, known also as 

clustering methods do not require labeled data and instead aim to discover inherent structures 

within the image by clustering similar pixels together based on feature similarity. Common 

unsupervised techniques include k-means clustering, Gaussian mixture models, and 

hierarchical clustering. Each approach has its strengths and trade-offs, with supervised 

methods typically achieving higher accuracy given quality training data, while unsupervised 

methods offer greater flexibility and are particularly useful in scenarios where labeled data is 

scarce or unavailable. 

5.1. Supervised Classification Methods for Segmentation 

Supervised classification methods for image segmentation rely on labeled training data 

to train a model that can classify individual pixels or regions into predefined categories. These 

approaches follow a structured pipeline beginning with (1) feature extraction, where key 

characteristics such as pixel intensity, texture patterns, edge information, and spatial 

relationships are quantified to represent each pixel or region. (2) These extracted features are 

then used to train a machine learning classifier such as k-Nearest Neighbors (K-NN), Random 

Forests (RF), or Support Vector Machines (SVM) on annotated datasets, where each pixel or 

region is associated with a ground truth label. (3) Once trained, the model can predict labels 

for new, unseen image data by analyzing their features and assigning them to the most 

probable category. 

With the advent of deep learning, supervised segmentation has shifted toward end-to-

end trainable models such as INet [Weng & Zhu, 2021], FCNs [Jian et al., 2018], which 

automate feature extraction through convolutional layers and achieve state-of-the-art accuracy 

[Liu et al., 2021a].  

5.1.1. K-Nearest Neighbors (K-NN)  

K-NN [Cunningham & Delany, 2021] is a simple, non-parametric supervised learning 

algorithm used for pixel-wise classification in image segmentation. It relies on feature 

similarity to assign labels based on the closest examples in the training data. 
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The K-Nearest Neighbors (K-NN) algorithm follows a straightforward yet effective 

workflow for image segmentation. First, feature extraction transforms each pixel into a 

numerical representation, typically a feature vector that may include attributes such as 

intensity values, texture descriptors ( Haralick features for medical images), color channels 

(like RGB), or spatial coordinates to incorporate positional context. Unlike parametric 

models, K-NN adopts a lazy learning approach during the training phase, where it simply 

stores all labeled feature vectors along with their ground truth classifications in memory 

without deriving an explicit model. During the prediction phase, the algorithm processes a 

new pixel by calculating its distance (Euclidean or Manhattan for examples) to every labeled 

pixel in the training set, identifies the K closest neighbors, and assigns the majority class label 

among them to the target pixel. While computationally intensive this method’s simplicity and 

lack of assumptions about data distribution make it a versatile baseline for segmentation tasks, 

particularly in scenarios with limited training data or low-dimensional feature spaces. 

5.1.2. Random Forest 

Random Forest is an ensemble learning method that constructs a multitude of decision 

trees during training and outputs the mode of the classes of the individual trees. In the context 

of image segmentation, Random Forest classifiers are used to assign a label (like object or 

background) to each pixel or image patch based on its features [Parmar et al., 2018]. 

In segmentation tasks, features might include color intensity, texture, edge 

information, spatial location, or filter responses. These features are extracted for each pixel 

(or region) and used as input to the Random Forest. The classifier learns from labeled training 

data and generalizes to segment unseen images by classifying each pixel into one of the 

predefined classes. 

This method follows the pipeline below  

1. Feature Extraction: Extract relevant features per pixel or region. 

2. Training: Use labeled examples to train the Random Forest. 

3. Prediction: Classify each pixel in a new image based on learned decision trees. 

5.1.3. Support Vector Machines (SVM) 

SVM [Jasti et al., 2022] is a powerful supervised learning algorithm commonly used 

for classification tasks. In image segmentation, SVMs are used to assign labels to individual 

pixels or regions of an image by learning from feature representations derived from training 

data. 

An SVM works by finding the optimal hyperplane that separates data points of 

different classes with the maximum margin. When data are not linearly separable, kernel 

functions like radial basis function (RBF) or polynomial are employed to map data into 

higher-dimensional spaces where separation becomes feasible. Each pixel or region in the 

image is represented as a feature vector. Common features include: 

 Color 

 Texture 
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 Edges 

 Position 

 Neighborhood statistics: Mean, variance in a local window 

The training process follows the steps below  

1. Annotate a set of training images with class labels (pixel-level or region-level). 

2. Extract features for each labeled pixel. 

3. Train the SVM using these features. 

4. For new (unlabeled) images, extract the same features and use the trained SVM to 

classify each pixel. 

SVMs offer several advantages that make them particularly well-suited for image 

segmentation tasks. They are highly effective in high-dimensional spaces, which are 

beneficial when working with rich pixel-wise feature sets that include color, texture, and 

spatial information. SVMs are also robust in scenarios where there is a clear margin between 

classes, often resulting in high classification accuracy. Their flexibility is enhanced by the use 

of kernel functions, which enable the algorithm to model complex, non-linear decision 

boundaries by projecting data into higher-dimensional feature spaces. Furthermore, SVMs 

perform well even with relatively small datasets, making them an attractive option when 

annotated training data are limited. 

Machine learning approaches in this domain are particularly useful when 

interpretability and computational efficiency are prioritized, but they often require careful 

feature engineering to achieve robust performance. However, a key limitation of these 

methods is their dependency on high-quality labeled data and their potential struggle with 

complex, heterogeneous structures where manually designed features may not capture 

sufficient discriminative information. 

Nevertheless, these approaches remain relevant in scenarios with limited training data 

or constrained computational resources, offering a balance between performance and 

simplicity. 

5.1.4. Convolutional neural network (CNN) 

Convolutional Neural Networks (CNNs) are a class of deep learning models 

specifically designed to process grid-like data, such as images. CNNs have become the 

dominant approach for image segmentation tasks due to their ability to automatically learn 

hierarchical features directly from raw pixel data and their effectiveness in capturing spatial 

context. 

In image segmentation, CNNs classify each pixel (or group of pixels) in an image into 

a specific category, enabling precise delineation of objects or regions such as tumors, roads, 

or people. 

A typical CNN for segmentation consists of: 

 Convolutional layers: Learn local patterns such as edges, textures, or object parts. 
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 Pooling layers: Reduce spatial resolution to capture more abstract representations. 

 Fully connected layers (in traditional CNNs): Used for classification, though often 

omitted in modern segmentation networks. 

 Upsampling/Deconvolution layers: Restore spatial resolution for pixel-wise 

prediction. 

Key Architectures in CNN-Based Segmentation are: 

 Fully Convolutional Networks (FCN): The major CNN architecture designed for 

segmentation [Jian et al., 2018]. 

 U-Net: Popular in biomedical image segmentation; uses an encoder-decoder structure 

with skip connections to preserve spatial detail [Ronneberger et al., 2015]. 

 SegNet: Employs encoder-decoder structure with index-based upsampling to improve 

memory efficiency [Badrinarayanan et al., 2017]. 

 DeepLab: Uses atrous (dilated) convolutions and Conditional Random Fields (CRFs) 

to improve boundary accuracy [Chen et al., 2017]. 

 Mask R-CNN: Extends object detection by adding a branch for pixel-level object 

masks [He et al., 2017]. 

5.2. Clustering methods 

Clustering-based methods is a popular unsupervised approach that groups pixels into 

clusters based on similarity in features such as color, intensity, or texture. Unlike supervised 

methods, clustering does not require labeled training data, making it widely applicable in 

scenarios where manual annotation is impractical [Mokhtari & Debakla, 2018] [Saxena et al., 

2019]. 

Clustering algorithms categorize pixels into groups (clusters) where intra-cluster 

similarity is high and inter-cluster similarity is low. Common features used for clustering 

include color, intensity, spatial coordinates and texture (cf.fig.2.4). 

Clustering methods are classified into two distinct groups: hierarchical and partitional 

techniques. 

 

Figure 2.4: Brain MRI image segmented in three clusters. 
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5.2.1. Hierarchical clustering 

Hierarchical clustering organizes data into clusters through an iterative process, using 

either a bottom-up (agglomerative) or top-down (divisive) approach. These methods build 

a dendrogram -a binary tree structure (cf.fig.2.5) - that visually represents the nested grouping 

of patterns. Hierarchical clustering is broadly classified into two types: agglomerative, which 

merges smaller clusters into larger ones, and divisive, which recursively splits larger clusters 

into finer subgroups. 

 

Figure 2.5: Dendogram. 

An agglomerative hierarchical clustering start with each data point as its own cluster 

and iteratively merges the most similar pairs, building the hierarchy bottom-up. In contrast, 

the divisive approach begins with all data points in a single cluster and recursively splits 

them top-down into smaller subgroups, continuing until each point is isolated or a stopping 

condition is met. 

Hierarchical clustering offers several benefits, including the ability to reveal nested 

cluster structures through dendrograms, which provide intuitive visualizations of data 

relationships. It does not require pre-specifying the number of clusters, making it useful for 

exploratory analysis. Additionally, it can handle arbitrary cluster shapes and is applicable to 

various data types, given a suitable similarity measure. 

However, hierarchical clustering has notable limitations. It is computationally 

expensive, with a time complexity of O(n³) for agglomerative methods, making it impractical 

for large datasets. The approach is also sensitive to noise and outliers, which can distort the 

hierarchy. Furthermore, since decisions on merging or splitting clusters are greedy and 

irreversible, early errors can propagate, leading to suboptimal results. Finally, interpreting 

dendrograms can be subjective, as the choice of where to "cut" the hierarchy to define clusters 

is often arbitrary [Mittal et al., 2021]. 
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5.2.2. Partitional Clustering 

Partitional clustering methods group data points into non-overlapping clusters by 

optimizing an objective function, maximizing intra-cluster similarity while minimizing inter-

cluster similarity. Typically, similarity is measured using metrics like Euclidean distance, and 

the algorithm iteratively refines clusters to minimize within-cluster variance. 

A key strength of partitioning algorithms is their iterative refinement of clustering 

quality. This capability is absent in hierarchical clustering methods. However, these 

algorithms suffer from notable limitations. They require a predefined number of clusters, 

often resulting in inadequate cluster descriptors. Additionally, their performance is highly 

sensitive to initialization and can be severely compromised by noise and outliers. 

Furthermore, they struggle with clusters of uneven sizes, varying densities, or non-convex 

geometries [Ikotun et al., 2023]. 

Partitional clustering includes hard clustering and soft clustering exemplified by Fuzzy 

c-means clustering (FCM).  

5.2.2.1. Hard clustering 

Hard clustering (also called crisp or exclusive clustering) is a partitioning method 

where each data point xᵢ ∈ X (X presents the all data) is definitively assigned to exactly one 

cluster Cⱼ ∈ {C₁,...,Ck}, such that: 

 Membership function μ(xᵢ,Cⱼ) ∈ {0,1} (binary assignment) 

 ∪ Cⱼ = X (complete coverage) 

 Cⱼ ∩ Ck = ∅ ∀ j ≠ k (mutual exclusivity) 

This creates strictly delineated cluster boundaries. Common hard clustering algorithms 

include: 

K-Means: 

The k-means algorithm is a simple and efficient clustering algorithm often used for 

image segmentation and object detection. The k-means algorithm works in several steps: 

1. Initialization: Select k initial centroids (cluster centers), either randomly or using a 

specific method. 

2. Assignment: Assign each data point to the nearest centroid based on distance (usually 

Euclidean distance). 

3. Update: Recalculate the centroids by taking the mean of all points assigned to each 

cluster. 

4. Iteration: Repeat the assignment and update steps until convergence (when centroids 

no longer change significantly). 

The k-means algorithm offers several advantages: it is simple to implement, efficient 

for image segmentation and object detection, and robust to noise and outliers. However, it 

also has limitations: it is sensitive to the initial choice of centroids, may not converge to an 

optimal solution, and cannot detect clusters with complex shapes [Fränti & Sieranoja, 2019]. 
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Mean shift: 

Mean Shift Clustering is a non-parametric, density-based clustering algorithm 

particularly effective for tasks like image segmentation. This method does not require 

predefining the number of clusters. Instead, it operates by: 

1. Sliding a Kernel Window: A window ( Gaussian kernel) moves across the data space, 

calculating the mean of data points within its bandwidth. 

2. Shifting to Higher Density: The window iteratively shifts toward regions of maximum 

density (gradient ascent) until convergence. 

3. Cluster Formation: Points converging to the same mode (peak density) are grouped 

into a cluster. 

Mean Shift clustering is ideal for image segmentation because it automatically finds 

clusters without predefined numbers, handles noise well, and creates smooth segments by 

combining color and spatial data. Its density-based approach preserves object boundaries 

naturally, making it perfect for complex images like medical scans or satellite photos [Wang 

et al., 2017]. 

DBSCAN: 

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a density-

based clustering algorithm that groups data points into clusters based on their spatial density, 

while identifying noise points that do not belong to any cluster. DBSCAN does not require 

predefining the number of clusters and can detect arbitrarily shaped clusters, making it 

particularly useful for datasets with irregular geometries. The algorithm operates by defining 

a neighborhood around each point with a radius ε and requiring a minimum number of points 

(min_samples) within this neighborhood to form a dense region. Points are classified as core 

points (dense regions), border points (on the edges of dense regions), or noise points (isolated 

outliers) [Schubert et al., 2017]. DBSCAN follows the steps bellow:  

Step 1: Initialization 

Mark all points as unvisited. 

Initialize an empty list of clusters. 

Step 2: Core Point Detection 

For each unvisited point p: 

        Find all points in its ε-neighborhood. 

If the neighborhood has ≥ min_samples points: 

        Mark p as a core point. 

        Create a new cluster. 

        Expand the cluster using density reachability. 

Else, mark p as noise (temporarily). 

Step 3: Cluster Expansion (Density Reachability) 

For each core point p in the current cluster: 

Find all ε-neighbors of p. 

For each neighbor q: 
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If q is unvisited:  Mark as visited. 

If q has ≥ min_samples neighbors, it is a core 

point → add its neighbors to the cluster. 

If q is not yet assigned to any cluster, add it to the current 

cluster. 

Step 4: Repeat Until All Points Are Processed 

Continue until all points are either assigned to a cluster or marked as noise. 

 

DBSCAN excels in handling noise and outliers, as it explicitly identifies and excludes 

them from clusters. However, its performance is sensitive to the choice of ε and min_samples, 

and it struggles with datasets where clusters have varying densities. 

5.2.2.2. Soft clustering 

Soft clustering assigns data points to clusters probabilistically, allowing for partial 

membership in multiple clusters. Unlike hard clustering ( k-means), where each point belongs 

to only one cluster, soft clustering captures uncertainty and overlapping structures in data. 

Soft clustering algorithms include: 

Gaussian Mixture Model (GMM) Algorithm: 

GMM is a probabilistic soft-clustering method that models data as a mixture of K 

Gaussian distributions (K clusters).  

The Gaussian mixture model assigns a probability to each data point x of belonging to 

a cluster. The probability of data point coming from Gaussian cluster i is expressed as: 

𝑝(𝑥) = ∑ 𝜋𝑖𝑁(𝑥|𝜇𝑖 , Σ𝑖)

𝐾

𝑖=1

 (2.2) 

where: 

πi = mixing coefficient (weight) for cluster i 

μi = mean vector of cluster i 

Σi = covariance matrix of cluster i 

 

It uses the Expectation-Maximization (EM) algorithm to estimate cluster parameters. 

1. Expectation Step: In this step, the algorithm calculates the probability that each data 

point belongs to each cluster based on the current parameter estimates (mean, 

covariance, mixing coefficients). 

2. Maximization Step: After estimating the probabilities, the algorithm updates the 

parameters (mean, covariance, and mixing coefficients) to better fit the data. 

These two steps are repeated until the model converges, meaning the parameters no 

longer change significantly between iterations. 
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GMMs offer probabilistic soft clustering, allowing data points to belong to multiple 

clusters simultaneously through membership probabilities, making them ideal for overlapping 

datasets. GMMs model flexible cluster shapes (spherical, elliptical, or tilted) via customizable 

covariance matrices, adapting to complex data distributions. As a generative model, GMMs 

provide uncertainty quantification, useful for confidence estimation in applications like 

anomaly detection. However, they exhibit sensitivity to initialization, often requiring multiple 

restarts for stable results.  

A key limitation is their Gaussian assumption, which may underperform on non-

normal data. Additionally, GMMs become computationally intensive in high-dimensional 

spaces due to covariance matrix inversions. 

Fuzzy C-Means (FCM) Clustering:  

FCM is a prominent soft clustering technique that extends traditional k-means by 

allowing partial membership of data points across multiple clusters [Bezdek, 1981]. Unlike 

hard clustering methods that assign each point to a single cluster, FCM employs a 

membership matrix U = [uij] where uij ∈ [0,1] represents the degree of belongingness of the ith 

data point to the jth cluster.  

FCM algorithm iteratively optimizes an objective function J that incorporates 

weighted distances between data points and cluster centroids, with the weighting exponent m 

controlling the fuzziness of the resulting partitions.  

𝐽(𝑈, 𝐶) = ∑ ∑ 𝑢𝑖𝑗
𝑚𝑑2(𝑥𝑗, 𝑐𝑖)

𝑁

𝑗=1

𝐾

𝑖=1

 (2.3) 

𝑈 and 𝐶 = (𝑐1, 𝑐2, … , 𝑐𝐾) are the memberships degrees matrix and a vector of clusters centers 

respectively. m ∈ [1, ∞[ is to control fuzziness, 𝑑2(𝑥𝑗, 𝑐𝑖) is the grayscale Euclidean distance 

and 𝑢𝑖𝑗 is the membership degree of the point j in the ith cluster 𝑐𝑖 

During execution, FCM alternates between calculating membership degrees based on 

current centroids and updating centroids according to current memberships, converging when 

either the change in centroids or objective function falls below a threshold.  

This approach provides several advantages: it naturally handles overlapping cluster 

boundaries, offers more nuanced interpretation of ambiguous data points, and demonstrates 

greater robustness to noise compared to crisp clustering methods.  

However, FCM requires careful selection of the fuzzifier parameter m and remains 

sensitive to initial centroid placement. The method finds particular utility in applications 

where cluster boundaries are inherently vague, such as medical image analysis, market 

segmentation, and bioinformatics, while its computational complexity remains comparable to 

traditional k-means clustering. 
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5. Conclusion 

Medical image segmentation remains one of the most challenging yet crucial tasks in 

computational diagnostics. While traditional methods have laid important groundwork, they 

each suffer from fundamental limitations that restrict their clinical applicability: 

1. Thresholding collapses when confronted with overlapping tissue intensities or 

inhomogeneous contrast enhancement, producing jagged, unrealistic boundaries that 

fail to capture pathological nuances. 

2. Region-based methods bleed across anatomical borders, unable to distinguish true 

tissue interfaces from partial volume effects or imaging artifacts. 

3. Edge detection disintegrates when faced with the low contrast-to-noise ratios 

characteristic of early-stage lesions or diffuse pathologies. 

4. Rigid clustering methods (K-means, GMM) impose artificial binary decisions on 

inherently gradational biological transitions, discarding the probabilistic nature of 

medical interpretation. 

These constraints underscore the urgent need for segmentation methods that preserve 

uncertainty in ambiguous regions, model the continuous nature of tissue interfaces, and adapt  

to variable imaging conditions ensuring robustness across diverse clinical and experimental 

scenarios 

The solution emerges in the next chapter through Fuzzy C-Means (FCM) clustering, a 

paradigm-shifting approach that: 

1. Shatters the binary segmentation fallacy through probabilistic membership functions 

2. Captures transitional tissue states via smooth, overlapping cluster assignments 

3. Mirrors radiologist reasoning by maintaining diagnostic uncertainty where appropriate 

4. Provides tunable precision through its fuzzy parameter 

The following chapter will dissect FCM's mathematical foundations, demonstrate its 

superiority in handling medical imaging ambiguities, and reveal how its soft decision 

boundaries enable more natural integration with downstream diagnostic AI systems and 

finally how it is enhanced through several contributions by modifying FCM’s objective 

function or optimizing its parameters using bio-inspired methods. 

 

 

 

 



 

 

 

 

 

 

Chapter 3: FCM Optimization based on 

Bio-Inspired Methods 
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1. Introduction 

Image segmentation is a critical task in computer vision and medical imaging, where 

the goal is to partition an image into meaningful regions for further analysis. Traditional 

segmentation methods often struggle with the inherent ambiguity, noise, and intensity 

inhomogeneity present in real-world images. Fuzzy C-Means (FCM) clustering has emerged 

as a powerful tool in this domain, offering a flexible approach by allowing pixels to belong to 

multiple clusters with varying degrees of membership. Unlike crisp (or hard) clustering 

methods like K-means, FCM’s capability as soft segmentation makes it particularly effective 

for handling overlapping structures, such as tissues in medical images or objects with blurred 

boundaries in natural scenes.   

The standard FCM algorithm minimizes an objective function that weighs pixel 

intensities against cluster centroids, making it suitable for intensity-based segmentation. 

However, conventional FCM has limitations, including sensitivity to noise, high 

computational cost, and dependence on initialization. To address these challenges, numerous 

FCM variants have been developed, specifically tailored for image segmentation:   

- Spatial FCM (SFCM): Incorporates neighborhood pixel information to improve 

robustness against noise. 

- Kernel FCM (KFCM) and Spatial KFCM (SKFCM): Use kernel functions to handle 

non-linear intensity distributions and to improve robustness against noise. 

- Adaptive FCM (AFCM): Dynamically adjusts parameters based on local image 

statistics. 

- Type-2 FCM (T2FCM): Enhances uncertainty modeling for low-contrast images. 

Recent research has focused on hybridizing FCM with bio-inspired optimization 

algorithms such as Genetic Algorithms (GAs), Particle Swarm Optimization (PSO), Artificial 

Bee Colony (ABC) and other bio-inspired algorithms to optimize cluster initialization, 

improve convergence, and enhance segmentation accuracy. These hybridization approaches 

have shown significant promise in medical imaging (such as tumor detection), where 

precision and computational efficiency are paramount. This chapter explores the foundational 

FCM algorithm, its variants in image segmentation, and the growing impact of bio-inspired 

techniques in advancing fuzzy clustering for this complex task.   

2. Fuzzy C-Means (FCM) for image segmentation 

The FCM algorithms firstly introduced by Dunn [Dunn, 1974] and generalized by 

Bezdek [Bezdek, 1981] are a family of clustering algorithms based on a fuzzy objective 

function. They are considered as soft clustering in the way that each element of the data to be 

clustered may belong to more than one cluster with deferent degrees of membership. The 

objective function is optimized in an iterative way and at the end of the process; each element 

is assigned to the cluster in which it has the highest membership. 
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Let 𝐼 = (𝑥1, 𝑥2, … , 𝑥𝑁) an image of N pixels to be clustered into K (2 < 𝐾 ≪ 𝑁) 

clusters, where 𝑥𝑖 represents data features. The FCM objective function is formulated as 

[Bezdek, 1981]: 

 

𝐽(𝑈, 𝐶) = ∑ ∑ 𝑢𝑖𝑗
𝑚𝑑2(𝑥𝑗, 𝑐𝑖)

𝑁

𝑗=1

𝐾

𝑖=1

 (3.1) 

 

𝑈 and 𝐶 = (𝑐1, 𝑐2, … , 𝑐𝐾) are the memberships degrees matrix and a vector of clusters 

centers respectively. m ∈ [1, ∞[ is to control fuzziness, 𝑑2(𝑥𝑗, 𝑐𝑖) is the grayscale Euclidean 

distance and 𝑢𝑖𝑗 is the membership degree of the pixel j in the ith cluster 𝑐𝑖 which must check 

the following constraints: 

 ∀𝑖 ∈  [1, 𝐾], 𝑗 ∈ [1, 𝑁] : 

 

∑ 𝑢𝑖𝑗

𝐾

𝑖=1

= 1, 𝑢𝑖𝑗 ∈  [0, 1],       0 ≤ ∑ 𝑢𝑖𝑗 ≤ 𝑁

𝑁

𝑗=1

 (3.2) 

 

𝐽(𝑈, 𝐶) is optimized, by introducing the Lagrange multipliers i [Dunn, 1974] to 

incorporate the constraint in (2). This yields function 𝐽(𝑈, 𝐶,  λ ) to be minimized: 

𝐽(𝑈, 𝐶,  λ ) = ∑ ∑ 𝑢𝑖𝑗
𝑚𝑑2(𝑥𝑗, 𝑐𝑖)

𝑁

𝑗=1

+

𝐾

𝑖=1
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J  is alternately optimized in two steps: 

Step 1: Optimizing the Membership Degrees: 

U is an optimal value of J if 0
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Where i= 1,2,…,K and j=1,2,…,N. 

From Equation (3.5), we obtain: 
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By combining Equation (3.4) and (3.6), we get: 
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The new membership values are obtained by inserting j into equation (3.6) yields: 
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Step 2: Optimizing the cluster centers: 

The obtained membership values are used to optimize clusters centers by deriving of J 

with respect to centers. Thus, the cluster centers are updated by  
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From a random initialization of clusters centers and using formulas (3.10) and (3.11), 

FCM algorithm recomputed clusters centers until no improvement of these centers. Once the 

clusters centers fixed, the algorithm assign each pixel xi of the image to a cluster having 

maximum fuzzy membership degree. 
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Algorithm FCM 

Input : K : number of cluster 

               N :number of pixel 

              𝜀: threshold 

              𝑚: Fuzziness exponent ( typically m=2).  

Output : K clusters center C 

1- Randomly select K initial cluster centers C={c1,…,cK}. 

2- Update memberships Uij  using formula (10) 

3- Calculate  𝐽old(𝑢,c) using formula (1) 

4- Update clusters center ci using formula (11)  

5- Calculate  𝐽new(𝑢,c) using formula (1)  

6- Repeat steps 2 to 5 until    |𝐽new – 𝐽old|< 𝜀 

7-Return C 

 

2.1. Advantages of FCM 

Fuzzy C-Means (FCM) is a widely used clustering algorithm that offers several key 

advantages over traditional hard clustering methods like K-Means. Below are its primary 

benefits, particularly in applications such as image segmentation: 

1. Handles ambiguity and overlapping clusters: Unlike crisp clustering (which assigns 

each data point to only one cluster), FCM allows partial membership, meaning a point can 

belong to multiple clusters with varying degrees (between 0 and 1) which is useful in 

medical imaging ( brain MRI segmentation where tissues overlap).   

2. More flexible in noisy and uncertain data: Since FCM considers fuzzy membership 

values, it is less sensitive to minor noise compared to crisp clustering methods. Variants 

like Spatial FCM (SFCM) further improve noise robustness by incorporating neighborhood 

information.   

3. Better for non-spherical and Complex data: Kernel FCM (KFCM, variant of FCM) can 

handle non-linear separability by mapping data into higher dimensions.   

4. Adaptable with Customizable Fuzziness (m): The fuzzifier parameter (m) controls 

cluster overlap. If m → 1, FCM behaves like K-Means (crisp clustering). But values more 

than 1 (m > 1) increases fuzziness (useful for uncertain data) which allows tuning based on 

application needs.   

5. Works well in high-dimensional data: Effective in feature-rich datasets ( hyperspectral 

images, gene expression data) and can be combined with dimensionality reduction ( PCA) 

for efficiency.   

6. Compatible with hybrid and bio-inspired optimizations: FCM can be enhanced with 

evolutionary algorithms (GA, PSO, ABC,…) to improve initial centroid selection, escape 

local optima and speed up convergence.   
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7. Wide range of applications:  FCM clustering has diverse real-world applications due to 

its ability to handle uncertain data. In medical imaging, it aids tumor detection and tissue 

analysis, while in remote sensing; it enables precise land cover classification. The 

algorithm also proves valuable for industrial defect detection and computer vision 

tasks like object recognition, demonstrating its versatility across domains. 

 FCM’s ability to model uncertainty, handle noise, and integrate with optimization techniques 

makes it a powerful tool for real -world clustering tasks- especially in image segmentation 

where data is often ambiguous. While it has higher computational costs than K-Means, its 

flexibility and accuracy justify its use in many applications.   

2.2. Demerits of Fuzzy C-Means (FCM) Clustering 

Despite its advantages, FCM has several limitations: 

1. Sensitivity to Noise and Outliers: The standard FCM objective function weights all data 

points equally, making it vulnerable to corrupted or extreme values. 

2. High Computational Cost: Iterative membership updates and distance calculations become 

expensive for large datasets. 

3. Dependence on initial centroids: Poor initialization can lead to suboptimal clustering or 

slow convergence. 

4. Assumes spherical clusters: Struggles with complex, non-linear, or irregular cluster shapes. 

5. Requires predefined cluster number: Like K-Means, FCM needs the number of clusters (K) 

as input, which may be unknown in real-world data. 

6. Parameter tuning (Fuzzifier m): Choosing an inappropriate m value can lead to overly 

fuzzy or rigid results. 

3. FCM variants 

The Fuzzy C-Means (FCM) algorithm has been extended into numerous variants to 

address its limitations, such as sensitivity to noise, outliers, and complex data structures. 

These adaptations include kernel-based FCM (KFCM), which maps data into higher-

dimensional spaces for better separability, and weighted or entropy-regularized versions to 

improve robustness. Other variants incorporate spatial information, alternative distance 

metrics, or hybrid optimization techniques to enhance clustering accuracy and adaptability 

across diverse datasets. Bellow the most variants that marked the FCM evolutions. 

3.1. Spatial FCM (SFCM) 

Conventional FCM ignores spatial information, making it sensitive to noise and 

outliers in image processing or spatially correlated data. To address this, Spatial Fuzzy C-

Means (SFCM) incorporates spatial constraints [Ahmed & Moriarty, 2002] [Chen et al., 

2004], improving robustness in applications like medical image segmentation, remote 

sensing, and pattern recognition [Ali et al., 2023]. 
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The objective function defined in formula (3.1) was modified [Chen et al., 2004] 

taking account of the spatial information in order to increase the robustness over noise as 

follow: 

 

𝐽(𝑈, 𝐶) = ∑ ∑ 𝑢𝑖𝑗
𝑚𝑑2(𝑥𝑗, 𝑐𝑖)

𝑁

𝑗=1

𝐾

𝑖=1

+ 𝛼 ∑ ∑ 𝑢𝑖𝑗
𝑚𝑑2(𝑥̅𝑗, 𝑐𝑖)

𝑁

𝑗=1

𝐾

𝑖=1

 (3.12) 

 

where x̅j represents the grey value of pixel in the weighted averaging image window. α is a 

parameter to control the tradeoff between the original image and the corresponding mean-

filtered image. Under the constraints defined in (3.2), the objective function in formula (3.12) 

can be optimized leading to a new algorithm called SFCM. Like the original FCM, SFCM, 

iteratively, computes clusters centers using the formulas below.     

 

𝑢𝑖𝑗 =
(𝑑2(𝑥𝑗, 𝑐𝑖) +  𝛼𝑑2(𝑥̅𝑗, 𝑐𝑖))

1
1−𝑚

∑ (𝑑2(𝑥𝑗, 𝑐𝑙)  +  𝛼𝑑2(𝑥̅𝑗, 𝑐𝑙))
1

1−𝑚𝐾
𝑙=1

 (3.13)  

 

and 

 

𝑐𝑖 =
∑ 𝑢𝑖𝑗

𝑚(𝑥𝑗 + 𝛼𝑥̅𝑗)𝑁
𝑗=1

(1 + 𝛼) ∑ 𝑢𝑖𝑗
𝑚𝑁

𝑗=1

 

 

                (3.14) 

Advantages 

The Spatial Fuzzy C-Means (SFCM) algorithm offers several key advantages over 

traditional FCM. First, its incorporation of spatial constraints enhances noise robustness, 

significantly reducing sensitivity to outliers and corrupted data points. Second, it preserves 

spatial continuity, making it particularly effective for tasks like image segmentation, where 

adjacent pixels often share cluster membership. Third, SFCM provides flexibility through the 

parameter α, which allows users to adjust the balance between spatial influence and feature-

based clustering. 

Limitations 

Despite its strengths, SFCM has two primary limitations: 

1- Higher computational cost due to the added neighborhood term, which increases 

algorithmic complexity,  

2- Requires predefined cluster number: Like FCM, SFCM needs the number of 

clusters (K) as input, and may converge to local optima. 



Chapter 3                                                                     FCM Optimization based on Bio-Inspired Methods 

49 

 

3- Parameter sensitivity, as performance heavily depends on the choice of α and the 

size of the spatial neighborhood. 

3.2. Kernel-based FCM (KFCM) 

The original FCM algorithm assumes that clusters are spherical and linearly separable 

in the input space. When this assumption fails the algorithm performs poorly. This limitation 

is caused by the use of the Euclidean norm metric. By using kernel methods, KFCM 

implicitly transforms the input data into a high-dimensional feature space where linear 

separation may be possible [Chang-Chien et al., 2021] [Abdullah, 2024]. 

Using kernel function, the KFCM objective function is expressed as: 

𝐽(𝑈, 𝐶) = 2 ∑ ∑ 𝑢𝑖𝑗
𝑚(1 − 𝐾𝑒𝑟(𝑥𝑗, 𝑐𝑖))

𝑁

𝑗=1

𝐾

𝑖=1

 (3.15) 

 

where Ker is a kernel function. The Radial Basis Function (RBF) Kernel also called the 

Gaussian kernel is one of the most commonly used in KFCM. 

Similarly to the FCM algorithm, this objective function can be optimized under the 

constraints defined in (2). We can compute the fuzzy membership function and the clusters 

centers with the formulas below respectively. 

 

𝑢𝑖𝑗 =
∑ (1 − 𝐾𝑒𝑟(𝑥𝑗, 𝑐𝑙))

1
𝑚−1𝐾

𝑙=1

 (1 − 𝐾𝑒𝑟(𝑥𝑗, 𝑐𝑖))
1

𝑚−1

      (3.16) 

and 

𝑐𝑖 =
∑ 𝑢𝑖𝑗

𝑚𝐾𝑒𝑟(𝑥𝑗, 𝑐𝑖)𝑥𝑗
𝑁
𝑗=1

∑ 𝑢𝑖𝑗
𝑚𝐾𝑒𝑟(𝑥𝑗, 𝑐𝑖)

𝑁
𝑗=1

 (3.17) 

The general steps of KFCM are the same as FCM. 

Advantages of KFCM 

o Handles non-linear data separation: Uses kernel functions to map data into a higher-

dimensional space, making it effective for complex, non-linear clusters and performs 

better than standard FCM when clusters are not well-separated in the original space. 

o Robust to noise and outliers: Kernel methods can reduce the impact of noise by 

transforming data into a more separable space.  

o Flexibility in kernel selection: Different kernels (RBF, polynomial, sigmoid) can be 

chosen based on the dataset, improving adaptability. 

o Improved clustering accuracy: Often achieves better clustering results than FCM for 

datasets with intricate structures. 

o Works well with high-dimensional Data: Kernel tricks help in dealing with the "curse 

of dimensionality" by implicitly working in a higher-dimensional feature space. 
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Limitations of KFCM 

o Computationally expensive: Kernel matrix calculations require O(N2) memory and 

computations, making it slower than FCM for large datasets and not suitable for 

real-time or big data applications. 

o Kernel parameter sensitivity: Performance heavily depends on kernel parameters ( 

σ in the Gaussian kernel) which requires tuning via cross-validation or heuristic 

methods leading to time-consuming. 

o Risk of overfitting : Poor kernel choices or parameter settings may lead to 

overfitting, especially with small datasets. 

o Initialization Sensitivity : Like FCM, KFCM is sensitive to initial cluster centroids 

and may converge to local optima. 

o Interpretability Issues: Since clustering occurs in a high-dimensional kernel space, 

interpreting results is harder than in linear methods like FCM. 

o Not Always Better Than FCM for Simple Data: For linearly separable clusters, 

KFCM may introduce unnecessary complexity without significant gains. 

3.3. Spatial Kernel-based FCM (SKFCM) 

The Spatial Kernelized Fuzzy C-Means (SKFCM) is an extension of the Kernelized 

Fuzzy C-Means (KFCM) that incorporates spatial information from image or grid-based data 

to improve clustering performance, especially in noisy environments. Similar to SFCM, the 

spatial information is added to KFCM in the following way leading to a new algorithm [Raj, 

2024]: 

The objective function is formulated as (18): 

𝐽(𝑈, 𝐶) = 2 ∑ ∑ 𝑢𝑖𝑗
𝑚(1 − 𝐾𝑒𝑟(𝑥𝑗, 𝑐𝑖))

𝑁

𝑗=1

𝐾

𝑖=1

+ 2𝛼 ∑ ∑ 𝑢𝑖𝑗
𝑚(1 − 𝐾𝑒𝑟(𝑥̅𝑗, 𝑐𝑖))

𝑁

𝑗=1

𝐾

𝑖=1

 (3.18)  

 

where x̅j represents the grey value of pixel in the weighted averaging image window.  

Similar to standard FCM, the fuzzy membership matrix and the clusters centers are 

updated iteratively with the formulas (3.19) and (3.20) respectively. 

 

𝑢𝑖𝑗 =
1

∑ (
(1−𝐾𝑒𝑟(𝑥𝑗,𝑐𝑖)+𝛼(1−𝐾𝑒𝑟(𝑥̅𝑗,𝑐𝑖)

(1−𝐾𝑒𝑟(𝑥𝑗,𝑐𝑙)+ 𝛼(1−𝐾𝑒𝑟(𝑥̅𝑗,𝑐𝑙)
)

1
(𝑚−1)

𝐾
𝑙=1

  
(3.19)  

 

𝑐𝑖 =
∑ 𝑢𝑖𝑗

𝑚(𝐾𝑒𝑟(𝑥𝑗,𝑐𝑖)𝑥𝑗 +𝛼(1−𝐾𝑒𝑟(𝑥̅𝑗,𝑐𝑖))𝑥̅𝑗)𝑁
𝑗=1

∑ 𝑢𝑖𝑗
𝑚 ((1−𝐾𝑒𝑟(𝑥𝑗,𝑐𝑖))𝑁

𝑗=1 +𝛼(1−𝐾𝑒𝑟(𝑥̅𝑗,𝑐𝑖)))
                    (3.20)  

 



Chapter 3                                                                     FCM Optimization based on Bio-Inspired Methods 

51 

 

Advantages of SKFCM: 

1. Handles non-linear data: Like KFCM, by using kernel functions, SKFCM can 

effectively cluster non-linearly separable data by mapping it to a higher-dimensional 

space. 

2. Incorporates partial supervision: unlike traditional FCM, SKFCM can leverage labeled 

data (if available) to guide clustering, improving accuracy when some prior 

knowledge exists. 

3. Robust to noise and outliers: The fuzzy membership approach allows soft clustering, 

making it less sensitive to noise compared to hard clustering methods like K-Means. 

4. Flexible cluster shapes: The kernel trick enables the detection of arbitrarily shaped 

clusters, unlike standard FCM, which assumes spherical clusters. 

Limitations of SKFCM: 

1. Computational complexity: Kernel matrix computation is expensive (O(n²)), making 

SKFCM slower than FCM for large datasets. 

2. Parameter sensitivity: Performance depends on kernel selection ( RBF, polynomial) 

and kernel parameters ( σ in RBF), which require tuning. 

3. Requires some labeled data: While semi-supervised, it still needs partial labels for 

optimal performance; fully unsupervised cases may not benefit as much. 

4. Scalability Issues: Not suitable for big data applications due to high memory and 

computational demands. 

5. Risk of overfitting: If the kernel parameters are poorly chosen, the model 

may overfit the training data. 

6. Initialization sensitivity: Like FCM and KFCM, SKFCM is sensitive to initial cluster 

centroids and may converge to local optima. 

3.4. Possibilistic Fuzzy C-Means (PFCM) 

Possibilistic Fuzzy C-Means (PFCM) [Pal, 2005] [Farooq & Memon, 2024] is another 

extension of the standard Fuzzy C-Means (FCM) algorithm that fuzzy 

membership and possibilistic clustering (PCM) and addresses two key limitations: 

1. Noise sensitivity: FCM forces all points to belong to clusters, making it vulnerable to 

outliers. 

2. Membership interpretation: FCM's probabilistic constraints can lead to 

counterintuitive results. 

PFCM introduces possibilistic memberships that represent the absolute degree of 

typicality of a point to a cluster and allow points to belong to no clusters (unlike FCM). The 

PFCM objective function combines two components: the fuzzy membership (uᵢⱼ: (similar to 

FCM)) and the possibilistic membership (tᵢⱼ: Measures typicality (like PCM)) 

𝐽(𝑈, 𝐶) = ∑ ∑(𝑎𝑢𝑖𝑗
𝑚+𝑏𝑡𝑖𝑗

𝜂 )𝑑2(𝑥𝑗, 𝑐𝑖)

𝑁

𝑗=1

𝐾

𝑖=1

+ ∑ 𝛾𝑖 ∑(1 − 𝑡𝑖𝑗)𝜂

𝑁

𝑗=1

𝐾

𝑖=1

 (3.21) 
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where: 

K = number of clusters 

N = number of data points 

uij = fuzzy membership of xj in cluster i (as in FCM) 

tij = possibilistic typicality of xj in cluster i (as in PCM) 

ci = centroid of the ith cluster 

a,b = weighting coefficients controlling the influence of fuzzy and possibilistic terms 

(a+b=1) 

m = fuzzification exponent (m>1) 

η = typicality exponent (usually η=2) 

γi = scale parameter for the ith cluster (similar to PCM) 

 

The PFCM algorithm follows the steps bellow: 

1. Choose K, m, η, a, b 

2. Initialize cluster centers randomly 

3. Repeat until convergence: centroids stabilize (change below a threshold) or max 

iterations reached. 

a. Update fuzzy memberships (uᵢⱼ) using formula (3.10) 

b. Update possibilistic memberships (tᵢⱼ) using formula (3.22) 

𝑡𝑖𝑗 = (1 + (
𝑏1 − 𝑑2(𝑥𝑗, 𝑐𝑖)

𝛾𝑖

)

1
𝜂−1

)

−1

      (3.22) 

c. Update cluster centers (cᵢ) using formula (3.23) 

𝑐𝑖 =
∑ (𝑎𝑢𝑖𝑗

𝑚+𝑏𝑡𝑖𝑗
𝜂 )𝑥𝑗

𝑁
𝑗=1

∑ (𝑎𝑢𝑖𝑗
𝑚+𝑏𝑡𝑖𝑗

𝜂 )𝑁
𝑗=1

                 (3.23) 

Advantages of PFCM: 

The PFCM algorithm offers several key advantages over traditional clustering 

methods.  

1. Unlike FCM, PFCM is robust to noise and outliers, making it more reliable for real-

world datasets with imperfections.  

2. Additionally, it avoids coincident clusters, a common issue in PCM, by maintaining 

meaningful cluster separation.  

3. PFCM effectively balances fuzzy membership and possibilistic typicality, allowing for 

better handling of uncertain data while preserving probabilistic interpretability. 

4. This hybrid approach also makes it well-suited for overlapping clusters, where clear 

boundaries between groups are difficult to define. 

Limitations of PFCM: 
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However, PFCM has some notable drawbacks.  

1. It is highly sensitive to parameter choices, requiring careful tuning of coefficients 

( a, b, γᵢ) to achieve optimal performance.  

2. The algorithm also incurs a higher computational cost compared to FCM due to its 

combined membership and typicality calculations.  

3. Furthermore, like many clustering methods, PFCM is initialization-dependent, 

meaning poor initial centroids can lead to suboptimal clustering results.  

PFCM offers a robust alternative to FCM and PCM by combining their strengths, but 

its effectiveness depends heavily on proper parameter selection and initialization. It is well-

suited for datasets with noise and overlapping clusters but requires careful tuning to achieve 

optimal results. 

3.5. Improved FCM with Non-Local Information (FCM-NL) 

To include non-local information, the Improved FCM-NL [Ma et al., 2014] [Zhang et 

al., 2017] [Zhang et al., 2021] modifies the objective function as follow:   

𝐽(𝑈, 𝐶, 𝑊) = ∑ ∑ (𝑢𝑖𝑗
𝑚𝑑2(𝑥𝑗, 𝑐𝑖) +  λ ∑ wjl

l∈ρ
j

𝑑2(𝑥𝑙, 𝑐𝑖))

𝑁

𝑗=1

𝐾

𝑖=1

 (3.24) 

where: 

Uij is the membership that determines how much a pixel xj belongs to cluster i 

𝑢𝑖𝑗 =
1

∑ (
𝑑2(𝑥𝑗, 𝑐𝑖) +  λ ∑ wjll∈ρ

j
𝑑2(𝑥𝑙, 𝑐𝑖)

𝑑2(𝑥𝑗, 𝑐𝑝) +  λ ∑ wjll∈ρ
j

𝑑2(𝑥𝑙, 𝑐𝑃)
)

2
𝑚−1𝐾

𝑝=1

 
       (3.25) 

 

wjl presents the non-local weight (measures similarity between patches 

(neighborhoods) around pixels j and l) 

𝑤𝑖𝑙 = 𝐸𝑋𝑃 (−
𝑑2(𝑃𝑗 , 𝑃𝑙)

∑ 𝑢𝑖𝑗
𝑚(1 +  λ ∑ 𝑤𝑗𝑙)𝑙∈𝜌

𝑗
)𝑁

𝑗=1

)                        (3.26) 

Pj and Pl  are image patches centered at xj and xl. 

ci is the ith cluster center, it is updated as a weighted average of all pixels, 

incorporating both intensity and non-local similarity: 

𝑐𝑖 =
∑ 𝑢𝑖𝑗

𝑚 (𝑥𝑗 +  λ ∑ 𝑤𝑗𝑙𝑙∈𝜌
𝑗

𝑥𝑙)
𝑁
𝑗=1

∑ 𝑢𝑖𝑗
𝑚(1 +  λ ∑ 𝑤𝑗𝑙)𝑙∈𝜌

𝑗
)𝑁

𝑗=1

                 (3.27) 

𝜌𝑗 is a search window around pixel j. 

λ is a balancing parameter (controls influence of non-local term) 
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the FCM-NL algorithm is summarized as follow: 

1. Initialize centroids ci (randomly). 

2. Repeat until convergence: 

 Compute non-local weights wjp for all pixels. 

 Update membership values uij. 

 Update cluster centers vi. 

Advantages of FCM-NL:  

The FCM with Non-Local Information (FCM-NL) algorithm significantly outperforms 

standard FCM in several key aspects.  

1. Unlike traditional FCM, which relies solely on pixel intensity, FCM-NL incorporates 

patch-based similarity, making it highly robust to noise and outliers while preserving 

structural details.  

2. This approach leverages non-local means filtering, effectively reducing blurring and 

maintaining sharp edges, a critical advantage in medical imaging ( MRI and 

ultrasound) where fine details are essential.  

3. FCM-NL achieves superior segmentation accuracy in noisy environments by 

adaptively smoothing homogeneous regions without degrading textures.  

4. The integration of non-local information ensures adaptive noise suppression, making 

FCM-NL a powerful choice for real-world applications where noise corruption is 

inevitable. 

Limitations of FCM-NL: 

While FCM-NL improves noise robustness and segmentation accuracy over standard 

FCM, it has several key limitations: 

1. High computational cost: Calculating non-local patch similarities (wjp) is 

computationally expensive, especially for large images or 3D volumes and slower than 

standard FCM due to neighborhood search operations for every pixel. 

2. Memory intensive: Storing patch-based weights for all pixel pairs requires significant 

RAM, limiting scalability. 

3. Sensitive to parameter tuning: Performance depends heavily on Patch size (too small 

leads noise-sensitive; too large leads oversmoothing), smoothing parameter h (affects 

weight decay in wjl) and trade-off parameter λ (balancing local vs non-local terms). 

Suboptimal choices of these parameters can lead to oversmoothing or inadequate noise 

removal. 

4. Initialization sensitivity: Like FCM, results depend on initial cluster centers (poor 

initialization leads to suboptimal convergence). 

5. The optimization landscape of FCM-NL (like FCM) is non-convex, meaning multiple 

local minima exist and the probabilistic memberships (summing to 1) impose 

constraints that may restrict movement toward a better global solution. 
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6. Limited adaptability to heterogeneous noise: Assumes uniform noise distribution; 

struggles with structured noise ( salt-and-pepper, stripe artifacts). 

7. Complex implementation: Requires additional steps (patch extraction, weight 

computation). 

 

3.6. Weighted FCM (WFCM) 

Weighted Fuzzy C-Means (WFCM) [Sarkar et al., 2024] [Poshitha et al., 2023] is an 

enhanced version of the standard FCM algorithm that incorporates feature weighting to 

improve clustering performance. Unlike traditional FCM, which treats all features equally, 

WFCM assigns different weights to features based on their importance, leading to more 

accurate and meaningful clustering. 

The objective function of WFCM is defined as: 

𝐽(𝑈, 𝐶, 𝑊) = ∑ ∑ (𝑢𝑖𝑗
𝑚 ∑ 𝑤l

β

D

l=1

𝑑2(𝑥𝑙𝑗 , 𝑐𝑙𝑖))

𝑁

𝑗=1

𝐾

𝑖=1

 (3.28) 

where  

 X={x1,x2,…,xn}: Dataset with N samples. 

 xi=[xi1,xi2,…,xid]: A sample with D features. 

 K: Number of clusters. 

 C={c1,c2,…,vK}: Cluster centroids. 

 U=[uij]: Fuzzy membership matrix. 

 W=[w1,w2,…,wD]: Feature weights. 

 β: Weight exponent (β>1, controls weight distribution). 

WFCM minimizes the objective function J(U, C, W) by optimizing iteratively U,V,W. 

It updates: 

1. Fuzzy Memberships (uij) 

𝑢𝑖𝑗 =
1

∑
(∑ 𝑤

l

βD
l=1 𝑑2(𝑥𝑙𝑗 , 𝑐𝑙𝑖))

1
𝑚−1

∑ 𝑤
l

βD
l=1 𝑑2(𝑥𝑙𝑗 , 𝑐𝑙𝑗)

𝐾
𝑖=1

 
     (3.29) 

2. Clusters centroids (cij) 

 

𝑐𝑖𝑙 =
∑ 𝑢𝑖𝑗

𝑚𝑥𝑙𝑗
𝑁
𝑗=1

∑ 𝑢𝑖𝑗
𝑚𝑁

𝑗=1

 (3.30) 

3. Features weights (wj) 
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𝑤𝑙 =
1

∑ (
∑ ∑ 𝑢𝑖𝑗

𝑚𝑑2(𝑥𝑙𝑗,𝑐𝑖𝑙)𝑁
𝑗=1

𝐾
𝑖=1

∑ ∑ 𝑢𝑖𝑗
𝑚𝑑2(𝑥𝑖𝑙,𝑐𝑖𝑙)𝑁

𝑗=1
𝐾
𝑖=1

)

1
𝛽−1

𝐷
𝑙=1

  
(3.31) 

The algorithm steps follow the general steps bellow:  

1. Initialize: 

 Random cluster centroids C. 

 Uniform feature weights wj. 

2. Repeat until convergence: 

 Update memberships U. 

 Update centroids C. 

 Update feature weights W. 

3. Terminate when: 

 Change in U or J (U,C,W) is below a threshold ϵ. 

Advantages of WFCM: 

Weighted Fuzzy C-Means (WFCM) offers several key advantages over traditional 

FCM, making it particularly effective for complex datasets: 

 Feature selection: WFCM automatically detects and emphasizes important features by 

assigning higher weights to discriminative attributes while suppressing irrelevant ones. 

This leads to more meaningful clustering without manual feature engineering. 

 Noise robustness: By reducing the influence of noisy or redundant features through 

adaptive weighting, WFCM improves robustness in real-world datasets where 

irrelevant variables may degrade performance. 

 Better clustering accuracy: In high-dimensional data, WFCM outperforms standard 

FCM by focusing on the most relevant features, resulting in clearer cluster separation 

and higher accuracy. 

 Flexibility: WFCM can be easily extended with kernel methods (for nonlinear data) 

making it adaptable to diverse applications. 

Limitations of WFCM: 

While WFCM improves upon traditional FCM, it has several key limitations: 

 Sensitivity to initialization: Like FCM, WFCM’s performance depends heavily on 

initial centroids and weights, leading to suboptimal solutions if poorly initialized.  

 Computational Cost: The additional weight optimization step increases runtime, 

especially for high-dimensional data, making WFCM slower than standard FCM. 

 Parameter Tuning Challenges: The weight exponent (β) and fuzziness parameter (m) 

require careful tuning. Poor choices can lead to overweighting/underweighting 

features or overly fuzzy clusters. 



Chapter 3                                                                     FCM Optimization based on Bio-Inspired Methods 

57 

 

 Assumption of feature independence: WFCM treats features as independent, ignoring 

correlations. Real-world data with interdependent features may need kernel or graph-

based extensions. 

 Local optima trapping: The objective function is non-convex, so WFCM may 

converge to local optima, especially with noisy or overlapping clusters. 

 Scalability issues: For very large datasets, WFCM’s iterative weight updates 

become prohibitively expensive. 

3.7. Entropy-Based FCM (EFCM) 

Entropy-Based Fuzzy C-Means (EFCM) is a variant of FCM that incorporates entropy 

regularization to improve cluster validity and reduce sensitivity to initialization. Unlike 

traditional FCM, which relies solely on the sum of squared errors, EFCM introduces 

an entropy term to control the fuzziness of membership assignments, leading to more robust 

clustering [Kahali et al., 2019] [Ray & Sing, 2024]. 

EFCM introduces a regularization term that encourages more balanced and stable 

memberships. The modified objective function becomes: 

𝐽(𝑈, 𝐶) = ∑ ∑ 𝑢𝑖𝑗
𝑚𝑑2(𝑥𝑗, 𝑐𝑖)

𝑁

𝑗=1

𝐾

𝑖=1

− 𝜆 ∑ ∑ 𝑢𝑖𝑗
𝑚log (𝑢𝑖𝑗)

𝑁

𝑗=1

𝐾

𝑖=1

 (3.32) 

 λ is the entropy regularization coefficient 

 The entropy term −∑uijlog(uij) promotes high uncertainty or “softness” in the 

memberships, preventing premature hard clustering. 

The optimization of this objective follows an iterative procedure: 

1. Update Memberships: 

𝑢𝑖𝑗 =

𝑒𝑥𝑝 (−
𝑑2(𝑥𝑗, 𝑐𝑖)

𝜆
)

∑ 𝑒𝑥𝑝 (−
𝑑2(𝑥𝑗, 𝑐𝑙)

𝜆
)𝐾

𝑙=1

      (3.33) 

2. Centroids update using formula (11) (as FCM) 

3. Terminate when: 

Change in U or J (U,C) is below a threshold ϵ. 

Advantages of EFCM: 

 Adaptive fuzziness: Automatically adjusts cluster fuzziness via entropy, reducing 

reliance on manual tuning of m. 

 Robust to noise: Entropy regularization suppresses spurious membership assignments. 

 Theoretical foundation: Derived from maximum entropy principle, ensuring 

mathematically sound membership distributions. 
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Limitations of EFCM: 

While EFCM offers advantages over conventional FCM, it has several key limitations: 

 Sensitivity to entropy coefficient (λ): The algorithm's performance heavily depends on 

proper selection of λ (λ too small: Behaves like hard K-means (loses fuzziness 

benefit), λ too large: Produces overly fuzzy clusters (near-uniform memberships)) and 

there is no universal rule for optimal λ selection. 

 Computational complexity (Slower Convergence): Typically requires more iterations 

than standard FCM. 

 Initialization sensitivity:  

 Centroid dependence: Like all FCM variants, results depend on initial centroids. 

 Local optima: May converge to suboptimal solutions. 

 Cluster shape assumptions: Inherited FCM Limitations (Still assumes hyper-spherical 

clusters). 

4. Discussion 

Fuzzy C-Means (FCM) clustering has evolved into numerous variants to address its 

inherent limitations, such as sensitivity to noise, dependence on initial centroids, and 

difficulty handling complex data structures. Key variants include Possibilistic FCM (PFCM) 

and Non-Local FCM (NL-FCM) AND EFCM for robustness against outliers, Kernel FCM 

(KFCM) for nonlinear data separation, and Spatial FCM (SFCM) for image processing tasks. 

Despite these improvements, standard FCM still faces challenges like local optima 

convergence, sensitivity to initialization and need of clusters number. This is where bio-

inspired optimization methods like Genetic Algorithms (GA), Particle Swarm Optimization 

(PSO), and Artificial Bee Colony (ABC) prove invaluable. These methods enhance FCM by 

automating centroid initialization, dynamically optimizing parameters, and escaping local 

optima through global search strategies. Such hybrid approaches are particularly effective in 

medical imaging, pattern recognition, and big data clustering, where traditional FCM 

struggles. The integration of bio-inspired optimization with FCM not only improves 

clustering accuracy but also reduces computational costs, making it a powerful tool for 

complex real-world applications. 

5. Optimization methods 

Optimization is a discipline focused on identifying the most effective solution from a 

range of possible options to address a specific problem, leveraging mathematical and 

computational methods. At its core, it entails optimizing (maximizing or minimizing) an 

objective function subject to certain constraints [Nesterov, 2018]. 

Optimization problems are ubiquitous in many fields, such as engineering, logistics, 

finance, physics, chemistry, and more. 
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5.1. Categories of optimization 

Optimization techniques can be broadly categorized into deterministic and stochastic 

approaches. 

a) Deterministic Optimization is a class of optimization methods that operates under the 

assumption that all input data is precisely known and free from randomness. It relies on 

exact mathematical models, such as linear or nonlinear equations, to find optimal 

solutions . It includes: 

1. Linear Programming (LP): Optimizes a linear objective function subject to linear 

constraints, widely used in resource allocation and scheduling. 

2. Nonlinear Programming (NLP): Deals with nonlinear relationships in the objective 

or constraints, common in engineering design and economics. 

3. Integer Programming: Restricts decision variables to discrete (integer) values, 

essential for problems like logistics and network design. 

4. Convex Optimization: Focuses on convex objective functions and constraint sets, 

enabling efficient global solutions in machine learning and control systems. 

These methods are favored when system parameters are well-defined and uncertainty 

is negligible. 

b) Stochastic optimization: known as Non-deterministic methods, refers to methods that 

handle problems where uncertainty, randomness, or incomplete information plays a 

significant role. Unlike deterministic approaches (which assume exact, fixed inputs), 

these techniques incorporate probabilistic models, heuristics, or adaptive strategies to find 

robust or approximate solutions [Spall, 2005]. 

5.2. Heuristic optimization methods  

They are intelligent approaches designed to find good approximate solutions in 

a reasonable time, especially for complex, nonlinear, or NP-hard problems. Unlike exact 

methods, they do not guarantee optimality but are flexible and adaptable to various real-world 

challenges. 

5.2.1. Bio-Inspired methods 

Bio-inspired methods, Known also as Nature-inspired metaheuristics, are optimization 

algorithms modeled after biological, ecological, or social behaviors observed in nature. These 

methods excel in solving complex, non-linear, and high-dimensional problems where 

traditional approaches struggle. They are broadly classified into three categories: 

o Evolutionary Algorithms (EA): These mimic biological evolution through 

mechanisms like selection, recombination, and mutation. in this category we 

distinguish Genetic Algorithm (GA) [Holland, 1992], and Evolution Strategies 

(ES) [Storn & Price, 1997]. Inspired by Darwinian natural selection, GA 

uses crossover, mutation, and fitness-based selection to evolve solutions, 

where ES, A variant of GA, emphasizes self-adaptation of mutation 

parameters. It is particularly effective in continuous optimization. 
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o Swarm Intelligence (SI): These algorithms simulate collective behavior in 

decentralized systems. In this category, we cite Particle Swarm Optimization 

(PSO) [Kennedy & Eberhat, 1995] that models bird flocking or fish schooling, 

where "particles" adjust their trajectories based on individual and group best 

positions and Ant Colony Optimization (ACO) [Dorigo et al., 1996], method 

based on pheromone trail deposition by ants.  

o Collective Intelligence Algorithms: These leverage group behavior for 

exploration-exploitation trade-offs. We distinguish Artificial Bee Colony 

(ABC) [Karaboga & Basturk, 2007] that simulates honeybee foraging with 

"employed," "onlooker," and "scout" bees balancing exploration and 

exploitation and Firefly Algorithm (FA) [Yang, 2009] which is inspired by 

firefly bioluminescence. FA uses attractiveness-based movement for multi-

modal and multi-objective problems. 

5.2.2. Physics/Chemistry-Based Methods 

Physics and chemistry-inspired optimization methods leverage natural phenomena 

such as thermal dynamics, gravitational forces, and molecular interactions to solve complex 

optimization problems. These algorithms mimic processes like annealing in metallurgy, or 

chemical reactions to explore solution spaces efficiently. By translating physical laws into 

computational strategies, they offer robust alternatives to traditional mathematical 

optimization, particularly in high-dimensional, nonlinear, or multimodal problems. In this 

category, we cite: 

o Simulated Annealing (SA): inspired by thermodynamics (gradual cooling). Its 

principle is to accept worse solutions temporarily to escape local optima [Kirkpatrick 

et al., 1983] [Guilmeau et al., 2021]. 

o Harmony Search (HS): mimics musical improvisation where musicians adjust their 

pitches to achieve a pleasing harmony. It is proposed by Geem, Kim, and 

Loganathan in 2001 [Geem et al., 2001]. 

o Gravitational Search Algorithm (GSA): based on the law of gravity and mass 

interactions, proposed by Rashedi, Nezamabadi-pour, and Saryazdi in 2009 . It mimics 

Newtonian physics, where masses (solutions) attract each other due to gravitational 

force, leading to global optimization [Mittal et al., 2021]. 

5.2.3. Local and Guided Search Methods 

Local search methods focus on improving a solution by exploring its immediate 

neighborhood. They are efficient but may get stuck in local optima, while Guided Search 

methods combine global exploration with local refinement. 

o Hill Climbing (Greedy Local Search): its concept is to iteratively move to the 

best neighboring solution. 

o Tabu Search (TS):  is an advanced local search algorithm that enhances hill 

climbing by using adaptive memory to escape local optima. It is introduced 
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by Fred Glover in 1986. It uses memory (tabu list) to avoid revisiting solutions 

[Prajapati et al., 2020]. 

o Variable Neighborhood Search (VNS): it systematically explores different 

neighborhood structures to escape local optima. It is proposed by Hansen and 

Mladenović in 1997 [Hansen & Mladenović, 2001]. 

o Iterated Local Search (ILS): combines local search with periodic perturbations 

to escape local optima. It operates by repeatedly: 

1. Applying local search to reach a local optimum 

2. Perturbing the current solution to escape the local optimum 

3. Repeating the process to explore the search space effectively 

o Guided Local Search (GLS): is an intelligent local search metaheuristic that 

enhances traditional local search by dynamically modifying the objective 

function to escape local optima. It is developed by Voudouris and Tsang in the 

1990s [Voudouris & al., 2010]. 

5.2.4. Hyper-Heuristics Methods 

Hyper-heuristics are high-level search methodologies that automate the selection, 

combination, or generation of simpler heuristics (or components of heuristics) to solve 

complex optimization problems. They operate on a "heuristic space" rather than directly on 

the solution space, making them highly flexible and adaptable across different problem 

domains [Dokeroglu & al., 2024]. 

Hyper-heuristics can be classified into two main categories: 

1. Selection Hyper-Heuristics that choose or switch between existing heuristics during 

the search process like Simple Random (randomly selects heuristics), Greedy 

Selection (picks the best-performing heuristic) or Markov Chain-based (uses transition 

probabilities). 

2. Generation Hyper-Heuristics that generate new heuristics or heuristic components 

automatically such as Genetic Programming-based (evolves heuristic rules) and 

Neural Program Synthesis (deep learning-based heuristic generation). 

6. FCM Optimization based on Bio-Inspired Methods 

As mentioned above, FCM clustering has proven valuable for pattern recognition, 

medical imaging and data analysis, but its effectiveness is limited by four key challenges: (1) 

high sensitivity to initial centroid selection, (2) number of clusters, (3) tendency to converge 

to local optima, and (4) degraded performance with noisy or high-dimensional datasets. To 

address these limitations, researchers have successfully integrated bio-inspired optimization 

algorithms with FCM, yielding significant improvements in clustering performance. These 

nature-inspired computational techniques, including Genetic Algorithms (GA), Particle 

Swarm Optimization (PSO), and others methods, enhance FCM through three primary 

mechanisms: (i) intelligent initialization of cluster centroids, (ii) dynamic refinement of 

membership functions, and (iii) robust global search capabilities that prevent premature 

convergence. The evolution of these hybrid approaches has followed a clear trajectory in 
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computational intelligence research, with each successive generation of bio-inspired methods 

offering enhanced capabilities for FCM optimization. In the following section, we examine 

key developments in this field, highlighting how various biological optimization paradigms 

have advanced the state-of-the-art in fuzzy clustering.  

6.1. Genetic Algorithm 

The Genetic Algorithm (GA) is a metaheuristic optimization algorithm inspired by the 

process of natural evolution [Holland, 1975]. It is based on the principle that solutions best 

adapted to a given problem are more likely to survive and reproduce, passing their 

characteristics to subsequent generations. A comprehensive can be found in [Katoch, 2021]. 

The operation of a genetic algorithm can be summarized as follows: 

 Initialization: A starting population of solutions is randomly generated. 

 Evaluation: The objective function of the problem is computed for each solution. 

 Selection: The fittest solutions are selected for reproduction. 

 Crossover: Selected solutions are combined to produce new offspring solutions. 

 Mutation: New solutions may undergo random mutations to introduce diversity. 

 Replacement: The new solutions replace the least fit individuals in the population. 

These steps are repeated iteratively until either an optimal solution is found or a 

predetermined number of generations is reached. 

Genetic Algorithms (GA) significantly enhance Fuzzy C-Means (FCM) clustering by 

addressing its key limitations, such as sensitivity to initial cluster centroids and tendency to 

converge to local optima. GA improves FCM through global search capabilities, where 

genetic operators like selection, crossover, and mutation explore the solution space more 

effectively than traditional random initialization. By optimizing cluster centers and 

membership matrices, GA-FCM hybrids achieve better convergence accuracy. Additionally, 

GA can automatically determine the optimal number of clusters by optimizing validity 

indices, eliminating the need for manual selection. 

The authors in [Maulik & Bandyopadhyay, 2003] introduced an algorithm 

called Fuzzy Partitioning Using a Real-Coded Variable-Length Genetic Algorithm (FVGA) to 

automatically determine the optimal number of clusters along with their fuzzy clustering 

results. In FVGA, they employed a genetic algorithm (GA) combined with the Xie-Beni 

cluster validity index as a fitness function to guide chromosome evolution. 

Building on this work, Saha and Bandyopadhyay [Saha & Bandyopadhyay, 

2009] proposed a fuzzy dynamic clustering algorithm called the Fuzzy Variable-Length 

Genetic Algorithm with Point Symmetry (Fuzzy-VGAPS). In their approach, they 

incorporated a point symmetry-based validity measure, termed the fuzzy Sym-index, as the 

objective function for clustering. 

In [Jansi & Subashini, 2014] and [Das & De, 2017], GA is used to optimize the initial 

clustering center firstly, and then FCM and KFCM algorithm respectively are availed to guide 

https://www.sciencedirect.com/topics/computer-science/initial-clustering
https://www.sciencedirect.com/topics/computer-science/initial-clustering
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the categorization, so as to improve the clustering performance of the FCM and KFCM 

algorithms. 

Dong et al. [Dong et al., 2018] developed an adaptive fuzzy clustering approach that 

integrates Fuzzy C-Means (FCM) with a multi-objective genetic algorithm. Their method 

eliminates the need for predefined cluster numbers by employing an evolutionary 

optimization framework. This adaptive mechanism automatically determines the right number 

of clusters. 

6.2. Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a population-based meta-heuristic algorithm 

that mimics the collective intelligence observed in natural swarms, such as bird flocks or fish 

schools [Kennedy & Eberhart, 1995]. 

The Key Components of this algorithm are: 

 Particles: Potential solutions that move through the search space 

 Swarm: The collection of all particles 

 Velocity: Determines particle movement direction and speed 

 pBest: A particle's personal best solution found 

 gBest: The swarm's global best solution found 

Based on these components, the algorithm performs the following steps: 

1. Initialization: A population of candidate solutions (particles) is randomly generated within 

the problem’s search space. 

2. Particle Movement: Each particle moves through the search space based on two key 

factors: 

o Its own best-known position (pbest) 

o The swarm’s global best-known position (gbest) 

3. Position Update: The velocity and position of each particle are adjusted using these two 

values, steering the swarm toward potentially better solutions. 

4. Fitness Evaluation: The objective function evaluates each particle’s quality (fitness). 

5. gbest Update: If a particle discovers a solution superior to the current gbest, the gbest is 

updated. 

6. Iteration: This process repeats for a set number of iterations, allowing the swarm to 

converge toward optimal or near-optimal solutions. 

Particle Swarm Optimization (PSO) offers several key advantages that contribute to its 

popularity in optimization problems. First, it is straightforward to implement, requiring only a 

few parameters while maintaining a simple conceptual framework that can be easily adapted 

to various problem types. Second, PSO demonstrates strong global search capabilities through 

its unique combination of personal best (pbest) and global best (gbest) mechanisms, enabling 

effective exploration of the search space while avoiding local optima. Additionally, the 

algorithm exhibits robustness against environmental variations, showing minimal sensitivity 

to initial parameter settings and changing conditions. Finally, PSO boasts remarkable 
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versatility, as it can be successfully applied to a wide range of optimization challenges, 

including continuous, discrete, and multi-objective problems, making it a valuable tool across 

numerous scientific and engineering domains. 

PSO is successfully applied to overcome the shortcomings of FCM. In [Liu & al., 

2008] and [Izakian & Abraham, 2011], authors used PSO to overcome the problem of local 

minima. Kang and  Zhang [Kang, 2012] proposed a hybrid clustering approach that combines 

FCM with PSO clustering problem. Their PSO-FCM algorithm addresses two key limitations: 

(1) it prevents FCM from converging to local optima through PSO's global search capabilities, 

while (2) simultaneously overcoming PSO's characteristic slow convergence by leveraging 

FCM's efficient local search. This synergistic integration demonstrates improved performance 

in clustering tasks compared to using either method independently. Also in [SK, 2021], PSO 

is successfully applied with FCM for leaf diseases prediction and in [Pham, 2018] [Verma, 

2021] to segment brain image overcoming the local optima FCM’s limit.  

In [Tan et al., 2023], authors tackle the FCM initialization problem for image 

segmentation task leading to optimal initialization, thus faster segmentation.    

6.3. Ant Colony Optimization 

Ant Colony Optimization (ACO) is a metaheuristic optimization technique inspired by 

the foraging behavior of ants [Dorigo et al., 1996]. It is particularly effective for solving 

combinatorial optimization problems such as the traveling salesman problem, knapsack 

problem, and machine scheduling problems. 

The fundamental principle of ACO relies on pheromone trail communication. Ants 

deposit pheromones along their paths, which serve as indicators of path quality for subsequent 

ants. 

In ACO implementation: 

1. A population of artificial ants is randomly initialized. 

2. Each ant constructs a solution (path) by probabilistically following pheromone trails. 

3. Solution quality is evaluated based on objective criteria (path length or value). 

after each iteration: 

 Pheromone trails are updated, with stronger reinforcement given to higher-quality 

solutions 

 This positive feedback mechanism progressively biases the colony toward optimal paths 

The algorithm iterates until convergence to an optimal or near-optimal solution is 

achieved. 

Several studies have explored the hybridization of ACO and FCM to enhance 

clustering performance by optimizing FCM parameters, particularly: 

 Cluster centers initialization (avoiding local optima) 

 Optimal cluster number (eliminating the need for predefined number) 

https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5312
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Shelokar et al. [Shelokar et al., 2004] introduced an ACO-FCM hybrid approach 

where ACO is employed to optimize the initial cluster centers before applying FCM for final 

refinement. While Saha and Sanghamitra [Saha, 2010] used ACO to determine the right 

number of cluster in unsupervised fuzzy data clustering task ensuring cluster compactness 

separation between clusters. 

In [Wang & al, 2012]  and [Raghtate & Salankar, 2015], authors used ACO to tackle the 

problem of local optima in fuzzy image segmentation task and in [Kumar & al., 2024] to 

optimize routing in flying Ad-Hoc network. 

6.4. Bat Algorithm 

The Bat Algorithm (BA) is a bio-inspired metaheuristic optimization technique 

developed by Xin-She Yang [Yang, 2010]. It mimics the echolocation behavior of bats, which 

use ultrasonic pulses to detect prey, avoid obstacles, and navigate in darkness. The algorithm 

efficiently balances exploration (global search) and exploitation (local refinement) by 

adjusting frequency, loudness, and pulse emission rates. 

The BA Works as follows: 

1. Initialization: 

 A population of bats (potential solutions) is randomly generated within the search 

space. 

 Each bat is assigned a position, velocity, frequency, and loudness. 

2. Movement: 

 Bats move through the search space based on their velocity and frequency. 

 Frequency is adjusted using a frequency-tuning technique to explore different 

regions. 

 Loudness gradually decreases to focus on more promising areas. 

3. Local Search: 

 Each bat generates a new solution randomly in a local search area around its current 

position. 

 If the new solution is better, it replaces the previous one. 

4. Evaluation: 

 The quality (fitness) of each bat’s solution is evaluated. 

5. Update: 

 The velocities and positions of bats are updated based on their frequencies, 

loudness, and the best solutions found so far. 

 Loudness decreases as bats approach potential prey (optimal solutions). 

6. Iteration: 

 Steps 2 to 5 are repeated for a set number of iterations or until a satisfactory 

solution is found. 

The Bat Algorithm (BA) stands out as a highly efficient metaheuristic optimization 

technique due to several distinctive advantages. One of its most notable strengths is 

its balanced exploration and exploitation mechanism, achieved through dynamically 

adjustable frequency and loudness parameters. The frequency governs the search range, while 

loudness and pulse emission rate systematically shift focus from global exploration to local 

refinement as the algorithm progresses. 
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The Bat Algorithm (BA) significantly improves the performance of Fuzzy C-Means 

(FCM) clustering through two key mechanisms. First, it enables automatic cluster center 

initialization by optimizing the initial centroids, thereby reducing FCM's sensitivity to random 

initialization and improving solution consistency [Boulanouar & Lamiche, 2020] [Alhassan & 

Wan Zainon, 2020]. Second, BA enhances convergence and accuracy through its global 

search capabilities, which help FCM avoid local optima traps and produce more reliable 

clustering results [Jai, 2021]. These combined improvements make BA-FCM hybrids 

particularly effective for complex clustering tasks where traditional FCM struggles with 

initialization dependency and suboptimal convergence. 

6.5. Artificial Bee Colony (ABC) Algorithm 

The Artificial Bee Colony (ABC) algorithm is a swarm intelligence optimization 

technique inspired by the foraging behavior of honeybees [Karaboga & Basturk, 2007]. It is 

designed to solve complex optimization problems across various domains, particularly those 

involving high-dimensional variables and nonlinear objective functions. 

The ABC Algorithm operates as follows 

1. Initialization: 

A population of potential solutions ("food sources") is randomly generated. 

2. Employed Bees: 

Each solution is assigned an "employed bee." These bees exploit their designated food 

source by searching its neighborhood for improved solutions. 

3. Onlooker Bees: 

Onlooker bees select food sources based on fitness values and a "waggle dance" 

communication (where employed bees share discovery information). They then 

modify these sources through exploration, potentially identifying better solutions. 

4. Scout Bees: 

If a food source shows no improvement after a predefined number of iterations, it is 

abandoned. A scout bee then randomly searches for a new food source. 

5. Selection and Replacement: 

The best solutions discovered by employed and onlooker bees are retained, replacing 

abandoned sources. 

6. Iteration: 

The process repeats for a fixed number of iterations or until a satisfactory solution is 

found. 

The Artificial Bee Colony (ABC) algorithm significantly improves Fuzzy C-Means 

(FCM) clustering by addressing two critical limitations: sensitivity to initial cluster centroids 

and tendency to converge to local optima. ABC's unique three-phase search mechanism - 

employed bees for local exploitation, onlooker bees for solution refinement, and scout bees 

for global exploration - provides a robust framework for optimizing FCM's initial cluster 

centers [Karaboga & Ozturk, 2011]. The employed bees' neighborhood search helps fine-tune 

centroid positions, while scout bees prevent stagnation by randomly exploring new solutions 
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when improvements plateau [Alrosan & Norwawi, 2017]. This hybrid approach (ABC-FCM) 

demonstrates superior performance in cluster validity indices (Xie-Beni, Davies-Bouldin) 

compared to standard FCM, particularly for high-dimensional datasets where traditional FCM 

often fails [Lingappa & al., 2018]. Furthermore, ABC's ability to maintain population 

diversity through its abandonment-replacement mechanism enables more comprehensive 

search space exploration, resulting in more accurate and stable clustering solutions 

[Alomoush, 2022a] and his ability to be hybridized with others technics [Ni, 2024]. 

6.6. Firefly Algorithm 

The Firefly Algorithm (FA), introduced by Yang [Yang, 2009], is a bio-inspired 

metaheuristic optimization technique that mimics the flashing behavior and social interactions 

of fireflies. This algorithm is particularly effective for solving complex multimodal 

optimization problems by simulating how fireflies are attracted to brighter light sources, 

which represent better solutions in the search space. 

FA operates based on three key idealized rules: 

1. Attraction Principle: All fireflies are unisex, and less bright fireflies move toward 

brighter ones. 

2. Brightness-Distance Relationship: The attractiveness between fireflies decreases with 

increasing distance. 

3. Objective-Dependent Brightness: A firefly's brightness is determined by the landscape 

of the objective function. 

The FA can be summed up as follows. 

1. Initialization: 

 Generate initial population of fireflies 

 Evaluate initial brightness (objective function) 

2. Main Loop: 

 For each firefly, compare with all others 

 Move less bright fireflies toward brighter ones 

 Update positions with attractiveness and randomization 

 Re-evaluate brightness 

3. Termination: 

Repeat until stopping criteria met (max iterations or convergence). 

FA improves FCM by optimizing the initial cluster centroids, overcoming FCM's 

sensitivity to random initialization. The algorithm's attraction mechanism helps identify 

promising regions in the search space, leading to better starting points for FCM iterations 

[Kumar & Kumari, 2018]. 

FA-FCM hybrids can dynamically determine the optimal number of clusters by 

leveraging Firefly Algorithm’s (FA) global search capabilities alongside cluster validity 

indices. Unlike traditional FCM, which requires manual selection of the number of cluster, 

FA optimizes validity indices to identify the best cluster count. This eliminates subjectivity 

in cluster number-selection, enhancing automation and robustness in clustering tasks. 



Chapter 3                                                                     FCM Optimization based on Bio-Inspired Methods 

68 

 

The integration of FA with FCM enhances clustering performance by leveraging FA’s 

global search capability, which helps FCM escape local optima which is the common 

limitation of standard FCM. FA’s attraction-repulsion mechanism dynamically balances 

exploration (searching new regions) and exploitation (refining existing solutions), ensuring a 

more efficient convergence toward optimal cluster centroids. Empirical studies demonstrate 

that FA-FCM hybrids achieve faster convergence and higher accuracy compared to traditional 

FCM, particularly in complex or high-dimensional datasets where FCM alone stagnates in 

suboptimal solutions [Alomoush, 2022b] [Thomas & Kumar, 2024]. 

6.7. Gray Wolf Optimizer 

The Gray Wolf Optimizer (GWO) is a metaheuristic optimization technique inspired 

by the social hierarchy and hunting behavior of gray wolves [Mirjalili et al., 2014]. It 

simulates the leadership and cooperative hunting strategies of wolf packs to efficiently 

explore the search space and find optimal solutions to complex problems. 

The Gray Wolf Optimizer operates as follows: 

1. Initialization: 

 A population of wolves (potential solutions) is randomly initialized within the 

search space. 

 Four wolves are designated as the alpha (best solution), beta (second-

best), delta (third-best), and omega (remaining wolves). 

2. Search: 

 The alpha, beta, and delta wolves guide the search: 

 The alpha moves randomly to explore new promising regions. 

 The beta and delta refine solutions by gradually approaching the alpha's position. 

 The omega wolves follow the leaders and adjust their positions based on the 

hierarchy. 

3. Attack (Exploitation): 

 If a better solution than a current leader is found, it replaces that leader in the 

hierarchy (solution). 

4. Update: 

 The wolves' positions are updated based on their roles and the leaders' positions. 

 The hierarchy is dynamically adjusted according to solution quality. 

5. Iteration: 

o Steps 2–4 are repeated for a predefined number of iterations or until a 

satisfactory solution is found. 

The hierarchy-driven search mechanism in GWO ensures an effective balance 

between exploration (led by the alpha wolf’s global search) and exploitation (guided by beta 

and delta wolves’ local refinement), preventing premature convergence. This structure is 

enhanced by adaptive leadership, where the hierarchy dynamically updates when better 
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solutions emerge, ensuring continuous improvement. Additionally, the omega wolves’ 

subordinate role maintains population diversity, promoting efficient convergence across 

complex search spaces. 

The GWO significantly improves the performance of FCM clustering by addressing its 

two major limitations: sensitivity to initial centroids and tendency to converge to local optima. 

By optimizing the initial cluster centroids before FCM refinement, GWO ensures a 

more robust initialization, reducing dependency on random starting points [Katarya & Verma, 

2018]. Furthermore, GWO’s adaptive leadership update dynamically refines cluster centers 

during iterations, enhancing convergence accuracy. Empirical studies show that the hybrid 

GWO-FCM achieves superior results compared to standard FCM, particularly in complex 

datasets where traditional FCM fails to identify optimal partitions [Mohammdian-Khoshnoud 

et al., 2022]. This synergy combines FCM’s local search precision with GWO’s global 

optimization strength, yielding faster convergence. 

7. Summary 

 The integration of Fuzzy C-Means (FCM) with bio-inspired optimization algorithms 

has emerged as a powerful approach to overcome FCM's limitations of sensitivity to 

initialization and local optima convergence. Metaheuristics like Particle Swarm Optimization 

(PSO), Genetic Algorithms (GA), Artificial Bee Colony (ABC), and Firefly Algorithm (FA) 

enhance FCM by optimizing initial cluster centroids through global search mechanisms 

inspired by natural behaviors. These hybrid systems combine FCM's local search precision 

with bio-inspired algorithms' exploration capabilities, typically improving clustering accuracy 

while maintaining interpretability. The hybridization framework generally follows a two-

phase process: bio-inspired methods first identify promising centroid positions, which FCM 

then refines through iterative minimization of the objective function. This synergistic 

approach has proven particularly effective in complex domains like medical image 

segmentation and high-dimensional data clustering, where conventional FCM often 

underperforms. 

Key benefits include: 

 Robustness to initialization 

 Escape from local optima 

 Automatic cluster number determination 

 Improved convergence rates 

 

Particularly, The Artificial Bee Colony (ABC) algorithm, inspired by the foraging 

behavior of honeybees, can significantly enhance the performance of Fuzzy C-Means 

(FCM) clustering. While FCM is effective for soft clustering, it suffers from sensitivity to 

initial centroids and a tendency to converge to local optima. ABC helps mitigate these issues 

by optimizing the initial cluster centers before FCM refinement. The ABC algorithm employs 

three types of bees -employed, onlooker, and scout bees- to balance exploration and 
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exploitation. Employed bees search for solutions (centroids), onlooker bees probabilistically 

select promising solutions, and scout bees introduce randomness to avoid stagnation. In the 

hybrid ABC-FCM approach, ABC first searches for optimal initial centroids by minimizing 

FCM’s objective function, then FCM fine-tunes the membership degrees and cluster 

assignments. The table below presents a detailed comparison between ABC and other bio-

inspired optimization techniques. 

Table 3.1: ABC vs other bio-inspired methods 

 Category 
Artificial Bee Colony 

(ABC) 
Other Methods 

Inspiration Honeybee foraging 
(employed, onlooker, 

scout bees) 

PSO: Bird flocking   
ACO: Ant pheromones  

GA: Natural selection  

FA: Firefly flashes 

GO: Hierarchy and hunting behavior of grey wolves (α, β, δ) 

Search 

Mechanism 

Three phases: 

employed, onlooker, 

scout bees             

 PSO: Velocity updates  

 ACO: Probabilistic path selection  

 GA: Crossover/mutation  

 FA: Attraction-based movement 

GO: Three phases: Encircling, hunting, attacking prey  - Guided 

by alpha (best), beta, and delta wolves 

Exploration High (scout bees enable 

random jumps)   

PSO: Moderate  

ACO: High (pheromone evaporation)  

GA: High (mutation)   
FA: High (automatic subdivision) 

GO: Moderate (hierarchical leadership guides search) 

Exploitation Moderate (onlooker 

bees refine solutions)                

 PSO: High (fast convergence)  

 ACO: High (positive feedback)  

 GA: Moderate  

 FA: Moderate 

GO: Very High (precise attacking phase near prey) 

Key 

Parameters 

Colony size, 

abandonment limit 

 PSO: Inertia weight (w), \(c_1, \(c_2  

 ACO: alpha, beta, evaporation rate  

 GA: Crossover/mutation rates  

 FA: beta_0, gamma 

GO:  Convergence parameter (`a`)  - Population size 

Strengths Balances 

exploration/exploitation; 
robust                

PSO: Simple/fast  

ACO: Best for discrete problems   
GA: Flexible  

FA: Multi-modal optimization  

GO: Few parameters, easy to implement  - High precision in local 

search  - Good for unimodal problems 

Weaknesses  Slow convergence in 

high dimensions                      

PSO: Premature convergence  

ACO: Parameter-sensitive  

GA: Computationally heavy  

FA: Distance metric reliance 

GO: May over-exploit local optima  - Less effective in multimodal 

problems 

Best For Continuous optimization ( 
engineering design)       
Multimodal optimization,   
Neural network training,  
Complex and noisy search 
spaces  

PSO: Continuous spaces  

ACO: Combinatorial  

GA: Complex search spaces   

FA: Image processing 
GO: Unimodal optimization  - Parameter tuning  - Engineering 

design (where precision matters) 
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This hybridization offers key advantages, including better avoidance of local optima 

and robustness to initialization, making it particularly useful for high-precision tasks like 

medical image segmentation. However, ABC-FCM is computationally slower than some 

alternatives, such as PSO-FCM or GWO-FCM, due to ABC’s inherent complexity. For 

improved efficiency, ABC can be combined with faster optimizers like PSO in a two-phase 

hybrid model -using PSO for a quick initial search and ABC for refinement. Despite its 

slower convergence, ABC-FCM remains a strong choice when clustering accuracy is 

prioritized over speed, especially for small to medium-sized datasets which the case of 

medical image segmentation.  

8. Conclusion 

This chapter has explored the hybridization of Fuzzy C-Means (FCM) clustering with 

bio-inspired optimization methods to overcome its inherent limitations of sensitivity to 

initialization and susceptibility to local optima. Various bio-inspired algorithms, including 

Particle Swarm Optimization (PSO), Genetic Algorithms (GA), Firefly Algorithm (FA), and 

Artificial Bee Colony (ABC) and other methods have been examined for their ability to 

enhance FCM by optimizing initial cluster centroids and guiding the search toward globally 

optimal solutions. While each method offers distinct advantages, the Artificial Bee Colony 

(ABC) algorithm emerges as particularly superior for hybridizing with FCM due to 

its exceptional balance of exploration and exploitation, adaptability to high-dimensional 

spaces, and efficient convergence properties. 

ABC’s unique mechanisms, employed bees for local refinement, onlooker bees for 

solution selection, and scout bees for escaping local optima, make it more robust and 

reliable than PSO, GA, or FA when combined with FCM. Empirical studies consistently 

demonstrate that ABC-FCM achieves higher clustering accuracy, faster convergence, and 

better stability across diverse datasets, including noisy and complex real-world applications 

such as medical imaging and pattern recognition. While other bio-inspired methods also 

improve FCM, ABC’s self-adaptive search strategy and reduced parameter dependency make 

it the most effective choice for enhancing FCM’s performance. 

ABC-FCM is favored Over other Hybrids for: 

✔ Better Exploration-Exploitation Balance  

✔ Fewer Control Parameters 

✔ Superior Local Optima Avoidance 

✔ Proven Higher Accuracy 

 

 



 

 

 

 

 

 

Chapter 4 : Hybrid FCM-ABC Method for 

Medical Image Segmentation 
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1. Introduction 

Image segmentation plays a pivotal role in medical imaging, particularly in brain MRI 

analysis, where accurate delineation of white matter (WM), gray matter (GM), and 

cerebrospinal fluid (CSF) is essential for clinical diagnosis and research. Among the various 

segmentation techniques, Fuzzy C-Means (FCM) clustering has been widely adopted due to 

its ability to handle the inherent ambiguity in tissue boundaries. However, traditional FCM 

suffers from several critical limitations: (1) sensitivity to initial cluster centers, (2) 

dependence on a predefined number of clusters, and (3) susceptibility to local minima 

convergence, especially in the presence of noise and intensity inhomogeneities. These 

shortcomings often lead to suboptimal segmentation, necessitating the development of more 

robust approaches. 

To address these challenges, this chapter introduces a novel hybrid method that 

combines FCM with the Artificial Bee Colony (ABC) optimization algorithm. The ABC 

algorithm, inspired by the foraging behavior of honeybee colonies, is a powerful 

metaheuristic known for its global search capabilities, adaptability, and robustness in solving 

complex optimization problems. By integrating ABC with FCM, the proposed Hybrid FCM-

ABC method mitigates the weaknesses of conventional FCM. Specifically, ABC optimizes 

the initial cluster centers, dynamically adjusts the number of clusters, and avoids local minima 

through its explorative search mechanism. This hybridization not only enhances segmentation 

accuracy but also improves computational efficiency and noise resilience. 

The chapter begins by presenting the biological foundations of bee colony behavior 

and its artificial counterpart, the ABC algorithm, highlighting its key components -employed 

bees, onlooker bees, and scout bees- and their roles in optimization. Next, the hybrid FCM-

ABC framework is detailed, explaining how ABC’s global search capabilities are leveraged to 

refine FCM’s clustering process. The experimental validation is conducted on both simulated 

brain MRI images (with controlled noise and intensity variations) and real clinical MRI 

datasets. Comparative analyses against standard FCM, Genetic Algorithm-based FCM (GA-

FCM), and FCM with Covariance Matrix Adaptation Evolution Strategy (FCMA-ES) and 

other methods demonstrate the superiority of the proposed method in terms of segmentation 

accuracy, robustness to noise, and computational stability. 

The results underscore the clinical relevance of Hybrid FCM-ABC method, 

particularly in scenarios where noise and artifacts compromise traditional methods. By 

overcoming the pitfalls of FCM while maintaining its interpretability, the proposed approach 

offers a promising tool for automated brain tissue segmentation, with potential applications in 

neurodegenerative disease diagnosis, surgical planning, and longitudinal studies. This chapter 

lays the groundwork for future research directions, including the integration of deep learning 

for further refinement and extension to other medical imaging modalities. 
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2. Biological Bee Colony 

A honeybee colony is a highly organized social system where individual bees perform 

specialized roles to ensure the survival and efficiency of the hive. The colony consists of three 

primary castes, each with distinct biological functions: the Queen, the Drones and the 

Workers bees [Winston, 1991]. The figure bellow presents these three kinds of bees. 

 

Figure 4.1: Kind of bees. (image from https://www.britannica.com/animal/honeybee, 06/20/2025) 

  

2.1. The Queen Bee: Heart of the Hive's Reproduction 

The queen bee holds the vital role of reproduction as the sole egg-layer in the colony, 

ensuring its survival and growth. Her biological functions are finely tuned for this purpose. 

She regulates the entire colony's behavior through pheromones, which suppress worker bees' 

ovary development and maintain social cohesion. During a single mating flight early in her 

life, she mates with multiple drones and stores their sperm, enabling her to fertilize eggs 

throughout her lifespan, typically two to five years. With a remarkable capacity to lay up to 

2,000 eggs per day, she directly controls the colony's population dynamics and genetic 

diversity. This prolific reproduction is essential for sustaining the hive's workforce, replacing 

aging bees, and facilitating colony expansion through swarming. The queen's health and 

productivity are so critical that worker bees will replace her if her egg-laying declines, 

demonstrating the colony's intricate balance between individual specialization and collective 

survival. 

2.2. Drones: The Transient Males of the Hive 

Drones serve one critical function: mating with virgin queens to ensure genetic 

diversity. Unlike workers, they lack stingers and foraging ability, depending entirely on the 

colony for sustenance. Their reproductive role ends dramatically - during mating, their 

genitalia detach (a phenomenon called mating trauma), resulting in immediate death. As 

winter approaches, workers expel surviving drones to conserve resources, demonstrating the 

colony's ruthless efficiency in energy allocation. 

2. 3. Worker Bees: The Industrious Backbone of the Hive 

Worker bees, the sterile females of the colony, perform all labor-intensive tasks 

necessary to sustain the hive. Their roles shift in a precise age-based progression known as 

https://www.britannica.com/animal/honeybee
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temporal polyethism. In their first days (1-12), they serve as nurse bees, diligently feeding 

larvae with nutrient-rich royal jelly, tending to the queen's needs, and maintaining hive 

hygiene by cleaning brood cells. Between days 12 and 18 of their development, they take on 

the role of hive builders, producing wax to build honeycombs and carefully storing the 

gathered nectar and pollen. Approaching adulthood (days 18-21), they take on guard duties, 

aggressively defending the hive entrance from predators by releasing alarm pheromones and 

deploying their stingers when necessary. Finally, in the last stage of their lives (day 21+), they 

become foragers, embarking on daily expeditions up to 5 kilometers from the hive to gather 

nectar, pollen and water. These experienced bees communicate complex information about 

food sources through their intricate waggle dances, enabling efficient resource collection for 

the entire colony. This remarkable division of labor ensures optimal hive functioning, with 

each bee contributing specialized skills at just the right time in their development. 

2. 4. Biological Roles of Workers Bees in Colony Foraging 

The minimal model of a honey bee colony comprises three groups: employed bees, 

onlooker bees, and scout bees. Employed bees explore food sources and share information 

with onlooker bees, which then evaluate and select food sources based on this information. 

Higher-quality food sources have a greater probability of being chosen by onlooker bees, 

while lower-quality ones are more likely to be abandoned. If an employed bee's food source is 

rejected due to poor quality, it transitions into a scout bee and begins searching randomly for 

new food sources.  

Bees communicate food source information to their swarm through distinct dance 

forms: 

1. Round Dance: Performed when the food source is close to the hive. 

2. Waggle Dance: Used for distant food sources; the speed of the dance indicates the 

distance (faster mean closer). 

3. Tremble Dance: Signals that the bee is struggling to unload nectar and lacks current 

knowledge of the food source’s profitability. 

Thus, exploitation is carried out by employed and onlooker bees, whereas exploration 

is handled by scout bees. The next sub-section details how these bee-inspired mechanisms are 

implemented in the Artificial Bee Colony (ABC) algorithm. 

3. Artificial Bee Colony (ABC) Algorithm 

3.1. Description of the algorithm 

The ABC algorithm is an evolutionary algorithm bio-inspired [Karaboga & Basturk, 

2007]. It imitates the honey bee swarms in food foraging. It assumes the existence of a set of 

operations that may resemble some features of the honey bee behavior. For instance, each 

solution within the search space includes a parameter set representing food source locations. 

The “fitness value” refers to the food source quality that is strongly linked to the food’s 

location. The process mimics the bee’s search for valuable food sources yielding an analogous 
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process for finding the optimal solution. It operates through the collaboration of three types of 

bees: employed bees, onlooker bees, and scout bees, each with distinct roles in the search for 

nectar (or optimal solutions). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The employed bees are responsible for exploiting known food sources. Each employed 

bee represents a potential solution and assesses its quality based on a fitness function. They 

search in the vicinity of their assigned food source and can adjust their position to improve the 

Initial production of food sources  

Employed bee phase 

Onlooker bee phase 

Store the best solution  

Are there scoot 

bees in the colony? 

Is the termination 

criterion met? 

Scoot bee phase 
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Return the best solution 

END 
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Figure 4.2: Flowchart of ABC algorithm. 



Chapter 4:                                                  Hybrid FCM-ABC Method for Medical Image Segmentation 

77 

 

solution. If a bee finds a better solution, it shares this information with the onlooker bees. The 

later monitor the quality of food sources shared by employed bees. They utilize a probability-

based selection mechanism to choose which food source to explore based on its fitness. By 

concentrating on the most promising sources, onlooker bees contribute to the exploitation 

phase of the algorithm called also local search, further refining the search for optimal 

solutions. The scout bees present the explorative phase and they are responsible for exploring 

new areas of the search space to discover new food sources.  

Their random search helps maintain diversity in the population and prevents the algorithm 

from getting trapped in local optima. Through the coordinated efforts of these three types of 

bees, the ABC algorithm efficiently explores and exploits the solution space. Figure 4.1 

presents the flowchart of the ABC algorithm. 

3.2. ABC Algorithm operation 

The ABC algorithm operates throws a set of steps. It begins food foraging (solution 

search) by producing randomly an initial population of NS (number) food sources (bees) in 

search space which are uniformly distributed between the pre-specified lower and upper 

values. 

Each bee is created according to the equation (4.1): 

𝑏𝑖 = 𝑏𝑚𝑖𝑛 +  𝑟𝑎𝑛𝑑(0,1) ∗ (𝑏𝑚𝑎𝑥 − 𝑏𝑚𝑖𝑛)         𝑖 = 1, … , 𝑁𝑆 (4.1) 

where 𝑏𝑖 is a bee,  𝑏𝑚𝑖𝑛  and 𝑏𝑚𝑎𝑥  are the upper and the lower values of the search space 

respectively. 

Additionally, a counter that tracks the number of solution attempts is reset to zero for 

each bee in this phase. After initialization, the initial food sources (solutions) undergo 

repeated improvement cycles, where employed bees and onlooker bees explore the 

neighborhood and enhance the solutions. 

After the initialization phase, the ABC algorithm evaluates the initial population and 

performs the three following steps until convergence to the optimal global solution 

(satisfactory fitness) or maximum iterations.  

Step 1: Send Employed Bees (Employed bee phase) 

There are as many employed bees as there are food sources. In this stage, each 

employed bee creates a new food source in the vicinity of its current position using the 

following equation: 

𝑣𝑖 = 𝑏𝑖 +  𝜑𝑖(𝑏𝑖 − 𝑏𝑘)          𝑖 = 1, … , 𝑁𝑆 (4.2) 

where the scale factor φi is uniformly distributed random number between  [−1,1], 𝑏𝑖 and 𝑏𝑘  

are the ith food source (solution) and one of NS food source in the vicinity respectively (𝑖 ≠

𝑘). 𝑣𝑖 represents the new generated food source (solution). 
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Once a new solution 𝑣𝑖 is generated, its fitness value (nectar amount), representing the 

solution's profitability, is calculated. The fitness value of a solution 𝑣𝑖 can be represented by 

the objective function or computed using the following equation: 

𝐹(𝑏𝑖) = {

1

1 + 𝐽𝑖
                 𝑖𝑓 𝐽𝑖 ≥ 0

1 + 𝑎𝑏𝑠(𝐽𝑖)       𝑖𝑓 𝐽𝑖 < 0

 (4.3) 

𝐽𝑖 represents the objective function to be optimized. 

A greedy selection is applied between 𝑣𝑖 and 𝑏𝑖. If 𝑣𝑖 has a better fitness, 𝑏𝑖 is 

replaced by 𝑣𝑖; otherwise,  𝑏𝑖 is retained 

Step 2: Select the Food Sources by the Onlooker Bees (Onlooker bee phase) 

Each onlooker bee (the number of onlooker bees corresponds to the food source 

number) selects a food source 𝑏𝑖 with a probability proportionally to the nectar amount. The 

probability 𝑃𝑖 that the food source 𝑏𝑖 will be selected is calculated according to the following 

equation: 

𝑷𝒊 =
𝒇(𝒃𝒊)

∑ 𝒇(𝒃𝒋)𝑵𝑺
𝒋=𝟏

          𝒊 = 𝟏, … , 𝑵𝑺 (4.4) 

 

where 𝑓(𝑏𝑖) is the fitness of the solution 𝑏𝑖. 

The probability of a food source being selected by onlooker bees increases with an 

increase in the fitness value of the food source. Upon selection, onlooker bees visit the food 

source and generate a new candidate position within its vicinity, as defined by equation (4.2). 

If the new solution’s fitness (nectar amount) improves upon the previous value, the position is 

updated. Otherwise, the original solution is kept. 

Step 3:  Determine the Scout Bees (Scout bee phase) 

When a food source (a candidate solution) fails to improve after a set number of trials 

(called the limit), it is considered exhausted. The employed bee abandon the food source 

associated with it and becomes a scout bee. Scout bees explore the search space without prior 

knowledge, generating a new solution randomly using equation (4.1). 

To track whether a candidate solution has reached the limit, each bee 𝑏𝑖 associated 

with this food source has a counter. This counter increases each time a bee fails to enhance 

the food source’s fitness. 

Occasionally, scout bees may discover highly promising, previously unknown food 

sources by chance. 

Step 4: Termination 

If the stopping criterion is met or the maximal iteration number is reached, return the 

best bee (optimal solution). 
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To reach the global optimum, the ABC Algorithm balance between exploitative search 

and exploratory search and the both in random manner. 

Algorithm 1 bellow describes the ABC algorithm 

 

 Algorithm 1: ABC algorithm 

1: Define SN (population size), 𝑏𝑚𝑖𝑛  (lower value) and 𝑏𝑚𝑎𝑥  (upper value), limit 

(control parameter), MaxIt (maximum iteration number) 

2: Generate randomly SN bees (𝑏𝑖 , 𝑖=1...SN) in the search space to form an 

initial population using equation (4.1) 

3: Evaluate the fitness function of all the bees 𝑓(𝑏𝑖) 

4: Keep the best bee (best solution in the population) bbest 

5: For each bee 𝑏𝑖, fix “no-improvement-cyclei” to 0. 

6: Set Iteration=1 

7: Generate a candidate solution 𝑣𝑖 for each bee 𝑏𝑖 by equation (4.2) 

8: Evaluate the fitness function of all the candidate solutions 𝑓(𝑣𝑖) 

9: If 𝑓(𝑣𝑖) is better than 𝑓(𝑏𝑖), 𝑏𝑖 = 𝑣𝑖, set no-improvement-cyclei to 0; otherwise 

increment no-improvement-cyclei 

10: Calculate the probability values 𝑃𝑖 by equation (4.4) 

11: For each bee 𝑏𝑖 selected depending on its probability 𝑃𝑖, generate a new 

solution 𝑣𝑖 

12: Evaluate the fitness function of all the new solutions 𝑓(𝑣𝑖) 

13: If 𝑓(𝑣𝑖) is better than 𝑓(𝑏𝑖), 𝑏𝑖 = 𝑣𝑖, set no-improvement-cyclei to 0; otherwise 

increment no-improvement-cyclei 

14: For each bee 𝑏𝑖 if no-improvement-cyclei > limit generate a new solution for 𝑏𝑖 

according to equation (4.1). 

15: Keep the best bee (best solution in the population) 𝑏𝑏𝑒𝑠𝑡  

16: iteration =iteration +1 

17: If iteration > MaxIt return the best solution achieved so far (𝑏𝑏𝑒𝑠𝑡) and Stop, 

otherwise go to 7.  

 

4. Hybrid FCM-ABC Method for Medical Image Segmentation 

In this section, a new enhancement of FCM called Hybrid FCM-ABC method is 

introduced; it is based on the ABC Algorithm [Mokhtari et al., 2025]. Although the FCM has 

advantages like efficacy, simplicity and computational efficiency, it nonetheless has major 

drawbacks such as number of clusters, cluster centers values and is easily trapped in local 

optima. So, the main objective is to overcome these major drawbacks that will affect the 

clustering in term of precision. For this purpose, we improve the FCM clustering by 

exploiting ABC algorithm in order to find simultaneously the right number of clusters and the 

optimal clusters centers for a given image I of N pixels. The right values of these parameters 
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leads to the optimal solution. ABC algorithm combines between exploitation and exploration 

to find the optimal values of FCM parameters. It ensures the searching in all directions in the 

solution space. 

The problem is regarded as follow. From the hive, the center of the search space, bees 

search food source in different areas around it. The areas present subspaces of search. Each 

subspace of search is far from the hive with a distance that represents the number of clusters. 

Subspace with distance 2 from the hive contains all bees (probable solutions) having 2 cluster 

centers values and subspace with distance k from the hive contains all bees (probable 

solutions) having k cluster centers values (cf.fig.4.3). The quantity of food in each 

emplacement within subspace represents cluster centers values.  

 

 

 

 

 

 

 

 

 

 

 

In the beginning of the food foraging in search space, all sub space has the same 

probabilities to get the best food source. However, the bees are distributed in the entire search 

space. After communicating information about source food, the majority of bees concentrate 

in the most promising subspaces search and so on. Therefore, discovering of the most food-

rich location will be very likely. Figure 4.4 illustrates this behavior.   

 

 

 

 

 

 

 

 

Entire search space 

The hive Sub search spaces 

Figure 4.3: Decomposition of search space 

Figure 4.4: Searching behavior (dark 

zone around the hive contains most 

promising bees) 
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4.1. Data Structure 

To achieve the objective of finding the optimal solution, each bee bi in the population 

is represented as a vector composed of two distinct parts: 

1. The first part encodes the number of clusters, determining the structure of the solution. 

2. The second part maintains the values of the cluster centers, defining their positions in 

the search space. 

This dual-vector representation ensures that both the number of clusters and their 

values are optimized simultaneously (cf. Fig. 4.5 for a visual illustration). 

 

 

Nbci 𝑉𝑎𝑙1
𝑖

 𝑉𝑎𝑙2
𝑖  …………. 𝑉𝑎𝑙𝑁𝑏𝑐

𝑖
 

     

Figure 4.5: Data structure of artificial bee. 

 

where Nbci is the number of clusters of the image to be segmented. This number is 

between 2 and maximum number of cluster (MaxNbc). The value MaxNbc depends on 

biological context. For example, MaxNbc =7 is sufficient for brain image. 𝑉𝑎𝑙𝑗
𝑖 is the value of 

the center 𝑐𝑖 of the bee bi which is the grey levels of the input image I. These values are in the 

range [0, 255]. Figure 4.6 bellow presents four bees with different number of clusters with 

different values. The first bee encodes three clusters centers with their values. The second 

encodes also three clusters centers with their values while the third and the fourth bee encode 

two and five clusters centers respectively with their values. 

 

 

 

 

 

 
 

3 45 93 200 

3 64 107 150 

2 111 59 

5 245 43 67 120 15 

 

Figure 4.6: Four examples of artificial bees with different configuration 



Chapter 4:                                                  Hybrid FCM-ABC Method for Medical Image Segmentation 

82 

 

4.2. Objective Function 

To evaluate the quality of the food, number and values of cluster centers (solution), we 

have developed a novel composite objective function J designed to simultaneously optimize 

both cluster quality (cluster values) and model complexity (number of clusters). This function 

addresses two fundamental challenges in unsupervised clustering: 

1. Geometric optimization of cluster centers (minimizing intra-cluster dispersion), 

2. Automatic determination of the optimal number of cluster. 

Function F combines the conventional Fuzzy C-Means (FCM) objective function, 

preserving the algorithm's ability to find spatially coherent clusters and a cluster validity 

index component that penalizes solutions with either too many or too few clusters. 

The combined objective function is formally defined as follows: 
 

𝑱(𝒃𝒊) = 𝑾𝟏𝑭𝟏(𝒃𝒊) + 𝑾𝟐𝑭𝟐(𝒃𝒊)          𝒊 = 𝟏, … , 𝑵𝑺 (4.5) 
 

where F1(bi) corresponds to the standard Fuzzy C-Means (FCM) objective function, 

which minimizes the weighted sum of squared distances between data points and cluster 

centers. The second term, F2(bi), represents a clustering validity index that evaluates the 

quality of the resulting partitions in terms of compactness and separation. The weights W1 and 

W2 control the relative importance of each component in the overall optimization process. NS 

is the population size: number of bees in search space.  

The motivation behind this hybrid formulation lies in addressing the limitations of 

using FCM alone. While FCM effectively minimizes intra-cluster variance, it does not 

inherently ensure well-separated or meaningful clusters, especially when the optimal number 

of clusters is unknown or the data contains overlapping structures. Incorporating a validity 

index as an additional criterion enhances the ability of the algorithm to identify more compact 

and distinct clusters, thereby improving overall segmentation quality.  

By combining both objectives, the proposed function enables a balanced trade-off 

between minimizing within-cluster distortion (via FCM) and maximizing cluster validity (via 

the validity index). This dual-objective approach proves particularly beneficial in complex 

applications such as medical image segmentation, where accurate and interpretable clustering 

is essential for diagnostic reliability.  

Both weights W1 and W2 can be adjusted depending on the specific requirements of the 

application or based on prior knowledge about the data structure.  

According to the structure of bee bi, F1 is defined as: 

 

𝐹1(𝑏𝑖) = ∑ ∑ 𝑢𝑘,𝑗
𝑚 𝑑2(𝑥𝑗, 𝑉𝑎𝑙𝑘

𝑖 )

𝑁

𝑗=1

𝑁𝑏𝑐𝑖

𝑘=1

 (4.6) 



Chapter 4:                                                  Hybrid FCM-ABC Method for Medical Image Segmentation 

83 

 

xj is the image pixels and d is the Euclidean distance. 

F2 is a cluster validity index, known as the IMI (IMbalanced Index) index, proposed 

by Yun Liu [Liu et al., 2021b] to identify the optimal number of clusters. It is formally 

defined in equation (4.7). IMI allows us to solve a key challenge in clustering analysis which 

is determining the optimal number of clusters in a dataset. According to the experimentations 

deal on different data set, authors in [Liu et al., 2021b] confirm the robustness of IMI. 

Thereby, it is a well candidate to be used as strong tool to determinate the right number of 

clusters.   

 

𝐹2(𝑏𝑖) =  

∑
∑ 𝑢𝑘,𝑗

𝑚 𝑑2(𝑥𝑗, 𝑉𝑎𝑙𝑘
𝑖 )𝑁

𝑗=1

∑ 𝑢𝑘,𝑗
2𝑁

𝑗=1

𝑁𝑏𝑐𝑖
𝑘=1

𝑚𝑖𝑛
𝑙 ≠ 𝑘

𝛿𝑙,𝑘𝑑2(𝑉𝑎𝑙𝑙
𝑖, 𝑉𝑎𝑙𝑘

𝑖 ) +  
𝑚𝑒𝑑𝑖𝑎𝑛

𝑙 ≠ 𝑘
𝛿𝑙,𝑖𝑑2(𝑉𝑎𝑙𝑙

𝑖, 𝑉𝑎𝑙𝑘
𝑖 )

       (4.7) 

 

where 𝛿𝑙,𝑘 =
∑ 𝑢𝑙,𝑗

𝑁
𝑗=1

∑ 𝑢𝑘,𝑗
𝑁
𝑗=1

. 

 

4.3. General steps of the Hybrid FCM-ABC Method  

The general steps of the Hybrid FCM-ABC Method are outlined as follows. These 

steps integrate the strengths of the FCM algorithm and the ABC optimization technique to 

achieve robust and accurate segmentation results: 

 

Step 1- Initialization: we set the maximum number of clusters MaxNbc, length of the 

worst bees L, the number of trial limit, a maximum number of iteration MaxIteration and a 

threshold є. Then an initial population of NS bees is generated in which each bee bi, in its first 

part ought to be assigned a random value in the range [2, MaxNbc]. According to the grey 

levels of the image I, each value 𝑉𝑎𝑙𝑗
𝑖 in second part has a value in the range [0, 255]. It is 

initialized using equation (4.1). For each bee bi, we set the counter “no-improvement-cycle” 

to 0. 

 

Step 2- Fitness evaluation: since each bee bi encodes cluster centers values, we 

calculate the membership value 𝑢𝑘𝑗
𝑖 for each cluster centers 𝑐𝑘

𝑖  for all the bees (bi, i=1,…, NS) 

using equation (4.8) bellow. 

𝑢𝑘𝑗 =
(𝑑2(𝑥𝑗, 𝑉𝑎𝑙𝑘

𝑖 ))
1

1−𝑚

∑ (𝑑2(𝑥𝑗, 𝑉𝑎𝑙𝑙
𝑖))

1
1−𝑚

𝑁𝑏𝑐𝑖
𝑙=1

 (4.8) 
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Then, we evaluate the objective function of the bees in the population 𝐽(𝑏𝒊), according 

to the equation (4.5) and their fitness with equation (4.3) .The bee with the best configuration 

is stored (bbest). 

 

Step 3- Employed Bee Phase: in this step, each employed bee generates a new 

solution in its neighborhood according to the equation (4.2). It consists of modifying slightly 

each center 𝑐𝑘
𝑖  of each bee bi to find a better position through local exploration without 

affecting the number of clusters Nbci. Then, new solution’s fitness is evaluated. If the new 

solution is better, replace the current bee by this new solution. Otherwise increment the 

counter “no-improvement-cycle”. 

 

Step 4- Onlooker Bee Phase: based on the fitness values, we assign probability Pi to 

each solution bi using the equation (4.4). We generate randomly a number r in the range [0, 

1]. If r is less then Pi, each onlooker applies modifications on bi using the equation (4.2) to 

further refine the clusters centers. 

 

Step 5- Scout Bee Phase: to enhance the capability to exploit the global search, we 

sort the bees according to equation (4.3) and we abandon all bees that the “no-improvement-

cycle” exceeds limit. If any abandoned bee belongs to the list of the L highest bees, we replace 

the abandoned bees with new configurations in which we keep the number of clusters and we 

reset only the cluster centers with equation 4.1. If any abandoned bee doesn’t belong to this 

list it will be reinitialized completely with a random number of clusters in the range [2, 

MaxNbc] and new cluster centers values using equation (4.1). 

 

Step 6- Loop: steps from 2 to 5 are repeated until the objective function J became less 

than the threshold є or the maximum number of iterations MaxIteration is reached. 

 

Step 7- Termination: finally, we use the best configuration stored so far (bbest). The 

number of clusters and their centers values encoded in its configuration are used to perform a 

last calculation of pixel memberships 𝑢𝑘𝑗
𝑏𝑒𝑠𝑡 according to equation (4.8). We assign each pixel 

xi of the image I to center for which the memberships 𝑢𝑘𝑗
𝑏𝑒𝑠𝑡 is higher for the purpose to 

generate the segmented image. 

4.4. Hybrid FCM-ABC Algorithm 

Our proposed hybrid FCM-ABC method is summarized in the flowchart presented 

below (cf.fig.4.7). The flowchart outlines the key steps and logic of the hybrid FCM-ABC 

method, highlighting how the ABC algorithm is integrated with the FCM framework to 

achieve robust and accurate segmentation results. Each step corresponds to a specific phase of 

the optimization process, ensuring clarity and reproducibility of the method. 
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Figure 4.7: Flowchart of Hybrid ABC-FCM method. 

Enter image I  

Fix NS, MaxIteration, limit,l, MaxNbc, є 

Generate new solution for each bee according to equation (4.2). 

J< є or 

it>MaxIteration 

yes 

Return the best solution 

END 

Begin 

Generate NS bees according to equation (4.1) 

Initialize the counter no-improvement-cycle to 0 

the new solution 

is better 

replace the old bee by this solution no-improvement-cycle++ 

yes no 

Calculate the probability P according to equation (4.4) 

Store the best solution (bbest) 

P<rand(0,1) 

Adjust the bee using equation (4.2) 

yes 

no 

Sort the bees according to eq (4.3) 

no 

reinitialize the bee with a random 

number of clusters in the range [2, 

MaxNbc] and new cluster centers 

values using equation (4.1) 

The bee belong to 

the l highest bees 

Keep the number of clusters and 

generate cluster centers values 

using equation (4.1) 

no-improvement-cycle>limit 
yes no 

no yes 
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Algorithm 2 presents the pseudo code of our proposition. 

 

 Algorithm 2: Hybrid FCM-ABC algorithm 

1: Input: original image I 

2: fix the parameters: MaxNbc, NS, є, limit, L, MaxIteration. 

3: generate randomly an initial population of bees 𝑏𝑖    (𝑖 = 1, 2, … , 𝑁𝑆) using 

equation (4.1). 

4: it=0 

5: for each bee 𝑏𝑖, fix “no-improvement-cyclei” to 0 

6: repeat 

7: it=it+1 

8: for each bee 𝑏𝑖 

calculate the membership value 𝑢𝑖𝑗 using (4.8) 

calculate the fitness function 𝐹(𝑏𝑖) according to the equation (4.3).  

endfor 

9: Bbest = bee 𝑏i with the highest fitness Fl. 

10: for each bee 𝑏i 

generate a new solution bnew according to the equation (4.2). 

evaluate the bnew’s fitness. 

If bnew is better,  𝒃𝐢=bnew. 

else “no-improvement-cycle”++. 

calculate the solution probability Pi using the equation (4.4). 

endfor 

11: for each bee 𝑏i 

generate a random number r in the range [0, 1] 

if Pi< r,  update  𝑏i with equation (4.2) 

evaluate its fitness according to equation (4.3). 

12: ElitBee =L highest bees in term of fitness  

13: for each bee 𝑏𝑖 

if “no-improvement-cycle” > limit 

if 𝒃𝒊 ∈ 𝑬𝒍𝒊𝒕𝑩𝒆𝒆, replace 𝒃𝒊 with new clusters centers 

according to equation (4.1) without affecting the number of 

clusters Nbci 

else generate a new solution for 𝒃𝒊 according to equation 

(4.1). 

reset to zero the counter “no-improvement-cycle” 

Endfor 

14: until (Fl <є or it>=MaxIteration) 

15: calculate the membership value 𝑢𝑖𝑗 according to Bbest. 

16: cluster pixels of the image I according to the membership value 𝑢𝑖𝑗  

 



Chapter 4:                                                  Hybrid FCM-ABC Method for Medical Image Segmentation 

87 

 

5. Experimental Results 

5.1. Experimental setup 

The performance of the Hybrid FCM-ABC method depends on several key 

parameters. These parameters are selected to balance exploration, exploitation, and 

computational efficiency. 

The population size refers to the total number of bees, including employed, onlooker, 

and scout bees, typically set between 50 and 100. This range balances exploration and 

computational efficiency: a larger population enhances solution diversity and search space 

exploration, helping avoid local optima, while a smaller size reduces computational overhead. 

In our case, for brain MRI segmentation, a population size of 50 is chosen as it effectively 

explores the high-dimensional search space of cluster centers without incurring excessive 

computational costs. 

In all our implementation, the maximum number of iterations is set to 300. Typically, 

values between 100 and 500 iterations are recommended in optimization tasks, including 

medical image segmentation. The number of iterations plays a crucial role in balancing 

exploration and computational efficiency, the higher the number, the more thoroughly the 

algorithm can explore the search space and refine potential solutions. However, this also 

results in increased computation time. In our context of brain MRI segmentation, where 

convergence is often achieved within this range, 300 iterations provide a reasonable trade-off 

between accuracy and performance, allowing the algorithm to converge effectively without 

unnecessary resource consumption. 

To avoid stagnation in a local minimum, we set maximum number of cycles (limit) to 

10, which limits the number of consecutive cycles without improvement and helps maintain a 

balance between exploration and exploitation during the optimization process. 

A limit of 10 cluster centers (MaxNbc) was imposed, based on empirical observation 

that no brain MRI image in the analyzed dataset exhibited a greater number of distinct 

segments. 

In the objective function, the weights W1 and W2 are both set to 0.5, ensuring a 

balanced contribution of the individual components in the optimization process. And finally, 

the size of the list l is set to 20.  

5.2. Metrics used for segmentation evaluation 

The evaluation of brain MRI segmentation performance relies on several metrics to 

quantify accuracy, robustness, and consistency [Taha & Hanbury, 2015]. In cases where the 

ground truth is available, we use Jaccard Similarity Index. In cases where the ground truth is 

unavailable, it becomes necessary to rely on internal validation indices to evaluate the quality 

of the clustering results such as Partition Coefficient Index, Partition Entropy Index and 

Davies-Bouldin Index. By utilizing these indices in combination, we can obtain a 

comprehensive evaluation of the clustering outcomes, ensuring that the proposed method 
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achieves optimal performance even in the absence of ground truth information. This approach 

not only enhances the reliability of the segmentation process but also enables meaningful 

comparisons with other clustering techniques under similar conditions.  

5.2.1. Jaccard Similarity Index 

The Jaccard Similarity Index (also called Jaccard Similarity Coefficient or Intersection 

over Union, IoU) is a statistical measure used to evaluate the similarity between two sets. In 

the context of medical image segmentation, it quantifies the overlap between a predicted 

segmentation and the ground truth (manual annotation). 

The Jaccard Similarity Index (JSI) ranges from 0 to 1, where 0 indicates no spatial 

overlap between the predicted segmentation and the ground truth, and 1 denotes a perfect 

match. Higher JS values reflect greater segmentation accuracy, as they signify stronger 

agreement between the automated output and the reference standard. This metric is 

particularly useful for quantifying volumetric overlap in tasks such as tumor or lesion 

segmentation in medical imaging like MRI or CT image, where precise boundary delineation 

is critical. The JS for a cluster k is defined as: 

 

𝐽𝑆𝐼𝑘 =
|𝐴𝑘 ∩ 𝐵𝑘|

|𝐴𝑘 ∪ 𝐵𝑘|
 (4.9) 

where 𝐴𝑘 and 𝐵𝑘 are the total number of pixels labeled into the cluster k identified by 

the clustering algorithm and the ground truth respectively. The cluster k is well detected when 

the value of 𝐽𝑆𝐼𝑘  is near 1. 

5.2.2. Partition Coefficient Index 

The Partition Coefficient Index (PCI), also known as the fuzzy partition coefficient, is 

a metric used to evaluate the quality of fuzzy clustering algorithms, such as the Fuzzy C-

Means (FCM) method. Unlike crisp clustering, where each data point belongs exclusively to 

one cluster, fuzzy clustering assigns membership degrees, indicating how strongly a point is 

associated with each cluster. The PCI quantifies the fuzziness of the resulting partition by 

measuring the average squared membership values across all data points and clusters. 

The PCI is widely used in medical image segmentation, particularly in algorithms that 

handle uncertainty, such as brain components delineation in MRI image. By optimizing 

clustering algorithms to maximize PCI, we can improve the reliability of automated 

segmentation results. The PCI is defined as: 

 

𝑃𝐶𝐼 =  
1

𝑁
∑ ∑ 𝑢𝑖𝑗

2

𝐶

𝑗=1

𝑁

𝑖=1

 (4.10) 
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The PCI ranges from 
1

𝐶
 to 1, where C represents the number of clusters. A value of  

1

𝐶
 

corresponds to a completely fuzzy partition, indicating no meaningful clustering structure 

(uniform membership distribution across all clusters). Conversely, a PCI of 1 signifies 

a perfectly crisp partition, where each data point unequivocally belongs to a single cluster. 

Higher PCI values reflect reduced fuzziness and sharper separation between clusters, 

suggesting improved clustering quality. 

5.2.3. Partition Entropy Index 

The Partition Entropy Index (PEI) is a widely used metric for evaluating the fuzziness 

and uncertainty in fuzzy clustering algorithms, such as FCM. Unlike PCI, which measures the 

crispness of clustering, PEI quantifies the degree of disorder or uncertainty in the membership 

assignments of data points across clusters. The PEI is defined as: 

𝑃𝐸𝐼 =  
1

𝑁
∑ ∑ 𝑢𝑖𝑗

𝐶

𝑗=1

𝑁

𝑖=1

𝑙𝑜𝑔(𝑢𝑖𝑗) 
                                                

(4.11) 

PEI exhibits a theoretical range from 0 to log(C), where C represents the number of 

clusters. A PEI value of 0 indicates perfectly crisp clustering. Conversely, the upper bound of 

log(C) corresponds to maximal fuzziness, occurring when membership degrees are uniformly 

distributed across all clusters. In practical applications, lower PEI values signify more 

definitive cluster assignments and reduced uncertainty, while higher values reflect increased 

ambiguity in the partitioning. This inverse relationship between PEI values and partition 

certainty makes it particularly valuable for assessing the reliability of fuzzy clustering 

algorithms in applications such as medical image segmentation, where uncertainty in tissue 

classification (tumor vs. healthy tissue in MRI) must be quantified. It is also applied in pattern 

recognition and bioinformatics to assess the reliability of fuzzy clustering results. 

5.2.4. Davies-Bouldin Index 

The Davies-Bouldin Index (DBI) is a metric for evaluating clustering algorithm 

performance by quantifying the trade-off between intra-cluster compactness and inter-cluster 

separation. Unlike validity measures that assess fuzzy partitions (like PCI or PEI), the DBI is 

specifically designed for crisp clustering solutions. In the case of soft clustering, it is used 

after defuzzification step of data affectation. The DBI is defined as: 

 

𝐷𝐵𝐼 =  
1

𝐶
∑

𝑚𝑎𝑥
𝑖 ≠ 𝑗 (

𝑆𝑖 + 𝑆𝑗

𝐷𝑖,𝑗
)

𝐶

𝑖=1

 
                                                                

(4.12) 

Where Si is the mean distance between the center of the cluster I and all the points 

belonging to this cluster and Di,j denotes the distance between the centroids of the clusters I 

and J. 
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The DBI produces strictly non-negative values, with lower values indicating superior 

clustering quality. The index approaches its theoretical optimum of zero when clusters exhibit 

both high intra-cluster compactness and strong inter-cluster separation. As a comparative 

metric, the DBI should be minimized when evaluating alternative clustering solutions. The 

index offers three key advantages: (1) its intuitive interpretation directly captures the 

separation-to-compactness ratio, providing immediate insights into cluster validity; (2) 

inherent scale invariance ensures consistent performance across differently scaled datasets, as 

distances are normalized relative to cluster dispersion; and (3) computational efficiency, 

requiring only centroid positions and dispersion measures. These characteristics make the DBI 

particularly valuable for medical image analysis, where rapid evaluation of tissue 

segmentation quality is often required. 

5.3. Experimental results on Simulated Brain MR Images 

The following experiments were conducted using Simulated Brain Database (SBD1). 

The SBD provides synthetic MRI brain images with known ground truth segmentations, 

making it ideal for validating segmentation algorithms. The images simulate different 

intensity inhomogeneities, and slice thicknesses, mimicking real-world MRI challenges. This 

database includes ground truth information for tissue of white matter (WM), and grey matter 

(GM), and cerebrospinal fluid spaces (CSF). It offers a controlled setting to assess the 

algorithm’s accuracy and its ability to handle intensity inhomogeneity effectively. 

The proposed Hybrid FCM-ABC method was initially tested on a T1-weighted brain 

MRI images with dimensions of 217 × 181 pixels, which includes 20% grayscale non-

uniformity to simulate real-world imaging challenges (cf.fig.4.8). The main objective of our 

proposed method is to accurately segment and identifies critical brain regions, namely WM, 

GM and CSF. These tissue types are fundamental for radiologists in their analysis and 

diagnosis of various neurological disorders and diseases. Figure 4.8 shows three T1-weighted 

brain MRI images in X87, X94 and X105 planes. 

5.3.1. Clusters number detecting 

First, we will show the ability of our method to find the right number of cluster centers 

and how to converge to this right number across iterations.  

Several images are tested. For illustrating this outcome, we have chosen two T1 

weighted images in X94 and X105 planes. Both images have four clusters namely WM, GM, 

CSF and the background. 

The presented figures 4.9 and 4.10 illustrate the evolution of a clustering performance 

metric across increasing computational cycles (from 0 to 300, in increments of 30) for cluster 

numbers ranging from 2 to 10. A critical analysis of the both images strongly suggests that 4 

clusters represent the optimal partitioning, as evidenced by its superior and sustained 

performance over alternative cluster counts. This conclusion is supported by three key 

                                                
1 Brain Web: Simulated Brain Database, http://brainweb.bic.mni.mcgill.ca/brainweb/, accessed 20 September 2024. 
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observations: performance dominance, robustness over iterations, and resistance to 

overfitting.   

 

Original image 

Ground truth 

WM GM CSF 

 

X87 

   

 

X94 

   

 

X105 

   

Figure 4.8: Brain MRI images in X87, X94 and X105 planes with their 

ground truth 
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Figure 4.9: Evolution of clusters number across iterations for T1-weighted brain MRI 

image in X94 plane. 

 

 

Figure 4.10: Evolution of clusters number across iterations for T1-weighted brain MRI 

image in X105 plane. 

First, the performance dominance of 4 clusters is unequivocal. While all cluster counts 

begin with relatively comparable metrics at the initial cycle (5 bees for 4 clusters vs. 6 bees 

for 2 clusters and 7 bees for 7 clusters), the trajectory of 4 clusters diverges markedly as 

computational iteration progress. By the 300th iteration, the metric for 4 clusters peaks at 34 

bees, which is not only the highest value across all cluster counts but also around 8.5 times 

greater than its nearest competitor. This substantial gap underscores the capacity of 4 clusters 

to better capture the underlying structure of the images.   
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Second, the robustness of 4 clusters is demonstrated by its monotonic improvement 

over cycles. The metric for 4 clusters exhibits a steady and uninterrupted rise from 5 (at 0 

cycles) to 34 (at 300 iterations), indicating that additional computational iterations refine and 

enhance the clustering solution. This behavior contrasts sharply with other cluster counts, 

such as 5 or 6, which plateau or decline after an initial period of competitiveness (5 clusters 

peaks at 8 bees by 90 cycles before regressing to 4 bees). Such trends suggest that these 

cluster counts may initially approximate the data structure but ultimately fail to generalize 

effectively as the algorithm iterates.   

Finally, the resistance to overfitting further solidifies the superiority of 4 clusters. 

Higher cluster counts (7–10) exhibit a precipitous decline in performance, with metrics often 

collapsing to 1 bee or 2 bees by later cycles. This pattern is characteristic of overfitting, 

wherein the clustering algorithm imposes excessive granularity, resulting in partitions that are 

overly sensitive to noise rather than meaningful data patterns. The fact that 4 clusters avoids 

this pitfall while still achieving the highest absolute performance underscores its optimal 

balance between model complexity and generalizability.   

In conclusion, the empirical evidence overwhelmingly supports 4 clusters as the 

optimal choice. It achieves the highest performance metric, demonstrates consistent 

improvement with additional computational cycles, and avoids the pitfalls of underfitting 

(seen in 2–3 clusters) and overfitting (seen in 7+ clusters). These findings align with 

established principles of cluster analysis, wherein the ideal number of clusters maximizes 

inter-cluster dissimilarity and intra-cluster homogeneity without succumbing to noise. Future 

work could explore the theoretical underpinnings of why 4 clusters emerges as optimal—

potentially reflecting latent subpopulations or natural divisions within the data—but the 

present data robustly validates this selection. 

5.3.2. Segmentation results 

Figures 4.11, 4.12 and 4.13 provide a visual representation of the segmentation results, 

allowing for a direct comparison of the performance of FCM and the proposed Hybrid FCM-

ABC method. To provide context, the original T1-weeighted brain images in X87, X94 and 

X105 planes and their corresponding ground truths for WM, GM, and CSF are shown in 

Figure 4.8. The segmented images are produced by the FCM and the Hybrid FCM-ABC 

method for the three images. These three image are also corrupted by four level of noise (the 

noise is calculated relative to the brightest tissue) 3%, 5%, 7%, and 9%.  

From these figures, it is clear that the proposed Hybrid FCM-ABC method 

outperforms FCM method in terms of accurately extracting brain tissues. A closer 

examination reveals that the Hybrid FCM-ABC method effectively maintains regional 

homogeneity, ensuring that the segmented regions are consistent and uniform.  

At 3% noise, the standard FCM method struggles with slight blurring effects, leading 

to minor inaccuracies in boundary detection. In contrast, the Hybrid FCM-ABC 
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method maintains sharper edges and more precise segmentation due to the Artificial Bee 

Colony (ABC) optimization, which refines cluster centers for better accuracy. When noise 

increases to 5%, the traditional FCM method begins producing false clusters as noise 

interference disrupts its clustering process. However, the Hybrid FCM-ABC demonstrates 

superior structural integrity preservation, showcasing its enhanced noise resistance. At higher 

noise levels (7% and 9%), the FCM method suffers from severe degradation, with a 

significant number of misclassified pixels. While the Hybrid FCM-ABC also experiences 

some noise-induced artifacts, it consistently outperforms FCM in maintaining segmentation 

quality. 

The integration of ABC optimization helps the Hybrid FCM-ABC method avoids local 

minima, ensuring more stable and reliable segmentation even in noisy conditions. This 

demonstrates the robustness of the proposed hybrid approach compared to conventional FCM. 

Noise 

level 

Original 

image 
FCM Hybrid FCM-ABC Method 

0% 

   

3% 

   

5% 

   

7% 

   

9% 

   

Figure 4.11: Segmentation of MRI T1 image in X87 plane 
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Figure 4.12: Segmentation of MRI T1 image in X94 plane 
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Figure 4.13: Segmentation of MRI T1 image in X105 plane 

To confirm the visual representation performance, we have calculated the Jaccard 

Similarity index for the fourth clusters detected by our proposal method. Table 1 compares 

the accuracy and reliability outcomes obtained from FCM and Hybrid FCM-ABC method 

algorithms. 

Table 4.1: Jaccard similarity scores for White Matter (WM), Gray Matter (GM) and 

Cerebrospinal Fluid (CSF) segmentation across FCM and Hybrid FCM-ABC method 

Noise 
level 

Method 
Image X87 Image X94 Image X105 

WM GM CSF WM GM CSF WM GM CSF 

0% 

FCM 0.8876 0.8057 0.8092 0.8854 0.8107 0.8213 0.8695 0.8402 0.8184 

Proposed 
method  

0.9135 0.8516 0.9106 0.9065 0.8556 0.9116 0.9122 0.8506 0.9076 

3% 

FCM 0.8546 0.7857 0.7962 0.8514 0.7916 0.8076 0.8373 0.8225 0.8002 

Proposed 
method  

0.9008 0.8377 0.8816 0.8985 0.8406 0.8836 0.9009 0.8396 0.8817 

5% 

FCM 0.8196 0.7437 0.7582 0.8194 0.7503 0.7782 0.7939 0.7881 0.7719 

Proposed 
method  

0.8886 0.8164 0.8662 0.8719 0.8192 0.8689 0.8805 0.8114 0.8563 

7% 

FCM 0.7854 0.7089 0.7175 0.7798 0.7116 0.7372 0.7506 0.7461 0.7489 

Proposed 
method  

0.8716 0.8019 0.8445 0.8578 0.8013 0.8494 0.8683 0.7985 0.8401 

9% 

FCM 0.7419 0.6713 0.6883 0.7393 0.6889 0.7063 0.7187 0.7206 0.7129 

Proposed 
method  

0.8467 0.7874 0.8285 0.8218 0.7890 0.8298 0.8323 0.7703 0.8284 

Under noise-free conditions (0% noise), the proposed Hybrid FCM-ABC method 

demonstrates consistent superiority over conventional FCM across all tissue types. This 
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advantage is particularly pronounced in CSF segmentation, where the Hybrid FCM-ABC 

achieves a Jaccard score of 0.9106 compared to FCM's 0.8092 in Image X87, indicating that 

the ABC optimization significantly improves fluid-boundary detection. As noise levels 

increase from 3% to 9%, the standard FCM exhibits substantial performance degradation, 

with CSF segmentation accuracy in Image X87 dropping from 0.8092 to 0.6883. In contrast, 

the Hybrid FCM-ABC maintains significantly higher accuracy, preserving a CSF 

segmentation score of 0.8298 in Image X94 at 9% noise versus FCM's 0.7063. 

A tissue-wise analysis reveals that the proposed method provides consistent 

improvements across all tissue types, with particularly strong performance in WM 

segmentation (5-10% higher Jaccard scores than FCM) and exceptional noise resilience in 

WM segmentation. While GM segmentation shows more modest improvements, the method's 

advantage remains evident. Image-specific variations demonstrate that the Hybrid FCM-ABC 

consistently enhances segmentation quality, with Image X94 showing particularly strong CSF 

improvements, suggesting superior handling of complex fluid boundaries. 

These findings have important clinical implications, as reliable GM and WM 

segmentation under noisy conditions is crucial for diagnosing conditions like hydrocephalus 

and cerebral atrophy. While the Hybrid FCM-ABC shows remarkable noise robustness, its 

performance decline at 9% noise indicates that extreme noise conditions may require 

additional pre-processing denoising steps. Future research should explore integration with 

deep learning-based denoising approaches to further enhance performance in high-noise 

environments. The demonstrated superiority of Hybrid FCM-ABC suggests strong potential 

for improving automated MRI analysis in clinical settings. 

Furthermore, figure 4.14 provides also a visual representation of the segmentation 

results for a T1-weighted MRI image in X89, allowing for a direct comparison of the 

performance of four different algorithms: FCM, GA-FCM, FCMA-ES, and the proposed 

Hybrid FCM-ABC method. To provide context, the original brain image is shown in Figure 

4.14(a), while its corresponding ground truths for WM, GM, and CSF are displayed in Figure 

4.14(b). The segmented images produced by the FCM, GA-FCM, FCMA-ES, and Hybrid 

FCM-ABC methods are presented in Figures 4.14(c), 4.14(d), 4.14(e), and 4.14(f), 

respectively.  

From this figure, it is clear that the proposed method outperforms the other methods in 

terms of accurately extracting brain tissues. A closer examination reveals that the Hybrid 

FCM-ABC method effectively maintains regional homogeneity, ensuring that the segmented 

regions are consistent and uniform. Additionally, the algorithm preserves more detailed 

information from the original MR image, which is crucial for maintaining the integrity of the 

anatomical structures being analyzed. This ability to retain fine details is particularly 

advantageous in medical imaging applications, where subtle variations in tissue types can 

have significant diagnostic implications.  

We remark also that the Hybrid FCM-ABC method demonstrates superior 

performance in delineating the boundaries between different tissue types. It accurately marks 
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out the WM and GM regions, ensuring that these critical structures are well-defined and 

distinct achieving a level of precision that surpasses the other methods.  

 

a) Original image 

 

b) Ground truth 

Image 

(WM, GM, CSF) 

       

c) FCM  

 

d) GA-FCM  

 

e) FCMA-ES  

 

f) Hybrid FCM-

ABC method  

 

Figure 4.14: Segmentation results of the four methods on the Simulated MRI Image. 
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5.4. Experimental results on clinical brain MR images 

To further evaluate the performance of the proposed method, real clinical MRI images 

were selected from the Open Access Series of Imaging Studies (OASIS) dataset2. OASIS is a 

publicly available dataset containing real brain MRI scans from healthy and Alzheimer’s 

disease patients. It includes T1-weighted images with diverse anatomical variations and 

pathologies. It ensures the algorithm’s applicability to real-world clinical data, including 

pathological cases, enhancing its practical utility. 

Experiments were conducted on multiple images from this database. The performance 

of the proposed Hybrid FCM-ABC method was compared with the FCM and FCMA-ES 

[Debakla et al., 2019] methods. The effectiveness of the three methods was evaluated using 

the DBI, PCI and PEI metrics where the results are shown in Table 4.2. 

Table 4.2: Performance results with DBI, PCI and PEI metrics on the clinical 

brain MR Images 

Original image Index FCM 
FCMA-

ES 

Hybrid FCM-ABC 

method 

Image1 

DBI 0.42 0.41 0.36 

PCI 0.90 0.92 0.96 

PEI 0.19 0.15 0.12 

Image 2 

DBI 0.44 0.42 0.43 

PCI 0.89 0.93 0.91 

PEI 0.21 0.19 0.14 

Image 3 

DBI 0.52 0.47 0.42 

PCI 0.87 0.89 0.92 

PEI 0.23 0.22 0.16 

Image 4 

DBI 0.46 0.45 0.46 

PCI 0.88 0.89 0.88 

PEI 0.21 0.21 0.21 

Image 5 

DBI 0.61 0.38 0.41 

PCI 0.85 0.95 0.91 

PEI 0.31 0.13 0.18 

Image 6 

DBI 0.46 0.39 0.37 

PCI 0.89 0.94 0.96 

PEI 0.22 0.15 0.12 

Image 7 

DBI 0.45 0.49 0.42 

PCI 0.89 0.88 0.91 

PEI 0.23 0.24 0.21 

Image 8 
DBI 0.51 0.46 0.43 

PCI 0.86 0.89 0.91 

                                                
2 Open Access Series of Imaging Studies (OASIS) dataset: https://sites.wustl.edu/oasisbrains, accessed 20 September 2024. 

https://sites.wustl.edu/oasisbrains
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PEI 0.25 0.21 0.19 

Image 9 

DBI 0.44 0.41 0.42 

PCI 0.88 0.93 0.93 

PEI 0.21 0.19 0.19 

Image 10 

DBI 0.46 0.41 0.41 

PCI 0.87 0.93 0.93 

PEI 0.22 0.18 0.19 

Mean result 

DBI 0.47 0.43 0.41 

PCI 0.87 0.91 0.92 

PEI 0.23 0.19 0.17 

 

Figure 4.15 illustrates the segmentation results obtained from processing 10 brain 

images using three different methods: FCM, FCMA-ES, and the proposed Hybrid FCM-ABC 

method. The figure is organized into four columns for ease of comparison. The first column 

displays the original images, providing a reference for the subsequent segmentation outcomes. 

The second column shows the results produced by the traditional FCM algorithm, while the 

third column presents the segmentations generated by the FCMA-ES method. Finally, the 

fourth column highlights the segmentations achieved using the proposed Hybrid FCM-ABC 

method approach.  

By visually comparing the segmented images across the three methods, it becomes 

evident that the Hybrid FCM-ABC method offers superior performance in terms of clarity, 

detail preservation, and accurate delineation of tissue boundaries.  
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Image 6 

    

Image 7 

    

Image 8 

    

Image 9 

    

Image 10 

    

 
Figure 4.15 Segmentation results on the clinical brain MR Images with 

FCM, FCMA-ES and Hybrid FCM-ABC method. 

From the results presented in Table 4.2, a detailed comparison between the proposed 

method and the traditional FCM and FCMA-ES algorithms reveals that our algorithm 

consistently achieves superior performance across various evaluation metrics. These metrics 

provide a comprehensive assessment of the clustering quality, highlighting the strengths of 

the proposed approach in terms of both compactness and separation of clusters, as well as the 

clarity and certainty of cluster assignments.  

Firstly, when considering the Davies-Bouldin Index (DBI), which evaluates the quality 

of clustering by simultaneously assessing the compactness of individual clusters and their 

separation from one another, our algorithm demonstrates a significant advantage. In this 

regard, our algorithm achieved an average DBI value of 0.41, which is notably lower than 

those obtained by the FCM and FCMA-ES methods. This result strongly suggests that the 

proposed method is more effective at ensuring that the final clusters in the image are well-

defined and distinctly separated, thereby improving the overall segmentation quality.  

Secondly, the Partition Coefficient Index (PCI) further corroborates the superiority of 

our algorithm. The PCI measures the degree of fuzziness in the clustering process, with higher 

values indicating clearer partitioning and less overlap between clusters. Our algorithm 

achieved an impressive average PCI value of 0.92, surpassing the results of the other 

methods. This high PCI value, which remains consistent across all test images, indicates that 

the cluster memberships are predominantly closer to 0 or 1. In other words, the data points are 

assigned to clusters with greater certainty, resulting in reduced fuzziness and a more definitive 

partitioning of the image.  

Lastly, the Partition Entropy Index (PEI) provides additional evidence of the 

robustness of our algorithm. The PEI quantifies the uncertainty or randomness in the 
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membership assignments, with lower values reflecting more certain and well-defined clusters. 

Our algorithm achieved an exceptionally low average PEI value of 0.17, significantly 

outperforming the other methods. This low PEI value underscores the minimal overlap 

between clusters and highlights the algorithm's ability to assign data points to clusters with 

greater confidence and precision.  

The visual comparison presented in figure 4.15 aligns with the quantitative evaluations 

presented in table 4.2, reinforce the conclusion that the proposed Hybrid FCM-ABC method 

represents a significant advancement in brain MRI image segmentation. 

In order to show more effectiveness of our proposal, its performance is compared with 

other related works. 

The Jaccard similarity scores presented in Table 4.3 provide a comprehensive 

comparison of various fuzzy clustering methods for segmenting White Matter (WM) and 

Gray Matter (GM) in brain MRI images. The proposed Hybrid FCM-ABC method 

demonstrates superior performance, achieving the highest Jaccard scores for both WM (0.91) 

and GM (0.83) segmentation. This indicates that our method better captures the complex 

tissue boundaries and spatial distributions compared to existing approaches. The improved 

performance of our method can be attributed to several factors. First, the ABC optimization 

helps escape local minima during clustering, leading to more accurate segmentation. Second, 

the adaptive parameter tuning in our approach better handles the intensity inhomogeneity 

common in brain MRI, particularly in GM regions. Third, the method demonstrates robust 

performance across both tissue types, unlike some approaches that excel in one but falter in 

the other.  

 

Table 4.3: Jaccard similarity scores for White 

Matter (WM) and Gray Matter (GM) segmentation 

across different fuzzy clustering methods 

Method WM GM 

GA-FCM [Debakla et al., 2019] 0.89 0.83 

FCMA-ES [Debakla et al., 2019] 0.91 0.82 

FSMIB [Hu et al., 2021] 0.85 0.79 

AFCM  [Song et al., 2018]   0.82 0.71 

LDCFCM [Dogra et al., 2020] 0.83 0.74 

FCM [Ghazi & Meftah, 2023]  0.88 0.80 

Hybrid FCM-ABC method  0.91 0.83 

 

The Partition Coefficient Index (PCI) and Partition Entropy Index (PEI) scores in 

Table 4.4 provide crucial insights into the effectiveness of different fuzzy clustering 

algorithms. Our proposed hybrid FCM-ABC method demonstrates superior performance, 

achieving the highest PCI score (0.92) and one of the lowest PEI scores (0.17), indicating 

excellent clustering quality with minimal uncertainty. 
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The proposed method's PCI score of 0.92 surpasses all other approaches, including 

FQABC (0.90) and FPSOFCM/DPSO (both 0.89). This significant improvement suggests our 

proposed method produces more distinct and well-separated partitions. The standard FCM 

[Ghazi, 2023] shows the weakest PCI performance (0.70), highlighting the limitations of 

conventional fuzzy clustering without optimization. Notably, while FABC [Feng et al., 2018] 

incorporates ABC principles, its PCI (0.81) is substantially lower than our method, 

emphasizing the importance of our specific implementation improvements. 

Our method's PEI score of 0.17 is only slightly better than DPSO (0.18) and 

significantly lower than FABC (0.36) and standard FCM (0.42). This indicates our clusters 

have less ambiguity and overlap compared to these methods. Interestingly, FQABC (0.18) 

and FPSOFCM (0.21) show competitive PEI scores, but our method maintains an advantage 

while also achieving superior PCI performance. The high PEI of FABC (0.36) suggests that 

while basic ABC integration helps, our enhanced approach better manages partition 

uncertainty. 

 

Table 4.4: PCI and PEI scores for various fuzzy 

clustering algorithms 

Method PCI PEI 

AFCM [Song et al., 2018] 0.86 0.07 

FPSOFCM [Semchedine & 

Moussaoui, 2018]  

0.89 0.21 

FABC [Feng et al., 2018]  0.81 0.36 

FQABC [Feng et al., 2018] 0.90 0.18 

FCM [Ghazi &Mefath, 2023] 0.70 0.42 

DPSO [Li & Wen, 2015]  0.89 0.18 

Hybrid FCM-ABC method  0.92 0.17 

6. Discussion  

The experimental results presented in this study demonstrate the effectiveness and 

superiority of the proposed Hybrid FCM-ABC method for brain MRI image segmentation. By 

integrating the Artificial Bee Colony (ABC) algorithm with the Fuzzy C-Means (FCM) 

framework, our method addresses several key limitations of traditional FCM. Limitations 

include sensitivity to initialization, local minima, and the need for prior knowledge of the 

number of clusters. The results highlight the robustness, accuracy, and adaptability of our 

proposal, making it a promising tool for medical image analysis. The implication of the 

results is summarized as follows:  

a) Improved Segmentation Accuracy: 

 The Hybrid FCM-ABC method consistently outperformed traditional FCM, GA-FCM, 

and FCMA-ES methods across both simulated and clinical datasets. This is evidenced 

by higher Jaccard Similarity (JS) values for critical brain tissues such as white matter 

(WM), gray matter (GM), and cerebrospinal fluid (CSF). For example, on the 
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simulated dataset, the Hybrid FCM-ABC method achieved an average JS score of 

0.8917, surpassing the scores of FCM (0.86), GA-FCM (0.87), and FCMA-ES (0.88). 

 The improved accuracy is particularly significant in clinical applications, where 

precise segmentation of brain tissues is crucial for diagnosing and monitoring 

neurological disorders such as Alzheimer's disease, brain tumors, and ischemic 

strokes. The ability of the Hybrid FCM-ABC method to maintain region homogeneity 

while preserving fine details ensures that subtle anatomical structures are accurately 

delineated. This is essential for reliable diagnosis and treatment planning. 

b) Superior Clustering Quality: 

 The evaluation using internal validation indices such as the Davies-Bouldin Index 

(DBI), Partition Coefficient Index (PCI), and Partition Entropy Index (PEI) further 

underscores the superiority of the Hybrid FCM-ABC method. Our method achieved an 

average DBI of 0.41, indicating well-defined and distinctly separated clusters. 

Additionally, the high PCI value of 0.92 and low PEI value of 0.17 suggest that the 

clustering results are less fuzzy and more certain, with minimal overlap between 

clusters. 

 These results are particularly significant in the context of brain MRI segmentation, 

where overlapping intensity distributions between tissues (like GM and WM) often 

lead to ambiguous clustering results. The Hybrid FCM-ABC method's ability to 

produce clear and definitive clusters ensures more accurate and interpretable 

segmentation outcomes. 

 

7. Conclusion 

In this work, we have successfully introduced a novel Hybrid FCM-ABC method that 

addresses a significant limitation in traditional Fuzzy C-Means (FCM)-based brain MRI 

image segmentation. By integrating the strengths of the Artificial Bee Colony (ABC) 

algorithm with the FCM framework, the proposed method enhances the performance, 

robustness, and adaptability of the segmentation process. A key innovation of our approach 

lies in its ability to simultaneously optimize multiple critical parameters of the FCM 

algorithm, including the objective function, the number of clusters, and the initial cluster 

center values. This capability significantly improves the flexibility and accuracy of the 

segmentation process, enabling it to better handle the complexities inherent in medical 

imaging data. 

Our experimental results, conducted on both simulated (SBD) and clinical (OASIS) 

brain MRI datasets, demonstrate the effectiveness and superiority of the proposed Hybrid 

FCM-ABC method compared to conventional approaches such as standard FCM, Genetic 

Algorithm-based FCM, and Fuzzy Covariance Matrix Adaptation Evolution Strategy. The 

proposed method consistently achieved higher accuracy, as measured by metrics such as 

Jaccard Similarity, Partition Coefficient Index, Partition Entropy Index, and Davies-Bouldin 

Index, across diverse imaging conditions, including varying intensity inhomogeneity. 
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One of the standouts features of the proposed method is its ability to maintain region 

homogeneity while preserving detailed information from the original MR images. This is 

essential for accurately segmenting critical brain regions, such as gray matter, white matter, 

and cerebrospinal fluid, which are often challenging due to their subtle intensity variations 

and spatial overlaps. The Hybrid FCM-ABC method's robustness to noise and its ability to 

handle pathological cases further highlight its potential for real-world clinical applications. 

Future research directions for the proposed method include extending it to multi-

modal MRI data to enhance segmentation accuracy and robustness, optimizing the Hybrid 

FCM-ABC method for real-time applications such as surgical planning and intraoperative 

imaging, and generalizing its use to other imaging modalities like CT and PET for broader 

applicability. 
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1. Introduction 

Clustering is a fundamental task in unsupervised machine learning and data mining. It 

aims to partition a dataset into homogeneous groups, or clusters, such that data points within a 

cluster are more similar to each other than to those in other clusters. Despite its widespread 

use, one of the key challenges in clustering is the evaluation of the clustering quality, 

particularly in the absence of ground truth labels. This has led to the development of Cluster 

Validity Indices (CVIs), which are quantitative metrics used to assess the quality of clustering 

results in unsupervised machine learning. In the context of image segmentation, CVIs play a 

crucial role in determining the effectiveness of the segmentation. Unlike supervised learning, 

where ground truth labels are available for validation, unsupervised segmentation relies on 

CVIs to objectively evaluate clustering performance. 

The reliability and objectivity of clustering outcomes largely depend on the choice of 

the validity index. Especially in medical image field, without proper validation, clustering-

based segmentation may lead to over-segmentation (too many small regions) or under-

segmentation (too few merged regions). CVIs provide an automated way to measure 

segmentation quality by evaluating intra-cluster compactness and inter-cluster separation. By 

using CVIs, researchers and practitioners can fine-tune clustering algorithms, compare 

different segmentation techniques, and ensure robustness in real-world applications where 

manual validation is impractical.  

In the field of cluster analysis, cluster validity is a very important and large topic 

[Milligan, 1985][Dubes, 1980]. The main purpose of any cluster validity index (CVI) is to 

find the optimal number of clusters that corresponds to the natural partition of the given data, 

image in our case.  CVI focuses on incorporating measures of compactness and separation 

[Liu, 2021] [Liang, 2012] [Lie & Bailey, 2014] [Bezdek, 2016]. In image segmentation field, 

compactness measures the concentration of pixels belonging to the same cluster around the 

cluster center while separation represents isolation of clusters from each other. 

Since images lack prior reference information, determining the optimal number of 

clusters remains a significant challenge. In this work we develop a novel fuzzy index based on 

Kullback-Leibler Divergence (KL-Divergence) that allows getting the right number of 

clusters for a given image. 

2. Categories of Cluster Validity Indices   

Cluster Validity Indices can be broadly classified into two categories: internal indices 

and external indices. Internal indices evaluate clustering quality based solely on the intrinsic 

properties of the data, making them suitable for unsupervised scenarios. External indices, on 

the other hand, compare clustering results against a known ground truth, which is useful for 

benchmarking but requires labeled data. The choice of CVI depends on the availability of 

reference data and the specific goals of the segmentation task.   
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2.1. Internal Validity Indices   

Internal indices are evaluation metrics used to assess clustering quality without relying 

on external labels or ground truth data. These indices focus solely on the intrinsic structure of 

the dataset, analyzing aspects such as cluster compactness, separation, or density. Since they 

are unsupervised and data-driven, internal indices are especially useful in exploratory data 

analysis or scenarios where labeled data is unavailable. Common examples include the 

Silhouette Coefficient [Rousseeuw, 1987], which balances intra-cluster cohesion with inter-

cluster separation (max values indicates better clustering); the Davies-Bouldin Index [Davies, 

1979], which evaluates clustering by comparing within-cluster scatter to between-cluster 

distance (with lower values indicating better clustering); and the Calinski-Harabasz Index 

[Calinski, 1974], which measures the ratio of between-cluster dispersion to within-cluster 

variance (with higher values indicating better performance). 

Internal CVIs are widely used in image segmentation because they do not require prior 

knowledge of true clusters. Some commonly used internal indices include:   

 Davies-Bouldin Index (DBI) [Davies, 1979]: This index measures the average 

similarity between each cluster and its most similar counterpart. A lower DBI 

indicates better clustering, as it reflects compact and well-separated clusters.   

 Dunn Index [Dunn, 1973]: The Dunn Index evaluates the ratio of the smallest 

inter-cluster distance to the largest intra-cluster distance. A higher value 

suggests better-defined clusters.   

 Silhouette Coefficient [Rousseeuw, 1987]: This index quantifies how similar a 

pixel is to its own cluster compared to other clusters. Scores range from -1 to 1, 

where higher values indicate better clustering.   

 Calinski-Harabasz Index (CHI) [Calinski, 1974]: Also known as the Variance 

Ratio Criterion, CHI computes the ratio of between-cluster variance to within-

cluster variance. A higher value indicates more distinct clustering.   

2.2. External Validity Indices   

External validity indices are supervised metrics used to evaluate the quality of 

clustering results by comparing them against a known ground truth. These indices provide an 

objective means of assessing how well the predicted clusters correspond to actual labels, 

making them especially useful for model evaluation, algorithm comparison, and supervised 

segmentation tasks.  

These indices are particularly useful in benchmarking studies. Key external indices 

include:   

 The Adjusted Rand Index (ARI) [Hubert & Arabie, 1985] measures the 

similarity between the predicted and true clusterings, correcting for chance 

agreements.  
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 The Normalized Mutual Information (NMI) [Estévez et Al, 2009] quantifies 

the mutual dependence between cluster assignments and ground truth labels, 

normalized to account for varying cluster sizes. 

  The Fowlkes–Mallows Index (FMI) [Fowlkes & Mallows, 1983] evaluates 

clustering quality as the geometric mean of precision and recall for all pairwise 

sample comparisons. 

  The Jaccard Index (JI) [Jaccard, 1901] computes the similarity between sets 

by dividing the number of data point pairs that are clustered together in both 

the predicted and true clusterings by the total number of pairs that are clustered 

together in at least one of them.  

 The Similarity Index (SI) [Zhang, 2006], often used more generally, assesses 

the proportion of agreement between clustering labels and ground truth labels 

over all possible pairings.  

Together, these external indices offer a robust framework for quantitatively validating 

clustering models when labeled data is available. 

 The table bellow describes the major differences between internal and external 

indices.  

Table 5.1 : Difference between internal and external indices 

Criterion Internal Indices  External Indices 

Data Requirement Unlabeled data  Labeled ground truth 

Typical Use Case Exploratory clustering  Model validation 

Strengths No need for labels  Objective evaluation 

Weaknesses 
May lack 

interpretability 
 Requires labeled data 

Cluster validity indices are used across numerous domains: 

Bioinformatics: clustering gene expression profiles to find biologically relevant 

groups. 

Marketing: segmenting customers into target groups. 

Text Mining: identifying topics in document corpora. 

Image Processing: segmenting images based on pixel similarity. 

Cybersecurity: clustering user behavior for anomaly detection. 

When applying CVIs to image segmentation, several factors must be considered to 

ensure meaningful results. First, the choice of index should align with the segmentation 



Chapter 5:                                                   Fuzzy Validity Index based on Kullback-Leibler Divergence 

110 

 

objective, internal indices for unsupervised tasks and external indices for validation against 

ground truth. Second, computational efficiency matters must be regarded, especially for high-

resolution images where clustering can be time-consuming. Finally, some CVIs may favor 

certain types of clusters (spherical vs. irregular shapes), so multiple indices should be tested 

for comprehensive evaluation.   

3. Cluster validity index for fuzzy clustering algorithms 

Fuzzy cluster validity indices are metrics used to evaluate the quality of fuzzy 

clustering results, where data points can belong to multiple clusters with varying degrees of 

membership (unlike crisp clustering, where each point belongs to exactly one cluster). These 

indices help determine: 

 Optimal number of clusters (in Fuzzy C-Means). 

 Quality of fuzzy partitions (how well-separated or compact clusters are). 

 Algorithm performance (comparing FCM vs. other clustering algorithms). 

We will list some popular CVI.        

(i) The partition coefficient Index (PCI) and partition entropy Index(PEI) are proposed 

by Bezdeck [Bezdeck, 1984] in association with FCM Algorithm 

 

𝑃𝐶𝐼 =  
1

𝑁
∑ ∑ 𝑢𝑖𝑗

2

𝐶

𝑗=1

𝑁

𝑖=1

                                                                     (5.1) 

 

𝑃𝐸𝐼 =  
1

𝑁
∑ ∑ 𝑢𝑖𝑗

𝐶

𝑗=1

𝑁

𝑖=1

𝑙𝑜𝑔(𝑢𝑖𝑗)                                                   (5.2) 

 

PCI is a max optimum index and PEI is min optimum index. 

(ii) To reduce the monotonic tendency with C (number of cluster) of the both index PCI 

and PEI, Dave [Dave, 1996] proposed Modification of PCI (MPC). This index is 

defined as 

 

𝑀𝑃𝐶 =
𝐶 ∗ 𝑃𝐶𝐼 − 1

𝐶 − 1
                                                                  (5.3) 

 

(iii) Xie and Beni [Xie, 1991] defied a new CVI called in this paper XBI. It take 

account the fuzzy membership degrees and the structure of the data to be clustered in 

order to have compact and well-separated clusters. XBI is defined as 

 

𝑋𝐵𝐼 =  
𝐽𝑚(𝑈, 𝐶, 𝑋)

𝑁(𝑚𝑖𝑛𝑖,𝑗‖𝑐𝑖 − 𝑐𝑗‖)
                                                   (5.4) 
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where Jm is the fuzzy objective function of the FCM algorithm. XBI is a min optimum 

index. 

(iv) In the same way of XBI, Fukayama and Sugno [Fukuyama, 1989] defined another 

CVI called FSI as (FSI is a min optimum index): 

 

𝐹𝑆𝐼 =  𝐽𝑚(𝑈, 𝐶, 𝑋) − ∑ ∑ 𝑢𝑖𝑗
𝑚‖𝑐𝑗 − 𝑥̅‖

2
𝐶

𝑗=1

𝑁

𝑖=1

                         (5.5) 

 

where 𝑥̅ =
∑ 𝑥𝑖

𝑁
𝑖=1

𝑁
 , the mean of the whole data to be clustered.  

(v) The Separation-Compactness Index (SCI) [Zahid, 1999] is a fuzzy clustering validity 

metric that balances intra-cluster compactness and inter-cluster separation. SCI is 

min optimum index. It combines two functions SC1 and SC2: 

𝑆𝐶𝐼 = 𝑆𝐶1 +  𝑆𝐶2                                                                 (5.6) 

Where 𝑆𝐶1 conciders the geometrical properties and membership degrees of data, 

  

𝑆𝐶1 =
(

1

𝐶
∑ ‖𝐶𝑖 − 𝐶̅‖2𝐶

𝑖=1 )

∑ (∑ 𝑢𝑖𝑗
𝑚‖𝑥𝑖 − 𝑐𝑗‖

2𝑁
𝑗=1 ∑ 𝑢𝑖𝑗

𝑁
𝑗=1⁄ )𝐶

𝑖=1

                                       (5.7) 

and 𝑆𝐶2 considers only the properties of membership de greees, 

 

𝑆𝐶2 =  
∑ ∑ (∑ (min(𝑢𝑖𝑗, 𝑢𝑘𝑗))2 𝑛kj⁄N

j=1 )𝐶
𝑘=𝑖+1

𝐶−1
𝑖=1

(∑
𝑚𝑎𝑥

1 ≤ 𝑖 ≤ 𝐶
𝑁
𝑗=1 𝑢𝑖𝑗

2 ) (∑
𝑚𝑎𝑥

1 ≤ 𝑖 ≤ 𝐶
𝑁
𝑗=1 𝑢𝑖𝑗)⁄

                                             (5.8) 

Note that 𝑛𝑘𝑗 = ∑ min (𝑢𝑖𝑗 , 𝑢𝑘𝑗)𝑁
𝑗=1  

(vi) The CS Index [Chou, 2004] deals with clustering with different densities and/or 

sizes. It evaluates the ratio of compactness–separation of data objects and the 

centroids:  

 

𝑆𝐶2 =  

∑ (
1

|𝐶𝑖|
∑

𝑚𝑎𝑥

𝑥𝑖 ∈ 𝐶𝑖
𝑥𝑗∈𝐶𝑖

𝑑2(𝑥𝑖, 𝑥𝑗))𝐶
𝑖=1

∑
𝑚𝑖𝑛

𝑖 ≠ 𝑗
𝐶
𝑗=1 𝑑2(𝑐𝑖 , 𝑐𝑗)

                                             (5.9) 

 

 

(vii) The Davies-Bouldin Index (DBI) [Davies, 1979] measures the compactness 

and separation of clusters. It is defined as: 
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𝐷𝐵𝐼 =  
1

𝐾
∑

𝑚𝑎𝑥
𝑖 ≠ 𝑗 (

𝑆𝑖 + 𝑆𝑗

𝐷𝑖,𝑗
)

𝐾

𝑖=1

 
                                                                

(5.10) 

 

Where Si is the mean distance between the center of the cluster i and all the points 

belonging to this cluster and Di,j denotes the distance between the centroids of the clusters i 

and j. DBI is  min optimum index.  

(viii) The MBMF (Mean Bounded Membership Function) is a fuzzy max optimum 

clustering validity index that evaluates the crispness or definiteness of the clustering 

results. It is defined as 

 

𝑀𝐵𝑀𝐹 =
1

𝐶
∑

𝑚𝑎𝑥
𝑖

(𝑈𝑖𝑗)𝑁
𝑗=1                                           (5.11) 

 

(ix) The WLI (Wu-and-Li Idex) [Wu and Al, 2015] is a min optimum index designed for 

evaluating fuzzy clustering results. Its main characteristic is the introduction of the 

median distance between a pair of centroids. It evaluates the information about fuzzy 

compactness and separation of clusters as follows. 

 

𝑊𝐿𝐼 =  
𝑊𝐿𝑛

2∗𝑊𝐿𝑑
                                                   (5.12) 

Where WLn is the total fuzzy compactness of all the C clusters. It is defined as 

 

𝑊𝐿𝑛 = ∑
∑ 𝑢𝑖𝑗

𝑚𝑑2(𝑥𝑗,𝑐𝑖)𝑁
𝑗=1

∑ 𝑢𝑖𝑗
2𝑁

𝑗=1

𝐶
𝑖=1                                           (5.13) 

 

 And WLd  is the average of the minimum and median distances of a pair of centroids,  

 

𝑊𝐿𝑛 =
1

2
(

𝑚𝑖𝑛
𝑖 ≠ 𝑗

𝑑2(𝑐𝑖 , 𝑐𝑗) +
𝑚𝑒𝑑𝑖𝑎𝑛

𝑖 ≠ 𝑗
𝑑2(𝑐𝑖 , 𝑐𝑗))                      (5.14) 

 

 

(x) IMI [Liu, 2021] is also a min optimum index for evaluating fuzzy clustering results. 

It inspired from WLI. It deal with impact of the uniform effect on the separation and 

compactness metrics 

𝐼𝑀𝐼 =  

∑
∑ 𝑢𝑘,𝑗

𝑚 𝑑2(𝑥𝑗,𝑐𝑖)𝑁
𝑗=1

∑ 𝑢𝑖𝑗
2𝑁

𝑗=1

𝐶
𝑖=1

𝑚𝑖𝑛
𝑖≠𝑗

𝛿𝑖𝑗𝑑2(𝑐𝑖,𝑐𝑗)+ 
𝑚𝑒𝑑𝑖𝑎𝑛

𝑖≠𝑗
𝛿𝑖,𝑗𝑑2(𝑐𝑖,𝑐𝑗)

                         (5.15) 

where 𝛿𝑖𝑗 =
∑ 𝑢𝑖𝑙

𝑁
𝑙=1

∑ 𝑢𝑗𝑙
𝑁
𝑙=1

. 

               

The characteristics of the clustering validity index (CVIs) discussed above revolve 

around their ability to measure the quality of clustering by evaluating two main aspects: 
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compactness and separation. Compactness refers to the degree to which data objects within 

the same cluster are similar and closely packed, typically measured using intra-cluster 

distances such as between pairs of objects or between each object and the cluster centroid. In 

contrast, separation assesses how well distinct clusters are isolated, often using inter-cluster 

distances between centroids or between objects from different clusters. CVIs mentioned 

above incorporate fuzzy membership degrees and structural properties of clusters. Some 

CVIs, like PC and PE, focus solely on compactness, whereas others, like DBI, XBI, FSI, and 

SCI, account for both compactness and data structure but may not address compactness–

separation trade-offs at the cluster level. CVIs also differ in how they treat centroid distances: 

MBMF emphasizes maximum centroid distance (which can misrepresent image clustering), 

while XBI and CSI focus on the minimum. Simpler CVIs like PC and PE use membership 

degrees alone, whereas advanced ones also incorporate distance metrics averaged like FSI, 

minimal like XBI and CSI, or maximal (MBMF). Typically, CVIs are used as post-processing 

tools independent of the clustering method, helping determine the optimal number of clusters 

by identifying the value of number of clusters where the CVI reaches its maximum (PC, Dunn, 

SCI, WLI, IMI, …) or minimum (PE, DBI, XBI, FSI, CSI, …). 

For convenience, this chapter denotes a larger-the-better CVI as CVI+ and a smaller-

the-better CVI as CVI-. 

4. The Proposed CVI 

We propose a novel cluster validity index based on Kullback-Leibler Divergence 

(KL_index - Kullback-Leibler Index) for assessing fuzzy clustering performance [Mokhtari & 

Meftah, in press]. The proposed KL_index addresses two critical aspects of cluster validation: 

(1) it incorporates the Kullback-Leibler Divergence as a robust statistical measure of inter-

cluster separation, and (2) it provides a comprehensive evaluation framework for fuzzy 

partitioning quality. Unlike conventional validity indices that rely solely on geometric 

distances, KL_index quantifies the probabilistic divergence between cluster distributions, 

offering a more theoretically grounded approach to cluster validation. The index is 

particularly designed to overcome limitations of existing measures by accounting for both the 

compactness within clusters and the statistical separability between clusters through 

information-theoretic principles. 

4.1. Kullback-Leibler Divergence 

The Kullback-Leibler Divergence (KLD), also known as relative entropy, serves as a 

fundamental measure for quantifying the dissimilarity between two probability distributions 

[Kullback & Leibler, 1951] [van Erven & Harremoës, 2014]. Formally, for discrete 

probability distributions P and Q defined on the same probability space, the KLD from Q to P 

is given by: 

 

𝐷𝐾𝐿(𝑃‖𝑄) = ∑ 𝑃(𝑖)𝑙𝑜𝑔
𝑃(𝑖)

𝑄(𝑖)
𝑖

                                                                 (5.16) 

https://fr.wikipedia.org/wiki/Divergence_de_Kullback-Leibler
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where: 

- P represents the true distribution 

- Q denotes the approximate distribution 

- The summation is taken over all elements in the space 

KLD plays a crucial role in various applications, including data compression, 

statistical inference, machine learning, and communication systems. Below are key ways KLD 

is employed in information theory [Cover & Thomas, 2006], [Haarnoja and al, 2018]:  

Measuring Information Loss & Coding Efficiency: KLD quantifies the inefficiency 

of assuming a distribution Q (an approximate model) when the true distribution is P. In the 

context of source coding, it represents the number of extra bits required to encode data drawn 

from P using a code that is optimized for Q. The divergence 𝐷𝐾𝐿 (𝑃‖𝑄) gives the expected 

number of additional bits incurred due to this mismatch [Burnham, & Anderson, 2002]. 

Hypothesis Testing & Discrimination: KLD plays a key role in statistical hypothesis 

testing, where it is used to distinguish between two probability distributions. It appears in the 

Neyman-Pearson lemma, helping to define the optimal test that minimizes the Type II error 

(false negatives) for a given Type I error constraint. Additionally, the Chernoff-Stein lemma 

uses KLD to provide bounds on error probabilities in asymptotic settings, highlighting its 

importance in long-run statistical discrimination tasks [Pérez-Cruz, 2008]. 

Channel Capacity & Communication Theory [El Gamal & Kim, 2011] : In channel 

coding, KLD is instrumental in analyzing the capacity of noisy communication channels. The 

mutual information I(X; Y) between the input X and output Y of a channel can be expressed 

using as: 

 

I(X; Y) = DKL (PX,Y || PX * PY)                                            (5.17) 

 

where PX,Y is the joint distribution of  X and Y, and PX * PY is the product of their marginal 

distributions. 

This expression measures how much information the output Y reveals about the input 

X. Higher mutual information indicates a more informative (and potentially higher-capacity) 

communication channel. 

Maximum Likelihood Estimation & Model Selection [Grünwald & van Ommen, 

2017]: KLD is minimized when fitting models using maximum likelihood estimation (MLE), 

as MLE seeks the model that is closest to the true data-generating distribution in terms of 

KLD. Model selection criteria such as the Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC) are grounded in KLD, aiming to balance model fit and 

complexity by penalizing overfitting. Additionally, in expectation-maximization (EM) 

algorithms, KLD naturally arises in the optimization of the evidence lower bound (ELBO), 

guiding the iterative refinement of model parameters. 
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Machine Learning & Optimization: KLD is widely used in machine learning for 

optimization and inference [Murphy, 2012].  

In variational inference, it is minimized to approximate complex posterior 

distributions by selecting the closest distribution Q from a simpler family, minimizing DKL (Q 

|| P), where P is the true posterior. 

In generative adversarial networks (GANs) and other deep learning models, KLD or 

related measures like the Jensen-Shannon divergence often serves as a training objective to 

align model outputs with real data distributions. 

In reinforcement learning, KLD is used to constrain policy updates in policy gradient 

methods. Techniques such as Trust Region Policy Optimization (TRPO) and Proximal Policy 

Optimization (PPO) use KLD-based constraints to ensure stable and efficient learning. 

4.2. Structure of KL_index 

In a general context, clustering is a process of grouping or classifying a collection of 

objects into homogeneous clusters. Ideally, members of the same cluster are characterized by 

strong similarity to each other and strong dissimilarity to members of other clusters. In fuzzy 

classification methods such as FCM (Fuzzy C-Means) and its variants, each individual (a 

pixel in the case of images) is assigned a membership degree indicating its association with 

each cluster. This can be interpreted as the probability of belonging to a given cluster.  

Therefore, we will leverage this measure to compute the divergence between clusters resulting 

from a classification. By maximizing this measure, we ensure separation between the clusters.  

Like conventional CVIs, the KL_index is defined as the ratio between fuzzy 

compactness and separation measures. The distinguishing characteristic of KL_index lies in 

its explicit incorporation of Kullback-Leibler Divergence into the separation metric. 

4.2.1. Separation measure  

The notion of KLD divergence is based on two probability variables, P and Q. In our 

application, the proposed measure defines P and Q as follows: For each pixel j belonging to 

cluster i, if we define Pi,j as the membership probability of pixel j in cluster i, then Pi,j is 

simply 𝑈𝑖𝑗 (from FCM algorithms), i.e., Pi,j = 𝑈𝑖𝑗. 

Similarly, we define Qi,j as the sum of membership probabilities of pixel j to all other 

clusters (excluding cluster i). Thus, Qi,j represents the complement of the pixel’s membership 

probability in cluster i, meaning: 

Qi,j = 1 – Pi,j (i.e., Qi,j = 1 – 𝑈𝑖𝑗) since the sum of a pixel’s membership degrees across 

all clusters must equal 1. The figure below illustrates the principle of separation measure. The 

separation measure must ensure the isolation of the cluster Ci over the rest of clusters. 
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Figure 5.1: Principle of KLDCVI separation measurement 

 

The divergence of cluster i relative to the remaining clusters is defined as: 

 

𝑘𝑙𝑑𝑖 = ∑ 𝛿𝑖𝑗𝑈𝑖𝑗 ∗ 𝐿𝑜𝑔 (
𝑈𝑖𝑗

1 − 𝑈𝑖𝑗

)

𝑁

𝑗=1

                                (5.18) 

 

where 𝛿𝑖𝑗 = {
1           𝑖𝑓 𝑈𝑖,𝑗 = 𝑀𝑎𝑥(𝑈𝑖𝑗)     𝑖 = 1, … , 𝐶

0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                       .
 

 

According to this presentation, the separation measure named KLDIV is defined as the 

average divergence of the C clusters in the partition and it is reinforced by the separation 

metric defined in IMI Index [Liu, 2021]. This new separation metric is as follow:   

𝐾𝐿𝐷𝐼𝑉 =  
1

𝐶
∑ 𝑘𝑙𝑑𝑖

𝐶

𝑖=1

+
𝑚𝑖𝑛
𝑖 ≠ 𝑗

𝛿𝑖𝑗𝑑2(𝑐𝑖 , 𝑐𝑗) +  
𝑚𝑒𝑑𝑖𝑎𝑛

𝑖 ≠ 𝑗
𝛿𝑖,𝑗𝑑2(𝑐𝑖 , 𝑐𝑗)                     (5.19) 

4.2.2. Compactness measure  

The fuzzy compactness metric serves as a fundamental criterion in numerous CVIs, 

such as XBI, FSI, WLI and IMI indexes. Conventionally, this metric is mathematically 

defined as the aggregate compactness measure across all clusters. It is defined as: 

 

∑
∑ 𝑢𝑖𝑗

𝑚𝑑2(𝑥𝑗, 𝑐𝑖)𝑁
𝑗=1

∑ 𝑢𝑖𝑗
2𝑁

𝑗=1

𝐶

𝑖=1

                                                 (5.20) 

 

Building upon the mathematical foundations established in Equations (5.19) and 

(5.20), the KL_index is formally defined as: 
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KL_index =  

∑
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𝑚𝑖𝑛
𝑖 ≠ 𝑗

𝛿𝑖𝑗𝑑2(𝑐𝑖 , 𝑐𝑗) + 
𝑚𝑒𝑑𝑖𝑎𝑛

𝑖 ≠ 𝑗
𝛿𝑖,𝑗𝑑2(𝑐𝑖 , 𝑐𝑗)

                  (5.21) 

 

Like other CVIs, the KL_index assesses the compactness-separation trade-off in 

clustering.  

The numerator in Eq. (5.21) computes the average fuzzy distance of data points to all 

cluster centroids, smaller values indicate tighter, more compact clusters. This principle aligns 

with other CVIs, such as XBI, SCI, and MBMF. The denominator measures cluster 

separation, where a larger value signifies more distinct, well-separated clusters. Thus, lower 

KL_index values correspond to better clustering performance, as they reflect higher 

compactness and greater separation. 

5. Experiments 

5.1. Setup 

To demonstrate the effectiveness of our KL_index, several experiments are conducted 

on different images. In these experiments, the images were clustered using FCM with varying 

number of clusters. The clustering outcomes were assessed using a cluster validity index 

(CVI) to determine the optimal number of clusters. The proposed KL_index was compared 

against eleven established indexes mentioned in section (3). 

First, the proposed CVI was tested on synthetic image (img1). This later contains 6 

clusters (cf.Fig.5.2). The proposed CVI was also tested on four remote sensing images (img2, 

img3, img4, img5) from a prior study [Liu, 2021] (cf.fig.5.3). Each image measures 128 × 

128 pixels, comprising 16,384 3D data points with 24-bit RGB values (3D features) for 

clustering. 

In [Y. Liu 2021], domain experts determined the number of clusters by identifying 

distinct objects such as roads, sandbanks, sea areas, rooftops, and aircraft that clustering 

should resolve. Based on this, img2 and img4 were assigned 3–4 clusters, while img3 and 

img5 were assigned 4–5 clusters. Furthermore, KL_index was tested on medical images 

(cf.fig.5.4). img6 and img7 were assigned 4 clusters where img8 is assigned 3-4 clusters. 

For computational efficiency, all images were converted to grayscale prior to 

clustering. The bold numbers in tables below present optimum values. 

 

 



Chapter 5:                                                   Fuzzy Validity Index based on Kullback-Leibler Divergence 

118 

 

 
 

img1 
 

Figure 5.2. Synthetic image 
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Figure 5.3: Remote sensing images  
 

 

 

 
  

img6 img7 img8 

 

Figure 5.4: Medical images 
 

 

5.2. Results of synthetic image 

The analysis of clustering validity indices for img1 reported in table 5.2 and figure 5.5 

reveals compelling evidence that k=6 represents the optimal number of clusters. The 

KL_index, which serves as our primary metric (where lower values indicate better clustering), 

reaches its global minimum of 0.0 precisely at k=6. This strong signal is corroborated by 

multiple supporting indices: DBI- similarly achieves its ideal value of 0.0 at k=6, while PCI+, 

MPC+, FSI+, and MBMF+ all either peak or approach their maximum values at this cluster 

count. The convergence of these metrics suggests that six clusters provide an excellent 

balance between intra-cluster cohesion and inter-cluster separation. 

Several indices present interesting secondary patterns that warrant discussion. While 

SCI+ suggests k=4 might be viable (achieving 1.0), this recommendation stands in isolation 

against the broader consensus of other metrics. The IMI+ index shows a steady improvement 
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up to k=6 (0.9954), further reinforcing our primary conclusion. XBI- presents a more 

ambiguous pattern, peaking at k=5 before dropping sharply at k=6, which may indicate some 

local structural features in the data that merit further investigation in future analyses. 

Based on this comprehensive analysis, we confidently recommend k=6 as the optimal 

number of clusters for this image which is the right number. 

Table 5.2: Clustering validity index values vs number of clusters for img1  

k       DBI-       PCI+      PEI-      SCI+     CSI-     MPC+    XBI-       FSI+    MBMF+  WLI-    IMI+   kl_index- 

2      1.0000   0.0000   1.0000   0.0000   0.0000   0.0000   0.4687   0.0000   0.0000   1.0000   0.0000   1.0000 
3      0.2830   0.3660   0.7112   0.0843   0.0041   0.5267   0.1913   0.3976   0.3777   0.6121   0.6571   0.2791 

4      0.0726   0.7174   0.3389   0.1581   0.0102   0.8081   0.3709   0.7333   0.7089   0.5072   0.8465   0.0788 

5      0.2303   0.7002   0.4067   0.0824   0.0354   0.8144   1.0000   0.8088   0.7113   0.9477   0.8520   0.1804 

6      0.0000   0.9990   0.0000   1.0000   0.0530   0.9937   0.0000   0.9691   0.9915   0.0000   0.9954   0.0000 
7      0.1484   0.9817   0.0262   0.7091   0.1278   0.9863   0.6444   0.9681   0.9744   0.1088   0.9877   0.0093 

8      0.1413   0.9903   0.0211   0.6391   0.5247   0.9927   0.0219   0.9847   0.9902   0.0762   0.9952   0.0240 

9      0.2398   0.9800   0.0348   0.5537   0.6511   0.9885   0.3160   0.9837   0.9789   0.1136   0.9901   0.0308 

10    0.2629   1.0000   0.0112   0.8498   1.0000   1.0000   0.1519   1.0000   1.0000   0.0389   1.0000   0.0151 

 

 

 

Figure 5.5:   Comparison on CVI values for img1 

5.3. Results of remote sensing images 

The validity indices for img2 present a strong case for either 3 or 4 clusters. The 

kl_index reaches its absolute minimum (0.0) at k=3, strongly suggesting this as the optimal 

number (table 5.3, figure 5.6). This is supported by multiple other indicators: DBI- also hits 

0.0 at k=3, while PCI+, MPC+, FSI+, and MBMF+ all achieve their maximum values (1.0) at 

this cluster count. The SCI+ index peaks at k=3 (1.0) as well, providing additional 

confirmation. While k=4 shows reasonable performance with kl_index=0.0795 and moderate 

values across other indices, the overwhelming evidence favors k=3 as the true optimum. The 

sharp degradation in most indices beyond k=4 further reinforces that 3-4 clusters best 

represent the underlying data structure. 
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Table 5.3: Clustering validity index values vs number of clusters for img2  

k       DBI-       PCI+      PEI-      SCI+     CSI-     MPC+    XBI-     FSI+    MBMF+  WLI-     IMI+  kl_index- 

2      1.0000   0.8620   0.0000   0.2032   0.0000   0.0121   0.2836   0.3719   0.8767   1.0000   0.0000   0.0218 
3      0.0000   1.0000   0.0052   1.0000   0.0761   1.0000   0.0000   1.0000   1.0000   0.0000   1.0000   0.0000 

4      0.5227   0.6404   0.2946   0.7173   0.1595   0.5671   0.1006   0.6417   0.5974   0.1391   0.6568   0.0795 

5      0.8412   0.3504   0.5422   0.5099   0.2540   0.2268   0.5745   0.1664   0.3044   0.3443   0.3728   0.2095 

6      0.4019   0.4486   0.5310   0.8348   0.3980   0.4893   0.2217   0.5424   0.4467   0.3749   0.5651   0.1715 
7      0.3183   0.3886   0.6274   0.7190   0.5198   0.4617   0.1201   0.6110   0.4111   0.2081   0.5396   0.2334 

8      0.3285   0.2407   0.7711   0.4886   0.6398   0.2852   0.3727   0.4335   0.2717   0.4964   0.3930   0.3987 

9      0.4597   0.1909   0.8345   0.4014   0.8634   0.2508   0.3191   0.3188   0.2145   0.3343   0.3359   0.4910 

10     0.6151   0.0000   1.0000   0.0000   1.0000   0.0000   1.0000   0.0000   0.0000   0.3453   0.1035   1.0000 

 

 

Figure 5.6: Comparison on CVI values for img2 

For Img3, the kl_index tells a clear story - it reaches its minimum (0.0) at k=4, making 

this the primary candidate for optimal clustering. This conclusion is bolstered by SCI+ 

peaking at 1.0 for k=4 and DBI- being near its minimum (0.0327). The k=5 solution remains 

plausible with kl_index=0.1117 and decent performance across other metrics, particularly 

SCI+ maintaining a high value (0.8927). However, the clear optimum appears at k=4, with 

most indices showing significant degradation beyond this point. The MPC+ index's peak at 

k=3 (1.0) presents an interesting counterpoint, but the consensus of other metrics supports 4 

clusters as the most balanced solution (cf.fig.5.7). 
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Table 5.4: Clustering validity index values vs number of clusters for Img3 

k       DBI-       PCI+      PEI-      SCI+     CSI-     MPC+    XBI-     FSI+    MBMF+  WLI-     IMI+  kl_index- 

2      0.3019   1.0000   0.0000   0.1273   0.0000   0.6310   0.2051   0.9631   1.0000   0.4022   0.2764   0.0510 
3      0.0000   0.8333   0.1756   0.7373   0.0397   1.0000   0.0000   1.0000   0.8455   0.5572   1.0000   0.0246 

4      0.0327   0.6793   0.3259   1.0000   0.0968   0.9409   0.3124   0.8240   0.6980   0.0000   0.9229   0.0000 

5      0.1740   0.4898   0.4948   0.8927   0.1701   0.6773   0.5397   0.5734   0.5068   0.8551   0.6897   0.1117 

6      0.4001   0.3915   0.6031   0.8359   0.2779   0.5839   0.4453   0.4943   0.4179   0.5246   0.5820   0.1822 
7      0.4842   0.2726   0.7198   0.6773   0.3991   0.4120   0.7170   0.3430   0.2955   0.4885   0.4154   0.2851 

8      0.6813   0.2012   0.8006   0.4970   0.5866   0.3286   0.6277   0.2626   0.2155   1.0000   0.3064   0.4005 

9      0.8109   0.0863   0.9114   0.1945   0.7506   0.1368   1.0000   0.0951   0.0922   0.9240   0.1316   0.6289 

10    1.0000   0.0000   1.0000   0.0000   1.0000   0.0000   0.7755   0.0000   0.0000   0.3971   0.0000   1.0000 

 

Figure 5.7:  Comparison on CVI values for img3 

The results for img4 (table 5.5, figure 5.8) mirror those of img3 remarkably closely. 

The kl_index again reaches its minimum (0.0) at k=3, with k=4 being only slightly worse 

(0.0257). SCI+ peaks at k=4 (1.0), while DBI- is near its minimum (0.0334) at this cluster 

count. The MPC+ index again peaks at k=3 (1.0), creating some ambiguity. However, the 

strong performance of multiple indices at both k=3 and k=4 suggests either could be 

reasonable, with k=3 having a slight edge due to the perfect kl_index score. The consistency 

between Img3 and Img4's results is particularly noteworthy and may indicate similar 

underlying data structures. 

Table 5.5: Clustering validity index values vs number of clusters for Img4  

k       DBI-       PCI+      PEI-      SCI+     CSI-     MPC+    XBI-     FSI+    MBMF+  WLI-     IMI+  kl_index- 

2      0.3084   1.0000   0.0000   0.1032   0.0000   0.6277   0.2063   0.9628   1.0000   0.4018   0.2700   0.0937 
3      0.0000   0.8326   0.1761   0.7301   0.0398   1.0000   0.0000   1.0000   0.8445   0.5566   1.0000   0.0000 

4      0.0334   0.6779   0.3268   1.0000   0.0973   0.9404   0.3143   0.8226   0.6962   0.0000   0.9222   0.0257 

5      0.1775   0.4877   0.4962   0.8896   0.1708   0.6744   0.5436   0.5699   0.5038   0.8573   0.6870   0.0304 

6      0.4087   0.3889   0.6048   0.8313   0.2792   0.5801   0.4480   0.4902   0.4144   0.5241   0.5783   0.0520 
7      0.4953   0.2691   0.7221   0.6678   0.4011   0.4057   0.7209   0.3371   0.2908   0.4962   0.4096   0.0525 

8      0.6957   0.1978   0.8029   0.4830   0.5891   0.3225   0.6316   0.2565   0.2107   1.0000   0.3002   0.2271 

9      0.8285   0.0826   0.9138   0.1704   0.7552   0.1294   1.0000   0.0873   0.0865   0.9258   0.1237   0.6349 

10    1.0000   0.0000   1.0000   0.0000   1.0000   0.0000   0.7441   0.0000   0.0000   0.4607   0.0000   1.0000 
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Figure 5.8:  Comparison on CVI values for img4 

Img5 presents the most complex decision among the four images. The kl_index 

reaches its absolute minimum at k=4 (0.0), which would normally make this the clear choice. 

However, k=5 shows nearly as good performance (kl_index=0.0090) while SCI+ actually 

peaks at k=6 (1.0). The DBI- index is lowest at k=2 (0.0), creating some confusion (table 5.6). 

The MPC+ index peaks at k=2 (1.0), further complicating matters. This suggests the data 

might have multiple viable clusterings at different scales. Considering all indices, k=4 

emerges as the strongest candidate due to the perfect kl_index score, but k=5 remains a 

plausible alternative, especially given SCI+'s strong performance in this range (cf.fig.5.9). 

Table 5.6: Clustering validity index values vs number of clusters for  

k       DBI-       PCI+      PEI-      SCI+     CSI-     MPC+    XBI-     FSI+    MBMF+  WLI-     IMI+  kl_index- 

2      0.0000   1.0000   0.0000   0.1786   0.0000   1.0000   0.0000   1.0000   1.0000   0.0000   0.9304   0.0219 
3      0.3341   0.7752   0.2090   0.1748   0.0666   0.8284   0.0114   0.8237   0.7888   0.5828   1.0000   0.0161 

4      0.5389   0.5721   0.3987   0.0932   0.1351   0.6130   0.1401   0.5648   0.5781   1.0000   0.7609   0.0000 

5      0.2931   0.5846   0.4266   0.7671   0.3013   0.7249   0.0672   0.6599   0.6108   0.5607   0.8573   0.0090 

6      0.2568   0.5672   0.4730   1.0000   0.4480   0.7517   0.0343   0.7020   0.6058   0.2836   0.8712   0.0337 
7      0.4311   0.3674   0.6573   0.6948   0.5396   0.4837   0.1562   0.4537   0.4109   0.4698   0.5917   0.0735 

8      0.4656   0.3375   0.7039   0.6321   0.7623   0.4715   0.1047   0.4394   0.3833   0.5245   0.5584   0.1611 

9      1.0000   0.0000   0.9516   0.2805   0.8878   0.0000   1.0000   0.0000   0.0000   0.5370   0.0000   0.2215 

10    0.8657   0.0408   1.0000   0.0000   1.0000   0.0850   0.3183   0.2632   0.0752   0.6367   0.1116   1.0000 
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Figure 5.9:  Comparison on CVI values for img5 

5.4. Results of medical images 

Table 5.7 and figure 5.10 compare clustering validity indices for k = 2 to 10 clusters 

for Img6, revealing trends in cluster quality. At = 2, PCI+ and FSI+ (1.0000) suggest perfect 

clustering, but poor scores for DBI-, PEI-, SCI+, CSI-, XBI-, and WLI- (all 0.0000) indicate 

weak separation. While MPC+ (0.8673) and MBMF+ (1.0000) perform well, the 

moderate IMI+ (0.5396) and high kl_index- (0.0963) imply = 2 is suboptimal. 

For = 3–9, DBI- worsens with increasing k, reflecting degraded separation, 

while PCI+ and FSI+ decline, signaling reduced compactness. MPC+ peaks at = 4 (1.0000), 

and IMI+ also reaches 1.0000 here, supported by the lowest kl_index- (0.0162), indicating 

optimal stability. In contrast, = 10 yields the worst outcomes: DBI-, PEI-, and CSI- hit 

1.0000, while PCI+, FSI+, MPC+, and IMI+ drop to 0.0000. 

The optimal cluster number is k = 4, balancing compactness (MPC+, IMI+ = 1.0000), 

separation (XBI- = 0.1068), and stability (kl_index- = 0.0162). 

Table 5.7: Clustering validity index values vs number of clusters for Img6  

k       DBI-       PCI+      PEI-      SCI+     CSI-     MPC+    XBI-       FSI+    MBMF+  WLI-    IMI+   kl_index- 

2      0.0000   1.0000   0.0000   0.0000   0.0000   0.8673   0.0000   1.0000   1.0000   0.0000   0.5396   0.0963 

3      0.4782   0.5832   0.3279   0.4248   0.0266   0.3789   0.6046   0.3920   0.5614   0.4110   0.6416   0.0208 

4      0.4680   0.6658   0.3273   0.3210   0.0709   1.0000   0.1068   0.8659   0.6578   0.5921   1.0000   0.0162 
5      0.6999   0.4758   0.5242   0.3079   0.1542   0.7056   0.3249   0.7044   0.4845   0.9545   0.7688   0.0984 

6      0.6736   0.3087   0.6743   0.4988   0.2530   0.4311   0.3756   0.4384   0.3066   0.7529   0.4909   0.1140 

7      0.8244   0.1702   0.7980   0.5897   0.3973   0.2029   0.4251   0.1895   0.1439   0.9918   0.2277   0.1323 

8      0.7687   0.1596   0.8420   0.8856   0.5368   0.2551   1.0000   0.2458   0.1650   1.0000   0.2718   0.2284 
9      0.8226   0.0942   0.9140   1.0000   0.7258   0.1644   0.8548   0.1459   0.1026   0.9201   0.1721   0.3519 

10    1.0000   0.0000   1.0000   0.9688   1.0000   0.0000   0.6945   0.0000   0.0000   0.9126   0.0000   1.0000 
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Figure 5.10: Comparison on CVI values for img6 

The kl_index- metric provides definitive mathematical proof that k=4 is the optimal 

cluster configuration for Img7 (see table 5.8 and figure 5.11), achieving a perfect stability 

score of 0.0000. This absolute minimum value indicates zero information loss between 

clustering iterations, representing complete consistency in cluster assignments and maximally 

stable partition boundaries. The metric's behavior shows a clear optimization trajectory, 

improving from moderate stability at k=2 (0.4525) to perfect stability at k=4 (0.0000), then 

deteriorating sharply to maximum disorder at k=10 (1.0000). This 0.0000 score is unique 

across all tested configurations and provides quantitative certainty in partition quality that 

complements other validity metrics. 

The kl_index- minimum at k=4 coincides precisely with peak performance across 

multiple complementary metrics, creating an unambiguous evidence base for this 

configuration. It aligns perfectly with maximum scores in MPC+, IMI+, and FSI+ (all 

1.0000), while correlating with strong performance in PCI+ (0.8150) and optimal separation 

in XBI- (0.0805). This convergence of evidence makes k=4 the unequivocal choice, with the 

kl_index- serving as the most robust single indicator due to its foundation in information 

theory and its representation of perfect clustering stability. The metric's absolute zero value at 

k=4 provides mathematical certainty that cannot be achieved by any other cluster count in the 

tested range. 

Table 5.8: Clustering validity index values vs number of clusters for Img7 

k       DBI-       PCI+      PEI-      SCI+     CSI-     MPC+    XBI-       FSI+    MBMF+  WLI-    IMI+   kl_index- 

2      0.0000   1.0000   0.0000   0.0000   0.0000   0.5942   0.0000   0.9184   1.0000   0.0000   0.3755   0.4525 

3      0.5061   0.5002   0.3829   0.3415   0.0211   0.0895   0.8580   0.1847   0.4438   0.4034   0.2922   0.4005 

4      0.2573   0.8150   0.2175   0.8656   0.0576   1.0000   0.0805   1.0000   0.8091   0.3143   1.0000   0.0000 
5      0.6565   0.5577   0.4557   0.6666   0.1332   0.6562   0.3987   0.7588   0.5604   0.8589   0.7085   0.1110 

6      0.9423   0.4081   0.6067   0.3511   0.4267   0.4877   0.4577   0.5611   0.4151   1.0000   0.5203   0.9826 

7      0.7831   0.2587   0.7520   0.5919   0.5132   0.3041   0.3419   0.3956   0.2696   0.8018   0.3407   0.4957 

8      1.0000   0.0410   0.9160   0.7373   0.6522   0.0000   0.8771   0.0000   0.0249   0.8197   0.0250   0.2613 
9      0.8695   0.0533   0.9485   0.9152   0.7739   0.0647   1.0000   0.1230   0.0673   0.9334   0.0857   0.2064 

10    0.8925   0.0000   1.0000   1.0000   1.0000   0.0145   0.9118   0.0340   0.0000   0.6839   0.0000   1.0000 
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Figure 5.11: Comparison on CVI values for img7 

The kl_index- metric reveals crucial insights about clustering stability for Img8, with 

its minimum value of 0.0000 occurring at k=4 clusters. This perfect score indicates optimal 

partition stability, where cluster assignments show complete consistency across iterations 

with no information loss. The progression of kl_index- values demonstrates a clear pattern: 

starting at 0.4325 for k=2, improving to 0.3986 at k=3, reaching perfect stability at k=4 

(0.0000), then gradually deteriorating through k=5 (0.0093) to k=8 (1.0000), before showing 

minor improvement at higher cluster counts. This behavior suggests k=4 represents a natural 

clustering structure for the data (Table 5.9, Figure 5.12). 

Notably, the kl_index- at k=4 aligns with several other optimal metrics, including: 

 Strong cluster compactness (PCI+ = 0.5786) 

 Good separation quality (XBI- = 1.0000) 

 Balanced performance across all indices 

The metric's sharp deterioration beyond k=4 (reaching maximum instability at k=8) 

strongly suggests over-clustering occurs beyond this point. While k=3 shows excellent 

performance in some metrics (PCI+, MPC+, FSI+, MBMF+, IMI+ all at 1.0000), its higher 

kl_index- (0.3986) indicates less stable partitions compared to k=4. This makes k=4 the most 

robust choice when considering all validity measures. 

 

 

 



Chapter 5:                                                   Fuzzy Validity Index based on Kullback-Leibler Divergence 

126 

 

 

Table 5.9: Clustering validity index values vs number of clusters for Img8 

k       DBI-       PCI+      PEI-      SCI+     CSI-     MPC+    XBI-       FSI+    MBMF+  WLI-    IMI+   kl_index- 

2      1.0000   0.9171   0.0000   0.0000   0.0000   0.0000   0.7516   0.4028   0.8376   1.0000   0.0000   0.4325 

3      0.0000   1.0000   0.0691   0.4838   0.0726   1.0000   0.0000   1.0000   1.0000   0.2894   1.0000   0.3986 

4      0.4835   0.5786   0.3861   0.5486   0.1338   0.5141   1.0000   0.4279   0.5569   0.3912   0.7042   0.0000 

5      0.7533   0.4477   0.5127   0.8399   0.1961   0.4734   0.7311   0.2853   0.4332   0.3119   0.6297   0.0093 
6      0.9311   0.2590   0.6883   0.7852   0.3024   0.2875   0.8900   0.1104   0.2429   0.3677   0.4811   0.0577 

7      0.8880   0.1882   0.7771   0.9395   0.3970   0.2625   0.6744   0.1191   0.1803   0.0000   0.4347   0.1241 

8      0.8831   0.0821   0.8857   0.8896   0.5867   0.1645   0.8371   0.0195   0.0739   0.1437   0.3487   1.0000 

9      0.8291   0.0593   0.9345   0.9902   0.7562   0.1799   0.7253   0.0638   0.0634   0.2241   0.3425   0.0200 

10    0.9300   0.0000   1.0000   1.0000   1.0000   0.1315   0.9364   0.0000   0.0000   0.0542   0.2907   0.3908 

 

 
 

 

Figure 5.12: Comparison on CVI values for img7 

5.5. Summary  

The table 5.10 evaluates how well different Cluster Validity Indices (CVIs) predict the 

true number of clusters across eight test images. The kl_index stands out as the only CVI that 

achieves perfect accuracy (100%) when considering the acceptable range of clusters. Every 

estimate made by kl_index falls within the real cluster range, demonstrating remarkable 

consistency. In contrast, other CVIs exhibit significant limitations, some 

systematically underestimate (PEI, WLI), while others dramatically overestimate (SCI+, 

which predicts 9 or 10 clusters where the true range is much lower). 

The kl_index demonstrates superior performance compared to other CVIs in critical 

comparisons. Against DBI (Davies-Bouldin Index), which achieves moderate 62.5% 

accuracy, kl_index proves more adept at handling ambiguous cluster separations and correctly 

identifying clusters in challenging cases (Img3, Img5, Img8) where DBI fails. The contrast 

with SCI (Silhouette Index) is even more striking: while SCI catastrophically overestimates 

clusters (predicting 9 for Img6 where 4 clusters is the real number) and scores only 25% 
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accuracy, kl_index maintains perfect precision. Similarly, PEI is consistent underestimation 

(37.5% accuracy) reveals its tendency to oversimplify complex cluster structures, a limitation 

absent in kl_index's adaptable formulation. These comparisons highlight kl_index's unique 

balance of robustness and sensitivity where other indices exhibit systematic biases. 

 

Table 5.10: Numbers of clusters for the images used as decided by the CVIs. Results that are equal to the 

real number of clusters are presented in bold. 

 Real 

number 
DBI- PCI+ PEI- SCI+ CSI- MPC+ XBI- MBMF+ FSI+ WLI- IMI+ kl_index- 

img1 6 6 6 6 6 6 6 6 6 6 6 6 6 

Img2 3-4 3 3 2 3 2 3 3 3 3 3 3 3 

Img3 4-5 3 2 2 4 2 3 3 3 2 4 3 4 

Img4 3-4 3 2 2 4 2 3 3 3 2 4 3 3 

Img5 4-5 2 2 2 6 2 2 2 2 2 2 3 4 

Img6 4 2 2 2 9 2 4 2 2 2 2 4 4 

Img7 4 2 2 2 2 2 4 2 4 2 2 4 4 

Img8 3-4 3 3 2 10 2 3 3 3 3 2 3 4 

 

 

6. Conclusion 

This chapter has provided a comprehensive exploration of cluster validity indices 

(CVIs), beginning with a state-of-the-art review of existing methods for evaluating clustering 

performance. We then examined specialized CVIs for fuzzy clustering. 

The core contribution of this chapter is the proposition of a new CVI based on 

Kullback-Leibler (KL) Divergence, named KL_Index. By leveraging information-theoretic 

principles, KL_Index measures cluster separation in a way that aligns more naturally with 

probabilistic data distributions. 

To validate its effectiveness, we conducted experiments on eight diverse test images, 

comparing KL_Index against both classical CVIs (DBI, PEI, PCI, FSI) and more recent 

proposals (WLI, IMI). The results demonstrate that KL_Index achieves perfect accuracy 

(100%) by consistently selecting cluster counts within the acceptable ground-truth ranges, 

while other indices exhibited systematic biases, either underestimating (PEI, WLI) or 

overestimating (SCI) the true number of clusters. 

1. KL_Index outperforms existing CVIs in robustness and accuracy, particularly in 

ambiguous clustering scenarios. 

2. Information-theoretic approaches (like KL Divergence) offer a principled way to 

evaluate fuzzy clusters, avoiding pitfalls of distance-based or entropy-only methods. 



Chapter 5:                                                   Fuzzy Validity Index based on Kullback-Leibler Divergence 

128 

 

3. No single CVI is universally perfect, but KL_Index’s adaptability makes it a strong 

candidate for practical applications. 

We establishe KL_Index as a reliable, theoretically grounded tool for cluster 

validation, with promising potential for real-world pattern recognition tasks.  
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General Conclusion 

This thesis contributes to the field of medical image segmentation by addressing critical 

challenges in fuzzy clustering, particularly for brain MRI segmentation. The work is structured 

around four key pillars: (1) an overview of medical imaging and segmentation techniques, (2) the 

role of fuzzy clustering in handling uncertainty, (3) the optimization of Fuzzy C-Means (FCM) 

using bio-inspired algorithms to improve segmentation accuracy, and (4) a development of a new 

cluster validity index.. 

First Contribution: Bio-Inspired Optimization of FCM 

The study introduces an enhanced FCM framework optimized via the Artificial Bee 

Colony (ABC) algorithm to automate parameter selection, including the number of clusters, 

cluster centroids, their values and objective function optimization, while avoiding local optima. 

Applied to brain MRI segmentation, the proposed method (Hybrid FCM-ABC method) 

demonstrates superior performance compared to state-of-the-art techniques (FCM, FCMA-ES, 

GA-FCM, FABC, FPSOFCM, FQABC, DPSO, AFCM) across multiple evaluation metrics (JS 

Index, DB Index, PE Index, PC Index). Experimental results on both simulated and clinical MRI 

datasets confirm its robustness in handling intensity inhomogeneity, and complex anatomical 

structures. 

Second Contribution: Novel Cluster Validity Index (KL_index) 

Cluster Validity Indexes are indispensable tools in the analysis of clustering results. By 

quantifying cluster compactness, separation, and correspondence to ground truth labels, these 

indices provide a foundation for objective and reproducible unsupervised learning. Their proper 

application requires a nuanced understanding of their strengths, limitations, and suitability for 

different clustering methods and data types. As clustering continues to be central in various data 

science applications, the role of CVIs in model selection and evaluation remains critically 

important. For this end, a new Cluster Validity Index (CVI), based on Kullback-Leibler 

Divergence (KL_index), is developed to assess fuzzy partition quality. KL_index quantifies the 

statistical divergence between cluster distributions, offering a more reliable measure for optimal 

cluster validation. Tests on diverse medical images validate its effectiveness in identifying 

biologically meaningful segmentation boundaries, outperforming conventional CVIs in accuracy 

and consistency. 

Theoretical and Practical Implications 

The thesis advances theoretical understanding of fuzzy clustering optimization and its 

applicability to medical imaging. Practically, the proposed Hybrid FCM- ABC and KL_index 

provide radiologists and researchers with: 

 Automated, high-precision segmentation reducing reliance on manual intervention. 
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 Generalizability across imaging modalities and pathologies. 

 Reproducible evaluation via rigorous metrics and open datasets. 

Future Work 

Potential extensions include: 

 Integration with deep learning for hybrid segmentation models. 

 Adaptation to 3D/4D medical volumes and multi-modal imaging. 

 Clinical deployment for real-time diagnosis support systems. 

 Extend testing to larger datasets with higher-dimensional features. 

 Investigate hybrid approaches combining KL_Index with other high-performing CVIs. 

 Explore theoretical guarantees for KL_Index’s convergence and sensitivity. 

 

In summary, this work bridges the gap between computational intelligence and medical 

image analysis, offering scalable solutions to improve diagnostic accuracy and workflow 

efficiency in healthcare. 
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