
 الجمهوريــة الجزائريــة الديمقراطيــة الشعبيــة
The Peoples’s Democratic Republic of Algeria

 و البـحـث الـعلـمــي وزارة الـتعـلــيــم الـعـالي
Ministry of Higher Education And Scientific Research

Faculty of Economics, Business and Management Sciences
Department of Economics

Pedagogical Handbook

Module:

Intended for First-Year Master's Students – Specialization in Quantitative Economics.

:Prepared by

Dr. GUELLIL Mohammed Seghir

Academic Year: 2024/2025

Optimization Methods

University of MUSTAPHA Stambouli

Mascara

 جامعة مصطفى اسطمبولي

 معسكر

i

Contents

General Introduction .. 1

Chapter I : General Concepts... 4

1.1 Introduction : ... 4

1.2 Historical Review: ... 4

1.3 Optimization Problem:.. 5

1.4 Modeling of the Optimization Problem ... 6

1.5 Solution with the Graphical Method: .. 8

1.6 Convexity: .. 10

1.7 Gradient Vector, Directional Derivative, and Hessian Matrix: ... 11

1.8 Linear and Quadratic Approximations: ... 12

1.9 Applications of Optimization: .. 14

1.10 Figures and Schemas: .. 15

 Chapter Highlights: ... 22

 Formulae Chart: ... 23

 Optimization Problems ... 24

Chapter II: Convex Optimization Overview .. 29

2.1 Introduction: ... 29

2.2 Theory of convex functions: ... 29

2.3 First and second order characterizations of convex functions: ... 32

2.4 Strict convexity: ... 34

2.5 Optimality conditions for convex optimization: ... 37

Chapter III : 1-D Optimization Algorithms ... 39

3.1 Introduction .. 39

3.2 Test Problem .. 40

3.3 Solution Techniques ... 41

3.4 Comparison of Solution Methods .. 50

 Chapter Highlights: ... 51

 Formulae Chart: ... 52

 Problems: .. 52

Chapter IV : Unconstrained Optimization .. 54

4.1 Introduction .. 54

4.2 Unidirectional Search ... 55

4.3 Test Problem .. 57

4.4 Solution Techniques ... 57

ii

4.5 Additional Test Functions .. 70

 Chapter Highlights: ... 73

 Formulae Chart: ... 74

 Problems: .. 75

Chapter V : Constrained Optimization ... 78

5.1 Introduction .. 78

5.2 The Kuhn-Tucker conditions .. 80

5.3 Quadratic Programming Problems.. 85

5.4 Computing the Lagrange Multipliers: ... 87

5.5 Sensitivity of Optimum Solution to Problem Parameters .. 89

5.6 Gradient Projection and Reduced Gradient Methods .. 92

5.7 The Feasible Directions Method .. 96

5.8 Penalty Function Methods ... 99

5.9 Multiplier Methods .. 108

5.01 Projected Lagrangian Methods (Sequential Quadratic Programming): ... 110

 Chapter Highlights: .. 113

 Formulae Chart: ... 113

 Problems: .. 114

References: .. 116

General Introduction

1

General Introduction

Optimization is a critical field in applied mathematics, engineering, economics, and

computer science, providing methods and techniques for finding the best possible solution to

problems under specific constraints. The goal of optimization is to either maximize or

minimize an objective function, which is a quantitative measure of success, such as profit,

efficiency, or cost. These problems appear in virtually every sector, ranging from designing

systems that maximize energy efficiency to developing algorithms in machine learning that

optimize predictive models.

The concept of optimization has a long and rich history, stretching back thousands of

years. Early examples of optimization can be found in ancient Greek mathematics, where

optimization was used in the study of geometry, such as finding the shortest distance

between two points or maximizing the volume of geometric solids. However, it was only in

the 17th and 18th centuries, with the development of calculus, that optimization began to

take shape as a formal mathematical discipline. The pivotal role of calculus, particularly the

work of mathematicians like Isaac Newton (1643–1727) and Gottfried Wilhelm Leibniz

(1646–1716), was essential for formulating optimization problems in a more structured way.

Pierre de Fermat (1607–1665), a French mathematician, is often credited with laying

the foundation of optimization. Fermat‘s principle of least time, which states that light

follows the path that requires the least time to travel between two points, was an early form

of optimization applied to physics. His work paved the way for later advancements in

variational calculus, which would become a cornerstone of optimization theory.

The 19th century witnessed the formalization of optimization methods. Augustin-Louis

Cauchy (1789–1857), a French mathematician, made significant contributions to

optimization theory, particularly with his development of the method of steepest descent in

1847. This iterative technique, which adjusts variables in the direction of the steepest

gradient, remains a cornerstone of optimization methods used to solve unconstrained

optimization problems. Cauchy‘s work was instrumental in establishing optimization as a

distinct subfield of mathematics.

As the 20th century dawned, the development of optimization methods accelerated, with

the advent of linear programming and the introduction of new techniques for solving both

linear and nonlinear optimization problems. In 1947, George Dantzig (1914–2005), an

American mathematician, revolutionized optimization with the invention of the Simplex

Method, which is still widely used for solving linear optimization problems. Dantzig's work

was a milestone in optimization, providing an efficient method for finding the optimal

General Introduction

2

solution in linear programming, and making optimization a critical tool in operations

research, economics, and logistics.

During the mid-20th century, optimization continued to evolve with the introduction of

dynamic programming by Richard Bellman (1920–1984) in the 1950s. Bellman‘s method

provided a systematic approach for solving problems that could be broken down into simpler

subproblems, with applications ranging from resource allocation to control systems. This

approach has since become a fundamental concept in optimization, especially in fields like

computer science and artificial intelligence.

The latter half of the 20th century saw further advancements in the theory and practice of

nonlinear optimization. John von Neumann (1903–1957), a Hungarian-American

mathematician, made important contributions to game theory and the application of

optimization in strategic decision-making, while Ralph E. Gomory (1929–2022) made

pioneering advances in integer programming. Their work helped to establish optimization as

a crucial tool in economics, operations research, and decision theory.

The rise of convex optimization in the late 20th and early 21st centuries further

expanded the scope and applicability of optimization methods. Stephen Boyd (born 1953)

and Lieven Vandenberghe (born 1964), both professors at Stanford University, are key

figures in the development of modern convex optimization. Their seminal textbook, Convex

Optimization (2004), has become the standard reference for practitioners in engineering,

economics, and applied mathematics. Their work on convex optimization theory, including

the characterization of convex functions and optimality conditions, has made it possible to

solve large-scale optimization problems more efficiently.

Optimization is not limited to theoretical developments but has also led to a wide range of

practical applications. For example, in machine learning, optimization techniques such as

gradient descent are used to train models by adjusting parameters to minimize an error

function. Deep learning, a subfield of machine learning, relies heavily on optimization

methods to adjust millions of parameters in neural networks, a process that would be

impossible without efficient optimization algorithms.

In engineering, optimization is central to fields such as structural design, control theory,

and signal processing. The ability to optimize designs, whether it is minimizing material use

or maximizing the efficiency of control systems, has direct implications for innovation and

technological progress. In finance, optimization is employed in portfolio management,

where the objective is to maximize return while minimizing risk.

Optimization problems can be broadly categorized into two types: unconstrained

optimization, where there are no restrictions on the decision variables, and constrained

optimization, where the variables must satisfy specific limitations. The development of

algorithms to efficiently solve both types of problems has been a major area of research.

Some of the most well-known algorithms include Newton’s method, the Nelder-Mead

algorithm, the Simplex method, and gradient-based techniques such as steepest descent.

General Introduction

3

This handout is dedicated to students in both licence and master's programs, with the

aim of providing them with a deep and thorough understanding of optimization methods.

The content is designed to take students from the foundational concepts through to more

advanced topics in optimization, equipping them with the tools needed to approach real-

world problems.

The handout is divided into five key chapters to provide a comprehensive understanding

of optimization techniques. The structure is as follows:

1. General Concept: This chapter introduces the fundamental concepts of optimization,

including a historical review, the structure of an optimization problem, and methods for

solving them. It also covers the critical topics of convexity, gradient vectors, directional

derivatives, and the Hessian matrix.

2. Convex Optimization Overview: This chapter provides an in-depth look at convex

optimization, including the theory of convex functions and the conditions under which

optimization problems become easier to solve. It covers first and second-order

characterizations of convex functions, as well as the implications of strict convexity for the

uniqueness of optimal solutions.

3. 1-D Optimization Algorithms: Focused on optimization problems involving a single

variable, this chapter explores algorithms like the bisection method, Newton-Raphson

method, and golden section method. These techniques are critical for solving simpler

problems and serve as building blocks for more complex methods.

4. Unconstrained Optimization: This chapter discusses techniques for solving optimization

problems without constraints, such as the steepest descent method, Newton’s method, and

Nelder-Mead algorithm. It also introduces additional test functions used to evaluate

optimization methods.

5. Constrained Optimization: The final chapter explores optimization problems that involve

constraints. It includes methods like the penalty function method, Lagrange multipliers,

and sequential quadratic programming, and provides real-world applications in areas like

structural design.

Each chapter is designed to provide a blend of theoretical foundations and practical

solutions, with accompanying highlights, formulae charts, and problems to enhance

understanding. By the end of this handout, students will have a solid grasp of optimization

methods and be equipped to apply these techniques to solve complex real-world problems.

Chapter I : General Concepts

4

Chapter I : General Concepts

1.1 Introduction :

Optimization is the process of making something as effective or functional as possible. In

mathematical terms, it involves finding the maximum or minimum value of a function

subject to certain constraints. Optimization problems arise in almost every field, including

engineering, economics, logistics, machine learning, and more. The goal of this course is to

provide a solid foundation in optimization theory, methods, and applications.

1.2 Historical Review:

The field of optimization has a rich history that spans centuries, evolving from simple

geometric solutions to sophisticated algorithms powered by modern computing.

Understanding this history provides context for the development of optimization techniques

and their applications today. Below is a detailed timeline of key developments:

Ancient Beginnings

The roots of optimization can be traced back to ancient civilizations, where early

mathematicians and philosophers sought to solve practical problems. For example:

 Ancient Greece (300 BC): Mathematicians like Euclid and Archimedes explored

geometric optimization problems, such as finding the shortest path between two points (a

precursor to the modern concept of geodesics).

 Heron of Alexandria (10–70 AD): Known for Heron’s Principle, which states that light

takes the shortest path between two points, an early example of optimization in nature.

17th Century: The Birth of Calculus

The development of calculus by Isaac Newton and Gottfried Wilhelm Leibniz in the 17th

century provided the mathematical tools necessary for solving optimization problems. Key

contributions include:

 Newton’s Method: Originally developed for finding roots of equations, this iterative

method became a cornerstone for solving optimization problems numerically.

 Fermat’s Principle: Pierre de Fermat‘s work on finding maxima and minima using

derivatives laid the groundwork for modern optimization techniques.

18th Century: Lagrange and Constrained Optimization

The 18th century saw significant advancements in optimization, particularly with the work

of Joseph-Louis Lagrange:

Chapter I : General Concepts

5

 Lagrange Multipliers: Lagrange introduced a method for solving constrained optimization

problems, which remains a fundamental tool in economics, physics, and engineering. For

example, in economics, it is used to maximize utility subject to a budget constraint.

19th Century: Cauchy and Gradient Descent

In the 19th century, Augustin-Louis Cauchy made groundbreaking contributions to

optimization:

 Gradient Descent: Cauchy developed the gradient descent method, an iterative algorithm

for finding the minimum of a function. This method is now widely used in machine learning

and numerical optimization.

20th Century: Linear Programming and the Simplex Method

The 20th century marked the rise of linear programming and the development of efficient

algorithms for solving large-scale optimization problems:

 George Dantzig: In 1947, Dantzig introduced the Simplex Method, a powerful algorithm

for solving linear programming problems. This method revolutionized fields like operations

research, logistics, and economics.

 John von Neumann: His work on duality theory provided a deeper understanding of linear

programming and its applications.

21st Century: Modern Optimization

The 21st century has seen the rise of advanced optimization techniques driven by the need to

solve complex problems in machine learning, artificial intelligence, and data science:

 Convex Optimization: The development of efficient algorithms for convex optimization

has enabled the solution of problems with millions of variables.

 Stochastic Optimization: Techniques like stochastic gradient descent are widely used in

training deep learning models.

 Metaheuristics: Algorithms like genetic algorithms and simulated annealing are used to

solve non-convex and combinatorial optimization problems.

1.3 Optimization Problem:

An optimization problem involves finding the best solution from a set of feasible

alternatives. It can be formally defined as follows:
1

 () ()

 ()

 ()

Where:

 ()

 ()
 ()

1
 Nocedal, J., & Wright, S. J. (2006). Numerical optimization. Springer Series in Operations Research. New York:

Springer Science+Business Media.

Chapter I : General Concepts

6

Types of Optimization Problems

1. Linear Programming (LP): The objective function and constraints are linear. Example:

2. Nonlinear Programming (NLP): The objective function or constraints are nonlinear.

Example:

 () ()

3. Convex Optimization: The objective function and feasible region are convex. Convex

problems have unique global minima.

4. Integer Programming: Decision variables are restricted to integer values.

1.4 Modeling of the Optimization Problem

Modeling is the process of translating a real-world problem into a mathematical framework.

This involves identifying the key components of the problem and expressing them in

mathematical terms. The steps involved in modeling an optimization problem are:

1. Define the Decision Variables:

Decision variables are the unknowns that need to be determined to solve the problem. These

variables represent the choices or decisions that can be made. For example, in a production

planning problem, the decision variables could represent the quantities of different products

to produce.

2. Formulate the Objective Function:

The objective function is a mathematical expression that represents the goal of the

optimization problem. It could be to maximize profit, minimize cost, or achieve some other

desired outcome. The objective function is typically expressed in terms of the decision

variables.

3. Identify Constraints:

Constraints are the limitations or requirements that must be satisfied. These could include

resource limitations, physical laws, or other restrictions. Constraints are expressed as

mathematical inequalities or equalities involving the decision variables.

4. Validate the Model:

Once the model is formulated, it is important to validate it to ensure that it accurately

represents the real-world problem. This may involve checking the model against historical

data or using sensitivity analysis to test how changes in the parameters affect the solution.

Example: Production Planning

Let‘s consider a detailed example of a production planning problem.

Problem Statement:

A company produces two products, P1 and P2, with profits of 50 and 70 p er unit,

respectively. The production process is subject to the following constraints:

Chapter I : General Concepts

7

 Machine A can work for up to 40 hours per week, and each unit of P1 and P2 requires 2 and

3 hours, respectively.

 Machine B can work for up to 30 hours per week, and each unit of P1 and P2 requires 4 and

2 hours, respectively.

Step 1: Define the Decision Variables

Let x1 be the number of units of P1 to produce, and x2 be the number of units of P2 to

produce.

Step 2: Formulate the Objective Function

The goal is to maximize profit. The profit from producing x1 units of P1 and x2 units of P2

 is:

Step 3: Identify Constraints

The constraints are based on the available machine hours:

1. Machine A constraint:

2. Machine B constraint:

3. Non-negativity constraints:

Step 4: Solve the Problem

We can solve this linear programming problem using the graphical method.

1. Plot the Constraints:

o

 ⁄

o

2. Identify the Feasible Region:

The feasible region is the area where all constraints are satisfied. This is a polygon bounded

by the intersection points of the constraints.

3. Find the Corner Points:

The optimal solution lies at one of the corner points of the feasible region. The corner points

are:

o (0,0)

Chapter I : General Concepts

8

o (0,13.33)

o Intersection of
Solving these equations simultaneously:

2

Multiply the first equation by 2:

Subtract the second equation:

Substitute x2=12.5 into the first equation:

 ()

So, the intersection point is (1.25,12.5).

4. Evaluate the Objective Function at Each Corner Point:

o () () ()

o () () ()

o () () ()

o () () ()

5. Determine the Optimal Solution:

The maximum profit is $937.5, achieved by producing 1.25 units of P1 and 12.5 units of P2.

1.5 Solution with the Graphical Method:

The graphical method is a simple and intuitive way to solve linear programming problems

with two decision variables. It involves plotting the constraints on a graph and identifying

the feasible region. The optimal solution is found at one of the corner points of the feasible

region.

Steps of the Graphical Method:
2

1. Plot the Constraints:

Convert each constraint into an equation and plot it on a graph. Shade the feasible region

that satisfies all constraints.

2. Identify the Feasible Region:

The feasible region is the area where all constraints overlap. It is typically a polygon.

3. Find the Corner Points:

The optimal solution lies at one of the corner points (vertices) of the feasible region.

2
 Dantzig, G. B. (1949). Programming of interdependent activities: II mathematical model. Econometrica,

17(3), 200–211.

Chapter I : General Concepts

9

4. Evaluate the Objective Function:

Calculate the value of the objective function at each corner point.

5. Determine the Optimal Solution:

The corner point with the highest (for maximization) or lowest (for minimization) value of

the objective function is the optimal solution.

Example: Graphical Method

Consider the following linear programming problem:

Step 1: Plot the Constraints

 For
When
When

 For
When
When

Step 2: Identify the Feasible Region

The feasible region is the area bounded by the points (0,0), (0,5), (3,4), and (5,0).

Step 3: Find the Corner Points
The corner points are:

 (0,0)

 (0,5)

 Intersection of and
Solving these equations simultaneously:

2

Multiply the first equation by 3:

Subtract the second equation:

Substitute x1=3 into the first equation:

 ()

So, the intersection point is (3,4).

 (5,0)

Step 4: Evaluate the Objective Function

Chapter I : General Concepts

10

 At () () ()

 At () () ()

 At () () ()

 At () () ()

Step 5: Determine the Optimal Solution

The maximum value of z is 25, achieved at (3,4).

1.6 Convexity:

Convexity is a fundamental concept in optimization that ensures the existence of a unique

global minimum (or maximum) for a given problem. Understanding convexity is crucial

because it allows us to determine whether an optimization problem is "well-behaved" and

can be solved efficiently.

Definition of Convex Sets

A set S ⊆ R
n
 is called convex if, for any two points x1,x2∈S, the line segment connecting

them lies entirely within S. Mathematically, this is expressed as:

 () , -

Here, λ is a scalar between 0 and 1.

Example of a Convex Set:

A circle in 2D space is a convex set because any line segment connecting two points within

the circle lies entirely inside the circle.

Example of a Non-Convex Set:

A crescent shape is not convex because there exist points in the set for which the connecting

line segment lies partially outside the set.

Definition of Convex Functions:
3

A function f: R
n

 →R is called convex if its domain is a convex set and for any two

points x1,x2 in its domain, the following inequality holds:

(()) () () () , -

This inequality states that the function lies below the line segment connecting any two

points on its graph.

Example of a Convex Function:

The function f(x)=x2 is convex because its graph is a parabola that curves upward, and any

line segment connecting two points on the parabola lies above the curve.

Example of a Non-Convex Function:

The function f(x)=sin(x) is not convex because its graph oscillates, and there exist points

where the line segment connecting them lies below the curve.

Importance of Convexity in Optimization:
4

3
 Nocedal, J., & Wright, S. J. (2006). Numerical optimization (p. 112). Springer Series in Operations Research.

Chapter I : General Concepts

11

Convexity is important because:

1. Global Minimum: A convex function has a unique global minimum. This means that any

local minimum is also the global minimum.

2. Efficient Algorithms: Convex optimization problems can be solved efficiently using

algorithms like gradient descent, Newton‘s method, and interior-point methods.

3. Duality: Convex problems have strong duality properties, meaning the primal and dual

problems have the same optimal value.

Testing for Convexity

To determine whether a function is convex, we can use the following methods:

1. First-Order Condition:

A differentiable function f is convex if:

 () () () () ()

This means the function lies above its tangent plane at every point.

2. Second-Order Condition:

A twice-differentiable function f is convex if its Hessian matrix () is positive semi-

definite for all () That is:

 ()

Example: Testing Convexity of a Quadratic Function

Consider the function ()

 To test its convexity:

1. Compute the Hessian matrix:

 2f(x) = [

] = 0

1

2. Check if the Hessian is positive semi-definite:

The eigenvalues of the Hessian are λ1=5.37 and λ2=0.63, both of which are positive.

Therefore, the Hessian is positive definite, and the function is convex.

1.7 Gradient Vector, Directional Derivative, and Hessian Matrix:

These concepts are essential for understanding how optimization algorithms work,

particularly in multivariable optimization.

Gradient Vector

The gradient of a function f: R
n
 →R is a vector of its partial derivatives with respect to

each variable. It points in the direction of the steepest ascent of the function.

Mathematically:

4
 Griva, I., Nash, S. G., & Sofer, A. (2009). Linear and nonlinear optimization (p. 98). Philadelphia: SIAM.

Chapter I : General Concepts

12

 f(x) =

[

]

Example:

For f(x,y)=x2+y2
, the gradient is:

 f(x,y) = [

]

Directional Derivative

The directional derivative of f in the direction of a vector v measures the rate of change

of f along v. It is given by:

Dv f(x)= f(x)Tv.

Example:

For () and v=[1,1]T
, the directional derivative at (1,1) is:

 () [
 ()
 ()

]

0

1

Hessian Matrix

The Hessian matrix is a square matrix of second-order partial derivatives of a function. It

provides information about the curvature of the function. For f : R
n
 →R, the Hessian is:

Example:

For f(x,y)=x2+2xy+y2
, the Hessian is:

 () 0

1

1.8 Linear and Quadratic Approximations:

Linear and quadratic approximations are powerful tools in optimization and numerical

analysis. They allow us to approximate complex functions using simpler forms, making it

easier to analyze and solve optimization problems.

Chapter I : General Concepts

13

Linear Approximation

A linear approximation of a function f : R
n
 →R near a point x0 is given by the first-order

Taylor expansion:
5

 () () ()
 ()

This approximation is valid when x is close to x0.

Interpretation:

The linear approximation represents the tangent hyperplane to the function at x0. It captures

the local behavior of the function in the neighborhood of x0.

Example:

Consider the function f(x,y)=x2+y2
 at the point x0=(1,1). The gradient at x0 is:

 () [
 ()
 ()

] 0

1 .

The linear approximation near x0 is:

 () () 0

1

[

] () ()

Simplifying, we get:

 ()

Quadratic Approximation

A quadratic approximation of a function f : R
n
 →R near a point x0 is given by the second-

order Taylor expansion:

 () () ()
 ()

()

 ()()

This approximation includes both the gradient and the Hessian matrix, providing a more

accurate representation of the function near x0.

Interpretation:

The quadratic approximation represents the local curvature of the function at x0. It captures

both the slope and the curvature of the function in the neighborhood of x0.

Example:

Consider the same function f(x,y)=x2+y2
 at the point x0=(1,1). The Hessian matrix at x0

 is:

 () 0

1

The quadratic approximation near x0 is:

5
 Epperson, J. F. (2010). An introduction to numerical methods and analysis (p. 88). Hoboken, NJ: John Wiley &

Sons.

Chapter I : General Concepts

14

 () () 0

1

[

]

[

]

0

1 [

]

Simplifying, we get:

 () () () () ()

Applications in Optimization:
6

1. Gradient Descent:

Gradient descent uses the linear approximation (gradient) to iteratively move toward the

minimum of a function. At each step, the algorithm updates the current point xk as:

xk+1 = xk − α f(xk),

where α is the learning rate.

2. Newton’s Method:

Newton‘s method uses the quadratic approximation (Hessian) to find the minimum of a

function. At each step, the algorithm updates the current point xk as:

 , ()-
 ()

This method converges faster than gradient descent but requires computing and inverting the

Hessian matrix.

Example: Gradient Descent vs. Newton’s Method

Consider the function f(x)=x4−3x3+2.

 Gradient Descent: Uses the gradient f′(x)=4x3−9x2
 to iteratively update x.

 Newton’s Method: Uses both the gradient and the Hessian f′′(x)=12x2−18x to update xx.

Newton‘s method converges faster because it accounts for the curvature of the function.

Practical Applications of Approximations

Linear and quadratic approximations are not just theoretical tools; they are widely used in

optimization algorithms, physics, and engineering to simplify complex problems.

Example: Robot Motion Planning

In robotics, quadratic approximations model the cost of moving a robot from one

configuration to another. For instance, minimizing energy consumption while avoiding

obstacles can be approximated using quadratic functions, enabling efficient path planning.

1.9 Applications of Optimization:

Optimization has a wide range of applications in various fields. Here are a few examples:
7

1. Machine Learning:

o Training models by minimizing loss functions (e.g., linear regression, neural networks).

o Algorithms like gradient descent and stochastic gradient descent are widely used.

6
 Nocedal, J., & Wright, S. J. (2006). Numerical optimization (p. 152). Springer Series in Operations Research.

7
 Rao, S. S. (2009). Engineering optimization: Theory and practice (p. 134). Hoboken, NJ: John Wiley & Sons.

Chapter I : General Concepts

15

2. Operations Research:

o Resource allocation, scheduling, and logistics (e.g., the traveling salesman problem).

o Linear programming and integer programming are commonly used.

3. Economics and Finance:

o Portfolio optimization to maximize returns while minimizing risk.

o Utility maximization subject to budget constraints.

4. Engineering:

o Structural optimization to minimize weight while maintaining strength.

o Control systems optimization to achieve desired performance.

5. Data Science:

o Clustering and classification problems (e.g., k-means clustering).

o Feature selection and dimensionality reduction.

1.10 Figures and Schemas:

a) Transportation Optimization:

Transportation optimization enhances route efficiency, cost reduction, and timely

deliveries by leveraging data-driven strategies and advanced logistics planning. This

concept will be explained through schemas and figures, illustrating optimized vehicle

routing, resource allocation, and supply chain improvements.

 Figure 1: Illustration of vehicle routing optimization with multiple delivery points.
8

8
https://www.researchgate.net/publication/287796502_The_Vehicle_Routing_Problem_State_of_the_Art_Cla

ssification_and_Review

Chapter I : General Concepts

16

The Vehicle Routing Problem (VRP) illustrated in these images highlights the critical role

of transportation optimization in logistics and supply chain management. Efficient routing

offers several key benefits:

1. Cost Reduction : Optimized routes minimize fuel consumption, vehicle maintenance, and

labor costs.

2. Time Efficiency : Reducing travel distance and optimizing delivery schedules ensures faster

service.

3. Customer Satisfaction : Timely and reliable deliveries improve customer trust and business

reputation.

4. Resource Utilization : Balancing workloads across multiple vehicles prevents under- or

over-utilization.

5. Sustainability : Lower fuel usage leads to reduced carbon emissions, supporting eco-

friendly operations.

By implementing smart transportation optimization, businesses can enhance profitability,

efficiency, and sustainability, making logistics more responsive and cost-effective.

b) Energy System Optimization:

Energy system optimization ensures efficient generation, distribution, and consumption

of energy, reducing waste and enhancing sustainability. This will be explained through

schemas and figures, showcasing smart grids, renewable integration, and optimized energy

resource allocation.

 Figure 2: Diagram showing the optimization of energy generation and distribution in a smart grid.

Chapter I : General Concepts

17

These diagrams illustrate the Smart Grid, an advanced energy system that efficiently

manages generation, distribution, and consumption using multiple energy sources.

1. Balanced Energy Distribution – Smart grids dynamically adjust power flow between

renewable (solar, wind, hydro) and traditional (nuclear, thermal) sources to meet

demand efficiently.

2. Grid Stability & Reliability – Optimized transmission and distribution reduce blackouts

and ensure uninterrupted power supply to residential, commercial, and industrial users.

3. Sustainability & Cost Savings – Integrating renewable sources and storage systems

minimizes reliance on fossil fuels, lowering both carbon footprint and energy costs.

4. Smart Load Management – Real-time monitoring and automation ensure optimized

energy usage for factories, electric vehicles, and homes.

By leveraging intelligent energy optimization, smart grids enhance efficiency, reduce

waste, and promote sustainability, ensuring a resilient and eco-friendly power future.

 Schema 2: Graphical representation of the optimization process for energy resource allocation.
9

9
 Mendoza, J. E., Castanier, B., Guéret, C., Medaglia, A. L., & Renaud, J. (2010). The Vehicle Routing Problem:

State of the Art Classification and Review. Pesquisa Operacional, 30(2), 215-258.

Chapter I : General Concepts

18

These Schemas representations highlight the role of smart energy management in

optimizing resource allocation across renewable sources, storage, and consumption

points.

Chapter I : General Concepts

19

1. Efficient Energy Utilization – Smart grids distribute surplus energy to areas experiencing

shortages, reducing waste and maximizing renewable energy usage.

2. Real-Time Decision Making – Fog computing and cyber-physical layers enable

intelligent decisions for energy transfer between solar panels, wind turbines, energy

storage, and smart buildings.

3. Game Theory-Based Optimization – The system forms a coalition of energy donors and

acceptors, ensuring balanced energy distribution and sustainable operations.

4. Enhanced Grid Stability & Reliability – Smart grids prevent power failures by

dynamically adjusting energy flow based on demand and supply conditions.

5. Sustainability & Cost Savings – Energy storage solutions and smart allocation

techniques reduce dependency on fossil fuels and lower energy costs.

By optimizing energy resource allocation, smart grids create a resilient, cost-effective,

and eco-friendly power system, ensuring efficient electricity distribution for residential,

commercial, and industrial needs.

c) Financial Portfolio Optimization:

Financial portfolio optimization aims to maximize returns while minimizing risks through

strategic asset allocation and diversification. This will be explained through schemas and

figures, illustrating decision trees, risk assessment models, and optimal investment

strategies.

 Figure 3: Visualization of an optimized investment portfolio with balanced asset allocation.

This visualization highlights the strategic approach to investment management, ensuring

financial growth through asset optimization.

1. Asset Management for Risk Control – Proper allocation diversifies investments, reducing

risks and improving stability in fluctuating markets.

2. Portfolio Optimization for Maximum Returns – A well-structured portfolio balances

growth, income, and safety, adapting to market conditions for optimal financial

performance.

Chapter I : General Concepts

20

3. Long-Term Financial Growth – Smart investment strategies enhance wealth

accumulation and financial security over time.

4. Data-Driven Decision Making – Continuous analysis and adjustments ensure investments

align with market trends and financial goals.

By optimizing portfolio allocation, investors achieve sustained growth, minimized risk,

and improved profitability, leading to greater financial success.

 Schema 3: Decision tree outlining the steps in optimizing asset allocation for portfolio management.

This decision tree outlines a structured approach to portfolio optimization, helping

investors choose the best allocation strategy based on market conditions and risk

preferences.

1. Customizable Strategies – Investors can tailor portfolios based on their views on returns,

volatility, and correlations to align with financial goals.

2. Risk-Reward Balance – Identifies whether markets reward diversifiable or non-

diversifiable risk, ensuring an optimal mix of assets.

3. Efficient Portfolio Selection – Guides investors toward Mean-Variance Optimization,

Minimum Variance, Maximum Diversification, or Equal Weight strategies depending

on risk efficiency.

4. Data-Driven Decision Making – A systematic framework eliminates guesswork and

enhances investment stability and profitability.

By optimizing asset allocation, investors achieve risk-adjusted returns, diversification

benefits, and long-term financial growth, ensuring a resilient and profitable portfolio.

d) Production Planning Optimization:

Production planning optimization enhances efficiency, resource utilization, and workflow

scheduling, ensuring minimal waste and maximum output. This will be explained through

schemas and figures, illustrating Gantt charts, resource allocation models, and optimized

manufacturing processes.

Chapter I : General Concepts

21

 Figure 4: Gantt chart demonstrating optimized production scheduling for a manufacturing plant.

This Gantt chart illustrates optimized production scheduling, a crucial element in efficient

business strategy planning and manufacturing operations.

1. Improved Workflow Efficiency – Sequential task organization ensures a structured

production process, minimizing downtime and delays.

2. Resource Optimization – Helps in allocating manpower, materials, and equipment

efficiently, reducing waste and maximizing output.

3. Time Management – Establishing clear start and finish dates enhances project tracking

and deadline adherence.

4. Risk Mitigation – Identifies potential bottlenecks (e.g., budget constraints, market research

delays) and enables proactive adjustments.

5. Increased Profitability – Structured execution of tasks like market research, risk

evaluation, and financial planning leads to higher productivity and profitability.

By optimizing production scheduling, businesses can achieve better coordination, cost

savings, and streamlined operations, ensuring sustained growth and competitiveness.

 Schema 4: Schematic diagram illustrating the optimization of resource allocation in production

planning.

Chapter I : General Concepts

22

This schematic diagram illustrates the optimization of resource allocation in production

planning, leveraging machine learning models and workflow strategies.

1. Efficient Resource Utilization – Ensures optimal allocation of virtual machines (VMs),

computational resources, and time, minimizing waste.

2. Automated Decision-Making – Uses regression models (M5P, NN, SVM) to predict and

optimize resource allocation strategies dynamically.

3. Enhanced Performance & Cost Efficiency – Balances cost, time, and success ratio,

ensuring production meets customer requirements.

4. Scalability & Adaptability – The model continuously adjusts based on real-time analysis

& evaluation (UPPAAL-SMC) for improved efficiency.

5. Data-Driven Optimization – Uses statistical modeling and machine learning to optimize

production workflows and reduce inefficiencies.

By implementing resource allocation optimization, production planning becomes more

cost-effective, scalable, and responsive, leading to higher efficiency and improved

service reliability.

 Chapter Highlights:

 An optimization problem involves formulating an objective function to be either

maximized or minimized, subject to inequality and equality constraints. These functions

depend on design variables, which are assessed using optimization techniques.

 Design variables can be real numbers or take discrete, binary, or integer forms.

 Modelling entails representing a problem mathematically using fundamental operations

such as addition, subtraction, multiplication, division, and various functions, ensuring

appropriate units are applied.

 The gradient at a given point defines the slope of the tangent at that point.

 If both the objective function and constraints are linear in terms of design variables, the

problem is classified as linear programming, which excludes multiplicative terms like x1x2

 or x2
.

 The graphical method is applicable for solving optimization problems involving up to

Chapter I : General Concepts

23

three design variables.

 Functions with multiple local minima or maxima are termed multimodal functions.

 The concept of convexity is crucial in determining whether a function possesses a single

minimum. A convex function guarantees a global minimum.

 Optimization algorithms are typically designed for minimization. If an objective function

requires maximization, it is transformed into an equivalent minimization problem by

negation.

 The necessary condition for optimality—whether maximum or minimum—is that the

gradient at the given point must be zero.

 At an optimal point, the second derivative of the objective function determines the nature

of the extremum:

 A positive second derivative indicates a minimum.

 A negative second derivative indicates a maximum.

 Numerical differentiation methods, including forward, backward, and central difference

methods, can estimate the derivative of a function. Among these, the central difference

method provides the highest accuracy.

 The directional derivative measures the instantaneous rate of change of a function in a

specified direction.

 The Hessian matrix (H) represents the second-order derivatives of a function with

multiple variables.

 At a function's minimum, the Hessian matrix must be positive definite, meaning all its

eigenvalues are positive.

 Quadratic approximations are often useful in optimization, particularly for methods like

Newton’s method, which achieve faster convergence with quadratic functions.

 Taylor series approximation is employed to derive linear or quadratic approximations

of functions, depending on the number of terms included in the expansion.

 Formulae Chart:

 Forward difference:

 ()
 () ()

 Backward difference:

 ()
 () ()

 Central difference:

 ()
 () ()

 Central difference formula for the second derivative:

Chapter I : General Concepts

24

 ()
 () () ()

 Jacobian of three functions with three variables:

, -

[

]

 Hessian for a three-variable function:

, -

[

]

 Quadratic approximation:

 () () ()

 Optimization Problems

1. An airline company in India uses A320 aircraft to fly passengers from New Delhi to

Mumbai. Though the maximum seating capacity of the aircraft is 180, the airline observes

that on average it flies only 130 passengers per flight. The regular fare between the two

cities is Rs. 15,000. From the market survey, the company knows that for every Rs. 300

reduction in fare, it would attract an additional four passengers. The company would like to

find a fare policy that would maximize its revenue. Formulate this as an optimization

problem.

2. The average yield in a farm is 300 apples per tree, if 50 apple trees are planted per acre.

The yield per tree decreases by 3 apples for each additional tree planted per acre. How many

additional trees per acre should be planted to maximize the yield? Formulate this as an

optimization problem.

3. Determine the area of the largest rectangle that can be inscribed in a circle of radius 5 cm.

Formulate this as an optimization problem by writing down the objective function and the

constraint. Solve the problem using the graphical method.

4. A field needs to be enclosed with a fence, with a river flowing on one side of the field.

We have 300 m of fencing material. Our aim is to use the available fencing material and

cover the maximum area of the field. Formulate this as an optimization problem by writing

down the objective function and the constraint and clearly stating the design variables.

Chapter I : General Concepts

25

5. A traveling salesman has to start from city A, cover all other n number of cities, and then

come back to city A. The distance between the ith and jth cities is given by . How could

he plan the route so to cover the minimum distance? Formulate this as an optimization

problem.

6. A company has initial wealth W and would like to invest this to get maximum returns. It

can get higher returns () if it invests in risky assets, but the return is not guaranteed. A

return () is guaranteed if it invests in safe assets. How much should the company invest in

risky assets (R), to maximize its wealth at the end of a stipulated period? Formulate the

objective function for the optimization problem.

7. In an experiment, the following observations (see Table 1.3) are made where x is an

independent variable and y is a dependent variable. It is desired to fit these data with a

straight line:

 ̂

where m and c are to be determined. The data are to be fitted in the least squares sense, that

is, ∑(̂) is to be minimized. Formulate this as an optimization problem.

8. The cost of a solar energy system (King 1975) is given by U = 35A + 208V, where A is

the surface area of the collector and V is the volume of storage (Figure 1.19). Due to energy

balance considerations, the following relation between A and V is to be satisfied:

The design variable T is related to V as:

Chapter I : General Concepts

26

The variable T has to be restricted between 40°C and 90°C. The cost U is to be minimized.

Formulate this as an optimization problem.

9. Write the gradient and Hessian matrix for the function:

 () (

)

10. A company manufactures three products: A, B, and C. Each product requires time for

three processes: 1, 2, and 3, as given in Table 1.4.

 The maximum available capacity on each process is given in Table 1.5. The profit per

unit for the product is given in Table 1.6. What quantities of A, B, and C should be produced

to maximize profit? Formulate this as an optimization problem.

11. A company has three factories and five warehouses. The warehouse demand, factory

capacity, and shipping cost are given in Table 1.7. Determine the optimal shipment plan to

minimize the total cost of transportation. Formulate the optimization problem.

Chapter I : General Concepts

27

12. Plot the function:

 () ()()()

 and locate the minimum and maximum in [-4, 0].

13. An oil refinery company blends four raw gasoline types (A, B, C, and D) to produce two

grades of automobile fuel, standard and premium. The cost per barrel of different gasoline

types, performance rating and number of barrels available each day is given in Table 1.8.

The premium should have a rating greater than 90 while the standard fuel should have a

performance rating in excess of 80. The selling prices of standard and premium fuel are 90

dollars and 100 dollars per barrel respectively. The company should produce at least 6000

barrels of fuel per day. Determine how much quantity of fuel (of each type) should be

produced to maximize profit? Formulate this as an optimization problem.

14. Check whether the following functions are convex or not:

 ∈ , -

 ∈ , -

 ∈ , -

 √ ∈ , -

15. Write the first three terms of the Taylor series for the function:

 () () / at x = 3.

16. Find the linear approximation of the function:

Chapter I : General Concepts

28

 () () () / at x = 1.

17. Write the Taylor series expansion (up to four terms) for the function centered at x =

3.

18. Write the Taylor series expansion (up to three terms) for the function () centered at

x = π.

19. Find the quadratic approximation of the function () () at x = 0.

20. Find the directional derivative of the function: ()

 at (1,

1, −1) in the direction [

].

21. Using MATLAB, plot the functions x⁴ and | | and check whether these functions are

convex.

22. Solve the following optimization problems using the graphical method:

 i. Maximize

 subject to:

 .

 ii. Maximize

 subject to:

23. Calculate the Jacobian of the following system of equations:

[

]

Chapter II: Convex Optimization Overview

29

Chapter II: Convex Optimization Overview

2.1 Introduction:

In the preceding chapter, our attention was centered on providing an Introduction to

Optimization and elucidating the Simplex Method. This chapter transitions our focus

towards another critical element within convex optimization, specifically, convex

functions. The forthcoming discussion will cover a range of topics, including:

 The distinctions and characteristics of convex, concave, strictly convex, and strongly

convex functions.

 First and second-order characterizations of convex functions.

 Conditions for optimality within convex optimization problems.

2.2 Theory of convex functions:

a. Definition

Let us begin by revisiting the definition of a convex function.

Definition 1.
10

 A function f : Rn → R is convex if its domain is a convex set and for

all x, in its domain, and all λ ∈ [0, 1], we have

 ((–)) () (–) ().

Figure 1: An illustration of the definition of a convex function

• Expressed formally, this implies that for any two points x, y, when function f is

evaluated at any convex combination of x and y, the result should not exceed the convex

combination of f(x) and f(y).

• From a geometric perspective, the line segment that connects the points (x, f(x)) and (y,

f(y)) must remain above the graph of the function f.

10

 Boyd, S., & Vandenberghe, L. (2004). Convex optimization (p. 67). Cambridge University Press.

Chapter II: Convex Optimization Overview

30

• In the case of f being continuous, establishing convexity requires only the verification of

the definition for λ = 1 (or any other constant λ within the open interval (0, 1)),

mirroring the concept of midpoint convex sets previously discussed.

• The function f is defined as concave if the negation of f, denoted as -f, exhibits

convexity.

b. Examples of univariate convex functions

To rigorously ascertain the convexity of specific functions, it is standard practice to utilize

the second derivative test for convexity. This test stipulates that a function f(x) is deemed

convex over a certain interval if its second derivative f''(x) remains non-negative (f''(x) ≥ 0)

across that interval. An examination of the functions in question yields the following

insights:

1. For () , the calculation of the first and second derivatives yields ()

and () , respectively. Given that consistently holds a positive value and

is inherently non-negative, the condition () is satisfied, affirming the function's

convexity.

2. In the case of () (), the derivatives are determined to be ()

 and

 ()

 . The condition for all ensures that () , thereby

confirming the function's convexity.

3. The function () , applicable in the domain * + for or , has its

second derivative expressed as () () . This expression remains non-

negative under the specified conditions for a, substantiating the function's convexity within

its domain.

4. Conversely, for () defined within * + for , the second derivative

 () () indicates a negative value for (), signaling concavity

instead of convexity.

5. With () | | , where , the function exhibits convexity for as ()

 and similarly for as () () . Convexity across the entire domain hinges

on the behavior at , which generally aligns with convexity for .

6. For () (), applicable in * +, the derivatives are () () and

 ()

. Given that within * +,

 () is upheld, affirming the function's

convexity.

c. Strict and strong convexity

Consider a function . It is characterized as follows:
11

- Strictly Convex: For any distinct points ∈ and any λ in the open interval (0, 1),

the function f satisfies the inequality ((–)) () (–) ().

11

 Hiriart-Urruty, J.-B., & Lemaréchal, C. (2001). Fundamentals of convex analysis (p. 79). Springer.

Chapter II: Convex Optimization Overview

31

- Strongly Convex: There exists a positive scalar such that the function

 ()– || ||

 is convex.

Lemma 1: The property of strong convexity implies strict convexity, which in turn implies

general convexity. However, the reverse of these implications does not hold.

Proof: The transition from strict convexity to convexity is intuitively straightforward.

To understand why strong convexity leads to strict convexity, consider the strong convexity

condition for f, which suggests that for any distinct points ∈ and any λ in the open

interval (0, 1), we have: ((–))– || (–) ||

 ()

 (–) ()– || ||

– (–) || ||

. The expression

 || ||

 (–) || ||

– || (–) ||

 is positive for all distinct x, y and λ in

(0, 1), due to the strict convexity of || ||

. This validates the lemma.

The non-equivalence of the converse statements is evident through examples: the function

 () is convex but lacks strict convexity, and the function () demonstrates

strict convexity without being strongly convex.

d. Examples of multivariate convex functions

Affine Functions: An affine function is defined by the equation () , where

'a' is a vector in and is a scalar in R. These functions are both convex and concave but

not strictly so in either case. This dual property is illustrated by the equation for any λ in [0,

1]:

 (()) (()) ()

 () () () (),

Demonstrating that affine functions uniquely satisfy both convexity and concavity

conditions.

Quadratic Functions: The general form of a quadratic function is ()

 . The convexity and concavity properties of quadratic functions are determined by the

matrix Q:

- The function is convex if Q is positive semidefinite ().

- It is strictly convex if Q is positive definite ().

- The function is concave if Q is negative semidefinite (), and strictly concave if Q

is negative definite ().

These properties can be established using the second-order conditions for convexity.

Norms: A norm is a function f that satisfies the following conditions for any scalar alpha in

R and for all vectors x and y:

1. () | | (),

2. () () (),

3. () for all x, with () implying that .

Chapter II: Convex Optimization Overview

32

These properties ensure that norms measure the size or length of vectors in a consistent and

scalable manner.

Proof: For any λ in [0, 1], the following inequality holds:

 (()) () (()) () () (),

which is supported by the triangle inequality and the homogeneity property of norms,

demonstrating the foundational principles of convexity without relying on the positivity

property.

 (a) An affine function (b) A quadratic function (c) The 1-norm

Figure 2: Examples of multivariate convex functions

e. Convexity = convexity along all lines

Theorem 1: A function is convex if and only if the function g:

 , defined by () (), is convex as a univariate function for every x within the

domain of f and for all y in . The domain of g includes all t for which x + ty is within the domain

of f.
12

Proof: this proof follows directly from the definition of convexity.

Implications and Applications:

- The theorem facilitates numerous fundamental proofs in convex analysis, though it does not

significantly ease the task of verifying convexity due to the requirement that the condition

be satisfied across an infinite spectrum of lines.

- Within convex optimization, many algorithms focus on iteratively minimizing the function

along lines.

This theorem ensures that each such sub-problem is also a convex optimization challenge,

thereby reinforcing the applicability of convex optimization strategies.

2.3 First and second order characterizations of convex functions:

Theorem 2. Consider a function that is twice differentiable over an open

domain. The following statements are equivalent:

- (i) The function f is convex.

- (ii) For all x, y in the domain of f, the inequality () () () (–)

holds. This implies the function f satisfies that, for any two points in its domain, the

function's value at y is at least the first-order Taylor expansion at x, evaluated at y.

- (iii) The Hessian matrix of (), is positive semidefinite (()) for all

x in the domain of f.

12

 Borwein, J. M., & Lewis, A. S. (2006). Convex analysis and nonlinear optimization (p. 64). Springer.

Chapter II: Convex Optimization Overview

33

Interpretation of Condition (ii): The first-order Taylor expansion at any point acts as a

global underestimator for the function f. This condition underlines that the linear

approximation of f at any given point within its domain never overestimates the

function's true value at any other point, a key characteristic of convex functions.

Interpretation of Condition (iii): This condition asserts that the function f maintains

nonnegative curvature across its entire domain. In the one-dimensional case, this is

represented by the inequality () for all x in the domain of f, signifying that

the second derivative of f is nonnegative. This nonnegative curvature indicates that the

function's graph is consistently "bowed" upwards, a characteristic trait of convex

functions.

For functions of higher dimensions, the positive semi-definiteness of the Hessian matrix

(()) ensures that all directional second derivatives are nonnegative. This

condition is essential for affirming the convexity of twice differentiable functions, as it

verifies the absence of local maxima within the function's domain, aligning with the

essential attributes of convex functions.

Proof ([2],[1]):

The detailed proof demonstrates the equivalence of three fundamental conditions for the

convexity of a function that is twice differentiable over an open domain. Here's

the structured summary:

1. (i) => (ii): By the convexity of f, we establish that ()– () is at least the gradient of f

at x, transposed and multiplied by y-x, leveraging the approach of λ towards 0.

Chapter II: Convex Optimization Overview

34

2. (ii) => (i): Given the first-order condition for all x, y in f's domain, we use a convex

combination z of x and y to demonstrate s convexity, illustrating that f(z) is less than or

equal to a convex combination of f(x) and f(y).

3. (ii) <=> (iii) in dimension 1: We show the necessity and sufficiency of the second

derivative's non-negativity (or the Hessian in higher dimensions) for the first-order

condition, indicating the nonnegative curvature of f.

4. Generalization to higher dimensions: Extends the argument to higher dimensions by

proving convexity of f along all lines, equivalent to the Hessian's non-negativity across f's

domain.

Corollary 1: Global Minima in Convex Optimization

Establishes that for convex and differentiable f, any point x where the gradient of f vanishes

marks a global minimum, highlighting the global optimality condition in convex problems.

Remarks:

- The gradient of f equals 0 is a necessary and sufficient condition for global optimality in

convex problems.

- In non-convex settings, this condition may not ensure even local optimality.

- Convex functions inherently satisfy the local optimality condition where the Hessian of f is

nonnegative.

2.4 Strict convexity:

a. Characterization of Strict Convexity

Strict Convexity Defined:
13

A function is deemed strictly convex if, for any two distinct points x and y in its

domain, and for every λ in the open interval (0, 1), the following inequality holds:

 (()) () () ().

This definition naturally implies that a strictly convex function is also convex; however, the

reverse does not necessarily apply. For example, the function () for x in R is convex

but not strictly convex.

Second Order Sufficient Condition for Strict Convexity:

The condition that the Hessian matrix of f is positive definite (()) for all x in a

subset Ω of its domain suggests that f is strictly convex over Ω. It's important to note,

however, that the converse of this statement may not hold.

First Order Characterization:

A function f is strictly convex on a subset Ω subseteq if, and only if, for all pairs of

distinct points x, y within Ω, the inequality:

 () () () ()

13

 Borwein, J. M., & Lewis, A. S. (2006). Convex analysis and nonlinear optimization (p. 68). Springer.

Chapter II: Convex Optimization Overview

35

is satisfied, indicating a stricter condition than mere convexity.

Characterizations of Strong Convexity:

A function f is identified as strongly convex if there exists a constant m > 0 such that for all

x, y in the domain of f,

 () () () () || ||

or equivalently, if the Hessian matrix satisfies

 () ∈ ()

Application of Strict Convexity:

A principal application of strict convexity lies in its ability to guarantee the uniqueness of

the optimal solution in optimization problems, showcasing its significance in mathematical

optimization and analysis.

b. Strict Convexity and Uniqueness of Optimal Solutions

Theorem 3. This theorem posits that for an optimization problem aiming to minimize f(x)

subject to x belonging to a convex set Ω, if is strictly convex on Ω, then the

optimal solution, assuming its existence, is unique.

Proof: Assume the existence of two distinct optimal solutions x, y in , implying both are

within Ω and () () () for all z in Ω. Considering
()

, and given Ω's

convexity, z also lies within Ω. Due to the strict convexity of f, it follows that:

 .
()

/

 ()

 () () (),

which contradicts the assumption that both x and y are optimal. Therefore, the optimal

solution must be unique.

Exercise: Convexity Analysis

1. () (–)

:

 - This function is strictly convex. The quadratic term implies a parabolic surface that

opens upward, indicative of strict convexity.

2. () (–)

 (–)

:

 - This function is also strictly convex as it is a sum of strictly convex functions. The

quadratic terms ensure that any line segment on the function's surface lies above the chord

connecting its endpoints.

3. () (–)

 (–)

 :

 - This function remains strictly convex. The addition of x3 to the strictly convex quadratic

terms does not affect the strict convexity of the overall function.

4. () | |():

 - This function is convex. The absolute value function forms a V-shaped graph, which

Chapter II: Convex Optimization Overview

36

satisfies the definition of convexity but not strict convexity.

5. () || ||():

 - The norm function is convex. Norms are convex by definition, as they satisfy the triangle

inequality and homogeneity. However, they are not strictly convex since the line segment

between any two points with the same norm but different directions will lie entirely on the

surface of the norm ball.

c. Quadratic functions revisited:

The function f(x) is convex if the matrix A is positive semidefinite (A ≥ 0). This criterion depends

solely on the second-order term , which relates to the function's curvature. The linear term b

and the constant term c affect the function's location but not its curvature.
14

Proofs and Implications:

 Non-Convexity with Negative Eigenvalues: If A is not positive semi-definite (i.e., has a negative

eigenvalue), f(x) cannot be convex. Demonstrated by considering an eigenvector x of A with a

negative eigenvalue λ, leading to the function being unbounded below as α → ∞, where α is a scalar

multiplier of x .

 Strict Convexity with Positive Definite Matrix: When A is positive definite (A > 0), f(x) is strictly

convex, guaranteeing a unique solution to the optimization problem. This solution is given by

 () , derived by setting the gradient of f(x) to zero.

 Convexity with Positive Semidefinite Matrix: If A is positive semidefinite (A ≥ 0), f(x) is convex but

not necessarily strictly convex. This scenario may result in the optimization problem being

unbounded below or having infinitely many solutions, depending on the specific characteristics of A

and b. The condition for a unique solution is more nuanced and depends on whether b lies in the

range of A.

Figure 3: An illustration of the different possibilities for unconstrained quadratic

minimization

3.3.1 Least squares revisited

In the least squares problem, we seek to Minimize the squared difference between and b,

expressed as Minimize| – |

. The unique solution, given by () , hinges

on the columns of A being linearly independent. This independence ensures , A is

positive definite, making the objective function strictly convex. Strict convexity implies that

any local Minimize is also a global Minimize, guaranteeing the uniqueness of the solution.

14

 Strang, G. (2009). Introduction to linear algebra (p. 215). Wellesley-Cambridge Press.

Chapter II: Convex Optimization Overview

37

The key to this strict convexity is the positive definiteness of A, which stems from the

linear independence of A's columns, ensuring the objective's curvature is always positive

and thus, strictly convex.

2.5 Optimality conditions for convex optimization:

Theorem. 4. This theorem presents a crucial condition for optimality in convex optimization

problems. When the objective function is convex and differentiable, and the feasible set

Ω is also convex, a point x is optimal (i.e., minimizes f) if and only if it lies within Ω and satisfies the

condition:
15

 () (–) ∈ .

This condition can be understood as follows:

- Direction of Increase: The gradient () points in the direction of the steepest ascent of f at x.

The condition () (–) means that moving from x towards any feasible point y in the

direction of () (or not against it) does not decrease the function value. In other words, any move

within Ω from x to y either increases f or leaves it unchanged; implying x is at least a local minimum.

- Hyperplane Support: The vector – () (assuming it's nonzero) acts like a supporting

hyperplane to the set Ω at point x. A hyper-plane is a flat affine subspace of one dimension less than

the ambient space (in , it's an n-1 dimensional space). This hyper-plane 'supports' Ω at x in the

sense that Ω lies entirely on one side of the hyperplane. The gradient vector () is perpendicular

to this hyperplane, and the condition suggests that x is on the boundary of the feasible region where

the objective function begins to increase.

In essence, this optimality condition highlights that at the optimal point x, any feasible direction does

not lead to a decrease in the objective function value. This aligns with the intuitive understanding of

a minimum in a convex landscape: at the bottom of a bowl, moving away in any direction only takes

you uphill. This theorem formalizes that intuition for convex optimization, indicating that if x

satisfies this gradient condition, it's an optimal solution to the problem. (See figure below.)

Figure 4: An illustration of the optimality condition for convex optimization

Sufficiency:

The sufficiency of the condition () (–) for all y in Ω in establishing x as an optimal

point relies on the convexity off. This is demonstrated by combining it with the first-order

15

 Hiriart-Urruty, J.-B., & Lemaréchal, C. (2001). Fundamentals of convex analysis (p. 105). Springer.

Chapter II: Convex Optimization Overview

38

characterization of convexity, () () () (–) for all y in Ω, to conclude that

 () () for all y in Ω, hence proving x is optimal.

Necessity:

The necessity of the condition is independent of the convexity off. If x is optimal but there exists

some y in Ω for which ()(–) , considering () . (–)/ for α in [0, 1],

it's shown that () , leading to . (–)/ () for some α in the interval (0, δ),

contradicting the optimality of x.

Special Case:

- If , the condition simplifies to () , the familiar first-order condition for

unconstrained optimality. This is because, in the absence of constraints, the only way to

satisfy () (–) for all y is for the gradient itself to be zero.

- If x is in the interior of Ω and is optimal, then () must hold. This follows from the

ability to choose y in the direction of – () (i.e., – () for small α) to

contradict the assumption of optimality unless the gradient is zero.

Theorem 5. Let's consider an optimization challenge defined as follows:
16

Minimize f(x)

Subject to the constraint ,

where the function f is convex and A belongs to the space of matrices. The condition for x in

 to be deemed optimal for this problem is that it must both satisfy the constraint (be feasible) and

there must exist a vector µ in such that the equation () holds true. The foundation of

this proof is rooted in the nature of convex problems, which dictates that a feasible point x achieves

optimality if and only if the transpose of the gradient of f at x, applied to the difference (y - x), is non-

negative for all y that meet the condition .

Every y satisfying can be represented as , where v resides in the null space of

A, meaning Av = 0. Thus, x is considered optimal only if the transpose of the gradient of f at x, when

applied to v, is non-negative for all v that fulfill Av = 0. Given that Av = 0 also holds true for A(−v)

= 0, it implies that the transpose of the gradient of f at x, applied to , must also be non-positive.

Consequently, the criterion for optimality stipulates that the transpose of the gradient of f at x,

applied to v, equals zero for every v that satisfies Av = 0. This implies that the gradient of f at x is

orthogonal to the null space of A, which, according to linear algebra, corresponds to the row space of

A or, equivalently, the column space of . Therefore, there exists a vector µ in such that

 () , completing the proof.

16

 Meyer, C. D. (2001). Matrix analysis and applied linear algebra (p. 318). SIAM.

Chapter III : 1-D Optimization Algorithms

39

Chapter III : 1-D Optimization Algorithms

3.1 Introduction

The one-dimensional (1-D) optimization problem refers to an objective func- tion with one
variable. In practice, optimization problems with many vari- ables are complex, and rarely
does one find a problem with a single variable. However, 1-D optimization algorithms form
the basic building blocks for multivariable algorithms. As these algorithms form a
subproblem of mul- tivariable optimization problems, numerous methods (or algorithms)
have been reported in the literature, each with some unique advantage over the others. These
algorithms are classified into gradient-based and non–gradient- based algorithms. Some
popular algorithms are discussed in this chapter.
As an example, a single-variable objective function could be:

 ()

This is an unconstrained optimization problem where x has to be deter- mined, which results
in minimization of f(x). If we have to restrict x within a ≤ x ≤ b, where a and b are real
numbers, then it becomes a constrained optimization problem. If the function f(x) is either
continuously increasing or decreasing between two points a and b, then it is referred to as a
monotonic function (see Figure 2.1). In a unimodal function, the function is monotonic on

either side of its minimum point (x*). The function f(x) = 2x2 − 2x + 8 is plotted in Figure
2.2, in which we observe that f(x) is a unimodal function. Using the property of the unimodal
function that it continuously decreases or increases on either side of the minimum point, the
single-variable search algorithms can be devised in such a way that they eliminate certain
regions of the function where the minimum is not located.
In the next section, a test problem in a solar energy system is defined. Both gradient-based
and direct search methods are discussed and tested for this problem. Subsequently, these
solution techniques will also be tested on some more standard optimization problems. The
performances of these methods are compared toward the end of the chapter.

FIGURE 2.1: Monotonic increasing and decreasing functions.

Chapter III : 1-D Optimization Algorithms

40

FIGURE 2.2: Unimodal function.

3.2 Test Problem

Before we discuss the optimization algorithms, let us set a problem on which we will be
testing these algorithms. The solar energy problem is defined in Problem 8 of Chapter 1. In
this cost minimization problem, the cost is a func- tion of the volume of the storage system
and the surface area of the collector. The volume and surface area are functions of the design
variable tempera- ture T. Let us rewrite the cost function in terms of T alone as:

The variable T is restricted between 40°C and 90°C. The function U is plot- ted as a function
of T in Figure 2.4. The minimum occurs at T* = 55.08 and the minimum value of the
function is U* = 1225.166. Observe from the figure that the cost function is unimodal. A

MATLAB® code, exhaustive.m, is used to plot the cost function by varying the design
variable T from 40 to 90 in steps of 0.01. One may ask why, if this method is able to locate
the minimum and is also simple, there is a need to discuss other algorithms. It may be noted
that the number of function evaluations by this particular method is (90 – 40)/0.01 = 5000.
For more complex problems, the time required for the function evaluation is at a premium
and it may not be practical to evaluate the function so many times. This necessitates
exploring new algorithms that require fewer function evaluations to reach the minimum of
any function.
On executing this code, the output obtained is:

Minimum cost = 1225.17

Occurs at T = 55.08

FIGURE 2.4: Cost function for the test problem.

Chapter III : 1-D Optimization Algorithms

41

3.3 Solution Techniques

As mentioned previously, the solution techniques for one-dimensional optimization
problems can be classified into gradient-based and non–gradient- based algorithms. As the
name suggests, gradient-based algorithms require derivative information. These methods
find applications to problems in which derivatives can be calculated easily. In the search
processes of these algorithms, the derivative of the function is driven to zero. The algorithm
is terminated when the derivative of the function is very close to zero and the corresponding
x is declared as the point (x* = x) at which minimum of the function occurs. The following
gradient-based methods are discussed in this section:

• Bisection method

• Newton–Raphson method

• Secant method

• Cubic polynomial fit

For certain types of optimization problems, the variable x may not be real, but can take only
certain discrete values. Recall the pipe size problem dis- cussed in Chapter 1, where pipe
size comes in some standard sizes such as 1, 2 inches, and so forth. For such discontinuous
functions, gradient information will not be available at all points, and the search algorithm
has to proceed using the function evaluations alone to arrive at the minimum of the function.
The golden section method is a very effective solution technique for such problems and is
discussed later in this section. The golden sec- tion method can also be applied to
continuous functions. Some other direct search methods such as dichotomous search, the
interval halving method, and the Fibonacci method are also briefly discussed.

17

3.3.1 Bisection Method

In Chapter 1, we discussed that at the maximum or minimum of a function, f′(x) = 0.
Because in these problems we are considering a unimodal function of minimization type, the
condition that the gradient vanishes at the mini- mum point still holds. The gradient function
changes sign near the optimum point. If f′(x1) and f′(x2) are the derivatives of a function
computed at points x1 and x2, then the minimum of the function is located between x1 and x2
if:

 () ()
(2.2)

Based on this condition, certain regions of the search space can be elimi- nated. The
algorithm is described in Table 2.1.

TABLE 2.1: Algorithm for the Bisection Method

In this algorithm a and b are the bounds of the function, and Δx is used in the central

17

 Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes: The art of
scientific computing (p. 452). Cambridge University Press.

Chapter III : 1-D Optimization Algorithms

42

difference formula for computing the derivative and ε is a small number required for
terminating the algorithm when |a − b| < ε. See Figure 2.5, which gives physical insight into
this method. The algorithm is coded in MATLAB (bisection.m). The objective function is
coded in MATLAB file (func.m). Users can change the function in this file to minimize
another objective function that may be of interest to them. In doing so, they also need to give
appropriate bounds for the function, given by a and b in the main program (bisection.m).

FIGURE 2.5: Bisection method.

FIGURE 2.6 : Region elimination with iterations (bisection method).

On executing the code for the test problem, the output obtained is:

Chapter III : 1-D Optimization Algorithms

43

The minimum obtained from this method matches very closely with the exhaustive search
method. But the number of function evaluations in the bisection method is only 52 as
compared to 5000 in the exhaustive search method. For this test problem, Figure 2.6 shows
the regions that are eliminated in the first two iterations.

3.3.2 Newton–Raphson Method

Isaac Newton evaluated the root of an equation using a sequence of polynomials. The
method in the present form was given by Joseph Raphson in 1960, with successive
approximation to x given in an iteration form. The Newton–Raphson method is a root
finding technique in which the root of the equation f′(x) = 0 is evaluated. Using the Taylor
series, the function f′(x) can be approximated as:

 () () (2.3)

where the gradient is approximated at point xk. Setting Equation 2.3 to zero, the next
approximation point can then be given as:

 ()

 ()
 (2.4)

Figure 2.7 illustrates the steps of this method. The method shows quadratic convergence.
That is, if x* is the root of the equation, then:

‖ ‖

‖ ‖
 (2.5)

The Newton–Raphson algorithm is described in Table 2.2.

The algorithm is coded in MATLAB (newtonraphson.m). On executing the code, the output
obtained is:

Chapter III : 1-D Optimization Algorithms

44

FIGURE 2.7: Newton–Raphson method.

TABLE 2.2: Algorithm for the Newton–Raphson Method

The minimum obtained by this method is in agreement with the earlier methods. The
number of function evaluations in this method is 25 as com- pared to those in the bisection
method, for which 52 function evaluations were required. The Newton–Raphson method has
the following disadvantages:

• The convergence is sensitive to the initial guess. For certain initial guesses, the method can
also show divergent trends. For example (Dennis and Schnabel 1983), the solution to the

function tan–1 x con- verges when the initial guess, |x| < a, diverges when |x| > a and cycle
indefinitely if the initial guess is taken as |x| = a, where a = 1.3917452002707.

• The convergence slows down when the gradient value is close to zero.

• The second derivative of the function should exist.

Chapter III : 1-D Optimization Algorithms

45

3.3.3 Secant Method

In the bisection method, the sign of the derivative was used to locate zero of f′(x). In the
secant method, both the magnitude and the sign of the derivative are used to locate the zero
of f′(x). The first step in the secant method is the same as in the bisection method, That is, if
f′(x1) and f′(x2) are the derivatives of a function computed at point x1 and x2, then the
minimum of the function is located between x1 and x2 if:

 () () (2.6)

Further, it is assumed that f′(x) varies linearly between points x1 and x2. A secant line is
drawn between the two points x1 and x2. The point α where the secant line crosses the x-axis
is taken as the improved point in the next itera- tion (see Figure 2.8).
One of the points, x1 or x2, is then eliminated using the aforementioned derivative condition.
Thus, either the (x1, α) or the (α, x2) region is retained:

FIGURE 2.8: Secant method.

for the next iteration. The iteration continues until f′(α) is close to zero. The algorithm is
coded in MATLAB (secant.m) and is described in Table 2.3.
On executing the code for the test problem, the output obtained is:

Chapter III : 1-D Optimization Algorithms

46

The secant method is able to locate the minimum of the function, but with a higher number
of function evaluations as compared to other gradient- based methods.

TABLE 2.3: Algorithm for the Secant Method

3.3.4 Cubic Polynomial Fit

In this method, the function f(x) to be minimized is approximated by a cubic polynomial P(x)
as:

 () (2.7)

If the function f(x) is evaluated at four different points, then the polynomial coefficients a0, a1,
a2, and a4 can be evaluated by solving four simultaneous linear equations. Alternatively, if
the value of the function and its derivatives are available at two points, the polynomial
coefficients can still be evaluated. Once a polynomial is approximated for the function, the
minimum point can be evaluated using the polynomial coefficients.
The first step in this search method is to bracket the minimum of the func- tion between two
points, x1 and x2, such that the following conditions hold:

 () () (2.8)

Using the information of f(x1), f′(x1), f(x2), and f′(x2), the minimum point of the
approximating cubic polynomial can be given as:

(2.9)

 ()

 () ()
 (2.10)

 (() ())

 () () ()

Chapter III : 1-D Optimization Algorithms

47

| |
 √ () () (2.12)

The algorithm for this method is coded in MATLAB (ubic.m) and is described in Table 2.4.

On executing the code for the test problem, the output obtained is:

This method is able to capture the minimum point of the function with the number of
function evaluations comparable to that in the Newton–Raphson method.

TABLE 2.4: Algorithm for Cubic Polynomial Fit

3.3.5 Golden Section Method

Two numbers, p and q, are in a golden ratio if:

 (2.13)

Equation 2.13 can be written as:

 (2.14)

or

 (2.15)

On solving the quadratic equation:

Chapter III : 1-D Optimization Algorithms

48

 (2.16)

we get:

 √

 (2.17)

τ is called the golden number, which has a significance in aesthetics (e.g., the Egyptian
pyramids).
Gradient information was required in the search methods that were dis- cussed earlier. In the
golden section method, the search is refined by elimi- nating certain regions based on
function evaluations alone. No gradient computation is required in the golden section
method. This method has two significant advantages over other region elimination
techniques:

• Only one new function evaluation is required at each step.

• There is a constant reduction factor at each step.

The algorithm is coded in MATLAB (golden.m) and is described in Table 2.5.

TABLE 2.5: Algorithm for the Golden Section Method

On executing the code for the test problem, output obtained is:

Chapter III : 1-D Optimization Algorithms

49

3.3.6 Other Methods

In addition to the golden section method, there are other direct search methods that can be
used to solve the one-dimensional optimization problems, including

• Dichotomous search

• Interval halving method

• Fibonacci method

In the dichotomous search, a function is evaluated at two points, close to the center of the
interval of uncertainty. Let these two points be xa and xb given by:

 ()

 ()

where δ is a small number and L is the region of uncertainty. Depending on the computed
value of the function at these points, a certain region is eliminated. In Figure 2.9, the region
toward the right-hand side of xb is elimi- nated. In this method, the region of uncertainty after
n function evaluations is given by:

 (

) ()

In the interval halving method, half of the region of uncertainty is deleted in every iteration.
The search space is divided into four equal parts and func- tion evaluation is carried out at x1,
x2, and x3. Again, a certain region gets eliminated based on the value of the functions
computed at three points. In Figure 2.10, the region toward the right-hand side of x2 is
eliminated. In this method, the region of uncertainty after n function evaluations is given by:

(

)

 ()

FIGURE 2.9 : Dichotomous search.

Chapter III : 1-D Optimization Algorithms

50

FIGURE 2.10: Interval halving method.

A Fibonacci sequence is given by:

 (2.22)

Where:

 (2.23)

In the Fibonacci method, the functions are evaluated at points:

 (2.24)

 (2.25)

where [a, b] define the region of uncertainty and L* is given by:

 (2.26)

In this method n has to be defined before the start of the algorithm.

3.4 Comparison of Solution Methods

Having defined a number of solution methods to find the minimum of a function, it is natural
to ask the question of which solution method to use for a given problem. The answer is quite
straightforward: no single method can be used for all types of problems. Different methods
may have to be tried for different problems.

18

Let us evaluate the efficiency of each of the methods for the test case problem that we discussed
in an earlier section. One way of defining efficiency of an optimization method could be to
show how x approaches x* with increasing iterations. Because the number of function
evaluations in each iteration is dif- ferent for different methods, we can plot |x − x*| versus
number of function evaluations for a meaningful comparison. Figure 2.11 shows this plot for
differ- ent solution methods for the solar energy test problem. It is observed from this figure that
the cubic polynomial fit and Newton–Raphson approach x* with 25 number of function
evaluations. The bisection and secant methods take a much larger number of function
evaluations to reach the minimum. The golden sec- tion method takes a minimum number of
function evaluations.
Let us further evaluate these methods for some well-known test problems (Philips et al.
1976; Reklaitis et al. 1983). Table 2.6 summarizes the number of function evaluations
required by each of the methods in reaching the minimum of the function. The golden
section, cubic polynomial fit, and Newton–Raphson methods perform well for all the test
problems except for the function:

 ()

18

 Burden, R. L., & Faires, J. D. (2011). Numerical analysis (p. 225). Cengage Learning.

Chapter III : 1-D Optimization Algorithms

51

which is highly skewed. The Newton–Raphson method requires a good ini- tial guess for
convergence. It takes 275 function evaluations for convergence with an initial guess of x = 5.
The method takes fewer function evaluations for convergence with x < 5. However, the
method diverges for x > 10. The cubic polynomial fit did not converge for this particular
function. The golden

FIGURE 2.11: Comparing different solution methods.

TABLE 2.6: Comparing Different Solution Techniques for Different Problems

and bisection methods converged for all the test functions. The solution to these problems is
obtained by modifying the func.m routine and executing the code for the corresponding
method.

 Chapter Highlights:

• The one-dimensional (1-D) optimization problems refer to an objective function that has
one variable. 1-D optimization algorithms form the basic building blocks for the
multivariable algorithms.

• If a function is either continuously increasing or decreasing between two points, then it is
referred as a monotonic function.

• In a unimodal function, the function is monotonic on either side of its minimum point.

• The solution techniques for one-dimensional optimization problems can be classified into
gradient-based and non–gradient-based algo- rithms. Some popular gradient-based

Chapter III : 1-D Optimization Algorithms

52

algorithms are bisection, cubic polynomial fit, secant, and Newton–Raphson methods. The
golden sec- tion algorithm does not require derivative information of the function.

• The Newton–Raphson method requires the second derivative of the function, and
convergence of this method is strongly dependent on a good initial guess.

• In the bisection method, the sign of the derivative is used to locate the zero of f′(x). In
the secant method, both magnitude and sign of the derivative are used to locate the zero of
f′(x).
• In the golden section method, the search is refined by eliminating certain regions
based on function evaluations only. No gradient computation is required in the golden
section method. This method derives its name from the number 1.61803, referred to as the
golden number, which has significance in aesthetics.

 Formulae Chart:

• Newton–Raphson method:

 ()

 ()

• Secant method:

 ()

(() ()) ()⁄

 Problems:

1. Maximizing Lift to Drag Ratio (L/D): For a lifting body, the lift to drag ratio (L/D) is

given as a function of the angle of attack (α):

 , where α lies between 0 and 35 degrees. The task is to
find the α at which L/D is maximized. Use the Golden Section, Cubic Polynomial Fit,

Bisection, and Secant methods to optimize the ratio.

2. Minimization of Various Functions: Apply the following methods to minimize the given

functions:

 a) () – , for -3 ≤ x ≤ 3

 b) ()

 c) ()
–

 d) ()

3. Maximization of the Function: () (– (())) ()
 .

Find the maximum value of this function using optimization methods.

4. Maximization of the Exponential Function: () .

Use optimization techniques to find the maximum value.

5. Minimizing Logarithmic Function: () (() ())

.

Minimize this function using the methods described.

6. Beam Strength Problem: The strength of a beam varies as the product of its breadth and

the square of its depth. Find the dimensions of the strongest beam that can be cut from a

circular log of diameter 1 meter.

7. Car Petrol Consumption Optimization: A car burns petrol at the rate of (300 + x³) liters

per 100 km, where x is the speed in km/h. The task is to find the steady speed that minimizes

the total cost of a 600 km trip.

Chapter III : 1-D Optimization Algorithms

53

8. Swimmer Optimization Problem: A swimmer in the sea is at a distance of 5 km from

the closest point C on the shore on a straight line. The house of the swimmer is on the shore

at a distance of 7 km from point C. He can swim at a speed of 2 km/h and run at a speed of 6

km/h. At what spot on the shore should he land so that he reaches his house in the shortest

possible time?

9. Aircraft Thrust Optimization: Given various parameters for an aircraft flying at 5 km

altitude, find the velocity at which the thrust requirement is minimized using the given

equation for thrust: T = 1/2 * ρ * v².

10. Plotting and Identifying Concave/Convex Regions: For the function ()
 plot the function for -2 ≤ x ≤ 2, identify the concave and convex regions, and

determine the local and global minima.

11. Maximizing the Demand Function: The consumer demand function is given by f(x) =

kx − p1 * x² / p2, with constants k = 90, p1 = 10, and p2 = 5. Maximize this function.

12. Minimizing Function with Constraints: () ()
 . Minimize this function using optimization techniques.

Chapter IV : Unconstrained Optimization

54

Chapter IV : Unconstrained Optimization

4.1 Introduction

The solution techniques for unconstrained optimization problems with mul- tiple variables
are dealt in this chapter. In practice, optimization problems are constrained, and
unconstrained optimization problems are few. One example of an unconstrained
optimization problem is data fitting, where one fits a curve on the measured data. However,
the algorithms presented in this chapter can be used to solve constrained optimization
problems as well. This is done by suitably modifying the objective function, which includes
a penalty term in case constraints are violated.

The solution methods for unconstrained optimization problems can be broadly
classified into gradient-based and non–gradient-based search methods. As the name
suggests, gradient-based methods require gradi- ent information in determining the search
direction. The gradient-based methods discussed in this chapter are steepest descent,
Davidon–Fletcher– Powell (DFP), Broyden–Fletcher–Goldfarb–Shanno (BFGS), Newton,
and Levenberg–Marquardt methods. The search direction computed by these methods uses
the gradient information, Hessian information, or a combina- tion of these two. Some
methods also make an approximation of the Hessian matrix. Once the search direction is
identified, one needs to evaluate how much to move in that direction so as to minimize the
function. This is a one-dimensional problem. We will be using the golden section method,
as discussed in Chapter 3, for solving the one-dimensional problem. The non– gradient-
based method does not require derivatives or second derivative information in finding the
search direction. The search direction is guided by the function evaluations as well as the
search directions computed from earlier iterations. Powell‘s conjugate direction method, a
non–gradient-based method, is elaborated in this chapter as it is much superior (shows
quadratic convergence) to other non-gradient methods such as simplex and pattern search
methods. The simplex method (Nelder–Mead algorithm) is also discussed in Section 3.4.9
on the direct search method. In the last section, Powell‘s method is used to solve a
complicated motion design problem of a robot.

For a single-variable function, it was discussed earlier that the derivative of the function
vanishes at the optimum and the second derivative of the function is greater than zero at the
minimum of the function. The same can be extended to a multivariable function. The
necessary conditions for x* to be a minimum are that:

 f(x*) = 0 (3.1)

and xT Hx is positive definite (xT Hx > 0). To ensure this, eigenvalues of H are to be
positive. Consider a two-variable function

 ()

 (3.2)

Chapter IV : Unconstrained Optimization

55

FIGURE 3.2: Surface-contour plot of the function.

The gradient is:

 () [

] (3.3)

Equating the gradient to zero, the optimum is at (1, 0). For this function xT Hx > 0.
Hence, the point (1, 0) is the minimum of f(x). The surface-contour plot of this function is
shown in Figure 3.2.
For a two-variable function:

 ()

 (3.4)

the optimum is at (0, 0) from the first-order condition. Checking the second- order condition,

we find that xT Hx = 0. Therefore, the point (0, 0) represents saddle point (see Figure 3.3).

4.2 Unidirectional Search

The unidirectional search refers to minimizing the value of a multivariable function along a
specified direction. For example, if xi is the initial starting point of the design variables for
minimizing a multivariable function and Si:

FIGURE 3.3: Surface-contour plot of the function with saddle point.

is the search direction, then we need to determine a scalar quantity α such that the function:

Chapter IV : Unconstrained Optimization

56

f(α) = xi + αSi (3.5)

is minimized. The value of α at which this function reaches a minimum is given by α*. This
is a one-dimensional optimization problem and we can use the golden section technique to
minimize this function. The golden section method is modified to handle multivariable

functions and the MATLAB® code golden_funct1.m is given.

Let us perform a unidirectional search on the Rosenbrock function

19
 given by:

 () (
) ()

 (3.6)

with different starting values of x and with different search directions. The results are
summarized in Table 3.1. It is observed from this table that:

TABLE 3.1: Unidirectional Search for a Multivariable Function

FIGURE 3.4: Rosenbrock function.

performing a linear search in the direction (2, 1) from the starting point (3, 0.5) results
in f(α*) = 88.45 as compared to initial function value of 7229. This can be easily shown on
the MATLAB command prompt as:

The function has to be appropriately coded in func_multivar.m. Note that this function has
a minimum at (1, 1) and the minimum value of the function is zero. If we are at minimum

19

 Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes: The art of
scientific computing (p. 476). Cambridge University Press.

Chapter IV : Unconstrained Optimization

57

point, then any search direction should not improve the function value. It is the reason why
search in the direction (2, 2) from the point (1, 1) results in f(α*) = 0 with α* = 0. Similarly,
search in the direction (1, 1) from the point (2, 2) results in f(α*) = 0 with α* = −1. This
function is plotted in Figure 3.4 and is constructed by executing the MATLAB code
(rosenbrock.m).

4.3 Test Problem

Let us define a spring system as a test problem on which we will apply multi- variable
optimization algorithms such as the steepest descent, DFP, BFGS, Newton, and
Levenberg–Marquardt methods.

FIGURE 3.5: Spring system.

Consider two springs of unit length and with stiffness k1 and k2, joined at the origin. The
other two ends of the springs are fixed on a wall (see Figure 3.5). On applying a force, the
spring system will deflect to an equilibrium position, which we are inter- ested in
determining. The potential of the spring system is given by:

 .√
 () /

 .√
 () /

 (

) (3.7)

Where: (

) is the force applied at the origin due to which it moves to a posi- tion (x1,

x2). Assuming k1 = 100 N/m, k2 = 90 N/m, and (

) = (20, 40), our aim is to evaluate

(x1, x2) such that U is minimized.

A MATLAB code (springsystem.m) is used to find the minimum of the potential

function by varying the design variables from –1 to 1 in steps of 0.01. On executing this
code, the output obtained is:

4.4 Solution Techniques

Similar to 1-D optimization algorithms, solution techniques for multivariable, unconstrained

optimization problems can be grouped into gradient and non–gradient-based methods.
20

Gradient-based methods require derivative information of the function in constituting a

search. The first and second derivatives can be computed using the central difference

formula as given below:

 () ()

 (3.8)

20

 Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes: The art of
scientific computing (p. 498). Cambridge University Press.

Chapter IV : Unconstrained Optimization

58

 () () ()

 (3.9)

 [() () ()

 ()] () (3.10)

The computation of first derivative requires two function evaluations with respect to each
variable. So for an n variable problem, 2n function evaluations are required for computing

the gradient vector. The computation of the Hessian matrix requires O(n2) function
evaluations. Note that in the Hessian matrix:

 (3.11)

Alternatively, one can also compute the derivative of a function using com- plex variables as:

 ()
 , () -

 (3.12)

The gradient-based methods such as steepest descent, DFP, BFGS, Newton, and Levenberg–

Marquardt methods are discussed next followed by Powell‘s conjugate direction method,
which is a direct search method. The efficiency of solution methods can be gauged by three
criteria:

• Number of function evaluations.

• Computational time.

• Rate of convergence. By this we mean how fast the sequence xi, xi+1,… converges to x*. The
rate of convergence is given by the parameter n in the equation.

‖ ‖

‖ ‖
 ()

• For n = 1 and 0 ≤ c ≤ 1 the method is said to have linear convergence. For n = 2, the method

is said to have quadratic convergence. When the rate of convergence is higher, the
optimization method is better. A method is said to have superlinear convergence if:

 .
‖ ‖

‖ ‖ / (3.14)

3.4.1 Steepest Descent Method
The search direction Si that reduces the function value is a descent direction. It was discussed
earlier that along the gradient direction, there is the maxi- mum change in the function value.
Thus, along the negative gradient direc- tion, the function value decreases the most. The
negative gradient direction is called the steepest descent direction. That is:

 () (3.15)

In successive iterations, the design variables can be updated using the equation

Chapter IV : Unconstrained Optimization

59

 () (3.16)

where α is a positive scalar parameter that can be determined using the line search algorithm
such as the golden section method.

The steepest descent method ensures a reduction in the function value at every iteration. If
the starting point is far away from the minimum, the gra- dient will be higher and the
function reduction will be maximized in each iteration. Because the gradient value of the
function changes and decreases to a small value near the optimum, the function reduction is
uneven and the method becomes sluggish (slow convergence) near the minimum. The
method can therefore be utilized as a starter for other gradient-based algo- rithms. The
algorithm for the steepest descent method is described in Table 3.2 and a MATLAB code of
its implementation is given in steep_des.m.

On executing the code with a starting value of x as (–3, 2), following output is produced for
the test problem. After the first iteration, the function value decreases from 1452.2619 to –
2.704. Notice from the output that as the gradi- ent value decreases, the reduction in
function value at each iteration also decreases. The steepest descent algorithm converges to
the minimum of the test problem in 15 iterations.

TABLE 3.2: Algorithm for the Steepest Descent Method

Observe the sluggishness of the algorithm as it approaches the minimum point. The
convergence history is shown pictorially in Figure 3.6 along with the function contours of the
test problem. The function contours can be plotted using the MATLAB code
contour_testproblem.m.

3.4.2 Newton’s Method

The search direction in this method is based on the first and second deriva- tive information

Chapter IV : Unconstrained Optimization

60

and is given by

 , - () (3.17)

FIGURE 3.6: Function contours of the test problem and convergence history.

where [H] is the Hessian matrix. If this matrix is positive definite, then Si will be a descent
direction. The same can be assumed true near the vicinity of the optimum point. However, if
the initial starting point is far away from the optimum, the search direction may not always
be descent. Often a restart is required with a different starting point to avoid this difficulty.
Though the Newton‘s method is known for converging in a single iteration for a qua- dratic
function, seldom do we find functions in practical problems that are quadratic. However,
Newton‘s method is often used as a hybrid method in conjunction with other methods.
The algorithm for the Newton‘s method is described in Table 3.3 and a MATLAB code of

its implementation is given in newton.m. A MATLAB code that computes Hessian matrix is
given in hessian.m.

TABLE 3.3: Algorithm for Newton‘s Method

On executing the code with a starting value of x as (–3, 2), the following output is
displayed in the command window for the test problem. Note that in some iteration, the
search direction is not a descent as the function value increases instead of monotonically
decreasing. The method, however, con- verges to the minimum point.

Chapter IV : Unconstrained Optimization

61

Let us restart the method with x as (1, 1). The output is given below. If the starting value is
closer to the minimum, the function value reduces mono- tonically in all the iterations and
eventually converges to the minimum.

TABLE 3.4: Algorithm for Modified Newton‘s Method

3.4.3 Modified Newton’s Method

The method is similar to Newton‘s method with a modification that a unidi- rectional search
is performed in the search direction Si of the Newton method. The algorithm for the modified
Newton method is described in Table 3.4 and a MATLAB code of its implementation is
given in modified_newton.m.

On executing the code with a starting value of x as (–3, 2), the following output is
displayed in the command window for the test problem. For the same starting point, the
modified Newton‘s method converges to the mini- mum point in just six iterations as
compared to Newton‘s method, which converges in ten iterations.

Chapter IV : Unconstrained Optimization

62

3.4.4 Levenberg–Marquardt Method

The advantage of the steepest descent method is that it reaches closer to the minimum of the
function in a few iterations even when the starting guess is far away from the optimum.
However, the method shows sluggishness near the optimum point. On the contrary,
Newton‘s method shows a faster convergence if the starting guess is close to the minimum
point. Newton‘s method may not converge if the starting point is far away from the optimum
point.

The Levenberg–Marquardt method is a kind of hybrid method that com- bines the strength
of both the steepest descent and Newton‘s methods. The search direction in this method is
given by:

 , - () (3.18)

where I is an identity matrix and λ is a scalar that is set to a high value at the start of the algorithm.
The value of λ is altered during every iteration depending on whether the function value is
decreasing or not. If the function value decreases in the iteration, λ it decreases by a factor
(less weightage on steepest descent direction). On the other hand, if the function value
increases in the iteration, λ it increases by a factor (more weightage on steepest descent
direction). The algorithm for the Levenberg–Marquardt method is described in Table 3.5 and a
MATLAB code of its implementation is given in levenbergmarquardt.m.

On executing the code with a starting value of x as (–3, 2), following output is displayed at
the command window for the test problem.

TABLE 3.5: Algorithm for the Levenberg–Marquardt Method

Chapter IV : Unconstrained Optimization

63

3.4.5 Fletcher–Reeves Conjugate Gradient Method

The Levenberg–Marquardt method uses the strengths of both steepest descent and Newton‘s
method for accelerating the convergence to reach the minimum of a function. The method is
a second-order method, as it requires computation of the Hessian matrix. On the other hand,
the conjugate gra- dient method is a first-order method, but shows the property of quadratic
convergence and thus has a significant advantage over the second-order methods. Two
directions, S1 and S2, are said to be conjugate if:

 (3.19)

 where H is a symmetric matrix. For example, orthogonal directions are con- jugate

directions. In Figure 3.7, starting from point x1a, the search direction S1 results in the

minimum point xa*. Similarly, starting from point x1b, the search direction S1 results in the

minimum point x*b. The line joining xa* and x*b is the search direction S2. Then, S1 and S2

are conjugate directions.

The steepest descent method was modified by Fletcher and Reeves in the conjugate gradient
method. Starting with the search direction

 () (3.20)

the subsequent search direction is taken as a linear combination of S1 and − f(x2). That is,

 () (3.21)

FIGURE 3.7: Conjugate directions.

Using the property
 of conjugate directions, α can be evaluated as:

‖ ()‖

‖ ()‖

 (3.22)

Starting with (), the search direction in every iteration is calculated using

the equation:

 ()
‖ ()‖

‖ ()‖

 (3.23)

The algorithm for the conjugate gradient method is described in Table 3.6 and a MATLAB

code of its implementation is given in conjugate.m.
On executing the code with a starting value of x as (–3, 2), the following output is

displayed at the command window in the test problem. The effi- ciency of conjugate
gradient method can be seen from Figure 3.8, where it is compared with the first-order,
steepest descent method.

Chapter IV : Unconstrained Optimization

64

TABLE 3.6: Algorithm for Fletcher–Reeves‘s Conjugate Gradient Method

FIGURE 3.8: Convergencelot of conjugate gradient/steepest descent method.

The conjugate method does not show sluggishness in reaching the minimum point.

3.4.6 DFP Method

In the DFP method, the inverse of the Hessian is approximated by a matrix [A] and the
search direction is given by:

 , - () (3.24)

Chapter IV : Unconstrained Optimization

65

The information stored in the matrix [A] is called as the metric and because it changes with
every iteration, the DFP method is known as the variable metric method. Because this
method uses first-order derivatives and has the property of quadratic convergence, it is
referred to as a quasi-Newton method. The inverse of the Hessian matrix can be
approximated as:

, - , -

, - , -

 , -
 (3.25)

Where:

 (3.26)

 (3.27)

The matrix [A] is initialized to the identity matrix. The algorithm for the DFP method is

described in Table 3.7 and a MATLAB code of its implementation is given in dfp.m.

On executing the code with a starting value of x as (–3, 2) the following output is displayed

in the command window for the test problem. Observe that in the second and the third

iterations, search points are similar in this method and the conjugate gradient method,

indicating that search directions were similar. In further iterations, however, the search

direction is different. Further, on typing inv(A) in the MATLAB command prompt and then

TABLE 3.7 : Algorithm for the DFP Method

printing the Hessian matrix at the converged value of x, it is observed that [A] approaches
, - .

Chapter IV : Unconstrained Optimization

66

3.4.7 BFGS Method

In the BFGS method, the Hessian is approximated using the variable metric matrix [A] given
by the equation:

, - , -

 () ()

 ()

 (3.28)

It is important to note that whereas the matrix [A] converges to the inverse of the Hessian in

the DFP method, the matrix [A] converges to the Hessian itself in the BFGS method. As the
BFGS method needs fewer restarts as com- pared to the DFP method, it is more popular than
the DFP method. The algo- rithm for the BFGS method is described in Table 3.8 and a
MATLAB code of its implementation is given in BFGS.m.

On executing the code with a starting value of x as (–3, 2) the following output is
displayed in the command window for the test problem. Again, it is observed that in the
second and third iterations, search points are similar to this method as compared to DFP and
the conjugate gradient methods, indicating that search directions were similar. Further, on
typing A in the

TABLE 3.8: Algorithm for the BFGS Method

Chapter IV : Unconstrained Optimization

67

MATLAB command prompt and then printing the Hessian matrix at the converged value
of x, it is observed that [A] approaches [H].

3.4.8 Powell Method

The Powell method is a direct search method (no gradient computation is required) with the
property of quadratic convergence. Previous search directions are stored in this method and
they form a basis for the new search direction. The method makes a series of unidirectional
searches along these search directions. The last search direction replaces the first one in the
new iteration and the process is continued until the function value shows no improvement. A
MATLAB code (powell.m) is written in which this method is implemented and the algorithm
is described in Table 3.9.

On executing the code with a starting value of x as (–3, 2), following output is displayed at
the command window for the test problem.

TABLE 3.9: Algorithm for the Powell Method

Chapter IV : Unconstrained Optimization

68

3.4.9 Nelder–Mead Algorithm

Simplex refers to a geometric figure formed by n + 1 points in an n dimension space. For
example, in a two-dimensional space, the figure formed is a trian- gle. The Nelder–Mead
algorithm is a direct search method and uses function information alone (no gradient
computation is required) to move from one iteration to another. The objective function is
computed at each vertex of the simplex. Using this information, the simplex is moved in the
search space. Again, the objective function is computed at each vertex of the simplex. The
process of moving the simplex is continued until the optimum value of the function is
reached. Three basic operations are required to move the simplex in the search space:
reflection, contraction, and expansion.

In an optimization problem with two dimensions, the simplex will be a triangle, whose
vertices are given by (say) x1, x2, and x3. Of these, let the worst value of the objective function
be at x3 = xworst. If the point xworst is reflected on the opposite face of the triangle, the
objective function value is expected to decrease. Let the new reflected point be designated as
xr. The new simplex (see Figure 3.9) is given by the vertices x1, x2, and xr. The centroid
point xc is computed using all the points but with the exclusion of xworst. That is,

∑

 (3.29)

The reflected point is computed as:

 () (3.30)

where α is a predefined constant. Typically, α = 1 is taken in the simulations. If the reflected
value does not show improvement, the second worst value is taken and the process as
discussed earlier is repeated.

FIGURE 3.9: Reflection operation.

Sometimes reflection can lead to cycling with no improvement in the objective function
value. Under such conditions, a contraction operation is performed.

If xr results in a new minimum point, then it is possible to further expand the new simplex
(see Figure 3.10) in the hope of further reducing the objec- tive function value. The
expanded point is computed as:

 (–) (3.31)

where γ is a predefined constant. Typically, γ = 2 is taken in the simulations. If xe results in
the new minimum point, it replaces the xworst point. Else, xr replaces the xworst point.

The contraction operation is used when it is certain that the reflected point is better than the
second worst point (xsecond worst). The contracted point is computed as

 () (3.32)

Chapter IV : Unconstrained Optimization

69

where ρ is a predefined constant. Typically, ρ = −0.5 is taken in the simulations. The preceding
operations are continued until the standard deviation of the functions computed at the
vertices of the simplex becomes less than ε.
That is,

∑
, () ()-

 (3.33)

The Nelder–Mead algorithm is described in Table 3.10 and a MATLAB code

(neldermead.m) is written in which this method is implemented.

FIGURE 3.10: Expansion operation.

TABLE 3.10: Nelder–Mead Algorithm

On executing the code with a random value of x, the following output is displayed at the
command window for the test problem.

Chapter IV : Unconstrained Optimization

70

4.5 Additional Test Functions

Different solution techniques were applied to the test problem on the spring system in the
previous section. In this section, some additional test problems such as Rosenbrock‘s
function, Wood‘s function, quadratic function, and so forth are taken, on which different
solution methods will be tested. The performance of each method is compared in terms of the
computational time. The MATLAB functions tic and toc can be used to estimate the
computational time.

3.5.1 Rosenbrock Function

The two-variable function is given by:

 () (
) ()

 (3.34)

The minimum of this ―banana valley‖ function is zero (see Figure 3.11 where the
minimum is marked with *) and occurs at (1, 1). Different solution methods are applied from
the same starting point (–1.5, 1.5) and their performances are summarized in Table 3.11. All
methods are able to track the minimum of the function. The steepest descent method takes a
maximum computational time as compared to all other methods. The computational time
required by other methods is comparable. The convergence history of the steepest descent
method is plotted in Figure 3.12 and marked with °. Because of the particular nature of the
problem, the method dwells in the region with a low gradient value. The Nelder–Mead
method is not compared here as it uses more than one starting point.

FIGURE 3.11: Contours of Rosenbrock function.

Chapter IV : Unconstrained Optimization

71

TABLE 3.11: Performance Comparison of Different Solution Methods for Rosenbrock‘s Function

3.5.2 Quadratic Function

The two-variable function is given by:

 () () () (3.35)

The minimum of this function is zero (see Figure 3.13, where the minimum is marked with
*) and occurs at (1, 2). Different solution methods are applied from a starting point (2, –3)
and their performances are summarized in Table 3.12. All methods are able to track the
minimum of the function. The conjugate gradient method takes minimum computational
time compared to other solution methods.

FIGURE 3.12: Behavior of steepest descent method on Rosenbrock function.

FIGURE 3.13: Contours of a quadratic function.

Chapter IV : Unconstrained Optimization

72

TABLE 3.12: Performance Comparison of Different Solution Methods for a Quadratic Function

3.5.3 Nonlinear Function

The two-variable function is given by

 ()

 (3.36)

The minimum of this function is –0.09375 (see Figure 3.14, where the mini- mum is marked
with *) and occurs at (–3/16, –1/8). Different solution meth- ods are applied from a
starting point (4, 3) and their performances are summarized in Table 3.13. All methods
are able to track the minimum of the function. The conjugate gradient method takes
minimum computational time compared to other solution methods.

FIGURE 3.14: Contours of a nonlinear function.

TABLE 3.13: Performance Comparison of Different Solution Methods for a Nonlinear Function

Chapter IV : Unconstrained Optimization

73

3.5.4 Wood’s Function

The two-variable function is given by:

 ()

.

()
/ (3.37)

The minimum of this function is 1.744 (see Figure 3.15, where the minimum is marked with
*) and occurs at (1.743, 2.03). Different solution methods are applied from a starting point
(0.5, 0.5) and their performances are summa- rized in Table 3.14. All methods are able to
track the minimum of the func- tion. The conjugate gradient method takes minimum
computational time compared to other solution methods.

FIGURE 3.15: Contours of Wood‘s function.

TABLE 3.14: Performance Comparison of Different Solution Methods for Wood‘s Function

 Chapter Highlights:

• The unidirectional search refers to minimizing the value of a multi- variable function
along a specified direction.

• Solution techniques for multivariable, unconstrained optimization problems can be
grouped into gradient- and non–gradient-based methods.

• The negative gradient direction is addressed as the steepest descent direction.

• The steepest descent method ensures a reduction in the function value at every iteration.
If the starting point is far away from the minimum, the gradient will be higher and function
reduction will be maximum in each iteration. Because the gradient value of the function
decreases near the optimum, the method becomes sluggish (slow convergence) near the
minimum.
• Newton‘s method requires computation of the Hessian matrix, which is computationally
expensive. Newton‘s method is known for converging in one iteration for a quadratic

Chapter IV : Unconstrained Optimization

74

function. The method requires a restart if the starting point is far away from optimum.

• In the modified Newton method, a line search is performed in the search direction
computed by the Newton method.

• The Levenberg–Marquardt method is a sort of hybrid method that combines the strength
of both the steepest descent and Newton methods.

• The conjugate gradient method is a first-order method, but shows the property of
quadratic convergence and thus has a significant advantage over the second-order methods.

• DFP and BFGS methods are called the variable metric methods.

• It is important to note that whereas the matrix [A] converges to the inverse of the Hessian
in the DFP method, it converges to the Hessian itself in the BFGS method.

• The Powell method is a direct search method (no gradient computa- tion is required) with
the property of quadratic convergence.

• In the Nelder–Mead algorithm, the simplex is moved using reflec- tion, expansion, and
contraction.

 Formulae Chart:

• Necessary conditions for minimum of a function:

 ()

 ()

• Unidirectional search:

 ()

• Search direction in steepest descent method:

 ()

• Search direction in the Newton method:

 , - ()

Search direction in the Levenberg–Marquardt method:

 , - ()

• Search direction in the conjugate gradient method:

 ()
‖ ()‖

‖ ()‖

• Search direction in the DFP method:

 , - ()

, - , -

, -
 , -

 , -

• Search direction in the BFGS method:

 , - ()

, - , -

 () ()

 ()

Chapter IV : Unconstrained Optimization

75

 Problems:

1. Find the steepest descent direction for the function:

 ()

at the point (1,2).

2. Minimize the function:

 ()

From a starting value of (2,2) using the BFGS, DFP, and steepest descent methods.

3. Minimize the function:

 () (
) (

)

From a starting value of (2,3) using the following methods:

• Steepest descent

• Newton's method

• Modified Newton‘s method

• Levenberg–Marquardt

• DFP

• BFGS

• Powell

• Nelder–Mead

4. Show that in the DFP method, the variable metric [A] approaches the inverse of the

Hessian matrix for the following function:

 ()

5. Show that in the BFGS method, the variable metric [A] approaches the Hessian matrix

for the following function:

 ()

Take the starting value as (1,1).

6. Minimize the function using the DFP method with a starting value of (1,1):

 () (

) (())

7. Minimize the function:

 () () 4√

 5

where:

 (

)

and

 (

)

Take the starting value as (−1,0,0).

8. Instead of using the central difference formula for computing the derivative of a

function, use the complex variable formula:

Chapter IV : Unconstrained Optimization

76

 ()
 , ()-

The MATLAB code grad_vec.m can be modified as:

Now use the steepest descent method to optimize the test function given in the main text.

9. Compare the accuracy of the derivative computation using the central difference

formula and the complex variable formula against the analytical value of the derivative of

the test function:

 () () ()
at x=0.1

10. Use the line search algorithm to minimize the function:

 () (
) (

)
Starting from different initial points and different search directions:

• Starting point (1,1) and search direction (2,4).

• Starting point (0,0) and search direction (1,2).

• Starting point (3,2) and search direction (1,1).

11. Minimize the function:

 ()

From the starting point (1,2) using the steepest descent method. Observe the sluggishness of

this method. Again, solve the function by the conjugate gradient method and compare the

performance with the steepest descent method.

12. A manufacturing firm wants to divide its resources suitably between capital x1 and

labor x2 so as to maximize the profit function given by:

 () (() ())

where p is the unit price of the product, w is the wage rate of labor, and v is the unit cost of

capital.

• By computing the gradient vector of the above function with respect to x1 and x2, and then

equating it to zero, compute the design variables x1 and x2 as a function of p, v, and w.

Chapter IV : Unconstrained Optimization

77

• Using the second-order condition, check whether the solution corresponds to a maximum of

the function.

• Compute numerical values of x1 and x2 by assuming suitable values of p, v, and w (where p

>w, v).

• Starting with an initial guess of (0,0) and using the values of p, v, and w as assumed, find the

maximum of the function using the steepest descent method. Compare the values of x1 and

x2 with those obtained from the previous step.

13. Minimize the potential energy function for a two-bar unsymmetrical shallow truss

((Figure 3.17) using DFP and BFGS methods.

FIGURE 3.17: Two-bar truss.

The energy function is given as:

 ()

 (

)

(

)

where m, γ, α, and ρ are nondimensional quantities.

• Take m=5, γ=4, α=0.02, and ρ=0.00002.

• Starting with an initial guess of (0,0), minimize the function using DFP and BFGS methods.

Chapter V : Constrained Optimization

78

Chapter V : Constrained Optimization

5.1 Introduction

Most problems in structural optimization must be formulated as constrained minimization

problems. In a typical structural design problem the objective function is a fairly simple

function of the design variables (e.g., weight), but the design has to satisfy a host of stress,

displacement, buckling, and frequency constraints. These constraints are usually complex

functions of the design variables available only from an analysis of a finite element model of

the structure. This chapter offers a review of methods that are commonly used to solve such

constrained problems.

The methods described in this chapter are for use when the computational cost of evaluating

the objective function and constraints is small or moderate. In these methods the objective

function or constraints these are calculated exactly (e.g., by a finite element program)

whenever they are required by the optimization algorithm. This approach can require

hundreds of evaluations of objective function and constraints, and is not practical for

problems where a single evaluation is computationally expensive. For these more expensive

problems we go through an intermediate stage of constructing approximations for the

objective function and constraints, or at least for the more expensive functions. The

optimization is then performed on the approximate problem. This approximation process is

described in the next chapter.

The basic problem that we consider in this chapter is the minimization of a function subject

to equality and inequality constraints

 ()

 () () ()

The constraints divide the design space into two domains, the feasible domain where the

constraints are satisfied, and the infeasible domain where at least one of the constraints is

violated. In most practical problems the minimum is found on the boundary between the

feasible and infeasible domains, that is at a point where gj(x) = 0 for at least one j.

Otherwise, the inequality constraints may be removed without altering the solution. In most

structural optimization problems the inequality constraints prescribe limits on sizes, stresses,

displacements, etc. These limits have great impact on the design, so that typically several of

the inequality constraints are active at the minimum.

While the methods described in this section are powerful, they can often perform poorly

when design variables and constraints are scaled improperly. To prevent ill-conditioning, all

Chapter V : Constrained Optimization

79

the design variables should have similar magnitudes, and all constraints should have similar

values when they are at similar levels of criticality. A common practice is to normalize

constraints such that g(x) = 0.1 correspond to a ten percent margin in a response quantity.

For example, if the constraint is an upper limit σa on a stress measure σ, then the constraint

may be written as

 (5.2)

Some of the numerical techniques offered in this chapter for the solution of constrained

nonlinear optimization problems are not able to handle equality constraints, but are limited

to inequality constraints. In such instances it is possible to replace the equality constraint of

the form hi(x) = 0 with two inequality constraints hi(x) ≤ 0 and hi(x) ≥ 0. However, it is

usually undesirable to increase the number of constraints. For problems with large numbers

of inequality constraints, it is possible to construct an equivalent constraint to replace them.

One of the ways to replace a family of inequality constraints (gi(x) ≥ 0,i = 1...m) by an

equivalent constraint is to use the Kreisselmeier-Steinhauser function [1] (KS-function)

defined as

 , ()-

 ,∑ ()

 - (5.3)

where ρ is a parameter which determines the closeness of the KS-function to the smallest

inequality , ()-. For any positive value of the ρ, the KS-function is always more

negative than the most negative constraint, forming a lower bound envelope to the

inequalities. As the value of ρ is increased the KS-functions conforms with the minimum

value of the functions more closely. The value of the KS-function is always bounded by

 , ()-
 ()

 (5.4)

For an equality constraint represented by a pair of inequalities, hi(x) ≤ 0 and − hi(x) ≤ 0, the

solution is at a point where both inequalities are active, hi(x) = −hi(x) = 0, Figure 5.1 .

Sobieski [2] shows that for a KS-function defined by such a positive and negative pair of hi,

the gradient of the KS-function at the solution point hi(x) = 0 vanishes regardless of the ρ

value, and its value approaches to zero as the value of ρ tends to infinity, Figure 5.1 . Indeed,

from Eq. (5.4) at x where hi = 0, the KS-function has the property:

 ()
 ()

 (5.5)

Figure 5.1 Kreisselmeier-Steinhauser function for replacing h(x) = 0.

Consequently, an optimization problem

Chapter V : Constrained Optimization

80

 ()

 () (5.6)

may be reformulated as:

 ()

 (

) (5.7)

where is a small tolerance.

5.2 The Kuhn-Tucker conditions

5.2.1 General Case

In general, problem (5.1) may have several local minima. Only under special circumstances

are sure of the existence of single global minimum. The necessary conditions for a minimum

of the constrained problem are obtained by using the Lagrange multiplier method. We start

by considering the special case of equality constraints only. Using the Lagrange multiplier

technique, we define the Lagrangian function:

 () () ∑ ()

 (5.1.1)

jwhere λj are unknown Lagrange multipliers. The necessary conditions for a stationary point

are:

 ∑

 (5.1.2)

 () (5.1.3)

These conditions, however, apply only at a regular point, that is at a point where the

gradients of the constraints are linearly independent. If we have constraint gradients that are

linearly dependent, it means that we can remove some constraints without affecting the

solution. At a regular point, Eqs. (5.1.2) and (5.1.3) represent n + ne equations for the ne

Lagrange multipliers and the n coordinates of the stationary point.

The situation is somewhat more complicated when inequality constraints are present. To be

able to apply the Lagrange multiplier method we first transform the inequality constraints to

equality constraints by adding slack variables. That is, the inequality constraints are written

as:

 ()–
 (5.1.4)

where tj is a slack variable which measures how far the jth constraint is from being critical.

We can now form a Lagrangian function

 () ∑ (
)

(5.1.5)

Differentiating the Lagrangian function with respect to x, λ and t we obtain:

 ∑

 (5.1.6)

 (5.1.7)

 (5.1.8)

Chapter V : Constrained Optimization

81

Equations (5.1.7) and (5.1.8) imply that when an inequality constraint is not critical (so that

the corresponding slack variable is non-zero) then the Lagrange multiplier associated with

the constraint is zero. Equations (5.1.6) to (5.1.8) are the necessary conditions for a

stationary regular point. Note that for inequality constraints a regular point is one where the

gradients of the active constraints are linearly independent. These conditions are modified

slightly to yield the necessary conditions for a minimum and are known as the Kuhn-Tucker

conditions. The Kuhn-Tucker conditions may be summarized as follows:

A point x is a local minimum of an inequality constrained problem only if a set of

nonnegative λj‘s may be found such that:

1. Equation (5.1.6) is satisfied

2. The corresponding λj is zero if a constraint is not active.

Figure 5.1.1 A geometrical interpretation of Kuhn-Tucker condition for the case of two

constraints.

A geometrical interpretation of the Kuhn-Tucker conditions is illustrated in Fig. (5.1.1) for

the case of two constraints. g1 and g2 denote the gradients of the two constraints which are

orthogonal to the respective constraint surfaces. The vector s shows a typical feasible

direction which does not lead immediately to any constraint violation. For the two-constraint

case Eq. (5.1.6) may be written as

 () (5.1.9)

Assume that we want to determine whether point A is a minimum or not. To improve the

design we need to proceed from point A in a direction s that is usable and feasible. For the

direction to be usable, a small move along this direction should decrease the objective

function. To be feasible, s should form an obtuse angle with − g1 and − g2. To be a

direction of decreasing f it must form an acute angle with − f. Clearly from Figure (5.1.1),

any vector which forms an acute angle with − f will also form and acute angle with either

− g1 or − g2. Thus the Kuhn-Tucker conditions mean that no feasible design with reduced

objective function is to be found in the neighborhood of A. Mathematically, the condition

that a direction s be feasible is written as

 ∈ (5.1.10)

where IA is the set of active constraints Equality in Eq. (5.1.10) is permitted only for linear or

concave constraints (see Section 5.1.2 for definition of concavity). The condition for a

usable direction (one that decreases the objective function) is

Chapter V : Constrained Optimization

82

 ()

Multiplying Eq. (5.1.6) by si and summing over i we obtain:

 ∑

 ()

In view of Eqs. (5.1.10) and (5.1.11), Eq. (5.1.12) is impossible if the λj‘s are positive.

If the Kuhn-Tucker conditions are satisfied at a point it is impossible to find a direction with

a negative slope for the objective function that does not violate the constraints. In some

cases, though, it is possible to move in a direction which is tangent to the active constraints

and perpendicular to the gradient (that is, has zero slope), that is

 ∈ (5.1.13)

The effect of such a move on the objective function and constraints can be determined only

from higher derivatives. In some cases a move in this direction could reduce the objective

function without violating the constraints even though the Kuhn-Tucker conditions are met.

Therefore, the Kuhn-Tucker conditions are necessary but not sufficient for optimality.

The Kuhn-Tucker conditions are sufficient when the number of active constraints is equal to

the number of design variables. In this case Eq. (5.1.13) cannot be satisfied with s ≠ 0

because gj includes n linearly independent directions (in n dimensional space a vector

cannot be orthogonal to n linearly independent vectors).

When the number of active constraints is not equal to the number of design variables

sufficient conditions for optimality require the second derivatives of the objective function

and constraints. A sufficient condition for optimality is that the Hessian matrix of the

Lagrangian function is positive definite in the subspace tangent to the active constraints. If

we take, for example, the case of equality constraints, the Hessian matrix of the Lagrangian

is:

 ∑

 (5.1.14)

The sufficient condition for optimality is that:

 () for all s for which (5.1.15)

When inequality constraints are present, the vector s also needs to be orthogonal to the

gradients of the active constraints with positive Lagrange multipliers. For active constraints

with zero Lagrange multipliers, s must satisfy:

 , when (5.1.16)

Example 5.1.1

Find the minimum of:

 subject to: ,

The Kuhn-Tucker conditions are

Chapter V : Constrained Optimization

83

We have to check for all possibilities of active constraints.

The simplest case is when no constraints are active, λ1 = λ2 = λ3 = 0. We get x1 = 1.826, x2 =

0, f = 6.17. The Hessian matrix of the Lagrangian,

 [

]

is clearly negative definite, so that this point is a maximum. We next assume that the first

constraint is active, x1x2 = 10, so that x1 ≠ 0 and g2 is inactive and therefore λ2 = 0. We have

two possibilities for the third constraint. If it is active we get x1 = 1, x2 = 10, λ1 = −0.7, and λ3

= 639.3, so that this point is neither a minimum nor a maximum. If the third constraint is not

active λ3 = 0 and we obtain the following three equations

The only solution for these equations that satisfies the constraints on x1 and x2 is

This point satisfies the Kuhn-Tucker conditions for a minimum. However, the Hessian of the

Lagrangian at that point

 0

1

is negative definite, so that it cannot satisfy the sufficiency condition. In

fact, an examination of the function f at neighboring points along x1x2 = 10

reveals that the point is not a minimum.

Next we consider the possibility that g1 is not active, so that λ1 = 0, and

We have already considered the possibility of both λ‘s being zero, so we need to consider

only three possibilities of one of these Lagrange multipliers being nonzero, or both being

nonzero. The first case is λ2 ≠ 0, λ3 = 0, then g2 = 0 and we get x1 = 0, x2 = 0, λ2 = 10, and f =

−6, or x1 = 0, x2 = −2/3, λ2 = 10, and f = −6.99. Both points satisfy the Kuhn-Tucker

conditions for a minimum, but not the sufficiency condition. In fact, the vectors tangent to

the active constraints (x1 = 0 is the only one) have the form s
T

= (0,a), and it is easy to check

that s
T 2

Ls < 0. It is also easy to check that these points are indeed no minima by reducing

x2 slightly.

The next case is λ2 = 0, λ3 ≠ 0, so that g3 = 0. We get x1 = 1.826, x2 = 10, λ3 = 640 and f =

−2194. this point satisfies the Kuhn-Tucker conditions, but it is not a minimum either. It is

easy to check that 2
L is negative definite in this case so that the sufficiency condition could

not be satisfied. Finally, we consider the case x1 = 0, x2 = 10, λ2 = 10, λ3 = 640, f = −2206.

Now the Kuhn-Tucker conditions are satisfied, and the number of active constraints is equal

to the number of design variables, so that this point is a minimum.

5.2.2 Convex Problems

Chapter V : Constrained Optimization

84

There is a class of problems, namely convex problems, for which the Kuhn-Tucker

conditions are not only necessary but also sufficient for a global minimum. To define

convex problems we need the notions of convexity for a set of points and for a function. A

set of points S is convex whenever the entire line segment connecting two points that are in

S is also in S. That is

 if ∈ then () ∈ (5.1.17)

A function is convex if

 , () - () () () (5.1.18)

This is shown pictorially for a function of a single variable in Figure (5.1.2). The straight

segment connecting any two points on the curve must lie above the curve. Alternatively we

note that the second derivative of f is non-negative f’’(x) ≥ 0. It can be shown that a function

of n variables is convex if its matrix of second derivatives is positive semi-definite.

A convex optimization problem has a convex objective function and a convex feasible

domain. It can be shown that the feasible domain is convex if all the inequality constraints gj

are concave (that is, −gj are convex) and the equality constraints are linear. A convex

optimization problem has only one minimum, and the Kuhn-Tucker conditions are sufficient

to establish it. Most optimization problems encountered in practice cannot be shown to be

convex. However, the theory of convex programming is still very important in structural

optimization, as we often approximate optimization problems by a series of convex

approximations (see Chapter 9). The simplest such approximation is a linear approximation

for the objective function and constraints– this produces a linear programming problem.

Figure 5.1.2 Convex function.

Example 5.1.2

Figure 5.1.3 Four bar statically determinate truss.

Consider the minimum weight design of the four bar truss shown in Figure (5.1.3). For the

sake of simplicity we assume that members 1 through 3 have the same area A1 and member 4

has an area A2. The constraints are limits on the stresses in the members and on the vertical

Chapter V : Constrained Optimization

85

displacement at the right end of the truss. Under the specified loading the member forces

and the vertical displacement δ at the end are found to be:

 √

4

√

5

We assume the allowable stresses in tension and compression to be 8.74×10
−4

E and 4.83 ×

10
−4

E, respectively, and limit the vertical displacement to be no greater than 3×10
−3

l. The

minimum weight design subject to stress and displacement constraints can be formulated in

terms of nondimensional design variables:

as

 √

 √

The Kuhn-Tucker conditions are:

 ∑

or

√
 √

Consider first the possibility that λ1 = 0. Then clearly λ2 = 3, λ3 = 3 so that g2 = 0 and g3 = 0,

and then x1 = 5.73, x2 = 7.17, g1 = −1.59, so that this solution is not feasible. We conclude

that λ1 ≠ 0, and the first constraint must be active at the minimum. Consider now the

possibility that λ2 = λ3 = 0. We have the two Kuhn-Tucker equations and the equation g1 = 0

for the unknowns λ1, x1, x2. The solution is:

The Kuhn-Tucker conditions for a minimum are satisfied. If the problem is convex the

Kuhn-Tucker conditions are sufficient to guarantee that this point is the global minimum.

The objective function and the constraint functions g2 and g3 are linear, so that we need to

check only g1. For convexity g1 has to be concave or −g1 convex; this holds if the second

derivative matrix −A1 of −g1 is positive semi-definite

 6

 √

7

Clearly, for x1 > 0 and x2 > 0, −A1 is positive definite so that the minimum that we found is a

global minimum.

5.3 Quadratic Programming Problems:

One of the simplest form of nonlinear constrained optimization problems is in the form of

Quadratic Programming (QP) problem. A general QP problem has a quadratic objective

Chapter V : Constrained Optimization

86

function with linear equality and inequality constraints. For the sake of simplicity we

consider only an inequality problem with ng constraints stated as:

minimize ()

 such that (5.2.1)

The linear constraints form a convex feasible domain. If the objective function is also

convex, then we have a convex optimization problem in which, as discussed in the previous

section, the Kuhn-Tucker conditions become sufficient for the optimality of the problem.

Hence, having a positive semi-definite or positive definite Q matrix assures a global

minimum for the solution of the problem, if one exists. For many optimization problems the

quadratic form x
T

Qx is either positive definite or positive semi-definite. Therefore, one of

the methods for solving QP problems relies on solving the Kuhn-Tucker conditions.

We start by writing the Lagrange function for the Problem (5.2.1)

 ()

 ({

 }) (*
 +) (5.2.2)

where λ and µ are the vectors of Lagrange multipliers for the inequality constraints and the

nonnegativity constraints, respectively, and {
 } and {

 } are the vectors of positive slack

variables for the same. The necessary conditions for a stationary point are obtained by

differentiating the Lagrangian with respect to the x,λ,µ,t, and s,

 (5.2.3)

 {

 } (5.2.4)

 *

 + (5.2.5)

 (5.2.6)

 (5.2.7)

where ng is the number of inequality constraints, and n is the number of design variables. We

define a new vector {qj} = {t
2

j}, j = 1,...,ng (q ≥ 0). After multiplying Eqs. (5.2.6) and (5.2.7)

by {tj} and {si}, respectively, and eliminating {si} from the last equation by using Eq.

(5.2.5), we can rewrite the Kuhn-Tucker conditions

 (5.2.8)

 (5.2.9)

 (5.2.10)

 (5.2.11)

Chapter V : Constrained Optimization

87

 . (5.2.12)

Equations (5.2.8) and (5.2.9) form a set of n+ng linear equations for the solution of

unknowns xi,λj,µi, and qj which also need to satisfy Eqs. (5.2.10) and (5.2.11). Despite the

nonlinearity of the Eqs. (5.2.10) and (5.2.11), this problem can be solved as proposed by

Wolfe [3] by using the procedure described in 3.6.3 for generating a basic feasible solution

through the use of artificial variables. Introducing a set of artificial variables, yi, minimized, i

= 1,...,n, we define an artificial cost function to be

 ∑

 (5.2.13)

 (5.2.14)

 (5.2.15)

 (5.2.16)

Equations (5.2.13) through (5.2.16) can be solved by using the standard simplex method

with the additional requirement that (5.2.10) and (5.2.11) be satisfied. These requirements

can be implemented during the simplex algorithm by simply enforcing that the variables λj

and qj (and µi and xi) not be included in the basic solution simultaneously. That is, we restrict

a non-basic variable µi from entering the basis if the corresponding xi is already among the

basic variables.

Other methods for solving the quadratic programming problem are also available, and the

reader is referred to Gill et al. ([4], pp. 177–180) for additional details.

5.4 Computing the Lagrange Multipliers:

As may be seen from example 5.1.1, trying to find the minimum directly from the Kuhn-

Tucker conditions may be difficult because we need to consider many combinations of

active and inactive constraints, and this would in general involve the solution of highly

nonlinear equations. The Kuhn-Tucker conditions are, however, often used to check whether

a candidate minimum point satisfies the necessary conditions. In such a case we need to

calculate the Lagrange multipliers (also called the Kuhn-Tucker multipliers) at a given point

x. As we will see in the next section, we may also want to calculate the Lagrange multipliers

for the purpose of estimating the sensitivity of the optimum solution to small changes in the

problem definition. To calculate the Lagrange multipliers we start by writing Eq. (5.1.6) in

matrix notation as:

 (5.3.1)

where the matrix N is defined by :

 (5.3.2)

We consider only the active constraints and associated lagrange multipliers, and assume that

there are r of them.

Typically, the number, r, of active constraints is less than n, so that with n equations in terms

of r unknowns, Eq. (5.3.1) is an overdetermined system. We assume that the gradients of the

constraints are linearly independent so that N has rank r. If the Kuhn-Tucker conditions are

satisfied the equations are consistent and we have an exact solution. We could therefore use

a subset of r equations to solve for the Lagrange multipliers. However, this approach may be

Chapter V : Constrained Optimization

88

susceptible to amplification of errors. Instead we can use a least-squares approach to solve

the equations. We define a residual vector u:

 (5.3.3)

A least squares solution of Eq. (5.3.1) will minimize the square of the Euclidean norm of the

residual with respect to λ:

‖ ‖ () () (5.3.4)

To minimize kuk
2

we differentiate it with respect to each one of the Lagrange multipliers

and get:

 (5.3.5)

Or:

 () (5.3.6)

This is the best solution in the least square sense. However, if the Kuhn-Tucker conditions

are satisfied it should be the exact solution of Eq. (5.3.1). Substituting from Eq. (5.3.6) into

Eq. (5.3.1) we obtain:

 (5.3.7)

Where:

 () (5.3.8)

P is called the projection matrix. It will be shown in Section 5.5 that it projects a vector into

the subspace tangent to the active constraints. Equation (5.3.7) implies that for the Kuhn-

Tucker conditions to be satisfied the gradient of the objective function has to be orthogonal

to that subspace.

In practice Eq. (5.3.6) is no longer popular for the calculation of the Lagrange multipliers.

One reason is that the method is ill-conditioned and another is that it is not efficient. An

efficient and better conditioned method for least squares calculations is based on the QR

factorization of the matrix N. The QR factorization of the matrix N consists of an r ×r upper

triangular matrix R and an n×n orthogonal matrix Q such that:

 (

) .

/ (5.3.9)

Here Q1 is a matrix consisting of the first r rows of Q, Q2 includes the last n − r rows of Q,

and the zero represents an (n − r) × r zero matrix (for details of the QR factorization see

most texts on numerical analysis, e.g., Dahlquist and Bjorck [5]). Because Q is an

orthogonal matrix, the Euclidean norm of Qu is the same as that of u, or:

‖ ‖ ‖ ‖ ‖ ‖ ‖.

/ ‖

 ‖(

)‖

(5.3.10)

From this form it can be seen that kuk
2

is minimized by choosing λ so that

 (5.3.11)

The last n − r rows of the matrix Q denoted Q2 are also important in the following. They are

orthogonal vectors which span the null space of N
T

. That is N
T

times each one of these

vectors is zero.

Chapter V : Constrained Optimization

89

Example 5.3.1

Check whether the point (−2,−2,4) is a local minimum of the problem:

 ,

Only the first two constraints are critical at (−2,−2,4)

So,

 [

] {

}

 0

1 2

3

 () 2

3

Also,

, () -

Equation (5.3.7) is satisfied, and all the Lagrange multipliers are positive, so the Kuhn-

Tucker conditions for a minimum are satisfied.

5.5 Sensitivity of Optimum Solution to Problem Parameters

The Lagrange multipliers are not only useful for checking optimality, but they also provide

information about the sensitivity of the optimal solution to problem parameters. In this role

they are extremely valuable in practical applications. In most engineering design

optimization problems we have a host of parameters such as material properties, dimensions

and load levels that are fixed during the optimization. We often need the sensitivity of the

optimum solution to these problem parameters, either because we do not know them

accurately, or because we have some freedom to change them if we find that they have a

large effect on the optimum design.

We assume now that the objective function and constraints depend on a parameter p so that

the optimization problem is defined as

 minimize ()

 such that () (5.4.1)

Chapter V : Constrained Optimization

90

The solution of the problem is denoted x (p) and the corresponding objective function f (p) =

f(x (p),p). We want to find the derivatives of x
and f

with respect to p. The equations that

govern the optimum solution are the Kuhn-Tucker conditions, Eq. (5.3.1), and the set of

active constraints:

 (5.4.2)

where ga denotes the vector of r active constraint functions. Equations (5.3.1) and (5.4.2) are

satisfied by x (p) for all values of p that do not change the set of active constraints.

Therefore, the derivatives of these equations with respect to p are zero, provided we

consider the implicit dependence of x and λ on p. Differentiating Eq. (5.3.1) and (5.4.2) with

respect to p we obtain:

()

() .

/ (5.4.3)

 (5.4.4)

where A is the Hessian matrix of the objective function f, aij = ∂
2
f/∂xi∂xj, and Z is a matrix

whose elements are:

 ∑

(5.4.5)

Equations (5.4.3) and (5.4.4) are a system of simultaneous equations for the derivatives of

the design variables and of the Lagrange multipliers. Different special cases of this system

are discussed by Sobieski et al. [6].

Often we do not need the derivatives of the design variables or of the Lagrange multipliers,

but only the derivatives of the objective function. In this case the sensitivity analysis can be

greatly simplified. We can write:

 ∑

 ()

 (5.4.6)

Using Eq. (5.3.1) and (5.4.4) we get:

 (5.4.7)

Equation (5.4.7) shows that the Lagrange multipliers are a measure of the effect of a change

in the constraints on the objective function. Consider, for example, a constraint of the form

gj(x) = Gj(x) − p ≥ 0. By increasing p we make the constraint more difficult to satisfy.

Assume that many constraints are critical, but that p affects only this single constraint. We

see that ∂gj/∂p = −1, and from Eq. (5.4.7) df/dp = λj, that is λj is the ‗marginal price‘ that we

pay in terms of an increase in the objective function for making gj more difficult to satisfy.

The interpretation of Lagrange multipliers as the marginal prices of the constraints also

explains why at the optimum all the Lagrange multipliers have to be non-negative. A

negative Lagrange multiplier would indicate that we can reduce the objective function by

making a constraint more difficult to satisfy— an absurdity.

Chapter V : Constrained Optimization

91

Example 5.4.1

Consider the optimization problem:

This problem was analyzed for p = 8 in Example 5.3.1, and the optimal solution was found

to be (−2,−2,4). We want to find the derivative of this optimal solution with respect to p. At

the optimal point we have f = 0 and λ
T

= (0.25,1.0), with the:

first two constraints being critical. We can calculate the derivative of the objective function

from Eq. (5.4.7)

 2

3

So,

To calculate the derivatives of the design variables and constraints we need to set up Eqs.

(5.4.3) and (5.4.4). We get:

Only g1 has nonzero second derivatives

 so from Eq.

(5.4.5):

 , [

].

With N from Example 5.3.1, Eq. (5.4.3) gives us:

{

 ̇ ̇

 ̇ ̇

 ̇

where a dot denotes derivative with respect to p. From Eq. (5.4.4) we get:

{
 ̇ ̇

 ̇

The solution of these five coupled equations is:

 ̇ ̇ ̇ ̇ ̇

We can check the derivatives of the objective function and design variables by changing p

from 8 to 9 and re-optimizing. It is easy to check that we get x1 = x2 = −2.121, x3 = 4, f =

−0.242. These values compare well with linear extrapolation based on the derivatives which

gives x1 = x2 = −2.125, x3 = 4, f = −0.25.

Chapter V : Constrained Optimization

92

5.6 Gradient Projection and Reduced Gradient Methods

Rosen‘s gradient projection method is based on projecting the search direction into the

subspace tangent to the active constraints. Let us first examine the method for the case of

linear constraints [7]. We define the constrained problem as:

 Minimize f(x)

 such that. () ∑

 (5.5.1)

In vector form

 (5.5.2)

If we select only the r active constraints (j ∈ IA), we may write the constraint equations as:

 (5.5.3)

where ga is the vector of active constraints and the columns of the matrix N are the gradients

of these constraints. The basic assumption of the gradient projection method is that x lies in

the subspace tangent to the active constraints. If

 (5.5.4)

and both xi and xi+1 satisfy Eq. (5.5.3), then:

 (5.5.5)

If we want the steepest descent direction satisfying Eq. (5.5.5), we can pose the problem as:

That is, we want to find the direction with the most negative directional derivative which

satisfies Eq. (5.5.5). We use Lagrange multipliers λ and µ to form the Lagrangian:

 () ()
(5.5.7)

The condition for L to be stationary is:

 (5.5.8)

Premultiplying Eq. (5.5.8) by N
T

and using Eq. (5.5.5) we obtain:

 (5.5.9)

Or,

 () ()

So that from Eq. (5.5.8)

, () -

 (5.5.11)

Chapter V : Constrained Optimization

93

P is the projection matrix defined in Eq. (5.3.8). The factor of 1/2µ is not significant because

s defines only the direction of search, so in general we use s = −P f. To show that P indeed

has the projection property, we need to prove that if w is an arbitrary vector, then Pw is in

the subspace tangent to the active constraints, that is Pw satisfies:

 (5.5.12)

We can easily verify this by using the definition of P.

Equation (5.3.8) which defines the projection matrix P does not provide the most efficient

way for calculating it. Instead it can be shown that

 (5.5.13)

where the matrix Q2 consists of the last n − r rows of the Q factor in the QR factorization of

N (see Eq. (5.3.9)).

A version of the gradient projection method known as the generalized reduced gradient

method was developed by Abadie and Carpentier [8]. As a first step we select r linearly

independent rows of N, denote their transpose as N1 and partition N
T

as:

 , - (5.5.14)

Next we consider Eq. (5.5.5) for the components si of the direction vector. The r equations

corresponding to N1 are then used to eliminate r components of s and obtain a reduced order

problem for the direction vector.

Once we have identified N1 we can easily obtain Q2 which is given as:

 [

] (5.5.15)

Equation (5.5.15) can be verified by checking that N = 0, so that Q2N = 0, which is the

requirement that Q2 has to satisfy (see discussion following Eq. (5.3.11)).

After obtaining s from Eq. (5.5.11) we can continue the search with a one dimensional

minimization, Eq. (5.5.4), unless s = 0. When s = 0 Eq. (5.3.7) indicates that the Kuhn-

Tucker conditions may be satisfied. We then calculate the Lagrange multipliers from Eq.

(5.3.6) or Eq. (5.3.11). If all the components of λ are nonnegative, the Kuhn-Tucker

conditions are indeed satisfied and the optimization can be terminated. If some of the

Lagrange multipliers are negative, it is an indication that while no progress is possible with

the current set of active constraints, it may be possible to proceed by removing some of the

constraints associated with negative Lagrange multipliers. A common strategy is to remove

the constraint associated with the most negative Lagrange multiplier and repeat the

calculation of P and s. If s is now non-zero, a one-dimensional search may be started. If s

remains zero and there are still negative Lagrange multipliers, we remove another constraint

until all Lagrange multipliers become positive and we satisfy the Kuhn-Tucker conditions.

After a search direction has been determined, a one dimensional search must be carried out

to determine the value of α in Eq. (5.5.4). Unlike the unconstrained case, there is an upper

limit on α set by the inactive constraints. As α increases, some of them may become active

and then violated. Substituting x = xi + αs into Eq. (5.5.2) we obtain:

 () (5.5.16)

Or

 ()

 (5.5.17)

Chapter V : Constrained Optimization

94

Equation (5.5.17) is valid if a
T

j s < 0. Otherwise, there is no upper limit on α due to the j
th

constraint. From Eq. (5.5.17) we get a different α, say αj for each constraint. The upper limit

on α is the minimum:

 ̅ (5.5.18)

At the end of the move, new constraints may become active, so that the set of active

constraints may need to be updated before the next move is undertaken.

The version of the gradient projection method presented so far is an extension of the steepest

descent method. Like the steepest descent method, it may have slow convergence. The

method may be extended to correspond to Newton or quasi-Newton methods. In the

unconstrained case, these methods use a search direction defined as

 (5.5.19)

where B is the inverse of the Hessian matrix of f or an approximation thereof. The direction

that corresponds to such a method in the subspace tangent to the active constraints can be

shown [4] to be

 (

)
 (5.5.20)

where AL is the Hessian of the Lagrangian function or an approximation thereof.

The gradient projection method has been generalized by Rosen to nonlinear constraints [9].

The method is based on linearizing the constraints about xi so that:

 , () () ()- (5.5.21)

Figure 5.5.1 Projection and restoration moves.

The main difficulty caused by the nonlinearity of the constraints is that the one-

dimensional search typically moves away from the constraint boundary. This is because we

move in the tangent subspace which no longer follows exactly the constraint boundaries.

After the one-dimensional search is over, Rosen prescribes a restoration move to bring x

back to the constraint boundaries, see Figure 5.5.1.

To obtain the equation for the restoration move, we note that instead of Eq.(5.5.2) we now

use the linear approximation:

 ()
 (̅) (5.5.22)

We want to find a correction ̅ in the tangent subspace (i.e. P(̅) = 0) that

would reduce gj to zero. It is easy to check that:

 ̅ () () (5.5.23)

is the desired correction, where ga is the vector of active constraints. Equation (5.5.23) is

based on a linear approximation, and may therefore have to be applied repeatedly until ga is

small enough.

Chapter V : Constrained Optimization

95

In addition to the need for a restoration move, the nonlinearity of the constraints requires the

re-evaluation of N at each point. It also complicates the choice of an upper limit for α which

guarantees that we will not violate the presently inactive constraints. Haug and Arora [10]

suggest a procedure which is better suited for the nonlinear case. The first advantage of their

procedure is that it does not require a one-dimensional search. Instead, α in Eq. (5.5.4) is

determined by specifying a desired specified reduction γ in the objective function. That is,

we specify

 () () () (5.5.24)

Using a linear approximation with Eq. (5.5.4) we get:

 ()

 (5.5.25)

The second feature of Haug and Arora‘s procedure is the combination of the projection and

the restoration moves as

 () (5.5.26)

where Eqs. (5.5.4), (5.5.23) and (5.5.25) are used.

Example 5.5.1

Use the gradient projection method to solve the following problem

 minimize

 subject to

Assume that as a result of previous moves we start at the point
 (),

f(x0) = 5.0, where the nonlinear constraint g2 is slightly violated. The first constraint is active

as well as the constraint on x4. We start with a combined projection and restoration move,

with a target improvement of 10% in the objective function. At x0:

 [

] [

]

()

[

]

 ()

[

], {

}

The projection move direction is s = −P f = [8/11,−24/11,8/11,0]
T

. Since the magnitude of a

direction vector is unimportant we scale s to s
T

= [1,−3,1,0]. For a 10% improvement in the

objective function γ = 0.1 and from Eq. (5.5.25)

For the correction move we need the vector ga of constraint values,
 (), so the

correction is:

Chapter V : Constrained Optimization

96

 ()

{

}

Combining the projection and restoration moves, Eq. (5.5.26)

 {

} {

}

{

} {

}

we get f(x1) = 4.64, g1(x1) = 0, g2(x1) = 0.016. Note that instead of 10% reduction we got

only 7% due to the nonlinearity of the objective function. However, we did satisfy the

nonlinear constraint.

5.7 The Feasible Directions Method

The feasible directions method [11] has the opposite philosophy to that of the gradient

projection method. Instead of following the constraint boundaries, we try to stay as far away

as possible from them. The typical iteration of the feasible direction method starts at the

boundary of the feasible domain (unconstrained minimization techniques are used to

generate a direction if no constraint is active).

Figure 5.6.1 Selection of search direction using the feasible directions method.

Consider Figure 5.6.1. As a result of a previous move the design is at point x and we look

for a direction s which keeps x in the feasible domain and improves the objective function.

A vector s is defined as a feasible direction if at least a small step can be taken along it that

does not immediately leave the feasible domain. If the constraints are smooth, this is

satisfied if:

 ∈ (5.6.1)

where IA is the set of critical constraints at x. The direction s is called a usable direction at

the point x if in addition:

 (5.6.2)

That is, s is a direction which reduces the objective function.

Among all possible choices of usable feasible directions we seek the direction which is best

in some sense. We have two criteria for selecting a direction. On the one hand we want to

reduce the objective function as much as possible. On the other hand we want to keep away

from the constraint boundary as much as possible. A compromise is defined by the

following maximization problem:

Chapter V : Constrained Optimization

97

 ∈

 ()

| |

The θj are positive numbers called ―push-off‖ factors because their magnitude determines

how far x will move from the constraint boundaries. A value of θj = 0 will result in a move

tangent to the boundary of the the jth constraint, and so may be appropriate for a linear

constraint. A large value of θj will result in a large angle between the constraint boundary

and the move direction, and so is appropriate for a highly nonlinear constraint.

The optimization problem defined by Eq. (5.6.3) is linear and can be solved using the

simplex algorithm. If βmax > 0, we have found a usable feasible direction. If we get βmax = 0 it

can be shown that the Kuhn-Tucker conditions are satisfied.

Once a direction of search has been found, the choice of step length is typically based on a

prescribed reduction in the objective function (using Eq. (5.5.25)). If at the end of the step

no constraints are active, we continue in the same direction as long as s
T f is negative. We

start the next iteration when x hits the constraint boundaries, or use a direction based on

unconstrained technique if x is inside the feasible domain. Finally, if some constraints are

violated after the initial step we make x retreat based on the value of the violated constraints.

The method of feasible directions is implemented in the popular CONMIN program [12].

Example 5.6.1

Consider the four bar truss of Example 5.1.2. The problem of finding the minimum weight

design subject to stress and displacement constraints was formulated as:

 √

 √

where the xi are non-dimensional areas:

The first constraint represents a limit on the vertical displacement, and the other two

constraints represent stress constraints.

Assume that we start the search at the intersection of g1 = 0 and g3 = 0 where

() and f = 47.25. The gradient of the objective function and two

active constraints are

 {

√
} 2

3 2

3

Selecting θ1 = θ2 = 1, we find that Eq. (5.6.3) becomes

Chapter V : Constrained Optimization

98

 maximize

 subject to

 √

The solution of this linear program is s1 = −0.6172, s2 = 1, and we now need to execute the

one dimensional search:

 2

3 2

3

Because the objective function is linear, this direction will remain a descent direction

indefinitely, and α will be limited only by the constraints. The requirement that g2 is not

violated will lead to α = 9.527, x1 = 5.73, x2 = 16.7 which violates g1. We see that because g1

is nonlinear, even though we start the search by moving away from it we still bump into it

again (see Figure 5.6.2). It can be easily checked that for α > 5.385 we violate g1. So we

take α = 5.385 and obtain x1 = 8.29, x2 = 12.56, f = 46.62.

Figure 5.6.2 Feasible direction solution of 4 bar truss example.

For the next iteration we have only one active constraint:

 2

3 {

√
}

The linear program for obtaining s is:

 maximize

 subject to

 √

Chapter V : Constrained Optimization

99

The solution of the linear program is s1 = 0.5512, s2 = −1, so that the onedimensional search

is:

 2

3 2

3

Again α is limited only by the constraints. The lower limit on x2 dictates α ≤ 5.35. However,

the constraint g1 is again more critical. It can be verified that for α > 4.957 it is violated, so

we take α = 4.957, x1 = 11.02, x2 = 7.60, f = 46.22. The optimum design found in Example

5.1.2 is x1 = x2 = 9.464, f = 44.78. The design space and the two iterations are shown in

Figure 5.6.2.

5.8 Penalty Function Methods

When the energy crisis erupted in the middle seventies, the United States Congress passed

legislation intended to reduce the fuel consumption of American cars. The target was an

average fuel consumption of 27.5 miles per gallon for new cars in 1985. Rather than simply

legislate this limit Congress took a gradual approach, with a different limit set each year to

bring up the average from about 14 miles per gallon to the target value. Thus the limit was

set at 26 for 1984, 25 for 1983, 24 for 1982, and so on. Furthermore, the limit was not

absolute, but there was a fine of $50 per 0.1 miles per gallon violation per car.

This approach to constraining the automobile companies to produce fuel efficient cars has

two important aspects. First, by legislating a penalty proportional to the violation rather than

an absolute limit, the government allowed the auto companies more flexibility. That meant

they could follow a time schedule that approximated the government schedule without

having to adhere to it rigidly. Second, the gradual approach made enforcement easier

politically. Had the government simply set the ultimate limit for 1985 only, nobody would

have paid attention to the law in the 1970‘s. Then as 1985 moved closer there would have

been a rush to develop fuel efficient cars. The hurried effort could mean both non-optimal

car designs and political pressure to delay the enforcement of the law.

The fuel efficiency law is an example in which constraints on behavior or economic

activities are imposed via penalties whose magnitude depends on the degree of violation of

the constraints. It is no wonder that this simple and appealing approach has found

application in constrained optimization. Instead of applying constraints we replace them by

penalties which depend on the degree of constraint violations. This approach is attractive

because it replaces a constrained optimization problem by an unconstrained one.

The penalties associated with constraint violation have to be high enough so that the

constraints are only slightly violated. However, just as there are political problems

associated with imposing abrupt high penalties in real life, so there are numerical difficulties

associated with such a practice in numerical optimization. For this reason we opt for a

gradual approach where we start with small penalties and increase them gradually.

5.7.1 Exterior Penalty Function:

The exterior penalty function associates a penalty with a violation of a constraint. The term

‗exterior‘ refers to the fact that penalties are applied only in the exterior of the feasible

domain. The most common exterior penalty function is one which associates a penalty

which is proportional to the square of a violation. That is, the constrained minimization

problem, Eq. (5.1)

Chapter V : Constrained Optimization

100

 Minimize ()

Is replaced by: Such that () (5.7.1)

 ()

 Minimize () () ∑
 () ∑

 (5.7.2)

where < a > denote the positive part of a or max(a,0). The inequality terms are treated

differently from the equality terms because the penalty applies only for constraint violation.

The positive multiplier r controls the magnitude of the penalty terms. It may seem logical to

choose a very high value of r to ensure that no constraints are violated. However, as noted

before, this approach leads to numerical difficulties illustrated later in an example. Instead

the minimization is started with a relatively small value of r, and then r is gradually

increased. A typical value for ri+1/ri is 5. A typical plot of () as a function of r is shown

in Figure 5.7.1 for a simple example.

Figure 5.7.1 Exterior penalty function for f = 0.5x subject to x − 4 ≥ 0.

We see that as r is increased, the minimum of ϕ moves closer to the constraint boundary.

However, the curvature of ϕ near the minimum also increases. It is the high values of the

curvature associated with large values of r which often lead to numerical difficulties. By

using a sequence of values of r, we use the minima obtained for small values of r as starting

points for the search with higher r values. Thus the ill-conditioning associated with the large

curvature is counterbalanced by the availability of a good starting point.

Based on the type of constraint normalization given by Eq. (5.2) we can select a reasonable

starting value for the penalty multiplier r. A rule of thumb is that one should start with the

total penalty being about equal to the objective function for typical constraint violation of

50% of the response limits. In most optimization problems the total number of active

constraints is about the same as or just slightly lower than the number of design variables.

Assuming we start with one quarter of the eventual active constraints being violated by

about 50% (or g = −0.5) then we have

 ()

()

 ()

 (5.7.3)

It is also important to obtain a good starting point for restarting the optimization as r is

increased. The minimum of the optimization for the previous value of r is a reasonable

starting point, but one can do better. Fiacco and McCormick [13] show that the position of

the minimum of ϕ(x,r) has the asymptotic form:

Chapter V : Constrained Optimization

101

 ()

 (5.7.4)

Once the optimum has been found for two values of r, say ri−1, and ri, the vectors a and b

may be estimated, and the value of x (r) predicted for subsequent values of r. It is easy to

check that in order to satisfy Eq. (5.7.4), a and b are given as:

 () ()

 (5.7.5)

 , () -

where

 (5.7.6)

In addition to predicting a good value of the design variables for restarting the optimization

for the next value of r, Eq. (5.7.4) provides us with a useful convergence criterion, namely:

 (5.7.7)

where a is estimated from the last two values of r, and is a specified tolerance chosen to

be small compared to a typical value of ‖ ‖.

A second convergence criterion is based on the magnitude of the penalty terms, which, as

shown in Example 5.7.1, go to zero as r goes to infinity. Therefore, a reasonable

convergence criterion is:

 |

| ∈ (5.7.8)

Finally, a criterion based on the change in the value of the objective function at the

minimum f

is also used:

|
 () ()

 ()
| (5.7.9)

A typical value for

Example 5.7.1

Minimize

 such that x1 + x2 = 4. We have,

 ()

The gradient ϕ is given as:

 {
 ()

 ()
}

Setting the gradient to zero we obtain:

The solution as a function of r is shown in Table 5.7.1.

Table 5.7.1 Minimization of ϕ for different penalty multipliers.

Chapter V : Constrained Optimization

102

It can be seen that as r is increased the solution converges to the exact solution of x
T

=

(3.636,0.3636), f = 14.54. The convergence is indicated by the shrinking difference between

the objective function and the augmented function ϕ. The Hessian of ϕ is given as:

 0

1

 As r increases this matrix becomes more and more ill-conditioned, as all four

components become approximately 2r. This ill-conditioning of the Hessian

matrix for large values of r often occurs when the exterior penalty function is

used, and can cause numerical difficulties for large problems.

We can use Table 5.7.1 to test the extrapolation procedure, Eq. (5.7.4). For example, with

the values of r = 1 and r = 10, Eq. (5.7.5) gives:

 () ()

 2

3

 () 2

3

We can now use Eq. (5.7.4) to find a starting point for the optimization for r = 100 to get:

 ()

which is substantially closer to x (100) = (3.604,0.3604)
T

than to x (10) = (3.333, 0.3333)
T

.

5.7.2 Interior and Extended Interior Penalty Functions:

With the exterior penalty function, constraints contribute penalty terms only when they are

violated. As a result, the design typically moves in the infeasible domain. If the

minimization is terminated before r becomes very large (for example, because of shortage of

computer resources) the resulting designs may be useless. When only inequality constraints

are present, it is possible to define an interior penalty function that keeps the design in the

feasible domain. The common form of the interior penalty method replaces the inequality

constrained problem:

 Minimize ()

 such that () (5.7.10)

by,

 () () ∑
 ()

⁄

 (5.7.11)

Chapter V : Constrained Optimization

103

Figure 5.7.2 Interior penalty function for f(x) = 0.5x subject to x − 4 ≥ 0.

The penalty term is proportional to 1/gj and becomes infinitely large at the boundary of the

feasible domain creating a barrier there (interior penalty function methods are sometimes

called barrier methods). It is assumed that the search is confined to the feasible domain.

Otherwise, the penalty becomes negative which does not make any sense. Figure 5.7.2

shows the application of the interior penalty function to the simple example used for the

exterior penalty function in Figure 5.7.1. Besides the inverse penalty function defined in Eq.

(5.7.11), there has been some use of a logarithmic interior penalty function:

 () () ∑ (())

(5.7.12)

While the interior penalty function has the advantage over the exterior one in that it

produces a series of feasible designs, it also requires a feasible starting point. Unfortunately,

it is often difficult to find such a feasible starting design. Also, because of the use of

approximation (see Chapter 6), it is quite common for the optimization process to stray

occasionally into the infeasible domain. For these reasons it may be advantageous to use a

combination of interior and exterior penalty functions called an extended interior penalty

function. An example is the quadratic extended interior penalty function of Haftka and

Starnes [14]:

 () () ∑ . ()/

 (5.7.13)

Where,

 () {
 ⁄

 0 (⁄) (⁄)

1⁄

 (5.7.14)

It is easy to check that p(gj) has continuity up to second derivatives. The transition parameter

g0 which defines the boundary between the interior and exterior parts of the penalty terms

must be chosen so that the penalty associated with the constraint, rp(gj), becomes infinite for

negative gj as r tends to zero. This results in the requirement that

 ⁄ (5.7.15)

This can be achieved by selecting g0 as:

 (5.7.16)

where c is a constant.

Chapter V : Constrained Optimization

104

It is also possible to include equality constraints with interior and extended interior penalty

functions. For example, the interior penalty function Eq. (5.7.11) is augmented as:

 () () ∑ () ⁄ ∑
 ()

 ⁄

(5.7.17)

Figure 5.7.3 Extended interior penalty function for f(x) = 0.5x subject to g(x) = x − 4 ≥ 0.

The considerations for the choice of an initial value of r are similar to those for the exterior

penalty function. A reasonable choice for the interior penalty function would require that n/4

active constraints at g = 0.5 (that is 50% margin for properly normalized constraints) would

result in a total penalty equal to the objective function.

Using Eq. (5.7.11) we obtain:

 ()

 , ()

For the extended interior penalty function it is more reasonable to assume that the n/4

constraints are critical (g = 0), so that from Eq. (5.7.13)

 ()

 ,

 ()

A reasonable starting value for g0 is 0.1. As for the exterior penalty function, it is possible to

obtain an expression for the asymptotic (as r → 0) coordinates of the minimum of ϕas [10].

 () , (5.7.18)

and

 () .

a, b, a and b may be estimated once the minimization has been carried out for two values of

r. For example, the estimates for a and b are:

 ⁄ () ()

 ⁄
 ()

 ()

Chapter V : Constrained Optimization

105

where c = ri/ri−1. As in the case of exterior penalty function, these expressions may be used

for convergence tests and extrapolation.

5.7.3 Unconstrained Minimization with Penalty Functions:

Penalty functions convert a constrained minimization problem into an unconstrained one. It

may seem that we should now use the best available methods for unconstrained

minimization, such as quasi-Newton methods. This may not necessarily be the case. The

penalty terms cause the function ϕto have large curvatures near the constraint boundary even

if the curvatures of the objective function and constraints are small. This effect permits an

inexpensive approximate calculation of the Hessian matrix, so that we can use Newton‘s

method without incurring the high cost of calculating second derivatives of constraints. This

may be more attractive than using quasi-Newton methods (where the Hessian is also

approximated on the basis of first derivatives) because a good approximation is obtained

with a single analysis rather than with the n moves typically required for a quasi-Newton

method. Consider, for example, an exterior penalty function applied to equality constraints:

 () () ∑
 ()

 ()

The second derivatives of are given as:

 ∑ 4

5 ()

Because of the equality constraint, hi is close to zero, especially for the later stages of the

optimization (large r), and we can neglect the last term in Eq. (5.7.21). For large values of r

we can also neglect the first term, so that we can calculate second derivatives of ϕbased on

first derivatives of the constraints. The availability of inexpensive second derivatives

permits the use of Newton‘s method where the number of iterations is typically independent

of the number of design variables. Quasi-Newton and conjugate gradient methods, on the

other hand, require a number of iterations proportional to the number of design variables.

Thus the use of Newton‘s method becomes attractive when the number of design variables is

large. The application of Newton‘s method with the above approximation of second

derivatives is known as the Gauss-Newton method.

For the interior penalty function we have a similar situation. The augmented objective

function ϕis given as:

 () () ∑ () ⁄

 ()

And the second derivatives are:

 ∑

 .

/ ()

Now the argument for neglecting the first and last terms in Eq. (5.7.23) is somewhat lengthier.

First we observe that because of the 1/gj
3

term, the second derivatives are dominated by the

critical constraints (gj small). For these constraints the last term in Eq. (5.7.23) is negligible

compared to the first-derivative term because gj is small. Finally, from Eq. (5.7.18) it can be

shown that r/gj
3

goes to infinity for active constraints as r goes to zero, so that the first term in

Chapter V : Constrained Optimization

106

Eq. (5.7.23) can be neglected compared to the second. The same argument can also be used

for extended interior penalty functions [14].

The power of the Gauss-Newton method is shown in [14] for a high- aspect-ratio wing made

of composite materials (see Figure 5.7.4) designed subject to stress and displacement

constraints.

Figure 5.7.4 Aerodynamic planform and structural box for high-aspect ratio wing, from [14].

Table 5.7.2 Results of high-aspect-ratio wing study

The structural box of the wing was modeled with a finite element model with 67 nodes and

290 finite elements. The number of design variables controlling the thickness of the various

elements was varied from 13 to 146. The effect of the number of design variables on the

number of iterations (analyses) is shown in Table 5.7.2. It is seen that the number of

iterations per unconstrained minimization is almost constant (about five). With a quasi-

Newton method that number may be expected to be similar to the number of design

variables.

Because of the sharp curvature of ϕ near the constraint boundary, it may also be appropriate

to use specialized line searches with penalty functions [15].

5.7.4 Integer Programming with Penalty Functions:

An extension of the penalty function approach has been implemented by Shin et al. [16] for

problems with discrete-valued design variables. The extension is based on introduction of

additional penalty terms into the augmented-objective function ϕ(x,r) to reflect the

requirement that the design variables take discrete values,

 ∈ * + ∈ ()

where Id is the set of design variables that can take only discrete values, and Xi is the set of

allowable discrete values. Note that several variables may have the same allowable set of

Chapter V : Constrained Optimization

107

discrete values. In this case the augmented objective function which includes the penalty

terms due to constraints and the non-discrete values of the design variables is defined as:

 () () ∑ () ∑ ()

(5.7.25)

where s is a penalty multiplier for non-discrete values of the design variables, and ψd(xi) the

penalty term for non-discrete values of the ith design variable. Different forms for the

discrete penalty function are possible. The penalty terms ψd(xi) are assumed to take the

following sine-function form in Ref. [16],

 ()

4

 0

(())1

 ()
 5 () (5.7.25)

While penalizing the non-discrete valued design variables, the functions ψd(xi) assure the

continuity of the first derivatives of the augmented function at the discrete values of the

design variables. The response surfaces generated by Eq. (5.7.25) are determined according

to the values of the penalty multipliers r and s. In contrast to the multiplier r, which initially

has a large value and decreases as we move from one iteration to another, the value of the

multiplier s is initially zero and increases gradually.

One of the important factors in the application of the proposed method is to determine when

to activate s, and how fast to increase it to obtain discrete optimum design. Clearly, if the

initial value of s is too big and introduced too early in the design process, the design

variables will be trapped away from the global minimum, resulting in a sub-optimal

solution. To avoid this problem, the multiplier s has to be activated after optimization of

several response surfaces which include only constraint penalty terms. In fact, since

sometimes the optimum design with discrete values is in the neighborhood of the continuous

optimum, it may be desirable not to activate the penalty for the non-discrete design variables

until reasonable convergence to the continuous solution is achieved. This is especially true

for problems in which the intervals between discrete values are very small.

A criterion for the activation of the non-discrete penalty multiplier s is the same as the

convergence criterion of Eq. (5.7.6), that is:

|

| (5.7.27)

A typical value for c is 0.01. The magnitude of the non-discrete penalty multiplier, s, at the

first discrete iteration is calculated such that the penalty associated with the discrete-valued

design variables that are not at their allowed values is of the order of 10 percent of the

constraint penalty.

 () (5.7.28)

As the iteration for discrete optimization proceeds, the non-discrete penalty multiplier for

the new iteration is increased by a factor of the order of 10. It is also important to decide

how to control the penalty multiplier for the constraints, r, during the discrete optimization

process. If r is decreased for each discrete optimization iteration as in the continuous

optimization process, the design can be stalled due to high penalties for constraint violation.

Thus, it is suggested that the penalty multiplier r be frozen at the end of the continuous

optimization process. However, the nearest discrete solution at this response surface may not

be a feasible design, in which case the design must move away from the continuous

Chapter V : Constrained Optimization

108

optimum by moving back to the previous response surface. This can be achieved by

increasing the penalty multiplier, r, by a factor of 10.

The solution process for the discrete optimization is terminated if the design variables are

sufficiently close to the prescribed discrete values. The convergence criterion for discrete

optimization is:

 ∈ 8 {
| |

 ()

| ()|

 ()
}9 ∈ (5.7.29)

where a typical value of the convergence tolerance

5.9 Multiplier Methods

Multiplier methods combine the use of Lagrange multipliers with penalty functions. When

only Lagrange multipliers are employed the optimum is a stationary point rather than a

minimum of the Lagrangian function. When only penalty functions are employed we have a

minimum but also ill-conditioning. By using both we may hope to get an unconstrained

problem where the function to be minimized does not suffer from ill-conditioning. A good

survey of multiplier methods was conducted by:

Bertsekas [17]. We study first the use of multiplier methods for equality constrained

problems.

 () (5.8.1)

 ()

We define the augmented Lagrangian function:

 () () ∑ () ∑
 () ()

If all the Lagrange multipliers are set to zero, we get the usual exterior penalty function. On

the other hand, if we use the correct values of the Lagrange multipliers, λ j, it can be shown

that we get the correct minimum of problem (5.8.1) for any positive value of r. Then there is

no need to use the large value of r required for the exterior penalty function. Of course, we

do not know what are the correct values of the Lagrange multipliers.

Multiplier methods are based on estimating the Lagrange multipliers. When the estimates

are good, it is possible to approach the optimum without using large r values. The value of r

needs to be only large enough so that L has a minimum rather than a stationary point at the

optimum. To obtain an estimate for the Lagrange multipliers we compare the stationarity

conditions for L,

 ∑ ()

 (5.8.3)

with the exact conditions for the Lagrange multipliers

 ∑

 (5.8.4)

Comparing Eqs. (5.8.3) and (5.8.4) we expect that

 ()

Chapter V : Constrained Optimization

109

as the minimum is approached. Based on this relation, Hestenes [18] suggested using Eq.

(5.8.5) as an estimate for . That is:

()

()

 ()
()

 (5.8.6)

where k is an iteration number.

Example 5.8.1

We repeat Example 5.7.1 using Hestenes‘ multiplier method.

 ()

 ()

The augmented Lagrangian is:

.

 () ()

To find the stationary points of the augmented Lagrangian we differentiate with respect to x1

and x2 to get:

 ()

 ()

which yield;

We want to compare the results with those of Example 5.7.1, so we start with the same

initial r value r0 = 1, the initial estimate of λ = 0 and get:

 ()

So, using Eq. (5.8.6) we estimate λ
(1)

as

 () ()

We next repeat the optimization with r
(1)

= 10, λ
(1)

= 3.81 and get:

 ()

For the same value of r, we obtained in Example 5.7.1 x2 = (3.333,0.3333)
T

, so that we are

now closer to the exact solution of x = (3.636,0,3636)
T

. Now we estimate a new λ from Eq.

(5.8.6):

 () ()

For the next iteration we may, for example, fix the value of r at 10 and change only λ. For λ

= 6.984 we obtain:

 ()

which shows that good convergence can be obtained without increasing r.

There are several ways to extend the multiplier method to deal with inequality constraints.

The formulation below is based on Fletcher‘s work [19]. The constrained problem that we

examine is:

Chapter V : Constrained Optimization

110

 ()

 () ()

The augmented Lagrangian function is:

 () () ∑〈

 〉

 ()

where < a >= max(a,0). The condition of stationarity of L is:

 ∑ 〈

 〉

 (5.8.9)

The exact stationarity condition is:

 ∑

 (5.8.10)

where it is also required that = 0. Comparing Eqs (5.8.9) and (5.8.10) we expect an

estimate for λ j of the form:

 () (5.8.11)

5.01 Projected Lagrangian Methods (Sequential Quadratic Programming):

The addition of penalty terms to the Lagrangian function by multiplier methods converts the

optimum from a stationary point of the Lagrangian function to a minimum point of the

augmented Lagrangian. Projected Lagrangian methods achieve the same result by a different

method. They are based on a theorem that states that the optimum is a minimum of the

Lagrangian function in the subspace of vectors orthogonal to the gradients of the active

constraints (the tangent subspace). Projected Lagrangian methods employ a quadratic

approximation to the Lagrangian in this subspace. The direction seeking algorithm is more

complex than for the methods considered so far. It requires the solution of a quadratic

programming problem, that is an optimization problem with a quadratic objective function

and linear constraints. Projected Lagrangian methods are part of a class of methods known

as sequential quadratic programming (SQP)methods. The extra work associated with the

solution of the quadratic programming direction seeking problem is often rewarded by faster

convergence.

The present discussion is a simplified version of Powell‘s projected Lagrangian method

[20]. In particular we consider only the case of inequality constraints:

 ()

 () (5.9.1)

Assume that at the i
th

 iteration the design is at xi, and we seek a move direction s. The

direction s is the solution of the following quadratic programming problem:

 Minimize () () ()

 ()

 () () (5.9.2)

where g is the gradient of f, and A is a positive definite approximation to the Hessian of the

Lagrangian function discussed below. This quadratic programming problem can be solved

Chapter V : Constrained Optimization

111

by a variety of methods which take advantage of its special nature. The solution of the

quadratic programming problem yields s and λi+1. We then have:

 (5.9.3)

where α is found by minimizing the function:

 () () ∑

| (())| (5.9.4)

and the µj are equal to the absolute values of the Lagrange multipliers for the first iteration,

i.e.

 0|
()

.

()
 |

()
|/|1 (5.9.5)

with the superscript i denoting iteration number. The matrix A is initialized to some positive

definite matrix (e.g the identity matrix) and then updated using a BFGS type equation (see

Chapter 4).

 (5.9.6)

where

 () () (5.9.7)

where L is the Lagrangian function and x denotes the gradient of the Lagrangian function

with respect to x. To guarantee the positive definiteness of A, ∆l is modified if ∆x
T
∆l ≤

0.2∆x
T

A∆x and replaced by:

 () ()

Where

 ()

Example 5.9.1:

Consider the four bar truss of Example 5.1.2. The problem of finding the minimum weight

design subject to stress and displacement constraints was formulated as

Minimize √

 subject to ,

 √

Assume that we start the search at the intersection of g1 = 0 and g3 = 0 where x1 = 11.61,

x2 = 7.17 and f = 47.25. The gradient of the objective function and two active constraints are:

 {

√
} 2

3 2

3 0

1

We start with A set to the unit matrix so that:

Chapter V : Constrained Optimization

112

 () √

and the linearized constraints are:

 ()

 ()

 ()

We solve this quadratic programming problem directly with the use of the KuhnTucker

conditions:

√

A consideration of all possibilities for active constraints shows that the optimum is obtained

when only g1 is active, so that λ2 = λ3 = 0 and λ1 = 12.8, s1 = −1.29, s2 = 0.855. The next

design is:

 2

3 2

3

where α is found by minimizing ψ(α) of Eq. (5.9.4). For the first iteration µj = |λj| so,

 () √ () |

 √

|

By changing α systematically we find that ψ is a minimum near α = 2.2, so that:

 () () () .

To update A we need ∆x and ∆l. We have:

 √ (⁄ √ ⁄)

so that,

 (
 √

)⁄⁄

and

 2

3 () () 2

3

With A being the identity matrix we have ∆x
T

A∆x = 11.6, ∆x
T
∆l = 5.53. Because ∆x

T
∆l >

0.2∆x
T

A∆x we can use Eq. (5.9.5) to update A:

 0

1

For the second iteration:

 () √ (

)

 ()

 ()

 ()

We can again solve the quadratic programming directly with the use of the KuhnTucker

conditions:

√

Chapter V : Constrained Optimization

113

The solution is:

 λ1 = 14.31, λ2 = λ3 = 0, s1 = 1.059, s2 = −0.376 .

The one dimensional search seeks to minimize:

ψ(α) = f(α) + µ1g1(α),

where:

 (

(| |

))

The one-dimensional search yields approximately α = 0.5, so that:

 () () ()

so that we have made good progress towards the optimum x
= (9.46,9.46)

T
.

 Chapter Highlights:

 A point is regular if the gradient of active inequality and all equality constraints are

linearly independent.

 The optimality conditions for constrained optimization problems are frequently referred

to as Karush–Kuhn–Tucker (KKT) conditions. KKT conditions are necessary but not

sufficient for optimality.

 The Lagrange multiplier provides information on the sensitivity of the objective function

with respect to the sensitivity of the righthand side of the constraint equation.

 A constrained optimization problem can be converted to an unconstrained problem by

penalizing the objective function when constraints are violated. Such methods are termed

penalty function methods and are very easy to implement.

 The motivation of using the penalty function method is to solve the constrained

optimization problem using algorithms for unconstrained problems.

 The augmented Lagrange multiplier (ALM) method combines both Lagrange multiplier

and penalty function methods.

 The sequential quadratic programming (SQP) method approximates the objective

function to a quadratic form and linearizes the constraints in each iteration.

 The method of feasible directions ensures meeting the constraints in every iteration.

 In Rosen‘s gradient projection method, the search direction (negative of the gradient of

the objective function) is projected into the subspace tangent of the active constraints.

 Formulae Chart:

• Lagrange Function:

 () () ∑ () ∑ ()

• Optimality Condition:

 () ∑ () ∑ ()

• Penalty Function:

 () () ∑
 () ∑〈 ()〉

〈 ()〉 , ()-

Chapter V : Constrained Optimization

114

• Augmented Lagrangian Function:

 () () ∑ () ∑ ∑
 () ∑

〈 ()〉

 , ()-

 { ()

}

• Quadratic Problem:

 ()

Subject to

 () ()

 () ()

• Rosen‘s Gradient Projection Method:

 ()

 ̅ () ()

 ()

 ()

 Problems:

1. Check the nature of the stationary points of the constrained problem:

minimize ()

 such that

2. For the problem:

minimize ()

 such that

Check for a minimum at the following points: (a) (5/3, 5.00) (b) (1/3, 5.00) (c) (3.97,1.55).

1. Calculate the derivative of the solution of Example 5.1.2 with respect to a change inthe

allowable displacement. First use the Lagrange multiplier to obtain the derivative of the

objective function, and then calculate the derivatives of the design variables and

Lagrange multipliers and verify the derivative of the objective function. Finally, estimate

from the derivatives of the solution how much we can change the allowable

displacement without changing the set of active constraints.

2. Solve for the minimum of problem 1 using the gradient projection method fromthe

point (17, 1/2, 4).

3. Complete two additional moves in Example 5.5.2.

Chapter V : Constrained Optimization

115

4. Find a feasible usable direction for problem 1 at the point (17, 1/2, 4).

5. Use an exterior penalty function to solve Example 5.1.2.

6. Use an interior penalty function to solve Example 5.1.2.

7. Consider the design of a box of maximum volume such that the surface area isequal to

S and there is one face with an area of S/4. Use the method of multipliers to solve this

problem, employing three design variables.

8. Complete two more iterations in Example 5.9.1.

References

116

References:

1. Burghes, D. N., & Wood, A. D. (1980). Mathematical models in the social, management and life sciences.

Hemstead, UK: Ellis Horwood.

2. 18. Fletcher, R., & Powell, M. J. D. (1963). A rapidly convergent descent method for minimization. The

Computer Journal, 6, 163–168.

3. A.L. Tits. Lecture notes on optimal control. University of Maryland, 2013.

4. Abadie, J., and Carpentier, J., ―Generalization of the Wolfe Reduced Gradient Method for Nonlinear

Constraints‖, in: Optimization (R. Fletcher, ed.), pp. 37– 49, Academic Press, 1969.

5. Agnew, R. P. (1960). Differential equations. New York: McGraw-Hill.

6. Andreas, A., & Wu-Shey, L. (2007). Practical optimization: Algorithms and engineering applications. New

York: Springer Science+Business Media.

7. Arora, R. K., & Pradeep, K. (2003). Aerodynamic shape optimization of a re-entry capsule. In AIAA

Atmospheric Flight Mechanics Conference and Exhibit (AIAA-5394-2003, Texas).

8. Ashok, D. B., & Tirupathi, R. C. (2011). Optimization concepts and applications in engineering. Cambridge,

UK: Cambridge University Press.

9. Bellman, R. (1953). An introduction to the theory of dynamic programming. RAND Corp. Report.

10. Bertsekas, D.P., ―Multiplier Methods: A Survey,‖ Automatica, 12, pp. 133–145, 1976.

11. Betts, J. T. (1998). Survey of numerical methods for trajectory optimization. Guidance, Control and

Dynamics, 21(2), 193–207.

12. Byrd, R. H., Gilbert, J. C., & Nocedal, J. (2000). A trust region method based on interior point techniques for

nonlinear programming. Mathematical Programming, 89(1), 149–185.

13. Byrd, R. H., Schnabel, R. B., & Shultz, G. A. (1988). Approximate solution of the trust region problem by

minimization over two-dimensional subspaces. Mathematical Programming, 40(3), 247–263.

14. Cauchy, A. L. (1847). Méthode générale pour la résolution des systèmes d‘équations simultanées. Comptes

Rendus de l‘Académie des Sciences, 25, 536–538.

15. Coleman, T. F., & Verma, A. (2001). A preconditioned conjugate gradient approach to linear equality

constrained minimization. Computational Optimization and Applications, 20(1), 61–72.

16. Colville, A. R. (1968). A comparative study on nonlinear programming codes. Report 320-2949, IBM New

York Scientific Centre.

17. Dahlquist, G., and Bjorck, A., Numerical Methods, Prentice Hall, 1974.

18. Dantzig, G. B. (1949). Programming of interdependent activities: II mathematical model. Econometrica,

17(3), 200–211.

19. Dantzig, G. B. (1990). The diet problem. Interfaces, 20(4), 43–47.

20. Deb, K. (1995). Optimization for engineering design: Algorithms and examples. Upper Saddle River, NJ:

Prentice Hall.

21. Dennis, J. E., & Schnabel, R. B. (1983). Numerical methods for unconstrained optimization and nonlinear

equations. Upper Saddle River, NJ: Prentice Hall.

22. Epperson, J. F. (2010). An introduction to numerical methods and analysis. Hoboken, NJ: John Wiley &

Sons.

23. Fiacco, V., and McCormick, G.P., Nonlinear Programming: Sequential Unconstrained Minimization

Techniques, John Wiley, New York, 1968.

References

117

24. Fletcher, R., & Reeves, C. M. (1964). Function minimization by conjugate gradients. The Computer Journal,

7(2), 149–154.

25. Fletcher, R., ―An Ideal Penalty Function for Constrained Optimization,‖ Journal of the Institute of

Mathematics and its Applications, 15, pp.319–342, 1975.

26. Gill, P.E., Murray, W., and Wright, M.H., Practical Optimization, Academic Press, 1981.

27. Gomory, R. E. (1958). Outline of an algorithm for integer solutions to linear programs. Bulletin of the

American Society, 64, 275–278.

28. Griva, I., Nash, S. G., & Sofer, A. (2009). Linear and nonlinear optimization. Philadelphia: SIAM.

29. Haftka, R.T., and Starnes, J.H., Jr., ―Applications of a Quadratic Extended Interior Penalty Function

forStructural Optimization‖, AIAA Journal, 14 (6), pp.718–724, 1976.

30. Hancock, H. (1917). Theory of maxima and minima. Boston: Ginn and Company.

31. Haug, E.J., and Arora, J.S., Applied Optimal Design: Mechanical and Structural Systems, John Wiley, New

York, 1979.

32. Hestenes, M.R., ―Multiplier and Gradient Methods,‖ Journal of Optimization Theory and Applications, 4 (5),

pp. 303–320, 1969.

33. Jaluria, Y. (2008). Design and optimization of thermal systems. Boca Raton, FL: CRC Press.

34. Kantorovich, L. V. (1939). Mathematical methods of organizing and planning production. Leningrad State

University.

35. Karush, W. (1939). Minima of functions of several variables with inequalities as side constraints. M.Sc.

Dissertation. Illinois: University of Chicago.

36. King, J. R. (1975). Production, planning and control: An introduction to quantitative methods. Oxford:

Pergamon Press.

37. Kreisselmeier, G., and Steinhauser, R., ―Systematic Control Design by Optimizing a Vector Performance

Index,‖Proceedings of IFAC Symposium on Computer Aided Design of Control Systems, Zurich,

Switzerland, pp. 113-117, 1979.

38. Kuhn, H. W., & Tucker, A. W. (1951). Nonlinear programming. Proceedings of the Second Berkeley

Symposium on Mathematical Statistics and Probability. University of California Press, 481–492.

39. Marquardt, D. (1963). An algorithm for least squares estimation of nonlinear parameters. SIAM Journal of

Applied Mathematics, 11(2), 431–441.

40. Moe, J., ―Penalty Function Methods in Optimum Structural Design—Theory and Applications‖, in: Optimum

Structural Design (Gallagher and Zienkiewicz, eds.), pp. 143–177, John Wiley, 1973.

41. Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. Computer Journal, 7(2),

308–313.

42. Nocedal, J., & Wright, S. J. (2006). Numerical optimization. Springer Series in Operations Research. New

York: Springer Science+Business Media.

43. Powell, M.J.D., ―A Fast Algorithm for Nonlinearly Constrained Optimization Calculations‖, Proceedings of

the 1977 Dundee Conference on Numerical Analysis, Lecture Notes in Mathematics, Vol. 630, pp. 144–157,

Springer-Verlag, Berlin, 1978.

44. Rao, S. S. (2009). Engineering optimization: Theory and practice. Hoboken, NJ: John Wiley & Sons.

45. Reklaitis, G. V., Ravindran, A., & Ragsdell, K. M. (1983). Engineering optimization: Methods and

applications. New York: John Wiley & Sons.

46. Rosen, J.B., ―The Gradient Projection Method for Nonlinear Programming— Part I: Linear Constraints‖, The

References

118

Society for Industrial and Appl. Mech. Journal, 8 (1), pp. 181– 217, 1960.

47. Rosen, J.B., ―The Gradient Projection Method for Nonlinear Programming—Part II: Nonlinear Constraints‖,

The Society for Industrial and Appl. Mech. Journal, 9 (4), pp. 514–532, 1961.

48. S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,

http://stanford.edu/ boyd/cvxbook/, 2004.

49. Shanno, D. F. (1970). Conditioning of quasi-Newton methods for function minimization. Mathematics of

Computation, 24, 647–656.

50. Shin, D.K, Gu¨rdal, Z., and Griffin, O. H. Jr., ―A Penalty Approach for Nonlinear Optimization with Discrete

Design Variables,‖ Engineering Optimization, 16, pp. 29–42, 1990.

51. Sobieszczanski-Sobieski, J., ―A Technique for Locating Function Roots and for Satisfying Equality

Constraints in Optimization,‖ NASA TM-104037, NASA LaRC, 1991.

52. Sobieszczanski-Sobieski, J., Barthelemy, J.F., and Riley, K.M., ―Sensitivity of Optimum Solutions of

Problem Parameters‖, AIAA Journal, 20 (9), pp. 1291– 1299, 1982.

53. Vanderplaats, G.N., ―CONMIN—A Fortran Program for Constrained Function Minimization‖, NASA TM

X-62282, 1973.

54. Venkataraman, P. (2009). Applied optimization with MATLAB programming. Hoboken, NJ: John Wiley &

Sons.

55. Wolfe, P.. ―The Simplex Method for Quadratic Programming,‖ Econometrica, 27 (3), pp. 382–398, 1959.

56. Zoutendijk, G., Methods of Feasible Directions, Elsevier, Amsterdam, 1960.

http://stanford.edu/

