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Optimization is a critical field in applied mathematics, engineering, economics, and 

computer science, providing methods and techniques for finding the best possible solution to 

problems under specific constraints. The goal of optimization is to either maximize or 

minimize an objective function, which is a quantitative measure of success, such as profit, 

efficiency, or cost. These problems appear in virtually every sector, ranging from designing 

systems that maximize energy efficiency to developing algorithms in machine learning that 

optimize predictive models. 

The concept of optimization has a long and rich history, stretching back thousands of 

years. Early examples of optimization can be found in ancient Greek mathematics, where 

optimization was used in the study of geometry, such as finding the shortest distance 

between two points or maximizing the volume of geometric solids. However, it was only in 

the 17th and 18th centuries, with the development of calculus, that optimization began to 

take shape as a formal mathematical discipline. The pivotal role of calculus, particularly the 

work of mathematicians like Isaac Newton (1643–1727) and Gottfried Wilhelm Leibniz 

(1646–1716), was essential for formulating optimization problems in a more structured way. 

Pierre de Fermat (1607–1665), a French mathematician, is often credited with laying 

the foundation of optimization. Fermat‘s principle of least time, which states that light 

follows the path that requires the least time to travel between two points, was an early form 

of optimization applied to physics. His work paved the way for later advancements in 

variational calculus, which would become a cornerstone of optimization theory. 

The 19th century witnessed the formalization of optimization methods. Augustin-Louis 

Cauchy (1789–1857), a French mathematician, made significant contributions to 

optimization theory, particularly with his development of the method of steepest descent in 

1847. This iterative technique, which adjusts variables in the direction of the steepest 

gradient, remains a cornerstone of optimization methods used to solve unconstrained 

optimization problems. Cauchy‘s work was instrumental in establishing optimization as a 

distinct subfield of mathematics. 

As the 20th century dawned, the development of optimization methods accelerated, with 

the advent of linear programming and the introduction of new techniques for solving both 

linear and nonlinear optimization problems. In 1947, George Dantzig (1914–2005), an 

American mathematician, revolutionized optimization with the invention of the Simplex 

Method, which is still widely used for solving linear optimization problems. Dantzig's work 

was a milestone in optimization, providing an efficient method for finding the optimal 
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solution in linear programming, and making optimization a critical tool in operations 

research, economics, and logistics. 

During the mid-20th century, optimization continued to evolve with the introduction of 

dynamic programming by Richard Bellman (1920–1984) in the 1950s. Bellman‘s method 

provided a systematic approach for solving problems that could be broken down into simpler 

subproblems, with applications ranging from resource allocation to control systems. This 

approach has since become a fundamental concept in optimization, especially in fields like 

computer science and artificial intelligence. 

The latter half of the 20th century saw further advancements in the theory and practice of 

nonlinear optimization. John von Neumann (1903–1957), a Hungarian-American 

mathematician, made important contributions to game theory and the application of 

optimization in strategic decision-making, while Ralph E. Gomory (1929–2022) made 

pioneering advances in integer programming. Their work helped to establish optimization as 

a crucial tool in economics, operations research, and decision theory. 

The rise of convex optimization in the late 20th and early 21st centuries further 

expanded the scope and applicability of optimization methods. Stephen Boyd (born 1953) 

and Lieven Vandenberghe (born 1964), both professors at Stanford University, are key 

figures in the development of modern convex optimization. Their seminal textbook, Convex 

Optimization (2004), has become the standard reference for practitioners in engineering, 

economics, and applied mathematics. Their work on convex optimization theory, including 

the characterization of convex functions and optimality conditions, has made it possible to 

solve large-scale optimization problems more efficiently. 

Optimization is not limited to theoretical developments but has also led to a wide range of 

practical applications. For example, in machine learning, optimization techniques such as 

gradient descent are used to train models by adjusting parameters to minimize an error 

function. Deep learning, a subfield of machine learning, relies heavily on optimization 

methods to adjust millions of parameters in neural networks, a process that would be 

impossible without efficient optimization algorithms. 

In engineering, optimization is central to fields such as structural design, control theory, 

and signal processing. The ability to optimize designs, whether it is minimizing material use 

or maximizing the efficiency of control systems, has direct implications for innovation and 

technological progress. In finance, optimization is employed in portfolio management, 

where the objective is to maximize return while minimizing risk. 

Optimization problems can be broadly categorized into two types: unconstrained 

optimization, where there are no restrictions on the decision variables, and constrained 

optimization, where the variables must satisfy specific limitations. The development of 

algorithms to efficiently solve both types of problems has been a major area of research. 

Some of the most well-known algorithms include Newton’s method, the Nelder-Mead 

algorithm, the Simplex method, and gradient-based techniques such as steepest descent. 
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This handout is dedicated to students in both licence and master's programs, with the 

aim of providing them with a deep and thorough understanding of optimization methods. 

The content is designed to take students from the foundational concepts through to more 

advanced topics in optimization, equipping them with the tools needed to approach real-

world problems. 

The handout is divided into five key chapters to provide a comprehensive understanding 

of optimization techniques. The structure is as follows: 

1. General Concept: This chapter introduces the fundamental concepts of optimization, 

including a historical review, the structure of an optimization problem, and methods for 

solving them. It also covers the critical topics of convexity, gradient vectors, directional 

derivatives, and the Hessian matrix. 

2. Convex Optimization Overview: This chapter provides an in-depth look at convex 

optimization, including the theory of convex functions and the conditions under which 

optimization problems become easier to solve. It covers first and second-order 

characterizations of convex functions, as well as the implications of strict convexity for the 

uniqueness of optimal solutions. 

3. 1-D Optimization Algorithms: Focused on optimization problems involving a single 

variable, this chapter explores algorithms like the bisection method, Newton-Raphson 

method, and golden section method. These techniques are critical for solving simpler 

problems and serve as building blocks for more complex methods. 

4. Unconstrained Optimization: This chapter discusses techniques for solving optimization 

problems without constraints, such as the steepest descent method, Newton’s method, and 

Nelder-Mead algorithm. It also introduces additional test functions used to evaluate 

optimization methods. 

5. Constrained Optimization: The final chapter explores optimization problems that involve 

constraints. It includes methods like the penalty function method, Lagrange multipliers, 

and sequential quadratic programming, and provides real-world applications in areas like 

structural design. 

Each chapter is designed to provide a blend of theoretical foundations and practical 

solutions, with accompanying highlights, formulae charts, and problems to enhance 

understanding. By the end of this handout, students will have a solid grasp of optimization 

methods and be equipped to apply these techniques to solve complex real-world problems. 
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1.1 Introduction : 

Optimization is the process of making something as effective or functional as possible. In 

mathematical terms, it involves finding the maximum or minimum value of a function 

subject to certain constraints. Optimization problems arise in almost every field, including 

engineering, economics, logistics, machine learning, and more. The goal of this course is to 

provide a solid foundation in optimization theory, methods, and applications. 

1.2 Historical Review: 

The field of optimization has a rich history that spans centuries, evolving from simple 

geometric solutions to sophisticated algorithms powered by modern computing. 

Understanding this history provides context for the development of optimization techniques 

and their applications today. Below is a detailed timeline of key developments: 

Ancient Beginnings 

The roots of optimization can be traced back to ancient civilizations, where early 

mathematicians and philosophers sought to solve practical problems. For example: 

 Ancient Greece (300 BC): Mathematicians like Euclid and Archimedes explored 

geometric optimization problems, such as finding the shortest path between two points (a 

precursor to the modern concept of geodesics). 

 Heron of Alexandria (10–70 AD): Known for Heron’s Principle, which states that light 

takes the shortest path between two points, an early example of optimization in nature. 

17th Century: The Birth of Calculus 

The development of calculus by Isaac Newton and Gottfried Wilhelm Leibniz in the 17th 

century provided the mathematical tools necessary for solving optimization problems. Key 

contributions include: 

 Newton’s Method: Originally developed for finding roots of equations, this iterative 

method became a cornerstone for solving optimization problems numerically. 

 Fermat’s Principle: Pierre de Fermat‘s work on finding maxima and minima using 

derivatives laid the groundwork for modern optimization techniques. 

18th Century: Lagrange and Constrained Optimization 

The 18th century saw significant advancements in optimization, particularly with the work 

of Joseph-Louis Lagrange: 
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 Lagrange Multipliers: Lagrange introduced a method for solving constrained optimization 

problems, which remains a fundamental tool in economics, physics, and engineering. For 

example, in economics, it is used to maximize utility subject to a budget constraint. 

19th Century: Cauchy and Gradient Descent 

In the 19th century, Augustin-Louis Cauchy made groundbreaking contributions to 

optimization: 

 Gradient Descent: Cauchy developed the gradient descent method, an iterative algorithm 

for finding the minimum of a function. This method is now widely used in machine learning 

and numerical optimization. 

20th Century: Linear Programming and the Simplex Method 

The 20th century marked the rise of linear programming and the development of efficient 

algorithms for solving large-scale optimization problems: 

 George Dantzig: In 1947, Dantzig introduced the Simplex Method, a powerful algorithm 

for solving linear programming problems. This method revolutionized fields like operations 

research, logistics, and economics. 

 John von Neumann: His work on duality theory provided a deeper understanding of linear 

programming and its applications. 

21st Century: Modern Optimization 

The 21st century has seen the rise of advanced optimization techniques driven by the need to 

solve complex problems in machine learning, artificial intelligence, and data science: 

 Convex Optimization: The development of efficient algorithms for convex optimization 

has enabled the solution of problems with millions of variables. 

 Stochastic Optimization: Techniques like stochastic gradient descent are widely used in 

training deep learning models. 

 Metaheuristics: Algorithms like genetic algorithms and simulated annealing are used to 

solve non-convex and combinatorial optimization problems. 

1.3 Optimization Problem: 

An optimization problem involves finding the best solution from a set of feasible 

alternatives. It can be formally defined as follows:
1
 

          ( )                       ( ) 

              ( )                     

  ( )                    

Where: 

  ( )                                                      
                                     
    ( )                         
    ( )                       

 

 

                                                           
1
 Nocedal, J., & Wright, S. J. (2006). Numerical optimization. Springer Series in Operations Research. New York: 

Springer Science+Business Media. 
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Types of Optimization Problems 

1. Linear Programming (LP): The objective function and constraints are linear. Example: 

                     

                           

               

        

2. Nonlinear Programming (NLP): The objective function or constraints are nonlinear. 

Example: 

          ( )        ( ) 

               

3. Convex Optimization: The objective function and feasible region are convex. Convex 

problems have unique global minima. 

4. Integer Programming: Decision variables are restricted to integer values. 

1.4 Modeling of the Optimization Problem 

Modeling is the process of translating a real-world problem into a mathematical framework. 

This involves identifying the key components of the problem and expressing them in 

mathematical terms. The steps involved in modeling an optimization problem are: 

1. Define the Decision Variables: 

Decision variables are the unknowns that need to be determined to solve the problem. These 

variables represent the choices or decisions that can be made. For example, in a production 

planning problem, the decision variables could represent the quantities of different products 

to produce. 

2. Formulate the Objective Function: 

The objective function is a mathematical expression that represents the goal of the 

optimization problem. It could be to maximize profit, minimize cost, or achieve some other 

desired outcome. The objective function is typically expressed in terms of the decision 

variables. 

3. Identify Constraints: 

Constraints are the limitations or requirements that must be satisfied. These could include 

resource limitations, physical laws, or other restrictions. Constraints are expressed as 

mathematical inequalities or equalities involving the decision variables. 

4. Validate the Model: 

Once the model is formulated, it is important to validate it to ensure that it accurately 

represents the real-world problem. This may involve checking the model against historical 

data or using sensitivity analysis to test how changes in the parameters affect the solution. 

Example: Production Planning 

Let‘s consider a detailed example of a production planning problem. 

Problem Statement: 

A company produces two products,  P1 and P2, with profits of 50 and 70 p er unit, 

respectively. The production process is subject to the following constraints: 
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 Machine A can work for up to 40 hours per week, and each unit of P1 and P2 requires 2 and 

3 hours, respectively. 

 Machine B can work for up to 30 hours per week, and each unit of P1 and P2 requires 4 and 

2 hours, respectively. 

Step 1: Define the Decision Variables 

Let x1 be the number of units of P1 to produce, and x2 be the number of units of P2 to 

produce. 

Step 2: Formulate the Objective Function 

The goal is to maximize profit. The profit from producing x1 units of P1 and x2 units of P2

 is: 

                     

Step 3: Identify Constraints 

The constraints are based on the available machine hours: 

1. Machine A constraint: 

           

2. Machine B constraint: 

           

3. Non-negativity constraints: 

            

Step 4: Solve the Problem 
 

We can solve this linear programming problem using the graphical method. 

1. Plot the Constraints: 

o               

                ⁄          
                 

o                 

                   
                     

2. Identify the Feasible Region: 
 

The feasible region is the area where all constraints are satisfied. This is a polygon bounded 

by the intersection points of the constraints. 

3. Find the Corner Points: 

The optimal solution lies at one of the corner points of the feasible region. The corner points 

are: 

o (0,0) 
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o (0,13.33) 

o Intersection of                            
Solving these equations simultaneously: 

2
          
          

 

Multiply the first equation by 2: 

           

Subtract the second equation: 

               

Substitute  x2=12.5 into the first equation: 

     (    )                         

So, the intersection point is  (1.25,12.5). 

4. Evaluate the Objective Function at Each Corner Point: 

o    (   )     ( )    ( )    

o    (       )     ( )    (     )        

o    (         )     (    )    (    )                 

o    (     )     (   )    ( )      

5. Determine the Optimal Solution: 
 

The maximum profit is $937.5, achieved by producing 1.25 units of P1 and 12.5 units of P2. 

1.5 Solution with the Graphical Method: 

The graphical method is a simple and intuitive way to solve linear programming problems 

with two decision variables. It involves plotting the constraints on a graph and identifying 

the feasible region. The optimal solution is found at one of the corner points of the feasible 

region. 

Steps of the Graphical Method:
2
 

1. Plot the Constraints: 

Convert each constraint into an equation and plot it on a graph. Shade the feasible region 

that satisfies all constraints. 

2. Identify the Feasible Region: 

The feasible region is the area where all constraints overlap. It is typically a polygon. 

3. Find the Corner Points: 

The optimal solution lies at one of the corner points (vertices) of the feasible region. 

                                                           
2
 Dantzig, G. B. (1949). Programming of interdependent activities: II mathematical model. Econometrica, 

17(3), 200–211. 
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4. Evaluate the Objective Function: 

Calculate the value of the objective function at each corner point. 

5. Determine the Optimal Solution: 

The corner point with the highest (for maximization) or lowest (for minimization) value of 

the objective function is the optimal solution. 

Example: Graphical Method 

Consider the following linear programming problem: 

                   

                     

          

        

Step 1: Plot the Constraints 

 For            
When             
When             

 For            
When             
When              

Step 2: Identify the Feasible Region 

The feasible region is the area bounded by the points (0,0), (0,5), (3,4), and (5,0). 

Step 3: Find the Corner Points 
The corner points are: 

 (0,0) 

 (0,5) 

 Intersection of            and             
Solving these equations simultaneously: 

2
         
         

  

Multiply the first equation by 3: 

           

Subtract the second equation: 

            

Substitute  x1=3 into the first equation: 

 ( )             

So, the intersection point is (3,4). 

 (5,0) 

Step 4: Evaluate the Objective Function 
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 At (   )    ( )   ( )    

 At (   )    ( )   ( )     

 At (   )    ( )   ( )          

 At (   )    ( )   ( )     

Step 5: Determine the Optimal Solution 

The maximum value of z is 25, achieved at (3,4). 

1.6 Convexity: 

Convexity is a fundamental concept in optimization that ensures the existence of a unique 

global minimum (or maximum) for a given problem. Understanding convexity is crucial 

because it allows us to determine whether an optimization problem is "well-behaved" and 

can be solved efficiently. 

Definition of Convex Sets 

A set S ⊆ R
n
 is called convex if, for any two points x1,x2∈S, the line segment connecting 

them lies entirely within S. Mathematically, this is expressed as: 

    (   )                ,   -  

Here, λ is a scalar between 0 and 1. 

Example of a Convex Set: 

A circle in 2D space is a convex set because any line segment connecting two points within 

the circle lies entirely inside the circle. 

Example of a Non-Convex Set: 

A crescent shape is not convex because there exist points in the set for which the connecting 

line segment lies partially outside the set. 

Definition of Convex Functions:
3
 

A function  f: R
n

 →R is called convex if its domain is a convex set and for any two 

points x1,x2 in its domain, the following inequality holds: 

(    (   )  )    (  )  (   ) (  )           ,   -  

This inequality states that the function lies below the line segment connecting any two 

points on its graph. 

Example of a Convex Function: 

The function  f(x)=x2 is convex because its graph is a parabola that curves upward, and any 

line segment connecting two points on the parabola lies above the curve. 

Example of a Non-Convex Function: 

The function  f(x)=sin(x) is not convex because its graph oscillates, and there exist points 

where the line segment connecting them lies below the curve. 

Importance of Convexity in Optimization:
4
 

                                                           
3
 Nocedal, J., & Wright, S. J. (2006). Numerical optimization (p. 112). Springer Series in Operations Research. 
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Convexity is important because: 

1. Global Minimum: A convex function has a unique global minimum. This means that any 

local minimum is also the global minimum. 

2. Efficient Algorithms: Convex optimization problems can be solved efficiently using 

algorithms like gradient descent, Newton‘s method, and interior-point methods. 

3. Duality: Convex problems have strong duality properties, meaning the primal and dual 

problems have the same optimal value. 

Testing for Convexity 

To determine whether a function is convex, we can use the following methods: 

1. First-Order Condition: 

A differentiable function f is convex if: 

 ( )   ( )    ( ) (   )                  ( )  

This means the function lies above its tangent plane at every point. 

2. Second-Order Condition: 

A twice-differentiable function f  is convex if its Hessian matrix    ( ) is positive semi-

definite for all        ( )  That is: 

     ( )                  
 

Example: Testing Convexity of a Quadratic Function 

Consider the function   (     )    
     

         To test its convexity: 

1. Compute the Hessian matrix: 

 2f(x) = [

   

   
 

   

      

   

      

   

   
 

] = 0
  
  

1  

 

2. Check if the Hessian is positive semi-definite: 

The eigenvalues of the Hessian are  λ1=5.37 and  λ2=0.63, both of which are positive. 

Therefore, the Hessian is positive definite, and the function is convex. 

1.7 Gradient Vector, Directional Derivative, and Hessian Matrix: 

These concepts are essential for understanding how optimization algorithms work, 

particularly in multivariable optimization. 

Gradient Vector 

The gradient of a function  f: R
n
 →R is a vector of its partial derivatives with respect to 

each variable. It points in the direction of the steepest ascent of the function. 

Mathematically: 

                                                                                                                                                                                     
4
 Griva, I., Nash, S. G., & Sofer, A. (2009). Linear and nonlinear optimization (p. 98). Philadelphia: SIAM. 
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 f(x) = 

[
 
 
 
 
 
  

   

  

   

 
  

   ]
 
 
 
 
 

     

Example: 

For  f(x,y)=x2+y2
, the gradient is: 

 f(x,y) = [
  
  

] 

Directional Derivative 

The directional derivative of f  in the direction of a vector v measures the rate of change 

of  f along v. It is given by: 

Dv  f(x)= f(x)Tv. 

Example: 

For   (   )       and  v=[1,1]T
, the directional derivative at (1,1) is: 

   (   )  [
 ( )
 ( )

]
 

0
 
 
1     

Hessian Matrix 

The Hessian matrix is a square matrix of second-order partial derivatives of a function. It 

provides information about the curvature of the function. For  f : R
n
 →R, the Hessian is: 

 

Example: 

For  f(x,y)=x2+2xy+y2
, the Hessian is: 

   (   )  0
  
  

1 

 

1.8 Linear and Quadratic Approximations: 

Linear and quadratic approximations are powerful tools in optimization and numerical 

analysis. They allow us to approximate complex functions using simpler forms, making it 

easier to analyze and solve optimization problems. 
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Linear Approximation 

A linear approximation of a function  f : R
n
 →R near a point x0 is given by the first-order 

Taylor expansion:
5
 

 ( )   (  )    (  )
 (    )  

This approximation is valid when x is close to x0. 

Interpretation: 

The linear approximation represents the tangent hyperplane to the function at x0. It captures 

the local behavior of the function in the neighborhood of x0. 

Example: 

Consider the function  f(x,y)=x2+y2
 at the point  x0=(1,1). The gradient at x0 is: 

  (   )  [
 ( )
 ( )

]  0
 
 
1 . 

The linear approximation near x0 is: 

 (   )   (   )  0
 
 
1
 

[
   
   

]     (   )   (   )  

Simplifying, we get: 

 (   )          

Quadratic Approximation 

A quadratic approximation of a function f : R
n
 →R near a point x0  is given by the second-

order Taylor expansion: 

 ( )   (  )    (  )
 (    )  

 

 
(    )

    (  )(    ) 

This approximation includes both the gradient and the Hessian matrix, providing a more 

accurate representation of the function near x0. 

Interpretation: 

The quadratic approximation represents the local curvature of the function at x0. It captures 

both the slope and the curvature of the function in the neighborhood of x0. 

Example: 

Consider the same function  f(x,y)=x2+y2
 at the point x0=(1,1). The Hessian matrix at x0

 is: 

   (   )  0
  
  

1 

The quadratic approximation near x0 is: 

                                                           
5
 Epperson, J. F. (2010). An introduction to numerical methods and analysis (p. 88). Hoboken, NJ: John Wiley & 

Sons. 
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 (   )   (   )  0
 
 
1
 

[
   
   

]  
 

 
[
   
   

]
 

0
  
  

1 [
   
   

] 

Simplifying, we get: 

 (   )     (   )   (   )  (   )  (   )  

Applications in Optimization:
6
 

1. Gradient Descent: 
 

Gradient descent uses the linear approximation (gradient) to iteratively move toward the 

minimum of a function. At each step, the algorithm updates the current point xk as: 

xk+1 = xk  − α  f(xk  ), 

where α is the learning rate. 

2. Newton’s Method: 
 

Newton‘s method uses the quadratic approximation (Hessian) to find the minimum of a 

function. At each step, the algorithm updates the current point xk   as: 

        ,   (  )-
    (  ) 

This method converges faster than gradient descent but requires computing and inverting the 

Hessian matrix. 

Example: Gradient Descent vs. Newton’s Method 
 

Consider the function  f(x)=x4−3x3+2. 

 Gradient Descent: Uses the gradient  f′(x)=4x3−9x2
 to iteratively update x. 

 Newton’s Method: Uses both the gradient and the Hessian  f′′(x)=12x2−18x to update xx. 

Newton‘s method converges faster because it accounts for the curvature of the function. 

Practical Applications of Approximations 

Linear and quadratic approximations are not just theoretical tools; they are widely used in 

optimization algorithms, physics, and engineering to simplify complex problems. 

Example: Robot Motion Planning 
 

In robotics, quadratic approximations model the cost of moving a robot from one 

configuration to another. For instance, minimizing energy consumption while avoiding 

obstacles can be approximated using quadratic functions, enabling efficient path planning. 

1.9 Applications of Optimization: 

Optimization has a wide range of applications in various fields. Here are a few examples:
7
 

1. Machine Learning: 

o Training models by minimizing loss functions (e.g., linear regression, neural networks). 

o Algorithms like gradient descent and stochastic gradient descent are widely used. 

                                                           
6
 Nocedal, J., & Wright, S. J. (2006). Numerical optimization (p. 152). Springer Series in Operations Research. 

7
 Rao, S. S. (2009). Engineering optimization: Theory and practice (p. 134). Hoboken, NJ: John Wiley & Sons. 
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2. Operations Research: 

o Resource allocation, scheduling, and logistics (e.g., the traveling salesman problem). 

o Linear programming and integer programming are commonly used. 

3. Economics and Finance: 

o Portfolio optimization to maximize returns while minimizing risk. 

o Utility maximization subject to budget constraints. 

4. Engineering: 

o Structural optimization to minimize weight while maintaining strength. 

o Control systems optimization to achieve desired performance. 

5. Data Science: 

o Clustering and classification problems (e.g., k-means clustering). 

o Feature selection and dimensionality reduction. 

1.10 Figures and Schemas: 

a) Transportation Optimization: 

Transportation optimization enhances route efficiency, cost reduction, and timely 

deliveries by leveraging data-driven strategies and advanced logistics planning. This 

concept will be explained through schemas and figures, illustrating optimized vehicle 

routing, resource allocation, and supply chain improvements. 

 Figure 1: Illustration of vehicle routing optimization with multiple delivery points.
8
 

 

 

 

 

 

 

                                                           
8
https://www.researchgate.net/publication/287796502_The_Vehicle_Routing_Problem_State_of_the_Art_Cla

ssification_and_Review 
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The Vehicle Routing Problem (VRP) illustrated in these images highlights the critical role 

of transportation optimization in logistics and supply chain management. Efficient routing 

offers several key benefits: 

1. Cost Reduction : Optimized routes minimize fuel consumption, vehicle maintenance, and 

labor costs. 

2. Time Efficiency : Reducing travel distance and optimizing delivery schedules ensures faster 

service. 

3. Customer Satisfaction : Timely and reliable deliveries improve customer trust and business 

reputation. 

4. Resource Utilization : Balancing workloads across multiple vehicles prevents under- or 

over-utilization. 

5. Sustainability : Lower fuel usage leads to reduced carbon emissions, supporting eco-

friendly operations. 

By implementing smart transportation optimization, businesses can enhance profitability, 

efficiency, and sustainability, making logistics more responsive and cost-effective. 

b) Energy System Optimization: 

Energy system optimization ensures efficient generation, distribution, and consumption 

of energy, reducing waste and enhancing sustainability. This will be explained through 

schemas and figures, showcasing smart grids, renewable integration, and optimized energy 

resource allocation. 

 Figure 2: Diagram showing the optimization of energy generation and distribution in a smart grid. 
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These diagrams illustrate the Smart Grid, an advanced energy system that efficiently 

manages generation, distribution, and consumption using multiple energy sources. 

1. Balanced Energy Distribution – Smart grids dynamically adjust power flow between 

renewable (solar, wind, hydro) and traditional (nuclear, thermal) sources to meet 

demand efficiently. 

2. Grid Stability & Reliability – Optimized transmission and distribution reduce blackouts 

and ensure uninterrupted power supply to residential, commercial, and industrial users. 

3. Sustainability & Cost Savings – Integrating renewable sources and storage systems 

minimizes reliance on fossil fuels, lowering both carbon footprint and energy costs. 

4. Smart Load Management – Real-time monitoring and automation ensure optimized 

energy usage for factories, electric vehicles, and homes. 

By leveraging intelligent energy optimization, smart grids enhance efficiency, reduce 

waste, and promote sustainability, ensuring a resilient and eco-friendly power future.  

 Schema 2: Graphical representation of the optimization process for energy resource allocation.
9
 

                                                           
9
 Mendoza, J. E., Castanier, B., Guéret, C., Medaglia, A. L., & Renaud, J. (2010). The Vehicle Routing Problem: 

State of the Art Classification and Review. Pesquisa Operacional, 30(2), 215-258. 
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These Schemas representations highlight the role of smart energy management in 

optimizing resource allocation across renewable sources, storage, and consumption 

points. 



 

Chapter I : General Concepts 
 

19 
 

1. Efficient Energy Utilization – Smart grids distribute surplus energy to areas experiencing 

shortages, reducing waste and maximizing renewable energy usage. 

2. Real-Time Decision Making – Fog computing and cyber-physical layers enable 

intelligent decisions for energy transfer between solar panels, wind turbines, energy 

storage, and smart buildings. 

3. Game Theory-Based Optimization – The system forms a coalition of energy donors and 

acceptors, ensuring balanced energy distribution and sustainable operations. 

4. Enhanced Grid Stability & Reliability – Smart grids prevent power failures by 

dynamically adjusting energy flow based on demand and supply conditions. 

5. Sustainability & Cost Savings – Energy storage solutions and smart allocation 

techniques reduce dependency on fossil fuels and lower energy costs. 

By optimizing energy resource allocation, smart grids create a resilient, cost-effective, 

and eco-friendly power system, ensuring efficient electricity distribution for residential, 

commercial, and industrial needs. 

c) Financial Portfolio Optimization: 

Financial portfolio optimization aims to maximize returns while minimizing risks through 

strategic asset allocation and diversification. This will be explained through schemas and 

figures, illustrating decision trees, risk assessment models, and optimal investment 

strategies. 

 Figure 3: Visualization of an optimized investment portfolio with balanced asset allocation. 

 

This visualization highlights the strategic approach to investment management, ensuring 

financial growth through asset optimization. 

1. Asset Management for Risk Control – Proper allocation diversifies investments, reducing 

risks and improving stability in fluctuating markets. 

2. Portfolio Optimization for Maximum Returns – A well-structured portfolio balances 

growth, income, and safety, adapting to market conditions for optimal financial 

performance. 
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3. Long-Term Financial Growth – Smart investment strategies enhance wealth 

accumulation and financial security over time. 

4. Data-Driven Decision Making – Continuous analysis and adjustments ensure investments 

align with market trends and financial goals. 

By optimizing portfolio allocation, investors achieve sustained growth, minimized risk, 

and improved profitability, leading to greater financial success.  
 

 Schema 3: Decision tree outlining the steps in optimizing asset allocation for portfolio management. 

 

This decision tree outlines a structured approach to portfolio optimization, helping 

investors choose the best allocation strategy based on market conditions and risk 

preferences. 

1. Customizable Strategies – Investors can tailor portfolios based on their views on returns, 

volatility, and correlations to align with financial goals. 

2. Risk-Reward Balance – Identifies whether markets reward diversifiable or non-

diversifiable risk, ensuring an optimal mix of assets. 

3. Efficient Portfolio Selection – Guides investors toward Mean-Variance Optimization, 

Minimum Variance, Maximum Diversification, or Equal Weight strategies depending 

on risk efficiency. 

4. Data-Driven Decision Making – A systematic framework eliminates guesswork and 

enhances investment stability and profitability. 

By optimizing asset allocation, investors achieve risk-adjusted returns, diversification 

benefits, and long-term financial growth, ensuring a resilient and profitable portfolio. 

d) Production Planning Optimization: 

Production planning optimization enhances efficiency, resource utilization, and workflow 

scheduling, ensuring minimal waste and maximum output. This will be explained through 

schemas and figures, illustrating Gantt charts, resource allocation models, and optimized 

manufacturing processes. 
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 Figure 4: Gantt chart demonstrating optimized production scheduling for a manufacturing plant. 

 

This Gantt chart illustrates optimized production scheduling, a crucial element in efficient 

business strategy planning and manufacturing operations. 

1. Improved Workflow Efficiency – Sequential task organization ensures a structured 

production process, minimizing downtime and delays. 

2. Resource Optimization – Helps in allocating manpower, materials, and equipment 

efficiently, reducing waste and maximizing output. 

3. Time Management – Establishing clear start and finish dates enhances project tracking 

and deadline adherence. 

4. Risk Mitigation – Identifies potential bottlenecks (e.g., budget constraints, market research 

delays) and enables proactive adjustments. 

5. Increased Profitability – Structured execution of tasks like market research, risk 

evaluation, and financial planning leads to higher productivity and profitability. 

By optimizing production scheduling, businesses can achieve better coordination, cost 

savings, and streamlined operations, ensuring sustained growth and competitiveness.  

 Schema 4: Schematic diagram illustrating the optimization of resource allocation in production 

planning. 
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This schematic diagram illustrates the optimization of resource allocation in production 

planning, leveraging machine learning models and workflow strategies. 

1. Efficient Resource Utilization – Ensures optimal allocation of virtual machines (VMs), 

computational resources, and time, minimizing waste. 

2. Automated Decision-Making – Uses regression models (M5P, NN, SVM) to predict and 

optimize resource allocation strategies dynamically. 

3. Enhanced Performance & Cost Efficiency – Balances cost, time, and success ratio, 

ensuring production meets customer requirements. 

4. Scalability & Adaptability – The model continuously adjusts based on real-time analysis 

& evaluation (UPPAAL-SMC) for improved efficiency. 

5. Data-Driven Optimization – Uses statistical modeling and machine learning to optimize 

production workflows and reduce inefficiencies. 

By implementing resource allocation optimization, production planning becomes more 

cost-effective, scalable, and responsive, leading to higher efficiency and improved 

service reliability. 

 Chapter Highlights: 

 An optimization problem involves formulating an objective function to be either 

maximized or minimized, subject to inequality and equality constraints. These functions 

depend on design variables, which are assessed using optimization techniques. 

 Design variables can be real numbers or take discrete, binary, or integer forms. 

 Modelling entails representing a problem mathematically using fundamental operations 

such as addition, subtraction, multiplication, division, and various functions, ensuring 

appropriate units are applied. 

 The gradient at a given point defines the slope of the tangent at that point. 

 If both the objective function and constraints are linear in terms of design variables, the 

problem is classified as linear programming, which excludes multiplicative terms like x1x2 

 or x2
. 

 The graphical method is applicable for solving optimization problems involving up to 
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three design variables. 

 Functions with multiple local minima or maxima are termed multimodal functions. 

 The concept of convexity is crucial in determining whether a function possesses a single 

minimum. A convex function guarantees a global minimum. 

 Optimization algorithms are typically designed for minimization. If an objective function 

requires maximization, it is transformed into an equivalent minimization problem by 

negation. 

 The necessary condition for optimality—whether maximum or minimum—is that the 

gradient at the given point must be zero. 

 At an optimal point, the second derivative of the objective function determines the nature 

of the extremum: 

 A positive second derivative indicates a minimum. 

 A negative second derivative indicates a maximum. 

 Numerical differentiation methods, including forward, backward, and central difference 

methods, can estimate the derivative of a function. Among these, the central difference 

method provides the highest accuracy. 

 The directional derivative measures the instantaneous rate of change of a function in a 

specified direction. 

 The Hessian matrix (H) represents the second-order derivatives of a function with 

multiple variables. 

 At a function's minimum, the Hessian matrix must be positive definite, meaning all its 

eigenvalues are positive. 

 Quadratic approximations are often useful in optimization, particularly for methods like 

Newton’s method, which achieve faster convergence with quadratic functions. 

 Taylor series approximation is employed to derive linear or quadratic approximations 

of functions, depending on the number of terms included in the expansion. 

 Formulae Chart: 

 Forward difference: 

  ( )  
 (    )   ( )

  
 

 Backward difference: 
  

  ( )  
 ( )   (    )

  
 

 Central difference: 
  

  ( )  
 (    )   (    )

   
 

 Central difference formula for the second derivative: 
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   ( )  
 (    )    ( )   (    )

   
 

 Jacobian of three functions with three variables: 
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 Hessian for a three-variable function: 
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 Quadratic approximation: 

 (    )   ( )    ( )    
 

 
       

  

 Optimization Problems 
 

1. An airline company in India uses A320 aircraft to fly passengers from New Delhi to 

Mumbai. Though the maximum seating capacity of the aircraft is 180, the airline observes 

that on average it flies only 130 passengers per flight. The regular fare between the two 

cities is Rs. 15,000. From the market survey, the company knows that for every Rs. 300 

reduction in fare, it would attract an additional four passengers. The company would like to 

find a fare policy that would maximize its revenue. Formulate this as an optimization 

problem. 

2. The average yield in a farm is 300 apples per tree, if 50 apple trees are planted per acre. 

The yield per tree decreases by 3 apples for each additional tree planted per acre. How many 

additional trees per acre should be planted to maximize the yield? Formulate this as an 

optimization problem. 

3. Determine the area of the largest rectangle that can be inscribed in a circle of radius 5 cm. 

Formulate this as an optimization problem by writing down the objective function and the 

constraint. Solve the problem using the graphical method. 

4. A field needs to be enclosed with a fence, with a river flowing on one side of the field. 

We have 300 m of fencing material. Our aim is to use the available fencing material and 

cover the maximum area of the field. Formulate this as an optimization problem by writing 

down the objective function and the constraint and clearly stating the design variables. 
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5. A traveling salesman has to start from city A, cover all other n number of cities, and then 

come back to city A. The distance between the ith and jth cities is given by    . How could 

he plan the route so to cover the minimum distance? Formulate this as an optimization 

problem. 

6. A company has initial wealth W and would like to invest this to get maximum returns. It 

can get higher returns (  ) if it invests in risky assets, but the return is not guaranteed. A 

return (  ) is guaranteed if it invests in safe assets. How much should the company invest in 

risky assets (R), to maximize its wealth at the end of a stipulated period? Formulate the 

objective function for the optimization problem. 

7. In an experiment, the following observations (see Table 1.3) are made where x is an 

independent variable and y is a dependent variable. It is desired to fit these data with a 

straight line: 

 ̂       

where m and c are to be determined. The data are to be fitted in the least squares sense, that 

is, ∑(    ̂)  is to be minimized. Formulate this as an optimization problem. 

 

8. The cost of a solar energy system (King 1975) is given by U = 35A + 208V, where A is 

the surface area of the collector and V is the volume of storage (Figure 1.19). Due to energy 

balance considerations, the following relation between A and V is to be satisfied:  

 

 

The design variable T is related to V as: 
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The variable T has to be restricted between 40°C and 90°C. The cost U is to be minimized. 

Formulate this as an optimization problem. 

9. Write the gradient and Hessian matrix for the function: 

 ( )          (   
     

 ) 

10. A company manufactures three products: A, B, and C. Each product requires time for 

three processes: 1, 2, and 3, as given in Table 1.4. 

 

 

 The maximum available capacity on each process is given in Table 1.5. The profit per 

unit for the product is given in Table 1.6. What quantities of A, B, and C should be produced 

to maximize profit? Formulate this as an optimization problem. 

11. A company has three factories and five warehouses. The warehouse demand, factory 

capacity, and shipping cost are given in Table 1.7. Determine the optimal shipment plan to 

minimize the total cost of transportation. Formulate the optimization problem. 
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12. Plot the function: 

  ( )   (     )(     )(     ) 

 and locate the minimum and maximum in [-4, 0]. 

13. An oil refinery company blends four raw gasoline types (A, B, C, and D) to produce two 

grades of automobile fuel, standard and premium. The cost per barrel of different gasoline 

types, performance rating and number of barrels available each day is given in Table 1.8.  

 

The premium should have a rating greater than 90 while the standard fuel should have a 

performance rating in excess of 80. The selling prices of standard and premium fuel are 90 

dollars and 100 dollars per barrel respectively. The company should produce at least 6000 

barrels of fuel per day. Determine how much quantity of fuel (of each type) should be 

produced to maximize profit? Formulate this as an optimization problem. 

14. Check whether the following functions are convex or not: 

                                ∈ ,    - 

                        ∈ ,    - 

  
 

    
                                    ∈ ,         - 

  √                              ∈ ,    - 

15. Write the first three terms of the Taylor series for the function: 

 ( )    (     )      / at x = 3. 

16. Find the linear approximation of the function: 
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 ( )    (     )     (      )           /  at x = 1. 

17. Write the Taylor series expansion (up to four terms) for the function    centered at x = 

3. 

18. Write the Taylor series expansion (up to three terms) for the function     ( ) centered at 

x = π. 

19. Find the quadratic approximation of the function  ( )      (         )    at  x = 0. 

20. Find the directional derivative of the function:   ( )     
       

           
     at (1, 

1, −1) in the direction [
 
 
 
]. 

21. Using MATLAB, plot the functions x⁴ and | | and check whether these functions are 

convex. 

22. Solve the following optimization problems using the graphical method: 
 

   i. Maximize                

   subject to:                

                                

                   . 

                                                   ii. Maximize              

 subject to:                 

                                 

                         

23. Calculate the Jacobian of the following system of equations: 

[

      
     

 

  
     

 

                 

] 
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Chapter II: Convex Optimization Overview 
 

 

 

 

 

 

 

 

2.1 Introduction: 

In the preceding chapter, our attention was centered on providing an Introduction to 

Optimization and elucidating the Simplex Method. This chapter transitions our focus 

towards another critical element within convex optimization, specifically, convex 

functions. The forthcoming discussion will cover a range of topics, including: 

 The distinctions and characteristics of convex, concave, strictly convex, and strongly 

convex functions. 

 First and second-order characterizations of convex functions. 

 Conditions for optimality within convex optimization problems. 

2.2 Theory of convex functions: 
 

a. Definition 

Let us begin by revisiting the definition of a convex function. 

Definition 1.
10

 A function f : Rn → R is convex if its domain is a convex set and for 

all x,  in its domain, and all λ ∈ [0, 1], we have 

 (     (  –   ) )     ( )   (  –   ) ( ). 

 
 

Figure 1: An illustration of the definition of a convex function 
 

• Expressed formally, this implies that for any two points x, y, when function f is 

evaluated at any convex combination of x and y, the result should not exceed the convex 

combination of f(x) and f(y). 
 

• From a geometric perspective, the line segment that connects the points (x, f(x)) and (y, 

f(y)) must remain above the graph of the function f. 

                                                           
10

 Boyd, S., & Vandenberghe, L. (2004). Convex optimization (p. 67). Cambridge University Press. 
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• In the case of f being continuous, establishing convexity requires only the verification of 

the definition for λ = 1 (or any other constant λ within the open interval (0, 1)), 

mirroring the concept of midpoint convex sets previously discussed. 
 

• The function f is defined as concave if the negation of f, denoted as -f, exhibits 

convexity. 

b. Examples of univariate convex functions 

To rigorously ascertain the convexity of specific functions, it is standard practice to utilize 

the second derivative test for convexity. This test stipulates that a function f(x) is deemed 

convex over a certain interval if its second derivative f''(x) remains non-negative (f''(x) ≥ 0) 

across that interval. An examination of the functions in question yields the following 

insights: 

1. For   ( )      , the calculation of the first and second derivatives yields   ( )        

and    ( )        , respectively. Given that     consistently holds a positive value and    

is inherently non-negative, the condition    ( )     is satisfied, affirming the function's 

convexity. 

2. In the case of  ( )       ( ), the derivatives are determined to be   ( )    
 

 
  and 

   ( )  
 

  . The condition        for all       ensures that    ( )    , thereby 

confirming the function's convexity. 

3. The function  ( )     , applicable in the domain  *  + for       or      , has its 

second derivative expressed as    ( )    (   )    . This expression remains non-

negative under the specified conditions for a, substantiating the function's convexity within 

its domain. 

4. Conversely, for  ( )       defined within  *  + for          , the second derivative 

   ( )     (   )     indicates a negative value for  (   ), signaling concavity 

instead of convexity. 

5. With  ( )   | | , where      , the function exhibits convexity for       as  ( )  

    and similarly for       as  ( )   (  ) . Convexity across the entire domain hinges 

on the behavior at      , which generally aligns with convexity for      . 

6. For  ( )       ( ), applicable in  *  +, the derivatives are   ( )         ( ) and 

   ( )  
 

 
. Given that       within  *  +,  

  ( )     is upheld, affirming the function's 

convexity. 
 

c. Strict and strong convexity 

Consider a function         . It is characterized as follows:
11

 

- Strictly Convex: For any distinct points     ∈     and any λ in the open interval (0, 1), 

the function f satisfies the inequality   (     (  –   ) )     ( )   (  –   ) ( ). 

                                                           
11

 Hiriart-Urruty, J.-B., & Lemaréchal, C. (2001). Fundamentals of convex analysis (p. 79). Springer. 
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- Strongly Convex: There exists a positive scalar       such that the function 

 ( )–   || ||
 
 is convex. 

Lemma 1: The property of strong convexity implies strict convexity, which in turn implies 

general convexity. However, the reverse of these implications does not hold. 

Proof: The transition from strict convexity to convexity is intuitively straightforward. 

To understand why strong convexity leads to strict convexity, consider the strong convexity 

condition for f, which suggests that for any distinct points     ∈     and any λ in the open 

interval (0, 1), we have: (     (  –   ) )–   ||     (  –   ) ||
 

   ( )  

 (  –   ) ( )–    || ||
 
– (  –   ) || ||

 
. The expression 

  || ||
 
  (  –   ) || ||

 
–   ||     (  –   ) ||

 

 is positive for all distinct x, y and λ in 

(0, 1), due to the strict convexity of || ||
 
. This validates the lemma. 

The non-equivalence of the converse statements is evident through examples: the function 

 ( )     is convex but lacks strict convexity, and the function  ( )      demonstrates 

strict convexity without being strongly convex. 

d. Examples of multivariate convex functions 

Affine Functions: An affine function is defined by the equation  ( )          , where 

'a' is a vector in    and     is a scalar in R. These functions are both convex and concave but 

not strictly so in either case. This dual property is illustrated by the equation for any λ in [0, 

1]: 

 (      (     ) )     (      (     ) )               (     )           

 (     )       ( )   (     ) ( ), 

Demonstrating that affine functions uniquely satisfy both convexity and concavity 

conditions. 

Quadratic Functions: The general form of a quadratic function is  ( )               

  . The convexity and concavity properties of quadratic functions are determined by the 

matrix Q: 

- The function is convex if Q is positive semidefinite (      ). 

- It is strictly convex if Q is positive definite (     ). 

- The function is concave if Q is negative semidefinite (      ), and strictly concave if Q 

is negative definite (     ). 

These properties can be established using the second-order conditions for convexity. 

Norms: A norm is a function f that satisfies the following conditions for any scalar alpha in 

R and for all vectors x and y: 

1.  (       )   |     | ( ), 

2.  (     )     ( )    ( ), 

3.  ( )      for all x, with  ( )     implying that      . 
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These properties ensure that norms measure the size or length of vectors in a consistent and 

scalable manner. 

Proof: For any λ in [0, 1], the following inequality holds: 

 (     (     ) )    (  )    ((     ) )      ( )   (     ) ( ), 

which is supported by the triangle inequality and the homogeneity property of norms, 

demonstrating the foundational principles of convexity without relying on the positivity 

property. 

 (a) An affine function (b) A quadratic function (c) The 1-norm 

 

Figure 2: Examples of multivariate convex functions 
 

e. Convexity = convexity along all lines 
 

Theorem 1:  A function           is convex if and only if the function g:    

   , defined by  ( )    (      ), is convex as a univariate function for every x within the 

domain of f and for all y in   . The domain of g includes all t for which x + ty is within the domain 

of f.
12

 
 

 

Proof: this proof follows directly from the definition of convexity. 

Implications and Applications:  

- The theorem facilitates numerous fundamental proofs in convex analysis, though it does not 

significantly ease the task of verifying convexity due to the requirement that the condition 

be satisfied across an infinite spectrum of lines. 

- Within convex optimization, many algorithms focus on iteratively minimizing the function 

along lines. 

This theorem ensures that each such sub-problem is also a convex optimization challenge, 

thereby reinforcing the applicability of convex optimization strategies. 
 

2.3 First and second order characterizations of convex functions: 

Theorem 2. Consider a function           that is twice differentiable over an open 

domain. The following statements are equivalent: 

- (i) The function f is convex. 

- (ii) For all x, y in the domain of f, the inequality  ( )     ( )     ( ) (  –  ) 

holds. This implies the function f satisfies that, for any two points in its domain, the 

function's value at y is at least the first-order Taylor expansion at x, evaluated at y. 

- (iii) The Hessian matrix of      ( ), is positive semidefinite (   ( )     ) for all 

x in the domain of f. 

                                                           
12

 Borwein, J. M., & Lewis, A. S. (2006). Convex analysis and nonlinear optimization (p. 64). Springer. 
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Interpretation of Condition (ii): The first-order Taylor expansion at any point acts as a 

global underestimator for the function f. This condition underlines that the linear 

approximation of f at any given point within its domain never overestimates the 

function's true value at any other point, a key characteristic of convex functions. 

 

Interpretation of Condition (iii): This condition asserts that the function f maintains 

nonnegative curvature across its entire domain. In the one-dimensional case, this is 

represented by the inequality    ( )      for all x in the domain of f, signifying that 

the second derivative of f is nonnegative. This nonnegative curvature indicates that the 

function's graph is consistently "bowed" upwards, a characteristic trait of convex 

functions. 
 

For functions of higher dimensions, the positive semi-definiteness of the Hessian matrix 

(   ( )     ) ensures that all directional second derivatives are nonnegative. This 

condition is essential for affirming the convexity of twice differentiable functions, as it 

verifies the absence of local maxima within the function's domain, aligning with the 

essential attributes of convex functions. 

 
Proof ([2],[1]): 

The detailed proof demonstrates the equivalence of three fundamental conditions for the 

convexity of a function           that is twice differentiable over an open domain. Here's 

the structured summary: 

1. (i) => (ii): By the convexity of f, we establish that  ( )–   ( ) is at least the gradient of f 

at x, transposed and multiplied by y-x, leveraging the approach of λ towards 0. 
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2. (ii) => (i): Given the first-order condition for all x, y in f's domain, we use a convex 

combination z of x and y to demonstrate   s convexity, illustrating that f(z) is less than or 

equal to a convex combination of f(x) and f(y). 
 

3. (ii) <=> (iii) in dimension 1: We show the necessity and sufficiency of the second 

derivative's non-negativity (or the Hessian in higher dimensions) for the first-order 

condition, indicating the nonnegative curvature of f. 
 

4. Generalization to higher dimensions: Extends the argument to higher dimensions by 

proving convexity of f along all lines, equivalent to the Hessian's non-negativity across f's 

domain. 
 

Corollary 1: Global Minima in Convex Optimization 

Establishes that for convex and differentiable f, any point x  where the gradient of f vanishes 

marks a global minimum, highlighting the global optimality condition in convex problems. 
 

Remarks: 

- The gradient of f equals 0 is a necessary and sufficient condition for global optimality in 

convex problems. 

- In non-convex settings, this condition may not ensure even local optimality. 

- Convex functions inherently satisfy the local optimality condition where the Hessian of f is 

nonnegative. 
 

2.4 Strict convexity: 

a. Characterization of Strict Convexity 

Strict Convexity Defined:
13

 

A function           is deemed strictly convex if, for any two distinct points x and y in its 

domain, and for every λ in the open interval (0, 1), the following inequality holds: 

 (      (     ) )      ( )   (     ) ( ). 

This definition naturally implies that a strictly convex function is also convex; however, the 

reverse does not necessarily apply. For example, the function  ( )     for x in R is convex 

but not strictly convex. 

Second Order Sufficient Condition for Strict Convexity: 

The condition that the Hessian matrix of f is positive definite (   ( )    ) for all x in a 

subset Ω of its domain suggests that f is strictly convex over Ω. It's important to note, 

however, that the converse of this statement may not hold. 

First Order Characterization: 

A function f is strictly convex on a subset Ω subseteq    if, and only if, for all pairs of 

distinct points x, y within Ω, the inequality: 

 ( )    ( )     ( ) (     ) 
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is satisfied, indicating a stricter condition than mere convexity. 

Characterizations of Strong Convexity: 

A function f is identified as strongly convex if there exists a constant m > 0 such that for all 

x, y in the domain of f, 

 ( )    ( )     ( ) (     )    ||     ||
 
 

or equivalently, if the Hessian matrix satisfies 

   ( )         ∈     ( )  

Application of Strict Convexity: 

A principal application of strict convexity lies in its ability to guarantee the uniqueness of 

the optimal solution in optimization problems, showcasing its significance in mathematical 

optimization and analysis. 
 

b. Strict Convexity and Uniqueness of Optimal Solutions 

Theorem 3. This theorem posits that for an optimization problem aiming to minimize f(x) 

subject to x belonging to a convex set Ω, if           is strictly convex on Ω, then the 

optimal solution, assuming its existence, is unique. 

Proof: Assume the existence of two distinct optimal solutions x, y in   , implying both are 

within Ω and  ( )    ( )     ( ) for all z in Ω. Considering    
(     )

 
, and given Ω's 

convexity, z also lies within Ω. Due to the strict convexity of f, it follows that: 

 .
(     )

 
/  

 

 
 ( )  

 

 
 ( )    ( )    ( ), 

which contradicts the assumption that both x and y are optimal. Therefore, the optimal 

solution must be unique. 

Exercise: Convexity Analysis 

1.  ( )   (   –     )
 
: 

   - This function is strictly convex. The quadratic term implies a parabolic surface that 

opens upward, indicative of strict convexity. 

2.  ( )   (   –     )
 
  (   –     )

 
: 

   - This function is also strictly convex as it is a sum of strictly convex functions. The 

quadratic terms ensure that any line segment on the function's surface lies above the chord 

connecting its endpoints. 

3.  ( )   (   –     )
 
  (   –     )

 
    : 

   - This function remains strictly convex. The addition of x3 to the strictly convex quadratic 

terms does not affect the strict convexity of the overall function. 

4.  ( )   | |(          ): 

   - This function is convex. The absolute value function forms a V-shaped graph, which 
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satisfies the definition of convexity but not strict convexity. 

5.  ( )   || ||(           ): 

   - The norm function is convex. Norms are convex by definition, as they satisfy the triangle 

inequality and homogeneity. However, they are not strictly convex since the line segment 

between any two points with the same norm but different directions will lie entirely on the 

surface of the norm ball. 

c. Quadratic functions revisited: 

The function f(x) is convex if the matrix A is positive semidefinite (A ≥ 0). This criterion depends 

solely on the second-order term     , which relates to the function's curvature. The linear term b 

and the constant term c affect the function's location but not its curvature.
14

 

Proofs and Implications: 

 Non-Convexity with Negative Eigenvalues: If A is not positive semi-definite (i.e., has a negative 

eigenvalue), f(x) cannot be convex. Demonstrated by considering an eigenvector x  of A with a 

negative eigenvalue λ, leading to the function being unbounded below as α → ∞, where α is a scalar 

multiplier of x . 

 Strict Convexity with Positive Definite Matrix: When A is positive definite (A > 0), f(x) is strictly 

convex, guaranteeing a unique solution to the optimization problem. This solution is given by 

      
 

 
 (  ) , derived by setting the gradient of f(x) to zero. 

 Convexity with Positive Semidefinite Matrix: If A is positive semidefinite (A ≥ 0), f(x) is convex but 

not necessarily strictly convex. This scenario may result in the optimization problem being 

unbounded below or having infinitely many solutions, depending on the specific characteristics of A 

and b. The condition for a unique solution is more nuanced and depends on whether b lies in the 

range of A. 

 

 
Figure 3: An illustration of the different possibilities for unconstrained quadratic 

minimization 
 

3.3.1 Least squares revisited 

 

In the least squares problem, we seek to Minimize the squared difference between    and b, 

expressed as Minimize|   –   |
 
. The unique solution, given by     (   )      , hinges 

on the columns of A being linearly independent. This independence ensures    , A is 

positive definite, making the objective function strictly convex. Strict convexity implies that 

any local Minimize is also a global Minimize, guaranteeing the uniqueness of the solution. 
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The key to this strict convexity is the positive definiteness of    A, which stems from the 

linear independence of A's columns, ensuring the objective's curvature is always positive 

and thus, strictly convex. 

2.5 Optimality conditions for convex optimization: 

Theorem. 4. This theorem presents a crucial condition for optimality in convex optimization 

problems. When the objective function          is convex and differentiable, and the feasible set 

Ω is also convex, a point x is optimal (i.e., minimizes f) if and only if it lies within Ω and satisfies the 

condition:
15

   ( ) (  –   )        ∈   . 
 

This condition can be understood as follows: 
 

- Direction of Increase: The gradient   ( ) points in the direction of the steepest ascent of f at x. 

The condition   ( )  (  –   )     means that moving from x towards any feasible point y in the 

direction of   ( ) (or not against it) does not decrease the function value. In other words, any move 

within Ω from x to y either increases f or leaves it unchanged; implying x is at least a local minimum. 
 

- Hyperplane Support: The vector –  ( ) (assuming it's nonzero) acts like a supporting 

hyperplane to the set Ω at point x. A hyper-plane is a flat affine subspace of one dimension less than 

the ambient space (in   , it's an n-1 dimensional space). This hyper-plane 'supports' Ω at x in the 

sense that Ω lies entirely on one side of the hyperplane. The gradient vector   ( ) is perpendicular 

to this hyperplane, and the condition suggests that x is on the boundary of the feasible region where 

the objective function begins to increase. 
 

In essence, this optimality condition highlights that at the optimal point x, any feasible direction does 

not lead to a decrease in the objective function value. This aligns with the intuitive understanding of 

a minimum in a convex landscape: at the bottom of a bowl, moving away in any direction only takes 

you uphill. This theorem formalizes that intuition for convex optimization, indicating that if x 

satisfies this gradient condition, it's an optimal solution to the problem. (See figure below.) 

 
Figure 4: An illustration of the optimality condition for convex optimization 

 

Sufficiency: 

The sufficiency of the condition   ( ) (  –   )     for all y in Ω in establishing x as an optimal 

point relies on the convexity off. This is demonstrated by combining it with the first-order 
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characterization of convexity,  ( )    ( )     ( ) (  –   ) for all y in Ω, to conclude that 

 ( )    ( ) for all y in Ω, hence proving x is optimal. 
 
 

Necessity: 

The necessity of the condition is independent of the convexity off. If x is optimal but there exists 

some y in Ω for which   ( )(  –   )    , considering  ( )    .     (  –   )/ for α in [0, 1], 

it's shown that   ( )    , leading to  .     (  –   )/    ( ) for some α in the interval (0, δ), 

contradicting the optimality of x. 
 

Special Case: 
 

- If       , the condition simplifies to   ( )    , the familiar first-order condition for 

unconstrained optimality. This is because, in the absence of constraints, the only way to 

satisfy   ( ) (  –   )     for all y is for the gradient itself to be zero. 

 

- If x is in the interior of Ω and is optimal, then   ( )     must hold. This follows from the 

ability to choose y in the direction of –   ( ) (i.e.,       –      ( ) for small α) to 

contradict the assumption of optimality unless the gradient is zero. 
 

 

Theorem 5. Let's consider an optimization challenge defined as follows:
16

 

 

Minimize f(x) 
 

Subject to the constraint       , 
 

 

where the function f is convex and A belongs to the space of      matrices. The condition for x in 

   to be deemed optimal for this problem is that it must both satisfy the constraint (be feasible) and 

there must exist a vector µ in    such that the equation   ( )        holds true. The foundation of 

this proof is rooted in the nature of convex problems, which dictates that a feasible point x achieves 

optimality if and only if the transpose of the gradient of f at x, applied to the difference (y - x), is non-

negative for all y that meet the condition       . 
 

Every y satisfying        can be represented as          , where v resides in the null space of 

A, meaning Av = 0. Thus, x is considered optimal only if the transpose of the gradient of f at x, when 

applied to v, is non-negative for all v that fulfill Av = 0. Given that Av = 0 also holds true for A(−v) 

= 0, it implies that the transpose of the gradient of f at x, applied to  , must also be non-positive. 

Consequently, the criterion for optimality stipulates that the transpose of the gradient of f at x, 

applied to v, equals zero for every v that satisfies Av = 0. This implies that the gradient of f at x is 

orthogonal to the null space of A, which, according to linear algebra, corresponds to the row space of 

A or, equivalently, the column space of   . Therefore, there exists a vector µ in    such that 

  ( )      , completing the proof. 
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3.1 Introduction 

The one-dimensional (1-D) optimization problem refers to an objective func- tion with one 
variable. In practice, optimization problems with many vari- ables are complex, and rarely 
does one find a problem with a single variable. However, 1-D optimization algorithms form 
the basic building blocks for multivariable algorithms. As these algorithms form a 
subproblem of mul- tivariable optimization problems, numerous methods (or algorithms) 
have been reported in the literature, each with some unique advantage over the others. These 
algorithms are classified into gradient-based and non–gradient- based algorithms. Some 
popular algorithms are discussed in this chapter. 
As an example, a single-variable objective function could be: 

 ( )           

This is an unconstrained optimization problem where x has to be deter- mined, which results 
in minimization of f(x). If we have to restrict x within a ≤ x ≤ b, where a and b are real 
numbers, then it becomes a constrained optimization problem. If the function f(x) is either 
continuously increasing or decreasing between two points a and b, then it is referred to as a 
monotonic function (see Figure 2.1). In a unimodal function, the function is monotonic on 

either side of its minimum point (x*). The function f(x) = 2x2 − 2x + 8 is plotted in Figure 
2.2, in which we observe that f(x) is a unimodal function. Using the property of the unimodal 
function that it continuously decreases or increases on either side of the minimum point, the 
single-variable search algorithms can be devised in such a way that they eliminate certain 
regions of the function where the minimum is not located. 
In the next section, a test problem in a solar energy system is defined. Both gradient-based 
and direct search methods are discussed and tested for this problem. Subsequently, these 
solution techniques will also be tested on some more standard optimization problems. The 
performances of these methods are compared toward the end of the chapter.  

 
 

FIGURE 2.1: Monotonic increasing and decreasing functions. 
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FIGURE 2.2: Unimodal function. 
 

3.2 Test Problem 

Before we discuss the optimization algorithms, let us set a problem on which we will be 
testing these algorithms. The solar energy problem is defined in Problem 8 of Chapter 1. In 
this cost minimization problem, the cost is a func- tion of the volume of the storage system 
and the surface area of the collector. The volume and surface area are functions of the design 
variable tempera- ture T. Let us rewrite the cost function in terms of T alone as: 

  
         

      
 

      

    
                                                                                                                                                                                                                                                                                 

 

The variable T is restricted between 40°C and 90°C. The function U is plot- ted as a function 
of T in Figure 2.4. The minimum occurs at T* = 55.08 and the minimum value of the 
function is U* = 1225.166. Observe from the figure that the cost function is unimodal. A 

MATLAB® code, exhaustive.m, is used to plot the cost function by varying the design 
variable T from 40 to 90 in steps of 0.01. One may ask why, if this method is able to locate 
the minimum and is also simple, there is a need to discuss other algorithms. It may be noted 
that the number of function evaluations by this particular method is (90 – 40)/0.01 = 5000. 
For more complex problems, the time required for the function evaluation is at a premium 
and it may not be practical to evaluate the function so many times. This necessitates 
exploring new algorithms that require fewer function evaluations to reach the minimum of 
any function. 
On executing this code, the output obtained is: 

Minimum cost = 1225.17  

Occurs at T = 55.08 

 
FIGURE 2.4: Cost function for the test problem. 
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3.3 Solution Techniques 

As mentioned previously, the solution techniques for one-dimensional optimization 
problems can be classified into gradient-based and non–gradient- based algorithms. As the 
name suggests, gradient-based algorithms require derivative information. These methods 
find applications to problems in which derivatives can be calculated easily. In the search 
processes of these algorithms, the derivative of the function is driven to zero. The algorithm 
is terminated when the derivative of the function is very close to zero and the corresponding 
x is declared as the point (x* = x) at which minimum of the function occurs. The following 
gradient-based methods are discussed in this section: 

• Bisection method 

• Newton–Raphson method 

• Secant method 

• Cubic polynomial fit 

For certain types of optimization problems, the variable x may not be real, but can take only 
certain discrete values. Recall the pipe size problem dis- cussed in Chapter 1, where pipe 
size comes in some standard sizes such as 1, 2 inches, and so forth. For such discontinuous 
functions, gradient information will not be available at all points, and the search algorithm 
has to proceed using the function evaluations alone to arrive at the minimum of the function. 
The golden section method is a very effective solution technique for such problems and is 
discussed later in this section. The golden sec- tion method can also be applied to 
continuous functions. Some other direct search methods such as dichotomous search, the 
interval halving method, and the Fibonacci method are also briefly discussed.

17
 

3.3.1 Bisection Method 

In Chapter 1, we discussed that at the maximum or minimum of a function, f′(x) = 0. 
Because in these problems we are considering a unimodal function of minimization type, the 
condition that the gradient vanishes at the mini- mum point still holds. The gradient function 
changes sign near the optimum point. If f′(x1) and f′(x2) are the derivatives of a function 
computed at points x1 and x2, then the minimum of the function is located between x1 and x2 
if: 

                                                             (  )  (  )                                                                 
(2.2) 

Based on this condition, certain regions of the search space can be elimi- nated. The 
algorithm is described in Table 2.1. 

 
TABLE 2.1: Algorithm for the Bisection Method 

 

In this algorithm a and b are the bounds of the function, and Δx is used in the central 
                                                           
17
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difference formula for computing the derivative and ε is a small number required for 
terminating the algorithm when |a − b| < ε. See Figure 2.5, which gives physical insight into 
this method. The algorithm is coded in MATLAB (bisection.m). The objective function is 
coded in MATLAB file ( func.m). Users can change the function in this file to minimize 
another objective function that may be of interest to them. In doing so, they also need to give 
appropriate bounds for the function, given by a and b in the main program (bisection.m). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 2.5: Bisection method. 
  

 
 

FIGURE 2.6 : Region elimination with iterations (bisection method). 

On executing the code for the test problem, the output obtained is: 
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The minimum obtained from this method matches very closely with the exhaustive search 
method. But the number of function evaluations in the bisection method is only 52 as 
compared to 5000 in the exhaustive search method. For this test problem, Figure 2.6 shows 
the regions that are eliminated in the first two iterations. 

3.3.2 Newton–Raphson Method 

Isaac Newton evaluated the root of an equation using a sequence of polynomials. The 
method in the present form was given by Joseph Raphson in 1960, with successive 
approximation to x given in an iteration form. The Newton–Raphson method is a root 
finding technique in which the root of the equation f′(x) = 0 is evaluated. Using the Taylor 
series, the function f′(x) can be approximated as: 

   (  )     (  )   (2.3) 

where the gradient is approximated at point xk. Setting Equation 2.3 to zero, the next 
approximation point can then be given as: 

        
  (  )

   (  )
                                                      (2.4) 

 

 

Figure 2.7 illustrates the steps of this method. The method shows quadratic convergence. 
That is, if x* is the root of the equation, then: 

‖       ‖

‖     ‖ 
                                               (2.5) 

 

The Newton–Raphson algorithm is described in Table 2.2. 

The algorithm is coded in MATLAB (newtonraphson.m). On executing the code, the output 
obtained is: 
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FIGURE 2.7: Newton–Raphson method. 

 

TABLE 2.2: Algorithm for the Newton–Raphson Method 

 

The minimum obtained by this method is in agreement with the earlier methods. The 
number of function evaluations in this method is 25 as com- pared to those in the bisection 
method, for which 52 function evaluations were required. The Newton–Raphson method has 
the following disadvantages: 

• The convergence is sensitive to the initial guess. For certain initial guesses, the method can 
also show divergent trends. For example (Dennis and Schnabel 1983), the solution to the 

function tan–1 x con- verges when the initial guess, |x| < a, diverges when |x| > a and cycle 
indefinitely if the initial guess is taken as |x| = a, where a = 1.3917452002707. 

• The convergence slows down when the gradient value is close to zero. 

• The second derivative of the function should exist. 
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3.3.3 Secant Method 

In the bisection method, the sign of the derivative was used to locate zero of f′(x). In the 
secant method, both the magnitude and the sign of the derivative are used to locate the zero 
of f′(x). The first step in the secant method is the same as in the bisection method, That is, if 
f′(x1) and f′(x2) are the derivatives of a function computed at point x1 and x2, then the 
minimum of the function is located between x1 and x2 if: 

    (  )  (  )                                                                      (2.6) 

Further, it is assumed that f′(x) varies linearly between points x1 and x2. A secant line is 
drawn between the two points x1 and x2. The point α where the secant line crosses the x-axis 
is taken as the improved point in the next itera- tion (see Figure 2.8). 
One of the points, x1 or x2, is then eliminated using the aforementioned derivative condition. 
Thus, either the (x1, α) or the (α, x2) region is retained: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2.8: Secant method. 
 

for the next iteration. The iteration continues until f′(α) is close to zero. The algorithm is 
coded in MATLAB (secant.m) and is described in Table 2.3. 
On executing the code for the test problem, the output obtained is: 
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The secant method is able to locate the minimum of the function, but with a higher number 
of function evaluations as compared to other gradient- based methods. 

TABLE 2.3: Algorithm for the Secant Method 

 
 

3.3.4 Cubic Polynomial Fit 

In this method, the function f(x) to be minimized is approximated by a cubic polynomial P(x) 
as: 

                    ( )                                                                                  (2.7) 

If the function f(x) is evaluated at four different points, then the polynomial coefficients a0, a1, 
a2, and a4 can be evaluated by solving four simultaneous linear equations. Alternatively, if 
the value of the function and its derivatives are available at two points, the polynomial 
coefficients can still be evaluated. Once a polynomial is approximated for the function, the 
minimum point can be evaluated using the polynomial coefficients. 
The first step in this search method is to bracket the minimum of the func- tion between two 
points, x1 and x2, such that the following conditions hold: 

        (  )  (  )                                 (2.8) 

Using the information of f(x1), f′(x1), f(x2), and f′(x2), the minimum point of the 
approximating cubic polynomial can be given as: 

                                                                                                                                                      
(2.9)                               

 

 

                                                                                                                                                      

  
  (  )    

  (  )   (  )   
                                          (2.10)  

  
 ( (  )  (  ))

     
   (  )    (  )                        (    )                                                                                                                                                                                         
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|     |
 √     (  )  (  )                            (2.12)                                                                                                                                                                                                                 

The algorithm for this method is coded in MATLAB (ubic.m) and is described in Table 2.4. 

On executing the code for the test problem, the output obtained is: 

 

This method is able to capture the minimum point of the function with the number of 
function evaluations comparable to that in the Newton–Raphson method. 

TABLE 2.4: Algorithm for Cubic Polynomial Fit 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

3.3.5 Golden Section Method 

Two numbers, p and q, are in a golden ratio if: 

 

 (2.13) 

                                   
   

 
 

 

 
   

 

Equation 2.13 can be written as: 

  
 

 
                                                             (2.14) 

 

or 

  
 

 
                                                            (2.15) 

 

On solving the quadratic equation: 
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                                                                               (2.16) 

we get: 

  
  √ 

 
                                                        (2.17) 

 
 

τ is called the golden number, which has a significance in aesthetics (e.g., the Egyptian 
pyramids). 
Gradient information was required in the search methods that were dis- cussed earlier. In the 
golden section method, the search is refined by elimi- nating certain regions based on 
function evaluations alone. No gradient computation is required in the golden section 
method. This method has two significant advantages over other region elimination 
techniques: 

• Only one new function evaluation is required at each step. 

• There is a constant reduction factor at each step. 

The algorithm is coded in MATLAB (golden.m) and is described in Table 2.5. 
 

TABLE 2.5: Algorithm for the Golden Section Method 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

On executing the code for the test problem, output obtained is: 
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3.3.6 Other Methods 

In addition to the golden section method, there are other direct search methods that can be 
used to solve the one-dimensional optimization problems, including 

• Dichotomous search 

• Interval halving method 

• Fibonacci method 

In the dichotomous search, a function is evaluated at two points, close to the center of the 
interval of uncertainty. Let these two points be xa and xb given by: 

 

    
 

 
 

 

 
                                                        (    ) 

   
 

 
 

 

 
                                                              (    ) 

where δ is a small number and L is the region of uncertainty. Depending on the computed 
value of the function at these points, a certain region is eliminated. In Figure 2.9, the region 
toward the right-hand side of xb is elimi- nated. In this method, the region of uncertainty after 
n function evaluations is given by: 

 

 

    
  (  

 

    
)                                      (    ) 

 

In the interval halving method, half of the region of uncertainty is deleted in every iteration. 
The search space is divided into four equal parts and func- tion evaluation is carried out at x1, 
x2, and x3. Again, a certain region gets eliminated based on the value of the functions 
computed at three points. In Figure 2.10, the region toward the right-hand side of x2 is 
eliminated. In this method, the region of uncertainty after n function evaluations is given by: 

(
 

 
)

   
 

                                                            (    ) 

 

FIGURE 2.9 : Dichotomous search. 
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FIGURE 2.10: Interval halving method. 

 

A Fibonacci sequence is given by: 

                                                                                                                         

                                                          (2.22) 

Where: 

                                                        (2.23) 

In the Fibonacci method, the functions are evaluated at points: 

                                                             (2.24) 

                                                            (2.25) 

where [a, b] define the region of uncertainty and L* is given by: 

        
    

  
                                                        (2.26) 

                                               

In this method n has to be defined before the start of the algorithm. 

3.4 Comparison of Solution Methods 

Having defined a number of solution methods to find the minimum of a function, it is natural 
to ask the question of which solution method to use for a given problem. The answer is quite 
straightforward: no single method can be used for all types of problems. Different methods 
may have to be tried for different problems.

18
 

Let us evaluate the efficiency of each of the methods for the test case problem that we discussed 
in an earlier section. One way of defining efficiency of an optimization method could be to 
show how x approaches x* with increasing iterations. Because the number of function 
evaluations in each iteration is dif- ferent for different methods, we can plot |x − x*| versus 
number of function evaluations for a meaningful comparison. Figure 2.11 shows this plot for 
differ- ent solution methods for the solar energy test problem. It is observed from this figure that 
the cubic polynomial fit and Newton–Raphson approach x* with 25 number of function 
evaluations. The bisection and secant methods take a much larger number of function 
evaluations to reach the minimum. The golden sec- tion method takes a minimum number of 
function evaluations. 
Let us further evaluate these methods for some well-known test problems (Philips et al. 
1976; Reklaitis et al. 1983). Table 2.6 summarizes the number of function evaluations 
required by each of the methods in reaching the minimum of the function. The golden 
section, cubic polynomial fit, and Newton–Raphson methods perform well for all the test 
problems except for the function: 

 (   )        
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which is highly skewed. The Newton–Raphson method requires a good ini- tial guess for 
convergence. It takes 275 function evaluations for convergence with an initial guess of x = 5. 
The method takes fewer function evaluations for convergence with x < 5. However, the 
method diverges for x > 10. The cubic polynomial fit did not converge for this particular 
function. The golden 

 

FIGURE 2.11: Comparing different solution methods. 
 

 

TABLE 2.6: Comparing Different Solution Techniques for Different Problems 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and bisection methods converged for all the test functions. The solution to these problems is 
obtained by modifying the func.m routine and executing the code for the corresponding 
method. 

  Chapter Highlights: 

• The one-dimensional (1-D) optimization problems refer to an objective function that has 
one variable. 1-D optimization algorithms form the basic building blocks for the 
multivariable algorithms. 

• If a function is either continuously increasing or decreasing between two points, then it is 
referred as a monotonic function. 

• In a unimodal function, the function is monotonic on either side of its minimum point. 

• The solution techniques for one-dimensional optimization problems can be classified into 
gradient-based and non–gradient-based algo- rithms. Some popular gradient-based 
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algorithms are bisection, cubic polynomial fit, secant, and Newton–Raphson methods. The 
golden sec- tion algorithm does not require derivative information of the function. 

• The Newton–Raphson method requires the second derivative of the function, and 
convergence of this method is strongly dependent on a good initial guess. 

• In the bisection method, the sign of the derivative is used to locate the zero of f′(x). In 
the secant method, both magnitude and sign of the derivative are used to locate the zero of 
f′(x). 
• In the golden section method, the search is refined by eliminating certain regions 
based on function evaluations only. No gradient computation is required in the golden 
section method. This method derives its name from the number 1.61803, referred to as the 
golden number, which has significance in aesthetics. 

    Formulae Chart: 

• Newton–Raphson method: 

       

  (  )

   (  )
 

• Secant method: 

       
  (  )

(  (  )    (  )) (     )⁄
 

   Problems: 

1. Maximizing Lift to Drag Ratio (L/D): For a lifting body, the lift to drag ratio (L/D) is 

given as a function of the angle of attack (α): 

                           , where α lies between 0 and 35 degrees. The task is to 
find the α at which L/D is maximized. Use the Golden Section, Cubic Polynomial Fit, 

Bisection, and Secant methods to optimize the ratio. 

2. Minimization of Various Functions: Apply the following methods to minimize the given 

functions: 

  a)  ( )      –       , for -3 ≤ x ≤ 3 

  b)  ( )                                      

  c)  ( )      
–                       

  d)  ( )       
  

 
               

3. Maximization of the Function:  ( )    (  – (    (      )))   (      )        
      . 

Find the maximum value of this function using optimization methods. 

4. Maximization of the Exponential Function:  ( )                        . 

Use optimization techniques to find the maximum value. 

5. Minimizing Logarithmic Function:  ( )    (   ( )    ( )    )             
 

 
. 

Minimize this function using the methods described. 

6. Beam Strength Problem: The strength of a beam varies as the product of its breadth and 

the square of its depth. Find the dimensions of the strongest beam that can be cut from a 

circular log of diameter 1 meter. 

7. Car Petrol Consumption Optimization: A car burns petrol at the rate of (300 + x³) liters 

per 100 km, where x is the speed in km/h. The task is to find the steady speed that minimizes 

the total cost of a 600 km trip. 
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8. Swimmer Optimization Problem: A swimmer in the sea is at a distance of 5 km from 

the closest point C on the shore on a straight line. The house of the swimmer is on the shore 

at a distance of 7 km from point C. He can swim at a speed of 2 km/h and run at a speed of 6 

km/h. At what spot on the shore should he land so that he reaches his house in the shortest 

possible time? 

9. Aircraft Thrust Optimization: Given various parameters for an aircraft flying at 5 km 

altitude, find the velocity at which the thrust requirement is minimized using the given 

equation for thrust: T = 1/2 * ρ * v². 

10. Plotting and Identifying Concave/Convex Regions: For the function  ( )          
        plot the function for -2 ≤ x ≤ 2, identify the concave and convex regions, and 

determine the local and global minima. 

11. Maximizing the Demand Function: The consumer demand function is given by f(x) = 

kx − p1 * x² / p2, with constants k = 90, p1 = 10, and p2 = 5. Maximize this function. 

12. Minimizing Function with Constraints:  ( )     (  )                        
    . Minimize this function using optimization techniques. 
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Chapter IV : Unconstrained Optimization 
 

 

 

 

 

 

 

4.1 Introduction 

The solution techniques for unconstrained optimization problems with mul- tiple variables 
are dealt in this chapter. In practice, optimization problems are constrained, and 
unconstrained optimization problems are few. One example of an unconstrained 
optimization problem is data fitting, where one fits a curve on the measured data. However, 
the algorithms presented in this chapter can be used to solve constrained optimization 
problems as well. This is done by suitably modifying the objective function, which includes 
a penalty term in case constraints are violated. 

The solution methods for unconstrained optimization problems can be broadly 
classified into gradient-based and non–gradient-based search methods. As the name 
suggests, gradient-based methods require gradi- ent information in determining the search 
direction. The gradient-based methods discussed in this chapter are steepest descent, 
Davidon–Fletcher– Powell (DFP), Broyden–Fletcher–Goldfarb–Shanno (BFGS), Newton, 
and Levenberg–Marquardt methods. The search direction computed by these methods uses 
the gradient information, Hessian information, or a combina- tion of these two. Some 
methods also make an approximation of the Hessian matrix. Once the search direction is 
identified, one needs to evaluate how much to move in that direction so as to minimize the 
function. This is a one-dimensional problem. We will be using the golden section method, 
as discussed in Chapter 3, for solving the one-dimensional problem. The non– gradient-
based method does not require derivatives or second derivative information in finding the 
search direction. The search direction is guided by the function evaluations as well as the 
search directions computed from earlier iterations. Powell‘s conjugate direction method, a 
non–gradient-based method, is elaborated in this chapter as it is much superior (shows 
quadratic convergence) to other non-gradient methods such as simplex and pattern search 
methods. The simplex method (Nelder–Mead algorithm) is also discussed in Section 3.4.9 
on the direct search method. In the last section, Powell‘s method is used to solve a 
complicated motion design problem of a robot.  

 

For a single-variable function, it was discussed earlier that the derivative of the function 
vanishes at the optimum and the second derivative of the function is greater than zero at the 
minimum of the function. The same can be extended to a multivariable function. The 
necessary conditions for x* to be a minimum are that: 

 f(x*) = 0         (3.1) 

and xT Hx is positive definite (xT Hx > 0). To ensure this, eigenvalues of H are to be 
positive. Consider a two-variable function 

 ( )    
    

                                                        (3.2) 
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FIGURE 3.2: Surface-contour plot of the function. 

 

The gradient is: 

     ( )  [
     

   
]                                            (3.3)  

 

Equating the gradient to zero, the optimum is at (1, 0). For this function xT Hx > 0. 
Hence, the point (1, 0) is the minimum of f(x). The surface-contour plot of this function is 
shown in Figure 3.2. 
For a two-variable function: 

 

 ( )    
    

                                                      (3.4) 

the optimum is at (0, 0) from the first-order condition. Checking the second- order condition, 

we find that xT Hx = 0. Therefore, the point (0, 0) represents saddle point (see Figure 3.3). 

4.2 Unidirectional Search 

The unidirectional search refers to minimizing the value of a multivariable function along a 
specified direction. For example, if xi is the initial starting point of the design variables for 
minimizing a multivariable function and Si: 

 

FIGURE 3.3: Surface-contour plot of the function with saddle point. 

is the search direction, then we need to determine a scalar quantity α such that the function: 
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f(α) = xi + αSi (3.5) 

is minimized. The value of α at which this function reaches a minimum is given by α*. This 
is a one-dimensional optimization problem and we can use the golden section technique to 
minimize this function. The golden section method is modified to handle multivariable 

functions and the MATLAB® code golden_funct1.m is given. 
 
Let us perform a unidirectional search on the Rosenbrock function

19
 given by: 

 ( )     (     
 )  (    )

                                               (3.6) 

 
with different starting values of x and with different search directions. The results are 
summarized in Table 3.1. It is observed from this table that: 

TABLE 3.1: Unidirectional Search for a Multivariable Function 

 
 

 
FIGURE 3.4: Rosenbrock function. 

performing a linear search in the direction (2, 1) from the starting point (3, 0.5) results 
in f(α*) = 88.45 as compared to initial function value of 7229. This can be easily shown on 
the MATLAB command prompt as: 

 

The function has to be appropriately coded in func_multivar.m. Note that this function has 
a minimum at (1, 1) and the minimum value of the function is zero. If we are at minimum 

                                                           
19

 Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes: The art of 
scientific computing (p. 476). Cambridge University Press. 
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point, then any search direction should not improve the function value. It is the reason why 
search in the direction (2, 2) from the point (1, 1) results in f(α*) = 0 with α* = 0. Similarly, 
search in the direction (1, 1) from the point (2, 2) results in f(α*) = 0 with α* = −1. This 
function is plotted in Figure 3.4 and is constructed by executing the MATLAB code 
(rosenbrock.m). 

4.3 Test Problem 

Let us define a spring system as a test problem on which we will apply multi- variable 
optimization algorithms such as the steepest descent, DFP, BFGS, Newton, and 
Levenberg–Marquardt methods. 

 
FIGURE 3.5: Spring system. 

Consider two springs of unit length and with stiffness k1 and k2, joined at the origin. The 
other two ends of the springs are fixed on a wall (see Figure 3.5). On applying a force, the 
spring system will deflect to an equilibrium position, which we are inter- ested in 
determining. The potential of the spring system is given by: 

    .√  
  (    )   /

 

   .√  
  (    )   /

 

 (   
      

  )     (3.7) 

 

Where: (   
    

)     is the force applied at the origin due to which it moves to a posi- tion (x1, 

x2). Assuming k1  = 100 N/m, k2 = 90 N/m, and (   
    

) = (20, 40), our aim is to evaluate 

(x1, x2) such that U  is minimized. 
 
A MATLAB code (springsystem.m) is used to find the minimum of the potential 

function by varying the design variables from –1 to 1 in steps of 0.01. On executing this 
code, the output obtained is: 

 

4.4 Solution Techniques 

Similar to 1-D optimization algorithms, solution techniques for multivariable, unconstrained 

optimization problems can be grouped into gradient and non–gradient-based methods.
20

 

Gradient-based methods require derivative information of the function in constituting a 

search. The first and second derivatives can be computed using the central difference 

formula as given below: 
  

   
 

 (      )  (      )

    
                                              (3.8) 

                                                           
20

 Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes: The art of 
scientific computing (p. 498). Cambridge University Press. 
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 (      )   (  )  (      )

   
                        (3.9) 

 
 

   

      
 [ (             )   (             )   (             )  

 (             )] (       )                           (3.10) 
 
 
 

The computation of first derivative requires two function evaluations with respect to each 
variable. So for an n variable problem, 2n function evaluations are required for computing 

the gradient vector. The computation of the Hessian matrix requires O(n2) function 
evaluations. Note that in the Hessian matrix: 

 
   

      
 

   

      
                                                        (3.11) 

 
Alternatively, one can also compute the derivative of a function using com- plex variables as: 

 

  ( )  
         , (     )   -

  
                                     (3.12) 

 
The gradient-based methods such as steepest descent, DFP, BFGS, Newton, and Levenberg–

Marquardt methods are discussed next followed by Powell‘s conjugate direction method, 
which is a direct search method. The efficiency of solution methods can be gauged by three 
criteria: 

• Number of function evaluations. 

• Computational time. 

• Rate of convergence. By this we mean how fast the sequence xi, xi+1,… converges to x*. The 
rate of convergence is given by the parameter n in the equation. 

‖       ‖

‖     ‖ 
                                                                                   (    ) 

 
• For n = 1 and 0 ≤ c ≤ 1 the method is said to have linear convergence. For n = 2, the method 

is said to have quadratic convergence. When the rate of convergence is higher, the 
optimization method is better. A method is said to have superlinear convergence if: 

 

      .
‖       ‖

‖     ‖ /                                                 (3.14) 

 
 

3.4.1 Steepest Descent Method 
The search direction Si that reduces the function value is a descent direction. It was discussed 
earlier that along the gradient direction, there is the maxi- mum change in the function value. 
Thus, along the negative gradient direc- tion, the function value decreases the most. The 
negative gradient direction is called the steepest descent direction. That is: 

        (  ) (3.15) 

 

In successive iterations, the design variables can be updated using the equation 
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               (  ) (3.16) 

where α is a positive scalar parameter that can be determined using the line search algorithm 
such as the golden section method. 

The steepest descent method ensures a reduction in the function value at every iteration. If 
the starting point is far away from the minimum, the gra- dient will be higher and the 
function reduction will be maximized in each iteration. Because the gradient value of the 
function changes and decreases to a small value near the optimum, the function reduction is 
uneven and the method becomes sluggish (slow convergence) near the minimum. The 
method can therefore be utilized as a starter for other gradient-based algo- rithms. The 
algorithm for the steepest descent method is described in Table 3.2 and a MATLAB code of 
its implementation is given in steep_des.m. 

On executing the code with a starting value of x as (–3, 2), following output is produced for 
the test problem. After the first iteration, the function value decreases from 1452.2619 to –
2.704. Notice from the output that as the gradi- ent value decreases, the reduction in 
function value at each iteration also decreases. The steepest descent algorithm converges to 
the minimum of the test problem in 15 iterations. 

TABLE 3.2: Algorithm for the Steepest Descent Method 

 

Observe the sluggishness of the algorithm as it approaches the minimum point. The 
convergence history is shown pictorially in Figure 3.6 along with the function contours of the 
test problem. The function contours can be plotted using the MATLAB code 
contour_testproblem.m. 

 
 

3.4.2 Newton’s Method 

The search direction in this method is based on the first and second deriva- tive information 
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and is given by 

      , -     (  )  (3.17) 

  

 

 

 

 

 

 

 

 
 

FIGURE 3.6: Function contours of the test problem and convergence history. 
 

where [H] is the Hessian matrix. If this matrix is positive definite, then Si will be a descent 
direction. The same can be assumed true near the vicinity of the optimum point. However, if 
the initial starting point is far away from the optimum, the search direction may not always 
be descent. Often a restart is required with a different starting point to avoid this difficulty. 
Though the Newton‘s method is known for converging in a single iteration for a qua- dratic 
function, seldom do we find functions in practical problems that are quadratic. However, 
Newton‘s method is often used as a hybrid method in conjunction with other methods. 
The algorithm for the Newton‘s method is described in Table 3.3 and a MATLAB code of 

its implementation is given in newton.m. A MATLAB code that computes Hessian matrix is 
given in hessian.m. 

TABLE 3.3: Algorithm for Newton‘s Method 

 

 

 

 

 

 
 

On executing the code with a starting value of x as (–3, 2), the following output is 
displayed in the command window for the test problem. Note that in some iteration, the 
search direction is not a descent as the function value increases instead of monotonically 
decreasing. The method, however, con- verges to the minimum point. 
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Let us restart the method with x as (1, 1). The output is given below. If the starting value is 
closer to the minimum, the function value reduces mono- tonically in all the iterations and 
eventually converges to the minimum. 

 

TABLE 3.4: Algorithm for Modified Newton‘s Method 

 

3.4.3 Modified Newton’s Method 

The method is similar to Newton‘s method with a modification that a unidi- rectional search 
is performed in the search direction Si of the Newton method. The algorithm for the modified 
Newton method is described in Table 3.4 and a MATLAB code of its implementation is 
given in modified_newton.m. 

On executing the code with a starting value of x as (–3, 2), the following output is 
displayed in the command window for the test problem. For the same starting point, the 
modified Newton‘s method converges to the mini- mum point in just six iterations as 
compared to Newton‘s method, which converges in ten iterations. 
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3.4.4 Levenberg–Marquardt Method 

The advantage of the steepest descent method is that it reaches closer to the minimum of the 
function in a few iterations even when the starting guess is far away from the optimum. 
However, the method shows sluggishness near the optimum point. On the contrary, 
Newton‘s method shows a faster convergence if the starting guess is close to the minimum 
point. Newton‘s method may not converge if the starting point is far away from the optimum 
point. 

The Levenberg–Marquardt method is a kind of hybrid method that com- bines the strength 
of both the steepest descent and Newton‘s methods. The search direction in this method is 
given by: 

      ,      -     (  ) (3.18) 

where I is an identity matrix and λ is a scalar that is set to a high value at the start of the algorithm. 
The value of λ is altered during every iteration depending on whether the function value is 
decreasing or not. If the function value decreases in the iteration, λ it decreases by a factor 
(less weightage on steepest descent direction). On the other hand, if the function value 
increases in the iteration, λ it increases by a factor (more weightage on steepest descent 
direction). The algorithm for the Levenberg–Marquardt method is described in Table 3.5 and a 
MATLAB code of its implementation is given in levenbergmarquardt.m. 

On executing the code with a starting value of x as (–3, 2), following output is displayed at 
the command window for the test problem. 

 

TABLE 3.5: Algorithm for the Levenberg–Marquardt Method 
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3.4.5 Fletcher–Reeves Conjugate Gradient Method 

The Levenberg–Marquardt method uses the strengths of both steepest descent and Newton‘s 
method for accelerating the convergence to reach the minimum of a function. The method is 
a second-order method, as it requires computation of the Hessian matrix. On the other hand, 
the conjugate gra- dient method is a first-order method, but shows the property of quadratic 
convergence and thus has a significant advantage over the second-order methods. Two 
directions, S1 and S2, are said to be conjugate if: 

  
                                                                     (3.19) 

 where H is a symmetric matrix. For example, orthogonal directions are con- jugate 

directions. In Figure 3.7, starting from point x1a, the search direction S1 results in the 

minimum point xa*. Similarly, starting from point x1b, the search direction S1 results in the 

minimum point x*b. The line joining xa* and x*b is the search direction S2. Then, S1 and S2 

are conjugate directions. 

The steepest descent method was modified by Fletcher and Reeves in the conjugate gradient 
method. Starting with the search direction 

        (  ) (3.20) 

 
the subsequent search direction is taken as a linear combination of S1 and − f(x2). That is, 

 

        (  )        (3.21) 

 

 
FIGURE 3.7: Conjugate directions. 

 

Using the property   
        of conjugate directions, α can be evaluated as: 

 

  
‖  (    )‖

 

‖  (  )‖
 

                                                                 (3.22) 

 
Starting with         (  ), the search direction in every iteration is calculated using 

the equation: 

                                              (  )  
‖  (    )‖

 

‖  (  )‖
 

                                                     (3.23) 

 
The algorithm for the conjugate gradient method is described in Table 3.6 and a MATLAB 

code of its implementation is given in conjugate.m. 
On executing the code with a starting value of x as (–3, 2), the following output is 

displayed at the command window in the test problem. The effi- ciency of conjugate 
gradient method can be seen from Figure 3.8, where it is compared with the first-order, 
steepest descent method. 
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TABLE 3.6: Algorithm for Fletcher–Reeves‘s Conjugate Gradient Method 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 3.8: Convergencelot of conjugate gradient/steepest descent method. 

 
The conjugate method does not show sluggishness in reaching the minimum point. 

 

3.4.6 DFP Method 

In the DFP method, the inverse of the Hessian is approximated by a matrix [A] and the 
search direction is given by: 

      , -  (  ) (3.24) 
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The information stored in the matrix [A] is called as the metric and because it changes with 
every iteration, the DFP method is known as the variable metric method. Because this 
method uses first-order derivatives and has the property of quadratic convergence, it is 
referred to as a quasi-Newton method. The inverse of the Hessian matrix can be 
approximated as: 

, -    , -  
     

     
 

, -      , - 

   , -   
                                    (3.25) 

   

Where: 

                                                     (3.26) 

                                                                     (3.27) 

 

The matrix [A] is initialized to the identity matrix. The algorithm for the DFP method is 

described in Table 3.7 and a MATLAB code of its implementation is given in dfp.m. 

On executing the code with a starting value of x as (–3, 2) the following output is displayed 

in the command window for the test problem. Observe that in the second and the third 

iterations, search points are similar in this method and the conjugate gradient method, 

indicating that search directions were similar. In further iterations, however, the search 

direction is different. Further, on typing inv(A) in the MATLAB command prompt and then 
 

TABLE 3.7 : Algorithm for the DFP Method 

 
 
printing the Hessian matrix at the converged value of x, it is observed that [A] approaches 
, -   . 
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3.4.7 BFGS Method 

In the BFGS method, the Hessian is approximated using the variable metric matrix [A] given 
by the equation: 

, -    , -  
    

     
 

  (  )  (  )
 

  (  )
   

                                      (3.28) 

 
It is important to note that whereas the matrix [A] converges to the inverse of the Hessian in 

the DFP method, the matrix [A] converges to the Hessian itself in the BFGS method. As the 
BFGS method needs fewer restarts as com- pared to the DFP method, it is more popular than 
the DFP method. The algo- rithm for the BFGS method is described in Table 3.8 and a 
MATLAB code of its implementation is given in BFGS.m. 

On executing the code with a starting value of x as (–3, 2) the following output is 
displayed in the command window for the test problem. Again, it is observed that in the 
second and third iterations, search points are similar to this method as compared to DFP and 
the conjugate gradient methods, indicating that search directions were similar. Further, on 
typing A in the 

TABLE 3.8: Algorithm for the BFGS Method
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MATLAB command prompt and then printing the Hessian matrix at the converged value 
of x, it is observed that [A] approaches [H]. 

 

 
3.4.8 Powell Method 

The Powell method is a direct search method (no gradient computation is required) with the 
property of quadratic convergence. Previous search directions are stored in this method and 
they form a basis for the new search direction. The method makes a series of unidirectional 
searches along these search directions. The last search direction replaces the first one in the 
new iteration and the process is continued until the function value shows no improvement. A 
MATLAB code (powell.m) is written in which this method is implemented and the algorithm 
is described in Table 3.9. 

On executing the code with a starting value of x as (–3, 2), following output is displayed at 
the command window for the test problem. 

 
 

TABLE 3.9: Algorithm for the Powell Method 
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3.4.9 Nelder–Mead Algorithm 

Simplex refers to a geometric figure formed by n + 1 points in an n dimension space. For 
example, in a two-dimensional space, the figure formed is a trian- gle. The Nelder–Mead 
algorithm is a direct search method and uses function information alone (no gradient 
computation is required) to move from one iteration to another. The objective function is 
computed at each vertex of the simplex. Using this information, the simplex is moved in the 
search space. Again, the objective function is computed at each vertex of the simplex. The 
process of moving the simplex is continued until the optimum value of the function is 
reached. Three basic operations are required to move the simplex in the search space: 
reflection, contraction, and expansion. 

In an optimization problem with two dimensions, the simplex will be a triangle, whose 
vertices are given by (say) x1, x2, and x3. Of these, let the worst value of the objective function 
be at x3 = xworst. If the point xworst is reflected on the opposite face of the triangle, the 
objective function value is expected to decrease. Let the new reflected point be designated as 
xr. The new simplex (see Figure 3.9) is given by the vertices x1, x2, and xr. The centroid 
point xc is computed using all the points but with the exclusion of xworst. That is, 

 

   
 

 
∑   

   
   

       

                                    (3.29) 

   

The reflected point is computed as: 

           (           ) (3.30) 

where α is a predefined constant. Typically, α = 1 is taken in the simulations. If the reflected 
value does not show improvement, the second worst value is taken and the process as 
discussed earlier is repeated.  

 
FIGURE 3.9: Reflection operation. 

  
Sometimes reflection can lead to cycling with no improvement in the objective function 
value. Under such conditions, a contraction operation is performed. 

If xr results in a new minimum point, then it is possible to further expand the new simplex 
(see Figure 3.10) in the hope of further reducing the objec- tive function value. The 
expanded point is computed as: 

 

           (   –        )                                            (3.31) 

 
where γ is a predefined constant. Typically, γ = 2 is taken in the simulations. If xe results in 
the new minimum point, it replaces the xworst point. Else, xr replaces the xworst point. 

The contraction operation is used when it is certain that the reflected point is better than the 
second worst point (xsecond worst). The contracted point is computed as 

                   (           )                             (3.32) 
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where ρ is a predefined constant. Typically, ρ = −0.5 is taken in the simulations. The preceding 
operations are continued until the standard deviation of the functions computed at the 
vertices of the simplex becomes less than ε. 
That is,  

∑
, (  )   (  )-

   

   
   

 

                            (3.33) 

 
The Nelder–Mead algorithm is described in Table 3.10 and a MATLAB code 

(neldermead.m) is written in which this method is implemented. 

 
FIGURE 3.10: Expansion operation. 

 
TABLE 3.10: Nelder–Mead Algorithm 

 

On executing the code with a random value of x, the following output is displayed at the 
command window for the test problem. 
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4.5 Additional Test Functions 

Different solution techniques were applied to the test problem on the spring system in the 
previous section. In this section, some additional test problems such as Rosenbrock‘s 
function, Wood‘s function, quadratic function, and so forth are taken, on which different 
solution methods will be tested. The performance of each method is compared in terms of the 
computational time. The MATLAB functions tic and toc can be used to estimate the 
computational time. 

3.5.1 Rosenbrock Function 

The two-variable function is given by: 

 ( )     (     
 )  (    )

                                        (3.34) 
 

The minimum of this ―banana valley‖ function is zero (see Figure 3.11 where the 
minimum is marked with *) and occurs at (1, 1). Different solution methods are applied from 
the same starting point (–1.5, 1.5) and their performances are summarized in Table 3.11. All 
methods are able to track the minimum of the function. The steepest descent method takes a 
maximum computational time as compared to all other methods. The computational time 
required by other methods is comparable. The convergence history of the steepest descent 
method is plotted in Figure 3.12 and marked with °. Because of the particular nature of the 
problem, the method dwells in the region with a low gradient value. The Nelder–Mead 
method is not compared here as it uses more than one starting point. 

 
FIGURE 3.11: Contours of Rosenbrock function. 
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TABLE 3.11: Performance Comparison of Different Solution Methods for Rosenbrock‘s Function 

 
 

3.5.2 Quadratic Function 

The two-variable function is given by: 

        ( )    (      )    (      )        (3.35) 

The minimum of this function is zero (see Figure 3.13, where the minimum is marked with 
*) and occurs at (1, 2). Different solution methods are applied from a starting point (2, –3) 
and their performances are summarized in Table 3.12. All methods are able to track the 
minimum of the function. The conjugate gradient method takes minimum computational 
time compared to other solution methods. 

 
FIGURE 3.12: Behavior of steepest descent method on Rosenbrock function. 

 

 
FIGURE 3.13: Contours of a quadratic function. 
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TABLE 3.12: Performance Comparison of Different Solution Methods for a Quadratic Function 

 

 
 

3.5.3 Nonlinear Function 

The two-variable function is given by 
 

  ( )     
           

                                               (3.36) 

The minimum of this function is –0.09375 (see Figure 3.14, where the mini- mum is marked 
with *) and occurs at (–3/16, –1/8). Different solution meth- ods are applied from a 
starting point (4, 3) and their performances are summarized in Table 3.13. All methods 
are able to track the minimum of the function. The conjugate gradient method takes 
minimum computational time compared to other solution methods. 
 

 
FIGURE 3.14: Contours of a nonlinear function. 

TABLE 3.13: Performance Comparison of Different Solution Methods for a Nonlinear Function 
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3.5.4 Wood’s Function 

The two-variable function is given by: 
 

 ( )  
 

  
.     

  
    

 

  
  

      
    

 

(    ) 
/                                           (3.37) 

 
The minimum of this function is 1.744 (see Figure 3.15, where the minimum is marked with 
*) and occurs at (1.743, 2.03). Different solution methods are applied from a starting point 
(0.5, 0.5) and their performances are summa- rized in Table 3.14. All methods are able to 
track the minimum of the func- tion. The conjugate gradient method takes minimum 
computational time compared to other solution methods. 

 
FIGURE 3.15: Contours of Wood‘s function. 

 
TABLE 3.14: Performance Comparison of Different Solution Methods for Wood‘s Function 

 

 

 

 

 

 

 

 Chapter Highlights: 

• The unidirectional search refers to minimizing the value of a multi- variable function 
along a specified direction. 

• Solution techniques for multivariable, unconstrained optimization problems can be 
grouped into gradient- and non–gradient-based methods. 

• The negative gradient direction is addressed as the steepest descent direction. 

• The steepest descent method ensures a reduction in the function value at every iteration. 
If the starting point is far away from the minimum, the gradient will be higher and function 
reduction will be maximum in each iteration. Because the gradient value of the function 
decreases near the optimum, the method becomes sluggish (slow convergence) near the 
minimum. 
• Newton‘s method requires computation of the Hessian matrix, which is computationally 
expensive. Newton‘s method is known for converging in one iteration for a quadratic 
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function. The method requires a restart if the starting point is far away from optimum. 

• In the modified Newton method, a line search is performed in the search direction 
computed by the Newton method. 

• The Levenberg–Marquardt method is a sort of hybrid method that combines the strength 
of both the steepest descent and Newton methods. 

• The conjugate gradient method is a first-order method, but shows the property of 
quadratic convergence and thus has a significant advantage over the second-order methods. 

• DFP and BFGS methods are called the variable metric methods. 

• It is important to note that whereas the matrix [A] converges to the inverse of the Hessian 
in the DFP method, it converges to the Hessian itself in the BFGS method. 

• The Powell method is a direct search method (no gradient computa- tion is required) with 
the property of quadratic convergence. 

• In the Nelder–Mead algorithm, the simplex is moved using reflec- tion, expansion, and 
contraction. 
 

 Formulae Chart: 

• Necessary conditions for minimum of a function: 

  (  )      

               (  )      

• Unidirectional search: 

          ( )             

• Search direction in steepest descent method: 

                            (  ) 

• Search direction in the Newton method: 

             , -     (  ) 

Search direction in the Levenberg–Marquardt method: 

              ,      -     (  ) 

• Search direction in the conjugate gradient method: 

                                                                    (  )  
‖  (    )‖

 

‖  (  )‖
    

• Search direction in the DFP method: 

    , -  (  ) 

, -    , -  
     

     
 

, -     
 , - 

   , -   
 

• Search direction in the BFGS method: 

      , -     (  ) 

, -    , -  
    

     
 

  (  )  (  )
 

  (  )
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 Problems: 

1. Find the steepest descent direction for the function: 

 ( )            

at the point (1,2). 

2. Minimize the function: 

 

 ( )                              
 

From a starting value of (2,2) using the BFGS, DFP, and steepest descent methods. 

3. Minimize the function: 

 

 ( )  (  
       )  (  

      )  
 

From a starting value of (2,3) using the following methods: 

• Steepest descent 

• Newton's method 

• Modified Newton‘s method 

• Levenberg–Marquardt 

• DFP 

• BFGS 

• Powell 

• Nelder–Mead 

 

4. Show that in the DFP method, the variable metric [A] approaches the inverse of the 

Hessian matrix for the following function: 

 

 ( )    
           

  
 

5. Show that in the BFGS method, the variable metric [A] approaches the Hessian matrix 

for the following function: 

 ( )    
           

  
Take the starting value as (1,1). 

6. Minimize the function using the DFP method with a starting value of (1,1):  

 ( )   (  
    

 )             ( (     )) 

7. Minimize the function: 

 ( )     (      )     4√  
    

   5

 

   
  

where: 

         (
  

  
)             

and 

           (
  

  
)              

Take the starting value as (−1,0,0). 

8. Instead of using the central difference formula for computing the derivative of a 

function, use the complex variable formula: 
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  ( )  
          , (     )-

  
 

The MATLAB code grad_vec.m can be modified as: 

 

Now use the steepest descent method to optimize the test function given in the main text. 

9. Compare the accuracy of the derivative computation using the central difference 

formula and the complex variable formula against the analytical value of the derivative of 

the test function: 

 ( )     ( )    ( ) 
at x=0.1 

10. Use the line search algorithm to minimize the function: 

 ( )  (  
       )  (  

      )  
Starting from different initial points and different search directions: 

• Starting point (1,1) and search direction (2,4). 

• Starting point (0,0) and search direction (1,2). 

• Starting point (3,2) and search direction (1,1). 

11. Minimize the function: 

 ( )    
     

  

From the starting point (1,2) using the steepest descent method. Observe the sluggishness of 

this method. Again, solve the function by the conjugate gradient method and compare the 

performance with the steepest descent method. 

12. A manufacturing firm wants to divide its resources suitably between capital x1 and 

labor x2 so as to maximize the profit function given by: 

 ( )   (  (    )    (    ))          

where p is the unit price of the product, w is the wage rate of labor, and v is the unit cost of 

capital. 

• By computing the gradient vector of the above function with respect to x1 and x2, and then 

equating it to zero, compute the design variables x1 and x2 as a function of p, v, and w. 
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• Using the second-order condition, check whether the solution corresponds to a maximum of 

the function. 

• Compute numerical values of x1 and x2 by assuming suitable values of p, v, and w (where p 

>w, v). 

• Starting with an initial guess of (0,0) and using the values of p, v, and w as assumed, find the 

maximum of the function using the steepest descent method. Compare the values of x1 and 

x2 with those obtained from the previous step. 

13. Minimize the potential energy function for a two-bar unsymmetrical shallow truss 

((Figure 3.17) using DFP and BFGS methods.  

 
FIGURE 3.17: Two-bar truss. 

The energy function is given as: 

 ( )  
 

 
  (      

 

 
  
    )

 

 
 

 
(      

 

 
  
  

  

 
)         

where m, γ, α, and ρ are nondimensional quantities. 

• Take m=5, γ=4, α=0.02, and ρ=0.00002. 

• Starting with an initial guess of (0,0), minimize the function using DFP and BFGS methods.
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Chapter V : Constrained Optimization 
 

 

 

 

 

 

 

5.1 Introduction 

Most problems in structural optimization must be formulated as constrained minimization 

problems. In a typical structural design problem the objective function is a fairly simple 

function of the design variables (e.g., weight), but the design has to satisfy a host of stress, 

displacement, buckling, and frequency constraints. These constraints are usually complex 

functions of the design variables available only from an analysis of a finite element model of 

the structure. This chapter offers a review of methods that are commonly used to solve such 

constrained problems. 

The methods described in this chapter are for use when the computational cost of evaluating 

the objective function and constraints is small or moderate. In these methods the objective 

function or constraints these are calculated exactly (e.g., by a finite element program) 

whenever they are required by the optimization algorithm. This approach can require 

hundreds of evaluations of objective function and constraints, and is not practical for 

problems where a single evaluation is computationally expensive. For these more expensive 

problems we go through an intermediate stage of constructing approximations for the 

objective function and constraints, or at least for the more expensive functions. The 

optimization is then performed on the approximate problem. This approximation process is 

described in the next chapter. 

The basic problem that we consider in this chapter is the minimization of a function subject 

to equality and inequality constraints 

 

                            ( ) 

             ( )       ( )                                                                     (   ) 

 

The constraints divide the design space into two domains, the feasible domain where the 

constraints are satisfied, and the infeasible domain where at least one of the constraints is 

violated. In most practical problems the minimum is found on the boundary between the 

feasible and infeasible domains, that is at a point where gj(x) = 0 for at least one j. 

Otherwise, the inequality constraints may be removed without altering the solution. In most 

structural optimization problems the inequality constraints prescribe limits on sizes, stresses, 

displacements, etc. These limits have great impact on the design, so that typically several of 

the inequality constraints are active at the minimum. 

While the methods described in this section are powerful, they can often perform poorly 

when design variables and constraints are scaled improperly. To prevent ill-conditioning, all 
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the design variables should have similar magnitudes, and all constraints should have similar 

values when they are at similar levels of criticality. A common practice is to normalize 

constraints such that g(x) = 0.1 correspond to a ten percent margin in a response quantity. 

For example, if the constraint is an upper limit σa on a stress measure σ, then the constraint 

may be written as 

     
 

  
    (5.2) 

Some of the numerical techniques offered in this chapter for the solution of constrained 

nonlinear optimization problems are not able to handle equality constraints, but are limited 

to inequality constraints. In such instances it is possible to replace the equality constraint of 

the form hi(x) = 0 with two inequality constraints hi(x) ≤ 0 and hi(x) ≥ 0. However, it is 

usually undesirable to increase the number of constraints. For problems with large numbers 

of inequality constraints, it is possible to construct an equivalent constraint to replace them. 

One of the ways to replace a family of inequality constraints (gi(x) ≥ 0,i = 1...m) by an 

equivalent constraint is to use the Kreisselmeier-Steinhauser function [1] (KS-function) 

defined as 

   ,  ( )-   
 

 
  ,∑      ( )

 -                                     (5.3) 

where ρ is a parameter which determines the closeness of the KS-function to the smallest 

inequality    ,  ( )-. For any positive value of the ρ, the KS-function is always more 

negative than the most negative constraint, forming a lower bound envelope to the 

inequalities. As the value of ρ is increased the KS-functions conforms with the minimum 

value of the functions more closely. The value of the KS-function is always bounded by 

       ,  ( )-       
  ( )

 
                                (5.4) 

For an equality constraint represented by a pair of inequalities, hi(x) ≤ 0 and − hi(x) ≤ 0, the 

solution is at a point where both inequalities are active, hi(x) = −hi(x) = 0, Figure 5.1 . 

Sobieski [2] shows that for a KS-function defined by such a positive and negative pair of hi, 

the gradient of the KS-function at the solution point hi(x) = 0 vanishes regardless of the ρ 

value, and its value approaches to zero as the value of ρ tends to infinity, Figure 5.1 . Indeed, 

from Eq. (5.4) at x where hi = 0, the KS-function has the property: 

    (    )   
  ( )

 
                                              (5.5) 

 

Figure 5.1 Kreisselmeier-Steinhauser function for replacing h(x) = 0. 

Consequently, an optimization problem 



 

Chapter V : Constrained Optimization 

80 
 

              ( )                                                                                          

               ( )                                                      (5.6) 

may be reformulated as: 

             ( )                                                         

              (                   
     

)                (5.7) 

where    is a small tolerance. 

5.2 The Kuhn-Tucker conditions 

5.2.1 General Case 

In general, problem (5.1) may have several local minima. Only under special circumstances 

are sure of the existence of single global minimum. The necessary conditions for a minimum 

of the constrained problem are obtained by using the Lagrange multiplier method. We start 

by considering the special case of equality constraints only. Using the Lagrange multiplier 

technique, we define the Lagrangian function: 

 (   )   ( )  ∑     ( )                                              
  
   (5.1.1) 

jwhere λj are unknown Lagrange multipliers. The necessary conditions for a stationary point 

are: 

  

   
 

  

   
 ∑   

   

   
                                           

  
   (5.1.2) 

  

   
   ( )                                                                  (5.1.3) 

These conditions, however, apply only at a regular point, that is at a point where the 

gradients of the constraints are linearly independent. If we have constraint gradients that are 

linearly dependent, it means that we can remove some constraints without affecting the 

solution. At a regular point, Eqs. (5.1.2) and (5.1.3) represent n + ne equations for the ne 

Lagrange multipliers and the n coordinates of the stationary point. 

The situation is somewhat more complicated when inequality constraints are present. To be 

able to apply the Lagrange multiplier method we first transform the inequality constraints to 

equality constraints by adding slack variables. That is, the inequality constraints are written 

as: 

  ( )–   
                                                              (5.1.4) 

where tj is a slack variable which measures how far the jth constraint is from being critical. 

We can now form a Lagrangian function 

 (     )    ∑   (     
 )                                      

  

   
(5.1.5) 

Differentiating the Lagrangian function with respect to x, λ and t we obtain: 

  

   
 

  

   
 ∑   

   

   
                                           

  

   
 (5.1.6) 

  

   
       

                                                           (5.1.7) 

  

   
                                                                        (5.1.8) 
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Equations (5.1.7) and (5.1.8) imply that when an inequality constraint is not critical (so that 

the corresponding slack variable is non-zero) then the Lagrange multiplier associated with 

the constraint is zero. Equations (5.1.6) to (5.1.8) are the necessary conditions for a 

stationary regular point. Note that for inequality constraints a regular point is one where the 

gradients of the active constraints are linearly independent. These conditions are modified 

slightly to yield the necessary conditions for a minimum and are known as the Kuhn-Tucker 

conditions. The Kuhn-Tucker conditions may be summarized as follows: 

A point x is a local minimum of an inequality constrained problem only if a set of 

nonnegative λj‘s may be found such that: 

1. Equation (5.1.6) is satisfied 

2. The corresponding λj is zero if a constraint is not active. 

 

Figure 5.1.1 A geometrical interpretation of Kuhn-Tucker condition for the case of two 

constraints. 

A geometrical interpretation of the Kuhn-Tucker conditions is illustrated in Fig. (5.1.1) for 

the case of two constraints.  g1 and  g2 denote the gradients of the two constraints which are 

orthogonal to the respective constraint surfaces. The vector s shows a typical feasible 

direction which does not lead immediately to any constraint violation. For the two-constraint 

case Eq. (5.1.6) may be written as 

       (             )                                          (5.1.9) 

Assume that we want to determine whether point A is a minimum or not. To improve the 

design we need to proceed from point A in a direction s that is usable and feasible. For the 

direction to be usable, a small move along this direction should decrease the objective 

function. To be feasible, s should form an obtuse angle with − g1 and − g2. To be a 

direction of decreasing f it must form an acute angle with − f. Clearly from Figure (5.1.1), 

any vector which forms an acute angle with − f will also form and acute angle with either 

− g1 or − g2. Thus the Kuhn-Tucker conditions mean that no feasible design with reduced 

objective function is to be found in the neighborhood of A. Mathematically, the condition 

that a direction s be feasible is written as 

             ∈                                                      (5.1.10) 

where IA is the set of active constraints Equality in Eq. (5.1.10) is permitted only for linear or 

concave constraints (see Section 5.1.2 for definition of concavity). The condition for a 

usable direction (one that decreases the objective function) is 
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                                                                        (      )  

Multiplying Eq. (5.1.6) by si and summing over i we obtain: 

     ∑   
    

  

   

                                                (      ) 

In view of Eqs. (5.1.10) and (5.1.11), Eq. (5.1.12) is impossible if the λj‘s are positive. 

If the Kuhn-Tucker conditions are satisfied at a point it is impossible to find a direction with 

a negative slope for the objective function that does not violate the constraints. In some 

cases, though, it is possible to move in a direction which is tangent to the active constraints 

and perpendicular to the gradient (that is, has zero slope), that is 

                   ∈                                         (5.1.13) 

The effect of such a move on the objective function and constraints can be determined only 

from higher derivatives. In some cases a move in this direction could reduce the objective 

function without violating the constraints even though the Kuhn-Tucker conditions are met. 

Therefore, the Kuhn-Tucker conditions are necessary but not sufficient for optimality. 

The Kuhn-Tucker conditions are sufficient when the number of active constraints is equal to 

the number of design variables. In this case Eq. (5.1.13) cannot be satisfied with s  ≠  0 

because  gj includes n linearly independent directions (in n dimensional space a vector 

cannot be orthogonal to n linearly independent vectors). 

When the number of active constraints is not equal to the number of design variables 

sufficient conditions for optimality require the second derivatives of the objective function 

and constraints. A sufficient condition for optimality is that the Hessian matrix of the 

Lagrangian function is positive definite in the subspace tangent to the active constraints. If 

we take, for example, the case of equality constraints, the Hessian matrix of the Lagrangian 

is: 

        ∑    
   

  
                                           (5.1.14) 

The sufficient condition for optimality is that: 

    (   )          for all s for which                                           (5.1.15) 

When inequality constraints are present, the vector s also needs to be orthogonal to the 

gradients of the active constraints with positive Lagrange multipliers. For active constraints 

with zero Lagrange multipliers, s must satisfy: 

           , when                      (5.1.16) 

Example 5.1.1 

Find the minimum of:  

     
     

            
  

                   subject to:                             ,  

                                                           

                                                                

The Kuhn-Tucker conditions are 
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We have to check for all possibilities of active constraints. 

The simplest case is when no constraints are active, λ1 = λ2 = λ3 = 0. We get x1 = 1.826, x2 = 

0, f = 6.17. The Hessian matrix of the Lagrangian, 

     [
      

         
] 

is clearly negative definite, so that this point is a maximum. We next assume that the first 

constraint is active, x1x2 = 10, so that x1  ≠  0 and g2 is inactive and therefore λ2 = 0. We have 

two possibilities for the third constraint. If it is active we get x1 = 1, x2 = 10, λ1 = −0.7, and λ3 

= 639.3, so that this point is neither a minimum nor a maximum. If the third constraint is not 

active λ3 = 0 and we obtain the following three equations 

    
               

        
            

            

The only solution for these equations that satisfies the constraints on x1 and x2 is 

                                              

This point satisfies the Kuhn-Tucker conditions for a minimum. However, the Hessian of the 

Lagrangian at that point 

    0
           
           

1 

is negative definite, so that it cannot satisfy the sufficiency condition. In 

fact, an examination of the function f at neighboring points along x1x2 = 10 

reveals that the point is not a minimum. 

Next we consider the possibility that g1 is not active, so that λ1 = 0, and 

    
             

        
           

We have already considered the possibility of both λ‘s being zero, so we need to consider 

only three possibilities of one of these Lagrange multipliers being nonzero, or both being 

nonzero. The first case is λ2  ≠  0, λ3 = 0, then g2 = 0 and we get x1 = 0, x2 = 0, λ2 = 10, and f = 

−6, or x1 = 0, x2 = −2/3, λ2 = 10, and f = −6.99. Both points satisfy the Kuhn-Tucker 

conditions for a minimum, but not the sufficiency condition. In fact, the vectors tangent to 

the active constraints (x1 = 0 is the only one) have the form s
T 

= (0,a), and it is easy to check 

that s
T  2

Ls < 0. It is also easy to check that these points are indeed no minima by reducing 

x2 slightly. 

The next case is λ2 = 0, λ3 ≠ 0, so that g3 = 0. We get x1 = 1.826, x2 = 10, λ3 = 640 and f = 

−2194. this point satisfies the Kuhn-Tucker conditions, but it is not a minimum either. It is 

easy to check that  2
L is negative definite in this case so that the sufficiency condition could 

not be satisfied. Finally, we consider the case x1 = 0, x2 = 10, λ2 = 10, λ3 = 640, f = −2206. 

Now the Kuhn-Tucker conditions are satisfied, and the number of active constraints is equal 

to the number of design variables, so that this point is a minimum. 

5.2.2 Convex Problems 
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There is a class of problems, namely convex problems, for which the Kuhn-Tucker 

conditions are not only necessary but also sufficient for a global minimum. To define 

convex problems we need the notions of convexity for a set of points and for a function. A 

set of points S is convex whenever the entire line segment connecting two points that are in 

S is also in S. That is 

 if         ∈       then       (   )   ∈                  (5.1.17) 

A function is convex if 

  ,    (   )  -      (  )  (   ) (  )              (5.1.18) 

This is shown pictorially for a function of a single variable in Figure (5.1.2). The straight 

segment connecting any two points on the curve must lie above the curve. Alternatively we 

note that the second derivative of f is non-negative f’’(x) ≥ 0. It can be shown that a function 

of n variables is convex if its matrix of second derivatives is positive semi-definite. 

A convex optimization problem has a convex objective function and a convex feasible 

domain. It can be shown that the feasible domain is convex if all the inequality constraints gj 

are concave (that is, −gj are convex) and the equality constraints are linear. A convex 

optimization problem has only one minimum, and the Kuhn-Tucker conditions are sufficient 

to establish it. Most optimization problems encountered in practice cannot be shown to be 

convex. However, the theory of convex programming is still very important in structural 

optimization, as we often approximate optimization problems by a series of convex 

approximations (see Chapter 9). The simplest such approximation is a linear approximation 

for the objective function and constraints– this produces a linear programming problem. 

Figure 5.1.2 Convex function. 

Example 5.1.2 

 

 

 

 

 

 

Figure 5.1.3 Four bar statically determinate truss. 

Consider the minimum weight design of the four bar truss shown in Figure (5.1.3). For the 

sake of simplicity we assume that members 1 through 3 have the same area A1 and member 4 

has an area A2. The constraints are limits on the stresses in the members and on the vertical 
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displacement at the right end of the truss. Under the specified loading the member forces 

and the vertical displacement δ at the end are found to be: 

                                   √    

  
   

 
4
 

  
 

√ 

  
5 

We assume the allowable stresses in tension and compression to be 8.74×10
−4

E and 4.83 × 

10
−4

E, respectively, and limit the vertical displacement to be no greater than 3×10
−3

l. The 

minimum weight design subject to stress and displacement constraints can be formulated in 

terms of nondimensional design variables: 

       
   

 
             

   

 
 

as 

                        √    

                                     
  

  
 

 √ 

  
   

                                                  
                                                                                       

The Kuhn-Tucker conditions are: 

                                       
  

   
 ∑   

   

   
                  

    

or 

                  
  

  
         

√  
 √ 

  
          

Consider first the possibility that λ1 = 0. Then clearly λ2 = 3, λ3 = 3 so that g2 = 0 and g3 = 0, 

and then x1 = 5.73, x2 = 7.17, g1 = −1.59, so that this solution is not feasible. We conclude 

that λ1  ≠  0, and the first constraint must be active at the minimum. Consider now the 

possibility that λ2 = λ3 = 0. We have the two Kuhn-Tucker equations and the equation g1 = 0 

for the unknowns λ1, x1, x2. The solution is: 

                                                  

The Kuhn-Tucker conditions for a minimum are satisfied. If the problem is convex the 

Kuhn-Tucker conditions are sufficient to guarantee that this point is the global minimum. 

The objective function and the constraint functions g2 and g3 are linear, so that we need to 

check only g1. For convexity g1 has to be concave or −g1 convex; this holds if the second 

derivative matrix −A1 of −g1 is positive semi-definite 

     6
     

  

   √    
 
7 

Clearly, for x1 > 0 and x2 > 0, −A1 is positive definite so that the minimum that we found is a 

global minimum. 

5.3 Quadratic Programming Problems: 

One of the simplest form of nonlinear constrained optimization problems is in the form of 

Quadratic Programming (QP) problem. A general QP problem has a quadratic objective  
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function with linear equality and inequality constraints. For the sake of simplicity we 

consider only an inequality problem with ng constraints stated as: 

minimize   ( )      
 

 
     

                       such that           (5.2.1) 

                                                          

The linear constraints form a convex feasible domain. If the objective function is also 

convex, then we have a convex optimization problem in which, as discussed in the previous 

section, the Kuhn-Tucker conditions become sufficient for the optimality of the problem. 

Hence, having a positive semi-definite or positive definite Q matrix assures a global 

minimum for the solution of the problem, if one exists. For many optimization problems the 

quadratic form x
T 

Qx is either positive definite or positive semi-definite. Therefore, one of 

the methods for solving QP problems relies on solving the Kuhn-Tucker conditions. 

We start by writing the Lagrange function for the Problem (5.2.1) 

 (         )      
 

 
       (   {  

 }   )    (  *  
 +)        (5.2.2) 

where λ and µ are the vectors of Lagrange multipliers for the inequality constraints and the 

nonnegativity constraints, respectively, and {  
 } and {  

 
 } are the vectors of positive slack 

variables for the same. The necessary conditions for a stationary point are obtained by 

differentiating the Lagrangian with respect to the x,λ,µ,t, and s, 

  

  

  
                                           (5.2.3) 

  

  
    {  

 }                                           (5.2.4) 

  

  
   *  

 +                                                   (5.2.5) 

  

   
                                               (5.2.6) 

  

   
                                                (5.2.7) 

where ng is the number of inequality constraints, and n is the number of design variables. We 

define a new vector {qj} = {t
2

j}, j = 1,...,ng (q ≥ 0). After multiplying Eqs. (5.2.6) and (5.2.7) 

by {tj} and {si}, respectively, and eliminating {si} from the last equation by using Eq. 

(5.2.5), we can rewrite the Kuhn-Tucker conditions 

                   (5.2.8) 

            (5.2.9) 

                        (5.2.10) 

                      (5.2.11) 
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                      . (5.2.12) 

Equations (5.2.8) and (5.2.9) form a set of n+ng linear equations for the solution of 

unknowns xi,λj,µi, and qj which also need to satisfy Eqs. (5.2.10) and (5.2.11). Despite the 

nonlinearity of the Eqs. (5.2.10) and (5.2.11), this problem can be solved as proposed by 

Wolfe [3] by using the procedure described in 3.6.3 for generating a basic feasible solution 

through the use of artificial variables. Introducing a set of artificial variables, yi, minimized, i 

= 1,...,n, we define an artificial cost function to be 

              ∑   
 
                                                                                     (5.2.13) 

                                                                                (5.2.14) 

                                                                                (5.2.15)  

                                                          (5.2.16) 

Equations (5.2.13) through (5.2.16) can be solved by using the standard simplex method 

with the additional requirement that (5.2.10) and (5.2.11) be satisfied. These requirements 

can be implemented during the simplex algorithm by simply enforcing that the variables λj 

and qj (and µi and xi) not be included in the basic solution simultaneously. That is, we restrict 

a non-basic variable µi from entering the basis if the corresponding xi is already among the 

basic variables. 

Other methods for solving the quadratic programming problem are also available, and the 

reader is referred to Gill et al. ([4], pp. 177–180) for additional details. 

5.4 Computing the Lagrange Multipliers: 

As may be seen from example 5.1.1, trying to find the minimum directly from the Kuhn-

Tucker conditions may be difficult because we need to consider many combinations of 

active and inactive constraints, and this would in general involve the solution of highly 

nonlinear equations. The Kuhn-Tucker conditions are, however, often used to check whether 

a candidate minimum point satisfies the necessary conditions. In such a case we need to 

calculate the Lagrange multipliers (also called the Kuhn-Tucker multipliers) at a given point 

x. As we will see in the next section, we may also want to calculate the Lagrange multipliers 

for the purpose of estimating the sensitivity of the optimum solution to small changes in the 

problem definition. To calculate the Lagrange multipliers we start by writing Eq. (5.1.6) in 

matrix notation as: 

              (5.3.1) 

where the matrix N is defined by : 

    
   

   
                                                          (5.3.2) 

 

We consider only the active constraints and associated lagrange multipliers, and assume that 

there are r of them. 

Typically, the number, r, of active constraints is less than n, so that with n equations in terms 

of r unknowns, Eq. (5.3.1) is an overdetermined system. We assume that the gradients of the 

constraints are linearly independent so that N has rank r. If the Kuhn-Tucker conditions are 

satisfied the equations are consistent and we have an exact solution. We could therefore use 

a subset of r equations to solve for the Lagrange multipliers. However, this approach may be 
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susceptible to amplification of errors. Instead we can use a least-squares approach to solve 

the equations. We define a residual vector u: 

              (5.3.3) 

A least squares solution of Eq. (5.3.1) will minimize the square of the Euclidean norm of the 

residual with respect to λ: 

‖ ‖  (     ) (     )                                  (5.3.4) 

To minimize kuk
2 

we differentiate it with respect to each one of the Lagrange multipliers 

and get: 

                      (5.3.5) 

Or: 

     (   )          (5.3.6) 

This is the best solution in the least square sense. However, if the Kuhn-Tucker conditions 

are satisfied it should be the exact solution of Eq. (5.3.1). Substituting from Eq. (5.3.6) into 

Eq. (5.3.1) we obtain: 

          (5.3.7) 

Where: 

          (   )       (5.3.8) 

P is called the projection matrix. It will be shown in Section 5.5 that it projects a vector into 

the subspace tangent to the active constraints. Equation (5.3.7) implies that for the Kuhn-

Tucker conditions to be satisfied the gradient of the objective function has to be orthogonal 

to that subspace. 

In practice Eq. (5.3.6) is no longer popular for the calculation of the Lagrange multipliers. 

One reason is that the method is ill-conditioned and another is that it is not efficient. An 

efficient and better conditioned method for least squares calculations is based on the QR 

factorization of the matrix N. The QR factorization of the matrix N consists of an r ×r upper 

triangular matrix R and an n×n orthogonal matrix Q such that: 

   (
   
   

)  .
 
 
/                                                        (5.3.9) 

 

Here Q1 is a matrix consisting of the first r rows of Q, Q2 includes the last n − r rows of Q, 

and the zero represents an (n − r) × r zero matrix (for details of the QR factorization see 

most texts on numerical analysis, e.g., Dahlquist and Bjorck [5]). Because Q is an 

orthogonal matrix, the Euclidean norm of Qu is the same as that of u, or: 

‖ ‖  ‖  ‖  ‖       ‖  ‖.
 
 
/      ‖

 

 ‖(
       
     

)‖
 

(5.3.10) 

 

From this form it can be seen that kuk
2 

is minimized by choosing λ so that 

                                                  (5.3.11) 

The last n − r rows of the matrix Q denoted Q2 are also important in the following. They are 

orthogonal vectors which span the null space of N
T 

. That is N
T 

times each one of these 

vectors is zero. 
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Example 5.3.1 

Check whether the point (−2,−2,4) is a local minimum of the problem: 

                       

           
      

     , 

                 

                  

Only the first two constraints are critical at (−2,−2,4) 

   

   
            

   

   
            

   

   
   

   

   
       

   

   
       

   

   
    

  

   
 

  

   
 

  

   
    

So, 

  [
  
  
  

]            {
 
 
 
}  

    0
   
  

1            2
 
 
3  

  (   )       2
   
 

3  

Also, 

,   (   )    -      

Equation (5.3.7) is satisfied, and all the Lagrange multipliers are positive, so the Kuhn-

Tucker conditions for a minimum are satisfied.  

5.5 Sensitivity of Optimum Solution to Problem Parameters 

The Lagrange multipliers are not only useful for checking optimality, but they also provide 

information about the sensitivity of the optimal solution to problem parameters. In this role 

they are extremely valuable in practical applications. In most engineering design 

optimization problems we have a host of parameters such as material properties, dimensions 

and load levels that are fixed during the optimization. We often need the sensitivity of the 

optimum solution to these problem parameters, either because we do not know them 

accurately, or because we have some freedom to change them if we find that they have a 

large effect on the optimum design. 

We assume now that the objective function and constraints depend on a parameter p so that 

the optimization problem is defined as 

                              minimize       (   ) 

                 such that               (   )                                                       (5.4.1) 
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The solution of the problem is denoted x (p) and the corresponding objective function f (p) = 

f(x (p),p). We want to find the derivatives of x  
and f 

 
with respect to p. The equations that 

govern the optimum solution are the Kuhn-Tucker conditions, Eq. (5.3.1), and the set of 

active constraints: 

                     (5.4.2) 

where ga denotes the vector of r active constraint functions. Equations (5.3.1) and (5.4.2) are 

satisfied by x (p) for all values of p that do not change the set of active constraints. 

Therefore, the derivatives of these equations with respect to p are zero, provided we 

consider the implicit dependence of x and λ on p. Differentiating Eq. (5.3.1) and (5.4.2) with 

respect to p we obtain: 

(   )
   

  
  

  

  
 

 

  
(  )  .

  

  
/     (5.4.3) 

     

  
 

   

  
                                                  (5.4.4) 

 

where A is the Hessian matrix of the objective function f, aij = ∂
2
f/∂xi∂xj, and Z is a matrix 

whose elements are: 

    ∑
    

      
  

 

 

(5.4.5) 

 

Equations (5.4.3) and (5.4.4) are a system of simultaneous equations for the derivatives of 

the design variables and of the Lagrange multipliers. Different special cases of this system 

are discussed by Sobieski et al. [6]. 

Often we do not need the derivatives of the design variables or of the Lagrange multipliers, 

but only the derivatives of the objective function. In this case the sensitivity analysis can be 

greatly simplified. We can write: 

 
  

  
 

  

  
 ∑

  

   

   
 

  
 

  

  
 (  ) 

   

  

 
    (5.4.6) 

Using Eq. (5.3.1) and (5.4.4) we get: 

  

  
 

  

  
      

  
                                                           (5.4.7) 

Equation (5.4.7) shows that the Lagrange multipliers are a measure of the effect of a change 

in the constraints on the objective function. Consider, for example, a constraint of the form 

gj(x) = Gj(x) − p ≥ 0. By increasing p we make the constraint more difficult to satisfy. 

Assume that many constraints are critical, but that p affects only this single constraint. We 

see that ∂gj/∂p = −1, and from Eq. (5.4.7) df/dp = λj, that is λj is the ‗marginal price‘ that we 

pay in terms of an increase in the objective function for making gj more difficult to satisfy. 

The interpretation of Lagrange multipliers as the marginal prices of the constraints also 

explains why at the optimum all the Lagrange multipliers have to be non-negative. A 

negative Lagrange multiplier would indicate that we can reduce the objective function by 

making a constraint more difficult to satisfy— an absurdity. 
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Example 5.4.1 

Consider the optimization problem: 

                  

                                      
      

       

                                   

                                                            

This problem was analyzed for p = 8 in Example 5.3.1, and the optimal solution was found 

to be (−2,−2,4). We want to find the derivative of this optimal solution with respect to p. At 

the optimal point we have f = 0 and λ
T 

= (0.25,1.0), with the: 

first two constraints being critical. We can calculate the derivative of the objective function 

from Eq. (5.4.7) 
  

  
       

   

  
 2

 
 
3  

So, 

        
  

  
       

To calculate the derivatives of the design variables and constraints we need to set up Eqs. 

(5.4.3) and (5.4.4). We get: 

           
   

  
           

  

  
   

Only g1 has nonzero second derivatives       
    

   
  

    

   
           so from Eq. 

(5.4.5): 

                                                      ,           [
      
      
   

]. 

With N from Example 5.3.1, Eq. (5.4.3) gives us: 

{

    ̇    ̇    

    ̇    ̇    

                   ̇    

 

where a dot denotes derivative with respect to p. From Eq. (5.4.4) we get: 

{
  ̇    ̇      

 ̇    
 

The solution of these five coupled equations is:  

 ̇   ̇               ̇           ̇                   ̇     

We can check the derivatives of the objective function and design variables by changing p 

from 8 to 9 and re-optimizing. It is easy to check that we get x1 = x2 = −2.121, x3 = 4, f = 

−0.242. These values compare well with linear extrapolation based on the derivatives which 

gives x1 = x2 = −2.125, x3 = 4, f = −0.25. 
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5.6 Gradient Projection and Reduced Gradient Methods 

Rosen‘s gradient projection method is based on projecting the search direction into the 

subspace tangent to the active constraints. Let us first examine the method for the case of 

linear constraints [7]. We define the constrained problem as: 

         Minimize  f(x) 

                  such that.      ( )  ∑                              
 
                       (5.5.1) 

In vector form 

        
                                    (5.5.2) 

If we select only the r active constraints (j ∈ IA), we may write the constraint equations as: 

                    (5.5.3) 

where ga is the vector of active constraints and the columns of the matrix N are the gradients 

of these constraints. The basic assumption of the gradient projection method is that x lies in 

the subspace tangent to the active constraints. If 

                (5.5.4) 

and both xi and xi+1 satisfy Eq. (5.5.3), then: 

                                                                                (5.5.5) 

If we want the steepest descent direction satisfying Eq. (5.5.5), we can pose the problem as: 

                     

                         

                               

That is, we want to find the direction with the most negative directional derivative which 

satisfies Eq. (5.5.5). We use Lagrange multipliers λ and µ to form the Lagrangian: 

                                  (     )                     (        )                              
(5.5.7) 

The condition for L to be stationary is:  

  

  
                                                           (5.5.8) 

Premultiplying Eq. (5.5.8) by N
T 

and using Eq. (5.5.5) we obtain: 

                                                                    (5.5.9) 

Or, 

    (    )                                                       (      ) 

So that from Eq. (5.5.8) 

  
 

  
,   (   )    -   

 

  
                                         (5.5.11) 
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P is the projection matrix defined in Eq. (5.3.8). The factor of 1/2µ is not significant because 

s defines only the direction of search, so in general we use s = −P f. To show that P indeed 

has the projection property, we need to prove that if w is an arbitrary vector, then Pw is in 

the subspace tangent to the active constraints, that is Pw satisfies: 

                       (5.5.12) 

We can easily verify this by using the definition of P. 

Equation (5.3.8) which defines the projection matrix P does not provide the most efficient 

way for calculating it. Instead it can be shown that 

    
           (5.5.13) 

where the matrix Q2 consists of the last n − r rows of the Q factor in the QR factorization of 

N (see Eq. (5.3.9)). 

A version of the gradient projection method known as the generalized reduced gradient 

method was developed by Abadie and Carpentier [8]. As a first step we select r linearly 

independent rows of N, denote their transpose as N1 and partition N
T 

as: 

     ,     -                       (5.5.14) 

Next we consider Eq. (5.5.5) for the components si of the direction vector. The r equations 

corresponding to N1 are then used to eliminate r components of s and obtain a reduced order 

problem for the direction vector. 

Once we have identified N1 we can easily obtain Q2 which is given as: 

  
  [   

    

 
]                                                   (5.5.15) 

Equation (5.5.15) can be verified by checking that N  = 0, so that Q2N = 0, which is the 

requirement that Q2 has to satisfy (see discussion following Eq. (5.3.11)). 

After obtaining s from Eq. (5.5.11) we can continue the search with a one dimensional 

minimization, Eq. (5.5.4), unless s = 0. When s = 0 Eq. (5.3.7) indicates that the Kuhn-

Tucker conditions may be satisfied. We then calculate the Lagrange multipliers from Eq. 

(5.3.6) or Eq. (5.3.11). If all the components of λ are nonnegative, the Kuhn-Tucker 

conditions are indeed satisfied and the optimization can be terminated. If some of the 

Lagrange multipliers are negative, it is an indication that while no progress is possible with 

the current set of active constraints, it may be possible to proceed by removing some of the 

constraints associated with negative Lagrange multipliers. A common strategy is to remove 

the constraint associated with the most negative Lagrange multiplier and repeat the 

calculation of P and s. If s is now non-zero, a one-dimensional search may be started. If s 

remains zero and there are still negative Lagrange multipliers, we remove another constraint 

until all Lagrange multipliers become positive and we satisfy the Kuhn-Tucker conditions. 

After a search direction has been determined, a one dimensional search must be carried out 

to determine the value of α in Eq. (5.5.4). Unlike the unconstrained case, there is an upper 

limit on α set by the inactive constraints. As α increases, some of them may become active 

and then violated. Substituting x = xi + αs into Eq. (5.5.2) we obtain: 

     
 (     )                                                    (5.5.16) 

Or 

   
  
      

  
  

  
  (  )

  
  

                                                 (5.5.17) 
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Equation (5.5.17) is valid if a
T

j s < 0. Otherwise, there is no upper limit on α due to the j
th

 

constraint. From Eq. (5.5.17) we get a different α, say αj for each constraint. The upper limit 

on α is the minimum: 

 ̅                                                                       (5.5.18) 

At the end of the move, new constraints may become active, so that the set of active 

constraints may need to be updated before the next move is undertaken. 

The version of the gradient projection method presented so far is an extension of the steepest 

descent method. Like the steepest descent method, it may have slow convergence. The 

method may be extended to correspond to Newton or quasi-Newton methods. In the 

unconstrained case, these methods use a search direction defined as 

            (5.5.19) 

where B is the inverse of the Hessian matrix of f or an approximation thereof. The direction 

that corresponds to such a method in the subspace tangent to the active constraints can be 

shown [4] to be 

     
 (  

     )
                                                   (5.5.20) 

where AL is the Hessian of the Lagrangian function or an approximation thereof. 

The gradient projection method has been generalized by Rosen to nonlinear constraints [9]. 

The method is based on linearizing the constraints about xi so that: 

     ,   (  )    (  )        (  )-   (5.5.21) 

 

 

 

 

 

Figure 5.5.1 Projection and restoration moves. 

The main difficulty caused by the nonlinearity of the constraints is that the one-

dimensional search typically moves away from the constraint boundary. This is because we 

move in the tangent subspace which no longer follows exactly the constraint boundaries. 

After the one-dimensional search is over, Rosen prescribes a restoration move to bring x 

back to the constraint boundaries, see Figure 5.5.1. 

To obtain the equation for the restoration move, we note that instead of Eq.(5.5.2) we now 

use the linear approximation: 

     (  )     
 ( ̅    )                                                     (5.5.22) 

We want to find a correction  ̅       in the tangent subspace (i.e. P( ̅     ) = 0) that 

would reduce gj to zero. It is easy to check that: 

                                              ̅         (   )    (  )                                          (5.5.23) 

is the desired correction, where ga is the vector of active constraints. Equation (5.5.23) is 

based on a linear approximation, and may therefore have to be applied repeatedly until ga is 

small enough. 
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In addition to the need for a restoration move, the nonlinearity of the constraints requires the 

re-evaluation of N at each point. It also complicates the choice of an upper limit for α which 

guarantees that we will not violate the presently inactive constraints. Haug and Arora [10] 

suggest a procedure which is better suited for the nonlinear case. The first advantage of their 

procedure is that it does not require a one-dimensional search. Instead, α in Eq. (5.5.4) is 

determined by specifying a desired specified reduction γ in the objective function. That is, 

we specify 

  (  )     (    )      (  )  (5.5.24) 

Using a linear approximation with Eq. (5.5.4) we get: 

    
  (  )

    
  (5.5.25) 

 

The second feature of Haug and Arora‘s procedure is the combination of the projection and 

the restoration moves as 

                    (   )       (5.5.26) 

where Eqs. (5.5.4), (5.5.23) and (5.5.25) are used. 

Example 5.5.1 

Use the gradient projection method to solve the following problem 

                              minimize              
    

    
    

          

 subject to                                          

                                                          
            

                                                        

Assume that as a result of previous moves we start at the point   
  (       ),                    

f(x0) = 5.0, where the nonlinear constraint g2 is slightly violated. The first constraint is active 

as well as the constraint on x4. We start with a combined projection and restoration move, 

with a target improvement of 10% in the objective function. At x0: 

  [

   
   
   
   

]               [
    
   
   

]  

(   )   
 

  
[

      
     
       

]  

     (   )     
 

  
[

 
  
 
 

  
 
  
 

 
  
 
 

 
 
 
 

],          {

 
 
 
  

} 

The projection move direction is s = −P f = [8/11,−24/11,8/11,0]
T 

. Since the magnitude of a 

direction vector is unimportant we scale s to s
T 

= [1,−3,1,0]. For a 10% improvement in the 

objective function γ = 0.1 and from Eq. (5.5.25) 

    
    

    
  

     

  
        

For the correction move we need the vector ga of constraint values,   
  (        ), so the 

correction is: 
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  (   )     
  

   
{

 
  
  
 

} 

Combining the projection and restoration moves, Eq. (5.5.26) 

   {

 
 
 
 

}        {

 
  
 
 

}  
 

   
{

 
  
  
 

}  {

     
     
     

 

} 

we get f(x1) = 4.64, g1(x1) = 0, g2(x1) = 0.016. Note that instead of 10% reduction we got 

only 7% due to the nonlinearity of the objective function. However, we did satisfy the 

nonlinear constraint. 

5.7 The Feasible Directions Method 

The feasible directions method [11] has the opposite philosophy to that of the gradient 

projection method. Instead of following the constraint boundaries, we try to stay as far away 

as possible from them. The typical iteration of the feasible direction method starts at the 

boundary of the feasible domain (unconstrained minimization techniques are used to 

generate a direction if no constraint is active). 

 

Figure 5.6.1 Selection of search direction using the feasible directions method. 

Consider Figure 5.6.1. As a result of a previous move the design is at point x and we look 

for a direction s which keeps x in the feasible domain and improves the objective function. 

A vector s is defined as a feasible direction if at least a small step can be taken along it that 

does not immediately leave the feasible domain. If the constraints are smooth, this is 

satisfied if: 

             ∈                                                            (5.6.1) 

where IA is the set of critical constraints at x. The direction s is called a usable direction at 

the point x if in addition: 

                    (5.6.2) 

That is, s is a direction which reduces the objective function. 

Among all possible choices of usable feasible directions we seek the direction which is best 

in some sense. We have two criteria for selecting a direction. On the one hand we want to 

reduce the objective function as much as possible. On the other hand we want to keep away 

from the constraint boundary as much as possible. A compromise is defined by the 

following maximization problem: 
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                                      ∈     

                                                             (     ) 

|  |     

The θj are positive numbers called ―push-off‖ factors because their magnitude determines 

how far x will move from the constraint boundaries. A value of θj = 0 will result in a move 

tangent to the boundary of the the jth constraint, and so may be appropriate for a linear 

constraint. A large value of θj will result in a large angle between the constraint boundary 

and the move direction, and so is appropriate for a highly nonlinear constraint. 

The optimization problem defined by Eq. (5.6.3) is linear and can be solved using the 

simplex algorithm. If βmax > 0, we have found a usable feasible direction. If we get βmax = 0 it 

can be shown that the Kuhn-Tucker conditions are satisfied. 

Once a direction of search has been found, the choice of step length is typically based on a 

prescribed reduction in the objective function (using Eq. (5.5.25)). If at the end of the step 

no constraints are active, we continue in the same direction as long as s
T  f is negative. We 

start the next iteration when x hits the constraint boundaries, or use a direction based on 

unconstrained technique if x is inside the feasible domain. Finally, if some constraints are 

violated after the initial step we make x retreat based on the value of the violated constraints. 

The method of feasible directions is implemented in the popular CONMIN program [12]. 

Example 5.6.1 

Consider the four bar truss of Example 5.1.2. The problem of finding the minimum weight 

design subject to stress and displacement constraints was formulated as: 

                                                     √         

                         
  

  
 

 √ 

  
   

                                      

                                      
 

 

where the xi are non-dimensional areas: 

   
   

     
                                         

The first constraint represents a limit on the vertical displacement, and the other two 

constraints represent stress constraints. 

Assume that we start the search at the intersection of g1 = 0 and g3 = 0 where   
  

(          )  and f = 47.25. The gradient of the objective function and two 

active constraints are 

    {
 

√ 
}      2

      
      

3      2
 
 
3  

Selecting θ1 = θ2 = 1, we find that Eq. (5.6.3) becomes 
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 maximize        

  subject to                        

         

    √         

         

         

The solution of this linear program is s1 = −0.6172, s2 = 1, and we now need to execute the 

one dimensional search: 

   2
     
    

3   2
       

 
3 

Because the objective function is linear, this direction will remain a descent direction 

indefinitely, and α will be limited only by the constraints. The requirement that g2 is not 

violated will lead to α = 9.527, x1 = 5.73, x2 = 16.7 which violates g1. We see that because g1 

is nonlinear, even though we start the search by moving away from it we still bump into it 

again (see Figure 5.6.2). It can be easily checked that for α > 5.385 we violate g1. So we 

take α = 5.385 and obtain x1 = 8.29, x2 = 12.56, f = 46.62. 

 

Figure 5.6.2 Feasible direction solution of 4 bar truss example.  

For the next iteration we have only one active constraint: 

    2
      
      

3             {
 

√ 
} 

 

The linear program for obtaining s is: 

 maximize      

                                      subject to                            

    √        
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The solution of the linear program is s1 = 0.5512, s2 = −1, so that the onedimensional search 

is: 

                                                       2
    
     

3   2
      
  

3 

Again α is limited only by the constraints. The lower limit on x2 dictates α ≤ 5.35. However, 

the constraint g1 is again more critical. It can be verified that for α > 4.957 it is violated, so 

we take α = 4.957, x1 = 11.02, x2 = 7.60, f = 46.22. The optimum design found in Example 

5.1.2 is x1 = x2 = 9.464, f = 44.78. The design space and the two iterations are shown in 

Figure 5.6.2.  

5.8 Penalty Function Methods 

When the energy crisis erupted in the middle seventies, the United States Congress passed 

legislation intended to reduce the fuel consumption of American cars. The target was an 

average fuel consumption of 27.5 miles per gallon for new cars in 1985. Rather than simply 

legislate this limit Congress took a gradual approach, with a different limit set each year to 

bring up the average from about 14 miles per gallon to the target value. Thus the limit was 

set at 26 for 1984, 25 for 1983, 24 for 1982, and so on. Furthermore, the limit was not 

absolute, but there was a fine of $50 per 0.1 miles per gallon violation per car. 

This approach to constraining the automobile companies to produce fuel efficient cars has 

two important aspects. First, by legislating a penalty proportional to the violation rather than 

an absolute limit, the government allowed the auto companies more flexibility. That meant 

they could follow a time schedule that approximated the government schedule without 

having to adhere to it rigidly. Second, the gradual approach made enforcement easier 

politically. Had the government simply set the ultimate limit for 1985 only, nobody would 

have paid attention to the law in the 1970‘s. Then as 1985 moved closer there would have 

been a rush to develop fuel efficient cars. The hurried effort could mean both non-optimal 

car designs and political pressure to delay the enforcement of the law. 

The fuel efficiency law is an example in which constraints on behavior or economic 

activities are imposed via penalties whose magnitude depends on the degree of violation of 

the constraints. It is no wonder that this simple and appealing approach has found 

application in constrained optimization. Instead of applying constraints we replace them by 

penalties which depend on the degree of constraint violations. This approach is attractive 

because it replaces a constrained optimization problem by an unconstrained one. 

The penalties associated with constraint violation have to be high enough so that the 

constraints are only slightly violated. However, just as there are political problems 

associated with imposing abrupt high penalties in real life, so there are numerical difficulties 

associated with such a practice in numerical optimization. For this reason we opt for a 

gradual approach where we start with small penalties and increase them gradually. 

5.7.1 Exterior Penalty Function: 

The exterior penalty function associates a penalty with a violation of a constraint. The term 

‗exterior‘ refers to the fact that penalties are applied only in the exterior of the feasible 

domain. The most common exterior penalty function is one which associates a penalty 

which is proportional to the square of a violation. That is, the constrained minimization 

problem, Eq. (5.1) 
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                             Minimize     ( ) 

 

Is replaced by:      Such that      ( )                                                                 (5.7.1) 

                                                          ( )                          

                              Minimize    (   )   ( )   ∑   
 ( )   ∑         

   
  
        (5.7.2) 

                         

where < a > denote the positive part of a or max(a,0). The inequality terms are treated 

differently from the equality terms because the penalty applies only for constraint violation. 

The positive multiplier r controls the magnitude of the penalty terms. It may seem logical to 

choose a very high value of r to ensure that no constraints are violated. However, as noted 

before, this approach leads to numerical difficulties illustrated later in an example. Instead 

the minimization is started with a relatively small value of r, and then r is gradually 

increased. A typical value for ri+1/ri is 5. A typical plot of  (   ) as a function of r is shown 

in Figure 5.7.1 for a simple example. 

 

Figure 5.7.1 Exterior penalty function for f = 0.5x subject to x − 4 ≥ 0. 

We see that as r is increased, the minimum of ϕ moves closer to the constraint boundary. 

However, the curvature of ϕ near the minimum also increases. It is the high values of the 

curvature associated with large values of r which often lead to numerical difficulties. By 

using a sequence of values of r, we use the minima obtained for small values of r as starting 

points for the search with higher r values. Thus the ill-conditioning associated with the large 

curvature is counterbalanced by the availability of a good starting point. 

Based on the type of constraint normalization given by Eq. (5.2) we can select a reasonable 

starting value for the penalty multiplier r. A rule of thumb is that one should start with the 

total penalty being about equal to the objective function for typical constraint violation of 

50% of the response limits. In most optimization problems the total number of active 

constraints is about the same as or just slightly lower than the number of design variables. 

Assuming we start with one quarter of the eventual active constraints being violated by 

about 50% (or g = −0.5) then we have 
 

 (  )    
 

 
(   )                      

 (  )

 
                              (5.7.3) 

It is also important to obtain a good starting point for restarting the optimization as r is 

increased. The minimum of the optimization for the previous value of r is a reasonable 

starting point, but one can do better. Fiacco and McCormick [13] show that the position of 

the minimum of ϕ(x,r) has the asymptotic form: 
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   ( )      
 

 
                                                     (5.7.4) 

Once the optimum has been found for two values of r, say ri−1, and ri, the vectors a and b 

may be estimated, and the value of x (r) predicted for subsequent values of r. It is easy to 

check that in order to satisfy Eq. (5.7.4), a and b are given as: 

 

  
   (    )   (  )

   
                                                          (5.7.5) 

  ,  (    )   -                                                                   

where 

                                                                             (5.7.6) 

In addition to predicting a good value of the design variables for restarting the optimization 

for the next value of r, Eq. (5.7.4) provides us with a useful convergence criterion, namely: 

                (5.7.7) 

where a is estimated from the last two values of r, and     is a specified tolerance chosen to 

be small compared to a typical value of  ‖ ‖. 

A second convergence criterion is based on the magnitude of the penalty terms, which, as 

shown in Example 5.7.1, go to zero as r goes to infinity. Therefore, a reasonable 

convergence criterion is: 

 |
   

 
|  ∈  (5.7.8) 

 

Finally, a criterion based on the change in the value of the objective function at the 

minimum f 
 
is also used: 

|
  (  )   (    )

  (  )
|                                                            (5.7.9) 

A typical value for   

Example 5.7.1       
      

  

Minimize     
      

  such that x1 + x2 = 4. We have, 

           
      

   (       )
  

The gradient  ϕ  is given as: 

  {
   (   )         

   (    )         
} 

Setting the gradient to zero we obtain: 

                                
   

      
                         

  

      
 

The solution as a function of r is shown in Table 5.7.1. 

 

Table 5.7.1 Minimization of ϕ for different penalty multipliers. 
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It can be seen that as r is increased the solution converges to the exact solution of x
T 

= 

(3.636,0.3636), f = 14.54. The convergence is indicated by the shrinking difference between 

the objective function and the augmented function ϕ. The Hessian of ϕ is given as: 

                                               0
      

       
1  

 As r increases this matrix becomes more and more ill-conditioned, as all four 

components become approximately 2r. This ill-conditioning of the Hessian 

matrix for large values of r often occurs when the exterior penalty function is 

used, and can cause numerical difficulties for large problems. 

We can use Table 5.7.1 to test the extrapolation procedure, Eq. (5.7.4). For example, with 

the values of r = 1 and r = 10, Eq. (5.7.5) gives: 

  
     ( )    (  )

    
 2

     
      

3 

     ( )    2
      
       

3 

We can now use Eq. (5.7.4) to find a starting point for the optimization for r = 100 to get:  

            (            )    

which is substantially closer to x (100) = (3.604,0.3604)
T 

than to x (10) = (3.333, 0.3333)
T 

.  

5.7.2 Interior and Extended Interior Penalty Functions: 

With the exterior penalty function, constraints contribute penalty terms only when they are 

violated. As a result, the design typically moves in the infeasible domain. If the 

minimization is terminated before r becomes very large (for example, because of shortage of 

computer resources) the resulting designs may be useless. When only inequality constraints 

are present, it is possible to define an interior penalty function that keeps the design in the 

feasible domain. The common form of the interior penalty method replaces the inequality 

constrained problem: 

                              Minimize    ( ) 

                             such that     ( )                                                                  (5.7.10) 

by, 

            (   )   ( )   ∑  
  ( )

⁄
  

   
                              (5.7.11) 
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Figure 5.7.2 Interior penalty function for f(x) = 0.5x subject to x − 4 ≥ 0. 

The penalty term is proportional to 1/gj and becomes infinitely large at the boundary of the 

feasible domain creating a barrier there (interior penalty function methods are sometimes 

called barrier methods). It is assumed that the search is confined to the feasible domain. 

Otherwise, the penalty becomes negative which does not make any sense. Figure 5.7.2 

shows the application of the interior penalty function to the simple example used for the 

exterior penalty function in Figure 5.7.1. Besides the inverse penalty function defined in Eq. 

(5.7.11), there has been some use of a logarithmic interior penalty function: 

 (   )   ( )   ∑    (  ( ))                                 
  

   
(5.7.12) 

 

While the interior penalty function has the advantage over the exterior one in that it 

produces a series of feasible designs, it also requires a feasible starting point. Unfortunately, 

it is often difficult to find such a feasible starting design. Also, because of the use of 

approximation (see Chapter 6), it is quite common for the optimization process to stray 

occasionally into the infeasible domain. For these reasons it may be advantageous to use a 

combination of interior and exterior penalty functions called an extended interior penalty 

function. An example is the quadratic extended interior penalty function of Haftka and 

Starnes [14]: 

 (   )   ( )   ∑    .  ( )/                                 
  

   
 (5.7.13) 

                        

Where, 

 (  )  {
   ⁄                                                                                   

   0   (    ⁄ )  (    ⁄ )
 
1⁄                                       

 (5.7.14) 

It is easy to check that p(gj) has continuity up to second derivatives. The transition parameter 

g0 which defines the boundary between the interior and exterior parts of the penalty terms 

must be chosen so that the penalty associated with the constraint, rp(gj), becomes infinite for 

negative gj as r tends to zero. This results in the requirement that 

    
   ⁄                        (5.7.15) 

This can be achieved by selecting g0 as: 

              (5.7.16) 

where c is a constant. 
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It is also possible to include equality constraints with interior and extended interior penalty 

functions. For example, the interior penalty function Eq. (5.7.11) is augmented as: 

 

 (   )   ( )   ∑    ( )      ⁄ ∑   
 ( )                                  

  
   ⁄

  

   
(5.7.17) 

                              

 

Figure 5.7.3 Extended interior penalty function for f(x) = 0.5x subject to g(x) = x − 4 ≥ 0. 

The considerations for the choice of an initial value of r are similar to those for the exterior 

penalty function. A reasonable choice for the interior penalty function would require that n/4 

active constraints at g = 0.5 (that is 50% margin for properly normalized constraints) would 

result in a total penalty equal to the objective function. 

Using Eq. (5.7.11) we obtain: 

                                                       ( )  
 

 

 

   
         ,                 ( )     

 

For the extended interior penalty function it is more reasonable to assume that the n/4 

constraints are critical (g = 0), so that from Eq. (5.7.13) 

                                                        ( )   
 

 

 

  
   ,          

 

 
   ( )     

 

A reasonable starting value for g0 is 0.1. As for the exterior penalty function, it is possible to 

obtain an expression for the asymptotic (as r → 0) coordinates of the minimum of ϕas [10]. 

                                                  ( )             ,                                                (5.7.18) 

  

and 

   ( )                                . 

a, b, a and b may be estimated once the minimization has been carried out for two values of 

r. For example, the estimates for a and b are: 

  
   ⁄   (    )    (  )

   ⁄   
                                            (      ) 

  
  (    )   
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where c = ri/ri−1. As in the case of exterior penalty function, these expressions may be used 

for convergence tests and extrapolation. 

5.7.3 Unconstrained Minimization with Penalty Functions: 

Penalty functions convert a constrained minimization problem into an unconstrained one. It 

may seem that we should now use the best available methods for unconstrained 

minimization, such as quasi-Newton methods. This may not necessarily be the case. The 

penalty terms cause the function ϕto have large curvatures near the constraint boundary even 

if the curvatures of the objective function and constraints are small. This effect permits an 

inexpensive approximate calculation of the Hessian matrix, so that we can use Newton‘s 

method without incurring the high cost of calculating second derivatives of constraints. This 

may be more attractive than using quasi-Newton methods (where the Hessian is also 

approximated on the basis of first derivatives) because a good approximation is obtained 

with a single analysis rather than with the n moves typically required for a quasi-Newton 

method. Consider, for example, an exterior penalty function applied to equality constraints: 
   

 (   )   ( )   ∑  
 ( )

  

   

                           (      ) 

The second derivatives of   are given as: 

   

      
 

   

      
  ∑ 4

   

   

   

   
   

    

      
5   (      )

  

   

 

Because of the equality constraint, hi is close to zero, especially for the later stages of the 

optimization (large r), and we can neglect the last term in Eq. (5.7.21). For large values of r 

we can also neglect the first term, so that we can calculate second derivatives of ϕbased on 

first derivatives of the constraints. The availability of inexpensive second derivatives 

permits the use of Newton‘s method where the number of iterations is typically independent 

of the number of design variables. Quasi-Newton and conjugate gradient methods, on the 

other hand, require a number of iterations proportional to the number of design variables. 

Thus the use of Newton‘s method becomes attractive when the number of design variables is 

large. The application of Newton‘s method with the above approximation of second 

derivatives is known as the Gauss-Newton method. 

For the interior penalty function we have a similar situation. The augmented objective 

function ϕis given as: 

 (   )   ( )   ∑   ( ) ⁄

  

   

                               (      ) 

And the second derivatives are: 

 

 
   

      
 

   

      
  ∑

 

  
 .

   

   

   

   
   

    

      
/           (      )

  
    

 

Now the argument for neglecting the first and last terms in Eq. (5.7.23) is somewhat lengthier. 

First we observe that because of the 1/gj
3 

term, the second derivatives are dominated by the 

critical constraints (gj small). For these constraints the last term in Eq. (5.7.23) is negligible 

compared to the first-derivative term because gj is small. Finally, from Eq. (5.7.18) it can be 

shown that r/gj
3 

goes to infinity for active constraints as r goes to zero, so that the first term in 



 

Chapter V : Constrained Optimization 

106 
 

Eq. (5.7.23) can be neglected compared to the second. The same argument can also be used 

for extended interior penalty functions [14]. 

The power of the Gauss-Newton method is shown in [14] for a high- aspect-ratio wing made 

of composite materials (see Figure 5.7.4) designed subject to stress and displacement 

constraints. 

 

Figure 5.7.4 Aerodynamic planform and structural box for high-aspect ratio wing, from [14]. 

Table 5.7.2 Results of high-aspect-ratio wing study 
 

 

The structural box of the wing was modeled with a finite element model with 67 nodes and 

290 finite elements. The number of design variables controlling the thickness of the various 

elements was varied from 13 to 146. The effect of the number of design variables on the 

number of iterations (analyses) is shown in Table 5.7.2. It is seen that the number of 

iterations per unconstrained minimization is almost constant (about five). With a quasi-

Newton method that number may be expected to be similar to the number of design 

variables. 

Because of the sharp curvature of ϕ near the constraint boundary, it may also be appropriate 

to use specialized line searches with penalty functions [15]. 

5.7.4 Integer Programming with Penalty Functions: 

An extension of the penalty function approach has been implemented by Shin et al. [16] for 

problems with discrete-valued design variables. The extension is based on introduction of 

additional penalty terms into the augmented-objective function ϕ(x,r) to reflect the 

requirement that the design variables take discrete values, 

    ∈       *               +   ∈                                     (      ) 

where Id is the set of design variables that can take only discrete values, and Xi is the set of 

allowable discrete values. Note that several variables may have the same allowable set of 
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discrete values. In this case the augmented objective function which includes the penalty 

terms due to constraints and the non-discrete values of the design variables is defined as: 

 (     )   ( )   ∑  (  )   ∑   (  )                      

  

   
(5.7.25) 

 

where s is a penalty multiplier for non-discrete values of the design variables, and ψd(xi) the 

penalty term for non-discrete values of the ith design variable. Different forms for the 

discrete penalty function are possible. The penalty terms ψd(xi) are assumed to take the 

following sine-function form in Ref. [16], 

  (  )  
 

 
4   

  0   
 

 
(  (   )     )1

  (   )    
  5                        (   )   (5.7.25) 

While penalizing the non-discrete valued design variables, the functions ψd(xi) assure the 

continuity of the first derivatives of the augmented function at the discrete values of the 

design variables. The response surfaces generated by Eq. (5.7.25) are determined according 

to the values of the penalty multipliers r and s. In contrast to the multiplier r, which initially 

has a large value and decreases as we move from one iteration to another, the value of the 

multiplier s is initially zero and increases gradually. 

One of the important factors in the application of the proposed method is to determine when 

to activate s, and how fast to increase it to obtain discrete optimum design. Clearly, if the 

initial value of s is too big and introduced too early in the design process, the design 

variables will be trapped away from the global minimum, resulting in a sub-optimal 

solution. To avoid this problem, the multiplier s has to be activated after optimization of 

several response surfaces which include only constraint penalty terms. In fact, since 

sometimes the optimum design with discrete values is in the neighborhood of the continuous 

optimum, it may be desirable not to activate the penalty for the non-discrete design variables 

until reasonable convergence to the continuous solution is achieved. This is especially true 

for problems in which the intervals between discrete values are very small. 

A criterion for the activation of the non-discrete penalty multiplier s is the same as the 

convergence criterion of Eq. (5.7.6), that is: 

|
   

 
|                                                                      (5.7.27) 

 

A typical value for c is 0.01. The magnitude of the non-discrete penalty multiplier, s, at the 

first discrete iteration is calculated such that the penalty associated with the discrete-valued 

design variables that are not at their allowed values is of the order of 10 percent of the 

constraint penalty. 

          ( )   (5.7.28) 

As the iteration for discrete optimization proceeds, the non-discrete penalty multiplier for 

the new iteration is increased by a factor of the order of 10. It is also important to decide 

how to control the penalty multiplier for the constraints, r, during the discrete optimization 

process. If r is decreased for each discrete optimization iteration as in the continuous 

optimization process, the design can be stalled due to high penalties for constraint violation. 

Thus, it is suggested that the penalty multiplier r be frozen at the end of the continuous 

optimization process. However, the nearest discrete solution at this response surface may not 

be a feasible design, in which case the design must move away from the continuous 
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optimum by moving back to the previous response surface. This can be achieved by 

increasing the penalty multiplier, r, by a factor of 10. 

The solution process for the discrete optimization is terminated if the design variables are 

sufficiently close to the prescribed discrete values. The convergence criterion for discrete 

optimization is: 

    ∈  8   {
|      |

  (   )    
 
|     (   )|

  (   )    
}9  ∈                (5.7.29) 

 

where a typical value of the convergence tolerance  

5.9 Multiplier Methods 

Multiplier methods combine the use of Lagrange multipliers with penalty functions. When 

only Lagrange multipliers are employed the optimum is a stationary point rather than a 

minimum of the Lagrangian function. When only penalty functions are employed we have a 

minimum but also ill-conditioning. By using both we may hope to get an unconstrained 

problem where the function to be minimized does not suffer from ill-conditioning. A good 

survey of multiplier methods was conducted by: 

Bertsekas [17]. We study first the use of multiplier methods for equality constrained 

problems. 

                                                                  ( )                                                             (5.8.1)                                                                        

                                     ( )                                 

We define the augmented Lagrangian function: 

 (     )   ( )  ∑    ( )   ∑  
 ( )                           (     )

  

   

  

   

 

If all the Lagrange multipliers are set to zero, we get the usual exterior penalty function. On 

the other hand, if we use the correct values of the Lagrange multipliers, λ j, it can be shown 

that we get the correct minimum of problem (5.8.1) for any positive value of r. Then there is 

no need to use the large value of r required for the exterior penalty function. Of course, we 

do not know what are the correct values of the Lagrange multipliers. 

Multiplier methods are based on estimating the Lagrange multipliers. When the estimates 

are good, it is possible to approach the optimum without using large r values. The value of r 

needs to be only large enough so that L has a minimum rather than a stationary point at the 

optimum. To obtain an estimate for the Lagrange multipliers we compare the stationarity 

conditions for L, 

 
  

   
 

  

   
 ∑ (       )

   

   
                                    

  
   (5.8.3) 

with the exact conditions for the Lagrange multipliers 

 
  

   
 ∑   

    

   
                                                      

  
   (5.8.4) 

Comparing Eqs. (5.8.3) and (5.8.4) we expect that 

          
                                                               (     ) 
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as the minimum is approached. Based on this relation, Hestenes [18] suggested using Eq. 

(5.8.5) as an estimate for . That is: 

  
(   )

   
( )

   ( )  
( )

                                 (5.8.6) 

where k is an iteration number. 

Example 5.8.1 

We repeat Example 5.7.1 using Hestenes‘ multiplier method. 

 ( )    
      

   

 ( )             

The augmented Lagrangian is:           

.    
      

   (       )   (       )  

To find the stationary points of the augmented Lagrangian we differentiate with respect to x1 

and x2 to get: 

            (           )       

             (           )       

which yield; 

        
      

      
 

We want to compare the results with those of Example 5.7.1, so we start with the same 

initial r value r0 = 1, the initial estimate of λ = 0 and get: 

     (            )                         

So, using Eq. (5.8.6) we estimate λ
(1) 

as 

 ( )             (      )           

We next repeat the optimization with r
(1) 

= 10, λ
(1) 

= 3.81 and get: 

     (            )                          

For the same value of r, we obtained in Example 5.7.1 x2 = (3.333,0.3333)
T 

, so that we are 

now closer to the exact solution of x = (3.636,0,3636)
T 

. Now we estimate a new λ from Eq. 

(5.8.6): 

 ( )                    (       )            

For the next iteration we may, for example, fix the value of r at 10 and change only λ. For λ 

= 6.984 we obtain: 

     (            )                         

which shows that good convergence can be obtained without increasing r. 

There are several ways to extend the multiplier method to deal with inequality constraints. 

The formulation below is based on Fletcher‘s work [19]. The constrained problem that we 

examine is: 
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             ( )                    

                ( )                                                  (     ) 

The augmented Lagrangian function is: 

 (     )   ( )   ∑〈
  

  
   〉

                                      (     )

  

   

 

where < a >= max(a,0). The condition of stationarity of L is: 

  

   
   ∑ 〈

  

  
   〉

   

   
                                       

  

   
 (5.8.9) 

The exact stationarity condition is: 

  
  

   
 ∑   

    

   
                                                     

  

   
 (5.8.10) 

 

where it is also required that = 0. Comparing Eqs (5.8.9) and (5.8.10) we expect an 

estimate for λ j of the form:   

    
       (           )                                      (5.8.11) 

5.01 Projected Lagrangian Methods (Sequential Quadratic Programming): 

The addition of penalty terms to the Lagrangian function by multiplier methods converts the 

optimum from a stationary point of the Lagrangian function to a minimum point of the 

augmented Lagrangian. Projected Lagrangian methods achieve the same result by a different 

method. They are based on a theorem that states that the optimum is a minimum of the 

Lagrangian function in the subspace of vectors orthogonal to the gradients of the active 

constraints (the tangent subspace). Projected Lagrangian methods employ a quadratic 

approximation to the Lagrangian in this subspace. The direction seeking algorithm is more 

complex than for the methods considered so far. It requires the solution of a quadratic 

programming problem, that is an optimization problem with a quadratic objective function 

and linear constraints. Projected Lagrangian methods are part of a class of methods known 

as sequential quadratic programming (SQP)methods. The extra work associated with the 

solution of the quadratic programming direction seeking problem is often rewarded by faster 

convergence. 

The present discussion is a simplified version of Powell‘s projected Lagrangian method 

[20]. In particular we consider only the case of inequality constraints: 

                      ( ) 

             ( )                                                            (5.9.1)                                             

Assume that at the i
th

 iteration the design is at xi, and we seek a move direction s. The 

direction s is the solution of the following quadratic programming problem: 

                      Minimize             ( )   (  )     (  )  
 

 
   (     )  

                     (  )         (  )                                        (5.9.2) 

where g is the gradient of f, and A is a positive definite approximation to the Hessian of the 

Lagrangian function discussed below. This quadratic programming problem can be solved 
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by a variety of methods which take advantage of its special nature. The solution of the 

quadratic programming problem yields s and λi+1. We then have: 

                                                                    (5.9.3)          

where α is found by minimizing the function: 

 ( )   ( )  ∑   
  

   
|    (    ( ))|                         (5.9.4)          

 

and the µj are equal to the absolute values of the Lagrange multipliers for the first iteration, 

i.e. 

      0|  
( )

 
 

 
.  

(   )
 |  

(   )
|/|1                               (5.9.5) 

with the superscript i denoting iteration number. The matrix A is initialized to some positive 

definite matrix (e.g the identity matrix) and then updated using a BFGS type equation (see 

Chapter 4). 

       
       

      
 

     

     
                                      (5.9.6) 

where 

                        (       )     (      )                   (5.9.7) 

where L is the Lagrangian function and  x denotes the gradient of the Lagrangian function 

with respect to x. To guarantee the positive definiteness of A, ∆l is modified if ∆x
T 
∆l ≤ 

0.2∆x
T 

A∆x and replaced by: 

        (   )                                                 (     ) 

Where 

  
         

            
                                                 (     ) 

Example 5.9.1: 

Consider the four bar truss of Example 5.1.2. The problem of finding the minimum weight 

design subject to stress and displacement constraints was formulated as 

Minimize             √    

                                   subject to ,           
  

  
 

 √ 

  
            

                                                                  

                                                                  

Assume that we start the search at the intersection of g1 = 0 and g3 = 0 where x1 = 11.61, 

x2 = 7.17 and f = 47.25. The gradient of the objective function and two active constraints are: 

   {
 

√ 
}         2

      
      

3          2
 
 
3           0

       
       

1 

We start with A set to the unit matrix so that: 
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 ( )            √         
       

  

and the linearized constraints are: 

  ( )                       

  ( )             

  ( )        

We solve this quadratic programming problem directly with the use of the KuhnTucker 

conditions: 

                                            

√                                          

A consideration of all possibilities for active constraints shows that the optimum is obtained 

when only g1 is active, so that λ2 = λ3 = 0 and λ1 = 12.8, s1 = −1.29, s2 = 0.855. The next 

design is: 

                             2
     
    

3   2
     
     

3 

where α is found by minimizing ψ(α) of Eq. (5.9.4). For the first iteration µj = |λj| so, 

   (           )  √ (           )      |  
  

           
 

 √ 

           
| 

By changing α systematically we find that ψ is a minimum near α = 2.2, so that: 

     (         )    (  )            (  )           . 

To update A we need ∆x and ∆l. We have: 

      √        (      ⁄   √   ⁄ )  

so that, 

    (         
     √         

 )⁄⁄
 
  

and 

          2
     
    

3             (  )     (  )  2
     
     

3 

With A being the identity matrix we have ∆x
T 

A∆x = 11.6, ∆x
T 
∆l = 5.53. Because ∆x

T 
∆l > 

0.2∆x
T 

A∆x we can use Eq. (5.9.5) to update A: 

       
     

     
 

     

     
 0

          
          

1 

For the second iteration: 

 ( )            √       (       
         

           ) 

  ( )                            

  ( )             

  ( )             

We can again solve the quadratic programming directly with the use of the KuhnTucker 

conditions: 

                                 

√                                



 

Chapter V : Constrained Optimization 

113 
 

The solution is: 

 λ1 = 14.31, λ2 = λ3 = 0, s1 = 1.059, s2 = −0.376 . 

The one dimensional search seeks to minimize: 

ψ(α) = f(α) + µ1g1(α), 

where: 

      (   
 

 
(|  |    

   ))         

The one-dimensional search yields approximately α = 0.5, so that: 

     (         )          (  )                 (  )          

so that we have made good progress towards the optimum x  
= (9.46,9.46)

T 
.  

 Chapter Highlights: 

 A point is regular if the gradient of active inequality and all equality constraints are 

linearly independent. 

 The optimality conditions for constrained optimization problems are frequently referred 

to as Karush–Kuhn–Tucker (KKT) conditions. KKT conditions are necessary but not 

sufficient for optimality. 

 The Lagrange multiplier provides information on the sensitivity of the objective function 

with respect to the sensitivity of the righthand side of the constraint equation. 

 A constrained optimization problem can be converted to an unconstrained problem by 

penalizing the objective function when constraints are violated. Such methods are termed 

penalty function methods and are very easy to implement.  

 The motivation of using the penalty function method is to solve the constrained 

optimization problem using algorithms for unconstrained problems. 

 The augmented Lagrange multiplier (ALM) method combines both Lagrange multiplier 

and penalty function methods.  

 The sequential quadratic programming (SQP) method approximates the objective 

function to a quadratic form and linearizes the constraints in each iteration. 

 The method of feasible directions ensures meeting the constraints in every iteration.  

 In Rosen‘s gradient projection method, the search direction (negative of the gradient of 

the objective function) is projected into the subspace tangent of the active constraints. 
 

 Formulae Chart:  

• Lagrange Function: 

 (     )   ( )  ∑    ( )  ∑    ( )

 

   

 

   

 

• Optimality Condition: 

   ( )  ∑     ( )  ∑     ( )

 

   

 

   

 

• Penalty Function: 

 ( )   ( )    ∑  
 ( )    ∑〈  ( )〉

 

 

   

 

   

 

〈  ( )〉     ,    ( )- 
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• Augmented Lagrangian Function: 

 (        )   ( )  ∑    ( )  ∑       ∑  
 ( )    ∑  

 

 

   

 

   

 

   

 

   

〈  ( )〉

    ,    ( )- 

      {  ( ) 
   

   
} 

• Quadratic Problem: 

       ( )  
 

 
         

Subject to 

  ( )     ( )
      

  ( )     ( )
      

• Rosen‘s Gradient Projection Method: 

     (   )     

 ̅        (   )    ( ) 

   
  ( )

    ( )
 

  

 Problems: 

1. Check the nature of the stationary points of the constrained problem: 

minimize          ( )    
     

     
  

  such that                            

            

      

                     

 

2. For the problem: 

minimize         ( )     
         

       

        such that                   

                  

      

 

Check for a minimum at the following points: (a) (5/3, 5.00) (b) (1/3, 5.00) (c) (3.97,1.55). 

1. Calculate the derivative of the solution of Example 5.1.2 with respect to a change inthe 

allowable displacement. First use the Lagrange multiplier to obtain the derivative of the 

objective function, and then calculate the derivatives of the design variables and 

Lagrange multipliers and verify the derivative of the objective function. Finally, estimate 

from the derivatives of the solution how much we can change the allowable 

displacement without changing the set of active constraints. 

2. Solve for the minimum of problem 1 using the gradient projection method fromthe 

point (17, 1/2, 4). 

3. Complete two additional moves in Example 5.5.2. 
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4. Find a feasible usable direction for problem 1 at the point (17, 1/2, 4). 

5. Use an exterior penalty function to solve Example 5.1.2. 

6. Use an interior penalty function to solve Example 5.1.2. 

7. Consider the design of a box of maximum volume such that the surface area isequal to 

S and there is one face with an area of S/4. Use the method of multipliers to solve this 

problem, employing three design variables. 

8. Complete two more iterations in Example 5.9.1. 
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