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ABSTRACT

In virtualized cloud computing systems, energy reduction is a major concern since

it can provide many major benefits, such as reducing operating costs, increasing system

efficiency, and protecting the environment. Typically, customers submit their appli-

cations with millions of tasks executed in cloud data centers by thousands of high-

performance servers installed. The cloud offers a variety of services through virtual

machines (VMs). These latter usually consume a large amount of energy. Such energy

consumption increases the cost of electricity and has a negative environmental effect.

To maintain a better performance of the services offered by data centers and a reason-

able energy consumption. A detailed study of the behavior of these systems is essential

for the design of efficient optimization solutions to reduce energy consumption. This

thesis work focuses on the development of a task scheduling model in order to minimize

the energy consumption of data center resources while meeting customer requirements

for quality of services.

Keywords: Cloud Computing, Data center, Task scheduling, VM allocation, Energy

consumption.



Résumé 

Dans les systèmes de Cloud Computing virtualisés, la réduction d'énergie est une 

préoccupation majeure car elle peut offrir de nombreux avantages majeurs, tels que la 

réduction des coûts de fonctionnement, l'augmentation de l'efficacité du système et la 

protection de l'environnement. Généralement, les clients soumettent leurs applications avec 

des millions de tâches exécutées dans les centres de données Cloud par des milliers de 

serveurs hautes performances installés. Le Cloud offre une variété de services via des 

machines virtuelles (MV). Ces derniers consomment généralement une grande quantité 

d'énergie. Une telle consommation d'énergie augmente le coût de l'électricité et a un effet 

environnemental négatif. Pour maintenir une bonne performance des services offerts par des 

centres de données, et une consommation énergétique raisonnable, une étude détaillée du 

comportement de ces systèmes est essentielle pour la conception des solutions d'optimisation 

efficaces permettant de réduire la consommation énergétique. Ce travail thèse s'intéressera au 

développement d’un modèle d’ordonnancement des tâches dans le but de minimiser la 

consommation énergétique des ressources des centres de données tout en répondant aux 

exigences des clients pour la qualité de services. 

Mots-clés : Cloud Computing, Centre de données, Ordonnancement des tâches, Allocation 

de machines virtuelles, Consommation d’énergie. 

  

 ملخص

فً أّظَت اىح٘سبت اىسحببٍت الافتشاضٍت، ٌعذ تقيٍو استٖلاك اىطبقت ٍِ اىقضبٌب اىشئٍسٍت لأّٔ ٌَنِ أُ ٌ٘فش اىعذٌذ ٍِ 

بشنو عبً، ٌقً٘ اىعَلاء بتقذٌٌ تطبٍقبتٌٖ اىتً . اىف٘ائذ اىََٖت، ٍثو تقيٍو تنبىٍف اىتشغٍو، ٗصٌبدة مفبءة اىْظبً، ٗحَبٌت اىبٍئت

.تحت٘ي عيى ٍلاٌٍِ اىَٖبً اىتً تُْفز فً ٍشامض اىبٍبّبث اىسحببٍت ب٘اسطت آلاف اىخ٘ادً عبىٍت الأداء اىَثبتت  

.تقذً اىح٘سبت اىسحببٍت ٍجَ٘عت ٍتْ٘عت ٍِ اىخذٍبث عبش اَلاث الافتشاضٍت  ٗاىتً تستٖيل عبدةً مٍَبث مبٍشة ٍِ اىطبقت 

.ٌضٌذ ٕزا الاستٖلاك ٍِ تنيفت اىنٖشببء ٗىٔ تأثٍش بٍئً سيبً  

ىيحفبظ عيى أداء جٍذ ىيخذٍبث اىَقذٍت ٍِ قبو ٍشامض اىبٍبّبث ٗاستٖلاك طبقت ٍعق٘ه، فإُ دساست تفصٍيٍت ىسي٘ك ٕزٓ 

.الأّظَت أٍش ضشٗسي ىتصٌٍَ حي٘ه فعبىت ىتحسٍِ الأداء ٗتقيٍو استٖلاك اىطبقت  

ستشمض ٕزٓ الأطشٗحت عيى تطٌ٘ش َّ٘رج ىجذٗىت اىَٖبً بٖذف تقيٍو استٖلاك اىطبقت ىَ٘اسد ٍشامض اىبٍبّبث ٍع تيبٍت 

.ٍتطيببث اىعَلاء ٍِ حٍث ج٘دة اىخذٍبث  

  الحوسبة السحابية، مركز البيانات، جدولة المهام، تخصيص الآلات الافتراضية، استهلاك الطاقة:الكلمات المفتاحية
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CHAPTER 1

Introduction

Cloud computing has rapidly emerged as a successful paradigm for providing IT

infrastructure, resources, and services on a pay-per-use basis over the past few years.

The wide use of cloud and virtualization technologies has resulted in the establishment

of large-scale data centers that offer cloud services. This evolution intensifies energy

consumption, that in turn causes the costs of data center ownership and increases the

carbon footprint. For these reasons, the significance of energy efficiency in data centers

and Cloud is on the rise. The importance of minimizing energy consumption in Clouds

is underscored by the fact that electricity consumption is expected to increase by 76%

from 2007 to 2030 (Liu et al. (2020)), with data centers contributing a significant por-

tion of this increase. The average data center is estimated to consume as much energy as

25,000 households, as per the Gartner report (Ghribi (2014)). Additionally, the McK-

insey report states that ”the total estimated energy bill for data centers in 2010 is 11.5

billion, and energy costs in a typical data center double every five years”. Energy-

efficient data center solutions have emerged as one of the most significant challenges

in response to the substantial amount of energy required to operate data centers and

the electronic detritus they generate. Idle electricity is a critical contributor to energy

inefficiency in data centers, as it is squandered when resources are not in use. Further-

more, the issue of low resource utilization is compounded by the fact that servers are

perpetually powered on, even when they are not in use, and they continue to utilize up

to 70% of their peak power. In order to resolve these issues, it is required to eliminate

power waste, enhance efficiency, and modify the allocation of resources. This thesis

concentrates on the development of energy-efficient task scheduling and resource allo-
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cation solutions at various Cloud levels. In addition to these obstacles, the solutions

that are provided must be scalable in multiple dimensions and cloud providers must

also cope with the increasingly complex requirements of their users. Users must deploy

their own applications with the topology they select, and they must maintain control

over both infrastructure and programs. Consequently, requested services are more so-

phisticated and comprehensive. The traditional three-layer paradigm is evolving, and

the convergence of IaaS and PaaS is regarded as a natural evolutionary progression in

cloud computing. Cloud resource allocation solutions must be sufficiently adaptable to

accommodate the changing cloud landscape and the needs of users. It is required that

we thoroughly examine this critical aspect of cloud levels in this thesis, as it is crucial

to our research. The issue of task scheduling and resource allocation in the Cloud is

extremely difficult to resolve while maximizing energy efficiency and adhering to the

mentioned dimensions. This study addresses the issue in this thesis by examining its

various aspects and levels in order to offer a comprehensive and generic approach, in

addition to a specific solution.

1.1 Contributions

Based on the objectives defined previously, the main contributions of this thesis are out-

lined:

We have achieved a survey of the state of the art on energy efficient task scheduling and

resource allocation in cloud environments.

1. An Energy-Aware Scheduling Model (EASM) for task scheduling in cloud comput-

ing. The objective of the proposed model is to reduce the energy consumption, exe-

cution time, and SLA violation. EASM works in two phases, i.e., pre-processing and

optimization with Adaptive Genetic Algorithm. In the first phase, tasks are allocated in

VMs. In the next phase, GA is used to optimize scheduling and find better solutions.

2. A Threshold Q-learning VM Migration (TQVM), a unique artificial intelligence VM

migration technique is introduced in this study. Two thresholds can be established by

the suggested algorithm. The migration virtual machines (VMs) as efficiently as pos-
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sible while using the least amount of energy and maintaining the necessary level of

service quality.

3. A Novel Task Scheduling and VM Placement (TSVMP) Optimizing energy con-

sumption and task scheduling using an modified genetic algorithm and resource alloca-

tion using double threshold Q-learning VM migration.

• The integration of genetic algorithms and deep learning for task scheduling and

VM allocation.

• The use of thresholds to balance the load and turn off underutilized servers.

• An adaptive learning to different loads which implies minimization of energy

consumption.

1.2 Thesis Organization

This thesis is structured around six chapters. In the following, the first chapter provides

a short description of the subjects treated by the subsequent chapters:

Chapter 2 - Cloud computing and energy consumption

This chapter delves into the fundamental principles of cloud computing and virtu-

alization. The issue of energy efficiency in Cloud data centers, the primary causes of

energy waste, energy measurement and modeling in Cloud environments, and present-

ing various power-saving techniques.

Chapter 3 - Background and State of the Art

This chapter described the main research efforts in the area of energy efficient Cloud

tasks scheduling and resource allocation.

Chapter 4 - Energy-aware scheduling of tasks in cloud computing

This chapter presents an Energy-Aware Scheduling Model (EASM) for task schedul-

ing in cloud computing. The objective of the proposed model is to reduce the energy

consumption, execution time, and SLA violation. EASM works in two phases, i.e.,

pre-processing and optimization with Adaptive Genetic Algorithm. In the first phase,

tasks with longer execution times are allocated in VMs with high processing capabili-
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ties. In the next phase, Genetic Algorithm is used to optimize scheduling and find better

solutions.

Chapter 5 - Energy-efficient resource management in cloud computing

The objective of this chapter is to migrate virtual machines (VMs) as efficiently as

possible while using the least amount of energy and maintaining the necessary level

of service quality. A Threshold Q-learning VM Migration (TQVM), a unique artificial

intelligence VM migration technique is exposed in this chapter. Two thresholds can be

established by the suggested algorithm.

Chapter 6 - Energy-aware task scheduling and resource allocation in cloud

computing

It reveals a novel Task Scheduling and VM Placement (TSVMP) in cloud comput-

ing are proposed in this chapter. The objective is to optimize energy consumption and

task scheduling using an modified genetic algorithm and resource allocation using dou-

ble threshold Q-learning VM migration.

The integration of genetic algorithms and deep learning for task scheduling and VM

allocation.

The utilization of thresholds to balance the load and turn off underutilized servers.

An adaptive learning to different loads which implies minimization of energy consump-

tion.

Chapter 7 - General Conclusion

In conclusion, this section summarizes our primary contributions and addresses fu-

ture work directions, challenges, and perspectives.
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CHAPTER 2

Cloud computing and energy consumption

2.1 Introduction

The significance of energy efficiency in cloud data centers is on the rise (Katal et al.

(2022)). The issue of power consumption has become increasingly vital due to the

widespread use and expanding scope of these units. Identifying the underlying causes

and conducting a comprehensive analysis of the issue is crucial prior to commencing the

resolution process. This chapter delves into the fundamental principles of cloud com-

puting and virtualization, that operates as its enabling technology. We delve deeper into

the issue of energy efficiency in Cloud data centers by examining the primary causes of

energy waste, introducing energy measurement and modeling in Cloud environments,

and presenting various power-saving techniques. Ultimately, we emphasize the thesis’s

orientation and focus.

2.2 Cloud Computing and Energy Efficiency

2.2.1 Cloud definitions

The term ”Cloud” has become one of the most frequently used terms in the IT industry

since 2007 (Marston et al. (2010)). There is no precise definition of cloud computing,

despite the efforts of numerous researchers to define it from various application per-

spectives. We have selected three definitions that are frequently cited, as follows:(Teng

(2011))

• (Foster et al. (2008)): “A large-scale distributed computing paradigm that is driven

by economies of scale, in which a pool of abstracted virtualized, dynamically-scalable,
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managed computing power, storage, platforms, and services are delivered on demand

to external customers over Internet.” As an academic representative, Foster focuses on

several technical features that differentiate cloud computing from other distributed com-

puting paradigms. For example, computing entities are virtualized and delivered as

services, and these services are dynamically driven by economies of scale.

• (Plummer and Cearley (2008)): “A style of computing where scalable and elastic

IT capabilities are provided as a service to multiple external customers using Internet

technologies.” Garter is an IT consulting company, so it examines qualities of cloud

clouding mostly from the point of view of industry. Functional characteristics are em-

phasized in this definition, such as whether cloud computing is scalable, elastic, service

offering or Internet based.

• (Mell and Grance (2010)): “Cloud computing is a model for enabling convenient,

on-demand network access to a shared pool of configurable computing resources (e.g.,

networks, servers, storage, applications, and services) that can be rapidly provisioned

and released with minimal management effort or service provider interaction.” Com-

pared with other two definitions. The U.S. National Institute of Standards and Technol-

ogy provides a relatively more objective and specific definition, that not only defines

cloud concept overall, but also specifies essential characteristics of cloud computing

and delivery and deployment models.

2.2.2 Deployment models

The manner in which clouds are deployed is contingent upon the purview of their uti-

lization. There are four principal cloud deployment models.(Patel and Kansara (2021))

2.2.2.1 Public cloud

Public cloud is the conventional cloud computing paradigm, in which a service provider

provides the general public with access to resources, including storage and applications,

via the Internet. Service providers establish fees on a fine-grained utility computing

basis. IBM’s Blue Cloud, Sun Cloud, Google AppEngine and Windows Azure Services

Platform are all examples of public clouds (Mboula (2021)).
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2.2.2.2 Private cloud

Private cloud appears to be more akin to a marketing concept than the conventional

mainstream definition. The architecture of the proprietary computing system is de-

scribed, this offers services to a restricted number of individuals on internal networks.

The private cloud is the preferred choice for organizations that require precise data man-

agement. This permits them to enjoy all the scalability, metering, and agility benefits

of a public cloud without sacrificing control, security, or recurring costs to a service

provider. Private cloud deployments are generated by both eBay and HP CloudStart

(Choukairy (2018)).

2.2.2.3 Hybrid cloud

Hybrid cloud is a common practice among most IT vendors, as it employs a hybrid

of public cloud, private cloud, and local infrastructures. Hybrid strategy involves the

allocation of duties in accordance with operational, compliance, and cost factors. In

order to provide services to the business, major vendors such as Oracle, VMware, HP,

and IBM develop suitable strategies for utilizing a hybrid environment. It is possible for

users to deploy an application that is hosted on a hybrid infrastructure, which consists of

some nodes that are operating on actual physical hardware and others that are running

on cloud server instances (Teng (2011)).

2.2.2.4 Community cloud

Community cloud overlaps with Grids to a certain extent. It is stated that cloud in-

frastructure is shared among multiple organizations within a private community. Mis-

sion, security requirements, policy, and compliance considerations are typically shared

among the organizations. A cross-boundary structure can be established by aggregating

community cloud with public cloud (Ghribi (2014)).
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2.2.3 Cloud service

Cloud computing capability is provisioned as services, essentially in three tiers: infras-

tructure, platform and software as the underlying delivery mechanism.(Armbrust et al.

(2009)).

2.2.3.1 Infrastructure as a Service

Infrastructure as a Service (IaaS) offers consumers processing, storage, networks, and

other fundamental computing resources. The infrastructure is capable of dynamically

scaling up and down, allowing IaaS users to deploy arbitrary applications, software,

and operating systems. The IaaS user transmits programs and associated data, while the

vendor’s computer performs computation processing and returns the outcome. In order

to satisfy user needs, the infrastructure is scalable, manageable, flexible, and virtual-

ized. Examples of IaaS include Amazon EC2 (Amazon Web Services (Amazon EC2).

(2025)), VPC(Amazon Web Services (Amazon VPC) (2025)), IBM Blue Cloud(IBM

Corporation. (2025)), Eucalyptus(Eucalyptus Systems Inc. (2025)), Joyent(Joyent Inc.

(2025)), and Rackspace Cloud(Rackspace US, Inc. (2025)).

2.2.3.2 Platform as a Service

Platform as a Service (PaaS) provides a comprehensive, integrated environment for the

development, testing, deployment, and hosting of applications that have been developed

by customers or acquired by them. In exchange for the inherent scalability of an applica-

tion, developers typically concede to certain limitations on the type of software that can

be written. The underlying infrastructure is not managed by PaaS customers, as is the

case with SaaS users. However, they have control over the deployed applications and

their hosting environment configurations. The primary objective of PaaS offerings is

to simplify the development of applications and the administration of associated issues.

Some are designed to offer a comprehensive development environment, while others are

limited to hosting-level services, including on-demand scalability and security. Google

App Engine(Google App Engine (2025)), Windows Azure(Windows Azure (Microsoft
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Azure) (2025)), Engine Yard(Google App Engine (2025)), Force.com(Salesforce Plat-

form (2025)), Heroku(Heroku – Cloud Platform for Apps. (2025)), and MTurk(Amazon

Mechanical Turk (MTurk) (2025)) are among the most common examples of PaaS.

2.2.3.3 Software as a Service

Software as a Service (SaaS) is a software delivery paradigm that enables users to ac-

cess applications through a straightforward interface, such as a web browser, over the

Internet. The consumers are not concerned with the fundamental cloud infrastructure,

that includes the network, servers, operating systems, storage, and platform. More-

over, this paradigm eliminates the necessity of installing and running the application

on local devices. Salesforce.com, that distributes business software on a subscription

basis rather than on a traditional on-premise basis, is the entity that popularized the

term ”SaaS.” One of the most well-known is the solution for its Customer Relationship

Management (CRM). SaaS has now become a prevalent delivery paradigm for the ma-

jority of business applications, such as accountancy, collaboration, and administration.

The family of SaaS-based services is enhanced by applications such as social media,

office software, and online games. For example, netSuite(Oracle NetSuite. (2025)),

Google Docs(Google Docs (2025)), Microsoft online(Microsoft Online (2025)), web

Mail(Gmail (2025);Outlook (2025);Yahoo (2025)), Facebook(Meta Platforms, (2025)),

and MMOG Games(World of Warcraft (2025);Final Fantasy XIV (2025)).

2.2.4 Virtualization and Cloud Computing

Cloud computing is primarily enabled by virtualization technology. It is founded on

the abstraction of physical resources, that permits the multiplexing of multiple virtual

resources on a single physical resource. Virtualization is employed to facilitate the

coexistence of heterogeneous services on the same physical infrastructure, as well as to

provide isolation, flexibility, higher resource utilization, simple resource management,

and resource elasticity.(Ghribi (2014))
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Fig. 2.1 Container based virtualization vs hypervisor based virtualization

2.2.4.1 Virtualization Forms

Virtualization incorporates a variety of technologies. Server virtualization, storage vir-

tualization, and network virtualization comprise the primary categories of virtualiza-

tion. The concept of physical resource abstraction and partitioning is the foundation

of all of these kinds. The major focus of this thesis is server virtualization, that is the

most prevalent resource abstraction technique in cloud computing. This type of virtu-

alization allows the operation of multiple isolated virtual servers on a single server and

can be implemented in a variety of ways. The implementation strategies encompass

full virtualization, para-virtualization, and OS-level virtualization. Para-virtualization

and full virtualization use a hypervisor to share the underlying hardware. However,

they differ in the manner in which the host and guest operating systems are modified

to support virtualization and in their interactions with one another. Operating system

level virtualization does not employ a hypervisor, in contrast to full virtualization and

para-virtualization. Therefore, server virtualization can be categorized into two pri-

mary categories: hypervisor-based virtualization and OS or container-based virtualiza-

tion, depending on the method by which virtualization is accomplished. The following

section provides additional information regarding this classification.

2.2.4.2 Server virtualization categories

In Cloud computing, there are two primary methods for virtualizing resources: container-

based virtualization and hosted virtualization, that utilizes a hypervisor.
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Hypervisor based virtualization: The conventional method of virtualization in

the Cloud is hypervisor-based virtualization. The physical server resources are man-

aged by a software layer known as a hypervisor, that is the foundation of this technol-

ogy. KVM(KVM (2025)), VMWare(VMware (2025)), Microsoft Hyper-V(Microsoft

(2025)), Xen(Project (2025)), and Virtual Box(VirtualBox (2025)) are all examples of

hypervisors. On the same physical host, guests are referred to as virtual machines

(VMs) and operate under a variety of operating systems, including Linux and Windows.

Despite the introduction of an additional software layer by this form of virtualization,

it facilitates the consolidation of resources into virtualized servers(Srikantaiah et al.

(2008)) and provides a live migration feature(Travostino et al. (2006)) that allows VMs

to be transferred to other servers without the need to close them down.

Container based virtualization: Container-based virtualization is a more lightweight

alternative to hypervisors (Soltesz et al. (2007))(Xavier et al. (2013)). It is technology

that operates at the operating system level and enables the operation of multiple iso-

lated virtual environments on the same host. In contrast to traditional virtual machines

(VMs), containers are built on shared operating systems and utilize a single operat-

ing system (the host’s OS). The distinction between the two types of virtualization is

illustrated in Figure 2.1. Docker(Docker (2025)), Linux containers (LXC)(Containers

(2025)), Solaris Containers(Oracle (2025)), Virtuozzo Containers(Parallels (2025)), and

OpenVZ(OpenVZ (2025)) are among the container-based solutions. Hypervisor-based

virtualization is more suitable for situations where security and flexibility are necessary,

as well as when heterogeneous operating systems are required. When performance is

necessary, container-based virtualization is a practical solution. It offers superior man-

ageability with near-native performance, as well as a significantly higher consolidation

ratio and the most efficient resource utilization, as it supports a large number of in-

stances on a single host. This solution offers portability, transport, and process-level

isolation across hosts, in addition to being lightweight. Despite their distinctions, hy-

pervisors and container-based virtualization are not mutually exclusive; rather, they

are increasingly employed in conjunction. The deployment of complex services that
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combine both applications and underlying infrastructures over hybrid IaaS/PaaS cloud

providers is facilitated by the use of both container-based virtualization and hypervi-

sors, that are commonly used to build lightweight PaaS environments and IaaS Cloud

services, respectively. Certain solutions, such as Proxmox (Proxmox (2025)), provide

both technologies on a single physical server.

2.2.5 Quality of Service (QoS)

In cloud computing environments, the Quality of Service (QoS) is typically denoted by

high-level parameters (Mboula (2021)). A Service Level Agreement (SLA) is a contract

between a cloud user and its cloud service provider that specifies the values that must

be satisfied for the various parameters. There are four categories into which these var-

ious QoS parameters within a cloud can be classified(Guérout (2014)): dependability,

performance, security and data, and cost. We will only discuss the numerous existing

parameters in our work. An exhaustive enumeration can be found in (Guérout (2014)).

2.2.5.1 Performance and dependability category

The Performance category includes two key metrics: Execution Time and Response

Time. Execution time depends on the capacity of the virtual machine and the complex-

ity of the request, particularly in terms of the number of instructions to be executed.

Response time refers to the interval between the submission of a user request and the

reception of the corresponding response from the service. It represents the time needed

to make a service available and usable for the user, serving as a measure to evaluate the

service’s efficiency.

The Dependability category focuses on Reliability, which can be defined in different

ways. According to (Endo et al. (2017)), reliability is the ability of a component to per-

form its required functions within a defined time frame and under specified operational

conditions. Zhang and Chakrabarty (2003) describe system reliability as the probabil-

ity of successfully completing a task without errors. Additionally, (Garg and Mittal

(2019)) highlight that the reliability of computational nodes is particularly crucial for

computation-intensive applications.
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2.2.5.2 Cost category

The cloud provider establishes the service cost in relation to the user’s selection of

service and the service’s duration. A common invoicing model for the leasing of virtual

machines is hourly-based. In other words, each partial hour consumed will be adjusted

up to a full hour. For example, 1 hour and 1 minute (61 minutes) will be regarded as 2

hours (120 minutes) of utilization. The service cost will be determined by multiplying

the total number of hours by the unit hour cost of the VM.

2.2.5.3 Energy consumption

The energy required to operate an equipment over a specified time period is denoted

by the kilowatt-hour (kWh) energy cost. It is determined by the capacity (in watts)

and duration of use (in hours) of the apparatus (physical machine, for instance). A

composite unit of energy, the kilowatt-hour (kWh) is equivalent to one kilowatt (kW)

of electricity that is sustained for one hour.

2.2.6 Data center architecture

For a sake of establishing the context of the energy consumption issue in a Cloud, we

will examine the operation of a data center that is responsible for the processing of

Cloud services and identify the equipment that consumes the most energy. A data cen-

ter is defined by a collection of components and systems, including the power supply

system, the refrigeration system, the air distribution system, and the servers, as illus-

trated in Figure 2.2. Each of these systems will be introduced in this section.(Choukairy

(2018))

2.2.6.1 Power supply

A PSU (Power Supply Unit) is the device that provides power to each server. This

device is subsequently powered by a secure electrical network that originates from the

power supply unit, that comprises two devices: the UPS (Uninterrupted Power Supply)

and a PDU (Power Delivery Unit). A series of devices are established to guarantee a
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Fig. 2.2 General architecture of a data center.(Choukairy (2018))

stable and permanent power supply, that must be greater than 99% (Relaza (2016)), in

order to assure the availability of the data centers. The electrical energy from the main

network is initially directed to the UPS to supply power to the various PSUs. In the

event of a primary power failure, the latter reserves a substantial quantity of electrical

energy in batteries and subsequently restores it. The servers must be powered by the

rectified and transformed alternating current that is produced at the device’s output. The

PDU is responsible for distributing the load among the numerous units.

2.2.6.2 The cooling system

To ensure the reliability of servers, it is crucial to regulate the heat they emit by main-

taining suitable temperature and humidity levels. The Joule effect performs, in fact,

convert nearly all of the energy consumed by the apparatus into heat. In order to achieve

this aim, the data center’s temperature is maintained by a refrigeration system. This

chilling can be accomplished through the use of either air or water. In general, cooling

techniques are solutions that rely on the direct use of the external environment (air or

water) in its ambient conditions to achieve chilling, either in full or in part. Figure 2.2

(Beloglazov et al. (2011)) illustrates a cold air conditioning system. It is responsible

for perpetually capturing the heated air generated by the IT equipment, conditioning it

to the desired frigid temperature, and then blowing it into the room. The cooling sys-

tem is typically comprised of circulation compressors, a CRAH (Computer Room Air
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Handling) unit, and a heat pump (PAC). A condenser is located within the PAC and is

chilled by a water conditioning structure. The CRAH is equipped with a fan that guar-

antees the circulation of both supply and return air. Lastly, the water in the primary and

secondary circuits of the system is circulated by circulation pumps, that are denoted by

the letter P in Figure 2.2.

2.2.6.3 Air distribution system

The air distribution system (ADS) employs a method that is designed to direct the frigid

air generated by the CRAH unit to the computer servers, while simultaneously extract-

ing the heated air that is rejected by the servers to condition it in the cabinet (rack)

(Erden et al. (2016)). In the majority of current data centers, the air travels at a high

velocity and exhibits turbulent behavior. The major obstacle of the distribution system

is to regulate the amount of mingling between the frigid air that is intended to chill the

servers and the heated air that must be evacuated. Therefore, the ADS is of paramount

significance to the data center’s effective operation, despite the fact that it is not com-

posed of physical elements and, as a result, does not assimilate energy. For instance, in

Figure 2.2, the distribution system is symbolized by arrows with the letter F to represent

frigid air and arrows with the letter C to represent heated air, symbolizing the air fluxes

in the data center. Hot air is captured at the ceiling level, while cold air is released at

the floor level in close proximity to the IT (Information Technology) equipment. Hot

Aisle/Cold Aisle is the term used to describe this configuration.

2.2.6.4 Computer servers

The operating mode of all ancillary installations is determined by these components.

They are arranged in racks (or computer cabinets) of five floors, as illustrated in Figure

2.2. The CPU, memory and disk are also the primary components of the server that

consume the most energy, as demonstrated in Figure 2.2. The CPU is the element that

consumes the most energy among these components (Djouhra (2016)). The IT portion

is comprised of all of these components and is responsible for the processing of the

tasks that are received by the servers. The PSU (Power Supply Unit) is the source of
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power for the IT component.

2.2.7 Energy Efficiency in Cloud Data Centers

Cloud computing consumes a large amount of energy, which is a major concern. This

high energy use mainly comes from servers, storage, networking devices, and cooling

systems. It is often caused by poor resource usage, idle servers, and unbalanced task

distribution. To reduce this, solutions like virtualization, dynamic resource allocation,

and smart scheduling are used.

2.2.7.1 Issue of High Energy Consumption in the Cloud

Energy consumption is a vital concern in cloud computing environments, as indicated

in the introductory section of this chapter. Moore’s law (Moore (1998)) explains that

the capacity of data centers has been expanded by the efficient design of the system and

the increasing density of the component(s). As a result, the efficacy per watt ratio has

been consistently enhanced; however, the total power consumed by computer systems

has not significantly decreased. The energy consumption of data centers alone will rise

from 200 TWh in 2016 to 2967 TWh in 2030 (Katal et al. (2022)). Consequently, it

is imperative to identify the primary causes of the issue of cloud power and energy

consumption.(Mboula (2021))

2.2.7.2 Sources of excessive energy consumption

There is no doubt that energy consumption is also influenced by power delivery in-

frastructure and refrigeration equipment, as they are perpetually supplying power to

equipment. Nevertheless, the inefficient allocation of server resources is the main cause

of half of the data center’s energy waste (Koot and Wijnhoven (2021)). Efficiency can

be managed at various levels of a computing system (Piraghaj et al. (2017)) (refer to

Figure 2.3). While it is challenging to obtain precise information regarding the uti-

lization of cloud resources by cloud providers. Various studies have demonstrated the

general trend of cloud resource utilization. Cloud infrastructures are actually under-

utilized. Approximately 52% of cloud resources are classified as highly underutilized
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Fig. 2.3 Energy consumption incurred at divers levels in computing systems.(Mboula
(2021))

(Khan et al. (2020)), with a significant number of them remaining inactive or having

been used sparingly. The cluster is only 20% – 40% utilized, according to researchers

who analyze Google traces (Khan et al. (2020)). Resource management techniques, that

are designed to increase the rate of resource utilization, can result in substantial energy

savings in data centers, despite the significant under-utilization of resources(Khan et al.

(2020)). One of the most frequently proposed techniques for increasing the rate while

reducing energy consumption is the consolidation of virtual machines.

2.2.7.3 Energy consumption reduction approaches

From Figure 2.3, it is evident that there are three primary levels from which the energy

consumption of the system can be reduced through effective management: the physical

machine level, virtual machine level, and application level. Although the PaaS user is

accountable for the application level, the provider is responsible for the other two.

Among the existing energy reduction approaches we have the following:

Switching idle servers off:
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This method involves the shutdown of servers that are not in useless. It has the po-

tential to substantially reduce server consumption by ensuring that servers are powered

down, thereby achieving near-zero energy consumption. Nevertheless, prior studies

that implemented this methodology encountered challenges in ensuring service-level

agreement as a result of the absence of a dependable instrument for forecasting future

demand to facilitate the decision-making process for turning off/on (Duy et al. (2010)).

VMs/workload consolidation:

The technique of energy-efficient dynamic VM consolidation permits cloud environ-

ments by the ability to migrate VMs at runtime from one physical host to another. The

first technique can be utilized to disable the second technique, that increases the load of

one host at the expense of another. (Beloglazov (2013)) have conducted a comprehen-

sive investigation of that technique.

The Dynamic Voltage and Frequency Scaling (DVFS):

This method involves the dynamic adjustment of the frequency of the CPUs in tangible

devices in accordance with their utilization rates. In order to reduce power consumption,

the intended is to reduce the supply voltage of the CPU, that in turn reduces the clock

frequency (Herbert and Marculescu (2007)).

2.2.7.4 Potential power consuming units in cloud data centers

It is crucial to investigate the power transfer in typical data centers and comprehend the

distribution of power in order to enhance energy efficiency in the Cloud. In reality, the

IT tasks are receiving over half of the electrical power (refer to Figure 2.4). Servers

account for 80% of the total IT demand and 40% of the total data center power con-

sumption, as indicated in the Environmental Protection Agency’s Report to Congress

on Server and Data Center Energy (Environmental Protection Agency (EPA) (2007)).

The remaining power is consumed by other devices, including distribution wiring, air

conditioners, compressors, illumination, and transformers.

The power consumption of refrigeration equipment is decisive; however, it is di-
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Fig. 2.4 Typical power draw in a data center. (Ghribi (2014))

rectly proportional to the power consumption of IT. The power consumption of cooling

can be reduced by utilizing technologies such as free cooling, that are employed by

large corporations (e.g., Google, Facebook, eBay). These methods reduce the tempera-

ture of the air in data centers by employing naturally chilly air or water, as opposed to

mechanical refrigeration. Consequently, the electrical power required for refrigeration

has been significantly reduced. Zero refrigeration is feasible in numerous climates, that

can result in savings of up to 100%. (Ghribi (2014))

2.2.7.5 Major causes of energy waste

Servers are the primary power consumers in cloud data centers, as previously stated.

The primary causes of this substantial consumption are as follows:

Low server utilization:

The quantity of servers is increasing in tandem with the expansion of data centers.

The majority of servers in data centers are underutilized. The Natural Resources De-

fense Council (NRDC) report ( (NRDC))(Natural Resources Defense Council (NRDC)

(2014)) indicates that the average server utilization remained constant between 12% and

18% from 2006 to 2012, while servers consumed between 60% and 90% of peak power.

By consolidating virtual servers on a smaller number of hosts. It is possible to operate

the same applications with significantly reduced power consumption. The number of

servers required and the overall energy consumption will be significantly reduced by
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increasing server usage.

Idle power waste:

Data center servers are idle and do not perform any valuable tasks for approximately

85-95% of the time(Natural Resources Defense Council (NRDC) (2014)). Even when

not in use, a dormant server consumes approximately 70% of its maximal power (Naone

(2009)). This energy inefficiency is primarily caused by the waste of inactive power.

Therefore, it is feasible to disable inactive servers in data centers in order to mitigate

energy consumption.

Lack of a standardized metric of server energy efficiency:

In order to guarantee energy efficiency optimizations, it is crucial to employ an energy

efficiency metric to arrange servers based on their energy efficiency. This metric en-

ables scheduling algorithms to make judgments and select the most efficient resources

to optimize energy efficiency. Despite the emergence of a few metrics that concentrate

on IT efficiency in recent years (Naone (2009)), they do not offer a straightforward

benchmark that can be used to drive the optimization of energy efficiency ( (NRDC)).

Energy efficient solutions are still not widely adopted:

According to the NRDC report( (NRDC)), numerous large-scale cloud farms demon-

strate exceptional energy efficiency; however, they account for less than 5% of the

energy consumed by global data centers. The average efficiency of the remaining 95%

of small, medium, corporate, and multi-tenant operations is significantly lower. There-

fore, it is imperative that energy efficiency best practices are more widely implemented,

particularly in the case of small and medium-sized data centers, that are notoriously

inefficient and utilize approximately half the power of all data centers.

2.2.8 Power measurement and modeling in Cloud

It is crucial to recognize the relationship between power and energy and to present their

units of measurement prior to engaging in power and energy measurement and model-
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ing. Power consumption is the rate at which a machine can operate and can be calcu-

lated by multiplying voltage and current, whereas electrical energy is the total quantity

of power consumed over a specific period. The watt (W) is the standard metric unit of

electricity, while the watt-hour (Wh) is the unit of energy. The definitions of power and

energy are illustrated in Eq. 2.1 and 2.2, where P represents power consumption, I is

current, V represents voltage, E represents energy and T represents a time interval and

is expressed as:

P = IV (2.1)

E = PT (2.2)

In order to quantify the consumption of power and energy in the cloud, we distin-

guish between power and energy estimation models and measurement techniques. The

initial one employs immediate monitoring tools to directly measure actual power con-

sumption. Power metering models estimate the power consumption of servers and VMs

by utilizing metrics provided by the operating system or the hardware.

2.2.8.1 Power and energy estimation models

Models that estimate the power and energy consumption, as well as the power cost of

virtual machine migration, are becoming increasingly appealing for power metering,

since the majority of servers in contemporary data centers lack power measurement

devices and VM power cannot be measured by sensors. Data center energy efficiency

metrics are introduced in this section, that also provides a general overview of power

estimation models and tools in the Cloud.

Power and energy modeling for servers:

In the literature, power consumption models for servers have been extensively inves-

tigated (Basmadjian et al. (2011)) and range from complex to uncomplicated. CPU-

based linear models are a straightforward and lightweight method for estimating the

power consumption of servers, as the CPU is the primary energy consumer and the
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relationship between power and CPU utilization is linear (Kansal et al. (2010)). Sim-

ple usage-based power models for servers are proposed in (Economou et al. (2006)),

(Heath et al. (2005)), (Raghavendra et al. (2008)), and (Beloglazov and Buyya (2010)).

The power models they present are based on the assumption that the CPU is the sole

factor and present an approximation for total power in relation to CPU utilization (u).

This study investigates the utilization of central processing units (CPUs) to ascertain

the amount of electricity that tangible devices utilize. About 70% of the power of a

physically active machine is used when it is inactive. So, the power consumption (u) as

CPU utilization is defined as in Eq. 2.3.(Saadi and El (2020))

P (ui) = Pmax(0, 7 + 0, 3ui) (2.3)

Another equation (Equ.2.4) can be used to estimate the power consumption of a

server based on its utilization level. This more flexible model takes into account both

the minimum and maximum power of the server, thus enabling a more realistic energy

representation: (Goyal et al. (2021))

P (ui) = Pmin + ui(Pmax − Pmin) (2.4)

where ui represents the current CPU utilization, Pmin is the idle power and Pmax

represents the maximum power of a physical system that is operating at 100% CPU

utilization.

CPU utilization is defined as a function of time u(t), since it changes over time.As

a result, Eq. 2.5 establishes a physical machine’s (PMi) total energy consumption:

Ei =

∫
P (u(t)) dt (2.5)

2.3 Conclusion

The concepts of cloud computing and virtualization were introduced in this chapter, and

the issue of energy efficiency in the cloud was examined. The major causes of energy
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waste in Cloud data centers were discussed, as well as, the methodologies for energy

measurement and modeling. Additionally, the power-saving techniques employed in

Cloud data centers were described. A discussion of the orientation and focus of this

thesis has also concluded this chapter. The subsequent chapter delves deeper into the

issue of task scheduling in the cloud. We offer state-of-the-art solutions and background

information for energy-efficient task scheduling. Subsequently, we deliberate on the

challenges and issues that are pertinent.
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CHAPTER 3

Background and State of the Art

3.1 Introduction

Many research studies have focused on the energy problem. These works are differ-

ent disciplines. Their main objective is to reduce energy consumption. This chapter

presents our study of the works and provide a synthesis of the work related to our main

objective in this thesis. Existing state-of-the-art approaches and models must be ex-

amined and analyzed in order to offer effective solutions, approach the problem from

many perspectives, and manage its limitations. The state of the art is presented in this

chapter and a given summary of the current state of the art in this area at various levels

and dimensions is provided.

3.2 Categories of solutions

In this review, the various task scheduling and resource allocation algorithms found

in the literature are categorized into four types: Threshold-Based Scheduling, meta-

heuristic algorithms, hybrid meta-heuristic and Machine learning based algorithms (Khan

et al. (2023)).

1. Threshold based algorithms are simple but can be rigid, relying on static limits

for power and workload management.

2. Meta-heuristic algorithms constitute high level strategies, independent of any

specific problem, making them applicable to a wide range of problems. Particle Swarm

Optimization and Genetic Algorithm are two prominent meta-heuristic algorithms used

across many disciplines.
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3. Hybrid meta-heuristic algorithms utilizes more than one meta-heuristic algo-

rithm to schedule tasks and allocate resources on the cloud. Hybridizing two meta-

heuristic algorithms are intended to alleviate potential weaknesses in a specific meta-

heuristic algorithm.

4. Machine learning based algorithms: provide predictive capabilities and adapt

to dynamic workloads, making them suitable for minimizing real-time energy consump-

tion.

3.2.1 Threshold-Based Scheduling

Threshold-based algorithms rely on predefined values (e.g., CPU usage or energy) to

guide task allocation or migration. They are simple and fast, making them suitable

for real-time systems, though they lack adaptability. Several studies have proposed

enhancements to improve their performance.

Maurya and Sinha (2013) introduce a load balancing strategy that is both energy-

conscious and power-aware. In addition, it is based on the adaptive migration of virtual

machines (VMs). This strategy will be implemented for virtual machines on the cloud,

with a focus on the establishment of both higher and lower thresholds for the migration

of virtual machines to the servers. Authors also take into account RAM and bandwidth

in order to optimize performance and balance loads. In the event that the load exceeds

or falls below the predetermined upper and lower thresholds, the virtual machines will

be migrated accordingly, thereby increasing the cloud data center’s resource utilization

and decreasing their energy consumption. To decrease the number of migrations, au-

thors implement a minimum migration time policy. This policy is capable of reducing

the number of migrations and the energy consumption of virtual machine migration, as

well as achieving load balancing and meeting service level agreement (SLA) require-

ments.

Li et al. (2019) implement a tradeoff strategy that enables the attainment of optimal

energy consumption with a delay threshold. Initially, the function of the delay thresh-

old in the reduction of delay is discussed. Then, the queue theory to analyze the energy
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Table 3.1 Taxonomy of algorithms based on thresholds

Author and year Technique Performance metric

Maurya and Sinha (2013)
Thresholds
VM migration

Energy consumption
migration number
SLA violation.

Malik et al. (2021)
Task classification
Thresholds
PSO

Energy consumption
Resource usage

Saadi and El (2020)
Thresholds
VM consolidation Energy consumption

Hijji et al. (2022)
DVFS
Thresholds

Energy consumption
SLA violation

Adhikari and Patil (2013)
Thresholds
VM consolidation

Energy consumption
Resource usage
SLA violation

Semmoud et al. (2020) Thresholds
Response time
Migration cost

Awasthi et al. (2022)

Task classification
Thresholds
PSO
ESCEL

Energy consumption
Resource usage

Shally et al. (2020)
Thresholds
VM consolidation Energy consumption

Karim et al. (2024)
Modified ABC
Thresholds

Energy consumption
Resource usage

Singh and Kumar (2022)
Thresholds
MAMFO
DT-ESAR

Energy consumption
CPU and Memory usage
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consumption and latency of the cloud server layer, fog node layer and mobile terminal

layer is used. The energy optimization problem is resolved through the application of

nonlinear programming, that determines the optimal workload for every layer. In order

to mitigate energy consumption, authors develop a cloud-fog cooperation scheduling

algorithm.

Malik et al. (2021) investigate the issue of energy consumption and the efficient uti-

lization of resources in virtualized cloud data centers. Task classification and thresholds

are the foundations of the proposed algorithm, that is designed to optimize resource uti-

lization and scheduling. In the initial phase, workflow tasks are preprocessed to prevent

bottlenecks by separating tasks with lengthy execution periods and more dependencies

into distinct queues. Tasks are categorized according to the intensity of the necessary

resources in the subsequent steps. Ultimately, the optimal schedules are determined

through the application of Particle Swarm Optimization (PSO).

In (Saadi and El (2020)), the authors suggest an Energy-Efficient Strategy (EES)

for consolidating virtual machines in a cloud environment. The objective is to reduce

energy consumption while simultaneously completing a greater number of tasks with

the maximum possible throughput. The performance-to-power ratio is employed in

their proposal seeking upper thresholds for over detection. In addition, EES establishes

lower thresholds by taking into account the overall data center workload utilization, that

can decrease the frequency of virtual machine migrations..

The paper of Hijji et al. (2022) aims to address the challenges associated with en-

ergy conservation in gaming data centers by utilizing dynamic voltage and frequency

scaling techniques. Additionally, to assess the dynamic voltage and frequency scaling

techniques in comparison to static threshold detection and non-power-aware techniques.

The results will assist service suppliers in overcoming the quality of service and expe-

rience limitations by adhering to the Service Level Agreements.
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DT-PALB (Double Threshold Energy Aware Load Balancing) is an algorithm that

maintains the state of all compute nodes and determines the number of compute nodes

that should be operational based on utilization percentages (Adhikari and Patil (2013)).

An Adaptive Threshold-Based Approach. Researchers suggest a new method for

dynamic consolidation of virtual machines (VMs) that is based on adaptive utilization

thresholds. This method guarantees a high level of compliance with Service Level

Agreements (SLAs).

The authors Semmoud et al. (2020) suggest a novel distributed load balancing al-

gorithm that is predicated on an adaptive starvation threshold. It endeavors to maintain

the stability of the system, minimize the response time of the cloud, maximize the uti-

lization rate of the servers, decrease the overall migration cost, and balance the load

between the servers. based Load Balancing (STLB) algorithm which is a distributed

load balancing algorithm. Unlike many methods that execute the load balancing al-

gorithm even if all the nodes are busy, STLB does not start until at least one VM is

close to starvation which drastically reduces the number of migrations. To reduce the

complexity of the proposed algorithm and the number of exchanged messages, only the

direct neighbors were considered for information gathering. Indeed, using an extended

node’s neighborhood may lead to an additional overhead cost due to the management

of non direct neighbors that could participate in the load balancing process. The global

workload will be asynchronously and iteratively propagated between direct neighbors

until reaching the global equilibrium in the system.

The authors of (Awasthi et al. (2022)) discuss the issue of energy consumption and the

efficient utilization of resources in virtualized cloud data centers. Task classification and

thresholds are the foundations of the proposed algorithm, that is designed to optimize

resource utilization and scheduling. In the initial phase, workflow tasks are prepro-

cessed to prevent bottlenecks by separating tasks with lengthy execution periods and

more dependencies into distinct queues. This paper suggests an algorithm that would

facilitate the efficient allocation of server resources. In order to optimize resources for

optimal performance, this study implemented PSO and ESCEL (Equally Spread Cur-

rent burden Execution) to balance the load assigned to the servers.
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Using dynamic thresholds, a novel approach has been suggested by Shally et al. (2020).

Thresholds are employed to consolidate virtual machines (VM) on physical machines

(PM). In an effort to mitigate the energy consumption of the physical devices in the

data centers, a dynamic threshold selection method is implemented. The upper and

lower thresholds are dynamically established in accordance with the CPU utilization

pattern that has been observed.

The authors Karim et al. (2024), suggest a novel, efficient algorithm for the deploy-

ment of virtual machines in a cloud computing environment. This method utilizes a

modified artificial bee colony optimization algorithm to identify underutilized physical

machines by analyzing energy consumption and resource allocation charts. An adap-

tive threshold method is subsequently suggested to identify underutilized physical host

devices by selecting appropriate threshold levels for energy consumption.

Singh and Kumar (2022) introduce the energy-efficient multi-objective adaptive Manta

ray foraging optimization (MAMFO) as a method for optimized workflow planning. It

also optimizes multi-objective factors, including CPU and memory utilization and en-

ergy consumption. Dynamic Threshold with Enhanced Search and Rescue (DT-ESAR)

is made available for the virtual machine consolidation System. The dynamic threshold

identifies the hosts that are normalized, overutilized, and underutilized. The threshold

number is used by ESAR to migrate the virtual machines from one host to another. The

framework that has been suggested enhances energy efficiency and reduces the duration

of the process flow.

3.2.2 Meta-heuristics

This category comprises studies based on meta-heuristic algorithms. It showcases

scheduling techniques that utilize a single meta-heuristic algorithm in addition to other

strategies.
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Table 3.2 Taxonomy of meta-heuristic algorithms

Author and year Technique Performance metric

Choudhary and Perin-
panayagam (2022)

PSO
Energy consumption
Execution time

Pradhan et al. (2022)
DRL
PPSO Execution time

Saif et al. (2023)
MOP
NPSO
MLLF

Energy consumption
Delay

Alsaidy et al. (2020)
LJFP
MCT
PSO

Convergence speed
Performance

Ibrahim et al. (2018)
ILP
GA

Energy consumption

Pirozmand et al. (2021)
GA
ECS

Energy consumption
Time

Imene et al. (2022) GA
Energy consumption
cost
Execution time

Hoseiny et al. (2021) PGA
Energy consumption
Execution time
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3.2.2.1 Particle Swarm Optimization(PSO)

A novel approach based on multi-objective optimization is utilized with CloudSim as

the underlying simulator in order to evaluate the virtual machine allocation perfor-

mance. In (Choudhary and Perinpanayagam (2022)), authors determine the energy

consumption, CPU utilization, and number of executed instructions in each schedul-

ing interval for complex virtual machine scheduling solutions to improve the energy

efficiency and reduce the execution time. Based on the results, multi-objective PSO

(particle swarm optimization) optimization can achieve better and more efficient effects

for different parameters than multi-objective GA (genetic algorithm) optimization can.

Pradhan et al. (2022) describe a parallel computing scheduling algorithm known as

the Deep Reinforcement Learning with Parallel PSO (DRLPPSO) algorithm. This al-

gorithm uses both the DRL learning algorithm and the Parallel PSO algorithm. Authors

use the DRL learning technique to train their neural network to receive the greatest re-

ward. Using Parallel Particle Swarm Optimization (PPSO), the overall processing time

of all incoming load is decreased. This scheduling approach is intended to enhance

different load balancing parameters in a shorter time period than other common current

scheduling algorithms in a cloud environment.

Saif et al. (2023) introduce a novel Multiple-objective Problems (MOP) approach,

the Non-dominated Particle Swarm Optimization (NPSO) algorithm, for workload dis-

tribution in cloud-fog computing. The mathematical framework used in the study to

describe energy consumption and delay functions is queue theory. To tackle the delay

optimization problem, authors propose the Modified Least Laxity First (MLLF) method

to minimize the delay threshold and an external archive to save the non-dominated so-

lution from the Pareto optimum solutions.

In (Alsaidy et al. (2020)), heuristic techniques are employed to supplement the PSO

algorithm for task scheduling. The PSO particles are heuristically initialized using the

longest job to fastest processor (LJFP) and Minimum Completion Time (MCT) algo-

rithms. Starting the search process using LJFP and MCT-based methods can consider-

ably improve convergence speed and performance. It should be noted that the suggested
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heuristic initialization of the PSO population generates initial particles that all begin the

search process from the same beginning point.

3.2.2.2 Genetic Algorithm (GA)

Ibrahim et al. (2018) focus on the development of a dynamic task scheduling algo-

rithm by proposing an Integer Linear Programming (ILP) model that reduces energy

consumption in a Cloud data center. In order to accommodate the dynamic nature of

the cloud environment and provide a scheduling solution that is virtually optimal in

terms of energy consumption, an adaptive genetic algorithm (GA) is recommended.

The proposed adaptive GA is validated in this environment by conducting a series of

performance and quality evaluation studies and simulating the Cloud infrastructure.

In (Pirozmand et al. (2021)), a two-step approach known as the Genetic approach

and Energy-Conscious Scheduling Heuristic (GAECS) is introduced with the goal of

saving time and energy. In the GAECS method, authors employed the Genetic method

to generate optimum schedules and three ranking algorithms to generate main chromo-

somes. The authors also employed the ECS algorithm, an energy-aware approach, to

improve resource allocation to processors. The GAECS algorithm generates the first

three primary chromosomes using three prioritization algorithms, then passes the pri-

mary chromosomes to the GA, who completes the primary population using the Genetic

Algorithm. Then, using the prescribed crossover and mutation operators, improved

chromosomes are chosen, and lastly, the optimal chromosomes are chosen in terms of

time and energy.

In (Imene et al. (2022)), a third-generation Multi-objective optimization method

known as Non-dominated Sorting Genetic Algorithm (NSGA-III) is used for the first

time in their knowledge to schedule a set of user tasks on a set of available virtual

machines (VMs) in the cloud based on a new Multi-objective adaptation function to

minimize the runtime (TE), power consumption (CE), and cost.

Hoseiny et al. (2021) examine task scheduling in fog-cloud computing systems with

diverse computational nodes. Authors classified jobs based on their characteristics, such

as deadlines and instructions, to identify a suitable setting for each. authors introduced
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PGA, a priority-aware evolutionary algorithm that optimizes computing time, energy

usage, and task completion rate.

3.2.2.3 Simulated Annealing Algorithm (SA)

Feng et al. (2021) examine a global-energy-consumption virtual machine placement

(VMP) model that considers the utilization of both IT and non-IT resources. The server,

virtual machine, and network consumption model are all factors that authors take into

account when evaluating IT resources. The cooling system and the heat recirculation

paradigm of data centers are considered for non-IT resources. In order to resolve the

NP-hard VMP problem, they implement a two-step algorithm, simulated annealing and

greedy algorithm (SAG). The Simulated Annealing algorithm (SA algorithm) is the

foundation of the initial phase, that is designed to reduce the energy consumption of the

server and cooling system. The Greedy algorithm is employed in the second phase to

reduce the energy consumption of the network.

3.2.2.4 Water Wave Optimization (WWO)

An Energy-Aware algorithm for workflow Scheduling in cloud computing with Virtual

Machines Consolidation (EASVMC) is proposed (Medara et al. (2021b)). To address

the multi-objectives of energy consumption, resource utilization, and virtual machine

migrations, the proposed EASVMC approach is modeled. Task scheduling and virtual

machine consolidation (VMC) are the two phases of the EASVMC algorithm. The

task with the maximum execution length is assigned to the virtual machine that will

execute it with the least amount of energy during the initial phase. A prominent NP-

hard problem is the virtual machine consolidation, that is included in the second phase.

The physical hosts are categorized into normal load, under-loaded, and overloaded hosts

during the VMC phase, as determined by their CPU utilization. Double threshold values

are employed for this purpose. Virtual machines from under-loaded and overcrowded

hosts are transferred to hosts that are normal loaded. The authors employed the Water

Wave Optimization (WWO) algorithm, a meta-heuristic approach inspired by nature,

during the VMC phase. This algorithm determines an appropriate migration strategy to
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reduce energy consumption by optimizing resource utilization and turning off idle hosts

after migrating their virtual machines to an appropriate target host.

The proposed Energy-Deadline Aware Task Scheduling using the Water Wave Op-

timization (EDATSWWO) in (Medishetti et al. (2025)) optimizes task scheduling in

multi-cloud systems by reducing energy usage, execution time, and meeting deadlines.

The method utilizes Water Waves Optimization to balance execution time, energy effi-

ciency, and task priority restrictions.

Rambabu Medara (2023) divide servers into three categories: underloaded, over-

loaded, and typically loaded depending on CPU load. The system distributes a few

virtual machines (VMs) from overloaded machines to usually loaded ones for load bal-

ancing. It also moves all VMs from underloaded machines to normally loaded servers

to eliminate idle servers. The modified water wave optimization (MWWO) technique is

used to create a migration strategy that reduces server overload and maximizes resource

efficiency. Overloaded hosts spend more energy over time compared to typical hosts.

3.2.2.5 Salp Swarm algorithms based Integration

Gharehpasha et al. (2020) introduce a novel approach to the optimal deployment of

virtual machines by combining the Sine-Cosine and Salp Swarm algorithms as discrete

multi-objective and chaotic functions. The initial objective of the proposed approach

is to reduce the quantity of physically active devices in cloud data centers, thereby

reducing the amount of electricity consumed. The second objective is to strategically

position virtual machines on actual equipment in cloud data centers in order to reduce

resource waste and manage it. The third objective is to minimize the Service Level

Agreement among the active physical computers in cloud data centers. The migration

of virtual machines onto actual equipment is prevented from growing by employing the

proposed methodology. In the final analysis, the results of the suggested algorithm are

compared to those of the First Fit, Modified Best Fit Decreasing, and Virtual Machine

Placement Ant Colony System.

Parthiban et al. (2022) present a unique energy-efficient VMP approach for CDCs

based on the Disordered Salp Swarm Optimization Algorithm (EAVMP-CSSA). The
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EAVMP-CSSA approach aims to minimize CDC energy consumption by reducing the

number of active servers hosting virtual machines. The recommended EAVMP-CSSA

technique balances active server resources (such as CPU, RAM, and bandwidth) to re-

duce waste and improve efficiency. The CSSA combines chaotic maps with the Salp

Swarm Optimization Algorithm (SSA) to increase performance and minimize comput-

ing expenses.

Alresheedi et al. (2019) introduce a multiobjective optimization (MOP) technique

that combines salp swarm and sine-cosine algorithms (MOSSASCA) to find the best

solution for virtual machine placement (VMP). The proposed MOSSASCA aims to

increase mean time before host shutdown (MTBHS), reduce power consumption, and

minimize service level agreement violations (SLAVs). The suggested method enhances

the salp swarm and sine-cosine algorithms with a MOP strategy. The SCA improves

standard SSA performance by adopting a local search method to minimize Entrapment

in local optimum solutions and speed up convergence.

3.2.2.6 Ant Colony Optimization based Integration

In order to optimize resource allocation in cloud networks and minimize energy con-

sumption.Sangaiah et al. (2023) aime to develop an intelligent method for dynamic

resource allocation that utilizes Takagi–Sugeno–Kang (TSK) neural fuzzy systems and

ant colony optimization (ACO) techniques. It utilizes a drop-down window to track

CPU usage in order to predict future demands. ACO can decrease its energy consump-

tion by optimizing the migration of virtual machines.

Lilhore et al. (2025) present a novel hybrid optimisation approach that combines

water wave optimization (WWO) and ant colony optimization (ACO) to successfully

address these problems. ACO specializes at conducting successful local searches, re-

sulting in efficient and high-quality solutions. WWO specializes in globally exploration,

providing comprehensive coverage of the solution space. These strategies use their

unique advantages to improve reaction times, resource efficiency, and reduce operating

costs.
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Xing et al. (2021) demonstrate an energy- and traffic-aware ant colony optimization

(ETA-ACO) technique. Three new approaches are introduced to improve the perfor-

mance of ETA-ACO: energy- and bandwidth-aware PM selection, traffic-based VM

ordering, and direct information exchange. The first strategy involves two phases for

selecting a PM to host a VM. The first phase preserves PMs with low power usage. In

the second stage, the one with lowest bandwidth resource use is selected to host the

VM. In the second approach, ETA-ACO places VMs by traffic demand. The third strat-

egy creates new solutions by distributing the components of the best solution through a

group of produced solutions.

3.2.3 Hybrid meta-heuristics

A hybrid meta-heuristic utilizes more than one meta-heuristic algorithm to schedule

tasks and allocate resource on the cloud computing.

3.2.3.1 Genetic Algorithm based Integration

Shishido et al. (2018) investigate the impact of both Particle Swarm Optimization (PSO)

and Genetic-based algorithms (GA) on workflow scheduling optimization efforts. The

metaheuristics’ efficacy is evaluated using a workflow scheduling algorithm that is both

cost-effective and secure.

In the virtual machine migration problem, a hybrid optimization algorithm is em-

ployed to introduce a novel approach to enhance the energy consumption and execution

time of virtual machines. Aron and Abraham (2022) propose a method that is based on

the genetic algorithm (GA) and particle swarm optimization (PSO) algorithm, as this

issue is one of the popular NP-hard problems. The hybrid algorithm employs a GA to

overcome the constraints of PSO algorithms, including weak convergence, stymie in

global optima, and artificial intelligence.

A novel secure and multiobjective virtual machine placement (SM-VMP) frame-

work is proposed by Saxena et al. (2021) that has an efficient virtual machine migra-

tion. By minimizing intercommunication delays, the proposed framework guarantees

an energy-efficient allocation of physical resources among virtual machines. Thereby
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Table 3.3 Taxonomy of hybrid meta-heuristics (1)

Author and year Technique Performance metric

Feng et al. (2021)
SA
Greedy

Energy consumption of
servers, cooling and network

Medara and Singh (2021)
Thresholds
WWO

Energy consumption
Resource usage

Medishetti et al. (2025) WWO
Energy consumption
Execution Time
Deadlines

Rambabu Medara (2023) Modified WWO
Energy consumption
Resource usage

Parthiban et al. (2022)
Chaotic Maps
SSA

Energy consumption
Resource usage
Low reject rate

Gharehpasha et al. (2020)
SCA
SSA

Energy consumption
Resource usage
SLA violation

Alresheedi et al. (2019)
SSA
SCA

Energy consumption
Time
SLA violation

Sangaiah et al. (2023)
TSK
ACO

Energy consumption
Minimization of VM migration

Lilhore et al. (2025)
WWO
ACO

Response time
Resource usage
Costs

Xing et al. (2021) ACO
Energy consumption
Resource usage

Shishido et al. (2018)
PSO
GA

Costs
Security

Aron and Abraham (2022)
PSO
GA

Energy consumption
Execution time

Saxena et al. (2021)
WOA
GA

Energy consumption
Delay
Security
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Table 3.4 Taxonomy of hybrid meta-heuristics (2)

Author and year Technique Performance metric

Goyal et al. (2021)

PSO
CSO
BAT
CSA
WOA

Energy consumption
Resource usage

Mirmohseni et al. (2021)
PSO
GA

Energy consumption
Resource allocation
Execution cost
Makespan

Fu et al. (2021)
PSO
Phagocytos
GA

Makespan
Resource usage
Response Time
QoS / SLA
Deadline

Al-Wesabi et al. (2022)
GTOA
RSO Resource allocation

promoting the secure and timely execution of user applications. The proposed Whale

Optimization Genetic Algorithm (WOGA) is used to implement the VMP, that is influ-

enced by nondominated sorting-based genetic algorithms and whale evolutionary opti-

mization.

3.2.3.2 Particle Swarm Optimization based Integration

In order to minimize the energy consumption in the cloud environment, Goyal et al.

(2021) implement a variety of optimization algorithms, including particle swarm opti-

mization (PSO), cat swarm optimization (CSO), BAT, cuckoo search algorithm (CSA)

optimization algorithm, and whale optimization algorithm (WOA). These algorithms

are employed to balance the load, improve energy efficiency, and optimize resource

scheduling.

In (Mirmohseni et al. (2021)), combining the results of the particle swarm genetic

optimization (PSGO) algorithm and using a combination of the advantages of these

two algorithms resulted in improved results and the development of a suitable solution
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for load balancing operation, because in the proposed approach (LBPSGORA), instead

of randomly assigning the initial population in the genetic algorithm, the best result is

obtained by putting the initial population.

Authors in (Fu et al. (2021)) investigated the cloud scheduling tasks process and

suggested a particle swarm optimization genetic hybrid method based on phagocytosis

(PSO PGA). The particle swarm is separated into subpopulations utilizing phagocyto-

sis and genetic crossover mutation in order to expand the search range for solutions.

The subpopulations are then incorporated, ensuring particle diversity and lowering the

risk of the algorithm falling into the local optimum solution. Finally, the feedback

mechanism is employed to transmit back the particle’s flight experience as well as the

companion’s flight experience to the next generation particle population, ensuring that

the particle population is always moving in the direction of an ideal solution.

3.2.3.3 Rat swarm optimizer algorithm based Integration

Al-Wesabi et al. (2022) introduce novel hybrid metaheuristics for the allocation of en-

ergy efficiency resources (HMEERA) in the CC environment. The feature extraction

process is initially conducted by the proposed model in accordance with the task de-

mands of numerous clients, and the feature reduction process is conducted using prin-

cipal component analysis (PCA). The HMEERA technique then employs the integrated

features to ensure the most efficient allocation of resources. The HMEERA model is a

hybrid of the Group Teaching Optimization Algorithm (GTOA) and the rat swarm op-

timizer (RSO) algorithm, that is referred to as GTOA-RSO. This algorithm is designed

to optimize resource allocation. The optimization of resource allocation among virtual

machines in cloud data centers is facilitated by the incorporation of RSO and GTOA

algorithms.

3.2.4 Machine learning based algorithms

Machine learning-based algorithms enable systems to make intelligent decisions using

historical or real-time data. In the context of task scheduling and resource management,

these techniques learn to predict workloads, estimate energy consumption, or adapt
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allocation strategies. Their adaptability to complex and dynamic environments makes

them a promising alternative to traditional approaches.

A Q-learning based Energy-Efficient Cloud computing (QEEC) is proposed in (Ding

et al. (2020)). The framework is based on Q-learning. There are two phases of the

QEEC. In the initial phase, the M/M/S queuing model is implemented using a central-

ized task dispatcher. This model assigns the user requests that arrive to each server in a

cloud structure. A Q-learning-based scheduler on each server prioritizes all requests by

task laxity and task life time in the second phase. It then uses a continuously-updating

policy to assign tasks to virtual machines, applying incentives to reward the assignments

that can minimize task response time and maximize each server’s CPU utilization.

A Prediction-enabled feedback Control with Reinforcement learning based resource

Allocation (PCRA) method is proposed by Chen et al. (2020). Initially, a novel Q-value

prediction model is developed to forecast the values of management operations (by Q-

values) at various system states. By incorporating the Q-learning algorithm, the model

employs multiple prediction learners to generate precise Q-value predictions. Subse-

quently, the objective resource allocation plans can be identified through the implemen-

tation of a novel feedback-control-based decision-making algorithm.

A novel artificial intelligence algorithm, deep Q-learning task scheduling (DQTS),

is proposed in (Tong et al. (2019)). This algorithm incorporates the benefits of a deep

neural network and the Q-learning algorithm. The objective of this novel methodol-

ogy is to resolve the issue of managing directed acyclic graph (DAG) duties within a

cloud computing environment. The fundamental model learning of this approach is pri-

marily inspired by the popular deep Q-learning (DQL) method, which is used in task

scheduling.

In (Cheng et al. (2018)), a novel Deep Reinforcement Learning (DRL)-based Re-

source Provisioning (RP)and Task Scheduling (TS) system, DRL-Cloud, is introduced

to reduce energy costs for large-scale Cloud Service Providers (CSPs) with a large num-

ber of servers that receive an immense number of user requests per day. A two-stage

RP-TS processor that is based on deep Q-learning is intended to autonomously pro-

duce the most optimal long-term decisions by learning from the evolving environment,
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Table 3.5 Taxonomy of machine learning based algorithms (1)

Author and year Technique Performance metric

Ding et al. (2020)
M/M/S queuing model
Q-learning

Energy consumption
Response time

Chen et al. (2020)
Q-learning
Feed Back-control

Resource usage

Tong et al. (2019)
DQL
DNN

Makespan

Cheng et al. (2018) DQL
Energy consumption
Low reject rate
Execution time

Qiu (2017)
DRL
LSTM

Energy consumption
QOS

Belgacem et al. (2023) ML
Energy consumption
Migration Number
Network overhead

Mahilraj et al. (2023)
LSTM
NBW

Energy consumption
Resource usage
Makespan
Completion time

Choppara and Mangalampalli
(2024)

DQN
Energy consumption
Makespan
Fault tolerance

Wei et al. (2022) Q-learning
Energy consumption
Energy stability

Wang et al. (2023) ACA

Energy consumption
Carbon emissions
Waiting time
Cooling

Tong et al. (2021) DDQN
Energy consumption
Makespan
SLA violation

Panwar et al. (2024) ML
Energy consumption
SLA violation

Ounifi et al. (2022)
MLP
DNN
LSTM

Energy consumption
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Table 3.6 Taxonomy of machine learning based algorithms (2)

Author and year Technique Performance metric

Uma et al. (2022) DRQL

Energy consumption
Cost
Response time
Resource usage

Liang et al. (2021)
K-means
KNN Energy consumption

Zhang et al. (2017)
DQL
SAE
DVFS

Energy consumption

including realistic electric prices and user request patterns. The proposed DRL-Cloud

accomplishes a remarkable high energy cost efficiency, low reject rate, and low du-

ration with rapid convergence by utilizing training techniques such as target network,

experience replay, and exploration and exploitation.

Liu et al. (2017) suggest a new hierarchical framework for addressing the general

resource allocation and power management issue in cloud computing systems. A global

tier is included in the proposed hierarchical framework to allocate virtual machine re-

sources to the servers, while a local tier is used to manage the capacity of local servers

in a distributed approach. The global tier problem is resolved by implementing the

emergent deep reinforcement learning (DRL) technique, that is capable of addressing

complex control problems with a large state space. Additionally, the convergence speed

is expedited by the implementation of a novel weight sharing structure and an autoen-

coder to manage the high-dimensional state space. Conversely, the local tier of dis-

tributed server power managements employs a model-free RL-based power manager

and an LSTM-based workload predictor that operate in a distributed manner.

The virtual machines migration issue is addressed in (Belgacem et al. (2023)) by

employing a machine learning model to decrease the number of virtual machines migra-

tion and energy consumption. The Virtual Machine migration based machine Learning

Model algorithm (VMLM) that has been suggested is designed to enhance the migra-

tion and selection processes of virtual machines. The VMLM (Virtual Machine Local
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Migration) algorithm aims to optimize energy consumption in cloud data centers by in-

telligently performing local migrations of virtual machines. It monitors resource usage,

particularly the processor, to identify overloaded or underutilized servers. The VMs

are then selected and migrated to target hosts capable of meeting their needs without

disrupting the overall system. Unlike traditional methods, VMLM avoids excessive mi-

grations and prioritizes the overall balance of resources, which helps reduce the number

of active servers and, consequently, energy consumption.

Mahilraj et al. (2023) suggest a machine learning technique known as short-term or

Long-Term Memory (LSTM) for the efficient scheduling of power tasks in order to ad-

dress the increasing energy and carbon emissions. The scheduling strategy that is most

effective takes into account the standardization process and the completion time or ex-

clusive utilization of a resource task. The Novel Black Window (NBW) is employed to

enhance the efficacy of LTSM and reduce its weight.

In (Choppara and Mangalampalli (2024)), an advanced fog-cloud integration approach

is proposed that employs a deep reinforcement learning-based task scheduler, DRL-

MOTS (Deep Reinforcement Learning based Multi Objective Task Scheduler in Cloud

Fog Environment). This innovative scheduler dynamically allocates computation to

either fog nodes or cloud resources by intelligently evaluating task characteristics, in-

cluding length and processing capacity. Authors formulated the machine learning based

Deep Reinforcement Learning (DRL) technique to schedule the tasks in fog layers to

minimize makespan, fault tolerance, consumption of energy. Therefore, they have used

the DRLMOTS scheduler, which fed priorities to task manager and generates schedules

by considering priorities while minimizing the metrics like makespan, fault tolerance,

energy consumption.

An energy-saving scheduling strategy based on Q-learning is proposed by Wei et al.

(2022). The agent can reduce the energy consumption during task execution by ensuring

that the remaining energy of the system is sufficient to maintain the normal execution of

the scheduling task and by arranging the task scheduling sequence reasonably manner,

based on the real-time required for tasks.

Wang et al. (2023) introduce Eco-friendly Reinforcement Learning in Federated
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Cloud (ERLFC), a framework that employs reinforcement learning to schedule tasks

in a federated cloud environment. The objective of ERLFC is to intelligently evaluate

the condition of each data center and effectively optimize the differences in energy

and carbon emission ratios among geographically dispersed cloud data centers in the

federated cloud. Authors construct ERLFC using the Actor-Critic algorithm (ACA),

that determines the most suitable data center to assign a task based on a variety of

factors, including the energy consumption, cooling method, waiting time of the task,

energy type, emission ratio, and total energy consumption of the current cloud data

center, as well as the details of the next task.

A multi-agent deep reinforcement learning approach for cloud workflow scheduling

cost and makespan optimization is introduced in (Tong et al. (2021)). This approach is

based on deep Q-learning. The research examines multi-agent cooperation as a Markov

game with a connected equilibrium in order to prevent the makespan and cost agents

from unilaterally deviating from the joint distribution. The on-demand access to re-

sources globally that cloud computing provides is a result of its accelerated growth,

that also has a substantial carbon impact and high power consumption.

For the sake of mitigating environmental impact, reducing operational costs, and

guaranteeing sustainable growth, it is imperative to optimize their energy utilization,

as they utilize substantial quantities of energy. To address this issue, researchers have

investigated effective energy-saving strategies that employ machine learning techniques

(Panwar et al. (2024)). By analyzing data, identifying patterns, and optimizing resource

utilization, Machine Learning methods have the potential to significantly improve en-

ergy efficiency in Cloud data centers (CDCs). The primary objectives are to optimize

energy utilization and acquire resources by predicting CPU usage, identifying over-

loads, estimating under-loads, selecting, migrating, and relocating virtual machines.

In order to forecast Power Usage Effectiveness (PUE) values, researchers introduce

three machine learning models: Multilayer Perceptron (MLP), Resilient Backpropagation-

based Deep Neural Network (DNN), and Attention-based Long Short-Term Memory

(LSTM) (Ounifi et al. (2022)). DC energy efficiency can be measured and optimized

through the use of Power Usage Effectiveness (PUE). Consequently, it is difficult to
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make precise predictions regarding Power Usage Effectiveness (PUE).

(Uma et al. (2022)) introduce a new artificial algorithm, Deep Reinforcement Q-

learning (DRQL), for resource scheduling. The purpose of this novel methodology is to

address the issue of managing energy consumption in a cloud computing environment.

The virtual machine and physical machine models are methodically analyzed by

Liang et al. (2021). Simultaneously, the K-means clustering algorithm for unsupervised

learning and the KNN classification algorithm for supervised learning are improved to

establish a dynamic hybrid resource deployment rule. Subsequently, a dynamic hy-

brid machine learning (EHML)-based energy-aware resource deployment algorithm for

cloud data centers is proposed in accordance with the theory of machine learning. The

energy consumption is reduced by this algorithm, that increases the average utilization

of physical machines.

DQL-EES is a scheduling scheme for periodic tasks in real-time systems that is

energy-efficient and is based on a deep Q-learning model (Zhang et al. (2017)). The

feature is the integration of a Stacked Auto-Encoder (SAE) into the deep q-learning

model to supplant the Q-function in the process of learning the Q-value of each DVFS

technology for any system state.

3.3 Conclusion

The state of the art presented in this chapter clearly shows the interest given to the

problem of energy consumption. Several techniques have been proposed to reduce this

consumption. The following chapters present our contributions according to the issues

raised in this thesis. The thesis position is also discussed in this chapter in relation to

previous research. Developing models and algorithms for resource allocation in cloud

data centers while increasing energy efficiency is the primary focus of this thesis. Our

contributions to the research direction are detailed in the following chapters.
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CHAPTER 4

Energy-aware scheduling of tasks in cloud computing

4.1 Introduction

Cloud computing has emerged as a key paradigm in the world of computing. It con-

tributes to the increasing expectations for availability and flexibility. Users of the Inter-

net and computers are becoming more interested in the services proposed by the cloud

computing providers due to its impressive growth in recent years.(Goyal et al. (2021))

Energy consumption is a crucial topic in cloud computing that has become a significant

issue. It requires appropriate solutions and several data centers contain servers, cooling

systems, switching and network components that make up the cloud computing infras-

tructure.(Mboula (2021)) The energy consumed by data centers has increased due to

the rising demand for cloud infrastructure that has become a serious problem. Higher

expenses of profit and CO2 emissions result from the excessive energy used. There-

fore, efficient solutions are required to reduce the negative effects on the environment

and cloud provider profit. Every year, energy cost rises and several studies have exam-

ined how much energy is needed by data centers and individual servers (Choppara and

Mangalampalli (2024)). Numerous studies have been launched on the subject of en-

ergy and power in computing systems. The creation of virtual machine (VMs) within a

physical server is made possible by virtualization technology that also enables to utilize

resources more efficiently while using less hardware (Medara and Singh (2021)). Task

scheduling and energy efficiency are two key obstacles in resource allocation (Hassan

et al. (2020)). This chapter presents an Energy-Aware Scheduling Model (EASM) for

task scheduling in cloud computing. The objective of the proposed model is to re-
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duce the energy consumption, execution time, and SLA violation. EASM works in

two phases, i.e., pre-processing and optimization with Adaptive Genetic Algorithm.

In the first phase, tasks with longer execution times are allocated in VMs with high

processing capabilities(Malik et al. (2021)). In the next phase, GA is used to optimize

scheduling and find better solutions. In the popular meta-heuristic method known as the

genetic algorithm, populations of potential candidate solutions, known as individuals,

are developed over many generations to find the best solution for a specific problem.

With the contribution of various genetic operations, the optimization begins with ran-

dom individuals and eventually reaches the global optimum (Nahhas et al. (2021)). The

simulations’ results confirm that the suggested approach is more robust and efficient in

terms of energy usage, execution time, and SLA violations.

4.2 Related Work

For load balancing, energy efficiency, and better resource scheduling, an effective cloud

environment, (Feng et al. (2021)) using a variety of optimization algorithms, including

the Whale Optimization Algorithm (WOA), Cat Swarm Pptimization (CSO), Cuckoo

Search Algorithm (CSA), BAT, and Particle Swarm Optimization (PSO) is created. The

suggested work employs a cost-effective solution to the load balancing and resource

scheduling issues.

Ibrahim et al. (2018) have selected two advanced scheduling algorithms to examine

the outcomes in a same cloud computing environment and examine the approaches

that maximize energy and cost in a cloud computing environment. The main objective

of the Energy-Efficient Strategy (EES) is to spread out the maximum load over the

fewest possible virtual machines. By assigning appropriate resources to the required

tasks, Cost-based Scheduling using Genetic Algorithm minimizes execution time that

decreases user costs. The results are then studied and compared to other scheduling

algorithms, such as Round-Robin (RR) and First-come- First-served (FCFS).

Kakkottakath Valappil Thekkepuryil et al. (2021) present an Integer Linear Pro-

gramming (ILP) model for cloud computing energy optimization and an Adaptive Ge-
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netic Algorithm (GA) for dynamic work scheduling in the cloud data center. In order

to account for the dynamic nature of the cloud environment and to offer a near-optimal

scheduling solution that reduces energy usage, an Adaptive Genetic Algorithm (GA)

is developed. By allocating incoming tasks to resources in a way that both user needs

and the energy consumption of cloud data centers are fulfilled. This study attempts to

establish a model and an algorithm for reducing the energy consumption in a cloud com-

puting infrastructure. It concentrates on a single Cloud data center as its environment

settings.

Medara et al. (2021), authors suggest to use an energy-aware workflow schedul-

ing technique for cloud computing with VM consolidation. The suggested EASVMC

technique is designed to achieve many objectives including resource usage, VM mi-

grations, and energy consumption. Task scheduling and VM consolidation are the two

stages of the EASVMC algorithm’s operation (VMC). The virtual machine that will

consume the least amount of energy during the first phase is assigned to the task with

the longest possible execution time. The second phase includes a well-known NP-hard

issue, namely VM consolidation. Based on CPU utilization, the VMC phase divides the

physical hosts into hosts with a regular load, under-loaded hosts, and overloaded hosts.

Therefore, double threshold values are employed. Migration of virtual machines from

overloaded and underloaded hosts to normally loaded hosts. Authors used the Water

Wave Optimization (WWO) algorithm, a nature-inspired meta-heuristic approach, for

the VMC phase. This algorithm finds an appropriate migration plan to reduce energy

consumption by increasing overall resource utilization and switching off idle hosts after

migrating their VMs to an appropriate target host. They evaluated the effectiveness of

this algorithm in comparison to three well-known methods: HEFT, EES, and PESVMC.

The simulation results demonstrated that the EASVMC algorithms surpass the other

three techniques in terms of overall performance.

To overcome the drawbacks of task consolidation and scheduling, (Panda and Jana

(2019)) proposed an energy-efficient task scheduling algorithm (ETSA). The proposed

algorithm uses a normalization process to determine when to schedule tasks while tak-

ing into consideration their completion times and resource use overall. The energy
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efficient task-scheduling algorithm that is presented for reducing energy consumption

and execution time is the foundation of this study. For heterogeneous cloud computing

systems, the authors created an online energy-efficient work scheduling system. The

proposed system can be used for cloud, application, energy, and scheduling models. In

order to decide on scheduling, the method computes the completion time and overall

resource usage of a job on the resources.

Choudhary and Perinpanayagam (2022) suggested a new approach based on multi-

objective optimization. For complicated VM scheduling solutions, they calculate the

amount of energy used, the CPU usage, and the number of instructions performed in

each scheduling period. Multi-objective PSO (particle swarm optimization) optimiza-

tion can lead to better and more efficient results for various parameters than multi-

objective GA (genetic algorithm) optimization in terms of energy efficiency and execu-

tion time reduction.

Badr et al. (2022) focused on the issue of power consumption and proposes a power-

ful method called Task Consolidation based Power Minimization (TCPM). It effectively

allocates jobs to the cloud environment’s available resources in order to reduce power

consumption. The best-fit approach is employed to achieve the optimum resource usage

and prevent energy waste in the proposed TCPM algorithm that improves and incorpo-

rates various advantages of the current algorithms. The results of the proposed TCPM

algorithm are compared with FCFS, WWO, and MCT algorithms using the CloudSim

toolkit.

Malik et al. (2021) suggested a method for effective scheduling and improved re-

source usage based on task categorization and thresholds. Workflow tasks are pre-

processed in the first stage to prevent bottlenecks by separating tasks with high de-

pendencies and lengthy execution durations. The following phase is classifying tasks

according to the intensity of the resources needed. To choose the optimum schedules,

Particle Swarm Optimization (PSO) is employed. To verify the suggested approach,

experiments were done. Comparative results from benchmark datasets are given. The

findings demonstrate how the suggested algorithm performs better than the other algo-

rithms in terms of energy usage, execution time, and load balancing.
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Gharehpasha et al. (2021) developed a novel method for optimum placement of

virtual machines utilizing a combination of the Sine-Cosine and Salp Swarm algo-

rithms as discrete multi-objective and chaotic functions. The initial objective of the

suggested method was to decrease the amount of electricity used in cloud data centers

by reducing the quantity of physically active devices. The second objective was to de-

crease resource waste and control it by strategically placing virtual machines on actual

equipment in cloud data centers. The third goal was to keep Service Level Agreement

amongst the active physical computers in cloud data centers to a minimum. By using

the suggested approach, the migration of virtual machines onto real equipment is pre-

vented from growing. In the end, the suggested algorithm’s results were compared with

the results of First Fit, Modified Best Fit Decreasing, and Virtual Machine Placement

Ant Colony System.

In (Garg et al. (2021)), In order to schedule the workflow tasks to the VMs and

dynamically deploy/undeploy the VMs in accordance with the workflow task’s needs,

an energy and resource efficient workflow scheduling algorithm (ERES) is presented.

To determine the energy consumption of the servers, an energy model is offered. It

uses a double threshold strategy to determine if the server is overloaded, underloaded,

or operating normally. Live VM migration is used to balance the load on the over-

loaded/underloaded servers. Live VM migration strategy is used. Extensive simulation

tests are run to evaluate the efficacy of the suggested approach. On the basis of resource

utiliztaion, energy efficiency, and task execution time, the suggested approach is com-

pared to the PESVMC (power efficient scheduling and VM consolidation) algorithm.

Additionally, the results are validated in a genuine cloud environment.

Shishido et al. (2018) investigated the effectiveness of using meta-heuristic tech-

niques for scheduling cloud processes. The purpose of this study was to evaluate the

effects of GA and PSO augmentation on workflow scheduling optimization. To assess

the competency of the meta-heuristic technique, a cost-aware workflow scheduling is-

sue was used. PSO, GA, and Multi Population GA meta-heuristics were also used in the

experiments. The evaluation of meta-heuristic algorithms was based on the objectives

of cost minimization and time for response. These algorithms produced more effective
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schedules that reduce costs in a reasonable amount of time.

The proposal of (Alasady et al. (2023)) presents a multi-objective optimization

method for cloudlet computing that makes use of the non-dominated sorting idea. The

objectives taken into consideration include delay, user energy consumption, cloudlet

energy consumption, and cost, which are determined by the number of cloudlets. Non-

dominated sorting genetic algorithms (NSGA-III and NSGA-II) are employed to be

compared to this proposed work.

In (Gourisaria et al. (2021)), authors offer a task scheduling heuristic for heteroge-

neous cloud systems that saves energy. It performs by choosing the best physical host

with virtual machines while taking into account the utilization of any incoming tasks on

that specific virtual machine. They demonstrate the superiority of the proposed heuris-

tic in energy-efficient task scheduling in heterogeneous cloud settings by comparing

its energy efficiency with other previous methods, including ECTC, MaxUtil, Random,

and FCFS, on both synthetic and benchmark datasets.

The authors in (Vijaya and Srinivasan (2024)) provide a new hybrid method for

effective virtual machine placement that combines the Sine Cosine Algorithm (SCA)

with the Ant Colony Optimization (ACO) algorithm. The results obtained by the ACO

algorithm have been examined using SCA, an advancing search method that makes use

of the Sine and Cosine functions in the engineering domain.The ACO method has been

utilized to exploit the search space’s solutions for effective virtual machine placement,

hence facilitating power management and reducing resource wastage.

The table 4.1 illustrates a summary that compares the reviewed approaches in terms

of key performance metrics, such as energy efficiency, execution time, and SLA viola-

tion rates.

4.3 The proposed model

In this section, discussion of the system model and energy model is followed by the

details of each phase.
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Year Approche Energy consumption Execution time SLA violation
2021 Feng, H. et al. Yes Yes No
2018 Ibrahim, H. et al. Yes Yes No
2021 Thekkepuryil, J.K.V. et al. Yes Yes Yes
2021 Medara, R. et al. Yes Yes No
2019 Panda, S.K. Yes Yes No
2022 Rajkumar Choudhary et al. Yes Yes No
2022 Shaimaa Badr et al. Yes Yes Yes
2021 Nimra Malik et al. Yes Yes No
2021 Sasan Gharehpasha et al. Yes No Yes
2021 Neha Garg et al. Yes Yes Yes
2018 Shishido, H., Y. et al. No Yes Yes
2023 Ali Salah Alasady et al. Yes No Yes
2021 Mahendra Kumar Gourisaria et al. Yes Yes No
2024 C.Vijaya et al. Yes Yes Yes

Table 4.1 Summary table

4.3.1 System Model

Scheduling is the process of allocating a number of tasks to a number of resources

(virtual machines). In the cloud data centers, there are two levels of scheduling: (i)

series of rules for deploying VMs at the server level and (ii) rules for assigning tasks to

VMs. The main focus of our contribution is VM-level task scheduling techniques. The

scheduling approach is a strategy for selecting which resources to use to execute tasks

in order to shorten execution times and conserve energy.

Consider the Cloud Data Center (CDC) consists of N physical machines (PM). It

can be represented in Eq. 4.1:

CDC = {PM1, PM2, ..., PMN} (4.1)

Where (i = 1, . . . , N) denotes the PMs presented in the CDC. The features of PMi are

defined in Eq.4.2:

PMi = {Ci, Size PMi, RAM PMi, Bandwidth PMi,#Core PMi} (4.2)

Consider the physical machine consists of M virtual machines (VMs) It can be
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Symbol Description
CDC Cloud Data Center.
PMi Physical machine. i = (1,. . . ,N)
N Number of physical machines in the cloud environment
Size PMi The size of PMi.
RAM PMi The RAM of PMi.
Bandwidth PMi The Bandwidth of PMi.

#Core PMi Number of cores in PMi.
VMij Virtual machine. j=(1,. . . ,M)
M The number of virtual machines in the cloud environment.
Size VMij The size of VMij .
RAM VMij The RAM of VMij .
Bandwidth VMij The Bandwidth of VMij .
#Core VMij Number of cores in VMij .
Tasksk The tasks submitted by the users in DCD. k=(1,. . . ,Ntsk)
Ntsk The number of tasks submitted in the cloud environment, where Ntsk = L+P.
Tasks Dkd Set of tasks with deadline constraints. Kd=(1,. . . ,P)
P The number of deadlined tasks submitted in the cloud environment.
Tasks Oko Set of tasks without deadline constraints. Ko=(1,. . . ,L)
L The number of no deadlined tasks submitted in the cloud environment.
Tdkd Deadlined Task.
TOko No-deadlined task.
Lengthkd The length of deadlined task.
FileSizekd The size of deadlined task.
Deadlinekd Time till which the tasks should be finished.
Lengthko The length of no-deadlined task.
FileSizeko The size of no-deadlined task.
Ci The total processing capacity of PMi.
cj The processing capacity of VMij .
ui The current CPU utilization of PMi.
Pi The power of PMi.
Pmax The maximum power of a physical machine.
Ei The total energy consumption PMi.
ECTk The required execution time of task on VMij .
%SLAviolationi The percentage of tasks that have exceeded their deadlines in PMi.

Table 4.2 Symbols used in the proposed method.
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represented as in Eq.4.3:

PMij = {VMi1, V Mi2, ..., V MiM} (4.3)

Where (j = 1, . . . ,M) is the number of virtual machines obtained from PMi. The

features of VM are defined in Eq.4.4:

VMij = {cij, Size V Mij, RAM VMij, Bandwidth vmij,#Coreij} (4.4)

The tasks submitted by the users can be represented as in Eq.4.5:

Tasks = Tasks D ∪ Tasks O (4.5)

Where Tasks D is set of tasks submitted by users with the consideration of deadline

constraints. Tasks O is set of tasks submitted by users without the consideration of

deadline constraints.

Tasks Dkd = {TD1, TD2, ..., TDP} (4.6)

where P is the number of tasks submitted with the consideration of deadline constraints.

Tasks Oko = {TO1, TO2, ..., TOL} (4.7)

where L is the number of tasks submitted without consideration of deadline constraints.

The features of Tasks D and Tasks O are defined in Eq.4.8 and 4.9:

TDkd = {lengthkd, F ileSizekd, Deadlinekd} (4.8)

TOko = {lengthko, F ileSizeko} (4.9)

4.3.2 Energy Model

The processing capacity cij of a resource VMij is computed with the MIPS of each

VM. The capacity of M VMs is calculated with Eq.4.10.
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Ci =
M∑
j=1

cij (4.10)

In cloud computing, resource use has a major effect on how much energy is used. The

utilization can be calculated with Eq.4.11.

ui =

M∑
j=1

cij

Ci

(4.11)

Where M is the number of VMs running on PMi, and cij refers to the computing

allocated to VMij . Ci is the total processing capacity of the PMij . This research

examines CPU use that determines how much electricity physical devices consume.

About 70% of the power of a physically active machine is used when it is inactive. So,

using Eq. 4.12, the power consumption (u) as CPU utilization is defined as:

P (u)i = Pmax(0, 7 + 0, 3ui) (4.12)

where ui is the current CPU usage and Pmax is the maximum power of a physical

system operating at 100% CPU utilization. CPU usage is defined as a function u(t) of

time since it varies over time. As a result, Eq.4.13 establishes a physical machine’s

(PMi) total energy consumption:

Ei =

∫
P (u(t)) dt (4.13)

4.3.3 Scheduling Model

The main objective of the suggested approach is to decrease the amount of energy used,

the execution time, and SLA violations of the cloud resources while taking diverse

users priorities into account and optimizing the energy and execution time under the

deadlines constraints. We propose a tasks scheduling model (?) in cloud computing

that treats two sets of tasks. The first set of tasks takes priority since the users require

the deadline unlike the second set of tasks. The respect of deadline of first set will

involve more energy consumption compared to the energy consumption of the second
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set. Two possible scenarios are distinguished, one for deadlined tasks and the other

for no-deadlined ones. In these two cases, two phases are applied. In the first phase,

thresholds are used for the tasks length. Tasks with longer execution times are allocated

in VMs with high processing capabilities. Once the energy consumption reaches a

threshold. The second phase will be launch. The genetic algorithm is a global scheduler

that allocates incoming cloud tasks to suitable VMs. These two phases are used to

reduce the execution time applying to decrease energy consumption as resources are

utilized efficiently.

4.3.3.1 Task allocation phase

In the first phase, a new method that is proposed and intended to dynamically prioritize

the tasks and schedule them to the best suitable selected resource. The tasks in Cloud

Computing require to be executed by the available resources to achieve minimal total

time for completion. The expected completion time for the task is defined in Eq.4.14:

ECTk =
Lengthk

cij
; k = 1, 2, ..., Ntsk;

i = 1, 2, 3, . . . .., N ; j = 1, 2, 3, . . . ..,M (4.14)

Where ECTk is the time needed for the kth task to execute on the Mth virtual machine

and Nth physical machine, where N is the number of PMs and M is the number of VMs

and Ntsk is the number of tasks.

Lengthk is the length of a task in Million Instruction (MI) and cij is the VMij speed

Million Instructions Per Second (MIPS).

Allocation of tasks with deadline constraint

Tasks Dkd = {TD1, TD2, ..., TDP} (4.15)

Where P is the number of tasks submitted with the consideration of deadline con-

straints. Tasks D is the first set of tasks requiring top priority processing compared to
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the second set of tasks to avoid SLA violation. The execution time ECT of each task

should be less or equal then the deadline.

(ECTkd ≤ Deadlinekd)AND(Min(ECTkd)) (4.16)

Task allocation depends on the length of each task and respecting the deadline con-

straint where the proposed algorithm sets a threshold for the length of the tasks and the

threshold values are applied. They are intended to prioritize tasks during execution. To

decrease the total execution time, the lengthier tasks need to be processed first. High

processing capacity virtual machines are assigned to these tasks.

Allocation of tasks without deadline constraint

Tasks Oko = {TO1, TO2, ..., TOL} (4.17)

where L is the number of tasks submitted without consideration of deadline constraints.

Tasks O is the second set of tasks requiring second priority processing.

Min(ECTko) (4.18)

Task allocation depends on the length of each task where the proposed algorithm sets

a threshold for the length of the tasks and the threshold values are used to prioritize

tasks during execution. As a result, each task’s priority is established according to its

duration. Tasks with longer length need to be processed with priority and VMs with

high processing capabilities are allocated to these tasks.

4.3.3.2 Task scheduling phase

In the second phase, the proposed algorithm uses two modified Genetic Algorithm (GA)

to optimize scheduling and find better solutions for the two sets of tasks (with deadline

and without deadline).

Encoding

The choice is to use a direct representation; Table 4.3 illustrates the encoding represen-



Energy-aware scheduling of tasks in cloud computing 58

tation. In the suggested example, there are two major information. The tasks that are

scheduled and the number of the VM instance to which it is assigned are shown in table

4.3.

Table 4.3 Encoding

Task ID T1 T2 ... Tn-1 Tn

VM ID VM1 VM3 ... VM2 VM4

Initial Population

The creation of an initial population of T-size solution candidates for evolution is the

first stage in the optimization utilizing genetic algorithms process. T-size refers to the

population size. Every population set has numerous chromosomes containing genes

corresponding to various tasks planned on distinct virtual machines. The chromosome

of the initial population is presented in table 4.4.

Table 4.4 Initial Population

Task ID T1 T2 T3 T4 T5

VM ID VM1 VM3 VM2 VM2 VM3

Fitness function:

Which chromosomes to pass on to the following generation depends critically on their

level of fitness.

Fitness Function for set of tasks with deadline constraint:

The fitness value of deadlined tasks is defined in Eq.4.19:


Fitness Function 01 = α

N∑
i=1

Ei + β
N∑
i=1

%SLA violationi,

α + β = 1

(4.19)

Where Ei refers to the energy consummated by the PMi. %SLA violation refers to

the percentage of tasks that have exceeded their deadlines in PMi.
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Fitness Function for set of tasks without deadline constraint is defined in Eq.4.20:

fitnessfunction02 =
N∑
i=1

Ei (4.20)

where Ei refers to the energy consummated by the PMi. Therefore, the population’s

best and worst chromosomes have the lowest and highest fitness rates, respectively.

Selection operation

Populations are ranked according to their fitness levels, choosing the best elite chromo-

somes of a predefined size, and passing them on to the following generation.

Crossover

In GAs, the crossover operator is crucial for changing the population chromosomes.

The crossover operator improve population evolution in GAs. The operator joins sev-

eral chromosomes to form a new generation of chromosomes. While certain character-

istics are inherited from both parents, others are inherited from one parent only. The

individuals from the previous stage are used in this study. They go through a process

called crossover where genes are exchanged at random crossing points. As seen in

tables 4.5,4.6,4.7 and 4.8, Chosen individuals will produce two offspring following a

crossover.

Table 4.5 Parent 1

Task ID T1 T2 T3 T4 T5

VM ID VM1 VM3 VM2 VM2 VM3

Table 4.6 Parent 2

Task ID T1 T2 T3 T4 T5

VM ID VM3 VM2 VM1 VM3 VM2

Table 4.7 Offspring 1

Task ID T1 T2 T3 T4 T5

VM ID VM3 VM3 VM1 VM2 VM2
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Table 4.8 Offspring 2

Task ID T1 T2 T3 T4 T5

VM ID VM1 VM2 VM2 VM3 VM3

Mutation

By changing chromosomes, mutations are used to maintain population variety. To cre-

ate variation in the population, many chromosomes are mutated by the mutation opera-

tor after being combined using the combination operator. As indicated in tables 4.9 and

4.10, a random VM has been provided to a task from the list of tasks at random.

Table 4.9 Before Mutation

Task ID T1 T2 T3 T4 T5

VM ID VM1 VM2 VM2 VM3 VM3

Table 4.10 After Mutation

Task ID T1 T2 T3 T4 T5

VM ID VM1 VM2 VM3 VM3 VM3

Termination conditions

For each objective function, the individual of each generation is compared to the pre-

vious best fitness value. If the new individual outperforms the old one, the best value

is updated. The suggested method ends when all of the chromosomes, or solutions,

converge to the same degree of fit. However,there are no further improvements to the

fitness value.

4.4 Experimental evaluation

The experiments conducted to evaluate the suggested energy-aware scheduler are pre-

sented in this section. The evaluation configuration, comprising the cloud infrastruc-

ture, the scheduler algorithm, and the machine utilized to perform the scheduling, is

discussed in the initial part of this section. The results of the scheduling for the various
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situations are shown in the second section. A series of experiments are completed to as-

sess the effectiveness of the scheduling algorithm after analyzing the impact of different

factors and algorithms on the execution time and energy consumed.

The research presents a unique method of work scheduling in cloud settings that

is solely evaluated with the CloudSim simulator and makes use of modified genetic

algorithms. This approach outperforms conventional heuristic techniques in terms of

minimizing SLA violations, reducing execution time, and optimizing consumption of

energy. In practical terms, the approach can save energy costs and increase operational

efficiency for cloud data centers.However, it still has to be verified in real-world scenar-

ios. Before a large-scale implantation, a phased approach that begins with controlled

test settings is advisable. Cloud service providers may manage varying workloads with

more efficiency and dependability by using this strategy.

4.4.1 Simulation experiments

In order to evaluate the proposed model, the proposed solutions has been implemented

using the CloudSim simulator.

4.4.1.1 Cloud infrastructure

In this simulation experiments, one data center was created and contained a number of

PMs. A variety of VMs types are created in this simulation environment. The specific

parameters are listed in Table 4.11.

In this research, several important factors inform the choice of simulation settings.

Firstly, representativeness is essential; the simulations are pertinent since the character-

istics selected match common data center schemes based on previous studies. Second,

to represent a wide range of system behaviors and situations, different Physical Ma-

chines (PMs), Virtual Machines (VMs), and tasks are chosen. Thirdly, the use of stan-

dard setups ensures repeatability, making it easier to compare the results with previous

studies and increasing their validity.

We treat two sets of tasks. The first one takes priority since the users require the

deadline unlike the second one. The respect of the deadline will involve more energy
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Entity Type Parameters Values
Data Center Number of Data Center 1

PM Number of PM 50
C (MIPS) 4000-8000

VM Number of VM 10-60
C(mips) 1000-4000

Tasks Number of Tasks 10-10000
Length (MI) 10000-30000

Table 4.11 The Resources Parameters.

consumption compared to the energy consumption by the second set.

4.4.1.2 Scheduler configuration

After the submission of the tasks by the users, this study seeks to allocate the tasks with

deadlines to the first. Then, we allocate the tasks without deadline. In this phase, we

allocate each task to the fastest VM. Finally, we control the energy levels based on an

energy threshold.

Threshold for energy consumption: Once the energy consumption reaches this thresh-

old, we will launch the scheduling phase based on Genetic Algorithm.

Genetic Algorithm: Initialization and looping algorithms were divided into two cate-

gories. The optimal solution was identified by evaluating the fitness values after a ran-

dom viable solution had been created during the initialization procedure. Subsequently,

the looping segments confirmed if a certain terminal condition was satisfied. The mu-

tation, crossover, and selection processes were used in order throughout the continuous

loop. In the end, the process of iteration produced the optimum solution.

A sensitivity study is conducted to evaluate the model’s resilience under various

conditions. This included analyzing workload intensity variations to comprehend how

varying demand levels affected system performance. Also, modifications were exam-

ined to the VM and PM setups to determine how resource allocation influenced results.

Additionally, a variety of resource management strategies were evaluated, focusing on

how different work allocation techniques affected system performance. This thorough

examination strengthened the model’s validity and resilience, guaranteeing its depend-
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ability in a variety of situations.

4.4.1.3 Experimental Results

The algorithms were evaluated in terms of execution time, energy consumption, and

SLA violation. To confirm the effectiveness of the approaches over the ones already

in use, an extensive statistical studies were conducted, including comparison tests. A

statistically meaningful improvement is shown from the results.

In the simulation experiments, we compare the proposal with:

Naı̈ve Genetic Algorithm (NGA): in this experiment, we allocate user tasks by First

Come First Serve (FCFS) technique and we use GA after reaching the energy threshold

without difference between deadline and no-deadline tasks.

Round-Robin: we allocate deadline tasks by Round-Robin technique and the no-

deadlined tasks with the FCFS technique. The proposal treats two priorities of two

types of tasks that are deadlined and no-deadline tasks. The deadline tasks take the first

priority to involve violations. In these two cases of tasks, two thresholds are proposed,

one for tasks length and the other for energy consumed. Tasks with length longer than

first threshold are allocated in VMs with high processing capabilities. Once the energy

consumption reaches the second threshold, we will launch the genetic algorithm.

Execution time

First, we evaluated the performance of our algorithm by varying the number of tasks

from 50 to 600.(As shown in Table 4.11)

Experiment 1: We changed the number of tasks as indicated in Figure 4.1 and mea-

sured the performance efficiency using a fixed number of virtual machines (VMs) of 30.

Experiment 2:

As seen in Figure 4.2, we set a limit of 30 tasks and a range of 10 to 50 virtual

machines. Compared to the suggested approach, NGA and RR take longer in both

scenarios to accomplish a task.

Experiment 3: In the third scenario, the number of VMs and tasks are not fixed

(as shown in Figure 4.3).
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Fig. 4.1 Execution time(s) of different numbers of deadlined and no-deadlined tasks.
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Fig. 4.2 The Execution time(s) of different numbers of VMs.

Figure 4.1, 4.2, and 4.3 show the comparative analysis of the execution time of set of

algorithms. The three figures present the evaluation results of EASM vs. NGA and RR.

Figure 4.1 presents the execution time regarding tasks number. Figure 4.2 presents the

execution time regarding VMs number and Figure 4.3 presents the execution time in

different experimentations. As shown, EASM outperforms NGA and RR. This is due

to using the proposed algorithm that decreases the execution time. The execution time

of EASM is satisfying when compared with the NGA and RR since it is based on task

classification and thresholds. The model has the potential to improve the execution time

speed and optimization efficiency of the EASM. Even when the number of tasks rises,
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Fig. 4.3 The Execution time(s) of different experimentation.

EASM has strong capacity to assess the outcomes attained, identify the greatest fitness

value, and make the best decision. The respect of the deadline of the deadlined-tasks

involves more execution time compared to the execution time of the no-deadlined ones.

Energy consumption

Now, we evaluated the performance EASM for energy consumption by varying the

number of the tasks from 50 to 600.

Experiment 4: The fourth scenario of the experiments evaluated the energy consump-

tion by the fixed number of VMs at 30 and a changed number of tasks as shown in

Figure 4.4.

Experiment 5:

As shown in Figure 4.5, the tasks in this scenario are fixed at 30 and the range of virtual

machines (VMs) is 10 to 50, increasing by 10.

Figure 4.4 and 4.5 show the energy consumption comparison between deadlined

and no-deadlined tasks of the proposed EASM, NGA and RR. The energy consumed

by the EASM is considerably less than the NGA and RR. It is evident that there is a

significant difference among the compared algorithms and EASM consumes less energy

in different tasks. The respect of the deadline of the first set involves more energy
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Fig. 4.4 The energy consumption (Kwh) of different numbers of tasks.
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Fig. 4.5 The energy consumption (Kwh) of different numbers of VMs.

consumption compared to the energy consumption of the second set of tasks.

Experiment 6: Energy consumption with the changing of VMs and Tasks.

In this scenario, the number of VMs and tasks are not fixed as shown in Figure 4.6.

Figure 4.6 presents the energy consumption in different experimentation. Our EASM

outperforms NGA and RR. This is due to using the proposed algorithm that decreases

the consumed energy. The energy consumption of the proposed algorithm is better

when compared to the NGA and RR.

Experiment 7: The average SLA violation rate for all methods are shown in Figure

4.4.1.3. In comparison to different approaches, EASM produced the lowest rate of SLA

violations. The obtained results confirm the effectiveness of the model in minimizing
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Fig. 4.6 The energy consumption (Kwh) of different experimentation.

SLA violations, due to using the task classification and thresholds.
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Fig. 4.7 Average SLA violation of different tasks number.

The performance of EASM can be explained by the classification and priority mech-

anisms and algorithm searches for an optimal solution more quickly. This algorithm

considers not only processing time and energy consumption, but also resource utiliza-

tion and the number of resources that can effectively complete the user’s task.

This study has resulted in several implications for cloud computing settings. Firstly,

cloud service providers may be able to significantly minimize their operational costs

as a result of the increased energy efficiency as well as shorter execution times. This

would increase the financial viability of their offerings. Second, this method guaran-
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tees improved service quality by lowering Service Level Agreement (SLA) violation

rates, that greatly raises customer satisfaction and trust in cloud services. Additionally,

maintaining optimal performance in diverse settings and guaranteeing scalability and

flexibility in the face of changing demands depend largely on the model’s capacity to

adjust to dynamic workload fluctuations in cloud data centers.

Although results are encouraging, this method has encountered several limitations.

A significant constraint pertains to the results’ generalization, as the experiments were

carried out inside a simulated setting. In real-world, cloud settings must verify their

validity so the findings are considered valuable. The scalability at large scale is an-

other drawback. While being built for dynamic contexts, the model’s effectiveness at

extremely high scales still has to be carefully assessed to ensure it can manage complex

and large-scale cloud infrastructures.

4.5 Conclusion

Due to the size of cloud data centers, there is a significant energy consumption and

longer task execution times. As a result, users must regularly transmit data and the

system uses virtual machine scaling to improve the efficiency of system resources. The

main purpose of this work is to schedule effectively work into the available cloud en-

vironment resources, minimal energy consumption, execution time, and SLA violation.

Task categorization, thresholds, and queuing are the foundation of the proposed work.

Tasks are gathered into queues in the first phase based on how long they will take to

complete. Then, GA is applied to find better solutions to improve scheduling. The

suggested model had been validated and the comparative experimental findings were

presented in terms of execution time, energy efficiency, and SLA violation. The re-

sults demonstrated that for all parameters, the suggested algorithm surpassed the other

approaches.
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CHAPTER 5

Energy-efficient resource management in cloud computing

5.1 Introduction

In cloud computing systems, managing resources efficiently is one of the main chal-

lenges. The data centers that provide cloud services are using more energy as the de-

mand for these services increase (Kumar and Singh (2019)). The exponential growth

in the needs for data processing, storage, and transmission results in enormous energy

consumption and environmental impacts. Optimizing resource usage and reducing en-

ergy consumption in cloud computing environments requires the development of effi-

cient techniques and algorithms (Al-Wesabi et al. (2022)). Although cloud computing

has many advantages, including cost-effectiveness, scalability, and flexibility, it also

has limitations with relation to energy use. To power its computers, cooling systems,

and networking equipment, data centers need a lot of energy (R et al. (2022)). This

energy consumption contributes to greenhouse gas emissions and degradation of the

environment in addition to increase operating costs. Researchers and practitioners have

concentrated on energy-efficient resource management in cloud computing systems in

order to solve these issues. The objective is to migrate virtual machines as efficiently

as possible while using the least amount of energy and maintaining the necessary level

of service quality (Chhabra and Singh (2021)). A Threshold Q-learning VM Migration

(TQVM), an artificial intelligence VM migration technique is introduced in this study.

Two thresholds can be established by the suggested algorithm. Several experiments are

conducted to evaluate the efficacy of the current approach, and the findings show that

the TQVM algorithm may significantly lower energy usage.
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5.2 Related Work

Several studies that use various types of strategies that include energy efficiency are

discussed in this section. In (Wang et al. (2019)), a deep Q learning-based multi-

agent deep reinforcement learning approach for cloud workflow scheduling cost and

makespan optimization is introduced. The research analyzes multi-agent cooperation

as a Markov game with a connected equilibrium to avoid motivating the makespan and

cost agents to unilaterally deviate from the joint distribution. Li et al. (2021) introduced

a weighted double deep Q network-based reinforcement learning method for cost and

makespan optimal process scheduling in cloud environments. There are two stages to

the scheduling process. In the first, a task is chosen from all of the available tasks. The

changeable length of the input state is handled effectively by a pointer network. The

second step involves choosing a virtual machine (VM) to carry out the chosen job. At

every stage of the scheduling process, a different sub agent with a different incentive

is utilized for every goal. Q learning was utilized by Qin et al. (2019) to minimize

process executions’ makespan and energy usage while staying within a budgetary re-

striction. Within a financial restriction, (Qin et al. (2019) seek to reduce workflows’

makespan and energy usage. Workflow tasks are arranged according to a priority value

that is determined by taking communication dependencies and task execution time into

account. The Q learning method is then used to plan the sorted jobs. Each time step’s

VM usage is taken into account by the agent environment as the current state, and an

action is equivalent to choosing a VM to carry out a job. To restrict the number of

activities that may be taken at each time step, a budget restriction is placed on the ac-

tion space. The agent receives a multi-vector reward, where one vector represents the

ratio of the task’s actual and quickest completion times, and the other represents the

ratio of the task’s actual and least energy usage. There is a weight selection issue since

the reward has two vectors, This study picks the least scalarized Q value in a greedy

manner after secularizing the Q values of state-action pairings using the Chebyshev

scalarization function. If the relevant solution isn’t dominated by any other solutions

at the conclusion of each episode, it is added to the Pareto set; otherwise, all solu-
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tions that are dominated by it are eliminated. Particle Swarm Optimization (PSO), a

two-phase, energy-efficient load balancing method that makes use of virtual machine

migration, was proposed by Masoudi et al. (2021). The author was able to reduce the

cloud data center’s initial energy usage by shutting off a large number of PMs. The au-

thor used the PSO to establish load balancing in the second phase. They also took into

account the Dynamic Voltage Frequency Scaling (DVFS) technique in their proposed

methodology. Their testing research indicates that after switching from the PSO algo-

rithm to their suggested method, the cloud data center’s energy usage reduced by about

10%. Li et al. (2015) proposed a Modified Particle Swarm Optimization (MPSO) based

cloud data center energy-efficient virtual machine (VM) migration and consolidation

approach. In their proposed work, the cloud data center’s maximum number of virtual

machines (VMs) was reduced to less PMs, and the VMs were relocated according to

double threshold values. Their strategy reduced energy use and prevented the cloud

data center’s SLA violation. The energy efficient task scheduling algorithm (ETSA)

is the foundation of the contribution (Panda and Jana (2018)), which aims to mini-

mize makespan and energy usage. An online energy-efficient job scheduling system

for heterogeneous cloud computing systems was created by the authors. They included

the energy, cloud, application, and scheduling models into the suggested method. The

foundation of this study is a combination of the TOPSIS approach for a more effec-

tive combination of the two techniques and the usage of DNN for regression. Another

important key concept of the work given in this study is that the data center’s energy

usage may be reduced by choosing the physical machine first, followed by the right

virtual machine. The four components of the VM consolidation approach are host over-

loading detection, host underloading detection, VM selection, and VMP (Beloglazov

and Buyya (2011)). Furthermore, they provide the popular Power Aware Best-Fit De-

creasing algorithm (PABFD). To manage cloud resources, the authors of (Nikzad et al.

(2022)) proposed a method for multiobjective virtual machine allocation in a dynamic

cloud setting. In their suggested solution, the author took into account eight criteria

to lower energy usage and SLA breaches. They also used heuristics and metaheuristic

algorithms to solve the same multiobjective issue. Comparing their suggested research
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Fig. 5.1 Architecture of TQVM.

to current algorithms, they were able to obtain an energy reduction of up to 12.5%.

They also decreased the amount of SLA violations and virtual machine migrations at

the cloud data center.

5.3 Proposed model

In this section, we discuss the system architecture and energy model (Mehor Yamina

and Omar (2025b)) followed by the details of the suggested model.

5.3.1 System architecture

The objective of this research is to decrease cloud data centers’ energy use. Since the

CPU is the primary resource in this activity, the procedure assigns VMs to PMs and

schedules tasks to VMs. Figure 5.1 illustrates the different processes of this proposal

which are defined as:

Data center: it is an IT entity composed of a set of physical machines.

CDC = {PM1, PM2, ..., PMN} (5.1)
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Physical Machines:

PM = {PM1, PM2, ..., PMn} (5.2)

where n is the total number of PMs.

Virtual Machines: the virtual machine consists of creating more execution envi-

ronments on a single physical machine. It provides each user with a service according

to demand. – A set of VMs

VM = {VM1, V M2, ..., V Mm} (5.3)

where m is the total number of VMs.

Cloudlets: They represent cloud application services. – A set of cloudlets

T = {T1, T2, ..., Tk} (5.4)

where k is the total number of cloudlets.

Allocation Service: This component is responsible for dynamically allocating virtual

machines (VMs) to available physical resources in the cloud. It also ensures the distri-

bution of cloudlets (user tasks) to associated VMs, ensuring that execution is optimized

based on host capacity and cloudlet requirements.

Service scheduler: Acts as a strategic layer responsible for temporally scheduling VM

allocation. It decides when and on which physical host each VM (and therefore the

cloudlets that will run on it) should be launched. This scheduling takes into account

resource availability, expected performance, and overall energy consumption.

Local Energy Monitor: Each physical server is monitored locally using an energy

monitor. This monitor measures the energy consumption related to VM and cloudlet

execution in real time, providing crucial data for local allocation decisions.

Global Energy Monitor: This component provides a consolidated view of the energy

consumption of the entire cloud infrastructure. It enables dynamic adjustment of VM
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and cloudlet allocation across the data center, to optimize overall energy efficiency and

meet sustainability constraints.

5.3.2 Energy Model

This research examines CPU use that determines how much electricity physical devices

consume. About 70% of the power of a physically active machine is used when it is

inactive. So, using Eq. 6.1, the power consumption (u) as CPU utilization is defined as:

P (u)i = Pmax(0, 7 + 0, 3ui) (5.5)

where ui is the current CPU usage and Pmax is the maximum power of a physical

system operating at 100% CPU utilization. CPU usage is defined as a function u(t) of

time since it varies over time. As a result, Eq. 5.6 establishes a physical machine’s

(PMi) total energy consumption:

Ei =

∫
P (u(t)) dt (5.6)

5.3.3 Allocation Model

Reducing energy consumption is the main objective of the proposed strategy. This

research proposes a VM migration model in cloud computing that proposes two thresh-

olds, local and global threshold. The proposed model uses a reinforcement learning

approach to minimise the energy consumption and SLA violation.

5.3.3.1 Local threshold

We first calculated the energy consumption of PMs as shown below in Eq. 5.6 and also

declared a local threshold to perform the migration. The physical machine is considered

to be underutilized when the energy consumption is below this value so all VMs are

migrated to other physical machines. Sort the PM list in the decreasing order of its VM

energy consumption and compare the current PM energy consumed value to the local
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threshold value of that PM. If the energy consumed of the PM is less than the lower

threshold value then add all the VM of the PM to the migration list and remove all the

VM from the PM and switch it off.

5.3.3.2 Global threshold

In this step we calculate the sum of the energy consumption of all PMs and also declare

a global threshold to perform the migration. The summation of the energy consumed by

all PMs is compared with the global threshold. If the summation is greater than global

threshold value a migration must be established.

5.3.3.3 Q-learning algorithm

In this research, we provide a new approach based on the Q-learning algorithm for

lowering energy consumption in cloud computing infrastructures (Wei et al. (2022)).

Through dynamic resource adaptation, the primary objective is to optimize overall en-

ergy usage. The system model shows a grid of physical machines, with each cell repre-

senting a physical machine. Each physical machine can be: balanced, over, or underuti-

lized. A physical machine utilization criteria has been established to determine whether

physical machines are over-utilized and underutilized. VMs are automatically divided

across the physical machines to get the best possible resource usage. The Q-learning

algorithm learns and finds the best actions to achieve this balance while using the least

amount of energy possible at each stage. The optimal VM reallocation technique is

gradually discovered using the Q-learning algorithm.

Q-learning is one of the Reinforcement Learning (RL) algorithms(Chen et al. (2020)).

RL is one of the machine learning methods that allows agents to learn in their environ-

ment and action by changing their state to receive rewards or penalties based on the

feedback obtained from the environment. The hand purpose of RL is to learn the agent

through trial and error between the agent and the environment. The agent is able to

receive the environment situation through a state and choose an action that affects the

environment to obtain the best reward and learn through past mistakes.
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The Q-learning algorithm process is shown in Figure 5.2. Given that the set of states is

in the environment, each state has a set of actions.

S = {s1, s2, s3, ..., sn} (5.7)

A = {a1, a2, a3, ..., am} (5.8)

Agent selects action A in state S to pass to the next state st+1, S through the transition

process and receives a reward rt+1 from the environment. To process the tasks, it is

necessary to select the appropriate action to maximize the Q-value of each state, which

is the primary objective of finding the optimal policy in cloud computing. The Q-value

function depends on the selection of action in the state. Given the agent in a state and

selecting an action, the Q-value function is expected to move to the best state and gain

to maximize the total expected reward in the environment.

The Q-value derives from creating a Q-table that stores all possible states, Q-values,

and appropriate actions. The Q-learning algorithm attempts to establish the optimal

state from their experience. Q-value can be computed using Eq.5.9.

Eq. 5.9 drives the learning process.

Q(s, a)← Q(s, a) + α [r + γmaxQ(s′, a′)−Q(s, a)] (5.9)

Where:

s is the current state of the physical machine (balanced, over-utilized, or underutilized),

a is the action taken (redistribute VMs to another physical machine or turn off a physi-

cal machine),

α is the learning rate,

r is the reward received (negative when energy consumption is high, positive when en-

ergy is optimized),

γ is the discount factor (importance of future rewards),

s′ is the new state after the action,

maxQ(s′, a′) represents the estimated value of the best possible action from the new
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Fig. 5.2 Q-learning for Energy-aware VM allocation.(Kruekaew and Kimpan (2022))

state.

In this research, a Q-learning algorithm for VM migration is proposed as a way to

reduce energy usage in a cloud setting. Begin by setting up a grid that presents the

resources, with the percentage of resource utilization in each cell. The energy is com-

puted using Eq. 5.6. Using the Q-learning algorithm, an agent is trained to learn about

the grid and choose the best course of action to lower energy use.(As shown in Figure

5.2)

Servers that are below an inferior utilization threshold are turned off, and VMs

have been allocated to identify over and underutilized physical machines in order to

balance the load. This approach aims to increase system efficiency by reducing energy

consumption and guaranteeing efficient resource allocation.

Case Study: Energy-aware Q-learning in a 3x3 Server Grid

We consider a cloud infrastructure composed of nine physical machines organized in a

3x3 grid. Each cell represents a physical machine capable of hosting multiple virtual

machines (VMs). The objective is to reduce overall energy consumption by dynamically

balancing the load using the Q-learning algorithm.

To illustrate the proposed optimization process, Table 5.1 presents an example of

the initial state of servers in a cloud infrastructure. Each server has a certain CPU
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utilization rate, which allows us to determine whether it is over-utilized, underutilized,

or balanced.

After applying the Q-learning algorithm, the virtual machines (VMs) are automati-

cally redistributed to maximize resource utilization while minimizing energy consump-

tion. Table 5.2 shows the state of the servers after this optimization. We observe that

the CPU loads have been balanced between the remaining servers, and that servers PM3

and PM6, which were initially underutilized, have been shut down to save energy.

It is important to note that, in this example, the total sum of CPU utilization rates

remains constant before and after optimization, which respects the principle of work-

load conservation.

Assumptions

Each physical machine can be:

Over-utilized (CPUutilization > 70%)

Underutilized (CPUutilization < 30%)

Balanced (between 30% and 70%)

Underutilized physical machines can be shut down if their VMs are moved.

Energy consumption is calculated based on Eq. 5.6

How Q-learning Works

State: The current load distribution across the physical machines.

Action: Move one or more VMs from one physical machine to another.

Reward: Low total energy consumption after the action.

Optimal policy: Progressively learned by Q-learning to always choose the action that

minimizes energy.
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Table 5.1 Example of initial physical machine situation

PM CPU Utilization (%) State

PM1 80% over-utilized

PM2 60% balanced

PM3 20% Underutilized

PM4 75% over utilized

PM5 50% balanced

PM6 25% Underutilized

PM7 85% over-utilized

PM8 55% balanced

PM9 30% balanced

Table 5.2 Corrected physical machine status after optimization by Q-learning

PM CPU Utilization (%) Status

PM1 70% Balanced

PM2 65% Balanced

PM3 0% Powered off

PM4 70% Balanced

PM5 70% Balanced

PM6 0% Powered off

PM7 65% Balanced

PM8 70% Balanced

PM9 70% Balanced

5.4 Experimental evaluation

This section presents the experiments carried out to evaluate our proposal. The first

part of the section describes the cloud infrastructure and the second part presents the

scheduler configuration.
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5.4.1 Cloud infrastructure

Several PMs were set up in a data center that was established for our simulation re-

search. This simulation environment creates a variety of virtual machines. The key

consideration when choosing simulation settings is whether the chosen features align

with frequent data center architectures as determined by previous studies.

5.4.2 Scheduler configuration

To test the effectiveness of the proposed approach, many experiments are conducted on

physical machine grids of different sizes, started with random utilization values. The Q-

learning algorithm’s parameters were set at a learning rate α of 0.1 and a discount factor

γ of 0.99, with a total of 1000 learning episodes. Two thresholds can be established by

the suggested algorithm: local and global thresholds. These thresholds, representing

the percentage of CPU utilization of a physical machine. Energy consumption was

measured using an equation. The results show a considerable decrease in energy use.

Grid state analysis additionally showed significant improvements in physical machine

load balancing, indicating that the recommended approach not only optimizes energy

usage but also improves resource utilization in a cloud computing setting.

5.5 Results and Discussion

The suggested VM migration algorithm significantly increases energy efficiency, ac-

cording to the results.

5.5.1 Baseline Results

The energy consumption, SLA violations, and number of VM migrations for NPA,

DVFS (Zhou et al. (2017)), MAD, THR, (Beloglazov and Buyya (2011)), MBFD,

PEBFD, PEFFD and MFPED, PABFD, BFTHR (Moges and Abebe (2019)), GA (Nah-

has et al. (2021)), and TQVM are shown in the following figures.
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Fig. 5.5 Average number of migrations of virtual machines

Our research shows that the number of migrated virtual machines has an important

impact on lowering energy use. The main objective is to compare the performance of the

suggested algorithm with the heuristics described in (Beloglazov and Buyya (2011)),

(Moges and Abebe (2019)), (Nahhas et al. (2021)), and (Zhou et al. (2017)). As shown

in Figure 5.3, our method has demonstrated a significant reduction in energy usage. The

NPA uses 2410.8 KWh. In order to lower its energy usage, DVFS uses 1014.21 KWh.

The effectiveness of DVFS is superior to that of NPA. However, neither NPA nor DVFS

entail VM migrations; instead, we employ the notation ”—-” to indicate the number

of VM migrations and nonexistent SLA violation. The suggested strategy outperforms

the other strategies, including PEBFD, PEFFD, and MFPED, that were presented in

(Moges and Abebe (2019)).

However, as Figure 5.3 illustrates, these methods use a lot of energy. Among

heuristic-based algorithms, the PABFD algorithm, which uses less energy consump-

tion, has a SLA violation of 0.12%, while our approach displays a violation of 0.16%.

The BFTHR did not perform any virtual machine migrations. As shown in Figure 5.3,

the genetic algorithm started 15 fewer migrations than the PABFD method and 163,

148, and 97 more than the PEBFD, PEFFD, and MFPED algorithms, respectively.

There are no SLA violations seen by the Best-Fit based heuristic algorithms, such

as MBFD and BFTHR as shown in Figure 5.4.
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As shown in Figure 5.5, the number of VM migrations also decreased from 739 in

PABFD to 720 in TQVM. When compared to Cloudsim’s fundamental algorithms, the

suggested method is effective.

The results highlight the trade-offs between energy efficiency, SLA compliance, and

VM migration frequency among different scheduling algorithms in cloud computing.

TQVM emerge as the most effective solution for reducing energy consumption, making

them ideal for cloud environments where minimizing power usage is a top priority.

A balanced approach should be considered, integrating hybrid strategies that opti-

mize energy consumption while minimizing SLA violations and controlling migration

overhead.

5.5.2 Impact of Local, Global Thresholds and Q-Learning Parameters

Figure 5.6 illustrates the comparison of energy consumption as a function of the ap-

plied threshold, for the two optimization phases: local and global. We observe that

the global phase systematically leads to slightly lower energy consumption than that

obtained with the local phase, particularly in the intermediate threshold range (30% to

70%), considered the optimal equilibrium zone.
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Fig. 5.6 Comparison of energy consumption under local and global thresholds

This improvement is explained by the consolidated view of the global state of the

servers provided by the global phase, allowing for better task consolidation and more
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efficient shutdown of underutilized resources. Thus, the sequential combination of the

two optimization phases achieves better overall energy performance.

Figure 5.7 and 5.8 show how Q-learning parameters, namely Alpha (learning rate)

and Gamma (discount factor), affect energy usage, measured in kWh. Energy consump-

tion tends to grow as Alpha increases, as Figure 5.7 illustrates. This might be because

of more extensive investigation and hence higher resource demand. However, Figure

5.8 shows that energy usage decreases as the Gamma value increases, indicating that a

more thorough evaluation of future benefits enables a more effective use of resources

over the long term. These findings demonstrate how crucial it is to appropriately adjust

these parameters in order to get the best possible balance between learning performance

and energy efficiency in a cloud computing setting.
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5.6 Conclusion

This research offers a novel artificial intelligence technique (TQVM) to solve the high

energy consumption and resource usage problem in cloud computing. According to

experimental data, TQVM minimizes energy consumption and resource usage. This

suggests that TQVM may be applied to cloud computing work allocation, especially in

complex scenarios.
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CHAPTER 6

Energy-aware task scheduling and resource allocation in cloud

computing

6.1 Introduction

Distributed computing is a rapidly developing area that includes cloud computing (Thekkepuryil

et al. (2021)). A large amount of energy usage is attributed to cloud data center servers

(Peng et al. (2022)). Virtualization technology increases resource usage by putting

several virtual machines (VM) on a physical host (PM) and decreases the amount of

hardware components in use, improving data center energy efficiency. The goals of the

cloud provider and the users must be maximized by scheduling user tasks onto virtual

machines (VMs) and carefully placing these VMs on physical hosts (PMs). Service

provisioning in a cloud data center may be done at two levels: task scheduling is the

first level, where each task of user is mapped into the appropriate virtual machine and

the allocation of the virtual machines is the second level.

The objective is to optimize energy consumption and task scheduling using an mod-

ified genetic algorithm and resource allocation using double threshold Q-learning VM

migration (Mehor Yamina and Omar (2025a)). Task Scheduling and VM Placement

TSVMP differs from existing approaches by:

• The integration of genetic algorithms and Reinforcement learning algorithm for

task scheduling and VM allocation.

• The use of thresholds to balance the load and turn off underutilized servers.

• An adaptive learning to different loads which implies minimization of energy
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consumption.

6.2 Related work

The scheduling and resource allocation issues have been addressed by several researchers.

In (Kruekaew and Kimpan (2022)), a Q-learning algorithm-based multi-objective task

scheduling optimization based on the Artificial Bee Colony Algorithm (ABC) is sug-

gested.

The Sine Cosine Algorithm (SCA) and the Ant Colony Optimization (ACO) algorithms

are combined by the researchers in (Vijaya and Srinivasan (2024)) to compose a novel

hybrid approach for efficient VM deployment.

Machine Learning methods have the potential to significantly improve energy efficiency

in Cloud data centers (CDCs) by Panwar et al. (2024). The primary objectives are to

optimize energy utilization and acquire resources by predicting CPU usage, identify-

ing overloads, estimating under-loads, selecting, migrating, and relocating virtual ma-

chines.

6.3 The proposed model

6.3.1 System and energy model

Consider the Data Center (DC) consists of m physical machines (PM).

Pi = {P1, P2, ....., Pm}, where (i = 1,...,m).

Consider the physical machine consists of n virtual machines (VM)

Vj = {V1, V2, .....Vn}, where (j = 1,...,n).

and Tk = {T1, T2, ....., Tl} denote a set of tasks where (k = 1,...,l).

In the present research, we focus on the relationship between server power usage and

CPU use. Eq. 6.1: defines the power consumption P(u) as CPU usage.

P (u)i = Pmax(0, 7 + 0, 3ui) (6.1)
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Fig. 6.1 Architecture of TSVMP

where Pmax represents the maximum power of a server and u represents the current

CPU utilization. Eq. 6.2 measures the total energy consumption of a physical machine:

Ei =

∫
P (u(t)) dt (6.2)

6.3.2 Optimization model

The proposed optimization model aims to improve resource utilization and reduce en-

ergy consumption. It consists of two main parts: task scheduling and virtual machine

allocation.(As shown in Figure 6.1)

6.3.2.1 Task scheduling

At this phase, a cloud computing scheduling model that suggests two stages has been

presented. In the first stage, the tasks in cloud computing must be completed in the

shortest amount of time possible using the resources that are available. Virtual machines

(VMs) with high processing power are assigned to tasks with longer length to minimize

the overall execution time (Malik et al. (2021)).
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In the next phase, A modified Genetic Algorithm is used to optimize task schedul-

ing:

Initial population: Tasks are assigned to virtual machines randomly.

Crossover: The best individuals are selected, and a single-point crossover is applied to

generate new solutions.

Mutation: A random mutation is performed based on a predefined probability. The

process repeats until the optimal solution is found.

6.3.2.2 VM migration

At this stage, a VM migration model in cloud computing is proposed, that proposes

two thresholds, local and global threshold.The local threshold is defined as 30% and

indicates underutilization of a PM; the VMs in that PM must be migrated to shut it

down. The global threshold is defined as 70% and identifies overload, requiring the

migration of certain VMs for performance and load balancing. These threshold values

are defined to reduce energy consumption by previous studies.

Q-learning algorithm: The Q-learning algorithm learns and finds the best actions

to achieve this balance while using the least amount of energy possible at each stage.

The optimal VM reallocation technique is gradually discovered using the Q-learning

algorithm. Eq. 6.3 drives the learning process:

Q(s, a)← Q(s, a) + α [r + γmaxQ(s′, a′)−Q(s, a)] (6.3)

The Q-learning algorithm optimizes energy consumption by learning to shut down un-

derutilized servers and redistribute VMs to balance the load. The agent adjusts its ac-

tions based on a reward r and estimates the best future decision using Q(s′, a′)(As

shown in Figure 6.2).

6.4 Experimental evaluation

The CloudSim simulator has been used to implement the suggested solutions. 560 phys-

ical machines were used in a single data center that was set up for the simulation tests.
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Fig. 6.2 Q-learning for Energy-aware VM allocation.

Table 6.1 Simulation Parameters

Algorithm Parameters Values
Modified Population size 10
Genetic Elite count 2

Algorithm Tournament size 3
Crossover rate 0.5
Mutation rate 0.2

Q-learning α 0.1
Algorithm γ 0.9

learning episodes 1000

The algorithms’ resource utilization, energy usage, and SLA violations had been eval-

uated. In the simulation experiments, the solution approach is evaluated using heuristic

algorithms. Such algorithms include: Modified Best-Fit Decreasing (MBFD), Power

Efficient Best-Fit Decreasing (PEBFD),Power Efficient First-Fit Decreasing (PEFFD),

Medium-Fit Power Efficient Decreasing (MFPED),Power Aware Best-Fit Decreasing

(PABFD),Best-Fit Static Threshold (BFTHR) and Genetic Algorithm (GA) (Moges and

Abebe (2019))(Nahhas et al. (2021)). Table 6.1 represents simulation parameters of the

proposal: The evaluation of each method in optimizing cloud computing resources is

the objective. Figure 6.3 represents the average energy consumption in a data center.

TSVMP is efficient and outperforms the comparison heuristics, while MBFD consumes

the most energy.

Figure 6.4 represents the average number of migrations of virtual machines. TSVMP

reports a high number of migrations which optimizes resource usage. Turning off un-
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derused servers and avoiding server overload increases the migrations number, but the

energy usage of a server turned on unnecessarily is much greater than that of the mi-

grations. We obtain an overall energy gain even if it implies a temporary cost to the

migrations. BFTHR shows no migrations.

Figure 6.5 represents the average SLA violations in the data center. TSVMP repre-

sents a good balance between energy efficiency and quality of service. MBFD guaran-

tees a perfect SLA but consumes a lot of energy. The highest SLA is for GA.
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Fig. 6.6 Impact of Task Deadlines on Energy Consumption
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The Figure 6.6 compares the energy consumption of two scheduling strategies over

10 experiments:

Every experiment uses a little more energy when there are deadlines (around 251

kWh).

Without deadlines, usage stays somewhat lower at about 249.6 kWh.

The minor but persistent difference indicates that there is a slight increase in energy

use when deadlines are added.

6.5 Conclusion

This research effectively schedules tasks and manages resources in cloud computing

settings. To schedule tasks to virtual machines and assign virtual machines to physical

machines, TSVMP is applied. By using less energy and resources, the suggested task

performs better than the current methods.
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CHAPTER 7

Conclusions and Future Research Directions

This thesis concentrates on the development and design of models and algorithms for

energy-efficient task scheduling and resource allocation. In this concluding chapter, we

present our findings regarding the work presented in this thesis and suggest potential

future directions for its expansion. The initial section provides a concise summary of the

primary contributions and draws conclusions. Following this, we present prospective

directions for future investigations in the second section.

7.1 Conclusions and Discussion

Energy efficiency is becoming increasingly significant for cloud data centers. The sig-

nificant issue of power consumption is growing as a result of their wide availability and

increasing scope. The primary goal of this work is to create and improve models and

algorithms for the efficient allocation of resources, while taking into account various

aspects of the issue. The resource provisioning plan, the dynamicity of the solution,

the type of virtualization, and the Cloud service model are the four primary dimen-

sions. The issue of resource allocation in the Cloud is extremely difficult to resolve

while maximizing energy efficiency and following to the discussed dimensions. This

thesis addresses the issue in its entirety, incorporating its numerous aspects and levels.

Our objective is to offer a comprehensive and generic solution, in addition to a specific

solution.

The concepts of cloud computing and virtualization, which serve as its facilitating

technology, are introduced in chapter 2. We conduct additional research on the energy

issue.
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By examining the primary causes of energy waste, introducing energy measurement

and modeling in Cloud environments, and presenting various power-saving techniques,

efficiency in Cloud data centers can be improved.

Chapter 3 offers a thorough analysis of the present state of the art in the allocation of

energy-efficient resources in cloud environments. The issue of energy-efficient resource

allocation in Cloud data centers is further described upon, and an overview of the cur-

rent state of energy-efficient Cloud resource allocation at various levels and dimensions

is provided. We have made an effort to acquire a more thorough comprehension of the

issue, situate the thesis in relation to existing research, and identify the primary chal-

lenges and issues through this survey. This thesis has made the following significant

contributions:

1. In Chapter 4, we propose the use of an Energy-Aware Scheduling Model (EASM)

for task scheduling in cloud computing. The objective of the proposed model is

to reduce energy consumption, execution time, and SLA violation.

2. Chapter 5 introduces a threshold Q-learning VM migration (TQVM), a unique

artificial intelligence VM migration technique.

3. In Chapter 6, we optimize task scheduling and virtual machine allocation by in-

tegrating genetic algorithms and deep learning. The implementation of thresh-

olds to distribute the workload and terminate servers that are underutilized. An

adaptive learning process that involves the reduction of energy consumption in

response to changing demands.

7.2 Future Research Directions

This thesis does not address specific issues related to the energy-efficient task schedul-

ing and resource allocation problem in Cloud environments; however, these limitations

will be addressed in future research. The subsequent are potential prospective directions

of this research:

• The optimization of supplementary metrics, such as throughput and latency
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• Investigating hybrid strategies that incorporate additional optimization techniques

• Conducting experiments on real cloud infrastructure.
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