
الشعبيـــة الديمقراطيـــة الجزائريـــة الجمهوريـــة

République Algérienne Démocratique et Populaire

العلمـــي والبحث العـــالي التعليم وزارة

Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

Université MUSTAPHA Stambouli

Mascara

اسطبولي مصطفى جامعة

معسكر

Faculté des Sciences et de la Technologie

Département d’Électrotechnique

Laboratoire Signaux et Systèmes – Université Abdelhamid Ibn Badis - Mostaganem

THÈSE DE DOCTORAT

Spécialité : Automatique

Option : Automatique et Informatique Industrielle

Intitulé

Utilisation des techniques du soft-computing pour la commande
des systèmes industriels : application sur un robot industriel

Présentée par : REZALI Baghdadi

Devant le jury :

Président EL Kebir Abdelkader Pr Univ. Mustapha stambouli-Mascara

Co-Directeur de thèse Ahmed-Foitih Zoubir Pr Univ. Sciences et de la Technologie-
Oran

Directeur de thèse IBARI Benaoumeur M.C.A Univ. Mustapha stambouli-Mascara

Examinateur BOUGUENNA Farouk
Ibrahim M.C.A Univ. Mustapha stambouli-Mascara

Examinateur BENZOUAOUI Ahmed M.C.A Univ. Hassiba Benbouali-Chlef
Examinateur BOUREGUIG Kada M.C.A Univ. Ibn Khaldoun-Tiaret
Examinateur LARBAOUI Ahmed M.C.A Univ. Mustapha stambouli-Mascara

Soutenue le : 04 juin 2025

الشعبيـــة الديمقراطيـــة الجزائريـــة الجمهوريـــة

People’s Democratic Republic of Algeria

العلمـــي والبحث العـــالي التعليم وزارة

Ministry of Higher Education and Scientific Research

University of Mustapha Stambouli

Mascara

اسطبولي مصطفى جامعة

معسكر

Faculty of Science and Technology

Department of Electrotechnical

Signals and Systems Laboratory – University of Abdelhamid Ibn Badis - Mostaganem

DOCTORAL THESIS

Specialist: Automatic

Option : Automatic and Industrial Computing

Titled

Use of soft computing techniques for the control of industrial
systems: application on an industrial robot

Carried out by : REZALI Baghdadi

In the presence of the committee :

President EL Kebir Abdelkader Pr Univ. Mustapha stambouli-Mascara
Thesis Co-Supervisor Ahmed-Foitih Zoubir Pr Univ. cience and Technology-Oran
Thesis Supervisor IBARI Benaoumeur M.C.A Univ. Mustapha stambouli-Mascara

Examiner BOUGUENNA Farouk
Ibrahim M.C.A Univ. Mustapha stambouli-Mascara

Examiner BENZOUAOUI Ahmed M.C.A Univ. Hassiba Benbouali-Chlef
Examiner BOUREGUIG Kada M.C.A Univ. Ibn Khaldoun-Tiaret
Examiner LARBAOUI Ahmed M.C.A Univ. Mustapha stambouli-Mascara

Defended on : June 4, 2025

Use of soft computing techniques for the control of
industrial systems: application on an industrial robot

THESIS
SUBMITED TO

UNIVERSITY OF MUSTAPHA STAMBOULI MASCARA
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

AUTHOR :
REZALI BAGHDADI

2025

To my beloved parents, whose unwavering support and guidance have shaped my journey.

To my brothers and sisters, for their constant encouragement and companionship.

To my dear friends and neighbors, whose kindness and inspiration have been invaluable.

And to myselfa reflection of resilience, determination, and an unyielding belief in my dreams.

If the plan doesnt work, change the plan, but
never the goal.

— Unknown

Acknowledgments

First of all, I would like to thank my God (Allah), my Creator, for granting me the strength
and patience to complete this work.
I would like to express my deepest gratitude to all those who have supported and guided me
throughout the journey of my doctoral research.
First and foremost, I would like to thank my advisors, Dr. IBARI Benaoumeur and Pr.
Zoubir AHMED FOITIH for their unwavering guidance, invaluable feedback, and continu-
ous support. Their knowledge, patience, and encouragement have been crucial to the completion
of this thesis.
I also would like to express my heartfelt appreciation to the members of the defense jury:

• Prof. EL KEBIR Abdelkader, President of the jury University of Mustapha Stam-
bouli, Mascara

• Dr. BOUGUENNA Farouk Ibrahim, Examiner University of Mustapha Stambouli,
Mascara

• Dr. BENZOUAOUI Ahmed, Examiner University of Hassiba Benbouali, Chlef

• Dr. BOUREGUIG Kada, Examiner University of Ibn Khaldoun, Tiaret

• Dr. LARBAOUI Ahmed, Examiner University of Mustapha Stambouli, Mascara

Their insightful comments and evaluations have significantly enriched this work.
I am also grateful to the University of Mustapha Stambouli, Mascara, for providing the
academic environment and resources necessary for my research.
My sincere appreciation goes to the Signals and Systems Laboratory, University of
Abdelhamid Ibn Badis, Mostaganem, where I had the privilege of collaborating with
talented colleagues.
I am profoundly grateful to my family for their constant love, support, and understanding
throughout this journey. To my parents, thank you for your unending belief in me. Your
sacrifices and encouragement have been my greatest source of strength.
Lastly, I would like to thank my friends for their emotional support and for always being there
for me, especially during the most challenging times.
To all those who have contributed to my personal and academic growth, I extend my heartfelt
thanks.

Abstract

This thesis presents advancements in industrial robotics using soft computing techniques, focus-
ing on kinematic and dynamic modeling, sensorless collision detection and optimal trajectory
planning. Chapter 3 provides a comprehensive study of robot manipulators, covering funda-
mental principles of kinematic and dynamic modeling. A detailed case study on the Fanuc
M-710iC/70 industrial robot examines its kinematic structure, dynamic model, and control as-
pects, offering practical insights into robotic motion and system behavior. Chapter 4 addresses
the limitations of traditional model-based collision detection methods and introduces a novel
sensorless approach using a fuzzy momentum observer. By dynamically adjusting observer
parameters through fuzzy logic, this method enhances detection accuracy, improving both sen-
sitivity and robustness. Extensive simulations validate its effectiveness in detecting collisions
with high precision. Chapter 5 focuses on optimal trajectory planning for industrial robots to
minimize energy consumption while ensuring smooth motion. A deep learning-based energy
model, utilizing a Long Short-Term Memory (LSTM) network, accurately predicts energy con-
sumption. Additionally, a Genetic Algorithm (GA) optimizes robot trajectories by considering
execution time, jerk, and energy efficiency. The integration of deep learning and evolutionary
optimization enables the generation of energy-efficient trajectories, enhancing industrial robot
performance. Overall, this research contributes to improving industrial robots by enhancing
modeling accuracy, safety, and energy efficiency, making them more adaptive and intelligent in
real-world applications.

vii

Contents

Abstract vii

List of Figures xi

List of Tables xii

Notations xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Aims and Objectives . 4
1.3 Thesis Outline . 6
1.4 Author’s Publications . 7

2 State of the Art 8
2.1 Introduction . 8
2.2 Fuzzy Logic . 9
2.3 Artificial Neural Networks . 11

2.3.1 An Overview of Artificial Neural Networks 12
2.3.2 Applications of Artificial Neural Networks in Robotics 13

2.4 Evolutionary Algorithms . 15
2.4.1 Particle Swarm Optimization . 15
2.4.2 Genetic Algorithm . 17
2.4.3 Grey Wolf Optimization . 19
2.4.4 Other Methods . 20

2.5 Conclusion . 23

3 Serial Robot Manipulator: Overview and Fundamentals 24
3.1 Introduction . 24
3.2 Kinematics . 25

3.2.1 Homogeneous Transformations . 25
3.2.2 Forward Kinematics . 26
3.2.3 Inverse Kinematics . 28
3.2.4 Differential Kinematics . 29

viii

3.3 Dynamics . 30
3.3.1 Equation of Motion . 31

3.4 Control Strategies . 33
3.5 Case Study . 34

3.5.1 The Robot Modeling . 35
3.5.2 The Robot Control Design . 41

3.6 Conclusion . 46

4 Collision Detection for Industrial Robots Using Soft Sensors 48
4.1 Introduction . 48
4.2 Problem statement . 50

4.2.1 Preliminaries . 50
4.2.2 Classical Generalized Momentum Observer 51
4.2.3 The Extended State Momentum Observer 51
4.2.4 The Nonlinear Momentum Observer . 52

4.3 Fuzzy Generalized Momentum Observer Design 53
4.3.1 Dynamic Error of The Observer . 55

4.4 Collision Monitoring Method . 56
4.5 Simulations Results and Discussion . 56

4.5.1 Collision Description . 57
4.5.2 Detection and Localization of Collision 62

4.6 Conclusion . 66

5 Soft Computing Approaches for Optimal Industrial Robot Trajectory Plan-
ning 67
5.1 Introduction . 67
5.2 Problem statements . 70

5.2.1 Time-energy-jerk optimization problem formulation 70
5.2.2 Trajectory planning by 5th-order B-spline in joint space 71

5.3 Prediction model of energy consumption using LSTM 74
5.3.1 Structure of LSTM cell . 75

5.4 Time-jerk-energy optimization using NSGA-II 76
5.5 Results and discussion . 78

5.5.1 Robot energy consumption model . 78
5.5.2 Running the optimization process . 82
5.5.3 Compared the suggested approach with the classical method 88

5.6 Conclusion . 94

6 Conclusion 95

ix

List of Figures

2.1 The basic structure of a fuzzy logic . 10
2.2 Basic structure of neural network. 12

3.1 Links, joints and frames of a serial manipulator. 25
3.2 Representation of a pose P in different coordinate frames. 26
3.3 Coordinate transformations in an open kinematic chain. 27
3.4 DenavitHartenberg kinematic parameters. 27
3.5 Inverse kinematics solving approaches. 28
3.6 Robot dimensions. 35
3.7 Kinemtic diagramme of Fanuc 710iC/70. 36
3.8 Elbow manipulator. 38
3.9 Combined SimulinkSimscape diagram (Fanuc M710iC/70). 40
3.10 Fanuc M-710iC/70 industrial robot model in Simulink. 41
3.11 Control scheme based on velocity observer. 44
3.12 Position of the sixth joints. 45
3.13 Estimation of disturbance. 46
3.14 Estimation error. 46
3.15 Trajectory in 3D space. 46

4.1 Collision detection workflow. 57
4.2 Collision modelling. 58
4.3 Residual of the first three joints. (a) for first link. (b) for second link. (c) for

third link. 60
4.4 Estimation error of the first three joints. (a) for first link. (b) for second link.

(c) for third link. 61
4.5 Evolution of observer’s bandwidth . 62
4.6 Residual of the first three joints. (a) for first link. (b) for second link. (c) for

third link. And Estimation error of the first three joints. (d) for first link. (e)
for second link. (f) for third link. 64

4.7 Estimation error. (a) for first link. (b) for second link. (c) for third link. (d) for
fourth link. (e) for fifth link and (f) for sixth link. 65

4.8 Collision detection and localization. 66

x

5.1 Schematic of the proposed LSTM network. 75
5.2 LSTM cell architecture. 76
5.3 Flowchart of optimization. 77
5.4 3D robot model of Fanuc M710iC70. 78
5.5 Training model performance with 50 trajectories. 79
5.6 Training model performance with 100 trajectories. 79
5.7 Training model performance with 150 trajectories. 80
5.8 Training model performance with 200 trajectories. 80
5.9 Test samples of EC predicted vs EC measured. 81
5.10 Pareto front of time-jerk-energy optimization. 82
5.11 The position of joints of robot trajectory. 83
5.12 The velocity of joints of robot trajectory. 84
5.13 The acceleration of joints of robot trajectory. 85
5.14 The jerk of joints of robot trajectory. 86
5.15 Energy consuming for the trajectory with an execution time of 11.49s 87
5.16 Comparison of proposed method and chord length distribution for the position

of the six joints of trajectory with an execution time of 11.49s. 90
5.17 Comparison of proposed method and chord length distribution for the velocity

of the six joints of trajectory with an execution time of 11.49s. 91
5.18 Comparison of proposed method and chord length distribution for the accelera-

tion of the six joints of trajectory with an execution time of 11.49s. 92
5.19 Comparison of proposed method and chord length distribution for the jerk of

the six joints of trajectory with an execution time of 11.49s. 93
5.20 Comparison of energy consuming between proposed method and classical method

with an execution time of 11.49s . 94

xi

List of Tables

2.1 Some literature on industrial robotics problems using PSO since 2020. 16
2.2 Some literature on industrial robotics problems using GAs since 2020. 18
2.3 Recent studies of GWO in industrial robotics. 21
2.4 Using evolutionary algorithm to solve industrial robotics problem. 23

3.1 D-H parameters of the robot. 36

4.1 Observers parameters . 58
4.2 Collision monitoring methods using momentum observers 59
4.3 Signature table . 63

5.1 Explanation of symbols in the optimization problem formulation. 71
5.2 Parameters of proposed LSTM. 81
5.3 Kinematic constraints of the robot joints. 82
5.4 Waypoints of trajectory in joint space (◦). 82
5.5 Time intervals of solution 11.49s. 87
5.6 Time intervals from the classic method. 88
5.7 The joints kinematic indices for both methods. 89
5.8 The indices to optimal trajectory for the two methods. 89

xii

Notations

In this thesis, the notation used in each chapter is defined independently, without being con-
strained by definitions in other chapters. This means that the same symbol may have different
meanings depending on the context in which it appears. Such an approach allows each chapter
to introduce and use notations in a manner best suited to its specific topic, ensuring clarity and
logical consistency within each section. Readers are advised to refer to the relevant chapters
notation definitions for precise meanings.

xiii

Chapter 1

Introduction

Abstract

This chapter provides the motivation behind this thesis, emphasizing the critical role of
robotics in modern industry and the challenges associated with their implementation. It
highlights the potential advantages of leveraging soft computing techniques to address
these challenges effectively. Section 1.2 outlines the specific aims and objectives of this
research, followed by an overview of the thesis structure to guide the reader through the
subsequent chapters. Finally, Section 1.3 presents the publications directly related to
this work.

1.1 Motivation

For decades, technological applications have been used in the industrial sector in the form
of manufacturing system automation to improve operations. Indeed, automation technologies
represent a significant revolution in industrial manufacturing. This is why many manufacturing
companies have fully automated their production processes. In an industrial perspective, sys-
tems automation are computer-controlled equipment and machinery to enhance productivity,
quality and flexibility in production processes, thus reducing the need for human interaction.
In view of that, Robotics lies in the category of automation systems. It is a distinct field of
automated machines designed with human-like traits or capabilities. A key feature of industrial
robotics is their mechanical arms, which are engineered to mimic the movement of human body
limbs. Aaccording to the Robotics Industries Association (RIA), an industrial robot can be
defined as “a multi-functional manipulator, can be reprogrammed designed to move through a
sequence of motions to carry out useful tasks such as welding, assembly, material handling and
packaging ”[1].
Nowadays, robots are sophisticated mechanical devices to perform different tasks with high
precision and their movement are controlled by advanced computers. The demand from man-
ufacturers for increased production has necessitated using robots to accomplish various tasks
quickly [2], the integration of robotics into these industries also leads to improved safety and
enhanced capabilities, driving innovation and economic growth. Unlike human workers, these

1

robots are not affected by physical or psychological limitations. They do not experience fear,
fatigue, or lack of interest, which allows them to perform their tasks consistently and without
interruption.
According to [3], robotic applications in the industrial sector are divided into three fundamen-
tal categories: material handling, object processing operations and inspection. In material
handling, robots transfer objects from one location to another, which is recognized as pick-
and-place operations. In this category, robots are also capable of sorting parts and packaging
products. Object processing operations involve specific processes performed on objects with
high precision to obtain the desired final result. These operations can be welding, painting,
deburing and assembly and much more. In the manufacturing process, some parts require in-
spection to ensure product quality, making robots ideal candidates for these operations. These
applications can include material inspection or the detection of manufacturing imperfections.
Although there have been significant advances in industrial robots in current-day, they still
face numerous challenges. The primary interests related to industrial robots involve various
aspects, including tracking control, trajectory planning, human-robot interaction and energy
consumption. The tracking control system is the mastermind of the robot, as it is responsible
for generating the appropriate commands for the actuators to achieve the desired movement. In
industrial robots, the purpose of tracking control is to ensure that the robot’s position, velocity,
and other state variables follow a desired trajectory by appropriately generating the driving
torques for each joint, Consequently, precise control of each joint is essential [4]. Industrial
robots are characterized by flexibility, varying loads, and unknown disturbances [5]. Therefore,
it is essential to develop a control strategy with high robustness and adaptability. Various robust
control strategies have been employed, including proportionalintegralderivative (PID) control
[6], [7], neural network control [8], fuzzy logic control [9], and sliding mode control (SMC) [10].
Despite these advancements, the development of control techniques remains a primary area of
interest for researchers, as achieving higher robustness and adaptability in industrial robots
continues to be a key challenge. The aspect of planning trajectories for industrial robots is just
as important as the control aspect. Planning the trajectory of an industrial robot in an optimal
way balancing time efficiency, trajectory precision and other performance metrics remains a
critical challenge that continues to engage domain specialists. This problem involves not only
determining the most efficient path for the robot to execute its tasks but also ensuring the
trajectory adheres to constraints such as kinematics limits. The common evaluation criteria
for trajectory planning of industrial robots include: (1) minimum execution time [11], [12] to
enhance productivity, (2) minimum energy consumption [13]–[15] to reduce power usage and
operational costs and (3) minimum jerk [16], [17] to ensure smooth motion while minimizing
mechanical shocks and vibrations. Human-Robot Interaction (HRI) in industrial settings is
a crucial field that focuses on ensuring robots operate safely in environments where human
presence is necessary. Unlike traditional industrial robots, which are confined within safety
cages, collaborative robots (cobots) are designed to physically interact with human workers
in shared workspaces. Cobots combine the strengths of both humans and robots to enhance

2

productivity. However, without robust safety measures for physical interaction, robots would
remain restricted to enclosed environments [18]. Last but not least, the energy consumption
of industrial robots is also a significant challenge, especially with the increasing demand for
energy resources worldwide. Therefore, finding solutions to reduce energy consumption is of
great interest to the industrial sector.
Industrial robotic systems are inherently complex, requiring sophisticated solutions to address
challenges such as precise motion control, adaptive decision-making, and real-time response
in dynamic environments. Solving these problems demands the integration of advanced tech-
nologies capable of handling uncertainty, nonlinearity, and variability in industrial processes.
Several studies [19]–[22] highlight the significant role of soft computing techniques in developing
intelligent models to tackle these challenges across various domains. Soft computing is a branch
of artificial intelligence that encompasses a range of intelligent methodologies, including fuzzy
logic, which enables reasoning under uncertainty; neural computing, which facilitates learning
from data and pattern recognition; and evolutionary computing, which provides optimization
capabilities through bio-inspired algorithms. These techniques collectively enhance the adapt-
ability, robustness, and efficiency of industrial robots, making them more capable of operating
autonomously in unstructured and dynamic environments. As a result, these techniques offer
significant advantages in industrial robotics, where robots must operate in uncertain condi-
tions, adapt to changing tasks, and optimize their performance in real time. Soft computing
can be applied to various challenges, such as trajectory planning, force control, sensor fusion,
fault detection, and energy efficiency optimization. By incorporating these intelligent method-
ologies, industrial robots can achieve greater autonomy, flexibility, and robustness, ultimately
enhancing their overall efficiency and reliability in manufacturing and automation processes.
Researchers have extensively explored various soft computing techniques in robotics, leveraging
their ability to handle uncertainty, adapt to dynamic environments, and optimize performance.
These techniques include, but are not limited to:

• Fuzzy logic [23]–[25], which enables reasoning under uncertainty by modeling imprecise
information and making flexible, human-like decisions. It has been widely applied in
robotic control, trajectory planning and collision avoidance.

• Neural networks [26]–[29], which provide learning capabilities by recognizing patterns
from data, making them effective for tasks such as robot perception, system identification,
and adaptive control.

• Machine learning [30], [31], which allows robots to improve their performance through
experience, enabling applications in predictive maintenance, autonomous navigation, and
real-time decision-making.

• Evolutionary algorithms [32]–[36], which employ bio-inspired optimization strategies to
solve complex problems in robotic path planning, parameter tuning, and multi-objective
optimization.

3

By integrating these soft computing techniques, industrial robots can achieve greater adaptabil-
ity, robustness, and efficiency, enhancing their ability to perform complex tasks in unstructured
and dynamic environments.

1.2 Aims and Objectives

The general objective of using soft computing in industrial robots is to enhance their adapt-
ability, precision, and decision-making capabilities in dynamic and uncertain environments.
Soft computing techniques, such as fuzzy logic, neural networks, and evolutionary algorithms,
enable robots to handle imprecise data, learn from experience, and optimize complex tasks.
This approach improves the efficiency and flexibility of industrial operations, making robots
more intelligent and responsive to changing conditions.
In order to apply soft computing techniques to industrial robots in this work, a comprehensive
mathematical and simulation model of the Fanuc M-710iC/70 industrial robot is designed. This
robot is widely used in various manufacturing applications due to its high precision, flexibility,
and payload capacity, making it a suitable platform for investigating advanced control strate-
gies.
The first contribution involves constructing the kinematics, dynamics, and control models of
the robot:

• Kinematics Model: Both forward and inverse kinematics are formulated, establishing the
mathematical relationships between the robots joint variables and its end-effector position
and orientation. This allows precise trajectory planning and motion control.

• Dynamic Model: A detailed dynamic model of the robot is built using the Simscape/Matlab
environment. This model captures the effects of robot link masses, joint torques, inertia,
and external forces, providing a realistic representation of the robots motion.

• Control Framework: The developed dynamic model serves as a foundation for testing
and implementing various soft computing techniques, for optimizing robot performance
in trajectory tracking .

Construction a high-fidelity simulation model, this work enables the application and evaluation
of soft computing strategies in an industrial robot, enhancing its performance.
The second contribution of this thesis addresses the safety challenges in physical human/environment-
robot interactions, which are critical for ensuring safe and efficient collaboration between robots
and their surroundings. Collision detection methods are generally classified into two categories:
Model-based methods and Model-independent methods. The later rely on external sensors to
detect collisions. While effective, these methods increase system costs and complicate the man-
ufacturing of robotic manipulators due to additional hardware requirements. To overcome these
limitations, our contribution focuses on a sensorless approach, adopting a model-based method
for collision detection. However, model-based approaches face a fundamental challengethere is

4

an unavoidable trade-off between collision sensitivity and the reduction of the peaking value,
which affects detection accuracy and robustness. To address this issue, we propose an im-
proved momentum observer based on fuzzy logic for collision detection and force estimation in
industrial robots. This contribution includes:

• Designing a generalized momentum observer derived from the robots dynamic model to
estimate external forces.

• Constructing a fuzzy logic system that intelligently adjusts observer parameters in real
time, enhancing adaptability.

• Integrating the fuzzy system with the observer, enabling an intelligent tuning mechanism
that improves detection sensitivity while minimizing peak disturbances.

Through combination momentum-based estimation with fuzzy logic adaptability, this approach
enhances collision detection effectiveness, achieving a better balance between sensitivity and
peak reduction, making it a promising solution for safer human-robot interaction in industrial
settings.
The third contribution of this work focuses on the optimal trajectory planning of industrial
robots by leveraging deep learning techniques and evolutionary algorithms. Given the con-
tinuous rise in energy costs, optimizing energy consumption has become a critical concern in
modern industry. This contribution introduces an efficient and intelligent approach to trajec-
tory planning, optimizing execution time, jerk, and energy consumption, while adhering to the
robots kinematic constraints. The key highlights of this contribution are as follows:

• A 5th-order B-spline is employed alongside a multi-objective optimization technique to
construct smooth and continuous trajectories up to jerk. This ensures precise and efficient
robot motion while reducing vibrations and mechanical stress.

• Since an explicit mathematical model relating trajectory parameters to energy consump-
tion is not readily available, a predictive model is developed using a Long Short-Term
Memory (LSTM) neural network. This model learns from historical data to estimate the
robots energy consumption profile and is incorporated as an objective function in the op-
timization process. Additionally, it enables energy prediction before real-time execution,
allowing for pre-optimized motion planning.

• The Non-Dominated Sorting Genetic Algorithm II (NSGA-II) is employed to optimize
the robot trajectory by simultaneously minimizing execution time, jerk, and energy con-
sumption. This ensures an optimal trade-off among motion efficiency, smoothness, and
energy savings.

Integration deep learning for predictive modeling and evolutionary algorithms for optimization,
this approach significantly enhances the efficiency, precision, and sustainability of industrial
robotic motion planning, making it a practical solution for energy-aware automation.

5

1.3 Thesis Outline

This thesis is structured into five chapters as follows:
Chapter 1 serves as the introduction, beginning with the background and motivations behind
this research. It then outlines the key challenges faced in industrial robotics and concludes by
presenting the main contributions of this study.
Chapter 2 presents a comprehensive state-of-the-art review, focusing on the application of
soft computing techniques in industrial robotics. It explores key methodologies, including fuzzy
logic, artificial neural networks and evolutionary algorithms, highlighting their roles in various
aspects of robotics, such as trajectory tracking and control, optimal trajectory planning, en-
ergy efficiency optimization, and safety enhancement. This chapter provides a detailed analysis
of how these intelligent techniques contribute to improving the performance, adaptability and
reliability of industrial robots.
Chapter 3 covers the fundamental principles of robot manipulators, including kinematic and
dynamic modeling. It provides a detailed analysis of the mathematical formulations governing
robot motion and dynamics. Additionally, this chapter includes an in-depth case study on the
Fanuc M-710iC/70 industrial robot, examining its kinematic structure, dynamic model and
control aspects.
Chapter 4 addresses the limitations of traditional model-based collision detection methods
for industrial robots and proposes a novel sensorless approach based on a fuzzy momentum ob-
server. This approach enhances collision detection accuracy by intelligently adjusting observer
parameters using fuzzy logic, improving both sensitivity and robustness. The effectiveness of
the proposed method is demonstrated through comprehensive simulation results.
Chapter 5 addresses the problem of optimal trajectory planning for industrial robots, with
a particular focus on minimizing energy consumption. It presents an effective approach for
generating optimal trajectories by considering execution time, jerk, and energy consumption as
key optimization criteria. The proposed method integrates deep learning for energy modeling,
utilizing a Long Short-Term Memory (LSTM) network to accurately predict energy consump-
tion. Additionally, a Genetic Algorithm (GA) is employed as an optimization technique to
refine the robots trajectory based on the three aforementioned criteria.
Chapter 6 concludes the thesis by summarizing the key findings and contributions of this work.
Additionally, it discusses potential future research directions, highlighting areas for further ex-
ploration and improvement in the field of industrial robotics and soft computing techniques.

6

1.4 Author’s Publications

• Rezali, B., Ibari, B., Hebali, M., Berka, M., Bennaoum, M., Bouzgou, K., ... & Benchikh,
L. (2025). Optimal trajectory planning for industrial robots: Minimizing time, jerk, and
energy consumption using LSTM for energy profile modeling. Journal of Vibration and
Control, 10775463251333481.

• B. Ibari, M. Hebali, B. Rezali, and M. Bennaoum, Collision detection and external
force estimation for robot manipulators using a composite momentum observer, AIMS
Electronics and Electrical Engineering, vol. 8, no. 2, pp. 237254, 2024.

• B. Ibari, M. Hebali, B. Rezali, M. Bennaoum, K. Boureguig, and K. Bouzgou, Enhanced
trajectory tracking of robotic manipulators using velocity observer-integrated computed
torque control, Studies in Engineering and Exact Sciences, vol. 5, no. 2, e11119e11119,
2024.

• B. Rezali, B. Ibari, M. Hebali, M. Berka, M. Bennaoum, and H. A. Azzedine, Sensorless
robot collision detection based on fuzzy momentum observer, Transactions of the Institute
of Measurement and Control, p. 01 423 312 241 262 538, 2024.

• B. Rezali, B. Ibari, M. Hebali, and H. A. Azzeddine, An optimal fractional order piλdµ
for robotic manipulators control under constrained torque., Journal of Engineering Sci-
ence & Technology Review, vol. 16, no. 5, 2023.

7

Chapter 2

State of the Art

Abstract

After a brief introduction to soft computing techniques, the fundamentals of the fuzzy
logic approach are presented, along with a review of the relevant literature discussing
its applications in industrial robotics (IRs). Following this, Section 2.3 provides into
artificial neural networks, exploring their principles and recent advancements in IRs.
Finally, the chapter concludes by highlighting evolutionary algorithms, with a focus on
their methodologies and practical applications within the field of IRs.

2.1 Introduction

In recent years, the popularity of soft computing techniques has increased significantly for
solving engineering problems. This has attracted the attention of researchers, particularly
in addressing challenges in robotics [37]. Given the multidisciplinary nature of research in
robotic systems, there is an urgent demand for the development of subfields such as kinematics,
control, path planning, humanrobot interaction (HRI) and industrial robot energy consumption.
As a result, current research trends focus on implementing soft computing in robotics and
developing intelligent systems to manage rule bases or knowledge bases, such as fuzzy logic
systems, artificial neural networks, swarm intelligence and evolutionary algorithms. They are
suitable for systems with highly complex dynamics that lack a precise mathematical model,
as well as for robot navigation where knowledge of the environment is inherently imprecise,
unpredictable, and incomplete. Another advantage of soft computing techniques is that they
can reduce the dependency on physical devices such as sensors in robotics by enabling robots
to make more intelligent decisions based on incomplete, imprecise or noisy data.
This chapter covers the current state of the art in various soft computing techniques applied
to robotics, including kinematics, control, humanrobot interaction, trajectory planning and
collision avoidance and more.

8

2.2 Fuzzy Logic

With the development of electronic technologies and the increase in computational capabil-
ities, there has been significant growth in the development of soft computing techniques across
various applications. Relying on these techniques provides an excellent alternative tool for
modeling and controlling systems. In particular, the fuzzy logic approach is a common method
in intelligent systems due to its simplicity, offering efficient solutions and attracting the interest
of researchers in robotic applications.
Zadeh is considered the first to introduce the concept of fuzzy logic [38], presenting it as a
method that mimics human brain reasoning and thinking to solve ambiguous problems.Fuzzy
logic is a form of multi-valued logic that deals with reasoning that is approximate rather than
fixed or exact. Unlike classical binary logic, which operates with clear-cut, discrete values
such as “true/false”or “high/low”, fuzzy logic allows for a continuum of values between these
extremes. It captures the nuances of human reasoning by expressing values like “fast”, “very
fast”, “slow”and “very slow”rather than simply “fast”or “slow”[39].
The main concept of fuzzy logic involves establishing the relationship between the antecedent
(premise) and the consequent (conclusion) through IF-THEN rules. The antecedent refers to
the current situation or condition being evaluated, while the consequent outlines the action or
outcome that should follow in response. The basic structure of a fuzzy logic system is composed
of four primary components, as illustrated in Figure 2.1.

• Fuzzy knowledge base: represents the central part of a fuzzy logic system (FLS). It consists
of knowledge data provided by expert users in the form of if-then rules. When the rules
are accurate, the system’s control is optimized, making it an essential component of the
FLS. This knowledge base is typically constructed from expert insights and practical
experiences.

• Fuzzification interface: in this module, real-world input values are transformed into fuzzy
sets. This process allows continuous or precise input data to be interpreted in a way
that can be compared with the fuzzy rules in the knowledge base. By converting crisp
inputs into degrees of membership within fuzzy sets, the system can handle uncertainty
and approximate reasoning, enabling more flexible decision-making.

• Inference engine: the inference engine evaluates fuzzy inputs by applying the rules stored
in the knowledge base. It processes the inputs through a series of “if-then ”rules to derive
conclusions or make decisions. By combining and interpreting the results of these rules,
the inference engine generates fuzzy outputs, which represent the system’s response.

• Defuzzification interface: this component converts the fuzzy outputs generated by the
inference engine into a precise, quantifiable result in crisp logic. It translates the fuzzy
sets into a single, actionable value using one of several defuzzification methods, such as
the centroid method or mean of maximum.

9

Fuzzification

interface

Defuzzification

interface

Inference

 engine

Fuzzy knowledge

base

Figure 2.1: The basic structure of a fuzzy logic

Fuzzy logic has been applied across various domains in robotics, including (such as) control,
path planning and collision avoided. In [40], the authors presented the application of fuzzy
logic control in robotic manipulators. In [41], A fuzzy PD controller is used for trajectory
tracking of the Rhino robot, and its performance is compared with that of a conventional PD
controller. The fuzzy controller demonstrates the ability to suppress overshoot during the initial
phase of robot trajectory tracking and performs better than the basic PD controller under all
tested scenario. In [42], the author proposes a fuzzy logic technique to adaptively tune the
gains of a sliding mode controller. The proposed controller is applied for position control of
a 2-DOF polar manipulator, achieving significant improvements in terms of reduced reaching
time and minimized chattering. Anupam et al. in [43] used a Type-2 fuzzy logic controller, an
extension of Type-1 fuzzy logic, to control a 2-DOF robot manipulator with a payload. Type-
2 fuzzy controllers provide an additional degree of freedom in their membership functions,
making them particularly well-suited for handling complex and highly uncertain systems, such
as robot manipulators. The fuzzy logic technique was integrated into hybrid force/position
control of a robot manipulator to enhance its performance [44], a fuzzy-based computed torque
control (CTC) method is employed to regulate the robot’s end-effector position, ensuring precise
movement and trajectory tracking. Simultaneously, a fuzzy proportional-integral (PI) controller
is used for force control, enabling the manipulator to adapt to varying interaction forces with
its environment. In reference [45], a fault-tolerant control system is developed using fuzzy logic
to enhance the tracking performance of robotic manipulators. This approach does not require
complete prior knowledge of the robot’s dynamic model.
Another area in robotics where fuzzy logic has been widely applied is trajectory planning.
Hentout et al. [46] conducted a comprehensive review of fuzzy logic technique for the path
planning of robotic manipulators. Path planning of a robot manipulator remains a significant
challenge in the field of robotics. Path planning involves identifying a series of configurations
for the robot that allow it to move from an initial configuration to a final configuration while
considering the mechanical constraints of the robot and the possible presence of obstacles in
the robot’s workspace. Lian [47] noted that it is challenging to establish an exact mathematical
model of a robot to generate an effective path. In [48], authors proposed an offline path
planning approach using fuzzy inference for robotic manipulators in a static environment. Their
method leverages the Transition-based Rapidly-exploring Random Tree (T-RRT) algorithm,

10

which assigns a cost to each configuration. The cost function is defined by the distance to
configurations that result in collisions. Fuzzy function approximation is used to evaluate this
cost, providing an effective way to compute the cost throughout the configuration space. In
order to achieve obstacle avoidance, Beheshti et al. [49] presented an adaptive fuzzy logic
approach to solve the inverse kinematics problem for redundant robots, considering mechanical
joint limits. Collision detection between humans and robots based on fuzzy identification was
investigated by [50], in this approach, the robot is trained to recognize expected collisions, and
the magnitude of the resulting forces is identified using a fuzzy logic technique. This method
enables the robot to detect and respond to collisions more effectively, improving safety during
human-robot interaction.
On the other hand, fuzzy logic has been used as an effective technique for addressing kinematic
problems in robotics. In particular, the study presented in [51] demonstrates the application
of fuzzy logic to solve the inverse kinematics problem for a 7-DoF redundant-serial robot. The
paper [52] explores the use of Adaptive Neuro-Fuzzy Inference Systems (ANFIS) to address the
inverse kinematics problem for multiple robotic arms. The work by Mary et al. [53] proposed
an alternative method for solving the inverse kinematics of a 3-joint robotic manipulator. This
method is based on closed-loop theory using fuzzy PD control. The proposed approach aims
to obtain the IK model by minimizing the difference between the desired Cartesian position
of the end-effector and its actual position, thereby improving the accuracy of the IK solution.
In [54], fuzzy logic is merged with the ant colony algorithm to solve the inverse kinematics
of a robot arm. Shihabudheen and Pillai [55] proposed an Extreme Learning Machine (ELM)
model that integrates knowledge from fuzzy systems to predict the inverse kinematics solutions
of robotic arms, this approach offers an efficient method for addressing the complexities of
inverse kinematics in robotic systems.

2.3 Artificial Neural Networks

Nowadays, Artificial Neural Networks (ANNs) are considered a major researche trend in
the scientific community. This area of research has had a profound impact across multiple
fields, including robotics. A substantial number of publications have explored the application
of artificial neural networks in robotics. This section provides a concise overview of artificial
neural networks and highlights significant research contributions that apply ANNs approaches
to key areas within robotics. These areas include kinematics, dynamics, trajectory planning,
sensing and control, where neural networks have been utilized to address complex challenges
and enhance robotic performance. By exploring these foundational studies, we gain insights
into the growing impact of neural networks in advancing robotics technology.

11

2.3.1 An Overview of Artificial Neural Networks

What is a ANNs ?

A artificial neural networks is a modeling technique that uses data to make decisions in a
way that mimics the human brain. It works by simulating the behavior of biological neurons,
which collaborate to recognize patterns, evaluate options and reach conclusions.

How do ANNs work?

Similar to the human brain, which consists of a vast network of biological neurons, an
artificial neural network is made up of a large network of interconnected nodes, as shown in
Figure 2.2. In Figure 2.2, the group of square nodes represents the input layer, which transmits

Figure 2.2: Basic structure of neural network.

the input signals to the subsequent nodes. On the rightmost side of the network is the output
layer. The output from these nodes represents the final result produced by the neural network
after processing the input through various layers. The layers located between the input and
output layers are known as hidden layers. These hidden layers play a crucial role in processing
and transforming the input data by extracting features and identifying patterns that help the
network make accurate predictions or classifications in the output layer.

In a layered neural network, the signal flows in a structured, step-by-step manner. It first
enters through the input layer, where raw data is introduced into the network. The signal
then moves through one or more hidden layers, where it undergoes a series of transformations.
Each hidden layer extracts relevant features from the data, enabling the network to recognize
patterns and refine its understanding. At each layer, all nodes process the incoming signal
simultaneously and pass their outputs to the nodes in the next layer, continuing this process
until reaching the output layer. The final processed signal in the output layer represents the
network’s result, such as a prediction or classification, based on the input data. This layer-

12

by-layer progression allows the network to gradually refine and enhance the signal, leading to
more accurate outcomes.

Types of ANNs

There are several types of neural networks, each designed for specific purposes based on the
problem being addressed. While this list is not exhaustive, the following types represent the
primary neural networks commonly encountered in various applications.

Multi-Layer Perceptrons (MLP)
Multi-layer perceptrons, also known as feedforward neural networks created by Frank Rosen-
blatt [56], are the simplest type of neural network. In this architecture, information flows in
one direction, from the input layer to the output layer. This type of network is commonly
used for basic pattern recognition and classification tasks and serves as the foundation for more
complex neural network architectures.

Convolutional neural networks (CNNs)
These networks leverage principles from linear algebra, particularly matrix multiplication, to
identify patterns within images. This makes them ideal for tasks such as image classification,
object detection, and other applications in computer vision.

Recurrent neural networks (RNNs)
These RNNs are characterized by their feedback loops, which allow information to persist across
time steps. These learning algorithms are primarily utilized with time-series data to make pre-
dictions about future outcomes. Variants such as Long Short-Term Memory (LSTM) networks
address the limitations of traditional RNNs by effectively retaining long-term dependencies.

2.3.2 Applications of Artificial Neural Networks in Robotics

Neural networks in kinematics

The development of inverse kinematics models is one of the challenging problems in robotics
due to its computational intensity and the existence of multiple solutions. This computational
complexity can be reduced by utilizing neural networks to address the inverse kinematics prob-
lem. However, while analytical solutions for inverse kinematics yield numerically accurate
results, neural network solutions may not achieve the same level of precision.

Köker et al. [57] have used a designed neural network (NN) to solve the inverse kinematics
problem for a three-joint robotic manipulator. In reference [58], the authors investigated for-
ward kinematics for hybrid robots with a parallelserial structure by employing a neural network
based on radial basis functions (RBF). Their study explores the effectiveness of this approach
in accurately modeling the kinematic behavior of this type of robots. A new neural network
model for solving inverse kinematics is proposed in [59]. The novelty of this approach lies in

13

incorporating the current joint angle configuration into the input pattern of the neural network,
alongside the desired position and orientation. This additional input improves the accuracy of
the NN estimation of joint angles, enhancing its ability to generate precise outputs for complex
robotic movements. In [60], Xuehong Sun employs a dynamic neural network, rather than a
static one, using new learning rules known as a fast-learning neural network. This approach,
characterized by high identification accuracy for both linear and non-linear systems, is applied
to identify the non-linear kinematics model of robots. According to to [61], experimental results
have shown that geometry-based inverse kinematics for Delta robots may not achieve sufficient
accuracy in reaching desired positions due to measurement errors, joint flexibility, and backlash.
To address this, a data-driven model using a neural network is employed to approximate the
inverse kinematics of such robots equipped with stepper motors.

Neural networks in control

For effective control of robots, an accurate understanding of the robot’s dynamics is essential.
However, in practice, the robot’s dynamic model is complex and challenging to derive, not to
mention the manufacturing uncertainties, friction, and disturbances that affect the robot’s
dynamics. Therefore, intelligent control methods are often required. Artificial neural networks
offer effective solutions to these challenges, and much of the research in robotics has focused
on their application in control systems.

Adaptive control using neural networks is an effective approach for managing uncertainties
in a robot’s dynamic model, particularly when both the structure and parameters are unknown
[62]–[64]. In [65], a neural network-based PD control in cascade is designed to compensate
for both structured and unstructured uncertainties in a robot manipulator. To enable precise
tracking control for industrial robot tasks, a deep neural network is used to approximate the
Jacobian matrix of a robot with unknown kinematic parameters [66]. Friction is an undesirable
phenomenon in robotic control that can disrupt trajectory tracking, making it essential to
estimate and compensate for friction within the control law to achieve high performance. To
address this challenge, [67] proposes an approach in which a Radial Basis Function (RBF)
neural network is used to estimate unknown nonlinear friction online, providing compensation
signals that are then integrated into the controller. Li et al. [68] proposed a neural network-
based approach for correcting positioning errors. The neural network is designed to predict the
positioning errors of the robot, which are then used to adjust target points within the robots
workspace for improved accuracy. For more research on this topic, see reference [69].

Neural networks in motion planning

To address issues like slow motion planning, low accuracy, high path calculation costs and
collision avoidance in robots, several neural network-based approaches have been proposed. In
[70], A dynamic robot motion planning using NNs method is proposed, the robot to move au-
tonomously in unknown environments by dynamically adapting its path in real time, leveraging
the neural networks capacity to respond to unpredictable surroundings. A single-layer neural

14

network is used to predict or control aspects of the robot’s movement [71], it is utilized to
generate the desired base position, or optimal starting point, which helps suppress residual vi-
brations of the manipulator by minimizing displacement in the workspace. Ramya and Supriya
[72] used a recurrent neural network (RNN) to generate a robot’s path from a source to a des-
tination while avoiding obstacles. The RNN model was trained on images of environments that
include obstacles, enabling it to recognize and navigate around them effectively. Additionally,
the algorithm is designed to find the shortest path among nodes, optimizing the robot’s path for
efficiency. A novel method called Neural-Network-Driven Prediction (NEED) [73] is presented
for robot path planning problems. By training the NEED model on numerous successful path
planning cases, it can analyze and predict the search region, serving as a heuristic to guide
the search direction of path planning algorithms. A Bi-directional Rapidly-exploring Random
Tree combined with Long Short-Term Memory (LSTM-BiRRT) technique for planning tasks
involving dual-arm assembly robots in three-dimensional environments [74].

2.4 Evolutionary Algorithms

Evolutionary (metaheuristic) optimization algorithms are computational techniques inspired
by various natural processes [75]. These algorithms are among the most widely used methods
for addressing diverse and complex applications, particularly in scenarios where conventional
optimization methods fall short. One notable area of application is in robotics systems, where
evolutionary algorithms can effectively tackle intricate optimization challenges. In this review,
we explore the application of evolutionary algorithms in industrial robotics. Specifically, we
investigate widely used evolutionary computation techniques, such as Particle Swarm Opti-
mization (PSO), Genetic Algorithms (GA) and Grey Wolf Optimization (GWO). Our focus
will be on how these methods can enhance robotic performance, improve efficiency and solve
complex optimization problems in various industrial robotics.

2.4.1 Particle Swarm Optimization

It is one of the oldest evolutionary computation techniques; however, it is still extensively
studied and used in various applications. This method is inspired by the foraging behavior
observed in bird flocking and fish schooling. In this method, a population of particles iteratively
searches for an optimal solution by adjusting their positions within the search space, based on
knowledge of the positions of other particles in the swarm [76]. The basic mechanism of PSO
is

x
(t+1)
i = x

(t)
i + v

(t+1)
i (2.1)

where x(t)i is current position of particle i at iteration t and v(t+1)
i represents velocity of particle

i at iteration t + 1, which is calculated based on best position of particles p(t)i and the best
position in the swarm g(t) as

v
(t+1)
i = w.x

(t)
i + c1.r1(p

(t)
i + xt(i) + c2.r2(g

(t) + x
(t)
i) (2.2)

15

where w represent the inertia weight, c1 and c2 are acceleration coefficients and r1 and r2 are
random numbers between 0 and 1.
Optimal trajectory planning is one of the most extensive applications of the PSO algorithm in
solving motion planning problems for robotic arms. A 3-5-3 polynomial interpolation method
based on PSO is proposed for time-optimal trajectory planning in the joint space of a 5-DOF
manipulator [77]. An enhanced Hybrid Particle Swarm Optimization (Hybrid-PSO) algorithm
is proposed to achieve time-optimal trajectory planning for industrial robots [78]–[80], refer to
the review paper [81] for information on evolutionary computation algorithms in the trajectory
planning of industrial robotics. The PSO algorithm has been also applied to address aspects
of inverse kinematics in robotics. The authors in [82] propose an improved PSO algorithm
for calculating inverse kinematics, which is applicable to various types of robots. The particle
swarm optimization algorithm is susceptible to local minima. To address this issue, David et
al.[83] propose a modification of Fully Resampled PSO for solving the inverse kinematics of
robot arms. In the field of robotic control, a self-tuning fuzzy PID controller is designed using
PSO [84], a super-twisting sliding mode controller with adaptive capabilities is proposed for
an exoskeleton robot, this adaptation utilizes the PSO algorithm, focusing on online tuning of
the parameters to minimize the objective function [85]. A novel PSO technique is used to tune
the PID controller for position control of the joints of a robotic manipulator [35]. A control
method based on Nonlinear Active Disturbance Rejection Control (NADRC) using an extended
state observer is proposed for robotic manipulators. An Improved Particle Swarm Optimization
(IPSO) algorithm, based on chaos theory, is employed to optimize the key parameters of the
controller [86]. Table 2.1 lists the reviewed some papers that applied PSO as the optimization
method for various industrial robotics applications since 2020.

Table 2.1: Some literature on industrial robotics problems using PSO since 2020.

Ref. Year Type of robot Problem
[87] 2023 6-DoF serial robot manipolator Trajectory planning
[88] 2020 6-DoF serial robot manipolator Energy consumption
[89] 2022 Dual-arm robot Energy consumption
[90] 2021 7-DoF serial robot manipulator Inverse Kinematics
[91] 2021 6-DoF serial robot manipolator Inverse Kinematics
[92] 2020 7-DoF serial robot manipulator Inverse Kinematics
[93] 2021 Humanoid robot Robot control
[94] 2022 5-DoF serial robot manipulator Inverse Kinematics
[95] 2022 5-DoF serial robot manipulator Jerk minimization
[96] 2020 3-DoF articulated robot arm Robot control
[97] 2021 3-DoF articulated robot arm collision avoidance
[98] 2022 2-DoF serial robot manipulator Parameters identification
[99] 2023 6-DoF serial robot manipulator Parameters identification

16

2.4.2 Genetic Algorithm

A genetic algorithm (GA) is an optimization method inspired by the process of natural
selection and is used for optimization and search problems in various fields, including computer
science, engineering and robotics. The GA performs its search based on a population of potential
solutions and applies the concept of “survival of the fittest ”. It simulates the process of natural
selection to evolve better solutions over time. The algorithm typically follows these steps [100]:

• Population Initialization: Generate an initial population consisting of a set of individuals
(potential solutions).

• Fitness Evaluation: Calculate the fitness score for each individual based on a defined
criterion or objective function.

• Termination Check: If the termination condition (such as a fixed number of generations)
is met, end the process. Otherwise, proceed to the next step.

• Parent Selection: Choose individuals for reproduction, favoring those with higher fitness
scores.

• Crossover and Mutation: Modify the selected parents through crossover and mutation to
produce offspring (children).

• Population Update: Form the new population by combining the offspring with some
unchanged individuals from the previous generation.

• Loop: Repeat from step 2 until the termination condition is met.

Since the 2000s, the number of publications on the application of genetic algorithms (GAs)
in robot manipulators has increased several-fold. Path planning is a key area in robotics that
often benefits from the application of genetic algorithms. Garg and Kumar [101] noted that
the paths of robot manipulators could be optimized using genetic algorithms (GA) by consid-
ering joint torque for a 2-DoF robot manipulator. They suggested that this approach could
be extended to more complex robot manipulators. In [102], an evaluation was conducted on
the efficiency of time-optimal and smooth trajectory optimization using a multiple population
genetic algorithm (GA). The authors concluded that the approach is valid and yields promising
results. Andrea et al. [103] present a method for trajectory planning and optimization that pre-
vents collisions with human operators in a dual-arm robot’s work-cell, using the occupancy data
of the human operator, the optimization algorithm employed is a genetic algorithm (GA). Op-
timal time and continuous jerk for trajectory planning of industrial robots have been achieved
using a hybrid approach combining the Whale Optimization Algorithm (WOA) and the GA
[104]. By combining non-dominated sorting genetic algorithm-II (NSGA-II) with achievement
scalarizing function (ASF), a multi-objective optimization technique achieves higher positional
accuracy for a 6-DoF industrial robot, while minimizing the time-jerk-torque rate of the joint
trajectory [105]. In order to establish an accurate dynamic model of a robot, which is key to

17

effective robot motion control, robot parameter identification is important. This has prompted
many researchers to work within this framework. Feng et al. [106] propose a hybrid algo-
rithm combining GA and PSO to identify the inertia parameters of the Selective Compliance
Assembly Robot Arm (SCARA). In [107], the parameters of the Coulomb viscous friction and
Stribeck friction models are identified using a genetic algorithm to enhance the dynamic model
of a 6-DoF modular robot manipulator. Claudio and José [108] examined various parameter
identification methods for the SCARA robot, including least squares, neural networks and ge-
netic algorithms and evaluate their comparative performance. The study in [109] employs an
adaptive genetic algorithm with a simulated annealing algorithm to determine the structural
parameters of a six-degree-of-freedom industrial robot, where the authors observed that this
method could be widely applied to the calibration of other types of robots. For robot control
systems, genetic algorithms are commonly used as a tool for tuning and optimizing controller
parameters, as [110] where GA-based fuzzy PID control is employed to control a robotic arm
in the presence of external disturbances. A GA-based optimal computed torque control, along
with an appropriate cost function, is proposed for controlling a tracker robot [111]. A con-
troller integrating fuzzy logic, neural networks, and genetic algorithm techniques is developed
for controlling a robotic manipulator, GAs are employed to optimize the fuzzy subsets [112].
GA-based nonlinear sliding mode control is applied to trajectory tracking of a 2-DoF robot
arm [113]. In the work [114], a Multi-Objective Genetic Algorithm (MOGA) is utilized to op-
timize the sliding mode control trajectory for accurate tracking in a SCARA robot. A position
control of a 3-RevoluteRevoluteRevolute (3-RRR) parallel robot using a PID controller opti-
mized by a genetic algorithm [115]. Eltayeb et al. [116] presented a comparative analysis of a
fractional-order proportionalintegralderivative (FO-PID) controller versus a standard PID con-
troller, both optimized using a GA. Table 2 provides an overview of additional studies involving
the application of genetic algorithms across various disciplines within industrial robotics.

Table 2.2: Some literature on industrial robotics problems using GAs since 2020.

Ref. Year Type of robot Problem
[117] 2021 SCARA robot Robot control
[118] 2021 6-DoF serial robot manipolator Energy consumption
[119] 2024 Robotic Cell Path planning
[120] 2020 7-DoF redundant manipulator Trajectory planning
[121] 2020 2-DoF serial robot manipulator Robot control
[122] 2022 6-DoF serial robot manipulator Trajectory planning
[123] 2020 6-DoF serial robot manipulator Trajectory planning
[124] 2022 Serial-parallel hybrid manipulator Trajectory planning
[125] 2021 2-DoF serial robot manipulator Robot control
[126] 2022 SCARA robot Robot control
[127] 2022 6-DoF serial robot manipulator Robot control
[128] 2020 2-DoF serial robot manipulator Energy consumption

18

2.4.3 Grey Wolf Optimization

The Grey Wolf Optimization (GWO) algorithm, introduced by Mirjalili et al.[129], is a
new metaheuristic optimization technique inspired by the natural hunting behavior of grey
wolves. Gray wolves are organized into a hierarchy with four dominance levels: alpha (α)
as the primary leaders, beta (β) as second-in-command, delta (δ) as third-level leaders, and
omega (ω) as the lowest-ranked members of the pack. The GWO algorithm starts by randomly
generating a population of gray wolves. These wolves estimate the prey’s (optimal solution’s)
location through an iterative process. During each iteration, the α, β, and δ wolves determine
the approximate position and distance to the prey. This process of encircling the prey continues
until it becomes stationary, at which point the wolves launch their attack. The mathematical
model for encircling the prey is as follows

D⃗ = |C⃗X⃗(t)
p − X⃗(t)| (2.3)

X⃗(t+1) = X⃗(t)
p − A⃗D⃗ (2.4)

X⃗
(t)
p and X⃗(t) are current position vector of prey and grey wolf, respectively. The A⃗ and C⃗ are

are coefficient vectors, they are calculated as

A⃗ = 2a⃗r⃗1 − a⃗ (2.5)

C⃗ = 2r⃗2 (2.6)

r⃗1 and r⃗2 are random vectors in the range [0, 1]. The vector a⃗ linearly decreases from 2 to 0
over the iterations, as shown in the following equation

a⃗ = 2

(
1− t

tmax

)
(2.7)

and the mathematical modeling of grey wolf hunting is represented as follows
D⃗α = |C⃗1X⃗α − X⃗|

D⃗β = |C⃗2X⃗β − X⃗|

D⃗δ = |C⃗3X⃗δ − X⃗|

(2.8)


X⃗1 = X⃗α − A⃗1D⃗α

X⃗2 = X⃗β − A⃗2D⃗β

X⃗3 = X⃗δ − A⃗3D⃗δ

(2.9)

X⃗(t+1) =
X⃗1 + X⃗2 + X⃗3

3
(2.10)

Initially, the first three best solutions (α, β and δ) are considered optimal parameters, as they
have superior knowledge about the location of the prey. Throughout the iterations, α, β and

19

δ update their positions relative to the prey. If |A| > 1, the potential solutions (wolves) move
away from the prey; otherwise, they converge toward the prey. The GWO algorithm concludes
when a termination criterion is met or the specified number of iterations is reached.

It is witnessed that the Grey Wolf Optimization (GWO) algorithm has been widely applied
in robotic field, demonstrating its effectiveness in areas such as kinematics, trajectory planning,
and robot control. Inverse kinematics (IK) is a critical challenge in robotics. In [130], the GWO
algorithm was applied to solve the IK problem for a 7-joint robot manipulator. The work [131]
employed GWO and other bio-inspired algorithms to solve the structural parameter problem
of a 6-DOF serial robot arm, and also in [132], GWO was applied to solve and optimize the
forward and inverse kinematics problem of a SCARA robot. A randomness-enhanced Grey Wolf
Optimizer (REGWO) is introduced to solve the inverse kinematics of redundant manipulators
[133]. This enhanced version of GWO mitigates issues such as premature convergence and
limited population diversity. Zafar et al.[134] propose a Deep Neural Network (DNN) model to
compute the inverse kinematics of a 3-DoF robot manipulator. This DNN is optimized using the
GWO technique. The GWO has also been applied in robotics trajectory planning, in [135], an
approach based on GWO was presented for calculating the jerk-optimal trajectory of a 7-DOF
redundant robot manipulator. An approach based on the GWO algorithm is proposed in [136]
to generate a smooth, error-free continuous path motion for a 6-DOF parallel manipulator and
its performance is compared with a GA technique. A new multi-strategy GWO algorithm is
introduced for path planning in hydraulic robotic arms [137]. Beyond trajectory planning, GWO
has proven to be effective in aspect of robotics control. Its capabilities extend to optimizing
control strategies. As shown in [138], GWO has been applied to enhance the control law for
trajectory tracking of a 3-DOF robotic manipulator. The primary objective of using GWO is
to estimate the inertia matrix of the robot, which has a essential role in designing control laws
for robotics. In [139], [140], to control a 2-DOF robot arm, an extended gray wolf optimizer
was employed for tuning the parameters of sliding mode controller. In work of Zhou et al.[141],
an extreme learning machine (ELM) model optimized by the gray wolf optimization algorithm
is used to address the problem of external disturbances and uncertainties in robotics control.
In the study [142], a self-adaptive fuzzy control system based on the gray wolf optimizer is
designed for the PUMA 560 robotic arm. In this system, the GWO is utilized to adapt the
fuzzy membership functions, enabling improved performance and responsiveness in the control
of the robotic arm. In [143], a computed torque control technique optimized by the GWO is
proposed for a 3-DoF robot manipulator. In [144], the parameters of an LQR-PID controller are
tuned using GWO for trajectory control of a quadruped robot. Further recent studies involving
the application of GWO in industrial robotics are provided in Table 2.3.

2.4.4 Other Methods

Beyond the aforementioned techniques, various other evolutionary computation algorithms
have been applied in industrial robotics. This section provides a brief overview of the reviewed
papers that discuss these methods.

20

Table 2.3: Recent studies of GWO in industrial robotics.

Ref. Year Type of robot Problem
[145] 2019 Parallel robot Energy consumption
[146] 2024 2-DoF Robot arm Robot control
[147] 2022 6-Dof Robot manipulator Inverse kinematics
[148] 2020 2-DoF Robot arm Robot control
[149] 2024 6-DOF robotic manipulator Energy consumption
[150] 2022 2-DOF robot arm Robot control
[151] 2023 3-DoF robot arm Robot control

The Cuckoo Search (CS) algorithm is a bio-inspired optimization algorithm based on the brood
parasitism behavior of cuckoo birds. In robotics, the cuckoo search algorithm, combined with
the imperialist competitive algorithm, was employed to solve the inverse kinematics problem
of robotic manipulators [152]. An adaptation of CS algorithm, referred to as the adaptive
cuckoo search (ACS) algorithm, was applied on 6-DOF robot manipulator for path planning
to minimize the total motion time under strict dynamic constraints [153]. In [154], trajectory
planning for a dual-arm robot was performed using a modified cuckoo search algorithm, taking
into account multiple objectives to optimize the robot’s performance. In the work by Tlijani
et al.[155], a sliding mode control (SMC) approach, optimized using the CS algorithm, was im-
plemented to enhance the accuracy of joint position control in a two-degree-of-freedom robotic
system.
The Beetle Antennae Search (BAS) algorithm is an optimization technique that mimics the
foraging behavior of beetles using their antennae. In [156], motion planning of a redundant
robot with joint velocity constraints using the BAS algorithm. An inverse kinematic model for
a redundant robot using a neural network optimized by BAS algorithm was proposed by [157].
Zhibin et al. [158] present a new industrial robot calibration approach based on the beetle
antennae search method. Ameer Hamza et al. [159] proposed a control scheme combining a
metaheuristic-based BAS algorithm with a recurrent neural network for tracking control and
obstacle avoidance in robotic manipulators. The enhanced BAS optimization algorithm was
employed to identify the dynamic parameters of the Zhichang Kawasaki RS010N industrial
robot [160].
The Whale Optimization Algorithm (WOA) is a metaheuristic optimization method inspired
by the hunting behavior of humpback whales. It was introduced by Seyedali Mirjalili and
Andrew Lewis in 2016 [161]. Tuning PID parameters for robot manipulator control using the
whale optimization algorithm (WOA) [162] offers an efficient approach to enhancing control
performance. The WOA is capable of providing optimal controller parameters by leveraging
its global search capabilities. In [163], an improved whale optimization algorithm (IWOA) is
used for planning an optimal trajectory for a six-axis industrial robot. The work by Yufei et
al. [164] used the method WOA to identify the nonlinear friction model of a hyper-redundant
manipulator. This friction model plays an important role in achieving an accurate dynamic
model for the robot, which is essential for precise control and efficient performance in complex

21

tasks.
The Artificial Bee Colony (ABC) algorithm is an optimization tool introduced by Dervis
Karaboga in 2005 [165]. It mimics the foraging behavior of honeybee swarms. Zhenyong
et al. [166] proposed the ABC algorithm for the path planning of a dual-chain robot. The
work [167] proposed an artificial bee colony algorithm for solving the inverse kinematics of
7-degree-of-freedom robotic arm. In [168], the authors proposed the development of an intelli-
gent controller based on the Artificial Bee Colony (ABC) algorithm to optimize the tuning of
PID parameters. This method was applied to control a two-link flexible robot, addressing the
problem of optimal tunning of controller. In the work by Yibing et al. [169], a novel approach
combining reinforcement learning (RL) with the artificial bee colony algorithm was applied to
robot path planning, this hybrid method leverages the exploration and exploitation capabilities
of the ABC algorithm along with the decision-making prowess of reinforcement learning to
optimize the robot’s path.
The Differential Evolution (DE) algorithm is a robust and simple evolutionary optimization
technique that is capable of handling nonlinear, non-differentiable and multi-modal objective
functions effectively. In the work [170], an optimization of geometrically constrained path plan-
ning for a 6-joint robot using the differential evolution technique. In [171], the differential
evolution algorithm was applied to solve the inverse kinematics of a 5-DoF robot manipulator.
The authors in [172] proposed an energy-efficient path planning method for an industrial robot
operating in a dynamic environment. The method is based on the DE algorithm, which was
used to optimize the robot’s movement paths by minimizing energy consumption while adapt-
ing to changes in the environment. According to [173], a control model based on an improved
differential evolution algorithm is proposed to achieve accurate trajectory tracking control for
the robots.
Another optimization algorithm inspired by nature is Ant Colony Optimization (ACO), which
mimics the foraging behavior of ants to solve computational problems. The work [174] used
ACO method to obtain optimal path planning of a 2-DOF robot. Huadong et al.[175] pro-
posed an enhanced version of the ACO algorithm, known as the dynamic recursive ant colony
optimization (DRACO) algorithm to optimize the motion of a SCARA robot. An adjustment
mechanism for PID controller parameters using the ACO technique is proposed for trajectory
tracking control of a robotic arm [176]. An optimal trajectory planning approach for pick-and-
place operations in an industrial robot was presented in [177], the optimization was carried
out using the ACO algorithm, initially within a digital twin environment and subsequently
implemented on the real robot following an inspection.
Among the nature-inspired algorithms is the Butterfly Optimization Algorithm (BOA), which
mimics how butterflies search for food or mates and has been applied in various robotics fields.
The BOA was used to achieve an optimal time-jerk trajectory for 3-DoF Delta robot [178],
this approach aims to enhance the robot’s motion efficiency by minimizing both the travel time
and jerk, ensuring smoother and more precise movements. Hung Quang et al. [179] proposed
a hybrid approach for structural parameter identification of a parallel robot. The approach

22

combines a neural network with the Butterfly Optimization Algorithm (BOA). In [180], the
authors designed a new robot manipulator controller based on an advanced butterfly optimiza-
tion algorithm for accurate trajectory tracking control.
The table 2.4 also presents further review of research papers that explore the application of
these methods in industrial robotics.

Table 2.4: Using evolutionary algorithm to solve industrial robotics problem.

Ref. Year Problem The method used
[181] 2022 Trajectory planning CS
[182] 2022 Trajectory planning WOA
[183] 2023 Robot control WOA
[184] 2020 Robot control ABC
[185] 2014 Robot control DE
[186] 2024 Robot control DE
[187] 2022 Path planning ACO
[188] 2024 Model identification BOA

2.5 Conclusion

As computing power continues to increase and the cost of processing devices decreases,
soft computing techniques are becoming increasingly important in industrial robotics. These
techniques enable robots to make intelligent decisions, handle uncertainties, and select optimal
solutions from a vast number of possibilities using advanced algorithms. Throughout this
chapter, we explored the application of fuzzy logic, artificial neural networks, and evolutionary
algorithms in various robotic tasks, such as assembly, welding, and pick-and-place operations.
These methods have proven effective in enhancing adaptability, optimizing performance, and
improving efficiency in industrial settings. Furthermore, soft computing techniques are already
widely integrated into real-world industrial applications, and their adoption is expected to grow
significantly over the next decade.

23

Chapter 3

Serial Robot Manipulator: Overview
and Fundamentals

Abstract

This chapter provides an overview of serial robots, beginning with a brief introduction to
serial manipulators. The kinematics of serial manipulators, including forward, inverse,
and differential kinematics, is discussed in Section 3.2. Section 3.3 explores the dynamics
of robots, presenting the equations of motion that describe their behavior. A concise
review of various robot control strategies is provided in Section 3.4. The chapter concludes
with a case study of the Fanuc 710ic/70 industrial robot, highlighting its modeling and
control design.

3.1 Introduction

Serial robot manipulators are a fundamental class of industrial robots, widely utilized across
industries for tasks such as assembly, welding, material handling and precision operations. Their
design, consisting of a series of rigid links connected by joints, allows for flexible and precise
movements in a structured environment. The performance and efficiency of these robots hinge
on a deep understanding of their kinematics, dynamics and control mechanisms.
A serial robot manipulator consists of n interconnected links joined by movable joints, forming
a chain that extends from the robot’s base to its end-effector, as illustrated in Figure 3.1.
Each link i (where k = 1, ..., n) is connected to a joint, whose position is represented by qi.
In serial robots, the number of links and joints typically corresponds to the robot’s degrees
of freedom (DOF). Each joint experiences a force or torque τi, which is the result of external
forces, interactions between links and the joint’s actuator. The complete set of joint positions
forms the joint position vector q, which defines the robot’s posture, while the set of joint forces
or torques constitutes the joint force vector τ .

24

base

frame

joint 1
link 1

link 1 frame

center of

mass frame

link i
link i frame

link n frame

end-effector

Figure 3.1: Links, joints and frames of a serial manipulator.

3.2 Kinematics

The kinematics of robots is cricial for analyzing their behavior,encompassing two main
aspects: forward kinematics (FK) and inverse kinematics (IK). In this section, we will explore
both topics. Forward kinematics involves determining the pose (position and orientation) of the
robot’s end-effector based on its joint variables, qi. various methids can be used to solve this
problem, such as the Denavit-Hartenberg (D-H) convention and the screw axis representation.
In this study, we will focus exclusively on the D-H convention. Inverse kinematics, on the other
hand, addresses the problem of calculating the joint variables required to achieve a desired end-
effector pose. This is a fundamental task in robot trajectory planning and control, ensuring the
robot operates effectively within its workspace.

3.2.1 Homogeneous Transformations

Referring to Figure 3.2, consider an arbitrary pose P in space. Denote the vector of coor-
dinates of P relative to the reference frame o0 − x0y0z0 as p0. Now, introduce another frame in
space, o1 − x1y1z1. Let o01 represent the vector describing the origin of frame 1 with respect to
Frame 0, and R0

1 denote the rotation matrix of frame 1 relative to frame 0. Furthermore, let
p1 be the vector of coordinates of P relative to frame 1. Using basic geometric relationships,
the position of point p0 with respect to the reference frame can be expressed as follows

p0 = o01 +R0
1p

0 (3.1)

Thus, (3.1) represents the coordinate transformation, comprising both translation and rotation,
of a bound vector between two reference frames.

To obtain a concise representation of the relationship between the coordinates of a point in
two different frames, the homogeneous representation of a generic vector p̃ can be introduced.
This involves augmenting the vector p with a fourth component set to one, resulting in the
vector p, defined as

p̃ =

[
p

1

]
(3.2)

25

Figure 3.2: Representation of a pose P in different coordinate frames.

Using this representation for the vectors p0 and p1 in (3.1), the coordinate transformation can
be expressed in terms of a (4× 4) matrix

A0
1 =

R
0
1 o01

0T 1

 (3.3)

which, according to (3.2), is termed homogeneous transformation matrix. Consequently, the
coordinate transformation in (3.1) can be compactly expressed as

p̃0 = A0
1p̃

1 (3.4)

3.2.2 Forward Kinematics

The process of computing the forward kinematics of serial robots naturally follows the
structure of the open kinematic chain. Since each joint connects two consecutive links, it is
logical to first describe the kinematic relationship between adjacent links. This can then be
extended recursively to derive the overall kinematic description of the manipulator. To achieve
this, a coordinate frame is assigned to each link, from Link 0 to Link 0. The transformation
that defines the position and orientation of Frame n relative to Frame 0 (as shown in Figure
3.3 is computed by sequentially combining the transformations between consecutive links and
is expressed as

A0
n(q) = A0

1(q1)A
1
2(q2) . . . A

n−1
n (qn) (3.5)

DenavitHartenberg Convention

The Denavit-Hartenberg (D-H) convention [189] is a widely used methodology for systemat-
ically representing the kinematic structure of a robot manipulator. It provides a standardized
way to describe the spatial relationship between adjacent links and joints in a robotic arm,
simplifying the mathematical modeling of forward and inverse kinematics. Figure 3.4 shows

26

Figure 3.3: Coordinate transformations in an open kinematic chain.

the assignment and parameters of the axes according to the DH convention for two adjacent
links, and their relative transformations are described using four parameters

Figure 3.4: DenavitHartenberg kinematic parameters.

• di: Link offset, distance between Xi−1 and Xi, measured along Zi−1.

• αi−1: Angle between Zi−1 and Zi, measured along Xi.

• ai−1: Link length, distance between Zi−1 and Zi, measured along Xi.

• θi: Joint angle, Angle between Xi−1 and Xi, measured along Zi.

According to this convention, the total transformation between links i−1 and i can be described
step by step. First, there is a rotation by αi−1 around the Xi−1 axis. This is followed by a
translation by ai−1 along the Xi−1 axis. Next, there is a rotation by θi around the Zi axis, and
finally, a translation by di along the Zi axis. That is,

Ai−1
i = R(Xi−1, αi−1)T (Xi−1, ai−1)R(Zi, θi)T (Zi, di) (3.6)

27

When expanded analytically, it becomes

Ai−1
i =


cos(θi) −sin(θi) 0 ai−1

sin(θi)cos(αi−1) cos(θi)cos(αi−1) −sin(αi−1) −disin(αi−1)

sin(θi)sin(αi−1) cos(θi)sin(αi−1) cos(αi−1) dicos(αi−1)

0 0 0 1

 (3.7)

3.2.3 Inverse Kinematics

Inverse kinematics is essential for controlling robotic manipulators and has been a subject of
study for several decades. Solving the inverse kinematics problem is computationally intensive
and can be time-consuming, particularly in real-time control scenarios. Manipulator tasks are
performed in Cartesian space, which is represented using a homogeneous transformation matrix
that encodes the position and orientation of the end-effector. Meanwhile, actuators operate in
joint space, defined by joint angles. Transforming from Cartesian space to joint space is known
as the inverse kinematics problem. The commonly employed methods for solving the inverse
kinematics problem can be classified into four categories, as illustrated in Figure 3.5.

Inverse kinematics

methods

Numerical

methods

Analytical

methods

Optimization

-based methods

Artificial

intelligence

methods

Newton-Raphson

Gradient Descent

Levenberg-Marquardt

Geometric

Algebraic
Neural Networks

Fuzzy Logic

Linear Programming

Quadratic Programming

Metaheuristic Algorithms

Figure 3.5: Inverse kinematics solving approaches.

Analytical Methods

The analytical method is a mathematical approach to solving the inverse kinematics prob-
lem by deriving exact solutions through closed-form equations. It relies on the geometry and
structure of the robot and involves techniques like algebra, trigonometry, and matrix manipu-
lation.

Numerical Methods

Numerical methods iteratively solve the inverse kinematics problem, providing approximate
solutions instead of exact ones. These approaches are highly versatile, capable of handling

28

robots with complex or redundant kinematics, but they demand significant computational re-
sources compared to analytical methods. Among these methods are Jacobian matrix-based
techniques, which use the robot’s kinematic properties to iteratively refine joint variables, and
the Levenberg-Marquardt algorithm, which combines gradient descent with least-squares op-
timization to enhance robustness and convergence, making it ideal for non-linear, constrained
problems.

Optimization-Based Methods

Optimization algorithms solve inverse kinematics by framing it as an optimization prob-
lem, where the goal is to minimize a cost function quantifying the error between the robot’s
current and target end-effector pose. These methods are particularly effective for handling
non-linearities, redundancy, and constraints. Common techniques include Genetic Algorithms
(GA), which use evolutionary principles to explore solutions, and Particle Swarm Optimization
(PSO), which leverages swarm intelligence to find optimal configurations. These approaches
are robust and versatile, making them ideal for complex robotic systems.

Artificial Intellegence Methods

Artificial Intelligence (AI) techniques such as neural networks and fuzzy logic provide in-
novative solutions to the inverse kinematics problem, especially for robots with complex or
highly non-linear kinematics where conventional methods struggle. Neural networks learn the
mapping from Cartesian space to joint space through training on data, using architectures like
multi-layer perceptrons (MLPs), convolutional, or recurrent networks. Fuzzy logic systems,
on the other hand, approximate inverse kinematics by applying rules based on linguistic vari-
ables, combining human-like reasoning with mathematical precision to address uncertainty and
imprecision effectively.

3.2.4 Differential Kinematics

The concept of differential kinematics relates joint velocities to the linear and angular ve-
locity of a robot’s end-effector. This relationship is captured by the Jacobian matrix, which
depends on the manipulator’s configuration. The Jacobian is a fundamental tool in robotics,
with applications in identifying singularities, analyzing redundancy, implementing inverse kine-
matics algorithms, mapping forces and torques between the end-effector and joints, deriving
dynamic motion equations, and designing operational space control strategies. Its versatility
makes it essential for manipulator analysis and control.

29

Jacobian Computation

Let us consider the forward kinematics equation of an N -DoF manipulator as

Ae =

Re(q) pe(q)

0T 1

 (3.8)

where q = [q1 · · · qN]T is the vector of joint variables, Re(q) and pe(q) are orientation and
position of end-effector respectively. The objective of differential kinematics is to establish the
relationship between the joint velocities q̇ and the linear velocity ṗe and angular velocity ωe of
the end-effector, expressed as [

ṗe

ωe

]
= J(q)q̇ (3.9)

where the (6×N) matrix J represents manipulator Jacobian and

J =

[
Jp1 · · · JpN
Jω1 · · · JωN

]
(3.10)

where Jpi and Jωi
discribe the effect of i-th joint on translational and rotational velocity,

respectively. They can be evaluated based on the type of joint as follows

Jpi =

zi−1 × (ON −Oi−1) for revolut joint i

zi−1 for prismatic joint i
(3.11)

Jωi
=

zi−1 for revolut joint i

0 for prismatic joint i
(3.12)

The Jacobian matrix can be formulated by merging its upper and lower components as J =

[J1 · · · JN], the column Ji is defined as follows

Ji =

[
zi−1 × (ON −Oi−1)

zi−1

]
(3.13)

if joint i is revolute and

Ji =

[
zi−1

0

]
(3.14)

if joint i is prismatic.

3.3 Dynamics

The dynamic of an N -DoF manipulatro is a system of N second-order differential equations
describes the relationship between the first and second derivatives of the N joint coordinates

30

with respect to time and the N joint torques or forces. This modeling approach is essential for
deriving the control laws required for precise position control of the robot.
There are two primary methods to derive these equations:

1. Euler-Lagrange Method: This approach is based on the principles of analytical me-
chanics, where the dynamic behavior of the system is derived from the Lagrangian, de-
fined as the difference between kinetic and potential energies. It is particularly useful for
systems with a clear energy representation.

2. Newton-Euler Method: This method relies on the direct application of Newton’s
second law of motion and rotational dynamics. It involves iterative calculations from the
base to the end-effector (or vice versa) to compute the forces and torques acting on each
link of the robot.

Both methods ultimately provide the equations of motion required to understand and control
the dynamics of robotic manipulators.

3.3.1 Equation of Motion

In this section, we focus on application and specialization of the Euler-Lagrange equations
to robotic systems. Let the Euler-Lagrange equation be

d

dt

∂L

∂q̇i
− ∂L

∂qi
= τi (3.15)

where L represents Lagrangian of the system that expressed by

L = K − V (3.16)

where K and V are kinetic and potential energy of the system, and τi is the torque of joint i

Kinetic energy

the overall kinetic energy of the manipulator can be computed as

K =
n∑

i=1

(
1

2
miv

T
i vi +

1

2
ωT
i Iiωi

)
(3.17)

where mi is the masse of link i, Ii is the inertia tensor relative to the centre of mass of Link i
which given by following equation

Ii =



∫
s
(y2 + z2)dmi −

∫
s
xydmi −

∫
s
xzdmi

−
∫
s
xydmi

∫
s
(y2 + z2)dmi −

∫
s
yzdmi

−
∫
s
xzdmi −

∫
s
yzdmi

∫
s
(y2 + z2)dmi

 (3.18)

31

where dmi is an infinitesimal mass element of a body S with dimensions x, y andz.
As discussed in section 3.2.4 the linear and angular velocities of any point on a link can be
represented using the Jacobian matrix and the time derivatives of the joint variables, we have
that

vi = Jvi(q)q̇, ωi = Jωi
(q)q̇ (3.19)

Thus, based on (3.17), the total kinetic energy of the manipulator can be expressed as

K =
1

2
q̇T

n∑
i=1

(
miJvi(q)

TJvi(q) + Jωi
(q)TRi(q)IiRi(q)

TJωi
(q)
)
q̇ (3.20)

and can be rewritten as
K =

1

2
q̇TM(q)q̇ (3.21)

where M(q) is an (n×n) symmetric positive-definite matrix, referred to as the inertia matrix
of the manipulator.

Potential energy

In a robot, gravity is the primary source of potential energy. This energy can be calculated
by assuming that the entire mass of each link is concentrated at its center of mass. thus, the
potential energy of manipulator is expressed as

V = −gT0
n∑

i=1

ocimi (3.22)

where g0 is the gravitational acceleration vector relative to the base frame and oci represents
the coordinates of the center of mass of link i.
Having computed the kinetic and potential energy of the manipulator,as given in (3.21) and
(3.22), the Lagrangian of the manipulator is expressed as

L = K − V =
1

2
q̇TM(q)q̇ + V = (3.23)

K can be expressed in the form

K =
1

2
q̇TM(q)q̇ =

1

2

n∑
i=1,j=1

dij(q)q̇iq̇j (3.24)

with dij being the elements of the matrix M(q). V depends only on the configuration q:
V = V (q). Thus, the Lagrangian L is written as

L = K − V =
1

2

n∑
i=1,j=1

dij(q)q̇iq̇j − V (q) (3.25)

32

we have that
∂L

∂q̇k
=
∑
j

dkj(q)q̇j (3.26)

and
d

dt

∂L

∂q̇k
=
∑
j

dkj(q)q̈j +
∑
j

d

dt
dkj(q)q̇j

=
∑
j

dkj(q)q̈j +
∑
i,j

∂dkj(q)

∂di
q̇iq̇j

(3.27)

also
∂L

∂qk
=

1

2

∑
i,j

∂dij(q)

∂dk
q̇iq̇j −

∂V (q)

∂dk
(3.28)

the Euler-Lagrange equation becomes

∑
j dkj q̈j +

∑
i,j

(
∂dkj
∂di

− 1
2

∂dij
∂dk

)
q̇iq̇j +

∂V (q)
∂dk

= τk, k = 1, · · · , n (3.29)

The equivalent matrix form of (3.29) is

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ (3.30)

where M is (n× n) matrix of termes dij, C is called centrifugal and coriolis matrix of (n× n)

termes Ckj which is given as

Ckj =
n∑

i=1

cijk(q)q̇i

=
n∑

i=1

1

2

(
∂dkj
∂qj

+
∂dki
∂qj

− ∂dij
∂qk

)
q̇i

(3.31)

and G =
[
∂V
∂q1

· · · ∂V
∂qn

]T
is a gravitational forces matrix and τ = [τ1 · · · τn]T is torque vector.

3.4 Control Strategies

The goal of motion control in industrial robots is to enable the position, velocity, and other
state variables to follow a desired trajectory by applying the appropriate driving torque to each
joint. To achieve accurate tracking of the reference trajectory, precise control of the robot is
essential. Due to the flexibility, load variations, and unpredictable interferences inherent in
industrial robots, it is crucial to design a control strategy that is robust, adaptable, and struc-
turally simple [190]. In the control of industrial robots, various approaches for manipulators
have been explored, ranging from traditional techniques to advanced methods.
PID control is one of the most commonly employed methods for controlling manipulators due
to its simplicity. The PID control scheme operates by correcting the error between the actual
and desired trajectories using three components: proportional, integral, and derivative actions.

33

The proportional action addresses the present error, the integral action accounts for the accu-
mulation of past errors to eliminate steady-state offset, and the derivative action predicts and
mitigates future errors by responding to the rate of error change [191].
The Computed Torque Control (CTC) is a widely used nonlinear control strategy tailored for
the precise control of highly nonlinear and coupled robot manipulator, such as industrial robots.
This control approach is rooted in the Feedback Linearization (FL) technique, a mathematical
method used to simplify the complexity of nonlinear systems. The fundamental idea behind FL
is to transform a nonlinear system into an equivalent linear system through a change of variables
and input transformation. By leveraging the system’s dynamic equations, CTC compensates
for the inherent nonlinearities and couplings in real time. This process involves determining the
robots dynamic model, including its inertia, Coriolis, and gravity effects, and then designing
control inputs that cancel these nonlinear components. [192]–[194]
Sliding Mode Control (SMC) has gained significant attention in robust control of robotic ma-
nipulators. It offers a versatile approach for managing uncertainties, external disturbances, and
the nonlinear dynamics commonly encountered in robotic systems [195]–[199]. The essence of
Sliding Mode Control (SMC) lies in its capability to drive the system state toward a predefined
sliding surface and ensure that it remains on this surface during subsequent motion. This slid-
ing surface is designed to represent the desired system behavior, such as stability or trajectory
tracking. Once the system state reaches the surface, SMC operates in a switching mode, rapidly
alternating between control actions to maintain the system’s trajectory on the sliding surface.
This switching mechanism, which distinguishes SMC from other control methods, enables it to
handle uncertainties and disturbances effectively, resulting in a robust and resilient response.
In recent years, intelligent techniques for robotic control have garnered increasing attention
for their capacity to mimic human intelligence. These methods, which include artificial neural
networks, fuzzy logic control, expert systems, metaheuristic algorithms, and machine learning,
exhibit advanced decision-making abilities. They provide a deeper insight into the inputout-
put dynamics of systems and improve conventional controllers by fine-tuning their parameters.
Additionally, they excel at identifying and compensating for nonlinear uncertainties, thereby
enhancing overall system performance [200].

3.5 Case Study

In this case study, we will explore the modeling and control of a specific type of industrial
robot, namely the Fanuc M-710iC. This investigation will encompass the mathematical models
describing the robot’s kinematics and dynamics, as well as the design and implementation
of effective control strategy. A thorough analysis of the Fanuc M-710iC will serve as a solid
foundation for other applications will discusse in the subsequent chapters.

34

3.5.1 The Robot Modeling

The Fanuc M-710iC/70 is a multi-application industrial robot designed for handling pay-
loads of up to 70 kg. This innovative series of lightweight robots features a slim wrist, a rigid
arm, and a compact design, making it ideal for operations in space-constrained environments.
With best-in-class load capacity and inertia handling, the six-axis M-710iC/70 is well-suited for
a wide range of industrial applications. It combines a high payload capacity of 70 kg with excep-
tionally fast axis speeds, ensuring efficiency, precision, and optimal performance in demanding
automation tasks [201].

Forward kinematics

To calculate the kinematics of the Fanuc 710i/70 robot, the robot’s kinematic structure
must first be validated to determine the Denavit-Hartenberg (D-H) parameters. Once the D-H
parameters are established, the robot’s kinematics can be derived. Figure 3.6 shows FANUC
710iC/70 robot dimensions and its workspace. figure 2 robot architucture and frames, table 1
shows D-H parameters.

Figure 3.6: Robot dimensions.

From a methodological persepective, we first align the zi axes with the joint axes, foloowed
by the placement of the xi axes. this process determines the robot’s geometric parameters. the
arrangement of these frames is illustrated in Figure 3.7.
The robot’s coordinate axes make it possible to derive the D-H parameters listed in Table
3.1 below. Using D-H parameters, the homogeneous transformation matrices are defined as

35

O0

X0

Z0, Z1

X1

O1

O2

Z2

X2

Z3

X3

Z5

X4, X5, X6

Z4, Z6, ZG

XG

a1

d1

a2

a3

d4 dG

O3

O4,O5,O6

OG

Figure 3.7: Kinemtic diagramme of Fanuc 710iC/70.

Table 3.1: D-H parameters of the robot.

Joint i αi−1(
◦) ai−1(mm) di(mm) θi(

◦)
1 0 0 d1 = 565 q1
2 -90 a1 = 150 0 q1-90
3 0 a2 = 870 0 q3
4 -90 a3 = 170 d4 = 1016 q4
5 90 0 0 q5
6 -90 0 0 q6

7(Gripper) 0 0 dG = 175 0

follows

A0
1 =


c1 −s1 0 0

s1 c1 0 0

0 0 1 d1

0 0 0 1

 , A1
2 =


s2 c2 0 a1

0 0 1 0

c2 −s2 0 0

0 0 0 1

 , A2
3 =


c3 −s3 0 a2

s3 c3 0 0

0 0 1 0

0 0 0 1

 ,

A3
4 =


c4 −s4 0 a3

0 0 1 d4

−s4 −c4 0 0

0 0 0 1

 , A4
5 =


c5 −s5 0 0

0 0 −1 0

s5 c5 0 0

0 0 0 1

 , A5
6 =


c6 −s6 0 0

0 0 1 0

−s6 −c6 0 0

0 0 0 1


(3.32)

with ci = cos(qi) and si = sin(qi). The forward kinematics of the end-effector relative to the
base frame is determined by the successive multiplication of all Ai−1

i matrices, it can be written
as

A0
6 = A0

1A
1
2A

2
3A

3
4A

4
5A

5
6 (3.33)

36

Let G be the transformation matrix that defines the orientation and position of the end-effector
(gripper) relative to sixth link frame.

G =


0 0 0 0

0 0 0 0

0 0 1 dG

0 0 0 1

 (3.34)

where a dG value relative to the added tool length. Thus, the the forward kinematics of the
attached tool relative to the base frame becomes

A0
E = A0

6G =


sx nx ax Px

sy ny ay Py

sz nz az Pz

0 0 0 1

 (3.35)

with 

Px = a1c1 + d4c(2+3)c1 + a3s(2+3)c1 + a2c1s2 + dGc(2+3)c1c5

−dGs1s4s5 − dGc1c2c4s3s5 − dGc1c3c4s2s5

Py = a1s1 + d4c(2+3)s1 + a3s(2+3)s1 + a2s1s2 + dGc(2+3)c5s1

+dGc1s4s5 − dGc2c4s1s3s5 − dGc3c4s1s2s5

Pz = d1 + a3c(2+3) − d4s(2+3) + a2c2 − 1
2
dGc(2+3)s(4+5)

−dGs(2+3)c5 +
1
2
dGs(2−3)c(2+3)

(3.36)

such that c(i±j) = cos(qi ± qj) and s(i±j) = sin(qi ± qj).

Inverse kinematics

The inverse kinematics problem of a robot involves determining the joint coordinates that
correspond to a specified position and orientation of the end-effector. When a solution exists,
the representation that provides all possible solutions is referred to as the Inverse Kinematic
Model (IKM).
The Fanuc M710iC/70 robot features an anthropomorphic structure, meaning the last three
joints (q4, q5 and q6) do not influence the position of the wrist center Pw (O5). This characteristic
is particularly advantageous as it allows for decoupling the inverse kinematics problem into two
separate tasks: position and orientation. Initially, the position of the wrist center Pw can be
computed to determine the first three joint angles (q1, q2 and q3). Subsequently, the orientation
of the wrist is calculated to obtain the remaining joint angles (q4, q5 and q6).
Given the end-effector position and orientation, the wrist center position is computed as follows

Pw = Pe − dGRe

00
1

 (3.37)

37

where Pe and Re the target position and orientation of the end-effector.
Consider the elbow manipulator illustrated in Figure 3.8. The wrist center position Pw is
defined by its components: Pwx , Pwy and Pwz . To analyze its position, we project Pw onto the
x0 − y0 plane. We see from this projection that

q3

q2

q1

d1

r

s

Pwz

X0

Y0

Z0

Pwx

Pwy

a2

d4

a1

Figure 3.8: Elbow manipulator.

q1 = arctan2(Pwx , Pwy) (3.38)

From the Figure 3.8s = Pwz − d1 = a2sin(q2) + d4sin(q2 + q3)

r − a1 =
√
P 2
wx

+ P 2
wy

− a1 = a2cos(q2) + d4cos(q2 + q3)
(3.39)

moreover(Pwz − d1)
2 = a22sin

2(q2) + d24sin
2(q2 + q3) + 2a2d4sin(q2)sin(q2 + q3)

(
√
P 2
wx

+ P 2
wy

− a1)
2 = a22cos

2(q2) + d24cos
2(q2 + q3) + 2a2d4cos(q2)cos(q2 + q3)

(3.40)

we can apply the law of cosines to obtain

(Pwz − d1)
2 + (

√
P 2
wx

+ P 2
wy

− a1)
2 = a22 + d24 + 2a2d4cos(q3) (3.41)

cos(q3) =
(Pwz − d1)

2 + (
√
P 2
wx

+ P 2
wy

− a1)
2 − a22 − d24

2a2d4
= Q (3.42)

Hence, q3 is given by
q3 = ±arcos(Q) (3.43)

38

To obtain q2, through trigonometry formulas (3.39) becomesPwz − d1 = k1sin(q2) + k2cos(q2)√
P 2
wx

+ P 2
wy

− a1 = k1cos(q2)− k2sin(q2)
(3.44)

with k1 = a2 + d4cos(q3)

k2 = d4sin(q3)
(3.45)

By solving the system (3.44), we obtaincos(q2) =
k2(Pwz−d1)+k1(

√
P 2
wx

+P 2
wy

−a1)

k21+k22

sin(q2) =
k1(Pwz−d1)−k2(

√
P 2
wx+P 2

wy−a1)

k21+k22

(3.46)

thus

q2 = arctan2(k1(Pwz −d1)−k2(
√
P 2
wx

+ P 2
wy

−a1), k2(Pwz −d1)+k1(
√
P 2
wx

+ P 2
wy

−a1)) (3.47)

Now, we need to calculate q4, q5 and q6. To do this, we first compute the rotation matrix R3
E.

Since q1, q2 and q3 are already determined, R3
0 is known. The desired rotation R0

E is also given.
Therefore, RR

E can be calculated as

R3
E = (R0

3)
−1R0

E (3.48)

Let:

R3
E =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 (3.49)

which corresponds to

R3
E =

 c4c5c6 − s4s6 −c6s4 − c4c5s6 −c4s5
c6s5 −s5s6 c5

−c4s6 − c5c6s4 c5s4s6 − c4c6 s4s5

 (3.50)

By matching (3.49) and (3.50):
If q5 ̸= 0[π] 

q5 = ±arccos(r23)

q4 = −arctang(r33, r13)

q6 = −arctang(r22, r21)

(3.51)

39

If q5 = 0[π] q4 = 0

q6 = arctang(r12, r32)
(3.52)

Dynamics

Due to the complex structure of robots, establishing an analytical dynamic model is challeng-
ing. In this section, we leverage the Simscape Multibody/Matlab tool to construct the robot’s
dynamic model. Simscape Multibody (formerly SimMechanics) provides a robust simulation
environment for 3D mechanical systems, including robots, vehicle suspensions, construction
equipment and aircraft landing gear. In this tool, multibody systems are modeled using blocks
that represent bodies, joints, constraints, force elements, and sensors. Simscape Multibody
not only formulates and solves the equations of motion for the entire mechanical system but
also enables the import of complete CAD assemblies. Additionally, its automatically generated
3D animations allow for visualization of system dynamics, providing valuable insights. These
capabilities help in developing control systems and testing system-level performance effectively
[202].

Figure 3.9: Combined SimulinkSimscape diagram (Fanuc M710iC/70).

The process of creating the dynamic model of the Fanuc M-710iC/70 robot in MATLAB-
Simulink Simscape Multibody began with the 3D model of the robot, which was made available
through the RoboDK software tool. This model provided a detailed and accurate representation
of the robot, serving as the foundation for further development. The next step involved opening
and editing the 3D model in Solidworks, a CAD program selected due to its compatibility with

40

the Simscape environment, facilitated by a translator from CAD to Simscape. After finalizing
the robotic assembly in Solidworks, the model was exported to Simscape. The export process
generated an XML file. This XML file was subsequently imported into MATLAB-Simulink,
resulting in the creation of two key files: a Simulink model file (.slx) and an associated data
file (.m). The Simulink-Simscape simulation diagram generated from the import process (the
.slx file) is presented in Figure 3.9. This diagram forms the core of the simulation environment.
Additionally, this diagram illustrates the subsequent integration of the imposed trajectory,
sourced from a CAM (Computer-Aided Manufacturing) program. This trajectory was processed
by the Simscape model, converting it into motion data, including joint angles, velocities and
accelerations. The simulation outputs the torques required at each joint to execute the specified
trajectory accurately. This diagram represents the dynamic behavior of the robot, which is
actuated by input torques and generates the corresponding position, velocity, and acceleration
of its articulations. This simulation environment provides a powerful tool for analyzing and
testing system-level performance, enabling the evaluation of the robot’s response to various
control inputs and operating conditions effectively (see Figure 3.10).

Figure 3.10: Fanuc M-710iC/70 industrial robot model in Simulink.

3.5.2 The Robot Control Design

Computed torque control (CTC) stands as an effective control method for achieving precise
trajectory tracking in robotic manipulators. Nevertheless, computed torque control necessitates
accurate dynamic models of robotic manipulators and is notably susceptible to the adverse
impact of uncertain dynamics. This section presents a comprehensive approach to trajectory
tracking control for robot manipulators that excels in handling disturbances encountered during
operation. The combination of velocity observer-based computed torque control techniques
results in a versatile and robust control framework that can significantly enhance the reliability
and performance of robot manipulators in practical applications.

41

Computed Torque Control

This approach based on the robots dynamic model. The dynamic equation of an n-joint
serial robot can be described in the joint-space coordinate frame as

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ + τd (3.53)

and can be written as follows:

q̈ =M−1(q)(τ + τd − C(q, q̇)q̇ −G(q)) (3.54)

where, q, q̇ and q̈ ∈ Rn×1 are the vectors of the joint position, velocity and acceleration,
respectively.M(q) ∈ Rn×n is the inertia matrix ,C(q, q̇) ∈ Rn×n is the Coriolis and centrifu-
gal forces matrix, G(q) ∈ Rn×1 is the gravity vector, τ is the torque and τd ∈ Rn×1 represents
uncertainties and the external disturbance vector.
In trajectory tracking of a robot manipulator, to ensure that the joint variable q follows the
desired trajectory qd, the tracking error is defined as follows

e = qd − q (3.55)

Thus
ë = q̈d − q̈ (3.56)

By substituting (3.54) into (3.56):

ë = q̈d −M−1(q)(τ + τd − C(q, q̇)q̇ −G(q)) (3.57)

The (3.57) can be written in the form of the error state space as

d

dt

[
e

ė

]
=

[
0 1

0 0

][
e

ė

]
+

[
0

1

]
u (3.58)

where u is a virtual input equal

u = q̈d −M−1(q)(τ + τd − C(q, q̇)q̇ −G(q)) (3.59)

From (3.59), the computed joint torque τ is given by

τ =M(q)(q̈d − u)− τd − C(q, q̇)q̇ −G(q) (3.60)

Select the control signal u as the proportional-Derivative (PD) Feedback

u = −kpe− kdė (3.61)

42

By substituting (3.61) into (3.60), the computed joint torque which is the robot manipulator
input becomes

τ =M(q)(q̈d + kpe+ kdė)− τd − C(q, q̇)q̇ −G(q) (3.62)

The equation for the entire system can be derived from (3.53) and (3.62) by

M(q)q̈ + C(q, q̇)q̇ +G(q) =M(q)(q̈d + kpe+ kdė)− C(q, q̇)q̇ −G(q) (3.63)

Therefore, we can get the closed control system as

ë+ kdė+ kpe = 0 (3.64)

we design kp and kd so that all the roots of the polynomial s2+ kds+ kp = 0 are in the left part
of the complex plane. Then, we have t→ ∞, e(t) → 0, and ė(t) → 0.

Velocity Observer

From (3.62), we know if the function τd is unknown, the Computed Torque Control will
not be realized. In this part, we design the velocity observer to estimate τd. This approach
is based on employing a reduced-order observer for dynamically estimating the joint velocity
q̇. The observer is then integrated into a disturbance estimation framework to account for the
unknown external joint torque τd. Unlike conventional observers that operate on the full state
space of dimension 2n (as required for a mechanical system with n generalized coordinates),
this reduced observer only considers an n dimensional state. As a result, it responds more
quickly to variations in the external joint torque, behaving as a first-order system.
The actual acceleration q̈ is

q̈ =M−1(q)(τ + τd − C(q, q̇)q̇ −G(q)) (3.65)

The observer dynamic is then defined asˆ̈q = M̂−1(q)(τ − Ĉ(q, q̇)q̇ − Ĝ(q) + r)

ṙ = L(q̈ − ˆ̈q)
(3.66)

where r = τ̂d, and r ∈ Rn×1 is residual vector, which represent disturbance torque estimation,
and L = diag{li} > 0 is a gain matrix of observer. 3.11 shows the block diagram of the control
strategy. The observer output can defined as

r(t) = L(q̇ −
∫ t

0

M̂−1(q)(τ − Ĉ(q, q̇)q̇ − Ĝ(q) + r)ds− q̇(0)) (3.67)

We applied this control strategy to the Fanuc M-710iC/70 robot. To evaluate its performance,
a disturbance torque was applied exclusively to the first joint of the robot as a random function.
The following results were obtained, demonstrating the effectiveness of the proposed approach

43

Figure 3.11: Control scheme based on velocity observer.

in handling disturbances and maintaining stability. Figure 3.12 illustrates the position of
each joint of the robot. In the absence of the velocity observer, when the disturbance torque
is applied to the first joint, the positions of the first, third, fourth, and sixth joints deviate
from their desired positions. This indicates that these joints are dynamically coupled with the
applied torque of the first joint in the robots dynamic equations. After integrating the observer,
it successfully compensates for the disturbances, ensuring that the actual position closely tracks
the desired position. The compensation is achieved by estimating the disturbance values and
injecting them into the system input. Figure 3.13 illustrates the accuracy of the disturbance
estimation by comparing the estimated disturbance with the actual disturbance applied to the
system. The close alignment between these values indicates the effectiveness of the estimation
method. Meanwhile, Figure 3.14 presents the error between the true disturbances and their
estimated values. The error remains close to zero for most of the operation, except for transient
phases where peak deviations occur. These peaks are likely caused by sudden changes in system
dynamics or unmodeled effects. Addressing these transient errors through advanced filtering
techniques or adaptive estimation methods could be a focus of future research..
Figure 3.15 illustrates the trajectory of the end-effector in Cartesian space, highlighting the
impact of the velocity observer on system performance. The trajectory closely follows the de-
sired path, demonstrating the observers effectiveness in enhancing trajectory tracking accuracy.
Additionally, the figure provides clear evidence of improved disturbance rejection, as deviations
caused by external perturbations are minimized, allowing the system to maintain stability and
precision in motion execution.

44

0 1 2 3 4 5 6 7 8 9 10

Time(s)

-1

-0.5

0

0.5

1

1.5
P

o
s
it
io

n
 (

°)

Desired

Without velocity observer

With velocity observer

(a) Joint 1

0 1 2 3 4 5 6 7 8 9 10

Time(s)

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

P
o

s
it
io

n
 (

°)

(b) Joint 2

0 1 2 3 4 5 6 7 8 9 10

Time(s)

-1.6

-1.55

-1.5

-1.45

-1.4

-1.35

-1.3

-1.25

-1.2

-1.15

P
o

s
it
io

n
 (

°)

(c) Joint 3

0 1 2 3 4 5 6 7 8 9 10

Time(s)

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

P
o

s
it
io

n
 (

°)

(d) Joint 4

0 1 2 3 4 5 6 7 8 9 10

Time(s)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

P
o

s
it
io

n
 (

°)

(e) Joint 5

0 1 2 3 4 5 6 7 8 9 10

Time(s)

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

P
o

s
it
io

n
 (

°)

(f) Joint 6

Figure 3.12: Position of the sixth joints.

45

0 1 2 3 4 5 6 7 8 9 10

Time(s)

-100

-80

-60

-40

-20

0

20

40

60

80

100
D

is
tu

rb
a

n
c
e
s
 e

s
ti
m

a
ti
o

n
 (

N
.m

)
Time Series Plot:

Figure 3.13: Estimation of disturbance.

0 1 2 3 4 5 6 7 8 9 10

Time(s)

-60

-40

-20

0

20

40

60

E
rr

o
r

e
s
ti
m

a
ti
o
n

 o
f

d
(N

.m
)

Figure 3.14: Estimation error.

Figure 3.15: Trajectory in 3D space.

3.6 Conclusion

In this chapter, we presented the fundamental concepts of serial robot manipulators, cov-
ering different modeling approaches, including forward and inverse kinematics, as well as the
dynamic model. To deepen our understanding of industrial robots, we conducted a case study
on the Fanuc M-710iC/70 robot. The kinematic modelsboth forward and inverseof the Fanuc
M-710iC/70 were analyzed to describe the relationship between joint space and Cartesian space.
Furthermore, its dynamic model was developed using Simscape/Matlab, allowing for a more
accurate simulation of its physical behavior. To enhance trajectory tracking performance, we
implemented a control strategy based on computed torque control (CTC) integrated with a
velocity observer. The velocity observer played a crucial role in estimating unmeasured veloci-
ties and compensating for disturbances, thereby improving the overall stability and accuracy of

46

the control system. The simulation results demonstrated the effectiveness of this approach in
maintaining precise trajectory tracking under dynamic conditions. This study provides a solid
foundation for understanding the modeling and control of industrial robots, which will serve
as a basis for further research and improvements in advanced control strategies, disturbance
rejection techniques and real-time implementation.

47

Chapter 4

Collision Detection for Industrial
Robots Using Soft Sensors

Abstract

This chapter addresses the problem of collision detection for robot manipulators, present-
ing an improved model-based method that utilizes a momentum observer enhanced with
fuzzy logic techniques. Following an introduction that reviews literature on model-based
collision detection methods, Section 4.2 outlines the problem statement and describes
the use of the generalized momentum observer in collision detection strategies. Section
4.3 details the design of the proposed improved observer, incorporating fuzzy logic to
enhance its performance. Section 4.4 explains the methodology for collision monitoring,
while Section 4.5 demonstrates the effectiveness of the proposed approach through sim-
ulation tests. Finally, Section 4.6 summarizes the chapter’s findings and contributions.

4.1 Introduction

In recent years, the field of Physical Human-Robot Interaction (pHRI) has gained signif-
icant attention due to the increasing integration of robots in environments where they work
closely alongside humans. This interaction is especially important in settings such as industrial
manufacturing, healthcare, and service robotics, where robots collaborate with human workers
to perform tasks more efficiently. However, one of the key challenges in pHRI is ensuring the
safety of human workers during these interactions, particularly when unintended collisions be-
tween humans and robots occur. These collisions can lead to serious injuries, making it crucial
to develop systems that can prevent such accidents and enable safe human-robot collaboration.
Unintended collisions between humans and robots are an inevitable challenge in pHRI due to
the complexity and unpredictability of human movement. While robots are programmed to
follow precise movements, humans often act in ways that are unpredictable, which can lead to
scenarios where a robot unintentionally makes contact with a human. Such collisions can cause
a range of injuries, from minor bruises to more severe harm, depending on the type of robot

48

and its operation. The challenge, therefore, is to minimize the likelihood of these collisions and
mitigate their potential harm.
Collision detection methods can be categorized into two types: model-based and model-independent
methods. The model-independent category can further be divided into two subclasses: meth-
ods utilizing additional sensors and those that operate without them. The use of additional
sensors, such as vision systems [203] and skin sensors [204], [205], allows robots to detect and
estimate external forces caused by collisions. While effective, this approach increases system
costs and adds complexity to the manufacturing process of robotic manipulators. To address
these limitations, alternative methods based on learning techniques have been developed that
do not require extra sensors. Examples include neural networks [206], [207], deep learning
[18], support vector machines (SVM) [208]) and fuzzy systems [209], [210]. These techniques
train robots to identify unintended collisions using training data, with proprioceptive sensor
signals serving as inputs. The output is then analyzed to determine whether a collision has
occurred. However, these methods have certain drawbacks. For instance, collecting training
data in real-time can be challenging, and processing large datasets for collision detection can
be time-consuming, limiting the practical application of such approaches.
On the other hand, model-based methods have emerged as a promising trend in robot collision
detection due to their practical feasibility. Traditional model-based approaches [211], [212] rely
on inverse dynamic models (IDM) to detect collisions by monitoring residual signals, which are
the differences between measured and estimated joint torques. However, these methods require
acceleration signal computations, leading to increased measurement noise and degraded perfor-
mance. To address this limitation, a velocity observer was proposed [213] to eliminate the need
for acceleration signals. This observer reduces the system’s state dimension from 2n to n (where
n represents the number of generalized coordinates), enabling faster response times. Neverthe-
less, this approach demands real-time computation of the inverse of the inertia matrix, which
significantly increases computational costs. Further advancements include the development of
a disturbance Kalman filter (DKF) [214] and an adaptive observer [215] designed to estimate
actuator fault vectors while accommodating external disturbances within Takagi-Sugeno fuzzy
systems. While these methods offer disturbance immunity, they suffer from reduced sensitivity
due to inaccuracies in the system model.
To address the limitations of the previously discussed observers, a novel observer based on
generalized momentum dynamics was introduced by [216]. Known as the Generalized Mo-
mentum Observer (GMO), this approach acts as a first-order filter, taking collision forces as
input and producing a momentum residual as output, as explained [217]. Its straightforward
design and reliable performance have made it a popular foundation for further advancements
in collision detection for pHRI safety. Building on this framework, the work [218]) proposed a
finite-time observer by integrating the sliding mode technique with the momentum observer.
This approach ensures that the estimated external force converges to the actual external force
within a finite time, enhancing the observer’s responsiveness and accuracy. to reduce the chat-
tering phenomenon caused by the observer mentioned [218], the authors in [219] introduced

49

a new sliding mode momentum observer (NSOMO). This improved observer employs a novel
reaching law to effectively eliminate the chattering issue. To enhance the sensitivity of Gen-
eralized Momentum Observers (GMOs), [220] and [221] proposed an Extended State Observer
(ESO) for the fast and robust detection of external forces. This observer operates as a second-
order filter, offering improved performance. The ESO has also been applied in control systems
[222], where its effectiveness has been demonstrated. However, a limitation of this observer is
its use of a constant filter bandwidth, which leads to the peaking-value phenomenon during
the initial phase of collision detection. A key issue with this type of observer is its use of a
constant filter bandwidth, which leads to the peaking-value phenomenon during initial colli-
sion detection. Several attempts have been made to address the challenges associated with
extended state observers. For instance,[223] introduced a generalized or higher-order ESO to
handle sinusoidal disturbances in DC servo motors. Similarly, [224] proposed an Extended State
Observer with a generalized integrator (GI-ESO) to monitor low-frequency or direct current
(DC) disturbances in grid-connected converters. However, a limitation of these approaches is
that the observer bandwidth is selected based on the disturbance frequency (whether larger or
smaller), which poses challenges in practical applications, especially in robotic manipulators,
where such frequency-related information is not readily available. In [225], a new concept is
added to the extended state observer, is super-twisting algorithm it’s allowing for precise state
estimation and effective control even in the presence of uncertainties. It is true that this pro-
vides a good estimation, but the the peak value problem remains. Faced with this problem
of an unavoidable trade-off between the collision sensitivity and the reduction of the peaking
value, the authors proposed in [226]) a compromise solution by using nonlinear functions in
the state observer design, this nonlinear generalized momentum observer (NGMO) works by
providing appropriate bandwidth during collision detection observation. Although it can offer
better performance, improving an extended momentum observer by applying nonlinear func-
tions has some drawbacks, such as the selection of nonlinear functions is basically empirical.
Additionally, there is difficulty in proving the stability of the observer due to the complexity of
the nonlinear functions [227].

4.2 Problem statement

4.2.1 Preliminaries

The dynamic model of a robot manipulator is represented by dynamic equations that de-
scribe the relationship between the position, velocity and acceleration, and torque of the robot
joints. Under Lagrange-Euler method, dynamic of n link rigid robot manipulator can be estab-
lished as

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ + τext (4.1)

where q, q̇ and q̈ ∈ Rn×1 are the vectors of the joint position, velocity and acceleration, respec-
tively. M(q) ∈ Rn×n is the inertia matrix , C(q, q̇) ∈ Rn×n is the Coriolis and centrifugal forces

50

matrix, G(q) ∈ Rn×1 is the gravity vector, τ ∈ Rn×1 is the torque vector applied to joints of
manipulator and τext ∈ Rn×1 represent external torque vector caused by the collision.

Lemma 1. [228] The matrix M(q)− 2C(q, q̇) is skew-symmetry, therefor it has the property

Ṁ(q) = C(q, q̇) + CT (q, q̇) (4.2)

where CT represent matrix transpose of C.

Assumption 1. τext is bounded, and thus |τext| < Υ , with Υ is unknown bounded value.

4.2.2 Classical Generalized Momentum Observer

In the study by [217], a Generalized Momentum Observer (GMO) is used for robot colli-
sion detection. This approach is based on the generalized momentum equation and its time
derivative, which are expressed as p =M(q)q̇

ṗ = Ṁ(q)q̇ +M(q)q̈
(4.3)

By combining (4.1), (4.2) and (4.3), a first-order dynamic equation for pp can be derived as

ṗ = τ + τext + CT (q, q̇)q̇ −G(q) (4.4)

According to (4.4), the dynamics of the momentum observer is defined as ˙̂p = τ + CT (q, q̇)q̇ −G(q) + r

ṙ = K(ṗ− ˙̂p)
(4.5)

where r ∈ Rn×1 represent the residual vector, p̂ ∈ Rn×1 is the estimate value of momentum p

and K = diag(ki) > 0 is the gain of observer.This observer works as a low pass filter, when a
collision occurs, there is a deviation of the momentum, this deviation represents the residual
value r. Increasing the values of ki leads to greater accuracy in the estimation of τext. But the
other hand is limited by the system noise.

4.2.3 The Extended State Momentum Observer

To improve the overall performance of the GM observer, an extended state momentum
observer was proposed in 2018), designed as follows:
The state space form of (4.4) is written as

x1 = p

ẋ1 = τp(τ, q, q̇) + τext

y = x1

(4.6)

51

with
τp(τ, q, q̇) = τ + CT (q, q̇)q̇ −G(q) (4.7)

When τext is treated as an extended state, the state-space representation can be reformulated
as 

x1 = p

ẋ1 = τp(τ, q, q̇) + x2

ẋ2 = φ(t)

y = x1

(4.8)

where x2 is the extended state.

Assumption 2. φ(t) is an unknown bounded function |φ(t)| ≤ ∆,for a constant ∆.

An extended state momentum observer is designed to estimate p and τext, and it is expressed
as follows 

˙̂x1 = x̂2 − β1e+ τp

˙̂x2 = −β2e

e = x̂1 − y

(4.9)

and x̂1 = p̂

x̂2 = τ̂ext
(4.10)

where β1 and β2 are a positive-definite diagonal gain matrices of observer, which can be obtained
by the pole placement method as

(s+ ω0)
2 = s2 + β1s+ β2 (4.11)

Here, ω0 represents the observer’s bandwidth. This observer functions as a second-order filter.
By selecting an appropriate value for ω0, the estimation error of the external torque can converge
to zero in a shorter time compared to previous observers. However, this advantage comes with
a drawback: the observer may produce a significant overshoot, which could affect the system’s
stability or precision if not properly addressed.

4.2.4 The Nonlinear Momentum Observer

To address the unavoidable trade-off between overshoot and steady-state error in the system,
a compromise solution was proposed by Li et al. [221]. This approach involves incorporating
nonlinear functions into the design of the momentum observer. By leveraging nonlinear dy-
namics, the observer achieves improved performance by reducing overshoot while maintaining
a minimal steady-state error, offering a balanced and effective solution for precise collision de-
tection and system stability.

52

The nonlinear momentum observer is defined as
˙̂x1 = x2 − β1ψ1(µ, δ, e) + τp

˙̂x2 = −β2ψ2(µ, δ, e)

e = x̂1 − y

(4.12)

where ψi(µ, δ, e) is a nonlinear function which can be takes a several forms, µ and δ are the
shaping parameters of a non-linear function. Although the nonlinear observer has a better
performance compared to previous observers. The problem with the design of this observer is
the selection of the form of the nonlinear function, which is basically empirical, and the difficulty
in proving the stability of the observer due to the complexity of the nonlinear functions.

4.3 Fuzzy Generalized Momentum Observer Design

To develop an efficient solution that enhances the performance of the Generalized Mo-
mentum Observer (GMO) while avoiding the complexity associated with nonlinear functions
and intricate theoretical analysis, we propose a novel Fuzzy Generalized Momentum Observer
(FGMO). This observer integrates an Extended State Observer (ESO) with a fuzzy system,
where the fuzzy system intelligently adjusts the observer’s bandwidth during the observation
process.
This section describes the design of the fuzzy generalized momentum observer (FGMO), this
type of observer incorporates the extended state observer (ESO) and fuzzy logic. The ESO
observer is expressed as follows 

˙̂x1 = x̂2 − β1e+ τp

˙̂x2 = −β2e

e = x̂1 − y

(4.13)

From (4.13), the transfer function between the estimated external torque and input signal can
be obtained as x̂1 =

x̂2+τp−β1p

s+β1

x̂2 =
β2sp−β2τp
s2+β1s+β2

(4.14)

From (4.14),it can be see that the transfer function represent a critically damping second-order
system. The system’s damping ratio and bandwidth can be expressed asω0 =

√
β2

ζ = β1

2
√
β2

(4.15)

53

where β1 and β2 are time varying gains of observer tuned by fuzzy system

β1 =


2ζω0,1 . . . 0

...
0 . . . 2ζω0,n

 , β2 =


ω2
0,1 . . . 0
...
0 . . . ω2

0,n

 (4.16)

From (4.15), it can be observed that there is a trade-off between the damping ratio and the
observer’s bandwidth. To enhance tracking accuracy, an appropriate value of ω0 must be se-
lected. However, when the observer operates with a critical damping ratio, the collision signal
it detects may produce overshoots, leading to false alarms. To address this, the damping ratio
can be increased during the initial moments of operation to eliminate overshoot. This trade-off
highlights the conflicting requirements between overshoot elimination and precise tracking, ne-
cessitating a balanced solution. To achieve this, we propose time-varying observer parameters
controlled dynamically during the manipulator robot’s operation, implemented through a fuzzy
system.
A single-input, single-output fuzzy system is applied to reduce the computational time, where
the external torque estimation error represents the input of this system, and the observer band-
width is applied as the output of the fuzzy system. This fuzzy system is constructed according
to the following steps:
Step 1 : We define fuzzy sets for input fuzzy system estimation error of external torque e and
output fuzzy system ω∗

0,i , for the input, a three membership functions are designed, negative
large (NL),small (S) and positive large (PL), ei ∈ { NLi, Si, PLi}, (i = 1, 2 . . . , n), and two
membership functions are designed for the output, small (S) and large (L), ω0,i ∈ { Si, Li}.
Step 2 : Develop a set of if-then rules that specify how the inputs influence the outputs. The
rules should be based on the knowledge of the system and its behavior and should consider
the relationships between the input and output variables. In this context, to provide proper
performance of the observer FGMO, the IF-THEN fuzzy group is constructed according to the
following rules:

IF e is NL, THEN ω0 is L
IF e is S, THEN ω0 is S

IF e is PL, THEN ω0 is L

Step 3: Because the input and output of this system are crisp values, an interface between the
fuzzy values and the real values is needed. These interfaces are fuzzifier and defuzzifier. The
fuzzifier is the tool that transforms a real input and output value into a corresponding fuzzy
value. Here, we propose a Gaussian fuzzifier, which has the following form

µX(e) = exp
−
(c− e)2

2σ2 (4.17)

54

where c and σ are the center and width of the fuzzy set X. Whereas the defuzzifier is defined as
a mapping from fuzzy value to crisp value. The center of gravity defuzzifier is applied through
following equation

ω∗
0 =

∫
ω0µ(ω0)dω0∫
µ(ω0)dω0

(4.18)

4.3.1 Dynamic Error of The Observer

Based on the (4.8) and (4.13), the dynamic error of observer can be written asė1 = e2 − β1e1

ė2 = −β2e1 − φ(t)
(4.19)

The convergence analysis of observer is mainly inspired by [227]. The dynamic error of (4.19)
can be rewritten as

Ė = AE +B(−φ(t)) (4.20)

where

A =

(
−β1 1

−β2 0

)
, B =

(
0

1

)
(4.21)

Assumption 3. The solution of systems states xi and the input τp are bounded.

Theorem 2. Consider that the above assumptions are met,then, the estimation error (E)
ultimately converges into the following bounded ball

B =
{
E : ∥E∥ ≤ 2∆λmax(P)

λ

}
(4.22)

Proof. Let a Lyapunov function V for the dynamic error (4.20) is defined as

V = ETPE (4.23)

where P is a positive definite matrix, which satisfies

ATP + PA = −λI (4.24)

The time derivative of V is expressed as

V̇ = ET (ATP + PA)E + 2ETPB(−φ(t)) (4.25)

Using (4.24) and Assumption (2),V̇ becomes

V̇ ≤ −λ∥E∥2 + 2∆λmax(P)∥E∥

≤ −∥E∥(λ∥E∥ − 2∆λmax(P))
(4.26)

where λmax are maximum eigenvalue of P , and λ is positive, then E ultimately converges into

55

the ∥E∥ ≤ 2∆λmax(P)
λ

bounded ball.

4.4 Collision Monitoring Method

To enhance the sensitivity of collision detection, it is essential to define an appropriate
threshold that effectively differentiates between external collision moments and modeling er-
rors. This threshold is represented by an envelope region, bounded by upper and lower values,
which is designed to encompass all non-collisional disturbance torques arising from system
model inaccuracies, friction between joint actuators, and other factors.
To determine the collision threshold, the robot performs a trajectory execution in free space,
without any external impacts (see Figure 4.1). During this collision-free motion, the residu-
als produced by the Fuzzy Generalized Momentum Observer (FGMO) reflect the disturbance
torque signals τdis at each robot joint. The maximum observed disturbance torque at each joint
is then used to define the collision threshold, which can be expressed as follows

|ρi| ≤ max|τdis,i| (4.27)

In the absence of collision, the residual r generated by the FGMO contains only the perturbing
torque, that is

|ri| ≤ |ρi| (4.28)

After that, the robot can be run in workspace. When a collision occurs, the residual value
also includes the external torque, causing the residual value to increase sharply and exceed the
threshold and can be expressed as

|ri| > |ρi| (4.29)

To distinguish the external collision from the non-collisional disturbance torque, a collision
detection index is defined as follows

ϵi =

1 if |ri| > |ρi|

0 if |ri| ≤ |ρi|
(4.30)

4.5 Simulations Results and Discussion

In this section, we present a simulation to evaluate the performance and validate the ef-
fectiveness of the proposed collision detection algorithm. The simulation is conducted using
the industrial robot model Fanuc M710iC/70, which was thoroughly analyzed in the previous
chapter.

56

Figure 4.1: Collision detection workflow.

4.5.1 Collision Description

Unwanted collisions can be characterized as abrupt disturbances, such as vibrations in the
actuators, which lead to torque deviations. To simulate a collision between the robot and a
human (or the environment), a collision force is applied to the third joint of the robot, as
illustrated in Figure 4.2. Specifically, a collision force Fc is introduced at 3 seconds into the
motion trajectory and remains active for a duration of 1 second.
A computed torque control strategy is used to control the robot, which meets the requirements

of controlling the trajectory of the manipulator robot. To test the performance of the observers
presented above, it is necessary to know how to adjust the parameters of the observer. For the
GMO, it has a K gain, which is the only parameter to adjust, To obtain the highest possible
estimation accuracy, K must be increased . However, increasing the gain K leads to overshoot
peaks. For ESO and NGMO, the gains β1 and β2 are the parameters that must be adjusted.
Since Li et al. [221], it is known that β2 determines the speed of evolution of the estimates, while
the increasing of β1, cause overshoot peaks and a low enough value will reduce convergence,
while the nonlinear function ψi(µ, δ, e) is defined as

ψi(µ, δ, e) =

|e|µsign(e), |e| > δ
e

δ1−µ
, |e| ≤ δ

(4.31)

The parameter of three observers can be obtained based on the parameter analysis of observers.
(as shown in Table 4.1). Based on the estimated external torque results, the peak value differs

57

Figure 4.2: Collision modelling.

Table 4.1: Observers parameters

Observer Parameters
GMO Ki = 20

EGMO β1,i = 20, β2,i = 100

NGMO β1,i = 20, β2,i = 100,
µ1 = 1, µ2 = 0.5, δ1 = δ2 = 0.1

from joint to joint, and it comes back to the mass of the joint. In the first case, the estimation
using GMO, as shown in Figures 4.3a-4.3c with the red graph, the result of the peak value of
the first joint is -0.28 while for the second and third joints, the peak values are 11.41 and 5.97
respectively. This comes back to the joints mass of the robot, which weight of first, second and
third joint of robot are 170.31 kg ,63.73 kg and 98.97 kg respectively. We can conclude that
the mass of the joint affects the dynamics of the observer on its gain, which is responsible for
the peak phenomenon.
As mentioned in the discussion in the introduction, the objective of this work is to reduce the
peak value and maintain the sensitivity of the collision estimation, as shown in the figures.
Regarding the peak phenomenon in the initial time. In Figure 4.3a, all observers show an ob-
vious peak, except for the FGMO observer which almost completely eliminates the peak. For
the second joint, as shown in Figure 4.3b, a significant peak is obtained, especially in the case
of GMO, which reaches 11.41, and which FGMO was able to reduce to 1.31, a reduction of
88%. In Figure 4.3a, for the third joint, the FGMO observer generates a lower peak value than
the other observers, which has an 86% reduction in the GMO peak value.In the second phase,
after the initial time phase, the observer must vary the bandwidth so as to be able to react
quickly to changes in the system’s state (appearance of a collision). And a wider bandwidth

58

allows it to track changes more sensitively and accurately. However, increasing the bandwidth
of an observer also increases the systems overshoot as shown in Figures 4.3a, 4.3b and 4.3c at
time 2.3 s, it can be found the nonlinear observer NGMO has an obvious overshoot, while the
FGMO follows the state change smoothly. Therefore, it is important to balance the benefits
of a higher bandwidth with the risks of overshoot, and design the observer carefully to ensure
optimal performance.
From the Figures 4.4a, 4.4b and 4.4c, whenever the torque estimation error is nonzero, it at-
tempts to converge to zero as quickly as possible. To obtain better transient performances, it is
necessary to define an adequate ω0. However, according of the (4.15), the observer may detect
the external force with a critical damping ratio that will lead to an undesirable overshoot phe-
nomenon. It can be seen that system overshoot and response time have opposite requirements
for the damping ratio. For GMO, EGMO and NGMO observers, when bandwidth is constant,
it is difficult to find a compromise between overshoot and response time. Unlike the observers
mentioned above, the FGMO observer can provide time-varying bandwidth, as shown in Figure
4.5, which present the observer bandwidth ω0 for the three first joints. Comparing the figures
for the estimation error and the bandwidth evolution, it can see that when the estimation error
is far from zero, the bandwidth is as wide as possible so that the estimation error converges more
quickly to zero and, consequently, to obtain the best sensitivity to collisions, then decreases
rapidly to avoid overshoot and also to obtain the shortest transit time. Table 4.2 summarizes
the characteristics of these moment observers, and we classify the overall performance of each
momentum observer in terms of complexity, sensitivity, initial peak, need for joint acceleration,
need for inverse of inertia matrix or not (* = " low " to **** = " high " It can be seen that
the designed FGMO observer shows high performance in terms of reduced complexity, high
sensitivity and low initial peak value compared to the other momentum observers used.

Table 4.2: Collision monitoring methods using momentum observers

Observer Characteristics of the momentum observers

GMO
Complexity *
Sensitivity ***

Initial peaking value ****
q̈ not needed Only M(q), no inverse

EGMO
Complexity **
Sensitivity *

Initial peaking value ***
q̈ not needed Only M(q), no inverse

NGMO
Complexity ****

Sensitivity **
Initial peaking value ***

q̈ not needed Only M(q), no inverse

FGMO
Complexity **
Sensitivity ***

Initial peaking value *
q̈ not needed Only M(q), no inverse

59

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time(s)

-2

0

2

4

6

8

10

12

Ex
te

rn
al

 T
or

qu
e

(N
.m

)
Ref

GMO

EGMO

NGMO

FGMO

0 0.2 0.4 0.6

-0.2

-0.1

0

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time(s)

-2

0

2

4

6

8

10

12

Ex
te

rn
al

 T
or

qu
e

(N
.m

)

 peak:11.14

 peak:8.01

 peak:3.27

Ref

GMO

EGMO

NGMO

FGMO

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time(s)

-2

0

2

4

6

8

10

12

Ex
te

rn
al

 T
or

qu
e

(N
.m

)

 peak:5.97

 peak:3.39

 peak:2.0117

Ref

GMO

EGMO

NGMO

FGMO

(c)

Figure 4.3: Residual of the first three joints. (a) for first link. (b) for second link. (c) for third
link.

60

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time(s)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
Er

ro
r o

f t
or

qu
e

es
tim

at
io

n
GMO

EGMO

NGMO

FGMO

0 0.5 1

-5

0

5

10
10-3

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time(s)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Er
ro

r o
f t

or
qu

e
es

tim
at

io
n

GMO

EGMO

NGMO

FGMO

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time(s)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Er
ro

r o
f t

or
qu

e
es

tim
at

io
n

GMO

EGMO

NGMO

FGMO

(c)

Figure 4.4: Estimation error of the first three joints. (a) for first link. (b) for second link. (c)
for third link.

61

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time(s)

2

4

6

8

10

12

14

16

18

Th
e

ba
nd

w
id

th
 o

f o
bs

er
ve

r (
H

z)
0;1

0,2

0;3

2.04 2.06 2.08 2.1 2.12

15.5

16

16.5

17

Figure 4.5: Evolution of observer’s bandwidth

4.5.2 Detection and Localization of Collision

The detection step must decide whether the robot manipulator is in a normal operating state
or not. For this purpose, we adopt a threshold to generate a collision detection indicator from
the monitoring signal based on (4.30). While collision localization consists of identifying the
robot links that are affected by a collision. When a collision force is applied on ith(1 ≤ i ≤ n)

link of the serial robot manipulator leads to [219].r1, . . . , ri ̸= 0

ri+1, . . . , rn = 0
, i = 1, 2, . . . , n (4.32)

we consider for example that the robot manipulator affected by a collision on third link (see
figure 4.2), therefore the collision force is distributed to second and first link of the robot. To
simulate this scenario, we apply an external torque to the first three joints of the manipulator
robot at different times while it executes the desired trajectory.Simulation results are depicted
in Figures 4.6 and 4.7, the designed collision threshold is large enough to account for distur-
bances and modeling errors. Therefore, the collision threshold can distinguish real collisions
from non-collisional disturbance signals.
In the start-up phase, despite the appearance of a peak in the initial time, which does not
exceeding the collision threshold, it is therefore represented as a non-collisional disturbance
signal as long as it remains within the envelope region of collision threshold. However, collision
detection can be done by comparing the residuals to the detection threshold ρ.
From the figure 4.6, the residuals stay inside threshold region until the moment of 3 s which the
external torque estimated by the observer changes abruptly and exceeds the collision threshold
for the first joint, and at the moments 3.1 s and 3.2 s for the second and third joints respec-

62

tively. Therefor there is a collision at link three according to (4.32). While the residual signal
of joints 4, 5 and 6 remains at zero, which means that there is no collision at these locations of
the robot.
when the collision occurs, the torque estimation error for the first three joints is around -0.5
and quickly returns to zero, demonstrating the sensitivity of the FGMO observer in estimating
external torque (see Figures 4.7a-4.7c). While the error remains zero for the three second joints
of the robot as shown in the Figures 4.7d-4.7f, which can be translated by these joints not
affected by the collision.
Once the collision has been detected, it must be localized. This localization is carried out from
the signature table which based on the (4.32). The table of signatures is given in the table 4.3.
In this example, when the collision has occurred at the third link, according to this table, the
residual vector r associated with the collision is r =

[
1 1 1 0 0 0

]T
.

Figure 4.8 summarizes the key steps involved in collision detection and localization. The Fuzzy-
Gain Momentum Observer (FGMO) generates residual signals that are highly sensitive to var-
ious collision events. By comparing these residual signals with predefined detection thresholds,
a detection index is obtained, indicating the presence of a collision. Furthermore, by matching
this detection index against a signature table, the system can accurately localize the point of
impact. This approach ensures reliable collision detection while enabling precise identification
of the affected joint or region of the robot.

Table 4.3: Signature table

Link 1st 2nd 3th 4th 5th 6th
r1 1 1 1 1 1 1
r2 0 1 1 1 1 1
r3 0 0 1 1 1 1
r4 0 0 0 1 1 1
r5 0 0 0 0 1 1
r6 0 0 0 0 0 1

63

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time(s)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
e
x
t o

n
 J

1
(N

.m
)

Residual

Lower Bound

Upper Bound

(a) Joint 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time(s)

-5

-4

-3

-2

-1

0

1

2

3

4

5

e
x
t o

n
 J

2
(N

.m
)

(b) Joint 2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time(s)

-6

-4

-2

0

2

4

6

e
x
t o

n
 J

3
(N

.m
)

(c) Joint 3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time(s)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

e
x
t o

n
 J

4
(N

.m
)

(d) Joint 4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time(s)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

e
x
t o

n
 J

5
(N

.m
)

(e) Joint 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time(s)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

e
x
t o

n
 J

6
(N

.m
)

(f) Joint 6

Figure 4.6: Residual of the first three joints. (a) for first link. (b) for second link. (c) for third
link. And Estimation error of the first three joints. (d) for first link. (e) for second link. (f) for
third link.

64

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time(s)

-0.3

-0.2

-0.1

0

0.1

0.2

E
s
ti
m

a
ti
o

n
 e

rr
o

r
o

f
J
1

(N
.m

)

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time(s)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

E
s
ti
m

a
ti
o

n
 e

rr
o

r
o

f
J
2

(N
.m

)

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time(s)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

E
s
ti
m

a
ti
o

n
 e

rr
o

r
o

f
J
3

(N
.m

)

(c)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time(s)

-0.3

-0.2

-0.1

0

0.1

0.2
E

s
ti
m

a
ti
o

n
 e

rr
o

r
o

f
J
4

(N
.m

)

(d)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time(s)

-0.3

-0.2

-0.1

0

0.1

0.2

E
s
ti
m

a
ti
o

n
 e

rr
o

r
o

f
J
5

(N
.m

)

(e)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time(s)

-0.3

-0.2

-0.1

0

0.1

0.2

E
s
ti
m

a
ti
o

n
 e

rr
o

r
o

f
J
6

(N
.m

)

(f)

Figure 4.7: Estimation error. (a) for first link. (b) for second link. (c) for third link. (d) for
fourth link. (e) for fifth link and (f) for sixth link.

65

Figure 4.8: Collision detection and localization.

4.6 Conclusion

This chapter presented an alternative collision detection method for manipulator robots op-
erating in sensorless conditions, utilizing a Fuzzy Generalized Momentum Observer (FGMO).
Building upon traditional generalized momentum observers, the FGMO incorporates a fuzzy
system to intelligently adjust the observer’s bandwidth. This innovative approach effectively
addresses the trade-off between collision sensitivity and peak value reduction, which is a limi-
tation in conventional methods.
The integration of the FGMO with a collision threshold enables the distinction between exter-
nal forces and internal torque disturbances. Furthermore, the collision detection algorithm can
accurately identify the specific robot link where the collision occurs. The results demonstrate
that this solution is robust and suitable for detecting both dynamic and quasi-static collisions
in robot manipulators.
For future work, the proposed algorithm could be enhanced to extract additional information
from the residual vector, such as the magnitude of the collision force, allowing the robot to re-
spond appropriately. Further development will focus on adapting the algorithm to incorporate
dynamic thresholds and integrating it into real-world applications with robotic manipulator
arms.

66

Chapter 5

Soft Computing Approaches for
Optimal Industrial Robot Trajectory
Planning

Abstract

The present chapter addresses the problem of optimal trajectory planning for industrial
robots (IRs), with a particular focus on minimizing energy consumption. An effective
approach is presented to obtain optimal trajectories in terms of time, jerk, and energy
consumption. Following an introduction that reviews recent literature on the topic,
Section 5.2 defines the problem statement. Section 5.3 introduces the artificial LSTM
model used for energy consumption modeling. Section 5.4 outlines the optimization
strategy for achieving optimal trajectories. Section 5.5 validates the proposed approach
through simulation experiments, while Section 5.6 highlights the chapter’s key findings
and contributions.

5.1 Introduction

The integration of robot manipulators into assembly and manufacturing lines is steadily
increasing due to their efficiency, flexibility, and safety [229]. However, there is a growing em-
phasis on enhancing the motion performance of industrial robots. Key objectives in trajectory
planning include minimizing execution time, reducing jerk and optimizing energy consumption.
Trajectory planning is a critical operation for industrial robots before they are deployed, as it
plays an important role in enhancing productivity. An optimal trajectory minimizes unnec-
essary movements and cycle times. Additionally, well-planned trajectories result in smoother
motion profiles, reducing jerky movements and vibrations that can cause wear and tear on
mechanical components. Optimized trajectories also contribute to energy efficiency by mini-
mizing unnecessary accelerations and decelerations, leading to lower energy consumption and
operating costs. Therefore, one of the primary concerns in the use of robot manipulators is the
optimization of trajectory planning, with a focus on the key criteria of time, jerk and energy

67

consumption.
To achieve higher production rates in robotic cells, time-optimal trajectory planning is one of
the primary requirements. This involves determining the shortest possible time to execute a
predefined task path while adhering to the robot’s physical constraints and maintaining task
quality without compromise. In recent years, many researches have addressed this problem,
in [230], the trajectory is represented by splines interpolation, then optimized using dynamic
programming (DP) algorithm to generate time-optimal trajectory and smoothly. In [231], a
novel Dynamic Programming (DP) algorithm is proposed for obtaining a time-optimal tra-
jectory while considering torque and jerk constraints. The performance of the algorithm is
compared with the Sequential Convex Programming (SCP) method. In the work of Serdar
[232], a numerical method is developed to generate collision-free trajectories while avoiding
robot singularities. The trajectory is constructed using cubic splines and subsequently opti-
mized using the Particle Swarm Optimization (PSO) algorithm to achieve optimal execution
time. Further research on the time-optimal trajectory planning problem has been conducted
using numerical methods, as presented in [233]–[237]. These approaches focus on determining
appropriate time scaling to identify the switching points between maximum acceleration and
maximum deceleration, thereby reducing the trajectory time. However, considering only the
time factor in robot trajectory planning is insufficient, as it often results in higher energy con-
sumption, particularly given the rising cost of energy resources.
Minimizing the trajectory time of a robot can significantly impact jerk, defined as the rate of
change of acceleration. Jerk plays a crucial role in determining the smoothness and efficiency
of a robot’s motion between points and is generally undesirable due to its negative effects on
motion stability and mechanical wear. The problem of simultaneously minimizing time and jerk
in trajectory planning has been explored in several studies. Notably, Gasparetto and Zanotto
[238] proposed the use of third- and fifth-order B-spline interpolations for trajectory planning.
Their approach optimizes a single objective function that combines execution time and the inte-
gral of squared jerk. However, this method is limited in its applicability to scenarios where the
solution set is non-convex, making it less effective in complex trajectory optimization problems.
In [239], the motion profile of a pick-and-place parallel robot is constructed using quintic B-
spline curves to achieve C4C4 continuity. The approach considers two key factors: acceleration
and jerk, ensuring smoother and more efficient motion trajectories. Junsen et al. [240] applied
fifth-order B-spline interpolation to construct the trajectory in joint space. The trajectory was
then optimized using the elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II), with
time and jerk considered as optimization objectives. In [241], the trajectory is interpolated
using fifth-degree polynomials in Cartesian space. The resulting trajectory is then optimized
using the Sequential Quadratic Programming (SQP) algorithm, with the objective of minimiz-
ing joint jerks to achieve smoother robot motion. Zhang et al. [242] also applied SQP algorithm
to obtain time-jerk optimal trajectory for a robotic excavator. To address the trade-off between
jerk and time, hybrid meta-heuristic algorithms have been employed to optimize the objective
function. In [243], Particle Swarm Optimization (PSO) and the Improved Whale Optimization

68

Algorithm (IWOA) are combined to enhance the convergence toward the optimal solution. As
is well known, the time required to complete tasks and the jerk profile of a robot’s movement
can significantly impact its energy consumption. Optimizing motion profiles, minimizing task
execution delays, and ensuring the efficient operation of components are essential strategies for
reducing energy consumption in robotic systems [244].
Given the rising cost of energy resources, minimizing the energy consumption of robot manipu-
lators has become a critical requirement for reducing the operating costs of robotic applications
[245]. Additionally, energy-efficient operations contribute to reducing the environmental im-
pact, aligning with sustainable development goals [246], [247]. This has motivated academic
research groups to focus on research into energy consumption recently. In [248], a method for
minimum-energy trajectory planning in industrial robotic systems is proposed. The approach
is based on modeling an electromechanical system with one degree of freedom (1-DOF) to
analytically compute energy consumption. While this method is effective for simple 1-DOF
systems, it is less suitable for high-degree-of-freedom (high-DOF) systems, such as those with
six degrees of freedom, due to increased complexity and computational challenges. In [249], an
energy analysis based on dynamic and electromechanical models of a 3-DOF SCARA robot is
conducted to demonstrate the correlation between the inertia ellipsoid index and the robot’s
effective energy consumption. However, the study does not account for the power consumption
of the electronic components within the system cabinet, potentially limiting the comprehen-
siveness of the energy evaluation. In [250], the authors developed a software tool designed to
interact with offline programming simulators for industrial robots. The tool enables the com-
putation and optimization of motion parameters with a focus on energy efficiency, providing
valuable support for energy-conscious trajectory planning in industrial applications. A new in-
vestigation into energy consumption adopts a data-driven approach, where the robot’s energy
profile is modeled using an artificial neural network for prediction [251], [252]. Li et al. [253]
optimized energy consumption based on the robots dynamic model, considering joint torque as
a key factor influencing energy usage. The optimization was carried out using the Sequential
Quadratic Programming (SQP) algorithm. However, most research on robot energy consump-
tion overlooks crucial factors such as time and jerk, despite their significant impact on motion
smoothness, efficiency, and overall system performance.
From the above discussion, research studies that simultaneously consider execution time, jerk,
and energy consumption remain limited, with only a few papers addressing all three factors
comprehensively. As presented in [254], the trajectory of a serial manipulator is planned using
the Non-Uniform Rational B-Splines (NURBS) method, which simultaneously considers time,
energy and jerk. In [255], the robot’s trajectory is interpolated using a quintic B-spline and op-
timized with a Quantum-behaved Particle Swarm Optimization (QPSO) algorithm to achieve
a time-jerk-energy optimal trajectory for a parallel robot. However, these studies consider joint
accelerations as a measure of energy consumption, which does not accurately reflect the actual
energy usage of the robot. The true energy consumption is primarily determined by the torque
exerted by the actuators, but accurately estimating this is challenging due to the unavailability

69

of an exact dynamic model of the robot.

5.2 Problem statements

5.2.1 Time-energy-jerk optimization problem formulation

To execute a manipulator robots motion path, the robot must pass through a sequence of
waypoints (or via points) in Cartesian space. As noted by Gasparetto in [256], robot trajecto-
ries are typically planned in joint space. In this work, the trajectory planning is also carried
out in joint space, where consecutive waypoints in Cartesian space are transformed into joint
space using the inverse kinematic model. Based on these joint-space waypoints, a trajectory is
generated and subsequently optimized to minimize specific objectives. The trajectory must be
sufficiently smooth to prevent excessive mechanical vibrations while ensuring minimal travel
time and reduced energy consumption. Additionally, kinematic constraints such as velocity,
acceleration, and jerk must be taken into account to achieve efficient and reliable motion plan-
ning.
Various performance indices are used to assess the effectiveness of the planned trajectory. In
[257], [258], the objective function incorporates the sum of execution time and the integral of
squared jerk. In [259], the maximum jerk value is considered as a key performance criterion.
In this paper, the performance indices for execution time, jerk and energy consumption are
defined in (5.1)(5.3).
The robot trajectory planning translate into multi-objective optimization problem and can de-
fined mathematically as follows:
Minimize:

ftime =
n−1∑
k=0

Tk =
n−1∑
k=0

(tk+1 − tk) (5.1)

fjerk =
N∑
i=1

√
1

T

∫ T

0

(
...
s i(t))2dt (5.2)

fenergy = max(|EC(t)|) (5.3)

Subject to: 

0 < T ≤ Tmax

|ṡi(t)| ≤ ṡmax, i = 1, 2, ..., N.

|s̈i(t)| ≤ s̈max

| ...s i(t)| ≤
...
s max

(5.4)

The symbols mentioned above are explained in Table 5.1

70

Table 5.1: Explanation of symbols in the optimization problem formulation.

Symbol Definition
ftime Objective function of execution time
fjerk Objective function of jerk
fenergy Objective function of energy consuming
EC Total energy consuming of the robot
si Position of ith robot joint
ṡi Velocity of ith robot joint
s̈i Acceleration of ith robot joint...
s i Jerk of the ith joint
ṡmax Velocity constraint value
s̈max Acceleration constraint value...
s max Jerk constraint value
Tk The time between kth and (k + 1)th waypoints
T Total travel time of the complete trajectory
Tmax Total travel time constraint
tk Time instant of kth node

n+ 1 Number of the waypoints
N Number of robot joints

5.2.2 Trajectory planning by 5th-order B-spline in joint space

In robotic programming applications, ensuring smooth and continuous trajectories up to
the third derivative (jerk) is essential [260]. To achieve this, the B-spline method is highly
recommended due to its flexibility in shaping the trajectory. Moreover, it can be optimized to
obtain an optimal trajectory in terms of execution time, jerk, and energy efficiency. This is
mathematically expressed by the following equation

s(u) =
m∑
j=0

djB
p
j (u) (5.5)

where dj represents the control points of curve, Bp
j (u) denotes spline functions of degree p,

defined according to knot vector u = [u0, ..., unknot
] and s(u) represents the joint poistion at the

instant u. The j-th B-spline basis function of degree p is recursively defined using the Cox-de
Boor recursion formula [261].

B0
j (u) =

1 if uj ≤ u < uj+1

0 otherwise

Bp
j (u) =

(u−uj)

(uj+p−uj)
Bp−1

j (u)+

(uj+p+1−u)

(uj+p+1−uj+1)
Bp−1

j+1 (u)

(5.6)

The continuity of the jerk requires adopting a fifth-degree B-spline (p = 5).The trajectory in
the cartesian space is discretized into number of waypoints and two virtual (vp = 2) points are
added at the second and second-last position of the waypoints sequence to obtain a smooth

71

trajectory (no jerk) at either extremities [257]. These points are then mapped into joint space
through the robots inverse kinematic model to find the viapoints qk(k = 0, ..., n), which are
interpolated at times tk, The goal is to find the control points dj, j = 0, ...,m that ensure

s(tk) = qk (5.7)

It is first necessary to define the knot vector u, composed of sequence of tk corresponding to
the waypoints.

u =

[
t0 · · · t0︸ ︷︷ ︸

p+1

tvp,1 t1 · · · tn−1 tvp,2 tn · · · tn︸ ︷︷ ︸
p+1

]
(5.8)

where tvp,1 and tvp,2 are time instants of the virtual points.
The length of knot vector is n + 2p + vp + 1 = nknot + 1, in B-spline function calculations,
the relation between nknot, m and p is nknot − p − 1 = m, thus the control points number is
n+ vp+ p = m+ 1.
To determine the control point vector d, a linear system can be constructed by combining of
n + 1 equations that obtain through interpolation conditions imposed for each viapoint qk at
instant tk: 

q0

q1
...

qn−1

qn


=



Bp
0(t0) Bp

1(t0) · · · Bp
m−1(t0) Bp

m(t0)

Bp
0(t1) Bp

1(t1) · · · Bp
m−1(t1) Bp

m(t1)
...

Bp
0(tn−1) Bp

1(tn−1) · · · Bp
m−1(tn−1) Bp

m(tn−1)

Bp
0(tn) Bp

1(tn) · · · Bp
m−1(tn) Bp

m(tn)





d0

d1
...

dm−1

dm


(5.9)

From (5.9), n+ vp+ p equations are required to build a square system of m+ 1 equations and
m + 1 unknown control points, the extra p + 1 can be provide by imposing initial and final
conditions of velocity, acceleration and jerk of trajectory. The formulas of velocity, acceleration
and jerk can be obtained by differentiating (5.5) up to the third order

ṡ(u) =
m−1∑
j=0

cjB
p−1
j (u) (5.10)

s̈(u) =
m−1∑
j=0

ljB
p−2
j (u) (5.11)

...
s (u) =

m−1∑
j=0

wjB
p−3
j (u) (5.12)

72

where cj ,lj and wj are, respectively, the velocity curve, acceleration, and jerk control points
and are computed as 

cj = p
dj+1−dj

uj+p+1−uj+1

lj = (p− 1)
cj+1−cj

uj+p+1−uj+1

wj = (p− 2)
lj+1−lj

uj+p+1−uj+1

(5.13)

The velocity , acceleration and jerk at waypoints can be described as following

q̇k =
[
Bp

0
(1)(tk) Bp

1
(1)(tk) · · · Bp

m−1
(1)(tk) Bp

m
(1)(tk)

]


d0

d1
...

dm−1

dm


(5.14)

q̈k =
[
Bp

0
(2)(tk) Bp

1
(2)(tk) · · · Bp

m−1
(2)(tk) Bp

m
(2)(tk)

]


d0

d1
...

dm−1

dm


(5.15)

...
q k =

[
Bp

0
(3)(tk) Bp

1
(3)(tk) · · · Bp

m−1
(3)(tk) Bp

m
(3)(tk)

]


d0

d1
...

dm−1

dm


(5.16)

where Bp
j
(i)(tk) represent i-th derivative of Bp

j (t) at tk
The initial and final values of velocity, acceleration and jerk can be expressed as follows

ṡ(t0) = q̇0

ṡ(tn) = q̇n

s̈(t0) = q̈0

s̈(tn) = q̈n
...
s (t0) =

...
q 0

...
s (tn) =

...
q n

(5.17)

this leads (5.9) to be square linear system with same number of equations and unknowns of
m+ 1

Ad = c (5.18)

73

where
d =

[
d0 d1 · · · dm−1 dm

]T
(5.19)

c =
[
q0 q̇0

...
q0 q1 · · · qn−1

...
qn q̈n q̇n qn

]T
(5.20)

A =



Bp
0(t0) Bp

1(t0) · · · Bp
m−1(t0) Bp

m(t0)

Bp
0
(1)(t0) Bp

1
(1)(t0) · · · Bp

m−1
(1)(t0) Bp

m
(1)(t0)

Bp
0
(2)(t0) Bp

1
(2)(t0) · · · Bp

m−1
(2)(t0) Bp

m
(2)(t0)

Bp
0
(3)(t0) Bp

1
(3)(t0) · · · Bp

m−1
(3)(t0) Bp

m
(3)(t0)

Bp
0(t1) Bp

1(t1) · · · Bp
m−1(t1) Bp

m(t1)
...

Bp
0(tn−1) Bp

1(tn−1) · · · Bp
m−1(tn−1) Bp

m(tn−1)

Bp
0
(3)(tn) Bp

1
(3)(tn) · · · Bp

m−1
(3)(tn) Bp

m
(3)(tn)

Bp
0
(2)(tn) Bp

1
(2)(tn) · · · Bp

m−1
(2)(tn) Bp

m
(2)(tn)

Bp
0
(1)(tn) Bp

1
(1)(tn) · · · Bp

m−1
(1)(tn) Bp

m
(1)(tn)

Bp
0(tn) Bp

1(tn) · · · Bp
m−1(tn) Bp

m(tn)



(5.21)

Thus, the control points can be obtained by following equation (5.22)

d = A−1c (5.22)

Considering that the control points vector relies on the times intervals between waypoints,
alterations to the trajectory’s velocity, acceleration and jerk may arise.

5.3 Prediction model of energy consumption using LSTM

As stated in the problem formulation, an energy consumption model is required to construct
an optimization objective function. To determine the energy consumed by the manipulator
robot, one must either analyze and extract the mathematical relationship between the current,
voltage, and time of each servo motor of the robot to calculate power, which is difficult to
resolve, or describe it by torque through robot dynamic model which is difficult to obtained in
practice.
Methods based on deep learning have recently gained popularity for creating models to predict
the robot’s energy consumption. This is due to their simple modeling approach, which avoids
complex dynamic modeling processes [262]–[264]. LSTM is an improved version of the theory
of recurrent neural network (RNN) regression, due to its ability to identify non-linear and com-
plex relationships [265]. In this study LSTM is applied to establish the relationship between
the executed trajectory and its corresponding consumed energy.
The components of the proposed LSTM network are: data preprocessing module, input layer,
three LSTM layers, dropout layer, fully connected layer and regression layer. The data prepro-
cessing module normalizes the training data and removes features with constant values that

74

may have a negative impact on training. The LSTM layers can learn from sequences data and
retain information over time steps and exploits deep relationships between energy consumption
and input variables. To prevent LSTM overfitting risk a dropout layer is adopted. The fully
connected layer is added for learning nonlinear combinations of data features. The regression
layer calculates the error loss in output layer for the regression task. Figure 5.1 illustrates the
architecture of our proposed LSTM network for regression. The input sequence of our designing
LSTM network can be represented as:

xt =
[
s1 · · · s6 ṡ1 · · · ṡ6 s̈1 · · · s̈6

]T
(5.23)

and the output sequence, representing the energy consumption indicated by the absolute value
of the torque at each robot joint, can be expressed as

N∑
i=1

∫ T

0

|τi(t)|dt (5.24)

Figure 5.1: Schematic of the proposed LSTM network.

5.3.1 Structure of LSTM cell

The LSTM cell is the alternative element of the neuron in RNNs. Capable of modeling long-
term dependencies through the use of memory cells to store information and gates to regulate
its flow between them (see Figure 5.2).
The flow of information is regulated by the forget gate Gt, input gate It, output gate Ot and
also cell candidate C̃t via following formulas

Gt = sig(WG[yt−1 xt]
T + bG) (5.25)

75

Figure 5.2: LSTM cell architecture.

It = sig(WI [yt−1 xt]
T + bI) (5.26)

C̃t = tanh(WC [yt−1 xt]
T + bC) (5.27)

Ot = sig(WO[yt−1 xt]
T + bO) (5.28)

where W(.) are the weight vectors of gates, b(.) are bias vectors, sig is sigmoid activation function
and tanh is hyperbolic tangent activation function. They are defined as follows:

sig(v) =
1

1 + e−v
(5.29)

tanh(v) =
ev − e−v

ev + e−v
(5.30)

while cell output yt and cell state Ct are given by

Ct = Gt ⊗ Ct−1 + It ⊗ C̃t (5.31)

yt = Ot ⊗ tanh(Ct) (5.32)

where ⊗ denotes element-wise multiplication of vectors.

5.4 Time-jerk-energy optimization using NSGA-II

The NSGA-II is multi-optimization method that developed by Deb et al.[266] has proven
its effectiveness in various fields where optimization problems involve multiple conflicting ob-
jectives. Aims to efficiently explore the solution space, maintain diversity among solutions, and
identify solutions for a conflicting objectives called Pareto-ptimal solutions.
In the NSGA-II process, the offspring population Qt, is initially formed by utilizing the parental
population Pit, along with the standard genetic operators. Subsequently, Pit and Qit are merged
to form a new population Rit, of size 2P . Then, the Rit population is classified based on

76

non-domination sorting method. In new generation, the parent population Pit+1, is filled by
non-dominated fronts increasingly until the population size achieves P . Solutions are sorted
based on crowding distance in descending order. This scenario is illustrated in Algorithm 1.

Algorithm 1 The NSGA-II procedure
1: Initialize random population Pit of size Np;
2: Generate offspring population Qt;
3: while it ≤ number of generation do ▷ it is iteration number
4: Rit = Pit ∪Qit;
5: Fi = non-dominated sorting(Rit); ▷ Fi are non-dominated fronts of Rit

6: Pit+1 = ∅ and i = 1;
7: while |Pit+1|+ |Fi| ≤ Np do
8: classify by crowding distance(Fi);
9: Pit+1 = Pit+1 ∪ Fi;

10: i = i+ 1;
11: end while
12: Qit+1 = generate new pop(Pit+1);
13: it = it+ 1;
14: end while

According to the section 5.2.2 analysis, solving the problem of time-jerk-energy optimal
trajectory planning consists of finding the control points of the B-spline curve, which relies on
the time instants of the waypoints. In this study, the optimizer works to find appropriate time
instants for the waypoints of the trajectory, minimizing the objectives described in Eqs.(5.1-5.3)
under the kinematic constraints described in Eq.(5.4).
In the optimization procedure, the optimizer defines the instants of time tk corresponding to
the predefined waypoints of the reference trajectory. The generated trajectory is tested against
the constraints, then evaluated through the objective functions,and optimizes the sequence of
tk, repeating the process until the objective is achieved. Figure 5.3 illustrates the optimization
flowchart.

Figure 5.3: Flowchart of optimization.

77

5.5 Results and discussion

To demonstrate the feasibility of the proposed approach, simulation experiments are carried
out on an industrial robot model the of 6-DOF Fanuc M710iC70 (see figure 5.4). The proposed
approach is implemented in the Matlab/Simulink software environment. The simulation exper-
iments focus on three main aspects:

Robot energy consumption model: This involves designing an energy consumption profile
model for the robot, which based on data collection, training and validation using a test sample.

Process optimization: This aspect involves running the process optimization to obtain opti-
mal time parameters, which results in an optimal trajectory in terms of time, jerk, and energy.

Method comparison: This provides a comparison between the proposed approach and one
of the classical methods in trajectory planning of robots to evaluate the effectiveness of our
approach.

Figure 5.4: 3D robot model of Fanuc M710iC70.

5.5.1 Robot energy consumption model

For training the energy model, input/output data were extracted from the experimental
simulations. The position, velocity and acceleration are considered as input data, and the in-
tegral of the absolute value of the corresponding torque, representing energy consumption, is
taken as output data. In this study, the input data consist of the position, velocity and acceler-
ation of six robot joints, as the movement of a single joint can affect the robot’s overall energy
consumption, while in the output data, we preferred to take the sum of energy consumption of
all joints to avoid complexity in calculation, as well as the total energy being what matters us
for a IR system.
The trajectories were generated using the B-spline method, with random waypoints selected
using MATLAB’s random function.The waypoints were constrained within the robot’s joints
movement limits of [-90ř, 90ř]. This approach ensures diverse trajectory generation, enabling
the robot to learn effectively across a wide range of motions.In future work, this method can be
extended to comprehensively cover the entire robot workspace. The measurements of position,
velocity, acceleration and corresponding energy consumption values are collected into a training
set. The other LSTM network parameters are listed in Table 5.2.

78

Figure 5.5: Training model performance with 50 trajectories.

Figure 5.6: Training model performance with 100 trajectories.

79

Figure 5.7: Training model performance with 150 trajectories.

Figure 5.8: Training model performance with 200 trajectories.

80

Table 5.2: Parameters of proposed LSTM.

Parameters Values
Number of input Features 18

Number of layers 3
Number of hidden units of each layer 100

Number of Responses 1
Epochs 400

Min BatchSize 20
Learning Rate 0.01

Solver adam

The LSTM model was trained using different numbers of trajectories (50, 100, 150 and
200) to evaluate its performance in terms of Root Mean Squared Error (RMSE) and achieve
maximum accuracy. As shown in Figures 5.5, 5.6 and 5.7, the RMSE decreases as the number
of trajectories increases, indicating improved model performance with larger training sets. At
200 trajectories, the RMSE stabilizes at iteration 2000, suggesting that further increasing the
number of trajectories may not significantly enhance accuracy beyond this point as depicted in
Figure 5.8.
After training the proposed energy consumption (EC) model, the results demonstrated a signifi-
cant improvement in convergence speed, indicating that the model quickly reached a satisfactory
level of accuracy in predicting the robot’s power consumption. This faster convergence suggests
that the model effectively captured the underlying energy consumption patterns, reducing the
need for extensive retraining. During the training process, the loss function exhibited smooth
stabilization, implying that the model’s performance had plateaued. This stabilization suggests
that additional training iterations would likely yield minimal improvements, confirming that
the model had attained an optimal balance between accuracy and generalization without over-
fitting to the training data. Figure 5.9 illustrates the evolution of energy consumption along
a randomly selected trajectory, showing that the trained model accurately predicts the robots
energy consumption. The strong consistency between the models predictions and the exper-
imental data further validates its reliability and effectiveness in estimating real-world energy
usage.

0 2 4 6 8 10 12 14 16 18

Time(s)

0

0.5

1

1.5

2

2.5

3

E
C

(N
.m

.s
)

104

EC predicted

EC measured

Figure 5.9: Test samples of EC predicted vs EC measured.

81

5.5.2 Running the optimization process

After modeling the energy profile of the robot, this section focuses on the optimization pro-
cess. The time-jerk-energy optimization is addressed using NSGA-II to determine the optimal
time instants. The proposed method is examined on the trajectory of waypoints in the joint
space presented in Table 5.3, subject to kinematic constraints, which are presented in Table 5.4.
The initial and final conditions of velocity, acceleration and jerk of the trajectory are initial-
ized to zero. The NSGA-II algorithm is used for optimizing the objective functions with these
settings: number of generation = 50, size of population = 100 and the crossover probability is
randomly selected at each generation.

Table 5.3: Kinematic constraints of the robot joints.

Number of joints 1 2 3 4 5 6
Velocity ṡmax (deg/s) 10 15 10 10 15 10

Acceleration s̈max (deg/s2) 15 20 20 10 15 10
Jerk ...

s max (deg/s3) 18 25 20 15 20 12

Table 5.4: Waypoints of trajectory in joint space (◦).

Waypoints J1 J2 J3 J4 J5 J6
1 19 70 76 -2 -17 18
2 Virtual
3 23 89 66 -6 -16 13
4 18 81 75 -10 -7 21
5 21 81 71 -8 -5 23
6 26 86 73 -5 0 24
7 29 88 77 -4 4 27
8 Virtual
9 26 90 75 -3 1 27

Figure 5.10: Pareto front of time-jerk-energy optimization.

As illustrated in Figure 5.10, optimal Pareto front of the time-jerk-energy optimization obtained

82

0 2 4 6 8 10 12

Time(s)

16

18

20

22

24

26

28

30
P

o
s
it
io

n
(d

e
g

)
Trajectory

Viapoints

(a) Joint 1

0 2 4 6 8 10 12

Time(s)

70

75

80

85

90

95

P
o

s
it
io

n
(d

e
g

)

(b) Joint 2

0 2 4 6 8 10 12

Time(s)

64

66

68

70

72

74

76

78

P
o

s
it
io

n
(d

e
g

)

(c) Joint 3

0 2 4 6 8 10 12

Time(s)

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

P
o

s
it
io

n
(d

e
g

)

(d) Joint 4

0 2 4 6 8 10 12

Time(s)

-20

-15

-10

-5

0

5

P
o

s
it
io

n
(d

e
g

)

(e) Joint 5

0 2 4 6 8 10 12

Time(s)

12

14

16

18

20

22

24

26

28

P
o

s
it
io

n
(d

e
g

)

(f) Joint 6

Figure 5.11: The position of joints of robot trajectory.

83

0 2 4 6 8 10 12

Time(s)

-10

-5

0

5

10

V
e

lo
c
it
y
(d

e
g

/s
)

(a) Joint 1

0 2 4 6 8 10 12

Time(s)

-15

-10

-5

0

5

10

15

V
e

lo
c
it
y
(d

e
g

/s
)

(b) Joint 2

0 2 4 6 8 10 12

Time(s)

-10

-5

0

5

10

V
e

lo
c
it
y
(d

e
g

/s
)

(c) Joint 3

0 2 4 6 8 10 12

Time(s)

-10

-5

0

5

10

V
e

lo
c
it
y
(d

e
g

/s
)

(d) Joint 4

0 2 4 6 8 10 12

Time(s)

-15

-10

-5

0

5

10

15

V
e

lo
c
it
y
(d

e
g

/s
)

(e) Joint 5

0 2 4 6 8 10 12

Time(s)

-10

-5

0

5

10

V
e

lo
c
it
y
(d

e
g

/s
)

(f) Joint 6

Figure 5.12: The velocity of joints of robot trajectory.

84

0 2 4 6 8 10 12

Time(s)

-15

-10

-5

0

5

10

15

A
c
c
e

le
ra

ti
o

n
(d

e
g

/s
2
)

(a) Joint 1

0 2 4 6 8 10 12

Time(s)

-20

-15

-10

-5

0

5

10

15

20

A
c
c
e

le
ra

ti
o

n
(d

e
g

/s
2
)

(b) Joint 2

0 2 4 6 8 10 12

Time(s)

-20

-15

-10

-5

0

5

10

15

20

A
c
c
e

le
ra

ti
o

n
(d

e
g

/s
2
)

(c) Joint 3

0 2 4 6 8 10 12

Time(s)

-10

-5

0

5

10

A
c
c
e

le
ra

ti
o

n
(d

e
g

/s
2
)

(d) Joint 4

0 2 4 6 8 10 12

Time(s)

-15

-10

-5

0

5

10

15

A
c
c
e

le
ra

ti
o

n
(d

e
g

/s
2
)

(e) Joint 5

0 2 4 6 8 10 12

Time(s)

-10

-5

0

5

10

A
c
c
e

le
ra

ti
o

n
(d

e
g

/s
2
)

(f) Joint 6

Figure 5.13: The acceleration of joints of robot trajectory.

85

0 2 4 6 8 10 12

Time(s)

-18

-15

-10

-5

0

5

10

15

18
J
e

rk
(d

e
g

/s
3
)

(a) Joint 1

0 2 4 6 8 10 12

Time(s)

-25

-20

-15

-10

-5

0

5

10

15

20

25

J
e

rk
(d

e
g

/s
3
)

(b) Joint 2

0 2 4 6 8 10 12

Time(s)

-20

-15

-10

-5

0

5

10

15

20

J
e

rk
(d

e
g

/s
3
)

(c) Joint 3

0 2 4 6 8 10 12

Time(s)

-15

-10

-5

0

5

10

15

J
e

rk
(d

e
g

/s
3
)

(d) Joint 4

0 2 4 6 8 10 12

Time(s)

-20

-15

-10

-5

0

5

10

15

20

J
e

rk
(d

e
g

/s
3
)

(e) Joint 5

0 2 4 6 8 10 12

Time(s)

-12

-10

-5

0

5

10

12

J
e

rk
(d

e
g

/s
3
)

(f) Joint 6

Figure 5.14: The jerk of joints of robot trajectory.

86

0 2 4 6 8 10 12

Time(s)

0

0.5

1

1.5

2

2.5

3

3.5

E
C

(N
.m

.s
)

104

EC measured

EC predicted

Figure 5.15: Energy consuming for the trajectory with an execution time of 11.49s .

by NSGA-II. In the pareto front solutions, the trajectory time varies between 9.5s and 11.99s,
the jerk index ranges from 71.73 deg/s3 to 156.91 deg/s3 while the energy consumption index
from 26534 N.m.s to 30238 N.m.s. The shortest execution time with the greatest value of jerk
for solution A, while the energy value lies intermediate between their limiting values, meanwhile
the solution C requires a longer traveling time but exhibits the least jerk and highly energy
consuming. In terms of execution time, option B is better than solution C. It also performs
better than solution A when it comes to jerk, while surpassing both solutions A and C in terms
of energy consumption. Therefore, it can be considered a compromise solution that provide a
good balance between the competing objectives. The final selection of solutions from the Pareto
front depends on the specific problem and the preferences of the decision-maker. This process
may involve choosing one or more solutions and considering factors such as computational cost.
Given that the optimal solutions on the Pareto front comply with the kinematic constraints
and that the difference between the traveling time values corresponding to these solutions is not
significant, the criterion for choosing the optimal solution is therefore the energy consuming,
which in this case is solution B with a pridected energy consuming of 26534 N.m.s and with
a traveling time of 11.49s, the corresponding time intervals of this solution is shown in Table
5.5. The position, velocity, acceleration and jerk of trajectory with a 11.49s execution time are

Table 5.5: Time intervals of solution 11.49s.

Interval T1 T2 T3 T4 T5 T5 T7 T8
Interval of time 1.952s 1.877s 2.195s 1.645s 0.803s 1.093s 0.674s 1.249s

shown in Figures 5.11-5.14. From the resulting trajectory, the first important observation is
that the trajectory passes through the predefined waypoints, demonstrating the flexibility of
the B-spline method. Additionally, all kinematic limits are respected, proving that NSGA-II
selects solutions that best meet specific needs and constraints. In Figure 5.14 the jerk curve
is smooth and continuous, which increases the accuracy of the trajectory movement, avoids

87

actuator vibrations and reduces energy consumption. Figure 5.15 shows the measured and pre-
dicted energy consumption during the trajectory, both of which exhibit nearly the same growth.
This demonstrates that our LSMT model maintained its effectiveness during the optimization
process.

5.5.3 Compared the suggested approach with the classical method

This section compares the proposed approach with the classical method for trajectory plan-
ning in terms of energy and jerk. In trajectory planning using the B-spline method, determi-
nation the time instants corresponding to the interpolated waypoints is needed. This section
presents a comparison in obtaining the time vector between the suggested approach and one of
the most widespread methods found in the literature [267], known as the chord length distri-
bution.

Chord length distribution method:

In the chord length distribution method, which is referred to by the expression "the classic
method" in this article, the time parameter vector ū covering the interval [0, 1] is obtained
based on computed the distances between successive waypoints.
The waypoints of the robot’s trajectory are labeled as D0, D1, D2, , Dn. The length between
two consecutive waypoints Dk and Dk+1 is written as

Lk = |Dk+1 −Dk| (5.33)

and the total length of the trajectory is the sum of the lengths of these segments is

L =
n−1∑
k=0

|Dk+1 −Dk| (5.34)

therefore, ū can be determined by equation (5.35)
ū0 = 0

ūk = ūk−1 +
|Dk+1−Dk|∑n−1
k=0 |Dk+1−Dk|

k = 1, 2, · · · , n− 1

ūn = 1

(5.35)

it is required to set the total execution time of the robot trajectory a priori to determine the
time instants of waypoints. For a fair comparison, the execution time must be the same for
both methods. Therefore, an execution time of 11.49s is considered for calculating the time
instants based on equation (5.33). The resulting time intervals are presented in Table 5.6.

Table 5.6: Time intervals from the classic method.

Interval T1 T2 T3 T4 T5 T5 T7 T8
Interval of time 0.905s 0.908s 2.233s 2.582s 1.43s 1.499s 0.969s 0.963s

88

Table 5.7: The joints kinematic indices for both methods.

Number of joint
J1 J2 J3 J4 J5 J6

Max. absolute velocity (deg/s) proposed method 6.46 9.42 6.08 4.17 6.95 4.69
classic method 5.76 24.4 12.63 5.5 6.05 8.68

Max. absolute acceleration (deg/s2) proposed method 8.32 9.3 8.22 4.52 9.48 4.55
classic method 10.08 37.71 23.04 7.09 9.5 13.44

Max. absolute jerk (deg/s3) proposed method 16.15 18.13 16.31 10.04 18.17 9.32
classic method 24.48 97.94 57.86 15.25 21.21 31.47

Table 5.8: The indices to optimal trajectory for the two methods.

the proposed method the classical method
The execution time (s) 11.49 11.49

The energy consuming (N.m.s) 30513 60875
The average absolute jerk (deg/s3) 14.69 41.37

The comparison of the trajectory is shown in Figures 5.16-5.19 in regards position, velocity,
acceleration and jerk. Figure 5.20 shows energy consuming comparison.
Figure 5.16 shows the position of the six joints using the proposed approach and the conventional
method. The execution time is the same for both methods, and the passage of the trajectory
of the six joints over the waypoints is respected, but at different time instants. The movement
of the joint departs progressive from the initial point compared to the classical method, and,
as is known, the startup phase is important in terms of energy consumption. The velocity is
shown in Figure 5.17, which indicates that the variation in velocity resulting from the proposed
approach is smoother than of the classical method. It also shows that the maximum velocity of
each joint remains within the kinematic constraints for the proposed approach, whereas in the
classical method, the velocity exceeds the kinematic limits in the second and third joints. For
acceleration, as illustrated in Figure 5.18, in classical method the maximum acceleration value
of the first, fourth and fifth joints is within the kinematic constraint limits, while the values
for the second, third and sixth joints exceed the constraint limits. So far, we can say that this
method does not meet our needs. In contrast, the maximum values of acceleration of the six
joints are within the acceleration limits of the kinematic constraints in our proposed method.
As is known, jerk is an important criterion in trajectory planning. In Figure 5.19, the jerk result
from the classical method have peak values that also exceed the kinematic constraints, which
confirms weak of the classical method. In contrast, the jerk results of the proposed method
respect the jerk constraints of the robot.
Table 5.7 presents the joints’ kinematic indices and the energy consumption for the two meth-
ods. The maximum absolute kinematic indices for the proposed method are well within their
constraint limits, thus ensuring the safety of the robot during operation. Comparing the energy
consumption of the two methods shows that the proposed method consumes less energy than the
classical method (see Figure 5.20), where there is reduction of 49.87% energy consuming. Table
5.8 shows the time, jerk and energy indices of the trajectory for the two methods. These tra-

89

0 2 4 6 8 10 12

Time(s)

16

18

20

22

24

26

28

30

32
P

o
s
it
io

n
(d

e
g

)
The proposed method

The classic method

(a) Joint 1

0 2 4 6 8 10 12

Time(s)

70

75

80

85

90

95

100

P
o

s
it
io

n
(d

e
g

)

(b) Joint 2

0 2 4 6 8 10 12

Time(s)

62

64

66

68

70

72

74

76

78

80

P
o

s
it
io

n
(d

e
g

)

(c) Joint 3

0 2 4 6 8 10 12

Time(s)

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

P
o

s
it
io

n
(d

e
g

)

(d) Joint 4

0 2 4 6 8 10 12

Time(s)

-20

-15

-10

-5

0

5

P
o

s
it
io

n
(d

e
g

)

(e) Joint 5

0 2 4 6 8 10 12

Time(s)

10

12

14

16

18

20

22

24

26

28

P
o

s
it
io

n
(d

e
g

)

(f) Joint 6

Figure 5.16: Comparison of proposed method and chord length distribution for the position of
the six joints of trajectory with an execution time of 11.49s.

90

0 2 4 6 8 10 12

Time(s)

-6

-4

-2

0

2

4

6

8
V

e
lo

c
it
y
(d

e
g

/s
)

The proposed method

The classic method

(a) Joint 1

0 2 4 6 8 10 12

Time(s)

-20

-15

-10

-5

0

5

10

15

20

25

V
e

lo
c
it
y
(d

e
g

/s
)

(b) Joint 2

0 2 4 6 8 10 12

Time(s)

-15

-10

-5

0

5

10

15

V
e

lo
c
it
y
(d

e
g

/s
)

(c) Joint 3

0 2 4 6 8 10 12

Time(s)

-6

-4

-2

0

2

4

6

V
e

lo
c
it
y
(d

e
g

/s
)

(d) Joint 4

0 2 4 6 8 10 12

Time(s)

-4

-2

0

2

4

6

8

V
e

lo
c
it
y
(d

e
g

/s
)

(e) Joint 5

0 2 4 6 8 10 12

Time(s)

-8

-6

-4

-2

0

2

4

6

8

10

V
e

lo
c
it
y
(d

e
g

/s
)

(f) Joint 6

Figure 5.17: Comparison of proposed method and chord length distribution for the velocity of
the six joints of trajectory with an execution time of 11.49s.

91

0 2 4 6 8 10 12

Time(s)

-12

-10

-8

-6

-4

-2

0

2

4

6

8
A

c
c
e

le
ra

ti
o

n
(d

e
g

/s
2
)

The proposed method

The classic method

(a) Joint 1

0 2 4 6 8 10 12

Time(s)

-40

-30

-20

-10

0

10

20

30

40

A
c
c
e

le
ra

ti
o

n
(d

e
g

/s
2
)

(b) Joint 2

0 2 4 6 8 10 12

Time(s)

-20

-15

-10

-5

0

5

10

15

20

25

A
c
c
e

le
ra

ti
o

n
(d

e
g

/s
2
)

(c) Joint 3

0 2 4 6 8 10 12

Time(s)

-8

-6

-4

-2

0

2

4

6

A
c
c
e

le
ra

ti
o

n
(d

e
g

/s
2
)

(d) Joint 4

0 2 4 6 8 10 12

Time(s)

-10

-8

-6

-4

-2

0

2

4

6

8

A
c
c
e

le
ra

ti
o

n
(d

e
g

/s
2
)

(e) Joint 5

0 2 4 6 8 10 12

Time(s)

-10

-5

0

5

10

15

A
c
c
e

le
ra

ti
o

n
(d

e
g

/s
2
)

(f) Joint 6

Figure 5.18: Comparison of proposed method and chord length distribution for the acceleration
of the six joints of trajectory with an execution time of 11.49s.

92

0 2 4 6 8 10 12

Time(s)

-25

-20

-15

-10

-5

0

5

10

15

20

25

30
J
e

rk
(d

e
g

/s
3
)

The proposed method

The classic method

(a) Joint 1

0 2 4 6 8 10 12

Time(s)

-100

-80

-60

-40

-20

0

20

40

60

80

J
e

rk
(d

e
g

/s
3
)

(b) Joint 2

0 2 4 6 8 10 12

Time(s)

-40

-30

-20

-10

0

10

20

30

40

50

60

J
e

rk
(d

e
g

/s
3
)

(c) Joint 3

0 2 4 6 8 10 12

Time(s)

-15

-10

-5

0

5

10

15

20

J
e

rk
(d

e
g

/s
3
)

(d) Joint 4

0 2 4 6 8 10 12

Time(s)

-15

-10

-5

0

5

10

15

20

25

J
e

rk
(d

e
g

/s
3
)

(e) Joint 5

0 2 4 6 8 10 12

Time(s)

-20

-10

0

10

20

30

40

J
e

rk
(d

e
g

/s
3
)

(f) Joint 6

Figure 5.19: Comparison of proposed method and chord length distribution for the jerk of the
six joints of trajectory with an execution time of 11.49s.

93

0 2 4 6 8 10 12

Time(s)

0

1

2

3.0513

4

5

6.0875

7

E
C

(N
.m

.s
)

104

The proposed method

The classic method

Figure 5.20: Comparison of energy consuming between proposed method and classical method
with an execution time of 11.49s .

jectory indices play a significant role in ensuring productivity, flexibility and cost-effectiveness
of energy resources during the operation of the manipulator.

5.6 Conclusion

This chapter provides an in-depth analysis of various approaches and practical methods
for trajectory planning of industrial robots before their real-time implementation. The op-
timization process considers execution time, jerk, and energy consumption to determine an
optimal trajectory that maximizes performance while minimizing vibrations and energy usage,
ultimately enhancing the robots efficiency and longevity.
A key challenge addressed in this study is the trade-off between time, jerk, and energy in
the absence of an explicit energy expression. To tackle this, the trajectory planning prob-
lem is formulated as a multi-objective optimization problem, incorporating execution time,
jerk, and energy consumption as objective functions while respecting the robots kinematic
constraints. To model energy consumption, a deep learning approach based on Long Short-
Term Memory (LSTM) networks is employed. The optimization problem is then solved using
the Non-dominated Sorting Genetic Algorithm II (NSGA-II). Finally, the proposed method is
compared with the classical chord length distribution technique under the same execution time
constraints, demonstrating its superiority in achieving a more efficient trajectory.

94

Chapter 6

Conclusion

This thesis explores the broad research field of industrial robotics, with a particular focus
on expanding the workspace of robotic manipulators in industrial settings through the use of
soft computing techniques. While promising results have been reported in the literature, the
application of soft computing in robotic manipulation remains an evolving research area. It is
still in its early stages of development, characterized by a lack of maturity and several open
research challenges that need to be addressed.
This manuscript, in particular, presents contributions in three key areas of industrial robotics.
First, it addresses the designing of control strategies for accurate trajectory tracking in the
presence of disturbances. Second, it explores the problem of collision detection between robots,
their environment and human operators using fuzzy logic-based techniques. Finally, it tackles
the challenge of optimal trajectory planning, considering execution time, jerk, and energy con-
sumption using deep learning techniques.
After establishing a general introduction and defining the research context in chapter 1, chap-
ter 2 presents a comprehensive literature review and state-of-the-art analysis on soft computing
techniques applied to industrial robotics. This chapter explores recent studies in the field, pro-
viding an in-depth understanding of the research landscape. By examining existing approaches
and advancements, it identifies key challenges and open research questions that need to be
addressed, serving as a foundation for the subsequent contributions of this work.
In chapter 3, we introduced the fundamental concepts of serial robot manipulators, exploring
various modeling approaches, including forward and inverse kinematics, as well as the dynamic
model. To gain deeper insights into industrial robots, we conducted a case study on the Fanuc
M-710iC/70 robot. The kinematic modelsboth direct and inversewere analyzed to establish
the relationship between joint space and Cartesian space. Additionally, the robots dynamic
model was developed using Simscape/Matlab, enabling a more precise simulation of its physi-
cal behavior. To improve trajectory tracking performance, we implemented a control strategy
based on computed torque control (CTC) combined with a velocity observer. The velocity
observer played a crucial role in estimating unmeasured velocities and compensating for distur-
bances, thereby enhancing the stability and accuracy of the control system. Simulation results
confirmed the effectiveness of this approach in maintaining precise trajectory tracking under

95

dynamic conditions.
Chapter 4 introduced an alternative sensorless collision detection method for manipulator
robots based on a Fuzzy Generalized Momentum Observer (FGMO). This approach extends
the traditional generalized momentum observer by incorporating a fuzzy system that dynami-
cally adjusts the observers bandwidth. By doing so, it effectively balances collision sensitivity
and peak value reduction, overcoming a key limitation of conventional methods. The FGMO
is integrated with a collision threshold, allowing for precise differentiation between external
forces and internal torque disturbances. Additionally, the proposed algorithm can accurately
pinpoint the specific robot link where a collision occurs. The results confirm the robustness
of this approach, demonstrating its effectiveness in detecting both dynamic and quasi-static
collisions in robotic manipulators.
Chapter 5 presents a comprehensive study of various strategies and practical methodologies
for trajectory planning in industrial robots prior to their real-time deployment. The opti-
mization framework considers execution time, jerk, and energy consumption to generate an
optimal trajectory that enhances performance while minimizing vibrations and energy usage,
ultimately improving the robots operational efficiency and lifespan. One of the key challenges
tackled in this study is balancing the trade-off between time, jerk, and energy, particularly in
the absence of a direct energy expression. To address this, the trajectory planning problem
is formulated as a multi-objective optimization task, incorporating execution time, jerk, and
energy consumption as objective functions while adhering to the robots kinematic constraints.
A deep learning-based Long Short-Term Memory (LSTM) network is utilized to model energy
consumption, and the optimization is performed using the Non-dominated Sorting Genetic Al-
gorithm II (NSGA-II). Finally, the proposed approach is benchmarked against the classical
chord length distribution method under identical execution time constraints, demonstrating its
effectiveness in achieving a more efficient and optimized trajectory.
The current study focuses on a trajectory planning approach where the robot controller utilizes
a B-spline method to generate smooth and efficient motion paths. Additionally, the trajectory
planner has direct access to the controller, allowing for the adjustment of optimal parameters
to enhance performance. However, in real-world industrial applications, most robot manufac-
turers do not provide direct access to their proprietary control software, limiting the ability to
modify or optimize built-in trajectory planning algorithms.
In perspective of this work, our future research will to investigate and identify the underly-
ing trajectory planning models used in commercially available industrial robots. By analyzing
these models, we aim to develop an external optimization framework that can work indepen-
dently of proprietary software while still improving trajectory efficiency. This approach will
involve reverse engineering existing trajectory planning mechanisms and exploring data-driven
techniques to approximate their behavior. Ultimately, the objective is to integrate advanced
optimization strategies into practical industrial settings, ensuring improved execution time, jerk
minimization, and energy efficiency without requiring direct modification of the robots internal
control system.

96

Bibliography

[1] J. Iqbal, R. U. Islam, S. Z. Abbas, A. A. Khan, and S. A. Ajwad, “Automating indus-
trial tasks through mechatronic systems-a review of robotics in industrial perspective.,”
Tehnicki vjesnik/Technical Gazette, vol. 23, no. 3, 2016.

[2] C. R. Asfahl, Robots and manufacturing automation. John Wiley & Sons, Inc., 1985.

[3] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Modelling, Planning and
Control, 1st. Springer Publishing Company, Incorporated, 2009.

[4] J. Baek, S. Cho, and S. Han, “Practical time-delay control with adaptive gains for
trajectory tracking of robot manipulators,” IEEE Transactions on Industrial Electronics,
vol. 65, no. 7, pp. 5682–5692, 2017.

[5] Y. T. Oh and S. I. Han, “Finite-time sliding mode joint positioning error constraint con-
trol for robot manipulator in the presence of unknown deadzone,” Journal of Mechanical
Science and Technology, vol. 32, pp. 875–884, 2018.

[6] N. Alibeji and N. Sharma, “A pid-type robust input delay compensation method for
uncertain euler–lagrange systems,” IEEE Transactions on Control Systems Technology,
vol. 25, no. 6, pp. 2235–2242, 2017.

[7] L. Dulger, M. T. Das, R. Halicioglu, S. Kapucu, and M. Topalbekiroglu, “Robotics and
servo press control applications: Experimental implementations,” in 2016 International
Conference on Control, Decision and Information Technologies (CoDIT), IEEE, 2016,
pp. 102–107.

[8] Y. Song and J. Guo, “Neuro-adaptive fault-tolerant tracking control of lagrange systems
pursuing targets with unknown trajectory,” IEEE Transactions on Industrial Electron-
ics, vol. 64, no. 5, pp. 3913–3920, 2016.

[9] S. Tong, T. Wang, and Y. Li, “Fuzzy adaptive actuator failure compensation control of
uncertain stochastic nonlinear systems with unmodeled dynamics,” IEEE Transactions
on Fuzzy Systems, vol. 22, no. 3, pp. 563–574, 2013.

[10] H. Yildiz, N. Korkmaz Can, O. C. Ozguney, and N. Yagiz, “Sliding mode control of
a line following robot,” Journal of the Brazilian Society of Mechanical Sciences and
Engineering, vol. 42, no. 11, p. 561, 2020.

97

[11] D. Constantinescu and E. A. Croft, “Smooth and time-optimal trajectory planning for
industrial manipulators along specified paths,” Journal of robotic systems, vol. 17, no. 5,
pp. 233–249, 2000.

[12] P. Tangpattanakul and P. Artrit, “Minimum-time trajectory of robot manipulator using
harmony search algorithm,” in 2009 6th international conference on electrical engineer-
ing/electronics, computer, telecommunications and information technology, IEEE, vol. 1,
2009, pp. 354–357.

[13] B. J. Martin and J. E. Bobrow, “Minimum-effort motions for open-chain manipula-
tors with task-dependent end-effector constraints,” The international journal of robotics
research, vol. 18, no. 2, pp. 213–224, 1999.

[14] A. Abe, “Minimum energy trajectory planning method for robot manipulator mounted
on flexible base,” in 2013 9th Asian control conference (ASCC), IEEE, 2013, pp. 1–7.

[15] Y. Zhao, Y. Wang, S. A. Bortoff, and D. Nikovski, “Energy-efficient collision-free tra-
jectory planning using alternating quadratic programming,” in 2014 American control
conference, IEEE, 2014, pp. 1249–1254.

[16] A. Piazzi and A. Visioli, “Global minimum-jerk trajectory planning of robot manipula-
tors,” IEEE transactions on industrial electronics, vol. 47, no. 1, pp. 140–149, 2000.

[17] H.-I. Lin, “A fast and unified method to find a minimum-jerk robot joint trajectory
using particle swarm optimization,” Journal of Intelligent & Robotic Systems, vol. 75,
pp. 379–392, 2014.

[18] Y. J. Heo, D. Kim, W. Lee, H. Kim, J. Park, and W. K. Chung, “Collision detection
for industrial collaborative robots: A deep learning approach,” IEEE Robotics and Au-
tomation Letters, vol. 4, no. 2, pp. 740–746, 2019.

[19] H. Jang and E. Topal, “A review of soft computing technology applications in several
mining problems,” Applied Soft Computing, vol. 22, pp. 638–651, 2014.

[20] F. Aminzadeh, “Applications of ai and soft computing for challenging problems in the
oil industry,” Journal of Petroleum Science and Engineering, vol. 47, no. 1-2, pp. 5–14,
2005.

[21] S. Datta and P. Chattopadhyay, “Soft computing techniques in advancement of struc-
tural metals,” International Materials Reviews, vol. 58, no. 8, pp. 475–504, 2013.

[22] K. M. Saridakis and A. J. Dentsoras, “Soft computing in engineering design–a review,”
Advanced Engineering Informatics, vol. 22, no. 2, pp. 202–221, 2008.

[23] C. Urrea, J. Kern, and J. Alvarado, “Design and evaluation of a new fuzzy control
algorithm applied to a manipulator robot,” Applied Sciences, vol. 10, no. 21, p. 7482,
2020.

[24] S.-W. Kim, J.-J. Lee, and M. Sugisaka, “Inverse kinematics solution based on fuzzy logic
for redundant manipulators,” in Proceedings of 1993 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS’93), IEEE, vol. 2, 1993, pp. 904–910.

98

[25] M. Ramos and A. J. Koivo, “Fuzzy logic-based optimization for redundant manipula-
tors,” IEEE transactions on fuzzy systems, vol. 10, no. 4, pp. 498–509, 2002.

[26] I. Eski, S. Erkaya, S. Savas, and S. Yildirim, “Fault detection on robot manipulators us-
ing artificial neural networks,” Robotics and Computer-Integrated Manufacturing, vol. 27,
no. 1, pp. 115–123, 2011.

[27] N. Kumar, V. Panwar, N. Sukavanam, S. P. Sharma, and J.-H. Borm, “Neural network
based hybrid force/position control for robot manipulators,” International Journal of
Precision Engineering and Manufacturing, vol. 12, pp. 419–426, 2011.

[28] H. Su, W. Qi, C. Yang, J. Sandoval, G. Ferrigno, and E. De Momi, “Deep neural net-
work approach in robot tool dynamics identification for bilateral teleoperation,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 2943–2949, 2020.

[29] Y. Lin, A. S. Wang, E. Undersander, and A. Rai, “Efficient and interpretable robot
manipulation with graph neural networks,” IEEE Robotics and Automation Letters,
vol. 7, no. 2, pp. 2740–2747, 2022. doi: 10.1109/LRA.2022.3143518.

[30] A. S. Polydoros, L. Nalpantidis, and V. Krüger, “Real-time deep learning of robotic ma-
nipulator inverse dynamics,” in 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), IEEE, 2015, pp. 3442–3448.

[31] B. Sangiovanni, A. Rendiniello, G. P. Incremona, A. Ferrara, and M. Piastra, “Deep
reinforcement learning for collision avoidance of robotic manipulators,” in 2018 European
Control Conference (ECC), IEEE, 2018, pp. 2063–2068.

[32] Y. Xue and J.-Q. Sun, “Solving the path planning problem in mobile robotics with the
multi-objective evolutionary algorithm,” Applied Sciences, vol. 8, no. 9, p. 1425, 2018.

[33] S. Baressi egota, N. Aneli, I. Lorencin, M. Saga, and Z. Car, “Path planning optimization
of six-degree-of-freedom robotic manipulators using evolutionary algorithms,” Interna-
tional journal of advanced robotic systems, vol. 17, no. 2, p. 1 729 881 420 908 076, 2020.

[34] S. Zaer, N. M. Mirza, S. M. Mirza, and M. Arif, “Cartesian path generation of robot
manipulators using continuous genetic algorithms,” Robotics and autonomous systems,
vol. 41, no. 4, pp. 179–223, 2002.

[35] D. A. Souza, J. G. Batista, L. L. dos Reis, and A. B. Júnior, “Pid controller with novel
pso applied to a joint of a robotic manipulator,” Journal of the Brazilian society of
mechanical sciences and engineering, vol. 43, no. 8, p. 377, 2021.

[36] P. Duan, Z. Yu, K. Gao, L. Meng, Y. Han, and F. Ye, “Solving the multi-objective path
planning problem for mobile robot using an improved nsga-ii algorithm,” Swarm and
Evolutionary Computation, vol. 87, p. 101 576, 2024.

[37] M. N. O. Sadiku, C. Uwakwe C, A. M. Abayomi, and M. Sarhan M, “Soft computing
in robotics,” International Journal of Trend in Scientific Research and Development
(ijtsrd), vol. 06, pp. 864–869, 2022.

99

https://doi.org/10.1109/LRA.2022.3143518

[38] L. A. Zadeh, “Fuzzy logic, neural networks, and soft computing,” in Fuzzy sets, fuzzy
logic, and fuzzy systems: selected papers by Lotfi A Zadeh, World Scientific, 1996, pp. 775–
782.

[39] L. A. Zadeh, “Making computers think like people [fuzzy set theory],” IEEE spectrum,
vol. 21, no. 8, pp. 26–32, 1984.

[40] D. Rawat, M. K. Gupta, and A. Sharma, “Intelligent control of robotic manipulators: A
comprehensive review,” Spatial Information Research, vol. 31, no. 3, pp. 345–357, 2023.

[41] K. K. Kumbla and M. Jamshidi, “Control of robotic manipulator using fuzzy logic,”
in Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference, IEEE, 1994,
pp. 518–523.

[42] M. M. Abdelhameed, “Enhancement of sliding mode controller by fuzzy logic with ap-
plication to robotic manipulators,” Mechatronics, vol. 15, no. 4, pp. 439–458, 2005.

[43] A. Kumar, R. Raj, A. Kumar, and B. Verma, “Design of a novel mixed interval type-2
fuzzy logic controller for 2-dof robot manipulator with payload,” Engineering Applica-
tions of Artificial Intelligence, vol. 123, p. 106 329, 2023.

[44] Z. Wang, L. Zou, X. Su, G. Luo, R. Li, and Y. Huang, “Hybrid force/position control
in workspace of robotic manipulator in uncertain environments based on adaptive fuzzy
control,” Robotics and Autonomous Systems, vol. 145, p. 103 870, 2021.

[45] M. Van, Y. Sun, S. Mcllvanna, M.-N. Nguyen, M. O. Khyam, and D. Ceglarek, “Adaptive
fuzzy fault tolerant control for robot manipulators with fixed-time convergence,” IEEE
Transactions on Fuzzy Systems, vol. 31, no. 9, pp. 3210–3219, 2023.

[46] A. Hentout, A. Maoudj, and M. Aouache, “A review of the literature on fuzzy-logic
approaches for collision-free path planning of manipulator robots,” Artificial Intelligence
Review, vol. 56, no. 4, pp. 3369–3444, 2023.

[47] R.-J. Lian, “Grey-prediction self-organizing fuzzy controller for robotic motion control,”
Information Sciences, vol. 202, pp. 73–89, 2012.

[48] D. Szabó and E. G. Szádeczky-Kardoss, “Robotic manipulator path-planning: Cost-
function approximation with fuzzy inference system,” in 2019 24th International Con-
ference on Methods and Models in Automation and Robotics (MMAR), IEEE, 2019,
pp. 259–264.

[49] M. Beheshti and A. Tehrani, “Obstacle avoidance for kinematically redundant robots
using an adaptive fuzzy logic algorithm,” in Proceedings of the 1999 American Control
Conference (Cat. No. 99CH36251), IEEE, vol. 2, 1999, pp. 1371–1375.

[50] F. Dimeas, L. D. Avendaño-Valencia, and N. Aspragathos, “Human-robot collision de-
tection and identification based on fuzzy and time series modelling,” Robotica, vol. 33,
no. 9, pp. 1886–1898, 2015.

100

[51] M. Crengani, M. Tera, C. Biri, and C. Grjob, “Dynamic analysis of a 7 dof robot using
fuzzy logic for inverse kinematics problem,” Procedia computer science, vol. 162, pp. 298–
306, 2019.

[52] J. Dembys, Y. Gao, and G. N. DeSouza, “A study on solving the inverse kinematics of
serial robots using artificial neural network and fuzzy neural network,” in 2019 IEEE
international conference on fuzzy systems (FUZZ-IEEE), IEEE, 2019, pp. 1–6.

[53] A. H. Mary, T. Kara, and A. H. Miry, “Inverse kinematics solution for robotic manipula-
tors based on fuzzy logic and pd control,” in 2016 Al-Sadeq International Conference on
Multidisciplinary in IT and Communication Science and Applications (AIC-MITCSA),
IEEE, 2016, pp. 1–6.

[54] M. Zhao and Y. Dai, “Application of fuzzy ant colony algorithm to robotics arm inverse
kinematics problem,” ICIC Express Letters, vol. 10, no. 1, pp. 43–49, 2016.

[55] K. Shihabudheen and G. N. Pillai, “Evolutionary fuzzy extreme learning machine for
inverse kinematic modeling of robotic arms,” in 2015 39th National Systems Conference
(NSC), IEEE, 2015, pp. 1–6.

[56] F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain Mech-
anisms. Spartan, New york, 1961.

[57] R. Köker, C. Öz, T. Çakar, and H. Ekiz, “A study of neural network based inverse
kinematics solution for a three-joint robot,” Robotics and autonomous systems, vol. 49,
no. 3-4, pp. 227–234, 2004.

[58] R. Kang, H. Chanal, T. Bonnemains, S. Pateloup, D. T. Branson, and P. Ray, “Learning
the forward kinematics behavior of a hybrid robot employing artificial neural networks,”
Robotica, vol. 30, no. 5, pp. 847–855, 2012.

[59] A. R. Almusawi, L. C. Dülger, and S. Kapucu, “A new artificial neural network approach
in solving inverse kinematics of robotic arm (denso vp6242),” Computational intelligence
and neuroscience, vol. 2016, no. 1, p. 5 720 163, 2016.

[60] X. Sun, “Kinematics model identification and motion control of robot based on fast
learning neural network,” Journal of Ambient Intelligence and Humanized Computing,
vol. 11, no. 12, pp. 6145–6154, 2020.

[61] A. Zhao, A. Toudeshki, R. Ehsani, and J.-Q. Sun, “Data-driven inverse kinematics ap-
proximation of a delta robot with stepper motors,” Robotics, vol. 12, no. 5, p. 135,
2023.

[62] T. H. Lee and C. J. Harris, Adaptive neural network control of robotic manipulators.
World Scientific, 1998, vol. 19.

[63] C. Liu, Z. Zhao, and G. Wen, “Adaptive neural network control with optimal number of
hidden nodes for trajectory tracking of robot manipulators,” Neurocomputing, vol. 350,
pp. 136–145, 2019.

101

[64] W. He, Y. Dong, and C. Sun, “Adaptive neural impedance control of a robotic manip-
ulator with input saturation,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 46, no. 3, pp. 334–344, 2015.

[65] L. A. Soriano, E. Zamora, J. Vazquez-Nicolas, G. Hernández, J. A. Barraza Madrigal,
and D. Balderas, “Pd control compensation based on a cascade neural network applied
to a robot manipulator,” Frontiers in Neurorobotics, vol. 14, p. 577 749, 2020.

[66] H.-T. Nguyen and C. C. Cheah, “Analytic deep neural network-based robot control,”
IEEE/ASME Transactions on Mechatronics, vol. 27, no. 4, pp. 2176–2184, 2022.

[67] X. Li, H. Gao, L. Xiong, H. Zhang, and B. Li, “A novel adaptive sliding mode control of
robot manipulator based on rbf neural network and exponential convergence observer,”
Neural Processing Letters, vol. 55, no. 7, pp. 10 037–10 052, 2023.

[68] L. Bo, T. Wei, C. Zhang, H. Fangfang, C. Guangyu, and L. Yufei, “Positioning error
compensation of an industrial robot using neural networks and experimental study,”
Chinese Journal of Aeronautics, vol. 35, no. 2, pp. 346–360, 2022.

[69] Y. Jiang, C. Yang, J. Na, G. Li, Y. Li, and J. Zhong, “A brief review of neural networks
based learning and control and their applications for robots,” Complexity, vol. 2017,
no. 1, p. 1 895 897, 2017.

[70] S. X. Yang and M. Meng, “An efficient neural network approach to dynamic robot
motion planning,” Neural Networks, vol. 13, no. 2, pp. 143–148, 2000, issn: 0893-6080.
doi: https : / / doi . org / 10 . 1016 / S0893 - 6080(99) 00103 - 3. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0893608099001033.

[71] A. Abe, “Trajectory planning for flexible cartesian robot manipulator by using artificial
neural network: Numerical simulation and experimental verification,” Robotica, vol. 29,
no. 5, pp. 797–804, 2011.

[72] R. S. Nair and P. Supriya, “Robotic path planning using recurrent neural networks,”
in 2020 11th International Conference on Computing, Communication and Networking
Technologies (ICCCNT), IEEE, 2020, pp. 1–5.

[73] J. Wang, J. Liu, W. Chen, W. Chi, and M. Q.-H. Meng, “Robot path planning via
neural-network-driven prediction,” IEEE transactions on artificial intelligence, vol. 3,
no. 3, pp. 451–460, 2021.

[74] K.-C. Ying, P. Pourhejazy, C.-Y. Cheng, and Z.-Y. Cai, “Deep learning-based opti-
mization for motion planning of dual-arm assembly robots,” Computers & Industrial
Engineering, vol. 160, p. 107 603, 2021.

[75] R. Matousek, L. Dobrovsky, and J. Kudela, “How to start a heuristic? utilizing lower
bounds for solving the quadratic assignment problem,” International Journal of Indus-
trial Engineering Computations, vol. 13, no. 2, pp. 151–164, 2022.

102

https://doi.org/https://doi.org/10.1016/S0893-6080(99)00103-3
https://www.sciencedirect.com/science/article/pii/S0893608099001033

[76] A. G. Gad, “Particle swarm optimization algorithm and its applications: A systematic
review,” Archives of computational methods in engineering, vol. 29, no. 5, pp. 2531–2561,
2022.

[77] Z. Jiang and Q. Zhang, “Time optimal trajectory planning of five degrees of freedom ma-
nipulator based on pso algorithm,” in 2022 4th International Conference on Intelligent
Control, Measurement and Signal Processing (ICMSP), IEEE, 2022, pp. 1059–1062.

[78] B. Shi and H. Zeng, “Time-optimal trajectory planning for industrial robot based on
improved hybrid-pso,” in 2021 40th Chinese Control Conference (CCC), IEEE, 2021,
pp. 3888–3893.

[79] Y. Du and Y. Chen, “Time optimal trajectory planning algorithm for robotic manipula-
tor based on locally chaotic particle swarm optimization,” Chinese Journal of Electron-
ics, vol. 31, no. 5, pp. 906–914, 2022.

[80] S. Han, X. Shan, J. Fu, W. Xu, and H. Mi, “Industrial robot trajectory planning based
on improved pso algorithm,” in Journal of Physics: Conference Series, IOP Publishing,
vol. 1820, 2021, p. 012 185.

[81] M. Juíek, R. Parák, and J. Kdela, “Evolutionary computation techniques for path plan-
ning problems in industrial robotics: A state-of-the-art review,” Computation, vol. 11,
no. 12, p. 245, 2023.

[82] L. Yiyang, J. Xi, B. Hongfei, W. Zhining, and S. Liangliang, “A general robot in-
verse kinematics solution method based on improved pso algorithm,” Ieee Access, vol. 9,
pp. 32 341–32 350, 2021.

[83] D. O. Santos, L. Molina, J. G. Carvalho, E. A. Carvalho, and E. O. Freire, “Modifications
of fully resampled pso in the inverse kinematics of robot manipulators,” IEEE Robotics
and Automation Letters, 2024.

[84] Y. Liu, D. Jiang, J. Yun, et al., “Self-tuning control of manipulator positioning based
on fuzzy pid and pso algorithm,” Frontiers in Bioengineering and Biotechnology, vol. 9,
p. 817 723, 2022.

[85] H. Tiaiba, M. E. H. Daachi, and T. Madani, “Real-time adaptive super twisting algo-
rithm based on pso algorithm: Application for an exoskeleton robot,” Robotica, pp. 1–26,
2024.

[86] P. Yue, B. Xu, and M. Zhang, “An improve nonlinear robust control approach for robotic
manipulators with pso-based global optimization strategy,” Scientific Reports, vol. 14,
no. 1, p. 21 447, 2024.

[87] Ö. Ekrem and B. Aksoy, “Trajectory planning for a 6-axis robotic arm with parti-
cle swarm optimization algorithm,” Engineering Applications of Artificial Intelligence,
vol. 122, p. 106 099, 2023.

[88] A. Vysock, R. Papok, J. afaík, et al., “Reduction in robotic arm energy consumption by
particle swarm optimization,” Applied Sciences, vol. 10, no. 22, p. 8241, 2020.

103

[89] K. Nonoyama, Z. Liu, T. Fujiwara, M. M. Alam, and T. Nishi, “Energy-efficient robot
configuration and motion planning using genetic algorithm and particle swarm optimiza-
tion,” Energies, vol. 15, no. 6, p. 2074, 2022.

[90] H. Deng and C. Xie, “An improved particle swarm optimization algorithm for inverse
kinematics solution of multi-dof serial robotic manipulators,” Soft Computing, vol. 25,
no. 21, pp. 13 695–13 708, 2021.

[91] F. Liu, H. Huang, B. Li, and F. Xi, “A parallel learning particle swarm optimizer for
inverse kinematics of robotic manipulator,” International Journal of Intelligent Systems,
vol. 36, no. 10, pp. 6101–6132, 2021.

[92] S. Dereli and R. Köker, “A meta-heuristic proposal for inverse kinematics solution of
7-dof serial robotic manipulator: Quantum behaved particle swarm algorithm,” Artificial
Intelligence Review, vol. 53, pp. 949–964, 2020.

[93] A. K. Kashyap and D. R. Parhi, “Particle swarm optimization aided pid gait controller
design for a humanoid robot,” ISA transactions, vol. 114, pp. 306–330, 2021.

[94] N. Rokbani, B. Neji, M. Slim, S. Mirjalili, and R. Ghandour, “A multi-objective modified
pso for inverse kinematics of a 5-dof robotic arm,” Applied Sciences, vol. 12, no. 14,
p. 7091, 2022.

[95] J. Xiao, S. Liu, H. Liu, M. Wang, G. Li, and Y. Wang, “A jerk-limited heuristic feedrate
scheduling method based on particle swarm optimization for a 5-dof hybrid robot,”
Robotics and Computer-Integrated Manufacturing, vol. 78, p. 102 396, 2022.

[96] P. Sutyasadi and M. B. Wicaksono, “Joint control of a robotic arm using particle swarm
optimization based h2/h robust control on arduino,” TELKOMNIKA (Telecommunica-
tion Computing Electronics and Control), vol. 18, no. 2, pp. 1021–1029, 2020.

[97] Z. Iklima, A. Adriansyah, and S. Hitimana, “Self-collision avoidance of arm robot using
generative adversarial network and particles swarm optimization (gan-pso),” Sinergi,
vol. 25, no. 2, pp. 141–152, 2021.

[98] X. Li, J. Gu, X. Sun, J. Li, and S. Tang, “Parameter identification of robot manipulators
with unknown payloads using an improved chaotic sparrow search algorithm,” Applied
Intelligence, pp. 1–11, 2022.

[99] O. Karahan and H. Karci, “Swarm intelligence based nonlinear friction and dynamic pa-
rameters identification for a 6-dof robotic manipulator,” Journal of Intelligent & Robotic
Systems, vol. 108, no. 2, p. 19, 2023.

[100] S. tevo, I. Sekaj, and M. Dekan, “Optimization of robotic arm trajectory using genetic
algorithm,” IFAC Proceedings Volumes, vol. 47, no. 3, pp. 1748–1753, 2014.

[101] D. P. Garg and M. Kumar, “Optimization techniques applied to multiple manipula-
tors for path planning and torque minimization,” Engineering applications of artificial
intelligence, vol. 15, no. 3-4, pp. 241–252, 2002.

104

[102] F. J. Abu-Dakka, I. F. Assad, R. M. Alkhdour, and M. Abderahim, “Statistical eval-
uation of an evolutionary algorithm for minimum time trajectory planning problem
for industrial robots,” The international journal of advanced manufacturing technology,
vol. 89, pp. 389–406, 2017.

[103] A. M. Zanchettin, C. Messeri, D. Cristantielli, and P. Rocco, “Trajectory optimisation
in collaborative robotics based on simulations and genetic algorithms,” International
Journal of Intelligent Robotics and Applications, vol. 6, no. 4, pp. 707–723, 2022.

[104] F. Wang, Z. Wu, and T. Bao, “Time-jerk optimal trajectory planning of industrial robots
based on a hybrid woa-ga algorithm,” Processes, vol. 10, no. 5, p. 1014, 2022.

[105] A. Rout, D. BBVL, B. B. Biswal, and G. B. Mahanta, “Optimal trajectory planning of
industrial robot for improving positional accuracy,” Industrial Robot: the international
journal of robotics research and application, vol. 48, no. 1, pp. 71–83, 2021.

[106] F. Fei, H. Hongjie, and G. Zhongtong, “Application of genetic algorithm pso in parameter
identification of scara robot,” in 2017 Chinese Automation Congress (CAC), IEEE, 2017,
pp. 923–927.

[107] Z. Lu, C. Wei, D. Ni, J. Bi, Q. Wang, and Y. Li, “Dynamic parameter identification of
modular robot manipulators based on hybrid optimization strategy: Genetic algorithm
and least squares method,” Soft Computing, vol. 28, no. 17, pp. 9991–10 005, 2024.

[108] C. Urrea and J. Pascal, “Design, simulation, comparison and evaluation of parame-
ter identification methods for an industrial robot,” Computers & electrical engineering,
vol. 67, pp. 791–806, 2018.

[109] K. Liu, J. Xia, F. Zhong, and L. Zhang, “Structural parameters identification for in-
dustrial robot using a hybrid algorithm,” International Journal of Advanced Robotic
Systems, vol. 19, no. 2, p. 17 298 806 221 082 398, 2022.

[110] J. Zhao, L. Han, L. Wang, and Z. Yu, “The fuzzy pid control optimized by genetic algo-
rithm for trajectory tracking of robot arm,” in 2016 12th world congress on intelligent
control and automation (WCICA), IEEE, 2016, pp. 556–559.

[111] M. Sangdani, A. R. Tavakolpour-Saleh, and A. Lotfavar, “Genetic algorithm-based op-
timal computed torque control of a vision-based tracker robot: Simulation and experi-
ment,” Engineering Applications of Artificial Intelligence, vol. 67, pp. 24–38, 2018.

[112] S. Refoufi and K. Benmahammed, “Control of a manipulator robot by neuro-fuzzy
subsets form approach control optimized by the genetic algorithms,” ISA transactions,
vol. 77, pp. 133–145, 2018.

[113] K. Saidi, A. Bournediene, and D. Boubekeur, “Genetic algorithm optimization of sliding
mode controller parameters for robot manipulator,” International Journal on Emerging
Technologies, vol. 12, no. 2, pp. 119–127, 2021.

105

[114] W. Boukadida, A. Benamor, and H. Messaoud, “Multi-objective design of optimal sliding
mode control for trajectory tracking of scara robot based on genetic algorithm,” Journal
of Dynamic Systems, Measurement, and Control, vol. 141, no. 3, p. 031 015, 2019.

[115] L. Sheng and W. Li, “Optimization design by genetic algorithm controller for trajectory
control of a 3-rrr parallel robot,” Algorithms, vol. 11, no. 1, p. 7, 2018.

[116] A. Eltayeb, G. Ahmed, I. H. Imran, N. M. Alyazidi, and A. Abubaker, “Comparative
analysis: Fractional pid vs. pid controllers for robotic arm using genetic algorithm opti-
mization,” Automation, vol. 5, no. 3, pp. 230–245, 2024.

[117] A. Kukker and R. Sharma, “Stochastic genetic algorithm-assisted fuzzy q-learning for
robotic manipulators,” Arabian Journal for Science and Engineering, vol. 46, no. 10,
pp. 9527–9539, 2021.

[118] A. Shrivastava and V. K. Dalla, “Failure control and energy optimization of multi-axes
space manipulator through genetic algorithm approach,” Journal of the Brazilian Society
of Mechanical Sciences and Engineering, vol. 43, no. 10, p. 445, 2021.

[119] R.-A. Sánchez-Sosa and E. Chavero-Navarrete, “Robotic cell layout optimization using
a genetic algorithm,” Applied Sciences, vol. 14, no. 19, p. 8605, 2024.

[120] M. Wang, J. Luo, L. Zheng, J. Yuan, and U. Walter, “Generate optimal grasping tra-
jectories to the end-effector using an improved genetic algorithm,” Advances in Space
Research, vol. 66, no. 7, pp. 1803–1817, 2020.

[121] M. Ölgün and U. Tilki, “Neural network based sliding mode controller with genetic
algorithm for two link robot manipulator,” Avrupa Bilim ve Teknoloji Dergisi, pp. 120–
129, 2020.

[122] J. Wang, M. Yang, F. Liang, K. Feng, K. Zhang, and Q. Wang, “An algorithm for
painting large objects based on a nine-axis ur5 robotic manipulator,” Applied Sciences,
vol. 12, no. 14, p. 7219, 2022.

[123] T. Qiao, D. Yang, W. Hao, J. Yan, and R. Wang, “Trajectory planning of manipulator
based on improved genetic algorithm,” in Journal of Physics: Conference Series, IOP
Publishing, vol. 1576, 2020, p. 012 035.

[124] Z. Wang, Y. Li, K. Shuai, W. Zhu, B. Chen, and K. Chen, “Multi-objective trajectory
planning method based on the improved elitist non-dominated sorting genetic algo-
rithm,” Chinese Journal of Mechanical Engineering, vol. 35, no. 1, p. 7, 2022.

[125] A. Saxena, J. Kumar, and V. K. Deolia, “Optimization of npic controller using genetic
algorithm,” in IOP Conference Series: Materials Science and Engineering, IOP Publish-
ing, vol. 1104, 2021, p. 012 001.

[126] S. lgen, A. Durdu, E. Gülbahçe, A. Çakan, and M. Kalyoncu, “The bees algorithm
approach to determining smc controller parameters for the position control of a scara
robot manipulator,” Avrupa Bilim ve Teknoloji Dergisi, no. 33, pp. 267–273, 2022.

106

[127] S. B. Liu, A. Giusti, and M. Althoff, “Velocity estimation of robot manipulators: An
experimental comparison,” IEEE Open Journal of Control Systems, vol. 2, pp. 1–11,
2022.

[128] Y. Yokose, “Energy-saving trajectory planning for robots using the genetic algorithm
with assistant chromosomes,” Artificial Life and Robotics, vol. 25, no. 1, pp. 89–93, 2020.

[129] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,” Advances in engineering
software, vol. 69, pp. 46–61, 2014.

[130] S. Dereli, “A new modified grey wolf optimization algorithm proposal for a fundamental
engineering problem in robotics,” Neural Computing and Applications, vol. 33, no. 21,
pp. 14 119–14 131, 2021.

[131] E. Galan-Uribe and L. Morales-Velazquez, “Kinematic optimization of 6dof serial robot
arms by bio-inspired algorithms,” IEEE Access, vol. 10, pp. 110 485–110 496, 2022.

[132] M. Zavar, N. Manouchehri, and A. Safa, “Forward and inverse kinematics of 4-dof
scara: Using optimization algorithms,” Journal of Applied Dynamic Systems and Con-
trol, vol. 6, no. 3, pp. 25–34, 2023.

[133] J. Cui, T. Liu, H. Sai, Y. Li, M. Zhu, and Z. Xu, “Randomness-enhanced grey wolf
optimizer for inverse kinematics solution of redundant robotic manipulators,” in 2023
6th International Conference on Intelligent Robotics and Control Engineering (IRCE),
IEEE, 2023, pp. 41–48.

[134] M. H. Zafar, S. K. R. Moosavi, and F. Sanfilippo, “Inverse kinematic modelling of a
3-dof robotic manipulator using hybrid deep learning models,” Procedia CIRP, vol. 120,
pp. 213–218, 2023.

[135] A. Shrivastava and V. K. Dalla, “Jerk optimized motion planning of redundant space
robot based on grey-wolf optimization approach,” Arabian Journal for Science and En-
gineering, vol. 48, no. 3, pp. 2687–2699, 2023.

[136] C. Choubey and J. Ohri, “Optimal trajectory generation for a 6-dof parallel manipulator
using grey wolf optimization algorithm,” Robotica, vol. 39, no. 3, pp. 411–427, 2021.

[137] M. Feng, J. Dai, W. Zhou, H. Xu, and Z. Wang, “Kinematics analysis and trajectory
planning of 6-dof hydraulic robotic arm in driving side pile,” Machines, vol. 12, no. 3,
p. 191, 2024.

[138] A. Rezoug, J. Iqbal, and M. Tadjine, “Extended grey wolf optimization–based adaptive
fast nonsingular terminal sliding mode control of a robotic manipulator,” Proceedings
of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control
Engineering, vol. 236, no. 9, pp. 1738–1754, 2022.

[139] M. Rahmani, H. Komijani, and M. H. Rahman, “New sliding mode control of 2-dof robot
manipulator based on extended grey wolf optimizer,” International Journal of Control,
Automation and Systems, vol. 18, pp. 1572–1580, 2020.

107

[140] H. Komijani, M. Masoumnezhad, M. M. Zanjireh, and M. Mir, “Robust hybrid fractional
order proportional derivative sliding mode controller for robot manipulator based on
extended grey wolf optimizer,” Robotica, vol. 38, no. 4, pp. 605–616, 2020.

[141] Z. Zhou, C. Wang, Z. Zhu, Y. Wang, and D. Yang, “Sliding mode control based on a
hybrid grey-wolf-optimized extreme learning machine for robot manipulators,” Optik,
vol. 185, pp. 364–380, 2019.

[142] S. C. Kalshetti and S. Dixit, “Self-adaptive grey wolf optimization based adaptive fuzzy
aided sliding mode control for robotic manipulator,” Control and Cybernetics, vol. 47,
no. 4, 2018.

[143] R. J. Salman, H. M. Alwan, M. A. Yousif, and A. M. Abdullah, “Computed torque-nn-
gwo dynamic hybrid control of manipulator robotic arm,”

[144] M. A. en and M. Kalyoncu, “Grey wolf optimizer based tuning of a hybrid lqr-pid
controller for foot trajectory control of a quadruped robot,” Gazi University Journal of
Science, vol. 32, no. 2, pp. 674–684, 2019.

[145] X. Zhang and Z. Ming, “Trajectory planning and optimization for a par4 parallel robot
based on energy consumption,” Applied Sciences, vol. 9, no. 13, p. 2770, 2019.

[146] M. Y. Silaa, O. Barambones, and A. Bencherif, “Robust adaptive sliding mode con-
trol using stochastic gradient descent for robot arm manipulator trajectory tracking,”
Electronics, vol. 13, no. 19, p. 3903, 2024.

[147] B. E. Nyong-Bassey and A. M. Epemu, “Inverse kinematics analysis of novel 6-dof robotic
arm manipulator for oil and gas welding using meta-heuristic algorithms,” International
Journal on Robotics, Automation and Sciences, vol. 4, pp. 13–22, 2022.

[148] F. Loucif and S. Kechida, “Optimization of sliding mode control with pid surface for
robot manipulator by evolutionary algorithms,” Open Computer Science, vol. 10, no. 1,
pp. 396–407, 2020.

[149] A. Shaar and J. A. Ghaeb, “Optimizing robot motion: A practical control for accurate
and low energy-consumption industrial manipulator,” in 2024 22nd International Con-
ference on Research and Education in Mechatronics (REM), IEEE, 2024, pp. 119–125.

[150] S. Ziamanesh, H. S. Salimi, A. Tavana, and A. A. Ghavifekr, “Parameter tuning of
discontinues lyapunov based controller based on the gray wolf optimization algorithm
applied to a robotic manipulator,” in 2022 8th Iranian Conference on Signal Processing
and Intelligent Systems (ICSPIS), IEEE, 2022, pp. 1–6.

[151] M. H. Zafar, H. B. Younus, S. K. R. Moosavi, M. Mansoor, and F. Sanfilippo, “Online pid
tuning of a 3-dof robotic arm using a metaheuristic optimisation algorithm: A compar-
ative analysis,” in International Conference on Information and Software Technologies,
Springer, 2023, pp. 25–37.

108

[152] M. Bayati, “Using cuckoo optimization algorithm and imperialist competitive algorithm
to solve inverse kinematics problem for numerical control of robotic manipulators,” Pro-
ceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and
Control Engineering, vol. 229, no. 5, pp. 375–387, 2015.

[153] L. Zhang, Y. Wang, X. Zhao, P. Zhao, and L. He, “Time-optimal trajectory planning of
serial manipulator based on adaptive cuckoo search algorithm,” Journal of Mechanical
Science and Technology, vol. 35, no. 7, pp. 3171–3181, 2021.

[154] R. Liu and F. Pan, “A multi-objective trajectory planning method of the dual-arm robot
for cabin docking based on the modified cuckoo search algorithm,” Machines, vol. 12,
no. 1, p. 64, 2024.

[155] H. Tlijani, A. Jouila, and K. Nouri, “Optimized sliding mode control based on cuckoo
search algorithm: Application for 2df robot manipulator,” Cybernetics and Systems,
pp. 1–17, 2023.

[156] Y. Cheng, C. Li, S. Li, and Z. Li, “Motion planning of redundant manipulator with
variable joint velocity limit based on beetle antennae search algorithm,” IEEE Access,
vol. 8, pp. 138 788–138 799, 2020.

[157] A. T. Khan, X. Cao, Z. Li, and S. Li, “Evolutionary computation based real-time robot
arm path-planning using beetle antennae search,” EAI Endorsed Transactions on AI
and Robotics, vol. 1, e3–e3, 2022.

[158] Z. Li, S. Li, and X. Luo, “Using quadratic interpolated beetle antennae search to enhance
robot arm calibration accuracy,” IEEE Robotics and Automation Letters, vol. 7, no. 4,
pp. 12 046–12 053, 2022.

[159] A. H. Khan, S. Li, and X. Luo, “Obstacle avoidance and tracking control of redundant
robotic manipulator: An rnn-based metaheuristic approach,” IEEE Transactions on In-
dustrial Informatics, vol. 16, no. 7, pp. 4670–4680, 2020. doi: 10.1109/TII.2019.
2941916.

[160] B. Kou, S. Guo, and D. Ren, “A new method for identifying kinetic parameters of
industrial robots,” in Actuators, MDPI, vol. 11, 2021, p. 2.

[161] S. Mirjalili and A. Lewis, “The whale optimization algorithm,” Advances in engineering
software, vol. 95, pp. 51–67, 2016.

[162] F. Loucif, S. Kechida, and A. Sebbagh, “Whale optimizer algorithm to tune pid controller
for the trajectory tracking control of robot manipulator,” Journal of the Brazilian Society
of Mechanical Sciences and Engineering, vol. 42, no. 1, p. 1, 2020.

[163] T. Wang, Z. Xin, H. Miao, H. Zhang, Z. Chen, and Y. Du, “Optimal trajectory plan-
ning of grinding robot based on improved whale optimization algorithm,” Mathematical
Problems in Engineering, vol. 2020, no. 1, p. 3 424 313, 2020.

109

https://doi.org/10.1109/TII.2019.2941916
https://doi.org/10.1109/TII.2019.2941916

[164] Y. Zhou, Z. Li, A. Feng, X. Zhang, and M. Zhu, “A novel hyper-redundant manipula-
tor dynamic identification method based on whale optimization and nonlinear friction
model,” in International Conference on Intelligent Robotics and Applications, Springer,
2023, pp. 80–91.

[165] D. Karaboga et al., “An idea based on honey bee swarm for numerical optimization,”
Technical report-tr06, Erciyes university, engineering faculty, computer, Tech. Rep.,
2005.

[166] Z. Zhou, J. Zhao, Z. Zhang, and X. Li, “Motion planning of dual-chain manipulator based
on artificial bee colony algorithm,” in 2023 9th International Conference on Control,
Automation and Robotics (ICCAR), IEEE, 2023, pp. 55–60.

[167] S. Dereli and R. Köker, “Simulation based calculation of the inverse kinematics solution
of 7-dof robot manipulator using artificial bee colony algorithm,” SN Applied Sciences,
vol. 2, no. 1, p. 27, 2020.

[168] A. Jamali, I. Mat Darus, M. Talib, H. Yatim, M. Hadi, and M. Tokhi, “Intelligent tuning
of pid controller for double-link flexible robotic arm manipulator by artificial bee colony
algorithm,” in Sensor Networks and Signal Processing: Proceedings of the 2nd Sensor
Networks and Signal Processing (SNSP 2019), 19-22 November 2019, Hualien, Taiwan,
Springer, 2021, pp. 533–547.

[169] Y. Cui, W. Hu, and A. Rahmani, “A reinforcement learning based artificial bee colony
algorithm with application in robot path planning,” Expert Systems with Applications,
vol. 203, p. 117 389, 2022.

[170] J. Muñoz, B. López, F. Quevedo, R. Barber, S. Garrido, and L. Moreno, “Geometri-
cally constrained path planning for robotic grasping with differential evolution and fast
marching square,” Robotica, vol. 41, no. 2, pp. 414–432, 2023.

[171] J. Hernandez-Barragan, J. Plascencia-Lopez, M. Lopez-Franco, N. Arana-Daniel, and C.
Lopez-Franco, “Inverse kinematics of robotic manipulators based on hybrid differential
evolution and jacobian pseudoinverse approach,” Algorithms, vol. 17, no. 10, p. 454,
2024.

[172] S. D. Das, V. Bain, and P. Rakshit, “Energy optimized robot arm path planning using
differential evolution in dynamic environment,” in 2018 Second International Conference
on Intelligent Computing and Control Systems (ICICCS), IEEE, 2018, pp. 1267–1272.

[173] B. Kong, X. Ni, T. Wang, X. Xu, and X. Li, “Simulation of manipulator control model
based on improved differential evolution algorithm,” in 2023 Asia-Pacific Conference on
Image Processing, Electronics and Computers (IPEC), IEEE, 2023, pp. 499–503.

[174] A. T. Sadiq, F. A. Raheem, and N. Abbas, “Ant colony algorithm improvement for
robot arm path planning optimization based on d* strategy,” International Journal of
Mechanical & Mechatronics Engineering, vol. 21, no. 1, pp. 96–111, 2021.

110

[175] Z. Huadong, L. Chaofan, and J. Nan, “A path planning method of robot arm obstacle
avoidance based on dynamic recursive ant colony algorithm,” in 2019 IEEE Interna-
tional Conference on Power, Intelligent Computing and Systems (ICPICS), IEEE, 2019,
pp. 549–552.

[176] S. A. Dahmane, A. Azzedine, and A. Megueni, “Ant colony optimization algorithm based
on optimal pid parameters for a robotic arm,” International Journal of Control Systems
and Robotics, vol. 5, 2020.

[177] R. Bansal, M. A. Khanesar, and D. Branson, “Ant colony optimization algorithm for
industrial robot programming in a digital twin,” in 2019 25th International Conference
on Automation and Computing (ICAC), IEEE, 2019, pp. 1–5.

[178] P. Wu, Z. Wang, H. Jing, and P. Zhao, “Optimal time–jerk trajectory planning for delta
parallel robot based on improved butterfly optimization algorithm,” Applied Sciences,
vol. 12, no. 16, p. 8145, 2022.

[179] H. Q. Cao, H. X. Nguyen, T. N.-C. Tran, H. N. Tran, and J. W. Jeon, “A robot cal-
ibration method using a neural network based on a butterfly and flower pollination
algorithm,” IEEE Transactions on Industrial Electronics, vol. 69, no. 4, pp. 3865–3875,
2021.

[180] M. Elsisi, H. G. Zaini, K. Mahmoud, S. Bergies, and S. S. Ghoneim, “Improvement
of trajectory tracking by robot manipulator based on a new co-operative optimization
algorithm,” Mathematics, vol. 9, no. 24, p. 3231, 2021.

[181] O. Karahan, H. Karci, and A. Tangel, “Optimal trajectory generation in joint space for
6r industrial serial robots using cuckoo search algorithm,” Intelligent Service Robotics,
vol. 15, no. 5, pp. 627–648, 2022.

[182] H. Zhao, B. Zhang, L. Yang, J. Sun, and Z. Gao, “Obstacle avoidance and near time-
optimal trajectory planning of a robotic manipulator based on an improved whale op-
timisation algorithm,” Arabian Journal for Science and Engineering, vol. 47, no. 12,
pp. 16 421–16 438, 2022.

[183] B. Zhou, Y. Wang, B. Zi, and W. Zhu, “Fuzzy adaptive whale optimization control
algorithm for trajectory tracking of a cable-driven parallel robot,” IEEE Transactions
on Automation Science and Engineering, 2023.

[184] H.-C. Huang and C.-C. Chuang, “Artificial bee colony optimization algorithm incor-
porated with fuzzy theory for real-time machine learning control of articulated robotic
manipulators,” IEEE Access, vol. 8, pp. 192 481–192 492, 2020.

[185] R. D. Al-Dabbagh, A. Kinsheel, S. Mekhilef, M. S. Baba, and S. Shamshirband, “Sys-
tem identification and control of robot manipulator based on fuzzy adaptive differential
evolution algorithm,” Advances in Engineering Software, vol. 78, pp. 60–66, 2014.

111

[186] M. F. Parra-Ocampo, O. Serrano-Pérez, A. Rodríguez-Molina, et al., “Enhancing the
performance in the offline controller tuning of robotic manipulators with chaos: A com-
parative study with differential evolution,” International Journal of Dynamics and Con-
trol, pp. 1–38, 2024.

[187] X. Meng and X. Zhu, “Autonomous obstacle avoidance path planning for grasping ma-
nipulator based on elite smoothing ant colony algorithm,” Symmetry, vol. 14, no. 9,
p. 1843, 2022.

[188] W. Xi, L. Ding, and R. Ma, “System identification for rigid-flexible coupled dynamics
model of a cable-driven aerial manipulator,” International Journal of Aerospace Engi-
neering, vol. 2024, no. 1, p. 2 136 038, 2024.

[189] J. Denavit and R. S. Hartenberg, “A kinematic notation for lower-pair mechanisms based
on matrices,” 1955.

[190] Y. Xu, R. Liu, J. Liu, and J. Zhang, “A novel constraint tracking control with sliding
mode control for industrial robots,” International Journal of Advanced Robotic Systems,
vol. 18, no. 4, p. 17 298 814 211 029 778, 2021.

[191] P. Rocco, “Stability of pid control for industrial robot arms,” IEEE transactions on
robotics and automation, vol. 12, no. 4, pp. 606–614, 1996.

[192] Z. Song, J. Yi, D. Zhao, and X. Li, “A computed torque controller for uncertain robotic
manipulator systems: Fuzzy approach,” Fuzzy sets and systems, vol. 154, no. 2, pp. 208–
226, 2005.

[193] J. Shah, S. Rattan, and B. Nakra, “Dynamic analysis of two link robot manipulator
for control design using computed torque control,” International Journal of research in
computer applications and Robotics, vol. 3, no. 1, pp. 52–59, 2015.

[194] J. Viola and L. Angel, “Tracking control for robotic manipulators using fractional order
controllers with computed torque control,” IEEE Latin America Transactions, vol. 16,
no. 7, pp. 1884–1891, 2018.

[195] L. A. Soriano, J. d. J. Rubio, E. Orozco, et al., “Optimization of sliding mode control
to save energy in a scara robot,” Mathematics, vol. 9, no. 24, p. 3160, 2021.

[196] S. Islam and X. P. Liu, “Robust sliding mode control for robot manipulators,” IEEE
Transactions on industrial electronics, vol. 58, no. 6, pp. 2444–2453, 2010.

[197] J.-J. E. Slotine, “Sliding controller design for non-linear systems,” International Journal
of control, vol. 40, no. 2, pp. 421–434, 1984.

[198] F. Piltan and N. B. Sulaiman, “Review of sliding mode control of robotic manipulator,”
World Applied Sciences Journal, vol. 18, no. 12, pp. 1855–1869, 2012.

[199] M. Zeinali and L. Notash, “Adaptive sliding mode control with uncertainty estimator for
robot manipulators,” Mechanism and Machine Theory, vol. 45, no. 1, pp. 80–90, 2010.

112

[200] D. Rawat, M. K. Gupta, and A. Sharma, “Intelligent control of robotic manipulators: A
comprehensive review,” Spatial Information Research, vol. 31, no. 3, pp. 345–357, 2023.

[201] (), [Online]. Available: https://www.fanuc.eu/.

[202] (), [Online]. Available: https://www.mathworks.com/products/simscape-multibody.
html.

[203] F. Flacco, T. Kröger, A. De Luca, and O. Khatib, “A depth space approach to human-
robot collision avoidance,” pp. 338–345, 2012.

[204] J. Ulmen and M. Cutkosky, “A robust, low-cost and low-noise artificial skin for human-
friendly robots,” pp. 4836–4841, 2010.

[205] A. Cirillo, F. Ficuciello, C. Natale, S. Pirozzi, and L. Villani, “A conformable force/tactile
skin for physical human–robot interaction,” IEEE Robotics and Automation Letters,
vol. 1, no. 1, pp. 41–48, 2015.

[206] A.-N. Sharkawy, P. N. Koustoumpardis, and N. A. Aspragathos, “Manipulator collision
detection and collided link identification based on neural networks,” pp. 3–12, 2019.

[207] F. Min, G. Wang, and N. Liu, “Collision detection and identification on robot manipu-
lators based on vibration analysis,” Sensors, vol. 19, no. 5, p. 1080, 2019.

[208] K. Narukawa, T. Yoshiike, K. Tanaka, and M. Kuroda, “Real-time collision detection
based on one class svm for safe movement of humanoid robot,” in 2017 IEEE-RAS 17th
International Conference on Humanoid Robotics (Humanoids), IEEE, 2017, pp. 791–
796.

[209] F. Dimeas, L. D. Avendaño-Valencia, and N. Aspragathos, Robotica, vol. 33, no. 9,
pp. 1886–1898, 2015.

[210] X. Jing, W. Guangxin, L. Chongyang, and L. Hong, “Real-time collision detection for
manipulators based on fuzzy synthetic evaluation,” pp. 777–782, 2016.

[211] F. Caccavale and I. D. Walker, Observer-based fault detection for robot manipulators.
1997, vol. 4, pp. 2881–2887.

[212] S. Morinaga and K. Kosuge, “Collision detection system for manipulator based on adap-
tive impedance control law,” vol. 1, pp. 1080–1085, 2003.

[213] S. Haddadin, Towards safe robots: approaching Asimovs 1st law. Springer, 2013, vol. 90.

[214] J. Hu and R. Xiong, “Contact force estimation for robot manipulator using semiparamet-
ric model and disturbance kalman filter,” IEEE Transactions on Industrial Electronics,
vol. 65, no. 4, pp. 3365–3375, 2017.

[215] S. Makni, M. Bouattour, A. El Hajjaji, and M. Chaabane, “Robust fault tolerant control
based on adaptive observer for takagi-sugeno fuzzy systems with sensor and actuator
faults: Application to single-link manipulator,” Transactions of the Institute of Measure-
ment and Control, vol. 42, no. 12, pp. 2308–2323, 2020.

113

https://www.fanuc.eu/
https://www.mathworks.com/products/simscape-multibody.html
https://www.mathworks.com/products/simscape-multibody.html

[216] A. De Luca and R. Mattone, “Actuator failure detection and isolation using generalized
momenta,” vol. 1, pp. 634–639, 2003.

[217] S. Haddadin, A. De Luca, and A. Albu-Schäffer, “Robot collisions: A survey on detection,
isolation, and identification,” IEEE Transactions on Robotics, vol. 33, no. 6, pp. 1292–
1312, 2017.

[218] G. Garofalo, N. Mansfeld, J. Jankowski, and C. Ott, “Sliding mode momentum observers
for estimation of external torques and joint acceleration,” pp. 6117–6123, 2019.

[219] S. Long, X. Dang, S. Sun, Y. Wang, and M. Gui, “A novel sliding mode momentum
observer for collaborative robot collision detection,” Machines, vol. 10, no. 9, p. 818,
2022.

[220] T. Ren, Y. Dong, D. Wu, and K. Chen, “Collision detection and identification for robot
manipulators based on extended state observer,” Control Engineering Practice, vol. 79,
pp. 144–153, 2018.

[221] S. A. B. Birjandi, J. Kühn, and S. Haddadin, “Observer-extended direct method for
collision monitoring in robot manipulators using proprioception and imu sensing,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 954–961, 2020.

[222] H. Li, R. Li, and J. Zhang, “On the design of extended state observer-based robust finite
controller: For underactuated robotic system with multiple sources of uncertainties,”
Transactions of the Institute of Measurement and Control, vol. 43, no. 2, pp. 473–483,
2021.

[223] A. A. Godbole, J. P. Kolhe, and S. E. Talole, “Performance analysis of generalized ex-
tended state observer in tackling sinusoidal disturbances,” IEEE Transactions on Control
Systems Technology, vol. 21, no. 6, pp. 2212–2223, 2012.

[224] B. Guo, S. Bacha, M. Alamir, A. Hably, and C. Boudinet, “Generalized integrator-
extended state observer with applications to grid-connected converters in the presence
of disturbances,” IEEE Transactions on Control Systems Technology, vol. 29, no. 2,
pp. 744–755, 2020.

[225] X. Zhou and X. Li, “Trajectory tracking control for electro-optical tracking system based
on fractional-order sliding mode controller with super-twisting extended state observer,”
ISA transactions, vol. 117, pp. 85–95, 2021.

[226] Y. Li, Y. Li, M. Zhu, Z. Xu, and D. Mu, “A nonlinear momentum observer for sensorless
robot collision detection under model uncertainties,” Mechatronics, vol. 78, p. 102 603,
2021.

[227] M. Naghdi and M. A. Sadrnia, “A novel fuzzy extended state observer,” ISA transactions,
vol. 102, pp. 1–11, 2020.

[228] R. M. Murray, Z. Li, S. S. Sastry, and S. S. Sastry, A mathematical introduction to
robotic manipulation. CRC press, 1994.

114

[229] B. Rezali, B. Ibari, M. Hebali, M. Berka, M. Bennaoum, and H. A. Azzedine, “Sensor-
less robot collision detection based on fuzzy momentum observer,” Transactions of the
Institute of Measurement and Control, p. 01 423 312 241 262 538, 2024.

[230] M. Oberherber, H. Gattringer, and A. Müller, “Successive dynamic programming and
subsequent spline optimization for smooth time optimal robot path tracking,” Mechan-
ical Sciences, vol. 6, no. 2, pp. 245–254, 2015. doi: \url{10.5194/ms-6-245-2015}.

[231] D. Kaserer, H. Gattringer, and A. Müller, “Nearly optimal path following with jerk
and torque rate limits using dynamic programming,” IEEE Transactions on Robotics,
vol. 35, no. 2, pp. 521–528, 2018. doi: 10.1109/TRO.2018.2880120.

[232] S. Kucuk, “Maximal dexterous trajectory generation and cubic spline optimization
for fully planar parallel manipulators,” Computers & Electrical Engineering, vol. 56,
pp. 634–647, 2016, issn: 0045-7906. doi: https://doi.org/10.1016/j.compeleceng.
2016.07.012.

[233] T. Kunz and M. Stilman, “Time-optimal trajectory generation for path following with
bounded acceleration and velocity,” Robotics: Science and Systems VIII, pp. 1–8, 2012.
doi: https://doi.org/10.7551/mitpress/9816.003.0032.

[234] Q.-C. Pham, “A general, fast, and robust implementation of the time-optimal path
parameterization algorithm,” IEEE Transactions on Robotics, vol. 30, no. 6, pp. 1533–
1540, 2014. doi: 10.1109/TRO.2014.2351113.

[235] H. Pham and P. Quang-Cuong, “On the structure of the time-optimal path parameter-
ization problem with third-order constraints,” in 2017 IEEE International Conference
on Robotics and Automation (ICRA), IEEE, 2017, pp. 679–686. doi: 10.1109/ICRA.
2017.7989084.

[236] H. Pham and P. Quang-Cuong, “A new approach to time-optimal path parameterization
based on reachability analysis,” IEEE Transactions on Robotics, vol. 34, no. 3, pp. 645–
659, 2018. doi: 10.1109/TRO.2018.2819195.

[237] R. Wang, Y. Xie, X. Chen, and Y. Li, “Path-constrained time-optimal motion plan-
ning for robot manipulators with third-order constraints,” IEEE/ASME Transactions
on Mechatronics, 2023. doi: 10.1109/TMECH.2023.3234584.

[238] A. Gasparetto and V. Zanotto, “Optimal trajectory planning for industrial robots,”
Advances in Engineering Software, vol. 41, no. 4, pp. 548–556, 2010. doi: https://doi.
org/10.1016/j.advengsoft.2009.11.001.

[239] Y. Li, T. Huang, and D. G. Chetwynd, “An approach for smooth trajectory planning
of high-speed pick-and-place parallel robots using quintic b-splines,” Mechanism and
Machine Theory, vol. 126, pp. 479–490, 2018. doi: https://doi.org/10.1016/j.
mechmachtheory.2018.04.026.

115

https://doi.org/\url{10.5194/ms-6-245-2015}
https://doi.org/10.1109/TRO.2018.2880120
https://doi.org/https://doi.org/10.1016/j.compeleceng.2016.07.012
https://doi.org/https://doi.org/10.1016/j.compeleceng.2016.07.012
https://doi.org/https://doi.org/10.7551/mitpress/9816.003.0032
https://doi.org/10.1109/TRO.2014.2351113
https://doi.org/10.1109/ICRA.2017.7989084
https://doi.org/10.1109/ICRA.2017.7989084
https://doi.org/10.1109/TRO.2018.2819195
https://doi.org/10.1109/TMECH.2023.3234584
https://doi.org/https://doi.org/10.1016/j.advengsoft.2009.11.001
https://doi.org/https://doi.org/10.1016/j.advengsoft.2009.11.001
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2018.04.026
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2018.04.026

[240] J. Huang, P. Hu, K. Wu, and M. Zeng, “Optimal time-jerk trajectory planning for
industrial robots,” Mechanism and Machine Theory, vol. 121, pp. 530–544, 2018. doi:
https://doi.org/10.1016/j.mechmachtheory.2017.11.006.

[241] S. Lu, B. Ding, and Y. Li, “Minimum-jerk trajectory planning pertaining to a transla-
tional 3-degree-of-freedom parallel manipulator through piecewise quintic polynomials
interpolation,” Advances in Mechanical Engineering, vol. 12, no. 3, p. 1 687 814 020 913 667,
2020. doi: 10.1177/1687814020913667.

[242] Y. Zhang, Z. Sun, Q. Sun, Y. Wang, X. Li, and J. Yang, “Time-jerk optimal trajectory
planning of hydraulic robotic excavator,” Advances in Mechanical Engineering, vol. 13,
no. 7, p. 16 878 140 211 034 611, 2021. doi: 10.1177/16878140211034611.

[243] J. Zhao, X. Zhu, and T. Song, “Serial manipulator time-jerk optimal trajectory planning
based on hybrid iwoa-pso algorithm,” IEEE Access, vol. 10, pp. 6592–6604, 2022. doi:
10.1109/ACCESS.2022.3141448.

[244] H. Gultekin, S. Gürel, and R. Taspinar, “Bicriteria scheduling of a material handling
robot in an m-machine cell to minimize the energy consumption of the robot and the
cycle time,” Robotics and Computer-Integrated Manufacturing, vol. 72, p. 102 207, 2021.
doi: https://doi.org/10.1016/j.rcim.2021.102207.

[245] M. Soori, B. Arezoo, and R. Dastres, “Optimization of energy consumption in industrial
robots, a review,” Cognitive Robotics, 2023. doi: https://doi.org/10.1016/j.cogr.
2023.05.003.

[246] A. D. Rocha, N. Freitas, D. Alemão, M. Guedes, R. Martins, and J. Barata, “Event-
driven interoperable manufacturing ecosystem for energy consumption monitoring,” En-
ergies, vol. 14, no. 12, p. 3620, 2021. doi: /10.3390/en14123620.

[247] M. Javaid, A. Haleem, R. P. Singh, and R. Suman, “Substantial capabilities of robotics
in enhancing industry 4.0 implementation,” Cognitive Robotics, vol. 1, pp. 58–75, 2021.
doi: https://doi.org/10.1016/j.cogr.2021.06.001.

[248] G. Carabin and L. Scalera, “On the trajectory planning for energy efficiency in industrial
robotic systems,” Robotics, vol. 9, no. 4, p. 89, 2020.

[249] F. Vidussi, P. Boscariol, L. Scalera, and A. Gasparetto, “Local and trajectory-based
indexes for task-related energetic performance optimization of robotic manipulators,”
Journal of Mechanisms and Robotics, vol. 13, no. 2, p. 021 018, 2021.

[250] M. Gadaleta, M. Pellicciari, and G. Berselli, “Optimization of the energy consumption
of industrial robots for automatic code generation,” Robotics and Computer-Integrated
Manufacturing, vol. 57, pp. 452–464, 2019. doi: https://doi.org/10.1016/j.rcim.
2018.12.020.

[251] M. Zhang and J. Yan, “A data-driven method for optimizing the energy consumption
of industrial robots,” Journal of Cleaner Production, vol. 285, p. 124 862, 2021. doi:
https://doi.org/10.1016/j.jclepro.2020.124862.

116

https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2017.11.006
https://doi.org/10.1177/1687814020913667
https://doi.org/10.1177/16878140211034611
https://doi.org/10.1109/ACCESS.2022.3141448
https://doi.org/https://doi.org/10.1016/j.rcim.2021.102207
https://doi.org/https://doi.org/10.1016/j.cogr.2023.05.003
https://doi.org/https://doi.org/10.1016/j.cogr.2023.05.003
https://doi.org//10.3390/en14123620
https://doi.org/https://doi.org/10.1016/j.cogr.2021.06.001
https://doi.org/https://doi.org/10.1016/j.rcim.2018.12.020
https://doi.org/https://doi.org/10.1016/j.rcim.2018.12.020
https://doi.org/https://doi.org/10.1016/j.jclepro.2020.124862

[252] P. Jiang, Z. Wang, X. Li, X. V. Wang, B. Yang, and J. Zheng, “Energy consumption
prediction and optimization of industrial robots based on lstm,” Journal of Manufac-
turing Systems, vol. 70, pp. 137–148, 2023. doi: https://doi.org/10.1016/j.jmsy.
2023.07.009.

[253] Y. Li, Z. Wang, H. Yang, H. Zhang, and Y. Wei, “Energy-optimal planning of robot
trajectory based on dynamics,” Arabian Journal for Science and Engineering, vol. 48,
no. 3, pp. 3523–3536, 2023. doi: https://doi.org/10.1007/s13369-022-07185-7.

[254] G. Wu, W. Zhao, and X. Zhang, “Optimum time-energy-jerk trajectory planning for
serial robotic manipulators by reparameterized quintic nurbs curves,” Proceedings of the
Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,
vol. 235, no. 19, pp. 4382–4393, 2021. doi: 10.1177/0954406220969734.

[255] W. Chen, H. Wang, Z. Liu, and K. Jiang, “Time-energy-jerk optimal trajectory planning
for high-speed parallel manipulator based on quantum-behaved particle swarm optimiza-
tion algorithm and quintic b-spline,” Engineering Applications of Artificial Intelligence,
vol. 126, p. 107 223, 2023. doi: https://doi.org/10.1016/j.engappai.2023.107223.

[256] A. Gasparetto, P. Boscariol, A. Lanzutti, and R. Vidoni, “Path planning and trajectory
planning algorithms: A general overview,” Motion and Operation Planning of Robotic
Systems: Background and Practical Approaches, pp. 3–27, 2015. doi: https://doi.
org/10.1007/978-3-319-14705-5_1.

[257] A. Gasparetto and V. Zanotto, “A technique for time-jerk optimal planning of robot
trajectories,” Robotics and Computer-Integrated Manufacturing, vol. 24, no. 3, pp. 415–
426, 2008. doi: https://doi.org/10.1016/j.rcim.2007.04.001.

[258] A. Gasparetto and V. Zanotto, “A new method for smooth trajectory planning of robot
manipulators,” Mechanism and machine theory, vol. 42, no. 4, pp. 455–471, 2007. doi:
https://doi.org/10.1016/j.mechmachtheory.2006.04.002.

[259] K. J. Kyriakopoulos and G. N. Saridis, “Minimum jerk path generation,” in Proceedings.
1988 IEEE international conference on robotics and automation, IEEE, 1988, pp. 364–
369. doi: 10.1109/ROBOT.1988.12075.

[260] D. Simon, “Data smoothing and interpolation using eighth-order algebraic splines,”
IEEE transactions on signal processing, vol. 52, no. 4, pp. 1136–1144, 2004. doi: 10.
1109/TSP.2004.823489.

[261] C. De Boor, “On calculating with b-splines,” Journal of Approximation Theory, vol. 6,
no. 1, pp. 50–62, 1972, issn: 0021-9045. doi: https://doi.org/10.1016/0021-
9045(72)90080-9.

[262] J. Yan and M. Zhang, “A transfer-learning based energy consumption modeling method
for industrial robots,” Journal of Cleaner Production, vol. 325, p. 129 299, 2021. doi:
https://doi.org/10.1016/j.jclepro.2021.129299.

117

https://doi.org/https://doi.org/10.1016/j.jmsy.2023.07.009
https://doi.org/https://doi.org/10.1016/j.jmsy.2023.07.009
https://doi.org/https://doi.org/10.1007/s13369-022-07185-7
https://doi.org/10.1177/0954406220969734
https://doi.org/https://doi.org/10.1016/j.engappai.2023.107223
https://doi.org/https://doi.org/10.1007/978-3-319-14705-5_1
https://doi.org/https://doi.org/10.1007/978-3-319-14705-5_1
https://doi.org/https://doi.org/10.1016/j.rcim.2007.04.001
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2006.04.002
https://doi.org/10.1109/ROBOT.1988.12075
https://doi.org/10.1109/TSP.2004.823489
https://doi.org/10.1109/TSP.2004.823489
https://doi.org/https://doi.org/10.1016/0021-9045(72)90080-9
https://doi.org/https://doi.org/10.1016/0021-9045(72)90080-9
https://doi.org/https://doi.org/10.1016/j.jclepro.2021.129299

[263] H.-I. Lin, R. Mandal, and F. S. Wibowo, “Bn-lstm-based energy consumption modeling
approach for an industrial robot manipulator,” Robotics and Computer-Integrated Man-
ufacturing, vol. 85, p. 102 629, 2024. doi: https://doi.org/10.1016/j.rcim.2023.
102629.

[264] Y. He, P. Wu, Y. Li, Y. Wang, F. Tao, and Y. Wang, “A generic energy prediction model
of machine tools using deep learning algorithms,” Applied Energy, vol. 275, p. 115 402,
2020. doi: https://doi.org/10.1016/j.apenergy.2020.115402.

[265] A. Graves, “Long short-term memory,” in Supervised Sequence Labelling with Recurrent
Neural Networks. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 37–45. doi:
https://doi.org/10.1007/978-3-642-24797-2_4.

[266] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective
genetic algorithm: Nsga-ii,” IEEE transactions on evolutionary computation, vol. 6, no. 2,
pp. 182–197, 2002. doi: 10.1109/4235.996017.

[267] L. Piegl and W. Tiller, The NURBS Book, second. New York, NY, USA: Springer-Verlag,
1995. doi: http://dx.doi.org/10.1007/978-3-642-97385-7.

118

https://doi.org/https://doi.org/10.1016/j.rcim.2023.102629
https://doi.org/https://doi.org/10.1016/j.rcim.2023.102629
https://doi.org/https://doi.org/10.1016/j.apenergy.2020.115402
https://doi.org/https://doi.org/10.1007/978-3-642-24797-2_4
https://doi.org/10.1109/4235.996017
https://doi.org/http://dx.doi.org/10.1007/978-3-642-97385-7

	Abstract
	List of Figures
	List of Tables
	Notations
	Introduction
	Motivation
	Aims and Objectives
	Thesis Outline
	Author's Publications

	State of the Art
	Introduction
	Fuzzy Logic
	Artificial Neural Networks
	An Overview of Artificial Neural Networks
	Applications of Artificial Neural Networks in Robotics

	Evolutionary Algorithms
	Particle Swarm Optimization
	Genetic Algorithm
	Grey Wolf Optimization
	Other Methods

	Conclusion

	Serial Robot Manipulator: Overview and Fundamentals
	Introduction
	Kinematics
	Homogeneous Transformations
	Forward Kinematics
	Inverse Kinematics
	Differential Kinematics

	Dynamics
	Equation of Motion

	Control Strategies
	Case Study
	The Robot Modeling
	The Robot Control Design

	Conclusion

	Collision Detection for Industrial Robots Using Soft Sensors
	Introduction
	Problem statement
	Preliminaries
	Classical Generalized Momentum Observer
	The Extended State Momentum Observer
	The Nonlinear Momentum Observer

	Fuzzy Generalized Momentum Observer Design
	Dynamic Error of The Observer

	Collision Monitoring Method
	Simulations Results and Discussion
	Collision Description
	Detection and Localization of Collision

	Conclusion

	Soft Computing Approaches for Optimal Industrial Robot Trajectory Planning
	Introduction
	Problem statements
	Time-energy-jerk optimization problem formulation
	Trajectory planning by 5th-order B-spline in joint space

	Prediction model of energy consumption using LSTM
	Structure of LSTM cell

	Time-jerk-energy optimization using NSGA-II
	Results and discussion
	Robot energy consumption model
	Running the optimization process
	Compared the suggested approach with the classical method

	Conclusion

	Conclusion

