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                                                Résumé   

        Ce travail présente une contribution à l'étude de l'effet de la substitution du bromure sur 

les propriétés structurelles, électroniques et optiques des matériaux de type pérovskite 

Rb2AgSbCl6. 

        Pour déterminer ces différentes propriétés, nous avons effectué des simulations en 

appliquant la méthode linearized augmented plan wave (FP-APW), qui est basée sur la théorie 

de la fonction de la densité (DFT), en utilisant l'approximation du gradient généralisé (WC-GGA) 

pour traiter le terme d'échange et de corrélation, où le package de cette méthode est implémenté 

dans le code WIEN2K. 

        L'énergie de la bande interdite calculée pour l’Rb2AgSbCl6 dans son état pur est d'environ 

2,08 eV en utilisant le potentiel d'échange Tran-Blaha (TB) – Becke Johnson (mBJ) modifié, ce 

qui est en bon accord avec les mesures es. On a remarqué que ces valeurs de bande interdite 

diminuent lorsque Br est substitué dans le site Cl, respectivement pour des concentrations de 25 

%, 50 % et 75 %. En outre, l’énergie du gap pour les matériaux Rb2AgSbBr6 a également été 

calculée et la valeur trouvée est à 1,34 eV. Cette étude montre que la substitution de Br 

augmente la mobilité des trous et des porteurs d'électrons des composés Rb2AgSbCl6 purs. De 

plus, l'analyse optique révèle que la substitution de Br améliore les propriétés optiques de 

Rb2AgSbCl6 en réduisant la transparence et en améliorant l'indice de réfraction et l'absorption 

dans la région de la lumière visible. En analysant le Spectroscopique Limited Maximum 

Efficience (SLME). L'électron minoritaire luminescent spécifique (SLME) de Rb₂AgSb(Cl₀.₅Br₀.₅)₆ 

est de 9,51 %. Bien que ce pourcentage soit modeste, il peut être attribué à la bande interdite 

indirecte du matériau. Nous avons aussi calculé Les propriétés thermoélectriques Les propriétés 

électroniques révèlent que ces composés sont des semi-conducteurs de type p.        

       Sur la base des résultats obtenus, il est prévu que la bande interdite et les propriétés 

optiques et thermoélectriques de la pérovskite Rb2gSbCl6 peuvent être efficacement ajustées 

par la substitution de Br sur les sites Cl, ce qui fait des alliages Rb2AgSb(Cl1-xBrx)6 des 

candidats prometteurs pour des applications optoélectroniques et photovoltaïques. Nous 

étudions également les propriétés électroniques des alliages Rb₂AgSb₁₋ₓBiₓX'₆, où x prend des 

valeurs de zéro, 0,25, 0,50, 0,75, et 1, avec X′ représentant Cl, Br, ou I. 

Mots-clés : Propriétés électroniques ; propriétés optiques ; applications photovoltaïques ; 

approches de premiers principes ; Wien2k. Vasp 
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                                             Summary 

        This work presents a contribution to the study of the effect of bromide substitution on the 

structural, electronic, and optical properties of Rb₂AgSbCl₆ perovskite materials. 

        To determine these different properties, we conducted simulations using the linearized 

augmented plane wave (FP-APW) method, which is based on density functional theory (DFT), 

employing the generalized gradient approximation (WC-GGA) to handle the exchange and 

correlation terms. The implementation of this method is carried out using the WIEN2K code. 

        The calculated band gap energy for pure Rb₂AgSbCl₆ is approximately 2.08 eV, obtained 

using the modified Tran-Blaha (TB)–Becke Johnson (mBJ) exchange potential, which is in good 

agreement with experimental measurements. It was observed that the band gap values decrease 

as Br substitutes Cl at different concentrations of 25%, 50%, and 75%. Additionally, the band 

gap energy for Rb₂AgSbBr₆ was calculated, yielding a value of 1.34 eV. This study demonstrates 

that Br substitution enhances the hole and electron carrier mobility in pure Rb₂AgSbCl₆ 

compounds. Furthermore, optical analysis reveals that Br substitution improves the optical 

properties of Rb₂AgSbCl₆ by reducing transparency while enhancing the refractive index and 

absorption in the visible light region. By analyzing the Spectroscopically Limited Maximum 

Efficiency (SLME), the specific luminescent minority electron (SLME) of Rb₂AgSb(Cl₀.₅Br₀.₅)₆ 

was found to be 9.51%. Although this percentage is modest, it can be attributed to the indirect 

band gap nature of the material. Additionally, we calculated the thermoelectric properties, and 

the electronic properties indicate that these compounds are p-type semiconductors. 

        Based on the obtained results, it is expected that the band gap, optical, and thermoelectric 

properties of Rb₂AgSbCl₆ perovskite can be effectively tuned by Br substitution at Cl sites, 

making Rb₂AgSb(Cl₁₋ₓBrₓ)₆ alloys promising candidates for optoelectronic and photovoltaic 

applications. Also we study the electronic properties of Rb₂AgSb₁₋ₓBiₓX'₆ alloys, where x takes 

values of zero, 0.25, 0.50, 0.75, and 1, with X′ representing Cl, Br, or I. 

 

Keywords: Electronic properties; Optical properties; Photovoltaic applications; First-principles 

approaches; Wien2k , thermoelectric properties ,Vasp  
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 ملخص

 

يقدم هذا العمل مساهمة في دراسة تأثير استبدال البروميد على الخصائص التركيبية والإلكترونية والبصرية لمواد         

 .₆AgSbCl₂Rbالبيروفسكايت من النوع 

 لتحديد هذه الخصائص المختلفة، قمنا بإجراء محاكاة باستخدام طريقة الموجة المستوية الخطية المعززة        

 APW)-(FP   تستند إلى نظرية الكثافة الوظيفي والتي(DFT)  باستخدام تقريب التدرج المعممGGA) -(WC  لمعالجة

  .WIEN2Kمصطلح التبادل والارتباط، حيث يتم تنفيذ حزمة هذه الطريقة في التعليمات البرمجية

تعديل  - Blaha-Tran باستخدام  eV95.2النقي حوالي  AgSbCl₂Rbتبلغ طاقة فجوة النطاق المحسوبة لـ         

Becke Johnson  mBJ  وهو ما يتوافق جيداً مع القياسات التجريبية. لوحظ أن قيم فجوة الطاقة  إمكانية التبادل

. بالإضافة إلى ذلك، تم حساب فجوة الطاقة ٪.5و ٪5.و ٪.9بنسبة  Clفي موقع  Brالمحظورة تنخفض عند استبدال 

يزيد من حركة الثقوب وحاملي  Brتوضح هذه الدراسة أن استبدال  .eV 45.1، ووجد أن قيمتها ₆AgSbBr₂Rbلمادة 

يحسن  Brالنقي. علاوة على ذلك، يكشف التحليل البصري أن استبدال  ₆AgSbCl₂Rbالإلكترونات في مركب 

عن طريق تقليل الشفافية وزيادة معامل الانكسار والامتصاص في نطاق الضوء  ₆AgSbCl₂Rbالخصائص البصرية لـ 

لمركب  SLME(، تبين أن SLMEمن خلال تحليل الحد الأقصى لكفاءة الامتصاص الطيفي ) المرئي.

₆)₅.₀Br₅.₀AgSb(Cl₂Rb  وعلى الرغم من أن هذه النسبة متواضعة، إلا أنها تعُزى إلى فجوة الطاقة ٪25.4يبلغ .

بالإضافة إلى ذلك، تم حساب الخصائص الكهروحرارية، حيث كشفت الخصائص  لمحظورة غير المباشرة للمادة.ا

 .pالإلكترونية أن هذه المركبات هي أشباه موصلات من النوع 

بناءً على النتائج التي تم الحصول عليها، من المتوقع أن فجوة الطاقة المحظورة والخصائص البصرية         

مما يجعل سبائك ، Clبمواقع  Brيمكن تعديلها بفعالية عن طريق استبدال  ₆AgSbCl₂Rbوالكهروحرارية لمادة 

₆Brₓ)ₓ₁₋AgSb(Cl₂Rb .أيضًا ندرس كما مرشحة واعدة للتطبيقات البصرية والإلكترونية الضوئية والخلايا الشمسية 

 4و .555و 55.5و .559و صفرًا تساوي قيمًا x تأخذ حيث سبائك Rb₂AgSb₁₋₋BiₓX'X'₆ لـ الإلكترونية الخواص

 .أي أو بروم أو كلور′ X يمثل حيث

 

: الخصائص الإلكترونية. الخصائص البصرية ؛ التطبيقات الكهروضوئية ؛ نهج المبادئ الأولى ؛ الكلمات الرئيسية

,Vasp Wien2k  



                                                                                                                         General Introduction  

 

 
1 

 

                               General introduction 

 

ead-based halide perovskites (ABX₃) have revolutionized solution-processed solar 

cells, outperforming both polycrystalline and thin-film silicon photovoltaic 

technologies. In a remarkably short period, they have achieved record power 

conversion efficiencies exceeding 22% [1-3]. Among these, APbX₃ perovskites—where A 

is a large organic or inorganic cation (e.g., Cs⁺, CH₃NH₃⁺), B is Pb, and X is Cl, Br, or I—have 

been extensively investigated [4-5]. Despite their impressive efficiency, 

commercialization faces significant hurdles, particularly due to lead's toxicity, which 

poses serious health and environmental risks and is subject to strict regulations in many 

countries. Additionally, these materials exhibit instability under humidity, air exposure, 

and temperature variations. 

To address these challenges, extensive research has focused on developing lead-free, 

environmentally friendly, and air-stable halide perovskites. This pursuit has become a key 

area in perovskite optoelectronics [6]. Strategies to replace lead have included 

substituting it with other group 14 elements like Sn and Ge. However, these elements are 

prone to oxidation from the 2+ to the 4+ state, which undermines their viability [7-8]. A 

promising alternative involves the use of double perovskites with the formula A₂M⁺M³⁺X₆, 

where A is an alkaline metal, M⁺ is a monovalent cation, M³⁺ is a trivalent cation, and X is 

a halide [9]. Lead-free halide perovskites have gained significant interest for applications 

in solar cells, LEDs, photodetectors, and lasers due to their exceptional properties, such 

as high carrier mobility, strong absorption, photoluminescence, and suitable band gaps 

for electronic devices [10-20]. 

However, many double-halide perovskites have large and indirect band gaps, limiting 

their efficiency [21]. To overcome this limitation, researchers have explored band gap 

engineering through alloying at specific atomic sites. Various techniques have been 

developed to synthesize double-perovskite alloys with optimized properties [22-23]. 

This article delves into modifying the band gap of Rb₂AgSbCl₆ through sublattice mixing, 

L 
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with a detailed theoretical analysis. Sublattice mixing involves replacing Cl with Br at 

varying concentrations to improve the optical properties of Rb₂AgSbCl₆. Previous 

theoretical studies suggest that band gap tuning in Rb₂AgSbCl₆ can enhance its 

optoelectronic and photocatalytic performance [24]. This study examines the structural, 

electronic, optical and thermoelectric properties of Rb₂AgSb(Cl₁₋ₓBrₓ)₆ alloys using the 

full-potential augmented plane wave plus local orbital method. Furthermore, the 

spectroscopic limited maximum efficiency (SLME) model is applied to assess 

photoresponse and photovoltaic performance, identifying stable configurations with 

indirect band gaps and evaluating their potential as efficient solar cell absorbers. Also in 

this study, we emphasize electronic properties of Rb₂AgSb₁₋ₓBiₓX'₆ alloys, where x varies 

as 0, 0.25, 0.50, 0.75, and 1, and X′ represents Cl, Br, or I. These compounds exhibit highly 

tunable characteristics in both crystal structure and electrical behavior, making them 

promising candidates for a broad range of applications. By incorporating different 

halogens (Cl, Br, and I), we aim to explore structural and optoelectronic variations and 

assess the influence of each halogen on the material's performance. This research seeks 

to advance the development of high-performance, environmentally friendly materials by 

providing critical insights into the relationship between structure and properties in lead-

free halide double perovskites. This thesis manuscript is arranged in four chapters: 

 In the first chapter we will briefly present an overview of perovskite for 

Solar Cells. 

 The second chapter gives an overview of the density functional density 

functional theory which we have used to study the properties of the chosen 

properties of selected materials. 

 The third chapter presents the structural electronic optical and properties 

of Rb2AgSbCl6 doped with bromine. 

 The fourth chapter will be devoted to the detailed study of thermoelectric 

properties of Rb₂AgSb(Cl1-xBrx)6 alloys  

We will end up this manuscript with a general conclusion on the different points discussed 

above and some perspectives. 

 

                                                                     Reference 



                                                                                                                         General Introduction  

 

 
3 

[1] Seo, Jangwon, Jun Hong Noh, and Sang Il Seok. "Rational strategies for efficient 

perovskite solar cells." Accounts of chemical research 49.3 (2016): 562-572. 

[2] Kojima, Akihiro, et al. "Organometal halide perovskites as visible-light sensitizers for 

photovoltaic cells." Journal of the american chemical society 131.17 (2009): 6050-6051. 

[3]  Jeon, N. J., Noh, J. H., Kim, Y. C., Yang, W. S., Ryu, S., & Seok, S. I. (2014). Solvent 

engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature 

materials, 13(9), 897-903. 

[4]  Stranks, Samuel D., et al. "Electron-hole diffusion lengths exceeding 1 micrometer in 

an organometal trihalide perovskite absorber." Science 342.6156 (2013): 341-344. 

[5] Yokoyama, Takamichi, et al. "Overcoming short-circuit in lead-free CH3NH3SnI3 

perovskite solar cells via kinetically controlled gas–solid reaction film fabrication 

process." The journal of physical chemistry letters 7.5 (2016): 776-782. 

[6]  Giustino, Feliciano, and Henry J. Snaith. "Toward lead-free perovskite solar cells." ACS 

Energy Letters 1.6 (2016): 1233-1240. 

[7] Noel, Nakita K., et al. "Lead-free organic–inorganic tin halide perovskites for 

photovoltaic applications." Energy & Environmental Science 7.9 (2014): 3061-3068. 

[8] Stoumpos, Constantinos C., et al. "Hybrid germanium iodide perovskite 

semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, 

and strong nonlinear optical properties." Journal of the American Chemical Society 137.21 

(2015): 6804-6819. 

[9]  Meng, Weiwei, et al. "Parity-forbidden transitions and their impact on the optical 

absorption properties of lead-free metal halide perovskites and double perovskites." The 

journal of physical chemistry letters 8.13 (2017): 2999-3007. 

[10] Deschler, Felix, et al. "High photoluminescence efficiency and optically pumped lasing 

in solution-processed mixed halide perovskite semiconductors." The journal of physical 

chemistry letters 5.8 (2014): 1421-1426. 

[11] Grätzel, Michael. "The light and shade of perovskite solar cells." Nature materials 13.9 

(2014): 838-842. 



                                                                                                                         General Introduction  

 

 
4 

[12] Yantara, Natalia, et al. "Inorganic halide perovskites for efficient light-emitting 

diodes." The journal of physical chemistry letters 6.21 (2015): 4360-4364. 

[13] Tan, Zhi-Kuang, et al. "Bright light-emitting diodes based on organometal halide 

perovskite." Nature nanotechnology 9.9 (2014): 687-692. 

[14] Dou, Letian, et al. "Solution-processed hybrid perovskite photodetectors with high 

detectivity." Nature communications 5.1 (2014): 5404. 

[15] Bao, Chunxiong, et al. "High performance and stable all‐inorganic metal halide 

perovskite‐based photodetectors for optical communication applications." Advanced 

materials 30.38 (2018): 1803422. 

[16]  Silfvast WT. Laser Fundamentals. Cambridge: Cambridge University Press; 2008. 

https://doi.org/10.1017/CBO9780511616426 

[17] Yettapu, Gurivi Reddy, et al. "Terahertz conductivity within colloidal CsPbBr3 

perovskite nanocrystals: remarkably high carrier mobilities and large diffusion lengths." 

Nano letters 16.8 (2016): 4838-4848. 

[18] Shi, Dong, et al. "Low trap-state density and long carrier diffusion in organolead 

trihalide perovskite single crystals." Science 347.6221 (2015): 519-522. 

[19] De Wolf, Stefaan, et al. "Organometallic halide perovskites: sharp optical absorption 

edge and its relation to photovoltaic performance." The journal of physical chemistry 

letters 5.6 (2014): 1035-1039. 

[20] Protesescu, Loredana, et al. "Nanocrystals of cesium lead halide perovskites (CsPbX3, 

X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color 

gamut." Nano letters 15.6 (2015): 3692-3696. 

[21] Mittal, Mona, et al. "Size of the organic cation tunes the band gap of colloidal 

organolead bromide perovskite nanocrystals." The journal of physical chemistry letters 

7.16 (2016): 3270-3277. 

[22] Igbari, Femi, Zhao‐Kui Wang, and Liang‐Sheng Liao. "Progress of lead‐free halide 

double perovskites." Advanced Energy Materials 9.12 (2019): 1803150. 



                                                                                                                         General Introduction  

 

 
5 

[23] Du, Ke‐zhao, et al. "Bandgap engineering of lead‐free double perovskite Cs2AgBiBr6 

through trivalent metal alloying." Angewandte Chemie International Edition 56.28 

(2017): 8158-8162. 

[24] Karmakar, Abhoy, et al. "Tailorable indirect to direct band-gap double perovskites 

with bright white-light emission: decoding chemical structure using solid-state NMR." 

Journal of the American Chemical Society 142.24 (2020): 10780-10793. 

[25] Asghar, Mazia, et al. "A computational insight of the lead‐free double perovskites 

Rb2AgSbCl6 and Rb2AgSbBr6 for optoelectronic and thermoelectric applications." 

International Journal of Energy Research 46.15 (2022): 24273-24285. 

[26] Madsen, Georg KH, et al. "Efficient linearization of the augmented plane-wave 

method." Physical Review B 64.19 (2001): 195134. 

[27] Schwarz, Karlheinz, Peter Blaha, and Georg KH Madsen. "Electronic structure 

calculations of solids using the WIEN2k package for material sciences." Computer physics 

communications 147.1-2 (2002): 71-76. 

[28]  Blaha, Peter, et al. "WIEN2k: An APW+ lo program for calculating the properties of 

solids." The Journal of chemical physics 152.7 (2020). 

[29] Wu, Zhigang, and Ronald E. Cohen. "More accurate generalized gradient 

approximation for solids." Physical Review B 73.23 (2006): 235116. 

[30] Tran, Fabien, and Peter Blaha. "Accurate band gaps of semiconductors and insulators 

with a semilocal exchange-correlation potential." Physical review letters 102.22 (2009): 

226401. 

  

 



 

 

Chapter 
 

 

 

 

 

 

 

 

 

 

         I 
 

 

 

 

 

 

 

  

perovskite for Solar Cells 



Chapter I                                                                                          perovskite for Solar Cells 
 

 
6 

I.1 Introduction  

     In a few short years, halogenated perovskites have emerged as promising candidates 

for photovoltaic applications. Their typical properties enable perovskite cells to nearly 

match the conversion efficiencies of silicon cells, which are the most prevalent and well-

established technology. This first chapter provides the background and objectives of this 

thesis. It begins by detailing the various properties of perovskite, followed by an overview 

of different deposition techniques for this material. Next, it explains the operation of 

photovoltaic cells, with a focus on both silicon and perovskite cells. Finally, the chapter 

introduces the concept of light trapping and how it is used in solar cells. 

I.2 THE SOLAR CELLS 

   I.2.1 History 

     The history of solar cells dates back to 1839, when French physicist Edmond Becquerel 

[1] discovered the photovoltaic effect. He showed that exposure to light caused an electric 

current to form between two electrodes coated with silver chloride or oxidized copper 

and immersed in an electrolyte. He investigated the variation in intensity based on the 

wavelength used, marking the first study of the photoelectric effect. After Willoughby 

Smith discovered the photoconductivity of selenium in 1873, William Grylls Adams and 

Richard Evans Day demonstrated the photovoltaic effect in a selenium rod [2.3]. Around 

1883, Charles Fritts created the first selenium solar cell, which had an efficiency of 1% 

[4]. This cell consisted of a selenium film sandwiched between a copper electrode and a 

semi-transparent gold electrode. To achieve higher efficiencies, D. Chapin, C. Fuller, and 

G. Pearson of Bell Labs introduced the first silicon-based solar cells with a P-N [5] junction 

in 1954, achieving 5% efficiency and paving the way for photovoltaic panels. Due to their 

high cost, these cells were initially used only in space research to power satellites needing 

long-lasting energy. Rapid advancements soon increased the efficiency to 9%. In 1958, the 

first solar cells were launched on the Vanguard 1 satellite [6]. This was followed by the 

installation of the first solar panels on the Explorer 6 satellite in 1959 [7]. Their successful 

use in these applications demonstrated their reliability and robustness. From the 1970s 

onwards, photovoltaic panels began to be developed for use on land and at sea, providing 

power to areas without access to an electricity grid. Since then, the cost of solar panels 

has steadily decreased. 



Chapter I                                                                                          perovskite for Solar Cells 
 

 
7 

A more precise understanding of the physical phenomena involved in converting light to 

current in silicon has led to the development of new cells with increasingly complex 

structures and materials. The goal is to enhance efficiency, optimize manufacturing 

processes, and integrate these advancements into solar panels. This has driven research 

into new materials such as III-V semiconductors, which are composed of elements from 

groups III and V of the periodic table. In 1970, Zhores Alferov's team in the USSR 

developed solar cells based on gallium arsenide (GaAs), demonstrating the high efficiency 

of this compound material [8]. A decade later, advancements in GaAs research enabled 

higher yields than those achieved with crystalline silicon-based cells. From the 1990s on, 

GaAs cells replaced silicon as the most commonly used type for space applications. Later, 

double- and triple-junction solar cells based on GaAs with layers of germanium and 

gallium-indium phosphide were developed, achieving record efficiencies of 32%. These 

cells powered the Mars Exploration Rover missions, Spirit and Opportunity, which 

explored Mars from 2004 to 2019 [9]. Other materials have also emerged, including 

cadmium telluride, copper indium gallium selenide, amorphous silicon thin films, and 

organic-inorganic hybrid perovskites. Intense research over the past decade has focused 

on perovskites due to their high efficiency and low manufacturing costs. The first 

perovskite-based cells, developed by Tsutomu Miyasaka's team, achieved conversion 

efficiencies of 4% [10]. Since then, research teams worldwide have made rapid progress, 

and by 2016, some laboratories had boosted the efficiency of perovskite-based cells to 

over 22%, comparable to silicon cells. This rapid advancement has made perovskite the 

fastest-developing solar technology in history [11]. 

   I.2.2 Principles of solar cell operation 

     The photovoltaic effect is the mechanism that transforms light into electricity within a 

solar cell composed of semiconductor material. Although a semiconductor typically 

behaves as an insulator, it can act as a conductor when its valence electrons are excited 

into the conduction band. When a photon is absorbed photoelectrically by the material, it 

imparts its energy to an electron. If this energy surpasses the semiconductor's band gap—

the energy difference between the valence band and the conduction band—the electron 

moves into the conduction band, creating a hole in the valence band. Consequently, the 

semiconductor transitions into a conductive state.  
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To enhance conductivity, specific impurities are added to the semiconductor in a precise 

process called doping, which can be of two types: P-type and N-type. N-type doping 

involves introducing electron-donor atoms to the semiconductor to increase the number 

of free electrons, while P-type doping involves adding electron-acceptor atoms to increase 

the number of holes. For instance, in a silicon crystal, each silicon atom bonds with four 

neighboring atoms using its four valence electrons. If a silicon atom is replaced by an atom 

with five valence electrons, like phosphorus, one electron remains unbonded and free to 

move, resulting in an N-doped semiconductor. Conversely, if an atom with three valence 

electrons, such as boron, is introduced, a hole is created due to the missing electron 

needed for bonding, resulting in a P-doped semiconductor. 

Doping, therefore, produces the appearance of new electron acceptor and donor levels in 

the band structure of the doped material. These levels appear between the conduction 

band and the valence band, i.e., in the gap. 

The PN junction, depicted in figure I.1, occurs where a P-doped region meets an N-doped 

region. At this junction, free electrons from the N-doped side fill the holes in the P-doped 

side, creating a "depletion zone" or "space charge zone" devoid of mobile charges. 

Additionally, an electric field is established from the N region to the P region. 

A solar cell is typically a PN junction photodiode that produces current when exposed to 

light. The efficiency of photovoltaic conversion primarily relies on three key physical 

processes: the absorption of light by the material, the conversion of photon energy into 

electrical charge, and the collection of these charges.  

Optical and electrical properties must therefore be optimized for photovoltaic conver    

                        

Figure I.1: Diagram of a p-n junction under equilibrium conditions (a) and under 

illumination (b) 
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Absorption must be optimized across the entire solar spectrum. As illustrated in figure 

I.2, this spectrum ranges from ultraviolet (UV) to far infrared (IR), with a peak emission 

around 500 nm. The maximum solar power reaching the Earth's surface is approximately 

1,000 W/m2 for a surface oriented perpendicular to the radiation. 

    

Figure I.2: the solid black line, representing the emission from an ideal black body, 

depicts the solar spectrum [12]. 

 The yellow spectrum indicates the extraterrestrial sunlight spectrum (air mass (AM) = 

0), while the red spectrum shows the terrestrial sunlight spectrum (air mass (AM) = 1.5). 

Following photon absorption, the electron-hole pairs created, commonly referred to as 

"excitons,"  will behave differently depending on whether the interaction takes place in 

the N and P regions or in the space charge zone. When charges are created in the depletion 

zone, they are immediately separated by the prevailing electric field. Holes and electrons 

move to the P and N regions, respectively. This charge transport produces a current 

known as the "photo generation current." In the N and P regions, the charges created are 

not subjected to an electric field but diffuse over a length, called the diffusion length, 

which depends on the material's characteristics. This length corresponds to the average 

distance traveled by a charge carrier before recombination. It is not the same for electrons 

and holes and is expressed as: 

                                                        𝐋 = √𝐃𝛕                                                       (I.1) 
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With D the charge carrier diffusion constant and 𝜏 its lifetime. 

Charges that diffuse into the space charge zone contribute to the generation of a current 

known as the "diffusion current." The total photonic current is the sum of the generation 

current and the diffusion current, directly proportional to the incident light absorbed. 

Metallic contacts positioned on both sides of the semiconductor enable this current to 

flow into an external circuit. Typically, these contacts form a grid on the front face and a 

solid surface on the rear face of the solar cell. 

    I.2.2.1 A solar cell's characteristics 

     Typically, a photovoltaic cell is defined by its current-voltage (I-V) curve, which is 

obtained under calibrated illumination equivalent to the power of sunlight. The 

measurement involves applying an electrical voltage between the two semiconductor 

electrodes and measuring the resulting current flow. 

The current-voltage characteristic of a photodiode without illumination is similar to that 

of a conventional diode (electronic component). When the photodiode is forward-biased, 

an exponential increase in current is observed. When the photodiode is reverse-biased, a 

small reverse saturation current appears. This current is known as the black current and 

is significantly temperature-dependent : 

                                      𝐈𝐃 = 𝐈𝐬 [𝐞𝐱𝐩 (
𝐪𝐕

𝐤𝐓
) − 𝟏]                                               (I.2)  

𝐈𝐃 is the dark current, 𝐈𝐬 is the inverse saturation current, q is the electron charge, V is the 

applied voltage, k is Boltzmann's constant, and T is the absolute temperature. 

When the photodiode is illuminated, the current-voltage characteristic is shifted by the 

amount of photo-current. We therefore have : 

                                     𝐈𝐭𝐨𝐭𝐚𝐥 = 𝐈𝐬 [𝐞𝐱𝐩 (
𝐪𝐕

𝐤𝐓
) − 𝟏] − 𝑰𝒑                                     (I.3) 

With 𝑰𝒑, photo-current. 

This equation, also referred to as the Shockley equation [13.14], is depicted in Figure 1.3, 

illustrating the characteristic curve both in the presence and absence of illumination. The 

current is expressed as current density, which is the ratio of current to the active cell 

surface area. This curve is essential for determining key solar cell parameters, including 
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the short-circuit current density (Jsc), open-circuit voltage (Voc), and maximum power 

output (Pmax). 

 

 

 

     Figure I.3:  A schematic diagram shows a J-V curve in darkness (black dashed line) 

and under illumination (red solid line). 

The red rectangle indicates the cell's maximum output power, "Pmax," while the blue 

rectangle represents the maximum power of an ideal cell, "Pth." The fill factor (FF) is 

calculated by comparing the areas of these two rectangles. The current generated by the 

cell under illumination at zero voltage is "Jsc," and the voltage at zero power density is the 

open-circuit voltage, "Voc"[15]. 

The open-circuit current (JSC) is the highest current a solar cell can produce and occurs 

when the voltage is zero. Its value increases with the intensity of incident light and is 

influenced by carrier mobility, temperature, illuminated surface area, and the wavelength 

of the incident radiation [16, 17]. The open-circuit voltage (Voc) is the voltage at which 

the current flow is zero. The product of Voc and Jsc gives the maximum power, Pideal, for an 

"ideal" cell. Under real-life conditions, the actual maximum power, Preal, is derived from 

the power versus voltage (V) curve. The peak of this curve determines the actual 

maximum voltages, Vm and Jm. 
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The ratio of Preal to Pideal power quantifies the efficiency of converting absorbed light into 

electrical power. This value, known as the fill factor (FF), ranges from 0 to 1. A higher fill 

factor means greater efficiency (Figure 1.3). 

Efficiency, denoted as "ŋ," is the primary parameter of a photovoltaic cell. It represents 

the ratio of the maximum power output, Preal, to the incident power, Pinc. This metric is 

commonly used to compare different photovoltaic cells. 

Despite the high absorption efficiency of visible photons, the theoretical maximum 

efficiency of a single-junction PN cell is limited. Shockley and Queisser calculated this limit 

to be around 33% [18]. The main power losses result from the mismatch between the 

energy of incident photons (ranging from 0.5 to 2.9 eV in the solar spectrum) and the 

semiconductor gap. Photons with energy lower than the gap are not absorbed and are 

lost, while photons with higher energy release excess energy as heat instead of electricity, 

increasing the cell's temperature and reducing efficiency. Additionally, other factors 

related to material quality, such as electron/hole pair recombination, also decrease 

efficiency. 

Shockley and Queisser's model can be used to determine the maximum possible efficiency 

of a cell based on the semiconductor gap when exposed to 1.5 G solar radiation under air 

mass conditions. This efficiency limit is illustrated in Figure 1.4, which also displays the 

efficiencies achieved with the most common single-junction semiconductors. 

 

Figure I.4: Shockley-Queisser efficiency limit as a function of the gap considering solar 

radiation (AM 1,5 G) [19,20] 
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Researchers are exploring various cell concepts and architectures, including multi-

junction solar cells, to overcome this limit. These cells use different materials with varying 

electron gap values, each selected to absorb light at a specific energy within the solar 

spectrum. This approach significantly enhances the overall current produced 

I.2.2.2 State-of-the art solar cells  

       Numerous technologies are based on the photovoltaic effect, many of which are still 

in the research and development stages. The National Renewable Energy Laboratory 

(NREL) updates a graph biannually, illustrating the progression of record efficiencies for 

most photovoltaic technologies from 1976 to the present (see Figure 1.5). These 

efficiencies are measured using a standardized international protocol by independent 

laboratories [21]. The graph uses different colors to represent various technology 

families: crystalline silicon cells, single-junction gallium arsenide cells, multi-junction 

cells, thin-film technologies, and emerging technologies. Each of the 28 sub-categories 

ismarked with distinctive colored symbols, with the latest world record for eatch 

technology highlighted along the right-hand edge, showing the efficiency and 

corresponding symbol. 
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Figure I.5:  Record efficiencies of solar cells and photovoltaic modules from 1976 to 

2022, classified by technology [22]. 

The graph in Figure I.5 illustrates perfectly both the great diversity of photovoltaic 

technology and the constant progress made, year after year, in efficiency performance. 

To maintain clarity, we can categorize these technologies into four primary groups: 

crystalline silicon cells, thin-film cells, organic photovoltaic cells, and hybrid cells. 
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Figure I.6: Classification of the main solar cell technologies: crystalline silicon, thin film, 

organic, and hybrid [23]. 

Crystalline silicon cells, utilizing doped silicon as the active element, are the oldest and 

most prevalent solar technology, comprising over 80% of the market for solar panel 

materials. Their popularity is due to their durability, high yield performance, and long 

lifespan of several decades. This mature technology has seen significant investment in 

silicon processing, cell production, and module assembly. Crystalline silicon cells are 

divided into two types: monocrystalline and polycrystalline. Monocrystalline silicon cells 

offer very high efficiency (20%) but come with relatively high production costs [24]. 

The Czochralski process, a delicate and energy-intensive method of crystallogenesis, is 

used to produce single crystals [25.26]. While this technique is well-known and utilized 

in the microelectronics industry, the single crystals formed as rods restrict the size of a 

solar cell to that of a silicon wafer. In contrast, polycrystalline silicon solar cells are easier 

and less expensive to manufacture. 

Polycrystalline silicon is created by remelting purified silicon blocks and cooling them in 

a rectangular ingot mold. While their efficiency (ŋ ~ 11–15%) is lower than that of 

monocrystalline silicon, they are less sensitive to ambient temperature. This makes 

polycrystalline cells particularly suitable for regions with abundant sunlight [27]. 
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Thin-film solar cells feature a thin semiconductor layer, only a few microns thick, applied 

to a substrate such as glass (solid), plastic (flexible), or metal (flexible). The most 

commonly used semiconductor materials include hydrogenated amorphous silicon (a-

Si).cadmium tellurium (CdTe), copper indium gallium (di) selenium (CIGS), and copper 

zinc tin sulfide (CZTS). Unlike crystalline silicon cells, which are 200 to 300 μm thick, thin-

film cells are lighter, often more flexible, and easier to manufacture, making them less 

expensive. However, they have lower efficiency, and their performance degrades quickly 

over time. Despite this, thin-film cells have a much faster energy payback time (the time 

it takes for a solar cell to generate the amount of energy used to produce it) compared to 

crystalline silicon cells [28]. 

The main thin-film solar cell technologies developed are described below: 

 Hydrogenated amorphous silicon: is utilized in p-i-n junction cells. This 

configuration has reached efficiencies near 10% for commercial cells and 21.5% in 

laboratory settings [29]. However, these solar cells' efficiency is significantly 

impacted by light, which creates dangling bonds that serve as charge carrier traps, 

resulting in a performance decline of 10% to 20% within the first few months of 

use. 

 Cadmium telluride solar cells : have efficiencies of approximately 12.5% for 

commercial versions, with an experimental cell from First Solar achieving 18.7% 

efficiency. While tellurium is a rare element and cadmium is highly toxic, these 

cells are less sensitive to changes in ambient temperature compared to crystalline 

cells, losing only 3% of their power per 10 °C increase, compared to 5% for 

crystalline cells. Additionally, cadmium telluride cells offer excellent long-term 

stability [30, 31]. 

 Copper indium gallium (di)selenide (CIGS): CIGS cells are made of copper, 

gallium, indium, and selenium. They feature a 1 to 2.5 μm-thick p-doped layer 

coated with an n-type material, such as cadmium sulfide (CdS), which is only 40 to 

70 nm thick. The highest efficiency achieved is 20.4% for a low-cost, rigid-thin 

structure and 19% for a flexible structure. These cells have very low thermal 

sensitivity, even lower than CdTe cells. Additionally, they do not contain toxic 

elements, thus minimizing environmental and health impacts. 
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 Copper, zinc, and tin sulfide: CZTS cells consist of copper, zinc, tin, sulfur, and 

selenium, with the formula Cu2ZnSnS4. Their optical properties are similar to those 

of CIGS cells, but they use abundant, non-toxic elements, unlike tellurium or 

indium. Additionally, these compounds are much cheaper. However, their 

experimental efficiency is only 11.1%, about half that of CIGS cells. 

 Gallium arsenide (GaAs): It is a reference system for thin-film solar cells. They 

show very high laboratory efficiencies on single-junction devices (30%). They 

have the advantage of being lightweight, flexible, and having good thermal 

resistance, and they continue to produce electricity under poor weather conditions 

(rain, clouds, etc.). They are mainly used for space applications. However, the 

production of GaAs-based solar cells remains costly and requires a well-controlled 

packaging process. 

To reduce manufacturing costs and improve energy efficiency, extensive research has 

centered on organic photovoltaic cells [32, 33]. These cells consist of organic molecules 

distributed across the active layer. The technology offers advantages such as simple and 

low-energy manufacturing processes (like screen printing, centrifugal coating, or inkjet 

methods) using abundant and inexpensive materials. They can be deposited on flexible 

substrates in various colors. Moreover, they require relatively small quantities of 

materials, typically with film thicknesses around a hundred nanometers. 

     I.2.3 Advantages and disadvantages of solar energy 

      I.2.3.1 Advantages 

 High reliability is ensured by most photovoltaic module manufacturers, who offer 

warranties that typically extend up to 25 years. 

 The modular nature of photovoltaic panels allows for easy adaptation to 

applications ranging from milliwatts to megawatts in power ratings. 

 Low operational and maintenance expenses. 

 This technology has a beneficial environmental impact. 

 I.2.3.2 Disadvantages 

 The manufacturing cost of specific photovoltaic systems remains elevated due to 

initial investment requirements. 
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 Solar installations require substantial land area for operation. 

 Limited competition exists between solar generators and diesel or natural gas 

generators. 

 The efficiency remains relatively modest as of now (28% is currently available). 

 The critical factor is energy storage, which necessitates batteries and affects the 

installation costs. 

I.3 The perovskite materials 

   I.3.1 Description and definition of perovskite 

     The term "perovskite" originally described a cubic, grayish mineral made of calcium 

titanate oxide (CaTiO3). This mineral was discovered in 1839 by A.B. Kemmerer during an 

expedition in the Ural Mountains, Russia. Concurrently, mineralogist Gustave Rose 

examined the mineral and named it perovskite in honor of Lev Alexeievitch Perovski [34]. 

Since then, various materials with a crystalline structure similar to CaTiO3 have been 

discovered and studied for their physical properties, including ferroelectricity [35], 

ferroelasticity[36], and  ferromagnetism [37]  . 

                                               Figure I.7: Perovskites in nature 

Several years after the discovery of CaTiO3, Christian Moller showed that this perovskite 

oxide crystallizes in an orthorhombic structure at room temperature with a = 5.367 Å, b 

= 7.644 Å, and c = 5.444 Å in a Pcmn [38] space group. The crystalline structure is 

described as TiO6 octahedra linked by their vertices in the three directions of space. The 
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interstices between the TiO6 octahedra contain Ca2+ cations. The name "perovskite" 

therefore refers to materials with a crystalline structure similar to CaTiO3, generally 

formulated by the chemical structure ABX3, where A and B are mainly cations and X is an 

anion. For several decades, perovskite oxides (with X = O2) have been widely studied. The 

chemical versatility of this material allows its formula to be modified by substituting the 

oxide with chalcogens like X = S2-, Se2-, and Te2-, or halogens like X = Cl-, Br-, and I-. 

Numerous anion and cation combinations can form a perovskite. However, specific 

conditions are necessary for perovskite formation: chemical neutrality among elements 

A, B, and X, strong octahedral stability, and adherence to the Goldschmidt tolerance factor 

[39]. 

   I.3.2 History of perovskites 

     The family of perovskite oxides has seen remarkable growth since the 1940s, beginning 

with the discovery of BaTiO3's ferroelectric properties in 1946 [40]. Over the decades 

from the 1940s to the 2000s, numerous perovskite oxide compounds have been 

identified. Examples include BaTiO3 and Pb3MgNb2O3, which are used in capacitors; 

PbZrTiO3 for piezoelectric materials and/or superconductors; and Ba2Cu3O3. Additionally, 

during this period, the first two-dimensional perovskite, with the general formula Bi2An-

1BnO3n+3, was developed [41].It possesses ferroelectric properties and high ionic 

conductivity. While perovskite oxides were extensively researched during this period, a 

different type of perovskite was synthesized in 1884: the 2D halogenated hybrid 

perovskite (CH3NH3)2CuCl4. This structure is termed "hybrid" because the cation A is an 

organic molecule and "halogenated" because the anion X is a halogen (I-, Br-, Cl-). A few 

years later, the first lead-based halogenated 3D perovskites, such as CsPbX3, were 

synthesized. It was only much later that the crystallographic structure and optoelectronic 

properties of these compounds were documented [42-43]. In 1958, Weber replaced the 

monovalent cation Cs+ with an organic molecule, resulting in the first three-dimensional 

halogenated hybrid perovskite, CH3NH3PbI3. Subsequent research focused on 3D 

halogenated hybrid perovskites with the chemical formula (CH3NH3)PbX3, where X 

represents the halogens I-, Br-, and Cl- [44]. The 2D halogenated hybrid perovskite 

(CnH2n+1NH3)2MnCl4 has shown luminescent properties, which allowed us to create the 

first LED with an efficiency of 0.11% [45]. Halogenated perovskites, due to their 

remarkable optoelectronic properties, have been highly popular since the 1990s, making 
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them strong contenders in various fields such as diodes and photovoltaics. The first solar 

cell made from 3D halogenated perovskite (CH3NH3)PbI3, also known as MAPI, achieved 

an efficiency of 3.8% and is regarded as a benchmark for this type of material. Since then, 

efforts to improve the efficiency of perovskite-based solar cells have continued, with a 

record efficiency now reaching 25.5% [46]. MAPI's optoelectronic properties allow it to 

absorb the entire solar spectrum, from visible light to near infrared. However, it is 

unstable with temperature fluctuations and humidity. Alternatives like CH3NH3PbBr3, 

FAPbBr3, and CsPbBr3 perovskites offer better stability in atmospheric conditions but 

have reduced spectral absorption, leading to lower external yields in solar cells. The use 

of lead in halogenated perovskites is controversial due to toxicity and environmental 

concerns. To address this, perovskites with other metal cations such as Sn+, Sb+, Ti+, Ge+, 

or Cu+ have been synthesized. The highest external efficiency achieved so far is 11.22% 

with a FASnI3- based solar cell [47]. 

This thesis will study perovskites with high yields, specifically lead-free halide-based 

multi-cation and mixed halogen systems. 

   I.3.3 The crystalline arrangement of perovskite materials 

     Depending on the choice of origin, the structure can be described in two ways. In the 

first method (Figure I.7), A is at the origin (position 1a: 0, 0, 0), B is at the center of the 

cube (position 1b: ½, ½, ½), and the X atoms are in the middle of each edge (position 3d: 

0, 0, ½). In the second method, shifting the origin by the vector (½, ½, ½) places A at 

position 1b (½, ½, ½), B at position 1a (0, 0, 0), and the X atoms in the middle of each face 

(position 3c: 0, ½, ½). This arrangement is known as a face-centered cubic type stack 

(ABCABC). These compounds have the general formula ABX3, where A is a large cation 

(such as Sr, Ba, Pb, or Bi), B is a smaller cation (such as Ti, Zr, Fe, or Sc), and X is typically 

a halide ion [48]. In its classical form, described as a stack of polyhedra, the X anions and 

B cations create regular BX6 octahedra connected at their vertices along the [100] 

directions of the cube. The larger A cations are positioned at the center of the large 

octahedral cavities formed by 8 BX6 octahedra. This is the structure of the compound 

SrTiO3 at room temperature, for example [49]. For over four decades, ABO3 perovskite 

oxides have attracted significant interest due to the ease of altering the cations A and B in 

their structure. Changing these elements can modify the material's properties, allowing 

for a wide range of physical characteristics (such as semi-metallicity, semi-conductivity, 
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ionic conductivity, metal conductivity, and superconductivity) depending on the chemical 

and electronic nature of the A and B atoms [50]. 

  

                  Figure I.8: The ideal structure for ABX3 perovskite [51]. 

The crystal lattice of an ideal perovskite structure is a centrosymmetric simple cubic, 

forming a compact three-dimensional stack that almost entirely prevents the formation 

of interstitial compositions. Consequently, it is often described as a network of BO6 

octahedra connected at their vertices, as illustrated in Figure I.8 [52].  

Figure I.9: Three-dimensional arrangement of BO6 octahedra in the perovskite 

structure. 

I.3.3.1 Type of perovskite structure 

 I.3.3.1.a Simple perovskite structures 

Generally, the fundamental crystal lattice of an ABO3 perovskite is cubic. It consists of 

octahedra formed by six oxygen anions, with alkaline earth cations located at the corners 
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of the cube (12-coordination) and B transition cations at the center (octahedral 

coordination). In ABO3 structures, the A and B sites are occupied by a single type of atom; 

examples include SrTiO3, BaTaO3, and PbTiO3 [53]. 

 I.3.3.1.b The complex perovskite structures 

     These are perovskites where either the A or B site is occupied by two types of atoms. 

The distribution of these atoms can be random or ordered, as seen in compounds used for 

making capacitors. These structures follow the ABO3 format, with either the A or B sites 

occupied by two types of atoms. For example, K0.5Bi0.5TiO3 and Na0.5Bi0.5TiO3 [54]. 

I.3.4 The different families of perovskite 

 I.3.4.1 The perovskite oxides ABO3 

     Complex oxides with a perovskite structure have garnered significant interest and have 

been extensively studied for over 50 years. The chemical formula of perovskite is ABO3, 

consisting of a divalent cation A, a metal cation B, and oxygen as an anion [55]. 

 I.3.4.2 Halogen perovskites 

     Halogenated perovskites have been extensively studied since 2012. When the cation A 

in the ABX3 perovskite is an organic cation, the material is known as a hybrid perovskite. 

In this structure, X is a halide (Cl-, Br-, or I-), and B is a divalent ionic metal such as Pb2+ or 

Sn2+, as well as Cu2+, Co2+, Fe2+, Mn2+, Cr2+, Ge2+, Eu2+, Cd2+, or Yb2+. These halogenated 

perovskites can also be entirely inorganic when the cation A is an alkali metal like cesium 

(Cs+) [56]. 

I.3.5 Transition from single to double perovskites 

 I.3.5.1 Simple perovskite materials containing halogens 

            Simple perovskite halides are a category of materials characterized by a 

perovskite-type crystal structure, which features a cube-shaped arrangement with a 

metal ion at the center surrounded by halide ions. These compounds have the formula 

ABX3, where A represents an alkali cation, B denotes a metal cation, and X denotes a halide 

anion. 
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  These materials are increasingly investigated for their potential as photovoltaic 

materials due to their optimal band gap for efficient conversion of solar energy into 

electricity. Moreover, they can be produced from solutions, enabling cost-effective, large-

scale manufacturing. However, challenges such as long-term stability and toxicity need to 

be addressed before they can be widely adopted for commercial photovoltaic 

applications. 

 I.3.5.2 Doubles Pérovskites 

       Ordered double perovskite oxides were first proposed by WARD and LONGO in 1960. 

They consist of two alternating simple perovskites (ABO3) and (A'B'O3) along the three 

crystallographic directions. They are designated by a general formula (AA'BB'O6) where 

A and A' can be alkaline earth metals or lanthanides, and B and B' are transition metals. 

This structure was first proposed by Longo and Ward in 1961 [57]. It is derived from the 

perovskite ABO3 when half of the octahedral BO6 is replaced by other suitable octahedral 

B'O6 cations, where the A cation is typically a large cation with a low oxidation state and 

B is a smaller cation, either a transition metal or a lanthanide. In the case of the ABO3 

perovskites studied, depending on the type of A and B cations involved, the cubic 

symmetry of the prototype perovskite structure can be lowered. In the ideal structure, the 

ions are tangent to each other. The BO6 octahedra are then perfectly aligned, forming an 

undistorted three-dimensional lattice of cubic symmetry. The stability of this ideal 

structure depends on the respective ionic radii of the cations and anions, as well as the 

difference in electronegativity between the cations and anions. 

Figure I.10: Structures of different perovskites: (a) ideal perovskite ABO3 and (b) 

double perovskite A2BB'O6. 
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I.3.6 Criteria for the stability of the perovskite structure 

     The stability of the perovskite structure is influenced by several factors, such as the size 

of the cations and anions, the pressure and temperature conditions, and the bonding 

forces between atoms. Nonetheless, there are general criteria that can help assess the 

stability of the perovskite structure: 

 The stability of the perovskite structure increases when cation A is larger than 

cation B. This is due to the polarization effect, which enhances the electrostatic 

interaction between ions of differing sizes. 

 The radius ratio between cations A and B is crucial for the stability of the perovskite 

structure. The critical radius ratio is 0.414; if the ratio falls below this value, the 

perovskite structure becomes unstable. 

 Coordination geometry: The perovskite structure features an octahedral 

coordination, where both the A and B cations are each surrounded by six anions. 

Any disturbance in this coordination geometry can impact the stability of the 

structure. 

 Crystal symmetry: The perovskite structure typically has cubic symmetry. Any 

disruption to this symmetry can negatively affect the stability of the structure. 

  I.3.6.1   Goldschmidt tolerance factor (t) 

     The introduction of a quantitative tolerance factor allows for the classification of 

various perovskite structures based on the ionic radii of the A, B, and X ions (denoted as 

rA, rB, and rX, respectively). This factor considers each ion as a hard sphere, determining 

whether they are in contact when the ideal perovskite structure is present :  

                                     𝐭 = 𝐫𝐀 + 𝐫𝐗√𝟐(𝐫𝐁 + 𝐫𝐗)                              (I.4) 

Then we can write: 

                                      𝐚 = 𝟐𝐫𝐎 + 𝟐𝐫𝐀                                               (I.5) 

On the other hand, along the diagonal of a face from the ionic radii of atoms A and O (origin 

at A): 

                                       𝐚√𝟐 = (𝟐𝐫𝐎 + 𝐫𝐀)                                        (I.6) 
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In the ideal case, it is therefore possible to write : 

                                        𝐫𝐎 + 𝐫𝐀 = √𝟐 𝐫𝐎 + 𝐫𝐁                                   (I.7) 

Or :  

                                        
𝐫𝐎+ 𝐫𝐀

√𝟐 𝐫𝐎+𝐫𝐁
= 𝟏                                                  (I.8) 

Where 𝐫𝐀, 𝐫𝐁 and 𝐫𝐎𝒓 𝒐𝒐 are respectively the ionic radii A (in 12-coordination), B (in 6-

coorddination) and O, given by Shannon and Prewitt [58-59], Generally, the radii of the 

A, B and O ions do not correspond to the ideal dimensions of the prototype structure and 

a tolerance factor t, called the Goldschmidt factor [60], has been added as follows : 

                                                          𝒕 =
𝐫𝐎+ 𝐫𝐀

√𝟐 𝐫𝐎+𝐫𝐁
                            (I.9)    

 This geometrical factor indicates how much the perovskite deviates from its ideal 

structure, suggesting a possible deformation. However, it only serves as an indicator and 

does not guarantee whether the perovskite will actually form. To determine that, 

experimental investigations are necessary, as other factors like kinetics and 

thermodynamics can also have an impact. 

    I.3.6.2 Departure from ideality 

     For an ideal structure, the Goldschmidt factor ttt is equal to one; for instance, t = 1.00 for 

SrTiO3. Experimentally, the perovskite structure is considered stable when 0.88 ≤ t ≤ 1.05. 

This range permits variations in the compositions, especially concerning the cations used. 

However, this factor is merely a geometric indicator and does not guarantee that a 

compound with a tolerance factor within this range will adopt a perovskite structure. This 

is particularly evident in the case of bismuth perovskites: compounds like BiGaO3, BiAlO3, 

or BiScO3 can only be synthesized under pressure, despite having a tolerance factor within 

the perovskite formation range [61-63]. This can be explained by the assumption that 

ions are ideal spheres with radii equal to their ionic radii when calculating the 

Goldschmidt factor. However, for bismuth (III), the presence of a non-bonding ns2 

electron pair invalidates this assumption. When t < 1, the B cation fits into the octahedral 

cavity, while the A cation is smaller than this cavity. This situation can cause the octahedra 

to rotate, minimizing the A-O distances and allowing the A cation to move out of the center 

of its cavity. This occurs in BiFeO3, where both A and B cations are displaced due to 
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octahedral rotation. The resulting structures can be either polar or non-polar, which is 

not ideal for ferroelectricity. For instance, in SrTiO3, the symmetry of the structure 

decreases at low temperatures, becoming quadratic below -168 °C with octahedral 

rotation, resulting in a non-ferroelectric compound [64]. The associated deformation is 

then purely ferroelastic and not ferroelectric. 

    I.3.6.3 The iconicity of anion-cation bonds 

     The difference in electronegativity between the ions significantly influences the 

stability of the perovskite structure. The ionic nature of this structure can be assessed by 

the average electronegativity difference, as measured on the Pauling scale. 

                                            𝜹𝝌 =
𝝌𝑨−𝑶+𝝌𝑩−𝑶

𝟐
                                      (I.10) 

Where: 𝝌𝑨−𝑶 and 𝝌𝑩−𝑶 represent the differences in electronegativity between A and O, on 

the one hand, and B and O [65]. 

   I.3.7 The applications of perovskites 

      In recent years, halide perovskites have become vital materials for various 

optoelectronic applications. In contrast, oxide perovskites have a much longer history and 

are crucial in numerous technological applications. Perovskite-based applications are 

increasingly being adopted in industry, featuring innovative projects such as 

superconducting materials used in Japan's magnetic levitation trains and electrical cables 

for urban distribution networks. Healthcare employs perovskite fluorine to measure 

doses during radiotherapy and to produce X-ray imaging plates. Perovskites are also 

utilized in sensors, magnetoresistance, transistors, solar cells, and high-voltage capacitors 

[66-69]. 
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 II.1 Introduction 

        The physical and chemical properties of matter in its atomic, liquid and solid aspects and 

their understanding can be described by the behavior of its constituents "electron and nucleus" 

and their interactions. The fundamental theoretical problem in solid state physics is to 

understand the inner organization of these particles which gives specific properties to the 

material. The calculation of its properties in the ground state of an N-electron system in a crystal 

is very difficult, as each particle interacts with all other particles. . The Schrödinger equation 

(1926) [1] becomes mathematically unsolvable. To overcome this difficult situation it was 

necessary to seek formalisms other than the traditional wave function to better describe the 

properties of a system.  

        In recent years, scientists have developed methods based on theoretical concepts known as 

the ab-initio methods, which attempt to predict the properties of materials by solving the 

quantum mechanical equations without using adjustable variables .Among the ab-initio 

methods, the density functional theory (DFT) [2]. DFT is a mean field method. It therefore 

proposes to replace the system of N interacting electrons by a fictitious system composed of N 

independent electrons, interacting with an external potential that was originally developed by 

Pierre Hohenberg and Walter Kohn in 1964 [3].further, this theory got improved by Kohn and 

Lu Sham in 1965  [4]. They treated the N-body problem with the single-particle Schrödinger-

type equations called the Kohn-Sham equations. Since then, DFT has been very successful in 

quantum calculations of the electronic structure of matter (atoms, molecules, solids) in both 

condensed matter physics and quantum chemistry. 

II.2 Schrödinger's equation 

      Solids are made up of an association of elementary particles: nuclei and electrons. The 

fundamental theoretical problem of solid state physics is to understand the intimate organization 

of these particles at the origin of their properties [5]. But in this case, classical mechanics proves 

to be insufficient and it is necessary to call upon quantum mechanics, the basis of which is the 

resolution of the Schrödinger equation established by Erwin Schrödinger in 1925 and which is 

written in the following form [6]: 

                                              𝑯
^

𝒕𝒐𝒕𝚿(𝒓
→
, 𝑹
→

) = 𝑬𝒕𝒐𝒕𝚿(𝒓
→
, 𝑹
→

)                                            (II.1) 

Where: 

𝑬𝒕𝒐𝒕 Denotes the total energy of the system described by 𝚿(𝒓
→
, 𝑹
→

) 

𝚿(𝒓
→
, 𝑹
→

) Is a function of all electronic and nuclear coordinates, which is time independent. 
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𝒓
→

= 𝒓𝟏, 𝒓𝟐, … , 𝒓𝒏 Represents the entire set of coordinates of the electrons while 𝑹
→

=

𝑹𝟏, 𝑹𝟐, … , 𝑹𝑵 represents the full set of coordinates of the cores. 

𝑯
^

𝒕𝒐𝒕 Represents the Hamiltonian operator of the total energy of a many-body system. It form is 

expressed as follows: 

                                       𝑯
^

= 𝑻
^

𝒆 + 𝑻
^

𝑵 + 𝑽
^

𝒆𝒆 + 𝑽
^

𝑵𝑵 + 𝑽
^

𝑵𝒆                                          (II.2) 

Where 𝑇
^

 and 𝑉
^

 are the operators for kinetic and potential energy, respectively. 

The general problem can be expressed as an equation of movement of all particles within the 

crystal. The exact Hamiltonian of the crystal (non-relativistic) results from the presence of 

electrostatic interaction forces (repulsion or attraction) depending on the charge of the particles 

(nucleus, electron) [6]. 

                                       𝑻
^

= 𝑻
^

𝒆 + 𝑻
^

𝑵                                                                                    (II.3) 

                                      𝑽
^

= 𝑽
^

𝒆𝒆 + 𝑽
^

𝑵𝑵 + 𝑽
^

𝑵𝒆                                                                      (II.4) 

𝑯
^

 Is a non-relativistic differential operator including all forms of energy [6]: 

The electron kinetic energy operator 𝑻
^

𝒆(𝒓
→
): 

𝑻
^

𝒆(𝒓
→
) = −

ħ𝟐

𝟐𝒎
∑  𝒏

𝒊 𝛁𝒊
𝟐   

The kinetic energy operator of nuclei  𝑻
^

𝑵(𝑹
→
): 

𝑻
^

𝑵(𝑹
→
) = −

ħ𝟐

𝟐𝑴
∑ 

𝑵

𝑰

𝛁𝑰
𝟐 

Potential energy operator of the coulombic interaction of repulsion between electron and 

electron 𝑽
^

𝒆𝒆(𝒓
→
): 

𝑽
^

𝒆𝒆(𝒓
→
) =

𝒆𝟐

𝟒𝝅𝜺𝟎
∑ 

𝒏

𝒊=𝟏

∑ 

𝒏

𝒋>𝑖

𝟏

|𝒓
→

𝒊 − 𝒓
→

𝒋|
 

Operator of the potential energy of coulombic interaction of attraction between nucleus and 

electron 𝑽
^

𝒆𝑵(𝒓
→
, 𝑹
→
): 

𝑽
^

𝒆𝑵(𝒓
→
, 𝑹
→
) = −

𝒆𝟐

𝟒𝝅𝜺𝟎
∑ 

𝒏

𝒊=𝟏

∑ 

𝑵

𝑰=𝟏

𝒁𝑰

∣ 𝒓
→

𝒊 − 𝑹
→

𝑰
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Operator of the potential energy of the coulombic repulsion interaction between nucleus and 

nucleus 𝑽
^

𝑵𝑵(𝑹
→
): 

𝑽
^

𝑵𝑵(𝑹
→
) =

𝒆𝟐

𝟒𝝅𝜺𝟎
∑ 

𝑵

𝑰=𝟏

∑ 

𝑵

𝑱>𝐼

𝒁𝑰𝒁𝑱

|𝑹
→

𝑰 − 𝑹
→

𝑱|
 

Thus, the global Hamiltonian becomes: 

𝐇
^

𝑻 = −
ħ𝟐

𝟐
∑  𝒊

𝛁𝟐𝑹
→

𝒊

𝑴𝒏
−

ħ𝟐

𝟐
∑  𝒊

𝛁𝟐𝒓
→

𝒊

𝒎𝒆
−

𝟏

𝟒𝝅𝜺𝟎
∑  𝒊,𝒋

𝒆𝟐𝒁𝒊

|𝑹
→

𝒊−𝒓
→

𝒋|
+

𝟏

𝟖𝝅𝜺𝟎
∑  𝒊≠𝒋

𝒆𝟐

|𝒓
→

𝒊−𝒓
→

𝒋|
+

𝟏

𝟖𝝅𝜺𝟎
∑  𝒊≠𝒋

𝒆𝟐𝒁𝒊𝒁𝒋

|𝑹
→

𝒊−𝑹
→

𝒋|
               (II.5) 

The calculation of the ground state energy of the system is analytically very difficult for most 

systems. Nevertheless, current mathematical knowledge does not yet allow the solution of 

equation. Knowing that with three interacting bodies it is impossible to solve this equation 

exactly, therefore numerous approximations have been developed to overcome this obstacle. 

II.3 Fundamental approximations  

    II.3.1 The Born-Oppenheimer approximation 

        It consists in separating the movement of the electrons from that of the nuclei [7]. 

Considering the large difference in mass between electrons and nuclei, the latter can be 

considered as fixed compared to electrons. So the electrons move quite a bit faster than the 

atomic nuclei. According to Born and Oppenheimer [8], electrons are always in their ground 

state, regardless of the position of the atomic nuclei. This approximation simplifies the 

Schrödinger equation, the kinetic energy terms of the nuclei and the nucleus-nucleus 

interactions, independent of the electrons, cancel each other out. The problem to be solved now 

is therefore a system of Ne electrons interacting in an external potential generated by the nuclei. 

The interaction term between the nuclei is only involved in the calculation of the total energy of 

the system, but not in the calculation of the electronic wave functions.  
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Figure II.1: Transition from a problem with n electrons and N nuclei to one with n electrons. 

 

The Hamiltonian can thus be defined as: 

                                                                     𝑯
^

𝒕𝒐𝒕 = 𝑻
^

𝒆 + 𝑽
^

𝒆𝒆 + 𝑽
^

𝒆𝑵                                            (II.6) 

Or:                        𝐇
^

𝑻 = −
ħ𝟐

𝟐
∑  𝒊

𝛁𝟐𝒓
→

𝒊

𝒎𝒆
−

𝟏

𝟒𝝅𝜺𝟎
∑  𝒊,𝒋

𝒆𝟐𝒁𝒊

|𝑹
→

𝒊−𝒓
→

𝒋|
+

𝟏

𝟖𝝅𝜺𝟎
∑  𝒊≠𝒋

𝒆𝟐

|𝒓
→

𝒊−𝒓
→

𝒋|
            (II.7) 

The Born-Oppenheimer approximation is called adiabatic [2] because it separates the electronic 

problem from the lattice vibration problem.  

Despite this reduction, the Schrödinger equation remains difficult to solve. The new total wave 

function of the system depends on the coordinates of all the electrons and cannot be decoupled 

therefore the problem cannot be solved especially using current computer resources. Therefore, 

further approximations are necessary. 

    II.3.2 Hartree-Fock approximation 

        In 1930 Fock [9] showed that Hartree [10]  solutions infringe the Pauli Exclusion Principle 

as they are not antisymmetric with respect to the exchange of two random electrons. The anti-

metrisation of the electronic wave function is written, for example, as follows: 

                             Ф(𝒓⃗ 𝟏, 𝒓⃗ 𝟐, … 𝒓⃗ 𝒊. 𝒓⃗ 𝒊+𝟏, … 𝒓⃗ 𝒋, 𝒓⃗ 𝑵𝒆
)=-Ф(𝒓⃗ 𝟏, 𝒓⃗ 𝟐, … 𝒓⃗ 𝒊. 𝒓⃗ 𝒊+𝟏, … 𝒓⃗ 𝒋, 𝒓⃗ 𝑵𝒆

)                          (II.8)  

Such a description obeys the Pauli Exclusion Principle, stating that two electrons of the same 

quantum number cannot simultaneously occupy the same quantum state. However, in the 
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Hartree formulation of the wave function, this is not the case, as the electron i occupies precisely 

the state i. 

Hartree and Fock generalized this concept by showing that Pauli's principle is respected if we 

write the wave function [11]   as a: <Slater's determinant> [12] 

      Ф(𝒓⃗ 𝟏𝝈⃗⃗ 𝟏, 𝒓⃗ 𝟐𝝈⃗⃗ 𝟐, … , 𝒓⃗ 𝑵𝒆𝝈⃗⃗ 𝑵𝒆)= 
𝟏

√𝑵𝒆  !
|

Ф𝟏(𝒓⃗ 𝟏𝝈⃗⃗ 𝟏) Ф𝟏(𝒓⃗ 𝟐𝝈⃗⃗ 𝟐) … Ф𝟏(𝒓⃗ 𝑵𝒆𝝈⃗⃗ 𝑵𝒆)

Ф𝟐(𝒓⃗ 𝟏𝝈⃗⃗ 𝟏) Ф𝟐(𝒓⃗ 𝟐𝝈⃗⃗ 𝟐)  … Ф𝟐(𝒓⃗ 𝑵𝒆𝝈⃗⃗ 𝑵𝒆)

Ф𝑵𝒆(𝒓⃗ 𝟏𝝈⃗⃗ 𝟏) Ф𝑵𝒆(𝒓⃗ 𝟐𝝈⃗⃗ 𝟐) … Ф𝑵𝒆(𝒓⃗ 𝑵𝒆𝝈⃗⃗ 𝑵𝒆)

|                    (II.9)    

 Where 𝝈⃗⃗  is the spin. 

  The function Ф given by equation leads to the Hartree-Fock equations for a one-particle system: 

(−
𝟏

𝟐
∆𝒊 + 𝑽𝒆𝒙𝒕(𝒓⃗ ) + ∑ ∫𝒅𝟑𝒓⃗ 

𝑵𝒆
𝒋=𝟏
(𝒋≠𝒊)

|Ф𝒋(𝒓⃗́ )
𝟐
|

|𝒓⃗ −𝒓⃗́ |
Ф𝒊(𝒓⃗ )-∑ 𝜹𝝈𝒊𝝈𝒋

𝑵𝒆
𝒋=𝟏
(𝒋≠𝒊)

∫𝒅𝟑𝒓⃗́ 
|Ф𝒋∗(𝒓⃗́ )Ф𝒊(𝒓⃗ )|

|𝒓⃗ −𝒓⃗́ |
Ф𝒊(𝒓⃗ )=𝜺𝒊Ф𝒊(𝒓⃗ )  

(II.10) 

These Hartree-Fock equations are difficult to solve when the system under study has a large 

number of electrons.  

Electron-electron interactions produce additional energy terms in addition to those of the 

Hartree approximation which are called Wigner correlation energy terms.  

II.4 Density functional theory (DFT) 

        Density functional theory constitutes another alternative to the formulation of the N-body 

problem. Its origin dates back to the pioneering works of Thomas [13] and Fermi [14]. They 

postulated that the electronic properties of an interacting electron system can be described in 

terms of an electronic density function. However, it was not until 1964 that Hohenberg and Kohn 

[15] provided the first truly rigorous formulation of density functional theory. 

     II.4.1 Thomas and Fermi's approach 

            In the model of Thomas [13] and Fermi [14], a system with a non-uniform but slowly 

varying electron density is subdivided into small regions in phase space. In each cell, the 

electrons behave identically, evolving into an effective potential 𝑉𝑒𝑓𝑓 given by the following 

equation:  

                                               𝐕𝐱(𝐫 ) = 𝐕𝐞𝐱𝐭(𝐫 ) ∫ 𝐝𝐫′⃗⃗ 
𝛒(𝐫′)⃗⃗⃗⃗  ⃗

|𝐫 −𝐫′⃗⃗  ⃗|
                                              (II.11)      

  The Thomas and Fermi model is a primitive theory of the density functional because the 

contributions to the total electronic energy are expressed solely as a function of the electronic 

density: 

𝐄𝐓𝐅𝛒(𝐫 ) =
𝟑

𝟓
 (𝟑𝛑𝟐)𝟑 𝟐⁄ ∫𝐝𝐫 𝛒𝟓 𝟐⁄ (𝐫 ) + ∫𝐝𝐫 𝐕𝐞𝐱𝐭(𝐫 )𝛒(𝐫 ) +

𝟏

𝟐
∬𝐝𝐫 𝐝𝐫′⃗⃗ 

𝛒(𝐫 )𝛒(𝐫′⃗⃗  ⃗)

|𝐫 −𝐫′⃗⃗  ⃗|
             (II.12)   
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The first term represents the kinetic energy of a system of electrons without density 

interaction 𝛒(𝐫 ); the second term describes the energy of an electric density in an external 

electrostatic potential 𝐕𝐞𝐱𝐭. Finally, the third term corresponds to the energy of coulombic 

electron-electron interaction. 

The Thomas-Fermi model introduces an incorrect function for kinetic energy. Moreover, this 

model, in its original version, does not account for exchange and correlation effects. However, it 

has the merit of bringing forth an original idea, which in 1964 gave rise to the current density 

functional theory. 

        II.4.2 Theorems of Hohenberg and Kohn 

          II.4.2.1 First theorem of Hohenberg and Kohn: proof that E=E(𝝆) 

                For a system with N electrons, the external potential 𝐕𝐞𝐱𝐭(r) completely determines the 

Hamiltonian 𝐇𝐞𝐥𝐞𝐜. This means that if we know the number of electrons N in the system as well 

as the external potential 𝐕𝐞𝐱𝐭(r), we can uniquely determine the Hamiltonian and thus access the 

energy and the wavefunction of the ground state. Therefore, the external potential perfectly 

reflects the various characteristics of a compound. Hence, there are two ways to consider an 

atomic system: 

 Through the nuclei via the external potential. 

 Through its electron cloud via electron density. 

One seems to be the image of the other, so a close relationship between these two quantities 

becomes very clear. 

 

                   Figure II.2: Illustration of the first Hohenberg-Kohn theorem 
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The first Hohenberg-Kohn theorem provides a theoretical justification for the idea that a 

given electron density corresponds to a unique external potential. The potential 𝐕𝐞𝐱𝐭(r) is 

indeed determined, up to a constant, by the electron density (𝐫) . The electron density 

𝛒(𝐫) also uniquely determines the wave function and all the electronic properties of the 

system. Therefore, the total energy of the system is a function of the density 𝛒(𝐫). 

                                                   𝐄 = 𝐄[𝛒(𝐫)]                                                             (II.13) 

By separating the dependent parts of the system (N) from those that are not, we obtain: 

 𝐄[𝛒(𝐫)] = 𝐓𝐞𝐥[𝛒(𝐫)] + 𝐕𝐞𝐥−𝐞𝐥[𝛒(𝐫)] + 𝐓𝐧𝐨𝐲−𝐞𝐥[𝛒(r)= 𝐅𝐇𝐊[𝛒(𝐫) + ∫𝛒(𝐫)𝐕𝐞𝐱𝐭(𝐫)𝐝𝐫                             

(II.14)      

  or   :                         𝐅𝐇𝐊[𝛒(𝐫)] = 𝐓𝐞𝐥[𝛒(𝐫)] + 𝐕𝐞𝐥−𝐞𝐥[𝛒(𝐫)]                                     (II.15) 

The system's independent terms are then grouped together in a so-called Hohenberg-

Kohn functional. 

         II.4.2.2 Second Hohenberg-Kohn theorem: variational principle 

              The ground state density is, in principle, sufficient to obtain all the interesting 

properties of an electronic system. But how can we be sure that a given density is one of 

the sought-after ground states? Hohenberg and Kohn answer this question through their 

second theorem, stated as follows: 

        For an external potential 𝐕𝐞𝐱𝐭 , the energy E[𝝆𝒕𝒆𝒔𝒕] , associated with any trial density that 

satisfies the necessary boundary conditions: 

                                                        𝛒𝐭𝐞𝐬𝐭 ≥ 𝟎                                                                    (II.16) 

                                                ∫𝛒𝐭𝐞𝐬𝐭(𝐫)𝐝𝐫 = 𝐍(𝐫)                                          (II.17) 

The energy E[𝛒𝐭𝐞𝐬𝐭] is greater than or equal to the energy associated with the ground state     

electron density E[𝝆𝒇𝒐𝒏𝒅]. 
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                                            Figure II.3: Illustration of the second Hohenberg-Kohn theorem 

       This theorem is nothing other than the variational principle expressed for functional 

energies of a density, E[𝜌] and not of a wave function E[Ψ].Now, according to the first 

theorem, a test density defines its own Hamiltonian and likewise its own test wave 

function. Hence, we can have a correspondence between the variational principle in its 

wave function version and in its electron density version such as: 

                   < 𝚿𝒕𝒆𝒔𝒕|𝑯̂|𝚿𝒕𝒆𝒔𝒕 >= 𝑬[𝝆𝒕𝒆𝒔𝒕] ≥ 𝑬[𝝆𝒇𝒐𝒏𝒅] =< 𝜳𝒇𝒐𝒏𝒅|𝑯̂|𝜳𝒇𝒐𝒏𝒅 >             (II.18)     

  II.4.3 The Kohn and Sham equations     

          Kohn and Sham [KS] [8] wrote the exact ground state energy of an interacting system 

in a external potential Vext as a functional depending only on the electron density 𝝆( 𝒓⃗ ).  

  𝐄[𝝆(𝐫)] = 𝑻𝑺[𝝆(𝐫)] + ∫ 𝒅𝟑𝐫𝑽ext 𝝆(𝐫) + ∫ 𝒅𝟑𝐫𝒅𝟑𝐫
𝝆(𝐫)𝝆(𝐫)

|𝐫−𝐫|
+ 𝑬𝑿𝑪[𝝆(𝐫)]                  (II.19) 

 In this case Kohn and Sham propose to solve the following system of self-consistent equations 

which allows to find the density 𝝆( 𝒓⃗ ),that minimizes the energy of the system  

                 {
𝑯𝒌𝒔𝚽𝒊(𝐫) = [−

𝟏

𝟐
𝚫𝒊 + 𝑽𝒆𝒇𝒇(𝐫)]𝚽𝒊(𝐫) = 𝜺𝒊

𝒌𝒔𝚽𝒊(𝐫)

𝝆(𝐫) = ∑  
𝑵𝒆
𝒊=𝟏 𝒇𝒊|𝚽𝒊(𝐫)|

𝟐
                                   (II.20) 

𝜺𝒊𝒌𝒔 and Фi(𝒓⃗ ) being respectively the eigenvalues and the monoelectronic (so-called Kohn-Sham) 

eigenwave functions from which we determine the electron density.      

𝝆( 𝒓⃗ ),𝑽𝒆𝒇𝒇 is the effective potential in which the particles move: 
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𝐕𝐞𝐟𝐟(𝐫) = 𝐕𝐞𝐱𝐭(𝐫) + 𝐕𝐇(𝐫) + 𝐕𝐱𝐜(𝐫)                                                (II.21) 

Where we put:                      𝑽𝑯(𝐫) = ∫ 𝐝𝟑𝐫
𝝆(𝐫)

|𝐫−𝐫|
 et 𝑽𝑿𝑪(𝐫) =

𝜹𝐄𝐗𝐂|𝝆(𝐫)|

𝝆(𝐫)
                        (II.22) 

By replacing the kinetic energy and electron density in equation (II.19) with those found by 

solving the system (II.19) we find the total energy of the ground state of the system: 

              𝑬[𝝆] = ∑  𝑵𝒆
𝒊=𝟏 𝜺𝒊 − ∫ 𝒅𝟑𝐫𝒅𝟑𝐫

𝝆(𝐫)𝝆(𝐫)

|𝐫−𝐫|
− ∫ 𝒅𝟑𝐫𝑽𝒙𝒄(𝐫)𝝆(𝐫) + 𝑬𝒙𝒄[𝝆]                  (II.23) 

We note that the Kohn-Sham transformations are exact transformations. The problem of Ne 

interacting electrons is replaced by Ne independent electrons interacting with the total electron 

density, which simplifies the calculations considerably. 

In the Kohn-Sham formulation, all the energy terms, and their associated potentials, can be 

evaluated, except the exchange-correlation term, which is problematic. This term Exc [𝛒] is not 

known exactly even though it appears as a corrective term. In any case, various approximations 

have to be used, which we will discuss next. 

 II.5 Resolution of exchange and correlation energy 

     Gradually, the unknown part in the functional E [𝜌] was reduced to a universal functional 𝐹HK 

and finally to an exchange and correlatioenergy [𝜌]. It is therefore necessary to approximate the 

expression of this exchange and correlation functional 𝐸𝑋𝐶 [𝜌], so that it offers as accurate a 

description of the system as possible. The exchange part accounts for the coulombic energy gain 

due to compliance with Pauli's principle, while the correlation corresponds to the right balance 

between coulombic energy gain and kinetic energy cost when two electrons of different spin 

states are separated. 

   II.5.1 The local density approximation (LDA) 

        To approximate the density functional 𝑬𝑿𝑪
  [ρ(r)], Kohn and Sham proposed as early as 1965 

the local density approximation (LDA) [16], which treats an inhomogeneous system as locally 

homogeneous, with exchange and correlation energy known exactly: 

                                                      𝐄[𝝆(𝐫)] = ∫ 𝝆(𝐫)𝜺[𝝆(𝐫)]𝐝𝟑𝐫                                                   (II.24) 

Where 𝜺[𝝆(𝐫)]is the exchange and correlation energy per particle of a uniform electronic gas of 

density 𝝆 that is known to be in the form:  

                                      𝐕𝐗𝐂(𝐫) =
𝜹𝐄𝐗𝐂 [𝝆(𝐫)]

𝜹𝝆(𝐫)
= 𝜺[𝝆(𝐫)] + 𝝆(𝐫)

𝜹𝜺𝐗𝐂[𝝆(𝐫)]

𝜹𝝆(𝐫)
                                       (II.25) 

In the case of magnetic materials, the electron spin provides an additional degree of freedom and 

the LDA must then be extended to the Spin Density Approximation [16]. and the LDA must then 
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be extended to the Local Spin Density Approximation (LSDA) where the exchange and 

correlation energy 𝑬𝑿𝑪
   becomes a functional of the two high and low spin densities: 

                                           𝐄𝐗𝐂[𝝆 ↓⋅ 𝝆 ↑] = ∫ 𝝆(𝐫)𝜺[𝝆 ↓⋅ 𝝆 ↑]𝐝𝟑𝐫                                               (II.26) 

 

 The most commonly used forms for energy and exchange potential in LDA are those of Kohn-

Sham and Wigner [17], Von Barth-Hedin [16], Gunnarson-Lundqvist [18], Vosko et al.[19] and 

Perdew and Wang [20] . 

 

           

                        Table. I.1: Computational performance in the LDA approximation [11]. 

Quantity LDA error 

Bond length ~1% 

Vibration frequency Some % 

Elastic constant Some % 

Cohesive energy ~15% 

Energy barrier ~20% 

 

   II.5.2 LDA+U approximation 

     By its construction, it is clear that LDA correctly handles correlation effects for systems with 

almost homogeneous electron density, such as alkali metals. This is not the case for compounds 

such as Mott insulators, transition metal oxides, and rare earth oxides, for which the LDA is 

inadequate. LDA does not take into account correlation effects in partially filled 3d (transition 

metal) and 4f (rare earth) layers. In these systems, a modification of the LDA is necessary. This 

is achieved by adding the Hubbard-type coulombic interaction to the LDA functionals. This term 

is added to the exchange-correlation potential of the electrons in the incomplete d and f layers. 

The Hubbard model is one of the most widespread models in the physics of strongly correlated 

electrons. It probably provides the simplest quantum description that includes both the 

movement of electrons and their mutual interactions on the lattice. Despite this structural 

simplicity, exact results are known only under very particular conditions, for example, in one 
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dimension [21]. Since its introduction by Hubbard to the present day, this term represents a 

robust model for the research of new many-body methods. Therefore, we need to explain the 

connection between the electronic problem in a realistic solid and the Hubbard model. 

This Hubbard parameter [22, 23] is added to the Kohn-Sham Hamiltonian: 

                                           𝐄𝐔 =
𝐔

𝟐
∑ 𝐧𝐢𝐧𝐣𝐢≠𝐣                                                                        (II.27)     

𝐄𝐔: added to the DFT exchange and correlation 𝐸𝑥𝑐term. 

𝐧𝐢: The number of orbital occupancies i= {𝑚𝑖 , 𝜎} in state l. 

Originally known as LDA+U, this method was developed to account for the insulating properties 

of Mott insulators. 

    II.5.3 Generalized Gradient Approximation (GGA) 

       In several cases the (LDA) [24] gave reliable results, but in others it was less accurate with 

the experimental results. Most of the corrections that have been introduced to the LDA are based 

on the idea of taking into account local variations in density. For this reason the gradient of the 

electron density has been introduced leading to the generalized gradient approximation GGA 

[20], in which the exchange and correlation energy is a function of the electron density and its 

gradient: [25] 

   𝑬𝑿𝑪
𝑮𝑮𝑨 = ∫ 𝒏(𝒓)𝜺𝑿𝑪[𝒏, |𝛁𝒏|, … ]𝒅𝟑𝒓 ≡ ∫ 𝒏(𝒓)𝜺𝑿

𝒉𝒐𝒎(𝒏)𝑭𝑿𝑪[𝒏, |𝛁𝒏|, … ]𝒅𝟑𝒓                 (II.28) 

Where 𝜺𝑿
𝒉𝒐𝒎is the exchange energy of a non-polarized system of density 𝒏(𝒓). There are many 

forms of 𝑭𝑿𝑪 , the most commonly used are those introduced by Becke [26], Perdew and Wang 

[20] and Perdew, Burke and Ernzerhof [27]. 

      II.5.4 The EV-GGA approximation 

        The major shortcoming in both approximations (GGA and LDA) is the estimation of the 

energy gap value, which is essentially due to the correlation term being considered too simple. 

To correct this shortcoming, Engel and Vosko [28] have shown that the GGA cannot improve on 

the second-order expansion of the generalized gradient due, most of the time, to the cancellation 

of local errors, hence the correction brought to the correlation term by mixing the second-order 

generalized gradient with the exact Hartree-Fock correlation term. But unfortunately, it remains 

poor if one is interested in calculations of the fundamental energy as a function of the structural 

parameters [29].  

     II.5.5 Modified Becke and Johnson potential (mBJ) 

             A new version of the exchange potential, first proposed by Becke and Johnson [30], was 

published by Tran and Blaha [31]. This is the mBJ "modified Becke Johnson Potential" (also 
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known as the TB potential: Tran-Blaha) which has been implemented in the latest versions of the 

ab initio Wien2k code. Tran and Blaha [32] tested the exchange potential proposed by Becke and 

Johnson (BJ) [33] which was designed to reproduce the shape of the exact exchange potential 

called the "optimised effective potential (OEP)". They noted that using the BJ potential combined 

with the GGA correlation potential always gives underestimated gap energies. In order to 

improve these results, Tran and Blaha [31] introduced a simple modification of the original BJ 

potential and obtained good agreement with other more expensive approaches (due to their high 

self-consistency) such as hybrid functional and the GW method  [33-35]. The modified BJ 

potential (mBJ) proposed by Tran and Blaha [31] has the following form: 

                                     𝒗𝒙,𝝈
𝒎𝑩𝑱(𝒓) = 𝒄𝒗𝒙,𝝈

𝑩𝑹(𝒓) + (𝟑𝒄 − 𝟐)
𝟏

𝝅
√

𝟓

𝟏𝟐
√

𝟐𝒕𝝈(𝒓)

𝝆𝝈(𝒓)
                                        (II.29) 

𝜌𝜎(𝒓) = ∑  
𝑛𝜎
𝑖=1 |𝜓𝑖,𝜎(𝒓)|

2

   is the density of electrons. 

𝒕𝜎(𝒓) =
1

2
∑  

𝑛𝜎
𝑖=1 𝛁𝝍𝑖,𝜎

∗ (𝒓)  is the density of the kinetic energy. 

                                    𝒗𝒙,𝝈
𝒎𝑩𝑱(𝒓) = −

𝟏

𝒃𝝈(𝒓)
(𝟏 − 𝒆−𝒙𝝈(𝒓) −

𝟏

𝟐
𝒙𝝈(𝒓)𝒆

𝒙𝝈(𝒓))                                   (II.30) 

 

𝒗𝒙,𝝈
𝒎𝑩𝑱 is the Becke-Roussel (BR) potential [36] which has been proposed to model the coulombic 

potential created by the exchange hole. 

The term 𝒙𝝈  was determined from. 𝜌𝜎 (𝑟), ∇𝜌𝜎 (𝑟), ∇2𝜌𝜎 (𝑟) 𝑒𝑡 (𝑟); while the term (𝑟) was 

calculated using the following relationship: 

                                                        𝒃𝝈(𝒓) = [
𝒙𝝈
𝟑𝒆−𝒙𝝈

𝟖𝝅𝝆𝝈
]

𝟏

𝟑
                                                                   (II.31) 

In equation (II.31), c has been chosen to depend linearly on the square root of the mean of 
𝛁𝝆𝝈(𝒓)

𝝆𝝈(𝒓)
 

                                           𝒄 = 𝜶 + 𝜷(
𝟏

𝑽𝒄𝒆𝒍𝒍
∫  
𝒄𝒆𝒍𝒍

|𝛁𝝆(𝒓′)|

𝝆(𝒓′)
𝒅𝟑𝒓′)

𝟏

𝟐
                                                  (II.32) 

𝜶 and 𝜷 are adjustable parameters (𝜶 = -0.012 (dimensionless) and (𝜷 = 1.023 𝑏𝑜ℎ𝑟 1 2) and 

𝑽𝒄𝒆𝒍𝒍 is the volume of the unit mesh. For 𝒄 =1, we have the reproduction of the original Beck and 

Johnson potential. 

                                       𝒗𝒙,𝝈
𝑩𝑱 (𝒓) = 𝒗𝒙,𝝈

𝑩𝑹(𝒓) +
𝟏

𝝅
√

𝟓

𝟏𝟐
√

𝟐𝒕𝝈(𝒓)

𝝆𝝈(𝒓)
                                                        (II.33) 
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    By varying c for a given material, it was found that for many solids the gap energy increases 

monotonically with respect to c [31]. Specifically, for solids with small gaps copt (the value of c 

that leads to perfect agreement with the experiment) ranges from 1.1 to 1.3 while for solids with 

larger gaps, copt is larger (its value varies from 1.4 to 1.7) [32]. 

     II.5.6 Hybrid functions 

         Nous présentons dans ce paragraphe un autre type de fonctionnelles, les fonctionnelles 

hybrides, qui connaissent déjà un succès remarquable. Leur recette, suggéré initialement par 

Becke [37], réside dans la prise en compte, dans 𝐸𝑋𝐶, d’une fraction d’échange exact Hartree-

Fock. La contribution d’échange s’avère en effet nettement plus importante en valeur absolue 

que celle des effets de corrélation : puisque l’on connaît l’expression exacte de l’énergie 

d’échange, il est tentant de l’utiliser pour la partie échange de 𝐸𝑋𝐶 [n] à la place d’une 

fonctionnelle approchée dépendant explicitement de la densité. La justification théorique de ce 

point provient de la relation dite de connections adiabatiue : introduisant un paramètre λ 𝜖[0; 1] 

andadefiningithe intensityioftthelinteraction between the electronsonit isest possibto writeire 

l’´energie d’échange-corrélatiasme :  

                                             𝐄𝐗𝐂[𝐧] = ∫ 𝐔𝐧𝐜𝐥
𝛌 𝐝𝛌

𝟏

𝟎
                                                                   (II.34) 

Where the integrand 𝐔𝐧𝐜𝐥
𝛌  represents the set of non-classical contributions to the total energy. 

Note that 𝐔𝐧𝐜𝐥
𝛌  corresponds to a potential energy only, with the kinetic part of the exchange-

correlation energy coming from the integration over λ. 

 II.6 The linearized augmented plane wave method (FP-LAPW) 

     There are several methods for calculating the properties of solids, and what they have in 

common is the self-consistent solution of the Kohn and Sham equation. This is the origin of 

several numerical methods. The Full Potential Linearized Augmented Plane Wave (FP-LAPW) 

method, which saves several orders of magnitude in computation time, will be presented in the 

following paragraphs. 

     II.6.1 The APW method 

           Slater [38] proposed the augmented plane wave functions (APW) as a basis for solving the 

one-electron Schrödinger equation, which corresponds to the DFT-based equation of Kohn and 

Sham. The APW method is based on the Muffin-Tin (MT) approximation to describe the crystal 

potential. According to this approximation the unit cell is divided into two types of regions: 

spheres called "Muffin-Tin" (I) which do not overlap and are centered on each atom α of radius 

𝑹𝜶 and interstitial regions (II) (the empty space). As a consequence, the wave functions of the 
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crystal are developed in different bases depending on the region considered: radial solutions 

multiplied by spherical harmonics in the MT spheres and plane waves in the interstitial region. 

 

                                                  Figure II.4: Muffin-Tin" potential 

 

Thus the wave function is of the form: 

                                            𝝋(𝒓) = {
∑  𝒍𝒎 𝑨𝒍𝒎𝑼𝒍(𝒓)𝒀𝒍𝒎(𝒓)    𝐫 ∈ 𝐈

𝟏

𝛀
𝟏
𝟐

∑  𝑮 𝑪𝑮𝒆
𝒊(𝑮+𝑲)𝒓    𝐫 ∈ 𝐈𝐈                                              (II.35) 

Where𝑨𝒍𝒎 and 𝑪𝑮 are the expansion coefficients, 𝛀 is the volume of the unit cell. 𝑼𝒍(𝒓) is the 

radial solution of the Schrödinger equation which is written as : 

                                            (−
𝛛𝟐

𝛛𝒓
+

𝒍(𝒍+𝟏)

𝒓𝟐 + 𝑽(𝒓) − 𝑬𝒍) 𝒓𝑼𝒍(𝒓) = 𝟎                                           (II.36) 

Where 𝑬𝒍 is the linearization energy and 𝑽(𝒓) the spherical component of the potential in the 

sphere. 

The radial functions defined by equation are automatically orthogonal to any state of the same 

Hamiltonian that vanishes at the boundary of the sphere as the following equation shows:  

                                              (𝑬𝟐 − 𝑬𝟏)𝒓𝑼𝟏𝑼𝟐 = 𝑼𝟐
𝒅𝟐𝒓𝑼𝟏

𝒅𝒓𝟐 − 𝑼𝟏
𝒅𝟐𝒓𝑼𝟐

𝒅𝒓𝟐                                         (II.37) 

Where 𝑼𝟏 and 𝑼𝟐 are radial solutions for the energies 𝑬𝟏 and 𝑬𝟐 .The overlap being constructed 

by using equation and integrating it by parts. 

Slater justifies the particular choice of these functions by noting that plane waves are solutions 

of the Schrödinger equation when the potential is constant. As for the radial functions, they are 

solutions in the case of a spherical potential, when 𝑬𝒍 is an eigenvalue. 

This approximation is very good for materials with a face-centered cubic structure, and less and 

less satisfying as the material's symmetry decreases. 
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However, to ensure continuity at the sphere boundaries in the APW method, the 𝑨𝒍𝒎 have been 

defined in terms of the 𝑪𝑮 coefficients of the existing plane waves in the interstitial regions. These 

coefficients are thus expressed by the following expression: 

                                              𝑨𝒍𝒎 =
𝟒𝝅𝒊𝒍

𝛀𝟏/𝟐𝑼𝒍(𝑹𝜶)
∑  𝑮 𝑪𝑮𝒋(|𝑲 + 𝒈|𝑹𝜶)𝒀𝒍𝒎

∗ (𝑲 + 𝑮)                         (II.38) 

𝑹𝜶 is the radius of the sphere, and the origin is taken as the centre of the sphere. 

Thus the 𝑨𝒍𝒎 are determined by the plane wave coefficients 𝑪𝑮 and the energy parameters𝑬𝒍, as 

these are variational in the APW method. The individual functions which are represented by the 

index G and which consist of plane waves in the interstitial plane waves in the interstitial region 

and radial functions in the spheres are called augmented plane waves (APW). 

The APW method, thus constructed, presents some difficulties related to the function 𝑼𝒍(𝑹𝜶) 

which appears in the denominator of the equation. Indeed, depending on the value of the 

parameter𝑬𝒍, the value of 𝑼𝒍(𝑹 ) can become nil at the surface of the MT sphere, leading to a 

separation of the radial functions from the plane wave functions. In order to overcome this 

problem, several modifications to the APW method have been made, including those proposed 

by Andersen [39]. 

      II.6.2 Principle of the FP-LAPW method 

           In this method, the basic functions inside the sphere are linear combinations of the radial 

functions 𝐔𝐥(𝐫)𝐘𝐥𝐦(𝐫) and their derivatives 𝐔̇𝐥(𝐫)𝐘𝐥𝐦(𝐫) with respect to energy. 

The functions  𝐔𝐥(𝐫)are defined as in the APW method, and the function 𝐔̇𝐥(𝐫)𝐘𝐥𝐦(𝐫) must satisfy 

the following condition [39]: 

                                          {−
𝒅𝟐

𝒅𝒓𝟐
+

𝒍(𝒍+𝟏)

𝒓𝟐
+ 𝑽(𝒓) − 𝑬𝒍} 𝒓𝑼̇

˙

𝒍(𝒓) = 𝒓𝑼𝒍(𝒓)                                   (II.39) 

The wave function is written as follows: 

               Ф(𝐫) = {
∑ [  𝐀𝐥𝐦𝐔𝐥(𝐫)𝐁𝐥𝐦𝐔̇𝐥(𝐫)]𝐘𝐥𝐦       𝐫 < 𝐫𝟎𝐥𝐦

𝟏

√Ω
∑ 𝐂𝐆𝐞

𝐢(𝐤+𝐆)𝐫                                   𝐫 > 𝐫𝟎    𝐆

                                                 (II.40) 

Where   𝐀𝐥𝐦 : are coefficients corresponding to the function 𝐔𝐥(𝐫). 

 𝐁𝐥𝐦 : are coefficients corresponding to the function  𝐔̇𝐥(𝐫). 

The FP-LAPW functions are plane waves only in the interstitial zones, as in the APW method. 

Radial functions can be developed in the vicinity of El as follows [40]: 

                     𝐔𝐥(𝐄, 𝐫) = 𝐔𝐥(𝐄𝐥 , 𝐫) + (𝐄 − 𝐄𝐥)𝐔̇(𝐄𝐥 , 𝐫) + 𝐎((𝐄 − 𝐄𝐥)
𝟐)                                      (II.41) 

With : 𝐎((𝐄 − 𝐄𝐥)
𝟐) denotes the squared error committed. 
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The FP-LAPW method induces an error on the wave functions of the order of 𝐎((𝐄 − 𝐄𝐥)
𝟐) and 

another on the band energy of the order of 𝐎((𝐄 − 𝐄𝐥)
𝟒) [41]. We can obtain all the valence bands 

in a large energy region with a single 𝐄𝐥. In the event that this is not possible, we divide the energy 

window into two parts. 

       II.6.3 The role of linearization energies 𝐄𝐥  

             We have already mentioned above that the errors in the wave function (charge density) 

are of the order of 𝐎((𝐄 − 𝐄𝐥)
𝟐) and in the energy bands of the order of 𝐎((𝐄 − 𝐄𝐥)

𝟒), which 

indicates that a parameter should be chosen near the center of the band where a good result is 

desired. The choice of the parameter 𝐄𝐥 can be optimized by calculating the total energy of the 

system for several values of 𝐄𝐥 and selecting the one that gives the lowest energy. Unfortunately, 

while these strategies work well in many cases, they fail miserably in several others. 

The reason for this failure is described by the presence and extent of the core state (only known 

as the semi-core state) in several elements in particular: alkali metals, rare earths, recently 

transition metals, and actinides. As mentioned, the augmented functions  𝐔𝐥(𝐫)𝐘𝐥𝐦(𝐫) and 

𝐔̇𝐥(𝐫)𝐘𝐥𝐦(𝐫) are orthogonal for each core state; this condition is never exactly satisfied except in 

the case where the core states do not have the same l. 

The effects of this inaccurate orthogonality to the core states in the FPLAPW method are sensitive 

to the choices of l. The most critical case, where there is an overlap between the (FP-LAPW) bases 

and the core states, which introduces false core states into the energy spectrum, is known as 

ghost bands. The latter are easily identified, have a very small dispersion, are highly localized in 

the sphere, and have an l character of the core state. To eliminate ghost bands from the spectrum, 

we can set the the energy parameter 𝐄𝐥 equal to the energy of the core state 

       II.6.4 Local orbital development 

            The purpose of the FP-LAPW method is to obtain precise band energies near the 

linearization energies 𝐄𝐥 [41]. In most materials, it is sufficient to choose these energies near the 

center of the bands. However, this is not always possible, and there are materials for which 

selecting a single value of 𝐄𝐥 is not enough to calculate all the band energies. This is the case for 

materials with 4f orbitals [42–43] and transition metals [44–45]. This is the fundamental 

problem of the semi-core state, which is intermediate between the valence state and the core 

state. To remedy this situation, the following approach is used: 

 Or the use of multiple energy windows (Figure (II.5)). 

 Or to use local orbital development. 
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                                                    Figure II.5: Multiple energy windows. 

    

   II.6.5  The APW + lo method 

          The issue with the APW method was the energy dependency of the set of basic functions. 

This dependency could be eliminated in the LAPW+LO method but at the cost of a larger base 

size, where both APW and LAPW+LO methods acquire an important limitation.  

Sjösted, Nordström and Singh [46] have improved on this by developing a basis that combines 

the advantages of the APW method with those of the LAPW+LO method. This method is called 

"APW+lo", it corresponds to an energy independent basis (as was in the LAPW+LO method), In 

addition, it requires only one plane wave cut-off energy, where this cut-off energy is very slightly 

higher than that required in the APW method. 

It consists in using a standard APW basis but considering 𝑼𝒍(𝐑) for a fixed energy 𝑬𝒍 in order to 

keep the advantage brought by the linearization of the problem at eigenvalues. Since an energy 

base is fixed, this method does not provide a satisfactory description of the eigenfunctions, local 

orbitals are also added to provide variational flexibility in the radial basis functions. 

An "APW+lo" base is defined by the combination of the following two types of wave functions 

wave functions: 
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- APW plane waves with a set of fixed 𝑬𝒍 energies [47]: 

 

 

                                       𝝋(𝐫) = {

𝟏

𝛀𝟏/𝟐
∑  𝑮 𝑪𝑮𝒆

𝒊(𝐑+𝐆)⋅𝐫    𝑟⟩𝑹𝜶

∑  𝒍𝒎 𝑨𝒍𝒎𝑼𝒍
𝜶(𝒓, 𝑬𝒍)𝒀𝒍𝒎(𝒓)    𝑟⟨𝑹𝜶

                                        (II.42) 

- Local orbitals different from those of the LAPW+LO method, are defined by [47] : 

 

                       𝝋(𝐫) = {
0    𝑟⟩𝑹𝜶

[𝑨𝒍𝒎𝑼𝒍(𝒓, 𝑬𝒍) + 𝑩𝒍𝒎𝑼̇𝒍(𝒓, 𝑬𝒍)]𝒀𝒍𝒎(𝒓)    𝑟⟨𝑹𝜶
                                   (II.43) 

 

 

  In a calculation, a mixed LAPW and APW+lo basis can be used for different atoms and even for 

different values of the and even for different values of the l. In general, orbitals that converge 

more slowly with the plane wave number (such as the 3d states of the transition elements), or 

atoms with a small sphere size are described by the APW+lo basis and the rest by the LAPW basis 

[47].  

         II.6.6 The LAPW+LO method 

             The FP-LAPW method generally gives accurate band energies in the vicinity of the 

linearization energies, and in most materials, it is sufficient to choose these energies in the 

neighborhood of the center of the bands. In order to improve the linearization and make it 

possible to treat valence and semicore states in a single energy window, so-called local orbitals 

(LO) are added to the LAPW database and consist of a linear combination of two radial functions 

corresponding to two different energies and the derivative with respect to energy of one of these 

two functions. In [48], we define a local orbital (LO) as follows: 

               𝝋(𝒓) = {
                       𝟎                                                                           𝒓 < 𝑹𝒂

[𝑨𝒍𝒎𝑼𝒍(𝒓, 𝑬𝒍) + 𝑩𝒍𝒎𝑼𝒍(𝒓, 𝑬𝒍) + 𝑪𝒍𝒎(𝒓, 𝑬𝒍) +]𝒀𝒎
𝒍 (𝒓), 𝒓 < 𝑹𝒂

}                (II.44) 

Where the coefficients 𝑪𝒍𝒎 are of the same nature as the coefficients 𝑨𝒍𝒎 and 𝑩𝒍𝒎defined 

previously. 

A local orbital is defined for a given atom for each l and m. It is called local because it is null 

everywhere except in the muffin-tin sphere to which it refers. These local orbitals are then added 

to the LAPW basis. Thus the addition of local orbitals increases the size of the LAPW basis. 

  II.6.7 The WIEN2k code 
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       The FP-LAPW method was implemented in the WIEN2k code, a set of programs developed 

by Blaha, Schwarz and their colleagues [49]. This code has successfully dealt with high 

temperature superconducting systems [50], minerals, transition metal surfaces [51], non-

ferromagnetic oxides [52], molecules as well as the electric field gradient. The calculation 

procedure involves three steps: 

The initialization 

     It consists of constructing the spatial configuration (geometry), the starting densities, the 

number of special points required for integration in the Brillouin irreducible zone, etc. All these 

operations are performed by a series of auxiliary programs that generate: 

NN: It is a program that gives the distances between the nearest neighbours, and helps to 

determine the atomic radius of the sphere. 

LSTART: A program that generates the atomic densities and determines the different orbital’s 

are processed in the band structure calculation. 

SYMMETRY: it generates the symmetry operations of the space group and determines the point 

group of individual atomic sites. 

KGEN: it generates a number of k points in the Brillouin zone. 

DSTART: it generates a starting density for the self-consistent cycle (the SCF cycle) by the 

superposition of the atomic densities generated in LSTART. 

 

Self-Consistent Calculation 

     In this step, the energies and electron density of the ground state are calculated according to 

a convergence criterion (energy, charge density, strength). The sub-programs used are: 

LAPW0: Generates the potential from the density. 

LAPW1: Calculation of valence bands, eigen values and eigenvectors. 

LAPW2: it calculates the valence densities for the eigenvectors. 

LCORE: it calculates states and core densities. 

MIXER: it mixes the input and output densities 

 



Chapter II                                                                                                 Computational Methods 
 

 
52 

 

 

 

                           Figure II.6: The structure of the WIEN2k program. 
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     II.7 Spectroscopic Limited Maximum Efficiency Model (SLME) 

              The Shockley-Queisser limit [53] is a useful tool for determining the maximum 

efficiency of a solar cell with a single p-n junction. By calculating the percentage of power 

converted to electrical energy. It provides a correlation between a material's bandgap and 

its maximum efficiency. Yu and Zunger [54] have recently expanded on the work of 

Shockley and Queisser by employing the Spectroscopic Limited Maximum Efficiency 

(SLME) and integrating the absorption spectrum, the absorber layer thickness and 

accounts for different types of optical transitions near the absorption threshold in the 

efficiency estimation. A variety of solar absorber materials, including perovskites [55–

56], chalcogenides [57–58], and other materials [59–60], have been effectively treated 

with the SLME model. The highest solar cell efficiency, according to theory, is defined as 

the ratio of the total incident solar energy density (Pin) to the maximum output power 

density (Pmax). By numerically optimizing the product of voltage (V) and current density 

(J), Pmax is found [61]. 

                                                             ɳ=
𝐏𝐦𝐚𝐱

𝐏𝐢𝐧
                                                                        (II.45)      

The link between current density (J) and voltage (V) can be stated using the following 

equation, 

supposing that the solar cell operating at temperature T functions as an ideal diode and is 

exposed to the photon flux  𝐼𝑠𝑢𝑛 

                                                       𝐉=𝑱𝑺𝑪 − 𝑱𝟎(𝒆
𝒆𝑽 𝑲𝑻⁄ − 𝟏)                              (II.46) 

This equation uses the following notations: e = elementary charge, V = potential across 

the absorber layer, and k = Boltzmann's constant. The first term is the short-circuit 

current density, or Jsc, which can  be written as follows: 

                                                        𝐉𝐒𝐂 = 𝐞∫ 𝐚(𝐄)𝐈𝐬𝐮𝐧
∞

𝟎
(𝐄)𝐝𝐄                         (II.47)     

 Here, 𝐼𝑠𝑢𝑛 stands for the AM1.5G solar spectrum [62], and a(E) indicates the photon 

absorptivity. The thickness (𝐿) of the material and the absorption coefficient (α)     

                                                       𝛂(𝐄) =
𝟒𝛑𝐄

ħ𝐜
√

|𝛆(𝐄)|−𝛆𝟏(𝐄)

𝟐
                               (II.47) 

And                                             𝐚(𝐄) = 𝟏 − 𝐞−𝟐𝛂(𝐄)𝐋                                       (II.48)  
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The reverse saturation current (𝐽0), which represents the total electron-hole 

recombination current (comprising radiative and nonradiative components) at 

equilibrium in in the dark, is the factor in the second term of equation (II.46). 

                                                               𝑱𝟎= 𝑱𝟎
𝒓 + 𝑱𝟎

𝒏𝒓=
𝑱𝟎
𝒓

𝒇𝒓
                                                    (II.49) 

The fraction of the radiative recombination current is represented by 𝒇𝒓 in this context. 

To approximate  𝑓𝑟 for the SLME, use 

                                                          𝒇𝒓 = 𝒆𝑬𝒈−𝑬𝒈
𝒅𝒂 𝑲𝑻⁄                                                   (II.50) 

 In this case, 𝐸𝑔 stands for the fundamental band gap and and 𝐸𝑔
𝑑𝑎 is the direct allowed 

band gap of the material. 

According to the detailed balance principle, identical rates of absorption and emission 

across cell surfaces are necessary for the equilibrium condition in the absence of light. 

Consequently, the rate at which black-body photons from the surrounding thermal 

environment are absorbed through the front surface can be used to calculate  𝑗0
𝑟. 

                                                             𝑱𝟎
𝒓  = e𝝅 ∫ 𝒂(𝑬)𝑰𝒃𝒃(𝑬 , 𝑻)𝒅𝑬

∞

𝟎
                                   (II.51) 

where the black-body spectrum at temperature 𝑇 is indicated by 𝑰𝒃𝒃. The photon flux is 

used to express the black-body spectrum  𝑰𝒃𝒃 and the solar spectrum 𝑰𝒔𝒖𝒏 . To optimize 

the power density, can be reformulated as  

                               ɳ =
𝑷𝒎𝒂𝒙

𝑷𝒊𝒏
 = 

𝒎𝒂𝒙{(𝑱𝒔𝒄−𝑱𝟎(𝒆𝒆𝑽 𝑲𝑻⁄ −𝟏))𝑽}
𝑽

∫ 𝑬𝑰𝒔𝒖𝒏(𝑬)𝒅𝑬
∞
𝟎

                                            (II.52) 

II.8 BoltzTrap 

     The BoltzTrap program calculates electron transport coefficients, which describe the 

movement of electrons in a material [63]. This program utilizes Boltzmann's semi-

classical transport theory and applies the relaxation time approximation to simplify 

transport coefficient calculations. 

 To run BoltzTraP, the following input files are required: 

 A file containing the electronic band structure data in energy and band format 

along high-symmetry lines in the Brillouin zone. 
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 Fermi energy value. 

 Parameters for numerical integration, including the number of k-points and the 

energy cut-off. 

 Optional files to define the temperature range and doping concentration. The 

output files will include calculated transport properties like electrical conductivity, 

Seebeck coefficient, and thermal conductivity. 

II.9 VASP code 

     The VASP (Vienna ab initio Simulation Package) calculation code [64]. This is a code for 

DFT calculations based on the periodic approach, where the system is modeled as an 

infinitely replicated supercell. This method is well-suited for studying surfaces by 

simulating infinite systems. The VASP code solves the Kohn-Sham equations using a plane 

wave basis. In our work, electron exchange and correlation effects were treated using the 

generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) 

functional and PAW-type pseudopotentials. 

    II.9.1 Files used by VASP 

INCAR file is the central input file of VASP. It determines ’what to do and how to do it’, 

and contains a relatively large number of parameters. Most of these parameters have 

convenient defaults, and a user unaware of their meaning should not change any of the 

default values. Because of the complexity of the INCAR file, we have devoted a section on 

its own to the INCAR file. 

POTCAR file contains the pseudopotential for each atomic species used in the 

calculation. If the number of species is larger than one simply concats the POTCAR files 

of the species. 

KPOINTS file contain the k-point coordinates and weights or the mesh size for creating 

the k-point grid. 

POSCAR file contains the lattice geometry and the ionic positions, optionally also 

starting velocities and predictor-corrector coordinates for a MD-run. 
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II.10 Conclusion 

     In this chapter, we explore the various approximations used for different electronic 

states in solids. Density Functional Theory (DFT) is highlighted as an alternative quantum 

mechanical approach to the Hartree-Fock method. The main advantage of DFT is its ability 

to model large relative systems with high accuracy, surpassing other methods that require 

significant numerical effort to account for electronic correlations. DFT incorporates 

electronic correlation within its formalism.Since the 1980s, improvements in algorithms 

for solving the Kohn-Sham equations self-consistently, using wave functions as a basis, 

have greatly enhanced the efficiency of this method. However, the correlation exchange 

term remains undetermined and is handled through various approximations such as the 

Local Density Approximation (LDA), the Generalized Gradient Approximation (GGA), and 

TB-mBJ. Numerical methods are employed to solve the Kohn-Sham equations, including 

the Linearly Augmented Plane Wave (LAPW) method, an adaptation of the Slater APW 

method.The LAPW method utilizes plane waves in the interstitial region, augmented in 

the spheres, to achieve precise band energies near the linearization energies El. It has 

been further refined into methods like LAPW+LO and APW+lo, offering improved 

solutions. Finally, to develop a solar cell absorber with optimal efficiency, scientists 

calculate the Spectroscopic Limited Maximum Efficiency (SLME), which theoretically 

defines a solar cell's maximum efficiency as the ratio of the total incident solar energy. 
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  III.1 Introduction 

     Materials from the perovskite family show great potential for solar cell applications 

because of their excellent optical properties and the relatively low cost of their production 

methods [1]. These physical properties enable a wide range of applications in daily life, 

including light-emitting diodes (LEDs), nonlinear optics (NLO), and other optoelectronic 

devices [2-7]. In this section, we primarily focused on examining how substituting Cl with 

Br and Sb with Bi affects the structural, electronic, and optical properties of the compound 

Rb₂AgSbCl₆.For all calculations, we employed the FP-APW method as implemented in the 

Wien2k code within the framework of density functional theory (DFT). We chose 

numerical simulation because it plays a crucial role in determining the properties of our 

materials, helping to reduce the costs associated with expensive experiments, model 

phenomena that are challenging or impossible to observe experimentally, and minimize 

the risks associated with dangerous or otherwise inaccessible laboratory experiments. 

Theoretically, previous studies have shown that tailoring the band gap value in 

Rb2AgSbCl6 results in intriguing optoelectronic and photocatalytic characteristics [8]. 

Therefore, the primary objective is to enhance the optical and electronic properties of the 

Rb₂AgSb(Cl₁₋ₓBrₓ)₆ and Rb₂AgSb₁₋ₓBiₓCl₆ alloys by employing a band convergence 

strategy. This is achieved by substituting bromine (Br) for chlorine (Cl) and bismuth (Bi) 

for antimony (Sb) in the compound Rb₂AgSbCl₆. 

III.2 Calcul details 

    All calculations are done using the FP-APW+lo method [9-10], implemented in the 

WIEN2k code [11]. In this technique, the system space is divided into two regions the 

interstitial one and the muffin-tin spheres with muffin-tin radius (RMT) are chosen in a 

manner that the MT spheres do not overlap. 2.5, 2.5, 2.5, and 2.21 bohr was done for Rb, 

Ag, Sb, and Cl, respectively, with the following electronic configuration Rb: [Kr] 5s¹  Ag: 

[Kr] 4d105s1 , Sb: [Kr] 4d10 5s2 5p3, Cl [Ne] 3s² 3p⁵. The electronic wave functions are 

expanded up to lmax equal to 4 and 10 outside and inside the MT sphere, respectively. 

Besides, the expansion of the wave functions and charge density were cut off by the 

RMTKmax = 7.5 and Gmax = 12 parameters. The exchange-correlation potential is treated 

by the generalized gradient approximation performed by Wu and Cohen (GGA-WC) [12]. 

However, since the GGA approximation yields an underestimated band gap value, the 
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Tran-Blaha modified Becke-Johnson (mBJ) exchange potential is employed [13-14]. 

Further, the Rb2AgSb(Cl1-xBrx)6 and Rb2AgSb1-xBixCl6 alloys are represented using 1  × 1 

× 1 periodic supercells, with each supercell containing 40 atoms in the primitive unit. To 

explore various Arrangements, chlorine atoms are substituted with bromine atoms and 

antimony atoms substituted with bismuth atoms, resulting in the creation of  Rb2AgSb(Cl1-

xBrx)6  and Rb2AgSb1-xBixCl6 alloys respectively  with x values ranging from 0.25 to 0.75. 

Then, the spectroscopic limited maximum efficiency (SLME) model was used to evaluate 

the photovoltaic efficiency. 

III.3 Structural properties 

    We introduced the use of lead-free double perovskite Rb₂AgSbCl₆, part of the elpasolite-

K₂NaAlF₆ group. This material features alternating SbCl₆ and AgCl₆ octahedra arranged in 

a cubic crystalline structure similar to rock salt, forming a face-centered cubic (FCC) 

configuration. The space group symmetry of this structure is Fm3̅m (no. 225) [15] (see 

fig. III.1). 

 

 

Rb 

  Ag   

  Sb 

Cl         Br                                                   (a)                                                       (b) 

     (c)                                                        (d)                                                         
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FigureIII.1: Crystal structure visualizations of (a) Rb₂AgSbCl₆, (b) the 

Rb₂AgSb(Cl₀.₇₅Br₀.₂₅)₆ alloy, (c) Rb₂AgSb(Cl₀.₅Br₀.₅)₆, and (d) Rb₂AgSb(Cl₀.₂₅Br₀.₇₅)₆.. 

In this structure, Rb atoms are positioned at 8c with coordinates (0.25, 0.25, 0.25), Sb 

atoms occupy the 4a position at (0, 0, 0), Ag atoms are located at 4b with coordinates (0.5,  

0.5, 0.5), and Cl atoms are found at (0.2504, 0, 0). In order to determine the properties of 

static equilibrium such as the network parameter a bulk modulus B and its first pressure 

derivative B' are determined through the Murnaghan equation [16] given by:  

                       𝐄(𝐕) = 𝑬𝟎 +
𝐁′

𝑩′(𝑩′−𝟏)
[𝜸 (

𝑽𝟎

𝑽
)

𝑩′

− 𝑽𝟎] +
𝑩

𝑩′
(𝑽 − 𝑽𝟎)                      (III.1) 

The parameters, E0, V0, B', and B are defined by: 

E0: The total energy of a given crystal structure's ground state. 

V0: Equilibrium volume. 

B': The derivative of the modulus of rigidity with respect to the equilibrium pressure. 

B: The compression modulus, which measures the rigidity of the crystal 

Curve fitting of energy versus volume. The results of the estimated structural properties 

(a, B and B’) of Rb2AgSb(Cl1-xBrx)6 alloys are reported in Table III.1 & fig.III.2 , 

demonstrating a strong agreement between the obtained values and theoretical 

expectations [8]. It is clear that the lattice constants a goes up in the unit cell of 

Rb2AgSbCl6 as chlorine atoms are gradually replaced with bromine atoms. Conversely, in 

the Rb2AgSb(Cl1−xBrx)6 alloy, the volume coefficient increases as bromine concentration 

rises, due to the larger atomic spacing. Additionally, there is a significant increase in the 

compositional energy Ef. Importantly, the negative value of Ef indicates the 

thermodynamic stability of all the alloys, the formation energy Ef is predicted as below: 

𝑬𝒇(Rb2AgSb(Cl1-xBrx)6=
𝟏

𝑵
(𝑬𝑻((Rb2AgSb(Cl1-xBrx)6)-[𝟐𝑬𝑹𝒃 + 𝑬𝑨𝒈 + 𝑬𝑺𝒃 + 𝟔(𝟏 − 𝒙)𝑬𝑪𝒍 +

𝟔𝒙𝑬𝑩𝒓]                                                                (III.2) 
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Figure III.2: variation of the total energy as a function of the volume of the Rb2AgSb(Cl1-

xBrx)6 alloys 
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Table III.1 : Calculated lattice constant (a0), volume (V), bulk modulus (B), derivative of 

bulk modulus (B’) and formation energy (Ef) of Rb2AgSb(Cl1-xBrx)6 alloys. 

    III.4 Electronic properties 

     III.4.1 Band structures 

          According to the wave vector, the energy bands represent the potential energies that 

an electron can have. To simplify, only the directions with the highest symmetries in the 

first Brillouin zone are considered. Understanding the band structure is crucial for the 

development of optical devices. The critical point of the band structure refers to the 

energy value that separates the maximum of the valence band from the minimum of the 

conduction band, known as the energy gap. We computed the band structure of 

Rb₂AgSbCl₆ and Rb₂AgSb(Cl1-xBrₓ)₆ alloys along the high symmetry lines within the first 

Brillouin zone. Fig.III.3 clearly shows that in Rb₂AgSbCl₆, the minimum of the conduction 

band (CB) and the maximum of the valence band (VB) are not aligned at the same 

symmetry point (R-Γ), identifying it as an indirect band gap semiconductor with an 

estimated GGA+WC value of 1.081 volts. The measured band gap value is notably lower 

than the theoretical estimate due to the inherent limitations of GGA approximations (as 

shown in Table 2). Therefore, a different approach, WC-GGA + TB-mBJ, is employed to 

assess the band structure, yielding a band gap value of 2.08 volts, which aligns more 

closely with theoretical predictions [8]. Moreover, Figure 2 depicts the band structure of 

Rb2AgSb(Cl1-xBrx)6 alloys using the WC-GGA + TB-mBJ approximation. It is observed 

Rb2AgSb(Cl1-xBrx)6 a(Å) V (Å 3) B(GPa) B’ (eV)fE 

x = 0 

 

This work 

Othercalc. 

10.56 

10.71 [8] 

1177.58 

/ 

32.74 

30.16 [8]  

4.99 

4.87 [8] 

-2.8406 

/ 

x=0.25 This work 10.70 1224.50 31.86 4.55 -2.7194 

x=0.5 This work 10.84 1272.51 30.01 4.72 -2.6130 

x=0.75 This work 10.96 1318.07 29.16 4.53 -2.5144 

X= 1 
This work 

Othercalc. 

11.08 

11.26 [8] 

1359.97 

       / 

28.82 

23.65 [8] 

4.38 

5.50 [8] 

-2.3813 

/ 
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that substituting a Cl atom with a Br atom leads to a transformation in the minimum 

conduction band (CB) of the band structure pattern near the Fermi level, resulting in 

lowered energy levels. Consistent with semiconductor properties, this transformation 

gradually reduces the band gap value with increasing concentration (x = 0.25, 0.5, 0.75, 

1). The results are summarized in Table 2. 

 

 

 

 

 

 

 

     Table III.2: Calculated indirect bandgap using GGA and mBJ potential for 

Rb2AgSb(Cl1-xBrx)6 alloys. 

 

 

 

 

                       

    Rb2AgSb(Clx-1Brx)6 GGA (eV) TB-mBj (eV) 

x = 0 

 

This work 

 

Other calc. 

1.081 2.081 

1.05   [8] 2.19   [8] 

x = 0.25 This work 0.985 1.86 

x = 0.5 This work 0.798 1.59 

x = 0.75 This work 0.765 1.438 

x = 1 

 

This work 

Other calc. 

0.731 

 

0.65 [8] 

1.344 

 

1.56 [8] 
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                       Figure III.3: The computed Rb2AgSb(Cl1-xBrx)6 alloy band structure. 
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     III.4.2 Density of states 

         The density of electronic states (DOS) N(E) refers to the measurement of the number 

of electronic states that possess a specific energy within a material. It can also be 

expressed as N(E)dE, which represents the number of electronic states with energies 

ranging between E and E+dE per unit volume of the solid, or more commonly, per unit cell 

of the crystal under investigation. The density of states is determined by integrating the 

spectral function over the first Brillouin zone and is described by the following equation: 

                                𝑵(𝑬) = ∑  𝒏 ∫
𝒅𝟐𝑲

𝟒𝝅𝟐 𝜹(𝑬 − 𝜺)                                           (III.3) 

To precisely determine the states contributing to each band, we have plotted the total 

density of states (TDOS) and the partial density of states (PDOS) for the Rb2AgSb(Cl1-

xBrx)6 alloys at various concentrations x (ranging from 0 to 1) using the WC-GGA+TB-mBJ 

approximation. 

Figure III.4 shows that the valence band of Rb₂AgSbCl₆ is separated into two sub-bands. 

The first, labeled VB1, extends from the top (zero energy) to -5 eV, and the second, labeled 

VB2, spans from -5 eV to -7 eV. VB1 is primarily composed of cation Ag 'd' states and Sb's' 

states, which are hybridized with Cl 'p' states, suggesting a covalent nature of the Ag-Cl 

bond. In contrast, VB2 is derived from a mix of Sb 'p' states and anion Cl 'p' states. 

Similarly, the conduction band of Rb2AgSbCl₆ is divided into two sub-bands. The first, 

labeled CB1, ranges from zero energy to 4 eV, while the second, labeled CB2, extends from 

4 eV to 7 eV. CB1 mainly originates from Sb 'p' states hybridized with Cl 'p' states, while 

CB2 is derived from Rb's, p, and d' states. The lower part of the conduction band is 

predominantly influenced by Sb's' and Rb's, p, and d' states. However, the valence band 

structure of Rb2AgSb(Cl1-xBrx)6 alloys with concentration (x = 0.25, 0.5, and 0.75) does not 

change when Cl is substituted with Br, although the presence of the Br "p" state 

contribution is observed. It's worth noting that Rb2AgSb(Cl1-xBrx)6 alloys with varying 

concentrations exhibit a higher contribution in both total and partial densities of states 

compared to Rb2AgSbCl6. This attribute renders these compounds significantly more 

suitable for optoelectronic applications. 
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Figure III.4: Total and partial density of states (DOS) of Rb2AgSb(Cl1-xBrx)6 alloys 
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   III.4.3 Carrier effective mass and mobility 

          Using the calculated band structure, we have calculated the effective mass of holes 

(mh*) from the maximum VB and the electrons effective mass (me*) from the minimum 

CB for Rb2AgSbCl6 alloys using the following Equation:  

                                                𝐦∗ = ħ𝟐 (
𝛛𝟐𝐄

𝛛𝟐𝐤
)

−𝟏

                                              (III.4) 

The k is the wave vector direction. The symbol ħ and 3(k) represent the Planck constant 

and eigenvalues of the energy band, respectively. 

 Table 3 presents an overview of the results. It is noted that the electron effective mass is 

lower than the hole effective mass for pure Rb2AgSbCl6. Given that this mass is associated 

with the band gap, and considering the tuning of the band gap following Br substitution 

As a result, we have calculated the hole and electron effective masses for Rb2AgSb(Cl1-

xBrx)6 alloys (see Table 3). It is evident that both hole and electron effective masses 

decrease with the substitution of Cl by the Br atom. Using the deformation potential 

theory [17], the carrier mobility for this compound can be calculated through the 

following relation: 

                                          𝝁 =
(𝟖𝝅)𝟏 𝟐⁄ ћ𝟒𝒆𝑪𝒊𝒊

𝟑(𝒎∗)𝟓 𝟐⁄ (𝒌𝑩𝑻)𝟑 𝟐⁄ 𝑬𝜶
𝟐                                      (III.5)  

Where ћ, Cii, e, m*, kB, T, Eα are respectively, the reduced Planck constant, elastic modulus, 

the element charge, effective mass (of a hole (mh*) or electron (me*)), Boltzmann constant, 

temperature, and deformation potential constant of the CB minimum for electron or VB 

maximum for the hole [18]. Table 3 lists the calculated electron and hole mobilities. It is 

clear that for pure Rb₂AgSbCl₆, electron mobility is significantly higher than hole mobility. 

After substituting Cl with Br, the mobilities of both holes and electrons increase as Br 

concentration rises, with electron mobility improving by about 70% and hole mobility by 

66% after 75% Br substitution. This increase is mainly due to the higher elastic constant 

and reduced effective carrier masses after doping. However, when Cl is replaced by Br, 

the mobility decreases slightly for holes compared to other concentrations. High carrier 

mobility is a highly sought-after property for enhanced photovoltaic performance, as it 

helps efficiently separate photogenerated carriers and reduces recombination. 
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Table III.3: the Calculated Hole and electron effective masses 𝒎𝒉
∗  , 𝒎𝒆

∗ , deformation 

potential constants ECBM (eV) and EVBM (eV), carrier mobility μ (cm2 V-1 s-1) for 

Rb2AgSb(Cl1-xBrx)6 alloys 

Rb2AgSb(Cl1-xBrx)6 𝒎𝒉
∗

𝒎𝟎
⁄  

𝒎𝒆
∗

𝒎𝟎
⁄       ECBM     EVBM       µe     µh 

        X= 0 

  

  0,184 

   

0,121 

    

-4.71 -6.74 9,755 1,673 

        X= 0.25 0,159 0,135 -4.60 -6.41 5,200 1,778 

        X= 0.5 0,126 0,106 -4.81 -6.35 8,785 3,271 

         X= 0.75 0,084 0,095 -4.88 -6.26 10,899 9,013 

         X=1  

       

0,080 

     

0,091 

     

-5.01 -6.30 12,394 10,799 

          

   III.5 Optical properties 

        The optical properties of solids play a significant role in both fundamental research 

and industrial applications. Studies show that light interacts with matter through discrete 

energy units, known as photons. Recently, it has been demonstrated that in solids, the 

distribution of electrons among their quantized energy states is temporarily altered 

under the influence of photons. Grasping these effects is crucial for both technological 

advancements and fundamental scientific understanding. The optical properties of 

perovskites can be harnessed for developing optoelectronic devices, including light 

detectors, LEDs, lasers, and solar cells. To explore this potential, we have calculated 

various optical parameters for the Rb2AgSb(Cl1-xBrx)6 alloys, such as the complex 

dielectric function, refractive index, reflectivity, and absorption coefficient. 

    III.5.1 Dielectric function 

         Many optical properties are connected to the band structure of a crystal. These 

properties can typically be derived from the dielectric function, which characterizes the 

material's linear response to an external electromagnetic field. This function, in turn, 

determines how radiation propagates through the medium. While the dielectric function 

is a real quantity when considering a static field, it becomes complex in the case of a 

dynamic field, denoted as ε(ω), which varies with frequency [19]. 
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                                  𝜺(𝝎) = 𝜺𝟏(𝝎) + 𝒊𝜺𝟐(𝝎)                                     (III.5) 

Here, 𝜺𝟏 refers to the real part of the dielectric function, which is associated with the 

polarization of the surrounding medium, while 𝜺𝟐 represents the imaginary part, which 

describes the material's absorption characteristics. 

The imaginary component of the dielectric function, ε₂, can be determined using the 

matrix elements of the momentum between the occupied and unoccupied electronic 

states within the first Brillouin zone. It can be computed using the following equation 

[20]. 

       𝜺𝟐(𝝎) =
𝐞𝟐ħ

𝝅𝐦𝟐𝝎𝟐
∑  𝐯,𝐜 ∫  

𝐁𝐙
|𝐌𝐞𝐯(𝐤)|𝟐𝜹[𝝎𝐞𝐯(𝐤) − 𝝎]𝐝𝟑𝐤                (III.6) 

Here, M refers to the dipole matrix, with v and c representing the initial and final states, 

respectively. Mev(k) denotes the momentum dipole of the elements, while e is the 

potential vector defined by the electric field. This represents the matrix elements for 

direct transitions between valence band states uvk(r) and conduction band states uck(r). 

The real part, ε₁(ω), can be derived from the imaginary part of the dielectric function 

using the Kramers-Kronig relation [21-22] . 

                              𝜺𝟏(𝝎) = 𝟏 +
𝟐

𝝅
𝑷 ∫  

∞

𝟎

𝝎′𝜺𝟐(𝝎′)

𝝎′𝟐−𝝎𝟐 𝒅𝝎′                           (III.7) 

Where ω is the frequency and P is the principal part of the Cauchy integral. The rest of the 

optical functions, such as the index of refraction, n(ω), the reflectivity R(ω), and the 

absorption coefficient, α, can be derived easily from the dielectric function. 

Based on the calculated electronic structure of Rb2AgSb(Cl1-xBrc)6 alloys and using the 

GGA TB-mBJ approximation for (x = 0, 0.25, 0.50, 0.75, and 1), we determined the real and 

imaginary parts of the dielectric function for incident photons with energies ranging from 

0 eV to 25 eV. 
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Figure III.5: The complex dielectric function's real (ε1) imaginary (ε2) and component     

spectra for Rb2AgSb(Cl1-xBrx)6 materials. 

Figure III.5: presents the calculated real part, ε₁ (ω), and the imaginary part, ε₂ (ω), of 

the complex dielectric function for Rb2AgSb(Cl1-xBrx)6 alloys as a function of photon 

energy hν. It is observed that the ε₁(ω) spectrum of pure Rb2AgSbCl6 shows a prominent 

peak around 4.6 eV, which shifts to lower energies in the other four alloys due to the 

substitution of Br atoms. 

The static dielectric constant ε₁ (ω) for Rb2AgSb(Cl1-xBrx)6 alloys, representing the real 

part of the dielectric function at zero energy, is listed in Table III.4. This constant rises 

from 3.63 for pure Rb2AgSbCl6 to 4.19 for the Rb2AgSb(Cl0.25Br0.75)6 alloy and reaches 4.68 

for Rb2AgSbBr6, indicating a corresponding decrease in the band gap. This static dielectric 

constant can be expressed using the following relationship: 

                                                 𝜺(𝝎) = 𝟏 + (
𝒉𝝎𝒑

𝑬𝒈
)                                   (III.7) 

Where 𝜔𝑝 is the plasma frequency. 

Conversely, as shown in the ε₂ (ω) spectra in Fig. III.5, doping Rb2AgSbCl6 with 25% Br 

introduces new peaks in the visible region. These additional peaks arise from photon 

absorption due to indirect interband transitions. Notably, the position of these peaks 

shifts with increasing Br concentration, with the complex Rb2AgSb(Cl25Br75)6 and 

Rb2AgSbBr6 compounds exhibiting shifts from 2.94 eV to 2.38 eV, with peak values at 3.53 

eV and 6.74 eV. This shift is primarily caused by electron transitions from the valence 
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bands of p-Br, p-Cl, s-Sb, and d-Ag to the p-Sb conduction band, as evidenced by the 

density of states analysis for Rb2AgSbBr6. 

The determination of the two parts of the dielectric function allows us to evaluate other 

optical properties such as absorption α(ω), reflectivity R(ω) and refractive index n(ω). 

     III.5.2 Refractive index 

           The refractive index of a material is typically expressed in its real form, but it can 

also be represented in a complex form: 

                              𝐍(𝛚) = 𝐧(𝛚) + 𝐢𝐤(𝛚)                                        (III.8) 

With N the complex refractive index, n the real refractive index, k the extinction 

coefficient. 

The refractive index (n) of a material indicates how much electromagnetic radiation is 

slowed down when it passes from one medium into another [21]. Using the calculated 

imaginary and real parts of the dielectric function as a function of frequency, the refractive 

index n(ω) is calculated by the relation: 

                          𝐧(𝛚) = [
ℇ𝟏(𝛚)

𝟐
+

√ℇ𝟏
𝟐(𝛚)+ℇ𝟐

𝟐(𝛚)

𝟐
]

𝟏

𝟐

                                (III.9) 

For low frequencies (ε ≈ 0) the relation becomes: 

                           𝒏(𝟎) = √𝜺(𝟎)                                                                  (III.10) 

The value of the static refractive index n(0) of Rb2AgSb(Cl1-xBrx)6 alloys is listed in the 

table III.4 
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Rb2AgSb(Cl1-xBrx)6 𝑬𝒈(𝒆𝑽)      𝜺𝟏(𝝎) 𝒏(𝝎) 𝒌(𝝎) 

        X= 0 

     Other calc 

    2.55 

      / 

  3.63 

 3.17 [8] 

1.89 

1.78 [8] 

 4.13 

   / 

        X= 0.25     2.50   3.68  1.92  2.76 

        X= 0.5     2.30   3.73  1.95  2.66 

         X= 0.75     2.18   4.19  2.06  2.49 

         X=1  

      Other calc 

    2.09 

    / 

  4.68 

 4.05 [8] 

 2.16 

 2.01 [8] 

 2.42 

   / 

 

Table III.4: Calculated direct bandgap and optical parameters for Rb2AgSb(Cl1-xBrx)6 

alloys. 

The static refractive index calculation for pure Rb2AgSbCl6, a crucial parameter for 

optoelectronic applications, yields a value of 1.89. This number is similar to the 1.78 

refractive index that was measured [8]. Also, the extinction coefficient k (ω) remains at 

zero up to 4.13 eV for pure Rb2AgSbCl6, indicating its peak in the UV region. But when Br 

atoms are added in place of Cl atoms with different concentrations, it yields new peaks, 

thereby improving the optical response. 

 

Figure III.6: The calculated refractive index n (ω), extinction coefficient k (ω) for 

Rb2AgSb(Cl1-xBrx)6 alloys. 
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    III.5.3 Optical reflectivity 

         Reflectivity is defined as the ratio of the intensity of the reflected light to the intensity 

of the incident light when an electromagnetic wave strikes the surface perpendicularly. It 

depends on the refractive index and is described by the following equation: 

                                         𝐑(𝛚) = [
ℇ()

𝟏
𝟐−𝟏

ℇ()
𝟏
𝟐+𝟏

]

𝟐

                                     (III.11) 

The average reflectance R (ω) at E=0 eV is approximately 15.5%, 23.8%, 24.2%, 25.6%, 

and 34.2% for Br concentrations of 0%, 25%, 50%, 75%, and 100%, respectively. The R 

(ω) spectra display a peak in the ultraviolet (UV) range, which becomes more pronounced 

as the Br concentration increases. 

 

Figure III.7:  The calculated reflectivity coefficient R (ω) of Rb2AgSb(Cl1-xBrx)6 alloys 

    III.5.4 Absorption 

         The absorption coefficient α, which depends on frequency, represents the fraction of 

light absorbed per unit length within a given medium. The following relation describes 

the change in the absorption coefficient with respect to photon energy hν [24]: 

                                                𝜶 = 𝑨(𝒉𝝂 − 𝑬𝒈)𝒓                                         (III.12) 
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Where A is a constant, Eg is the "optical" gap energy, and r is an index which can be equal 

to ½ 
1

2
 (for a direct gap) or 2 (for an indirect gap).  

The absorption spectrum calculated for Rb₂AgSb(Cl₁₋ₓBrₓ)6 is depicted in Fig. 8. The 

optical absorption data for the Rb₂AgSb(Cl₁₋ₓBrₓ)6 alloys (refer to Table 04) clearly show 

the onset of direct transitions. This indicates that increasing the Br concentration 

significantly improves sunlight absorption in the visible range, In addition, the square of 

the absorption coefficient versus photon energy is plotted (i.e., (αhν)² versus hν) for the 

alloys in Fig. III.9. Using linear fitting, the direct optical band gap is estimated and 

presented in Table 4. making these alloys excellent candidates for solar absorber 

applications. 

 

 

 

Figure III.8: The calculated absorption coefficient α (ω) of Rb2AgSb(Cl1-xBrx)6 alloys 
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                 Figure.III.9: Optical band gap of Rb2AgSb(Cl1-xBrx)6 alloys. 

III.6 Impact of Thickness and Temperature on Optoelectronic 

Performance (SLME) 

     Figure 9 illustrates the absorption spectrum of Rb₂AgSb(Cl₁₋ₓBrₓ)₆, while Table 5 

summarizes the calculated SLMEs for these alloys, assuming an optimal layer thickness of 

100 nm. The results are compared with other recently reported efficient lead-free halide 

perovskites, showing good alignment with materials from the same family [40]. It is worth 

noting that the large, indirect band gaps in this series have a significant impact on their 

SLME. Among them, Rb₂AgSb(Cl₅₀Br₅₀)₆ stands out with a promising SLME of 9.51, 

making it a strong candidate for solar cell applications. 

Additionally, Figure 9 depicts the SLME as a function of temperature, ranging from 200 K 

to 450 K. At room temperature (300 K), the same material with 50% Br content maintains 

high performance, achieving an SLME of 10.29. However, the SLME declines as the 

temperature increases. 
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Table III.5: Calculated spectroscopic limited maximum efficiencies for Rb2AgSb(Cl1-

xBrx)6 alloys 

 

 

Figure III.10: The SLME for Rb2AgSb(Cl1-xBrx)6 alloys as a function of temperature and 

film thickness. 

 

III.7 Thermoelectric characteristics of Rb2AgSb(Cl1-xBrx)6 alloys 

    III.7.1 Introduction 

           Discovering clean, non-polluting energy sources is a key challenge for modern 

societies. One promising solution is generating electricity from waste heat through 

    Rb2AgSb(Clx-   1Brx)6                 SLME% 

X=0           2.06 

X=25          8.41 

X=50          9.51 

X=75          8.71 

X=100          7.83 

Cs2AgBiBr6 (Other calc)          7.92 [25]     

Cs2AgBiCl6 (Other calc)          3.90[25] 



Chapter III            Thermoelectric and Optoelectronic Efficiency of Rb₂AgSb(Cl₁₋ₓBrₓ)₆ Alloys
 

 

 
80 

thermoelectric conversion devices utilizing the Seebeck effect, which we will explore later 

as a potential source of clean energy. 

Thermoelectric devices enable direct conversion between heat and electricity [26-27]. 

Unlike traditional motors, thermoelectric generators operate without moving parts. Heat 

flow drives charge carriers directly, resulting in a compact, silent device that requires 

minimal maintenance, produces no vibrations, and can function reliably over long 

periods. 

Additionally, unlike conventional generators that generate heat from combustion or 

radioactive decay, thermoelectric generators are eco-friendly, utilizing renewable heat 

from industrial or automotive waste [28]. The various manifestations of the 

thermoelectric effect, such as Seebeck, Peltier, and Thomson, which were discovered in 

1821, 1834, and 1851, respectively, link a flow of heat to a flow of electric charges 

circulating simultaneously in a material [29-30]. 

III.7.2 Thermoelectric effects 

     The various manifestations of the thermoelectric effect, such as Seebeck, Peltier, and 

Thomson, which were discovered in 1821, 1834, and 1851, respectively, link a flow of 

heat to a flow of electric charges circulating simultaneously in a material [29-30]. 

    III.7.2.1 Seebeck effect 

        Involves generating a voltage (Δ𝑉) when a temperature difference (Δ𝑇) is applied 

across the junctions of two different materials, A and B. 

                                            𝚫𝐕 = 𝑺𝑨𝑩𝚫𝐓                                      (III.13) 

The thermoelectric coefficient SAB, also called thermoelectric power, is defined as the 

difference between the absolute Seebeck coefficients of materials A and B: 

                                         𝐒𝐀𝐁 = 𝐒𝐀 − 𝐒𝐁                                      (III.14) 

The dominant charge carriers determine the sign of the Seebeck coefficient: SAB < 0 for 

electrons (n-type material) and SAB > 0 for holes (p-type material). 
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                 Figure III.11: Schematic diagram of the Seebeck effect [29]. 

    III.7.2.2 Peltier effect 

When a current I flows through a circuit of two materials, it drives heat transfer Q between 

the junctions: the cold junction absorbs heat, while the hot junction releases it. This heat 

transport caused by electric current is known as the Peltier effect [30]. 

                                        𝐐 =  П𝑨𝑩                                           (III.15)   

  Where ПAB represents the relative Peltier coefficient of materials A and B. 

    

                                    Figure III.12:  Diagram explaining the Peltier effect [29]. 

   

  III.7.2.3 Thomson effect 
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       Consider a rod of a single material with a current III flowing through it and a 

temperature gradient ΔT. In this scenario, the material absorbs or releases heat dQ, and 

the Thomson effect links this heat to the electric current and thermal gradient as follows: 

                                              𝒅𝑸 = 𝝉𝑰𝜟𝑻                   (III.16)       

 Where τ is the Thompson coefficient, which, by convention, is positive if the material, 

absorbs heat when a current flows through it from the hot end to the cold end.     

 

             Figure III.13:  Schematic diagram of the Thomson effect [29]. 

III.8 Thermoelectric energy conversion 

     The Seebeck and Peltier effects demonstrate the bidirectional conversion between 

thermal and electrical energy. The Seebeck effect generates voltage and electric current 

from a temperature gradient, while the Peltier effect creates a temperature gradient using 

an electric current. These principles enable thermoelectric devices to function as power 

generators or refrigeration systems, depending on the conversion direction. 

     III.8.1 Power generation 

         An electric potential can therefore be created by applying a temperature 

gradient to two ends of a material (Seebeck effect) and, by connecting a charge 

between these two ends to close the circuit, an electric current is established (Fig. 
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I.4a). As the sign of the electrical potential is a function of the type of material (p 

or n) and the sign of ΔT, it is possible to increase the electrical potential by 

connecting two materials, one of type n and the other of type p, electrically in 

series and thermally in parallel (Fig. III.13.b). This two-leg configuration (of n and 

p types) forms a thermocouple, which is the basic building block of 

thermoelectric devices. In fact, a thermoelectric module is obtained by connecting 

several thermocouples, always electrically in series and thermally in parallel, 

thereby further increasing the potential and hence the electric current. These 

modules are therefore used to produce TEG (Thermo Electric Generator) 

thermoelectric generators. 

    

Figure III.14: Schematic diagram of a thermoelectric branch (a), a thermocouple (b) and 

a thermoelectric module (c) [31]. 

Applications: 

    Thermoelectric generators (TEGs), based on the aforementioned principle, have long 

been used to generate electrical power, with a wide range of outputs from a few 

microwatts to several kilowatts, by exploiting various available heat sources [32]. 

Notable examples include wood-fired ovens equipped with integrated thermoelectric 

modules, capable of generating a few tens of watts of electricity [33]. With regard to 
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low-power sources, an illustrative example is watches marketed by Seiko (1998, Japan), 

which take advantage of the small temperature difference between the environment and 

the human body to produce around 22 μW, enough power to drive the watch mechanism 

[34, 35]. 

   III.8.2 Effect of Cooling on Crystal Structure 

       Thermoelectric cooling provides similar benefits to generators, particularly the 

absence of refrigerant liquids or gases, making it an environmentally friendly solution 

[36,37]. Due to their compact design, these cooling systems enable localized cooling by 

placing the cooler directly near the component that needs to be cooled, enhancing the 

system’s dynamic performance [38]. Various thermoelectric module-based devices are 

currently available on the market for a range of applications, including domestic use 

(portable refrigerators, Fig. III.13.a), automotive (locally cooled seats, Fig. III.13.b), 

electronics (active and targeted cooling of microprocessors), and optoelectronics (cooling 

of laser diodes, Fig. I.6c) [39, 40]. 

             

               Figure III.15: Cooling applications based on thermoelectric modules. 
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III.9 Thermoelectric properties 

         IV.9.1 Calcul details 

              To simulate the Rb₂AgSb(Cl₁₋ₓBrₓ)₆ alloy with x ranging from 0 to 1, we utilized a 

1×1×1 supercell consisting of 40 atoms in the primitive unit cell. For thermoelectric 

property calculations, we employed a k-point grid with 100,000 points. 

       III.9.2 Seebeck coefficient 

The Seebeck coefficient calculated for the two compounds as a function of temperature is 

shown in Figure III.10. As the Seebeck coefficient is proportional to the effective mass: 

 

                                    𝐒 =
𝟖𝛑𝐤𝐁𝐓

𝟑𝐞𝐡
𝐦∗(

𝛑

𝟑𝐧
)𝟐 𝟑⁄                                      (III.17) 

Where m represents the carrier mass and e denotes the carrier charge, allowing the 

determination of the charge carrier density n. It is acknowledged that the equation is valid 

for systems lacking significant electronic correlations. Mott's formula demonstrates that 

the Seebeck coefficient is influenced by carrier concentration, effective mass, and 

temperature. It describes the process of electron hopping between localized states near 

the conduction band minima and provides an accurate explanation of the interactions 

between independent electrons and static impurities. Figure III.16 illustrates how the 

Seebeck coefficient (S) varies with temperature. The graph reveals that S remains positive 

across all temperatures, indicating that holes are the primary charge carriers and the 

conduction is of p-type. It is well known that an increase in effective mass and the 

narrowing of the gap between the two conduction bands lead to higher Seebeck 

coefficient values. For Rb₂AgSbCl₆, these values reach approximately 210 μV/K at 200 K. 

However, the Seebeck coefficient decreases as the temperature rises. 
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Figure III.16: Seebeck coefficient of Rb2AgSb(Cl1-xBrx)6 alloys as a function of 

temperature 

      III.9.3 Relaxation time 

           The BoltzTraP code represents the electrical conductivity and electronic thermal 

conductivity as the ratios σ/τ and κe/τ, where τ is the relaxation time dependent on 

temperature. In this study, the relaxation time was determined using the Drude model, 

which showed a proportional relationship with both the Seebeck coefficient and 

temperature, as described by the equations:        

                                            𝛕 = 𝐀
𝐪𝐬𝐡

𝐤𝐁
𝟐 𝐓

                              (III.18) 

Where A are dimensionless coefficients (A = 1 for metals and A = 0.1 for semiconductors), 

q are the carriers (electrons or holes), the Seebeck coefficient S, the white constant h, the 

Boltzmann constant kB and the absolute temperature T. Figure III.17 illustrates that the 

relaxation times for Rb2AgSb(Cl1-xBrx)6 decrease as the temperature rises across all 

compounds.  
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Figure III.17: The relaxation time calculated for Rb2AgSb(Cl1-xBrx)6 alloys. 

    III.9.4 Electrical conductivity and electronic thermal conductivity 

        Electrical conductivity is influenced by both the number of charge carriers and their 

mobility. Figure III.18 presents the electrical conductivity (σ/τ), expressed in units of 

(Ω·ms)⁻¹, for a double perovskite as a function of temperature in the range of 200–600 K. 

The conductivity depends on both the carrier concentration and their mobility. A nearly 

linear increase in σ/τ is observed with rising temperature, indicating enhanced carrier 

transport at higher thermal energy. At 200 K, the electrical conductivities (σ/τ) for 

Rb₂AgSbCl₆ and Rb₂AgSbBr₆ are 0.122 × 10¹⁹ (Ω·ms)⁻¹ and 3.81 × 10¹⁹ (Ω·ms)⁻¹, 

respectively. The higher σ value for Rb2AgSbBr6 compared to Rb2AgSbCl6 is likely due 

to a reduction in the band gap. 

Moreover, the electronic component of thermal conductivity (κₑ/τ) is calculated using the 

BoltzTraP code. Figure III.19 shows the variation of κₑ/τ with temperature. This quantity 

increases with temperature because more charge carriers become thermally activated. At 

300 K, the conductivity values are 0.136 × 10¹⁴ W/m·K·s for Rb₂AgSbCl₆ and 1.77 × 10¹⁴ 

W/m·K·s for Rb₂AgSbBr₆. For thermoelectric applications, Rb₂AgSbCl₆—with its lower 

electronic thermal conductivity—is more suitable compared to Rb₂AgSbBr₆. 
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Figure III.18: Electrical conductivity as a function of temperature for Rb2AgSb(Cl1-xBrx)6 

alloys. 

   

Figure III.19: Electronic thermal conductivity as a function of temperature for 

Rb2AgSb(Cl1-xBrx)6 alloys. 
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The calculated power factor (PF = S²σ) as a function of temperature (T) for 

Rb₂AgSb(Cl₁₋ₓBrₓ)₆ is presented in Figure III.20 . The power factor increases with 

temperature for all values of x, indicating that the material becomes more efficient at 

converting heat into electricity as the temperature rises. This trend suggests that the 

material may be well-suited for high-temperature thermoelectric applications. At x = 1 

and T = 600 K, the power factor reaches 2.93 mW/m·K², while at x = 0.5, the power factor 

is the lowest among all compositions. 

 

Figure III.20: Variation of power factor as a function of temperature for Rb2AgSb(Cl1-

xBrx)6 alloys. 

    III.9.5 Optimization of merit factor ZT 

        The performance of thermoelectric materials is quantified by a dimensionless 

quantity called the figure of merit, ZT, given by: 

                                                           ZT = σS²T / κ.                                              (III.19) 
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Where:  T: absolute temperature [K] 

          S: Seebeck coefficient or thermoelectric power [V/K] 

            σ : electrical conductivity [Ω⁻¹·m⁻¹] 

     κ : thermal conductivity (κ = κₑ + κl) [W·m⁻¹·K⁻¹] 

Where:  κₑ is the electronic thermal conductivity due to the movement of charge carriers, 

and 

                κl is the lattice thermal conductivity due to phonons. 

           Optimizing materials for thermoelectric energy conversion requires optimizing 

their electrical and thermal transport properties to maximize ZT. According to this 

formula, a good thermoelectric material exhibits a high Seebeck coefficient, good 

electrical conductivity, and low thermal conductivity. However, increasing σ by raising 

the carrier concentration generally leads to a decrease in the magnitude of S and an 

increase in κ. Therefore, a compromise must be found between these conflicting 

parameters. 

 

Figure III.21: Variation of ZT merit factor with temperature for Rb2AgSb(Cl1-xBrx)6 

alloys. 
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      In Figure III.21, the calculated ZT values for solid solutions of Rb₂AgSb(Cl₁₋ₓBrₓ)₆ are 

presented as a function of temperature, ranging from 300 K to 600 K. As previously 

reported, two key conditions must be met for good thermoelectric performance: a high 

power factor (PF) and low thermal conductivity (κ). As shown, for the pure compound , 

ZT increases with temperature, reaching a value of 0.77, which suggests a stable and 

efficient performance across the temperature range. With increasing Br content, ZT 

values decrease, though they still demonstrate thermoelectric potential, particularly at 

elevated temperatures. Therefore, Rb₂AgSbCl₆ emerges as the most promising 

composition among those studied. However, substituting Br for Cl generally reduces ZT, 

although the material retains its thermoelectric behavior. 

III.10 Conclusion 

     In this section, we investigated how the substitution of bromine affects the band gap 

energy and optical properties of the lead-free halide perovskite Rb₂AgSbCl₆. Density 

functional theory (DFT) calculations based on first principles demonstrate that replacing 

chloride with bromine shifts the conduction band (CB) minimum towards the Fermi level, 

leading to a reduction in the band gap. The band gap decreases from 2.08 eV in pure 

Rb₂AgSbCl₆ to 1.86 eV, 1.59 eV, and 1.43 eV for Rb₂AgSb(Cl₀.₇₅Br₀.₂₅)₆, 

Rb₂AgSb(Cl₀.₅Br₀.₅)₆, and Rb₂AgSb(Cl₀.₂₅Br₀.₇₅)₆, respectively. 

      Additionally, we observed that both the hole and electron effective masses decrease 

with increasing Br concentration, resulting in enhanced hole and electron carrier 

mobility. Optical property calculations further reveal that substituting Br in Rb₂AgSbCl₆ 

improves its optical performance by narrowing the transparent region while increasing 

the refractive index and absorption within the visible light spectrum. The specific 

luminescent minority electron (SLME) of Rb₂AgSb(Cl₀.₅Br₀.₅)₆ is 9.51%. Although this 

percentage is modest, it can be attributed to the material's indirect band gap. However, 

the similarity of these results to others within the same family suggests that lead-free 

halide perovskites remain a promising option for achieving high-efficiency solar energy c 

conversion. 

      The thermoelectric (TE) properties of Rb₂AgSb(Cl₁₋ₓBrₓ)₆ alloys are investigated in 

detail by combining Boltzmann transport theory with first-principles band structure 

calculations. The maximum ZT value of 0.77 is observed for the pure compound (x = 0) at 



Chapter III            Thermoelectric and Optoelectronic Efficiency of Rb₂AgSb(Cl₁₋ₓBrₓ)₆ Alloys
 

 

 
92 

T = 700 K, primarily due to the combination of reduced thermal conductivity and a high 

power factor. This composition exhibits the best thermoelectric performance, with the 

highest and most stable ZT. However, substituting Br for Cl generally leads to a reduction 

in ZT, although the material retains its thermoelectric behavior. 
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 IV.1 Introduction   

     The generation of photovoltaic energy has become essential in meeting the growing 

demand for clean energy and addressing the depletion of fossil fuel resources, as solar 

cells produce no harmful emissions. As a result, the significance of renewable, sustainable, 

and environmentally friendly energy sources in the global economy underscores the need 

to prioritize their development. This urgency has led to increased focus on various 

research fields, including physics, chemistry, and materials science, where both 

theoretical and experimental approaches are being explored [1-2]. 

Furthermore, the widespread adoption of solar energy necessitates the production of 

cost-effective solar cells. Therefore, designing and developing novel solar cell materials 

with optimal electronic, optical, and photovoltaic properties is a key step. This study aims 

to explore potential optical applications by employing Density Functional Theory (DFT) 

to analyze the structural and optoelectronic properties of Rb₂AgSb₁₋ₓBiₓX'₆ alloys, where 

(x = 0, 0.25, 0.50, 0.75, 1) and (X' = Cl, Br, and I). These compounds exhibit highly 

adjustable crystal structures and electrical properties, making them promising candidates 

for diverse applications. By incorporating different halogens (Cl, Br, and I), this research 

examines structural and optoelectronic variations to assess the influence of each halogen 

on material performance. Ultimately, the study of Rb₂AgSb₁₋ₓBiₓX'₆ (with X' = Cl, Br, and 

I) aims to advance the development of high-performance, environmentally friendly 

materials by providing deeper insights into the relationship between structure and 

properties in lead-free halide double perovskites. 

    IV.2 calculation method 

       The calculations of crystal structures, electronic and optical properties were 

performed 

using density functional theory (DFT) as implemented in the Vienna Ab initio Simulation 

Package (VASP) [3] . The generalized gradient approximation was employed using the 

exchange and correlation function of Perdew, Burke, and Ernzerhof (GGA-PBE) [4]. The 

atomic structures were optimized using the PBE functional with 3 × 3 × 3 k-point grid for 

the cubic and other structured perovskites, respectively. The electronic and optical 
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properties were calculated using PBE and the hybrid exchange-correlation 

functional (HSE)[5] . 

     IV.3 RESULTS AND DISCUSSION 

       IV.3.1 Electronic properties 

        IV.3.1.a Band structures 

             To gain a comprehensive understanding of the electronic structure of 

Rb₂AgSb₁₋ₓBiₓX'₆ (where X' = Cl, Br, and I), both band structures and densities of states 

were calculated using the PBE and HSE methods for the optimized lattice parameters. The 

valence band maximum (VBM) was set at 0 eV as a reference point to align energy values 

accordingly. Figure IV.10 presents the computed band structures of Rb₂AgSb₁₋ₓBiₓX'₆ 

alloys along selected high-symmetry directions in the Brillouin zone (BZ). The conduction 

band minimum (CBM) and the VBM are not located at the same symmetry point (L-Γ), 

confirming the material's nature as an indirect band gap semiconductor. 

To obtain more accurate band gap values, the HSE approach was applied, yielding results 

(Table IV.1) that align with existing theoretical studies [6]. It was observed that 

substituting Sb with Bi alters both the band gap characteristics and the semiconductor 

behavior. Additionally, modifying the halogen component significantly affects the band 

gap values, with Br yielding favorable results. The CBM shifts downward towards the 

Fermi level, reducing the band gap of Rb₂AgSb₁₋ₓBiₓBr6 alloys to 1.32 eV, 1.39 eV, 1.61 eV, 

1.59 eV, and 1.04 eV for x = 0.25, 0.5, 0.75, and 1, respectively. Furthermore, the 

introduction of I influences the band structure, further decreasing the energy band gap of 

Rb₂AgSb₁₋ₓBiₓI alloys, as shown in Table IV.1. 
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Table IV.1: Calculated indirect bandgap using HSE (Ev) for Rb2AgSb1-xBixX’6 allos 

Rb₂AgSb₁₋ₓBiₓX’6           Br                                           Cl I 

         X = 0            1.32  2.31  1.04 

        X=0.25            1.39   2.032 0.94 

       X= 0.5            1.61   2.25  0.82 

       X= 0.75            1.59   2.27 0.92 

       X= 1            1.04  2.74  0.76 

Rb2AgBiBr6 Rb2AgBiCl6 Rb2AgBiI6 
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Rb2AgSb50Bi50Br6 
Rb2AgSb50Bi50Cl6 Rb2AgSb50Bi50I6 

Rb2AgSb75Bi25Br6 Rb2AgSb75Bi25Cl6 Rb2AgSb75Bi25I6 
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Rb2AgSb25Bi75Br6 Rb2AgSb25Bi75Cl6 
Rb2AgSb25Bi75I6 

Rb2AgSbBr6 Rb2AgSbCl6 Rb2AgSbI6 
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Figure IV.1: The calculated band structure of Rb2AgSb1-xBixX’6 alloys. 

     IV.3.1.b Density of states 

         To gain a deeper understanding of the electronic structure, we analyzed the 

contribution of each atomic species to a series of bands within the total density of states 

decomposition. The total and partial atomic densities of states (TDOS and PDOS) for 

Rb₂AgSb₁₋ₓBiₓX'₆ (where X' = Cl, Br, and I) alloys at various concentrations (x) were 

computed. The TDOS and PDOS graphs, presented in Fig. IV.11, were plotted using the 

HSE method. 

As observed, the low-energy region of the valence band, ranging from -6 eV to -3 eV, 

primarily arises from a mixture of Sb and Bi states, along with contributions from the Br 

anion states. The second region, spanning from -3 eV to the Fermi level (Eₓ = 0), is mainly 

dominated by Ag cationic states hybridized with Cl, Br, and I states, indicating variations 

in material properties. 

The conduction band of Rb₂AgSb₁₋ₓBiₓX'₆ is predominantly composed of Bi states 

hybridized with different halide anion states. As we move deeper into the conduction 

band, a significant contribution from Bi states hybridized with other elements becomes 

evident. Notably, the substitution of Bi atoms at Sb sites has a substantial impact on the 

conduction band structure. This Bi incorporation leads to the formation of new states in 

the conduction band minimum, primarily originating from Bi states hybridized with Sb 

and halide (Br, Cl, and I) states for Rb₂AgSb₁₋ₓBiₓX'₆ alloys (x = 0.25, 0.5, 0.75, and 1), 

ultimately reducing the band gap value. Consequently, the band gap reduction in 

Rb₂AgSb₁₋ₓBiₓBr can be attributed to the increase in atomic size from Sb to Bi. 
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Figure IV.2: Total and partial density of states (DOS) of Rb2AgSb1-xBix(X’)6 alloys 
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VI.3.2 Mechanical properties 

     VI.3.2.1 Elastic coefficients 

       The elastic properties of a material are crucial as they offer valuable insights into its 

mechanical and dynamic behavior, crystal anisotropy, and overall rigidity. 

The primary goal of our study is to assess the mechanical stability of the compounds 

examined, primarily relying on the Cij elastic constants. Since all the studied compounds 

have a cubic structure, they are characterized by three elastic constants: C11, C12, and C44. 

The various elastic constants are obtained by applying three deformation matrices 

(distortions) Di in response to applied stresses δ along specific spatial directions, allowing 

for the determination of C11+2C12, C11-C12, and C44, respectively. 

All the results are presented in Table (IV.2). It is evident that the studied materials exhibit 

a significantly higher C11 value compared to C12 and C44, indicating greater resistance to 

volume change (compression) than to shape change (shear). Born and Huang [7] initially 

introduced the mechanical stability of the crystalline lattice. In a cubic system, mechanical 

stability is ensured when the three independent elastic constants satisfy the following 

Born conditions: 

                      𝐂𝟏𝟏 −  𝐂𝟏𝟐 >  𝟎, 𝐂𝟏𝟏 +  𝟐𝐂𝟏𝟐 >  𝟎, 𝐂𝟒𝟒 >  𝟎 

In addition, the compression modulus B must satisfy the criterion: 

                       𝐂𝟏𝟐 < 𝐁 < 𝐂𝟏𝟏 

Table (IV.1) shows that the obtained elastic constant values meet the previously 

described mechanical stability criteria, confirming that all the compounds examined in 

this study are mechanically stable. 

From the elastic constants C11, C12, and C44 for a cubic system, various mechanical 

quantities can be evaluated according to the following expressions [7]: 

                                            𝐆𝐯 =
𝟏

𝟓
(𝐆𝟏𝟏 − 𝐂𝟏𝟐 + 𝟑𝐂𝟒𝟒                          IV.1             

                                     𝑮𝑹 =
𝟓𝑪𝟒𝟒(𝑪𝟏𝟏−𝑪𝟏𝟐)

𝟒𝑪𝟒𝟒+𝟑(𝑪𝟏𝟏−𝑪𝟏𝟐)
                           IV.2 
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                                    𝑮 =
𝑮𝒗+𝑮𝑹

𝟐
                                                 IV.3 

                                   𝐄=
𝟗𝑩𝑮

𝟑𝑩+𝑮
                                                      IV.4 

                                        𝛖 =
(𝟑𝑩−𝟐𝑮)

𝟐(𝟑𝑩+𝑮)
                                                    IV.5 

Where GV is Voigt's shear modulus, GR is Reuss' shear modulus, E is Young's modulus and 

𝜈 is Poisson's ratio. 

 

Rb2AgSb1-xBixBr6    C11 C12      C44     B       E     a0     G     ʋ B/G 

        X= 0 51.780 

   

16.83 7.487 28.35 30.44 11.035 11.53 0.32 2.67 

        X= 0.25 51.292 16.439 7.025 28.06 29.62 11.063 11.19 0.32 2.51 

        X= 0.5 50.889 16.227 6.713 27.82 29.20 11.09 11.02 0.33 2.52 

         X= 0.75 50.596 16.262 6.572 27.72 28.70 11.116 10.81 0.33 2.56 

         X=1  

       

49.654 

     

16.346 6.24 27.45 27.74 5.571 10.42 0.33 2.63 

 

 

 

 

 

 

Rb2AgSb1-xBixCl6    C11 C12      C44     B       E      a0     G     ʋ B/G 

        X= 0 52.871 

   

20.129 6.865 31.04 29.71 5.264 10.67 0.35 2.91 

        X= 0.25 54.485 19.012 6.941 30.84 30.11 10.55 11.26 0.34 2.74 

        X= 0.5 54.169 18.627 6.935 30.55 30 10.583 11.22 0.34 2.72 

         X= 0.75 53.598 18.761 6.520 30.37 29.16 10.60 10.88 0.34 2.79 

         X=1  

       

53.713 

     

18.490 6.821 30.23 29.76 10.634 11.14 0.34 2.71 



Chapter VI        Theoretical Study of a new Double Perovskite Alloys 
Rb₂AgSb₁₋ₓBiₓX' (X' = Cl, Br, I) Using VASP Analysis 

 

 
109 

 

 

                 Table IV.2: The calculated compressibility modulus (B) and elastic constants 

(Cij) in GPa, along with the lattice parameter (a₀) in Å, Young's modulus (E) in GPa, shear 

modulus (G) in GPa, Poisson's ratio (υ), and the B/G ratio. 

To predict the brittle or ductile behavior of materials, S. F. Pugh [8] introduced the ratio 

between the bulk modulus (B) and the shear modulus (G), denoted as B/G. Here, G 

represents resistance to plastic deformation, while B indicates resistance to fracture. 

The critical threshold distinguishing ductile from brittle materials is approximately 1.75, 

with materials being brittle for B/G < 1.75 and ductile for B/G > 1.75. According to Table 

(IV.2), the calculated B/G values classify all the studied materials as ductile. 

Another criterion for distinguishing between ductile and brittle materials is Poisson's 

ratio (𝜈), where the critical value is approximately 0.33. A material is considered brittle if 

𝜈 is less than 0.33, whereas it behaves ductilely when 𝜈 is greater than 0.33. Based on the 

values in Table (IV.2), Poisson's ratio (𝜈) is equal to or greater than 0.33 for all the 

materials, confirming their ductile nature. 

Young's modulus (E) serves as a reliable indicator of a material's hardness. A higher E 

value corresponds to greater stiffness. Based on the obtained E results, we can conclude 

that the materials are hard. 

 

 

 

Rb2AgSb1-xBixI6    C11 C12      C44     B       E      a0     G     ʋ B/G 

        X= 0 44.539 

   

14.505 7.731 24.523 27.90 11.767 10.64 0.31 2.42 

        X= 0.25 44.016 23.554 7.381 26.28 21.56 11.79 7.91 0.36 3.23 

        X= 0.5 43.486 14.325 7.215 24.03 26.80 11.828 10.20 0.31 2.36 

         X= 0.75 43.295 14.117 6.906 23.84 26.27 11.855 9.98 0.32 2.55 

         X=1  

       

42.809 

     

14.126 6.606 23.69 25.60 11.883 9.70 0.32 2.44 



Chapter VI        Theoretical Study of a new Double Perovskite Alloys 
Rb₂AgSb₁₋ₓBiₓX' (X' = Cl, Br, I) Using VASP Analysis 

 

 
110 

 

                                                        Reference  

 [1] Zhao, C., Cheung, C. F., & Xu, P. (2020). High-efficiency sub-microscale uncertainty 

measurement method using pattern recognition. ISA Transactions, 101, 503–514. 

https://doi.org/10.1016/j.isatra.2020.02.005 

[2] Zhu, X., Liu, Z., Chen, H., Wang, X., Wang, W., & Lu, Y. (2021). Templateless, plating‐free 

fabrication of flexible transparent electrodes with embedded silver mesh by electric‐

field‐driven microscale 3D printing and hybrid hot embossing. Advanced Materials, 

33(21), 2007772. https://doi.org/10.1002/adma.202007772 

[3] Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations 

for metals and semiconductors using a plane-wave basis set. Computational 

Materials Science, 6(1), 15–50. https://doi.org/10.1016/0927-0256(96)00008-0  

[4] Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation 

made simple. Physical Review Letters, 77(18), 3865–3868. 

https://doi.org/10.1103/PhysRevLett.77.3865  

[5] Heyd, J., Scuseria, G. E., & Ernzerhof, M. (2003). Hybrid functionals based on a screened 

Coulomb potential. The Journal of Chemical Physics, 118(18), 8207–8215. 

https://doi.org/10.1063/1.1564060  

[6] Chen, X., Jiang, Z., Deng, W., Gu, Y., & Chen, W. (2020). Bayesian optimization based 

on a unified figure of merit for accelerated materials screening: A case study of 

halide perovskites. Science China Materials, 63, 1024–1035. 

https://doi.org/10.1007/s40843-020-1311-4  

[7] Reuss, A. (1929). Berechnung der Fließgrenze von Mischkristallen auf Grund der 

Plastizitätsbedingung für Einkristalle. Zeitschrift für Angewandte Mathematik und 

Mechanik, 9(1), 49–58. https://doi.org/10.1002/zamm.19290090104  

[8] Pugh, S. F. (1954). XCII. Relations between the elastic moduli and the plastic 

properties of polycrystalline pure metals. The London, Edinburgh, and Dublin 

Philosophical Magazine and Journal of Science, 45(367), 823–843. 

https://doi.org/10.1080/14786440808520496 

https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1063/1.1564060
https://doi.org/10.1007/s40843-020-1311-4
https://doi.org/10.1002/zamm.19290090104


                                                                                                                   General conclusion 

 

 
111 

 

                                                              General conclusion 

 

n this thesis, we looked at structural properties such as stability, lattice constant, 

interatomic distance, and total equilibrium energy; electronic properties such as 

band structure and density of states of Rb2AgSbCl6 materials in their pure state as 

well as after substituting Bromine  for chloride. First, optical properties including 

absorption, refraction, extinction, reflectivity coefficients, and the dielectric function were 

calculated and analyzed. Additionally, the carrier effective mass, mobility, and SLME were 

investigated to assess the potential of these materials for use in solar cells. We performed 

all calculations using Density Functional Theory (DFT). The study utilized plane waves 

combined with a full potential (FP-APW) approach, while exchange and correlation effects 

were addressed using two approximations: the Wu-Cohen Generalized Gradient 

Approximation (WC-GGA) and the GGA-TB-mBJ method of Tran and Blaha, modified by 

Becke and Johnson. This framework was applied to investigate the Rb₂AgSb(Cl₁₋ₓBrₓ)₆ 

alloys. 

          From the total energy versus volume calculations, we determined that the optimized 

mesh parameters align well with the theoretical data for the pure material. The 

investigation of electronic properties revealed that Rb₂AgSbCl₆ is a semiconductor with 

an indirect band gap of approximately 2.08 eV, consistent with theoretical predictions. On 

the other hand, we sought to address the question: how will Br substitution affect these 

properties? 

 By reviewing the obtained results, one can observe that mesh parameters increase when 

Br atoms are gradually substituted into Cl atoms in the Rb2gSbCl6 unit cell. We also 

remarked that when the Cl atom is substituted by the Br atom, the nature of the band gap 

and the semiconducting character is retained; however, the energy band gap value is 

linearly reduced from x=0 to x=1 for Rb2AgSb(Cl1-xBrx)6 alloys. The calculation of the 

density of states allowed us to give a detailed explanation of the contribution of the 

different orbitals. 

        Regarding the optical properties, our findings indicate that both the real and 

imaginary spectra exhibit significant anisotropy across all alloys. Analysis of the 

I 
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absorption coefficient spectra for Rb₂AgSb(Cl₁₋ₓBrₓ)₆ alloys reveals that Br substitution 

notably reduces the transparent region while enhancing absorption in the visible 

spectrum, Additionally, we calculated the Spectroscopic Limited Maximum Efficiency 

(SLME). The luminescent minority carrier efficiency (SLME) of Rb₂AgSb(Cl₀.₅Br₀.₅)₆ was 

found to be 9.51%. While this value is relatively modest, it can be attributed to the 

material's indirect band gap. This suggests that these alloys possess high sunlight 

absorption in the visible range, making them promising candidates for use as efficient 

solar absorbers. 

       The thermoelectric (TE) properties of Rb₂AgSb(Cl₁₋ₓBrₓ)₆ alloys are investigated in 

detail by combining Boltzmann transport theory with first-principles band structure 

calculations. The maximum ZT value of 0.77 is observed for the pure compound (x = 0) at 

T = 700 K, primarily due to the combination of reduced thermal conductivity and a high 

power factor. This composition exhibits the best thermoelectric performance, with the 

highest and most stable ZT. However, substituting Br for Cl generally leads to a reduction 

in ZT, although the material retains its thermoelectric behavior. 

       In this study, we focus on the electronic properties of Rb₂AgSb₁₋ₓBiₓX'₆ alloys, where 

x takes values of zero, 0.25, 0.50, 0.75, and 1, with X′ representing Cl, Br, or I. These 

compounds demonstrate highly adjustable features in both their crystal structure and 

electrical properties, making them attractive for diverse applications. 

We also examined the differences between VASP and WIEN2k calculations, particularly in 

the context of Rb₂AgSbCl₆. 

 



      Annex
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1. Difference between VASP and WIEN2k calculations 

Rb2AgSbCl6     VASP WIEN2k 
      a0 11.76 10.56 
       B 24.52 32.74 
      C11 52.87 66.13 
      C12 20.129 15.91 
     C44 6.865 7.92 
     B/G 2.42 2.55 
      E 27.90 34.11 
      G 10.64 12.86 
      ʋ 0.31 0.33 
   Gap 2.31 eV  2.08 eV 

 

Table 1: comparing  vasp and wien2k calculated compressibility modulus (B) and elastic 

constants (Cij) in GPa, along with the lattice parameter (a₀) in Å, Young's modulus (E) in 

GPa, shear modulus (G) in GPa, Poisson's ratio (υ), and the B/G ratio and gap for 

Rb2AgSbCl6. 

 VASP tends to predict a more relaxed (larger volume) structure, and slightly softer 

mechanical properties. 

 WIEN2k predicts a denser, stiffer material with slightly lower band gap 

 These differences arise from: 

 All-electron treatment in WIEN2k (more accurate near nuclei). 

 Pseudopotential approximations in VASP (efficient but sometimes slightly 

less precise). 
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Here is the comparison focused on mechanical properties of Rb₂AgSbCl₆ using VASP and 

WIEN2k. You can see that WIEN2k generally predicts higher stiffness (bulk, Young's, and 

shear moduli) than VASP, while both methods agree on ductile behavior (B/G > 1.75) and 

similar Poisson's ratio. 

   2- Conclusion 

Both VASP and WIEN2k give physically consistent results. 

 Use VASP if you're aiming for larger systems, high-throughput studies, or 

integration with phonon/optical tools. 

 Use WIEN2k if you need precise electronic structure or are working with core-

level or strongly correlated effects. 

 


