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Abstract 

Features extraction and medical images description 
for breast cancer automatic diagnosis 

Fighting breast cancer remains a major public health concern worldwide, affecting millions 
of lives each year. Early detection is essential to improve survival rates and treatment results. 
In recent years, advances in medical imaging, particularly mammography, combined with 
features-based methods, and deep learning techniques, have significantly improved the 
accuracy and efficiency of computer-aided diagnosis (CAD) systems. Breast masses and 
microcalcifications represent the most frequent anomalies with a high risk of malignancy. Most 
of descriptors found in the literature extract global features and fail to characterize spiculated 
masses.  

To address this problem, we focused on developing descriptor adapted to the context of 
breast cancer, and particularly spiculated masses. PATAR descriptor (Polygon Approximation 
Triangle-Area Representation) applies a geometric transformation on masses, to simplify the 
contour while keeping important characteristics like concave and convex spaces. Polygon 
approximation is done with the Ramer-Douglas-Peucker (RDP) algorithm. After RDP process 
Triangle-Area Representation (TAR signature) is calculated to quantify and measure 
spiculations. TAR signature calculates the area made by the corners of polygon.  

In recent years, deep learning-based models have gained ground in CADx systems. Models 
like DenseNet, ResNet, and EfficientNet based on Convolutional Neuronal Networks (CNNs) 
does not perform well facing microcalcifications. Stacking Ensemble learning is a technique 
that combine multiple model outputs, through meta-learner to make final prediction. We 
designed an optimal meta-learner composed of fully connected network. Experiment on CBIS-
DDSM dataset demonstrate the efficiency of the meta-learner. Boosting is another ensemble 
learning strategy that learns multiple models sequentially and adjust samples weights after each 
iteration. In this context, a new boosting algorithm is proposed named Cost-Sensitive Boosting 
with Error Weighted Adjustments (CSB-EWA). The main contribution in this algorithm consist 
in using false positive and false negative rates to adjust samples weight to guarantee maximum 
balance between sensitivity and specificity. 

 

Keywords: Breast cancer, masses, Microcalcifications, Computer-Aided Diagnosis, Features 
Extraction, Ensemble Deep Learning, Meta-learner, Boosting learning 

  



 ملخص 

 ووصف الصور الطبية للتشخيص التلقائي لسرطان الثدي يزاتماستخراج الم

ء العالم، حيث تؤثر على حياة الملايين لا تزال مكافحة سرطان الثدي مشكلة صحية عامة كبيرة في جميع أنحا
ال لتحسين    نساءمن  المبكر ضروريًا  الكشف  ويعُد  عام.  العلاجكل  الحياة. في و   نتائج  قيد  على  البقاء  معدلات 

السنوات الأخيرة، أدى التقدم في مجال التصوير الطبي، لا سيما التصوير الشعاعي للثدي، بالإضافة إلى الأساليب 
بشكل  وتقنيات التعلم العميق، إلى تحسين دقة وكفاءة أنظمة التشخيص بمساعدة الحاسوب  ميزاتالقائمة على الم

كبير. تمثل كتل الثدي وتكلسات الثدي الدقيقة أكثر الحالات الشاذة شيوعاا التي تنطوي على مخاطر عالية للإصابة 
  .ت العامة وتفشل في توصيف الكتل المتشعبةبالأورام الخبيثة. معظم الواصفات الموجودة في الأدبيات تستخرج السما

. شعبةولمعالجة هذه المشكلة، ركزنا على تطوير واصف يتكيف مع سياق سرطان الثدي، وخاصة الكتل المت
مع   شكل الكتل المساحة( تحويلاا هندسياا على الكتل، لتبسيط ال-)تقريب المضلع التقريبي للمثلث   يطبّق الواصف

-Ramer .الحفاظ على الخصائص المهمة مثل المساحات المقعرة والمحدبة. يتم تقريب المضلع باستخدام خوارزمية

Douglas-Peucker (RDP)  عملية  بعد RDP   توقيع  بواسطة  منطقة المثلث   مساحةيتم حساب TAR  لتحديد
المميزات التي تم استخراجها عن    .المضلع المساحة التي تصنعها زوايً   TAR وقياس المساحات المقعرة. يحسب توقيع 

 .وبالتالي تقدير مدى خبث هذه الأورام  طريق هذا الواصف تسمح بتقدير مدى تشعب الكتل

لا التشخيص التلقائي.    في السنوات الأخيرة، اكتسبت النماذج القائمة على التعلّم العميق مكانة في أنظمة
  (CNNs) القائمة على الشبكات العصبية التلافيفية   EfficientNet  و    ResNetو DenseNet تؤدي نماذج مثل

أداءا جيداا في مواجهة التكلسات الدقيقة. التعلّم التجميعي هو تقنية تجمع بين مخرجات نماذج متعددة، من خلال 
بتت التجربة على متعلم تلوي للتنبؤ النهائي. لقد صممنا متعلماا فائقاا مثالياا يتألف من شبكة متصلة بالكامل. أث

تقوم على   التعزيز هو استراتيجية أخرى للتعلم التجميعي  .كفاءة المتعلم الفوقي CBIS-DDSM مجموعة بيانات
العينات النماذج بالتتابع وتعديل   الأوزان بعد كل تكرار. في هذا السياق، اقترحت خوارزمية تعزيز جديدة   تعدد 

للخطأ   تعديلات مرجحة  للتكلفة مع  الحساس  التعزيز  هذه   .(CSB-EWA)تسمى  الرئيسية في  المساهمة  تتمثل 
لضبط وزن العينات لضمان أقصى قدر من   الخوارزمية في استخدام معدلات إيجابية كاذبة ومعدلات سلبية كاذبة

 بين الحساسية والخصوصية.  التوازن 

لكتلة، التكلسات الدقيقة، التشخيص بمساعدة الحاسوب، استخراج الميزات، سرطان الثدي، ا  الكلمات المفتاحية: 
 التعزيز   ،مجموعة التعلم العميق، المتعلم الفوقي



 

Résumé 

Extraction de caractéristiques et description d'images 
médicales pour le diagnostic automatique du cancer du sein 

La lutte contre le cancer du sein reste un problème majeur de santé publique dans le monde 
entier, affectant des millions de vies chaque année. Le dépistage précoce est essentiel pour 
augmenter les chances de succès du traitement. Ces dernières années, les progrès de l'imagerie 
médicale, en particulier la mammographie, combinés aux méthodes basées sur les 
caractéristiques et aux techniques d'apprentissage profond, ont considérablement amélioré la 
précision et l'efficacité des systèmes de diagnostic assisté par ordinateur (DAO). Les masses 
mammaires et les microcalcifications représentent les anomalies les plus fréquentes avec un 
risque élevé de malignité. La plupart des descripteurs trouvés dans la littérature extraient des 
caractéristiques globales et ne parviennent pas à caractériser les masses spiculées.  

Pour résoudre ce problème, nous nous sommes concentrés à développer un descripteur 
adapté au contexte du cancer du sein, et en particulier aux masses spiculées. Le descripteur 
PATAR (Polygon Approximation Triangle-Area Representation) applique une transformation 
géométrique aux masses, afin de simplifier le contour tout en conservant les caractéristiques 
importantes telles que les espaces concaves et convexes. L'approximation en polygone est 
effectuée à l'aide de l'algorithme Ramer-Douglas-Peucker (RDP). Après le processus RDP, la 
signature TAR est calculée pour quantifier et mesurer les spiculations. La signature TAR 
calcule la surface formée par les coins d'un polygone ce qui permet d’estimer le degré de 
malignité.  

Ces dernières années, les modèles basés sur l'apprentissage profond ont gagné du terrain 
dans les systèmes CADx. Les modèles tels que DenseNet, ResNet et EfficientNet, basés sur des 
réseaux de neurones convolutifs (CNN), ne donnent pas de bons résultats face aux 
microcalcifications. L'apprentissage d'ensemble par empilement est une technique qui combine 
les résultats de plusieurs modèles, par le biais d'un meta-learner, afin d'obtenir une prédiction 
finale. Nous avons conçu un meta-learner optimal composé des couches entièrement connecté. 
Des expériences sur la base de données CBIS-DDSM démontrent l'efficacité du méta-
apprentissage. Le boosting est une autre stratégie d'apprentissage d'ensemble qui permet 
d’apprendre plusieurs modèles de manière séquentielle et d'ajuster les poids des échantillons 
après chaque itération. Dans ce contexte, un nouvel algorithme de boosting est proposé à 
l'adresse sous le nom de Cost-Sensitive Boosting with Error Weighted Adjustments (CSB-
EWA). La principale contribution de cet algorithme consiste à utiliser les taux de faux positifs 
et de faux négatifs pour ajuster le poids des images afin de garantir un équilibre maximal entre 
la sensibilité et la spécificité. 

Mots-clés : Cancer du sein, Masses, Microcalcifications, Diagnostic assisté par ordinateur, 
Extraction d’attributs, apprentissage profond d'ensemble, meta-learner. 
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Introduction  

 

 

Breast cancer represents one of the significant problems in the field of public health. 
According to World Health Organization breast cancer caused 670 000 deaths globally in 2022 
[1]. Indeed, it is the leading cause of cancer-related deaths among females. Breast cancer is a 
pathological condition characterized by the dysregulated proliferation of abnormal cells within 
the breast tissue, which can lead to the formation of malignant tumors [2]. If not detected and 
treated in time, these tumors may invade surrounding tissues and metastasize to other parts of 
the body, posing a serious threat to life. Manual analysis of medical images is challenging due 
to the complexity of breast tissue, subtle features like microcalcifications and spiculated masses, 
and the high risk of human error and variability among radiologists [3]. It is also time-
consuming, especially in large-scale screenings. These difficulties underline the importance of 
Computer Aided Diagnosis (CADx) systems in supporting radiologists in increasing diagnostic 
accuracy and efficiency. Early detection and diagnosis are critical in improving women's health 
and reducing mortality. 

Mammography, among many technologies such as MRI, Tomography, Ultrasound, or 
Tomosynthesis, is currently the most widely used screening technique for identifying 
suspicious lesions such as masses and microcalcifications, which are the most important 
findings when evaluating breast abnormalities. Mammography, a specialized low-dose X-ray, 
can detect suspicious abnormalities like masses and microcalcifications deeper in the breast and 
early stage. However, interpreting mammograms is complex and often subject to human error 
due to the low contrast of images. In this context, computer-aided diagnosis (CADx) systems 
have gained increasing attention as a valuable second-reading tool to assist radiologists in 
accurately detecting and classifying breast abnormalities [4]. Clinical studies demonstrates that 
CAD systems in breast cancer can improve specificity and sensitivity without a significant 
increase in the work-up rate, which includes, in most cases, unnecessary biopsies. 

Over the years, two major computational approaches have emerged for automatic breast 
cancer diagnosis: feature-based methods and deep learning-based models. Traditional feature-
based methods rely on handcrafted features extracted from images, such as shape, texture, or 
intensity descriptors. Features are measurable characteristics or attributes extracted from 
medical images that help describe specific regions of interest (ROI’s), such as lesions or tumors, 
these are then fed into machine learning classifiers. Feature-based methods are more easily 
interpretable by human experts. This transparency is especially valuable in clinical contexts, 
where understanding the basis of a diagnosis is essential. These methods typically extract 
features using global descriptors like Gabor filters, histograms of gradients, or statistical 
moments. However, such features may not capture the subtle, irregular, or high-level patterns 
in medical images. Spiculated masses represent a high risk of malignancy when found in the 
breast [5]. The identification and measurement of these spiculations remain very difficult and 
challenging due to these masses' hazardous irregularities and random shapes.   
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Several approaches in the literature failed to characterize efficiently spiculated masses with 
high accuracy, and the main problem remains in the isolation and quantification of spicules. 
The design of descriptors specific to the problem of automatic diagnosis of breast cancer is the 
optimal solution we propose to improve the performance of CADx. In this thesis, our first 
contribution is developing a robust descriptor named PATAR (Polygon Approximation 
Triangle-Area Representation). Our descriptor is capable of extracting high-level features such 
as spiculations and measuring the degree of malignancy in masses. To address this problem, a 
geometric transformation via polygon approximation is applied on masses as a first step, 
allowing the descriptor to isolate the most important irregularities and ignore minor variations 
in contours. The Ramer-Douglas-Peucker (RDP) algorithm is used to approximate the shape of 
masses to polygon. The RDP algorithm simplifies a curve by retaining only the most significant 
points. It starts by connecting the first and last points with a straight line, then identifies the 
point farthest from this line. If the distance exceeds a set tolerance (ε), that point is kept, and 
the process is applied recursively to the sub-curves. If all points lie within the tolerance, the 
curve is approximated by the straight line. The result is a simplified contour that preserves the 
shape with fewer points. The RDP algorithm reduces data size and computational cost while 
preserving essential shape characteristics. Its ability to retain the key structure of a curve makes 
it valuable in applications such as contour simplification, and medical shape analysis, 
particularly for simplifying anatomical boundaries like tumors or lesions. Triangle-area 
representation (TAR signature) is calculated in the second step to quantify the spiculations. 
TAR signature brows all the points (corners) generated by the RDP algorithm, and calculate the 
area made by concave and convex spaces. In fact, concavities and convexities are the spicules 
of original mass. After the polygon approximation and TAR calculation, a vector of features is 
generated and provided to three classifiers, Support Vector Machines, Random Forest, and 
Fuzzy C-Means. The high quality of features extracted through PATAR will significantly 
impacts the accuracy of the proposed machine learning model. Experiments of PATAR are 
conducted on CBIS-DDSM using 1 545 images. 

Deep learning approaches, particularly convolutional neural networks (CNNs), have 
demonstrated remarkable success in medical imaging [6]. CNNs are especially suitable for 
image analysis because they preserve spatial relationships through convolutional layers, 
effectively allowing them to learn hierarchical features, from simple edges to complex patterns. 
Many model families have been developed, like VGG, ResNet, DenseNet, EfficientNet, and 
AlexNet. Each model has its strengths and weaknesses. In the automatic diagnosis of 
microcalcifications, standalone models in the literature struggle to face the low contrast and 
tiny calcium deposits that form microcalcifications. Most CNNs models use pooling layers that 
reduce the resolution of the input image, which can cause them to miss small details like 
microcalcifications [6]. Ensemble learning is a new trend combining multiple models to 
produce more accurate and robust predictions. Different strategies are introduced to integrate 
models; stacking is a popular approach involving a meta-learner, classifier, or regressor trained 
to combine these outputs and learn how to combine the predictions of several base-models [7]. 
Our second contribution in this thesis comprises the design of an optimal meta-learner, capable 
of classifying microcalcifications using the predictions of three different models: ResNet-50, 
DenseNet-121, and EfficientNet-b0. The architecture of the proposed meta-learner is founded 
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on fully connected layers with ReLU activation functions, and Softmax layer to generate final 
prediction. CNNs can learn complex correlations between base model outputs permitting the 
enhancement of the overall performance. The results obtained prove the success of the meta-
learner to combine heterogeneous models and integrating different types of outputs. 

In Ensemble Learning, boosting strategy consists on training multiple models sequentially, 
with attribution of new weights to samples after each iteration. The new weights are calculated 
based on the misclassifications of individual models. Several algorithms are used to generate 
new weights such as AdaBoost and Gradient Boost, and most of them does not decrease false 
positive and false negative rate [8]. After testing many models like ResNet-50, DenseNet-121 
and EfficientNet-b0, the major problem faced, is the imbalance between sensitivity and 
specificity in all models. To guarantee a high balance between false positive and false negative 
rates, boosting strategy is adopted. The third contribution in this work presents new algorithm 
named Cost-Sensitive Boosting with Error Weighted Adjustments (CSB-EWA). Our solution 
involves more powerful weights adjustments using λFP and λFN penalties calculated using false 
positive and false negative rates, to make models focus more on misclassified samples. Three 
scenarios were tested to evaluate the algorithm. First, models have been tested each one 
individually. Then, boosting ensemble learning using AdaBoost and Gradient Boost are 
experimented. The third scenario used our proposed algorithm. Experiments used CBIS-DDSM 
dataset with 1 550 images, and the obtained results confirm the efficiency of the proposition. 

Our thesis is organized into introduction, four main chapters, and conclusion. 

The introduction presents the general context of the research, the objectives and 
motivations of the thesis. 

Chapter 1 introduces the medical aspects of breast cancer, starting with the anatomy of the 
breast and abnormalities related to it. Then, a detailed overview of breast masses and 
microcalcifications is aborded, highlighting their characteristics. Different screening modalities 
such as ultrasound and mammography will be presented with most important views like Cranio-
caudal incidence (CC) and Medio-lateral oblique incidence (MLO). The overview presented in 
this chapter provides a general comprehension of the context of the problem treated in this 
thesis. 

Chapter 2 is an exhaustive study and detailed presentation of Computer-Aided Diagnosis 
(CADx) systems and all their components, including segmentation, feature extraction and 
selection, and classification with careful intention on methods and techniques employed in each 
step.  

Chapter 3's opening sections provide a taxonomy of descriptors commonly discussed in the 
literature, focusing on shape and geometric descriptors derived and used from fundamental 
measurements, also texture-based features will be detailed with some descriptors used in 
medical imaging analysis and particularly breast cancer. Then, the chapter introduces the 
methodology behind the proposed descriptor PATAR, detailing its mathematical formulation 
and evaluating its performance compared to existing shape descriptors. 

Chapter 4 provides a comprehensive overview of deep learning model architectures, key 
concepts, and the specific challenges associated with their application in the field of medical 
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imaging specifically the automatic diagnosis of microcalcifications. It begins by introducing 
the foundational elements of deep learning, including neural networks, convolutional layers, 
activation functions, and training strategies. The chapter then explores widely used 
architectures such as CNNs, RNNs, LSTM, highlighting their design principles and suitability 
for various medical imaging tasks like classification, segmentation, and detection. Deep 
learning-based solutions for medical imaging will be discussed and their performances against 
breast cancer. In this chapter, a novel meta-learner is proposed to combine the predictions of an 
ensemble learning model. The experiments conducted on CBIS-DDSM show an improvement 
in the performance of the ensemble model. Also, the proposed algorithm CSB-EWA for 
boosting ensemble learning is detailed with experiments. 

Finally, we conclude our thesis with a general conclusion summarizing our contributions 
with perspectives and future works. 
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Chapter 1: Introduction to breast cancer 

1. Introduction  
Understanding the approach and medical aspects of breast cancer is essential for the 

optimal design of an automatic diagnostic system. It provides us with the knowledge we need 
to carry out our study. As one of the most frequent and widely studied cancers, its biological 
and clinical complexity requires an in-depth understanding to guide tools to help radiologists 
perfect their diagnosis effectively.  

The purpose of this chapter is to provide a comprehensive overview of breast cancer, 
exploring its generalities and essential features. We begin with the concept of breast cancer, 
then move on to the anatomical aspect of the disease, as well as associated abnormalities, risk 
factors, and the various screening and diagnostic methods, with an emphasis on mammography 
as the most widely used and reliable imaging modality.  

This introduction will serve as a starting point for a detailed exploration of the various 
facets of breast cancer, enabling the reader to better grasp the complexity and importance of 
this pathology in the context of our research.  

2. Breast cancer   

Breast cancer is a disease marked by the development of malignant (cancerous) cells in 
breast tissue [8]. These cells undergo an uncontrolled proliferation of cells that can form a mass 
or tumor. The breast comprises lobules (milk-producing glands), ducts (tubes transporting milk 
to the nipple), and connective tissue. Most breast cancers start in the cells of the ducts (ductal 
carcinoma) or lobules (lobular carcinoma), although other types of breast cancer can also 
develop.  

Breast cancer results from a genetic mutation in the breast cells, which a variety of factors 
can influence. Inherited mutations in the BRCA1 and BRCA2 genes significantly increase the 
likelihood of breast and ovarian cancer. Having a close relative with the disease can also 
increase this risk [10]. The risk of developing breast cancer increases with age. Long exposure 
to estrogen, whether through early menstruation, late menopause, or hormone replacement 
therapy, can also be a contributing factor. In addition, smoking, excessive alcohol consumption, 
obesity, and lack of exercise may play a role in increasing risk.  

Signs and symptoms of breast cancer may include a lump or thickening in the breast or 
under the arm, a change in the size, shape, or appearance of the breast, discharge from the nipple 
other than breast milk, sometimes bloody, redness or orange skin texture on the breast, and 
unusual pain or tenderness in the breast [11].  

2.1 Breast anatomy  

Breast anatomy plays a crucial role in the context of automated breast cancer diagnosis, as 
a detailed understanding of its structures is essential for the development and application of 
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CADx. The breasts, located on the anterior chest wall between the second and sixth ribs, rest 
on the pectoralis muscle and are surrounded by adipose and connective tissue [12]. This 
complex structure as shown in Figure 1.1 includes lobules, milk ducts, adipose tissue, 
connective tissue, blood vessels, lymphatic vessels, and nerves, all of which are critical for 
detecting and analyzing breast abnormalities using CADx.  

The lobules, milk-producing units, are the main sites of the development of lobular 
carcinoma, a form of breast cancer. Each breast contains 15 to 20 lobes, divided into numerous 
smaller lobules, with milk-producing cells under hormonal influence [13]. Milk ducts, 
transporting milk from the lobules to the nipple, are often implicated in ductal carcinoma, the 
most common form of breast cancer. These ducts branch like tree branches and converge 
towards the nipple, dilating into lactiferous sinuses beneath the areola. Automatic detection of 
abnormalities in these structures is facilitated by advanced imaging technologies such as digital 
mammography and magnetic resonance imaging (MRI), which can visualize and analyze these 
anatomical details in depth.  

Adipose and connective tissue, which play a key role in breast shape and volume, vary 
from person to person, influenced by genetic and hormonal factors. Cooper's ligaments, bands 
of fibrous connective tissue, support the shape of the breast but can stretch over time, 
contributing to sagging. This connective tissue is also a potential site of tumor development, 
making its visualization essential for accurate diagnosis [14].   

The nipple and areola, key areas for cancer detection, contain several galactophore duct 
openings for milk excretion. The areola contains Montgomery glands, secreting a lubricating 
and protective substance. Automatic diagnostic systems must be able to detect abnormalities in 
these areas, such as nipple retractions or abnormal discharge, which may be signs of cancer 
[15].  

The breast anatomy is a multifunctional and dynamic structure essential for the automatic 
diagnosis of breast cancer. Advanced imaging and analysis technologies, coupled with a 
detailed understanding of breast anatomy, enable accurate and early detection and diagnosis of 
breast pathologies, facilitating effective management and appropriate surgical interventions.  
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Figure 1.1 : Breast anatomy. 

2.2 Breast abnormalities 

The sections below present a detailed overview of breast cancer abnormalities including 
masses, calcifications, architectural distortions, and asymmetries. 

2.2.1 Microcalcifications  

Breast microcalcifications are tiny calcium deposits that form in breast tissue. These 
calcifications are usually too small to be felt on physical examination. However, they can be 
detected on mammograms, where they appear as small bright white spots or dots less than a 
millimeter in size. Although the presence of microcalcifications is generally benign, certain 
morphologies or groupings may indicate underlying abnormalities, such as early stages of 
breast cancer. Consequently, identifying and analyzing microcalcifications plays a critical role 
in breast cancer screening and diagnosis [16]. Radiologists carefully assess the size, shape, and 
distribution of mammograms to determine whether further investigation, such as biopsy, is 
required to rule out malignancy.  

2.2.1.1 Morphology  

The morphology of microcalcifications is essential in the automatic diagnosis of breast 
anomalies, as it enables benign processes to be differentiated from malignant lesions with 
greater precision. Artificial intelligence (AI) and computed radiology systems rely on 
morphological analysis to identify suspicious shapes, such as fine and polymorphic or linear 
and branched microcalcifications, often associated with high cancer risk. Incorporating 
morphological criteria into CADx improves the performance of these systems and reduces the 
false positive rate, providing radiologists with a valuable aid for more accurate and rapid 
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diagnosis. In what follows, the different types of microcalcifications are detailed with 
illustrations in Figure 1.2 [17].  

a) Coarse or coralliform microcalcifications: large calcifications (2 to 3 mm) with an 
irregular shape that may suggest more significant anomalies.  

b) Cutaneous or dermal microcalcifications: They generally present no diagnostic 
difficulties on mammography, appearing as small, round, annular structures with clear 
centers. They are mainly located in the sub mammary, axillary, areolar, and parasternal 
regions, where subcutaneous glands are more abundant. If their cutaneous origin remains 
uncertain, additional incidences tangential to the skin may be recommended to clarify their 
location.  

  

  

 a)       b)                    c)  

  

 d)       e)                    f)  

  

 g)       h)                    i)  
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 j)       k)                    l)  

  

m)  

Figure 1.2 : The different types of microcalcifications: a) coarse or coralliform, b) cutaneous 
or dermal, c) vascular, d) round, e) clear center, f) rod like, g) eggshell or parietal, h) milk-

calcium-like, i) suture-like, j) dystrophic, k) amorphous or indistinct, l) polymorphic fine, m) 
branched linear. 

c) Vascular microcalcifications: are more frequent with age and predominate along the 
external mammary vessels. They may be a marker of atherosclerosis and coronary risk. 
They are easily recognized when they appear as long double-line patterns along the vessels, 
particularly in diabetic patients. Due to their linear distribution, they are more difficult to 
interpret when they are discontinuous at the beginning of the calcification process. In this 
case, histological verification may be necessary.  

d) Round microcalcifications: These are round in shape and vary in size. Smaller than 0.5 
mm, they are called ponctiform or powdery. Depending on their size and distribution, these 
round microcalcifications may be associated with benign changes or require closer 
monitoring.  

e) Microcalcifications with clear centers: Microcalcifications with clear centers are 
characterized by a distinctive shape with a lighter central core surrounded by a denser zone, 
often appearing as small halos or round structures. Their size generally varies but is often 
small, typically of the order of a few millimeters. This configuration may suggest benign 
processes, such as inflammatory changes or fibro-adenomas.  

f) Rod like microcalcifications are elongated, narrow calcifications that resemble rods. 
Their particular shape may suggest pathological processes, such as precancerous changes 
or calcifications associated with benign lesions.  
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g) Eggshell or parietal microcalcifications: Eggshell or parietal microcalcifications are 
distinguished by their distinctive shape, where calcifications cluster in concentric layers 
around a center, mimicking the appearance of an eggshell. In terms of size, they are 
generally small, often of the order of a few millimeters, and their layered arrangement can 
vary in thickness and density. This morphology can help identify benign lesions such as 
calcified cysts.  

h) Calcium-milk microcalcifications: Calcium-milk microcalcifications are 
characteristically granular or small, round particles, often with a dense, homogeneous 
distribution, resembling calcium milk in their appearance, similar to droplets or crystals. In 
terms of size, they are generally small, typically less than 1 mm. Their morphology is often 
associated with benign changes, such as dystrophic calcifications in fibro-adipal lesions or 
cystic changes.  

i) Suture microcalcifications: These appear as small linear or filamentous calcifications 
along suture paths or in areas of scarring. These microcalcifications may appear on post-
operative mammograms. They are generally small, often of the order of a few millimeters. 
Although benign, they require attention to avoid confusion with pathological 
abnormalities.  

j) Dystrophic microcalcifications are large, irregular calcifications that usually form in 
damaged or scarred breast tissue. They often appear after surgery or radiotherapy or in 
areas of fat necrosis. In terms of size, they are generally larger than other types of 
microcalcification and vary in shape.  

k) Amorphous or indistinct microcalcifications: Amorphous or indistinct 
microcalcifications are small, often less than 0.5 mm in size, with blurred outlines and an 
irregular shape. They lack a well-defined structure, making them difficult to characterize 
accurately. Because of their uncertain appearance, these microcalcifications may be 
associated with an increased risk of malignancy.  

l) Fine, polymorphic microcalcifications: are small, irregular calcifications that vary in 
shape and size. They appear as fine lines or tiny dots, often with varied and complex 
contours. This variability in appearance makes them particularly suspicious, as they are 
frequently associated with malignant or precancerous lesions, such as ductal carcinoma in 
situ (DCIS).  

m) Linear and branched microcalcifications: Linear and branched microcalcifications are 
small calcifications that appear as straight or curved lines, often with branch-like 
extensions, evoking a treelike structure. Their arrangement along the mammary ducts is of 
particular concern, as they are frequently associated with malignant lesions.  

2.2.1.2 Distribution  

The distribution of microcalcifications is essential for their classification and diagnosis. 
Indeed, some distributions, such as clustered or linear microcalcifications, are more often 
associated with malignant lesions, while others, such as diffuse or scattered distributions, are 
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generally benign. Figure 1.3 shows the different types of distribution. Here are the main 
categories of distribution [18]:  

a) Diffuse distribution: Microcalcifications are randomly scattered throughout the breast, 
with no specific grouping. This distribution is generally benign and often associated 
with nonmalignant conditions such as skin calcifications or calcifications associated 
with necrotic tissue.  

b) Regional distribution: Microcalcifications are clustered over a wide breast area but are 
not confined to a single lobule or ductal segment. This distribution may be benign or 
suspicious, depending on the clinical context and the morphology of the calcifications.  

c) Clustered or clustered distribution: Microcalcifications are concentrated in a specific 
area, usually involving a single lobule or a small group of lobules. This distribution is 
of greater concern, as it may be associated with malignant lesions.  

d) Linear distribution: Microcalcifications follow a linear or ductal pattern, suggesting 
they are in the milk ducts. This distribution is often suspicious, as it may indicate an 
intraductal pathological process often linked to breast cancers.  

e) Segmental distribution: Microcalcifications are present in an anatomical segment of the 
breast, corresponding to a lobe or sector of the breast. This distribution is also worrying, 
as it may reflect a pathological process extending along a ductal segment, often 
associated with malignant tumors.  

   

 a)                            b)                                    c)  

  

 d)                       e)  

Figure 1.3 : The various distributions of microcalcifications: a) Segmental, b) Diffuse or 
scattered, c) Clustered, d) Regional, and e) Linear. 
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Each type of distribution gives clues to the nature of the microcalcifications and helps 
radiologists assess the risk of malignancy, guiding clinical decisions regarding biopsies and 
other additional investigations  

2.2.2 Masses  

A breast mass is a palpable or visible abnormality in the breast tissue, usually seen as a 
nodule or lump. It can be detected by self-examination, clinical examination, or imaging 
techniques such as mammography, ultrasound, or MRI. Mammary masses can have various 
origins and natures, ranging from benign cysts or fibro-adenomas to malignant tumors, such as 
breast cancer. Their assessment is based on size, shape, contours, and density [19].  

2.2.2.1 The Form 

BI-RADS classifies breast masses according to their shape into four main categories:  

a) Round mass: Masses with a round or almost round shape are generally considered less 
suspicious. They are often associated with benign lesions such as cysts or 
fibroadenomas (figure 1.4 a).  

b) Oval mass: An oval or elliptical mass is also often benign. It may indicate a cyst or 
fibroadenoma, but whether it is benign or malignant will depend on other features such 
as contours and density (Figure 1.4 b).  

c) Lobular mass: Lobular breast cancer is a particular form of cancer that originates in the 
cells of the breast lobules with small undulations (figure 1.4 c).  

d) Irregular mass: Irregularly shaped masses are of greater concern, as they are more often 
associated with malignant lesions. An irregular shape may indicate a tumor whose 
contours are not well defined, suggesting a potential invasion of adjacent tissues (figure 
1.4 d).  

   

(a)                                     (b)                                     (c)                                      (d) 

Figure 1.4 : The four shapes of a breast mass: a) Round, b) Oval, c) Lobulated, and d) 
Irregular. 

  

  

  

  

  

     

  

  



Chapter 1 : Introduction to breast cancer 

13 
 

2.2.2.2 The Contour 

The contours of breast masses are important in assessing their nature. The characteristics 
of these contours can provide crucial clues as to whether a mass is likely to be malignant or 
benign [19].  

a) Circumscribed contours: Masses have delimited, well-defined margins, with a clear 
transition between the mass and the surrounding tissue. Circumscribed contours are 
often associated with benign lesions like simple cysts or fibroadenomas.  

b) Micro-lobulated contours: Masses have slightly lobulated margins with small 
projections or indentations. Micro-lobulated contours can be seen in benign and 
malignant lesions, often requiring further evaluation.  

c) Masked contours: The edges of the mass are difficult to define due to interaction with 
surrounding tissue, creating a blurred or indistinct appearance. Masked contours may 
be associated with malignant conditions  

d) Spiculated contours: Masses have edges that extend in "rays" or "spicules" into the 
surrounding tissue. Spiculated contours are often associated with malignant lesions.  

e) Indistinct contours: The edges of the mass are not clearly defined with surrounding 
tissues, which may indicate infiltration or interaction with neighboring tissues. This type 
of contour may be related to malignant conditions.  

 

 

         a)                       b)                      c)                    d)               e)   

Figure 1.5: Different contour shapes for a mass: a) Circumscribed, b) Microlobulated, c) 
Masked, d) Indistinct, and e) Spiculated 

2.2.2.3 Density 

Breast density is not only an important technical factor in mammography interpretation, it 
is also a risk factor for breast cancer. The first to establish this link was Wolfe in 1976. 
Subsequent studies have questioned the link between density and breast cancer. Breast density 
stages are classified according to the American College of Radiology (ACR) BI-RADS (Breast 
Imaging Reporting and Data System). This classification describes breast tissue composition in 
four distinct categories, often called "breast density stages". These stages reflect the relative 
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proportion of glandular and fibrous tissue to adipose tissue in the breasts [20]. The four BI-
RADS breast density stages are illustrated in Figure 1.6:  

Stage 1: Breasts almost entirely fatty (less than 25% of the mammary gland).  

− Description: The breasts mainly comprise adipose tissue, with very little glandular or 
fibrous tissue.  

− Imaging: Mammograms are generally easier to interpret in this category, as adipose tissue 
appears in black, providing good contrast to detect abnormalities that appear in white.  

− Risk: This density is associated with a relatively low risk of developing breast cancer and 
better visibility of abnormalities on mammograms.  

Stage 2: Breasts with scattered areas of fibrous and glandular density (approximately 2550% 
of the mammary gland).  

− Description: There are a few areas of glandular and fibrous tissue, but most of the tissue 
is adipose.  

− Imaging: Abnormalities are generally clearly visible, although slightly less so than in 
stage 1.  

− Risk: This density is also associated with a low risk of cancer, with good detection 
capacity during mammography.  

Stage 3: Heterogeneously dense breasts (approximately 51-75% of the mammary gland).  

− Description: A significant proportion of the breast comprises glandular and fibrous tissue, 
making the breasts dense overall.  

− Imaging: This increased density can mask certain anomalies, making mammograms more 
difficult to interpret.  

− Risk: Women with heterogeneously dense breasts have a moderate risk of breast cancer, 
and density can reduce the sensitivity of mammograms.  

Stage 4: Extremely dense breasts (more than 75% of the mammary gland).  

− Description: Most breast tissue is dense, meaning that the breasts are mainly composed 
of glandular and fibrous tissue, with little adipose tissue.  

− Imaging: High tissue density can mask tumors, making detecting abnormalities more 
difficult.  

− Risk: This category is associated with an increased risk of breast cancer. High density 
may also require additional imaging methods, such as MRI or ultrasound, for a more 
accurate assessment.  
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a)                                 b)                                     c)                                d) 

Figure 1.6 : BIRADS classification of breast density: a) Density < 25%, b) Density between 
25 and 50%, c) Density between 50 and 75% and d) Density > 75%. 

2.2.3 Architectural distortions  

Architectural distortion is a term used in breast imaging, particularly mammography, to 
describe an alteration in the normal architecture of the breast. It manifests as a change in the 
usual structure of breast tissue without a clearly defined visible or palpable mass [21]. Here is 
a more detailed description:  

a) Altered breast tissue lines: Breast tissue appears regular normally, with radial lines 
converging towards the nipple. In the case of architectural distortion, these lines are 
pulled, folded, or displaced abnormally, creating a disorganized appearance.  

b) Lack of a defined mass: Unlike a mass or tumor, architectural distortion is not a 
delineated entity. This means that there is no clear edge or distinct identifiable shape.  

c) Rays and spiculated lines: Rays or spiculated lines may be observed converging on a 
focal point but without a palpable or visible mass. This can appear as "dashes" or 
"spicules" emanating from a central region.  

d) Tissue shrinkage: Sometimes, architectural distortion can cause surrounding tissue to 
shrink or sag, giving the impression that the tissue is being "pulled" towards a particular 
point.  

 

Figure 1.7 : Example of an architectural distortion. 

2.2.4 Breast asymmetry  

Breast asymmetry, or asymmetry in breast size, shape, or density, maybe a normal 
variation, but it can also be considered an anomaly in certain contexts (Figure 1.8) [22].  
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Figure 1.8 : Left and right profile mammogram showing asymmetry of shape. 

a) Normal breast asymmetry  

▪ Physiological variation: Many women have a certain natural asymmetry between their 
breasts, where one breast is slightly larger or differently shaped. This asymmetry is 
generally benign and does not cause health problems.  

▪ Natural evolution: Breast size and shape can change over time due to hormonal 
fluctuations, pregnancy, breastfeeding, or aging factors. These changes can sometimes 
accentuate an asymmetry already present.  

b) Breast asymmetry as an anomaly  

▪ Developed asymmetry: If breast asymmetry appears suddenly or develops rapidly, it 
may be considered an abnormality requiring further evaluation. A recent change in the 
size or shape of one breast relative to the other may indicate an underlying pathology, 
such as a tumor or other breast condition.  

▪ Focal asymmetry on mammography: Focal asymmetry on mammography, where one 
area of the breast is denser than the other, can be a sign of pathology. If asymmetry is 
seen for the first time on mammography, particularly if it is associated with other 
abnormalities such as masses or microcalcifications, it could indicate the presence of 
breast cancer or another breast condition.  

▪ Asymmetry of density: A marked difference in breast tissue density between the two 
breasts may also require investigation, as it can sometimes mask abnormalities or 
indicate an underlying lesion.  

3. Screening methods   
Medical diagnosis relies on various imaging tools, each exploiting different physical 

properties to visualize organs. In the field of breast cancer, ultrasound (ultrasound imaging), 
MRI (Magnetic Resonance Imaging), and mammography (X-ray imaging) are commonly used 
to detect and characterize suspicious lesions. Medical breast imaging combines different 
techniques, such as ultrasound, MRI, and mammography, to provide a complete and accurate 
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view of breast tissue. This multimodal approach is essential for reliable diagnosis and optimal 
patient follow-up [23]. In what follows, we present the different techniques used and their 
characteristics.  

3.1 Ultrasound  

Ultrasound, or ultrasound imaging, is a medical imaging technique that uses high-
frequency sound waves to produce real-time images of the body's internal organs. These images 
are then displayed on a screen, enabling doctors to examine the anatomical structures in detail. 
The principle is that a probe emits (Ultrasound emission) high-frequency sound waves that 
penetrate the body. The various tissue interfaces reflect These waves (Ultrasound reflection), 
creating echoes. In the final imaging stage, the probe captures the echoes and then converts 
them into a real-time image on a screen. Figure 1.9 shows two ultrasound images, a) with breast 
mass and b) normal breast with no abnormalities.  

 

a)                                       b) 

Figure 1.9 : Examples of breast ultrasound: a) ultrasound with abnormality (mass), b) normal 
breast. 

Ultrasound offers several advantages, including real-time visualization, allowing for the 
observation of organ and tissue movements, which is particularly useful for assessing the nature 
of a lesion. It is a non-invasive and painless procedure that does not expose patients to X-rays, 
making it a safer option, especially for young women and pregnant women. Additionally, 
ultrasound is more affordable compared to other imaging tests and serves as a valuable 
complement to mammography, particularly in distinguishing cysts from solid tumors. However, 
Ultrasound has some disadvantages, including limited penetration, making it less effective for 
detecting deep breast lesions. It also has limited sensitivity to microcalcifications, which are 
often an early sign of breast cancer. Additionally, the quality of the examination depends on the 
operator’s experience and skill, and visualization may be challenging in women with dense 
breasts. 

In short, ultrasound is an excellent complement to mammography but should not be 
replaced. It is particularly useful for assessing the nature of a lesion that has already been 
identified but is less effective for detecting microcalcifications. For optimal breast cancer 
screening, mammography remains the gold standard.  
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3.2 Magnetic resonance imaging  

Magnetic resonance imaging (MRI) is a medical imaging technique that exploits the 
magnetic properties of the hydrogen atoms in our bodies. These atoms align in a specific 
orientation in a powerful magnetic field. Radio waves disrupt this alignment; the atoms release 
this energy through radio signals that the device picks up. By analyzing these signals, a 
computer reconstructs detailed images of organs and tissues, enabling the detection of any 
abnormalities. The different behavior of hydrogen atoms in different tissues enables contrasting 
images to be created and anatomical structures to be visualized with great precision without 
requiring X-rays.  

 

Figure 1.10 : Example of breast MRI bi-sein. 

MRI offers several advantages, including high precision with excellent spatial resolution, 
allowing for detailed visualization of fine anatomical structures. It is a non-invasive, non-
ionizing technique that does not use X-rays, making it safer for patients. Additionally, MRI 
provides multiple contrast images, aiding in the differentiation between healthy and diseased 
tissue. Moreover, it usually requires no special preparation, making it more convenient 
compared to other imaging tests. 

MRI has several disadvantages, including a longer examination time compared to 
ultrasound or X-ray, which may cause discomfort for some patients. It is also more expensive 
than other imaging methods and has contraindications for individuals with metal implants or 
objects in their bodies. Additionally, the confined space can be problematic for patients with 
claustrophobia, and the loud noise during the procedure may be unpleasant. In some cases, a 
contrast medium injection is required, posing a minimal risk of allergic reaction. In summary, 
MRI is a powerful medical imaging technique that offers many advantages regarding accuracy 
and safety. However, it also presents certain limitations, notably cost and patient comfort. The 
choice of MRI will depend on the nature of the examination to be carried out and any 
contraindications.  
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3.3 Tomosynthesis  

Tomosynthesis, or 3D mammography, is a new imaging technology used for breast 
examination. Unlike conventional mammography, where the X-ray emitting tube remains fixed, 
the tomosynthesis device is equipped with a mobile X-ray tube. This tube moves in an arc 
around the breast, taking images from different angles. A computer then processes all these 
images, combining them to create a detailed three-dimensional (3D) representation of the 
mammary gland. This approach enables breast tissue to be visualized in thin layers, improving 
the detection of abnormalities, particularly in dense breasts where structures can overlap and 
mask lesions in traditional 2D mammography.  

Tomosynthesis has better differentiation between normal tissue and suspicious areas, thus 
reducing the false positive rate and the need for further tests. Enabling radiologists to scan the 
breast layer by layer virtually improves the detection of small masses and architectural 
distortions that might go unnoticed in conventional mammography.  

This technology is increasingly used in breast cancer screening and diagnosis, offering a more 
accurate option for assessing patients, particularly those with dense breasts or at high risk of 
cancer.  

3.4 Thermography 

Thermography is a non-invasive imaging modality used in breast cancer detection that 
captures the infrared radiation (heat) emitted from the skin surface. Cancerous tissues typically 
exhibit higher metabolic activity and increased blood flow, resulting in localized temperature 
elevations that can be visualized as thermal anomalies. By using infrared cameras, 
thermographic imaging can highlight abnormal heat patterns, asymmetries, or vascular changes 
associated with potential malignancies. Unlike mammography, thermography does not use 
ionizing radiation and is painless, making it suitable for younger women or those with dense 
breast tissue. However, its clinical utility is limited due to lower sensitivity and specificity 
compared to conventional imaging techniques. As such, thermography is generally considered 
a supplementary tool rather than a primary diagnostic method, often used in conjunction with 
mammography or ultrasound for improved diagnostic accuracy. Figure 1.11 shows an example 
of thermography image. 

 

Figure 1.11: Thermography image. 
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3.5 Positron Emission Tomography 

Positron Emission Tomography (PET) is an advanced nuclear imaging modality used in 
breast cancer diagnosis, staging, and monitoring. It provides functional imaging by detecting 
metabolic activity within tissues. In PET imaging, a small amount of radioactive tracer 
commonly fluorodeoxyglucose (FDG), is injected into the body. Cancer cells typically have a 
higher rate of glucose metabolism than normal cells, so they absorb more of the tracer. The PET 
scanner then detects the gamma rays emitted as the tracer decays, producing images that reflect 
metabolic activity rather than just anatomical structure. In breast cancer, PET is particularly 
useful for detecting distant metastases, evaluating lymph node involvement, and monitoring 
treatment response. It is often combined with CT in a hybrid PET/CT scan, which merges 
functional and anatomical data for more accurate localization of abnormalities. Although highly 
effective in detecting active disease, PET is not typically used for routine breast cancer 
screening due to its high cost, limited resolution for small lesions, and exposure to ionizing 
radiation. Instead, it plays a key role in advanced-stage assessment and therapy planning. 

 

Figure 1.12 : Positron Emission Tomography image. 

3.6 Histopathology 

Histopathological analysis is the gold standard for definitive breast cancer diagnosis. It 
involves the microscopic examination of breast tissue samples, typically obtained via biopsy to 
determine the presence, type, and characteristics of cancerous cells. In this process, the tissue 
is first fixed, sectioned, and stained (commonly with Hematoxylin and Eosin) to highlight 
cellular structures. Then, a pathologist examines the samples under a microscope to assess 
features such as cell morphology, nuclear atypia, mitotic activity, and tissue architecture. 
Histopathology not only confirms malignancy but also provides critical details like tumor grade, 
invasiveness, margins, and lymphovascular invasion. While imaging modalities suggest the 
presence of abnormalities, histopathological analysis provides the final, conclusive diagnosis 
and is essential for accurate classification and staging of breast cancer. 
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Figure 1.13: An example of histopathological image. 

3.7 Mammography 

Mammography is a medical imaging technique that uses low-dose X-rays to examine breast 
tissue. It is mainly used for breast cancer screening and diagnosis. Mammography is the 
reference screening tool for the early detection of breast abnormalities, including masses, 
microcalcifications, and other potential signs of cancer. The principle of mammography is 
based on using X-rays to produce two-dimensional images of the breasts. During the 
examination, the breast is compressed between two plates to spread the breast tissue, thereby 
reducing the required radiation dose and improving image quality. The X-ray tube emits 
radiation that passes through the breast and is captured by a detector (either photographic film 
or a digital detector), creating an image that shows the different densities of breast tissue. Denser 
structures, such as tumor masses or microcalcifications, appear in white, while less dense 
adipose tissue appears in darker gray. This difference, in contrast, enables radiologists to detect 
potential abnormalities.  

3.7.1 Mammography incidences   

In mammography, incidences refer to the different views or projections used to visualize 
the breasts. These views are essential for obtaining a complete and detailed representation of 
breast tissue, enabling any abnormalities to be detected. The two basic views, mediolateral 
oblique (MLO) and craniocaudal (CC) are generally supplemented by additional views to 
clarify areas of interest, if necessary.  

a) Medio-lateral oblique incidence (MLO): The MLO view is the most commonly used in 
mammography. It is obtained by placing the breast on the compression plate at an angle of 30 
to 60 degrees to the vertical axis, thus capturing an image of the upper part of the breast up to 
the armpit. This incidence covers most of the breast tissue, including Spence's tail, which 
extends into the armpit. Also, the oblique angle allows for the good visualization of deep breast 
structures. The only drawback of MLO is image quality, which can vary according to the 
radiologist's technique, particularly in axillary coverage.  

b) Cranio-caudal incidence (CC): The CC incidence is a top-down view, with the breast 
compressed horizontally between two plates. The resulting image shows a cross-section of the 
breast. The CC view is complementary to the MLO view, enabling anomalies to be localized in 
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relation to the medial or lateral position of the breast. This view enables a symmetrical 
comparison between the two breasts. The limited coverage of this view prevents radiologists 
from reaching the upper or lateral regions of the breast, particularly areas close to the armpit.  

c) Additional impacts  

− Strict profile incidence (ML: mediolateral or LM: lateromedial): A view taken strictly 
from the side, either from the outside inwards (mediolateral) or from the inside outwards 
(latero-medial). This view complements the MLO and CC incidences for precise 
localization of a suspicious lesion in the horizontal plane.  

− Magnified Incidence: Uses specific compression support and a shorter focal length to 
magnify a particular breast area. Particularly useful for examining microcalcifications or 
small lesions in greater detail.  

− Spot compression incision: Its principle is based on localized compression on a specific 
breast area to improve clarity and reduce tissue overlay. It helps to define better anomalies 
detected during standard views.  

− Tangential incidence: A view that tangents the breast to visualize superficial lesions. Used 
to evaluate cutaneous or subcutaneous abnormalities.  

− Axillary incision (Cleavage or Axillary): View obtained to better visualize the armpit and 
Spence's tail. Used to evaluate lymph nodes or abnormalities close to the axilla.  

Combining these incidences provides a complete representation of the breast, making 
detecting abnormalities in different parts of the breast tissue easier. By adjusting the angle and 
direction of the image, radiologists can locate lesions more precisely, assessing their size, shape, 
and nature (solid or cystic). This information is essential for accurate interpretation of 
mammograms and for guiding subsequent diagnostic decisions, such as the need for a biopsy 
or closer follow-up. Figure 1.14 illustrates the different types of incidences.  

 

Figure 1.14 : The different mammography views, with MLO and CC being the most 
commonly used. 
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3.7.2 Screening and diagnostic mammography  

Screening mammography is a systematic examination offered to symptom-free women to 
identify subtle abnormalities in breast tissue that may escape clinical palpation. Its primary role 
is the early detection of breast cancers at a stage when they are generally smaller and easier to 
treat. This examination is conducted according to a rigorous protocol, enabling systematic 
comparison of the two breasts and in-depth analysis by specialized radiologists.  

Diagnostic mammography, on the other hand, is requested in a specific clinical context 
when particular signs or symptoms lead to the suspicion of the presence of a breast lesion. These 
may include a palpable mass, pain, a change in the skin or nipple, or an abnormality detected 
during a screening examination. Diagnostic mammography aims to characterize the lesion 
observed, to determine whether it is benign or malignant, and to guide further investigations if 
necessary.  

3.8 Evaluation of different modalities 

Table 1.1 summarizes the key characteristics of various breast cancer screening and 
diagnostic modalities [24]. Mammography remains the standard for population screening due 
to its efficiency and accessibility, especially in detecting masses and microcalcifications. 

Modality Principle Resolution Cost Use Case Strengths Limitations 

Mammography 
X-ray 
imaging 

High (for 
masses & 
calcification
s) 

Low–
Medium 

Primary 
screening, 
especially in 
women >40 

Detects 
microcalcificati
ons; widely 
available 

Less effective 
in dense breasts 

Ultrasound 
Sound 
waves 

Moderate 
(soft tissue) 

Low 

Adjunct to 
mammograph
y; dense 
breasts 

No radiation; 
good for cyst 
vs. solid 
differentiation 

Operator-
dependent; less 
effective for 
microcalcificati
ons 

MRI 

Magnetic 
fields and 
radio waves 

Very high High 
High-risk 
screening, 
staging 

Excellent soft 
tissue contrast; 
sensitive 

Expensive; 
may cause false 
positives 

Thermography 

Infrared 
heat 
detection 

Low Low 
Experimental/
supplementar
y 

Non-invasive, 
radiation-free 

Low specificity 
and sensitivity 
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PET / PET-CT 

Radioactive 
tracer 
detects 
metabolism 

Moderate–
High 
(functional) 

Very 
High 

Staging, 
recurrence, 
therapy 
response 

Functional 
imaging; 
detects 
metastasis 

Not for 
screening; 
expensive; 
radiation 
exposure 

Histopathology 

Microscopi
c tissue 
analysis 
(biopsy) 

Cellular-
level 
(definitive) 

Medium 
Diagnostic 
confirmation 

Gold standard; 
precise tumor 
characterization 

Invasive; 
requires tissue 
sampling 

Table 1.1 : Comparison between different screening modalities. 

4. The BI-RADS Classification  

The BI-RADS system was designed to standardize mammography reporting and facilitate 
clinical decision-making [25]. Developed by the American College of Radiology (ACR), it is 
used in many countries and is a benchmark in managing breast cancer screening and diagnosis. 
BI-RADS, first published in 2013, standardizes the evaluation of abnormalities detected 
through three types of imaging, namely mammography, ultrasound, and MRI. BI-RADS 
classification plays a central role in CADx systems, as these systems are often designed to align 
with BI-RADS criteria to assist radiologists in classifying detected abnormalities and reduce 
variations in image interpretation. The latest edition of BI-RADS is version 5, published in 
2013, and comprises 5 classes; the following table illustrates the different categories of this 
standard.  

Classes  Interpretation   Risk  CAT  

BI - RADS 0  Incomplete investigation    Reviews  

BI - RADS I  Normal image  0%  Screening  

BI - RADS II  Benign lesion  0%  Screening  

BI - RADS III  Probably benign lesion  < 2%  Follow-up  

BI - RADS IV  Suspected lesion requiring biopsy  > 2 et < 90%  Biopsy  

BI - RADS V  Lesion highly suggestive of cancer  > 90%  Biopsy  

Table 1. 2 : Interpretation and action to be taken (CAT) according to BI-RADS classes. 

5. Computer aided diagnosis and detection systems 

Diagnosis is a critical step in the management of breast cancer, as it significantly influences 
the patient’s prognosis. When detected at an early stage, breast cancer offers considerably 
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higher chances of successful treatment and survival compared to cases identified at a more 
advanced stage. As a result, extensive research has been dedicated to developing advanced 
screening and diagnostic tools aimed at improving the early detection and accurate 
classification of breast tumors. In this context, Computer-Aided Detection (CADe) and 
Computer-Aided Diagnosis (CADx) systems have emerged as valuable clinical tools, assisting 
radiologists in identifying and interpreting subtle patterns in breast images. With the advent of 
digital technologies, the integration of Artificial Intelligence (AI), particularly deep learning 
into these systems has opened new horizons. AI-driven models can automatically extract and 
analyze complex imaging features, offering promising improvements in diagnostic precision, 
sensitivity, and workflow efficiency in breast cancer detection and diagnosis. 

6. Conclusion  

In conclusion, this chapter has provided a comprehensive overview of breast cancer, 
covering its various aspects, from breast anatomy to the most common abnormalities, risk 
factors, and screening methods. The anatomical structure of the breast, comprised of lobules, 
ducts, adipose tissue, and connective fibers, is crucial to understanding how and where 
abnormalities can develop. Particular attention was paid to analyzing the specificities of 
observed breast pathologies, such as masses, calcifications, and architectural distortions, which 
are important indicators of the potential presence of malignant or benign tumors, often detected 
through medical imaging. The chapter also highlighted the importance of the BI-RADS 
classification, an essential tool for assessing and reporting these anomalies according to their 
level of risk. Thanks to this system, radiologists can standardize diagnoses and better guide 
clinical decisions, particularly concerning lesions requiring surveillance or biopsy. This chapter 
aims to provide an introduction computer aided diagnosis and detection systems 
(CADx/CADe), that will be detailed in chapter 2.  
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Chapter 2: CADx systems for breast cancer 

1. Introduction 

Several imaging modalities for the detection and diagnosis of breast cancer are used and 
plays a crucial role in reducing mortality through early identification of malignancies. However, 
the essential challenges associated with breast images interpretation persist. A primary 
difficulty lies in the visual similarities between early signs of breast cancer and typical 
anatomical structures within breast tissue, which often complicates the differentiation of benign 
from malignant findings. This issue is further aggravated by dense breast tissue, overlapping 
structures, and subtle morphological variations that may obscure pathological changes or mimic 
malignant lesions. Mammography is frequently supplemented with other imaging modalities, 
notably ultrasound and magnetic resonance imaging (MRI). Ultrasound is particularly valuable 
for distinguishing between cystic and solid masses, while MRI is renowned for its high 
sensitivity in detecting abnormalities, especially in dense breasts or high-risk populations. 
These approaches improve diagnostic accuracy but do not entirely resolve the complexities in 
breast imaging interpretation [34]. 

In response to these challenges, computer-aided detection (CADe) and computer-aided 
diagnostic (CADx) systems have been developed to support radiologists in detecting and 
characterizing breast abnormalities and considered as second reader. CADe systems are 
primarily designed to identify regions of interest, such as potential lesions or 
microcalcifications [27]. In contrast, CADx systems aim to provide a more nuanced assessment 
by analyzing the probability of malignancy based on features such as lesion shape, size, and 
texture. Over the past two decades, significant advancements have been made in developing 
CADe and CADx models, primarily driven by innovations in artificial intelligence (AI) and 
machine learning. Deep learning algorithms, in particular, have enabled the analysis of large-
scale imaging datasets with unprecedented precision. By training on annotated datasets 
comprising mammograms, these models can detect intricate patterns and features that might 
escape human observers. Consequently, these technologies promise to enhance diagnostic 
accuracy, reduce the time required for image review, and mitigate the cognitive load on 
radiologists. 

Despite their promise, the clinical integration of CAD systems is not without challenges. 
High false-positive rates remain a significant concern, leading to unnecessary biopsies, 
increased patient anxiety, and elevated healthcare costs. Moreover, the performance of these 
systems is contingent upon the quality and diversity of the datasets used for training, 
highlighting the importance of rigorous dataset curation and validation. 

2. CADx systems 

This section presents a detailed overview of computer-aided diagnosis systems, from the 
definition to the constituent stages of the system, including the methods and algorithms used in 
each phase. 
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2.1. Definition 

Computer-aided diagnostic (CADx) systems are sophisticated computational platforms 
developed to support healthcare providers in evaluating and interpreting medical imaging data 
for diagnostic applications. These systems harness the power of artificial intelligence (AI), 
machine learning (ML), and advanced image processing algorithms to analyze medical images, 
such as mammograms, ultrasounds, or MRIs, and deliver detailed assessments of identified 
anomalies. While Computer-Aided Detection (CADe) systems are primarily tasked with 
locating and flagging regions of interest (ROIs) that may suggest potential abnormalities, CADx 
systems extend this functionality by offering a deeper analysis of these regions. They aim to 
characterize the nature of the abnormalities, such as their morphological and textural properties, 
and estimate their likelihood of being benign or malignant [27]. 

The five key steps in CADx systems are data acquisition, preprocessing, segmentation, 
feature extraction and selection, and classification as illustrated in Figure 2.1. First, data 
acquisition collects data from instruments like MRI or mammograms. After that, 
preprocessing enhances raw medical images by reducing noise (e.g., Gaussian filtering), 
correcting intensity inhomogeneities, and improving contrast to ensure consistent input for 
analysis. Then, segmentation isolates regions of interest (e.g., tumors, organs) using techniques 
like thresholding, region-growing, or deep learning models to delineate anatomical or 
pathological structures. The third step is feature extraction and selection, permitting quantifying 
and refining discriminative attributes (e.g., texture, shape, radiomic features) from segmented 
regions, employing methods like PCA or mutual information to retain diagnostically relevant 
data. Finally, classification applies machine/deep learning models (e.g., CNNs, SVM) to 
categorize findings into diagnostic classes (e.g., benign vs. malignant), providing probabilistic 
outputs to aid clinical decision-making. These steps collectively transform raw imaging data 
into actionable diagnostic insights. In the next section each step will be detailed [28]. 

 

Figure 2.1 :Workflow of Computer-Aided Diagnosis and Detection systems [178]. 
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2.1 Data Acquisition 

Data acquisition is a foundational step in developing Computer-Aided Diagnosis (CADx) 
systems for breast cancer, as it directly influences the system's performance and 
generalizability. High-quality, diverse, and representative datasets are essential for training and 
validating diagnostic algorithms effectively [24]. 

In medical CADx systems, data acquisition typically involves: 

1. Image Collection: Medical images such as mammograms, ultrasounds, and MRIs are 
gathered from clinical sources or publicly available databases. For instance, the Curated 
Breast Imaging Subset of the Digital Database for Screening Mammography (CBIS-
DDSM) provides annotated mammographic images for research purposes. 

2. Labeling and Annotation: Expert radiologists annotate regions of interest (ROIs), 
classify findings (e.g., benign vs. malignant), and provide metadata like patient 
demographics. These annotations are crucial for supervised learning models. 

3. Preprocessing: Raw images undergo preprocessing steps such as noise reduction, 
normalization, and contrast enhancement to standardize inputs and improve model 
performance. 

4. Data Balancing and Augmentation: Medical datasets often exhibit class imbalance 
(e.g., fewer malignant cases). Techniques like data augmentation (rotations, flips) or 
synthetic data generation are applied to address this issue. 

5. Dataset Splitting: The dataset is divided into training, validation, and testing sets to 
evaluate the system’s accuracy and generalizability. 

Effective data acquisition ensures that CADx systems are trained on high-quality, diverse, 
and clinically relevant data, enabling them to assist radiologists more accurately in diagnosing 
breast cancer. 

2.2 Preprocessing  

Preprocessing as first step, plays an indispensable role in Computer-Aided Diagnosis 
(CADx) systems for breast cancer, serving as the foundational step that significantly influences 
the accuracy and reliability of the diagnostic process. By enhancing the quality of breast images, 
preprocessing enables the CADx system to more effectively identify subtle and complex 
abnormalities, such as masses, microcalcifications, and architectural distortions, which are 
often early indicators of breast cancer. These abnormalities can be challenging to detect, due to 
raw images inherently low contrast, noise, and artifacts [29]. Preprocessing tasks address these 
challenges by reducing noise, enhancing contrast, removing artifacts, standardizing image 
properties, and transforming the raw data into a more interpretable and analyzable form. In 
simpler terms, preprocessing acts as a refining filter, ensuring the CADx system operates on 
more transparent, accurate, and consistent images. This refinement improves the system's 
ability to detect potential issues and reduces the likelihood of false positives and negatives, 
ultimately leading to more precise and reliable diagnoses. However, one of the most challenging 
aspects of preprocessing is ensuring that essential features of the images, which are crucial for 
CADx analysis, are not unintentionally removed or altered. Over-smoothing or excessive noise 
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reduction can obscure fine details, such as subtle microcalcifications or faint architectural 
distortions, critical for early breast cancer detection. Striking a balance between enhancing 
image clarity and preserving diagnostically relevant features is crucial to maintaining the 
effectiveness of CADx systems. By optimizing the input data while safeguarding essential 
information, preprocessing empowers CADx systems to support radiologists in making 
informed decisions, thereby playing a pivotal role in the early detection and diagnosis of breast 
cancer, which is critical for improving patient outcomes. Most important tasks of preprocessing 
can be summarized as follows: 

2.2.1 Noise reduction  

In medical imaging, noise refers to random variations in pixel intensity that can blur fine 
details and reduce the clarity of the image. This noise can come from several sources, such as 
electronic interference from the imaging equipment, how X-rays are absorbed by tissue or even 
the structure of overlapping breast tissues. Other factors, like patient movement or scatter 
radiation, can also add to the noise, making the image more challenging to interpret. 

When there is too much noise, it can hide important features like tiny calcium deposits 
(microcalcifications), small lumps (masses), or changes in tissue structure (architectural 
distortions), all of which are crucial for detecting breast cancer. Preprocessing techniques are 
used to reduce the noise, like applying special filters or adjusting contrast. These methods 
improve image quality, allowing the CADx system to pick up on the key details for diagnosis, 
making it easier for doctors and radiologists to spot potential issues more accurately. 

2.2.1.1 Gaussian Filtering: 

This technique smooths the image by averaging the pixel values around each point using a 
Gaussian kernel (a mathematical function that resembles a bell curve). The kernel helps to blur 
out the finer details of high-frequency noise, effectively reducing random variations while 
preserving larger structures like edges. It’s particularly useful when the noise is spread across 
the image in a consistent, low-frequency pattern. The benefit of Gaussian filtering is that it 
keeps the image smooth without distorting important boundaries, which is crucial for 
maintaining the integrity of the tissue structures [30]. The kernel is based on the Gaussian 
function, which is defined as: G(x, y)  =  12𝜋𝜎2 exp (− 𝑥2+𝑦22𝜎2 )                                       (2.1) 

Where:  

• G(x,y) is the value of the Gaussian function at the point (x,y), 

• σ is the standard deviation, which controls the width of the Gaussian bell curve. 

The image I(x,y) is filtered by convolving it with the Gaussian kernel G(x,y): 

𝐼𝑓𝑖𝑙𝑡𝑟𝑒𝑑 (𝑥, 𝑦) = ∑ ∑ 𝐼(𝑥 + 𝑖, 𝑦 + 𝑗)𝑘
𝑗=−𝑘

𝑘

𝑖=−𝑘
⋅ 𝐺(𝑖, 𝑗)                              (2.2) 
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Where: 

• I(x,y) is the original image, 

• Ifiltered(x,y) is the resulting filtered image, 

• k is the size of the kernel. 

This equation represents the convolution of the image with the Gaussian kernel, which 
helps reduce noise while maintaining edges. 

2.2.1.2. Median Filtering: 

Median filtering works by replacing each pixel’s value with the median value of its 
surrounding neighborhood [31]. It’s particularly effective in removing “salt-and-pepper” noise, 
which appears as random black and white speckles scattered throughout the image. Unlike 
Gaussian filtering, which averages pixel values, median filtering focuses on removing extreme 
values (outliers) while preserving edges and other important structures. This technique is useful 
in cases where noise is highly irregular and doesn’t follow a consistent pattern. If N(x,y) 
represents the set of pixel values in the neighborhood of pixel (x,y), the median filter replaces 
the value of I(x,y) with the median value from this set: 

I filtered(x,y) = median ( N (x,y) )                                                 (2.3) 

Where: 

• N(x,y) is the neighborhood of pixel (x,y), 

• I filtered(x,y) is the new pixel value after applying the median filter. 

In this context, the median of the neighborhood is calculated by sorting the pixel values and 
selecting the middle value, which effectively removes outliers like salt-and-pepper noise while 
preserving edges and other important structures. 

2.2.1.3 Wavelet Transform: 

The wavelet transform is a more advanced technique that breaks the image down into 
different frequency components. It separates the image into low-frequency (smooth areas) and 
high-frequency (detailed areas) components. Noise typically exists in the high-frequency part, 
so by selectively reducing or removing these high-frequency components while preserving the 
low-frequency ones, the image becomes cleaner without losing significant details [32]. This 
allows for highly targeted noise reduction, making wavelet transform particularly effective in 
preserving both fine structures (such as microcalcifications) and larger, important features (like 
masses or lesions) during the denoising process. The basic wavelet transform equation is: 

𝑊 (𝑥, 𝑦) = ∑ ∑ 𝑓(𝑥′, 𝑦′). 𝜑 (𝑥 − 𝑥′, 𝑦 − 𝑦′) 𝑑𝑥′𝑑𝑦′               (2.4)∞
𝑗=−∞

∞
𝑖=−∞  

Where: 

• W(x,y) is the wavelet transform of the image f(x,y)f(x, y)f(x,y), 

• ψ(x−x′, y−y′) is the wavelet function, which is typically a scaled and shifted version of 
a base wavelet. 
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After performing the transform, the image is split into approximation (low-frequency) and 
detail (high-frequency) coefficients. To reduce noise, the high-frequency coefficients (which 
represent fine details and nowise) are selectively shrunk or set to zero: 

Wfiltered (x,y) = { 𝑊(𝑥, 𝑦)  𝑖𝑓 |𝑊(𝑥, 𝑦)| ≥ 𝜏        0       𝑖𝑓 |𝑊(𝑥, 𝑦)|  <  𝜏                                             (2.5) 

Where: 

• W filtered (x,y) are the coefficients after noise reduction, 

• τ is a threshold value that determines which coefficients are considered to be noise. 

Finally, the inverse wavelet transform is applied to reconstruct the denoised image: 𝑓𝑓𝑖𝑙𝑡𝑟𝑒𝑑 (𝑥, 𝑦) = ∑ ∑ 𝑊𝑓𝑖𝑙𝑡𝑟𝑒𝑑(𝑥′, 𝑦′) . 𝜑 (𝑥 − 𝑥′, 𝑦 − 𝑦′) 𝑑𝑥′𝑑𝑦′∞𝑗=−∞∞𝑖=−∞                       (2.6) 

These equations illustrate how wavelet transform can help reduce noise by selectively filtering 
out high-frequency noise components while preserving essential details in the image. 

2.2.2 Contrast Enhancement 

Contrast enhancement refers to image processing techniques that improve the visibility of 
structures within breast tissue by increasing the contrast between different tissue densities. 
Since medical images often have low contrast due to the similar attenuation properties of soft 
tissues, contrast enhancement is essential for highlighting abnormalities such as masses, 
microcalcifications, and architectural distortions. In Computer-Aided Diagnosis (CADx) 
systems, contrast enhancement is crucial in ensuring that subtle features are more 
distinguishable, improving the system’s ability to detect potential malignancies. Standard 
techniques used for contrast enhancement in medical imaging include Histogram Equalization 
(HE), Contrast-Limited Adaptive Histogram Equalization (CLAHE), Gamma Correction, 
Unsharp Masking (UM), and Multi-Scale Wavelet-Based Methods [33]. These techniques can 
be categorized into spatial domain methods, frequency domain methods, adaptive techniques, 

and machine learning-based methods. Below, we explore these techniques. 

2.2.2.1 Spatial Domain Methods 

Spatial domain methods are a class of image processing techniques that operate directly 
on the pixel values of an image. These methods manipulate the intensity values of individual 
pixels or groups of pixels to enhance contrast, improve visibility of structures, or highlight 
specific features [34]. In CAD systems, spatial domain methods are widely used because they 
are computationally efficient and can be personalized to emphasize subtle details in breast 
tissue. 

A. Histogram Equalization (HE) 

Histogram equalization is a spatial domain technique that redistributes the intensity values 
of an image to improve contrast. It works by flattening and stretching the histogram of the 
image, making the intensity distribution more uniform [34]. HE works by transforming the 
original intensity histogram pr(r) into a uniform histogram ps(s), using a cumulative distribution 
function (CDF). The transformation function is given by: 



Chapter 2: CADx systems for breast cancer 
 

32 
 

h(rk) = nk , k = 0,1,2,…, L−1                                                 (2.7) 

where nk is the number of pixels with intensity rk. 

B. Adaptive Histogram Equalization (HE) 

Adaptive Histogram Equalization (AHE) is a contrast enhancement technique that 
improves local contrast by applying histogram equalization to small, non-overlapping regions 
(tiles) of an image instead of processing the entire image globally [35]. This method enhances 
fine details and structures in low-contrast areas while maintaining variations in different parts 
of the image. After equalizing each tile, AHE uses interpolation to smooth the boundaries 
between adjacent regions, preventing abrupt changes in intensity. This technique is beneficial 
for images with varying illumination, such as mammograms, where some regions may appear 
darker or less contrasted than others. However, while AHE effectively enhances fine details 
and improves contrast in non-uniformly illuminated images, it can also significantly amplify 
noise, especially in homogeneous regions, making it less suitable for medical imaging without 
additional noise reduction techniques. 

C. Contrast-limited Adaptive Histogram Equalization (CLAHE) 

Contrast-limited Adaptive Histogram Equalization (CLAHE) is a refined version of AHE 
designed to enhance local contrast in breast images without amplifying noise too much. CADx 
systems in medical imaging help make subtle details like microcalcifications and small 
masses—more visible by improving contrast in darker or less defined areas. Unlike AHE, which 
can exaggerate noise in uniform regions, CLAHE prevents this by setting a clip limit, which 
stops the histogram from over-stretching brightness levels. It then redistributes the extra 
intensity values to keep the image natural and smooth [36]. This makes CLAHE especially 
useful in breast cancer, where maintaining image clarity and reducing artifacts is crucial. 
However, its effectiveness depends on fine-tuning parameters like the clip limit and tile size to 
balance enhancing important details and keeping noise under control. 

2.2.2.2  Frequency Domain Methods 

A.   Fourier Transform-Based Methods 

Fourier Transform-Based Methods enhance contrast by converting an image from the 
spatial domain to the frequency domain, enabling selective modification of specific frequency 
components. In CADx systems, this approach helps highlight fine details like 
microcalcifications while reducing noise or unwanted variations [37]. The process begins with 
computing the Discrete Fourier Transform (DFT), which represents the image as a combination 
of sinusoidal waves, each corresponding to different frequency components. High-frequency 
components capture fine details and sharp edges, while low-frequency components represent 
smooth variations. Depending on the enhancement goal, a high-pass filter can be applied to 
emphasize subtle structures by suppressing low-frequency information, or a low-pass filter can 
smooth the image by removing high-frequency noise. Once filtering is complete, the Inverse 
Discrete Fourier Transform (IDFT) reconstructs the image into the spatial domain. This method 
provides precise control over contrast enhancement and noise suppression. However, it is 
computationally demanding and requires careful parameter tuning to avoid unwanted artifacts 
or loss of important diagnostic information. 
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B. Wavelet Transform-Based Enhancement 

Wavelet Transform-Based Enhancement is a powerful way to improve contrast in breast 
images by analyzing details at multiple scales. Unlike traditional methods that process the entire 
image, the Wavelet Transform (WT) breaks it into different layers, keeping fine details and 
overall structure intact. First, the image is processed with Discrete Wavelet Transform (DWT), 
which separates it into low-frequency components (representing smoother areas) and high-
frequency components (capturing edges and tiny details like microcalcifications). This 
separation allows selective enhancement low frequencies can be adjusted to improve overall 
brightness and contrast, while high frequencies can be sharpened to highlight small but crucial 
abnormalities. Once the adjustments are made, the Inverse Wavelet Transform (IWT) 
reconstructs the image, ensuring a balanced enhancement that preserves global and local details 
[38]. This multi-scale approach makes WT highly effective for medical imaging, enhancing 
subtle structures without distorting the image. However, it is computationally demanding and 
requires fine-tuning to avoid excessive enhancement, which could introduce artifacts or obscure 
important diagnostic features. 

2.2.3 Artifact removal 

Artifact removal is a preprocessing step in CADx systems, as undesired elements like 
labels, annotations, scanning artifacts, and pectoral muscle shadows can interfere with accurate 
analysis [39]. These artifacts can introduce noise, affect contrast adjustments, and lead to false 
detections, reducing the reliability of automated diagnosis. Several techniques are used to 
eliminate such artifacts. Thresholding and morphological operations help remove text labels 
and markings by distinguishing them from breast tissue based on intensity differences. Region-
based segmentation methods, such as active contours (snakes) or Otsu’s thresholding, are 
commonly applied to detect and eliminate the pectoral muscle, which can appear as a high-
intensity region in the upper part of the mammogram. Deep learning-based approaches, such as 
convolutional neural networks (CNNs), have also been developed to automatically identify and 
mask artifacts, ensuring that only relevant breast tissue is analyzed. Effective artifact removal 
improves CADx system performance by reducing false positives, and ensuring that 
classification models focus on actual abnormalities rather than unnecessary elements. 

2.2.4 Image normalization 

Image normalization is another preprocessing technique used in CADx systems for breast 
cancer. It helps correct variations in brightness, contrast, and intensity distribution caused by 
differences in imaging machines, patient anatomy, and acquisition settings [40]. By 
standardizing pixel intensity values, normalization ensures that mammograms are consistent 
and comparable, improving the accuracy of feature extraction, classification, and lesion 
detection. Without proper normalization, differences in image intensity can lead to 
misinterpretation of abnormalities and inconsistencies in CADx performance. Different 
approaches are used to normalize images, depending on the type of variability and the 
requirements of the CADx system. Different approaches are used to normalize breast images, 
depending on the type of variability and the requirements of the CADx system. Here are most 
important techniques: 
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2.2.4.1 Min-Max Normalization 

Min-Max Normalization adjusts pixel intensity values to a fixed range, such as [0,1] or 
[0,255], ensuring uniform brightness and contrast across mammograms. This technique 
preserves relative differences in contrast while preventing extreme intensity variations that 
could distort image interpretation [41]. It is particularly useful in CADx systems for medical 
imaging, where images from different imaging machines may have varying brightness levels, 
allowing for consistent processing, improved lesion detection, and better comparability across 
datasets. 

2.2.4.2 Z-Score Normalization 

Z-Score Normalization (Standardization) adjusts pixel intensities by shifting and scaling 
them based on the image’s average brightness and contrast (Mean and standard deviation). This 
means each pixel is measured relative to the overall intensity spread, ensuring the image is not 
affected by extreme brightness or darkness [41]. By centering the values around zero and 
keeping contrast differences intact, this method evens out variations while preserving important 
details, making images more balanced and easier to interpret. 

2.2. Segmentation 

Segmentation is the second step in a CADx system that involves dividing a mammogram 
into specific areas to detect and analyze abnormalities like masses or microcalcifications 
accurately. A crucial part of this process is extracting the Region of Interest (ROI), which 
isolates suspicious areas from the surrounding breast tissue [42]. This operation ensures that 
only the relevant parts of the image are examined, making it easier to spot potential issues. By 
improving the visibility of these areas, ROI extraction allows for detailed analysis of features 
like shape, texture, and density, which helps differentiate between benign and malignant 
tumors. It also enhances the performance of classification models by providing clean, well-
defined inputs for machine learning and deep learning systems. Segmentation also reduces 
errors, such as false positives and negatives, by concentrating on actual abnormalities rather 
than irrelevant background noise. 

Overall, segmentation and ROI extraction streamline the diagnostic process by automating 
lesion detection and reducing the workload for radiologists. The process minimizes 
interpretation inconsistencies and makes CADx a more efficient and reliable tool for diagnosing 
breast cancer. Most common techniques used are thresholding-based methods, region-based 
segmentation, edge-based segmentation, clustering-based methods, and deep learning-based 
segmentation. 

2.3.1   Thresholding-based methods 

Thresholding-based methods are image segmentation techniques that separate regions of 
interest (ROIs), such as potential lesions or abnormalities, from the surrounding breast tissue. 
These methods convert a grayscale mammogram into a binary image, where pixels are 
classified as either part of the ROI or the background based on their intensity values. A specific 
intensity threshold is set, and pixels with values above or below this threshold are assigned to 
different categories [43]. For example, areas with higher intensity (brighter pixels) might be 
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identified as suspicious masses or microcalcifications, while lower-intensity areas (darker 
pixels) are considered normal tissue. 

Thresholding is a simple and computationally efficient approach, making it useful for 
initial ROI extraction. However, it may struggle with complex cases where abnormalities have 
similar intensity levels to surrounding tissue or when the image has uneven lighting or noise. 
To address these limitations, thresholding is often combined with other techniques, such as 
adaptive thresholding [43]. 

2.3.2 Region-based segmentation  

Region-based segmentation aims to partition an image into regions based on similarity 
criteria, such as intensity or texture. Methods like Region Growing and the Watershed 
Algorithm start from an initial seed point and iteratively expand the region by including 
neighboring pixels that meet predefined similarity conditions [44]. This approach efficiently 
segments masses with well-defined boundaries and groups pixels with shared characteristics 
into coherent regions. However, its performance heavily depends on the accuracy of seed point 
selection, and it can struggle with over-segmenting dense or heterogeneous tissues where 
boundaries are less distinct. Despite these limitations, region-based segmentation remains a 
valuable tool for isolating mammogram abnormalities. 

2.3.3 Edge-Based Segmentation 

Edge-based segmentation is a technique that focuses on detecting and outlining the 
boundaries of abnormalities by identifying sharp changes in pixel intensity, known as edges. 
Methods like the canny edge detector and active contour (Snake) model operate by analyzing 
intensity gradients across the image. The canny edge detector works in multiple steps: it 
smoothens the image to reduce noise, then computes the gradient magnitude and direction to 
highlight areas of rapid intensity change. Non-maximum suppression is applied to thin the 
edges, and finally, hysteresis thresholding is used to distinguish evident edges from blurred 
ones, ensuring only significant boundaries are retained. On the other hand, the active Contour 
model starts with an initial curve (often drawn near the lesion) and iteratively deforms it to fit 
the lesion's boundaries [45]. This deformation is driven by energy minimization, where the 
curve adjusts itself to align with edges while maintaining smoothness. Internal forces keep the 
contour cohesive, while external forces pull it toward edges based on gradient information. 

These methods are particularly effective for segmenting lesions with well-defined edges, 
as they rely on clear intensity transitions. However, they can struggle in noisy images or when 
boundaries are faint, as weak gradients may lead to incomplete or inaccurate edge detection. 
Despite these limitations, edge-based segmentation remains a powerful tool for outlining 
mammogram abnormalities with distinct boundaries. 

2.3.4 Clustering-based segmentation 

Clustering-based segmentation methods are techniques that group pixels into clusters based 
on shared features such as intensity, texture, and sometimes even higher-level statistical 
information. In methods like K-Means Clustering, the algorithm begins by selecting initial 
cluster centroids, often randomly, and then iteratively assigns each pixel to the nearest centroid 
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based on a chosen distance metric (usually Euclidean distance), recalculating the centroids as 
the mean of the assigned pixels until convergence is achieved [46]. Fuzzy C-Means (FCM) 
extends this approach by allowing pixels to belong to multiple clusters with varying degrees of 
membership, which helps capture ambiguous boundaries and offers a smoother transition 
between regions. These methods work by leveraging the intrinsic similarities within local pixel 
neighborhoods, effectively partitioning the image into regions that correspond to different 
tissue types or abnormalities, such as masses with varying intensities in mammograms [46]. 
However, they require the predefined number of clusters, which can be challenging to set 
optimally, and they are sensitive to noise necessitating preprocessing steps like smoothing or 
filtering to prevent erroneous cluster assignments and ensure robust segmentation in complex, 
real-world imaging scenarios. 

2.3.5   Deep learning-based segmentation 

Deep learning-based segmentation use convolutional neural networks (CNNs) to 
automatically learn and extract multi-level features from breast images for precise lesion 
delineation. Architectures such as U-Net and Mask R-CNN embody this approach: U-Net 
employs an encoder-decoder structure with skip connections that fuse high-resolution features 
from the contracting path with the spatial details recovered during expansion, ensuring that both 
global context and fine-grained information are retained. Mask R-CNN, on the other hand, 
extends the Faster R-CNN framework by incorporating an additional branch dedicated to 
generating pixel-level masks for each proposed region of interest, effectively coupling object 
detection with detailed segmentation [47]. These models are typically trained end-to-end on 
large, annotated datasets using loss functions like cross-entropy or Dice coefficient loss to 
directly optimize segmentation accuracy. Additionally, techniques such as data augmentation 
and transfer learning are commonly applied to enhance model robustness and generalization, 
especially in the context of variable image quality and limited data availability. Despite their 
high accuracy and adaptability, these networks require significant computational resources and 
extensive, high-quality labeled data, posing challenges for widespread clinical implementation. 

2.4 Features extraction 

Feature extraction in Computer-Aided Diagnosis (CADx) systems is the third step and a 
fundamental process that transforms raw mammogram images into a set of quantitative 
attributes known as features that capture critical characteristics of breast tissue and potential 
lesions. By converting high-dimensional image data into a compact, informative representation, 
feature extraction enables automated algorithms to effectively analyze and classify lesions, and 
improving diagnostic accuracy and reliability. 

2.4.1 Features  

Features (or attributes) refer to quantifiable properties extracted from medical images that 
capture essential details about the breast tissue and potential lesions. These features can include 
measurements of intensity, texture, shape, and morphology, and they serve as inputs to 
classifiers (machine learning or deep learning algorithms). Essentially, they provide a compact 
and informative representation of the raw image data, calculating measurable properties that 
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help distinguish between normal tissue and abnormalities such as masses or microcalcifications 
in classification. 

Features can be broadly categorized into several types: 

▪ Intensity Features: These include basic pixel values and statistical measures such as the 
mean, variance, skewness, and kurtosis of pixel intensity distributions. They provide 
insights into tissue density and can highlight areas of abnormal brightness or darkness 
associated with lesions. 

▪ Texture Features: Texture describes the spatial arrangement of pixel intensities. 
Techniques like Gray-Level Co-occurrence Matrices (GLCM) and Local Binary Patterns 
(LBP) are used to quantify texture by capturing the frequency and pattern of pixel intensity 
variations [48,49]. Gabor filters further enhance this by analyzing frequency and 
orientation, allowing for the detection of fine structural details within the tissue. 

▪ Shape and Morphological Features: These describe the geometric properties of regions 
of interest (ROIs), such as lesions [48,49]. Shape descriptors include metrics like area, 
perimeter, and compactness, while more advanced descriptors such as moment invariants, 
Fourier descriptors, and Zernike descriptors quantify contours, symmetry, and boundary 
irregularities. These descriptors are designed to be invariant to changes in scale, rotation, 
and translation, making them robust for comparing lesions across different images. 

▪ Automatically Learned Features: are obtained using deep convolutional neural networks 
(CNNs) that learn hierarchical representations directly from raw images. Initially, the CNN 
extracts low-level features such as edges and textures using convolutional filters; as the 
network deepens, it aggregates these into higher-level, more abstract representations like 
shapes and lesion boundaries. The learning process involves backpropagation, gradient 
descent, and non-linear activations (e.g., ReLU), along with pooling to reduce spatial 
dimensions and enhance invariance. These multi-scale, high-dimensional features are 
optimized end-to-end and are particularly effective in capturing complex patterns, 
ultimately improving diagnostic accuracy by adapting to variations in lesion appearance 
and image quality [50]. 

2.4.2 Feature selection 

Feature selection is the process of identifying and choosing a subset of the most relevant 
features from an initial set of extracted attributes, thereby reducing the dimensionality of the 
dataset used in the CADx system. The primary goal is to improve model performance by 
eliminating redundant or irrelevant features, which can lead to overfitting and increased 
computational complexity. By focusing on the most discriminative features, feature selection 
improves the accuracy, efficiency, and interpretability of the diagnostic models. 

Several techniques are used for feature selection, generally classified into three categories: 

▪ Filter Methods: These techniques assess the relevance of features based on statistical 
measures, independently of the learning algorithm. Examples include correlation 
coefficients, chi-square tests, mutual information, and variance thresholds [50,51]. Filter 
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methods are computationally efficient and provide a fast way to eliminate irrelevant 
features. 

▪ Wrapper Methods: Wrapper methods evaluate feature subsets by directly measuring the 
performance of a specific predictive model. Techniques such as recursive feature 
elimination (RFE) and sequential feature selection fall under this category [50,51]. 
Although they often provide better performance by considering feature interactions, they 
are typically more computationally intensive. 

▪ Embedded Methods: Embedded techniques incorporate feature selection as part of the 
model training process. Methods like LASSO (L1 regularization) and decision tree-based 
algorithms (e.g., random forests) automatically select features by assigning importance 
weights during model fitting [49,50,51]. These approaches strike a balance between 
computational efficiency and performance by integrating the selection process within 
model optimization. 

In the context of breast cancer, effective feature selection is crucial for handling the high-
dimensional data that results from extracting statistical, texture, shape, and automatically 
learned features. By reducing the feature space, the CADx system can focus on the most 
clinically significant attributes, which increases diagnostic accuracy, reduces false positives and 
negatives, and rationalizes the computational workload. 

2.5 Classification 

Classification is the final stage in a computer-aided diagnosis (CADx) system. It is the 
process of assigning discrete labels to input data based on learned patterns, typically following 
the extraction and selection of discriminative features, which is based on the segmentation 
result, to perform automatic diagnosis. In practice, classifiers are trained on labeled datasets 
where each mammogram is associated with a ground-truth diagnosis. Algorithms such as 
Support Vector Machines (SVMs), Random Forests, Logistic Regression, and deep neural 
networks (DNNs) are commonly employed due to their ability to model complex, non-linear 
relationships in feature space. 

Classification in machine learning includes several paradigms and types, each suited to 
different data structures and objectives. The primary paradigms include supervised learning, 
where models are trained on labeled data to predict outputs; unsupervised classification 
(clustering), which identifies patterns or clusters in unlabeled data; and reinforcement learning, 
where agents learn optimal actions through trial-and-error interactions with an environment to 
maximize cumulative rewards. Within classification tasks, common types include binary 
classification (distinguishing between two classes, e.g., malignant vs. benign), multi-class 
classification (assigning one label among three or more mutually exclusive classes, e.g., BI-
RADS scores 1–6), and multi-label classification applies when multiple abnormalities (e.g., 
masses, calcifications) coexist in a single scan, requiring simultaneous detection. Additional 
variations include imbalanced classification (handling skewed class distributions) 
and hierarchical classification (organizing labels into nested structures).  
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2.5.1 Supervised Classification 

Supervised classification in CADx breast cancer involves training algorithms on labeled 
datasets where each mammogram is annotated with the ground truth (e.g., benign or malignant). 
In this paradigm, classifiers learn to map high-dimensional feature vectors comprising 
statistical, textural, morphological, and automatically learned features to diagnostic outcomes. 
Techniques commonly employed include Support Vector Machines (SVMs), Random Forests, 
Logistic Regression, and deep learning architectures like Convolutional Neural Networks 
(CNNs) [52,53]. During training, these models optimize objective functions (e.g., cross-entropy 
or hinge loss) using iterative methods such as gradient descent and employ regularization 
techniques to prevent overfitting.  

Supervised methods in medical imaging rely on extensive datasets of images that have been 
meticulously annotated by experts, such as radiologists, with definitive labels indicating benign 
or malignant lesions. This abundance of high-quality, labeled data is crucial because it allows 
machine learning models to learn complex mappings between extracted features and clinical 
outcomes. The presence of ground-truth labels not only facilitates the training process but also 
ensures that the models can generalize well to new, unseen data. 

In addition, supervised methods provide clear, interpretable performance metrics that are 
vital in clinical settings. For example, accuracy, sensitivity (or recall), specificity and many 
others metrics that will be detailed in this chapter. These metrics offer a comprehensive 
evaluation of a model's diagnostic efficacy, ensuring that the CADx system meets the stringent 
reliability and safety standards required in clinical practice. 

2.5.2 Unsupervised Classification 

Unsupervised classification, often referred to as clustering, does not rely on labeled data 
but instead seeks to identify inherent patterns or groupings within the feature space. In the 
context of CADx for breast cancer, unsupervised methods can be used to discover latent 
structures or to segment mammograms into regions with similar characteristics, which may 
correspond to different tissue types or potential anomalies. Techniques such as K-means 
clustering, hierarchical clustering, and self-organizing maps (SOM) are utilized, relying on 
distance metrics (e.g., Euclidean distance) to group similar feature vectors. While unsupervised 
learning does not directly produce diagnostic labels, it can assist in anomaly detection or pre-
processing steps by highlighting clusters of images that deviate from typical patterns [52,53]. 
These clusters can later be interpreted in conjunction with clinical expertise or used to guide 
semi-supervised learning processes. 

2.5.3 Reinforcement Learning 

Reinforcement learning (RL) represents an emerging paradigm in CADx systems, where 
an agent learns to make sequential decisions by interacting with an environment to maximize a 
cumulative reward. In breast cancer, RL can be employed to optimize the classification process, 
such as dynamically selecting regions of interest (ROI) for further analysis or refining 
segmentation boundaries in a sequential manner. Techniques in this domain include Q-learning, 
Deep Q-Networks (DQN), and policy gradient methods [52,53]. The RL agent receives 
feedback in the form of rewards derived from metrics such as diagnostic accuracy or lesion 
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detection performance which guide it in learning an optimal policy for decision making. For 
example, an RL-based system might learn to adjust its focus within a mammogram based on 
the likelihood of detecting subtle abnormalities, permitting the improvement of both efficiency 
and accuracy. This approach is particularly useful in active learning settings, where the system 
iteratively refines its decision-making strategy based on real-time performance, eventually 
adapting to variations in image quality and lesion presentation. 

2.5.4 Challenges of classification 

Classification generally and in the context of CADx systems for breast cancer specially, 
models face several challenges that can significantly impact diagnostic performance. 

2.5.4.1 Overfitting 

Occurs when a model learns patterns that are highly specific to the training dataset, 
including noise and outliers, rather than capturing the underlying generalizable relationships. 
In medical imaging, this risk is aggravated by the high-dimensionality of extracted features 
such as textural, morphological, and automatically learned attributes and the relatively limited 
size of annotated datasets. As a result, a model might achieve excellent performance on the 
training data but perform poorly on unseen images, leading to unreliable diagnostic predictions. 
To mitigate overfitting, various techniques are employed, including regularization methods 
(e.g., L1, L2 penalties, dropout), cross-validation strategies, and early stopping during training. 
Additionally, simplifying the model architecture or employing dimensionality reduction 
techniques can help ensure that the classifier generalizes well to new patient data [54]. 

2.5.4.2 Imbalanced Data 

Imbalanced Data is another significant challenge in CADx. In many clinical datasets, the 
distribution of classes is unequal, with a disproportionately high number of benign cases 
compared to malignant ones. This class imbalance can bias the model toward predicting the 
majority class, thereby compromising its sensitivity to the minority class often the more 
clinically critical (malignant cases). The consequences of such bias include high overall 
accuracy but low recall (sensitivity) for detecting malignant lesions, which is unacceptable in a 
clinical setting.  

To address this issue, various strategies are implemented, such as resampling techniques 
(oversampling the minority class or undersampling the majority class), synthetic data 
generation methods like SMOTE (Synthetic Minority Over-sampling Technique), and the use 
of cost-sensitive learning where misclassification penalties are adjusted based on the class 
distribution [54,55]. Moreover, employing evaluation metrics beyond simple accuracy such as 
precision, recall, F1-score, and the area under the ROC curve (AUC) provides a more nuanced 
assessment of the classifier’s performance in the presence of imbalanced data. Despite the 
availability of large datasets, the number of malignant cases is often relatively low compared 
to benign cases. This scarcity, especially for complex or rare lesion types, intensifies class 
imbalance and may interfere with the classifier’s ability to learn robust patterns for minority 
classes. 

2.5.4.3 Computational complexity 
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Deep learning models arises primarily from the high number of trainable parameters that 
these networks possess. Modern architectures, especially those designed for image analysis like 
convolutional neural networks (CNNs), often consist of millions of parameters distributed 
across numerous layers. This high parameter count enables the network to learn detailed and 
nuanced features from the data; however, it also significantly increases the computational 
resources required for both training and inference [55]. 

During training, the optimization process involves numerous matrix multiplications, 
convolutions, and backpropagation steps across all layers, which demands extensive processing 
power and memory. These operations are typically executed on specialized hardware, such as 
GPUs or TPUs, to accelerate computation. The reliance on such hardware not only increases 
the operational costs but can also introduce challenges when deploying the system in real-time 
clinical environments where immediate processing and decision-making are critical. 

Inference, or the process of making predictions using a trained model, also suffers from the 
model's complexity. High parameter counts translate to increased latency, as the model needs 
to perform a significant number of computations to arrive at a diagnosis. This can be particularly 
problematic in scenarios that require real-time analysis, such as during screening sessions or 
intraoperative decision support [54]. 

Furthermore, the computational demands necessitate careful model design and 
optimization strategies. Techniques such as model pruning, quantization, and knowledge 
distillation are often employed to reduce the number of parameters and computational overhead 
while attempting to preserve diagnostic accuracy [55]. Balancing the trade-off between model 
complexity and computational efficiency remains a key challenge in the practical deployment 
of deep learning-based CADx systems in clinical settings, as reducing latency and cost without 
compromising performance is essential for widespread adoption [56]. 

2.5.4.4 Interpretability of Complex Models 

Advanced models, especially deep neural networks, despite they deliver highly accurate 
classification, are often perceived as "black boxes", making it difficult to interpret their 
decision-making process. For deep learning to gain clinical acceptance, the algorithms must be 
interpretable and explainable. Interpretability, or transparency, refers to the degree to which a 
human observer can understand the model’s reasoning process. Explainability, on the other 
hand, refer to the fundamental attributes of a model that describe its internal mechanisms and 
help clarify or "explain" its decisions. In clinical settings, the lack of transparency can be a 
barrier to trust and acceptance by practitioners who require explainable and justifiable 
diagnostic conclusions [56,57]. 

2.6 Metrics and evaluation of CADx systems 

Evaluation of Computer-Aided Diagnosis (CADx) systems for breast cancer and medical 
imaging in general, relies on a comprehensive set of metrics to assess diagnostic performance, 
robustness, and clinical utility. These metrics can be categorized into classification metrics, 
segmentation metrics, and evaluation strategies. 

2.6.1 Classification Metrics 
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In the context of lesion classification (e.g., benign vs. malignant), key performance 
indicators include: 

▪ Confusion matrix: is a fundamental tool in evaluating the performance of classification 
models, especially in the context of CADx systems [58]. It is a tabular representation 
that summarizes the number of correct and incorrect predictions made by the model, 
organized by the actual and predicted classes as show in Table 2.1. In a binary 
classification scenario where the task is to distinguish between malignant and benign 
lesions the confusion matrix consists of four key components: 

− True Positives (TP): The number of malignant lesions correctly identified as 
malignant. 

− False Positives (FP): The number of benign lesions incorrectly classified as 
malignant. 

− True Negatives (TN): The number of benign lesions correctly identified as benign. 

− False Negatives (FN): The number of malignant lesions incorrectly classified as 
benign. 

            Predicted 

 

   Labeled 

Predicted Positive 

(Malignant) 

Predicted Negative 

(Benign) 

Actual Positive 

(Malignant) 
True Positives (TP) False Negatives (FN) 

Actual Negative 

(Benign) 
False Positives (FP) True Negatives (TN) 

Table 2.1 : Confusion matrix table. 

▪ Accuracy: The proportion of total correct predictions (both benign and malignant) to 
the overall number of cases. While simple to interpret, accuracy alone may be 
misleading in datasets with imbalanced classes. 

Accuracy = 
𝑇𝑃+𝑇𝑁𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁                                            (2.8) 

▪ Sensitivity (Recall): Also known as the true positive rate, sensitivity measures the 
proportion of actual malignant cases correctly identified by the system. This metric is 
crucial in a clinical setting were failing to detect a malignant lesion can have severe 
consequences. 

Sensitivity = 
𝑇𝑃𝑇𝑃+ 𝐹𝑁                                                 (2.9) 

▪ Specificity: The true negative rate that quantifies the proportion of benign cases 
correctly identified. High specificity reduces the number of false positives, thereby 
minimizing unnecessary biopsies and associated patient anxiety. 

Specificity = 
𝑇𝑁𝑇𝑁+𝐹𝑃                                               (2.10) 
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▪ Precision (Positive Predictive Value): This metric reflects the proportion of true 
malignant predictions among all cases classified as malignant. It is especially important 
in evaluating the clinical relevance of detected lesions. 

Precision = 
𝑇𝑃𝑇𝑃+𝐹𝑃                                            (2.11) 

▪ F1-Score: The harmonic means of precision and recall, providing a balanced measure 
that is particularly informative when dealing with imbalanced datasets. 

F1-Score = 2 x 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 x 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 = 2 x 𝑇𝑃2 𝑋 𝑇𝑃+𝐹𝑃+𝐹𝑁                       (2.11) 

▪ Receiver Operating Characteristic (ROC) Curve and Area Under the Curve 

(AUC): The ROC curve plots sensitivity versus 1-specificity across various threshold 
settings, and the AUC provides a single scalar value summarizing the model's ability to 
discriminate between classes over all thresholds. A high AUC indicates robust 
performance across different operating points [58]. 

2.6.2 Segmentation Metrics 

For CADx systems that include lesion segmentation, evaluation metrics focus on the spatial 
accuracy of delineating regions of interest [59]: 

▪ Dice Coefficient (F1 Score for Segmentation): Measures the overlap between the 
segmented lesion and the ground truth, defined as twice the area of overlap divided by 
the total number of pixels in both the predicted and ground truth masks. It is sensitive 
to both false positives and false negatives. 

▪ Jaccard Index (Intersection over Union, IoU): Similar to the Dice coefficient, it 
quantifies the similarity between the predicted segmentation and the reference standard 
by dividing the intersection of the predicted and true regions by their union. 

▪ Hausdorff Distance: Assesses the maximum distance of the predicted segmentation 
boundary to the ground truth boundary, providing insight into the worst-case 
segmentation error. 

2.6.3 Evaluation Strategies 

Beyond individual metrics, robust evaluation of CADx systems is achieved through 
methodological strategies that ensure generalizability and reliability [60]: 

▪ Cross-Validation: Techniques such as k-fold cross-validation help assess model 
performance across multiple subsets of data, decreasing the risk of overfitting and 
ensuring that performance metrics are not artifacts of a particular data split. 

▪ Independent Test Sets: Utilizing an independent, often external, dataset to evaluate the 
CADx system provides an unbiased assessment of its generalizability across different 
patient populations and imaging conditions. 

▪ Statistical Analysis: Confidence intervals, p-values, and other statistical tests are often 
employed to determine the significance of observed performance differences, 
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particularly when comparing multiple models or assessing improvements over baseline 
methods. 

▪ Clinical Validation: Finally, CADx systems must be evaluated in real-world clinical 
settings. Prospective studies and reader studies, where radiologists interact with the 
system, provide essential feedback on usability, diagnostic accuracy, and potential 
integration into clinical workflows. 

In summary, the evaluation of CADx systems for breast cancer covers a variety of 
performance metrics and methodological approaches to ensure that the system is both accurate 
and clinically viable. By combining classification metrics, segmentation evaluation, and 
rigorous validation strategies, researchers and clinicians can effectively measure the system's 
potential impact on patient results and its readiness for clinical deployment. 

3. Conclusion 

In conclusion, the development and implementation of Computer-Aided Diagnosis 
(CADx) systems for automatic diagnosis of breast cancer have emerged as transformative 
approaches in the early detection and diagnosis of breast cancer. The chapter has 
comprehensively discussed the critical steps involved in these systems from segmentation and 
feature extraction to classification and performance evaluation, while also highlighting the 
significant challenges that must be overcome to ensure robust clinical application. Based on the 
comprehensive review presented in this chapter, I have chosen to develop a shape descriptor 
that leverages traditional machine learning techniques with robust classifiers like SVM and 
Random Forest; alongside an alternative deep learning approach for CADx in breast cancer 
based on convolutional neural networks (CNNs) to perform accurate automatic diagnosis of 
masses and microcalcifications. 
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Chapter 3: Image description model for breast 

cancer recognition 

1. Introduction 

The accurate description and analysis of breast lesions in breast cancer imaging are 
essential for early breast cancer detection and diagnosis. Mammography remains one of the 
most effective screening techniques, enabling the identification of abnormalities that may 
indicate the presence of malignant tumors [95]. However, the classification of these 
abnormalities depends on the ability to extract and interpret relevant features that characterize 
lesions [61]. To achieve this, descriptors play a fundamental role in translating visual and 
pathological properties of lesions into mathematical representations. These descriptors serve as 
critical elements in computer-aided diagnosis (CADx) systems, helping to improve 
classification accuracy and assist radiologists in making informed decisions. 

A particular challenge in breast cancer diagnosis is the detection and classification of 
spiculated masses, which are strongly associated with malignancy [62]. These masses exhibit 
irregular, radiating spicules that make their boundary difficult to define, increasing the 
complexity of automated lesion characterization. Despite their clinical significance, few studies 
have specifically addressed the development of descriptors tailored for spiculated masses. 

To address the challenge of analyzing spiculated masses, the second part of this chapter 
will be dedicated to the newly proposed descriptor: Polygon Approximation Triangle-Area 
Representation (PATAR). This descriptor is designed to better capture the unique boundary 
and structural characteristics of spiculated lesions, enhancing their differentiation from other 
types of breast masses. By applying polygon approximation, PATAR effectively extracts 
concave and convex spaces along the lesion boundary, key indicators of shape irregularities 
commonly associated with malignancies.  

These concave and convex regions are quantified using Triangle-Area Representation 
(TAR) signature allowing to this method to well estimate the degree of malignancy of breast 
mass. By integrating key aspects of shape and contour irregularity, our proposed method aims 
to improve classification accuracy and provide a more reliable tool for computer-aided 
diagnosis (CADx). The first section of this chapter will be dedicated to a presentation of 
descriptors in literature; shape and geometric descriptors founded on basic measurement, and 
texture descriptors. Also in this chapter, we will present the methodology behind PATAR, its 
mathematical formulation, and its evaluation against existing shape descriptors, demonstrating 
its potential in improving breast cancer detection. 
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2. Shape descriptors (Morphological) 

2.1 Geometric descriptors 

Geometric descriptors are quantitative measurements that characterize the morphological 
properties of a region of interest (ROI) in a medical image. In mammography, these descriptors 
capture the geometric attributes like compactness, area, rectangularity of breast masses, which 
are critical since malignant lesions often have distinctive shape characteristics compared to 
benign ones. In the sections below, some of the most commonly used shape descriptors will be 
detailed. 

2.1.1 Center of Gravity (Centroid)  

The centroid of a shape is a geometric property used in various shape descriptors for 
mammographic image analysis. It represents the center of mass or geometric center of a lesion 
and serves as a reference point for analyzing boundary irregularities, asymmetry, and shape 
complexity. In Computer-Aided Diagnosis systems, centroid-based descriptors are particularly 
useful for classifying breast lesions, detecting spiculated masses, and evaluating shape 
distortions associated with malignancies [63]. 

 The centroid of a shape is the average position of all points that define the shape’s 
boundary or region. Mathematically, it is given by: 

𝐶𝑥 = 1𝑁 ∑ 𝑥𝑖𝑁
𝑖=1                           (3.1) 

𝐶𝑦 = 1𝑁 ∑ 𝑦𝑖𝑁
𝑖=1                          (3.2) 

− Cx, Cy are the centroid coordinates, 

− xi, yi are the pixel coordinates of the lesion, 

− N is the number of pixels defining the lesion. 

2.1.2 Perimeter 

Is the total length of the boundary of a mass measured by summing the distances between 
consecutive boundary pixels, providing a fundamental measurement used in calculating various 
shape ratios and serving as a basic indicator of lesion size that helps differentiate between 
smooth-bordered benign masses and irregular malignant ones [63,66]. 

2.1.3 Area  
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Represents the total number of pixels contained within the mass boundary, calculated by 
simple counting of pixels in the segmented region (ROI), providing a basic size measurement 
that helps assess the extent of the lesion and may indicate growth when monitored across 
sequential mammograms [64]. 

2.1.4 Circularity 

The circularity descriptor is a shape-based feature used in Computer-Aided Diagnosis 
(CADx) systems for mammography to assess lesion regularity [64,65]. It measures how closely 
a shape resembles a perfect circle, with benign masses typically having higher circularity 
(smooth, well-defined edges) and malignant tumors, especially spiculated masses, exhibiting 
lower circularity due to irregular, jagged, or radiating contours. Circularity is calculated using 
the formula: 

𝐶 =  4 𝜋 . 𝐴𝑟𝑒𝑎𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2                     (3.3) 

Where: 

− Area is the lesion area,  

− Perimeter is its perimeter.  

A perfect circle has C = 1, while irregular shapes have C < 1. In CADx mammography, 
circularity is used alongside other shape descriptors (e.g., convexity, compactness) to 
differentiate benign from malignant lesions, improving breast cancer detection and 
classification accuracy. 

2.1.5 Rectangularity 

Rectangularity (also called extent or rectangular filling ratio) is a shape descriptor used to 
measure how well a given shape (such as a breast lesion in a mammogram) fits within its 
minimum bounding rectangle. It quantifies how efficiently a lesion occupies its surrounding 
rectangular region, providing insights into shape regularity and compactness [65,67]. 

Rectangularity is defined as the ratio of the lesion's area to the area of its minimum 
bounding rectangle: 

𝑅 =  𝐴𝑠ℎ𝑎𝑝𝑒𝐴𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒                     (3.4) 

Where : 

− R = Rectangularity (ranges from 0 to 1, with 1 indicating a perfect rectangle). 

− Ashape = Area of the lesion (number of pixels inside the lesion). 
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− Abounding rectangle = Area of the minimum bounding rectangle (width × height of the 
smallest rectangle enclosing the lesion). 

 

Figure 3. 1: Rectangularity measure. 

However, this rectangularity formula does not consider the orientation of the object. A 
perfect, upright rectangle has a rectangularity value of 1, but when the same rectangle is tilted, 
its rectangularity value changes. This makes the descriptor sensitive to rotation. 

2.1.6 Compactness 

The compactness descriptor is a shape-based feature used in Computer-Aided Diagnosis 
(CADx) systems for mammography to assess how efficiently a lesion occupies its space. It 
helps differentiate smooth, well-defined benign masses from irregular, invasive malignant 
tumors. Compactness is calculated using the formula: 𝐶 =  𝑃2𝐴                       (3.5) 

Where P is the lesion's perimeter and A is its area. Lower compactness values indicate 
more regular, compact shapes (e.g., benign cysts), whereas higher compactness values suggest 
irregular, complex contours (e.g., spiculated malignant tumors). Since malignant lesions often 
have higher perimeter-to-area ratios due to their rough, invasive growth, compactness serves 
as a key parameter in CADx mammography [65,66]. 

2.1.7 Fourier descriptor 

The Fourier Descriptor (FD) is a shape-based feature used in Computer-Aided Diagnosis 
(CADx) systems for mammography to analyze lesion contour irregularities by transforming the 
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lesion’s boundary into the frequency domain using the Discrete Fourier Transform (DFT). The 
lesion contour is first extracted and represented as a sequence of complex numbers zn=xn+jyn, 
then transformed using DFT: 

𝐹(𝑘) =  ∑  𝑧𝑛𝑒−𝑗2πkn/N𝑁−1
𝑛=0                        (3.6) 

Where low-frequency components capture global shape features (e.g., circularity of benign 
masses) and high-frequency components highlight local irregularities (e.g., spiculations in 
malignant tumors). To ensure invariance to rotation, scale, and translation, the Fourier 
coefficients are normalized by setting F(0) to zero and scaling by |F(1)|. In mammographic 
CADx applications, benign lesions (cysts, fibroadenomas) typically have dominant low-
frequency components, indicating smooth, well-defined borders, while malignant tumors 
(spiculated masses, IDC) show higher-frequency variations, reflecting irregular, invasive 
growth. The Fourier Descriptor is particularly valuable for detecting architectural distortions, 
making it a powerful tool in breast cancer detection and classification [68]. 

2.2 High order descriptors 

High-order shape descriptors are advanced techniques used to characterize the complex 
geometric and morphological properties of regions of interest (ROIs), such as masses, 
microcalcifications, or architectural distortions. These descriptors go beyond basic shape 
metrics (e.g., area, perimeter) to capture and explore intricate details about the structure, 
boundaries, and spatial relationships within the image. Below are examples of high-order shape 
descriptors used in mammography. 

2.2.1 Moments based descriptors 

Moment-based shape descriptors are mathematical tools used to characterize the shape of 
objects in images by computing moments, which are weighted averages of pixel intensities. 
These descriptors are widely used in mammography to analyze the shape and structure of 
lesions, such as masses and microcalcifications. Below are the main types of moment-based 
shape descriptors, each explained in detail: 

1- Geometric moments 

Geometric moments are the most basic type of moments, calculated as weighted sums of 
pixel intensities over the image. The moment of order (p + q) is given by; 𝑚𝑝𝑞 = ∑ ∑ 𝑥𝑝𝑦𝑞𝐼(𝑥, 𝑦)𝑦𝑥                         (3.7) 

Where I (x, y) is the intensity at pixel (x, y). 
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These moments capture global shape properties, such as the centroid, orientation, and size 
of an object. However, they are not invariant to transformations like rotation or scaling, making 
them less robust for shape analysis in mammography without additional normalization [69,70]. 

2- Hu Invariant Moments (Invariant) 

Hu moments are derived from geometric moments and provide shape descriptors that are 
invariant to translation, rotation, and scaling. This means that a lesion’s shape can be identified 
regardless of imaging angle, size, or position. Hu defined seven invariant moments using 
normalized central moments ηpq, where: ηpq= 

𝜇𝑝𝑞𝜇00(1+𝑝+𝑞2 )                                        (3.8) 

with 𝜇𝑝𝑞 = ∑ ∑ (𝑥 − �̅�)𝑝(𝑦 − �̅�)𝑞𝐼(𝑥, 𝑦)𝑦𝑥                      (3.9) 

where �̅�, 𝑦 ̅are the centroid coordinates of the shape [62]. 

3- Zernike Moments (ZMs) 

Zernike moments are computed using a set of orthogonal polynomials defined over a unit 
circle, making them invariant to rotation and robust against noise. They are particularly useful 
for analyzing lesions with complex boundary structures. 

The Zernike moment of order �̅� and repetition �̅� is defined as 𝑍𝑛𝑚 = 𝑛+1𝜋 ∑ ∑ 𝐼(𝑥, 𝑦)𝑉𝑛𝑚∗  (𝑥, 𝑦)𝑦𝑥                      (3.10) 

where Vnm(x,y) is the Zernike polynomial: 

Vnm(r,θ) = Rnm(r)ejmθ                                             (3.11) 

with Rnm(r) being the radial polynomial. 

In addition to Geometric, Zernike and Hu moments, other moment-based shape descriptors, 
such as Legendre Moments (LMs) and Wavelet Moments (WMs), are widely used in 
mammographic analysis. Legendre Moments are computed using Legendre polynomials, 
which are orthogonal over a rectangular domain, making them efficient for analyzing lesions 
in image regions with well-defined boundaries. They provide a compact representation of shape 
and are particularly useful for detecting lobulated or irregular tumor contours. On the other 
hand, Wavelet Moments integrate both spatial and frequency-domain information, allowing 
multi-scale shape analysis [69,71]. These moments are derived from wavelet transforms, which 
decompose an image into different resolution levels, capturing both global shape characteristics 
and fine structural details such as microcalcifications or spiculations in malignant tumors. The 
combination of these moment-based descriptors enhances feature extraction in CADx systems, 
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improving the accuracy of breast cancer detection by distinguishing between smooth benign 
lesions and complex malignant masses. 

2.2.2 Fractal analysis 

Fractal analysis is a powerful mathematical approach used in mammography to quantify 
the complexity and irregularity of breast lesion shapes. Unlike traditional shape descriptors that 
rely on smooth boundaries, fractal analysis is particularly effective for characterizing highly 
irregular, spiculated, or infiltrative tumor margins, which are common in malignant breast 
lesions [64]. 

The fractal dimension (FD) is the primary measure used in fractal analysis to quantify 
shape complexity. It describes how a shape's detail changes with scale, providing insights into 
the lesion’s structural irregularity. A higher fractal dimension indicates greater complexity and 
roughness, which is often associated with malignancy, whereas lower values suggest smooth, 
well-defined benign lesions. One of the most widely used methods to compute FD in medical 
imaging is the box-counting method, defined as: 

𝐷 =  lim𝑟 →0 log 𝑁(𝑟)log(1/𝑟)                      (3.12) 

where: 

− N(r) is the number of boxes of size r required to cover the shape boundary, 

− D is the estimated fractal dimension. 

This method applies a grid of different-sized squares to an image and counts how many 
squares contain part of the lesion boundary. As the grid becomes finer, the fractal dimension is 
estimated based on how the count changes with scale [73,74]. 

Fractal analysis in medical imaging is particularly useful for distinguishing between benign 
and malignant lesions based on boundary complexity. Malignant lesions typically show higher 
fractal dimensions (e.g., D > 1.3) due to their irregular, spiculated, or infiltrative growth 
patterns, whereas benign lesions tend to have lower fractal dimensions (e.g., D < 1.2), reflecting 
their smooth and well-defined contours. One of its key advantages is scale invariance, allowing 
the detection of lesion complexity across multiple scales, making it robust against image 
resolution differences. 

2.2.3 Skeletonization-Based Descriptors 

Skeletonization-Based Descriptors are a class of shape analysis tools that focus on 
extracting and analyzing the medial axis or skeleton of an object. The skeleton is a simplified, 
thin-line representation of the shape that preserves its topological and geometric properties. 
These descriptors are particularly useful for analyzing complex shapes, such as spiculated 
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masses or architectural distortions in mammography. Below is a detailed explanation of 
skeletonization-based descriptors, including their definition, functioning, and applications [75]. 

Skeletonization is a process that reduces a 2D shape to its medial axis or skeleton, which 
is a set of curves or lines that lie along the center of the shape. The skeleton captures the 
essential structure of the shape, including its branches, endpoints, and loops, while removing 
redundant information about its thickness. Skeletonization-based descriptors are derived from 
this skeleton and are used to quantify its properties, such as branch length, curvature, and 
connectivity. 

The skeleton is typically extracted using thinning algorithms, such as Zhang-
Suen or Morphological Thinning, which iteratively remove boundary pixels while preserving 
the object's connectivity and topology. The result is a 1-pixel-wide representation of the shape's 
medial axis. 

Once the skeleton is obtained, various features are computed to describe its properties: 

− Branch Points: Points where the skeleton splits into multiple branches. 

− End Points: Terminal points of the skeleton. 

− Branch Length: The length of individual branches in the skeleton. 

− Curvature: The degree of bending or curvature along the skeleton. 

− Loop Detection: Identification of closed loops in the skeleton. 

− Symmetry Analysis: Measures of symmetry or asymmetry in the skeleton. 

These features are quantified to create a set of descriptors that capture the shape's 
complexity, topology, and geometry [75]. 

Skeletonization-based descriptors offer several advantages, including topological 
preservation, which ensures that the skeleton maintains the object's connectivity and structure, 
making it efficient for analyzing complex shapes like spiculated masses in mammography. 
Additionally, they provide dimensionality reduction by simplifying the shape to its essential 
medial axis, and reducing computational complexity. These descriptors are also robust to 
variations in shape thickness or boundary irregularities, making them reliable for characterizing 
lesions. However, they face challenges such as sensitivity to noise, which can introduce false 
branches, computational complexity due to the intensive processing required for large or 
intricate shapes, and parameter sensitivity, as the quality of the skeleton depends heavily on the 
choice of thinning algorithm and parameters. Despite these challenges, skeletonization remains 
a powerful tool for shape analysis in medical imaging [76,77]. 
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3. Texture descriptors 

Texture is a fundamental visual attribute used in computer vision to analyze surface 
patterns and distinguish objects based on their appearance. Texture description involves 
extracting numerical features that characterize the spatial distribution of pixel intensities in an 
image [78]. These descriptors help in various applications, such as medical imaging. Texture 
descriptors are generally categorized into four primary types: structural, statistical, model-
based, and transform methods. Each category represents a different approach to analyzing 
texture, ranging from pattern-based representations to mathematical transformations. 

3.1 Structural methods 

In structural methods, texture is defined by the fundamental units and their spatial 
arrangement. These fundamental units or primitives can be as simple as individual pixels, 
regions, or line-like shapes. The spatial organization of these units is determined by analyzing 
their geometric relationships or statistical properties. Essentially, structural approaches treat 
texture as a composition of basic patterns. Once these primary patterns are identified, their 
statistical properties are computed and used as features. These methods are well-suited for 
textures with regular and repetitive structures. However, they are less effective for images with 
irregular or complex textures, as they may struggle to capture the inherent variability and 
randomness in such cases [78]. 

3.1.1 Structural Element Analysis (Primitive-Based Methods)  

This method breaks a texture into fundamental primitives (e.g., lines, edges, shapes) and 
analyzes their spatial distribution. A key example is Edge Frequency Analysis, which detects 
edge primitives and their orientations to define texture patterns. The Edge Density Calculation 
is given by: 

𝐷𝐸 = ∑ |∇ 𝑓(𝑖, 𝑗)|𝑖𝑗 𝑁                       (3.13) 

where ∇ 𝑓 (i, j) represents the gradient magnitude at pixel (i, j), and N is the total number of 
pixels. In mammography, this method can be used for detecting spiculated masses 
(characterized by radiating edges) and identifying sharp transitions in malignant tumors. Its 
strengths include effectiveness in highlighting lesion boundaries and detecting architectural 
distortions. However, it is sensitive to image resolution and noise, and edge-based analysis 
alone may fail to capture fine-grained texture variations in dense breast tissue [79]. 

3.1.2 Morphological Analysis (Mathematical Morphology) 

This a structural method analyzes texture by applying morphological operations (e.g., 
dilation, erosion, opening, and closing) to extract shape-based features. A key example is 
Morphological Closing, which enhances mass detection by connecting fragmented structures. 
The operation is defined as: 
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A•B = (A⊕B) ⊖ B                      (3.14) 

where A is the binary image, B is the structuring element, ⊕ represents dilation, and ⊖ 
represents erosion. In mammography, this method is useful for enhancing lesion boundaries, 
improving mass segmentation, and refining tumor detection in dense breast tissue. Its strengths 
include enhancing tumor visibility and improving CADx system segmentation. However, it is 
highly dependent on the choice of structuring element, and poor parameter tuning can introduce 
artifacts that affect diagnostic accuracy [79,80]. 

3.2 Statistical methods 

Statistical texture descriptors analyze the spatial distribution of pixel intensities to 
characterize tissue patterns in mammography. These methods capture essential texture 
properties through statistical measures derived from pixel relationships. 

3.2.1 First-Order Statistical Methods (Histogram-Based Analysis) 

First-order statistics describe texture by analyzing the distribution of pixel intensities 
without considering spatial relationships. Most important features used in mass description 
include mean (μ), which represents the average intensity, variance (σ²) for intensity dispersion, 
skewness (S) for asymmetry, and kurtosis (K) for sharpness of intensity peaks. These are 
calculated using: 

μ = 1𝑁 ∑ 𝐼𝑖𝑁𝑖=1                            (3.15) 

σ² = 1𝑁 ∑ (𝐼𝑖𝑁𝑖=1 −μ)2                    (3.16) 

S = 
1𝑁 ∑ (𝐼𝑖− μ𝛔 )3𝑁𝑖=1                      (3.17) 

K = 
1𝑁 ∑ (𝐼𝑖− μ𝛔 )4𝑁𝑖=1                       (3.18) 

In mass description, these features help differentiate dense and fatty breast tissues, where 
malignant tumors often exhibit higher variance and skewness due to heterogeneous structures. 
Strengths include fast computation and ease of implementation, but limitations arise from their 
inability to capture spatial dependencies, making them insufficient for distinguishing textures 
with similar intensity distributions [81]. 

3.2.2 Second-Order Statistical Methods 

The Gray-Level Co-occurrence Matrix (GLCM) is a powerful second-order statistical 
method that quantifies spatial relationships between pixel pairs at specific distances and 
orientations in mammography images. By creating matrices that count how frequently pixel 
value pairs occur in defined spatial relationships (typically specified by distance and angle), 
GLCM captures critical textural properties like homogeneity, contrast, correlation, and energy 



Chapter 3: Image description model for breast cancer recognition 

55 
 

through Haralick features (e.g., energy, entropy, homogeneity) [81]. In breast imaging, GLCM 
excels at characterizing tissue patterns by detecting subtle variations in pixel relationships that 
correlate with malignancy status, smooth margins (typically benign) produce high homogeneity 
and energy values with low contrast measures, while spiculated or irregular margins (often 
malignant) generate higher contrast, entropy, and lower homogeneity values. Despite 
sensitivity to preprocessing choices and the need for careful parameter selection, GLCM 
remains one of the most effective texture descriptors for discriminating between benign and 
malignant masses in clinical computer-aided diagnosis systems, with reported accuracy rates 
exceeding 85% when combined with appropriate classification methods [82,83]. 

3.3 Model-Based Texture Descriptors 

Model-based texture descriptors characterize textures using mathematical models that 
describe patterns and structures within an image. These methods assume that textures follow 
specific generative models and estimate parameters to describe texture properties effectively. 
The most common model-based approaches include Markov Random Fields (MRF) and 
Autoregressive Models (AR). 

3.3.1 Markov Random Field (MRF) Models  

MRF describe texture by modeling the spatial dependencies between pixel intensities using 
probabilistic graphical models. MRF assumes that the intensity of a pixel depends on its 
neighboring pixels, making it useful for capturing local texture structures. The probability of 
an image configuration is given by: 

P(I) = 
1𝑍 𝑒− ∑ 𝑉𝑐(𝐼)𝑐                      (3.19) 

where P(I) is the probability of the intensity configuration, Vc(I) represents the potential 
function modeling pixel interactions within a clique c, and Z is a normalization constant. In 
mammography, MRF is used for mass detection and tissue segmentation. Strengths of MRF 
model include its ability to capture complex spatial dependencies, making it effective for 
detecting architectural distortions. However, its limitations include high computational cost and 
the need for parameter tuning, which can make implementation challenging [84]. 

3.3.2 Autoregressive (AR) Models  

Descriptors based on AR models describe texture by assuming that the intensity of a pixel 
is a weighted sum of its neighboring pixel intensities, plus a noise term. The AR model is 
mathematically represented as: 

I(i,j) = ∑ ∑ 𝑎𝑚,𝑛 𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)𝑛𝑚 +  𝜖(𝑖, 𝑗)                       (3.20) 

where am,n are the autoregressive coefficients, and ϵ(i,j) is the noise term. In mammography, 
AR models help characterize mass texture by quantifying regularity vs. randomness, with 
benign masses typically revealing smooth, predictable textures, while malignant tumors have 
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irregular, unpredictable patterns due to heterogeneity. AR models have the ability to model 
local intensity variations efficiently, but they are limited in capturing highly irregular and 
spiculated mass structures, which are often indicative of malignancy [85]. 

3.4 Transform Models 

Transform models analyze texture by converting an image from the spatial domain to a 
different domain, such as frequency or scale-space, where distinct textural patterns associated 
with benign and malignant masses can be effectively characterized. These methods help in 
mass detection, classification, and segmentation by highlighting key structural differences in 
mammographic images. In the literature most used transform models in mass description 
include the Curvelet Transform (CT), Wavelet Transform (WT), and Gabor Filters. 

3.4.1 Wavelet Transform (WT)  

The Wavelet Transform (WT) is a multi-scale analysis technique that decomposes an 
image into different frequency components while preserving spatial information. It enables 
detailed texture analysis of masses by capturing both coarse and fine details. The Discrete 
Wavelet Transform (DWT) is mathematically defined as: 

W (j, k) = ∑ 𝐼(𝑖)𝜓𝑗,𝑘(𝑖)𝑖                       (3.21) 

Where : 

− I(i) represent the image intensity values. 

− ψj,k(i) are wavelet basis functions at scale j and position k. 

The Wavelet Transform (WT) is widely used in mass texture description in mammography 
due to its ability to analyze multi-scale texture variations. Benign masses typically show low-
frequency dominance, appearing smooth and homogenous, whereas malignant masses generate 
high-energy wavelet coefficients across multiple scales, reflecting their heterogeneous and 
irregular structure [87]. WT is particularly effective in spiculation detection, an important 
indicator of malignancy. Its main advantages include the ability to capture texture at multiple 
scales, preserve both spatial and frequency information, and increase lesion segmentation, 
making it useful for identifying tumor margins. However, WT is computationally expensive, 
requiring significant processing power, and its effectiveness depends on the choice of wavelet 
basis functions (e.g., Haar, Daubechies). Additionally, highly noisy mammograms may reduce 
its performance, necessitating preprocessing steps to improve accuracy. 

3.4.2 Curvelet Transform (CT) 

The Curvelet Transform is a multi-scale directional transform method designed to capture 
curvilinear features more effectively than the Wavelet Transform. It is particularly useful for 
analyzing complex textures and structures such as spiculations and mass boundaries in 
mammographic images. The Continuous Curvelet Transform is mathematically represented by: 
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𝐶(𝑎, 𝑏, 𝜃) =  ∫ 𝑓(𝑥)𝜓𝑎,𝑏,𝜃(𝑥) 𝑑𝑥 
𝑥 𝜖 ℝ2                       (3.22) 

Where : 

− f(x) represents the image intensity values. 

− 𝜓a,b,θ(x) are curvelet basis functions at scale a, location b, and orientation θ. 

The Curvelet Transform has good performance in capturing curvilinear features and 
spiculations, preserving directional information for improved mass boundary detection and 
enabling robust multi-scale, multi-orientation analysis that aids in tumor classification. 
However, its high computational expense, noise sensitivity, and complex implementation can 
limit its real-time application in mammography. Overall, the Curvelet Transform is a powerful 
tool for describing mass texture, particularly in detecting irregular, spiculated tumor boundaries, 
making it a valuable for breast cancer diagnosis in CADx systems [86]. 

3.4.3 Gabor filters 

Gabor Filters are transform-based methods defined by a Gaussian-modulated sinusoidal 
function that simultaneously localizes frequency and spatial information, making them highly 
effective for capturing texture and shape details. Mathematically, they are expressed as: 

𝐺(𝑥, 𝑦) = exp (− 𝑥′2 + 𝛾2𝑦′22𝜎2 ) cos(2𝜋𝑓𝑥′ +  𝜙)                       (3.23) 

where x′ and y′ are the rotated coordinates, f represents the frequency of the sinusoid, σ 
determines the width of the Gaussian envelope, γ is the spatial aspect ratio, and ϕ is the phase 
offset [88]. In the context of mammographic mass description with a focus on shape, these 
filters effectively highlight structural features such as contours, spiculated edges, and subtle 
boundary variations by analyzing the image at multiple scales and orientations. This detailed 
extraction of directional information aids in distinguishing benign masses, which typically have 
smooth, regular shapes, from malignant tumors, which often present irregular, spiculated 
outlines. However, the application of Gabor filters requires careful parameter tuning and is 
computationally intensive, with performance potentially impacted by image noise and contrast 
variability. 

4. Evaluation and characteristics of descriptors 

Effective evaluation of descriptors in mammography is critical for ensuring the accuracy 
and consistency of breast cancer screening, as even minor errors in interpreting imaging data 
can lead to delayed diagnoses or unnecessary interventions. High-quality descriptors must 
capture subtle patterns in mammograms, such as microcalcifications or irregular masses, while 
remaining resilient to variations in breast density, imaging artifacts, and equipment differences 
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or image rotation and many other transformations [89]. Their design should prioritize 
computational efficiency to support real-time clinical workflows and seamless integration with 
diagnostic tools, enabling radiologists to make informed decisions swiftly. Additionally, 
descriptors must generalize across diverse patient populations and imaging protocols to 
maintain diagnostic consistency. Finally, robust evaluation frameworks and well-designed 
descriptors enhance early detection rates, reduce false outcomes, and build clinician trust in AI-
assisted or automated systems. In this section we will explore most important properties of 
good descriptors and evaluation of methods studied above.  

4.1 Characteristics of good descriptors 

Evaluating image descriptors requires a systematic review of their inherent properties to 
ensure they reliably and accurately represent object features across diverse imaging conditions. 
Below is a detailed breakdown of the key characteristics of a good descriptor, with each point 
expanded for clarity: 

4.1.1 Scale Invariance 

A scale-invariant descriptor consistently represents features regardless of the object's size 
or image resolution. This is crucial in medical imaging, where lesions or masses can appear at 
various scales due to differences in patient anatomy or image acquisition settings. A descriptor 
that maintains its performance across scales allows for more robust comparison and 
classification, reducing errors caused by zoom or resolution changes [90]. 

4.1.2 Rotation Invariance 

Rotation invariance ensures that the descriptor accurately characterizes features even if the 
object’s orientation varies. In practice, this means that a lesion or mass will have a similar 
descriptor regardless of whether the image is taken from a different angle or the tissue is rotated. 
This property is especially important in mammography, where the orientation of masses can 
differ between images, enabling consistent analysis without the need for pre-alignment [90]. 

4.1.3 Uniqueness (Distinctiveness) 

A unique or distinctive descriptor provides a clear and unambiguous representation of an 
object, allowing it to be easily distinguished from other objects or textures. This property is 
critical for applications like tumor classification, where subtle differences in texture and shape 
must be detected to differentiate benign from malignant lesions. The more unique the 
descriptor, the lower the chance of misclassification [89,90]. 

4.1.4 Robustness to Noise 

Robust descriptors remain effective even in the presence of image noise or artifacts, which 
are common in clinical imaging. Noise robustness is vital for ensuring that the descriptor 
captures true underlying features rather than random variations, leading to more reliable 
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diagnostics [89,90]. Techniques such as smoothing or normalization can be incorporated into 
descriptor design to enhance this property. 

4.1.5 Illumination Invariance 

Illumination invariance refers to a descriptor’s ability to deliver consistent performance 
despite variations in lighting conditions or exposure settings. In mammography, differences in 
tissue density and imaging protocols can lead to significant variations in brightness and 
contrast. A descriptor that is insensitive to these changes will ensure that the captured features 
are representative of the tissue properties rather than the imaging conditions [89,90]. 

4.1.6 Computational Efficiency 

Computational efficiency is essential, particularly for real-time or high-throughput 
applications like computer-aided diagnosis (CADx) systems. A good descriptor should be 
computationally lightweight, allowing for fast processing without sacrificing accuracy. 
Efficiency also facilitates integration into clinical workflows, where timely results can be 
critical for patient management [89,90]. 

4.1.7 Discriminative Power 

The discriminative power of a descriptor reflects its ability to capture subtle differences 
between classes, such as benign versus malignant masses. This is often quantified using metrics 
like classification accuracy, precision, recall, and the F1-score. A highly discriminative 
descriptor can effectively highlight variations in texture, shape, and intensity that are critical 
for accurate diagnosis, thereby improving the performance of automated detection systems 
[89,90]. 

4.1.8 Comprehensively Descriptive 

Beyond capturing texture, a comprehensive descriptor should encapsulate additional 
features such as shape, edges, and spatial relationships. In the context of mammography, this 
means that the descriptor should provide information about the smoothness or irregularity of 
mass boundaries, the presence of spiculations, and the overall spatial arrangement of tissue 
structures. Such a holistic representation facilitates a more complete understanding of the 
pathology, aiding in more accurate detection and classification [90]. 

4.2 Evaluation  

Below in Table 3.1 is a comparative table summarizing various descriptors including basic 
shape measures, transform-based, statistical, and model-based descriptors focusing on their 
features, invariance properties, strengths, and limitations for mass description (texture and 
shape) in mammography. 



Chapter 3: Image description model for breast cancer recognition 

60 
 

Descriptor Features 

Captured 

Invariance Strengths Limitations 

Area, 

Perimeter, 

Rectangularity, 

Centroid, 

Circularity, 

Compactness 

Basic 
geometric and 
shape 
properties 
(size, 
boundary, 
symmetry, and 
compactness) 

Can be made 
scale- and 
rotation-
invariant with 
normalization
; sensitive to 
segmentation 
accuracy 

Simple, intuitive, 
computationally 
efficient; directly 
interpretable 

Highly 
dependent on 
segmentation 
quality; limited 
in capturing 
texture or 
internal 
heterogeneity 

Fourier 

Descriptor 
Global shape 
boundary 
features 
represented as 
frequency 
components 

Can be 
normalized 
for 
translation, 
rotation, and 
scale 
invariance 

Robust to minor 
boundary 
perturbations; 
effective global 
shape 
representation 

Sensitive to 
noise; less 
effective in 
capturing 
localized details 

Moments-

Based 

Descriptors 
(e.g., Hu, 
Zernike 
moments) 

Overall shape 
characteristics 
computed from 
image 
moments 

Often 
designed to 
be invariant 
to scale, 
rotation, and 
translation 

Compact 
representation; 
robust global 
descriptors with 
proven invariance 
properties 

Can be 
sensitive to 
noise and 
segmentation 
errors; may 
require higher-
order moments 
for complex 
shapes 

Fractal 

Analysis 
Self-similarity 
and complexity 
of 
shapes/textures 
(irregularity 
and 
heterogeneity) 

Intrinsically 
scale 
invariant 

Excellent for 
characterizing 
irregular, 
heterogeneous 
textures typical of 
malignant masses 

Computationall
y intensive; 
parameter 
selection can be 
challenging 

Skeletonization

-Based 

Descriptors 

Medial axis 
and topological 
structure 
(structural 
“skeleton” of 
the shape) 

May be 
normalized, 
but highly 
sensitive to 
the quality of 

Emphasizes 
structural topology 
and connectivity; 
useful for 
identifying 

Sensitive to 
noise and 
segmentation 
errors; skeleton 
extraction can 
be unstable 
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the extracted 
skeleton 

branching/spiculate
d patterns 

Histogram-

Based Analysis 
Global 
intensity 
distribution 
(first-order 
statistical 
features) 

Not 
inherently 
invariant; 
normalization 
can provide 
partial 
invariance 

Simple, fast, and 
computationally 
efficient; good for 
overall texture 
assessment 

Ignores spatial 
relationships; 
limited in 
discriminative 
power for 
complex 
textures 

GLCM (Gray-

Level Co-

occurrence 

Matrix) 

Second-order 
statistics 
capturing 
spatial 
relationships 
between pixel 
intensities 

Not directly 
invariant; 
rotational 
invariance 
achieved by 
averaging 
over angles 

Highly 
discriminative for 
texture analysis; 
effective in 
capturing 
heterogeneity 

Computationall
y intensive; 
sensitive to 
parameter 
(distance, 
angle) selection 

Markov 

Random Field 

(MRF) Models 

Local spatial 
dependencies 
modeled 
probabilisticall
y 

Can be 
tailored for 
invariance 
through 
model design, 
but often 
model-
specific 

Captures spatial 
interactions and 
context; useful for 
segmentation and 
pattern recognition 

Computationall
y expensive; 
requires careful 
parameter 
tuning 

Autoregressive 

(AR) Models 
Local pixel 
intensity 
dependencies 
and regularities 

Can be 
normalized 
for partial 
invariance 
but not 
inherently 
robust to 
large 
variations 

Simple and 
efficient for regular 
textures; useful for 
differentiating 
smooth vs. irregular 
patterns 

Less effective 
for highly 
irregular 
textures; 
sensitive to 
noise 

Wavelet 

Transform 

(WT) 

Multi-scale 
frequency and 
spatial 
information; 
captures both 

Can be made 
scale 
invariant; 
some degree 
of rotation 
invariance 

Provides multi-
resolution analysis; 
effective for mass 
classification and 
segmentation 

Computationall
y demanding; 
performance 
dependent on 
choice of 
wavelet basis 
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coarse and fine 
details 

with proper 
design 

Curvelet 

Transform 

(CT) 

Curvilinear and 
directional 
features; ideal 
for capturing 
spiculated, 
elongated 
structures 

Similar 
invariance to 
wavelets with 
enhanced 
directional 
sensitivity; 
normalization 
possible 

Superior for 
capturing 
curvilinear edges 
and irregular 
boundaries; excels 
in detecting 
spiculated tumor 
margins 

Highly 
computationally 
expensive; 
complex 
implementation 
and sensitive to 
noise 

Gabor Filters Multi-scale, 
multi-
orientation 
texture and 
shape details; 
emphasizes 
edge and 
contour 
features 

Invariance 
depends on 
parameter 
tuning; can 
be made 
rotation 
invariant 
through filter 
bank design 

Capture directional 
patterns and fine 
details; robust in 
highlighting 
spiculated edges 

High 
computational 
cost; sensitive 
to noise and 
requires careful 
parameter 
selection 

Table 3.1: Evaluation of different methods for mass description. 

This table provides an overview of how each descriptor performs in terms of the essential 
properties required for effective mass description. The choice of descriptor or combination 
thereof will depend on the specific clinical application, the imaging conditions, and the desired 
balance between computational efficiency and discriminative power. 

5. Proposed model for breast mass description (PATAR 

descriptor) 

This section aims to introduce a novel descriptor to equip radiologists with a robust 
descriptor that significantly enhances the diagnostic process within a CADx system. Effective 
diagnosis relies on a descriptor that can extract critical features; however, the unpredictable 
morphology of spiculated masses and their high similarity to surrounding breast tissue pose 
substantial challenges. Many existing descriptors fall short in capturing all spiculated regions, 
leading to misclassifications [112]. To address this, we propose a two-step approach shape 
descriptor called PATAR (Polygon Approximation Triangle-Area Representation).  

First, we perform a geometric transformation by approximating the mass contour with a 
polygon, which accurately isolates and estimates the concave and convex regions key 
characteristics that differentiate benign from malignant masses. Next, we employ the Triangle-
Area Representation (TAR) to quantify the spiculation size: by traversing the polygon's vertices 
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in a clockwise direction, we form triangles from every set of three consecutive points, using 
their areas as a measure of spiculated extent. Our PATAR descriptor, combining polygon 
approximation with TAR calculation, offers a robust solution for detecting and sizing 
spiculations. Figure 3.2 illustrates the PATAR workflow, with detailed explanations provided 
in the subsequent sections. 

 

Figure 3.2: PATAR descriptor process, starting with polygon approximation applied on mass 
ROI’s then TAR signature to extract features generation. 

5.1 Polygon approximation 

Polygonal approximation is a technique that simplifies complex contours by representing 
them with a polygon composed of a minimal set of vertices. The primary objective is to reduce 
the level of detail while retaining the essential geometric features of the original shape, such as 
critical concave and convex regions. This reduction is achieved by selecting a subset of key 
points along the curve, in that way preserving important structural characteristics while 
enhancing computational efficiency, data compression, and visualization [113]. Moreover, 
because the resulting polygon is inherently insensitive to translation, scale, and rotation, it 
offers robust invariance properties, making it highly effective for shape characterization and 
classification across various applications. In our work, polygon approximation is particularly 
important for preserving the degree of spiculation in masses. By reducing the mass contour to 
a polygonal form, we effectively capture and preserve the relevant features, both concave and 
convex that are indicative of malignancy.  

Figure 3.3 illustrates how polygon approximation is applied to a digital mammographic 
mass, demonstrating its capacity to simplify the contour while keeping the critical spiculated 
characteristics intact. 

 

(a) Original mammographic 
mass 

 

(b) CBIS-DDSM ROI 

ROI Image
Polygon 

Approximation

TAR 

Signature

Feature 

Extraction
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(c) Contour of the mass 

 

(d) Polygon approximation 

Figure 3.3: Example of Polygon approximation: a) the original mammographic mass, b) 
CBIS-DDSM ROI, c) contour and shape of the mass and d) polygon approximation of the 

mass. 

The Ramer-Douglas-Peucker (RDP) algorithm [113] is employed to achieve polygonal 
approximation of breast mass contours. Consider a discrete curve Cd = {p1, p2,…,pn}, where 
each point pi=(xi,yi) represents a coordinate along the mass boundary in a clockwise sequence. 
These contours are initially extracted from mammographic images through edge-detection 
methods. The RDP algorithm begins by selecting the first and last points of the curve, 
designated as the anchor and floating points, respectively. It then computes the perpendicular 
distance from each intermediate point to the straight line connecting these two endpoints. If the 
maximum distance exceeds a user-defined threshold ε, this point is preserved as it indicates a 
significant deviation from a straight line, and the algorithm recursively processes the sub-
curves on either side of this point. The key formula in the RDP algorithm computes the 
perpendicular distance d from a point p = (x, y) to the line defined by endpoints p1= (x1, y1) and 
pn=(xn, yn): 

𝑑(𝑝, 𝑝1𝑝𝑛̅̅ ̅̅ ̅̅ ) =  |(𝑦𝑛−𝑦1)𝑥 − (𝑥1 − 𝑥𝑛)𝑦 + 𝑥𝑛𝑦1 − 𝑦𝑛𝑥1|√(𝑦𝑛−𝑦1)2 + (𝑥1 − 𝑥𝑛)2                        (3.24) 

The parameter ε is critical: serves as the threshold value against which the computed 
perpendicular distance is compared. In the RDP algorithm, if the distance 𝑑(𝑝, 𝑝1𝑝𝑛̅̅ ̅̅ ̅̅ ) exceeds 
ε, the point is retained; otherwise, it is discarded, a lower ε value results in a polygon that 
closely follows the original contour, preserving finer details such as subtle spiculations, while 
a higher ε value simplifies the curve more aggressively, potentially omitting essential 
diagnostic features. Figure 3.4 illustrates how varying ε values affect the contour representation 
of the same mass. In Algorithm 1, this threshold is referred to as tolerance. The efficiency of 
the RDP algorithm in breast mass analysis lies in its ability to reduce the computational burden 
by simplifying complex contours while retaining the critical geometric characteristics needed 
for accurate shape characterization and classification in CADx systems. 

procedure DouglasPeucker(PointList[1...n], tolerance: real) 

    dmax := 0 



Chapter 3: Image description model for breast cancer recognition 

65 
 

    index := 0 

    for i := 2 to n - 1 do 

        d := PerpendicularDistance(PointList[i], Line(PointList[1], PointList[n])) 

        if d > dmax then 

            index := i 

            dmax := d 

    end for 

    if dmax > tolerance then 

        recResults1 := DouglasPeucker(PointList[1...index], tolerance) 

        recResults2 := DouglasPeucker(PointList[index...n], tolerance) 

        return concatenate(recResults1, recResults2) 

    else 

        return Line(PointList[1], PointList[n]) 

    end if 

end procedure 

Algorithm 3.1: Douglas-Peucker polygon approximation algorithm 

The value of the ε parameter is fundamental for the PATAR descriptor; a false value may 
omit the concave and convex spaces in mass. The main challenge lies in selecting an 
appropriate value for the ε parameter in the polygon approximation process: it must be optimal 
enough to preserve the detailed morphology of spiculated regions without introducing 
distortion, while also effectively simplifying the contour of regular masses into a polygonal 
shape that retains their essential characteristics. In this study, the ε was tested with many values 
around the universal value of 0.01. This universal setting has been found to provide an optimal 
balance, ensuring accurate contour representation while maintaining the morphological 
integrity of the masses. 
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(a) Mass without polygon approximation 

        

       (b) ε=0,005 

 

(c) ε=0,010 

 

(d) ε=0,015 

 

Figure 3.4: Different ε values applied to the same mass contour: (a) the original mass contour 
without approximation; (b) with ε = 0.005; (c) with ε = 0.010; and (d) with ε = 0.015 

5.2 Triangle-area Representation (TAR) signature 

The Triangle Area Representation (TAR) signature is a geometric signal processing 
technique that transforms a one-dimensional data sequence into a feature representation by 
calculating the signed areas of triangles formed by consecutive points. By leveraging 
computational geometry principles, TAR computes triangle areas using three successive signal 
points, creating a unique signature that captures local signal variations, curvature, and inflection 
points. This method offers computational efficiency, scale invariance, and rotation 
independence, making it particularly useful in domains like pattern recognition, biomedical 
signal analysis, fault diagnosis, and texture characterization. The transformation provides a 
compact geometric representation that preserves essential signal characteristics while reducing 
computational complexity, enabling advanced feature extraction and analysis across various 
applications. 

Concavity and convexity, formed by spiculations in masses, are critical features for 
differentiating malignant from benign lesions. In our approach, these features are quantified in 
the second step of the PATAR descriptor, following polygon approximation, using the 
Triangle-Area Representation (TAR). This method measures local curvature along the mass 
contour by computing the area of triangles formed by three consecutive contour points. 
Specifically, for every three pixels Pn−ts=(xn−ts,yn−ts), Pn=(xn,yn), and Pn+ts=(xn+ts,yn+ts); where 
ts indicates the step (with ts=1 meaning that Pn+1 and Pn−1 are immediate neighbors in the 
clockwise and counterclockwise directions, respectively), the TAR function is defined as: 
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𝑇𝐴𝑅 (𝑛, 𝑡𝑠) = 12 |𝑖𝑛−𝑡𝑠 𝑗𝑛−𝑡𝑠 1𝑖𝑛 𝑗𝑛 1𝑖𝑛+𝑡𝑠 𝑗𝑛+𝑡𝑠 1|                   (3.25) 

For every three consecutive pixels of the contour of masses Pn-ts (in-ts, jn-ts), Pn (xn, yn), and 
Pn+ts (xn+ts, yn+ts), where n∈ [1, N] and ts∈ [1, N /2 −1], ts represent the step of the TAR function 
if ts=1 means that Pn+1 is the neighbor of Pn in the clockwise direction and Pn-1 is the neighbor 
in counter-clockwise direction. The triangle is formed by the points Pn-1, Pn, and Pn+1 is given 
by Alajlan et al. [106]. A pseudo-code of the TAR signature is presented in Algorithm 3.2. 

Procedure TAR(PointList[1...n], step: integer) 

for p := 1 to n do 

 TAR[p] := det[(pi-step,pj-step ,1),(pi,pj,1),(pi+1,pj+1,1)] 

if TAR(p) < 0 then p is concave point 

if TAR(p) > 0 then p is convex point 

if TAR = 0 traight line  

return TAR[] 

end procedure  

Algorithm 3.2: TAR signature of contour 

 

Figure 3.5: Three possible outcomes for the TAR signature are observed: the contour is 
convex when TAR is positive, concave when TAR is negative, and forms a straight line when 

TAR equals zero. 

Figure 3.5 demonstrates that the TAR function yields three distinct outcomes negative, 
zero, and positive when the contour is traversed counter-clockwise. These results reflect the 
characteristics of the area defined by three consecutive points, indicating whether the region is 
concave, linear, or convex [114]. Moreover, the TAR signature exhibits remarkable invariance, 
maintaining its consistency under translation, rotation, and scaling transformations. This 
combination of efficiency and invariance makes the triangle-area representation an invaluable 
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tool in our research, as it accurately renders smooth curves while reducing computational 
complexity. 

5.3 Feature extraction 

In computer vision and image processing, a descriptor serves to quantitatively and 
mathematically capture and represent the essential characteristics or features of an image. By 
simulating human perception, descriptors aim to translate visual features and patterns into 
measurable data, mirroring the way humans interpret and comprehend visual content. A feature, 
in this context, refers to quantifiable information extracted from an image to facilitate object 
identification and classification. The PATAR descriptor specifically targets the quantification 
of spiculation in masses located in the ROI image, assessing its degree to categorize the mass 
as either benign or malignant. 

The malignant mass shows a unique topology, defined by lines of varying lengths and 
thicknesses radiating from its margin. As previously mentioned, PATAR is designed to isolate 
both concave and convex regions by first applying a polygon approximation to the mass contour. 
All vertices of the resulting polygon are marked to form triangles, whose areas are computed 
using the Triangle-Area Representation (TAR). The vertices are traversed in a clockwise 
direction, and for each point Pi, the area of the triangle formed by Pi, Pi−1, and Pi+1 is determined. 
The extracted features from the PATAR descriptor include the total number of vertices as well 
as the counts of concave and convex regions. 

− Number of corners: Highly irregular shapes typically exhibit more corners compared 
to smoother, round shapes. Oval and circular masses commonly benign tend to have 
fewer corners than irregular forms. Figures 3.6 and 3.7 illustrate the correlation between 
the number of corners and the likelihood of a mass being round. 

 

        

(a)                                          (b) 

 

Figure 3.6: Number of corners as feature explain clear variance between (a) Benign mass 
with round shape having 13 corners, and (b) malignant mass with irregular shape having 25 

corners. 
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− Negative and Positive TAR: The TAR signature is employed to extract and evaluate 
the convex and concave regions formed by the polygon's vertices. Specifically, the areas 
of the triangles generated at each vertex are divided into two groups: those with negative 
values, summed as TARN, and those with positive values, summed as TARP, as 
indicated in the next equation: 𝑇𝐴𝑅𝑁 =  ∑ 𝑇𝐴𝑅𝑖 < 0𝑛𝑖=1 ,   𝑇𝐴𝑅𝑃 =  ∑ 𝑇𝐴𝑅𝑖 > 0𝑛𝑖=1                       (3.26) 

where n represents the total number of corners. These aggregated values quantify the 
degree of spiculation in the mass high values of both TARN and TARP suggest a highly 
irregular (and likely malignant) mass, while a round mass is characterized by a TARN 
value close to zero. 

 

     

(a)                            (b) 

 

Figure 3.7: Illustration of the distinction between a round mass (a) and a spiculated mass (b) 
based on the values of TARN (green triangles) and TARP (black triangles). 

In addition to TARN, TARP, and the number of corners, features such as mass area and 
contour length are also integrated into the classification process. These extracted features are 
combined into the PATAR vector: [TARN, TARP, NBP, MA, CL]. 

5.4. Mass classification 

The features extracted during the description phase serve as inputs for the classification 
step, where each mass is assigned to benign or malignant category. Given the high stakes in 
breast cancer diagnosis, where every decision allows significant consequences and only a 
biopsy can provide definitive confirmation, we opted for a fuzzy classifier to begin with. Fuzzy 
classifiers, such as Fuzzy C-means (FCM), assign membership probabilities to each class, 
offering a probabilistic approach that reflects the inherent uncertainty in medical imaging. In 
addition, we incorporate Support Vector Machine (SVM) and Random Forest (RF) classifiers 
to improve the evaluation of the PATAR descriptor further. SVM is chosen for its strong 
performance in high-dimensional spaces and its ability to define clear decision boundaries, 
even when the dataset is limited, thereby enhancing classification precision. Meanwhile, RF, 
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an ensemble learning method, is adept at handling heterogeneous data and mitigating 
overfitting, which improves the model's generalization capabilities. By utilizing these three 
classifiers, FCM, SVM, and RF, we ensure a robust and comprehensive evaluation of the 
PATAR descriptor, leveraging both probabilistic and discriminative approaches tailored to the 
data's complexity and the critical nature of breast cancer diagnosis. 

5.4.1 Fuzzy Clustering 

Fuzzy C-means (FCM) is a soft clustering algorithm that assigns each data point a degree 
of membership across several clusters rather than forcing a hard assignment to a single cluster. 
In other words, each data point is associated with a probability score indicating its likelihood 
of belonging to each cluster [115]. Although fuzzy classification is not commonly used in 
CADx systems, it has shown promise in breast cancer diagnosis because it reflects the 
uncertainty in the classification of masses where only a biopsy can provide a definitive 
diagnosis, and radiologists often rely on probabilities when evaluating malignancy. 

Fuzzy C-means (FCM) is typically an unsupervised clustering algorithm, but it can be 
adapted for supervised classification by incorporating labeled training data. In this approach, 
class centroids are first computed from the labeled dataset, which provides a reference for each 
class. New samples are then assigned membership probabilities based on their distances to 
these centroids. This supervised adaptation allows FCM to utilize prior knowledge to improve 
classification accuracy. As a result, each sample receives a probability score indicating its 
likelihood of belonging to each class. Thus, FCM can effectively function as a fuzzy classifier 
in a supervised setting. 

The membership probability of a mass is determined by the distance between each feature 
vector (representing an image) and the centroid of the respective class (malignant or benign). 
Based on the ground truth training dataset, N masses are divided into two classes, malignant 
and benign Ja and Jb, respectively, and the matrix membership Uia, Uib ∈ {0,1} i=1, …, N is 
also created. For each class, the centroid is calculated as follows [115]: 

𝐶𝑎,𝑏 = ∑ 𝑈𝑖(𝑎,𝑏)𝑚 𝑥𝑖𝑁𝑖=1∑ 𝑈𝑖 (𝑎,𝑏)𝑚𝑁𝑖=1   (3.27) 

In the classification stage, the distance from each mass’s feature vector to the centroids of 
the benign and malignant classes is computed. These distances are then used to estimate the 
membership of each mass to both classes. The resulting membership values, Ui(a,b), indicate the 
probability of a mass being either malignant or benign. Ui(a,b) is calculated as follows [115]: 

Ui(a,b) =
1

∑ (‖𝑥𝑖−𝑐𝑎,𝑏‖‖𝑥𝑖−𝑐𝑎,𝑏‖) 2𝑚−1𝑐𝑘=1
  

(3.28) 
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5.4.2 Support Vector Machine 

A Support Vector Machine (SVM) is a supervised machine learning algorithm designed 
for classification and regression tasks. Its primary goal is to identify the optimal hyperplane a 
decision boundary in a high-dimensional space that maximizes the margin between distinct 
classes. The margin is defined as the distance between the hyperplane and the closest data 
points (called support vectors) from each class. These support vectors are critical, as they 
determine the hyperplane’s position and orientation. For non-linearly separable data, SVM 
employs the kernel trick, which maps input features into a higher-dimensional space (e.g., using 
linear, polynomial, or radial basis function kernels) to enable effective separation. By focusing 
on support vectors and margin maximization, SVM ensures robust generalization and 
minimizes overfitting. 

Key parameters of SVM include the regularization parameter (C), which controls the trade-
off between maximizing the margin and minimizing classification error, and the kernel function, 
which defines how the data is transformed into a higher-dimensional space. Common kernels 
include the linear, polynomial, and radial basis function (RBF) kernels, each with its own set 
of parameters (e.g., gamma for the RBF kernel, degree for the polynomial kernel). Additionally, 
parameters such as tolerance for stopping criteria and epsilon in regression tasks influence the 
optimization process. Together, these parameters allow SVMs to be finely tuned to balance 
model complexity, training accuracy, and computational efficiency, making them a versatile 
tool in various application domains, including medical diagnostics and image classification. 

5.4.3 Random Forest Classifier 

Random Forest is an ensemble learning method that builds multiple decision trees during 
training and merges their outputs to generate a robust classification. By aggregating the 
predictions of many individual trees each constructed using a random subset of the data and 
features this approach reduces overfitting and improves generalization. It is well-suited for 
handling complex, high-dimensional data and can be used for both classification and regression 
tasks, making it a versatile choice in various domains, including medical diagnostics. 

Key parameters of the Random Forest classifier include the number of trees (n_estimators), 
which determines how many decision trees are built; the maximum depth (max_depth) of each 
tree, which limits the complexity of the model; and the minimum number of samples required 
for a split, among other settings. In our approach, the classifier’s hyperparameters were tuned 
via grid search to achieve optimal performance on our dataset, ensuring a balance between 
variance reduction and maintaining high classification accuracy for breast mass analysis. 

5.5 Experiments and results 

The adopted strategy in experiments is separated into two phases: learning and testing. In 
the training part, features are extracted from the ROIs of the CBIS-DDSM dataset. ROIs are a 
portion of the images containing the abnormality; these are delimitated and annotated by 
mammographs and radiologists in the CBIS-DDSM dataset. CBIS-DDSM is an improved and 
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standardized version of DDSM designed for evaluating CAD systems [108]. Using the ground 
truth of the CBIS-DDSM dataset, we evaluate the PATAR descriptor. Figure 3.8 shows the 
outline of our CADx system based on PATAR. 

 

Figure 3.8: The proposed approach builds a feature model using training data, applies SVM, 
FCM, and RF classifiers to classify malignant vs. benign masses, and evaluates PATAR’s 

diagnostic performance during testing. 

Our approach for automatic diagnosis was put to the test through a series of experiments. 
These experiments evaluated its performance by measuring accuracy, sensitivity, specificity, 
and the F1-score. Python software (version 3.7) with OpenCV library was used on a PC with 
Intel i5 (2.00 Ghz) with 8 GB of RAM and a Windows 10 operating system. CBIS-DDSM was 
used to assess the model's performance [116]. The dataset is separated into two subsets, one for 
the training containing 1318 ROIs (637 Malignant and 681 benign masses) and another for the 
test and validation step composed of 378 ROIs (147 Malignant and 231 benign masses). 

5.5.1 CBIS-DDSM dataset 

The CBIS-DDSM (Curated Breast Imaging Subset of the Digital Database for Screening 
Mammography) dataset is a widely used, publicly available resource in breast imaging and 
computer-aided diagnosis. It is a curated version of the original DDSM dataset, offering high-
resolution full-field digital mammography images in DICOM format along with 
comprehensive annotations that include lesion boundaries and region-of-interest (ROI) 
markings. These ROI annotations, typically delineated by expert radiologists, are essential for 
accurately localizing potential abnormalities such as masses and calcifications. The dataset 
includes cases with both benign and malignant lesions, captured in standard views like 
mediolateral oblique (MLO) and craniocaudal (CC) [116]. 
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Researchers value the CBIS-DDSM dataset for its detailed ROI annotations and 
standardized segmentations, which facilitate the precise extraction of key features necessary 
for the development and benchmarking of advanced machine learning algorithms and CADx 
systems. The use of DICOM format ensures that the images maintain critical metadata and high 
image quality, which is crucial for both diagnostic analysis and reproducibility of research. 
Despite challenges related to image variability and noise, the comprehensive nature of the 
dataset including its DICOM images and ROI information makes it an invaluable tool for 
advancing breast cancer research and enhancing the reliability of diagnostic models. Table 3.2 
shows the number of cases, abnormalities, and images in each set, training, and testing. Masses 
are located and approved by an experiment radiologist [165]. 

 Benign cases Malignant cases  

 Cases Abnormalities Images Cases Abnormalities Images Total Images 

Training 355 387 681 336 361 637 1318 

Testing 117 135 231 83 87 147 378 

Table 3.2: Number of Cases, Abnormalities and Images in the Training and Test Sets, each 
case can have one or more abnormalities and more images. 

Computer-aided diagnosis systems (CADx) need only analyze regions of interest (ROIs), 
not full mammogram images. ROIs feature abnormalities within the cropped sections of the 
image, which outline the bounding rectangle of the abnormality relative to its ROI see Figure 
3.9. Our descriptor performed calculations directly on masses segmented and delineated the 
mass from the enveloping tissue. Ground truth provided by CBIS-DDSM is founded on the BI-
RADS category. 
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(a)                                     (b) 

Figure 3.9: Four cropped images of mass from CBIS-DDSM dataset, a) mammographic 
images without segmentation, b) shows segmented mass (Mask image). 

5.5.2 Experimentation process 

Below is a detailed report outlining the machine learning pipeline that integrates 
preprocessing, feature extraction using the PATAR descriptor, and subsequent classification 
employing FCM, SVM, and Random Forest (RF). 

5.5.2.1 Preprocessing 

The initial stage of the pipeline involves preprocessing the digital mammography images. 
This step is crucial for enhancing image quality and preparing the data for robust feature 
extraction. Preprocessing typically includes: 

− Conversion and Thresholding: The grayscale images are converted into binary 
representations by applying a threshold. This operation segregates the mass from the 
background based on intensity values, where pixels above the threshold are set to 255 
and those below to 0. 

− Morphological Operations: To refine the binary images, morphological erosion and 
dilation are applied. Erosion helps remove small artifacts and noise, while dilation 
restores the original shape of the masses, smoothing their contours. 

− Contour Extraction: The refined binary images are then used to extract the contours 
of the masses. The contours, retrieved serve as the basis for subsequent polygon 
approximation. 

5.5.2.2 Features extraction (PATAR Descriptor) 
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Following preprocessing, the PATAR descriptor is employed to capture the essential shape 
and spiculation characteristics of the mass. This descriptor involves two major steps: 

− Polygon Approximation: Using the Ramer-Douglas-Peucker (RDP) algorithm, the 
complex mass contour is approximated by a polygon. This approximation reduces the 
number of contour points while preserving critical geometrical features such as concave 
and convex regions. The polygonal representation not only facilitates efficient 
computation but also maintains invariance to translation, scaling, and rotation. Optimal 
ε = 0.01 is used. 

− Triangle-Area Representation (TAR): Once the mass contour is approximated, the 
TAR technique is applied. The resulting TAR values are categorized into negative 
(concave), positive (convex), and zero (flat segments), providing a signature that 
quantifies the degree of spiculation. Additionally, features such as the number of 
corners, mass area, and contour length are extracted and compiled into a feature vector: 
[TARN, TARP, NBP, MA, CL]. 

5.5.2.3 Classification 

In the proposed experimentation pipeline all data passed by preprocessing and features 
extraction steps, but in the classification, data is separated into learning data and test data. In 
the learning phase, the feature vector is used to train multiple classifiers Fuzzy C-Means (FCM), 
Support Vector Machine (SVM) with an RBF kernel (with C set to 1.5, determined through 
grid search), and Random Forest (best parameters are also determined through grid search). 
The training process involves using a labeled dataset where each mass is classified as benign 
or malignant, enabling the models to learn the discriminative patterns in the feature space. Once 
the classifiers are trained, the testing phase begins, where new, unseen mammographic images 
are preprocessed and their feature vectors are extracted using the PATAR descriptor. These 
vectors are then fed into the trained classifiers to predict the class membership of each mass, 
providing probability scores that reflect the likelihood of malignancy or benignity. This dual-
stage approach comprising both learning and testing ensures robust performance and reliable 
classification in breast cancer diagnosis. 

5.5.3 Results and discussion 

To evaluate the efficacy of our proposed approach, we used a total of 1,545 mammograms. 
Out of these, 1,322 images (685 benign and 637 malignant) were allocated for training, while 
243 images (181 benign and 62 malignant) were reserved for testing. The diagnostic 
performance of our method is evaluated based on computing time, sensitivity, specificity, and 
accuracy. Accuracy indicates the proportion of test cases that the classifier correctly identifies, 
sensitivity (SN) reflects the true positive rate, and specificity (SP) denotes the true negative 
rate. These performance metrics are formally defined as follows: 
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𝑆𝑁 = 𝑇𝑃𝑇𝑃+𝐹𝑁  (3.29) 

𝑆𝑃 = 𝑇𝑁𝑇𝑁+𝐹𝑃  (3.30) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁  (3.31) 

where, TP is the true positive, FP is the false positive, TN is the true negative, and FN is the 
false negative. 

In medical image context accuracy alone can be misleading, especially in imbalanced 
datasets common in medical diagnostics, because it may mask the classifier's inability to 
correctly identify the minority class. For instance, if benign cases dominate, a classifier might 
achieve high accuracy by simply predicting most cases as benign, while failing to detect 
malignant cases. This is why sensitivity and specificity are critical: sensitivity (true positive 
rate) measures how effectively the model identifies actual malignant cases, ensuring that few 
cancers are missed, and specificity (true negative rate) assesses how well benign cases are 
correctly classified, reducing false positives. Together, these metrics provide a more nuanced 
and clinically relevant evaluation of diagnostic performance than accuracy alone. 

The evaluation metrics obtained after experimentations demonstrate that integrating polygon 
approximation with the TAR signature significantly enhances the automatic classification of 
mammograms for breast cancer diagnosis. Polygon approximation plays a crucial role in our 
descriptor by simplifying the complex shapes and contours of breast masses especially 
spiculated ones into a reduced set of vertices without sacrificing key characteristics. This 
simplification allows the Triangle-Area Representation (TAR) to more effectively quantify 
spiculations. Without polygon approximation, TAR computations would be performed on all 
minor contour variations, leading to an inaccurate description and poor estimation of the 
spiculations. 

In Table 3.3, the results of the comparison between our approach and classification without 
polygon approximation using TAR signature. The accuracy obtained with polygon 
approximation and Fuzzy C-means classifier is 96.76%, 97,94% with Random Forest, and 
94,65% with Support vector machines. Without polygon approximation, the classification 
accuracy decreases significantly to 82.80% [176,177]. The amelioration gained in terms of 
accuracy, precision, sensitivity, and specificity with polygon approximation confirms with 
exactitude our hypotheses that spiculation in masses will be well raised, represented, extracted, 
and evaluated with our contribution using PATAR descriptor. Compared results are presented 
in Figure 3.10. 
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Figure 3.10: Comparing the best results of PATAR, with and without polygon 
approximation. 

Figure 3.11 shows the ROC plots that illustrate the classification performance of the three 
classifiers, RF, FCM, and SVM, using the DDSM dataset. The area under the ROC curve (AUC) 
serves as an aggregate measure of performance across different classification thresholds, with 
values ranging from 0 to 1, where 1 represents perfect classification. The AUC for the SVM 
classifier was 95.48, while FCM achieved an AUC of 96.23. Remarkably, the Random Forest 
classifier outperformed the others, obtaining an AUC of 97.13 and an accuracy of 97.94. 

In addition to ROC curve, the confusion matrix illustrated in Figure 3.11, provides valuable 
insight into the classification performance of the models beyond standard metrics such as 
accuracy or AUC. In our results, PATAR correctly classified a high number of benign (true 
negatives), 180 cases with RF and SVM and 178 cases with FCM, and malignant (true positives) 
cases, with only a few misclassifications. The low number of false negatives (malignant tumors 
incorrectly predicted as benign) is particularly significant in the context of breast cancer, as 
such errors could delay critical treatment. Similarly, the minimal false positive rate suggests 
the model avoids over-diagnosing benign cases as malignant, which could otherwise lead to 
unnecessary stress or interventions. These observations are further supported by the high 
sensitivity and specificity values, indicating the model’s balanced ability to detect both classes 
accurately. Overall, the confusion matrix confirms that the Random Forest classifier performs 
reliably in distinguishing between benign and malignant tumors, making it a promising tool for 
aiding clinical decision-making. 
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Figure 3.11: ROC curve and confusion matrix of RF, SVM and FCM using CBIS-DDSM. 
Random Forest classifier ensures the best results in terms of accuracy and AUC. 

 Accuracy 

(%) 

Precision 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

F1-Score 

(%) 

Execution 

Time 

With Polygon 
Approximation 

RF 

FCM 

SVM 

 

97,94 

96,76 

94,65 

 

98,31 

95.08 

98,04 

 

93,55 

92.06 

80,65 

 

99,45 

98.37 

99,45 

 

95,87 

93.55 

88,50 

 

26’ 35’’ 

24’ 17’’ 

25’ 51’’ 

Without Polygon 
Approximation 

82.80 76.29 77.32 83.57 74.81 5’ 23’’ 

Table 3.3: Comparison of results obtained with and without polygon approximation. 

The effect of the parameter ε on the classification performance was thoroughly investigated 
in Table 3.3, and the results demonstrate a clear sensitivity of the model to this parameter. The 
parameter ε in this tests series represents the simplification threshold in the Ramer–Douglas–
Peucker (RDP) algorithm, which is applied for polygonal approximation of mass boundaries. 
Its impact on classification performance is highly significant. As ε increases from 0.000 to 
0.010, the performance metrics show a steady improvement, suggesting that moderate 
simplification helps reduce noise in contour and highlights more relevant structural features. 
At ε = 0.010, the model achieves its highest performance, with an accuracy of 97.94%, 
precision of 98.31%, sensitivity of 93.35%, specificity of 99.45%, and F1-score of 95.87%. 
These values confirm that optimal boundary simplification through polygon approximation 
enhances the model's ability to differentiate between benign and malignant cases. However, 
further increasing ε beyond this optimal point leads to a steep decline in all metrics as showen 
in Figure 3.12. This suggests that excessive simplification results in the loss of critical contour 
details, which negatively affects the model's discriminatory capacity. Therefore, ε must be 
carefully selected to maintain the balance between eliminating noise and preserving meaningful 
geometric information. This emphasizes the crucial role of the RDP parameter in preprocessing 
steps for breast mass classification. 

 

Accuracy Precision Sensitivity Specificity F1-Score 

ε=000 82,8 76,29 77,32 83,57 74,81 

ε=0,001 83,14 76,85 79,995 80,42 80,21 

ε=0,003 85,21 76,99 81,1 84,52 82,81 

ε=0,005 85,75 77,56 81,66 86,24 83,95 
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ε=0,007 87,9 79,68 83,79 88,12 85,96 

ε=0,009 89,8 81,34 87,57 91,09 89,33 

ε=0,010 97,94 98,31 93,35 99,45 95,87 

ε=0,011 76,95 76,66 77,59 84,59 83,67 

ε=0,013 72,83 71,17 70,17 79,33 79,28 

ε=0,015 68,69 69,29 68,16 73,78 71,27 

ε=0,017 65,18 65,80 63,47 66,48 67,23 

ε=0,019 60,46 59,35 57,22 56,83 55,38 

Table 3.4: PATAR performance using Random Forest classifier with different values of 
Epsilon. 

 

Figure 3.12: Evolution of PATAR performance cross different values of Epsilon, all metrics 
decreased when epsilon exceeds 0.01 the universal value.  

5.5.3.1 Comparison with state-of-the-art 

In this section, PATAR descriptor is compared with some of most powerful feature-based 
methods in the stat-of-the-art. Table 3.4 presents detailed description of methods. The highest 
accuracy was achieved by the PATAR with RF (Random Forest) classifier, reaching 97.94% 
on the CBIS-DDSM dataset. Other top-performing methods include PATAR-FCM (96.76%) 
and Xie et al. (96.02%), demonstrating the effectiveness of feature extraction and classification 
strategies. Methods such as de Brito Silva et al [109]. (93.70%) and Pezeshki et al. (93.22%) 
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also performed well, while Beheshti et al [101]. (87.81%) had the lowest accuracy, suggesting 
that fractal-based lesion discrimination may be less effective than shape and texture-based 
methods. 

Study Method Description 

De Brito Silva et 

al. [109] 
Proposed a descriptor utilizing geometric and topological features 
derived from two spatial feature maps: the distance map and the surface 
map. These maps capture mass geometry and topology while 
preserving spatial information. Shape descriptors based on distance 
histograms help compute distances, areas, and angles. 

Pezeshki et al. 

[108] 
Developed a method to extract spiculated pixels from tumors with 
uniform intensity. Pixel similarity is evaluated by measuring 
dissimilarities between a central pixel and its neighbors across multiple 
symmetric orientations. Small differences indicate spiculations, which 
are then extracted by summing dissimilarity values across all 
directions. 

Vijayarajeswari 

et al. [107] 
Utilized the Hough transform to identify and isolate specific shapes in 
mammographic images. This method is effective for detecting various 
shapes and straight lines, demonstrating resilience against noise, gaps, 
and occlusions. An accumulator function is computed for each edge 
point, facilitating precise feature extraction. 

Souza et al. [102] Introduced a method leveraging shape descriptors (D1dist, D2dist, and 
D3dist) along with convolution-based analysis. By selecting random 
surface pixels and segmenting the object along the z-axis, statistical 
shape features such as mean and standard deviation are extracted, 
enhancing mass classification. 

Beheshti et al. 

[101] 
Applied a fractal-based approach to distinguish lesions from 
background tissues. This technique minimizes mean square error while 
extracting asymmetric lesion information. The method focuses on 
defining new fractal features for malignancy assessment based on the 
region of interest (ROI). 

Table 3.5: Comparison of Methods for Mammographic Mass Characterization. 

In terms of sensitivity and specificity, different methods exhibit varying levels of 
performance. Beheshti et al. (97.37% sensitivity, 79.55% specificity) focuses on detecting 
malignant tumors effectively but at the cost of higher false positives. Conversely, PATAR – 
RF (93.55% sensitivity, 99.45% specificity) and PATAR – FCM (92.06% sensitivity, 98.37% 
specificity) provide a balanced approach with high specificity, reducing false positives while 
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maintaining reliable detection of malignant cases. Pezeshki et al. (92.06% sensitivity, 94.54% 
specificity) also achieves a strong balance, making it a competitive method. 

The choice of classifier plays a critical role in the effectiveness of mammographic mass 
classification. Support Vector Machine (SVM) is the most commonly used classifier, applied 
in 7 out of 10 methods, proving its reliability for mass detection. However, Random Forest (RF) 
in PATAR – RF achieved the highest accuracy, indicating that ensemble methods may provide 
better performance in feature learning. LDA (Linear Discriminant Analysis) and Fuzzy logic 
classifiers, used in Rabidas et al. and Goudarzi et al., respectively, showed moderate 
performance, suggesting that traditional statistical approaches may be less effective than 
modern machine learning models. 

METHOD Nb. 

images 

Database Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Classifier Year 

PATAR – FCM [168] 

PATAR – SVM [168] 

PATAR – RF [168] 

1545 

1545 

1545 

CBIS-DDSM 

CBIS-DDSM 

CBIS-DDSM 

96.76 

94.65 

97.94 

92.06 

80.65 

93.55 

98.37 

99.45 

99.45 

FCM 

SVM 

RF 

 

2024 

Arora et al. [110] 

de Brito Silva et al. [109] 

Kaur et al [118] 

- 

794 

322 

CBIS-DDSM 

DDSM 

MIAS 

88 

93.70 

94.8 

- 

96.29 

93 

- 

91.05 

90 

SVM 

High Boost 

KNN 

2020 

2020 

2019 

Pezeshki et al. [108] 200 DDSM 93.22 92.06 94.54 SVM 2019 

Vijayarajeswari et al. 
[107] 

Rabidas et al [117] 

322 

 558 

MIAS 

MIAS/DDSM  

94 

94.57 

- 

- 

- 

- 

SVM 

LDA 

2019 

2018 

Goudarzi et al. [105] - mini-MIAS 89.37 88.23 84.23 Fuzzy 2018 

Souza et al. [102] 620 DDSM 92.15 91.40 92.90 SVM 2017 

Xie et al. [100] 300 DDSM 96.02 94.88 97.16 SVM 2016 

Beheshti et al. [101] 
 

168 DDSM 87.81 97.37 79.55 SVM 2016 

Table 3.6: Performance comparison between proposed approach and some previous works. 

The dataset used significantly impacts the model's performance, with larger datasets 
generally yielding better results. CBIS-DDSM and DDSM are the most frequently used 
databases, contributing to high accuracy scores due to their large number of labeled 
mammographic images. Studies using smaller datasets, such as MIAS or mini-MIAS, tend to 
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have slightly lower accuracy, as seen in Goudarzi et al. (89.37%), indicating that a limited 
number of training samples may restrict the model's ability to generalize. 

Overall, PATAR descriptor outperforms other methods in accuracy, specificity, and 
sensitivity, demonstrating the effectiveness of advanced classification techniques. Deep 
feature-based classifiers, such as RF and FCM, provide a better result compared to traditional 
classifiers like SVM or KNN. Larger datasets, particularly CBIS-DDSM, contribute to 
improved model performance, whereas smaller datasets like MIAS show moderate results. 
These observations suggest that future research should focus on hybrid models combining 
different feature extraction methods and deep learning techniques to further enhance 
classification accuracy. 

Table 3.6 presents a comparative results analysis between our approach and several 
existing methods for mammographic classification, clearly highlighting the performance 
advantages of our method. 

6.  Conclusion 

In this chapter, we explored various methods for describing breast masses in 
mammographic images, highlighting their significance in the accurate diagnosis of breast 
cancer. Also, we introduced a novel descriptor that increases the characterization of mass 
shapes, aiming to improve classification performance. This proposed descriptor addresses 
limitations observed in existing methods by providing a more detailed and discriminative 
analysis of mass features. The proposed approach starts with a polygon approximation 
(geometric transformation) on breast mass, then, Triangle-area representation is calculated to 
evaluate the degree of spiculation of the mass providing to the classifiers robust features and 
getting high evaluation of the descriptor. The subsequent sections presented experimental 
results demonstrating the effectiveness of this new descriptor in distinguishing between benign 
and malignant breast masses. To improve PATAR descriptor, exploring more datasets is 
recommended. Also, PATAR descriptor can be used for many abnormalities like architectural 
distortions or microcalcifications. 
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Chapter 4: Automatic diagnosis of 

microcalcifications using Deep Learning 

1. Introduction 

Deep learning has emerged as a transformative force in medical imaging, enabling 
automated and highly accurate analysis of complex medical images [119]. By leveraging 
multi-layered neural networks, deep learning models can extract intricate patterns from 
imaging data, often surpassing human performance in specific diagnostic tasks. These 
techniques are particularly valuable in radiology, pathology, and other imaging-intensive 
medical fields, where they assist in detecting abnormalities, quantifying disease 
progression, and improving diagnostic consistency. Unlike traditional machine learning 
approaches that rely on manual engineering features, deep learning models learn directly 
from pixel data, allowing them to capture subtle and complex features that may be 
imperceptible to human observers or conventional algorithms [120].   

One of the most significant applications of deep learning in medical imaging is disease 
detection and diagnosis. For example, convolutional neural networks (CNNs) have 
demonstrated remarkable success in identifying tumors in MRI, mammography, and 
Computed Tomography scans, classifying diabetic retinopathy from retinal images, and 
detecting pneumonia in chest X-rays. These models can process vast amounts of imaging 
data rapidly, serving as valuable decision-support tools for clinicians. Additionally, deep 
learning excels in image classification tasks, such as delineating organ boundaries for 
radiation therapy planning or isolating lesions for precise measurement such as breast 
masses. Many models like ResNet, DenseNet or EffcientNet, with encoder-decoder 
structure, skip connections or bottleneck block, has become a gold standard for medical 
image segmentation and classification due to its ability to preserve spatial details while 
learning hierarchical features [121]. 

Ensemble deep learning refers to the technique of combining multiple deep learning 
models to improve overall performance, robustness, and generalization compared to using 
a single model. Stacking or stacked generalization is a powerful ensemble learning 
technique that integrates diverse models by training a meta-learner, also known as a meta-
model to combine their outputs. Our first contribution in this chapter consists in designing 
of optimal meta-learner using multilayer perceptron to integrate predictions from three 
different models. The proposed meta-learner plays a crucial role in refining predictions by 
learning how to weight and integrate the decisions from the base models.  

Another ensemble learning technique is Boosting achieved with algorithms like 
Adaboost and Gradient Boost. The main idea behind boosting is to learn different models 
sequentially, and adjust weight of samples dataset after each model to make the next model 
focusing more on misclassified samples. While boosting methods like AdaBoost and 
Gradient Boosting are commonly employed in ensemble learning, the automatic diagnosis 
of microcalcifications in medical imaging demands new, specialized algorithms to address 
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the problem of high false positive and false negative rates. Our second contribution in this 
chapter includes a new algorithm named Cost-Sensitive Boosting with Error Weighted 
Adjustments (CSB-EWA). The key innovation in CSB-EWA is the penalties λFP and λFN 
used in weight adjustments. CSB-EWA define weights using false positive and false negative 
rates, to push models increasing sensitivity and specificity. 

This chapter is structured into three main sections. Section 2, provides a 
comprehensive overview of deep learning, covering fundamental concepts, various 
architectures, and the challenges encountered in their application, particularly in medical 
image analysis and microcalcifications. Section 3, presents ensemble strategies in deep 
learning with most techniques used. Section 4, presents our two proposed approaches for 
microcalcification classification based on two strategies of ensemble learning, stacking and 
boosting. Experiments and results will be presented using CBIS-DDSM. 

2. Deep Learning 

Deep learning (DL) has fundamentally transformed medical imaging, driving 
advancements in diagnostic accuracy, workflow efficiency, and personalized treatment. By 
leveraging large datasets and powerful neural networks, DL automates tasks that were 
traditionally manual, time-consuming, and prone to human error. Below, we explore, 
concepts, architecture of deep learning and its key applications, persistent challenges in 
automatic diagnosis of breast cancer abnormalities, and future innovations. 

2.1. A brief history 

The origins of deep learning date back to eight decades when a computational model 
inspired by the neural networks of the human brain was developed. Since then, artificial 
intelligence has undergone continuous advancement, interrupted only by two major pauses 
in its progress. These interruptions coincided with the well-known periods of stagnation in 
artificial intelligence research, commonly referred to as the AI winters  [122].  

2.1.1 The Birth of AI (1940s – 1950s) 

The foundations of artificial intelligence were laid in 1943 when Warren McCulloch 
and Walter Pitts introduced the first mathematical model of artificial neurons, known as 
threshold logic. This model attempted to simulate the way human brain neurons process 
information. In 1950, Alan Turing proposed the Turing Test, a benchmark for evaluating a 
machine’s ability to exhibit intelligent behavior. A year later, Marvin Minsky and Dean 
Edmonds built SNARC, the first artificial neural network-based computer. The formal 
recognition of AI as a distinct field came in 1956 when John McCarthy coined the term 
“Artificial Intelligence” at the historic Dartmouth Conference, marking the beginning of 
AI research [122]. 

2.1.2 Early AI and the First AI Winter (1957 – 1970s) 

In 1957, Frank Rosenblatt developed the Perceptron, the first neural network capable 
of learning, sparking excitement about AI’s potential. This optimism led to the 
development of early natural language processing systems like ELIZA in 1966, a chatbot 
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designed to mimic human conversations. However, despite initial progress, AI research 
faced limitations due to the lack of computational power and unrealistic expectations. By 
1973, funding and interest in AI decreased, leading to the First AI Winter, a period of 
reduced progress and investment that lasted until the 1980s.  

2.1.2 Neural Networks & The Second AI Winter (1980s – 1990s) 

AI research experienced a revival in the 1980s with the rise of expert systems, rule-
based programs used in industries for decision-making. In 1986, Geoffrey Hinton, David 
Rumelhart, and Ronald Williams introduced backpropagation, a breakthrough algorithm 
that significantly improved the training of neural networks. Nevertheless, in spite of these 
advancements, AI systems remained expensive and computationally demanding. As a 
result, the 1990s saw another decline in AI research, leading to the Second AI Winter, as 
industries and governments lost confidence in AI’s practicality.  

2.1.3 Rise of Deep Learning (2000s – 2010s) 

AI gained renewed momentum in the 2000s with the emergence of deep learning, a 
term popularized by Geoffrey Hinton in 2006. This technique, which used multi-layered 
neural networks, allowed AI to achieve unprecedented levels of accuracy in tasks such as 
image and speech recognition. In 2011, IBM’s Watson defeated human champions in the 
quiz show Jeopardy!, demonstrating AI’s growing capabilities. The breakthrough moment 
came in 2012 when AlexNet, a deep convolutional neural network (CNN), won the 
ImageNet challenge, revolutionizing computer vision. AI further advanced in 2014 when 
Google DeepMind’s AlphaGo defeated professional Go players, showcasing the power of 
reinforcement learning. 

2.1.4 Present: AI Revolution (2020s) 

The 2020s have been marked by rapid AI advancements, particularly in natural 
language processing (NLP) and generative AI. In 2023, OpenAI released GPT-4, 
significantly improving AI’s ability to generate human-like text and assist in various 
applications. AI is now deeply integrated into multiple industries, including healthcare, 
autonomous systems, finance, and creative fields. Ongoing research focuses on enhancing 
AI’s efficiency, interpretability, and ethical considerations, ensuring responsible and 
beneficial development for the future. 

2.2 Definitions 

Today, artificial intelligence (AI), machine learning (ML), and deep learning (DL) are 
widely used terms that are often mistakenly interchanged to describe intelligent systems or 
software capable of mimicking human-like decision-making. However, as shown in Figure 
4.1 these concepts, while closely related, have distinct meanings and evolutionary paths  
[123]. 
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Figure 4.1: Relation between Artificial Intelligence, Machine Learning and Deep 

Learning. 

2.2.1 Artificial Intelligence (AI) 

AI is a broad and interdisciplinary field focused on enabling machines or systems to 
perceive their environment, reason through information, make decisions, and adapt their 
behavior in a way that mimics human intelligence. This includes the ability to process data, 
recognize patterns, learn from experience, and improve performance over time without 
explicit programming. The ultimate goal of AI is to create intelligent systems capable of 
autonomous decision-making, problem-solving, and human-like interaction across 
different domains. 

2.2.2 Machine Learning (ML) 

Machine Learning (ML) is a specialized branch and subset of artificial intelligence 
that empowers machines to extract knowledge from data and learn from it independently. 
Instead of being explicitly programmed for every task, ML systems use algorithms to detect 
patterns, make predictions, and continuously improve their performance based on the data 
they encounter.  

At its fundamental, ML includes feeding large amounts of data into algorithms, which 
then analyze and identify underlying structures or trends. This process allows the system 
to not only understand the data at a superficial level but also to adapt its behavior over 
time. As a result, these systems become more accurate and efficient in performing tasks 
such as image recognition, speech processing, and decision-making [123]. 

2.2.3 Le Deep Learning (DL) 

DL is a specialized branch of artificial intelligence derived from machine learning, 
wherein a system is capable of autonomous learning rather than only executing pre-
programmed codes. It leverages artificial neural networks, which are computational models 
inspired by the structure and function of the human brain [119]. These networks consist of 
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numerous layers often dozens or even hundreds of interconnected neurons, with each 
successive layer processing and interpreting the outputs from the previous one. For 
instance, a deep learning system might first acquire the ability to recognize individual 
characters before advancing to the recognition of words in a text, or it may initially detect 
the presence of a face in an image prior to identifying the individual depicted. 

2.3 Neuronal networks concepts 

Deep learning models use artificial neural networks with an input layer (receives raw 
data), hidden layers (process data via weighted computations and activation functions), 
and an output layer (produces predictions). Each neuron applies weights, biases, and 
nonlinear activations (e.g., ReLU) to transform data hierarchically. The network learns by 
adjusting weights via backpropagation to minimize prediction errors. This enables 
automatic feature extraction from complex data like images or text. The result is a system 
that can classify, predict, or generate outputs without explicit programming [124]. 

2.3.1 Architecture Layers 

The architecture of deep learning models is built around interconnected layers that 
transform input data into meaningful outputs. As shown in Figure 4.2 there are 3 types of 
layers, input, hidden layers, and output layer. 

− Input Layer: serves as the entry point for data into the neural network. It is 
responsible for receiving the raw input or features that the model will process and 
analyze. Each neuron within this layer corresponds to a specific feature of the 
input data, such as pixel values in an image, words in a text, or numerical attributes 
in a dataset. The number of neurons in the input layer depends on the complexity 
and dimensionality of the input data. This layer does not perform any computations 
or transformations; instead, it simply passes the data forward to the next layer, 
ensuring that the neural network can begin learning from the provided information 
[123,124]. 

 

Figure 4.2: Architecture of Deep neuronal network, composed of input layer, multiple 
hidden layers and output layer. 

https://www.analyticsvidhya.com/blog/2020/02/cnn-vs-rnn-vs-mlp-analyzing-3-types-of-neural-networks-in-deep-learning/#h-architecture-layers
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− Hidden Layers: these layers are responsible for processing and transforming the 
input data through a series of computations. Each neuron in a hidden layer receives 
inputs from the neurons in the preceding layer, applies a set of weighted 
connections along with a bias, and then processes the result using a mathematical 
function known as an activation function (e.g., ReLU, Sigmoid, or Tanh). This 
activation function introduces non-linearity, allowing the network to learn 
complex patterns and relationships in the data. The processed output is then passed 
to the neurons in the next layer, enabling the network to progressively refine and 
extract meaningful features. The depth and number of neurons in the hidden layers 
play a crucial role in the network’s ability to recognize intricate patterns and make 
accurate predictions [125]. 

− Output Layer: the output layer is the final stage of a neural network, responsible 
for generating the model’s predictions or decisions based on the processed data 
from the hidden layers. The number of neurons in this layer is determined by the 
specific task the network is designed to perform. For instance, in binary 
classification problems (e.g., predicting whether an email is spam or not), a single 
neuron with a Sigmoid activation function is typically used to output a probability 
value between 0 and 1. In multi-class classification (e.g., identifying different 
objects in an image), the output layer contains multiple neurons, each 
corresponding to a distinct class, often using the Softmax activation function to 
assign probabilities to different categories. For regression tasks, where the goal is 
to predict a continuous value, the output layer usually consists of a single neuron 
with a linear activation function. The choice of activation function and the number 
of neurons in this layer directly influence the network’s abili ty to produce 
meaningful and interpretable results [125]. 

2.3.2 Connections 

In an artificial neural network, each neuron within a given layer is systematically 
connected to all neurons in the adjacent layers. These connections serve as the fundamental 
pathways through which information is transmitted and processed. Each connection is 
associated with a specific weight, which quantitatively determines the influence of one 
neuron on another. During the training process, the neural network employs 
backpropagation, an optimization technique that iteratively adjusts these weights to 
minimize errors and enhance predictive accuracy [125,126]. This process is typically 
facilitated by gradient-based optimization algorithms, such as stochastic gradient descent 
(SGD) or Adam, which refine the model’s parameters by reducing the discrepancy between 
predicted and actual outputs. The structure and adaptability of these connections are crucial 
in enabling the network to learn complex patterns and generalize effectively to unseen data  
[127]. 

2.3.3 Activation Functions 

Activation functions are mathematical functions and plays important  role in neural 
networks by introducing non-linearity, allowing models to learn complex patterns and 

https://www.analyticsvidhya.com/blog/2020/02/cnn-vs-rnn-vs-mlp-analyzing-3-types-of-neural-networks-in-deep-learning/#h-connections
https://www.analyticsvidhya.com/blog/2020/02/cnn-vs-rnn-vs-mlp-analyzing-3-types-of-neural-networks-in-deep-learning/#h-activation-function
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relationships in data.  Without activation functions, the entire network would behave as a 
simple linear model [128]. Four commonly used activation functions are ReLU, Sigmoid, 
Softmax, and Leaky ReLU, each with distinct mathematical properties and applications.  
The choice of activation function in medical imaging depends on the specific task. ReLU 
and Leaky ReLU are ideal for deep convolutional networks used in segmentation and 
feature extraction, while Sigmoid and Softmax are better suited for classification problems 
in disease detection and automatic diagnosis. 

− Rectified Linear Unit (ReLU): this function is defined as f(x) = max (0, x), meaning it 
outputs zero for negative inputs and remains linear for positive values. This simplicity 
makes ReLU computationally efficient and helps prevent the vanishing gradient problem, 
which can slow down learning in deep networks. However, one major drawback is the 
dying ReLU problem, where some neurons output only zero and stop learning entirely 
[129]. 

− Sigmoid: this function, expressed as 𝑓(𝑥) = 11−𝑒𝑥, maps any real-valued input into 

the range (0,1), making it useful for probability estimation in binary classification 
tasks. It is smooth and differentiable, but suffers from the vanishing gradient 
problem, where very large or very small inputs produce extremely small gradients, 
leading to slow learning in deep networks [121]. 

− Softmax: for multi-class classification problems, the Softmax function is often used. It is 

defined as 𝑓(𝑥𝑖) =  𝑒𝑥𝑖∑ 𝑒𝑥𝑖𝑗 , where xi represents the input to the ith neuron, and the 

denominator is the sum of exponentials over all inputs in a layer. Each output represents 
a probability distribution across multiple classes. Softmax ensures that all outputs sum to 
one, making it ideal for assigning class probabilities. However, it can be computationally 
expensive due to its reliance on exponentials and is sensitive to large input values, which 
may lead to numerical instability [122]. 

− Leaky ReLU: A variation of ReLU, addresses the issue of inactive neurons by allowing 
small nonzero gradients for negative inputs. It is defined as f(x)=max(αx,x), where α is a 
small constant, typically set to 0.01. Unlike standard ReLU, Leaky ReLU ensures that 
neurons continue to learn even when their inputs are negative, making it a more stable 
alternative in deep networks. However, selecting an appropriate value for α requires 
careful tuning [129]. 

Each activation function has specific strengths and weaknesses, making them suitable for 
different types of neural network architectures. ReLU and its variants are widely used in deep 
learning due to their efficiency, while Sigmoid and Softmax are commonly applied in 
classification problems. The choice of activation function significantly impacts the learning 
process and overall performance of a neural network. 
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Figure 4.3:; 

Figure 4.3: Graphic representation of Sigmoid, ReLU and Leaky ReLU  

 

2.3.4 Training 

Neural networks acquire knowledge through a process known as training, to make 
accurate predictions by adjusting its internal parameters. These parameters, known as 
weights and biases, are fine-tuned so that the network can learn patterns from input data 
and produce the desired outputs. The training process involves repeatedly exposing the 
network to data, evaluating its performance, and updating its parameters to minimize errors  
[124]. 

The training process consists of several key steps. First, during forward propagation, 
input data passes through the network, and each layer applies mathematical operations to 
transform the data via the activation functions mentioned in the sections below. The final 
output is compared to the true value using a loss function, which measures how far the 
prediction is from reality. Next, backpropagation calculates how much each weight 
contributed to the error by computing gradients (derivatives of the loss with respect to each 
weight). Finally, an optimization algorithm (such as SGD or Adam) updates the weights to 
reduce the loss in the next iteration [131]. 

Several important concepts influence how training is conducted. The learning 
rate determines how much weights are adjusted in each update, too high, and the model 
may overshoot optimal values; too low, and training becomes slow. Training is typically 
done in epochs, where each epoch represents one full pass through the dataset. To improve 
efficiency, data is often split into batches, allowing the model to update weights 
incrementally rather than all at once. Techniques like dropout and batch 
normalization help prevent overfitting and stabilize training [132]. 

Training deep neural networks comes with several challenges. Vanishing 
gradients occur when gradients become too small to make meaningful updates, often in 
deep networks with sigmoid or tanh activations, ReLU and residual connections help 
mitigate this. Overfitting happens when the model memorizes training data instead of 
generalizing, which can be addressed using regularization techniques like L2 weight decay 

https://www.analyticsvidhya.com/blog/2020/02/cnn-vs-rnn-vs-mlp-analyzing-3-types-of-neural-networks-in-deep-learning/#h-training
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or early stopping. Additionally, choosing the right optimizer (e.g., Adam, RMSprop) 
significantly impacts training speed and final performance [132]. 

2.3.5 Prediction 

Once the training process is complete, the neural network is capable of making 
predictions on previously unseen data by propagating the new inputs through its layers and 
generating an output from the final layer. This process is called inference and relies on the 
learned weights and activation functions, which have been optimized during training to 
capture relevant patterns and relationships within the data [126, 131]. 

Fundamentally, a neural network functions as a pattern recognition system, learning 
to map input features to corresponding outputs by iteratively refining its internal 
parameters. Through exposure to a diverse set of training examples, the network adjusts its 
weights to minimize errors, thereby enhancing its ability to generalize beyond the training 
set. This capacity for generalization enables the network to apply learned representations 
to novel data, making it a powerful tool for predictive modeling in various domains, 
including image recognition, natural language processing, and time series forecasting [126, 
131]. 

2.4 Different Types of Neural Networks in Deep Learning 

Neural networks vary in structure and function, each suited for specific tasks. 
Convolutional Neural Networks (CNNs) excel in spatial feature extraction, making them 
ideal for tumor detection, organ segmentation, and microcalcification classification. 
Recurrent Neural Networks (RNNs) and LSTMs handle sequential imaging, while 
Transformers process long-range dependencies in radiology reports. Autoencoders, GANs, 
and GNNs aid in anomaly detection, data augmentation, and complex medical relationship 
modeling, with hybrid models enhancing diagnostic accuracy. In what fellow’s major types 
of artificial networks are discussed. 

2.4.1 Perceptron 

The Perceptron is the simplest type of artificial neural network and serves as the 
foundation for more complex architectures. It is a feedforward model that consists of a 
single layer of neurons with adjustable weights and biases. The Perceptron operates by 
computing a weighted sum of input features, applying an activation function (typically a 
step function or sign function), and producing a binary output (0 or 1)  [133]. 

- Single-layer Perceptron (SLP): is a type of neural network that consists of an input 
layer directly connected to an output neuron, with no hidden layers in between. It 
works by calculating a weighted sum of the input features, applying an activation 
function, and producing a binary output. The SLP is capable of solving linearly 
separable problems, such as AND, and OR logic gates, where a straight line can 
separate the two classes. However, its simplicity makes it limited in handling more 
complex, non-linear data, as it cannot effectively model patterns that are not linearly 
separable, such as XOR logic, which requires more advanced architectures like multi -
layer perceptrons (MLPs) [133]. 

https://www.analyticsvidhya.com/blog/2020/02/cnn-vs-rnn-vs-mlp-analyzing-3-types-of-neural-networks-in-deep-learning/#h-prediction
https://www.analyticsvidhya.com/blog/2020/02/cnn-vs-rnn-vs-mlp-analyzing-3-types-of-neural-networks-in-deep-learning/#Different_types_of_Neural_Networks_in_Deep_Learning
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Figure 4.4: Architecture of a single layer perceptron (SLP) 

- Multi-layer Perceptron (MLP): is a type of neural network that consists of 
multiple hidden layers between the input and output layers, allowing it to model more 
complex relationships within the data. Unlike the Single-layer Perceptron (SLP), 
which can only solve linearly separable problems, an MLP uses non-linear activation 
functions such as ReLU or sigmoid in the hidden layers, enabling it to handle non-
linearly separable problems. This makes MLPs capable of learning intricate patterns 
in data, such as image classification or speech recognition. The network is trained 
using backpropagation, where the error is propagated backward through the network 
to update the weights, and gradient descent is employed to minimize the loss function 
and optimize the model’s parameters. MLPs are widely used in various applications, 
including medical imaging, where they can classify complex data patterns like tumors 
or organ structures [134]. 

2.4.2 Feedforward Neural Networks (FNNs) Network 

Also known as feedforward networks, are a type of shallow neural network where the 
connections between the nodes do not form any cycles. In these networks, data moves in 
one direction from input to output, through one or more layers of nodes, each transforming 
the data based on its weights and activation functions. The learning process in feedforward 
networks involves adjusting the weights during training to minimize the error between the 
predicted and actual target values, similar to the process in a perceptron. This ad justment 
is achieved through algorithms like backpropagation and gradient descent  [135]. 

Applications of FNNs 

− Facial Recognition: FNNs are foundational in facial recognition systems, 
processing large volumes of image data to identify and verify faces even in noisy 
conditions. 

− Natural Language Processing (NLP): These networks are widely used for tasks 
like speech recognition and text classification, enabling machines to understand 
and process human language. 



Chapter 4: Automatic diagnosis of microcalcifications using Deep Learning 

94 
 

− Computer Vision: In computer vision, FNNs play a significant role in image 
classification and object detection, automating the interpretation and analysis of 
visual data. 

Limitations of FNNs 

− Lack of Feedback Connections: FNNs do not have feedback connections, meaning 
they are unsuitable for tasks that require previous outputs to influence future 
outcomes, such as in sequence prediction problems. 

− Difficulty with Temporal Sequences: FNNs struggle to model time series data or 
problems where the sequence of inputs over time is essential.  

While FNNs have limitations in handling sequential data or problems requiring 
temporal dependencies, they have laid the groundwork for more sophisticated models, such 
as recurrent neural networks (RNNs) and transformers. Despite these constraints, they 
remain highly effective in solving a wide range of real-world problems, from image 
classification to natural language understanding. 

2.4.3 Radial Basis Function (RBF) Neural Network 

A Radial Basis Function (RBF) Neural Network is a type of artificial neural network 
that uses radial basis functions as its activation functions. It is a type of feedforward 
network typically composed of three layers: an input layer, a hidden layer with RBF units 
(such as Gaussian functions), and an output layer. The network operates by transforming 
input data into a higher-dimensional space using radial basis functions, which allow the 
network to capture non-linear relationships [136]. 

The Radial Basis Function (RBF) Neural Network consists of three layers: an input 
layer, a hidden layer, and an output layer. The input layer passes data to the hidden layer, 
where each neuron calculates the Euclidean distance between the input and a prototype 
vector (center). The RBF function (typically Gaussian) is then applied to this distance, 
producing a smooth, localized response that diminishes as the input moves farther from the 
center. The output layer combines these responses linearly to generate the final prediction. 
RBF network training involves selecting the centers and widths of the RBF units, often 
using clustering methods like k-means, and training the weights from the hidden to the 
output layer with linear regression or other optimization techniques [136]. 

Applications of RBF Networks 

• Function Approximation: RBF networks are often used for function 
approximation tasks, where they can model complex, non-linear functions. 

• Classification: RBF networks are effective for classification tasks, especially when 
the data is separable in a transformed feature space. 

• Time-Series Prediction: While not as commonly used for sequential data as RNNs 
or LSTMs, RBF networks have been applied in time-series forecasting, especially 
when data exhibits clear, localized patterns. 

Limitations of RBF Networks 
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• Sensitivity to Parameters: The performance of RBF networks heavily depends on 
the choice of parameters, such as the center and width of the RBFs, which can be 
difficult to tune. 

• Overfitting: With too many RBF units (centers), the network may overfit the 
training data, especially in high-dimensional spaces. 

• Scalability: RBF networks can become computationally expensive when dealing 
with large datasets, especially in terms of clustering and distance calculations.  

2.4.4 Recurrent Neural Network (RNNs) 

Recurrent Neural Networks (RNNs) are a class of deep neural networks designed 
specifically to handle sequential data, excelling in tasks like speech recognition, natural 
language processing, and time series prediction. Unlike Feedforward Neural Networks 
(FNNs), which process inputs independently, RNNs are distinguished by their memory 
mechanism, allowing them to retain information from previous inputs to influence the 
current output. This is achieved through feedback connections in the hidden layer, where 
the output from the hidden layer is fed back into itself, creating an internal state that helps 
the network learn from past sequences. This unique structure enables RNNs to understand 
and process sequential data, such as text or speech, where the order of the data points is 
essential [137]. The hidden state stores information from previous time steps and is updated 
at each sequence step using the formula:  ℎ𝑡 = 𝑓(𝑊𝑡ℎ𝑡−1  +  𝑊𝑥𝑥𝑡 + 𝑏) 

where: 

• ht is the hidden state at time step t, 

• ht−1 is the hidden state from the previous time step, 

• xt is the input at the current time step, 

• Wh and Wx are weight matrices, 

• b is the bias term, and 

• f is an activation function, typically tanh or ReLU. 

The hidden state acts as a memory, enabling the network to capture temporal 
dependencies and process sequential data, such as text or speech, where the order of data 
points is essential. 

Applications of RNNs 

Include speech recognition, where they process temporal audio data; NLP tasks like 
machine translation and sentiment analysis; time series prediction for forecasting data; 
video analysis for recognizing patterns in sequences of frames; and music composition, 
generating coherent sequences of notes. 

Limitations of RNNs 
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 Consist of the vanishing and exploding gradient problems, making it hard to learn 
long-term dependencies; difficulty in handling long-term dependencies; slow training 
times due to computational complexity; lack of parallelization due to sequential 
processing; and overfitting due to model complexity and large parameter sets. These 
limitations are often addressed by more advanced RNN variants like LSTMs and GRUs.  

 

Figure 4.5: (a) RNNs with feedback connections, (b) FNNs process inputs independently 
without memory of past data. 

2.4.5 Long Short-Term Memory (LSTM) Networks 

LSTMs are a specialized type of Recurrent Neural Network (RNN) designed to 
effectively capture and retain information over long sequences. Unlike conventional 
RNNs, they address the long-term dependency problem, allowing them to preserve relevant 
information for extended periods. 

This capability is made possible through LSTM units shown in Figure 4.6, which 
incorporate key components such as the input, output, and forget gates. These gates 
regulate the flow of information within the network, determining which information should 
be stored, updated, or discarded. By dynamically managing memory, LSTMs enhance the 
network’s ability to make accurate predictions based on historical data [138]. 

At each computational step, the current input xt, the previous cell state Ct−1, and the 
previous hidden state ht−1 are processed to generate an updated cell state and hidden state. 
These values pass through three key gates that regulate the flow of information: 

1. Forget Gate: This gate determines which past information should be retained or 
discarded. Both the previous hidden state and current input are passed through a 
sigmoid activation function, producing values between 0 and 1. A value close to 0 
results in forgetting irrelevant information, while a value close to 1 retains important 
past information. The resulting values are then multiplied element-wise with the 
current cell state Ct−1, ensuring that only the necessary information is preserved. 
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Figure 4.6: LSTM units that forms the basic Long-Short Term Memory Networks 
architecture  

2. Input Gate: This gate assesses the relevance of the new input to the current task. 
The current input is combined with the previous hidden state and passed through a 
sigmoid function to determine which values should be updated. Simultaneously, a 
candidate cell state is created using a tanh activation function to scale the new 
information. The filtered input information is then added to the cell state Ct, forming 
an updated long-term memory that will be used in the next time step. 

3. Output Gate: This gate determines the final hidden state ht, which serves as the 
LSTM’s output. A sigmoid activation function selects the most relevant information 
to be passed to the output. The updated cell state undergoes a tanh activation, and the 
result is multiplied element-wise with the output filter, forming the new hidden state. 
Depending on the task, this hidden state could represent the next word in a sentence, 
a classification label, or another prediction relevant to the application.  

This structured gating mechanism allows LSTMs to effectively capture long-term 
dependencies in sequential data, making them particularly useful for tasks such as natural 
language processing, speech recognition, and medical time-series analysis. 

2.4.6 Convolution Neural Network (CNN) 

Convolutional Neural Networks (CNNs) are a specialized class of deep learning 
models designed to efficiently process grid-like data, particularly images. Unlike 
traditional fully connected neural networks, CNNs exploit spatial hierarchies using 
convolutional operations, which preserve local features while significantly reducing the 
number of trainable parameters. At the core of CNNs is the convolution operation, where 
a small matrix called a kernel (filter) illustrated in Figure 4.7 slide over the input image to 
extract features [139]. Mathematically, a 2D convolution is expressed as: 
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𝑆(𝑖, 𝑗) = (𝑋 ∗ 𝑊) (𝑖, 𝑗) =  ∑ ∑ 𝑋(𝑖 + 𝑚, 𝑗 + 𝑛)𝑊(𝑚, 𝑛)𝑛𝑚  

where: 

− X(i,j) represents the input image or feature map, 

− W(m,n) is the kernel (filter), a small matrix that learns feature representations, 

− S(i,j) is the resulting feature map. 

Each kernel detects specific patterns (e.g., edges, textures, shapes), and multiple 
kernels in deeper layers extract high-level hierarchical features [140]. This approach 
enables parameter sharing, reducing the computational cost compared to fully connected 
layers. To introduce non-linearity, CNNs apply an activation function, commonly ReLU 
which helps mitigate the vanishing gradient problem and accelerates training.  

 

Figure 4.7: Convolution operation, the core concept of CNNs. 

As described in Figure 4.8 CNN architectures process data through a series of hierarchical 
layers: 

1. Convolutional Layers apply kernels to detect spatial features.  

2. Pooling Layers (e.g., max pooling) downsample feature maps to reduce 
dimensionality. 

3. Fully Connected Layers integrate high-level features for classification or 
regression. 

4. Normalization and Regularization techniques (e.g., batch normalization, dropout) 
enhance model stability and prevent overfitting. 

CNNs are particularly well-suited for medical imaging applications, such as 
classification of microcalcifications, tumor detection, and segmentation, as they can 
capture fine-grained patterns in high-resolution medical images [140]. 
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Figure 4.8: General structure of an individual CNN network with α convolution blocks.  

2.5 Deep learning in medical imaging and breast cancer 

As highlighted in Figure 4.9 deep learning models in medical imaging are designed to 
process images for various tasks, such as detecting abnormalities, enhancing image quality 
by reducing noise and improving spatial resolution, and supporting additional functions 
like automated report generation and information retrieval. Additionally, data 
augmentation techniques such as rotation, flipping, scaling, and contrast adjustments are 
commonly employed to artificially expand training datasets, improving model robustness 
and generalization [141]. In the following sections, we will briefly review key deep 
learning techniques applied in medical imaging before delving into their specific 
applications in breast cancer imaging. 

 

 

 

 

 
Figure 4.9: Deep learning application in medical imaging [141]. 

Numerous commercial products have been introduced and received regulatory 
approval from the U.S. Food and Drug Administration (FDA), making them officially 
authorized for clinical use. Additionally, numerous retrospective and prospective studies 
have been carried out to evaluate their performance. Table 4.1 summarized AI-based tools 
deployed for breast cancer detection and diagnosis. 
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Tool Vendor Country Modality Techniques 

cmAssist® 
CureMetrix 

Inc. 
United 
States 

MG 

Deep artificial neural 
networks (dANNs) trained 
on radiologist-annotated 

mammograms. 

Genius AI 

Detection 
Hologic Inc. 

United 
States 

MG + DBT 
CNN-based classification 

integrated with 
tomosynthesis. 

INSIGHT MMG Lunit Inc. 
South 
Korea 

MG 
Fourfold ConvNeXt-small 
network; winner of RSNA 

2022 challenge. 

MammoScreen® 

2.0 
Therapixel SA France MG + DBT 

Synthetic DBT image 
generation for streamlined 

workflows. 

ProFound AI® iCAD Inc. 
United 
States 

MG + DBT 

CNN-based radiomics for 
microcalcifications; 

automated lesion 
localization. 

Saige-Dx 
DeepHealth 

Inc. 
United 
States 

MG 
Deep learning classifiers for 

triaging mammograms. 

Transpara® 
ScreenPoint 

Medical B.V. 
Netherlands MG + DBT 

CNN-based risk scoring 
with multi-view analysis. 

Table 4.1: Principal commercialized AI-based tools for breast cancer [141]. 

In what fellow, an overview of multiple retrospective and prospective studies on breast 
cancer detection in mammography that evaluated AI-based tools in the table below and 
other techniques.  

Watanabe et al. [142]. Demonstrated a retrospective analysis of the AI-CAD software 
cmAssist® on 122 patients (90 false-negative mammograms) showed an 11% increase in 
radiologists’ cancer detection rate (CDR). The AI improved sensitivity but was tested in a 
cancer-enriched cohort, potentially inflating results. Funded by the vendor (CureMetrix), 
the study raised concerns about bias and generalizability.  

chaffter et al. [143]. Published the result of a public challenge involved 31 teams 
developing AI models for mammography using 85,000 U.S. and 68,000 Swedish screening 
exams. The top model achieved an AUC of 0.858 (U.S.) and 0.903 (Sweden). While 
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standalone AI underperformed radiologists (specificity = 66.2% vs. 90.5%), combining AI 
with radiologists improved AUC to 0.942. 

Kim et al. [144]. A retrospective study tested INSIGHT MMG on 320 mammograms 
(160 cancers). The standalone AI achieved an AUC of 0.940, outperforming unassisted 
radiologists (AUC = 0.810). AI-assisted radiologists reached an AUC of 0.881. Strengths 
included detection of small tumors (<10 mm), but the cancer-enriched dataset limited real-
world applicability. 

Dembrower et al. [145]. These studies evaluated INSIGHT MMG in retrospective 
(2020) and prospective (2023) settings. The AI triaged mammograms, reducing radiologist 
workload by 50% without missing cancers. In a prospective trial with 55,000+ women, AI-
assisted single reading matched double radiologist reading in cancer detection. Limitations 
included vendor-specific hardware and short follow-up. 

Ng et al. [146]. A prospective trial tested INSIGHT MMG as an adjunct to double 
reading, detecting 0.7–1.6 additional cancers per 1,000 cases with minimal unnecessary 
recalls. The AI improved early detection of invasive cancers but faced criticism for short 
follow-up (2–9 months) and single-institution data. 

Romero-Martín et al. [147]. This retrospective study assessed Transpara® on 15,999 
MG/DBT exams. The AI achieved AUCs of 0.93 (MG) and 0.94 (DBT), demonstrating 
non-inferiority to radiologists. However, DBT recall rates rose by 12.3%, increasing false 
positives. The study emphasized workflow efficiency but lacked clinical outcome data.  

Zheng et al.[148]. A prospective multicenter study used a RefineNet + Xception model 
for contrast-enhanced mammography (CEM). The AI automated lesion segmentation (DSC 
= 0.837) and classification (AUC = 0.891), proving effective for single-mass lesions. 
Limitations included a focus on Chinese women, limiting generalizability. 

Beuque et al. [149]. This study combined DL segmentation + handcrafted radiomics 
on CEM images, achieving an AUC of 0.95 for lesion classification. Automated 
segmentations outperformed manual ones, but the small sample size (retrospective design) 
and single-center data reduced external validity. 

Despite significant advancements in AI-based breast cancer detection, several critical 
limitations and challenges must still be overcome for successful clinical integration. One 
major issue is dataset bias, as many studies use cancer-enriched or institution-specific 
datasets, limiting AI’s generalizability to diverse populations. Additionally, AI models 
often lack the ability to analyze multiple mammographic views or track temporal changes, 
both essential for detecting subtle or evolving malignancies. Performance inconsistencies 
also arise based on breast density, with AI struggling in dense tissue where cancers are 
harder to distinguish. Furthermore, most research has been retrospective, conducted under 
controlled conditions that do not fully replicate real-world clinical workflows, leading to 
concerns about overfitting and observer bias. Ethical and regulatory challenges add 
complexity, including liability concerns, data privacy issues, and the need for rigorous 
validation before AI tools can be widely adopted. The integration of AI into radiology 
workflows requires significant infrastructure adaptations, such as PACS compatibility and 
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clinician training, to ensure seamless implementation. Lastly, while AI has demonstrated 
the ability to enhance radiologists' performance, no standalone system has yet surpassed 
human expertise, reinforcing the notion that AI should serve as an assistant rather than a 
replacement. Addressing these challenges through large-scale prospective trials, improved 
dataset diversity, and optimized AI-human collaboration will be essential for the 
widespread adoption of AI in breast cancer screening and diagnosis.   High false and false 
negative rates is also a major problem faced in most of proposed solutions [156].    

3. Ensemble Deep Learning 

In machine learning, two approaches have demonstrated superior performance 
compared to traditional algorithms: ensemble learning and deep learning [153]. Ensemble 
learning within deep learning refers to a methodological framework that integrates multiple 
individual models to enhance predictive accuracy and robustness beyond what a single 
model could achieve independently. This approach aims to capitalize on the strengths of 
diverse models while mitigating their respective limitations, thereby improving 
generalization and reliability in complex predictive tasks.  

Various ensemble learning techniques differ in how they train and combine distinct 
baseline models. The most commonly employed methods include averaging, bagging, 
stacking, and boosting. Each technique offers unique advantages and is suited for different 
types of data and modeling challenges [154]. 

3.1 Bagging (Bootstrap Aggregating) 

Bagging is an ensemble learning technique designed to reduce variance and enhance 
model stability by training multiple instances of the same base model on different random 
subsets of the dataset. These subsets are created through bootstrap sampling, a process in 
which samples are drawn with replacement, ensuring that each training subset varies 
slightly from the original dataset. Once trained, the models produce independent 
predictions, which are then aggregated either by majority voting in classification tasks or 
averaging in regression tasks. The most well-known algorithm utilizing bagging is Random 
Forest, which constructs multiple decision trees and combines their outputs to produce a 
more robust and accurate prediction than a single tree. Bagging is particularly effective in 
reducing overfitting in high-variance models like decision trees, improving generalization 
to unseen data [150]. 

In deep learning bagging refers to training multiple deep neural networks 
independently on different subsets of the training data and then combines their outputs as 
shown in Figure 4.10. Each model is trained on a randomly sampled (with replacement) 
subset of the data, ensuring diversity among the models. The final prediction is obtained 
through majority voting (classification) or averaging (regression). In deep learning, 
bagging is particularly useful in reducing the variance of high-capacity models like deep 
convolutional or transformer networks. Deep Ensembles, a popular approach in uncertainty 
estimation, utilizes bagging to train multiple deep neural networks independently and 
aggregate their predictions, improving both accuracy and reliability in tasks like medical 
diagnosis and autonomous driving. 
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Figure 4.10: Bagging ensemble learning approach. 

3.2 Boosting 

Boosting is an advanced ensemble method designed to reduce bias by sequentially 
training models in a way that prioritizes correcting previous errors. Unlike bagging, where 
models are trained independently, boosting follows a stage-wise approach, where each new 
model is trained to improve upon the weaknesses of the preceding models. During training, 
misclassified instances receive higher weights, forcing the model to focus on the most 
challenging examples. The final prediction is obtained by combining the outputs of all 
models, often through weighted voting or summation. Prominent boosting algorithms 
include AdaBoost, which assigns adaptive weights to misclassified samples, and Gradient 
Boosting (GBM, XGBoost, LightGBM, CatBoost), which optimizes a loss function by 
sequentially training models on residual errors. 

 

Figure 4.11: Boosting Approach in Ensemble Learning. 

As illustrated in Figure 4.11 boosting in deep learning differs from its classical 
implementation due to the nature of neural networks, which require extensive training. 
Instead of sequentially training weak learners, boosting in deep learning often involves 
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adaptive weighting of data samples or feature representations. One effective approach is 
Gradient Boosted Neural Networks (GBNN), where multiple neural networks are trained 
in sequence, with each subsequent model focusing on minimizing the errors of the previous 
ones. Another adaptation is Boosted Convolutional Neural Networks (BoostCNNs), where 
smaller CNN models learn residual patterns missed by previous models, improving 
accuracy on challenging image classification tasks. While boosting can improve 
performance, it requires careful regularization to prevent overfitting in deep networks. 
Also, boosting is particularly effective in scenarios requiring high predictive accuracy but 
may suffer from overfitting if not properly regularized. 

3.3 Stacking (Stacked Generalization) 

Stacking, or stacked generalization, in deep learning involves training multiple 
heterogeneous deep models and using a meta-model to combine their predictions. Unlike 
bagging and boosting, which typically use homogeneous networks, stacking leverages 
different architectures as illustrated in Figure 4.12, such as CNNs, recurrent neural 
networks (RNNs), and transformer models, to extract complementary features from the 
data. A common deep learning stacking strategy involves training base models separately, 
then using a fully connected neural network (meta-learner) to process their outputs and 
make the final prediction. Stacking is widely used in image recognition, speech processing, 
and multimodal learning, where combining different feature representations leads to 
superior accuracy and generalization. However, stacking is computationally expensive and 
requires careful tuning to avoid overfitting. 

 

Figure 4.12: Architecture of stacking ensemble model using meta learner. 

3.4 Voting and Averaging 

Voting and averaging are ensemble techniques that aggregate predictions from 
multiple models to enhance stability and performance. In hard voting, the final 
classification decision is made based on the majority prediction among all models. In sof t 
voting, the probability distributions of each model’s predictions are averaged, and the class 
with the highest probability is selected. For regression tasks, simple averaging is used, 
where the final output is computed as the mean of all individual model predictions. Voting 
ensembles are particularly useful when combining diverse models, as they help smooth out 
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individual model biases. While easy to implement, voting ensembles may not always yield 
significant improvements unless the base models are sufficiently diverse. 

 

Figure 4.13: Hard and soft voting 

3.5 Blending 

Blending is a variation of stacking that simplifies the training process of the meta -
model by using a holdout validation set instead of cross-validation predictions. In this 
approach, base models are trained on the training data, and their predictions on a separate 
validation dataset serve as inputs to the meta-model, which learns the best way to combine 
them. The advantage of blending is its ease of implementation, as it avoids the complexity 
of cross-validation required in stacking. However, blending can suffer from overfitting if 
the validation set is too small or not representative of the full dataset. This technique is 
widely used in Kaggle competitions, where time efficiency is critical, but it is less common 
in real-world applications due to its reliance on a single validation set.  

 

Figure 4.14: Blending strategy used ensemble learning. 

3.6 Knowledge Distillation as an Implicit Ensemble Learning 

Method 

Knowledge distillation, though not a conventional ensemble method, can be 
considered a form of implicit ensembling. In this technique, a large ensemble (teacher 
model) is trained first, and its knowledge is transferred to a smaller, more efficient student 
model. The student network learns not only from the original data labels but also from the 
soft probabilities of the teacher’s predictions, capturing richer information. This method is 
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widely used in efficient deep learning, where computational constraints require lighter 
models with ensemble-level performance, such as in mobile and edge AI applications.  

Each ensemble learning technique has its strengths and limitations, making them 
suitable for different types of tasks. Bagging is ideal for reducing variance and improving 
stability, while boosting excels at reducing bias and enhancing predictive accuracy. 
Stacking provides a powerful mechanism for leveraging multiple diverse models, though 
it requires careful tuning. Voting and averaging offer a straightforward way to improve 
performance through model aggregation, and blending provides a practical alternative to 
stacking. The selection of an ensemble technique depends on factors such as dataset size, 
computational constraints, and the need for interpretability versus accuracy.  

4. Classification of Microcalcifications using Ensemble 

Learning 

Ensemble learning strategies in deep learning integrate multiple models to enhance 
predictive performance, mitigate overfitting, and optimize classification accuracy  [176]. 
By utilizing diverse model architectures, subsets of training data, or varying learning 
approaches, ensemble models are capable of capturing a broader range of patterns and 
generalizing more effectively than a single model. Several techniques are commonly 
employed to implement ensemble models, with bagging, boosting, voting, and stacking 
being among the most prevalent. Despite their widespread application, relatively few 
studies have explored the use of stacking models for the classification of 
microcalcifications. 

This section introduces an innovative ensemble framework that combines several pre-
trained convolutional neural networks to improve the classification of microcalcifications, 
tiny calcium deposits that play a key role in early breast cancer detection. To better 
understand and enhance their performance, we take a close look at three well -known 
architectures: ResNet-50, DenseNet-121, and EfficientNet-B0. Through evaluation, we 
explore their strengths and limitations, not just in theory but also in terms of how they can 
be effectively used in real clinical settings. Our goal is to identify models that are not only 
accurate but also practical for deployment in automatic diagnostic. In addition, we 
experiment with different ensemble learning strategies to boost the performance of these 
base models, aiming to deliver more reliable and precise classifications. By bridging the 
gap between cutting-edge deep learning techniques and real-world healthcare needs, this 
work contributes to improving clinical decision-making and patient outcomes [164]. 

4.1 Related works 

The diagnosis of breast cancer, particularly the detection and classification of 
microcalcifications, has significantly advanced in the past decade due to the integration of 
machine learning in automatic diagnosis frameworks. Ongoing research continues to 
enhance accuracy, reliability, model architecture, data augmentation, and interpretability, 
marking a new era in diagnostic imaging. 
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Cai et al. [156] introduced a computer-aided detection and diagnosis (CADe/CADx) 
system designed for the identification of microcalcification clusters (MCCs) in 
mammograms. Their approach leveraged a deep convolutional neural network (DCNN) to 
replace traditional manual feature extraction, incorporating neutrosophic boosting during 
training. The model achieved a sensitivity of 90% at 0.14 false positives per image for 
MCC detection and demonstrated an area under the receiver operating characteristic curve 
(AUC) of 0.945 on the validation dataset and 0.933 on the test dataset using the INbreast 
dataset. 

Kang et al. [157] explored the use of five pre-trained DCNN architectures, ResNet-
101, Xception, Inception-v3, InceptionResNet-v2, and DenseNet-201, alongside an 
ensemble model for classification. Using 1,579 mammographic images, their best model 
attained an accuracy of 81.54%, a specificity of 91.41%, and a sensitivity of 82.47%.  

Gerbasi et al. [158] proposed DeepMiCa, a three-step system designed for 
microcalcification detection. The first step involved preprocessing raw scan data, followed 
by automated patch-based semantic segmentation via a UNet-based network equipped with 
a custom loss function tailored for extremely small lesions. Finally, lesion classification 
was performed using deep transfer learning. The approach was evaluated on the CBIS-
DDSM and INbreast datasets, achieving an AUC of 0.89. 

Tsai et al. [159] developed a detection framework based on VGG16, Mask R-CNN, 
and Inception V3, reporting respective precision values of 93.63%, 99.76%, and 88.89%. 
Similarly, Teoh et al. [160] proposed a framework integrating morphological operations 
and Otsu segmentation, followed by transfer learning with ResNet-50 and ensemble 
optimization utilizing AlexNet, GoogLeNet, VGG16, and ResNet-50. Their model 
achieved an average confidence level of 0.9305 in classification.  

Du et al. [161] introduced a novel approach by transforming the characterization of 
morphology and distribution of microcalcifications into a node and graph classification 
problem, employing a multi-task deep graph convolutional network (GCN). Trained and 
validated on the DDSM dataset, the model achieved an AUC of 0.87. Yurdusev et al. [162] 
enhanced microcalcification detection by applying a difference filter to amplify relevant 
regions, subsequently utilizing Faster R-CNN and YOLOv4 deep learning models on 500 
mammograms from the DDSM dataset, attaining an accuracy of 97%. 

Singh et al. [163] developed a deep learning-based classification model to categorize 
microcalcifications into benign, malignant, and benign without callback categories. Using 
the CBIS-DDSM dataset, they employed a pretrained InceptionResNetV2 model for 
feature extraction and experimented with four optimizers (ADAM, ADAGrad, ADADelta, 
RMSProp). Their model achieved a sensitivity of 97%, specificity of 80%, accuracy of 
94%, and an AUC of 96%. 

A review of the existing literature highlights a clear tendency in the direction of the 
integration of multiple models and hybrid approaches, combining various deep learning 
techniques to enhance diagnostic performance. The transition from traditional machine  
learning to deep learning, and subsequently to ensemble and hybrid models, has led to 
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substantial improvements in microcalcification detection and diagnosis. Despite these 
advancements, challenges remain, particularly in reducing false positive rates, improving 
the interpretability of deep learning models, and ensuring consistent performance across 
diverse imaging conditions. Addressing these limitations will be crucial for the successful 
clinical implementation of AI-driven diagnostic tools in breast cancer screening. 

4.2 Data description 

The Digital Database for Screening Mammography (DDSM) is one of the largest 
publicly available mammographic datasets, containing over 10,000 images collected from 
various screening programs. It has been widely used for breast cancer research, particularly 
in early machine learning models and radiology studies. The dataset includes both benign 
and malignant cases, with annotations for masses and microcalcifications.  

Despite its extensive size and historical significance, DDSM presents several 
challenges that make it less ideal for deep learning applications. First, the images are stored 
in lossless JPEG (LJPEG) format, which is not natively supported by modern deep learning 
frameworks. Researchers must convert these images to more commonly used formats such 
as PNG or DICOM, requiring additional preprocessing steps.  

Another major challenge is the quality of annotations. The dataset includes manually 
annotated regions of interest (ROIs), but some segmentations are inconsistent or imprecise, 
which can affect model performance. Additionally, since the images were collected from 
different sources, there is variation in image quality and contrast, making it difficult to 
standardize data for deep learning applications. 

In spite of these challenges, DDSM remains a valuable resource for traditional machine 
learning and radiology-focused studies, particularly for researchers willing to invest time 
in data cleaning and preprocessing. 

To address the challenges of DDSM, researchers at The Cancer Imaging Archive 
(TCIA) [108] developed the Curated Breast Imaging Subset of DDSM (CBIS-DDSM). This 
dataset is a refined version of DDSM, specifically designed to facilitate deep learning 
applications in breast cancer detection [165]. 

One of the most significant improvements in CBIS-DDSM is the adoption of the 
DICOM (Digital Imaging and Communications in Medicine) format. Unlike LJPEG, 
DICOM is a widely accepted medical imaging standard, making it directly compatible with 
modern deep learning frameworks and radiology software. This eliminates the need for 
complex image format conversions, allowing researchers to focus on model development. 
Additionally, CBIS-DDSM provides improved ROI segmentations as illustrated in Figure 
4.15. The original DDSM annotations were reviewed and refined for better accuracy, 
ensuring that deep learning models can learn from precise tumor and microcalcification 
boundaries. This reduces errors caused by noisy labels and improves model training 
efficiency [116]. 
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Figure 4.15: (a) Suspicious abnormality detected in image (a), after segmentation in 
image (b), ROI image in image (c) is extracted to be used for characterization by deep 

learning model. 

Another key advantage of CBIS-DDSM is its easier accessibility and structured 
format. The dataset has been preprocessed and standardized, removing many of the 
inconsistencies found in DDSM. This makes it ideal for quick deployment in deep learning 
experiments, allowing researchers to focus on model architecture rather than extensive data 
preparation. Due to these enhancements, CBIS-DDSM is considered the preferred choice 
for deep learning research in mammographic analysis, particularly for the detection of 
masses and microcalcifications. 

 

Figure 4.16: Class distribution in training and test dataset of CBIS-DDSM. 
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Experiments conducted in our contributions in this chapter, utilized 1550 images: 1 
085 (70%) for training and 465 (30%) for the test phase, as detailed in Figure. 4.16. All 
extracted images from CBIS-DDSM are either cranial-caudal (CC) or mediolateral oblique 
(MLO) mammograms. Figure 4.17, shows image samples taken from CBIS-DDSM dataset. 

The choice between DDSM and CBIS-DDSM depends on the specific research 
objective. For researchers focused on deep learning and AI-based breast cancer detection, 
CBIS-DDSM is the better choice due to its cleaner annotations, standardized format, and 
easier accessibility. It allows for a faster and more efficient model development process, 
reducing the need for extensive data preprocessing. 

 

Figure 4.17: Image samples taken from CBIS-DDSM dataset. 

4.3 Pre-processing 

Data preprocessing plays a fundamental role in developing highly accurate models for 
the classification of microcalcifications in mammographic images. However, their small 
size, subtle contrast variations, and diverse morphological appearances across different 
patients pose significant challenges for detection and classification. To enhance model 
performance and improve the reliability of diagnostic outcomes, effective preprocessing 
techniques are essential. These techniques aim to refine image quality, suppress noise, and 
standardize data, ultimately facilitating the extraction of relevant features for deep learning 
algorithms. Our approach focuses on three key preprocessing techniques; noise reduction, 
normalization & standardization, and contrast enhancement, to optimize mammographic 
image quality and improve the accuracy of microcalcification detection. These 
preprocessing steps are essential for ensuring that deep learning models can effectively 
learn and distinguish microcalcifications from surrounding breast tissue, thereby 
enhancing diagnostic performance. 

4.3.1 Noise Reduction 

Mammographic images often contain unwanted background noise, texture variations, 
and granular artifacts, which can obscure microcalcifications and reduce the sensitivity of 
detection algorithms. To address this issue, we employ Non-Local Means (NLM) denoising 
[167], a technique that selectively reduces noise while preserving critical image details. By 



Chapter 4: Automatic diagnosis of microcalcifications using Deep Learning 

111 
 

eliminating irrelevant patterns, NLM denoising enhances the clarity of microcalcifications, 
allowing the model to focus on diagnostically relevant features.  

4.3.2 Normalization and Standardization 

Variability in mammographic images arises from differences in imaging equipment, 
acquisition protocols, and patient-specific anatomical factors, leading to inconsistencies in 
brightness, contrast, and intensity levels. To ensure uniformity across images, we apply 
normalization and standardization techniques. Normalization scales pixel intensities to a 
fixed range (e.g., 0 to 1), while standardization adjusts the data distribution to have a mean 
of 0 and a standard deviation of 1. These transformations help reduce data variability, 
making it easier for the deep learning model to generalize across different datasets and 
imaging conditions. 

4.3.3 Contrast Enhancement 

Microcalcifications often exhibit low contrast against surrounding breast tissue, 
making them difficult to detect. To enhance their visibility, we integrate Histogram 
Equalization (HE) and Contrast-Limited Adaptive Histogram Equalization (CLAHE) [168] 
into our preprocessing pipeline. HE redistributes intensity values to enhance global 
contrast, while CLAHE applies localized contrast adjustments to improve the visibility of 
small, subtle structures without over-enhancing other regions. This step ensures that 
microcalcifications are more distinguishable, benefiting both radiologists and AI-based 
detection models. 

 

Figure 4.18: Different preprocessing techniques applied on mammograms. 

Each of the preprocessing steps outlined above plays a crucial role in refining the 
dataset, ensuring greater consistency and accuracy, which in turn improves model 
performance and facilitates automated diagnostic processes. Figure 4.16 illustrates the 
original image alongside the various preprocessing tasks that have been applied. The 
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sequence in which these tasks are performed is critical for optimizing the preprocessing 
outcomes. Specifically, noise reduction is applied first, followed by normalization, with 
image enhancement serving as the final step. This strategic order maximizes the 
effectiveness of the preprocessing pipeline. 

4.4 Overview of CNN architectures employed in our ensemble 

learning strategy  

In this ensemble approach for breast cancer classification, we combine three powerful 
convolutional neural networks: ResNet-50, DenseNet-121, and EfficientNetB0. Each 
model brings its own unique strengths to the table. ResNet-50 uses skip connections that 
help it avoid common training issues like vanishing gradients, making it easier to train 
deeper networks while still being lightweight and efficient great for medical imaging tasks. 
DenseNet-121 stands out with its dense connections, where each layer gets input from all 
previous ones. This design encourages feature reuse and helps the model learn more 
effectively, especially when data is limited. EfficientNetB0 takes a different approach, 
using a smart scaling method to balance depth, width, and resolution, resulting in a compact 
yet highly accurate model. It’s the product of neural architecture search, which means it's 
been fine-tuned for both performance and efficiency. By combining these models using 
different ensemble strategies like stacking or boosting, the system takes advantage of their 
complementary strengths to make more robust and accurate predictions.  

4.4.1 ResNet-50 

ResNet-50 [175] is a convolutional neural network (CNN) architecture that belongs to 
the ResNet (Residual Networks) family, consisting of 50 layers. It was specifically 
designed to address the challenges associated with training very deep networks. Developed 
by Microsoft Research Asia, ResNet-50 has gained widespread recognition for its depth 
and computational efficiency, particularly in image classification tasks. It leverages 
multiple residual blocks, as illustrated in Figure 4.19, to achieve robust performance. 

The key innovation in ResNet-50 is the concept of residual learning, which is the 
foundation of the residual blocks. In traditional deep networks, each layer learns a mapping 
from the input to the output. However, as the network becomes deeper, the gradients during 
backpropagation can diminish, making it difficult for the model to learn effectively. The 
residual learning concept addresses this issue by introducing skip connections. As 
highlighted in Figure 4.18 these skip connections add the input of a residual block directly 
to its output, allowing the network to learn the residual mapping (i.e., the difference 
between the input and output) rather than the full transformation. This simple yet powerful 
modification enables the network to preserve important information, alleviates the 
vanishing gradient problem, and facilitates the training of much deeper networks. 
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Figure 4.19: Concept of Residual blocks in ResNet networks. 

Residual blocks typically consist of a series of convolutional layers, followed by batch 
normalization and ReLU activation functions. By learning the residuals rather than the 
entire mapping, the network is able to focus on the incremental changes needed to improve 
the prediction. This mechanism allows for the successful training of very deep networks 
without encountering performance degradation, which was a common issue in earlier 
architectures. 

ResNet models come in various configurations, with alternative versions such as 
ResNet-18 and ResNet-32, each differing in depth and complexity. Since its introduction 
in 2015, ResNet-50 described in Figure 4.20 has played a pivotal role in advancing the 
field of image classification, influencing subsequent developments in deep learning 
architectures and demonstrating continued relevance in both academic and practical 
applications. 

 

Figure 4.20: ResNet-50 architecture

4.4.2 DenseNet-121 

DenseNet [169], short for Densely Connected Convolutional Networks, is a 
convolutional neural network (CNN) architecture introduced in 2016 by Gao Huang, 
Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. It has garnered significant 
attention for its outstanding performance in image classification tasks and its innovative 
approach to information flow within deep networks. What sets DenseNet apart from 
conventional CNN architectures is its unique connectivity pattern, in which each layer is 
directly connected to every other subsequent layer in a feedforward manner. This densely 
connected structure ensures maximum information flow between layers throughout the 
network. As illustrated in Figure 4.21, DenseNet is characterized by two fundamental 
architectural innovations.  
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First, the use of dense blocks significantly enhances both feature propagation and 
gradient flow. In each dense block, every layer receives as input the concatenated  outputs 
of all preceding layers. This strategy not only promotes feature reuse but also alleviates 
the vanishing gradient problem, which commonly hampers the training of deep networks. 
As a result, DenseNet can be trained with fewer parameters while maintaining or even 
improving representational power. 

Second, DenseNet incorporates bottleneck layers and transition layers to improve 
computational efficiency and control model complexity. Bottleneck layers, typically 
consisting of 1×1 convolutions followed by 3×3 convolutions, serve to reduce the number 
of input feature maps, thereby decreasing the computational cost. Transition layers, which 
include convolution and pooling operations, are used between dense blocks to manage the 
dimensionality of the feature maps and further optimize the model’s depth and 
performance. 

This architectural design allows DenseNet to achieve a high level of parameter 
efficiency and accuracy compared to other deep CNN models, making it particularly 
effective for image classification and related computer vision tasks. Its dense connectivity 
not only improves gradient flow and convergence but also enables the network to learn 
more compact and robust representations of the input data.  

 

Figure 4.21: DenseNet-121 architecture 

4.4.3 EfficientNet-b0 

EfficientNet [162] represents a family of convolutional neural networks (CNNs) 
specifically designed to deliver high predictive accuracy while maintaining computational 
efficiency. As illustrated in Figure 4.22, EfficientNet distinguishes itself through the use 
of a compound scaling technique, which uniformly scales three critical dimensions of the 
network, depth (number of layers), width (number of channels per layer), and input 
resolution (size of the input image). This balanced scaling strategy enables the model to 
achieve superior performance with significantly fewer parameters and lower computational 
costs compared to traditional CNN architectures. 

A fundamental component of EfficientNet is the stem layer, which serves as the 
network’s entry point for raw image data. The stem consists of an initial convolutional 
block, typically a 3×3 convolution with a stride of 2, followed by batch normalization and 
a non-linear activation function (commonly Swish in EfficientNet). The purpose of the 
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stem is to transform high-dimensional input images into compact, low-level feature maps 
that can be efficiently processed by deeper layers of the network. This transformation 
includes reducing the spatial resolution while increasing the number of feature channels, 
as result facilitating the extraction of essential visual patterns such as edges, corners, and 
textures. The design of the stem is critical because it sets the foundation for all subsequent 
computations, any information loss at this stage could hinder the model’s ability to learn 
complex representations. 

Following the stem, EfficientNet employs a series of Mobile Inverted Bottleneck 
Convolution (MBConv) blocks, which are the core computational units of the architecture. 
These blocks are adapted from the MobileNetV2 architecture and are specifically designed 
to maximize efficiency without compromising representational power. An MBConv block 
comprises several stages: 

1. Expansion Phase: A 1×1 pointwise convolution is used to expand the input feature map 
to a higher dimensional space, allowing the model to learn richer representations. 

2. Depthwise Convolution: A lightweight convolution is applied to each channel 
independently using a 3×3 or 5×5 kernel. This reduces computational complexity 
compared to standard convolutions, as it avoids inter-channel mixing at this stage. 

3. Squeeze-and-Excitation (SE) Module (optional but common in EfficientNet): 
This module adaptively recalibrates channel-wise feature responses by modeling 
interdependencies between channels. This technique is called attention mechanism and 
helps the network focus on the most informative features. 

4. Projection Phase: Another 1×1 convolution projects the expanded features back to a 
lower-dimensional space, effectively acting as a bottleneck. 

5. Residual (Skip) Connection: If the input and output dimensions match, a skip 
connection is added, allowing the input to bypass the block. This facilitates gradient 
flow during backpropagation and improves training stability. 

The “inverted bottleneck” terminology branches from the architecture’s design, which 
first expands the number of channels (in contrast to traditional bottleneck designs that 
compress first), processes the data with a depth wise convolution, and then projects it back 
to a lower dimension. This inverted structure enhances information flow and computational 
efficiency. 

By stacking these MBConv blocks in varying numbers and configurations depending 
on the specific EfficientNet variant (e.g., B0 to B7), the network can achieve a desirable 
trade-off between accuracy and resource usage. The architecture is the result of neural 
architecture search (NAS), which systematically optimized the placement and 
configuration of these blocks to maximize performance on benchmark datasets. 

In summary, the stem layer initiates the feature extraction process with an efficient 
and compact representation of the input, while the MBConv blocks drive the deeper 
learning and abstraction of complex patterns. Together, they form the architectural 
backbone of EfficientNet, enabling it to achieve state-of-the-art results in image 
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classification tasks with remarkable efficiency, making it highly suitable for deployment 
in resource-constrained environments. 

 

Figure 4.22: EfficientNet-b0 architecture 

4.4.4 Experimental evaluation of three Individual CNN models for 

microcalcifications 

Before evaluating the performance of our proposed ensemble models, it is essential to 
first assess each individual model independently using the CBIS-DDSM dataset. This step 
ensures a clear understanding of how each backbone, such as ResNet, DenseNet, and 
EfficientNet, performs on its own in the context of automatic diagnosis of 
microcalcifications. Testing the models separately allows us to identify their respective 
strengths and weaknesses, provides a performance baseline, and justifies their inclusion in 
the ensemble. By establishing the individual capabilities of each architecture, we can better 
interpret the contribution of each model to the final ensemble and validate whether the 
ensemble strategy offers meaningful performance improvements over single-model 
baselines.  
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Figure 4.23: Confusion matrix and ROC curve of ResnNet18, DenseNet-121, and 
EfficientNet-b0 

In medical applications, the selection of evaluation metrics is critical, as it directly 
impacts diagnostic reliability and clinical decision-making. The trade-off between false 
negatives (missed diagnoses) and false positives (unnecessary follow-ups or interventions) 
must be carefully balanced to optimize patient outcomes. Sensitivity (Recall) is particularly 
vital in cases where missing a positive diagnosis could lead to severe consequences, such 
as delayed cancer detection. Conversely, specificity ensures that healthy patients are not 
incorrectly classified as having a disease, thereby reducing unnecessary anxiety, additional 
testing, and overtreatment. 

Model Accuracy Specificity Sensitivity AUC 

ResNet-50 60.9% 56.0% 69.7% 0.72 

DenseNet-121 65.2% 98.0% 5.5% 0.68 

EfficientNet-B0 80.8% 65.9% 94.6% 0.90 

Table 4.2: Performance of base-models 
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The results of the experiments presented in Table 4.2 and illustrated with confusion matrix 
and ROC curve in Figure 4.23, reveal significant performance differences among the three deep 
learning models, ResNet-50, DenseNet-121, and EfficientNet-B0, when trained without any 
augmentation or oversampling on the CBIS-DDSM dataset. ResNet-50 achieved a moderate 
overall accuracy of 60.9%, with a balanced sensitivity of 69.7% and specificity of 56%. This 
indicates that ResNet-50 is relatively incapable of detecting benign and malignant cases. On 
the other hand, DenseNet-121 showed high specificity (98.0%) but an extremely low sensitivity 
of only 5.45%, which means it accurately identified most benign cases but failed to detect 
malignant ones. Such behavior suggests a strong bias toward the majority class, likely caused 
by class imbalance or insufficient feature learning. In contrast, EfficientNet-B0 outperformed 
both models by a wide margin, achieving an impressive accuracy of 80.43%, with high 
sensitivity (92.73%) and low specificity (65.9%). It demonstrated strong performance in 
identifying malignant lesions but with high number false negative cases. 

The results obtained from these experiments will serve as a baseline for evaluating the 
performance of the two proposed ensemble models, which are detailed in Sections 4.5 and 4.6. 
By comparing the individual CNN models with the ensemble approaches, we aim to assess the 
extent to which model integration improves diagnostic accuracy, robustness, and generalization 
in the automatic diagnosis of microcalcifications.  

4.5 Proposed stacked generalization strategy  

Stacking, or stacked generalization, involves training several distinct base models on 
the same dataset. The predictions generated by these base models are then passed to a meta-
learner or meta-model [155]. The meta-learner is essential in determining the optimal way 
to combine the outputs of the base models, analyzing the patterns in their predictions and 
adjusting the weights accordingly. By learning from the strengths and weaknesses of each 
individual base model, the meta-learner is able to produce a more accurate final prediction. 

 

Figure 4.24: Composition of the proposed stacking system, composed of EfficientNet-
b0, DenseNet-121 and ResNet-50 models and optimized meta learner. 

In this section we introduce an ensemble learning system using stacking technique. 
ResNet-50, DenseNet-121, and EfficientNet-B0 models, are trained on the dataset to 
generate predictions. Subsequently, a meta-learner is proposed to integrate the outputs of 
each base model, resulting in a final prediction. Figure 4.24 illustrates the composition of 
the proposed model. 
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4.5.1 Description of stacking model architecture

The proposed ensemble architecture integrates three state-of-the-art pre-trained 
convolutional neural networks ResNet-50, DenseNet-121, and EfficientNet-B0, to 
capitalize on their complementary strengths and enhance the classification of 
microcalcifications. Each of these models is individually fine-tuned for the specific task 
by adapting their classification heads to output predictions across two target classes: 
benign and malignant. Rather than relying on the decision of a single model, this ensemble 
strategy seeks to aggregate multiple perspectives to improve performance. 

Following individual inference, the output logits from each model, each consisting of 
a two-dimensional vector representing the class scores are concatenated to form a unified 
feature vector of size 6 (i.e., 2 outputs × 3 models). This merged feature representation 
serves as the input to a meta-learner, which is responsible for synthesizing the predictions 
and producing a final, refined classification. 

The meta-learner functions as a high-capacity decision-making layer designed to 
model the complex interactions and dependencies among the outputs of the base models. 
Architecturally as illustrated in Figure 4.25, it is implemented as a multilayer perceptron. 
The first layer is a fully connected (Linear) layer with 256 hidden units, which projects the 
6-dimensional input to a higher-dimensional feature space. This is followed by a ReLU 
activation function to introduce non-linearity, enabling the model to learn complex 
relationships between features. 

To further stabilize and accelerate the training process, Batch Normalization 
(BatchNorm1d) is applied after the activation, normalizing the activations and reducing 
internal covariate shift. To mitigate overfitting, a Dropout layer with a probabili ty of 0.5 
is employed, randomly deactivating neurons during training and encouraging the network 
to learn more robust representations. 

 

Figure 4.25: Architecture of the proposed stacking model with Meta-learner. 

Subsequently, a second Linear layer with 128 hidden units is introduced, again 
followed by ReLU activation and Batch Normalization. This intermediate layer allows the 
model to refine its understanding of the latent patterns embedded within the combined 
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predictions. Finally, the meta-learner concludes with a Linear output layer that maps the 
128-dimensional feature space to a 2-dimensional output corresponding to the two classes. 
A Softmax activation function is applied to convert the raw scores into normalized class 
probabilities, enabling probabilistic interpretation of the final prediction.  

4.5.2 Experiments 

The experiments in this study were conducted within the Kaggle environment, a cloud-
based platform that offers powerful GPU support and an accessible interface for data 
science and machine learning tasks. Kaggle provides pre-configured environments with 
popular libraries, making it an ideal choice for deep learning research and experimentation. 
The implementation of deep learning models was carried out using PyTorch, a widely used 
open-source deep learning framework known for its dynamic computation graph, ease of 
debugging, and strong community support. In addition to PyTorch, several auxiliary 
libraries were utilized to streamline the development process, including Torchvision for 
handling image transformations and pretrained models, Pandas for data manipulation, 
NumPy for numerical operations, Matplotlib and Seaborn for data visualization, and Scikit -
learn for evaluation metrics and data splitting. This robust combination of tools facilitated 
efficient model training, evaluation, and experimentation in a reproducible and scalable 
manner. 

Given the importance of early and accurate diagnosis, accuracy alone is insufficient as 
a standalone metric in medical applications. A high accuracy may still conceal imbalances 
in sensitivity or specificity, which could lead to clinically significant errors. For instance, 
a model with high accuracy but low sensitivity may fail to detect a significant number of 
malignant cases, compromising patient safety. Similarly, a model with low specificity may 
trigger an excess of false positives, increasing the burden on healthcare systems and 
causing patient distress. Thus, sensitivity and specificity must always be evaluated 
alongside accuracy to ensure that the model performs reliably in a real-world clinical 
setting. 

In this experiments, the model's performance is evaluated using accuracy, sensitivity, 
specificity, precision, and the F1-score to provide a comprehensive assessment of its 
classification ability. The confusion matrix (Figure 4.26) highlights the model’s 
effectiveness in distinguishing malignant from benign cases, achieving a high overall 
accuracy of 92.04%. The model correctly classifies 146 malignant cases (true positives) 
and 282 benign cases (true negatives), while 18 benign cases were misclassified as 
malignant (false positives) and 19 malignant cases were misclassified as benign (false 
negatives). The precision for malignant cases is 94%, meaning that among all cases 
classified as malignant, the majority are indeed malignant, minimizing the risk of 
unnecessary interventions. Unexpectedly, the model achieves a low recall (sensitivity) of 
88.48% (False negative) that means 18 malignant images were classified as benign, 
necessitating the introduction of attention mechanisms or weighted samples to make 
models focus more on malignant samples. The specificity of 94% further confirms that the 
meta-learner effectively identifies benign cases, minimizing false positives. The F1-score 
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of 95.48% reinforces the model’s ability to maintain a balance between precision and 
recall, ensuring reliable classification across both classes.  

Model Accuracy Specificity Sensitivity AUC 

Our Proposed Stacking system 92.04% 94.00% 88.48% 0,97 

ResNet-50 60.90% 56.00% 69.70% 0.72 

DenseNet-121 65.20% 98.00% 5.50% 0.68 

EfficientNet-B0 80.80% 65.9% 94.6% 0.90 

Table 4.3: Comparison between the proposed stacking system and individual base-
models performances. 

The results presented in the Table 4.3 demonstrate the superior performance of the 
proposed stacking ensemble model compared to the individual CNN models. The stacking 
system achieved the highest accuracy (92.04%) and AUC (0.97), indicating strong overall 
classification performance and excellent discriminative capability. While EfficientNet -B0 
showed relatively high sensitivity (94.6%), its lower specificity (65.9%) suggests a 
tendency to produce more false positives. Conversely, DenseNet-121 achieved very high 
specificity (98.0%) but extremely low sensitivity (5.5%), making it unsuitable for detecting 
true positive cases. ResNet-50 showed more balanced but modest performance across all 
metrics. These results highlight that the ensemble model effectively combines the strengths 
of individual networks, resulting in better performance in diagnosing microcalcifications 

 

Figure 4.26: Confusion matrix and ROC Curve of the Stacking Ensemble model 
proposed with optimal Meta Learner. 

Further performance validation is provided by the Receiver Operating Characteristic 
(ROC) curve (Figure 4.26), which plots the true positive rate (sensitivity) against the false 
positive rate (1 – specificity) at different classification thresholds. The model achieves an 
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Area Under the Curve (AUC) of 0.97, indicating exceptional discriminatory ability 
between benign and malignant cases. An AUC close to 1 signifies that the model is capable 
of achieving high sensitivity while maintaining minimal false positives, a key requirement 
in medical diagnostics. The steep initial rise of the ROC curve further confirms that the 
model rapidly captures positive cases with minimal error, reinforcing its clinical viability 
for automated microcalcification detection. Overall, these results highlight the robustness 
and reliability of the proposed meta learner, making it a valuable decision-support tool in 
radiology and breast cancer screening.  

Authors Dataset Models Acc Spec Sens Auc 

Our Proposed 

Stacking Model 

CBIS-DDSM ResNet-50, EfficientNet-

B0, and DenseNet-121 

92,04 94,00 88,48 0,97 

Kang et al. [157] DDSM ResNet-101, Xception, 
Inception-v3, 

InceptionResNet-v2, and 
DenseNet-201, alongside an 

ensemble model for 
classification 

81,54 91,41 82,47 0,85 

Gerbasi et al. [158] INbreast DeepMica 83 - - 0,89 

Singh et al. [163] CBIS-DDSM InceptionResNetV2, 
experimented with four 

optimizers (ADAM, 
ADAGrad, ADADelta, 

RMSProp) 

94 80 97 0.96 

Cai et al. [155] INbreast DCNN 83.7 - 90 0,94 

Teoh et al. [160] DDSM-MIAS AlexNet, GoogLeNet, 
VGG16, and ResNet-50 

93.05 - - - 

Kumar et al. [171] CBIS-DDSM Inception and ResNetV2 94  97 96 

Rehman et al. 
[172] 

CBIS-DDSM FC-DSCNN with the 
DCNN 

90 82 99 - 

Chen et al. [173] DDSM Mammogram classification 
using fine-tuning of ResNet 

- - 93.83 - 

Young et al. [174] Private EfficientNet and DenseNet 95 87 88 - 

Table 4.4: Comparison between proposed model and some previous works.  

As presented in Table 4.4, the superior performance of the proposed model is largely 
attributed to the adoption of an ensemble learning strategy, which integrates the strengths 
of three state-of-the-art convolutional neural network architectures: ResNet-50, 
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EfficientNet-B0, and DenseNet-121, in conjunction with a meta-learner. This architectural 
design allows the model to exploit complementary features learned by the individual base 
models, leading to enhanced feature representation, improved generalization, and 
increased classification accuracy. The resulting ensemble model demonstrates exceptional 
performance, achieving an accuracy of 92.04% with 94% of specificity, an Area Under the 
Curve (AUC) of 0.97, and a sensitivity of 88.48%, clearly outperforming more 
conventional approaches such as those proposed by Kang et al. and Gerbasi et al. in the 
domain of microcalcification classification. 

An innovative aspect of this ensemble framework is the use of a Fully connected layers 
within the meta-learner, which, although less common in scenarios where the inputs are 
soft predictions rather than spatial data, offers notable advantages. Traditional Fully 
connected layers are designed to capture spatial patterns in data such as images; however, 
in this context, meta learner operations are leveraged to detect local dependencies and 
correlations among the predictions of the base models. These base models may exhibit 
similar error patterns under specific conditions, suggesting that their outputs are not 
entirely independent. By applying multilayer perceptron over the concatenated predictions, 
the meta-learner is able to capture structured relationships and contextual patterns among 
the outputs, thereby improving its ability to assign adaptive weights to each model’s 
contribution in various input scenarios. This enables the meta-learner to dynamically 
calibrate its decision-making process, prioritizing the most reliable sources of information 
depending on the input characteristics. As a result, the integration of MLP block enhances 
the expressive capacity and discriminatory power of the meta-learner, contributing to the 
overall robustness and effectiveness of the proposed diagnostic framework.  

4.6 Proposed boosting strategy 

To address the problem of false negative and false positive rates in classification of 
microcalcifications, boosting strategy is used and evaluated. As explained before in this 
chapter (see 3.2) Boosting is an ensemble learning strategy designed to transform a 
collection of weak learners into a single, strong predictive model by training them 
sequentially [178]. When applied to ResNet, DenseNet and EfficientNet, a boosting learner 
constructs multiple CNN models where each successive network is trained to correct the 
errors made by its predecessors. In our context we will focus more on malignant cases to 
increase sensitivity. Instead of treating all models equally, the boosting process accentuates 
instances that were misclassified in previous iterations, allowing subsequent base-models 
to focus more effectively on difficult cases. By progressively refining the learning process 
and combining the outputs of all models, the ensemble achieves improved generalization 
and enhanced predictive accuracy. This approach leverages the representational power of 
CNNs while systematically reducing bias and variance through focused, iterative learning. 

4.6.1 Boosting algorithms in the literature  

The training method varies depending on the type of boosting process, known as the 
boosting algorithm. However, an algorithm generally follows these steps to train the boosting 
model: 
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[1] Step 1 

The boosting algorithm assigns an equal weight to each data sample. It feeds the data into 
the first machine learning model, known as the base learner. The base learner makes 
predictions for each data sample. 

[2] Step 2 

The boosting algorithm evaluates the model’s predictions and increases the weight of 
samples with higher prediction errors. It also assigns a weight based on the model’s 
performance. A model that produces highly accurate predictions will have a greater 
influence on the final decision. 

[3] Step 3 

The algorithm passes the reweighted data to the next model (or base learner). 

[4] Step 4 

The algorithm repeats steps 2 and 3 until the training error falls below a certain threshold. 

Different algorithms were developed for boosting ensemble learning, each with its own 
strategy for improving model performance by focusing on difficult samples. Classical 
methods such as AdaBoost adjust sample weights based on misclassifications, highlighting 
hard-to-classify examples in subsequent iterations. Gradient Boosting takes a different 
approach by training models sequentially to correct the residual errors of the previous 
models. Other advanced techniques like XGBoost, LightGBM, and CatBoost introduce 
additional improvements such as regularization, tree pruning, and optimized handling of 
categorical variables [182, 183]. These algorithms demonstrate the flexibility and power 
of boosting frameworks to adapt to a wide range of tasks. In the next section AdaBoost, 
Gradient Boost and XGBoost will be detailed 

4.6.1.1 Adaptive Boosting (AdaBoost) 

Adaptive Boosting (AdaBoost) is one of the earliest boosting models developed. It adapts 
and attempts to self-correct at each iteration of the boosting process [179]. 

Initially, AdaBoost assigns equal weights to all data samples. After each base learner, it 
automatically adjusts the weights of the data points. Samples that are misclassified are given 
more weight to correct them in the next round. This process is repeated until the residual error, 
the difference between the true and predicted values falls below an acceptable threshold. 

AdaBoost can be used with many types of predictors and is generally less sensitive to noise 
compared to some other boosting algorithms. However, it may perform poorly when there is 
high feature correlation or high data dimensionality. Overall, AdaBoost is well-suited for 
classification problems. 

4.6.1.2 Gradient Boosting (GB) 

Gradient Boosting (GB), also called Gradient Boosted Machines, is similar to AdaBoost in 
that it also relies on a sequential training technique. However, the key difference is that GB 
does not explicitly increase the weight of misclassified points. Instead, GB optimizes a 
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differentiable loss function by training new base learners sequentially, each one attempting to 
correct the errors (residuals) of its predecessor [180]. 

Rather than adjusting weights, GB fits each new model to the residual errors of the 
combined previous models. This strategy aims to generate accurate results from the beginning, 
instead of correcting errors as in AdaBoost. As a result, GB can produce highly accurate models. 
Gradient Boosting can be used for both classification and regression problems. 

4.6.1.3 Extreme Gradient Boosting (XGBoost) 

Extreme Gradient Boosting (XGBoost) improves Gradient Boosting in terms of 
computational speed and scalability. XGBoost utilizes multiple CPU cores to enable 
parallel learning during training. It is capable of handling very large datasets, making it 
particularly attractive for big data applications [181]. 

XGBoost increases performance through several techniques, including parallelization, 
distributed computing, cache optimization, and out-of-core processing (handling data too 
large to fit into memory). These improvements make XGBoost one of the fastest and most 
scalable boosting algorithms available. 

4.6.2 Proposed CSB-EWA boosting algorithm  

In this section a new boosting algorithm named Cost-Sensitive Boosting with Error 
Weighted Adjustments (CSB-EWA) is proposed to address the problem of false positive 
and false negative rate when base-models were tested in section 4.4.4 of this chapter. In 
traditional AdaBoost, the weight update for each sample is based on whether the sample is 
correctly classified or misclassified. However, in this proposition, the algorithm adapts this 
weight update to prioritize different types of errors based on the False Positive Rate (FPR) 
and False Negative Rate (FNR). This is especially useful in contexts like medical images 
classification, where the cost of false negatives (missed diseases) and false positives 
(wrongly diagnosing a disease) are not equal. By this algorithm we aim to create an 
ensemble learning capable to well predict malignant microcalcifications. In fact, the three 
models used in this study act differently with CBIS-DDSM dataset as presented in Table 
4.2, DenseNet-121 has very high specificity (98.00%) but very low sensitivity with 5.45%, 
in the other hand EfficientNet-b0 predict malignant cases with high rate (Sensitivity of 
92.73%) but struggle with benign images. To overcome this problem the proposed 
algorithm, adjust samples weight’s according to false positive rate and false negative rate 
of each model to increase the performances. The CSB-EWA boosting algorithm illustrated 
in Figure 4.27 is processed as follows: 

1- Initial Weight Assignment: Initially, all samples are given equal weights, typically 

set to 𝑤𝑖 = 1𝑁, where N is the total number of samples. These weights are updated after 

each iteration to focus more on difficult or misclassified samples.  

2- Training the Base Learner: Base-models or classifiers are trained on the weighted 
dataset, and predictions ht(x) are made for each sample. The base learner’s accuracy, 
sensitivity and specificity are evaluated, and the weighted error rate is calculated. 
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These rates measure how well the model is handling misclassifications, focusing on 
positive and negative errors, respectively. 

3- Calculate the Misclassification Error (Base Learner Error): 

The base learner error ϵt is the weighted error of the classifier for each iteration t, 
where the weights of misclassified samples are considered. It is computed as:  𝜖𝑡 =  ∑ 𝑤𝑖 ∗ 𝐼(𝑦𝑖 ≠ �̂�𝑖)𝑛𝑖=1 ∑ 𝑤𝑖𝑛𝑖=1  

where: 

- wi is the weight of sample i. 

- yi is the true label of sample i. 

- �̂�𝑖 is the predicted label of sample i. 

- I(⋅) is an indicator function that is 1 if the condition is true (i.e., misclassification) and 
0 otherwise. 

4- Adjust Penalties (λ) Based on FPR and FNR: The penalties λFP and λFN are adjusted 
based on the FPR and FNR to focus more on the types of errors that are higher in the 
classifier's performance: 

- λFN=1+γ⋅FNR 

-  λFP=1+γ⋅FPR  

- Here, γ (gamma) is a scaling factor that controls how much influence FPR and FNR 
have on the penalty adjustment (e.g., γ=2 or 3 or 5). 

5- Adjust the Weight Update: Instead of updating weights uniformly based on 
misclassification alone as done by AdaBoost, the weight update is adjusted based on 
the FPR and FNR. If the FNR is high (i.e., the model is missing a significant number 
of positive cases), the weights for false negatives are increased more significantly to 
force the model to focus more on correcting these errors in the next iteration. Similarly, 
if the FPR is high (i.e., the model is wrongly classifying too many negatives as 
positives), the weights for false positives are adjusted accordingly. This dynamic 
adjustment ensures that the algorithm prioritizes the errors that matter more for the 
problem of microcalcifications, such as reducing false negatives in medical image 
classification. The weight error wi(t+1) for sample i after the t-th base learner is 
updated using the error, as follows: 

For False Negatives (FN): If the sample is a false negative (i.e., predicted negative 
but actual positive), the weight is updated based on the FN penalty: 𝑤𝑖(t + 1) = 𝑤𝑖(𝑡)𝑒(𝜆𝐹𝑁.𝛼𝑡) 
where αt is the weight of the base learner at iteration t, typically computed using: 𝛼𝑡 = 12 ln(1 − 𝜖𝑡𝜖𝑡 ) 
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For False Positives (FP): If the sample is a false positive (i.e., predicted positive but 
actual negative), the weight is updated based on the FP penalty: 𝑤𝑖(t + 1) = 𝑤𝑖(𝑡)𝑒(𝜆𝐹𝑃.𝛼𝑡) 
For Correctly Classified Samples: If the sample is correctly classified, its weight is 
updated with a negative exponential factor: 𝑤𝑖(t + 1) = 𝑤𝑖(𝑡)𝑒(−𝛼𝑡) 
Normalization: of all weights so the sum of wi=1 

6- Go to step 2 

7- Final Prediction in CSB-EWA: After training all base-models, for each sample the 
final prediction H(x) is computed as: 

𝐻(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑡ℎ𝑡(𝑥)𝑇
𝑡=1 ) 

Where : 

- ht is the prediction of the t-th base model (usually outputs +1 or −1), 

- αt is the importance weight of the t-th model (depends on FPR, FNR, error, etc.), 

- The sign function returns +1 if the weighted sum is positive, −1 otherwise. 
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Figure 4.27: Algorithm diagram of Cost-Sensitive Boosting with Error Weighted 
Adjustments. 

CSB-EWA algorithm is integrated into ensemble learning system to improve the 
classification of microcalcifications. Initially, all training samples are assigned equal 
weights. The first base learner, ResNet-50, is trained using these weights, and its 
performance is evaluated to calculate a weighted misclassification error  or 𝜖𝑡 . Based on 
the classifier's FPR and FNR, penalty terms (λFP and λFN) are calculated using a scaling 
factor γ to emphasize the correction of more critical errors , particularly false negatives. 
Weights of misclassified samples are then updated accordingly: false negatives and false 
positives receive exponentially increased weights proportional to their penalties, while 
correctly classified samples are penalized less. The updated weights are normalized and 
passed to the second base learner, DenseNet-121, and subsequently to the third model 
EfficientNet-B0. After the three models are trained, final predictions are made using a 
weighted majority vote, where each model's prediction is scaled by its individual 
performance (αt). This adaptive strategy ensures that the ensemble focuses on minimizing 
clinically significant misclassifications. As illustrated in Figure 4.28 CSB-EWA algorithm 
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orchestrates the entire system of ensemble learning, from the weights initialization to final 
predictions. 

 

Figure 4.28: Boosting ensemble learning system using CSB-EWA algorithm. 

4.6.3 Experiments and results 

To evaluate the performance of the proposed CSB-EWA (Cost Sensitive Boosting with 
Error Weighted Adjustments) algorithm, we conducted extensive experiments on the 
CBIS-DDSM dataset. The dataset contains annotated mammography images categorized 
into benign and malignant classes. The input images are resized to 224×224 pixels to 
maintain a balance between computational efficiency and model performance. A size of 
224×224 is a common choice in deep learning, especially for pre-trained models like 
ResNet, DenseNet, and EfficientNet, which are designed to accept this input dimension as 
most of the architectures were trained on datasets like ImageNet, where images are also 
224×224. This resolution is large enough to preserve significant features  like tiny calcium 
deposits of calcifications. Given the training setup with the Adam optimizer, learning rate 
of 1×10⁻⁴, cross-entropy loss, a batch size of 16, and 30 epochs on an NVIDIA Tesla P100 
GPU (Kaggle Environment). We adopted a fixed train-test split strategy, dividing the 
dataset into 70% training and 30% testing using stratified sampling to preserve class 
distributions. The test set remained completely unseen during training.  The Class 
distribution of dataset are detailed in section 4.2 of this chapter.  

Base Model Number of 

Layers 

Number of 

Parameters 

Feature Vector Size 

(Output) 

ResNet-50 50 ~25.6 million 2048 (for a 224×224 input) 

DenseNet-121 121 ~8.0 million 1024 (for a 224×224 input) 

EfficientNet-B0 82 ~5.3 million 1280 (for a 224×224 input) 

Table 4.5: Different characteristics of models used in our experimentation. 
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The table presents a comparative overview of the three base CNN architectures 
employed in this study, ResNet-50, DenseNet-121, and EfficientNet-B0, highlighting their 
structural complexity and output characteristics. ResNet-50, with 50 layers and 
approximately 25.6 million parameters, is the most computationally intensive model, 
producing a 2048-dimensional feature vector. DenseNet-121, while deeper in terms of 
layer count (121 layers), is more parameter-efficient with around 8 million parameters, 
yielding a 1024-dimensional output. EfficientNet-B0 offers a balanced architecture with 
around 82 layers and only 5.3 million parameters, yet produces a high-dimensional 1280-
feature output due to its compound scaling strategy. These differences il lustrate the trade-
offs between model depth, parameter efficiency, and representational capacity, which are 
leveraged in the ensemble to capture diverse and complementary feature representations.  

In our boosting models, learning is carried out iteratively, where each new model is 
trained to correct the mistakes of the previous one. Initially, all samples are weighted 
equally, and a base model is trained on the dataset. After each iteration, misclassified 
samples receive higher weights, making them more influential in the next round. In the 
CSB-EWA strategy, base learners, ResNet101, DenseNet-121, and EfficientNetB7, are 
trained sequentially with the parameters summarized in Table 4.4. The weighted error rate 
is computed for each base learner, and penalties for false positives (FPR) and false 
negatives (FNR) are dynamically adjusted using scaling factors (λFP and λFN). These 
penalties are incorporated into a refined weight update formula, ensuring the model focuses 
more on critical misclassifications, such as false negatives, which are particularly 
important in medical image analysis like microcalcifications. After training, the final 
ensemble prediction is obtained through a weighted sum of the individual models' outputs, 
with the sign function used to assign the final class label. 

 

 

Figure 4.29:Results obtained with first scenario: Boosting of the ensemble learning using 
Adaboost. 
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Figure 4.30: Results obtained with second scenario: Boosting of the ensemble learning 
using Gradient Boost. 

 

Figure 4.31: Results obtained with third scenario: Boosting of the ensemble learning 
using proposed CSB-EWA algorithm. 

To evaluate the effectiveness of the CSB-EWA approach, three scenarios was tested 
and compared using classical boosting techniques, AdaBoost and Gradient Boosting. The 
results are summarized in Table 4.5, with confusion matrices and ROC curves presented 
in Figures 4.29, 4.30, and 4.31.  

The first scenario used Adaboost algorithm to test the ensemble learning using ResNet-
50, DenseNet-121 and EffcientNet-b0. In this experiments sensitivity is improved to 
96.97% but compromised specificity at 61%. Adaboost algorithm could not decrease false 
positive and false negative rates in same time. The main reason is that Adaboost adjust all 
misclassified samples with same weights rather than false negative or false positive 
samples. In imbalanced dataset like CBIS-DDSM these adjustments push models to focus 
more on dominant class, whatever they are misclassified as false negative or false positive, 
do the necessity to make relative adjustments as proposed in CSB-EWA algorithm. 

The second scenario in these experiments use Gradient Boosting in the ensemble 
system. Contrary to Adaboost Gradient Boost improved sensitivity to 92,12% and perform 
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better then Adaboost with 80.75% accuracy and a 0.92 AUC. But specificity still low with 
74,67%. In a binary classification task like our problematic, each sample is associated with 
a predicted probability representing the likelihood of belonging to the positive class. 
Gradient Boost evaluates how far each prediction deviates from the actual class label (0 or 
1), and these differences are used to compute the residuals or pseudo-residuals. These 
residuals reflect the errors of the current model and guide the training of the next learner, 
which is specifically designed to correct these mistakes. In this way, the algorithm 
implicitly prioritizes samples with larger errors, allowing the model to focus on harder 
cases. With each iteration, the overall prediction is updated, gradually minimizing the loss 
function and improving the model's accuracy. The loss function is not representative metric 
in our context where sensitivity and specificity are the most significant.  The results 
obtained with Gradient boost demonstrated our hypothesis that an ensemble learning using 
boosting strategy in the context of breast cancer must focus on false positive and false 
negative samples. 

 In the third scenario, the CSB-EWA algorithm is applied for the ensemble learning 
system, and significantly outperformed all others, achieving 92.69% accuracy, 94.33% 
specificity, 89.70% sensitivity, and an AUC of 0.98. This superior performance is largely 
due to the dynamic adjustment of sample weights based on FPR and FNR, allowing the 
model to prioritize correction of the most critical errors. In Figure 4.32 clarified that CSB-
EWA achieved a much better balance between sensitivity and specificity, making it the 
most effective and balanced method compared to the traditional boosting approaches.  

  
Accuracy 

% 

Specificity 

% 

Sensitivity 

% 

Precision 

% 

F1-Score 

% AUC 

ResNet-50 60,86 56,00 69,69 46,52 55,81 0,72 

DenseNet-121 65,16 98,00 5,45 60,00 10,00 0,68 

EfficientNet-b0 80,43 73,67 92,73 65,95 77,10 0,90 

AdaBoost 73,76 61,00 96,97 57,76 72,40 0,93 
Gradient Boost 80,75 74,67 92,12 66,67 77,34 0,92 
Proposed CSB-

EWA 
92,69 94,33 89,70 89,70 89,70 0,98 

Table 4.6: Summary of all metrics and results obtained in experiments process. 

The high performance of ensemble learning using CSB-EWA boosting algorithm is 
due to the separation between false positive and false negative samples after training of 
each model. Compared to Adaboost that use same weights for all misclassified samples.  

More sensitivity is low, meaning high false negative number of samples (High false 
negative rate). CSB-EWA will attribute high weights to these samples using penalty 
λFN=1+γ⋅FNR with γ fixed to 2. High value of γ give more influence to false negative and false 
positive penalties and increase more weights samples. These weights adjustments make next 
learner in the ensemble concentrate more on false negative samples to increase sensitivity 
if sensitivity is low and focus more on false positive samples if specificity is low. This 
approach makes the system converge to a balanced performance between specificity and 
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sensitivity. This balancing was impossible to achieve using individual models or boosting 
using Adaboost or Gradient Boost as shown in Figure 4.32.  

 

Figure 4.32: Histogram of metrics obtained with three scenarios and compared with 
performance of base-models ResNet-50, DenseNet-121 and EfficientNet-b0. 

5. Conclusion 

This chapter commenced with a comprehensive overview of deep learning principles 
and a review of recent literature focusing on its applications in medical imaging, 
particularly in the detection and classification of microcalcifications. Building on this 
foundation, we introduced a robust ensemble model designed to support radiologists in the 
accurate differentiation of malignant from benign microcalcifications. The proposed 
ensemble model integrates three high-performing convolutional neural networks; ResNet-
50, EfficientNet-B0, and DenseNet-121. In the first proposed ensemble learning the 
outputs of base-models are combined via a meta-learner specifically designed to refine 
final predictions. Unlike conventional ensemble strategies, the meta-learner in our 
approach incorporates convolutional blocks, allowing it to capture inter -model 
dependencies and learn more discriminative representations. The model was evaluated on 
the CBIS-DDSM dataset, achieving outstanding results with an accuracy of 92.04%, AUC 
of 0.98, specificity of 94%, and sensitivity of 88.48%.  Boosting is a very effective strategy 
used in ensemble learning. In context of breast cancer, generalization of common 
techniques may not perform as expected. To achieve high performance classification of 
microcalcifications, another contribution was presented in this chapter with new boosting 
algorithm named Cost-Sensitive Boosting with Error Weighted Adjustments (CSB-EWA). 
The main idea was to increase sensitivity and specificity of models with weight samples 
adjustments based on false positive and false negative rate. These results not only 
demonstrate the model's consistency and robustness in clinical scenarios but also 
emphasize its potential to reduce false negatives and unnecessary follow-ups. The chapter 
concludes by highlighting the effectiveness of ensemble learning in medical image 
classification and suggesting further improvements through extended datasets and 
architectural refinements. Also, the problem of complexity should be addressed using less 
complicated CNNs models to reduce time execution and possibility to deployed such 
solutions in embedded systems like smart phones. 
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6. Conclusion and Perspectives 

 

 

 

Our thesis addressed the problem of feature extraction and classification for automatic 
breast cancer diagnosis. Breast cancer represents a major public health concern due to its high 
prevalence and significant impact on mortality worldwide. Early detection and diagnosis of 
breast cancer became key procedures for improving patient health, as they significantly increase 
the chances of successful treatment and long-term survival. Identifying the disease at an early 
stage allows for less aggressive therapies, reduces the risk of metastasis, and lowers treatment 
costs. Breast imaging modalities such as mammography, ultrasound, MRI, and advanced 
techniques like MBI and PET play a critical role in the early detection and diagnosis of breast 
cancer. However, interpreting these images can be challenging for radiologists due to the 
complexity of breast tissue, the subtlety of early signs like masses and microcalcifications, and 
variations in image quality. These difficulties can lead to missed or inaccurate diagnoses. 
Integrating CAD systems helps address these challenges by enhancing image interpretation, 
reducing human error, and supporting more accurate and consistent clinical decisions. 

Two main approaches were used in CADx systems since the emergence of artificial 
intelligence, machine learning and deep learning, each offering distinct strengths and 
weaknesses. Traditional machine learning approaches rely on handcrafted features, which can 
be effective for well-defined patterns but often struggle with complex or subtle variations in 
medical images, often limiting their generalizability across diverse datasets. 

Features extraction represent a very important step in CADx systems process. In fact, high 
quality of features affects the accuracy and efficiency of the entire system. In this thesis, our 
first contribution addresses the problem of description of spiculated masses which represents a 
high risk of malignancy. In the literature many descriptors have been designed and performs 
well in describing normal masses but fails considerably against irregular masses and specially 
with high spicules. We have remarqued that most of techniques and descriptors describe the 
whole mass, however, radiologists focus on the irregularities and spiculated parts of masses.  

Our first contribution in this thesis, consist in proposing a novel descriptor named PATAR 
(Polygon Approximation Triangle-Area Representation). PATAR focused on separating 
spiculations formed by concave and convex spaces from the center of masses, then, measure 
their degree of malignancy. First, to isolate these sharp lines, a geometric transformation 
(Polygon Approximation) is applied to enhance important irregularities in contour and ignore 
small variations and simplify the contour form. The Ramer-Douglas-Peucker (RDP) algorithm 
was employed to perform polygon approximation on masses. The RDP method is based on the 
perpendicular distance calculated on the endpoints of a curve (contour in this case), using 
predefined tolerance parameter ε. The degree of approximation is controlled by ε, and optimal 
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value get to a representative approximation and preserves essential shape characteristics. To 
well estimate and measure spicules isolated with RDP algorithm, Traingle-Area Representation 
(TAR Signature) is used to quantify the degree of malignancy of masses by measuring the area 
of spiculations. Then, creating a vector of features to perform classification. Three classifiers 
are used, SVM, Random Forest and Fuzzy C-Means to classify CBIS-DDM dataset using 1545 
images. The high accuracy obtained prove the success of the strategy adopted that consist on 
isolate, extract and measure spicules to identify malignant masses. 

Convolutional Neural Networks (CNNs), as one of the most successful deep learning 
models, have gained a prominent place in the field of computer vision due to their exceptional 
ability to automatically extract and learn spatial features from image data. CNNs network 
combined with Ensemble Learning techniques such as Stacking (Stacked Generalization) can 
improve significantly the performance of CADx systems. Staking technique use meta-learner 
(also called a meta-model) to combine the outputs of multiple base models and make the final 
predictions.  

The second contribution in this thesis comprise the conception of an optimal meta-learner 
using convolutional network to combine the predictions of three models, ResNet-50, DenseNet-
121 and EfficientNet-b0. Even the use of convolutional block to learn from predictions issued 
from base-models seems unusual since CNNs networks deal with spatial data like images, the 
results obtained in classification of microcalcifications demonstrate the efficiency of the 
approach. The meta-learner is capable of learning correlation between predictions and detecting 
patterns to make final decision. In addition of stacking ensemble learning, boosting strategy 
enchain models sequentially, and adjust samples weights after each iteration based on the error 
of each model and try to focus more on misclassified images by attributing more weights to 
these samples. 

The third contribution presented in this work, introduced a novel boosting algorithm to 
adjust weights based on the false positive and false negative rates. The high performance of 
CSB-EWA is due essentially to λFP and λFN penalties used to make models focus more on false 
positive and false negative samples, instead of assign same weight to all misclassified samples 
as done with AdaBoost. CSB-EWA algorithm is capable of achieving high performance with 
balance between specificity and sensitivity. ResNet-50, DenseNet-121 and EfficientNet-b0 was 
trained sequentially and CSB-EWA adjust samples weights after each model. The obtained 
results using CBIS-DDSM, proves that using ensemble learning is very benefic in complex 
tasks like classification of microcalcifications. 

As perspectives we envisage as an extension of this thesis, developing a model capable of 
surpassing the problem of generalization in breast cancer datasets. Because, in feature-based 
approaches and deep learning models, the features (e.g., shape, texture, edge sharpness) are 
optimized based on specific datasets or imaging conditions. While these features may perform 
well in controlled environments or within the dataset they were designed for. However, they 
often fail to generalize when applied to new or varied data. The problem of generalization is 
due to several reasons, like variability in imaging modalities, patient diversity. A model with 
high performance on multiples dataset, will be a huge advancement in the field of CADx 
systems.  
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Traditional machine learning models (like decision trees or logistic regression) offer 
relatively high interpretability, as their decision-making processes are often transparent. 
However, modern deep learning models, especially convolutional neural networks (CNNs), are 
often considered “black boxes” due to their complex internal representations, making it difficult 
to trace how a diagnosis was reached. This lack of transparency can encumber clinical adoption, 
reduce trust, and complicate monitoring approval. As a result, interpretability represents another 
axe of development in this thesis.  
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