People's Democratic Republic of Algeria Ministry of Higher Education and Scientific Research MUSTAPHA STAMBOULI UNIVERSITY OF MASCARA FACULTY OF SCIENCE AND TECHNOLOGY

Course handout THERMODYNAMICS II

Presented by:

Dr. SAHNOUN Rachid

This course is intended for 2nd Year/Mechanics undergraduate students

Algeria

2024

Foreword :

Thermodynamics deals with the concepts of heat and temperature and the interconversion of heat and other forms of energy. The four laws of thermodynamics govern the behaviour of these quantities and provide a quantitative description.

The thermodynamics module is a fundamental module intended for students of the second year of the mechanics degree. The objectives of this course are to teach students the techniques of heat and work production and the main technical elements used in this vast field.

Prior knowledge is recommended, mainly phase changes and thermodynamics. In the first chapter we will discuss the basic concepts of thermodynamics.

The second chapter deals with Propriety thermodynamics of substances pure. Mastering this key to understanding the change of phase.

The elements of a refrigeration machine are discussed in the third chapter such as Thermodynamics of vapors and humid air; dry air; dry temperature and relative humidity.

In the fourth and fifth chapters, we will talk about Gas Compression and gas relaxation.

The lasts chapter's deals with cycles to produced heat and cycles to produced work the reverse of the refrigeration cycle and therefore are intended for heating by a simple conversion of a reversing valve.

A large number of solved exercises finalizes this handout.

Contents

Foreword	ii
Lists of figures	iii
Introduction :	1
Chapter 1: The basic concepts of thermodynamics	2
The three principles of thermodynamics	2
Chapter 2 : Propriety thermodynamics of substances pure	4
State diagrams	4
Diagram T-S	4
Diagram P-H	4
Diagram H-S	5
Thermodynamic tables	5
Saturation property tables	5
Tables of superheated steam properties	5
Equation of state	6
Equation of state of an ideal gas	
Developments of Viriel	6
Van Der Waals equation	
Chapter 3: Thermodynamics of vapors and humid air	8
Vapor thermodynamics	8
Phase change of a pure body	8
Calculation of state variables	8
Steam quality	8
Humid Air	
Characteristics of humid air	
Chapter 4: Gas Compression	

Chapter 4: Gas Compression	12
Classification of compression machines	12
Isentropic compression	12

Polytropic compression	
Piston compressors	
Rotary positive displacement compressor (Definitions)	
Chapter 5: Gas relaxation	14
Adiabatic expansion	14
Work	14
Efficiency and power produced	
Chapter 6: Engine cycles	
Carnot Cycle	16
Otto Cycle	17
Diesel Cycle	17
Brayton Cycle	17
Steam turbines	
Rankine Cycle	
Chapter 7: Refrigeration Cycles	
Gas refrigeration cycle	
Single stage vapor compression cycle	21
Refrigerants	
Cascading cycle	
Heat pumps	
Exercises	
Solutions	
Annex	

INTRODUCTION:

Thermodynamics deals with the concepts of heat and temperature and the inter-conversion of heat and other forms of energy. The four laws of thermodynamics govern the behaviour of these quantities and provide a quantitative description.

Thermodynamics in physics is a branch that deals with heat, work and temperature, and their relation to energy, radiation and physical properties of matter.

To be specific, it explains how thermal energy is converted to or from other forms of energy and how this process affects matter. Thermal energy is the energy that comes from heat. The movement of tiny particles within an object generates this heat, and the faster these particles move, the more heat is generated.

Thermodynamics is not concerned about how and at what rate these energy transformations are carried out. It is based on the initial and final states undergoing the change. It should also be noted that Thermodynamics is a macroscopic science. This means that it deals with the bulk system and does not deal with the molecular constitution of matter.

CHAPTER I

Chapter1: The basic concepts of thermodynamics

1.1 The basic concepts of thermodynamics :

1.1.1 Closed systems :

A closed system always contains the same matter. There can be no transfer of mass across its boundary. A special type of closed system that does not interact in any way with its suroundings is called an isolated system.

1.1.2 Property, state, and process :

A property is a macroscopic characteristic of a system such as mass, volume, energy, pressure, and temperature to which a numerical value can be assigned at a given time without knowledge of the previous behavior (history) of the system.

The state refers to the condition of a system as described by its properties. Since there are normally relations among the properties of a system. When any of the properties of a system changes, the state changes and the system is said to undergo a process. A process is a transformation from one state to another.

1.1.3 Extensive and Intensive properties :

A property is called extensive if its value for an overall system is the sum of its values for the parts into which the system is divided. Mass, volume, and energy are extensive. Intensive properties are not additive in the sence previously considered. Pressure, temperature, and specific volume are important intensive properties.

1.2 The three principles of thermodynamics :

1.2.1 First law of thermodynamics :

 $\Delta U = Q + W$ is mathematical statement of the law of thermodynamics, which states that « The energy of an isolated system is constant ». It is commonly stated as the law of conservation of energy i.e., energy can neither be created nor destroyed

The second law of thermodynamics asserts that energy has quality as well as quantity, and actual processes occur in the direction of decreasing quality of energy.

The zeroth law of thermodynamics states that two bodies are in thermal equilibruim if both have the same temperature reading even if they are not in contact. A system of fixed mass is called a closed system, or control mass, and a system that involves mass transfer across its boundaries is called an open system, or control volume.

The second law of thermodynamics deals with the availability of energy to perform useful work. The only possible natural processes are those that either decrease or, in the ideal case, maintain, the availability of the energy of the universe. The science of thermodynamics defines a material property called entropy, which quantifies the second law. The entropy of universe must increase or, in the ideal case; remain constant in all natural processes.

The first principle postulates that, for any closed system describing a cycle (final state thermodynamically identical to the initial state), the heat exchanged with the environment is strictly equal (and of opposite sign) to the work exchanged with the environment during of this cycle; this is true for a cycle described in an irreversible manner as for a reversible cycle. We can write :

$$\oint \delta Q + \oint \delta W = 0$$

1.2.2 second law of thermodynamics :

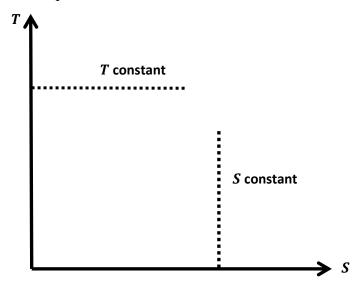
The first law of thermodynamics tells us about the relationship between the heat absorbed and the work performed on or by a system. It puts no restrictions on the direction of heat flow. However, the flow of heat is unidirectional from higher temperature to lower temperature. In fact, all naturally occurring processes wheither chemical or physical will tend to proceed spontaneously in one direction only.

Mathematically, this assessment leads to:

$$dS = dS_e + dS_i \quad ; dS_i \ge 0$$

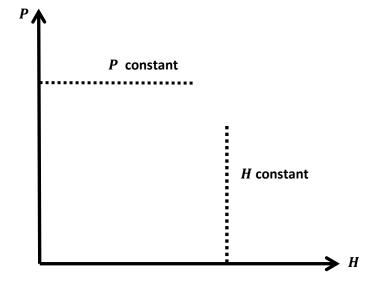
Where dS_e the net isentropic flow due to exchanges with the external environment and dS_i is the production of entropy due to internal changes in the system. This formulation contains within itself the entire second principle.

CHAPTER II

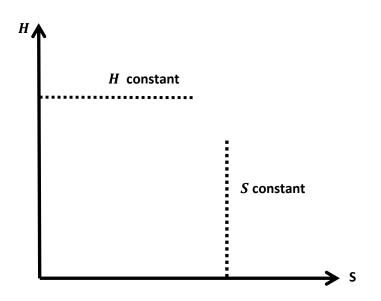

Chapter 2 : Thermodynamic properties of pure substances

2.1 State diagrams :

The general tables of thermodynamic properties give six properties for the pure substances T, P, v, h, u and s. For most pure substances, the relationships between thermodynamic properties are too complex to be expressed by simple equations.


2.1.1 Diagram T-S:

The entropy diagram (T, s) which directly visualizes reversible heat transfers and the various possible irreversibilities


2.1.2 Diagram P-H:

In the so-called refrigeration diagram, we plot the enthalpy on the abscissa, and the pressure on the ordinate, most often on a logarithmic scale.

2.1.3 Diagram H-S :

The Mollier diagram (h, s) which is only a transform of the previous one, intended to directly show the energy transfers in an open system, and which has the advantage that the enthalpy intervenes directly in the coordinates and can therefore be read without difficulty.

2.2 Thermodynamic tables :

Thermodynamic property data can be received in various ways, including tables, graphs and equations. We use tables of thermodynamics properties, which are commonly available for pur, simple compressible substances of engineering interest. The use of these tables is an important skill. The ability to locate states on property diagrams is an important related skill.

Saturation property tables:

The properties of water vapor and liquid water are listed in tables.

These are often referred to as the superheated vapor tables and compressed liquid tables, respectively. That is, for a given pressure the property values are given as the temperature increases to the saturation temperature.

Tables of superheated steam properties:

The superheated steam region depicts steam at a temperature higher than its saturation temperature. Should saturated steam be heated at constant pressure, its temperature will rise, producing superheated steam.

2.2.1 Equation of state :

$$PV = \frac{m}{M}RT$$

m: mass of gas M: molecular weight R: universal constant (8.314 $\frac{J}{Mole}$ K) Since n = $\frac{m}{M}$ is the number of moles of the gas The equation of state of an ideal gas is:

PV = nRT

2.2.2 Equation of state of an ideal gas

The representation of real gases is generally of the form

$$(p+\pi)(V-Nb) = NRT$$

 π is called internal pressure, it accounts for the forces of attraction between molecules, which are added within the fluid to the pressure forces exerted on a surface.

2.2.3 Developments of Viriel :

When the temperature is too low or the pressure too high, it is no longer possible to approximate the behavior of a real gas using the ideal gas model, which becomes much too imprecise. One solution may be to develop the PV product in powers of 1/V or p. We thus obtain relations of the form:

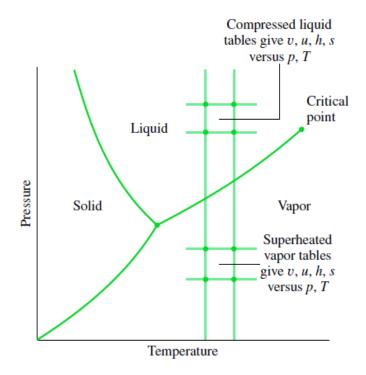
$$pV = NRT + \left(1 + \frac{B(T)}{V} + \frac{C(T)}{V^2} + \cdots \right) Or$$

$$pV = NRT + (1 + B'(T)p + C'(T)p^2 + \cdots)$$

If we truncate these developments to order zero, we find the ideal gas law.

2.2.4 Van Der Waals equation :

The most famous relationship of this type is that of VAN DER WAAL


$$\left(p + \frac{N^2 a}{V^2}\right)(V - Nb) = NRT$$

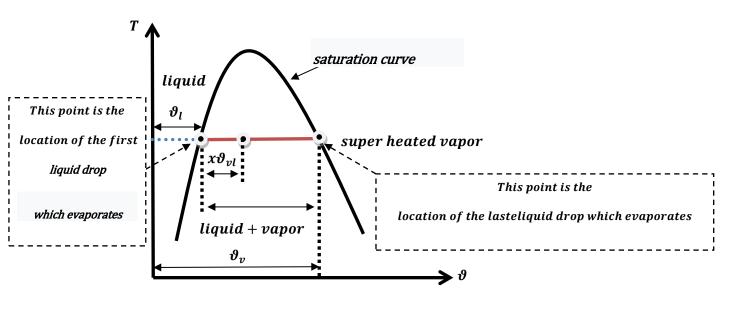
The constants and b are characteristic of a given fluid. The VAN DER WAALS equation makes it possible to account for the behavior of most real gases over wide ranges of temperature and pressure.

CHAPTER III

Chapter 3: Thermodynamics of vapors and humid air:

3.1 : Vapor thermodynamics :

Figure 3.1: Sketch of the phase diagram for vapor used to discuss the structure of the superheated vapor and compressed liquid tables.


3.1.1 Phase change of a pure body:

3.1.2 Calculation of state variables:

Steam quality:

The quality x is the mass proportion of saturated vapor contained in a liquid-vapor mixture.

Example A mass of 1 Kg of water with a titer of 0.2 contains 0.8 Kg of saturated liquid and 0.2 Kg of saturated vapor. These 0.2 kg, however, occupy the majority of the available volume.

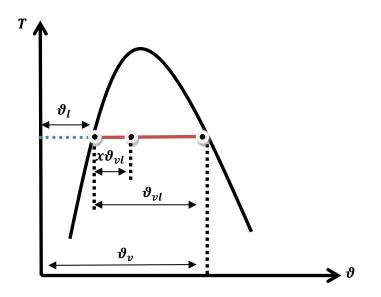


Fig. 3.2. Saturation curve.

Specific volume:

$$\vartheta = \frac{V}{m} \tag{I.1}$$

$$\vartheta_{\nu} = \vartheta_l + \vartheta_{\nu l} \tag{I.2}$$

 $\vartheta_x = (1-x)\vartheta_l + x\vartheta_{\nu l}$ (I.3)

In the same way we have;

$$h_x = (1 - x)h_l + xh_{vl}$$
(I.4)

$$U_x = (1 - x)U_l + xU_{vl}$$
(I.5)

$$S_x = (1 - x)S_l + xS_{vl}$$
(I.6)

$$x = \frac{m_{vapeur}}{m_{totale}}(1.7)$$

$$V = m\vartheta(1.8)$$

$$m_f = m_t - m_g(1.9)$$

$$m_t\vartheta_x = (m_t - m_g)\vartheta_f + m_g\vartheta_g(1.10)$$

Devided by m_t ,

$$\vartheta_x = (1-x)\vartheta_f + x\vartheta_g \tag{I.11}$$

$$\vartheta_x = (\vartheta_f - x\vartheta_f) + x\vartheta_g$$
 (I.12)

$$\vartheta_x = \vartheta_f + x \vartheta_g - x \vartheta_f \tag{I.13}$$

$$\vartheta_x = \vartheta_f + x(\vartheta_g - \vartheta_f)$$
(I.14)

$$\vartheta_x = \vartheta_f + x(\vartheta_{fg}) \tag{I.15}$$

$$x = \frac{\vartheta_x - \vartheta_f}{\vartheta_{fg}} = \frac{\vartheta_x - \vartheta_f}{\vartheta_g - \vartheta_f}$$
(I.16)

Humid Air:

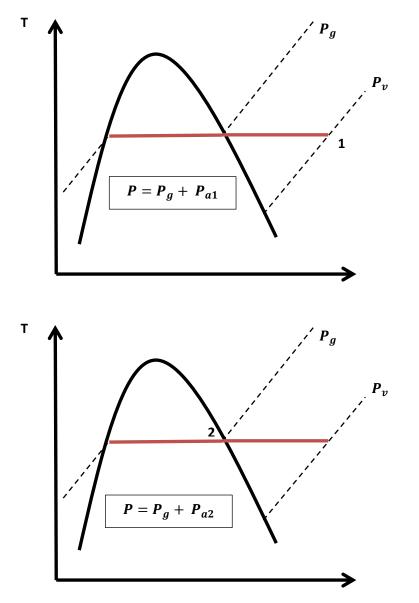
Air in the atmosphere normally contains some water vapor (or moisture) and is refered to as atmospheric air. By contrast, air that contains no water vapor is called dry air. It often convenient to treat as a misture of water vapor and dry air since the composition of dry air remains relatively constant, but the amount of water vapor changes as a result of condensation and evaporation from oceans, lakes, rivers, showers, and even the humain body. Although the amount of water vapor in the air is small, it plays a major role in humain confort. Therefore, it is an important consideration in air-conditioning applications.

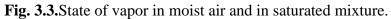
Characteristics of humid air:

Relative humidity, a measure of moisture content:

The amount of water vapor in the air at any given time is usually less than that required to saturate the air. The relative humidity is the percent of saturation humidity, generally calculated in relation to saturated vapor density.

$$Relative Humidity = \frac{actual \ vapor \ density}{saturation \ vapor \ density} \times 100\%$$


The most common units for vapor density are gm/m3. For example, if the actual vapor density is 10 g/m3 at 20°C compared to the saturation vapor density at that temperature of 17.3 g/m3, then the relative humidity is


$$R.H. = \frac{10g/m^3}{17.3g/m^3} \times 100\% = 57.8\%$$

The relative humidity can be equivalently defined in terms of the water vapor pressure in the air compared to its saturation vapor pressure.

Humidity ration or specific humidity:

Another means of measuring the moisture content in moist air is calculating the humidity ratio, defined as the mass of the water vapor to the mass of dry air:

CHAPTER IV

Chapter4: Gas Compression

Classification of compression machines:

Compressors are used for many industrial applications: refrigeration, air conditioning, transportation of natural gas etc. A special mention must be made of air compressors, used as a source power for public and building works as well as in factories, pneumatic tools having many benefits.

Isentropic compression:

Compressors are compact machines, through which pass a gaseous fluid that stays there very briefly. Exchange surfaces are reduced and heat exchange coefficients are low. As a result, generally heat transfer between the working fluid and the outside is negligible compared to the compression work: the reference compression is therefore an adiabatic compression. If it is reversible, it is an isentropic.

Polytropic compression:

A polytropic process is a thermodynamic process that obeys the relation:

$PV^n = constant$

Where P Where is the pressure, V is the volume, and n is the polytropic index. The polytropic process equation describes expansion and compression processes, which include heat transfer.

Piston compressors:

A reciprocating compressor or piston compressor is a positive-displacement compressor that uses pistons driven by a crankshaft to deliver gases at high pressure. The intake gas enters the suction manifold, then flows into the compression cylinder where it gets compressed by a piston driven in a reciprocating motion via a crankshaft, and is then discharged. Applications include railway and road vehicle air brake systems oil refineries, gas pipelines, oil and gas production drilling and well services, air and nitrogen injection, offshore platforms, chemical plants, natural gas processing plants, air conditioning, and refrigeration plants.

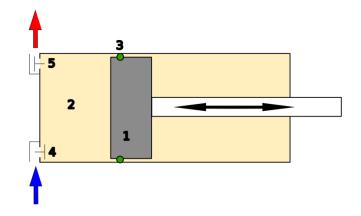


Fig. 4.1. reciprocating compressor or piston compressor

Rotary positive displacement compressor :

A rotary-screw compressor is a type of gas compressor, such as an air compressor, that uses a rotary-type positive-displacement mechanism. These compressors are common in industrial applications and replace more traditional piston compressors where larger volumes of compressed gas are needed, e.g. for large refrigeration cycles such as chillers, or for compressed air systems to operate air-driven tools such as jackhammers and impact wrenches. For smaller rotor sizes the inherent leakage in the rotors becomes much more significant, leading to this type of mechanism being less suitable for smaller compressors than piston compressors.

The screw compressor is identical to the screw pump except that the pockets of trapped material get progressively smaller along the screw, thus compressing the material held within the pockets. Thus the screw of a screw compressor is asymmetrical along its length, while a screw pump is symmetrical all the way.

The gas compression process of a rotary screw is a continuous sweeping motion, so there is very little pulsation or surging of flow, as occurs with piston compressors. This also allows screw compressors to be significantly quieter and produce much less vibration than piston compressors, even at large sizes, and produces some benefits in efficiency.

CHAPTER V

Chapter5: Gas relaxation

Adiabatic expansion

An adiabatic process is a type of thermodynamic process that occurs without transferring heat or mass between the thermodynamic system and its environment. Unlike an isothermal process, an adiabatic process transfers energy to the surroundings only as work. As a key concept in thermodynamics, the adiabatic process supports the theory that explains the first law of thermodynamics.

Some chemical and physical processes occur too rapidly for energy to enter or leave the system as heat, allowing a convenient "adiabatic approximation".

A process without transfer of heat to or from a system, so that Q = 0, is called adiabatic, and such a system is said to be adiabatically isolated. The simplifying assumption frequently made is that a process is adiabatic. For example, the compression of a gas within a cylinder of an engine is assumed to occur so rapidly that on the time scale of the compression process, little of the system's energy can be transferred out as heat to the surroundings. Even though the cylinders are not insulated and are quite conductive, that process is idealized to be adiabatic. The same can be said to be true for the expansion process of such a system.

The assumption of adiabatic isolation is useful and often combined with other such idealizations to calculate a good first approximation of a system's behaviour. For such an adiabatic process, the γ is the ratio of specific heats at constant pressure and at constant volume ($\gamma = Cp/Cv$) and P is the pressure of the gas.

$PV^{\gamma} = constant$

Work:

Reversible & Irreversible Work Reversible work means that the entire system (including the surrounding system) can be returned to the starting state. Irreversible work means that we can only bring the piston back to the starting state if we change the surrounding system.

$$W = -\int P dV$$

Efficiency and power produced:

Efficiency is expressed as a percentage and can be calculated using the equation:

$$\eta = (P_{out} - P_{in}) \times 100\%$$

Where P_{out} is the output power, and P_{in} is the input power, both measured in kW. In practice, the output power is always less than the input power due to energy losses caused by factors such as friction and heat.

Turbines:

Motor composed of a moving wheel to which the energy of a working fluid is applied. This motor transforms a linear force into a rotary force and recovers energy from water or steam to turn the rotor of an alternator.

CHAPTER VI

Chapter 6: Engine cycles

Carnot Cycle :

The Carnot cycle have four processes:

- 1 Two Constant temperature processes.
- 2 Two isentropics processes.

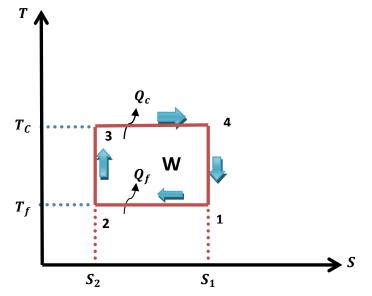


Fig. 5.1: Carnot Cycle in T-S diagram.

1.1 Efficiency of Carnot cycle:

Fiirst law :

$$W + Q_f + Q_c = 0 \tag{I.17}$$

Second law :

$$Q_f = T_f(S_1 - S_4)$$
 (I.18)

 $Q_c = T_c (S_3 - S_2)$ (I.19)

Or $S_3 = S_2$ et $S_1 = S_4$ soit :

$$W = -(Q_f + Q_c) \tag{I.20}$$

$$W = -[T_f(S_1 - S_2) + T_c(S_4 - S_3)]$$
(I.21)

 $W = -[T_f(S_1 - S_2) + T_c(S_1 - S_2)]$ (I.22)

$$W = -(S_1 - S_2)(T_c - T_f)$$
(I.23)

Or $S_2 < S_1$ and $T_f < T_c$ soW < 0

$$\eta_{Carnot} = \frac{W}{Q_C} = \frac{(T_C - T_f)(S_1 - S_2)}{T_C(S_1 - S_2)} = (T_C - T_f)/T_C(I.24)$$

The system receives work W, transfers the quantity of heat Q_c to the hot source and rejected heat Q_f to the cold source.

 Q_f : Heat absorbed by the fluid during a cycle.

 Q_c : Heat released by the fluid during a cycle.

Otto Cycle

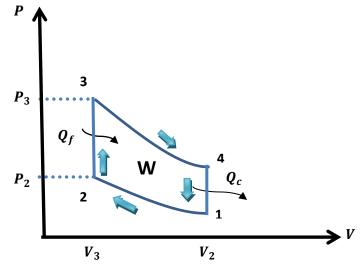
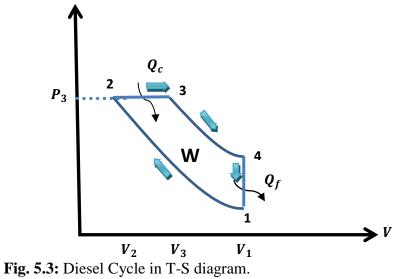



Fig. 5.2: Otto Cycle in T-S diagram.

Brayton Cycle

The Brayton cycle, also known as the Joule cycle, is a thermodynamic cycle that describes the operation of certain heat engines that have air or some other gas as their working fluid. It is characterized by isentropic compression and expansion, and isobaric heat addition and rejection, though practical engines have adiabatic rather than isentropic steps.

The most common current application is in airbreathing jet engines and gas turbine engines.

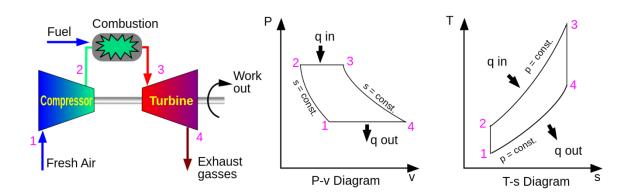
Ideal Brayton cycle:

Isentropic process – ambient air is drawn into the compressor, where it is pressurized.

isobaric process – the compressed air then passes through a combustion chamber, where fuel is burned, heating that air—a constant-pressure process, since the chamber is open to flow in and out.

isentropic process – the heated, pressurized air then gives up its energy, expanding through a turbine (or series of turbines). Some of the work extracted by the turbine is used to drive the compressor.

isobaric process - heat rejection (in the atmosphere).


Actual Brayton cycle:

adiabatic process - compression

isobaric process - heat addition

adiabatic process - expansion

isobaric process - heat rejection

Fig. 5.4: Brayton cycle.

Steam turbines

A steam turbine is a machine that extracts thermal energy from pressurized steam and uses it to do mechanical work on a rotating output shaft. Its modern manifestation was invented by Charles Parsons in 1884.[1][2] Fabrication of a modern steam turbine involves advanced metalwork to form high-grade steel alloys into precision parts using technologies that first became available in the 20th century; continued advances in durability and efficiency of steam turbines remains central to the energy economics of the 21st century.

The steam turbine is a form of heat engine that derives much of its improvement in thermodynamic efficiency from the use of multiple stages in the expansion of the steam, which results in a closer approach to the ideal reversible expansion process.

Because the turbine generates rotary motion, it can be coupled to a generator to harness its motion into electricity. Such turbogenerators are the core of thermal power stations which can be fueled by fossil fuels, nuclear fuels, geothermal, or solar energy. About 42% of all electricity generation in the United States in the year 2022 was by use of steam turbines.[3]

Technical challenges include rotor imbalance, vibration, bearing wear, and uneven expansion (various forms of thermal shock). In large installations, even the sturdiest turbine will shake itself apart if operated out of trim.

Rankine Cycle

The Rankine cycle is an idealized thermodynamic cycle describing the process by which certain heat engines, such as steam turbines or reciprocating steam engines, allow mechanical work to be extracted from a fluid as it moves between a heat source and heat sink. The Rankine cycle is named after William John Macquorn Rankine, a Scottish polymath professor at Glasgow University.

Heat energy is supplied to the system via a boiler where the working fluid (typically water) is converted to a high-pressure gaseous state (steam) in order to turn a turbine. After passing over the turbine the fluid is allowed to condense back into a liquid state as waste heat energy is rejected before being returned to boiler, completing the cycle. Friction losses throughout the system are often neglected for the purpose of simplifying calculations as such losses are usually much less significant than thermodynamic losses, especially in larger systems.

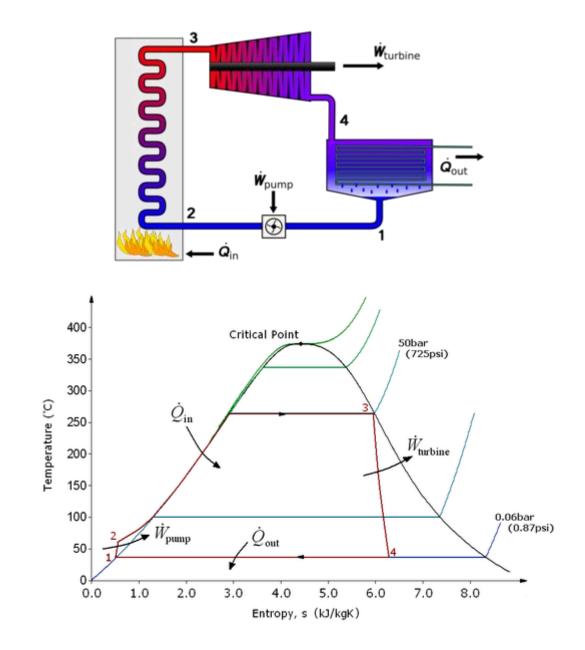


Fig. 5.5: Rankine cycle.

CHAPTER VII

Chapter 7: Refrigeration Cycles

Gas refrigeration cycle

Single stage vapor compression cycle

The ideal vapor compression refrigeration cycle is shown above.

It is made up of four transformations: adiabatic and reversible compression 1-2, isobaric cooling by condensation 2-3, irreversible expansion without work exchange 3-4, and finally isobaric heating by evaporation 4-1. This is essentially a reverse Rankine-Hirn cycle; except that a valve replaces the pump.

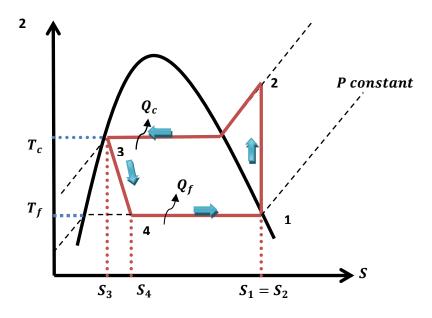


Fig. 7.1. Basic cycle of a refrigeration machine diagram (T-S).

- The 1-2 isentropic transformation : $(S_1 = S_2)$
- The 2-3 isobaric transformation : $(P_2 = P_3)$
- The 3-4 isenthalpic transformation: $(h_3 = h_4)$

The 4-1 isobaric transformation (also isothermal): $(P_4 = P_1 \text{ et } T_4 = T_1)$

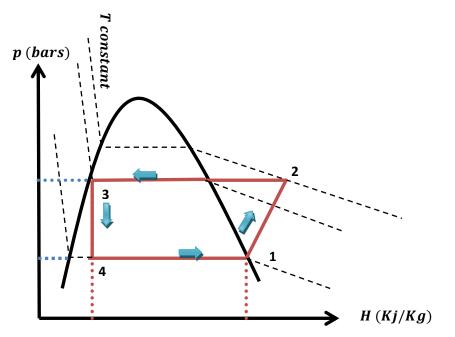
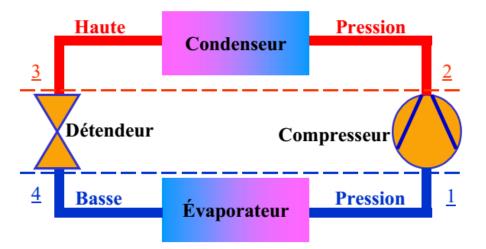



Fig. 7.2. Basic cycle of a refrigeration machine diagram (P-H).

Fig. 7.3. Operating diagram of a basic cycle of a refrigeration machine.

To explain how it works, we will take the characteristics of R22 because it is the fluid most commonly used in air conditioning.

In the evaporator; The liquid refrigerant boils and evaporates, absorbing heat from the outside fluid. Secondly, the gas formed is further slightly heated by the external fluid, this is called the overheating phase.

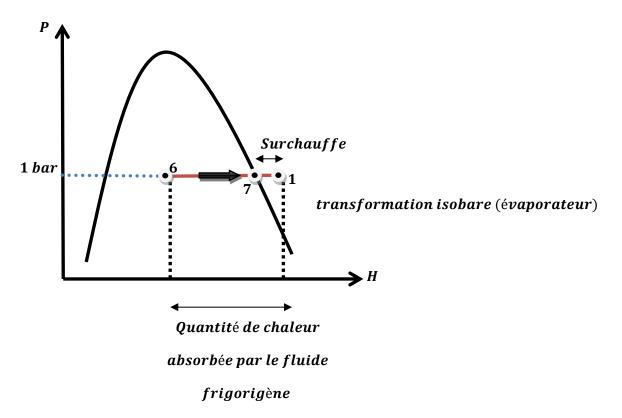


Fig. 7.4. Isobaric transformation in the evaporator.

In the compressor; The compressor will first suck in the refrigerant gas at low pressure and low temperature (1). The mechanical energy provided by the compressor will raise the pressure and temperature of the refrigerant gas. An increase in enthalpy will result.

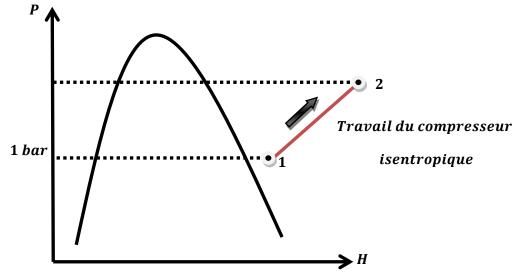


Fig. 7.5. Isentropic transformation in the compressor.

In the condenser; The hot gas coming from the compressor will transfer its heat to the external fluid. The refrigerant vapors cool "desuperheat" before the first drop of liquid appears (point 3). Then condensation takes place until the second vapor bubble disappears (point 5). The liquid fluid can then cool a few degrees (subcooling) before leaving the condenser.

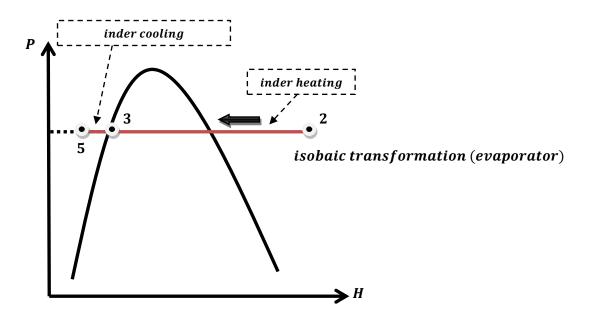


Fig. 7.6. Isobaric transformation in the condenser.

In the regulator;

The pressure difference between the condenser and the evaporator requires inserting a "pressure lowering" device into the circuit. This is the role of the regulator. The refrigerant partially vaporizes in the regulator to lower its temperature.

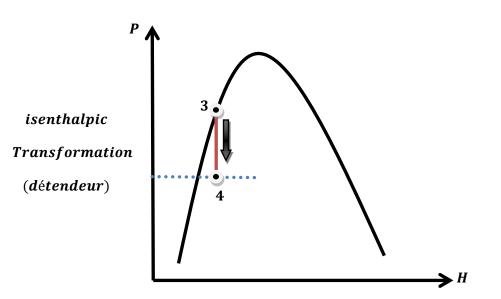


Fig. 7.7. Isenthalpic transformation in the expander.

Sign convention; What is received by the system will be counted positively, while what is given up or lost will be counted negative.

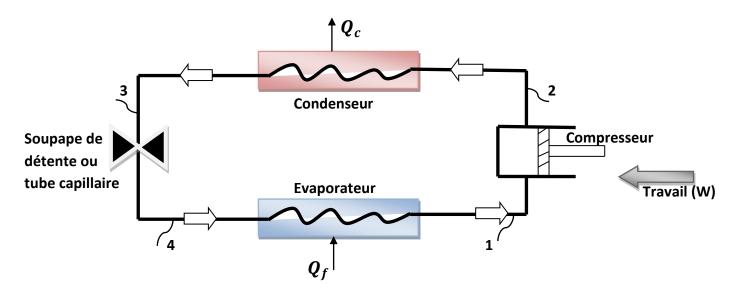


Fig. 7.8. Principle of operation.

2.2 Representation of the practical thermodynamic cycle (on T-S and P-H diagram): For the practical cycle the transformation in the compressor is not isentropic at the 2s point.

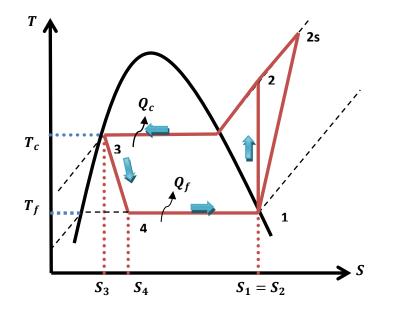


Fig. 7.9. Actual refrigeration cycle in diagram (T-S).

The non-isentropic 1-2s transformation

The 2s-3 isobaric transformation ($P_2 = P_3$)

The 3-4 isenthalpic transformation $(h_3 = h_4)$

The 4-1 isobaric transformation (also isothermal)($P_4 = P_1$ and $T_4 = T_1$)

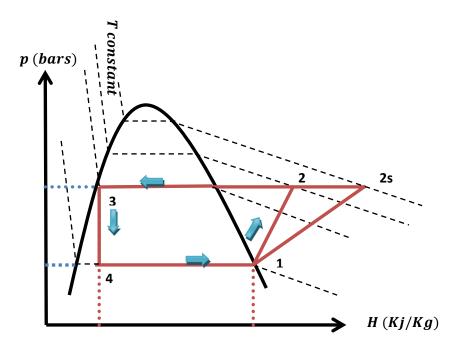


Fig. 7.10. Actual refrigeration cycle in diagram (P-H).

Heat balance of the thermodynamic cycle :

First principle :

$$W + Q_f + Q_c = 0$$

Second principle :

$$Q_{f} = h_{4} - h_{1}$$
$$Q_{c} = h_{3} - h_{2}$$
$$W = -(Q_{f} + Q_{c})$$
$$W = h_{2} - h_{1}$$

The system receives work W, takes heat Q_f from the cold source and transfers the quantity of heat Q_c to the hot source.

 Q_f : heat absorbed by the fluid during a cycle.

 $Q_{\mbox{\scriptsize c}}$: heat released by the fluid during a cycle.

Specific refrigeration efficiency :

$$\varepsilon_f = \frac{h_1 - h_4}{h_2 - h_1}$$

Specific heat efficiency :

$$\varepsilon_c = \frac{h_3 - h_2}{h_2 - h_1}$$

Where : τ is the duration in cycle

Frigorific power :

$$P_f = \left| \frac{Q_f}{\tau} \right|$$
 [W]

Calorific power :

$$P_c = \left| \frac{Q_c}{\tau} \right|$$
 [W]

Mechanic power :

$$p = \frac{W}{\tau}$$
 [W]

Specific refrigeration production :

$$K_{fsp} = \frac{Q_f}{W} \ [J.Kwh^{-1}]$$

Specific heat production :

$$K_{csp} = \frac{Q_c}{W} \, \left[\text{J.Kw} h^{-1} \right]$$

<u>Refrigerants</u>

Refrigerants ; Have the form ; $C_x H_y F_z CL_k$

Whith ;

$$y + z + k = 2x + 2$$

They are caled ;

CFC ; Chlorofluorocarbures (Freons) if y = 0 (Very important Ozone)

HCFC ; Hydro-chlorofluorocarbures (Freons) if $y \neq 0$ (important Ozone)

HFC ; Hydrofluorocarbures (Freons) if k = 0 (no Ozone)

Designations;

$$R_{abc} = R_{(x-1)(y+1)(z)}$$

Exemple1;

$$R_{170} \begin{cases} x - 1 = 1\\ y + 1 = 7\\ z = 0\\ k = 0 \end{cases} \xrightarrow{x = 2} \{ x = 2\\ y = 6 \xrightarrow{x = 2} C_2 H_6 \end{cases}$$

If the symbol only has two digits; R_{bc} , it should be considered as a three-digit number of the form R_{0bc}

$$R_{12} \begin{cases} x - 1 = 0\\ y + 1 = 1 \\ z = 0 \end{cases} \begin{cases} x = 1\\ y = 0 \end{cases} \rightarrow k = 2x + 2 - z - y = 2$$

The formula for freon is therefore ; CF_2CL_2

Exemple2; $R_{50} = CH_4$

Inorganic compound (Serie 700)

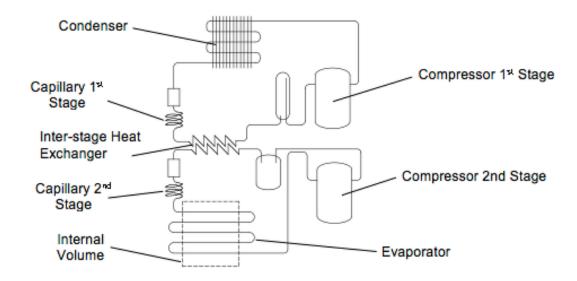
The rule consists of adding the molar mass of the fluid after the number 7;

$$NH_3; M = 14 + 3 = 17$$
 R717

$$H_20; M = 2 + 16 = 18$$
 R718

$$CO_2$$
; $M = 12 + 32 = 44$ R744

Safety and environmental criteria :


- Toxicity
- Flammability
- Effect on the ozone layer
- Greenhouse effect.

Technological, operational and economic criteria :

- High liquid density = compactness
- Operating pressure ; pressure greater than atmospheric pressure.
- Low viscosity and high thermal conductivity
- Cost and availability.

Cascading cycle:

A cascade refrigeration cycle is a multi-stage thermodynamic cycle. An example two-stage process is shown at right. In a cascade refrigeration system, two or more vapor-compression cycles with different refrigerants are used. The evaporation-condensation temperatures of each cycle are sequentially lower with some overlap to cover the total temperature drop desired, with refrigerants selected to work efficiently in the temperature range they cover. The low temperature system removes heat from the space to be cooled using an evaporator, and transfers it to a heat exchanger that is cooled by the evaporation of the refrigerant of the high temperature system. Alternatively, a liquid to liquid or similar heat exchanger may be used instead. The high temperature system transfers heat to a conventional condenser that carries the entire heat output of the system and may be passively, fan, or water-cooled.

Heat pumps:

The heat pump pumps heat somewhere in a natural environment. It is a thermodynamic heating system called renewable energy. The heat pump commonly called heat pump extracts the calories present in the natural environment such as air, water, earth or soil, and transmits them through the amplifier to a space to be heated. The driving action of an electric compressor on a phase change refrigerant fluid carries out this thermodynamic operation.

The heat pump is mainly used as a residential heating solution. We then speak of geothermal energy (water-water or ground water heat pump) or air heater (air-water or air-air heat pump). In tertiary applications such as offices, the heat pump is often used all year round, either for heating or for cooling in summer. The range of heating powers is great for heat pumps since a heat pump can provide 2 kW of heating for a room just as it can deliver 400 kW or more for a building. It is also a geothermal energy called an air heater. The heat captured in the outside air is transferred not directly by direct expansion but via a hot water circuit. This network supplies a two-pipe radiator

circuit, most often "low temperature", or a network of underfloor heating, or a series of fan coils, or even air heaters if the application is more industrial.

The heating temperature regime is often moderate, around 60°C maximum for a heat pump.

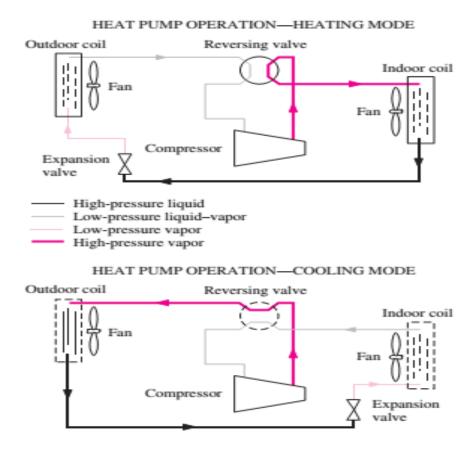


Fig. 7.11. Heat pump operations. [2].

EXERCICES:

EX 1: A gas compressed from an initial volume of 0.42 m^3 to a final volume of $0.12m^3$. During the quasi-equilibrium process, the pressure changes with volume according to the relation P = Av + b, where a = -1200 KPa/ m^3 and b= 600KPa. Calculate the work done during this process.

- A) By plotting the process on P.V diagram and finding the area under the process curve and,
- **B)** By performing the necessary integration.

EX 2: A frictionless piston cylinder device contains 2 Kg of nitrogen at 100 KPa and 300 K. Nitrogen compressed slowly according to the relation $PV^{1.4}$ = constant until it reaches a final temperature of 360 K. Calculate the work input this process.

EX 3: A piston cylinder device initially contains 0.25 Kg of nitrogen gas at 130 KPa and 120°C. The nitrogen expanded isothermally to a pressure of 100KPa. Determine the boundary work done during this process.

EX 4: A 1.8m³ rigid tank contains steam at 220°C. one-third of the volume is in the liquid phase and the rest is in the vapor form. Determine:

- a) The pressure of the steam,
- b) The quality of the saturated mixture, and,
- c) The density of the mixture.

EX 5: A mass of 200 g of saturated liquid water completely vaporized at a constant pressure of 100KPa. Determine:

- a) The volume charge and,
- b) The amount of energy transferred to the water.

EX 6: A piston cylinder device contains $0.1m^3$ of liquid water and $0.9m^3$ of water vapor in equilibrium at 800KPa. Heat transferred, at constant pressure until the temperature reaches 350°C.

- A) What is the initial temperature of the water
- **B)** Determine the total mass of the water
- C) Calculate the final volume
- D) Show the process on a P-V diagram with respect to saturation lines.

EX 7: A $1m^3$ rigid tank contains 10 Kg of water (in any phase or phases) at 160°C. The pressure in the tank is:

- a) 738 KPa,
- b) 618 KPa,
- c) 370KPa.
- d) 2000 KPa
- e) 1618 KPa

EX 8: Consider a room that contains air at 1 atm, 35°C, and 40% relative humidity. Using the psychrometric chart, determine: ω , h, T_{wb} , T_{dp} and ϑ ?

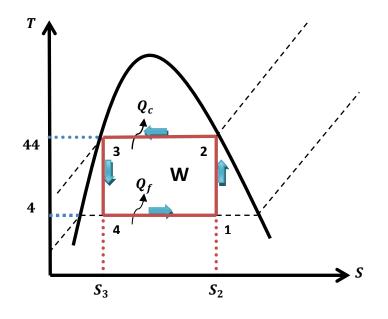
EX 11: An ideal Otto cycle has a compression ratio of 8. At the compression process, air is at 100 KPa and 17°C, and 800 Kj/Kg of heat is transferred to air during the constant volume of heat addition process. Accounting for the variation of specific heats of air with temperature, determine:

- A) The maximum temperature and pressure that occur during the cycle,
- B) The network output,
- C) The thermal efficiency, and
- D) The mean effective pressure for the cycle.

EX 12: An ideal Diesel cycle with air as the working fluid has a compression ratio of 18 and a cutoff ratio of 2. At the beginning of the compression process, the working fluid is at 1 Bar, 280 K. Utilizing the cold-air-standard assumptions, determine:

- A) The temperature and pressure of air at the end of each process,
- **B**) The network and the thermal efficiency,
- C) The mean effective pressure for the cycle.

SOLUTION


EX 13 : Le cycle décrit par le R134 est représenté ci-contre. On donne

 $v_4{=}\,0.04538\;m^3/Kg:h_2{=}\,284.39\;Kj/Kg$; Calculer le COP ?

Si la masse d'eau est de 10 Kg, trouver la masse d'eau vapeur et le volume d'eau liquide ?

Exercice N°14 : Pour fonctionner une machine frigorifique, on utilise le R134a avec un cycle de Carnot. Trouver le COP de cette machine.

SOLUTION

EX01 :

 $v_i = 0.42 \ m^3$; $v_f = 0.12 \ m^3$;

P = aV + b

EX 02:

$$PV^{\gamma} = K; \qquad P = \frac{K}{V^{\gamma}}$$
$$W = -\int PdV = -\int \frac{K}{V^{\gamma}} dV = -K \int \frac{dV}{V^{\gamma}} = -K \left[\frac{V^{1-\gamma}}{1-\gamma} \right]$$
$$W = -\frac{K}{1-\gamma} \left[V_2^{1-\gamma} - V_1^{1-\gamma} \right]$$

$$PV_{2}^{\gamma} = PV_{1}^{\gamma} = K$$

$$W = \frac{P_{2}V_{2} - P_{1}V_{1}}{\gamma - 1} = \frac{nRT_{2} - nRT_{1}}{\gamma - 1} = \frac{nR}{\gamma - 1} [T_{2} - T_{1}]$$

$$W = \frac{\frac{2}{2.8}x8.314x(360 - 300)}{0.4}$$

$$W = 89.08 Kj$$

EX 03 :

$$\begin{split} m &= 0.25 \ \text{Kg} \quad ; \ P_1 = 130 \ \text{KPa} \quad : \ T_1 = 120 \ ^\circ\text{C} \ ; \ P_2 = 100 \ \text{KPa} \\ M &= 28 \quad ; \ isothermally \ \ \text{PV} = \text{K} \\ W &= -\int P dV = -\int \frac{K}{V} \ dV = -K \int \frac{dV}{V} \\ W &= -K[\ln V] = -K \ln(V_2/V_1) \\ P_1 V_1 &= nRT_1, \ \ V_1 = nRT_1/P_1 = 0.25 \ x \ 8.314 \ x \ 393/28 \ x \ 130 \ x \ 10^3 = 0.2244 \ L \\ P_1 V_1 &= P_2 V_2, \ \ V_2 = V_1 P_1/P_2 = 0.2244 \ x \ 130 \ x \ 10^{-3}/100 = 0.2917 \ L \\ W &= -P_1 V_1 \ln(V_2/V_1) = 130 \ \text{x} \ 0.2244 \ \text{x} \ 10^3 \ \text{x} \ 10^{-3} \ln(0.2917/0.2244) = 7.65 \ \text{Kj} \end{split}$$

EX 04 :

$$V = 1.8 m^{3}; T = 220 \text{ °C}; V_{f} = V/3$$

$$V_{f} = 1.8/3 = 0.6 m^{3}$$

$$V_{f} = V - V_{g} = 1.8 - 0.6 = 1.2 m^{3}$$

$$m_{g} = \frac{V_{g}}{v_{g}} = \frac{1.2}{0.08619} = 13.9 Kg$$

$$m_{f} = \frac{V_{f}}{v_{f}} = \frac{0.6}{0.00119} = 504.2 Kg$$

$$x = \frac{m_{g}}{m_{g} + m_{f}} = \frac{13.9}{504.2 + 13.9} = 0.026 = 2.6 \%$$

$$v = x (v_{g} - v_{f}) + v_{f}$$

$$v = 0.026 (0.08619 - 0.001190) + 0.001190 = 0.0034 m^{3}/Kg$$

$$\rho = 1/v = 1/0.0034 = 294.11 Kg/m^{3}$$

$$P = 2.318 MPa$$

EX 05 :

The volume change per unit mass during a vaporization process is v_{fg} ; which is the difference between $v_g and v_f$. Reading these values from table at 100 KPa and substituting yield

$$v_{fg} = (v_g - v_f) = 1.6941 - 0.001043 = 1.6931 \, m^3 / Kg$$

 $V = m v_{fg} (0.2 Kg) (1.6931 m^3/Kg) = 0.3386 m^3$

The amount of energy needed to vaporize a unit mass of a substance at a given pressure is the enthalpy of vaporization at that pressure, which is $h_{fg} = 2257.5 \frac{Kj}{Kg}$ for water at 100 KPa. Thus the amount of energy transferred is:

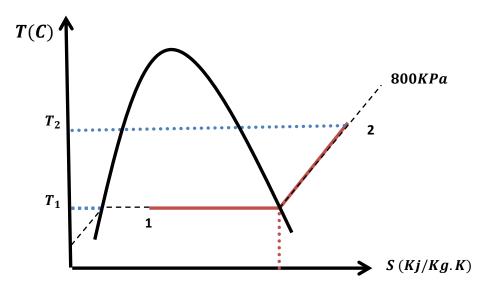
$$m h_{fg} = (0.2 Kg) \left(2257.5 \frac{Kj}{Kg} \right) = 451.5 Kj$$

EX 06 :

$$V_{f} = 0.1m^{3}; V_{g} = 0.9m^{3}$$

$$V_{1} = V_{f} + V_{g} = 0.1 + 0.9 = 1m^{3}$$

$$P_{1} = 800 \text{ KPa So } T_{1} = 170.43 \text{ °C}$$


$$v_{f} = 0.001115 \text{ } m^{3}/\text{Kg } \text{ And} v_{g} = 0.2404 \text{ } m^{3}/\text{Kg}$$

$$m = \frac{V_{f}}{v_{f}} + \frac{V_{g}}{v_{g}} = \frac{0.1}{0.001115} + \frac{0.9}{0.2404} = 94.43 \text{ Kg}$$

$$P_{1} = P_{2} = 800 \text{ KPa And} T_{2} = 350 \text{ C}$$

 $v_g = 0.3544 \, m^3 / Kg$

 $V_2 = m v_g (94.43 Kg) (0.3544 m^3/Kg) = 33.466 m^3$

EX 07:

 $V = 1 m^3$; m = 10 Kg; $T = 160^{\circ}$ C $v = V/m = 1/10 = 0.1 Kg/m^3$ So $v_f \ge v \ge v_g$ $v_f = 0.001102 m^3/Kg Andv_g = 0.3071 m^3/Kg$ So $P = 617.8 KPa \cong 618 KPa$

EX 08:

At a given total pressure, the state of atmospheric air is completely specified by two independent properties such as the dry-bulb temperature and the relative humidity; other properties are determined by directly reading their values at the specified state.

A) The specific humidity is determined by drawing a horizontal line from the specified state to the right until it intersects with the w axis. At the intersection point we read

$$\omega = 1\,0.0142\,Kg\frac{H_2O}{Kg}dryair$$

- B) The enthalpy of air per unit mass of dry air is determined by drawing a line parallel to the h= constant lines from the specific state until it intersects the enthalpy scale, giving h= 71.5 Kj/Kg dry air
- C) The wet-bulb temperature is determined by drawing a line parallel to the T_{wb} = constant lines from the specific state until it intersects the saturation line giving T_{wb} = 24 °C
- D) The dew-point temperature is determined by drawing a line from the specific state to the left until it intersects the saturation line giving T_{dp} = 19.4 °C
- E) The specific volume per unit mass of dry air is determined by noting the distances between the specified state and the v= constant lines on both sides of the point. The specific volume is determined by visual interpolation to be, v= 0.893 m^3 /Kg dry air

EX 9:

The saturation pressure of water is 1.7057 KPa at 15°C and 3.1698 KPa at 25°C. The constant pressure specific heat of air at room temperature is C_p = 1.005 Kj/Kg. K.

The specific humidity ω_1 is determined from equation

$$\boldsymbol{\omega}_1 = (C_p(T_2 - T_1) + \boldsymbol{\omega}_2 h_{fg2}) / h_{g2} - h_{f2}$$

Where T_2 is the wet-bulb temperature and ω_2 is

$$\omega_2 = 0.622 P_{g2} / (P_2 - P_{g2}) = 0.622 (1.7057) / (101.325 - 1.7057) = 0.01065 \text{ Kg} \frac{H_2 O}{Kg} dryair$$

Thus

$$\boldsymbol{\omega}_{1} = \left[\frac{1.005(15-25) + (0.01065)(2465.4)}{(2546.5-62.982)}\right] = 0.00653 \text{ Kg} \frac{H_{2}0}{K_{g}} dryair$$

$$\phi_{1} = \omega_{1}P_{2}/((0.622 + \omega_{1})P_{g1}) = \left[\frac{(0.00653)(101.325)}{(0.622 + 0.00653)(3.1698)}\right] = 0.332 = 33.2\%$$

$$h_{1} = h_{a1} + \omega_{1}h_{v1} = C_{p}T_{1} + \omega_{1}h_{g1}$$

$$= 1.005(25) + (0.00653)(2546.5) = 41.8\frac{K_{j}}{K_{g}}draiair$$

EX 10 :

 $T_1 = 290 K$; $u_1 = 206.91 K j/Kg$; $V_{r1} = 676.1$

Process 1-2: Isentropic compression of an ideal gas:

$$\frac{V_{r2}}{V_{r1}} = \frac{V_2}{V_1} = \frac{1}{r}$$

 $V_{r2} = \frac{V_{r1}}{r} = \frac{676.1}{8} = 84.51$; $T_2 = 652.4 \text{ K}$; $u_1 = 475.11 \text{ K}j/Kg$

$$\frac{P_2 V_2}{T_2} = \frac{P_1 V_1}{T_1}$$

$$P_2 = \frac{P_1 T_2 V_1}{T_1 V_2} = 100x \ 8 \ x \frac{652.4}{290} = 1799.7 \ KPa$$

Process 2-3: Constant volume heat addition:

 $q_{in} = u_3 - u_2$

 $800 \text{ KJ/Kg} = u_3 - 475.11 \text{ Kj/Kg}$

 $u_3 = 1275.11 \ Kj/Kg$; $T_3 = 1575.1 \ K$; $V_{r3} = 6.108$

$$\frac{P_2 V_2}{T_2} = \frac{P_3 V_3}{T_3}$$
$$P_3 = \frac{P_2 T_3 V_2}{T_2 V_3} = 1.7997 \ x \ 1 \ x \frac{1575.1}{652.4} = 4.345 \ KPa$$

 $\frac{v_{r_4}}{v_{r_3}} = \frac{v_4}{v_3} = rV_{r_4} = r \ x \ V_{r_3} = 8 \ x \ 6.108 = 48.864 \quad ; T_4 = 795.6 \ K \ ; u_4 = 588.74 \ Kj/Kg$ $q_{out} = u_4 - u_1 = 588.7 - 206.91 = 381.83 \ Kj/Kg$

$$w_{net} = q_{net} = q_{in} - q_{out} = 800 - 381.83 = 418.17 \, Kj/Kg$$

$$\eta_{th} = w_{net}/q_{in} = 418.17/800 = 0.523 = 52.3 \%$$

 $\eta_{th,Otto} = 1 - \frac{1}{r^{\gamma-1}} = 1 - r^{1-\gamma} = 1 - 8^{1-1.4} = 0.565 = 56.5 \%$

MEP
$$= \frac{w_{net}}{V_2 - V_1} = \frac{w_{net}}{V_1 - V_{1/r}} = \frac{w_{net}}{V_1(1 - \frac{1}{r})}$$

Where

$$V_1 = \frac{RT_1}{P_1} = \frac{0.287/290}{100} = 0.832 \ m^3/Kg$$

MEP = $\frac{418.17}{0.832 (1-\frac{1}{8})} = 574 \ KPa$

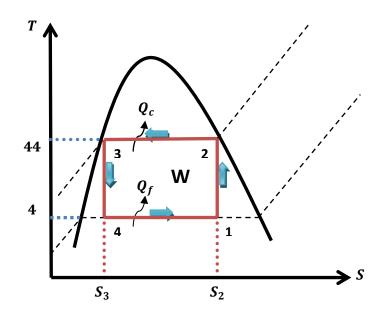
EX 11 :

$$COP = \frac{h_1 - h_4}{h_2 - h_1}$$

$$x = \frac{v_4 - v_l}{v_v - v_l} = \frac{h_4 - h_l}{h_v - h_l}$$

$$h_4 = (h_v - h_l) \frac{(v_4 - v_l)}{v_v - v_l} + h_l = 93.41 \ \text{Kj/Kg}$$

$$COP = \frac{236.04 - 93.41}{284.39 - 236.04} = 2.95$$


$$x = \frac{m_v}{m_t}$$

$$m_v = x * m_t = \frac{v_4 - v_l}{m_t} * m_t = 0.3271 * 10 = 3.271 \ \text{Kg}$$

$$m_t - \frac{1}{v_v - v_l} * m_t = 0.3271 * 10 - 3.271 \, \text{kg}$$

$$\begin{split} m_t &= m_v + m_l \\ m_l &= m_t - m_v \\ V_l &= m_l * v_l = (= m_t - m_v) * v_l = 0.005 \ m^3 \end{split}$$

 $\varepsilon_{fr.Carnot} = \frac{T_{max}}{T_{max} - T_{min}} = \frac{44 + 273}{(44 - 4)} = 7.925$

ANNEXE

Table.1. Saturated vapor (temperature)

		Volume massique m ³ /kg			ie intern J/kg	е	H	čnthalpie kJ∕kg			Entropie kJ/kg•K	
Temp. °C T	Pres. kPa	Liquide sat.	Vapeur sat.	Liquide sat.	Évap.	Vapeur sat.	Liquide sat.	Évap.	Vapeur sat.	Liquide sat.	Évap.	Vaper sat.
	P	vf	υ _g	u_f	u _{fg}	ug	h_f	h _{fg}	h_g	s _f	s _{fg}	s _g
0.01	0.6113	0.001 000	206.14	.00	2375.3	2375.3	.01	2501.3	2501.4	.0000	9.1562	9.156
5	0.8721	0.001 000	147.12	20.97	2361.3	2382.3	20.98	2489.6	2510.6	.0761	8.9496	9.025
10	1.2276	0.001 000	106.38	42.00	2347.2	2389.2	42.01	2477.7	2519.8	.1510	8.7498	8.900
15	1.7051	0.001 001	77.93	62.99	2333.1	2396.1	62.99	2465.9	2528.9	.2245	8.5569	8.781
20	2.339	0.001 002	57.79	83.95	2319.0	2402.9	83.96	2454.1	2538.1	.2966	8.3706	8.667
25	3.169	0.001 003	43.36	104.88	2304.9	2409.8	104.89	2442.3	2547.2	.3674	8.1905	8.558
30	4.246	0.001 004	32.89	125.78	2290.8	2416.6	125.79	2430.5	2556.3	.4369	8.0164	8.453
35	5.628	0.001 006	25.22	146.67	2276.7	2423.4	146.68	2418.6	2565.3	.5053	7.8478	8.353
40	7.384	0.001 008	19.52	167.56	2262.6	2430.1	167.57	2406.7	2574.3	.5725	7:6845	8.257
45	9.593	0.001 010	15.26	188.44	2248.4	2436.8	188.45	2394.8	2583.2	.6387	7.5261	8.164
50	12.349	0.001 012	12.03	209:32	2234.2	2443.5	209.33	2382.7	2592.1 2600.9	.7038	7.3725	8.076
55	15.758	0.001 015	9.568 7.671	230.21 251.11	2219.9 2205.5	2450.1 2456.6	230.23 251.13	2370.7 2358.5	2600.9	.7679 .8312	7.2234 7.0784	7.991
60	19.940 25.03	0.001 017	6.197	272.02	2203.3	2456.6	272.06	2336.5	2609.8	.8935	6.9375	7.909
65 70		0.001 020	5.042	292.95	2191.1	2463.1	292.98	2333.8	2618.3	.9549	6.8004	7.831
75	31.19 38.58	0.001 023 0.001 026	4.131	292.95 313.90	21/6.0	2409.0	313.93	2333.8	2620.8	1.0155	6.6669	7.682
80	47.39	0.001 020	3.407	334.86	2102.0	2482.2	334.91	2308.8	2643.7	1.0753	6.5369	7.612
85	57.83	0.001 023	2.828	355.84	2132.6	2488.4	355.90	2296.0	2651.9	1.1343	6.4102	7.544
90	70.14	0.001 035	2.361	376.85	2132.0	2494.5	376.92	2283.2	2660.1	1.1945	6.2866	7.479
90 95	84.55	0.001 030	1.982	397.88	2102.7	2500.6	397.96	2285.2	2668.1	1.2500	6.1659	7.41
							419.04	2257.0	2676.1	1.3069	6.0480	7.354
	pa 0.101 35	0.001 044	1.6729	418.94	2087.6	2506.5				1.3630	5.9328	7.29
105	0.120 82	0.001 048	1.4194	440.02	2072.3	2512.4	440.15	2243.7	2683.8			
110	0.143 27	0.001 052	1.2102	461.14	2057.0	2518.1	461.30	2230.2	2691.5	1.4185	5.8202	7.23
115	0.169 06	0.001 056	1.0366	482.30	2041.4	2523.7	482.48	2216.5 2202.6	2699.0	1.4734	5.7100	7.18 7.12
120	0.198 53	0.001 060	0.8919	503.50	2025.8	2529.3	503.71		2706.3	1.5276	5.6020	7.07
125	0.2321	0.001 065	0.7706	524.74	2009.9	2534.6	524.99	2188.5	2713.5	1.5813	5.4962	7.02
130	0.2701	0.001 070	0.6685	546.02	1993.9	2539.9	546.31	2174.2	2720.5	1.6344	5.3925	
135	0.3130	0.001 075	0.5822	567.35	1977.7	2545.0	567.69	2159.6	2727.3	1.6870	5.2907	6.97
140	0.3613	0.001 080	0.5089	588.74	1961.3	2550.0	589.13	2144.7	2733.9	1.7391	5.1908	6.92
145	0.4154	0.001 085	0.4463	610.18	1944.7	2554.9	610.63	2129.6	2740.3	1.7907	5.0926 4.9960	6.88 6.83
150	0.4758	0.001 091	0.3928	631.68	1927.9	2559.5	632.20	2114.3	2746.5 2752.4	1.8418 1.8925	4.9960	6.79
155	0.5431	0.001 096	0.3468	653.24	1910.8 1893.5	2564.1	653.84	2098.6 2082.6	2752.4	1.8923	4.9010	6.75
160	0.6178	0.001 102	0.3071	674.87	1895.5	2568.4 2572:5	675.55 697.34	2062.0	2763.5	1.9427	4.8073	6.70
165	0.7005	0.001 108	0.2727 0.2428	696.56 718.33	1878.0	2576.5	719.21	2000.2	2763.3	2.0419	4.6244	6.66
170	0.7917	0.001 114		740.17	1838.1	2580.2	741.17	2049.3	2773.6	2.0909	4.5347	6.62
175	0.8920	0.001 121	0.2168	762.09	1840.0	2580.2	763.22	2032.4	2778.2	2.1396	4.3347	6.58
180	1.0021	0.001 127	0.194 05	784.10	1802.9	2585.7	785.37	1997.1	2782.4	2.1879	4.3586	6.54
185	1.1227	0.001 134	0.174 09 0.156 54	806.19	1783.8	2590.0	807.62	1997.1	2786.4	2.2359	4.2720	6.50
190 195	1.2344	0.001 141 0.001 149	0.141 05	828.37	1763.8	2590.0	829.98	1960.0	2790.0	2.2835	4.1863	6.46
		0.001 149	0.127 36	850.65	1744.7	2595.3	852.45	1940.7	2793.2	2.3309	4.1014	6.43
200	1.5538	0.001 157	0.115 21	873.04	1724.5	2597.5	875.04	1921.0	2796.0	2.3780	4.0172	6.39
205	1.7230 1.9062	0.001 104	0.104 41	895.53	1703.9	2599.5	897.76	1900.7	2798.5	2.4248	3.9337	6.35
210			0.094 79	918.14	1682.9	2601.1	920.62	1879.9	2800.5	2.4246	3.8507	6.32
215 220	2.104 2.318	0.001 181 0.001 190	0.086 19	940.87	1661.5	2602.4	943.62	1858.5	2802.1	2.5178	3.7683	6.28
225	2.548	0.001 190	0.078 49	963.73	1639.6	2603.3	966.78	1836.5	2803.3	2.5639	3.6863	6.25
230	2.795	0.001 209	0.071 58	986.74	1617.2	2603.9	990.12	1813.8	2804.0	2.6099	3.6047	6.21
235	3.060	0.001 209	0.065 37	1009.89	1594.2	2604.1	1013.62	1790.5	2804.2	2.6558	3.5233	6.17
235	3.344	0.001 219	0.059 76	1033.21	1570.8	2604.0	10137.32	1766.5	2803.8	2.7015	3.4422	6.14
245	3.648	0.001 229	0.054 71	1056.71	1546.7	2603.4	1061.23	1741.7	2803.0	2.7472	3.3612	6.10
250	3.973	0.001 251	0.050 13	1080.39	1522.0	2602.4	1085.36	1716.2	2801.5	2.7927	3.2802	6.07
255	4.319	0.001 263	0.045 98	1104.28	1496.7	2600.9	1109.73	1689.8	2799.5	2.8383	3.1992	6.03
260	4.688	0.001 276	0.042 21	1128.39	1470.6	2599.0	1134.37	1662.5	2796.9	2.8838	3.1181	6.00
265	5.081	0.001 289	0.038 77	1152.74	1443.9	2596.6	1159.28	1634.4	2793.6	2.9294	3.0368	5.96
270	5.499	0.001 302	0.035 64	1177.36	1416.3	2593.7	1184.51	1605.2	2789.7	2.9751	2.9551	5.93
275	5.942	0.001 317	0.032 79	1202.25	1387.9	2590.2	1210.07	1574.9	2785.0	3.0208	2.8730	5.89
280	6.412	0.001 332	0.030 17	1227.46	1358.7	2586.1	1235.99	1543.6	2779.6	3.0668	2.7903	5.85
285	6.909	0.001 348	0.027 77	1253.00	1328.4	2581.4	1262.31	1511.0	2773.3	3.1130	2.7070	5.81
290	7.436	0.001 366	0.025 57	1278.92	1297.1	2576.0	1289.07	1477.1	2766.2	3.1594	2.6227	5.78
295	7.993	0.001 384	0.023 54	1305.2	1264.7	2569.9	1316.3	1441.8	2758.1	3.2062	2.5375	5.74
300	8.581	0.001 404	0.021 67	1332.0	1231.0	2563.0	1344.0	1404.9	2749.0	3.2534	2.4511	5.70
305	9.202	0.001 425	0.019 948	1359.3	1195.9	2555.2	1372.4	1366.4	2738.7	3.3010	2.3633	5.66
310	9.856	0.001 447	0.018 350	1387.1	1159.4	2546.4	1401.3	1326.0	2727.3	3.3493	2.2737	5.62
315	10.547	0.001 472	0.016 867	1415.5	1121.1	2536.6	1431.0	1283.5	2714.5	3.3982	2.1821	5.58
320	11.274	0.001 472	0.015 488	1444.6	1080.9	2525.5	1461.5	1238.6	2700.1	3.4480	2.0882	5.53
330	12.845	0.001 561	0.012 996	1505.3	993.7	2498.9	1525.3	1140.6	2665.9	3.5507	1.8909	5.44
340	14.586	0.001 501	0.012 990	1570.3	894.3	2464.6	1594.2	1027.9	2622.0	3.6594	1.6763	5.33
340			0.008 813	1641.9	776.6	2404.0	1670.6	893.4	2563.9	3.7777	1.4335	5.21
330	16.513	0.001 740 0.001 893	0.008 813	1725.2	626.3	2351.5	1760.5	720.5	2363.9	3.9147	1.1379	5.05
								140.3	2-to1.0			
360 370	18.651 21.03	0.002 213	0.004 925	1844.0	384.5	2228.5	1890.5	441.6	2332.1	4.1106	.6865	4.79

			e massique n ³ /kg	Énergie interne kJ/kg			1	Enthalpie kJ/kg		Entropie kJ/kg•K			
Pres.	Temp.	Liquide	Vapeur	Liquide		Vapeur	Liquide		Vapeur	Liquide		Vapeur	
kPa P	°C T	sat. v_f	sat.	sat. u_f	Évap. <i>u_{fs}</i>	sat. u _g	sat. h_f	Évap. h _{fg}	sat. h _g	sat.	Évap.	sat. s_g	
0.6113	0.01	0.001 000	206.14	.00	2375.3	2375.3	.01	2501.3	2501.4	.0000	9.1562	9.1562	
1.0	6.98	0.001 000	129.21	29.30	2355.7	2385.0	29.30	2484.9	2514.2	.1059	8.8697	8.9756	
1.5	13.03	0.001 001	87.98	54.71	2338.6	2393.3	54.71	2470.6	2525.3	.1957	8.6322	8.8279	
2.0 2.5	17.50 21.08	0.001 001 0.001 002	67.00 54.25	73.48 88.48	2326.0 2315.9	2399.5 2404.4	73.48 88.49	2460.0 2451.6	2533.5 2540.0	.2607	8.4629 8.3311	8.7237 8.6432	
3.0	24.08	0.001 002	45.67	101.04	2313.9	2404.4	101.05	2431.6	2545.5	.3120 .3545	8.2231	8.5776	
4.0	28.96	0.001 004	34.80	121.45	2293.7	2415.2	121.46	2432.9	2554.4	.4226	8.0520	8.4746	
5.0	32.88	0.001 005	28.19	137.81	2282.7	2420.5	137.82	2423.7	2561.5	.4764	7.9187	8.3951	
7.5	40.29 45.81	0.001 008 0.001 010	19.24 14.67	168.78 191.82	2261.7 2246.1	2430.5 2437.9	168.79 191.83	2406.0 2392.8	2574.8 2584.7	.5764 .6493	7.6750 7.5009	8.2515 8.1502	
15	53.97	0.001 010	10.02	225.92	2222.8	2437.9	225.94	2392.8	2599.1	.7549	7.2536	8.0085	
20	60.06	0.001 017	7.649	251.38	2205.4	2456.7	251.40	2358.3	2609.7	.8320	7.0766	7.9085	
25	64.97	0.001 020	6.204	271.90	2191.2	2463.1	271.93	2346.3	2618.2	.8931	6.9383	7.8314	
30 40	69.10 75.87	0.001 022	5.229 3.993	289.20	2179.2 2159.5	2468.4	289.23 317.58	2336.1	2625.3	.9439	6.8247	7.7686	
40 50	81.33	0.001 027 0.001 030	3.993	317.53 340.44	2139.5	2477.0 2483.9	340.49	2319.2 2305.4	2636.8 2645.9	1.0259 1.0910	6.6441 6.5029	7.6700	
75	91.78	0.001 037	2.217	384.31	2112.4	2496.7	384.39	2278.6	2663.0	1.2130	6.2434	7.4564	
MPa													
0.100	99.63	0.001 043	1.6940	417.36	2088.7	2506.1	417.46	2258.0	2675.5	1.3026	6.0568	7.3594	
0.125	105.99	0.001 048	1.3749	444.19	2069.3	2513.5	444.32	2241.0	2685.4	1.3740	5.9104	7.2844	
0.150 0.175	111.37	0.001 053	1.1593	466.94	2052.7	2519.7	467.11 486.99	2226.5	2693.6	1.4336	5.7897	7.2233	
0.175	116.06 120.23	0.001 057	1.0036 0.8857	486.80 504.49	2038.1 2025.0	2524.9 2529.5	480.99 504.70	2213.6 2201.9	2700.6 2706.7	1.4849	5.6868 5.5970	7.171	
0.225	124.00	0.001 064	0.7933	520.47	2013.1	2533.6	520.72	2191.3	2712.1	1.5706	5.5173	7.0878	
0.250	127.44	0.001 067	0.7187	535.10	2002.1	2537.2	535.37	2181.5	2716.9	1.6072	5.4455	7.0527	
0.275	130.60	0.001 070	0.6573	548.59	1991.9	2540.5	548.89	2172.4	2721.3	1.6408	5.3801	7.0209	
0.300 0.325	133.55 136.30	0.001 073 0.001 076	0.6058	561.15	1982.4	2543.6	561.47	2163.8	2725.3	1.6718	5.3201	6.9919	
0.323	138.88	0.001 078	0.5620	572.90 583.95	1973.5 1965.0	2546.4 2548.9	573.25 584.33	2155.8 2148.1	2729.0 2732.4	1.7006 1.7275	5.2646 5.2130	6.9652 6.9405	
0.375	141.32	0.001 081	0.4914	594.40	1956.9	2551.3	594.81	2140.8	2735.6	1.7528	5.1647	6.940.	
0.40	143.63	0.001 084	0.4625	604.31	1949.3	2553.6	604.74	2133.8	2738.6	1.7766	5.1193	6.8959	
0.45	147.93	0.001 088	0.4140	622.77	1934.9	2557.6	623.25	2120.7	2743.9	1.8207	5.0359	6.856	
0.50	151.86 155.48	0.001 093 0.001 097	0.3749 0.3427	639.68 655.32	1921.6 1909.2	2561.2 2564.5	640.23 655.93	2108.5 2097.0	2748.7 2753.0	1.8607 1.8973	4.9606	6.8213	
0.60	158.85	0.001 101	0.3157	669.90	1897.5	2567.4	670.56	2097.0	2755.8	1.9312	4.8920 4.8288	6.7893 6.7600	
0.65	162.01	0.001 104	0.2927	683.56	1886.5	2570.1	684.28	2076.0	2760.3	1.9627	4.7703	6.733	
0.70	164.97	0.001 108	0.2729	696.44	1876.1	2572.5	697.22	2066.3	2763.5	1.9922	4.7158	6.7080	
0.75 0.80	167.78 170.43	0.001 112 0.001 115	0.2556 0.2404	708.64	1866.1 1856.6	2574.7	709.47	2057.0	2766.4	2.0200	4.6647	6.684	
0.85	172.96	0.001 113	0.2270	720.22 731.27	1830.0	2576.8 2578.7	721.11- 732.22	2048.0 2039.4	2769.1 2771.6	2.0462 2.0710	4.6166 4.5711	6.6622 6.642	
0.90	175.38	0.001 121	0.2150	741.83	1838.6	2580.5	742.83	2031.1	2773.9	2.0946	4.5280	6.6220	
0.95	177.69	0.001 124	0.2042	751.95	1830.2	2582.1	753.02	2023.1	2776.1	2.1172	4.4869	6.604	
1.00 1.10	179.91 184.09	0.001 127	0.194 44	761.68	1822.0	2583.6	762.81	2015.3	2778.1	2.1387	4.4478	6.586	
1.20	184.09	0.001 133 0.001 139	0.177 53 0.163 33	780.09 797.29	1806.3 1791.5	2586.4 2588.8	781.34 798.65	2000.4 1986.2	2781.7 2784.8	2.1792	4.3744	6.553	
1.30	191.64	0.001 144	0.151 25	813.44	1777.5	2591.0	814.93	1986.2	2784.8	2.2166 2.2515	4.3067 4.2438	6.523 6.495	
1.40	195.07	0.001 149	0.140 84	828.70	1764.1	2592.8	830.30	1959.7	2790.0	2.2842	4.1850	6.469	
1.50	198.32	0.001 154	0.131 77	843.16	1751.3	2594.5	844.89	1947.3	2792.2	2.3150	4.1298	6.444	
1.75 2.00	205.76 212.42	0.001 166 0.001 177	0.113 49 0.099 63	876.46 906.44	1721.4 1693.8	2597.8 2600.3	878.50 908.79	1917.9 1890.7	2796.4	2.3851	4.0044	6.389	
2.25	218.45	0.001 187	0.088 75	933.83	1668.2	2602.0	936.49	1865.2	2799.5 2801.7	2.4474 2.5035	3.8935 3.7937	6.340 6.297	
2.5	223.99	0.001 197	0.079 98	959.11	1644.0	2603.1	962.11	1841.0	2803.1	2.5547	3.7028	6.257	
3.0	233.90	0.001 217	0.066 68	1004.78	1599.3	2604.1	1008.42	1795.7	2804.2	2.6457	3.5412	6.186	
3.5 4	242.60 250.40	0.001 235 0.001 252	0.057 07 0.049 78	1045.43 1082.31	1558.3 1520.0	2603.7	1049.75	1753.7	2803.4	2.7253	3.4000	6.125	
5	263.99	0.001 232	0.049 78	1082.31	1520.0	2602.3 2597.1	1087.31 1154.23	1714.1 1640.1	2801.4 2794.3	27964 2.9202	3.2737 3.0532	6.070 5.973	
6	275.64	0.001 319	0.032 44	1205.44	1384.3	2589.7	1213.35	1571.0	2794.3	3.0267	2.8625	5.973- 5.8893	
7	285.88	0.001 351	0.027 37	1257.55	1323.0	2580.5	1267.00	1505.1	2772.1	3.1211	2.6922	5.813	
8 9	295.06	0.001 384	0.023 52	1305.57	1264.2	2569.8	1316.64	1441.3	2758.0	3.2068	2.5364	5.743	
10	303.40 311.06	0.001 418 0.001 452	0.020 48 0.018 026	1350.51 1393.04	1207.3 1151.4	· 2557.8 2544:4	1363.26 1407.56	1378.9	2742.1	3.2858	2.3915	5.677	
11	318.15	0.001 452 0.001 489	0.018 026	1393.04	1096.0	2544:4 2529.8	1407.56	1317.1 1255.5	2724.7 2705.6	3.3596 3.4295	2.2544 2.1233	5.614 5.552	
12	324.75	0.001 527	0.014 263	1473.0	1040.7	2513.7	1491.3	1193.6	2684.9	3.4962	1.9962	5.492	
13	330.93	0.001 567	0.012 780	1511.1	985.0	2496.1	1531.5	1130.7	2662.2	3.5606	1.8718	5.432	
14 15	336.75	0.001 611	0.011 485	1548.6	928.2	2476.8	1571.1	1066.5	2637.6	3.6232	1.7485	5.371	
15 16	342.24 347.44	0.001 658 0.001 711	0.010 337 0.009 306	1585.6 1622.7	869.8 809.0	2455.5 2431.7	1610.5 1650.1	1000.0 930.6	2610.5	3.6848	1.6249	5.309	
17	352.37	0.001 770	0.009 308	1660.2	744.8	2405.0	1690.3	856.9	2580.6 2547.2	3.7461 3.8079	1.4994 1.3698	5.245 5.177	
18	357.06	0.001 840	0.007 489	1698.9	675.4	2374.3	1732.0	777.1	2509.1	3.8715	1.2329	5.104	
19	361.54	0.001 924	0.006 657	1739.9	598.1	2338.1	1776.5	688.0	2464.5	3.9388	1.0839	5.022	
20	365.81	0.002 036	0.005 834	1785.6	507.5	2293.0	1826.3	583.4	2409.7	4.0139	.9130	4.926	
21 22	369.89 373.80	0.002 207 0.002 742	0.004 952 0.003 568	1842.1 1961.9	388.5 125.2	2230.6 2087.1	1888.4 2022.2	446.2 143.4	2334.6 2165.6	4.1075	.6938	4.801	
22.09	374.14	0.002 /42	0.003 155	2029.6	125.2	2087.1	2022.2	143.4	2099.3	4.3110 4.4298	.2216 0	4.532 4.429	

Table.2. Saturated vapor (pressure)

Table.3. Super heated vapor

Vapeur	surchauffée

	surchauff											
Т	U D	<i>u</i>	h	5	ν	u = 0501	h	5	υ	u = .10 M	h Pa (99.6)	<u>s</u> 3)
	Р	= .010 M				P = .050						
Sat.	14.674	2437.9	2584.7	8.1502	3.240	2483.9	2645.9	7.5939	1.6940	2506.1	2675.5	7.3594
50 100	14.869 17.196	2443.9 2515.5	2592.6 2687.5	8.1749 8.4479	3.418	2511.6	2682.5	7.6947	1.6958	2506.7	2676.2	7.3614
150	19.512	2587.9	2783.0	8.6882	3.889	2585.6	2780.1	7.9401	1.9364	2582.8	2776.4	7.6134
200	21.825	2661.3	2879.5	8.9038	4.356	2659.9	2877.7	8.1580	2.172	2658.1	2875.3	7.8343
250	24.136	2736.0	2977.3	9.1002	4.820	2735.0	2976.0	8.3556	2.406	2733.7	2974.3	8.0333
300	26.445	2812.1	3076.5	9.2813	5.284	2811.3	3075.5	8.5373	2.639	2810.4 2967.9	3074.3 3278.2	8.2158 8.5435
400 500	31.063 35.679	2968.9 3132.3	3279.6 3489.1	9.6077 9.8978	6.209	2968.5 3132.0	3278.9 3488.7	8.8642 9.1546	3.103 3.565	3131.6	3488.1	8.8342
600	40.295	3302.5	3705.4	10.1608	8.057	3302.2	3705.1	9.4178	4.028	3301.9	3704.7	9.0976
700	44.911	3479.6	3928.7	10.4028	8.981	3479.4	3928.5	9.6599	4.490	3479.2	3928.2	9.3398
800	49.526	3663.8	4159.0	10.6281	9.904		4158.9	9.8852	4.952	3663.5	4158.6	9.5652
900	54.141	3855.0	4396.4	10.8396	10.828		4396.3	10.0967	5.414	3854.8	4396.1	9.7767
1000	58.757	4053.0 4257.5	4640.6 4891.2	11.0393 11.2287	11.751 12.674	4052.9 4257.4	4640.5 4891.1	10.2964 10.4859	5.875	4052.8 4257.3	4640.3 4891.0	9.9764 10.1659
1100 1200	63.372 67.987	4257.5	5147.8	11.4091	13.597		5147.7	10.6662	6.799	4467.7	5147.6	10.3463
1300	72:602	4683.7	5409.7	11.5811	14.521	4683.6	5409.6	10.8382	7.260	4683.5	5409.5	10.5183
		= .20 M	Pa (120.2	3)		P = .30 M	4Pa (133.	55)		P = .40 M	Pa (143.0	63)
Sat.	.8857	2529.5	2706.7	7.1272	.6058		2725.3	6.9919	.4625		2738.6	6.8959
150	.9596	2576.9	2768.8	7.2795	.6339		2761.0	7.0778	.4708		2752.8	6.9299
200	1.0803	2654.4	2870.5	7.5066	.7163		2865.6	7.3115	.5342		2860.5	7.1706
250	1.1988	2731.2	2971.0	7.7086	.7964		2967.6	7.5166	.5951		2964.2	7.3789
300	1.3162	2808.6	3071.8	7.8926	.8753		3069.3	7.7022	.6548		3066.8 3273.4	7.5662 7.8985
400 500	1.5493 1.7814	2966.7 3130.8	3276.6 3487.1	8.2218 8.5133	1.0315		3275.0 3486.0	8.0330 8.3251	.8893		3484.9	8.1913
600	2.013	3301.4	3704.0	8.7770	1.3414		3703.2	8.5892	1.005		3702.4	8.4558
700	2.244	3478.8	3927.6	9.0194	1.4957		3927.1	8.8319	1.1215		3926.5	8,6987
800	2.475	3663.1	4158.2	9.2449 9.4566	1.6499		4157.8	9.0576 9.2692	1.2372		4157.3 4395.1	8.9244 9.1362
900 1000	2.706 2.937	3854.5 4052.5	4395.8 4640.0	9.4568	1.8041 1.9581		4395.4 4639.7	9.4690	1.352		4639.4	9.1362
1100	3.168	4257.0	4890.7	9.8458	2,1121		4890.4	9.6585	1.5840	4256.5	4890.2	9.5256
1200	3.399	4467.5	5147.3	10.0262	2.2661		5147.1	9.8389	1.699		5146.8	9.7060
1300	3.630	4683.2	5409.3	10.1982	2.4201		5409.0	10.0110	1.815		5408.8	9.8780
		= .50 MI					4Pa (158.8				MPa (170.	
Sat.	.3749 .4249	2561.2 2642.9	2748.7 2855.4	6.8213 7.0592	.315		2756.8	6.7600		04 2576.8	2769.1	6.6628
200 250	.4249	2042.9	2855.4	7.0392	.352		2850.1 2957.2	6.9665 7.1816		608 2630.6 031 2715.5	2839.3 2950.0	6.8158 7.0384
300	.5226	2802.9	3064.2	7.4599	.434		3061.6	7.3724		241 2797.2	3056.5	7.2328
350	.5701	2882.6	3167.7	7.6329	.474		3165.7	7.5464		544 2878.2	3161.7	7.4089
400 500	.6173 .7109	2963.2 3128.4	3271.9 3483.9	7.7938 8.0873	.513		3270.3 3482.8	7.7079 8.0021		343 2959.7 433 3126.0	3267.1 3480.6	7.5716 7.8673
600	.8041	3299.6	3701.7	8.3522	.669		3700.9	8.2674)18 3297.9		8.1333
700	.8969	3477.5	3925.9	8.5952	.747	2 3477.0	3925.3	8.5107	.5	501 3476.2	3924.2	8.3770
800 900	.9896 1.0822	3662.1 3853.6	4156.9 4394.7	8.8211 9,0329	.824		4156.5 4394.4	8.7367 8.9486		181 3661.1 761 3852.8	4155.6 4393.7	8.6033 8.8153
1000	1.1747	4051.8	4639.1	9.2328	.901		4638.8	9.1485		340 4051.0		9.0153
1100	1.2672	4256.3	4889.9	9.4224	1.055	9 4256.1	4889.6	9.3381		4255.6	4889.1	9.2050
1200	1.3596	4466.8	5146.6	9.6029	1.133		5146.3	9.5185		497 4466.1		
1300	1.4521	4682.5	5408.6	9.7749	1.210		5408.3	9.6906	.9	076 4681.8		
_		P = 1.00 N			162		MPa (187.		.140	P = 1.40 84 2592.8	MPa (195 2790.0	6.4693
Sat. 200	.194 44 .2060	2583.6 2621.9	2778.1 2827.9	6.5865 6.6940	.163			6.5233 6.5898	.140		2803.3	6.4975
250	.2327	2709.9	2942.6	6.9247	.192			6.8294	.163		2927.2	6.7467
300	.2579	2793.2	3051.2	7.1229	.2138			7.0317	.182		3040.4	6.9534
350	.2825	2875.2	3157.7	7.3011	.2345			7.2121 7.3774	.200			7.1360 7.3026
400 500	.3066 .3541	2957.3 3124.4	3263.9 3478.5	7.4651 7.7622	.2548			7.6759	.252		3474.1	7.6027
600	.4011	3296.8	3697.9	8.0290	.3339	3295.6	3696.3	7.9435	.286	0 3294.4	3694.8	7.8710
700	.4478	3475.3	3923.1	8.2731	.3729			8.1881	.319			8.1160 8.3431
800 900	.4943 .5407	3660.4 3852.2	4154.7 4392.9	8.4996 8.7118	.4118 .4505			8.4148 8.6272	.386		4391.5	8.5556
1000	.5871	4050.5	4637.6	8.9119	.4892			8.8274	.419			8.7559
1100	.6335	4255.1	4888.6	9.1017	.5278	4254.6		9.0172	.452		4887.5	8.9457
1200	.6798	4465.6	5145.4 5407.4	9.2822 9.4543	.5665			9.1977 9.3698	.485		5144.4 5406.5	9.1262 9.2984
1300	.7261	4681.3 P = 1.60 1					MPa (207		1010	P = 2.00		
Sat.	.123 80		2794.0	6.4218	.110			6.3794	.099		2799.5	6.3409
225	.132 87		2857.3	6.5518	.116	73 2636.6	2846.7	6.4808	.103		2835.8	6.4147
250	.141 84	2692.3	2919.2	6.6732	.124			6.6066	.111 .125		2902.5 3023.5	6.5453 6.7664
300 350	.158 62 .174 56		3034.8 3145.4	6.8844 7.0694	.140			6.8226 7.0100	.125		3137.0	6.9563
400	.190 05		3254.2	7.2374	.168	47 2947.7	3250.9	7.1794	.151	20 2945.2	3247.6	7.1271
500	.2203	3119.5	3472.0	7.5390	.195	50 3117.9	3469.8	7.4825	.175		3467.6	7.4317
600	.2500	3293.3	3693.2	7.8080	.222(7.7523	.199		3690.1 3917.4	7.7024 7.9487
700		3472.7	3919.7	8.0535	.2482			7.9983 8.2258	.223		4150.3	8.1765
800 900		3658.3 3850.5	4152.1 4390.8	8.2808 8.4935	.274.			8.4386	.270		4389.4	8.3895
1000		4049.0	4635.8	8.6938	.326	0 4048.5	4635.2	8.6391	.293	3 4048.0	4634.6	8.5901
1100	.3958	4253.7	4887.0	8.8837	.351			8.8290	.316		4885.9 5142.9	8.7800 8.9607
1200 1300		4464.2 4679.9	5143.9 5406.0	9.0643 9.2364	.377 .403			9.0096 9.1818	.339 .363		5405.1	9.1329
1300	6664	4019.9	240000	218001								

T	r surchauff v	u.	h	5	v	u	h	\$	υ	и	h	5
		= 2.50 MI					Pa (233.9				Pa (242.6	
5 -4					and the second sec							-
Sat. 225	.079 98 .080 27	2603.1 2605.6	2803.1 2806.3	6.2575 6.2639	.066 68	2604.1	2804.2	6.1869	.057 07	2603.7	2803.4	6.1253
250	.087 00	2662.6	2880.1	6.4085	.070 58	2644.0	2855.8	6.2872	.058 72	2623.7	2829.2	6.1749
300	.098 90	2761.6	3008.8	6.6438	.081 14	2750.1	2993.5	6.5390	.068.42	2738:0	2977.5	6.4461
350	.109 76	2851.9	3126.3	6.8403	.090 53	2843.7	3115.3	6.7428	.076 78	2835.3	3104.0	6.6579
400	.120 10	2939.1	3239.3	7.0148	.099 36	2932.8	3230.9	6.9212	.084 53	2926.4	3222.3	6.8405
450	.130 14	3025.5	3350.8	7.1746	.107 87	3020.4	3344.0	7.0834	.091 96	3015.3	3337.2	7.0052
500	.139 98	3112.1	3462.1	7.3234	.116 19	3108.0	3456.5	7.2338	.099 18	3103.0	3450.9	7.1572
600	.159 30	3288.0	3686.3	7.5960	.132 43	3285.0	3682.3	7.5085	.113 24	3282.1	3678.4	7.4339
700	.178 32	3468.7	3914.5	7.8435	.148 38	3466.5	3911.7	7.7571	.126 99	3464.3	3908.8	7.6837
800 900	.197 16 .215 90	3655.3 3847.9	4148.2 4387.6	8.0720 8.2853	.164 14 .179 80	3653.5 3846.5	4145.9	7.9862 8.1999	.140 56	3651.8	4143.7	7.9134
1000	.2346	4046.7	4633.1	8.4861	.195 41	4045.4	4385.9 4631.6	8.4009	.154 02 .167,43	3845.0 4044.1	4384.1 4630.1	8.1276 8.3288
1100	.2532	4251.5	4884.6	8.6762	.210 98	4250.3	4883.3	8.5912	.180 80	4249.2	4881.9	8.5192
1200	.2718	4462.1	5141.7	8.8569	.226 52	4460.9	5140.5	8.7720	.194 15	4459.8	5139.3	8.7000
1300	.2905	4677.8	5404.0	9.0291	.242 06	4676.6	5402.8	8.9442	.207 49	4675.5	5401.7	8.8723
	Р	= 4.0 MP	a (250,40))	Р	= 4.5 M	Pa (257.49	0	Р	- 5.0 M	Pa (263.9	9)
Sat.	.049 78	2602.3	2801.4	6.0701	.044 06	2600.1	2798.3	6.0198	.039 44	2597.1	2794.3	5.9734
275	.054 57	2667.9	2886.2	6.2285	.047 30	2650.3	2863.2	6.1401	.041 41	2631.3	2838.3	6.0544
300	.058 84	2725.3	2960.7	6.3615	.051 35	2712.0	2943.1	6.2828	.045 32	2698.0	2924.5	6.2084
350	.066 45	2826.7	3092.5	6.5821	.058 40	2817.8	3080.6	6.5131	.051 94	2808.7	3068.4	6.4493
400	.073 41	2919.9	3213.6	6.7690	.064 75	2913.3	3204.7	6.7047	.057 81	2906,6	3195.7	6.6459
450	.080 02	3010.2	3330.3	6.9363	.070 74	3005.0	3323.3	6.8746	.063 30	2999.7	3316.2	6.8186
500	.086 43	3099.5	3445.3	7.0901	.076 51	3095.3	3439.6	7.0301	.068 57	3091.0	3433.8	6.9759
600 700	.098 85	3279.1	3674.4 2005-b	7.3688	.087 65	3276.0	3670.5	7.3110	.078 69	3273.0 3457.6	3666.5 3900.1	7.2589
700	.110 95	3462.1 3650.0	3905:9 4141.5	7.6198	.098 47 .109 11	3459.9 3648.3	3903.0 4139.3	7.5631 7.7942	.088 49	3457.6 3646.6	4137.1	7.7440
800 900	.122.87	3843.6	4141.5	8.0647	.119 65	3842.2	4139.5	8.0091	.107 62	3840.7	41378.8	7.9593
1000	.146 45	4042.9	4628.7	8.2662	.130 13	4041.6	4627.2	8.2108	.117 07	4040.4	4625,7	8.1612
1100	.158 17	4248.0	4880.6	8.4567	.140 56	4246.8	4879.3	8.4015	.126 48	4245.6	4878.0	8.3520
1200	.169 87	4458.6	5138.1	8.6376	.150 98	4457.5	5136.9	8.5825	.135 87	4456.3	5135.7	8.5331
1300	.181 56	4674.3	5400.5	8.8100	.161 39	4673.1	5399.4	8.7549	.145 26	4672.0	5398.2	8.7055
	P	= 6.0 MP	a (275.64)	P	= 7.0 M	Pa (285.88	8)	P	= 8.0 M	(Pa (295.0)6)
Sat.	.032 44	2589.7	2784.3	5.8892	.027 37	2580.5	2772.1	5.8133	.023 52	2569.8	2758.0	5.7432
300	.036 16	2667.2	2884.2	6.0674	.029 47	2632.2	2838.4	5.9305	.024 26	2590.9	2785.0	5.7906
350	.042 23	2789.6	3043.0	6.3335	.035 24	2769.4	3016.0	6.2283	.029 95	2747.7	2987.3	6.1301
400	.047 39	2892.9	3177.2	6.5408	.039 93	2878.6	3158.1	6.4478	.034 32	2863.8	3138.3	6.3634
450	.052 14	2988.9	3301.8	6.7193	.044 16	2978.0	3287.1	6.6327	.038 17	2966.7	3272.0	6.5551
500	.056 65	3082.2	3422.2 3540.6	6.8803 7.0288	.048 14 .051 95	3073.4	3410.3 3530.9	6.7975 6.9486	.041 75 .045 16	3064.3 3159.8	3398.3 3521.0	6.7240 6.8778
550 600	.061 01 .065 25	3174.6 3266.9	3658.4	7.1677	.055 65	3260.7	3650.3	7.0894	.043 10	3254.4	3642.0	7.0206
700	.073 52	3453.1	3894.2	7.4234	.062 83	3448.5	3888.3	7.3476	.054 81	3443.9	3882.4	7.2812
800	.081 60	3643.1	4132.7	7.6566	.069 81	3639.5	4128.2	7.5822	.060 97	3636.0	4123.8	7.5173
900	.089 58	3837.8	4375.3	7.8727	.076 69	3835.0	4371.8	7.7991	.067 02	3832.1	4368.3	7.7351
1000	.097 49	4037.8	4622.7	8.0751	.083 50	4035.3	4619.8	8.0020	.073 01	4032.8	4616.9	7.9384
1100	.105 36	4243.3	4875.4	8.2661	.090 27	4240.9	4872.8	8.1933	.078 96	4238.6	4870.3	8.1300
1200	.113 21	4454.0	5133.3	8.4474	.097 03	4451.7		8.3747	.084 89 .090 80	4449.5 4665.0		8.3115 8.4842
1300	.121 06	4669.6	5396.0	8.6199	.103 77	4667.3		8.5473				
		= 9.0 M					4Pa (311.0				1Pa (327.5	
Sat.	.020 48	2557.8	2742.1	5.6772	.018 026			5.6141	.013 495	2505.1	2673.8	5.4624
325	.023 27	2646.6	2856.0	5.8712	.019 861			5.7568 5.0443	016 136	2624.6	1814 1	\$ 7110
350 400	.025 80 .029.93	2724.4 2848.4	2956.6 3117.8	6.0361 6.2854	.022 42 .026 41	2699.2 2832.4		5.9443 6.2120	.016 126 .020 00	2624.6 2789.3	2826.2 3039.3	5.7118 6.0417
400	.029.93	2848.4		6.4844	.026 41	2832.4		6.4190	.020 00	2789.5	3199.8	6.2719
500	.036 77	3055.2	3386.1	6.6576	.032 79	3045.8		6.5966	.025 60	3021.7	3341.8	6.4618
550	.039 87	3152.2	3511.0	6.8142	.035 64	3144.6	5 3500.9	6.7561	.028 01	3125.0	3475.2	6.6290
600	.042 85	3248.1	3633.7	6.9589	.038 37	3241.7		6.9029	.030 29	3225.4	3604.0	6.7810
650	.045 74	3343.6	3755.3	7.0943	.041 01	3338.2		7.0398	.032 48	3324.4	3730.4	6.9218
700	.048 57	3439.3	3876.5	7.2221	.043 58	3434.1		7.1687	.034 60	3422.9	3855.3	7.0536
800	.054 09	3632.5	4119.3	7.4596	.048 59	3628.9		7.4077	.038 69	3620.0	4103.6	7.2965
900 t000	.059 50	3829.2	4364.8	7.6783	.053 49	3826.3 4027.8		7.6272	.042 67 .046 58	3819.1 4021.6	4352.5	7.5182 7.7237
1000 1100	.064 85 .070 16	4030.3 4236.3	4614.0 4867.7	7.8821 8.0740	.058 32 .063 12	4027.8		8.0237	.046 58	4021.6	4858.8	7.9165
1200	.075 44	4447.2	5126.2	8.2556	.067 89	4444.9		8.2055	.054 30	4439.3	5118.0	8.0987
1300	.080 72	4662.7	5389.2	8.4284	.072 65	4460.5		8.3783	.058 13	4654.8	5381.4	8.2717
		= 15.0 M					IPa (354.1				APa (365.)	
Sat	.010 337		2610.5	5.3098	.007 920			5.1419	.005 834	2293.0	2409.7	4.9269
Sat. 350	.010 337		2610.5	5.4421	.00 r 92	, aJ70.4		J.1713	.005 054	227530	#107.1	1.7203
	.015 649		2975.5	5.8811	.012 44	7 2685.	0 2902.9	5.7213	.009 942	2619.3	2818.1	5.5540
400	.018 445		3156.2	6.1404	.015 17			6.0184	.012 695			5.9017
400 450	.020 80	2996.6	3308.6	6.3443	.017 35			6.2383	.014 768			
		3104.7	3448.6	6.5199	.019 28			6.4230	.016 555			6.3348
450	.022 93	3208.6		6.6776	.021 06			6.5866	.018 178			6.5048
450 500	.022 93 .024 91			6.8224	.022 74	3296.	0 3693.9	6.7357	.019 693	3281.4	3675.3	6.6582
450 500 550 600 650	.024 91 .026 80	3310.3	3712.3				7 20244	6.8736	.021 13	3386.4	3809.0	6.7993
450 500 550 600 650 700	.024 91 .026 80 .028 61	3310.3 3410.9	3840.1	6.9572	.024 34	3398.						
450 500 550 600 650 700 800	.024 91 .026 80 .028 61 .032 10	3310.3 3410.9 3610.9	3840.1 4092.4	6.9572 7.2040	.027 38	3601.	8 4081.1	7.1244	.023 85	3592.7	4069.7	7.0544
450 500 550 600 650 700 800 900	.024 91 .026 80 .028 61 .032 10 .035 46	3310.3 3410.9 3610.9 3811.9	3840.1 4092.4 4343.8	6.9572 7.2040 7.4279	.027 38 .030 31	3601. 3804.	8 4081.1 7 4335.1	7.1244 7.3507	.023 85 .026 45	3592.7 3797.5	4069.7 4326.4	7.0544 7.2830
450 500 550 600 650 700 800 900 1000	.024 91 .026 80 .028 61 .032 10 .035 46 .038 75	3310.3 3410.9 3610.9 3811.9 4015.4	3840.1 4092.4 4343.8 4596.6	6.9572 7.2040 7.4279 7.6348	.027 38 .030 31 .033 16	3601. 3804. 4009.	8 4081.1 7 4335.1 3 4589.5	7.1244 7.3507 7.5589	.023 85 .026 45 .028 97	3592.7 3797.5 4003.1	4069.7 4326.4 4582.5	7.0544 7.2830 7.4925
450 500 550 600 650 700 800 900	.024 91 .026 80 .028 61 .032 10 .035 46	3310.3 3410.9 3610.9 3811.9	3840.1 4092.4 4343.8	6.9572 7.2040 7.4279	.027 38 .030 31	3601. 3804. 4009. 4216.9	8 4081.1 7 4335.1 3 4589.5 9 4846.4	7.1244 7.3507 7.5589 7.7531	.023 85 .026 45	3592.7 3797.5	4069.7 4326.4 4582.5 4840.2	7.0544 7.2830

Т	υ	u	h	8	υ	u	h	5	U	u	h	8		
		P = 25.0	MPa			P = 30.0	MPa			P = 35.	0 MPa	3.8722 4.2126 4.7747 5.1962 5.6282 5.9026 6.1179 6.3010 6.4631 6.7450 6.9886 7.2064 7.4057 7.5910 7.7653 7.7651 3.7141 3.9318 4.1626 4.4121 4.9321 5.4822 5.8829 6.0824 6.4109		
375	.001 973 1	1798.7	1848.0	4.0320	.001 789 2	1737.8	1791.5	3.9305	.001 700 3	1702.9	1762.4	3.872		
400	.006 004	2430.1	2580.2	5.1418	.002 790	2067.4	2151.1	4.4728	.002 100	1914.1	1987.6	4.212		
425	.007 881	2609.2	2806.3	5.4723	.005 303	2455.1	2614.2	5.1504	.003 428	2253.4	2373.4	4.774		
450	.009 162	2720.7	2949.7	5.6744	.006 735	2619.3	2821.4	5.4424	.004 961	2498.7	2672.4	5.196		
500	.011 123	2884.3	3162.4	5.9592	.008 678	2820.7	3081.1	5.7905	.006 927	2751.9	2994.4	5.628		
550	.012 724	3017.5	3335.6	6.1765	.010 168	2970.3	3275.4	6.0342	.008 345	2921.0	3213.0	5.902		
600	.014 137	3137.9	3491.4	6.3602	.011 446	3100.5	3443.9	6.2331	.009 527	3062.0	3395.5	6.117		
650	.015 433	3251.6	3637.4	6.5229	.012 596	3221.0	3598.9	6.4058	.010 575	3189.8	3559.9	6.3010		
700	.016 646	3361.3	3777.5	6.6707	.013 661	3335.8	3745.6	6.5606	.011 533	3309.8	3713.5	6.463		
800	.018 912	3574.3	4047.1	6.9345	.015 623	3555.5	4024.2	6.8332	.013 278	3536.7	4001.5	6.7450		
900	.021 045	3783.0	4309.1	7.1680	.017 448	3768.5	4291.9	7.0718	.014 883	3754.0	4274.9			
000	.023 10	3990.9	4568.5	7.3802	.019 196	3978.8	4554.7	7.2867	.016 410	3966.7	4541.1			
100	.025 12	4200.2	4828.2	7.5765	.020 903	4189.2	4816.3	7.4845	.017 895	4178.3	4804.6			
200	.027 11	4412.0	5089.9	7.7605	.022 589	4401.3	5079.0	7.6692	.019 3,60	4390.7	5068.3			
300	.029 10	4626.9	5354.4	7.9342	.024 266	4616.0	5344.0	7.8432	.020 815	4605,1	5333.6	7.765		
		P = 40.	0 MPa			P = 50.	0 MPa			P = 60	0 MPa			
375	.001 640 7	1677.1	1742.8	3.8290	.001 559 4	1638.6	1716.6	3.7639	.001 502 8	1609.4	1699.5	3.714		
400	.001 907 7	1854.6	1930.9	4.1135	.001 730 9	1788.1	1874.6	4.0031	.001 633 5	1745.4	1843.4			
425	.002 532	2096.9	2198.1	4.5029	.002.007	1959.7	2060.0	4.2734	.001 816 5	1892.7	2001.7			
450	.003 693	2365.1	2512.8	4.9459	.002 486	2159.6	2284.0	4.5884	.002 085	2053.9	2179.0			
500	.005 622	2678.4	2903.3	5.4700	.003 892	2525.5	2720.1	5.1726	.002 956	2390.6	2567.9			
550	.006 984	2869.7	3149.1	5.7785	.005 118	2763.6	3019.5	5.5485	.003 956	2658.8	2896.2			
600	.008 094	3022.6	3346.4	6.0114	.006 112	2942.0	3247.6	5.8178	.004 834	2861.1	3151.2			
650	.009 063	3158.0	3520.6	6.2054	.006 966	3093.5	3441.8	6.0342	.005 595	3028.8	3364.5			
700	.009 941	3283.6	3681.2	6.3750	.007 727	3230.5	3616.8	6.2189	.006 272	3177.2	3553.5			
800	.011 523	3517.8	3978.7	6.6662	.009 076	3479.8	3933.6	6.5290	.007 459	3441.5	3889.1			
900	.012 962	3739.4	4257.9	6.9150	.010 283	3710.3	4224.4	6.7882	.008 508	3681.0	4191.5	6.680		
000	.014 324	3954.6	4527.6	7.1356	.011 411	3930.5	4501.1	7.0146	.009 480	3906.4	4475.2	6.912		
100	.015 642	4167.4	4793.1	7.3364	.012 496	4145.7	4770.5	7.2184	.010 409	4124.1	4748.6	7.119		
200	.016 940	4380.1	5057.7	7.5224	.013 561	4359.1	5037.2	7.4058	.011 317	4338.2	5017.2	7.308		
300	.018 229	4594.3	5323.5	7.6969	.014 616	4572.8	5303.6	7.5808	.012 215	4551.4	5284.3	7.483		

Liqui	de comprimé	5									
\overline{r}	υ	и	h	S	υ	и	h	\$	υ	и	h
	Р	= 5 MPa	(263.99)		P	= 10 MP	a (311.06)		I	P = 15 MI	Pa (342.24
Sat.	.001 285 9	1147.8	1154.2	2.9202	.001 452 4	1393.0	1407.6	3.3596	.001 658 1	1585.6	1610.5
0	.000 997 7	.04	5.04	.0001	.000 995 2	.09	10.04	.0002	.000 992 8	.15	15.05
20	.000 999 5	83.65	88.65	.2956	.000 997 2	83.36	93.33	.2945	.000 995 0	83.06	97.99
40	.001 005 6	166.95	171.97	.5705	.001 003 4	166.35	176.38	.5686	.001 001 3	165.76	180.78
60	.001 014 9	250.23	255.30	.8285	.001 012 7	249.36	259.49	.8258	.001 010 5	248.51	263.67
80	.001 026 8	333.72	338.85	1.0720	.001 024 5	332.59	342.83	1.0688	.001 022 2	331.48	346.81
100	.001 041 0	417.52	422.72	1.3030	.001 038 5	416.12	426.50	1.2992	.001 036 1	414.74	430.28
120	.001 057 6	501.80	507.09	1.5233	.001 054 9	500.08	510.64	1.5189	.001 052 2	498.40	514.19
140	.001 076 8	586.76	592.15	1.7343	.001 073 7	584.68	595.42	1.7292	.001 070 7	582.66	598.72
160	.001 098 8	672.62	678.12	1.9375	.001 095 3	670.13	681.08	1.9317	.001 091 8	667.71	684.09
180	.001 124 0	. 759.63	765.25	2.1341	.001 119 9	756.65	767.84	2.1275	.001 115 9	753.76	770.50
200	.001 153 0	848.1	853.9	2.3255	.001 148 0	844.5	856.0	2.3178	.001 143 3	841.0	858.2
220	.001 186 6	938.4	944.4	2.5128	.001 180 5	934.1	945.9	2.5039	.001 174 8	929.9	947.5
240	.001 226 4	1031.4	1037.5	2.6979	.001 218 7	1026.0	1038.1	2.6872	.001 211 4	1020.8	1039.0
260	.001 274 9	1127.9	1134.3	2.8830	.001 264 5	1121.1	1133.7	2.8699	.001 255 0	1114.6	1133.4
280					.001 321 6	1220.9	1234.1	3.0548	.001 308 4	1212.5	1232.1
300					.001 397 2	1328.4	1342.3	3.2469	.001 377 0	1316.6	1337.3
320									.001 472 4	1431.1	1453.2
340									.001 631 1	1567.5	1591.9
	The second se	= 20 MPa				P = 30	MPa		P = 50	MPa	
Sat.	.002 036	1785.6	1826.3	4.0139							
0	.000 990 4	.19	20.01	.0004	.000 985 6	.25	29.82	.0001	.000 976 6	.20	49.03
20	.000 992 8	82.77	102.62	.2923	.000 988 6	82.17	111.84	.2899	.000 980 4	81.00	130.02
40	.000 999 2	165.17	185.16	.5646	.000 995 1	164.04	193.89	.5607	.000 987 2	161.86	211.21
60	.001 008 4	247.68	267.85	.8206	.001 004 2	246.06	276.19	.8154	.000 996 2	242.98	292.79
80	.001 019 9	330.40	350.80	1.0624	.001 015 6	328.30	358.77	1.0561	.001 007 3	324.34	374.70
100	.001 033 7	413.39	434.06	1.2917	.001 029 0	410.78	441.66	1.2844	.001 020 1	405.88	456.89
120	.001 049 6	496.76	517.76	1.5102	.001 044 5	493.59	524.93	1.5018	.001 034 8	487.65	539.39
140	.001 067 8	580.69	602.04	1.7193	.001 062 1	576.88	608.75	1.7098	.001 051 5	569.77	622.35
160	.001 088 5	665.35	687.12	1.9204	.001 082 1	660.82	693.28	1.9096	.001.070.3	652.41	705.92
180	.001 112 0	750.95	773.20	2.1147	.001 104 7	745.59	778.73	2.1024	.001 091 2	735.69	790.25
200	.001 138 8	837.7	860.5	2.3031	.001 130 2	831.4	865.3	2.2893	.001 114 6	819.7	875.5
220	.001 169 3	925.9	949.3	2.4870	.001 159 0	918.3	953.1	2.4711	.001 140 8	904.7	961.7
240	.001 204 6	1016.0	1040.0	2.6674	.001 192 0	1006.9	1042.6	2.6490	.001 170 2	990.7	1049.2
260	.001 246 2	1108.6	1133.5	2.8459	.001 230 3	1097.4	1134.3	2.8243	.001 203 4	1078.1	1138.2
280	.001 296 5	1204.7	1230.6	3.0248	.001 275 5	1190.7	1229.0	2.9986	.001 241 3	1167.2	1229.3
300	.001 359 6	1306.1	1333.3	3.2071	.001 330 4	1287.9	1327.8	3.1741	.001 286 0	1258.7	1323.0
320	.001 443 7	1415.7	1444.6	3.3979	.001 399 7	1390.7	1432.7	3.3539	.001 338 8	1353.3	1420.2
	.001 568 4	1539.7	1571.0	3.6075	.001 492 0	1501.7	1546.5	3.5426	.001 403 2	1452.0	1522.1
340 360	.001 822 6	1702.8	1739.3	3.8772	.001 626 5	1626.6	1675.4	3.7494	.001 483 8	1556.0	1630.2

Table.4. Solid and saturated vapor

	Ve	olume massi m ³ /kg	que	Én	ergie inter kJ/kg	ne		Enthalpie kJ/kg		Entropie kJ/kg•K			
Temp. °C T	Pres. kPa P	Solide sat. $v_i \times 10^3$	Vapeur sat. ^v g	Solide sat. u_i	Subl. u_{ig}	Vapeur sat. u _g	Solide sat. h_i	Subl. h_{ig}	Vapeur sat. h _g	Solide sat. s _i	Subl.	Vapeur sat.	
.01	.6113	1.0908	206.1	- 333.40	2708.7	2375.3	- 333.40	2834.8	2501.4	-1.221	10.378	9.156	
0	.6108	1.0908	206.3	- 333.43	2708.8	2375.3	-333.43	2834.8	2501.3	-1.221	10.378	9.157	
$^{-2}$.5176	1.0904	241.7	- 337.62	2710.2	2372.6	- 337.62	2835.3	2497.7	-1.237	10.456	9.219	
4	.4375	1.0901	283.8	341.78	2711.6	2369.8	- 341.78	2835.7	2494.0	-1.253	10.536	9.283	
-6	.3689	1.0898	334.2	- 345.91	2712.9	2367.0	- 345.91	2836.2	2490.3	-1.268	10.616	9.348	
-8	.3102	1.0894	394.4	-350.02	2714.2	2364.2	-350.02	2836.6	2486.6	1.284	10.698	9.414	
-10	.2602	1.0891	466.7	- 354.09	2715.5	2361.4	- 354.09	2837.0	2482.9	-1.299	10.781	9.481	
-12	.2176	1.0888	553.7	-358.14	2716.8	2358.7	-358.14	2837.3	2479.2	-1.315	10.865	9.550	
-14	.1815	1.0884	658.8	- 362.15	2718.0	2355.9	- 362.15	2837.6	2475.5	-1.331	10.950	9.619	
-16	.1510	1.0881	786.0	- 366.14	2719.2	2353.1	- 366.14	2837.9	2471.8	1.346	11.036	9.690	
-18	.1252	1.0878	940.5	-370.10	2720.4	2350.3	-370.10	2838.2	2468.1	- 1.362	11.123	9.762	
-20	.1035	1.0874	1128.6	- 374.03	2721.6	2347.5	374.03	2838.4	2464.3	- 1.377	11.212	9.835	
-22	.0853	1.0871	1358.4	- 377.93	2722.7	2344.7	- 377.93	2838.6	2460.6	-1.393	11.302	9.909	
24	.0701	1.0868	1640.1	-381.80	2723.7	2342.0	-381.80	2838.7	2456.9	1.408	11.394	9.985	
-26	.0574	1.0864	1986.4	- 385.64	2724.8	2339.2	- 385.64	2838.9	2453.2	-1.424	11.486	10.062	
28	.0469	1.0861	. 2413.7	389.45	2725.8	2336.4	- 389.45	2839.0	2449.5	-1.439	11.580	10.141	
-30	.0381	1.0858	2943	- 393.23	2726.8	2333.6	- 393.23	2839.0	2445.8	-1.455	11.676	10.221	
- 32	.0309	1.0854	3600	-396.98	2727.8	2330.8	- 396.98	2839.1	2442.1	-1.471	11.773	10.303	
- 34	.0250	1.0851	4419	-400.71	2728.7	2328.0	400.71	2839.1	2438.4	- 1.486	11.872	10.386	
-36	.0201	1.0848	5444	-404.40	2729.6	2325.2	404.40	2839.1	2434.7	-1.501	11.972	10.470	
- 38	.0161	1.0844	6731	408.06	2730.5	2322.4	-408.06	2839.0	2430.9	-1.517	12.073	10.556	
-40	.0129	1.0841	8354	-411.70	2731.3	2319.6	-411.70	2838.9	2427.2	-1.532	12.176	10.644	

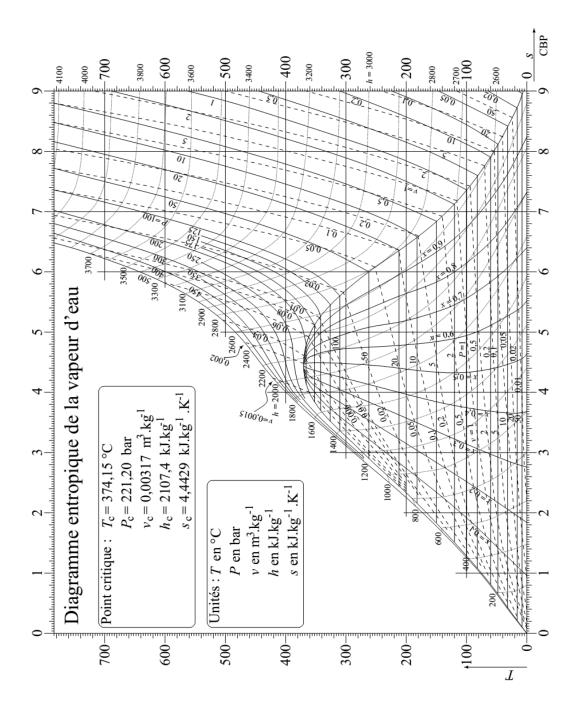


Diagram.1. Diagram Entropic water vapor

References

- [1].Mohammed YoubiIdrissi « Technique du froid & composants frigorifiques » Cours ; Cemagref. 2006.
- [2]. YunusA. Cengelet Michel A. Boles « Thermodynamics An Engineering Approach", 5 Edition.

[3].Maxime Duminil, « Théorie des machines frigorifiques, machine à compression mécanique » B 9730, traité Génie énergétiquen Techniques de l'ingénieur. 1996.

[4].H.Recknagel, E-R.Schramek, E.Sprenger, « Génie climatique", Dunod, 2013

[5].W.Maake ; H.-J.Eckert ; J-L.Cauchepin ; « Le Pohlmann- Manuel technique du froid », PYC Livres.

- [6].J.Desmons, « Aide-mémoire de l'ingénieur ; Génie climatique », Dunod.
- [7].F.Meunier, D. Mugnier, « la climatisation solaire ; Thermique ou photovoltaïque » ; Dunod. 2013.
- [8].F.Meunier, P.Rivet, M-F. Terrier, « Froid industriel- 2 éme édition » ; Dunod. 2010.
- [9].Horst Herr ; « Génie énergétique et climatique chauffage, froid, climatisation » Dunod Tech. 2014.