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Preface

This course is intended primarily for students in higher education who may need mathe-

matical analysis, such as first-year students of the natural sciences (biology, agronomy) and

first-year mathematics and informatics (MI) and matter sciences (SM) students. They will

find most of the tools and notions of calculus in analysis that they need here. The course

is described in detail, including theorems and propositions. All exercises, complete with

corrections, will help students to consolidate their learning. This document contains four

chapters in an easy-to-read style, covering the following topics:

1) The first chapter discusses sequences of real numbers and their properties.

2) The second chapter is devoted to the properties of series with positive terms, in which we

introduce the various convergence criteria.

3) The third chapter looks at real functions with one real variable, focusing on the notion of

limits, continuity at a point and differentiability.

4) The last chapter covers the calculation of integrals and primitives, deepening the defi-

nitions and methods used in high school, and introducing new tools: integration by parts,

change of variable and the notion of indefinite integral for the calculation of primitives.

A. Benkhaled

v



1
Sequences

1.1 Definitions

Definition 1.1.1. A sequence is simply an ordered list of numbers. For example, here is

a sequence: 0, 1, 2, 3, 4, 5, . . . . This is different from the set N because, while the

sequence is a complete list of every element in the set of natural numbers, in the sequence

we very much care what order the numbers come in. For this reason, when we use variables

to represent terms in a sequence they will look like this:

a0, a1, a2, a3, ....

To refer to the entire sequence at once, we will write (an)n∈N or (an)n≥0, or sometimes if

we are being sloppy, just (an) (in which case we assume we start the sequence with a0)(The

term an is said to be the general term). We might replace the a with another letter, and

1



2 Course and corrected exercises

sometimes we omit a0, starting with a1, in which case we would use (an)n≥1 to refer to the

sequence as a whole. The numbers in the subscripts are called indices (the plural of index).

Remark 1.1.1. While we often just think of a sequence as an ordered list of numbers, it

is really a type of function. Specifically, the sequence (an)n≥0 is a function with domain N

where (an) is the image of the natural number n. Later we will manipulate sequences in

much the same way you have manipulated functions in algebra or calculus. We can shift a

sequence up or down, add two sequences, or ask for the rate of change of a sequence. These

are done exactly as you would for functions.

That said, while keeping the rigorous mathematical definition in mind is helpful, we often

describe sequences by writing out the first few terms

Example 1.1.1. Can you find the next term in the following sequences ?

1- 3, 2, 1, 0, -1, . . .

2- 1, 2, 4, 8, 16, 32, . . .

3- 1, 3, 6, 10, 15, 21, . . .

No you cannot. You might guess that the next terms are:

1- -2

2- 64

3- 34

In fact, those are the next terms of the sequences I had in mind when I made up the example,

but there is no way to be sure they are correct.

Given that no number of initial terms in a sequence is enough to say for certain which

sequence we are dealing with, we need to find another way to specify a sequence. We

consider two ways to do this:

Definition 1.1.2. A closed formula for a sequence (an)n∈N is a formula for (an) using a

fixed finite number of operations on n. This is what you normally think of as a formula in

n, just as if you were defining a function in terms of n.

Example 1.1.2. Here are a few closed formulas for sequences:

I an = n2

I an =
n(n+ 1)

2
.
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Note in each formula, if you are given n, you can calculate (an) directly: just plug in n.

For example, to find a3 in the first sequence, just compute a3 = 32 = 9.

Definition 1.1.3. A recursive definition (sometimes called an inductive definition) for

a sequence (an)n∈N consists of a recurrence relation : an equation relating a term of the

sequence to previous terms (terms with smaller index) and an initial condition: a list of a

few terms of the sequence (one less than the number of terms in the recurrence relation).

Example 1.1.3. Here are a few recursive definitions for sequences:

I an = 2an−1 with a0 = 1

I an = an−1 + an−2 with a0 = 0 and a1 = 1.

In these formulas, if you are given n, you cannot calculate (an) directly, you first need to

find (an−1) (or (an−1) and (an−2)). In the second sequence, to find a3 you would find a1 = 54,

a2 = 108 and finally a3 = 216.

Definition 1.1.4. Let (an)n∈N, (bn)n∈N be two sequences and λ ∈ R.

• The sum of (an)n∈N and (bn)n∈N is the sequence of general term an + bn.

• The product of (an)n∈N and (bn)n∈N is the sequence of general term anbn.

• If for all n ∈ N: bn 6= 0, the quotient of (an)n∈N and (bn)n∈N is that of the sequence of

general term:
an
bn

.

• λ(an)n∈N is the sequence of general term λan.

1.2 Arithmetic and geometric sequences

Definition 1.2.1. If the terms of a sequence differ by a constant, we say the sequence is

arithmetic. If the initial term (a0) of the sequence is a and the common difference is d,

then we have,

- Recursive definition: an = an−1 + d with a0 = a.

- Closed formula: an = a+ dn.

Example 1.2.1. Find recursive definitions and closed formulas for the arithmetic sequences

below. Assume the first term listed is a0.
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1. 2, 5, 8, 11, 14, . . ..

2. 50, 43, 36, 29, . . ..

First we should check that these sequences really are arithmetic by taking differences of

successive terms. Doing so will reveal the common difference d.

1. 5− 2 = 3, 8− 5 = 3, etc. To get from each term to the next, we add three, so d = 3. The

recursive definition is therefore an = an−1+3 with a0 = 2. The closed formula is an = 2+3n.

2. Here the common difference is −7, since we add −7 to 50 to get 43, and so on. Thus we

have a recursive definition of an = an−1−7 with a0 = 50. The closed formula is an = 50−7n.

Definition 1.2.2. A sequence is called geometric if the ratio between successive terms is

constant. Suppose the initial term a0 is a and the common ratio is r. Then we have,

- Recursive definition: an = ran−1 with a0 = a.

- Closed formula: an = arn.

Example 1.2.2. Find the recursive and closed formula for the geometric sequences below.

Again, the first term listed is a0.

1. 3, 6, 12, 24, 48, . . .

2. 27, 9, 3, 1, 1/3, . . .

Start by checking that these sequences really are geometric by dividing each term by its

previous term. If this ratio really is constant, we will have found r.

1. 6/3 = 2, 12/6 = 2, 24/12 = 2, etc. Yes, to get from any term to the next, we multiply

by r = 2. So the recursive definition is an = 2an−1 with a0 = 3. The closed formula is

an = 3.2n.

2. The common ratio is r = 1/3. So the sequence has recursive definition an =
1

3
an−1 with

a0 = 27 and closed formula an = 27.

(
1

3

)n
.

Proposition 1.2.1. 1- Let (an)n∈N an arithmetic sequence of ratio r and first term a0, then

n∑
k=0

an = a0 + a1 + ...+ an =
(n+ 1)(a0 + an)

2
.

2- Let (an)n∈N an geometric sequence of ratio r and first term a0, then

n∑
k=0

an = a0 + a1 + ...+ an = a0
1− rn+1

1− r
.
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1.3 Monotone sequences

In this section we consider a particular class of sequences which often occur in applications.

Definition 1.3.1. We say that the sequence (an)n∈N is

(i) increasing if

∀n ∈ N an ≤ an+1

(ii) decreasing if

∀n ∈ N an ≥ an+1

(iii) monotone if it is either increasing or decreasing.

Example 1.3.1. (i) an = n2 is increasing.

(ii) an =
1

n
is decreasing.

(iii) an = (−1)n
1

n
is not monotone.

1.4 Bounded sequences

Definition 1.4.1. We say that a sequence (an)n∈N is

1. bounded above if there is a constant M ∈ R such that ∀n ∈ N an ≤M

2. bounded below if there is a constant m ∈ R such that ∀n ∈ N an ≥ m

3. bounded if there is a constant C > 0 such that |an| < C holds for all n. If a sequence is

not bounded it is said to be unbounded.

Example 1.4.1. The sequence an = (−1)n + (−1)n
1

n+ 1
is bounded by C = 2.

On the other hand, the sequence an = n is unbounded.

1.5 Limit of a sequence

Definition 1.5.1. A sequence (an)n∈N is said to have limit L ∈ R if for any neighborhood

U of L the sequence lies in this neighborhood eventually.

We denote this symbolically as

an −→ L as n −→∞
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Definition 1.5.2. A sequence (an)n∈N lies in a set S eventually if there is an n0 ∈ N such

that an ∈ S for all n ∈ N with n ≥ n0.

Example 1.5.1. Let us look at some examples of sequences and try to see what their limits

are.

1- The sequence

−1, 4, 5, 7, 8, 8, 8, 8, 8, ....

which eventually stabilizes at the constant value 8 has limit 8. For, again, given any neigh-

borhood of 8 the sequence falls inside this neighborhood eventually and stays there.

2- In contrast, the sequence

1, 3, 4, 1, 3, 4, 1, 3, 4, 1, 3, 4, ...

does not have a limit. For example, the point 3 cannot be the limit of the sequence because,

for instance,

(2.5, 3.5)

is a neighborhood of 3, but the sequence keeps falling outside this neighborhood (when it hits

1 or 4).

3- The sequence

1, 3, 5, 7, ...

has limit ∞. If you take any neighborhood of ∞, an interval of the form

(t,∞]

then eventually the sequence falls inside the neighborhood and stays in there.

1.6 Convergent sequences

Definition 1.6.1. A sequence (an)n∈N is said to converge to a number L, in symbols

lim
n−→+∞

an = L

if for every ε > 0 there is natural number N such that, for all natural numbers n, if

n > N, then |an − L| < ε
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A sequence that converges is said to be convergent. Otherwise, we say the sequence

diverges or that it is divergent. That’s to say

∃ε > 0,∀N ∈ N, ∃n ≥ N : |an − L| ≥ ε

Example 1.6.1. The sequence an =
1

n+ 1
is convergent and the limit is 0.

Let ε > 0, we have

|an − 0| =
∣∣∣∣ 1

n+ 1

∣∣∣∣ =
1

n+ 1
< ε

it means that n+ 1 >
1

ε
, we can say that

∀n ∈ N, n >
1

ε
− 1.

So we can choose for example N = E

(
1

ε

)
− 1 where E denotes the function of the integer

part. Then we have

∀n ∈ N, n > N −→ |an| < ε

Proposition 1.6.1. 1- A convergent sequence has a unique limit.

2- A convergent sequence is bounded.

Definition 1.6.2. 1- The sequence (an)n∈N diverges to ∞ if

(∀M ∈ R)(∃N ∈ N)(∀n ∈ N)[(n > N) =⇒ (an > M)].

2- The sequence (an)n∈N diverges to −∞ if

(∀M ∈ R)(∃N ∈ N)(∀n ∈ N)[(n > N) =⇒ (an < M)].

Example 1.6.2. 1- The sequence an = n2 diverges to ∞.

2- The sequence an = −n2 diverges to −∞.

3- The sequence an = (−1)n diverges.

Proposition 1.6.2. 1- Every convergent sequence is bounded.

2- Any real sequence that tends to +∞ is lower bounded.

3- Any real sequence that tends to −∞ is upper bounded.
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Theorem 1.6.1. (Monotone Convergence Theorem) 1- If a sequence of real numbers

is bounded above and increasing then it is convergent to L = sup{an : n ∈ N}.

2- If a sequence of real numbers is bounded below and decreasing then it is convergent to

L = inf{an : n ∈ N}.

Example 1.6.3. Let (an)n∈N be a sequence defined by an =
√
an−1 + 2, a1 =

√
2.

1- (an)n∈N is bounded. Indeed, we prove that (∀n ∈ N)(0 < an ≤ 2).

Positivity is obvious. For the upper bound we use induction. For n = 1, an =
√

2 ≤ 2, and

the statement is true. Suppose now that it is true for n = k(k ≥ 1); that is ak ≤ 2. For

n = k + 1 we have

ak+1 =
√
ak + 2 ≤

√
2 + 2 = 2,

and by the principle of induction the statement is proved.

2- (an)n∈N is increasing. We have to prove that

(∀n ∈ N)(an+1 ≥ an).

This is equivalent to proving that

[(∀n ∈ N)(
√
an−1 + 2 ≥ an)]⇐⇒ [(∀n ∈ N)(an−1 + 2 ≥ a2n)].

But,

an + 2− a2n = (2− an)(an + 1) ≥ 0.

We conclude that an is convergent.

Let lim
n
an = a; then, lim

n
an−1 = a also. Write

a2n = an−1 + 2

and take limits in both sides to obtain

a2 = a+ 2 or (2− a)(a+ 1) = 0.

As a > 0, we conclude that a = 2.
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1.7 Limits and inequalities

A basic lemma about limits and inequalities is the so-called squeeze lemma. It allows us

to show convergence of sequences in difficult cases if we find two other simpler convergent

sequences that ”squeeze” the original sequence.

Lemma 1.7.1. (Sandwich rule).

Let (an)n∈N, (bn)n∈N, and (cn)n∈N be sequences such that

an ≤ cn ≤ bn ∀n ∈ N.

Suppose (an)n∈N and (bn)n∈N converge and

lim
n−→∞

an = lim
n−→∞

bn = α.

Then (cn)n∈N converges and

lim
n−→∞

cn = α.

Example 1.7.1. Consider the sequence

(
1

n
√
n

)
n∈N

. Since
√
n ≥ 1 for all n ∈ N, we have

0 ≤ 1

n
√
n
≤ 1

n

We already know lim
1

n
= 0. Hence, lim

n−→∞

1

n
√
n

= 0.

Example 1.7.2. For any a > 1 and n > a, we have 1 < n
√
a < n

√
n. Then by the limit

lim
n−→∞

n
√
n = 1 and the sandwich rule, we have lim

n−→∞
n
√
a = 1. On the other hand, for

0 < a < 1, we have b =
1

a
> 1 and

lim
n−→∞

n
√
a = lim

n−→∞

1
n
√
b

=
1

limn−→∞
n
√
b

= 1

Combining all the cases, we get lim
n−→∞

n
√
a = 1 for any a > 0.

Limits, when they exist, preserve non-strict inequalities.

Lemma 1.7.2. Let (an)n∈N and (bn)n∈N be convergent sequences and

an ≤ bn

for all n ∈ N. Then

lim
n−→∞

an ≤ lim
n−→∞

bn
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1.8 Continuity of algebraic operations

Limits interact nicely with algebraic operations.

Proposition 1.8.1. Let (an)n∈N and (bn)n∈N be sequences. If

lim
n−→∞

an and lim
n−→∞

bn

both exist, then

1-

lim
n−→∞

(an + bn) = lim
n−→∞

an + lim
n−→∞

bn

2-

lim
n−→∞

(an.bn) = lim
n−→∞

an. lim
n−→∞

bn

3- Moreover, if lim
n−→∞

bn 6= 0, then bn 6= 0 for all n > N for some N , and

lim
n−→∞

an
bn

=
limn−→∞ an
limn−→∞ bn

Example 1.8.1. Let

an =
3n3 + 2n2 + 13n

2n3 + 16n2 + 5

Then

an =
3 + 2

n
+ 13

n2

2 + 16
n

+ 5
n3

.

Thus we get

lim
n−→∞

an =
limn−→∞(3 + 2

n
+ 13

n2 )

limn−→∞(2 + 16
n

+ 5
n3 )

=
2

3

Remark 1.8.1. By plugging in constant sequences. If k ∈ R and (an)n∈N is a convergent

sequence, then

lim
n−→∞

kan = k( lim
n−→∞

an) and lim
n−→∞

(k + an) = k + lim
n−→∞

an.

Similarly, we find such equalities for constant subtraction and division.

Proposition 1.8.2. Let (an)n∈N be a convergent sequence such that an ≥ 0. Then

lim
n−→∞

√
an =

√
lim
n−→∞

an

Proposition 1.8.3. If (an)n∈N is a convergent sequence, then (|an|)n∈N is convergent and

lim
n−→∞

|an| = | lim
n−→∞

an|
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1.9 Some convergence tests

Proposition 1.9.1. Let (an)n∈N be a sequence. Suppose there is an a ∈ R and a convergent

sequence (bn)n∈N such that

lim
n−→∞

bn = 0

and

|an − a| ≤ bn ∀n ∈ N.

Then (an)n∈N converges and lim
n−→∞

an = a.

Proposition 1.9.2. Let c > 0

1- If c < 1, then lim
n−→∞

cn = 0

2- If c > 1, then (cn)n∈N is unbounded.

Lemma 1.9.1. (Ratio test for sequences)

Let (an)n∈N be a sequence such that an 6= 0 for all n and such that the limit

L := lim
n−→∞

|an+1|
|an|

exists.

1- If L < 1, then (an)n∈N converges and lim
n−→∞

an = 0

2- If L > 1, then (an)n∈N is unbounded (hence diverges).

Example 1.9.1. Prove that lim
n−→∞

2n

n!
= 0

Compute lim
n−→∞

2n+1/(n+ 1)!

2n/n!
= lim

n−→∞

2n+1

2n
.

n!

(n+ 1)!
= lim

n−→∞

2

n+ 1
= 0 < 1.

Then lim
n−→∞

an = 0

Example 1.9.2. Prove that lim
n−→∞

n
1
n = 1

Let ε > 0 be given. Consider the sequence

(
n

(1 + ε)n

)
n∈N

. Compute

(n+ 1)/(1 + ε)n+1

n/(1 + ε)n
=
n+ 1

n
.

1

1 + ε
.

So

lim
n−→∞

(n+ 1)/(1 + ε)n+1

n/(1 + ε)n
=

1

1 + ε
< 1.
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Therefore,

(
n

(1 + ε)n

)
n∈N

converges to 0. In particular, there exists an M such that for

n ≥M , we have

n

(1 + ε)n
< 1, or n

1
n < 1 + ε.

As n ≥ 1, then n
1
n ≥ 1, and so 0 ≤ n

1
n − 1 < ε. Consequently lim

n−→∞
n

1
n = 1.

1.10 Adjacent sequences

Definition 1.10.1. Two sequences (an)n∈N and (bn)n∈N are adjacent if one is increasing and

the other is decreasing and if the sequence (an − bn)n∈N converges to 0.

Theorem 1.10.1. If (an)n∈N and (bn)n∈N are two adjacent sequences, then they converge to

the same limit l . Moreover, in the case where (an)n∈N is the increasing sequence and (bn)n∈N

is the decreasing sequence, we have

∀n ∈ N, an ≤ l ≤ bn.

Example 1.10.1. Let us show that the two general term sequences below are adjacent

an =
n∑
k=1

1

k2
and bn = an +

1

n

We have

an+1 − an =
n+1∑
k=1

1

k2
−

n∑
k=1

1

k2
=

1

(n+ 1)2
> 0

hence (an)n∈N∗ is a increasing sequence.

Likewise, We have

bn+1 − bn =
n+1∑
k=1

1

k2
+

1

n+ 1
−

(
n∑
k=1

1

k2
+

1

n

)
=

−1

n(n+ 1)2
< 0

hence (bn)n∈N∗ is a decreasing sequence.

Moreover lim
n−→∞

(bn − an) = lim
n−→∞

1

n
= 0. Therefore ; (an)n∈N∗ and (bn)n∈N∗ are adjacent

sequences.
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1.11 Subsequences

It is useful to sometimes consider only some terms of a sequence. A subsequence of (an)n∈N

is a sequence that contains only some of the numbers from (an)n∈N in the same order.

Definition 1.11.1. Let (an)n∈N be a sequence. Let (ni)i∈N be a strictly increasing sequence

of natural numbers, that is, ni < ni+1 for all i. The sequence

(ani)i∈N

is called a subsequence of (an)n∈N.

Example 1.11.1. Consider the sequence

(
1

n

)
n∈N

. The sequence

(
1

3n

)
n∈N

is a subsequence.

To see how these two sequences fit in the definition, take ni := 3i. The numbers in the

subsequence must come from the original sequence.

Proposition 1.11.1. If (an)n∈N is a convergent sequence, then every subsequence (ani)i∈N

is also convergent, and

lim
n−→∞

an = lim
i−→∞

ani

Remark 1.11.1. Existence of a convergent subsequence does not imply convergence of the

sequence itself.

Example 1.11.2. Take the sequence 0, 1, 0, 1, 0, 1, . . .. That is, an = 0 if n is odd, and

an = 1 if n is even. The sequence (an)n∈N is divergent; however, the subsequence (a2n)n∈N

converges to 1 and the subsequence (a2n+1)n∈N converges to 0.

Proposition 1.11.2. A bounded sequence (an)n∈N is convergent and converges to a if and

only if every convergent subsequence (ani)i∈N converges to a.

Theorem 1.11.1. (Bolzano-Weierstrass).

Suppose a sequence (an)n∈N of real numbers is bounded. Then there exists a convergent

subsequence (ani)i∈N.
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1.12 Cauchy sequences

Definition 1.12.1. A sequence (an)n∈N is a Cauchy sequence if for every ε > 0 there exists

an M ∈ N such that for all n ≥M and all k ≥M , we have

|an − ak| < ε

Example 1.12.1. The sequence

(
1

n

)
n∈N

is a Cauchy sequence.

Given ε > 0 , find M such that M >
2

ε
. Then for n, k ≥ M , we have

1

n
<
ε

2
and

1

k
<
ε

2
.

Therefore, for n, k ≥M , we have∣∣∣∣ 1n − 1

k

∣∣∣∣ ≤ ∣∣∣∣ 1n
∣∣∣∣+

∣∣∣∣1k
∣∣∣∣ < ε

2
+
ε

2
= ε.

Example 1.12.2. The sequence

(
n+ 1

n

)
n∈N

is a Cauchy sequence.

Given ε > 0 , find M such that M >
2

ε
. Then for n, k ≥ M , we have

1

n
<
ε

2
and

1

k
<
ε

2
.

Therefore, for n, k ≥M , we have∣∣∣∣n+ 1

n
− k + 1

k

∣∣∣∣ =

∣∣∣∣k(n+ 1)− n(k + 1)

kn

∣∣∣∣
=

∣∣∣∣k − nkn

∣∣∣∣
≤

∣∣∣∣ kkn
∣∣∣∣+
∣∣∣ n
kn

∣∣∣
=

∣∣∣∣ 1n
∣∣∣∣+

∣∣∣∣1k
∣∣∣∣ < ε

2
+
ε

2
= ε.

Proposition 1.12.1. Every Cauchy sequence is bounded.

Lemma 1.12.1. A Cauchy sequence that has a convergent subsequence is convergent.

Theorem 1.12.1. A convergent sequence is a Cauchy sequence.

Theorem 1.12.2. A sequence of real numbers is Cauchy if and only if it converges.

Definition 1.12.2. A sequence (an)n∈N is called contractive if there exists k ∈ [0, 1) such

that

|an+2 − an+1| ≤ k|an+1 − an| for all n ∈ N.



Analysis 1 15

Remark 1.12.1. The condition k < 1 in definition is crucial. Consider the following

example. Let an = lnn for all n ∈ N. Since 1 <
n+ 2

n+ 1
<

n+ 1

n
for all n ∈ N and the

natural logarithm is an increasing function, we have

|an+2 − an+1| = ln

(
n+ 2

n+ 1

)
< ln

(
n+ 1

n

)
= |an+1 − an|

Therefore, the inequality in Definition is satisfied with k = 1, yet the sequence (lnn)n∈N does

not converge.

Theorem 1.12.3. Every contractive sequence is convergent.



16 Course and corrected exercises

1.13 Exercises

Exercice 1.13.1. Study the convergence of the following sequence, for all n ∈ N, an =

n+ (−1)nn+
1

n
.

Proof 1.13.1. If n is even =⇒ an = 2n+
1

n
−→ +∞

If n is odd =⇒ an =
1

n
−→ 0.

Then the sequence (an)n∈N is divergent since it is not bounded.

Exercice 1.13.2. Prove that the sequence of the general term, for all n ∈ N, an =

∫ n

1

cos t

t2
dt.

is a Cauchy sequence.

Proof 1.13.2. Given n, k if n = k then an = ak, so |an − ak| = 0 < ε.

If n 6= k, assume k < n.

|an − ak| =

∣∣∣∣∫ n

1

cos t

t2
dt−

∫ k

1

cos t

t2
dt

∣∣∣∣
=

∣∣∣∣∫ n

k

cos t

t2
dt

∣∣∣∣
≤

∫ n

k

∣∣∣∣cos t

t2

∣∣∣∣ dt
≤

∫ n

k

1

t2
dt

= − 1

n
+

1

k
≤ 1

k
≤ 1

M
< ε.

Given ε > 0, choose M ∈ N such that
1

ε
< M . Then for all n,k ∈ N with M ≤ k ≤ n we

have |an − ak| < ε.

Exercice 1.13.3. Let A > 0 be fixed. Start with any an > 0 and define

an =
1

2

(
an−1 +

A

an−1

)
n = 2, 3, 4, ...

Calculate lim
n−→∞

an.

Proof 1.13.3. We will show a2 ≥ a3 ≥ a4 ≥ ... For n ≥ 2

a2n − A =
1

4

(
a2n−1 +

A2

a2n−1
+ 2A

)
− A

=
1

4

(
a2n−1 +

A2

a2n−1
− 2A

)
≤ 1

4

(
an−1 −

A

an−1

)2

≥ 0.
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So a2n ≥ A for all n ≥ 2. Since all an > 0, an ≥
√
A for all n ≥ 2. For n ≥ 2

an − an+1 = an −
1

2

(
an +

A

an

)
=

1

2

(
an −

A

an

)
=

1

2

a2n − A
an

≥ 0.

So an ≥ an+1 for all n ≥ 2. So (an)n≥2 is decreasing and bounded. So lim
n−→∞

an = a exists.

Then we solve for a. We have that

an =
1

2

(
an−1 +

A

an−1

)
↓ ↓

a =
1

2

(
a+

A

a

)
.

Then 2a = a+
A

a
⇐⇒ a = ±

√
A.

Since all an > 0, limit a cannot be negative. So a =
√
A.

Exercice 1.13.4. Prove that

1- lim
n−→∞

1

nk
= 0 for k > 0

2- lim
n−→∞

n
√
n = 1.

3- If p > 0 and α ∈ R are constants then lim
n−→∞

nα

(1 + p)n
= 0.

Proof 1.13.4. 1- Another way of expressing the same limit is

lim
n−→∞

nk = 0 for k < 0

To establish the limit, we note that the inequality

∣∣∣∣ 1

nk
− 0

∣∣∣∣ =

∣∣∣∣ 1

nk

∣∣∣∣ < ε is the same as

n > ε−
1
p . Therefore choosing N = ε−

1
p .

2- Let an = n
√
n = 1 Then an > 0 and

n = (1 + an)n = 1 + nan +
n(n− 1)

2
a2n + ... >

n(n− 1)

2
a2n.

This implies a2n <
2

n− 1
. In order to get | n

√
n−1| = an < ε, it is sufficient to have

2

n− 1
< ε2,

which is the same as n >
2

ε2
+ 1. Therefore we may choose N =

2

ε2
+ 1.
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3- If α ≤ 0 we have lim
n−→∞

nα

(1 + p)n
= 0. So assume α > 0. Fix a natural number k such that

α < k. Then for n ≥ 2k

n(n− 1)...(n− k + 1)︸ ︷︷ ︸
k terms

>
n

2
.
n

2
...
n

2︸ ︷︷ ︸
k terms

=
(n

2

)k

and

(1 + p)n =
n∑
l=0

(
n

l

)
pl

>

(
n

k

)
pk =

n(n− 1)...(n− k + 1)

k!
pk

>

(
n
2

)k
k!

pk =
nk

2kk!
pk =

nk−αnα

2kk!
pk.

Then

0 <
nα

(1 + p)n
<

2kk!

pk
1

nk−α
.

By sandwich property, we have lim
n−→∞

nα

(1 + p)n
= 0.

Exercice 1.13.5. Prove that

1- lim
n−→∞

an = 0 for |a| < 1.

2- lim
n−→∞

npan = 0 for |a| < 1 and any p.

3- lim
n−→∞

an

n!
= 0 for any a.

Proof 1.13.5. 1- Another way of expressing the same limit is lim
n−→∞

1

an
= 0 for |a| > 1.

Let
1

|a|
= 1 + b. Then b > 0 and

1

|an|
= (1 + b)n = 1 + nb+

n(n− 1)

2
b2 + ... > nb.

This implies |an| < 1

nb
. In order to get |an| < ε, it is sufficient to have

1

nb
< ε. This

suggests us to choose N =
1

bε
.

2- Fix a natural number P > p+ 1. For n > 2P , we have

1

|an|
= 1 + nb+

n(n− 1)

2
b2 + ...+

n(n− 1)...(n− P + 1)

P !
bp + ...

>
n(n− 1)...(n− P + 1)

P !
bp

>

(
n
2

)p
P !

bp.
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This implies

|npan| < np|an|
n

<
2PP !

b2
1

n

and suggests us to choose N = max

{
2P,

2PP !

2b2ε

}
.

3- Fix a natural number P > |a|. For n > P , we have∣∣∣∣ann!

∣∣∣∣ =
|a|P

P !

|a|
P + 1

|a|
P + 2

...
|a|
n− 1

|a|
n
≤ |a|

P

P !

|a|
n
.

In order to get

∣∣∣∣ann!

∣∣∣∣ < ε, we only need to make sure
|a|P

P !

|a|
n

< ε. This leads to the choice

N = max

{
P,
|a|P+1

P !ε

}
.

Exercice 1.13.6. Prove that the sequence (an)n∈N, where an =

(
1 +

1

n

)n
converges.

Proof 1.13.6. The binomial expansion tells us(
1 +

1

n

)n
= 1 + n

(
1

n

)
+
n(n− 1)

2!

(
1

n

)2

+
n(n− 1)(n− 2)

3!

(
1

n

)3

+ ...+
n(n− 1)...1

n!

(
1

n

)n
= 1 +

1

1!
+

1

2!

(
1− 1

n

)
+

1

3!

(
1− 1

n

)(
1− 2

n

)
+ ...+

1

n!

(
1− 1

n

)(
1− 2

n

)
...

(
1− n− 1

n

)
.

By comparing the similar formula for an+1, we find the sequence is strictly increasing. The

formula also tells us

an < 1 +
1

1!
+

1

2!
+

1

3!
+ ...+

1

n!

< 1 +
1

1!
+

1

1.2
+

1

2.3
+ ...+

1

(n− 1)n

= 2 +

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+ ...+

(
1

n− 1
− 1

n

)
= 2 +

1

1
− 1

n
< 3.

Therefore the sequence converges.

Exercice 1.13.7. 1- Show, by induction on n, that an = 2n−1 solves the recurrence a1 = 1,

an+1 = 2an + 1.

2- Prove, by induction on n, that
1

1.4
+

1

4.7
+ ...+

1

(3n− 2)(3n+ 1)
=

n

(3n+ 1)
for n ≥ 1.
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Proof 1.13.7. 1- The base case is n = 1: 21 − 1 = 1 = a1. Suppose the result for n = k.

Then the right hand side of the recurrence 2ak + 1, substituting the inductive hypothesis,

equals 2(2k − 1) + 1, which equals 2k+1 − 1 as required. That completes the induction.

2- The base case is n = 1: the left hand side is
1

4
and the right hand side is

1

3.1 + 1
. For

the inductive step, suppose that

1

1.4
+

1

4.7
+ ...+

1

(3k − 2)(3k + 1)
=

k

(3k + 1)
.

Now compute

1

1.4
+

1

4.7
+ ...+

1

(3k − 2)(3k + 1)
+

1

(3k + 1)(3k + 4)
=

k

(3k + 1)
+

1

(3k + 1)(3k + 4)
.

Simplifying, this equals
k(3k + 4) + 1

(3k + 1)(3k + 4)
=

k + 1

3(k + 1) + 1

This is the required result for k + 1. That completes the proof by induction.

Exercice 1.13.8. Find the following limits: lim
n−→∞

an :=
n
√
b, where b > 0.

Proof 1.13.8. Consider the case where b > 1 . In this case, an > 1 for every n. By the

binomial theorem,

b = ann = (an − 1 + 1)n ≥ 1 + n(an − 1).

This implies

0 < an − 1 ≤ b− 1

n
.

For each ε > 0, choose N >
b− 1

ε
. It follows that for n ≥ N ,

|an − 1| = an − 1 <
b− 1

n
≤ b− 1

N
< ε.

Thus, lim
n−→∞

an = 1.

In the case where b = 1, it is obvious that an = 1 for all n and, hence, lim
n−→∞

an = 1.

If 0 < b < 1, let k =
1

b
and define sn =

n
√
k =

1

an
.

Since k > 1, it has been shown that lim
n−→∞

sn = 1. This implies

lim
n−→∞

an = lim
n−→∞

1

sn
= 1
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Exercice 1.13.9. Find the following limits if they exist:

(a) lim
n−→∞

√
n+ 1−

√
n (b) lim

n−→∞

√
n+ 1−

√
n

n
(c) lim

n−→∞

√
n2 + n− n

(d) lim
n−→∞

3
√
n3 + 3n2 −

√
n2 + n (e) lim

n−→∞
3
√
n3 + 3n2 − n (f) lim

n−→∞

√
3n+ 1

√
n+
√

3

Proof 1.13.9. (a)

lim
n−→∞

(
√
n+ 1−

√
n) = lim

n−→∞

(
√
n+ 1−

√
n)(
√
n+ 1 +

√
n)√

n+ 1 +
√
n

= lim
n−→∞

1√
n+ 1 +

√
n

= 0.

(b) in the same way as (a). lim
n−→∞

√
n+ 1−

√
n

n
= 0.

(c)

lim
n−→∞

(
√
n2 + n− n) = lim

n−→∞

(
√
n2 + n− n)(

√
n2 + n+ n)√

n2 + n+ n

= lim
n−→∞

n√
n2 + n+ n

= lim
n−→∞

1√
1 + 1

n
+ 1

=
1

2
.

(e)

lim
n−→∞

(
3
√
n3 + 3n2 − n) = lim

n−→∞

( 3
√
n3 + 3n2 − n)( 3

√
(n3 + 3n2)2 + n 3

√
n3 + 3n2 + n2)

3
√

(n3 + 3n2)2 + n 3
√
n3 + 3n2 + n2

= lim
n−→∞

3n2

3
√

(n3 + 3n2)2 + n 3
√
n3 + 3n2 + n2

= lim
n−→∞

3n2

3
√
n6(1 + 3/n)2 + n 3

√
n3(1 + 3/n) + n2

= lim
n−→∞

3n2

n2( 3
√

(1 + 3/n)2 + 3
√

(1 + 3/n) + 1)

= lim
n−→∞

3

( 3
√

(1 + 3/n)2 + 3
√

(1 + 3/n) + 1)
= 1

(d)

lim
n−→∞

(
3
√
n3 + 3n2 −

√
n2 + n) = lim

n−→∞
(

3
√
n3 + 3n2 − n+ n−

√
n2 + n)

= lim
n−→∞

(
3
√
n3 + 3n2 − n) + lim

n−→∞
(n−

√
n2 + n)

= 1− 1

2
=

1

2
.
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(f) lim
n−→∞

√
3n+ 1

√
n+
√

3
= lim

n−→∞

√
3n√
n

=
√

3.

Exercice 1.13.10. Let a1 = 2. Define an+1 =
an + 5

3
for n ≥ 1.

(a) Prove that an is an increasing sequence.

(b) Prove that an ≤ 3 for all n ∈ N.

(c) Find the limit of an.

Proof 1.13.10. (a) We prove by induction that for all n ∈ N, an < an+1. Since a2 =
a1 + 5

3
=

7

3
> 2 = a1, the statement is true for n = 1. Next, suppose ak < ak+1 for some

k ∈ N. Then ak + 5 < ak+1 + 5 and
ak + 5

3
<
ak+1 + 5

3
. Therefore,

ak+1 =
ak + 5

3
<
ak+1 + 5

3
= ak+2.

It follows by induction that the sequence is increasing.

(b) Again, we proceed by induction. The statement is clearly true for n = 1. Suppose that

ak ≤ 3 for some k ∈ N. Then

ak+1 =
ak + 5

3
≤ 3 + 5

3
=

8

3
≤ 3.

It follows that an ≤ 3 for all n ∈ N.

(c) From the Monotone Convergence Theorem, we deduce that there is l ∈ R such that

lim
n−→∞

an = l. Since the subsequence (ak+1)k≥1 also converges to l, taking limits on both sides

of the equation an+1 =
an + 5

3
, we obtain l =

l + 5

3
. Therefore, 3l = l+ 5 and, hence, l =

5

2
.

Exercice 1.13.11. Prove that each of the following sequences is convergent and find its

limit.

(a) an+1 =
an + 3

2
and a1 = 1 for n ≥ 1 (b) an+1 =

√
an + 6 and a1 =

√
6 for n ≥ 1

(c) an+1 =
1

3

(
2an +

1

a2n

)
and a1 > 0 for n ≥ 1 (d) an+1 =

1

2

(
an +

b

an

)
, b > 0.

Proof 1.13.11. The limit of (a) and (b) is 3.

(c) We use the well known inequality

a+ b+ c

3
≥ 3
√
abc for a, b, c ≥ 0.
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By induction, we see that an > 0 for all n ∈ N. Moreover,

an+1 =
1

3

(
2an +

1

a2n

)
=

1

3

(
an + an +

1

a2n

)
≥ 3

√
an.an.

1

a2n
= 1.

We also have, for n ≥ 2,

an+1 − an =
1

3

(
2an +

1

a2n

)
− an =

−a3n + 1

3a2n
=
−(an − 1)(a2n + an + 1)

3a2n
< 0.

Thus, (an)n∈N is monotone deceasing (for n ≥ 2 ) and bounded below. We can show that

lim
n−→∞

an = 1.

(d) Use the inequality
a+ b

2
≥
√
ab for a, b ≥ 0 to show that an+1 ≥

√
b for all n ∈ N. And

using again induction to show that (an)n∈N is monotone decreasing. Thus lim
n−→∞

an =
√
b.

Exercice 1.13.12. Let a and b be two positive real numbers with a < b. Define a1 = a,

b1 = b, and

an+1 =
√
anbn and bn+1 =

an + bn
2

for n ≥ 1

Show that (an)n∈N and (bn)n∈N are convergent to the same limit.

Proof 1.13.12. Observe that

bn+1 =
an + bn

2
≥
√
an.bn = an+1 for all n ∈ N.

Thus,

an+1 =
√
an.bn ≥

√
an.an = an for all n ∈ N,

bn+1 =
an + bn

2
≤ bn + bn

2
= bn for all n ∈ N.

It follows that (an)n∈N is monotone increasing and bounded above by b1, and (bn)n∈N is

decreasing and bounded below by a1. Let l1 = lim
n−→∞

an and l2 = lim
n−→∞

bn. Then(
l1 =

√
l1l2 and l2 =

l1 + l2
2

)
=⇒ l1 = l2.

Exercice 1.13.13. Let (an)n∈N be defined by a1 = 2 and

an+1 = an −
a2n − 2

2an
.

- Prove that the sequences (an)n∈N is convergent and find its limit.
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Proof 1.13.13. We must first find out if this sequence is well defined. So let us prove an

exists and an > 0 for all n (so the sequence is well defined and bounded below). Let us show

this by induction. We know that a1 = 2 > 0. For the induction step, suppose an > 0. Then

an+1 = an −
a2n − 2

2an
=

2a2n − a2n + 2

2an
=
a2n + 2

2an

It is always true that a2n + 2 > 0, and as an > 0, then
a2n + 2

2an
> 0 and hence an+1 > 0. Next

let us show that the sequence is monotone decreasing. If we show that a2n − 2 ≥ 0 for all n,

then an+1 ≤ an for all n. Obviously a21 − 2 = 4− 2 = 2 > 0. For an arbitrary n, we have

a2n+1 − 2 =

(
a2n + 2

2an

)2

− 2 =
a4n + 4a2n + 4− 8a2n

4a2n
=
a4n − 4a2n + 4

4a2n
=

(a2n − 2)2

4a2n

Since squares are nonnegative, a2n+1 − 2 ≥ 0 for all n. Therefore, (an)n∈N is monotone

decreasing and bounded (an > 0 for all n), and so the limit exists.

Let us define l = lim
n−→∞

an. Take the limit of both sides in equation an+1 = an −
a2n − 2

2an
we

obtain

l2 − 2 = 0⇐⇒ l = ±
√

2.

As an > 0 for all n we get l ≥ 0, and therefore l =
√

2.

Exercice 1.13.14. Using the Cauchy criterion show that the sequence (an)n∈N∗ is convergent

and the sequence (bn)n≥2 is divergent

1) an =
n∑
k=1

sin k

2k
and 2) bn =

n∑
k=2

1

ln k

Proof 1.13.14. 1) Given p, q, assume q < p.

|ap − aq| =

∣∣∣∣∣
p∑

k=1

sin k

2k
−

q∑
k=1

sin k

2k

∣∣∣∣∣
=

∣∣∣∣∣
p∑

k=q+1

sin k

2k

∣∣∣∣∣
≤

p∑
k=q+1

∣∣∣∣sin k2k

∣∣∣∣
≤

p∑
k=q+1

1

2k
.
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Observe that

p∑
k=q+1

1

2k
is the sum of the p− q terms of a geometric sequence of ratio

1

2
, thus

p∑
k=q+1

1

2k
=

1

2q+1

(
1− 1

2p−q

1− 1
2

)
=

1

2q

(
1− 1

2p−q

)
≤ 1

2q
.

Then

|ap − aq| ≤
1

2q
≤ 1

M
< ε.

Given ε > 0, choose M ∈ N such that
1

ε
< M . Then for all p,q ∈ N with M ≤ 2q and q < p

we have |ap − aq| < ε.

2) bn is not a Cauchy sequence if and only if

∃ε > 0, ∀n ∈ N;∃p, q ∈ N : n ≤ p, n ≤ q and |bp − bq| ≥ ε.

Let p = 2n and q = n then

|bp − bq| =
2n∑

k=n+1

1

ln k
>ln k<k

2n∑
k=n+1

1

k
≥k≤2n

2n∑
k=n+1

1

2n
=

1

2
.

Therefore, we take ε =
1

2
.

Exercice 1.13.15. Using the bounding principle of a sequence, show that the sequence

(an)n∈N∗ converges to a limit l to be determined in each case:

1) an =
n∑
k=1

n

n3 + k
2) an =

n∑
k=1

1√
n2 + k

3) an =
n∑
k=1

1

3 + | sin k|
√
k

4) an =
b
√
nc
n

, where b.c denotes the whole part.

Proof 1.13.15. 1) We have for any k = 1 : n

n3 + 1 ≤ n3 + k ≤ n3 + n⇐⇒ n

n3 + n
≤ n

n3 + k
≤ n

n3 + 1
.

Thus
n∑
k=1

n

n3 + n
≤

n∑
k=1

n

n3 + k
≤

n∑
k=1

n

n3 + 1
⇐⇒ n2

n3 + n
≤ an ≤

n2

n3 + 1
.

AS

lim
n−→∞

n2

n3 + n
= lim

n−→∞

n2

n3 + 1
= 0.
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Then lim
n−→∞

an = 0.

2) We have for any k = 1 : n

n2 + 1 ≤ n2 + k ≤ n2 + n ⇐⇒
√
n2 + 1 ≤

√
n2 + k ≤

√
n2 + n.

⇐⇒ 1√
n2 + n

≤ 1√
n2 + k

≤ 1√
n2 + 1

Thus
n∑
k=1

1√
n2 + n

≤
n∑
k=1

1√
n2 + k

≤
n∑
k=1

1√
n2 + 1

⇐⇒ n√
n2 + n

≤ an ≤
n√
n2 + 1

.

AS

lim
n−→∞

n√
n2 + n

= lim
n−→∞

n√
n2 + 1

= 1.

Then lim
n−→∞

an = 1.

3) we say that for any k = 1 : n, | sin k| ≤ 1, thus

3 + | sin k|
√
k ≤ 3 +

√
k ≤ 3 +

√
n ⇐⇒ 1

3 +
√
n
≤ 1

3 + | sin k|
√
k

⇐⇒
n∑
k=1

1

3 +
√
n
≤

n∑
k=1

1

3 + | sin k|
√
k

⇐⇒ n

3 +
√
n
≤ an.

As lim
n−→∞

n

3 +
√
n

= +∞. Then lim
n−→∞

an = +∞.

4) we say that for any x ∈ R

bxc ≤ x < bxc+ 1.

Thus for x =
√
n we have

b
√
nc ≤

√
n < b

√
nc+ 1.

Let m = b
√
nc, so

m ≤
√
n < m+ 1 ⇐⇒ m2 ≤ n < (m+ 1)2

⇐⇒ 1

(m+ 1)2
<

1

n
≤ 1

m2

⇐⇒ m

(m+ 1)2
< an ≤

1

m
.

AS

lim
n−→∞

m

(m+ 1)2
= lim

n−→∞

1

m
= 0.

Then lim
n−→∞

an = 0.
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Exercice 1.13.16. Let an =
n∑
k=1

1√
k

, for all n ∈ N∗

1) Prove that lim
n−→∞

an = +∞

2) Prove that
1

2
√
n+ 1

≤
√
n+ 1−

√
n ≤ 1

2
√
n

3) Deduce that 2(
√
n+ 1− 1) ≤ an ≤ 2

√
n− 1

4) Let bn =
an√
n

; show that (bn)n∈N∗ is convergent towards a limit to be specified.

Proof 1.13.16. 1) We have for any k = 1 : n

k ≤ n ⇐⇒
√
k ≤
√
n

⇐⇒ 1√
n
≤ 1

k

⇐⇒
n∑
k=1

1√
n
≤

n∑
k=1

1

k

⇐⇒
√
n ≤ an.

Then lim
n−→∞

an = +∞.

2) We have for any n ∈ N∗

√
n ≤
√
n+ 1 ⇐⇒ 2

√
n ≤
√
n+
√
n+ 1 ≤ 2

√
n+ 1

⇐⇒ 1

2
√
n+ 1

≤
√
n+ 1−

√
n ≤ 1

2
√
n
.

3) We have from 2), for any k = 1 : n

1

2
√
k + 1

≤
√
k + 1−

√
k ≤ 1

2
√
k
.

So
n∑
k=1

1

2
√
k + 1

≤
n∑
k=1

(
√
k + 1−

√
k) ≤

n∑
k=1

1

2
√
k

q q q
1

2
(an+1 − 1) ≤

√
n+ 1− 1 ≤ 1

2
an.

Thus

an ≥ 2(
√
n+ 1− 1).
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Likewise for k = 1 : n− 1, we have

n−1∑
k=1

1

2
√
k + 1

≤
n−1∑
k=1

(
√
k + 1−

√
k) ≤

n−1∑
k=1

1

2
√
k

q q q
1

2
(an − 1) ≤

√
n− 1 ≤ 1

2
an−1.

So

an ≤ 2
√
n− 1.

4) We have for any n ∈ N∗

2(
√
n+ 1− 1) ≤ an ≤ 2

√
n− 1⇐⇒ 2(

√
n+ 1− 1)√

n
≤ bn ≤

2
√
n− 1√
n

.

As

lim
n−→∞

2(
√
n+ 1− 1)√

n
= lim

n−→∞

2
√
n− 1√
n

= 2.

Then lim
n−→∞

bn = 2.

Exercice 1.13.17. Consider the sequence (an)n∈N defined by:

 a0 = 0

an+1 =
√
an + 2

1) Prove that 0 ≤ an < 2, for any n ∈ N.

2) Deduce the monotony of (an)n∈N.

3) Consider the sequence (bn)n∈N defined by: bn = 2− an.

(a) What is the sign of (bn)n∈N ?

(b) Prove that for any n ∈ N,
bn+1

bn
≤ 1

2
.

(c) Prove that for any n ∈ N∗, bn ≤
(

1

2

)n−1
.

(d) Deduce the limit of the sequence (bn)n∈N, then that of (an)n∈N.

Proof 1.13.17. 1) We prove by induction that for all n ∈ N, 0 ≤ an < 2. Since 0 ≤ a0 < 2,

the statement is true for n = 0. Next, suppose 0 ≤ an < 2. So

2 ≤ an + 2 < 4⇐⇒
√

2 ≤ an+1 < 2 =⇒ 0 ≤ an+1 < 2

Then 0 ≤ an < 2 for all n ∈ N.

2) We have

an+1 − an =
√
an + 2− an =

an + 2− a2n√
an + 2 + an

=
(an + 1)(2− an)√

an + 2 + an
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and 0 ≤ an < 2, then (an + 1)(2− an) > 0.Therefore (an)n∈N is increasing.

3)

(a) We remarque from question 1) that an < 2, then bn > 0 for all n ∈ N.

(b) We have

bn+1

bn
=

2− an+1

2− an
=

2−
√
an + 2

2− an
=

(2− an)

(2− an)(2 +
√
an + 2)

=
1

2 +
√
an + 2

.

And as 0 ≤ an, we can show that

1

2 +
√
an + 2

≤ 1

2
.

Then
bn+1

bn
≤ 1

2
.

(c) Again, we proceed by induction. The statement is clearly true for n = 1. Suppose that

bn ≤
(

1

2

)n−1
for some n ∈ N. So from question(b) we have

bn+1 ≤
1

2
bn ≤

1

2

(
1

2

)n−1
=

(
1

2

)n
.

It follows that bn ≤
(

1

2

)n−1
for any n ∈ N∗.

(d) As 0 < bn ≤
(

1

2

)n−1
for any n ∈ N∗ and lim

n−→∞

(
1

2

)n−1
= 0, as a result lim

n−→∞
bn = 0

and lim
n−→∞

an = 2.

Exercice 1.13.18. Let consider the sequence (an)n∈N defined by:

 a0 = 1

an+1 = ane
−an

1) Prove that an > 0, for any n ∈ N.

2) Deduce the monotony of (an)n∈N.

3) Deduce that (an)n∈N is convergent then calculate its limit.

4) Let bn =
n∑
k=1

ak, prove that an+1 = e−bn, for any n ∈ N.

5) Deduce that lim
n−→∞

bn = +∞.

Proof 1.13.18. 1) By induction, the statement is clearly true for n = 0. Suppose that

an > 0. So an+1 = ane
−an > 0. Then an > 0, for any n ∈ N.

2) We have

an+1 − an = an(e−an − 1).
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As

an > 0⇐⇒ −an < 0⇐⇒ e−an − 1 < 0

and consequently

an+1 − an < 0.

Then (an)n∈N is decreasing.

3) (an)n∈N is a lower bound and decreasing sequence then it is convergent. Let us define

l = lim
n−→∞

an, take the limit of both sides in equation an+1 = ane
−an we obtain

l = le−l ⇐⇒ l(e−l − 1) = 0⇐⇒ l = 0

Then lim
n−→∞

an = 0.

4) Again by induction, for n = 0 we have a1 = e−b0. Suppose that an+1 = e−bn. So

an+2 = an+1e
−an+1 = e−bne−an+1 = e−bn+1 .

Then an+1 = e−bn, for any n ∈ N.

5) We have bn = − ln an+1 and lim
n−→∞

an+1 = 0. Then lim
n−→∞

bn = +∞.

Exercice 1.13.19. We define the two real sequences (an)n∈N∗ and (bn)n∈N∗ by: a1 = 1

an+1 =
an + 2bn

3

and

 b1 = 12

bn+1 =
an + 3bn

4

1) We pose ∀n ∈ N∗, cn = bn − an. Express the sequence (cn)n∈N∗ as a function of n then

calculate its limit.

2) Show that the sequences (an)n∈N∗ and (bn)n∈N∗ are adjacent.

Proof 1.13.19. 1) We have

cn+1 = bn+1 − an+1 =
an + 3bn

4
− an + 2bn

3
=

1

12
cn.

We deduce that the sequence (cn)n∈N∗ is a geometric sequence with ratio q =
1

12
, hence

cn = c1

(
1

12

)n−1
=

11

(12)n−1
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and consequently lim
n−→∞

cn = 0.

2) We have

an+1 − an =
an + 2bn

3
− an =

2

3
(bn − an) =

2

3
cn > 0

hence (an)n∈N∗ is a increasing sequence.

Likewise, We have

bn+1 − bn =
an + 3bn

4
− bn =

−1

4
(bn − an) =

−1

4
cn < 0

hence (bn)n∈N∗ is a decreasing sequence.

Moreover lim
n−→∞

(bn − an) = lim
n−→∞

cn = 0. Therefore ; (an)n∈N∗ and (bn)n∈N∗ are adjacent

sequences.



2
Numerical series with positive terms

2.1 Basic information on numerical series

Definition 2.1.1. Given a numerical sequence (Un)n, we define the sequence (Sn)n of partial

sums by

Sn =
k=n∑
k=0

Uk.

The series of general term Un and of partial sum Sn denoted by the symbol

n=∞∑
n=0

Un,
∑
n≥O

Un orjust
∑

Un

is by definition the value (if this one exists) of the limit s = lim
n→∞

Sn.

If s exists we say the series is convergent. We write
n=∞∑
n=0

Un = s.

If s = +∞ or s does not exist we say that the series is divergent.

32
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Example 2.1.1. The series
∞∑
n=1

1

(n+ 1)2 − 1

converges and the limit is
3

4
. in fact,

1

(n+ 1)2 − 1
=

1

n(n+ 2)
=
A

n
+

B

n+ 2
.

Then A =
1

2
and B = −1

2
. We get Un =

1

2

(
1

n
+

1

n+ 2

)
. So

Sn =
k=n∑
k=1

Uk

=
1

2

(
1

1
+

1

3

)
+

1

2

(
1

2
+

1

4

)
+ · · ·+ 1

2

(
1

n
+

1

n+ 2

)
=

1

2

(
3

2
− 1

n+ 1
− 1

n+ 2

)
.

Then lim
n→∞

Sn =
3

4

Example 2.1.2. The series of the general term Un =
1

2n
converges because its partial sum

is written as follows

Sn =
k=n∑
k=0

Uk

= 1 +
1

2
+

1

4
+ · · ·+ 1

2n

=
1− 1

2n+1

1− 1
2

= 2− 1

2n

It is clear that lim
n→∞

Sn = 2

Example 2.1.3. The series of the general term Un = n diverges because its partial sum is

written as follows

Sn =
k=n∑
k=1

Uk

= 1 + 2 + 3 + · · ·+ n

=
n(n+ 1)

2
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It is clear that lim
n→∞

Sn =∞

2.2 Operations on series

Properties 2.2.1. If
∑

an and
∑

bn are both convergent series then,

1.
∑

can where c is any number, is also convergent and∑
can = c

∑
an.

2.
∑

an ±
∑

bn is also convergent and∑
an ±

∑
bn =

∑
(an ± bn).

Corollary 2.2.1. let
∑

an and
∑

bn be two series.

1. If
∑

an converges and
∑

bn diverges, then
∑

(an + bn) diverges.

2. If
∑

an and
∑

bn diverge, we can say nothing about
∑

(an + bn).

Theorem 2.2.1. If
∑

Un converges then lim
n→∞

Un = 0.

Example 2.2.1. 1) The series of the general term Un =
1

n2 − 1
converges then lim

n→∞

1

n2 − 1
=

0.

2) The series of the general term Un =
1

3n−1
converges then lim

n→∞

1

3n−1
= 0.

Corollary 2.2.2. If lim
n→∞

Un 6= 0 then
∑

Un will diverge.

Example 2.2.2. 1) The following series is divergent.

∞∑
n=0

4n2 − n3

11 + 2n3

because lim
n→∞

4n2 − n3

11 + 2n3
= −1

2
6= 0.

2) The series of the general term Un = (−1)n is divergent because lim
n→∞

(−1)n doesn’t exist.

3) The series of the general term Un = n
1
n is divergent because

lim
n→∞

n
1
n = lim

n→∞
eln(n

1
n ) = lim

n→∞
e

lnn
n = e0 = 1 6= 0.
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Remark 2.2.1. In the theorem 2.2.1, the fact that the sequence (Un)n tends towards 0 is a

necessary condition for the series to converge but it is not sufficient.

Example 2.2.3. We consider the series of general term Un = ln

(
1 +

1

n

)
.

We observe that lim
n→∞

Un = 0. On the other hand, we can easily verify that the sequence of

partial sums (Sn)n diverges.

Indeed,

Sn =
k=n∑
k=1

ln

(
1 +

1

k

)

=
k=n∑
k=1

ln

(
k + 1

k

)

= ln

(
k=n∏
k=1

(
k + 1

k

))

= ln
2× 3× · · · × (n+ 1)

1× 2× · · · × n
= ln(n+ 1) −→∞.

Therefore, the series
∑

ln

(
1 +

1

n

)
diverges.

Theorem 2.2.2. (Cauchy series). The series
n=∞∑
n=0

Un converges if and only if

∀ε > 0,∃N ∈ N, ∀p ≥ q ≥ N,

∣∣∣∣∣
k=p∑
k=q

Uk

∣∣∣∣∣ ≤ ε. (2.2.1)

Theorem 2.2.3. (The boundedness test). Let
n=∞∑
n=0

Un be a series with nonnegative terms.

Then the series is convergent if and only if the partial sums sequence (Sn)n is bounded.

2.3 Convergence of positive-term series

2.3.1 Geometric series

Theorem 2.3.1. (Geometric series). A Geometric series is any series that can be written

in the form,
n=∞∑
n=1

arn−1.
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We can show that the partial sums of these series are,

Sn =
a

1− r
− arn

1− r
.

So let’s take the limit of the partial sums.

lim
n→∞

Sn =
a

1− r
− a

1− r
lim
n→∞

rn.

Therefore, a Geometric series will converge if |r| < 1 and we have

n=∞∑
n=1

arn−1 =
a

1− r

Example 2.3.1. The series
n=∞∑
n=1

9−n+24n+1 converges.

Let’s first start by rewriting the series

n=∞∑
n=1

9−n+24n+1 =
n=∞∑
n=1

9−(n−2)4n+1

=
n=∞∑
n=1

4n+1

9n−2

=
n=∞∑
n=1

4n−142

9n−19−1

=
n=∞∑
n=1

144

(
4

9

)n−1
So, this is a Geometric series with a = 144 and r =

4

9
< 1. Therefore, it will converges and

its value will be,
n=∞∑
n=1

9−n+24n+1 =
1296

5
.

2.3.2 Comparison test

Theorem 2.3.2. (Comparison test). Let
n=∞∑
n=0

Un and
n=∞∑
n=0

Vn be series such that 0 ≤ Un ≤ Vn

for all n ∈ N.

1. If
n=∞∑
n=0

Vn converges, then so does
n=∞∑
n=0

Un.

2. If
n=∞∑
n=0

Un diverges, then so does
n=∞∑
n=0

Vn.
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Properties 2.3.1. (p-series or the p-test). For p ∈ R, the series
n=∞∑
n=1

1

np

converges if and only if p > 1.

Example 2.3.2. The series
n=∞∑
n=0

1

n2 + 1
converges. First we have,

1

n2 + 1
<

1

n2
, ∀n ∈ N.

The series
n=∞∑
n=1

1

n2
converges by the p-series test. Therefore, by the Comparison test,

n=∞∑
n=0

1

n2 + 1
converges.

Example 2.3.3. The series
n=∞∑
n=1

(√
1 + n4 −

√
n4 − 1

)
converges. First we have,

√
1 + n4 −

√
n4 − 1 =

1√
1 + n4 +

√
n4 − 1

and
1√

1 + n4 +
√
n4 − 1

<
1

n2
, ∀n ∈ N.

The series
n=∞∑
n=1

1

n2
converges by the p-series test. Therefore, by the Comparison test

n=∞∑
n=1

(√
1 + n4 −

√
n4 − 1

)
converges.

2.3.3 Cauchy condensation test

Theorem 2.3.3. (Cauchy condensation test). Suppose U1 ≥ U2 ≥ · · · ≥ 0. Then the series
n=∞∑
n=1

Un is convergent if and only if
n=∞∑
k=0

2kU2k = U1 + 2U2 + 4U4 + 8U8 + · · · is convergent.

Example 2.3.4. Let p > 1 be constant and consider the p-series
n=∞∑
n=1

1

np
. We have Un =

1

np

and U1 ≥ U2 ≥ · · · ≥ 0. Then
k=∞∑
k=0

2kU2k =
n=∞∑
k=0

2k
1

(2k)p

=
n=∞∑
k=0

2k−kp

=
n=∞∑
k=0

(21−p)k
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is Geometric series. It is convergent because p > 1, i.e. 21−p < 1.

Therefore
n=∞∑
n=1

1

np
is convergent.

2.3.4 Equivalence test

Theorem 2.3.4. (Equivalence test). Suppose that we have two series
n=∞∑
n=0

Un and
n=∞∑
n=0

Vn

with Un ≥ 0, Vn > 0 for all n. Define,

c = lim
n→∞

Un
Vn

If c is positive and is finite then either both series converge or both series diverge.

Example 2.3.5. the following series converges
n=∞∑
n=0

1

3n − n
.

Let use
n=∞∑
n=0

1

3n
as the second series. We know that this series converges since it’s Geometric

series.

let’s calculate the limit

c = lim
n→∞

Un
Vn

= lim
n→∞

1

3n
3n − n

1

= lim
n→∞

(
1− n

3n

)
= 1− lim

n→∞

n

3n

= 1

So, c is positive and finite so by the Equivalence test the series
n=∞∑
n=0

1

3n − n
converges.

2.3.5 Ratio test or d’Alembert test

Theorem 2.3.5. (Ratio test or d’Alembert test). Suppose we have the series
n=∞∑
n=0

Un. Define,

l = lim
n→∞

Un+1

Un
.

Then,

1. If l < 1 the series is convergent.
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2. If l > 1 the series is divergent.

3. If l = 1 the series may be divergent, may be convergent.

Example 2.3.6. the following series converges
n=∞∑
n=1

10n

42n+1(n+ 1)
.

We have

Un =
10n

42n+1(n+ 1)

and

Un+1 =
10n+1

42n+3(n+ 2)
.

Now, let calculate l,

l = lim
n→∞

Un+1

Un

= lim
n→∞

10n+1

42n+3(n+ 2)

42n+1(n+ 1)

10n

= lim
n→∞

10(n+ 1)

16(n+ 2)

=
10

16
lim
n→∞

n+ 1

n+ 2

=
10

16
< 1.

So, l < 1 and so by the Ratio test the series converges.

Example 2.3.7. the following series is divergent
n=∞∑
n=0

n!

5n
.

We have

Un =
n!

5n

and

Un+1 =
(n+ 1)!

5n+1
.

Now, let calculate l,

l = lim
n→∞

Un+1

Un

= lim
n→∞

(n+ 1)!

5n+1

5n

n!

= lim
n→∞

n+ 1

5

=
1

5
lim
n→∞

(n+ 1)

= ∞ > 1.
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So, by the Ratio test this series diverges.

2.3.6 The Raabe-Duhamel test

Theorem 2.3.6. (The Raabe-Duhamel test). Let
n=∞∑
n=0

Un be a series with positive terms.

Define,

l = lim
n→∞

n

(
Un
Un+1

− 1

)
∈ R+ ∪ {∞}.

Then,

1. If l > 1 the series is convergent.

2. If l < 1 the series is divergent.

3. If l = 1 we cannot decide on the nature of this series.

Example 2.3.8. Let us find the nature of the series

n=∞∑
n=1

1.3.5. · · · .(2n+ 1)

2.4.6. · · · .2n
1

2n+ 3
.

Since

lim
n→∞

Un+1

Un
= lim

n→∞

(2n+ 3)2

(2n+ 2)(2n+ 5)
= 1,

let us apply Raabe-Duhamel test. Since

lim
n→∞

n

(
Un
Un+1

− 1

)
= lim

n→∞

2n2 + n

(2n+ 3)2
=

1

2
< 1,

then the series is divergent.

2.3.7 The Cauchy root test

Theorem 2.3.7. (The Cauchy root test). Let
n=∞∑
n=0

Un be a series with positive terms. Define,

l = lim
n→∞

n
√
Un ∈ R+ ∪ {∞}.

Then,

1. If l < 1 the series is convergent.
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2. If l > 1 the series is divergent.

3. If l = 1 No information.

Example 2.3.9. Let us find the nature of the series

n=∞∑
n=1

nn

31+2n
.

Now, let calculate l,

l = lim
n→∞

n
√
Un

= lim
n→∞

n

√
nn

31+2n

= lim
n→∞

n

3
1
n
+2

=
∞
32

= ∞ > 1.

So, by the Root test this series is divergent.

Example 2.3.10. Let us find the nature of the series

n=∞∑
n=0

(
5n+ 3n3

7n3 + 2

)n
.

Now, let calculate l,

l = lim
n→∞

n
√
Un

= lim
n→∞

n

√(
5n+ 3n3

7n3 + 2

)n
= lim

n→∞

5n+ 3n3

7n3 + 2

=
3

7
< 1.

So, by the Root test this series is convergent.

2.3.8 Integral test

Theorem 2.3.8. (Integral test). Suppose that f(x) is a continuous, positive and decreasing

function on the interval [k,∞) and that f(n) = Un then,
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1. If

∫ ∞
k

f(x)dx is convergent so is
n=∞∑
n=k

Un.

2. If

∫ ∞
k

f(x)dx is divergent so is
n=∞∑
n=k

Un.

Example 2.3.11. Let us find the nature of the series

n=∞∑
n=2

1

n lnn
.

In this case the function we’ll use is,

f(x) =
1

x lnx

This function is clearly positive and decreasing. Therefore, all we need to do is determine

the convergence of the following integral.∫ ∞
2

1

x lnx
dx = lim

y→∞

∫ y

2

1

x lnx
dx

= lim
y→∞

ln(ln(x))

∣∣∣∣y
2

= lim
y→∞

(ln(ln(y))− ln(ln 2))

= ∞.

The integral is divergent and so the series is also divergent by the Integral test.
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2.4 Exercises

Exercice 2.4.1. Using Root test to determine if the following series converges or diverges.

1)
n=∞∑
n=1

(
3n+ 1

4− 2n

)2n

2)
n=∞∑
n=0

n1−3n

42n
3)

n=∞∑
n=4

(−5)1+2n

25n−3

Proof 2.4.1. 1) We’ll need to compute l.

l = lim
n→∞

n

√(
3n+ 1

4− 2n

)2n

= lim
n→∞

(
3n+ 1

4− 2n

)2

=
9

4
> 1,

so by the Root test the series diverges.

2) Let calculate l

l = lim
n→∞

n

√
n1−3n

42n

= lim
n→∞

n
1
n
−3

42

= lim
n→∞

n
1
nn−3

42

=
(1)(0)

16
= 0 < 1,

so by the Root test the series converges.

3) We have

l = lim
n→∞

n

√
(−5)1+2n

25n−3

= lim
n→∞

(−5)
1
n
+2

25− 3
n

=
25

32
< 1,

so by the Root test the series converges.

Exercice 2.4.2. Using Ratio test to determine if the following series converges or diverges.

1)
n=∞∑
n=1

31−2n

n2 + 1
2)

n=∞∑
n=0

(2n)!

5n+ 1
3)

n=∞∑
n=2

21+3n(n+ 1)

n251+n
4)

n=∞∑
n=3

e4n

(n− 2)!
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Proof 2.4.2. 1) We’ll need to compute l.

l = lim
n→∞

Un+1

Un

= lim
n→∞

31−2(n+1)

(n+ 1)2 + 1

n2 + 1

31−2n

= lim
n→∞

3−1−2n

(n+ 1)2 + 1

n2 + 1

31−2n

= lim
n→∞

n2 + 1

9[(n+ 1)2 + 1]

=
1

9
< 1,

so by the Ratio test the series converges.

2) Let calculate l

l = lim
n→∞

Un+1

Un

= lim
n→∞

(2(n+ 1))!

5(n+ 1) + 1

5n+ 1

(2n)!

= lim
n→∞

(2n+ 2)!

5n+ 6

5n+ 1

(2n)!

= lim
n→∞

(2n+ 2)(2n+ 1)(5n+ 1)

5n+ 6

= ∞ > 1,

so by the Ratio test the series diverges.

3) We have

l = lim
n→∞

Un+1

Un

= lim
n→∞

21+3(n+1)((n+ 1) + 1)

(n+ 1)251+(n+1)

n251+n

21+3n(n+ 1)

= lim
n→∞

24+3n(n+ 2)

(n+ 1)252+n

n251+n

21+3n(n+ 1)

= lim
n→∞

8

5

n+ 2

(n+ 1)2
n2

n+ 1

=
8

5
> 1,

so by the Ratio test the series diverges.
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4) We’ll need to compute l.

l = lim
n→∞

Un+1

Un

= lim
n→∞

e4(n+1)

((n+ 1)− 2)!

(n− 2)!

e4n

= lim
n→∞

e4n+4

(n− 1)!

(n− 2)!

e4n

= lim
n→∞

e4

n− 1

= 0 < 1,

so by the Ratio test the series converges.

Exercice 2.4.3. Use the Comparison test to determine the nature of the following series.

1)
n=∞∑
n=3

e−n

n2 + 2n
2)

n=∞∑
n=0

2n sin2(5n)

4n + cos2(n)
3)

n=∞∑
n=1

2n3 + 7

n4 sin2(n)
4)

n=∞∑
n=2

n− 1√
n6 + 1

Proof 2.4.3. 1) We have

e−n < e−3 < 1.

Using this we can get the following relationship,

e−n

n2 + 2n
<

1

n2 + 2n
.

On the other hand we have,

n2 + 2n > n2.

Then we can get the following relationship,

e−n

n2 + 2n
<

1

n2 + 2n
<

1

n2
.

Now, the series
n=∞∑
n=3

1

n2
converges by the p-series test. Therefore, by the Comparison test,

n=∞∑
n=3

e−n

n2 + 2n
converges.

2) We have

2n sin2(5n) < 2n(1) < 2n

and

4n + cos2(n) > 4n + 0 = 4n
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Then we get the following relationship,

2n sin2(5n)

4n + cos2(n)
<

2n

4n
=

(
1

2

)n
.

We also know that the series
n=∞∑
n=0

(
1

2

)n
will converge because it is a Geometric series.

Therefore, by the Comparison test,
n=∞∑
n=0

2n sin2(5n)

4n + cos2(n)
converges.

3) We have

2n3 < 2n3 + 7

and

n4 sin2(n) < n4

Then we get the following relationship,

2n3 + 7

n4 sin2(n)
>

2n3

n4
=

2

n

We also know that the series
n=∞∑
n=1

2

n
diverge by the p-series test. Therefore, by the Comparison

test,
n=∞∑
n=1

2n3 + 7

n4 sin2(n)
diverge.

4) We have

n > n− 1

and

n6 < n6 + 1

Then we get the following relationship,

n− 1√
n6 + 1

<
n√
n6

=
1

n2

We also know that the series
n=∞∑
n=2

1

n2
converges by the p-series test. Therefore, by the Com-

parison test,
n=∞∑
n=2

n− 1√
n6 + 1

converges.

Exercice 2.4.4. Use the Equivalence test to determine the nature of the following series.

1)
n=∞∑
n=7

4

n2 − 2n− 3
2)

n=∞∑
n=1

4n2 − n
n3 + 9

3)
n=∞∑
n=1

√
2n2 + 4n+ 1

n3 + 9
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Proof 2.4.4. 1) We have

n2 > n2 − 2n− 3.

Using this we can get the following relationship,

4

n2
<

4

n2 − 2n− 3
.

Let use
n=∞∑
n=7

4

n2
as the second series. So, let’s compute the limit,

l = lim
n→∞

Un
Vn

= lim
n→∞

4

n2 − 2n− 3

n2

4

= lim
n→∞

n2

n2 − 2n− 3

= 1 > 0,

Now, the series
n=∞∑
n=7

4

n2
converges by the p-series test. Therefore, by the Equivalence test,

n=∞∑
n=7

4

n2 − 2n− 3
converges.

2) We have the following inequalities,

4n2 − n < 4n2

and

n3 + 9 > n3

Then we get the following relationship,

4n2 − n
n3 + 9

<
4n2

n3
=

4

n
.

Let use
n=∞∑
n=1

4

n
as the second series. So, let’s compute the limit,

l = lim
n→∞

Un
Vn

= lim
n→∞

4n2 − n
n3 + 9

n

4

= lim
n→∞

4n3 − n2

4n3 + 36

= 1 > 0,
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Now, the series
n=∞∑
n=1

4

n
diverge by the p-series test. Therefore, by the Equivalence test,

n=∞∑
n=1

4n2 − n
n3 + 9

diverge.

3) We have the following inequalities,

2n2 < 2n2 + 4n+ 1

and

n3 < n3 + 9

Let use
n=∞∑
n=1

√
2

n2
as the second series. So, let’s compute the limit,

l = lim
n→∞

Un
Vn

= lim
n→∞

√
2n2 + 4n+ 1

n3 + 9

n2

√
2

= lim
n→∞

n2
√
n2
(
2 + 4

n
+ 1

n2

)
√

2n3
(
1 + 9

n3

)
=

√
2√
2

= 1 > 0,

Now, the series
n=∞∑
n=1

√
2

n2
converge by the p-series test. Therefore, by the Equivalence test,

n=∞∑
n=1

√
2n2 + 4n+ 1

n3 + 9
converge.

Exercice 2.4.5. Use the Integral test to determine the nature of the following series.

1)
n=∞∑
n=3

3

n2 − 3n+ 2
2)

n=∞∑
n=0

n2

n3 + 1
3)

n=∞∑
n=2

1

(2n+ 7)3

Proof 2.4.5. 1) Let

f(x) =
3

x2 − 3x+ 2
.

We have for x ≥ 3

x2 − 3x+ 2 ≥ 0 and f ′(x) =
9− 6x

(x2 − 3x+ 2)2
.
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Then f(x) is a continuous, positive and decreasing function on the interval [3,∞[.

Now, let’s compute the integral ∫ ∞
3

3

x2 − 3x+ 2
dx.

It is easy to check that
3

x2 − 3x+ 2
=
−3

x− 1
+

3

x− 2
.

So ∫ ∞
3

3

x2 − 3x+ 2
dx =

∫ ∞
3

(
−3

x− 1
+

3

x− 2

)
dx

= lim
y→∞

∫ y

3

(
−3

x− 1
+

3

x− 2

)
dx

= lim
y→∞

(3 ln |x− 2| − 3 ln |x− 1|)
∣∣∣∣t
3

= lim
y→∞

[
3 ln

∣∣∣∣t− 2

t− 1

∣∣∣∣+ 3 ln 2

]
= 3 ln 2.

Therefore the integral converge and so by the Integral test the series converge.

2) Let

f(x) =
x2

x3 + 1
.

We have for x ≥ 0
x2

x3 + 1
≥ 0 and f ′(x) =

x(2− x3)
(x3 + 1)2

.

Then f(x) is a continuous, positive and decreasing function on the interval [
3
√

2,∞[.

Now, let’s compute the integral ∫ ∞
0

x2

x3 + 1
dx.

So ∫ ∞
0

x2

x3 + 1
dx = lim

y→∞

∫ y

0

x2

x3 + 1
dx

= lim
y→∞

(
1

3
ln |x3 + 1|

)∣∣∣∣t
0

=
1

3
lim
y→∞

ln |y3 + 1|

= ∞
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Therefore the integral diverge and so by the Integral test the series diverge.

3) Let

f(x) =
1

(2x+ 7)3
.

We have for x ≥ 2

1

(2x+ 7)3
> 0 and f(x) =

1

(2x+ 7)3
>

1

(2(x+ 1) + 7)3
= f(x+ 1).

Then f(x) is a continuous, positive and decreasing function on the interval [2,∞[.

Now, let’s compute the integral ∫ ∞
2

1

(2x+ 7)3
dx.

So ∫ ∞
2

1

(2x+ 7)3
dx = lim

y→∞

∫ y

2

1

(2x+ 7)3
dx

= lim
y→∞

(
−1

4

1

(2x+ 7)2

)∣∣∣∣t
2

=
1

484
.

Therefore the integral converge and so by the Integral test the series converge.



3
Numerical functions of a real variable

3.1 Generality on functions

3.1.1 Definitions and terminology

Definition 3.1.1. (Application). we call an application from a set E to a set F , any

correspondence f that associates one and only one element y ∈ F with any element x ∈ E.

We write

f : E −→ F

x 7−→ y = f(x).

Definition 3.1.2. (Numerical function). We call a numerical function on a set E ⊂ R, any

relation f , which associates to any x ∈ E , at most one element y ∈ F ⊂ R ; we write

f : E ⊂ R −→ F ⊂ R

x 7−→ y = f(x).

51
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The set E is called the start set and F is called the end set.

y = f(x) is called the image of x by f and x is an antecedent of y.

Example 3.1.1. • The application of a set E ⊂ R to itself, which associates x with each

element x, is called an identity application, noted as (idE).

idE : E ⊂ R −→ E ⊂ R

x 7−→ idE(x) = x.

• Let

f : R −→ R

x 7−→ f(x) =
1

x
.

f is a function on R but not an application on R, because 0 has no image by f .

• Let

f : E −→ F

x 7−→ f(x) = a.

f is a constant application.

• Let

|.| : R −→ R

x 7−→ |x| =

 x si x ≥ 0

−x si x < 0

|.| is the absolute value function.

• Let

[.] : R −→ Z

x 7−→ [x]

defined by

[x] ≤ x < [x] + 1

[x] or E(x) is the integer function of x.

Definition 3.1.3. (Domain of definition). The domain of definition of a numerical function

f : E ⊂ R −→ F ⊂ R,

is the set of points x ∈ E where f(x) is well defined. We denote it Df , and write

Df = {x ∈ R / f(x) exists}.
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Example 3.1.2. Find the domain of definition of the following functions:

f1(x) =
1

x2 − 2
, f2(x) =

1

cos(x)
, f3(x) =

√
x2 − 5x+ 6, f4 = ln(4−X2).

• For the function f1(x) , we have

Df1 = {x ∈ R / f1(x) exists}

= {x ∈ R / x2 − 2 6= 0}

= {x ∈ R / x 6= −2 or x 6= 2}

= R− {−2, 2}.

• For the function f2(x) , we have

Df2 = {x ∈ R / f2(x) exists}

= {x ∈ R / cos(x) 6= 0}

= {x ∈ R / x 6= k
π

2
where k ∈ Z}

= R− {kπ
2

where k ∈ Z}.

• For the function f3(x) , we have

Df3 = {x ∈ R / f3(x) exists}

= {x ∈ R / x2 − 5x+ 6 ≥ 0}

= {x ∈ R / (x− 2)(x− 3) ≥ 0}

= ]−∞, 2] ∪ [3,+∞[.

• For the function f4(x) , we have

Df4 = {x ∈ R / f4(x) exists}

= {x ∈ R / 4−X2 ≥ 0}

= {x ∈ R / (2− x)(2 + x) ≥ 0}

= ]− 2, 2[.

Definition 3.1.4. (Curve of a function). The curve (graph) of a function f : E ⊂ R −→

F ⊂ R is the set defined by

Cf = {(x, f(x)) / x ∈ E}
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3.1.2 Direct image, Reciprocal image:

Definition 3.1.5. (Direct image). Let f : E −→ F be an application and A a subset of E.

The direct image of A by the application f is the subset of F denoted f(A):

f(A) = {y = f(x) ∈ F / x ∈ A} ⊂ F.

Example 3.1.3. Let

f : R −→ R

x 7−→ f(x) = x2

• For A = [−2, 1], we have

f(A) = {f(x), x ∈ A}

= {x2, x ∈ [−2, 1]}

= [0, 4].

• For A = [−1, 1], we have

f(A) = {f(x), x ∈ A}

= {x2, x ∈ [−1, 1]}

= [0, 1].

Definition 3.1.6. (Reciprocal image). Let f : E −→ F be an application and B a subset of

E. The reciprocal image of B by the application f is the subset of F denoted f−1(B):

f−1(B) = {x ∈ E / f(x) ∈ B} ⊂ E.

Example 3.1.4. Let

f : R −→ R

x 7−→ f(x) = x2

• For B = [0, 4], we have

f−1(B) = {x ∈ R, f(x) ∈ [0, 4]}

= {x ∈ R, x2 ∈ [0, 4]}

= {x ∈ R, (x− 2)(x+ 2) ≤ 0}

= [−2, 2].
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• For A = [0, 2], we have

f−1(B) = {x ∈ R, f(x) ∈ [0, 2]}

= {x ∈ R, x2 ∈ [0, 2]}

= {x ∈ R, (x−
√

2)(x+
√

2) ≤ 0}

= [−
√

2,
√

2].

3.1.3 Composite application:

Definition 3.1.7. Let E, F and G be three sets and f : E −→ F , g : F −→ G two

applications. We denote the composite application of f and g denoted g ◦ f by

∀x ∈ E, (g ◦ f)(x) = g(f(x)).

Example 3.1.5. • given the applications:

f : R −→ R+

x 7−→ f(x) = x2

g : R+ −→ R+

x 7−→ g(x) = x3

Then

g ◦ f : R −→ R+

x 7−→ (g ◦ f)(x) = g(f(x)) = (x2)3 = x6

and

f ◦ g : R+ −→ R+

x 7−→ (f ◦ g)(x) = f(g(x)) = (x3)2 = x6

• given the applications:

f1 : ]0,+∞[ −→ ]0,+∞[

x 7−→ f1(x) =
1

x

g1 : ]0,+∞[ −→ R

x 7−→ g1(x) =
x− 1

x+ 1

Then

g1 ◦ f1 : ]0,+∞[ −→ R

x 7−→ (g1 ◦ f1)(x) = g1(f1(x)) =
1
x
− 1

1
x

+ 1
=

1− x
1 + x

and

f1 ◦ g1 : ]0,+∞[ −→ ]0,+∞[

x 7−→ (f1 ◦ g1)(x) = f1(g1(x)) =
1
x−1
x+1

=
x+ 1

x− 1
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3.1.4 Injective, surjective and bijective functions:

Definition 3.1.8. Let f : E ⊂ R −→ F ⊂ R be a function.

• We say that f is injective if and only if every element y in F has at most one antecedent

in E. In other words,

∀x1, x2 ∈ E : f(x1) = f(x2) =⇒ x1 = x2

• We say that f is surjective if and only if every element y in F has at least one antecedent

in E. In other words,

∀y ∈ F, ∃x ∈ E : y = f(x)

• We say that f is bijective if and only if every element y in F has a single antecedent in E.

In other words,

∀y ∈ F, ∃!x ∈ E : y = f(x)

Remark 3.1.1. We say that f is bijective if and only if it is both injective and surjective.

Definition 3.1.9. (reciprocal function): Let

f : E ⊂ R −→ F ⊂ R

x 7−→ y = f(x)

a bijective function. The reciprocal (inverse) function is the function denoted by

f−1 : F −→ E

Y 7−→ X = f−1(Y )

which verifies the following properties:

1. (∀x ∈ E : y = f(x))⇐⇒ (∀y ∈ F : x = f−1(y)).

2. f ◦ f−1 = idF and f−1 ◦ f = idE.

Example 3.1.6. Let’s consider the two functions:

g : N −→ Q

x 7−→ g(x) =
1

1 + x
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and

h : R −→ R

x 7−→ h(x) = 3x

1. Are g, h injective, surjective or bijective?

2. If g or h is bijective, give its inverse.

For 1.: let x1, x2 ∈ N

g(x1) = g(x2) =⇒ 1

1 + x1
=

1

1 + x2
=⇒ 1 + x1 = 1 + x2

=⇒ x1 = x2.

Thus g is injective.

We have ∀x ∈ N, g(x) ≤ 1. then y = 2 has no antecedent. So g is not surjective, then g is

not bijective.

For 2.: let x1, x2 ∈ R

h(x1) = h(x2) =⇒ 3x1 = 3x2

=⇒ x1 = x2.

Thus h is injective.

Let y ∈ R,

y = h(x) = 3x =⇒ y = 3x

=⇒ x =
y

3
.

So

∀y ∈ R, ∃x =
y

3
∈ R : y = h(x).

Thus h is surjective.

Consequently, h is a bijective function, and its inverse function h−1, is defined by

h−1 : R −→ R

y 7−→ x = h−1(y) =
y

3
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3.1.5 Parity and periodicity:

Definition 3.1.10. Let I be an interval of R symmetrical about 0. Let f : I −→ R be a

function defined on this interval. We said that:

• f is even if

∀x ∈ I, f(−x) = f(x)

• f is odd if

∀x ∈ I, f(−x) = −f(x)

Example 3.1.7. • The function

f(x) = e
√
1−x2

defined on [−1, 1] is even because: ∀x ∈ [−1, 1], we have −x ∈ [−1, 1] and

f(−x) = e
√

1−(−x)2 = f(x).

• The function

h(x) = ln
(
x+
√
x2 + 1

)
defined on R is odd because: ∀x ∈ R, we have

h(−x) = ln
(
−x+

√
(−x)2 + 1

)
= ln

(
(−x+

√
x2 + 1)(−x−

√
x2 + 1)

(−x−
√
x2 + 1)

)

= ln

(
(x2 − (x2 + 1)

−(x+
√
x2 + 1)

)
= ln

(
−1

−(x+
√
x2 + 1)

)
= ln

(
1

x+
√
x2 + 1

)
= − ln

(
x+
√
x2 + 1

)
= −h(x)

Remark 3.1.2. • The curve of an even function is symmetrical about the y-axis.

• The curve of an odd function is symmetrical about the origin.
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Definition 3.1.11. (Periodicity) Let f be a function defined on Df ⊆ R.

• We say that f is a periodic function if there is a strictly positive real number T such that:

∀x ∈ Df , f(x+ T ) = f(x).

• We call the period of f the smallest positive number T such that:

f(x+ T ) = f(x) ∀x ∈ Df .

Example 3.1.8. • The function tanx is periodic with period π, in fact

tan(x+ π) =
sin(x+ π)

cos(x+ π)

=
− sin(x)

− cos(x)

= tan x

• The function f(x) = x− [x] is periodic with period 1, in fact

f(x+ 1) = x+ 1− [x+ 1]

= x+ 1− [x]− 1

= f(x)

3.1.6 Majorized, minorized and bounded functions:

Definition 3.1.12. Let f : E ⊂ R −→ R be a function, we say that

• f is majored over E if there exists M ∈ R,

∀x ∈ E : f(x) ≤M.

• f is minorized over E if there exists m ∈ R,

∀x ∈ E : f(x) ≥ m.

• f is bounded on E if it is both bounded above and below, i.e.

∃m, M ∈ R, ∀x ∈ E : m ≤ f(x) ≤M

or

∃S > 0, ∀x ∈ E : |f(x)| ≤ S.
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Example 3.1.9. The function f(x) =
1

x
is bounded on I = [1, 2], because: ∀x ∈ [1, 2]

1 ≤ x ≤ 2 =⇒ 1

2
≤ 1

x
≤ 1

=⇒ 1

2
≤ f(x) ≤ 1.

But it is not bounded on J =]0, 1], because: ∀x ∈]0, 1]

0 < x ≤ 1 =⇒ 1 ≤ 1

x
≤ +∞

=⇒ 1 ≤ f(x) ≤ +∞.

Definition 3.1.13. Let f : E ⊂ R −→ R be a function

• We call the upper bound of f on E the smallest of the majorants, we denote it sup
x∈E

f(x).

• We call the lower bound of f on E the largest of the minorants, we denote it inf
x∈E

f(x).

3.1.7 Monotonic functions:

Definition 3.1.14. Let f : E ⊂ R −→ R be a function.

• f is said to be increasing

∀x, y ∈ E : x ≤ y =⇒ f(x) ≤ f(y)

• f is said to be decreasing

∀x, y ∈ E : x ≤ y =⇒ f(x) ≥ f(y)

• f is said to be monotonic if f is increasing or decreasing.

• f is said to be strictly increasing

∀x, y ∈ E : x < y =⇒ f(x) < f(y)

• f is said to be strictly decreasing

∀x, y ∈ E : x < y =⇒ f(x) > f(y)

• f is said to be strictly monotonic if f is strictly increasing or strictly decreasing.

Example 3.1.10. The function defined by: f(x) = |x| is increasing on R+, While it is

decreasing on R−.
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3.2 Limits of function:

Definition 3.2.1. A part V ⊂ R is a neighborhood of x ∈ R, if it contains an open interval

of R containing x, in other words

∃ > 0γ : x ∈]x− γ, x+ γ[⊂ V

Example 3.2.1. [−2, 2] is a neighborhood of all these points except the two points −2 and

2.

Definition 3.2.2. Let f be a function defined in a neighborhood I of x0 except perhaps in

x0. The number l is called the limit of f when x tends to x0 and we write

l = lim
x→x0

f(x)

if

∀ε > 0, ∃δ(ε) > 0, ∀x ∈ I : |x− x0| < δ(ε) =⇒ |f(x)− l| < ε.

Example 3.2.2. Let f : R −→ R be a function, such that f(x) = x2 − 1. we’ll show that:

lim
x→1

f(x) = 0.

Let ε > 0, we have

|f(x)− l| = |x2 − 1|

= |x+ 1||x− 1|

< (|x|+ |1|)|x− 1|

< 2|x− 1| < ε.

So

|x− 1| < ε

2
.

Therefore, the best choice of δ(ε) is δ(ε) =
ε

2
.

Example 3.2.3. Let f : R −→ R be a function, such that f(x) = 3x + 1. we’ll show that:

lim
x→0

f(x) = 1.

Let ε > 0, we have

|f(x)− l| = |3x+ 1− 1|

= |3x| < ε.
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So

|x| < ε

3
.

Therefore, the best choice of δ(ε) is δ(ε) =
ε

3
.

Theorem 3.2.1. If f has a limit at the point x0, this limit is unique.

3.2.1 Right limit, left limit:

Definition 3.2.3. Let f : I −→ R be a function,

• We say that f admits a limit l when x tends to x0 on the left or by lower values (x→< x0)

and we note

lim
x→<x0

f(x) = l

if

∀ε > 0, ∃δ(ε) > 0, ∀x ∈ I : −δ(ε) < x− x0 < 0 =⇒ |f(x)− l| < ε.

•We say that f admits a limit l when x tends to x0 on the right or by higher values (x→> x0)

and we note

lim
x→>x0

f(x) = l

if

∀ε > 0, ∃δ(ε) > 0, ∀x ∈ I : 0 < x− x0 < δ(ε) =⇒ |f(x)− l| < ε.

Proposition 3.2.1. Let f : I −→ R be a function. Then

lim
x→x0

f(x) = l⇐⇒ lim
x→<x0

f(x) = lim
x→>x0

f(x) = l

Example 3.2.4. Let f : R −→ R∗ be a function, such that

f(x) =
|x|
3x

=


1

3
if x > 0

−1

3
if x < 0

We have

lim
x→<0

f(x) = −1

3

and

lim
x→>0

f(x) =
1

3
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As

lim
x→<0

f(x) 6= lim
x→>0

f(x).

So f has no limit at the point x = 0.

Theorem 3.2.2. Let f : I −→ R be a function. Then lim
x→x0

f(x) = l if and only if for any

sequence (xn)n∈N, we have

lim
n→+∞

xn = x0 =⇒ lim
n→+∞

f(xn) = l

Remark 3.2.1. According to the previous theorem, if there are two sequences (xn)n, (yn)n

converging to x0 such that lim
n→+∞

f(xn) 6= lim
n→+∞

f(yn), then the limit of f does not exist at

x0.

Example 3.2.5. Let f : R −→ R∗ be a function, such that

f(x) = cos
1

x

f has no limit at the point x = 0. Indeed, we consider the two sequences:

∀n ∈ N∗ : xn =
1

nπ + π
2

, yn =
1

2nπ
.

It is clear that

lim
n→+∞

xn = lim
n→+∞

yn = 0,

lim
n→+∞

f(xn) = lim
n→+∞

cos(nπ +
π

2
) = 0

and

lim
n→+∞

f(yn) = lim
n→+∞

cos(2nπ) = 1.

As

lim
n→+∞

f(xn) 6= lim
n→+∞

f(yn).

Consequently, f has no limit at point 0.
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3.2.2 Infinite limit:

Definition 3.2.4. Let f : I −→ R be a function,

• We say that f has limit +∞ at x0 and we note

lim
x→x0

f(x) = +∞

if

∀A > 0, ∃δ > 0, ∀ ∈ I : |x− x0| < δ =⇒ f(x) > A.

• We say that f has limit −∞ at x0 and we note

lim
x→x0

f(x) = −∞

if

∀A > 0, ∃δ > 0, ∀ ∈ I : |x− x0| < δ =⇒ f(x) < −A.

• We say that f has limit +∞ at +∞ and we note

lim
x→+∞

f(x) = +∞

if

∀A > 0, ∃B > 0, ∀x ∈ I : x > B =⇒ f(x) > A.

• We say that f has limit −∞ at +∞ and we note

lim
x→+∞

f(x) = −∞

if

∀A > 0, ∃B > 0, ∀x ∈ I : x > B =⇒ f(x) < −A.

• We say that f has limit +∞ at −∞ and we note

lim
x→−∞

f(x) = +∞

if

∀A > 0, ∃B > 0, ∀x ∈ I : x < −B =⇒ f(x) > A.

• We say that f has limit −∞ at −∞ and we note

lim
x→−∞

f(x) = −∞
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if

∀A > 0, ∃B > 0, ∀x ∈ I : x < −B =⇒ f(x) < −A.

Theorem 3.2.3. Let f , g and h be three functions defined on a neighbourhood I of x0 such

that

∀x ∈ I : f(x) ≤ g(x) ≤ h(x).

If

lim
x→x0

f(x) = lim
x→x0

h(x) = l,

then

lim
x→x0

g(x) = l.

Example 3.2.6. Let f : R∗+ −→ R be a function, such that

f(x) = x cos
1

x

We have

∀x ∈ R∗+ : −1 ≤ cos
1

x
≤ 1,

then

∀x ∈ R∗+ : −x ≤ x cos
1

x
≤ x.

As lim
x→0
−x = 0 and lim

x→0
x = 0. So using the previous theorem, we obtain

lim
x→0

x cos
1

x
= 0

Corollary 3.2.1. Let f and h be two functions defined on a neighbourhood I of x0. If f is

bounded on the neighbourhood of x0 and lim
x→x0

h(x) = 0, then

lim
x→x0

f(x)h(x) = 0

Example 3.2.7. Let f : R∗+ −→ R be a function, such that

f(x) = x sin
1

x

We have

lim
x→0

x sin
1

x
= 0

because sin
1

x
is bounded and lim

x→0
x = 0.
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3.2.3 Limit operations

Theorem 3.2.4. Let f and g be two functions defined on an interval I of R, such that

lim
x→x0

f(x) = l1 , lim
x→x0

g(x) = l2 and β ∈ R, we have

1. lim
x→x0

(f + g)(x) = lim
x→x0

f(x) + lim
x→x0

g(x) = l1 + l2

2. lim
x→x0

(f.g)(x) = lim
x→x0

f(x). lim
x→x0

g(x) = l1.l2

3. lim
x→x0

(β.f)(x) = β lim
x→x0

f(x) = β.l1

4. lim
x→x0

(
f

g

)
(x) =

limx→x0 f(x)

limx→x0 g(x)
=
l1
l2

if l2 6= 0

Example 3.2.8. Let’s calculate the following limits.

1.

lim
x→+∞

(
√
x2 + 5x− 3− x) = lim

x→+∞

5x− 3√
x2 + 5x− 3 + x

= lim
x→+∞

x
(
5− 3

x

)
x
(√

1 + 5
x
− 3

x2
+ 1
)

=
5

2
.

2.

lim
x→−1

(9x2 + 6x− 3) = lim
x→−1

3.(3x2 + 2x− 1)

= 3 lim
x→−1

(3x2 + 2x− 1)

= 3.0 = 0.

3.

lim
x→1

(x2 − 4) = lim
x→1

(x− 2).(x+ 2)

= lim
x→1

(x− 2). lim
x→1

(x+ 2)

= (−1).(3) = −3.

Indeterminate forms

There are situations where we cannot say anything about the limits. We say that we have

an indeterminate form (I.F). Here’s a list of indeterminate forms.

+∞−∞, 0.+∞, ∞
∞
,

0

0
, 1∞, 00, ∞0
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Example 3.2.9. Let’s calculate the following limits.

lim
x→0

sin(2x)

2 sinx
=

0

0
I.F.

We have

sin(2x) = 2 sinx cosx

then

lim
x→0

sin(2x)

2 sinx
= lim

x→0

2 sinx cosx

2 sinx

= lim
x→0

cosx

= 1.

3.3 Continuous functions

3.3.1 Continuous functions at a point

Definition 3.3.1. Let f : I ⊂ R −→ R be a function. We say that f is continuous at x0 ∈ I

if

lim
x→x0

f(x) = f(x0).

This is equivalent to

∀ε > 0, ∃δ(ε) > 0, ∀x ∈ I : |x− x0| < δ(ε) =⇒ |f(x)− f(x0)| < ε.

Example 3.3.1. Let f : R −→ R be a function, such that

f(x) =

 x3 sin
1

x
if x 6= 0

0 if x = 0

f is continuous at x = 0. because, we have

lim
x→0

f(x) = lim
x→0

x3 sin
1

x︸ ︷︷ ︸
bounded

= 0 = f(0)
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Definition 3.3.2. (Continuity on left and right) Let f : I ⊂ R −→ R be a function. We

say that f is right-continuous at x0 ∈ I , respectively left-continuous at x0 ∈ I if

lim
x→>x0

f(x) = f(x0),

respectively if

lim
x→<x0

f(x) = f(x0).

Example 3.3.2. Let f : R −→ R be a function, such that

f(x) =

 x3 if x < 0

2x+ 3 if x ≥ 0

f is right-continuous at 0, indeed

lim
x→>0

f(x) = lim
x→>0

(2x+ 3)

= 3 = f(0).

but it is not left-continuous at 0 because

lim
x→<0

f(x) = lim
x→>0

x3

= 0 6= f(0).

3.3.2 Continuity on an interval:

Definition 3.3.3. We say that f is continuous on an interval I if it is continuous at any

point of I. We denote by C(I) the set of continuous functions on I.

Example 3.3.3. Let f : R −→ Z be a function, such that f(x) = [x].

Note that for any point m ∈ Z, we have:

lim
x→>m

[x] = m 6= lim
x→<m

[x] = m− 1,

which shows the discontinuity of this function at any point m ∈ Z. In conclusion, the integer

function is continuous on R− Z.
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Proposition 3.3.1. If f and g are two continuous functions at x0, then

• ∀ α, β ∈ R, αf + βg is continuous at x0.

• f.g is continuous at x0.

• if g(x0) 6= 0, then
f

g
is continuous at x0.

• |f | is continuous at x0.

3.3.3 Continuity of composite functions:

Properties 3.3.1. Let f : I −→ I
′

and g : I
′ −→ R be two functions continuous at x0 and

f(x0) respectively. Then g ◦ f : I −→ R is continuous at x0.

3.3.4 Characterizing continuity using numerical sequences:

Proposition 3.3.2. Let f : I −→ R, be a function and x0 ∈ I. The following properties are

equivalent,

• f is continuous at x0.

• For any sequence (Un)n of elements of I that converges to x0, the sequence (f(Un))n

converges to f(x0).

Example 3.3.4. Let f : R −→ R be a function, such that

f(x) =

 cos
1

x
if x 6= 0

0 if x = 0

Let

Un =
1

2nπ

and

Vn =
1

2nπ + π
2

we have

f(Un) = 1 6= f(Vn) = 0

Consequently, f is not continuous in 0.
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3.3.5 Continuity prolongation:

Proposition 3.3.3. Let f be a function defined on an interval I, except that it can be at

x0 ∈ I, if f has a finite limit l at x0. i.e. lim
x→x0

f(x) = l, then the function defined by

f̂(x) =

 f(x) if x 6= x0

l if x = x0

is called the continuity prolongation of f on I.

Example 3.3.5. Let f : R∗ −→ R be a function, such that

f(x) = x cos

(
1

x

)
As

∀x ∈ R∗ : 0 ≤ |f(x)| ≤ |x|,

we deduce that

lim
x→0

f(x) = 0

Therefore, f is prolongable by continuity on 0 and its prolongation is the function f̂ defined

on all R by

f̂(x) =

 x cos

(
1

x

)
if x 6= 0

0 if x = 0

Theorem 3.3.1. (Intermediate value theorem) Let f : [a, b] −→ R be a function, such that

1. f is continuous on [a, b]

2. f(a).f(b)<0. Then

∃x0 ∈]a, b[: f(x0) = 0

And if f is strictly monotonic, then x0 is unique.

Example 3.3.6. Let f : [1, 2] −→ R be a function, such that

f(x) = ln x− 1

x
.

We have

1. f is continuous on [1, 2]
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2. f(1).f(2) = (−1).(0.19) < 0.

Then using intermediate value theorem

∃x0 ∈]1, 2[: f(x0) = 0.

Uniqueness :

We have

f ′(x) =
1

x
+

1

x2
> 0

so f is strictly increasing. Therefore the solution is unique.

Example 3.3.7. Let f : [−2, 1] −→ R be a function, such that

f(x) = x3 − 2x+ 2.

We have

1. f is continuous on [−2, 1]

2. f(−2).f(1) = (−2).(1) < 0.

Then using intermediate value theorem

∃x0 ∈]− 2, 1[: f(x0) = 0.

Example 3.3.8. Let f : [0, 1] −→ R be a function, such that

f(x) = [x]− 1

2
.

The intermediate value theorem does not apply to f , because it is not continuous at 1.

3.4 Derivative of a function:

Definition 3.4.1. Let f : I ⊂ R −→ R be a function.

1. We say that f is derivable at x0 if

lim
x→x0

f(x)− f(x0)

x− x0
= lim

h→0

f(x0 + h)− f(x0)

h

exists and is finite. This limit is called the derivative of f at x0 and is denoted f ′(x0).
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Example 3.4.1. Let f : R −→ R be a function, such that

f(x) = x3

We have

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0

= lim
x→x0

x3 − x30
x− x0

= lim
x→x0

(x− x0)(x2 + x0x+ x20)

x− x0
= lim

x→x0
(x2 + x0x+ x20)

= 3x20

3.4.1 Right derivative and left derivative:

Definition 3.4.2. Let f : I ⊂ R −→ R be a function.

The right derivative of f at x0 is defined by

f ′r(x) = lim
x→>x0

f(x)− f(x0)

x− x0

Similarly, we define the left derivative of f at x0 as

f ′l (x) = lim
x→<x0

f(x)− f(x0)

x− x0

and

f is derivable at x0 ⇐⇒ f ′r(x) = f ′l (x) = f ′(x)

Example 3.4.2. Let f : R −→ R be a function, such that

f(x) =

 x+ 1 if x ≥ 0

1− 2x if x < 0

We have

f ′r(0) = lim
x→>0

f(x)− f(0)

x− 0

= lim
x→>x0

x+ 1− 1

x

= 1
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and

f ′l (0) = lim
x→<0

f(x)− f(0)

x− 0

= lim
x→>x0

1− 2x− 1

x

= −2.

Then f is not derivable at 0 because f ′r(0) 6= f ′l (0).

Example 3.4.3. Let f : R −→ R∗+ be a function, such that

f(x) =

 x if x ≥ 0

−x if x < 0

We have

f ′r(0) = lim
x→>0

f(x)− f(0)

x− 0

= lim
x→>x0

x

x

= 1

and

f ′l (0) = lim
x→<0

f(x)− f(0)

x− 0

= lim
x→>x0

−x
x

= −1.

Then f is not derivable at 0 because f ′r(0) 6= f ′l (0).

Definition 3.4.3. Let f : I ⊂ R −→ R be a function.

f is derivable on I if it is derivable at any point on I and the application

f ′ : I −→ R

x 7−→ f ′(x)

is called the derivative function of f .
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3.4.2 Operations on derivable functions:

Proposition 3.4.1. Let f , g be two functions derivable at x0 ∈ R, then if g(x0) 6= 0 we

have:

1. (αf)′(x0) = αf ′(x0), α ∈ R

2. (f + g)′(x0) = f ′(x0) + g′(x0)

3. (f.g)′(x0) = f ′(x0).g(x0) + f(x0).g
′(x0)

4.

(
f

g

)′
(x0) =

f ′(x0).g(x0)− f(x0).g
′(x0)

g2(x0)

3.4.3 Derivative of a composite function:

Proposition 3.4.2. Let f : I −→ I ′ and g : I ′ −→ R be two functions derivable at x0 and

f(x0) respectively. Then g ◦ f : I −→ R is derivable at x0 and we have

(g ◦ f)′(x0) = f ′(x0)g
′(f(x0)).

Example 3.4.4. Let the functions f and g be defined by

f : R −→ R

x 7−→ f(x) = x2

and

g : R −→ R

x 7−→ g(x) = cosx.

Then

g ◦ f : R −→ R

x 7−→ (g ◦ f)(x) = cosx2.

and

(g ◦ f)′(x) = f ′(x)g′(f(x)) = −2x sinx2

3.4.4 Derivative of a reciprocal function:

Proposition 3.4.3. If f is derivable at x0, then f−1 is derivable at f(x0) and we have

(f−1)′(f(x0)) =
1

f ′(x0)
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Example 3.4.5. The function

g : R −→ ]0,+∞[

x 7−→ g(x) = ex.

is bijective and therefore has a reciprocal application

g−1 : ]0,+∞[ −→ R

x 7−→ g−1(x) = lnx.

with

y = ex ⇐⇒ ln y = x,

and we have

(g−1)′(y) = (ln)′(y)

=
1

f ′(x)

=
1

ex

=
1

y
.

3.4.5 Fundamental theorems on derivable functions:

Theorem 3.4.1. (Rolle’s theorem) Let f : [a, b] −→ R be a function satisfying

1. f is continuous on [a, b]

2. f is derivable on ]a, b[

3. f(a) = f(b). Then

∃c ∈]a, b[: f ′(c) = 0.

Theorem 3.4.2. (Lagrange’s theorem or finite increase theorem) Let f : [a, b] −→ R be a

function satisfying

1. f is continuous on [a, b]

2. f is derivable on ]a, b[. Then

∃c ∈]a, b[: f(b)− f(a) = (b− a)f ′(c).
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Example 3.4.6. Let’s show that

∀x > 0, sinx ≤ x.

Consider the function

f : R −→ R

y 7−→ f(y) = y − sin y.

The function f is continuous on [0, x] and derivable on ]0, x[, ∀x > 0. Then according to

the finite increasing theorem,

∃c ∈]0, x[: f(x)− f(0) = (x− 0)f ′(c)︸ ︷︷ ︸
m

.

∃c ∈]0, x[: x− sinx = x(1− cos c).

As x > 0 and cos c ≤ 1, we obtains ∀x > 0, sinx ≤ x.

Corollary 3.4.1. (Inequality of finite increments) Let f : I −→ R be a function derivable

on I. If there exists a constant M such that for all x ∈ I, |f ′(x)| ≤M . Then

∀x, y ∈ I : |f(x)− f(y)| ≤M |x− y|.

Example 3.4.7. Let f(x) = sinx. We have

∀x ∈ R : f ′(x) = cos x.

It is clear that

∀x ∈ R : |f ′(x)| ≤ 1.

using the inequality of finite increments we find that

∀x, y ∈ R : | sinx− sin y| ≤ |x− y|.

In particular for y = 0, we obtain

| sinx| ≤ |x|.

Theorem 3.4.3. (Cauchy’s theorem) Let f, g : [a, b] −→ R be two functions satisfying

1. f, g are continuous on [a, b]

2. f, g are continuous on ]a, b[. Then

∃c ∈]a, b[:
f(b)− f(a)

g(b)− g(a)
=
f ′(c)

g′(c)
.
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3.4.6 Higher-order derivative:

Let f : I −→ R, be a derivable function. If its derivative f ′ : I −→ R is also derivable. We

note f (2) = f ′′ = (f ′)′, the second derivative of f . More generally, we note

f (0) = f, f (1) = f ′, f (2) = f ′′, . . . , f (n+1) = (f (n))′

the successive derivatives of f .

Definition 3.4.4. (Cn-class function) Let I ⊂ R be an interval. For any integer n ∈ N, we

define the space Cn(I), as the set of functions f : I ⊂ R −→ R that are n-times derivable

and its n-th derivative f (n) is continuous.

Example 3.4.8. Let’s calculate the n-th derivative of the function f(x) = e3x.

We have

f ′(x) = 3e3x, f ′′(x) = 9e3x, f (3)(x) = 27e3x.

We can show by recurrence that for all n ∈ N, we have

f (n)(x) = 3ne3x.

3.4.7 Monotony criterion:

Proposition 3.4.4. Let f be a function from I into R, derivable on I, then

1. f ′ > 0 on I ⇐⇒ f is increasing on I

2. f ′ < 0 on I ⇐⇒ f is decreasing on I.

Proposition 3.4.5. (Derivability and continuity) If f is derivable at x0, then f is continuous

at x0. The reciprocal is generally false.

Example 3.4.9. Let f(x) = |x|, x ∈ R. f is continuous at 0 but not derivable at 0 because

f
′

r(0) = 1 6= −1 = f
′

l (0)

Theorem 3.4.4. (Hospital rule) Let f, g : I −→ R be two continuous functions on I,

derivable on I − {x0} and satisfying the following conditions:
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1. lim
x→x0

f(x) = lim
x→x0

g(x) = 0.

2. g′(x) 6= 0, ∀x ∈ I − {x0}, then

lim
x→x0

f ′(x)

g′(x)
= l =⇒ lim

x→x0

f(x)

g(x)
= l

Example 3.4.10.

lim
x→0

sinx

x
= lim

x→0

cosx

1
= 1.

Remark 3.4.1. The reciprocal of the hospital rule is generally false.

Example 3.4.11. Let

f(x) = x2 cos
1

x

and

g(x) = x.

We have

lim
x→0

f(x)

g(x)
= lim

x→0
x cos

1

x
= 0.

While

lim
x→0

f ′(x)

g′(x)
= lim

x→0

(
2x cos

1

x
+ sin

1

x

)
that doesn′t exist.

Remark 3.4.2. Hospital’s rule is true when x −→ +∞ and if lim
x→x0

f ′(x)

g′(x)
=

0

0
and f ′, g′

satisfy the conditions of the theorem, then we can again apply the Hospital rule.

Theorem 3.4.5. (Hospital rule bis) Let f, g : I −→ R be two continuous functions on I,

derivable on I − {x0} and satisfying the following conditions:

1. lim
x→x0

f(x) = lim
x→x0

g(x) = +∞.

2. g′(x) 6= 0, ∀x ∈ I − {x0}, then

lim
x→x0

f ′(x)

g′(x)
= l =⇒ lim

x→x0

f(x)

g(x)
= l
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Example 3.4.12.

lim
x→+∞

xn

ex
= lim

x→+∞

nxn−1

ex

= lim
x→+∞

n(n− 1)xn−2

ex

= . . .

= lim
x→+∞

n(n− 1) . . . 2× 1x0

ex

= 0
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3.5 Exercises

Exercice 3.5.1. Find the domain of definition of the following functions:

1) f1(x) =
x+ 1

2− e 1
x

2) f2(x) =
1

[x]
3) f3(x) =

√
x2 − 1

(
e

1
1−x

)
4) f4(x) = (1 + lnx)

1
x

Proof 3.5.1. 1)

Df1 = {x ∈ R / f1(x) exists}

=
{
x ∈ R / 2− e

1
x 6= 0

}
=

{
x ∈ R / 2 6= e

1
x

}
=

{
x ∈ R / x 6= 1

ln 2

}
= R−

{
1

ln 2

}
.

2)

Df2 = {x ∈ R / f2(x) exists}

= {x ∈ R / [x] 6= 0} .

We have

∀x ∈ [0, 1[, [x] = 0,

then

Df2 = R− {x ∈ R / x ∈ [0, 1[}

= ]−∞, 0[∪[1,+∞[.

3)

Df3 = {x ∈ R / f3(x) exists}

=
{
x ∈ R / x2 − 1 ≥ 0 and 1− x 6= 0

}
= {x ∈ R / x ∈]−∞,−1] ∪ [1,+∞[ and x 6= 1}

= ]−∞,−1]∪]1,+∞[.
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4)

Df4 = {x ∈ R / f4(x) exists}

= {x ∈ R / x 6= 0, x > 0 and 1 + ln x > 0}

=
{
x ∈ R / x > 0 and x > e−1

}
= ]e−1,+∞[.

Exercice 3.5.2. Check the limits of the following functions:

1) l1 = lim
x→0

x− sin 2x

x+ sin 3x
2) l2 = lim

x→>a

√
x−
√
a+
√
x− a√

x2 − a2
3) l3 = lim

x→>+∞

ln(1 + e2x)

x

Proof 3.5.2. 1)

l1 = lim
x→0

x− sin 2x

x+ sin 3x

= lim
x→0

2x
(
1
2
− sin 2x

2x

)
3x
(
1
3

+ sin 3x
3x

)
= −1

4
.

2)

l2 = lim
x→>a

√
x−
√
a+
√
x− a√

x2 − a2

= lim
x→>a

√
x−
√
a√

x−a + 1
√
x+ a

= lim
x→>a

√
x−a√
x+
√
a

+ 1
√
x+ a

=
1√
2a
.

3)

l3 = lim
x→+∞

ln(1 + e2x)

x

= lim
x→+∞

ln(e2x(e−2x + 1))

x

= lim
x→+∞

ln(e2x) + ln(e−2x + 1)

x

= lim
x→+∞

2x+ ln(e−2x + 1)

x

= 2 + lim
x→+∞

ln(e−2x + 1)

x

= 2.
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Exercice 3.5.3. Using the definition of the limit of a function, show that :

1) lim
x→4

(2x− 1) = 7 2) lim
x→+∞

3x− 1

2x+ 1
=

3

2
3) lim

x→+∞
lnx = +∞ 4) lim

x→>−3

4

x+ 3
= +∞

Proof 3.5.3. 1) Using the definition of the limit of a function, we have(
lim
x→4

(2x− 1) = 7
)
⇐⇒ (∀ε > 0, ∃δ(ε) > 0, ∀x ∈ R : |x− 4| < δ(ε) =⇒ |2x− 8| < ε) .

As

|2x− 8| < ε⇐⇒ 2|x− 4| < ε⇐⇒ |x− 4| < ε

2
.

Then it is sufficient to take δ(ε) =
ε

2
.

2) Using the definition of the limit of a function, we have(
lim

x→+∞

3x− 1

2x+ 1
=

3

2

)
⇐⇒

(
∀ε > 0, ∃δ(ε) > 0, ∀x ∈ R : x > δ(ε) =⇒

∣∣∣∣3x− 1

2x+ 1
− 3

2

∣∣∣∣ < ε

)
.

As ∣∣∣∣3x− 1

2x+ 1
− 3

2

∣∣∣∣ < ε⇐⇒ 5

4x+ 2
< ε⇐⇒ x >

5− 2ε

4ε
.

Then it is sufficient to take δ(ε) =

∣∣∣∣5− 2ε

4ε

∣∣∣∣.
3) Using the definition of the limit of a function, we have(

lim
x→+∞

lnx = +∞
)
⇐⇒ (∀A > 0, ∃δ(A) > 0, ∀x ∈ R : x > δ(A) =⇒ lnx > A) .

As

lnx > A⇐⇒ x > eA.

Then it is sufficient to take δ(A) = eA.

4) Using the definition of the limit of a function, we have(
lim

x→>−3

4

x+ 3
= +∞

)
⇐⇒

(
∀A > 0, ∃δ(A) > 0, ∀x ∈ R : −3 < x < −3 + δ(A) =⇒ 4

x+ 3
> A

)
.

As
4

x+ 3
> A⇐⇒ x <

4

A
− 3.

Then it is sufficient to take δ(A) =
4

A
.
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Exercice 3.5.4. Calculate, if existing, the limits

1) lim
x→+∞

[ln
√
x]√
x

2) lim
x→0

ln(1 + x)− x
x2

Proof 3.5.4. 1) We have ∀x ∈ R+

[
ln
√
x
]
≤ ln

√
x <

[
ln
√
x
]

+ 1.

Then

ln
√
x− 1 <

[
ln
√
x
]
≤ ln

√
x︸ ︷︷ ︸

⇓

ln
√
x− 1√
x

<
[ln
√
x]√
x
≤ ln

√
x√
x
.

AS lim
x→+∞

ln
√
x− 1√
x

= 0 and lim
x→+∞

ln
√
x√
x

= 0, then

lim
x→+∞

[ln
√
x]√
x

= 0.

2) We have

lim
x→0

ln(1 + x)− x
x2

=
0

0
(I.F )

Using Hospital’s rule, let

f(x) = ln(1 + x)− x and g(x) = x2.

So

f ′(x) = − x

1 + x
and g′(x) = 2x.

Then

lim
x→0

ln(1 + x)− x
x2

= lim
x→0

f(x)

g(x)
= lim

x→0

f ′(x)

g′(x)
= lim

x→0
− 1

1 + x
= −1

Exercice 3.5.5. Let fn : R −→ R be the application defined, for all n ∈ N, by:

fn(x) = ln(1 + xn) + x− 1

1) Show that there exists cn ∈ [0, 1] such that fn(cn) = 0.

2) Show that fn is strictly increasing on R+, deduce that cn is unique.
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Proof 3.5.5. 1) fn is a continuous function on [0, 1], fn(0) = −1 < 0 and fn(1) = ln 2 > 0,

according to the intermediate value theorem, there exists cn ∈ [0, 1] such that fn(cn) = 0.

2) calculate the derivative of fn

f
′

n(x) =
nxn−1

1 + xn
+ 1 =

nxn−1 + 1 + xn

1 + xn
> 0 ∀x ∈ [0,+∞[

so fn is strictly increasing. Therefore the solution is unique.

Exercice 3.5.6. Let f : R −→ R be a function, such that

f(x) =


3− x2

2
if x ≤ 1

1

x
if x > 1

1) Show that there exists c ∈]0, 2[ such that f(2)− f(0) = (2− 0)f ′(c).

2) Determine the possible values of c.

Proof 3.5.6. 1) firstly, we show that f is continuous on [0, 2].

If x 6= 1, f is continuous.

If x = 1 we have

lim
x→<1

f(x) = lim
x→<1

3− x2

2
= 1 = f(1) and lim

x→>1
f(x) = lim

x→>1

1

x
= 1 = f(1).

This shows that the function is continuous at x = 1.

secondly, we show that f is derivable on ]0, 2[. Likewise, if x 6= 1, f is derivable.

If x = 1 we have

lim
x→<1

f(x)− f(1)

x− 1
= lim

x→<1

3−x2
2
− 1

x− 1

= lim
x→<1

1 + x

−2
= −1 = f

′

l .

and

lim
x→>1

f(x)− f(1)

x− 1
= lim

x→>1

1
x
− 1

x− 1

= lim
x→>1

1

−x
= −1 = f

′

r.

This shows that the function is derivable at x = 1. Then using the finite increase theorem,

there exists c ∈]0, 2[ such that f(2)− f(0) = (2− 0)f ′(c).

2) We have

f(2) =
1

2
and f(0) =

3

2
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Consequently

f(2)− f(0) = (2− 0)f ′(c)⇐⇒ f ′(c) = −1

2

If 0 ≤ c ≤ 1, then

f ′(c) = −1

2
⇐⇒ −c = −1

2
⇐⇒ c =

1

2
is a solution.

If 1 < c ≤ 2, then

f ′(c) = −1

2
⇐⇒ − 1

c2
= −1

2
⇐⇒ c2 = 2⇐⇒ c = ±

√
2.

As −
√

2 < 1, so −
√

2 is not a solution. Therefore there are two solutions c =
1

2
and c =

√
2.

Exercice 3.5.7. Let f : [0, 1] −→ R be a function, such that

f(x) =


1

1 + x
if 0 ≤ x <

1

2

2x+ αx2 if
1

2
≤ x ≤ 1

1) Find, if they exist, the α ∈ R so that f is continuous.

2) Find, if they exist, the α ∈ R so that f is derivable.

Proof 3.5.7. 1) We have

lim
x→<

1
2

f(x) = lim
x→<

1
2

1

1 + x
=

2

3

and

lim
x→>

1
2

f(x) = lim
x→<

1
2

(2x+ αx2) = 1 +
α

4
.

Then

f is continuous ⇐⇒ 1 +
α

4
=

2

3
⇐⇒ α = −4

3
.

2) A necessary condition for f to be derivable is for f to be continuous, so if there is a value

of α for which f is derivable, it can only be α = −4

3
. i.e.

f(x) =


1

1 + x
if 0 ≤ x <

1

2

2x− 4

3
x2 if

1

2
≤ x ≤ 1

If 0 ≤ x <
1

2
we have

f ′(x) = − 1

(1 + x)2
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and

lim
x→<

1
2

f ′(x) = lim
x→<

1
2

− 1

(1 + x)2
= −4

9
.

If
1

2
≤ x ≤ 1 we have

f ′(x) = 2− 8

3
x

and

lim
x→>

1
2

f ′(x) = lim
x→<

1
2

(
2− 8

3
x

)
=

2

3
.

As

lim
x→<

1
2

f ′(x) 6= lim
x→>

1
2

f ′(x),

then f is not derivable at x =
1

2
. Consequently, there is no α ∈ R such that the function f

is derivable.

Exercice 3.5.8. Let f : R −→ R be a function, such that

f(x) =


sin(ax)

x
if x < 0

1 if x = 0

ebx − x if x > 0

1) Using Hospital’s rule, find the following limit

lim
x→0

cos(x)x− sin(x)

x2

2) Find a so that f is continuous on R.

3) Find b so that f is derivable on R.

Proof 3.5.8. 1) We have

lim
x→0

cos(x)x− sin(x)

x2
=

0

0
(I.F )

Using Hospital’s rule, let

f(x) = cos(x)x− sin(x) and g(x) = x2.

So

f ′(x) = − sin(x)x+ cos(x)− cos(x) = − sin(x)x and g′(x) = 2x.



Analysis 1 87

Then

lim
x→0

cos(x)x− sin(x)

x2
= lim

x→0

f(x)

g(x)
= lim

x→0

f ′(x)

g′(x)
= lim

x→0
−sin(x)

2
= 0

2) We have

lim
x→<0

f(x) = lim
x→<0

sin(ax)

x
= a

and

lim
x→>0

f(x) = lim
x→>0

(ebx − x) = 1.

Then

f is continuous ⇐⇒ a = 1.

3) If x < 0, f(x) =
sin(x)

x
. So

f ′(x) =
cos(x)x− sin(x)

x2

and

lim
x→<0

f ′(x) = lim
x→<0

cos(x)x− sin(x)

x2
= 0.

If x > 0, f(x) = ebx − x. So

f ′(x) = bebx − 1

and

lim
x→>0

f ′(x) = lim
x→>0

(bebx − 1) = b− 1.

Then

f is derivable ⇐⇒ b− 1 = 0 ⇐⇒ b = 1.

Exercice 3.5.9. In each of the following cases, say whether the application f is prolonged

by continuity at a and give the prolongation by continuity where appropriate.

1) f : [−3, 6[∪]6,+∞[−→ R defined by:

f(x) =

√
x+ 3− 3

x− 6
and a = 6.

2) f :]−∞, 0[∪]0,+∞[−→ R defined by:

f(x) =

√
1 + x−

√
1− x

x
and a = 0.
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Proof 3.5.9. 1) We have

lim
x→6

√
x+ 3− 3

x− 6
= lim

x→6

√
x+ 3− 3

x− 6

√
x+ 3 + 3√
x+ 3 + 3

= lim
x→6

x− 6

(x− 6)(
√
x+ 3 + 3)

= lim
x→6

1√
x+ 3 + 3

=
1

6
.

So the continuity prolongation is defined by:

f(x) =


√
x+ 3− 3

x− 6
if x 6= 6

1

6
if x = 6

2) We have

lim
x→0

√
1 + x−

√
1− x

x
= lim

x→0

√
1 + x−

√
1− x

x

√
1 + x+

√
1− x√

1 + x+
√

1− x

= lim
x→0

2x

x(
√

1 + x+
√

1− x)

= lim
x→0

2√
1 + x+

√
1− x

= 1.

So the continuity prolongation is defined by:

f(x) =


√

1 + x−
√

1− x
x

if x 6= 0

1 if x = 0

Exercice 3.5.10. Let f : R −→ R be a function, such that

f(x) =


|x− 1|
x+ 1

if x > 0

x2 − a if x ≤ 0

1) Find the value of parameter a needed for the function f to be continuous.

2) Study the derivability of the function f .

Proof 3.5.10. 1) Note that the function f can be written as

f(x) =


x− 1

x+ 1
if x ≥ 1

1− x
x+ 1

if 0 < x ≤ 1

x2 − a if x ≤ 0
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let’s calculate the limits on the right and left at 0. We obtain

lim
x→<0

f(x) = lim
x→<0

(x2 − a) = −a

and

lim
x→>0

f(x) = lim
x→<0

1− x
x+ 1

= 1.

So

f is continuous ⇐⇒ −a = 1 ⇐⇒ a = −1.

2) Let’s calculate the limit of the rate of variation to the right and to the left at 0 and 1. We

obtain

lim
x→<0

f(x)− f(0)

x− 0
= lim

x→<0

x2 + 1− 1

x
= 0

and

lim
x→>0

f(x)− f(0)

x− 0
= lim

x→>0

1−x
x+1
− 1

x
= lim

x→>0

−2x

x(x+ 1)
= −2.

Since the limits on the right and left of the rate of variation are different, then f is not

derivable at 0.

For point 1, we have

lim
x→<1

f(x)− f(1)

x− 1
= lim

x→<1

1−x
x+1

x− 1
= − 1

x+ 1
= −1

2

and

lim
x→>1

f(x)− f(1)

x− 1
= lim

x→>1

x−1
x+1

x− 1
= lim

x→>1

1

x+ 1
=

1

2
.

Thus, f is not derivable at 1.



4
Integral calculus

4.1 Primitive concept

Definition 4.1.1. Let f : I −→ R be a function defined on an interval I of R. We call a

primitive of f on I any function F : I −→ R which is derivable on I such that

∀x ∈ I F ′(x) = f(x).

Example 4.1.1. 1) A primitive on ]0,+∞[ of the function f(x) =
1

x
is the function F

defined by

F (x) = lnx.

2) A primitive on R of the function f(x) = cos x is the function F defined by

F (x) = sin x.

90
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3) A primitive on R of the exponential function is the exponential function itself.

4) A primitive on R of the function f(x) = xn is the function F defined by

F (x) =
xn+1

n+ 1
, ∀n ∈ N.

4.1.1 Existence of primitives

Theorem 4.1.1. Let f : I −→ R be a function defined on an interval I of R. If f is

continuous on I, then f admits primitives on I.

Remark 4.1.1. In the previous theorem, the condition of continuity is sufficient for a func-

tion to admit primitives, while this condition is not necessary. For example, consider the

function

F (x) =

 x cos
1

x
if x 6= 0,

0 if x = 0

It is clear that F is a primitive of the function

f(x) =

 cos
1

x
− 1

x
sin

1

x
if x 6= 0,

0 if x = 0

on any interval [a, b], while f , is not continuous at the point x = 0.

Proposition 4.1.1. Let f : I −→ R be a function defined on an interval I of R, admitting

a primitive F on I. Then another function G : I −→ R is a primitive of f if and only if

there exists a constant k ∈ R such that

G(x) = F (x) + k, ∀x ∈ I.

4.1.2 Classical primitives

The table below summarizes some popular primitives.
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Table 4.1: Primitives of usual functions

Function f Primitive F Interval I

k kx+ C R

xα, α 6= −1
xα+1

α + 1
+ C ]0, +∞[

1

x
ln |x|+ C R∗

u′(x) · uα(x), α 6= −1
uα+1(x)

α + 1
+ C u(x) > 0

u′(x)

u(x)
ln |u(x)|+ C u(x) 6= 0

ex ex + C R

cosx sinx+ C R

cos(ax+ b), a 6= 0, b ∈ R
1

a
sin(ax+ b) + C R

sinx − cosx+ C R

sin(ax+ b), a 6= 0, b ∈ R −1

a
cos(ax+ b) + C R

1

cos2 x
tanx+ C x 6= π

2
+ kπ, k ∈ Z

1√
x2 − 1

ln
(
x+
√
x2 − 1

)
+ C ]1, +∞[

1√
x2 − k2

, k > 0 ln
(
x+
√
x2 − k2

)
+ C ]k, +∞[

1√
x2 + 1

ln
(
x+
√
x2 + 1

)
+ C R

1√
x2 + k2

, k > 0 ln
(
x+
√
x2 + k2

)
+ C R

1

x2 − k2
, k > 0

1

2k
ln

∣∣∣∣x− kx+ k

∣∣∣∣+ C R− {−1, 1}

4.1.3 Indefinite integral

Definition 4.1.2. The family of all primitives of the function f : I ⊂ R −→ R, is called the

indefinite integral of f , let it be denoted by:

∫
f(x)dx
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Furthermore, if F is any primitive of f , we write∫
f(x)dx = F (x) + C

where C is an arbitrary constant.

Theorem 4.1.2. (Properties) Let f : I −→ R and g : I −→ R be two functions defined on

an interval I of R. We assume that f admits on I a primitive F and that g admits on I

a primitive G. Then, for all real numbers α and β, the function αF + βG is a primitive of

αf + βg on I and write.∫
(αf(x) + βg(x))dx = α

∫
f(x)dx+ β

∫
g(x)dx = αF (x) + βG(x) + C

Example 4.1.2. 1)∫
(7x2 − ex)dx = 7

∫
x2dx−

∫
exdx =

7

3
x3 − ex + C.

2) ∫ √
xdx =

∫
x

1
2dx =

2

3
x

3
2 .

3) ∫
e

1
x

x2
dx = −

∫
e

1
x

(
1

x

)′
dx = −e

1
x + C.

4) ∫
cos2(x)dx =

∫ (
1

2
+

cos(2x)

2

)
dx =

x

2
+

sin(2x)

4
+ C.

4.1.4 Definite integral

Definition 4.1.3. Let a and b be two real numbers such that a ≤ b. Let f : [a, b] −→ R be

a continuous function on the segment [a, b] of R. We call the integral of f on [a, b], or the

integral from a to b of f , denoted

∫ b

a

f(t)dt, the real number:

∫ b

a

f(t)dt = F (b)− F (a),

where F is a primitive of f on [a, b].
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Proposition 4.1.2. (Chasles relation) Let a, b, c be three real numbers such that a ≤ c ≤ b.

Let f : [a, b] −→ R be a continuous function on the segment [a, b] of R. We have:∫ b

a

f(t)dt =

∫ c

a

f(t)dt+

∫ b

c

f(t)dt

Proposition 4.1.3. Let f and g be two continuous functions on a segment [a, b] of R. For

all real numbers α and β, we have :∫ b

a

(αf(x) + βg(x))dx = α

∫ b

a

f(x)dx+ β

∫ b

a

g(x)dx

Example 4.1.3. let’s calculate the following integrals.

I1 =

∫ 2

1

(2− 4e3x)dx

=

∫ 2

1

2dx− 4

∫ 2

1

e3xdx

= [2x]21 −
4

3

[
e3x
]2
1

= 2− 4

3
(e6 − e3).

I2 =

∫ 1

0

x+ 1

x2 + 2x+ 5
dx

=
1

2

∫ 1

0

(x2 + 2x+ 5)′

x2 + 2x+ 5
dx

=
1

2

[
ln(x2 + 2x+ 5)

]1
0

=
1

2
(ln 8− ln 5) = ln

√
8

5
.

I3 =

∫ 1

0

(2x+ 3)
√
x2 + 3x+ 4dx

=

∫ 1

0

(x2 + 3x+ 4)
1
2 (x2 + 3x+ 4)′dx

=
2

3

[
(x2 + 3x+ 4)

3
2

]1
0

=
2

3
(8

3
2 − 4

3
2 ) =

32

3

√
2− 16

3
.
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4.2 Methods of calculating integrals

4.2.1 Integration by parts

Theorem 4.2.1. Let u and v be two functions of class C1 on an interval [a, b]. Then:

1) For a primitive calculation∫
u(x)v′(x)dx = u(x)v(x)−

∫
u′(x)v(x)dx.

2) For calculating a definite integral∫ b

a

u(x)v′(x)dx = [u(x)v(x)]ba −
∫ b

a

u′(x)v(x)dx.

Example 4.2.1. let’s calculate the following integrals.

1)

I1 =

∫ π
2

0

e−2x cosxdx.

We do a first integration by parts with: u′(x) = cos x

v(x) = e−2x
hence

 u(x) = sinx

v′(x) = −2e−2x

It comes

I1 =
[
e−2x sinx

]π
2

0
+ 2

∫ π
2

0

e−2x sinxdx = e−π + 2J1, avec J1 =

∫ π
2

0

e−2x sinxdx.

We do a second integration by parts with: w′(x) = sinx

v(x) = e−2x
hence

 w(x) = − cosx

v′(x) = −2e−2x

It comes

J1 =
[
−e−2x cosx

]π
2

0
− 2

∫ π
2

0

e−2x cosxdx = 1− 2I1.

So

I1 = e−π + 2J1 = e−π + 2(1− 2I1),

then

I1 =
1

5
(e−π + 2).
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2)

I2 =

∫
x2exdx.

We do a first integration by parts with: u′(x) = ex

v(x) = x2
hence

 u(x) = ex

v′(x) = 2x

It comes

I2 = x2ex − 2

∫
xexdx = x2ex − 2J2, avec J2 =

∫
xexdx.

We do a second integration by parts with: w′(x) = ex

v(x) = x
hence

 w(x) = ex

v′(x) = 1

It comes

J2 = xex −
∫
exdx = (x− 1)ex + c.

Then

I2 = x2ex − 2(x− 1)ex + c = (x2 − 2x+ 2)ex + c.

4.2.2 Change of variable

Theorem 4.2.2. Let f : [a, b] −→ R be a continuous function on [a, b] and

φ : [α, β] −→ [a, b]

a bijective function of class C1 on [α, β]. Then the composite function

t 7−→ f(φ(t))φ′(t)

is integrable on [α, β], moreover

1) For a primitive calculation ∫
f(x)dx =

∫
f(φ(t))φ′(t)dt.

2) For calculating a definite integral∫ b

a

f(x)dx =

∫ φ−1(b)

φ−1(a)

f(φ(t))φ′(t)dt.
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Example 4.2.2. let’s calculate the following integrals.

1)

I1 =

∫ 1

0

x√
x2 + 1

dx.

Let’s consider φ : [0, 1] −→ [1, 2] defined by φ(x) = x2 + 1, it is of class C1 and verifies

φ′(x) = 2x. So

I1 =

∫ 1

0

φ′(x)

2
√
φ(x)

dx =
[√

φ(x)
]1
0

=
√

2− 1.

2)

I2 =

∫ 1

−1

√
1− x2dx.

Let’s consider φ : [−π
2
,
π

2
] −→ [−1, 1] defined by φ(t) = sin t, it is of class C1 and verifies

φ′(t) = cos t. So

I2 =

∫ π
2

−π
2

√
1− sin2 t cos tdt =

∫ π
2

−π
2

cos2 tdt =

∫ π
2

−π
2

1

2
(cos 2t+ 1)dt =

[
1

4
sin 2t+

1

2
t

]π
2

−π
2

=
π

2
.

3)

I3 =

∫
ex

(ex + 1)2
dx.

Let’s consider

t = ex + 1 ⇒ dt = exdx

This gives

I3 =

∫
1

t2
dt =

∫
t−2 dt = −1

t
,

Returning to the initial variable, we obtain

I3 = − 1

ex + 1
+ C.

4.2.3 Rational fraction integration

I Rational fractions of the form
c

(x− a)n

If the rational function is of the form f(x) =
c

(x− a)n
with a, c ∈ R, n ∈ N∗. The primitives

are of the form:

F (x) =


c

(1− n)(x− a)n−1
+ C if n > 1,

c ln |x− a|+ C if n = 1



98 Course and corrected exercises

on each of the intervals ]−∞, a[ and ]a,+∞[.

Example 4.2.3. let’s calculate the following integral.

I =

∫
2

(x− 2)2
dx,

we have n = 2 > 1 and c = a = 2. Then

I =
2

−(x− 2)
+ C =

2

2− x
+ C.

I Rational fractions of the form
ax+ b

cx+ d

If the rational function is of the form f(x) =
ax+ b

cx+ d
=
a

c
+

bc− ad
c(cx+ d)

with a, b, c, d ∈ R,

a 6= 0, c 6= 0. The primitives are of the form:

F (x) =
a

c
x+

bc− ad
c2

ln

∣∣∣∣x+
d

c

∣∣∣∣+ C,

on each of the intervals ]−∞,−d
c

[ and ]− d

c
,+∞[.

Example 4.2.4. let’s calculate the following integral.

I =

∫
6x

3x+ 9
dx,

we have a = 6, b = 0, c = 3 and d = 9. Then

I =
6

3
x− 54

9
ln |x+

9

3
|+ C = 2x− 6 ln |x+ 3|+ C.

I Rational fractions of the form
1

ax2 + bx+ c

If the rational function is of the form f(x) =
1

ax2 + bx+ c
with a, b, c ∈ R, a 6= 0. We

distinguish three cases:

• If ax2 + bx+ c has two distinct real roots r1 < r2, then there exist λ, µ ∈ R such that:

f(x) =
λ

x− r1
+

µ

x− r2
,

and therefore

F (x) = λ ln |x− r1|+ µ ln |x− r2|+ C,
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on each of the intervals ]−∞, r1[, ]r1, r2[ and ]r2,+∞[.

• If ax2 + bx+ c has a double root r ∈ R, then

f(x) =
1

a(x− r)2
,

and therefore

F (x) =
−1

a(x− r)
+ C,

on each of the intervals ]−∞, r[ and ]r,+∞[.

• If ax2 + bx+ c has no real root, there are two real numbers

α =
b

2a
, and β =

√
−(b2 − 4ac)

2a

such that:

ax2 + bx+ c = a[(x+ α)2 + β2].

We obtain:

f(x) =
1

aβ2

[(
x+α
β

)2
+ 1

] ,
and therefore

F (x) =
1

aβ
arctan

(
x+ α

β

)
+ C, ∀x ∈ R.

Example 4.2.5. let’s calculate the following integral.

I =

∫
1

x2 + 2x− 3
dx,

Note that the denominator has two distinct roots x1 = 1 and x2 = −3. So

I =

∫
1

(x− 1)(x+ 3)
dx,

Decomposing the fraction
1

(x− 1)(x+ 3)
into simple elements, we obtain

1

(x− 1)(x+ 3)
=

1/4

x− 1
− 1/4

x+ 3
.

As a consequence,

I =

∫
1/4

x− 1
dx−

∫
1/4

x+ 3
dx

=
1

4
ln |x− 1| − 1

4
ln |x+ 3|+ C.
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I Rational fractions of the form
cx+ d

x2 + px+ q

If the rational function is of the form
cx+ d

x2 + px+ q
with c, d, p, q ∈ R such that p2 − 4q < 0.

The idea is to make the derivative of the denominator appear in the numerator by writing:

cx+ d =
c

2
(2x+ p) + d− cp

2
,

so that

f(x) =
c

2

2x+ p

x2 + px+ q
+
(
d− cp

2

) 1

x2 + px+ q
,

and therefore

F (x) =
c

2
ln(x2 + px+ q) +

1

β

(
d− cp

2

)
arctan

(
x+ α

β

)
+ C, ∀x ∈ R,

with α =
p

2
, β =

√
−p2 + 4q

2
.

Example 4.2.6. let’s calculate the following integral.

I =

∫
x− 1

x2 − 5x+ 6
dx,

Note that the denominator has two distinct roots x1 = 2 and x2 = 3. So

I =

∫
x− 1

(x− 2)(x− 3)
dx,

Decomposing the fraction
x− 1

(x− 2)(x− 3)
into simple elements, we obtain

x− 1

(x− 2)(x− 3)
=
−1

x− 2
+

2

x− 3
.

As a consequence,

I =

∫
−1

x− 2
dx+

∫
2

x− 3
dx

= ln |2− x|+ 2 ln |x− 3|+ C.
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I Rational fractions of the form
cx+ d

(x2 + qx+ p)n

If the rational function is of the form
cx+ d

(x2 + px+ q)n
with c, d, p, q ∈ R, n ∈ N∗ and p2−4q <

0. We start by showing the derivative 2x+p of the polynomial x2 +px+ q in the numerator.

By identification, we have

cx+ d =
c

2
(2x+ p) + d− c

2
p.

It comes

cx+ d

(x2 + px+ q)n
=

c
2
(2x+ p)

(x2 + px+ q)n
+

d− c
2
p

(x2 + px+ q)n

Therefore,∫
cx+ d

(x2 + px+ q)n
dx =

c

2

∫
2x+ p

(x2 + px+ q)n
dx︸ ︷︷ ︸

1©

+
(
d− c

2
p
)∫ 1

(x2 + px+ q)n
dx︸ ︷︷ ︸

2©

The integral 1© is of the form

∫
u′(x)

un(x)
dx, so

1© =

∫
2x+ p

(x2 + px+ q)n
dx =


ln
(
x2 + px+ q

)
+ C if n = 1,

−1

(n− 1) (x2 + px+ q)n−1
+ C if n 6= 1.

To calculate the integral 2©, first write the trinomial x2 + px+ q, in the canonical form, i.e.

x2 + px+ q =
(
x+

p

2

)2
+ q − p2

4
= (x+ α)2 + β2,

where

α =
p

2
, β =

√
q − p2

4
.

It is clear that

2© =

∫
1

(x2 + px+ q)n
dx =

∫
1(

(x+ α)2 + β2
)n dx

Consequently, the integral 2© is reduced, after the change of variable x+α = βt, to integral

calculation

Jn =

∫
1

(t2 + 1)n
dt.
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The calculation of Jn is performed by integration by parts. Indeed,
u(t) =

1

(t2 + 1)n

v′(t) = 1

⇒


u′(t) = −2n

t

(t2 + 1)n+1

v(t) = t

We’ll have

Jn =
t

(t2 + 1)n
+ 2n

∫
t2

(t2 + 1)n+1 dt

=
t

(t2 + 1)n
+ 2n

∫
(t2 + 1)− 1

(t2 + 1)n+1 dt

=
t

(t2 + 1)n
+ 2n (Jn − Jn+1)

Consequently, we find the recurrence relation:

2nJn+1 =
t

(t2 + 1)n
+ (2n− 1) Jn.

So the whole calculation comes down to

J1 =

∫
1

t2 + 1
dt = arctan t+ C.

Example 4.2.7. let’s calculate the following integral.

I =

∫
1

(x2 + 1)2
dx,

Note that

1

(x2 + 1)2
=

x2 + 1

(x2 + 1)2
− x2

(x2 + 1)2

. So

I =

∫
x2 + 1

(x2 + 1)2
dx−

∫
x2

(x2 + 1)2
dx = I1 − I2.

Where

I1 =

∫
x2 + 1

(x2 + 1)2
dx =

∫
1

x2 + 1
dx = arctanx+ C1

and

I2 =

∫
x2

(x2 + 1)2
dx.
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The calculation of I2 is performed by integration by parts. Indeed,
u(t) = x

v′(t) =
x

(x2 + 1)2

⇒


u′(t) = 1

v(t) = −1

2

1

x2 + 1

We’ll have

I2 = −1

2

x

x2 + 1
+

∫
1

2

1

x2 + 1
dx = −1

2

x

x2 + 1
+

1

2
arctanx+ C2

As a consequence,

I = arctanx+
1

2

x

x2 + 1
− 1

2
arctanx+ C =

1

2

x

x2 + 1
+

1

2
arctanx+ C.

I Rational fractions in cos and sin

Let

I =

∫
R (cosx, sinx) dx,

where R is a rational function in cosx and sin x.

The integral is reduced, after the change of variable t = tan
x

2
, to the integration of a rational

function. Then we find the formula,

cosx =
1− t2

1 + t2
, sinx =

2t

1 + t2
, dx =

2

1 + t2
dt.

Consequently, the integral I becomes

I = 2

∫
1

1 + t2
·R
(

1− t2

1 + t2
,

2t

1 + t2

)
dt.

Example 4.2.8. let’s calculate the following integral.

I =

∫
1

cosx+ 1
dx,

we pose:

t = tan
x

2
⇒


cosx =

1− t2

1 + t2

dx =
2

1 + t2
dt

This leads to

I =

∫
1

1−t2
1+t2

+ 1

2

1 + t2
dt =

∫
dt = t+ C = tan

x

2
+ C.
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I Special cases:

• First case

I1 =

∫
R(cosx) sinx dx,

where R is a rational function in cosx. We make the change of variable

t = cosx ⇒ dt = −sinxdx

Consequently, the integral I1 becomes

I1 = −
∫
R(t) dt.

Example 4.2.9. let’s calculate the following integral.

I =

∫
− sinx

cosx− 1
dx,

we pose:

t = cosx ⇒ dt = − sinxdx,

This leads to

I =

∫
− sinx

t− 1

dt

− sinx

= ln |t− 1|+ C

= ln | cosx− 1|+ C.

• Second case

I2 =

∫
R(sinx) cosx dx,

where R is a rational function in sinx. We make the change of variable

t = sinx ⇒ dt = cosxdx

Consequently, the integral I2 becomes

I2 =

∫
R(t) dt.



Analysis 1 105

Example 4.2.10. let’s calculate the following integral.

I =

∫
cosx

2 sinx+ 3
dx,

we pose:

t = sinx ⇒ dt = cosxdx,

This leads to

I =

∫
cosx

2t+ 3

dt

cosx

=
1

2
ln |2t+ 3|+ C

=
1

2
ln |2 sinx+ 3|+ C.

I Rational fractions in ex

Let

I =

∫
R (ex) dx,

where R is a rational function in ex.

We make the change of variable

t = ex ⇒ x = ln t, et dx =
1

t
dt

Consequently, the integral I becomes

I =

∫
R(t)

t
dt.

Example 4.2.11. let’s calculate the following integral.

I =

∫
e2x

2ex + 4
dx,

we pose:

t = ex ⇒ x = ln t, et dx =
1

t
dt,
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This leads to

I =

∫
t2

2t+ 4

dt

t

=
1

2

∫
2t

2t+ 4
dt

=
1

2

[∫
2t+ 4

2t+ 4
dt−

∫
4

2t+ 4
dt

]
=
t

2
− 2 ln |2t+ 4|+ C

=
ex

2
− 2 ln |2ex + 4|+ C.
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4.3 Exercises

Exercice 4.3.1. Evaluate each of the following integrals:

I1 =

∫ (
3

4
√
x3 +

7

x5
+

1

6
√
x

)
dx, I2 =

∫
(x+ 3

√
x)(4− x2)dx, I3 =

∫
sin 3xdx,

I4 =

∫ 1

0

x+ 1

x2 + 2x+ 5
dx, I5 =

∫
sin
(x

2

)
cos
(x

2

)
dx, I6 =

∫ π

π
2

(1 + cos x)dx.

Proof 4.3.1. 1)

I1 =

∫ (
3

4
√
x3 +

7

x5
+

1

6
√
x

)
dx

=

∫ (
3x

3
4 + 7x−5 +

1

6
x−

1
2

)
dx

=
12

7
x

7
4 − 7

4
x−4 +

1

3
x

1
2 + C.

2)

I2 =

∫
(x+ 3

√
x)(4− x2)dx

=

∫
(4x− x3 + 4x

1
3 − x

7
3 )dx

= 2x2 − 1

4
x4 + 3x

4
3 − 3

10
x

10
3 + C.

3)

I3 =

∫
sin 3xdx

= −1

3
cos 3x+ C.

4)

I4 =

∫ 1

0

x+ 2

x2 + 4x+ 3
dx

=
1

2

∫ 1

0

(x2 + 4x+ 3)′

x2 + 4x+ 3
dx

=
1

2

[
ln(x2 + 4x+ 3)

]1
0

= ln
8

3
.

5)

I5 =

∫
sin
(x

2

)
cos
(x

2

)
dx
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Recall the following double angle formula.

sin 2x = 2 sin x cosx.

A small rewrite of this formula gives,

sinx cosx =
1

2
sin 2x.

If we now replace all the x’s with
x

2
we get,

sin
(x

2

)
cos
(x

2

)
=

1

2
sinx.

Then the integral becomes

I5 =

∫
1

2
sinxdx = −1

2
cosx+ C

6)

I6 =

∫ π

π
2

(1 + cos x)dx

= [x+ sinx]ππ
2

=
π

2
− 1.

Exercice 4.3.2. Using integration by parts, evaluate each of the following integrals:

I1 =

∫
(3x+ 5) cos

(x
4

)
dx, I2 =

∫
x2 sin(10x)dx, I3 =

∫
x5
√
x3 + 1dx,

I4 =

∫ e

1

xn lnxdx (n ∈ N), I5 =

∫ 1

0

(x2 + x)e2xdx, I6 =

∫ 3

2

x√
x− 1

dx.

Proof 4.3.2. 1)

I1 =

∫
(3x+ 5) cos

(x
4

)
dx.

Let’s use the following choices:
u(x) = 3x+ 5

v′(x) = cos
(x

4

) ⇒


u′(x) = 3

v(x) = 4 sin
(x

4

)
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The integral is then,

I1 = 4 (3x+ 5) sin
(x

4

)
− 12

∫
sin
(x

4

)
dx

= 4 (3x+ 5) sin
(x

4

)
+ 48 cos

(x
4

)
+ C.

2)

I2 =

∫
x2 sin(10x)dx.

Let’s use the following choices:
u(x) = x2

v′(x) = sin(10x)

⇒


u′(x) = 2x

v(x) = − 1

10
cos(10x)

The integral is then,∫
x2 sin(10x)dx = −x

2

10
cos(10x) +

1

5

∫
x cos(10x)dx.

The new integral will also require integration by parts. For this second integral we will use

the following choices:
u(x) = x

v′(x) = cos(10x)

⇒


u′(x) = 1

v(x) =
1

10
sin(10x)

So, the integral becomes,

I2 = −x
2

10
cos(10x) +

1

5

(
x

10
sin(10x)− 1

10

∫
sin(10x)dx

)
= −x

2

10
cos(10x) +

1

5

(
x

10
sin(10x)− 1

100
cos(10x)dx

)
+ C

= −x
2

10
cos(10x) +

x

50
sin(10x)− 1

500
cos(10x)dx+ C.

3)

I3 =

∫
x5
√
x3 + 1dx.

Let’s use the following choices:
u(x) = x3

v′(x) = x2
√
x3 + 1

⇒


u′(x) = 3x

v(x) =
2

9
(x3 + 1)

3
2



110 Course and corrected exercises

The integral is then,

I3 =
2

9
x3(x3 + 1)

3
2 − 2

3

∫
x2(x3 + 1)

3
2dx

=
2

9
x3(x3 + 1)

3
2 − 4

45
(x3 + 1)

5
2 + C.

4)

I4 =

∫ e

1

xn lnxdx.

Let’s use the following choices:
u(x) = ln x

v′(x) = xn
⇒


u′(x) =

1

x

v(x) =
xn+1

n+ 1

The integral is then,

I4 =

[
xn+1

n+ 1
lnx

]e
1

−
∫ e

1

xn+1

n+ 1

1

x
dx

=
en+1

n+ 1
−
[

xn+1

(n+ 1)2

]e
1

=
en+1

n+ 1
− en+1 − 1

(n+ 1)2
=
nen+1 + 1

(n+ 1)2
.

5)

I5 =

∫ 1

0

(x2 + x)e2xdx

Let

Jn =

∫ 1

0

xne2xdx.

Let’s use integration by parts to calculate Jn. So our choices for u and v′ would be the

following. 
u(x) = xn

v′(x) = e2x
⇒


u′(x) = nxn−1

v(x) =
e2x

2
The integral is then,

Jn =

[
xn
e2x

2

]1
0

−
∫ 1

0

nxn−1
e2x

2
dx

=
e2

2
− n

2
Jn−1
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First, we calculate J0, then using the recurrence relation. So

J0 =

∫ 1

0

e2xdx =
e2 − 1

2

J1 =
e2

2
− J0

2
=
e2

4
+

1

4

J2 =
e2

2
− 2J1

2
=
e2

4
− 1

4

Finally we note that

I5 = J2 + J1 =
e2

2
.

6)

I6 =

∫ 3

2

x√
x− 1

dx.

Let’s use the following choices:
u(x) = x

v′(x) = (x− 1)−
1
2

⇒


u′(x) = 1

v(x) = 2(x− 1)
1
2

The integral is then,

I6 =
[
2x(x− 1)

1
2

]3
2
− 2

∫ 3

2

(x− 1)
1
2dx

=
[
2x(x− 1)

1
2

]3
2
− 4

3

[
(x− 1)

3
2

]3
2

=
10

3

√
2− 8

3
.

Exercice 4.3.3. Using the change of variable, calculate the following integrals:

I1 =

∫ e2

1

lnx

x+ x ln2 x
dx, I2 =

∫ 1

0

e2x

ex + 1
dx, I3 =

∫ e

1

1

x
√

lnx+ 1
dx,

I4 =

∫ 1
2

0

x

(1− x2) 3
2

dx, I5 =

∫ 2

1

1

x(x3 + 1)
dx, I6 =

∫
sin(1− x)(2− cos(1− x))4dx.

Proof 4.3.3. 1)

I1 =

∫ e2

1

lnx

x+ x ln2 x
dx.



112 Course and corrected exercises

Let’s use the following substitution:

t = lnx ⇒ dt =
dx

x
⇒ dx = etdt,

then 
x = e2

x = 1

⇒


t = 2

t = 0

The integral is then,

I1 =

∫ 2

0

t

et + t2et
etdt

=

∫ 2

0

t

1 + t2
dt

=
1

2

[
ln(1 + t2)

]2
0

= ln
√

5

2)

I2 =

∫ 1

0

e2x

ex + 1
dx.

Let’s use the following substitution:

t = ex ⇒ dt = exdx = tdx ⇒ dx =
dt

t
,

then 
x = 1

x = 0

⇒


t = e

t = 1

The integral is then,

I2 =

∫ e

1

t2

t+ 1

dt

t

=

∫ e

1

t

t+ 1
dt

=

∫ e

1

t+ 1− 1

t+ 1
dt

=

∫ e

1

(
1− 1

t+ 1

)
dt

= [t− ln(t+ 1)]e1 = e− ln(e+ 1)− 1 + ln 2.
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3)

I3 =

∫ e

1

1

x
√

lnx+ 1
dx.

Let’s use the following substitution:

t =
√

lnx+ 1 ⇒ dt =
1

2

1

t

dx

x
⇒ dx = 2xtdt,

then 
x = e

x = 1

⇒


t =
√

2

t = 1

The integral is then,

I3 =

∫ √2
1

1

xt
2xtdt

= 2

∫ √2
1

dt = [2t]
√
2

1 = 2(
√

2− 1).

4)

I4 =

∫ 1
2

0

x

(1− x2) 3
2

dx.

Let’s use the following substitution:

t = 1− x2 ⇒ dt = −2xdx ⇒ dx = − 1

2x
dt,

then 
x =

1

2

x = 0

⇒


t =

3

4

t = 1

The integral is then,

I4 =

∫ 3
4

1

x

t
3
2

−1

2x
dt

=
−1

2

∫ 3
4

1

1

t
3
2

dt =
−1

2

[
−2t−

1
2

] 3
4

1
=

2√
3
− 1.

5)

I5 =

∫ 2

1

1

x(x3 + 1)
dx.
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Let’s use the following substitution:

t = x3 + 1 ⇒ x3 = t− 1 ⇒ dt = 3x2dx ⇒ dx =
1

3x2
dt,

then 
x = 2

x = 1

⇒


t = 9

t = 2

The integral is then,

I5 =

∫ 9

2

1

xt

1

3x2
dt

=
1

3

∫ 9

2

1

tx3
dt

=
1

3

∫ 9

2

1

t(t− 1)
dt.

Since
1

t(t− 1)
=

1

t− 1
− 1

t
,

then

I5 =
1

3

(∫ 9

2

1

t− 1
dt−

∫ 9

2

1

t
dt

)
=

1

3

(
[ln |t− 1|]92 − [ln |t|]92

)
=

1

3
(4 ln 2− 2 ln 3) .

6)

I6 =

∫
sin(1− x)(2− cos(1− x))4dx.

Let’s use the following substitution:

t = 2− cos(1− x) ⇒ dt = − sin(1− x)dx ⇒ dx = − dt

sin(1− x)
,

The integral is then,

I6 =

∫
sin(1− x)t4

−dt
sin(1− x)

= −
∫
t4dt = −1

5
t5 + C = −1

5
(2− cos(1− x))5 + C.
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Exercice 4.3.4. Evaluate each of the following integrals:

I1 =

∫
x2

(x− 2)(x− 3)
dx, I2 =

∫
2x− 1

x(x− 1)2
dx, I3 =

∫
x7 + 1

x2 − 1
dx,

I4 =

∫
5x2 − 2x+ 3

(x2 + 1)(x− 1)
dx, I5 =

∫
2x+ 1

(x− 1)(x− 2)2
dx, I6 =

∫
x2 + 1

x(x− 1)(x2 − 2x+ 4)
dx.

Proof 4.3.4. 1)

I1 =

∫
x2

(x− 2)(x− 3)
dx.

We can see that

x2

(x− 2)(x− 3)
=
x2 − 5x+ 6 + 5x− 6

x2 − 5x+ 6
= 1 +

5x− 6

x2 − 5x+ 6

Using the simple element decomposition for
5x− 6

x2 − 5x+ 6
, we find

5x− 6

x2 − 5x+ 6
=

5x− 6

(x− 2)(x− 3)
=

a

x− 2
+

b

x− 3

where a = −4 and b = 9. The integral is then,

I1 =

∫ (
1− 4

x− 2
+

9

x− 3

)
dx

= x− 4 ln |x− 2|+ 9 ln |x− 3|+ C.

2)

I2 =

∫
2x− 1

x(x− 1)2
dx.

Using the simple element decomposition for
2x− 1

x(x− 1)2
, we find

2x− 1

x(x− 1)2
=
a

x
+

b

x− 1
+

c

(x− 1)2

where a = −1, b = 1 and c = 1. The integral is then,

I2 =

∫ (
−1

x
+

1

x− 1
+

1

(x− 1)2

)
dx

= − ln |x|+ ln |x− 1| − 1

x− 1
+ C.
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3)

I3 =

∫
x7 + 1

x2 − 1
dx.

Using the Euclidean division of x7 + 1 by x2 − 1, we obtain

x7 + 1 = (x2 − 1)Q+R,

where Q = x5 + x3 + x and R = x+ 1. The integral is then,

I3 =

∫ (
x5 + x3 + x+

1

x− 1

)
dx

=
x6

6
+
x4

4
+
x2

2
+ ln |x− 1|+ C.

4)

I4 =

∫
5x2 − 2x+ 3

(x2 + 1)(x− 1)
dx.

Using the simple element decomposition for
5x2 − 2x+ 3

(x2 + 1)(x− 1)
, we find

5x2 − 2x+ 3

(x2 + 1)(x− 1)
=

a

x− 1
+
bx+ c

x2 + 1

where a = 3, b = 2 and c = 0. The integral is then,

I4 =

∫ (
3

x− 1
+

2x

x2 + 1

)
dx

= 3 ln |x− 1|+ ln |x2 + 1|+ C.

5)

I5 =

∫
2x+ 1

(x− 1)(x− 2)2
dx.

Using the simple element decomposition for
2x+ 1

(x− 1)(x− 2)2
, we find

2x+ 1

(x− 1)(x− 2)2
=

a

x− 1
+

b

x− 2
+

c

(x− 2)2

where a = 3, b = −3 and c = 5. The integral is then,

I5 =

∫ (
3

x− 1
− 3

x− 2
+

5

(x− 2)2

)
dx

= 3 ln |x− 1| − 3 ln |x− 2| − 5

x− 2
+ C.
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6)

I6 =

∫
x2 + 1

x(x− 1)(x2 − 2x+ 4)
dx.

Using the simple element decomposition for
x2 + 1

x(x− 1)(x2 − 2x+ 4)
, we find

x2 + 1

x(x− 1)(x2 − 2x+ 4)
=
a

x
+

b

x− 1
+

cx+ d

x2 − 2x+ 4

where a = −1

4
, b =

2

3
, c = − 5

12
and d =

7

6
. The integral is then,

I6 =

∫ (−1
4

x
+

2
3

x− 1
+
− 5

12
x+ 7

6

x2 − 2x+ 4

)
dx

= −1

4
ln |x|+ 2

3
ln |x− 1| − 5

12

∫
x− 14

5

x2 − 2x+ 4
dx.

Now let’s calculate the integral

∫
x− 14

5

x2 − 2x+ 4
dx. We can show that

x− 14
5

x2 − 2x+ 4
=

1

2

2x− 28
5

x2 − 2x+ 4
=

1

2

2x− 2 + 2− 28
5

x2 − 2x+ 4

=
1

2

(
2x− 2

x2 − 2x+ 4
+

2− 28
5

x2 − 2x+ 4

)
=

1

2

2x− 2

x2 − 2x+ 4
− 9

5

1

x2 − 2x+ 4
.

Then ∫
x− 14

5

x2 − 2x+ 4
dx =

1

2
ln |x2 − 2x+ 4| − 9

5

∫
1

x2 − 2x+ 4
dx

We still have to calculate the integral

∫
1

x2 − 2x+ 4
dx. Let’s use the following substitution:

t =
x− 1√

3
⇒ dt =

dx√
3
⇒ dx =

√
3dt,

so ∫
1

x2 − 2x+ 4
dx =

2√
12

∫
1

t2 + 1
dt =

1√
3

arctan t+ C =
1√
3

arctan
x− 1√

3
+ C.

Finally

I6 = −1

4
ln |x|+ 2

3
ln |x− 1| − 5

24
ln |x2 − 2x+ 4|+

√
3

4
arctan

x− 1√
3

+ C.
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