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IIntroduction
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ture.
Section 3. A Door Wide
Open.
Section 4. Our Part.

Table 1. Contents for Part I

One of the earliest contributions to topology was made by Leonhard Euler in the
18th century. Euler’s investigation into the Königsberg bridge problem [35] and his
development of the Euler characteristic laid the foundational concepts for the field.

Figure 1. Leonhard Euler
1707-1783.

In addition, Bernhard Riemann’s Figure 6 mid-19th century research on Riemann
surfaces [36], inspired by his mentor Johann Carl Friedrich Gauss, greatly advanced
the understanding of geometric topology.
Numerous prominent mathematicians have contributed to the study of Riemann sur-
faces, with a particular focus on the geometric classification of manifolds, which are
regarded as natural generalizations of surfaces in higher dimensions. There are two
common methods of classification: explicit enumeration and implicit classification using
invariants. Manifolds possess a rich set of invariants, including:

Point Set Topology Algebraic Topology Geometric Topology
Compactness Homotopy Groups Fundamental Group
Connectedness Homology Orientability

Cohomology Surgery Theory

Table 2. Some Invariants on Manifolds.

Figure 2. Johann Carl
Friedrich Gauss 1777-
1855.

Low-dimensional manifolds are classified based on their geometric structure, while
high-dimensional manifolds are classified algebraically using surgery theory. Low di-
mensions refer to dimensions up to 4. "High dimensions" encompass dimensions
5 and higher. The case of dimension 4 is particularly intriguing, as it exhibits low-
dimensional behavior smoothly (but not topologically). To date, we recognize a unique
connected 0-dimensional manifold, which is the point.
Disconnected 0-dimensional manifolds are merely discrete sets, classified by their cardi-
nality, devoid of any geometric properties, and their study falls under combinatorics.
A connected, compact 1-dimensional manifold without boundary is homeomorphic (or
diffeomorphic, if smooth) to the circle. A second countable, non-compact 1-dimensional
manifold is homeomorphic or diffeomorphic to the real line.
According to the uniformization theorem, every connected, closed 2-dimensional
manifold (surface) admits a constant curvature metric. There are three possible cur-
vatures: positive, zero, and negative. Consequently, every surface, or 2-dimensional
manifold, can be categorized as either:A sphere with curvature 1,

A Euclidean plane with curvature 0,
A hyperbolic plane with curvature − 1.

10
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Section 2

3-Dimensional Case and Poincaré Conjecture

Figure 3. Henri Poincaré
1854-1912.

Continuing the classification up to 3-dimensional manifolds, Henri Poincaré con-
jectured in 1904 that spaces which locally resemble ordinary 3-dimensional space but are
finite in extent have an intriguing property. Poincaré hypothesized that if such a space
is simply connected—meaning each loop in the space can be continuously contracted
to a point—then it must be a 3-dimensional sphere. Efforts to resolve this conjecture
spurred significant progress in geometric topology throughout the 20th century.

In the 1930s, J. H. C. Whitehead [78, 79] claimed to have proved the conjecture
but later retracted his claim. During this process, he discovered examples of simply-
connected non-compact 3-manifolds not homeomorphic to R3, the prototype of which is
now known as the Whitehead manifold. In the 1950s and 1960s, numerous mathe-

Figure 4. William
Thurston 1946-2012.

maticians attempted proofs of the conjecture, only to uncover flaws in their arguments.
Notable figures such as Georges de Rham, R. H. Bing, Wolfgang Haken, Edwin
E. Moise, and Christos Papakyriakopoulos made significant efforts to prove the
conjecture. In 1958, R. H. Bing established a weakened version of the Poincaré con-
jecture: if every simple closed curve in a compact 3-manifold lies within a 3-ball, then
the manifold is homeomorphic to the 3-sphere [12]. Bing also elucidated some of the
challenges in proving the Poincaré conjecture [13].

Wlodzimierz Jakobsche demonstrated in 1978 that if the Bing–Borsuk conjecture
holds in dimension 3, then the Poincaré conjecture must also hold true [45].

Over time, the conjecture gained renown for its difficulty. John Milnor [52] noted
that errors in incorrect proofs could be “rather subtle and difficult to detect.” Efforts to
prove the conjecture advanced the understanding of 3-manifolds. Experts often hesitated
to announce proofs and viewed such claims with skepticism. The 1980s and 1990s
witnessed several high-profile but ultimately flawed proofs, which were not published in
peer-reviewed journals [73].

A comprehensive examination of attempts to prove this conjecture can be found in
the accessible book Poincaré’s Prize by George Szpiro [72].

The eventual proof relied on Richard S. Hamilton’s approach using the Ricci
flow [43]. By developing numerous novel techniques and results in Ricci flow theory,
Grigori Perelman adapted and completed Hamilton’s program. In papers posted to
the arXiv repository in 2002 and 2003 [63–65], Perelman presented his work proving
the Poincaré conjecture and the more general geometrization conjecture of William
Thurston. Over subsequent years, numerous mathematicians scrutinized his papers
and produced detailed expositions of his work.

Section 3

A Door Wide Open

Figure 5. Grigori Perel-
mann 1966-.

After the widespread success of Grigori Perelman, many mathematicians turned
their attention to investigating the Ricci flow. For example, detailed proofs of the
conjecture can be found in [26]. Another important concept to study is the Ricci soliton,
which represents a self-similar solution to the Ricci flow. Over the past two decades,
numerous mathematicians have investigated Ricci solitons on manifolds.

Sharma [69] initiated the investigation of Ricci solitons in contact Riemannian
geometry. Ghosh and Sharma [41, 61] derived results by considering K-contact, Ken-
motsu, Sasakian, and (κ, µ)-contact metrics as Ricci solitons. Bejan and Crasmare-
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anu also contributed significant results in this field. In [5], they extended the study of
Ricci solitons to paracontact manifolds. De and collaborators [30] explored Ricci solitons in f -Kenmotsu manifolds,
analyzing the behavior of generalized Sasakian space form and generalized (κ, µ) space form under generalized D-
conformal deformation. Several researchers, including Nagaraja and Premalatha [55], De and Ghosh [28], and
Shaikh et al. [68], examined the behavior of normal almost contact metric, (κ, µ) contact metric, and trans-Sasakian
manifolds under D-homothetic deformations. We utilize the constancy of specific contact structures under generalized
D-conformal and D-homothetic deformations to investigate Ricci solitons.
Recently, C12-manifolds have emerged as a prominent and extensively studied topic in differential geometry. Recent
works of Beldjilali, Bouzir and Bayour [6, 8, 16, 27] provide a comprehensive overview of the results obtained in
this context.
What sets C12-manifolds apart from other almost contact metric structures is their unique nature; they are neither
contact nor normal. They exhibit significant characteristics to well-known manifolds such as Sasaki, Kenmotsu, and
cosymplectic manifolds. Thus, it is imperative to explore various concepts studied on these well-known manifolds on
C12-manifolds and compare the resulting insights.
The study conducted by the authors in [6] delves into Ricci solitons and generalized Ricci solitons on 3-dimensional
C12-manifolds. Notably, they establish that any 3-dimensional C12-manifold meeting specific conditions conforms to
the generalized Ricci soliton equation.

Section 4

Our Part

This research endeavor aims to achieve a Ph.D. degree in the field of mathematics, specifically focusing on differential
geometry, at the University of Mascara.
The thesis, titled Ricci-Soliton and Deformations, encompasses two pivotal themes. The term Ricci-soliton denotes
a geometric structure that constitutes a self-similar solution to the Ricci flow, a subject that has garnered significant
attention among mathematicians, particularly since Grigory Perelman employed Ricci flow to resolve the Poincaré
conjecture. On the other hand, deformations refer to alterations in metrics, serving as a primary tool for generating
instances of novel theoretical constructs in geometry and examining their rigidity.
The primary objective of this thesis is to scrutinize the transformation of Ricci solitons and their rigidity through
diverse metric deformations within the framework of Riemannian geometry.
Our inaugural publication, as referenced in [31], delves into the investigation of D-isometric deformations on compact
gradient Riemannian manifolds and their implications on the soliton structure therein.
A subsequent study extensively explores a class of almost contact metric manifolds denoted as C12, analyzing its geo-
metric properties, solitons, and various deformations such as η-conformal and ω-conformal deformations. Additionally,
findings are presented on its associated Lorentz-C12 structure.
In summary, the following inquiries have been addressed:

1. What are the necessary conditions for preserving a C12 structure under generalized D-conformal deformation,
contingent upon deformation functions?

2. Is it plausible for a C12 structure to exhibit a trivial Ricci soliton structure?

3. Under what circumstances does a compact gradient Riemannian manifold, admitting a Ricci soliton, maintain
this attribute under D-isometric deformation?

We have also combined the concepts of generalized Ricci-soliton and Ricci-Yamabe soliton and classified this new
structure on 3-dimensional Lie groups.



PART

IIRiemannian Geometry
In this part, we explore the domain of Riemannian geometry, revisiting fundamental

concepts essential for our subsequent discussions. We review indispensable constructs
such as the metric tensor, affine connections, derivatives, and curvatures, laying the
groundwork for the topics ahead.

Section 5. Metric Tensor.
Section 6. Affine Connection.
Section 7. Special Differential
Operators.
Section 8. Riemann
Curvature Tensor.
Section 9. Ricci Tensor.

Table 3. Contents for Part II

Section 5

Metric Tensor

The metric tensor is a cornerstone of Riemannian geometry, defining the notion of
distance, angles, and curvature on a manifold. It provides a way to measure lengths and
angles between tangent vectors at each point of the manifold, thus endowing the space
with a notion of geometry.

Figure 6. Georg Friedrich
Bernhard Riemann 1826-
1866.

Definition 1 A metric g on a smooth manifold M is a tensor of type (0, 2) that assigns a smooth
function to pairs of tangent vectors at each point on the manifold

g : Γ(TM) × Γ(TM) −→ C∞(M),

where Γ(TM) × Γ(TM) is the Cartesian product of the space of smooth sections of
TM with itself, and C∞(M) is the space of smooth real-valued functions on M .
The metric tensor g exhibits the ensuing properties, for any vector fields X,Y, Z and
a function f :

1. C∞(M)-Bilinearity:
g(X + Y,Z) = g(X,Z) + g(Y,Z),
g(X,Y + Z) = g(X,Y ) + g(X,Z),
g(fX, Y ) = g(X, fY ) = fg(X,Y ).

2. Symmetry: g(X,Y ) = g(Y,X).

3. Non-degenerancy: if g(X,Y ) = 0, for all vector fields X, then Y = 0.

4. Definite Positive: for any non-zero vector field X, g(X,X) > 0.

The existence of the metric tensor on smooth manifolds is guaranteed by the Unit Partition Theorem, see [75].
This theorem ensures that any smooth manifold can be covered by a set of coordinate charts such that the transition
maps between overlapping charts are smooth.
Consequently, the metric tensor can be defined locally on each chart and smoothly patched together across the manifold.
This essential property underpins the foundational framework of Riemannian geometry, allowing for the rigorous study
of distances, angles, and curvature on curved spaces. For more on this, see [34, 49].
In local system of coordinates, we can write

g = gijdxi ⊗ dxj , i, j ∈ {1, 2, ..., n},

13
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where n = dim(M) and gij represent differentiable functions, referred to as the components of the metric tensor relative
to a local chart.
Likewise, if X = Xm∂m and Y = Y l∂l, then

g(X,Y ) = gijdxi ⊗ dxj
(
Xm∂m, Y

l∂l
)

= gijX
mY ldxi(∂m)dxj(∂l) = gijX

mY lδimδjl

= gijX
iY j .

Hence, the metric tensor g provides a means to compute the length of a vector field X defined on M via the subsequent
expression

|X|2 = g(X,X). (5.1)

Thus, it is possible to express any vector field X ∈ Γ(TM) utilizing the metric g through a linear combination of X’s
projection onto an orthonormal frame {ei}1≤i≤n as follows

X =
i=n∑
i=1

g(X, ei)ei. (5.2)

Definition 2 A Riemannian manifold is a pair (M, g), where M is a differentiable manifold, and
g is a Riemannian metric on the tangent bundle TM .

According to Definition 2, ev-
ery differentiabl manifold M pos-
sesses at least one Riemannian
metric g . Nevertheless, this met-
ric is not unique.Below are illustrations of several Riemannian manifolds accompanied by their re-

spective metric tensors:

Example 5.1. The parametrization of a sphere of radius R Figure 7 is given by
x(θ, ϕ) = R sin θ cosϕ,
y(θ, ϕ) = R sin θ sinϕ,
z(θ, ϕ) = R cos θ,

where 0 ≤ θ ≤ π is the polar angle and 0 ≤ ϕ < 2π is the azimuthal angle.
Calculate the differentials of the parametrization

dx = R cos θ cosϕdθ −R sin θ sinϕdϕ,
dy = R cos θ sinϕdθ +R sin θ cosϕdϕ,
dz = −R sin θ dθ.

Next, we need find the line element ds2 on the sphere

ds2 = dx2 + dy2 + dz2

= R2
(

cos2 θ cos2 ϕ+ cos2 θ sin2 ϕ+ sin2 θ

)
dθ2 +R2

(
sin2 θ sin2 ϕ+ sin2 θ cos2 ϕ)

)
dϕ2.

And so the metric of a 2-sphere is

ds2 = R2dθ2 +R2 sin2 θdϕ2. (5.3)

Figure 7. Unit Vectors in
Spherical Coordinates.
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Write down the components of the metric tensor gij using the line element ds2 via the formula

ds2 = gijdxi ⊗ dxj .

To obtain

g =
(
g11 g12
g21 g22

)
=
(
R2 0
0 R2 sin2 θ

)
.

Example 5.2. The parametric equations for a torus with major radius R and minor radius r are
x(θ, ϕ) = (R+ r cosϕ) cos θ,
y(θ, ϕ) = (R+ r cosϕ) sin θ,
z(θ, ϕ) = r sinϕ.

The differentials of the parameters are
dx = −(R+ r cosϕ) sin θdθ − r sinϕ cos θdϕ,
dy = (R+ r cosϕ) cos θdθ − r sinϕ sin θdϕ,
dz = r cosϕdϕ.

The metric tensor is thus given by the formula

ds2 = dx2 + dy2 + dz2

=
(

(R+ r cosϕ)2 sin2 θ + (R+ r cosϕ)2 cos2 θ

)
dθ2 +

(
r2 sin2 ϕ cos2 θ + r2 sin2 ϕ sin2 θ + r2 cos2 ϕ

)
dϕ2.

This yields, subsequent to simplifications

ds2 = (R+ r cosϕ)2dθ2 + r2dϕ2. (5.4)

The metric tensor in matrix form is

g =
(
g11 g12
g21 g22

)
=
(

(R+ r cosϕ)2 0
0 r2

)
.

Subsection 5.3

Musical Isomorphism ♯ and ♭

The metric tensor g allows us to establish a bijective correspondence between 1-forms and vector fields on the
Riemannian manifold M . The map sharp, denoted as ♯

♯ : Γ(TM∗) −→ Γ(TM)
ω → ♯ω
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defined by

g(♯ω,X) = ω(X), (5.5)

where X is a vector field on M and Γ(TM∗) denotes the dual bundle of the tangent bundle Γ(TM) of the manifold
M .
Locally, if ω = ωidxi and X = Xj∂j , then with the help of (5.2), we obtain

♯ω = ωig
ij∂j ,

in this context, gij signifies the constituent elements of the inverse metric tensor of g.
Conversely, the flat operation, symbolized by ♭, constitutes a linear mapping that converts vectors into covectors
(one-forms), represented by

♭ : Γ(TM) −→ Γ(TM∗)
X → X♭

this operation is characterized by the equation

X♭(Y ) = g(X,Y ), (5.6)

where X and Y denote vector fields defined on M .
The maps ♯ and ♭ play significant roles in differential geometry, often termed as the musical isomorphism or
canonical isomorphism. These mappings, commonly known for their application in Ricci calculus as raising and
lowering indices, facilitate various computations and transformations.
For more comprehensive insights into these concepts, interested readers may refer to authoritative texts such as [49, 76],
which delve deeper into the theoretical underpinnings and practical applications of these isomorphisms.

Section 6

Affine Connection

Affine connections are fundamental mathematical structures in differential geometry
that generalize the notion of partial differentiation of vector fields on smooth manifolds.
They provide a systematic way to differentiate vector fields along curves and are essential
tools in studying curvature and geometric properties of manifolds. Upon considering a

Figure 8. Professor Élie
Joseph Cartan 1869-1951.

manifold, it becomes evident that various concepts can be discussed upon its definition.
These include the establishment of functions, differentiation, examination of parameter-
ized paths, introduction of tensors, among others. However, certain notions such as the
volume of a region or the length of a path necessitate an additional structural element,
specifically the introduction of a metric, as discussed earlier in Part II. It might seem
intuitive to associate the concept of curvature, previously employed informally, solely
with the metric. However, this presumption is either inaccurate or incomplete. Indeed,
an additional structural element, a connection is required. We will elucidate how the
presence of a metric gives rise to a particular connection, the curvature of which can be
likened to that of the metric.

The introduction of a connection becomes imperative when addressing the inad-
equacy of the partial derivative as a tensor operator. What is desired is a covariant
derivative, an operator that behaves as a partial derivative in a flat space with Carte-
sian coordinates, yet transforms appropriately as a tensor on any given manifold.
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Definition 3 An affine connection ∇ on a manifold M , is a map

∇ : Γ(TM) × Γ(TM) −→ Γ(TM)
(X,Y ) 7−→ ∇XY

Satisfying 
1. ∇X(Y + Z) = ∇XY + ∇XZ,

2. ∇X(fY ) = X(f)Y + f∇XY,

3. ∇fX+Y Z = f∇XZ + ∇Y Z,

herein, X,Y, Z denote vector fields defined on the manifold M , while f represents a
smooth function defined on M .

Figure 9. Hermann Klaus
Hugo Weyl 1885-1955.The roots of the affine connection lie in 19th-century geometry and tensor calculus.

Élie Cartan Figure 8 and Hermann Weyl Figure 9 [17–21, 77] played pivotal roles
in its early 1920s development.
Cartan introduced the terminology, emphasizing the connection between tangent spaces via translation. The key idea
is that an affine connection makes a manifold look infinitesimally like Euclidean space, not just smoothly, but as an
affine space. Importantly, there are infinitely many affine connections on any positive-dimensional manifold. in the case
of the sphere, an affine connection facilitates the transition of the affine tangent plane from one location to another.
This transition engenders the movement of a point of contact along a trajectory within the plane, thereby delineating
a curve.
A vector field V on M is deemed parallel with respect to the connection ∇ if, and only if, for all vector fields X on
M , it satisfies the condition

∇XV = 0. (6.1)

In a more refined formulation, we write ∇V = 0. Similarly, a metric g is considered compatible with ∇ (or parallel),
if the condition

∇g = 0,

holds, that is, where for any vector fields X,Y and Z on M , we have

X
(
g(Y,Z)

)
= (∇Xg)(Y,Z) + g(∇XY,Z) + g(Y,∇XZ),

which turns out to

X
(
g(Y, Z)

)
= g(∇XY,Z) + g(Y,∇XZ). (6.2)

Definition 4 The torsion T associated with linear connection ∇, on a manifolds M , is a tensor of
type (1.2), is defined by

T : Γ(TM) × Γ(TM) −→ Γ(TM)
(X,Y ) 7−→ T (X,Y ) = ∇XY − ∇YX − [X,Y ]

for all vector fields X,Y on M

Figure 10. Geometric In-
eterpretation of Lie Brack-
aets and Torsion as Clo-
sure Failure.

A refined exploration into the geometric interpretation of torsion Figure 10 entails
the consideration of two vector fields denoted as X and Y . At a given point P , the par-
allel transport of these fields along Y and X, respectively, results in transformed fields
X

||
Q and Y ||

R . Should a torsion exist within the geometry, the closure of these transported
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fields fails to occur, manifesting as a discernible closure failure T (X,Y ). A comprehensive elucidation of this
phenomenon is expounded and specifically detailed in [67].
If T vanishes identically then the linear connection ∇ is torsion free, that is

[X,Y ] = ∇XY − ∇YX (6.3)

where
[•, •] : Γ(TM) × Γ(TM) −→ Γ(TM)

is skew-symmetric tensor of type (1, 2) called the Lie Bracket, which verify the following properties
1. Antisymmetry : [X,Y ] = −[Y,X],
2. R − Linearity : [aX + bY, Z] = a[X,Z] + b[Y,Z], a, b ∈ R,
3. Jacobi Identity : [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

(6.4)

Subsection 6.1

Levi-Cevita Connection

One of the cornerstone theorems in Riemannian geometry is the Levi-Civita theorem,
unveiled by the Italian mathematician Tullio Levi-Civita Figure 11, which establishes
the following fundamental principle:

Figure 11. Tullio Levi-
Civita 1873-1941.

Figure 12. Jean-Louis
Koszul 1921-2018.

Theorem 1 Let (M, g) be a Riemannian manifold. Then there exists a unique torsion-free, affine
connection ∇, known as the Levi-Civita connection, which is compatible with the
metric g.

The theorem above produces Kozsul’s formula, derived by the French mathemati-
cian Jean-Louis Koszul Figure 12, which is used to compute explicitly the Levi-Cevita
connection

2g(∇XY,Z) = X(g(Y,Z)) + Y (g(X,Z)) − Z(g(X,Y ))
+ g([X,Y ], Z) + g([Z,X], Y ) − g([Y, Z], X). (6.5)

Certainly, by leveraging the characteristics of the metric tensor g in conjunction
with the torsion-free and compatibility properties of ∇, we establish the following

X(g(Y,Z)) = g(∇XY,Z) + g(Y,∇XZ),
Y (g(X,Z)) = g(∇YX,Z) + g(X,∇Y Z),
Z(g(X,Y )) = g(∇ZX,Y ) + g(X,∇ZY ).

On the other hand 
g([X,Y ], Z) = g(∇XY, Z) − g(∇YX,Z),
g([Z, Y ], X) = g(∇ZY,X) − g(∇Y Z,X),
g([Y,Z], X) = g(∇Y Z,X) − g(∇ZY,X).

Formula (6.5) is verified by direct substitution.
Locally, if one takes X = Xi∂i and Y = Y j∂j , then

∇XY = ∇Xi∂iY
j∂j = Xi

(
∂iY

k + ΓkijY j
)
∂k,
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where

Γkij∂k = ∇∂i∂j , (6.6)

are the Christoffel symbols introduced by the German mathematician Elwin Christof-

Figure 13. Elwin Bruno
Christoffel 1829-1900.

fel Figure 13. Since the connection is torsion free, the coefficients are symmetric

Γkij = Γkji.

For this reason, a torsion-free connection is often called symmetric. The Christoffel
symbols can be derived from the metric tensor g using the following formula

Γkij = 1
2g

kl
(
∂iglj + ∂jgil − ∂lgij

)
. (6.7)

Geometrically, Christoffel symbols can be interpreted as describing how basis vectors change throughout a given
coordinate system (6.6). The basis vectors may change due to the coordinate system being curvilinear or due to the
geometry of the space itself being curved, and the Christoffel symbols describe both of these. Physically, Christoffel
symbols can be interpreted as describing fictitious forces arising from a non-inertial reference frame. In general relativity,
Christoffel symbols represent gravitational forces as they describe how the gravitational potential (metric) varies
throughout spacetime causing objects to accelerate. See [53].

Example 6.2. For the 2-Sphere Example 5.1, we compute the inverse metric g−1

g =
(
gθθ gθϕ
gϕθ gϕϕ

)
=
(
R2 0
0 R2 sin2 θ

)
=⇒ g−1 =

(
gθθ gθϕ

gϕθ gϕϕ

)
=
( 1
R2 0
0 1

R2 sin2 θ

)
. (6.8)

According to (6.7), we know that we have to find the eight following symbols

Γθij =
(

Γθθθ Γθθϕ
Γθϕθ Γθϕϕ

)
and Γϕij =

(
Γϕθθ Γϕθϕ
Γϕϕθ Γϕϕϕ

)
.

Let’s start by calculating Γθij . By (6.7), one can write

Γθij = 1
2g

θl
(
∂iglj + ∂jgil − ∂lgij

)
. (6.9)

Since gθϕ = 0, l = θ and formula (6.9) becomes

Γθij = 1
2g

θθ
(
∂igθj + ∂jgiθ − ∂θgij

)
. (6.10)

Hence, the four first symbols are now easy to deduce

Γθθθ = Γθθϕ = Γθϕθ = 0 and Γθϕϕ = − sin θ cos θ.

Simularly for k = ϕ in (6.7), we have
Γϕij = 1

2g
ϕl
(
∂iglj + ∂jgil − ∂lgij

)
. (6.11)
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From (6.8) gϕθ = 0 then l = ϕ and (6.11) becomes

Γϕij = 1
2g

ϕϕ
(
∂igϕj + ∂jgiϕ − ∂ϕgij

)
. (6.12)

From there, we can easily deduce the last four connection coefficients

Γϕθθ = Γϕϕϕ = 0 and Γϕθϕ = Γϕϕθ = cot θ.

So finally for a surface of a sphere, the eight Christoffel symbols are equal to

Γθij =
(

0 0
0 sin θ cos θ

)
and Γϕij =

(
0 cot θ

cot θ 0

)
.

Example 6.3. For the 2-Torus Example 5.2, we compute the inverse metric g−1

g =
(
gθθ gθϕ
gϕθ gϕϕ

)
=
(

(R+ r cosϕ)2 0
0 r2

)
=⇒ g−1 =

(
gθθ gθϕ

gϕθ gϕϕ

)
=
( 1

(R+r cosϕ)2 0
0 1

r2

)
. (6.13)

For k = θ, notice that from (6.13) we have gθϕ = gϕθ = 0, hence l = θ, in this case we write (6.7)

Γθij = 1
2g

θθ
(
∂igθj + ∂jgiθ − ∂θgij

)
. (6.14)

Thus, the four symboles with upper index θ are

Γθθθ = Γθϕϕ = 0 and Γθθϕ = Γθϕθ = − r sinφ
R+ r cosφ.

On the other hand, if k = ϕ, again according to (6.13) l = ϕ and

Γϕij = 1
2g

ϕϕ
(
∂igϕj + ∂jgiϕ − ∂ϕgij

)
. (6.15)

Therefor, the symbols Γϕij are

Γϕθθ = R

r
sin θ + sin θ cos θ and Γϕθϕ = Γϕϕθ = Γϕϕϕ = 0.

In conclusion, the Christoffel symboles on a torus are

Γθij =
(

0 − r sinφ
R+r cosφ

− r sinφ
R+r cosφ 0

)
and Γϕij =

(
R
r sin θ + sin θ cos θ 0

0 0

)
.

Subsection 6.4

The exterior derivative

On a differentiable manifold, the exterior derivative generalizes the notion of the differential of a function to
encompass differential forms of greater degree. This concept, articulated in its present form by Élie Cartan Figure 8
in 1899, constitutes the foundation of exterior calculus.
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Definition 5 The exterior derivative is defined to be the unique R-linear mapping from k-forms to (k + 1)-forms

d : Ωk(M) −→ Ωk+1(M)

that has the following properties:

1. df is the differential of f for a 0-form f ,
2. d(df) = 0 for a 0-form f ,
3. d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)p(ω1 ∧ dω2),

where ω1 is a p-form and ω2 is a q-form. A 1-form ω is closed if dω=0, and is said to be exact if ω = df . Consequently,
every exact 1-form is closed.

The second defining characteristic holds with broader applicability: specifically, it asserts that for any k-form ω1,
the exterior derivative of the exterior derivative of ω1 yields zero, succinctly expressed as d2 = 0. Moreover, the third
defining property entails, as a specific instance, that when f represents a function and ω1 denotes a k-form, the exterior
derivative of the product of f and ω1, denoted as d(fω1), equals df ∧ω1 +f ∧dω1, owing to the fundamental properties
of scalar multiplication and the exterior product, especially notable when one of the operands reduces to a scalar.
Alternatively, an explicit formula can be given [70] for the exterior derivative of a k-form ω, when paired with k + 1
arbitrary smooth vector fields X0, X1, ..., Xk

dω(X0, ..., Xk) =
i=k∑
i=0

(−1)iXi

(
ω(X0, ..., X̂i, ..., Xk)

)
+
∑
i<j

(−1)(i+j)ω([Xi, Xj ], X0, ..., X̂i, ..., X̂j , ..., Xk),

where
ω(X0, ..., X̂i, ..., Xk) = ω(X0, ..., Xi−1, Xi+1, ..., Xk).

Taking into account the convention of Kobayashi–Nomizu and Helgason, the formula differs by a factor of 1
k+1

dω(X0, ..., Xk) = 1
k + 1

i=k∑
i=0

(−1)iXi

(
ω(X0, ..., X̂i, ..., Xk)

)
+ 1
k + 1

∑
i<j

(−1)(i+j)ω([Xi, Xj ], X0, ..., X̂i, ..., X̂j , ..., Xk).

(6.16)

Applying formula (6.4) to a 1-form ω, we have

dω(X,Y ) = 1
2

(
X
(
ω(Y )

)
− Y

(
ω(X)

)
− ω([X,Y ])

)
= 1

2

(
(∇Xω)Y + ω(∇XY ) − (∇Y ω)X − ω(∇YX) − ω(∇XY ) + ω(∇YX)

)
.

Thus

dω(X,Y ) = 1
2

(
(∇Xω)Y − (∇Y ω)X

)
, (6.17)
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where, If ω = V ♭, then we have

(∇Xω)Y = g(∇XV, Y ), (6.18)

and for a 2-form Φ

3dΦ(X,Y, Z) =
(
X
(
Φ(Y,Z)

)
− Y

(
Φ(X,Z)

)
+ Z

(
Φ(X,Y )

)
− Φ([X,Y ], Z) + Φ([X,Z], Y ) − Φ([Y,Z], X)

)
.

(6.19)

Subsection 6.5

Lie Derivative

The Lie derivative, attributed to Sophus Lie and further expounded by Władysław
Ślebodziński, assesses the alteration undergone by a tensor field comprising scalar func-
tions, vector fields, and one-forms along the trajectory defined by another vector field.
This transformation remains invariant under changes of coordinates, rendering the Lie
derivative applicable across any differentiable manifold. An in depth review of Lie deriva-
tive can be found in [74, 81]. If T represents a tensor field and X a vector field, the

Figure 14. Marius Sophus
Lie 1842-1899.

Figure 15. Władysław Śle-
bodziński 1884-1972.

Lie derivative of T with respect to X is symbolized as LXT . However, we shall abstain
from delving into specific intricacies, opting instead to provide a general methodology
for Lie derivative computation. The algebraic definition for the Lie derivative of a tensor
field arises from the following four axioms:
Axiom 1: The Lie derivative of a function equals the directional derivative of the
function, often represented by the formula

LY f = Y (f). (6.20)

Axiom 2: The Lie derivative adheres to a version of Leibniz’s rule, stating that for any
tensor fields S and T , we have

LY (S ⊗ T ) = (LY S) ⊗ T + S ⊗ (LY T ). (6.21)

Axiom 3: The Lie derivative follows the Leibniz rule with respect to contraction,
expressed as

LX(T (Y1, . . . , Yn)) = (LXT )(Y1, . . . , Yn) + T ((LXY1), . . . , Yn) + · · ·
+ T (Y1, . . . , (LXYn)). (6.22)
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Axiom 4: The Lie derivative commutes with the exterior derivative on functions, denoted as

[LX , d] = 0. (6.23)

If these axioms are satisfied, then one can demonstrates that

(LXY )(f) = X(Y (f)) − Y (X(f)) = [X,Y ](f), (6.24)

which constitutes one of the conventional definitions for the Lie bracket. Indeed, using Axiom 3 and Axiom 1, we
have

LX(Y (f)) = (LXY )f + Y (LXf) =⇒ (LXY )f = LX(Y (f)) − Y (LXf) = X(Y (f)) − Y (X(f)) = [X,Y ](f).

Concretely, considering T as a tensor field of type (p, q), we envision T as a differentiable multilinear mapping of
smooth sections α1, α2, ..., αp from the cotangent bundle Γ(T ∗M), and sections X1, X2, ..., Xq from the tangent bundle
Γ(TM), yielding real numbers R. The Lie derivative of T along Y is defined by the formula

(LY T )(α1, α2, . . . , X1, X2, . . .) = Y (T (α1, α2, . . . , X1, X2, . . .))
− T (LY α1, α2, . . . , X1, X2, . . .) − T (α1,LY α2, . . . , X1, X2, . . .) − . . .

− T (α1, α2, . . . ,LYX1, X2, . . .) − T (α1, α2, . . . , X1,LYX2, . . .) − . . . .

(6.25)

Hence, employing the aforementioned axioms in conjunction with the expression provided in (6.5), we deduce the Lie
derivative applicable to a one-form ω

(LXω)(Y ) = X
(
ω(Y )

)
− ω(LXY ) = X(ω(Y )) − ω([X,Y ]) = (∇Xω)Y + ω(∇XY ) − ω(∇XY ) + ω(∇YX).

Hence

(LXω)(Y ) = (∇Xω)Y + ω(∇YX), (6.26)

or a 2-form, specifically the metric tensor g, we ascertain

(LXg)(Y,Z) = X
(
g(Y,Z)

)
− g(LXY,Z) − g(Y,LXZ)

= (∇Xg)(Y, Z) + g(∇XY,Z) + g(Y,∇XZ) − g([X,Y ], Z) − g(Y, [X,Z]).

Thus

(LV g)(X,Y ) = g(∇XV, Y ) + g(∇Y V,X). (6.27)

A vector field V is said to be conformal killing, if

(LV g)(X,Y ) = fg(X,Y ). (6.28)

If the function f equals zero, then the vector field V is referred to as a Killing vector field.
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Section 7

Special Differential Operators

In the subsequent subsection, we shall furnish precise definitions elucidating the properties and functionalities of
the differential operators such as gradient, divergence, Hessian and Laplacian.

Subsection 7.1

Gradient

Definition 6 We define the gradient operator grad on a Riemannian manifold (M, g) by

grad : C∞(M) −→ Γ(TM)
f 7−→ gradf = ♯df,

such that, for all X ∈ Γ(TM), we have

df(X) = X(f) = g(X, gradf). (7.1)

On a local chart U , one has

df =
i=n∑
i=1

∂ifdxi.

Then

♯df =
i=n∑
i=1

gij(df)i∂j =
i=n∑
i=1

gij∂if∂j = gradf|U .

Lemma 1 The gradient operator satisfies the following properties, for any f, h ∈ C∞(M)
1. grad(f + h) = gradf + gradh,
2. grad(fh) = fgradh+ hgradf,
3. (gradf)h = (gradh)(f).

Subsection 7.2

Divergeance

Definition 7 We define the divergeance of a vector field X ∈ Γ(TM), denoted by div(X), on a Riemannian manifold (M, g) by

div(X) = Trg(∇X) =
i=n∑
i=1

g(∇•X, •). (7.2)

If {ei}{i=1,...,n} is an orthonormal basis, then

div(X) =
i=n∑
i=1

g(∇eiX, ei). (7.3)
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Consequently, the divergence of the 1-form ω is expressed as

div(ω) = Trg(∇ω) =
i=n∑
i=1

(
∇eiω

)
(ei). (7.4)

Lemma 2 The divergence obeys the following properties, where X and Y are smooth vector fields and f is a smooth function
on M {

1. div(X + Y ) = div(X) + div(Y ),
2. div(fX) = fdiv(X) +X(f).

Subsection 7.3

Hessian

Figure 16. Ludwig Otto
Hesse 1811-1874.

Figure 17. Pierre-Simon,
Marquis de Laplace 1749-
1827.

Definition 8 We define the Hessian operator of a function f denoted Hessf on a Riemannian
manifold (M, g) by

Hessf : Γ(TM) ⊗ Γ(TM) −→ C∞(M)
(X,Y ) 7−→ Hessf (X,Y ) = g(∇Xgradf, Y ), (7.5)

for all X,Y ∈ Γ(TM).

Lemma 3 The Hessian operator is symetric.

Subsection 7.4

Laplacian

Definition 9 We define the Laplacian operator of a function f denoted ∆(f) on a Riemannian
manifold (M, g) by

∆ : C∞(M) −→ C∞(M)
f 7−→ ∆(f) = div(gradf) = Trg(Hessf ), (7.6)

such that, if ei{1<i<n} is an orthonormal basis associated with g then

Trg(Hessf ) =
n∑
i=1

Hessf (ei, ei).

Lemma 4 For every pair of smooth functions f and h belonging to C∞(M), the Laplacian
operator adheres to the following properties{

1. ∆(f + h) = ∆(f) + ∆(h),
2. ∆(fh) = f∆(h) + 2g(gradf, gradh) + h∆(f).



Riemann Curvature Tensor 26

Section 8

Riemann Curvature Tensor

In this exposition, we introduce the Riemann curvature tensor alongside the sectional curvatures inherent to a Rie-
mannian manifold. These conceptual constructs extend beyond the scope of Gaussian curvature, which traditionally
holds prominence within the scope of classical differential geometry, particularly in the study of surfaces. Through our
discourse, we elucidate the Gauss equation, a pivotal result facilitating the comparison between sectional curvatures of
a given submanifold and those of its encompassing ambient space. Furthermore, we establish that Euclidean spaces,
standard spheres, and hyperbolic spaces uniformly exhibit constant sectional curvature. Subsequently, we embark on a
systematic elucidation of the Riemannian curvature tensor pertaining to manifolds characterized by constant sectional
curvature.

Definition 10 Let (M, g) be a Riemannian manifold with Levi-Cevita connection ∇. Then, the Riemann curvatur operator is a
tensor field on M of type (1, 3)

R : Γ(TM) × Γ(TM) × Γ(TM) −→ Γ(TM),

defined by
R(X,Y )Z = ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z, (8.1)

for all X,Y and Z vector fields on M .

Lemma 5 The Riemann curvatur tensor satisfies the following properties:

1. Skew-Symmetry and Symmetry
1. R(X,Y )Z = −R(Y,X)Z,
2. g(R(X,Y )Z,W ) = −g(R(X,Y )W,Z),
3. g(R(X,Y )Z,W ) = g(R(Z,W )X,Y ).

2. First Bianchi Identity
R(X,Y )Z +R(Z,X)Y +R(Y, Z)X = 0.

3. Second Bianchi Identity
∇XR(Y,Z)W + ∇ZR(X,Y )W + ∇YR(Z,X)W = 0.

The Riemann curvature tensor, a rank-4 tensor, can be expressed in terms of the Christoffel symbols as follows

Rijkl = ∂kΓijl − ∂lΓijk + ΓimkΓmjl − ΓimlΓmjk. (8.2)

However, the form Rijkl does not exhibit all of the tensor’s symmetries. It is often more convenient to use the fully
covariant form Rijkl, defined as

Rijkl = gipR
p
jkl = gip

(
∂kΓpjl − ∂lΓpjk + ΓpmkΓmjl − ΓpmlΓ

m
jk

)
. (8.3)
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On an n-dimensional manifold, the Riemann tensor initially has 4n components. However, due to its inherent symme-
tries,

Rijkl = Rjilk = −Rjikl = −Rijlk,

and the fact that components with three equal indices vanish, the number of independent components is reduced to

n2(n2 − 1)
12 .

For a two-dimensional surface (n = 2), this reduction leads to only one independent component. In what follows, we
will apply expression in (8.3) to compute the Riemann curvature tensor for the 2-sphere and 2-torus.

Example 8.1. For the 2-sphere, using results obtained in Example 5.1 and Example 6.2, we compute Rθϕθϕ

Rθϕθϕ = gθpR
p
ϕθϕ = gθθR

θ
ϕθϕ

= R2(∂θΓθϕϕ − ∂ϕΓθϕθ + ΓθθkΓkϕϕ − ΓθkϕΓkθϕ
)

= R2( sin2 θ − cos2 θ − 0 + 0 + cos2 θ
)
.

Hence
Rθϕθϕ = Rϕθϕθ = R2 sin2 θ and Rθϕϕθ = Rϕθθϕ = −R2 sin2 θ.

Using formula (8.3), we derive the Riemann curvature tensor components of the form Rijkl

Rθϕθϕ = −Rθϕϕθ = sin2 θ and Rϕθϕθ = −Rϕθθϕ = 1.

Example 8.2. For the 2-torus using results obtained in Example 5.2 and Example 6.3, we compute Rθϕθϕ

Rθϕθϕ = gθpR
p
ϕθϕ = gθθR

θ
ϕθϕ

= (R+ r cosϕ)2(∂θΓθϕϕ − ∂ϕΓθϕθ + ΓθθkΓkϕϕ − ΓθkϕΓkθϕ
)

= (R+ r cosϕ)2
(

0 − r cosϕ(R+ r cosϕ) + r2 sin2 ϕ

(R+ r cosϕ)2 + 0 − r2 sin2 ϕ

(R+ r cosϕ)2

)
.

Thus
Rθϕθϕ = Rϕθϕθ = r cosϕ(R+ r cosϕ) and Rθϕϕθ = Rϕθθϕ = −r cosϕ(R+ r cosϕ).

Again with the help of formula (8.3), we compute the Riemann curvature tensor components of the form Rijkl

Rθϕθϕ = −Rθϕϕθ = r cosϕ
R+ r cosϕ and Rϕθϕθ = −Rϕθθϕ = 1

r
cosϕ

(
R+ r cosϕ

)
.

Subsection 8.3

Sectional Curvature

Sectional curvature is a fundamental concept in differential geometry, particularly within the framework of Rieman-
nian geometry. It provides a measure of the curvature of a surface in a given direction, encapsulating how much the
surface deviates from being flat when viewed locally. More formally, the sectional curvature at a point on a manifold
describes how the geometry of the manifold bends or curves in the plane defined by two tangent vectors at that point.
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Definition 11 Let (M, g) be a Riemannian manifold and p ∈ M . Then a section V at p is a
2-dimensional subspace of the tangent space TpM . The set

G2(TpM) = {V | V is a section of TpM}

of sections is called the Grassmannian of 2-planes at p.

Figure 18. Hermann
Günther Grassmann 1809-
1877.

The span of two vectors X and Y , denoted as Span{X,Y }, represents all possible
linear combinations of these vectors. In other words, it is the set of all vectors that can be
obtained by scaling X and Y by any scalar and adding them together. Mathematically,
it can be expressed as

SpanK{X,Y } = {aX + bY | a, b are scalar in K}.

Definition 12 Let (M, g) be a Riemannian manifold and p ∈ M . Then the function

Kp : SpanK{X,Y } −→ g(R(X,Y )Y,X)
g(X,X)g(Y, Y ) − g(X,Y )2 , (8.4)

is called the sectional curvature at p, usually denoted K(X,Y ).

As an immediate implication, we derive the subsequent valuable outcome:

Theorem 2 Let (M, g) be a Riemannian manifold of constant sectional curvature κ. Then, it’s curvature tensor R satisifies:

R(X,Y )Z = κ
(
g(Y,Z)X − g(X,Z)Y

)
. (8.5)

Section 9

Ricci Tensor

The culmination of this chapter involves the establishment of the Ricci and scalar curvatures for a Riemannian manifold.
These quantities are derived through the process of tracing over the curvature tensor and hold significant prominence
within Riemannian geometry.

Figure 19. Gregorio Ricci-
Curbastro 1853-1925.

Definition 13 Let (M, g) be a Riemannian manifold, then we define:

1. The Ricci-Operator, denoted Q by

Q : Γ(TM) −→ Γ(TM)

X 7−→ Q(X) =
i=n∑
i=1

R(X, ei)ei, (9.1)

2. The Ricci-Tensor, denoted S by

S : Γ(TM) × Γ(TM) −→ C∞(M)
(X,Y ) 7−→ S(X,Y ) = g(QX,Y ). (9.2)
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3. The scalar curvature, denoted r by

r =
j=n∑
j=1

S(ej , ej) =
i=n∑
i=1

j=n∑
j=1

g(R(ej , ei)ei, ej), (9.3)

where {e1, ..., en} is any local orthonormal frame for Γ(TM).

Clearly, we have

S(X,Y ) =
i=n∑
i=1

g(R(X, ei)ei, Y ) =
i=n∑
i=1

g(R(ei, Y )X, ei) =
i=n∑
i=1

g(R(Y, ei)ei, X) = S(Y,X). (9.4)

Using (8.2) and (9.2), we derive the Ricci curvature tensor in terms of the Christoffel symbols

Sij = Rkikj = ∂kΓkij − ∂jΓkik + ΓkmkΓmij − ΓkmjΓmik, (9.5)

and the Ricci scalar curvature r = gijSij . Hence, we can write the Ricci tensor of both the 2-sphere and 2-torus using
results from Example 8.1 and Example 8.2 in matrix form and the Ricci scalar curvature:

1. For the 2-Sphere:
Sij =

(
1 0
0 sin2 θ

)
and r = 2

R2 . (9.6)

2. For the 2-Torus:

Sij =
( 1
r cosϕ

(
R+ r cosϕ

)
0

0 r cosϕ
R+r cosϕ

)
and r = 2 cosϕ

r(R+ r cosϕ) . (9.7)

The geometric interpretation of the Ricci tensor is that it describes how much a volume element would differ in curved
space compared to Euclidean or flat space. Different components of the Ricci tensor describe how the volume element
evolves as one moves along a geodesic in any given direction. For more details we refer to [34]. The physical meaning
of the Ricci tensor is that it describes how much the spacetime volume of an object changes due to gravitational tides
in general relativity. This is because geometrically, the Ricci tensor describes volume changes due to curvature and
spacetime curvature is equated to tidal forces. (See for example [53]). In scenarios characterized by constant sectional
curvature, the ensuing result emerges:

Corollary 1 Let (M, g) be a Riemannian manifold of constant sectional curvature κ. Then, it’s scalar curvature r satisifies:

r = n(n− 1)κ, (9.8)
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Section A

Appendix A

Proof to Lemma 1: Consider a smooth vector field X on M . Then, for any smooth functions f, h ∈ C∞(M),
according to (7.1), we have:

1. For the initial attribute

g(X, grad(f + h)) = X(f + h) = X(f) +X(h) = g(X, gradf) + g(X, gradh)
= g(X, gradf + gradh) =⇒ grad(f + h) = gradf + gradh.

2. For the second

g(X, grad(fh)) = X(fh) = hX(f) + fX(h) = hg(X, gradf) + fg(X, gradh)
= g(X,hgradf + fgradh) =⇒ grad(fh) = hgradf + fgradh.

3. Finally
(gradf)h = g(gradf, gradh) = (gradh)f.

Proof to Lemma 2: Consider X and Y as smooth vector fields, and let {ei}i=1,...,n denote an orthonormal basis on
M . Then, for any smooth function f defined on M , one can deduce from (5.2), (7.1) and (7.2) the following:

1. For the introductory characteristic, it suffices to utilize the metric tensor linearity

div(X + Y ) =
i=n∑
i=1

g(∇ei(X + Y ), ei) =
i=n∑
i=1

g(∇eiX, ei) +
i=n∑
i=1

g(∇eiY, ei)

= divX + divY.

2. Lastly

div(fX) =
i=n∑
i=1

g(∇ei(fX), ei) = f

i=n∑
i=1

g(∇eiX, ei) +
i=n∑
i=1

g(ei(f)X, ei)

= fdivX +
i=n∑
i=1

g(X, ei)ei(f) = fdivX +
i=n∑
i=1

g(X, ei)g(gradf, ei)

= fdivX +
i=n∑
i=1

g(gradf, g(X, ei)ei) = fdivX + g(gradf,X)

= fdivX +X(f).

Proof to Lemma 3: Consider X and Y as smooth vector fields and f as a smooth function on M. Referring to
equations (6.2), (7.1) and (7.5), we deduce the following
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Hessf (X,Y ) = g(∇Xgradf, Y ) = X
(
g(gradf, Y )

)
− g(gradf,∇XY )

= X
(
Y (f)

)
− (∇XY )(f) = [X,Y ]5F + Y (X(f)) − (∇XY )(f)

= (∇XY )(f) − (∇YX)(f) + Y
(
g(gradf,X)

)
− (∇XY )(f)

= g(∇Y gradf,X) + g(gradf,∇YX) − (∇YX)(f) = g(∇Y gradf,X)
= Hessf (Y,X).

Proof to Lemma 4: Given f and h smooth functions on M , using results from Lemma 1 and Lemma 2 along with
(7.6), we get:

1. We commence by establishing the initial property

∆(f + h) = div
(
grad(f + h)

)
= div(gradf + gradh) = div(gradf) + div(gradh)

= ∆(f) + ∆(h).

2. Lastly, we address the final property

∆(fh) = div
(
grad(fh)

)
= div

(
hgradf + fgradh

)
= hdiv(gradf) + gradf(h) + gradh(f) + fdiv(gradh)

= h∆(f) + 2g(gradf, gradh) + f∆(h).

Proof to Lemma 5:

1. The initial skew-symmetry readily emerges from Definition 10 delineated in (8.1)

R(X,Y )Z = ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z

= −
(
∇Y ∇XZ − ∇X∇Y Z + ∇[Y,X]Z

)
= −R(Y,X)Z.

The secondary skew-symmetry arises from the compatibility of the metric tensor g with the Levi-Cevita connection
∇

[X,Y ]
(
g(Z,W )

)
= X

(
Y (g(Z,W ))

)
− Y

(
X(g(Z,W ))

)
= X

(
g(∇Y Z,W ) + g(Z,∇YW )

)
− Y

(
g(∇XZ,W ) + g(Z,∇XW )

)
= g(∇X∇Y Z,W ) + g(∇Y Z,∇XW ) + g(∇XZ,∇YW ) + g(Z,∇X∇YW )
− g(∇Y ∇XZ,W ) − g(∇XZ,∇YW ) − g(∇Y Z,∇XW ) − g(Z,∇Y ∇XW )
= g(R(X,Y )Z,W ) + g(∇[X,Y ]Z,W ) + g(R(X,Y )W,Z) + g(∇[X,Y ]W,Z)
= g(R(X,Y )Z,W ) + g(∇[X,Y ]Z,W ) + g(R(X,Y )W,Z) + [X,Y ]

(
g(Z,W )

)
− g(∇[X,Y )Z,W ) =⇒ g(R(X,Y )Z,W ) + g(R(X,Y )W,Z) = 0.

To establish the final symmetry, we are compelled to demonstrate the first Bianchi identity.
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2. Through direct computation employing equation (8.1)

R(X,Y )Z +R(Z,X)Y +R(Y,Z)X = ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z + ∇Z∇XY − ∇X∇ZY − ∇[Z,X]Y

+ ∇Y ∇ZX − ∇Z∇YX − ∇[Y,Z]X

= ∇X(∇Y Z − ∇ZY ) − ∇[Y,Z]X + ∇Y (∇ZX − ∇XZ) − ∇[Z,X]Y

+ ∇Z(∇XY − ∇YX) − ∇[X,Y ]Z = [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]].

resulting from the application of Jacobi’s identity as articulated in equation (6.4). Returning to the third
symmetry property, we ascertain

g(R(X,Y )Z,W ) = −g(R(Z,X)Y,W ) − g(R(Y, Z)X,W )
= g(R(Z,X)W,Y ) + g(R(Y,Z)W,X)
= −g(R(X,W )Z, Y ) − g(R(W,Z)X,Y ) − g(R(W,Y )Z,X) − g(R(Z,W )Y,X)
= 2g(R(Z,W )X,Y ) + g(R(X,W )Y, Z) + g(R(W,Y )X,Z)
= 2g(R(Z,W )X,Y ) − g(R(Y,X)W,Z)
= 2g(R(Z,W )X,Y ) − g(R(X,Y )Z,W ) =⇒ g(R(X,Y )Z,W ) = g(R(Z,W )X,Y ).

3. For the second Bianchi identity, we derive

∇XR(Y, Z)W + ∇ZR(X,Y )W + ∇YR(Z,X)W
= ∇X(R(Y, Z)W ) −R(∇XY, Z)W −R(Y,∇XZ)W −R(Y,Z)∇XW

+ ∇Y (R(Z,X)W ) −R(∇Y Z,X)W −R(Z,∇YX)W −R(Z,X)∇YW

+ ∇Z(R(X,Y )W ) −R(∇ZX,Y )W −R(X,∇ZY )W −R(X,Y )∇ZW.

Leveraging (6.4) in conjunction with the preceding findings, we deduce

R([X,Z], Y )W +R([Y,X], Z)W +R([Y, Z], X)W = R(∇XZ − ∇ZX,Y )W −R(∇ZX,Y )W +R(∇YX,Z)W
−R(∇XY, Z)W +R(∇ZY,X)W −R(∇Y Z,X)W
= −R(Y,∇XZ)W −R(∇ZX,Y )W −R(Z,∇YX)W
−R(∇XY, Z)W −R(X,∇Y Z)W −R(∇ZY,X)W.

Subsequently, employing direct substitution, we arrive at

∇XR(Y,Z)W + ∇ZR(X,Y )W + ∇YR(Z,X)W = R([X,Z], Y )W +R([Y,X], Z)W +R([Y, Z], X)W
+ ∇X(R(Y,Z)W ) + ∇Y (R(Z,X)W ) + ∇Z(R(X,Y )W ) −R(Y, Z)∇XW −R(Z,X)∇YW −R(X,Y )∇ZW = ⋆.

Expanding ⋆ utilizing equation (8.1)

⋆ = ∇[X,Z]∇YW − ∇Y ∇[X,Z]W − ∇[[X,Z],Y ]W + ∇[Y,X]∇ZW − ∇Z∇[Y,X]W

− ∇[[Y,X],Z]W + ∇[Y,Z]∇XW − ∇X∇[Y,Z]W − ∇[[Y,Z],X]W + ∇X∇Y ∇ZW

− ∇X∇Z∇YW − ∇X∇[Y,Z]W + ∇Y ∇Z∇XW − ∇Y ∇X∇ZW − ∇Y ∇[Z,X]W

+ ∇Z∇X∇YW − ∇Z∇Y ∇XW − ∇Z∇[X,Y ]W − ∇Y ∇Z∇XW + ∇Z∇Y ∇XW

+ ∇[Y,Z]∇XW − ∇Z∇X∇YW + ∇X∇Z∇YW + ∇[Z,X]∇YW − ∇X∇Y ∇ZW

+ ∇Y ∇X∇ZW + ∇[X,Y ]∇ZW.

After simplification, we arrive at the following equality

⋆ = −∇[[X,Z],Y ]+[[Y,X],Z]+[[Y,Z],X]W = 0 =⇒ ∇XR(Y,Z)W + ∇ZR(X,Y )W + ∇YR(Z,X)W = 0,

resulting from the application of Jacobi’s identity as articulated in equation (6.4).
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Proof to Theorem 2: From formula (8.4), we have

g(R(X,Y )Y,X) = κ
(
g(X,X)g(Y, Y ) − g(X,Y )2). (A.1)

We shall compute the quantity g(R(X + Z, Y )Y,X + Z). From one hand, using (A.1)

g(R(X + Z, Y )Y,X + Z) = κ
(
g(X + Z,X + Z)g(Y, Y ) − g(X + Z, Y )2)

= κ

((
g(X,X) + 2g(X,Z) + g(Z,Z)

)
g(Y, Y ) − g(X,Y )2 − 2g(Z, Y )g(X,Y ) − g(Z, Y )2

)
= g(R(X,Y )Y,X) − g(Z, Y )g(X,Y ) + g(R(Z, Y )Y,Z) + 2κ

(
g(X,Z)g(Y, Y ) − g(Z, Y )g(X,Y )

)
. (A.2)

on the other hand

g(R(X + Z, Y )Y,X + Z) = g(R(X,Y )Y,X) + g(R(Z, Y )Y,X) + g(R(X,Y )Y, Z) + g(R(Z, Y )Y,Z),

observe that g(R(Z,Y)Y,X)=g(R(X,Y)Y,X), thus

g(R(X + Z, Y )Y,X + Z) = g(R(X,Y )Y,X) + 2g(R(X,Y )Y,Z) + g(R(Z, Y )Y,Z). (A.3)

Setting equations (A.2) and (A.3) equal, yields

g(R(X,Y )Y,Z) = κ
(
g(X,Z)g(Y, Y ) − g(Z, Y )g(X,Y )

)
= κ

(
g(g(Y, Y )X,Z) − g(g(X,Y )Y, Z)

)
.

Since Z is an arbitrary vector field, we get

R(X,Y )Y = κ
(
g(Y, Y )X − g(X,Y )Y

)
. (A.4)

Using (A.4), we compute R(X,Y + Z)(Y + Z)

R(X,Y + Z)(Y + Z) = κ
(
g(Y + Z, Y + Z)X − g(X,Y + Z)(Y + Z)

)
= κ

[(
g(Y, Y ) + 2g(Y,Z) + g(Z,Z)

)
X − g(X,Y )Y − g(X,Y )Z − g(X,Z)Y − g(X,Z)Z

]
= κ

(
g(Y, Y )X − g(X,Y )Y

)
+ κ
(
g(Z,Z)X − g(X,Z)Z

)
+ κ
(
2g(Y,Z)X − g(X,Y )Z − g(X,Z)Y

)
.

Hence
R(X,Y + Z)(Y + Z) = R(X,Y )Y +R(X,Z)Z + κ

(
2g(Y,Z)X − g(X,Y )Z − g(X,Z)Y

)
. (A.5)

On the other hand, we have

R(X,Y + Z)(Y + Z) = R(X,Y )Y +R(X,Y )Z +R(X,Z)Y +R(X,Z)Z. (A.6)

Setting equation (A.5) and (A.6) equal we obtain

R(X,Y )Z +R(X,Z)Y = κ(2g(Y,Z)X − g(X,Y )Z − g(X,Z)Y ). (A.7)

Using Bianchi’s first identity along with equation (A.7), one can obtain

2R(X,Y )Z +R(Y, Z)X = κ(2g(Y, Z)X − g(X,Y )Z − g(X,Z)Y ),

where after swapping X and Y we get

2R(X,Y )Z +R(Y, Z)X = κ(2g(Y, Z)X − g(X,Y )Z − g(X,Z)Y ). (A.8)

Substracting formulas (A.7) and (A.8) results in

3R(X,Y )Z = 3κ
(
g(Y, Z)X − g(X,Z)Y

)
.
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Proof to Corollary 1: Let {e1, ..., en} be an orthonormal basis of (M, g). Using the fact (5.2) and (8.5) along with
(9.1), we have

QX =
n∑
i=1

R(X, ei)ei = κ

n∑
i=1

(g(ei, ei)X − g(X, ei)ei)

= κ

(
nX −

n∑
i=1

g(X, ei)ei

)
= κ(n− 1)X. (A.9)

Substituting (A.9) in (9.2), gives
S(X,Y ) = κ(n− 1)g(X,Y ), (A.10)

and by direct computation of the trace of (A.10) we obtain

r = κn(n− 1).



PART

IIIAlmost Contact Structures
This chapter delves into almost contact metric manifolds, revisiting their fundamental
definition and properties. It proceeds to categorize these structures into distinct classes,
providing illustrative examples along the way. A particular focus will be given to the
comprehensive examination of Trans-Sasakian manifolds and C12 manifolds within this
broader framework.
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Section 11. Some Classes of
Almost Contact Metric Struc-
tures.
Section 12. Examples.
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Figure 20. Vladimir Igore-
vich Arnold 1937-2010.

Section 10

Generalities

Contact geometry originated from the pioneering work of the Norwegian mathematician
Sophus Lie during the late 19th century [44]. Lie, renowned for his advancements in
differential equations and the formulation of Lie groups, introduced the fundamental
concept of contact transformations as part of his investigations into partial differential
equations. Subsequently, luminaries such as Élie Cartan and Vladimir Arnold Fig-
ure 20 enriched contact geometry, extending its applications and forging connections
with other mathematical domains, notably symplectic geometry and classical mechanics
[2, 3]. In a distinct application, Hoffman utilized contact geometry to elucidate phe-
nomena in the visual cortex [80]. From [15, 81], we shall extract what is necessary for
Part IV and Part VI.

Definition 14 An almost contact structure on a smooth manifold M is denoted by the triple (φ, ξ, η), where φ is a tensor field of
type (1, 1), ξ is a vector field, and η is a differential one-form, where the endomorphism

φ : Γ(TM) −→ Γ(TM)

satisfies
φ2 = −Id + η ⊗ ξ and η(ξ) = 1. (10.1)

In this case, (φ, ξ, η) is referred to as an almost contact structure on M .

Remark From Definition 14, we can conclude the following:

1. φ induces a complex structure on the orthogonal distribution D to ξ.

2. The vector field ξ belongs to the kernel of φ, signifying that it is tangent to the distribution D defined by η

D = {X ∈ Γ(TM) | η(X) = 0}. (10.2)

In essence, an almost contact structure delineates a geometric configuration wherein φ governs a complex-like structure
on a specific subspace of tangent vectors, while ξ and η dictate the characteristics of a complementary subspace, forming
a distinctive interplay between different geometric objects on the manifold M . Conditions (2) and (??) provides a
splitting of the tangeant bundle Γ(TM)

Γ(TM) = D ⊕ {ξ}. (10.3)

35
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An almost contact metric manifold is typically defined on a manifold of odd dimension, specifically of dimension (2n+1).
This is because the structure involves a tangent hyperplane field, which is naturally defined in odd dimensions (see, [?
]). Thus, it satisfies the following

φξ = 0, η ◦ φ = 0, rankφ = 2n. (10.4)

Theorem 3 On any smooth almost contact manifold (M,φ, ξ, η), there exist a metric g compatible with the almost contact
structure (φ, ξ, η), such that

g(φX,φY ) = g(X,Y ) − η(X)η(Y ), (10.5)

for any vector field X,Y on M and (M,φ, η, ξ, g) is called an almost contact metric manifold.

Immediately, from (10.1) and (10.5), we obtain

g(φX, Y ) = −g(X,φY ), η(X) = g(X, ξ), (10.6)

Definition 15 We associates to every almost contact metric manifold (M,φ, ξ, η, g) a fundamental 2-form Φ expressed by

Φ(X,Y ) = g(X,φY ), (10.7)

for any vector fields X,Y on M .

Lemma 6 The fundamental 2-form Φ satisfy the following for any arbitraty vector fields X and Y on M{
1. Φ(X,Y ) = −Φ(Y,X),
2. Φ(φX,φY ) = Φ(Y,X).

Definition 16 We say that (M,φ, ξ, η, g) is normal if and only if

N (1) = Nφ + 2dη ⊗ ξ = 0, (10.8)

and is integrable if and only if
Nφ = 0, (10.9)

where Nφ is the Nijenhuis tensor, expressed by

Nφ(X,Y ) = φ2[X,Y ] + [φX,φY ] − φ[X,φY ] − φ[φX, Y ]. (10.10)

When referring to the concept of integrability, we specifically denote the integrability of the distribution D in accordance
with the Frobenius sense [38], elucidating the following

∀X,Y ∈ D : [X,Y ] ∈ D

We now state the following important result:

Theorem 4 Let (M,φ, ξ, η, g) be an almost contact metric manifold such that Nφ ̸= 0. Then,
any smooth function f on M that depends only on the direction of ξ is constant.

Figure 21. Ferdinand
Georg Frobenius 1849-
1917.

Proof Using the fact that D is not integrable along with (10.3) then, there exists X,Y ∈ D
such that

[X,Y ] ∝ ξ.
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Thus, for a function f that depends only on the direction of ξ

[X,Y ](f) = X(Y (f)) − Y (X(f)) = 0 ∝ ξ(f) =⇒ ξ(f) = 0,

which yields the result.

Section 11

Some Classes of Almost Contact Metric Structures

In 1990, [25] Chinea and González introduced a systematic classification framework for almost contact metric structures,
leveraging the properties of the second fundamental form Φ to delineate 12 distinct classes:

Class Defining equation

C1 (∇XΦ)(Y, Z) = 0, ∇η = 0.

C2 dΦ = ∇η = 0.

C3 (∇XΦ)(Y, Z) − (∇φXΦ)(φY,Z) = 0, δΦ = 0.

C4 (∇XΦ)(Y, Z) = − 1
2(n−1)

(
g(φX,φY )δΦ(Z)−g(φX,φZ)δΦ(Y )−Φ(X,Y )δΦ(φZ)+Φ(X,Z)δΦ(φY )

)
, δΦ(ξ) = 0.

C5 (∇XΦ)(Y, Z) = 1
2n

(
Φ(X,Z)η(Y ) − Φ(X,Y )η(Z)

)
δη.

C6 (∇XΦ)(Y, Z) = 1
2n

(
g(X,Z)η(Y ) − g(X,Y )η(Z)

)
δΦ(ξ).

C7 (∇XΦ)(Y, Z) = η(Z)(∇Y η)φX + η(Y )(∇φXη)Z, δΦ = 0.

C8 (∇XΦ)(Y, Z) = −η(Z)(∇Y η)φX + η(Y )(∇φXη)Z, δη = 0.

C9 (∇XΦ)(Y, Z) = η(Z)(∇Y η)φX − η(Y )(∇φXη)Z.

C10 (∇XΦ)(Y, Z) = −η(Z)(∇Y η)φX − η(Y )(∇φXη)Z.

C11 (∇XΦ)(Y, Z) = −η(X)(∇ξΦ)(φY, φZ).

C12 (∇XΦ)(Y, Z) = η(X)η(Z)(∇ξη)φY − η(X)η(Y )(∇ξη)φZ.

Table 5. Defining relations for each of the twelve classes

In the context of Table 5, several notable classes can be distinguished. For instance, the trivial class, commonly
denoted by C or |C|, represents the category of cosymplectic manifolds (sometimes referred to as co-Kähler by
certain authors). The class C1 corresponds to nearly K-cosymplectic manifolds, C5 to β-Kenmotsu manifolds,
and C6 to α-Sasakian manifolds. Additionally, the class C6 ⊕C7 encompasses quasi-Sasakian manifolds, while C12
pertains to corner manifolds.

Specifically, for a 3-dimensional manifolds, we have

C = C5 ⊕ C6 ⊕ C9 ⊕ C12.

Subsection 11.1

Trans-Sasakian Manifolds
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In the work of [59], the author establishes a clear definition when the structure (φ, ξ, η, g) attains Trans-Sasakian status:

Definition 17 An almost contact metric structure (φ, ξ, η, g) is Trans-Sasakian if and only if

dη = αΦ and dΦ = 2βη ∧ Φ, (11.1)

where α and β are smooth functions on M , expressed as follow:

2α = Trg(φ∇ξ), and 2β = divξ.

The subsequent delineation of a Trans-Sasakian manifold is provided in [57]:

Theorem 5 An almost contact metric manifold (M,φ, ξ, η, g) is an (α, β) Trans-Sasakian manifold if and only if(
∇Xφ

)
Y = α

(
g(X,Y )ξ − η(Y )X

)
+ β

(
g(φX, Y )ξ − η(Y )φX

)
. (11.2)

In their work [29], De and Tripathi established that for an (α, β) Trans-Sasakian manifold, the relationship between
α and β:

Proposition 1 In an (α, β) Trans-Sasakian manifold, the following is satisfied

ξ(α) + 2αβ = 0. (11.3)

Subsection 11.2

α-Sasakian Manifolds

Sasakian manifolds, and more generally α-Sasakian manifolds, are named in honor of the mathematician Shigeo
Sasaki Figure 22.

Definition 18 Let (M,φ, ξ, η, g) be a (2n+ 1)-dimensional almost contact metric manifold and Φ it’s fundamental 2-form. We say
that M is an α-Sasakian manifold if it is normal and

dη = αΦ and dΦ = 0. (11.4)

From formula (11.2), we deduce the following result for α-Sasakian manifold:

Corollary 2 (M,φ, ξ, η, g) is an α-Sasakian manifold if and only if(
∇Xφ

)
Y = α

(
g(X,Y )ξ − η(Y )X

)
, (11.5)

for all X,Y vector field on M .



Some Classes of Almost Contact Metric Structures β-Kenmotsu Manifolds 39

Corollary 3 α-Sasakian non-Cosymplectic manifolds are non-integrable.

Figure 22. Shigeo Sasaki
1912-1987.

Proposition 2 In an α-Sasakian manifold, the following is satisfied for any vector fields X,Y on M

∇Xξ = −αφX, (11.6)(
∇Xη

)
Y = −αg(φX, Y ), (11.7)

S(X, ξ) = 2nα2η(X) − φX(α). (11.8)

for all X,Y vector field on M .

Subsection 11.3

β-Kenmotsu Manifolds

Kenmotsu manifolds, or more broadly, β-Kenmotsu manifolds, are named in honor of the Japanese mathematician
Katsuei Kenmotsu.

Definition 19 Let (M,φ, ξ, η, g) be a (2n+ 1)-dimensional almost contact metric manifold and Φ it’s fundamental 2-form. We say
that M is an β-Kenmotsu manifold if it is normal, integrable and

dη = 0 and dΦ = 2βη ∧ Φ. (11.9)

The following results can be derived with ease:

Theorem 6 (M,φ, ξ, η, g) is an β-Kenmotsu manifold if and only if(
∇Xφ

)
Y = β

(
g(φX, Y )ξ − η(Y )φX

)
, (11.10)

for all X,Y vector field on M .

Proposition 3 In an β Kenmotsu manifold, the following is satisfied for any vector fields X,Y on M

∇Xξ = β
(
X − η(X)ξ

)
, (11.11)(

∇Xη
)
Y = β

(
g(X,Y ) − η(X)η(Y )

)
, (11.12)

S(X, ξ) = (−2nβ2 − ξ(β))η(X) − (2n− 1)X(β), (11.13)

for all X,Y vector field on M .

Corollary 4 β-Kenmotsu manifolds are integrable.

Consequently, we obtain: 
(1) : α− Sasakian ⇔ Trans-Sasaki of type (α, 0)
(2) : β −Kenmotsu ⇔ Trans-Sasaki of type (0, β)
(3) : Cosymplectic ⇔ Trans-Sasaki of type (0, 0)

Additionally, Marrero noted in [50] that for dimensions greater than or equal to 5, every (α, β) trans-Sasakian manifold
must either be an α-Sasakian or a β-Kenmotsu manifold, indicating that either α or β must be zero. Thus, based on
the equation (11.3), in an α-Sasakian manifold, we observe that ξ(α) = 0.
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Subsection 11.4

C12 Manifolds

In the framework of the classification of almost contact metric manifolds by Chinea and Gonzalez [25], Table 5,
a specific category of manifolds, termed C12-manifolds, is identified. These manifolds, though potentially integrable,
inherently lack normalcy. The characterization of C12-manifolds is expressed as

(∇Xϕ)(Y,Z) = η(X)η(Z)(∇ξη)φY − η(X)η(Y )(∇ξη)φZ.

The works of Bouzir, H.; Beldjilali, G.; Bayour, B. [16] and de Candia, S.; Falcitelli, M. [27] further elaborate
on the characterization of (2n+ 1)-dimensional C12-manifolds

(∇Xφ)Y = η(X)
(
ω(φY )ξ + η(Y )φψ

)
, (11.14)

for all X and Y vector fields on M where ω = −∇ξη is a closed 1-form and ψ = −∇ξξ is a vector field such that
ω(X) = g(X,ψ). Firstly, notice that the vector field ψ is perpendicular to ξ because g(ψ, ξ) = −g(∇ξξ, ξ) = 0.

Therefore, we have the following definition from [16] :

Definition 20 Let (M,φ, ξ, η, g) be an almost contact manifold. M is called almost C12-manifold if there exists a closed one-form
ω which satisfies

dη = ω ∧ η and dϕ = 0.

In addition, if Nφ = 0 we say that M is a C12-manifold and we denote it by (M,φ, ξ, ψ, η, ω, g).

By direct substitution of Y = ξ in (11.14) and derivating φξ = 0 along X an arbitrary vector field on M

0 = X(φξ) = (∇Xφ)ξ + φ(∇Xξ) = η(X)φψ + φ∇Xξ

=⇒ φ∇Xξ = −η(X)φψ.

Applying φ to both sides of the equation and using the fact η(∇Xξ) = 0 and η(ψ) = 0 yields

−∇Xξ = η(X)ψ =⇒ ∇Xξ = −η(X)ψ.

Taking the inner product of ∇Xξ with Y gives

(∇Xη)Y = g(∇Xξ, Y ) = −η(X)g(ψ, Y ) = −η(X)ω(Y ).

Using (8.1), we have

R(X,Y )ξ = ∇X∇Y ξ − ∇Y ∇Xξ − ∇[X,Y ]ξ = −X(η(Y )ψ) + Y (η(X)ψ) + η([X,Y ])ψ
= −

(
(∇Xη)Y + η(∇XY )

)
ψ − η(Y )∇Xψ +

(
(∇Y η)X + η(∇YX)

)
ψ + η(X)∇Y ψ +

(
η(∇XY ) − η(∇YX)

)
ψ

=
(

− (∇Xη)Y + (∇Y η)X
)
ψ + η(X)∇Y ψ − η(Y )∇Xψ.

Using formula (6.17), we get an important result

R(X,Y )ξ = −2dη(X,Y )ψ + η(X)∇Y ψ − η(Y )∇Xψ. (11.15)

Taking the inner product of R(X,Y )ξ with Z and using symmetries we obtain

g(R(X,Y )ξ, Z) = −2dη(X,Y )ω(Z) + η(X)g(∇Y ψ,Z) − η(Y )g(∇Xψ,Z) = g(R(ξ, Z)X,Y ).
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Considering an orthonormal basis {ei}{i=1...2n} and using formula (9.2)

S(ξ, Y ) =
i=2n∑
i=1

g(R(ξ, ei)ei, Y ) = g(∇Y ψ, ξ) −
i=2n∑
i=1

+2dη(ei, Y )ω(ei) + η(Y )g(∇eiψ, ei).

First, we have

i=2n∑
i=1

−2dη(ei, Y )ω(ei) =
i=2n∑
i=1

−2dη(ei, Y )g(ψ, ei) =
i=2n∑
i=1

−2dη(g(ψ, ei)ei, Y )

= −2dη(ψ, Y ) = −(∇ψη)Y + (∇Y η)ψ = η(ψ)ω(Y ) − η(Y )ω(ψ) = −η(Y ).

On the other hand, differentiating ω(ξ) = 0 along X, we get

0 = X(ω(ξ)) = X(g(ψ, ξ)) = g(∇Xψ, ξ) + g(ψ,∇Xξ) = g(∇Xψ, ξ) − η(X) =⇒ g(∇Xψ, ξ) = η(X).

With direct substitutions and using (7.2), the result obtained in [8] is concluded:

Proposition 4 The following is satisfied in a C12-manifold

∇Xξ = −η(X)ψ, (11.16)
(∇Xη)Y = −η(X)ω(Y ), (11.17)
S(X, ξ) = −η(X)divψ. (11.18)

for all X,Y vector field on M .

In 3-dimensional configuration, the theorem articulated in [16] stands affirmed:

Theorem 7 Let (M,φ, ξ, η, g) be a 3-dimensional almost contact metric manifold. M is C12-manifold if and only if

∇Xξ = −η(X)ψ,

for all vector field on M .

Herein, we present an alternative delineation of a C12-manifold possessing a dimensionality of 2n+ 1. We show that

(∇Xφ)Y = η(X)
(
ω(φY )ξ + η(Y )φψ

)
,

is equivalent to
(∇φXφ)Y = 0.

Suppose that (∇Xφ)Y = η(X)
(
ω(φY )ξ + η(Y )φψ

)
. So due to (10.4), replacing X by φX we get (∇φXφ)Y = 0.

Conversely, assume that
(∇φXφ)Y = 0 (11.19)

and replacing X by φX we get
(∇Xφ)Y = η(X)(∇ξφ)Y. (11.20)
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Also, in (11.19) replacing Y by ξ then apply φ and then replacing X by φX, we obtain

0 = (∇φXφ)ξ
= φ∇φXξ

= ∇φXξ

= ∇φ2Xξ

= −∇Xξ + η(X)∇ξξ.

Hence
∇Xξ = −η(X)ψ, where ψ = −∇ξξ. (11.21)

On the other hand, knowing that dϕ = 0 that is

g
(
X, (∇Zφ)Y

)
+ g
(
Z, (∇Y φ)X

)
+ g
(
Y, (∇Xφ)Z

)
= 0,

putting Z = ξ, we obtain

0 = g
(
X, (∇ξφ)Y

)
+ g
(
ξ, (∇Y φ)X

)
+ g
(
Y, (∇Xφ)ξ

)
= g

(
X, (∇ξφ)Y

)
+ g
(
ξ,∇Y φX

)
− g
(
Y, φ∇Xξ

)
= g

(
X, (∇ξφ)Y

)
− g
(
∇Y ξ, φX

)
+ g
(
φY,∇Xξ

)
,

now, using (11.21), we get

0 = g
(
X, (∇ξφ)Y

)
+ η(Y )g

(
ψ,φX

)
− η(X)g

(
φY, ψ

)
= g

(
X, (∇ξφ)Y

)
− g
(
η(Y )φψ,X

)
− g
(
ω(φY )ξ,X

)
,

where ω(X) = g(X,ψ), which gives
(∇ξφ)Y = η(Y )φψ + ω(φY )ξ,

replacing this relation in (11.20), we obtain

(∇Xφ)Y = η(X)
(
ω(φY )ξ + η(Y )φψ

)
.

This yields the following deep result:

Theorem 8 An almost contact metric manifold (M,φ, ξ, η, g) is of class C12 if and only if for all X and Y vector fields on M

(∇φXφ)Y = 0. (11.22)

A 3-dimensional C12 manifold exhibits complete controllability, signifying the existence of a naturally derived global
orthonormal basis denoted by {ξ, ψ, φψ}.

Section 12

Examples

In the concluding section of this chapter, we present concrete examples illustrating each
of the previously introduced classes:
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Example 12.1. [10](α, β) Trans-Sasakian:

We denote the Cartesian coordinates in a 3-dimensional Euclidean space R3 by (x, y, z) and define a symmetric tensor
field g by

g =

ρ2 + τ2 0 −τ
0 ρ2 0

−τ 0 1

 ,

where ρ and τ are functions on R3 such that ρ ̸= 0 everywhere. Further, we define an almost contact metric (φ, ξ, η)
on R3 by

φ =

0 −1 0
1 0 0
0 0 0

 , ξ =

0
0
1

 , η = (−τ, 0, 1).

The fundamental 1-form η and the 2-form φ can be expressed as

η = dz − τdx, φ = −2ρ2dx ∧ dy,

and hence

dη = τ2dx ∧ dy + τ3dx ∧ dz, dφ = −4ρ3dx ∧ dy ∧ dz,

where ρi = ∂ρ
∂xi

and τi = ∂τ
∂xi

.
We know that the components of the Nijenhuis tensor Nφ can be written as

Nij = φk(∂iφkj − ∂jφ
k
i ) − φki (∂kφlj − ∂lφ

l
i) + ηk(∂jξk) − ηj(∂kξk),

where the indices i, j, k and l run over the range {1, 2, 3}, then by a direct computation we can verify that

Nij = 0, ∀i, j, k,

implying that the structure (φ, ξ, η, g) is normal and:
(1) : Sasakian when τ2 = −2ρ2 and τ3 = τ = 0,
(2) : Cosymplectic when ρ3 = 0 and τ2 = τ3 = 0,
(3) : Kenmotsu when ρ3 = ρ and τ2 = τ3 = 0.

Example 12.2. α-Sasakian:
Let M = {(x, y, z) ∈ R3 / z > 0} and {e1, e2, e3} be the frame of vector fields on M given by

e1 = ∂

∂x
, e2 = −2σ

z

∂

∂y
, e3 = y

∂

∂x
+ z

∂

∂z
,

where σ = σ(y) is a non zero function on M . We define a Riemannian metric g by

g =

 1 0 −y
z

0 1
4σ2 0

−y
z 0 1+y2

z2

 ,

Let ∇ be the Riemannian connection of g, then we have

[e2, e3] = −2σe1.
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By using the Koszul’s formula (6.5) for the Riemannian metric g, the non zero components of the Levi-Civita connection
corresponding to g are given by:

∇e1e2 = ∇e2e1 = σe3, ∇e1e3 = ∇e3e1 = −σe2 and ∇e3e2 = −∇e2e3 = σe1.

For ξ = e1 and setting
φe1 = 0, φe2 = ϵe3 and φe3 = −ϵe2,

which gives

φ = ϵ

 0 − y
2σ 0

0 0 2σ
z

0 − z
2σ 0

 ,

then, (φ, ξ, η, g) is an almost contact metric structure on M with η = dx− y
z dz. One easily can get

α = −
3∑
i=1

g(∇eiξ, φei) = −2σ, and β = 0,

which implies that (φ, ξ, η, g) is an α-Sasakian structure where α = −ϵσ.

Example 12.3. β-Kenmotsu:
Let M = {(x, y, z) ∈ R3 / z > 0} and {e1, e2, e3} be the frame of vector fields on M given by

e1 = 1
z

∂

∂x
, e2 = 1

z

∂

∂y
, e3 = ∂

∂z
.

We define a Riemannian metric g by
g = z2(dx2 + dy2) + dz2.

Let ∇ be the Riemannian connection of g, then we have

[e1, e3] = 1
z
e1, [e2, e3] = 1

z
e2.

By using Koszul formula (6.5) for the Riemannian metric g, the non zero components of the Levi-Civita connection
corresponding to g are given by:

∇e1e1 = −1
z
e3, ∇e1e3 = 1

z
e1, ∇e2e2 = −1

z
e3 and ∇e2e3 = 1

z
e2.

For U = ze3 and define

φ = ϵ

 0 −1 0
1 0 0
0 0 0

 ,

then, (φ, ξ, η, g) is an almost contact metric structure on M with η = dz. One easily can get

α = −
3∑
i=1

g(∇eiξ, φei) = 0 and β = 1
2

3∑
i=1

g(∇eiξ, ei) = 1
z
,

which allows us to conclude that (φ, ξ, η, g) is a Trans-Sasakian structure of type (0, 1
z ) i.e., β-Kenmotsu structure.
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Example 12.4. C12:
We denote the Cartesian coordinates in a 3-dimensional Euclidean space R3 by (x1, x2, x3) and define a symmetric
tensor field g by

g =

 ρ(x1, x2, x3)2 0 0
0 τ(x1, x2, x3)2 0
0 0 σ(x1, x2, x3)2

 ,

where ρ, τ and σ are functions on R3 and ρτσ ̸= 0 everywhere. Further, we define an almost contact metric (φ, ξ, η)
on R3 by

φ =

 0 −1 0
1 0 0
0 0 0

 , ξ = 1
ρ

 0
0
1

 , η =
(
0, 0, ρ

)
.

Notice that dη = ρ2dx2 ∧ dx1 + ρ3dx3 ∧ dx1 = ω ∧ η with ω = ρ2
ρ dx2 + ρ3

ρ dx3, where ρi = ∂ρ
∂xi

.
Therefore

ψ = ρ2

τρ
e1 + ρ3

σρ
e2.

We give the following orthonormal basis

ξ = 1
ρ

∂

∂x1
, e1 = 1

τ

∂

∂x2
, e2 = 1

σ

∂

∂x3
.

So, the components of the Levi-Civita connection corresponding to g are written

∇ξξ = − ρ2
τρe1 − ρ3

ρσ e2, ∇ξe1 = ρ2
τρξ, ∇ξe2 = ρ3

ρσ ξ,

∇e1ξ = τ1
τρe1, ∇e1e1 = − τ1

τρξ − τ3
τσ e2, ∇e1e2 = τ3

τσ e1,

∇e2ξ = σ1
ρσ e2, ∇e2e1 = σ2

τσ e2, ∇e2e2 = − σ1
ρσ ξ − σ2

τσ e1.

Using Theorem 7, one can check that (R3, φ, ξ, η, g) is a 3-parameter family of C12-manifolds if and only if

∇eiξ = −η(ei)ψ = −η(ei)
( ρ2

τρ
e1 + ρ3

σρ
e2

)
,

where i ∈ {0, 1, 2} with e0 = ξ, i.e.

∇ξξ = − ρ2

τρ
e1 − ρ3

ρσ
e2, ∇e1ξ = ∇e2ξ = 0.

From the above components of the Levi-Civita connection, we get

τ1 = σ1 = 0.

Example 12.5. C12:
We denote the Cartesian coordinates in a 3-dimensional Euclidean space R3 by (x1, x2, x3) and define a metric tensor
g by

g = e2f

 ρ2 + τ2 0 −τ
0 ρ2 0

−τ 0 1

 ,

where f = f(y), τ = τ(x) and ρ = ρ(x, y) are functions on R3 with f ′ = ∂f
∂y .
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Further, we define an almost contact structure (φ, ξ, η) on R3 by

φ =

 0 −1 0
1 0 0
0 −τ 0

 , ξ = e−f

 0
0
1

 , η = ef
(

− τ, 0, 1
)
.

Thus
dη = f ′ef

(
τdx ∧ dy + dy ∧ dz

)
and dΦ = 0.

By direct computation, the non-zero components of N (1)i
k j are

N
(1)3
12 = τf ′ and N

(1)3
23 = f ′.

On the other hand
(Nφ)ikj = 0, ∀i, j, k ∈ {1, 2, 3},

implies that the structure (φ, ξ, η, g) is integrable. To ensure that the defined structure is not normal, it suffices to
take f ′ ̸= 0. Also, taking ω = f ′dy, we can see that

dη = ω ∧ η, ω(ξ) = 0 and dω = 0.

We denote ψ the g-dual of ω
ψ = f ′

ρ2 e
2f ∂

∂y
.

Thus, (M,φ, ξ, ψ, η, ω, g) is a C12-structure on R3.
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Section B

Appendix B

Proof to Proposition 1: Using (11.1) from Definition 17, we have{
dη = αΦ,
dΦ = 2βη ∧ Φ,

=⇒

{
0 = d2η = dα ∧ Φ + αdΦ,
dΦ = 2βη ∧ Φ,

this leads to
(dα+ 2αβη) ∧ Φ = 0 =⇒ X(α) + 2αβη(X) = 0, ∀X ∈ Γ(TM).

The proof is concluded by setting X = ξ.

Proof to Lemma 6: Consider any vector fields X and Y on M . Then, by virtue of (10.1), (10.5) and (10.6):

1. For the first equality, we have

Φ(X,Y ) = g(X,φY ) = −g(φX, Y ) = −Φ(Y,X).

2. For the second one

Φ(φX,φY ) = g(φX,φ2Y ) = g(φX,−Y + η(X)ξ) = −g(φX, Y ) = Φ(Y,X).
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IVMetric Deformations
In this chapter, we will explore different deformations of the metric tensor and analyze
the resulting Levi-Civita connection and curvature tensors. These deformations will
be applied to both Riemannian manifolds and certain classes of almost contact metric
manifolds. Additionally, we will derive conditions of rigidity for the latter.

Section 13. Conformal Defor-
mation.
Section 14. D-Isometric
Deformation.
Section 15. Generalized
D-Conformal Deformation.

Table 6. Contents for Part IV

The concept of metric deformation serves as a fundamental tool in differential ge-
ometry, offering a versatile framework for exploring the intrinsic properties of geometric
structures. Metric deformation involves systematically altering the metric tensor while
preserving certain geometric properties, such as curvature or volume.
By allowing for controlled modifications to the metric, this approach enables mathematicians and physicists to investi-
gate the behavior of geometric objects under perturbations, shedding light on the underlying symmetries and geometric
relationships.Metric deformation assumes a fundamental role in investigating novel geometric structures. It serves a
dual purpose by facilitating the examination of their rigidity while also enabling the generation of new examples from
pre-existing structures through deformation. In essence, the notion of metric deformation embodies a powerful ana-
lytical technique, empowering researchers to uncover deeper insights into the intricate geometry of mathematical and
physical systems. This chapter endeavors to delve into conformal metric deformation and its diverse manifestations.
Through a meticulous examination of different scenarios, we aim to unravel the nuanced intricacies inherent in such
deformations. As a practical application, we shall scrutinize these deformations within the context of select classes
of almost contact metric manifolds, thereby elucidating their implications and ramifications in the broader domain of
differential geometry.

Section 13

Conformal Deformation

In the context of an n-dimensional Riemannian manifold (M, g), a conformal deformation refers to a modification of
the metric g in the following manner

g̃ = f2g, (13.1)

where f represents a smooth non-zero function defined on M . Utilizing Kozsul’s formula (6.5), we obtain

2g̃(∇XY,Z) = X(g̃(Y, Z)) + Y (g̃(X,Z)) − Z(g̃(X,Y )) + g̃([X,Y ], Z) + g̃([Z, Y ], X) − g̃([Y,Z], X)

= f2
(
Xg(Y,Z) + Y (g(X,Z) − Zg(X,Y ) + g([X,Y ], Z) + g([Z, Y ], X) − g([Y, Z], X)

)
+X(f2)g(Y,Z) + Y (f2)g(X,Z) − Z(f2)g(X,Y ).

By employing Definition 1 and formula (7.1), we obtain
1. X(f2)g(Y,Z) = g

(
X(f2)Y,Z

)
,

2. Y (f2)g(X,Z) = g
(
Y (f2)X,Z

)
,

3. Z(f2)g(X,Y ) = g(gradf2, Z)g(X,Y ) = g
(
g(X,Y )gradf2, Z

)
.

Furthermore, derived from equation (13.1), we have

2g̃(∇̃XY,Z) = 2f2g(∇̃XY,Z).

48
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This leads to the following conclusion

2f2g(∇̃XY,Z) = 2f2g(∇XY,Z) + g
(
Y (f2)X,Z

)
+ g
(
Y (f2)X,Z

)
− g
(
g(X,Y )gradf2, Z

)
,

which gives

∇̃XY = ∇XY + Y (f2)
f2 X + X(f2)

f2 Y − gradf2

f2 g(X,Y ).

Utilizing the fact that X(ln f2) = X(f2)
f2 and setting h = ln f2, the following result is attained

∇̃XY = ∇XY + Y (h)X +X(h)Y − g(X,Y )grad(h). (13.2)

Proposition 5 By conformal deformation, the Levi-Cevita connection ∇̃ is provided by formula (13.2)

In light of equation (8.1), we have

R̃(X,Y )Z = ∇̃X∇̃Y Z − ∇̃Y ∇̃XZ − ∇̃[X,Y ]Z. (13.3)

Through lengthy direct computations employing equation (13.2), we obtain

∇̃X∇̃Y Z = ∇X∇Y Z − g(Y,Z)
(
∇Xgradh+ |gradh|2X

)
+
(
(∇XY )(h) + Hessh(X,Z)

)
Z (13.4)

+ Y (h)
(
∇XZ + Z(h)X +X(h)Z − g(X,Z)gradh

)
+
(
(∇XZ)(h) + Hessh(X,Z)

)
Y

+ Z(h)
(
∇XY + Y (h)X +X(h)Y − g(X,Y )gradh

)
+X(h)∇Y Z + (∇Y Z)(h)X

−
(
g(∇XY,Z) + g(Y,∇XZ)

)
gradh.

Likewise, in a similar manner

∇̃Y ∇̃XZ = ∇Y ∇XZ − g(X,Z)
(
∇Y gradh+ |gradh|2Y

)
+
(
(∇YX)(h) + Hessh(Y, Z)

)
Z (13.5)

+X(h)
(
∇Y Z + Z(h)Y + Y (h)Z − g(Y,Z)gradh

)
+
(
(∇Y Z)(h) + Hessh(Y,Z)

)
X

+ Z(h)
(
∇YX +X(h)Y + Y (h)X − g(Y,X)gradh

)
+ Y (h)∇XZ + (∇XZ)(h)Y

−
(
g(∇YX,Z) + g(X,∇Y Z)

)
gradh.

Similarly

∇̃[X,Y ]Z = ∇[X,Y ]Z + Z(h)
(
∇XY − ∇YX

)
+ (∇XY )(h)Z − (∇YX)(h)Z −

(
g(∇XY,Z) − g(∇YX,Z)

)
gradh. (13.6)

Hence, R̃ arises through the substitution of equations (13.4), (13.5), and (13.6) into equation (13.3)

R̃(X,Y )Z = R(X,Y )Z − g(Y,Z)
(
∇Xgradh+ |gradh|2X

)
+ g(X,Z)

(
∇Y gradh+ |gradh|2Y

)
+
(
X(h)g(Y, Z) − Y (h)g(X,Z)

)
gradh+ Hessh(X,Z)Y − Hessh(Y,Z)X

+
(
g(X,∇Y Z) − g(Y,∇XZ)

)
gradh+ Z(h)

(
Y (h)X −X(h)Y

)
. (13.7)

Proposition 6 By conformal deformation, the Riemann curvature tensor R̃ is provided by formula (13.7).

Let us examine the orthonormal basis {ẽi}{1<i<n} such that

ẽi = e−hei.

Drawing from equations (9.1) and (13.7), we discern
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Q̃X =
2n∑
i=1

R̃(X, ẽi)ẽi = e−h
n∑
i=1

R̃(X, ei)ei

= e−h
(
R(X, ei)ei − g(ei, ei)

(
∇Xgradh+ |gradh|2X

)
+ g(X, ei)

(
∇eigradh+ |gradh|2ei

)
+
(
X(h)g(ei, ei) − ei(h)g(X, ei)

)
gradh+ Hessf (X, ei)ei − Hessf (ei, ei)X

+
(
g(X,∇eiei) − g(ei,∇Xei)

)
gradh+ ei(h)

(
ei(h)X −X(h)ei

)
.

)
(13.8)

With the understanding that g(X,∇eiei) = g(ei,∇Xei) = 0, in conjunction with formulas (5.2) and (7.1), we deduce
the following facts 

∑n
i=1 g(X, ei)∇eigradh = ∇∑n

i=1
g(X,ei)eigradh = ∇Xgradh,∑n

i=1 g(X, ei)|gradh|2ei = |gradh|2
∑n
i=1 g(X, ei)ei = |gradh|2X,∑n

i=1 ei(h)g(X, ei) =
∑n
i=1 g(X, ei(h)ei) = g(X, gradh) = X(h),∑n

i=1 Hh(X, ei)ei =
∑n
i=1 g(∇Xgradh, ei)ei = ∇Xgradh,

and lastly
n∑
i=1

ei(h)ei(h) =
n∑
i=1

g(gradh, ei)g(gradh, ei) =
n∑
i=1

g(gradh, g(gradh, ei)ei) =
n∑
i=1

g(gradh, gradh) = |gradh|2.

Therefore, upon substitution into formula (13.8), the following outcome is obtained

Q̃X = e−h
(
QX − ∆(h)X − (n− 2)

(
X(h)gradh+ ∇Xgradh+ |gradh|2X

))
. (13.9)

Proposition 7 By conformal deformation, the Ricci operator Q̃ is provided by formula (13.9).

By considering the inner product g̃ of equation (13.9) with Y , and recognizing the relationship e−h = 1
f2 , we obtain

S̃(X,Y ) = g̃(Q̃X, Y ) = S(X,Y ) − ∆(h)g(X,Y ) − (n− 2)
(
X(h)g(gradh, Y ) + g(∇Xgradh, Y ) + |gradh|2g(X,Y )

)
.

The conclusion follows promptly from equations (7.1) and (7.5)

S̃(X,Y ) = S(X,Y ) − (n− 2)
(
Hh(X,Y ) +X(h)Y (h)

)
−
(
∆(h) + (n− 2)|gradh|2

)
g(X,Y ). (13.10)

Proposition 8 By conformal deformation, the Ricci curvature tensor S̃ is provided by formula (13.10).

Employing equations (9.3) and (13.10) the following is obtained

r̃ =
n∑
i=1

S̃(ẽi, ẽi) = e−h
n∑
i=1

S̃(ei, ei) = e−h
n∑
i=1

(
S(ei, ei) − (n− 2)

(
Hh(ei, ei) + ei(h)ei(h)

)
−
(
∆(h) + (n− 2)|gradh|2

))
= e−h

(
r − (n− 2)

(
∆(h) + |gradh|2

)
− n

(
∆(h) + (n− 2)|gradh|2

))
.

Through the straightforward rearrangement of analogous terms

r̃ = e−h(r − 2(n− 1)∆(h) − (n− 1)(n− 2)|gradh|2
)
. (13.11)
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Proposition 9 Under conformal deformation the scalar curvature r̃ associated with g̃ is provided by formula (13.11).

Section 14

D-Isometric Deformation

The findings delineated within this section are documented in the scholarly [31]. This form of deformation becomes
feasible exclusively when the tangent bundle Γ(TM) of the manifold admits a split structure represented as

Γ(TM) = D ⊕ {ξ},

where ξ signifies a non-trivial vector field on M . Consequently, employing such a deformation method proves advan-
tageous for delving into the properties of almost contact metric manifolds, given the inherent existence of ξ within
this structural context. However, as our initial published findings encompassed a broader scope, encompassing what
is known as compact gradient manifolds, we shall defer the exploration of almost contact metric manifolds to a
subsequent section, where a more comprehensive deformation shall be investigated.
A Riemannian manifold (M, g) of dimension n is said compact gradient, if there exists a unit closed 1-form η (i.e.
dη = 0), such that

g(∇Xξ, Y ) = g(∇Y ξ,X), g(∇Xξ, ξ) = 0 and ∇ξξ = 0. (14.1)

where η be the g-dual of ξ which means η(X) = g(X, ξ) for all vector field X on M . On the other hand, ξ is said a
Jacobi-Type vector field if and only if [23]

∇X∇Y ξ − ∇∇XY ξ −R(X, ξ)Y = 0. (14.2)

Substituting Y = ξ in (14.2) and using (14.1), one can obtain

∇∇Xξξ +R(X, ξ)ξ = 0. (14.3)

From [24], we have the following deep result

Theorem 9 Every Jacobi-type vector field on a compact Riemannian manifold is a Killing vector field.

We define on M a Riemannian metric, denoted g̃, by

g̃(X,Y ) = g(X,Y ) + η(X)η(Y ) where η(ξ) = 1. (14.4)

The equation η = 0 defines a (n− 1)-dimensional distribution D on M . Then, we have{
g̃(ξ, ξ) = 2,
g̃(X,X) = g(X,X), ∀X ∈ D.

That is why, we refer to this construction as D-isometric deformation. Note that the simplest case for this deformation
is for η = df where f ∈ C∞(M). In [46], Innami proved that M admits a non constant affine function if and only
if M splits as a Riemannian product M = N × R. In our situation, since dη = 0 then ξ is locally of type gradient,
what means that at each point p on M there exists a function f such that ξ = ∇f on a neighborhood at p, where ∇f
denotes the gradient vector field of f . Using Koszul’s formula (6.5) for the metric g̃ (14.4)

2g̃(∇̃XY,Z) = Xg̃(Y,Z) + Y g̃(Z,X) − Zg̃(X,Y ) − g̃(X, [Y, Z]) + g̃(Y, [Z,X]) + g̃(Z, [X,Y ]
= Xg(Y,Z) + Y g(Z,X) − Zg(X,Y ) − g(X, [Y, Z]) + g(Y, [Z,X]) + g(Z, [X,Y ])
+X

(
η(Y )η(Z)

)
+ Y

(
η(Z)η(X)

)
− Z

(
η(X)η(Y )

)
− η(X)η([Y,Z]) + η(Y )η([Z,X]) + η(Z)η([X,Y ]),
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one can obtain
g̃(∇̃XY,Z) = g̃(∇XY, Z) + 1

2
(
(∇Xη)Y + (∇Y η)X

)
η(Z).

Knowing that dη = 0, by virtue of (6.17)

2dη(X,Y ) = (∇Xη)Y − (∇Y η)X = 0 =⇒ (∇Xη)Y = (∇Y η)X.

Then, we get
g̃(∇̃XY,Z) = g̃(∇XY,Z) + (∇Xη)(Y )η(Z),

with
(∇Xη)(Y ) = g(∇Xξ, Y ).

On the other hand, we have
η(Z) = g(ξ, Z) = g̃(ξ, Z) − η(Z),

which gives
η(Z) = 1

2 g̃(ξ, Z).

Therefore

g̃(∇̃XY,Z) = g̃(∇XY, Z) + 1
2(∇Xη)(Y )g̃(Z, ξ) = g̃(∇XY,Z) + 1

2g(∇Xξ, Y )g̃(Z, ξ) = g̃(∇XY,Z) + 1
2 g̃(Z, g(∇Xξ, Y )ξ).

Hence, employing the non-degeneracy property inherent to the metric tensor denoted as g̃ yields the final result

∇̃XY = ∇XY + 1
2g(∇Xξ, Y )ξ, (14.5)

Proposition 10 Under D-isometric deformation the Levi-Cevita connection ∇̃ is provided by formula (14.5).

By utilizing formula (14.5), the first term of (13.3) is rendered as

∇̃X∇̃Y Z = ∇̃X

(
∇Y Z + 1

2g(∇Y ξ, Z)ξ
)

= ∇̃X∇Y Z + 1
2g(∇X∇Y ξ, Z)ξ + 1

2g(∇Y ξ,∇XZ)ξ + 1
2g(∇Y ξ, Z)∇̃Xξ

= ∇X∇Y Z + 1
2g(∇Xξ,∇Y Z)ξ + 1

2g(∇X∇Y ξ, Z)ξ + 1
2g(∇Y ξ,∇XZ)ξ + 1

2g(∇Y ξ, Z)∇Xξ. (14.6)

Employing a similar methodology, the second term of (14.6) is determined as

∇̃Y ∇̃XZ = ∇Y ∇XZ + 1
2g(∇Y ξ,∇XZ)ξ + 1

2g(∇Y ∇Xξ, Z)ξ + 1
2g(∇Xξ,∇Y Z)ξ + 1

2g(∇Xξ, Z)∇Y ξ. (14.7)

Given that dη = 0, the final term of (14.9) simplifies to

∇̃[X,Y ]Z = ∇[X,Y ] + 1
2g(∇[X,Y ]ξ, Z)ξ = ∇[X,Y ] + 1

2g(∇∇XY ξ, Z)ξ − 1
2g(∇∇YXξ, Z)ξ

= ∇[X,Y ] + 1
2g(∇Zξ,∇XY )ξ − 1

2g(∇Zξ,∇YX)ξ. (14.8)

A formula for R̃ ensues from the substitution of equations (14.6), (14.7), and (14.8) into (13.3)

2R̃(X,Y )Z = 2R(X,Y )Z − g
(
R(X,Y )Z, ξ

)
ξ + g(∇Y ξ, Z)∇Xξ − g(∇Xξ, Z)∇Y ξ. (14.9)

Proposition 11 Under D-isometric deformation the Riemann curvature tensor R̃ is provided by formula (14.9).
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let {ξ, ei}2≤i≤n denote the orthonormal basis on M with respect to the metric g. It can be readily shown that
{ 1√

2ξ, ei}2≤i≤n forms an orthonormal basis on M with respect to the metric g̃. Utilizing formulas (9.1) and (14.9), we
obtain

Q̃X = 1
2 R̃(X, ξ)ξ +

n∑
i=2

R̃(X, ei)ei = −1
2 R̃(X, ξ)ξ +

n∑
i=1

R̃(X, ei)ei

= −1
2R(X, ξ)ξ +

n∑
i=1

(
R(X, ei)ei − 1

2g
(
R(X, ei)ei, ξ

)
ξ + 1

2g(∇eiξ, ei)∇Xξ − 1
2g(∇Xξ, ei)∇eiξ

)
. (14.10)

Utilizing equations (5.2), (7.2), (14.1), and the fact that
n∑
i=1

g(∇Xξ, ei)∇eiξ = ∇∑n

i=1
g(∇Xξ,ei)eiξ = ∇∇Xξξ = −R(X, ξ)ξ,

we drive the following
2Q̃X = 2QX − S(X, ξ)ξ + (divξ)∇Xξ. (14.11)

Proposition 12 Under D-isometric deformation the Ricci operator Q̃ is provided by formula (14.11).

Employing formulas (9.2) and (14.4)

S̃(X,Y ) = g̃(Q̃X, Y ) = g(Q̃X, Y ) + η(Q̃X)η(Y )

= g(QX,Y ) − 1
2S(X, ξ)g(Y, ξ) + 1

2(divξ)g(∇Xξ, Y ) +
(
η(QX) − 1

2S(X, ξ) + 1
2(divξ)η(∇Xξ)

)
η(Y ),

suffice to recall that η(QX) = g(QX, ξ) = S(X, ξ) and η(∇Xξ) = 0. Hence, we obtain

2S̃(X,Y ) = 2S(X,Y ) + divξg(∇Xξ, Y ). (14.12)

Proposition 13 Under D-isometric deformation the Ricci curvature tensor S̃ is provided by formula (14.12).

Corollary 5 Let r̃ (resp. r) be the Ricci operator assoaciated with g̃ (resp.g). Then:

2r̃ = 2r − 1
2S(ξ, ξ) + (divξ)2. (14.13)

Proof Through direct computations utilizing equations (7.2), (9.3), and (14.12).

Section 15

Generalized D-Conformal Deformation

This section is a compilation of results from [1, 61]. Consider an almost contact metric manifold (M,φ, η, ξ, g), if one
takes

g̃ = b2g + (a2 − b2)η ⊗ η, φ̃ = φ, η̃ = aη, ξ̃ = 1
a
ξ, (15.1)

where a and b are smooth, non-zero functions on M . The above transformation is called generalized D-conformal
deformation. This deformation generalizes the previous ones:
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1. If a = b we get conformal deformation.
2. If b = 1 and a =

√
2 we get the D-isometric deformation (14.4).

3. If a = ±1 we get the deformation of Olzsak.
4. If a = b2 we get the case of Tanno, D-homothetic deformation.

Theorem 10 (M,φ, η̃, ξ̃, g̃) is an almost contact metric manifold.

Proof One must make sure that the data (M,φ, η̃, ξ̃, g̃) satisfies (10.1),(??) and (10.5):

1. For (10.1), we have
φ̃2 = φ2 = −Id+ η ⊗ ξ = −Id+ aη ⊗ 1

a
ξ = −Id+ η̃ ⊗ ξ̃.

2. On the other hand, by direct substitution, we have

η̃(ξ̃) = aη

(
1
a
ξ

)
= a.

1
a
η(ξ) = 1.

3. Finally
g̃(φ̃X, φ̃Y ) = b2g(φX,φY ) + (a2 − b2)η(φX)η(φY ) = b2g(X,Y ) − b2η(X)η(Y ).

Using (15.1), we substitute
b2g(X,Y ) = g̃(X,Y ) − (a2 − b2)η(X)η(Y ),

and we get
g̃(φ̃X, φ̃Y ) = g̃(X,Y ) − a2η(X)η(Y ) = g̃(X,Y ) − η̃(X)η̃(Y ),

of which the proof is concluded.

On the other hand, using (10.7) we have

Φ̃(X,Y ) = g̃(X,φY ) = b2g(X,φY ).

Hence
Φ̃(X,Y ) = b2Φ(X,Y ). (15.2)

where Φ̃ is the fundamental 2-form associated with (M, g̃). Using formulas (10.7) and (15.1) we get{
dη̃ = da ∧ η + adη,
dΦ̃ = 2b.db ∧ Φ + bdΦ.

(15.3)

With the aid of Kozsul’s formula (6.5)

2g̃(∇̃XY,Z) = X(g̃(Y, Z)) + Y (g̃(Z,X)) − Z(g̃(X,Y )) − g̃(X, [Y, Z]) + g̃(Y, [Z,X]) + g̃(Z, [X,Y ]).

It is sufficient to compute X(g̃(Y, Z))

X(g̃(Y, Z)) = X

(
b2g(Y,Z) + (a2 − b2)η(Y )η(Z)

)
= 2bX(b)g(Y,Z) + b2X

(
g(Y,Z)

)
+ 2
(
aX(a) − bX(b)

)
η(Y )η(Z)

+ (a2 − b2)
[{

(∇Xη)Y + η(∇XY )
}
η(Z) + η(Y )

{
(∇Xη)Z + η(∇XZ)

}]
= 2bX(b)g(φY, φZ) + b2X

(
g(Y, Z)

)
+ 2aX(a)η(Y )η(Z)

+ (a2 − b2)
[{

(∇Xη)Y + η(∇XY )
}
η(Z) + η(Y )

{
(∇Xη)Z + η(∇XZ)

}]
,
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subsequently permute the variables X, Y and Z to derive Y (g̃(Z,X)) and Z(g̃(X,Y ))

Y (g̃(Z,X)) = 2bY (b)g(φZ,φX) + b2Y
(
g(Z,X)

)
+ 2aY (a)η(Z)η(X)

+ (a2 − b2)
[{

(∇Y η)Z + η(∇Y Z)
}
η(X) + η(Z)

{
(∇Y η)X + η(∇YX)

}]
,

Z(g̃(X,Y )) = 2bZ(b)g(φX,φY ) + b2Z
(
g(X,Y )

)
+ 2aZ(a)η(X)η(Y )

+ (a2 − b2)
[{

(∇Zη)X + η(∇ZX)
}
η(Y ) + η(X)

{
(∇Zη)Y + η(∇ZY )

}]
.

For the terms enclosed in brackets, we have

g̃(X, [Y, Z]) = b2g(X, [Y, Z]) + (a2 − b2)η(X)η([Y,Z]) = b2g(X, [Y, Z]) + (a2 − b2)η(X)
(
η(∇Y Z) − η(∇ZY )

)
,

g̃(Y, [Z,X]) = b2g(Y, [Z,X]) + (a2 − b2)η(Y )η([Z,X]) = b2g(Y, [Z,X]) + (a2 − b2)η(Y )
(
η(∇ZX) − η(∇XZ)

)
,

g̃(Z, [X,Y ]) = b2g(Z, [X,Y ]) + (a2 − b2)η(Z)η([X,Y ]) = b2g(Z, [X,Y ]) + (a2 − b2)η(Z)
(
η(∇XY ) − η(∇YX)

)
.

Therefore, after regrouping and rearranging appropriately, we obtain

2g̃(∇̃XY,Z) = b2
(
X
(
g(Y, Z) + Y

(
g(Z,X)

)
− Z

(
g(X,Y ) − g(X, [Y, Z]) − g(Y, [Z,X]) + g(Z, [X,Y ])

)
+ 2b

(
X(b)g(φY, φZ) + Y (b)g(φZ,φX) − Z(b)g(φX,φY )

)
+ 2a

(
X(a)η(Y )η(Z) + Y (a)η(X)η(Z)

− Z(a)η(X)η(Y )
)

+ (a2 − b2)
({

(∇Xη)Y + η(∇XY ) + (∇Y η)X + η(∇YX) + η(∇XY )

− η(∇YX)
}
η(Z) +

{
(∇Xη)Z + η(∇XZ) − (∇Zη)X − η(∇ZX) + η(∇ZX) − η(∇XZ)

}
η(Y )

+
{

(∇Y η)Z + η(∇Y Z) − (∇Zη)Y − η(∇ZY ) − η(∇Y Z) + η(∇ZY )
}
η(X)

)
.

By utilizing (6.27), we can identify that

(Lξg)(X,Y ) = (∇Xη)Y + (∇Y η)X,

and recalling from (6.17) {
2dη(X,Z) = (∇Xη)Z − (∇Zη)X,
2dη(Y, Z) = (∇Y η)Z − (∇Zη)Y.

The outcome arises upon identification of the initial term as Koszul’s formula enacted on g

2g̃(∇̃XY,Z) = 2b2g(∇XY,Z) + 2(a2 − b2)η(∇XY )η(Z) + 2b
(
X(b)g(φY, φZ) + Y (b)g(φZ,φX) − Z(b)g(φX,φY )

)
+ 2a

(
X(a)η(Y )η(Z) + Y (a)η(X)η(Z) − Z(a)η(X)η(Y )

)
+ (a2 − b2)

(
(Lξg)(X,Y )η(Z)

+ 2dη(X,Z)η(Y ) + 2dη(Y,Z)η(X)
)
. (15.4)

As an illustrative example, we will employ a generalized D-conformal deformation on cosymplectic, α-Sasakian, β-
Kenmotsu and C12 manifolds.
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Subsection 15.1

Cosymplectic manifolds

Let (M,φ, ξ, η, g) denote a cosymplectic manifold. Utilizing equation Definition 17, the differentiation of η̃ and Φ̃ as
expressed in (15.1) yields {

dη̃ = da ∧ η,

dΦ̃ = 2bdb ∧ Φ.
(15.5)

Case 1: When (M,φ, ξ̃, η̃, g̃) is β-Kenmotsu, the ensuing conditions must be satisfied{
dη̃ = 0,
dΦ̃ = 2βη̃ ∧ Φ̃ = 2ab2βη ∧ Φ.

(15.6)

Therefore, we derive
2bdb ∧ Φ = 2βη̃ ∧ Φ̃ = 2ab2βη =⇒

(
abβη − db

)
∧ Φ = 0. (15.7)

The aforementioned relations lead to the following conclusions for every vector field X on M

abβη(X) = db(X). (15.8)

By evaluating both sides for X = ξ and X = V ⊥ ξ, we obtain

V (b) = 0 =⇒ gradb = ξ(b)ξ and β = ξ(b)
ab

. (15.9)

Case 2: When (M,φ, ξ̃, η̃, g̃) is a C12 manifold, the following conditions must hold
dη̃ = ω ∧ η̃, ω(ξ̃) = 0,
dω = 0,
dΦ̃ = 0,

(15.10)

where ψ represents the g̃-dual of ω. From equations (11.1) (α = β = 0), we obtain

ω = dln(a) with ξ(a) = 0 and b ∈ R∗
+.

The resultant C12 structure is defined by (Φ, η̃, ω, ξ̃, ψ) where

ω = dln(a), ψ = gradln(a), η̃(ψ) = 0 and ω(ξ̃) = 0.

Case 3: When (M,φ, ξ̃, η̃, g̃) is a cosymplectic manifold, this case has been previously investigated in [60]. Thus,
summarizing all the preceding analyses, we arrive at the following conclusions:

Theorem 11 Let (M,φ, ξ, η, g) be a cosymplectic manifold. Then under generalized D-conformal deformation, we have:

• (M,φ, ξ̃, η̃, g̃) is cosymplectic if grada = ξ(a)ξ and b ∈ R∗ [? ].

• (M,φ, ξ̃, η̃, g̃) is β-Kenmotsu if a ∈ R∗ and gradb = ξ(b)ξ.

• (M,φ, η̃, ω, ξ̃, ψ) is C12-manifold if ξ(a) = 0 and b = 1.
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The rigid scenario holds significant relevance for our concluding section. We examine a cosymplectic manifold
(M,φ, ξ, η, g) which remains invariant under generalized D-conformal deformation, characterized by the conditions
grada = ξ(a)ξ and b ∈ R∗. Under the assumptions grada = ξ(a)ξ and b ∈ R∗, formula from (15.4) becomes

2g̃(∇̃XY,Z) = 2g̃(∇XY, Z) + 2ξ(a)η(X)η(Y )η̃(Z),

which yields
∇̃XY = ∇XY + ξ(lna)η(X)η(Y )ξ. (15.11)

Proposition 14 Under generalized D-conformal deformation on a cosymplectic manifold the Levi-Cevita connection ∇̃ is provided
by formula (15.11).

Utilizing formulas (11.6), (11.7) for example with α = 0, (15.11) and substitute A = ξ(lna) a smooth function that
depends only on the direction of ξ, we find that the first term of (13.3) can be expressed as

∇̃X∇̃Y Z =∇X

(
∇Y Z +Aη(Y )η(Z)ξ

)
+Aη(X)

(
η(∇Y Z) +Aη(Y )η(Z)ξ

)
=∇X∇Y Z + ξ(A)η(X)η(Y )η(Z)ξ +A

(
η(∇XY )η(Z)ξ

+η(Y )η(∇Y Z)ξ
)

+Aη(X)η(∇Y Z) +A2η(X)η(Y )η(Z)ξ. (15.12)

Considering the fact that X(A) = ξ(A)η(X), where A solely depends on the direction of ξ, we can further simplify the
expression. Using a similar approach, the second term of equation (13.3) is determined as

∇̃Y ∇̃XZ =∇Y ∇XZ + ξ(A)η(Y )η(X)η(Z)ξ +A
(
η(∇YX)η(Z)ξ

+η(X)η(∇XZ)ξ
)

+Aη(Y )η(∇XZ) +A2η(Y )η(X)η(Z)ξ. (15.13)

The last term of equation (13.3) can be represented as

∇̃[X,Y ]Z = ∇[X,Y ] +Aη(∇XY )η(Z)ξ −Aη(∇YX)η(Z)ξ. (15.14)

Substituting equations (15.12), (15.13), and (15.14) into (13.3), we derive

R̃(X,Y )Z = R(X,Y )Z. (15.15)

Proposition 15 Under generalized D-conformal deformation on a cosymplectic manifold the Riemann curvature tensor is invariant.

Consider {ξ, ei}{2≤i≤2n+1} as the orthonormal basis on M with respect to the metric g. It is straightforward to establish
that { 1√

a
ξ, 1

b ei}{2≤i≤2n+1} forms an orthonormal basis on M with respect to the metric g̃. By employing formulas
(9.1) and (15.15), we obtain:

Q̃X = 1
a2 R̃(X, ξ)ξ + 1

b2

n∑
i=2

R̃(X, ei)ei. (15.16)

Since R(X, ξ)ξ = 0 holds true for any cosymplectic manifold, the result follows immediately

Q̃X = 1
b2QX. (15.17)

Proposition 16 Under generalized D-conformal deformation on a cosymplectic manifold the Riemann curvature tensor is the Ricci
operator is provided by formula (15.17).
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By employing the formulas (9.2), (15.17), and (15.1), we can proceed

S̃(X,Y ) = g̃(Q̃X, Y ) = b2g(Q̃X, Y ) + (a2 − b2)η(Q̃X)η(Y )

= g(QX,Y ) + (a2 − b2)
b2 η(QX)η(Y )

= S(X,Y ) + (a2 − b2)
b2 S(X, ξ)η(Y ).

Recall that S(X, ξ) = 0 for any cosymplectic manifold, hence

S̃(X,Y ) = S(X,Y ). (15.18)

Proposition 17 Under generalized D-conformal deformation on a cosymplectic manifold the Ricci curvature tensor S̃ is invariant.

Using (9.3) along with (15.18), we have

r̃ =
2n+1∑
i=1

S̃(ẽi, ẽi) = 1
b2

2n+1∑
i=1

S(ei, ei) =⇒ r̃ = 1
b2 r. (15.19)

Clearly, for b = ±1 we have r̃ = r and the manifolds (M, g) and (M, g̃) are locally isometric.

Corollary 6 Cosymplectic manifolds invariant under generalized D-conformal deformation are locally isometric if b = ±1.

Subsection 15.2

α-Sasakian manifolds

Let (M,φ, ξ, η, g) represent an α-Sasakian manifold. Employing equation (11.4), the derivative of η̃ and Φ̃ in (15.1) is{
dη̃ = da ∧ η + adη = da ∧ η + aαΦ,
dΦ̃ = 2bdb ∧ Φ.

(15.20)

Utilizing equations (10.7) and (15.20) and considering Y = ξ, we obtain(
da ∧ η + aαΦ

)
(X, ξ) =

(
da ∧ η

)
(X, ξ). (15.21)

Upon setting equation (15.21) to zero, we obtain(
da ∧ η

)
(X, ξ) = 0 =⇒ X(a) = ξ(a)η(X) =⇒ grada = ξ(a)ξ.

As a consequence of the non-integrability characteristic of α-Sasakian manifolds, according to Theorem 4, a remains
constant. Moreover, given that

dη̃ = aαΦ = aα

b2 Φ̃ = α̃Φ̃,

never vanishes identically (except when α = 0) then, (M,φ, ξ̃, η̃, g̃) cannot be classified as a cosymplectic, β-Kenmotsu,
or C12 manifold. Therefore, (M,φ, ξ̃, η̃, g̃) is an α̃-Sasakian manifold with:

α̃ = aα

b2 where a, b ∈ R∗. (15.22)
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Theorem 12 Let (M,φ, ξ, η, g) be a α-Sasakian manifold. Then under generalized D-conformal deformation, (M,φ, ξ̃, η̃, g̃) is
α̃-Sasakian manifold and α̃ = aα

b2 .

Hence, for an α-Sasakian manifold under generalized D-conformal deformation, formula (15.4) becomes

2g̃(∇̃XY,Z) = 2b2g(∇XY, Z) + 2(a2 − b2)η(∇XY )η(Z) (15.23)

+ (a2 − b2)
(

(Lξg)(X,Y )η(Z) + 2dη(X,Z)η(Y ) + 2dη(Y,Z)η(X)
)
.

Recall that ξ is Killing in an α-Sasakian manifold and from (11.4), we have{
dη(X,Z) = αΦ(X,Z) = αg(X,φZ) = −αg(φX,Z) = − α

b2 g̃(φX,Z)
dη(Y,Z) = αΦ(Y, Z) = αg(Y, φZ) = −αg(φY,Z) = − α

b2 g̃(φY,Z).

Substituting in formula from (15.23)

2g̃(∇̃XY,Z) = 2g̃(∇XY, Z) − 2αa
2 − b2

b2

(
g̃(φX,Z)η(Y ) + g̃(φY,Z)η(X)

)
.

Hence
∇̃XY = ∇XY − α

a2 − b2

b2

(
η(Y )φX + η(X)φY

)
. (15.24)

Proposition 18 Under generalized D-conformal deformation on an α-Sasakian manifold the Levi-Cevita connection ∇̃ is provided
by formula (15.24).

Henceforth, we shall regard α as a constant, as demonstrated in [28], wherein it was proven that the manifold (M, g)
remains invariant solely under such an assumption. From formula (13.3), we find that the first term can be expressed
as

∇̃X∇̃Y Z = ∇X∇Y Z − α
a2 − b2

b2

((
η(∇XY ) − αg(φX, Y )

)
φZ (15.25)

+ η(Y )
(
α(g(X,Z)ξ − η(Z)X) + φ∇XZ

)
+
(
η(∇XZ) − αg(φX,Z)

)
φY

+ η(Z)
(
α(g(X,Y )ξ − η(Y )X) + φ∇XY

)
+ η(∇Y Z)φX + η(X)φ∇Y Z

)
−X(α)a

2 − b2

b2

(
η(Y )φZ + η(Z)φY

)
+ α2 (a2 − b2)2

b4

(
η(Y )φZ + η(Z) − φ2Y

)
η(X).

With the similar method, the second term of (13.3) is given by

∇̃Y ∇̃XZ = ∇Y ∇XZ − α
a2 − b2

b2

((
η(∇YX) − αg(φY,X)

)
φZ (15.26)

+ η(X)
(
α(g(Y,Z)ξ − η(Z)Y ) + φ∇Y Z

)
+
(
η(∇Y Z) − αg(φY,Z)

)
φX

+ η(Z)
(
α(g(Y,X)ξ − η(X)Y ) + φ∇YX

)
+ η(∇XZ)φY + η(Y )φ∇XZ

)
− Y (α)a

2 − b2

b2

(
η(X)φZ + η(Z)φX

)
+ α2 (a2 − b2)2

b4

(
η(X)φZ + η(Z)φ2X

)
η(Y ).
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The final term of (15.15) can be expressed as

∇̃[X,Y ]Z = ∇[X,Y ]Z − α
a2 − b2

b2

((
η(∇XY ) − η(∇YX)

)
φZ + η(Z)

(
φ∇XY − φ∇YX

))
. (15.27)

Substituting equations (15.25), (15.26) and (15.27) into (13.3), we derive

R̃(X,Y )Z = R(X,Y )Z + α2 a
2 − b2

b2

(
g(φX,Z)φY − g(φY,Z)φX − 2g(X,φY )φZ + 2η(Y )η(Z)X (15.28)

− 2η(X)η(Z)Y − η(Y )g(X,Z)ξ + η(X)g(Y,Z)ξ
)

+ α2 (a2 − b2)2

b4

(
η(Y )η(Z)X − η(X)η(Z)Y

)
.

Proposition 19 Under generalized D-conformal deformation on an α-Sasakian manifold the Riemann curvature tensor R̃ is provided
by formula (15.28).

Knowing that in an α-Sasakian manifold the following holds

R(X, ξ)ξ = α2(X − η(X)ξ)

Then, utilizing formula (3.51), we have

R̃(X, ξ̃)ξ̃ = 1
b2R(X, ξ)ξ + α2 a

2 − b2

b4

(
X − η(X)ξ

)
, (15.29)

and
R̃(X, ẽi)ẽi = 1

b2R(X, ei)ei − 3α2 a
2 − b2

b4 g(X,φei)φei + α2 a
2 − b2

b4 η(X)ξ. (15.30)

Hence, the outcome is derived through the direct substitution of equations (15.29) and (15.30) into equation (9.1) with
the additional utilization of equation (5.2) and (7.1)

Q̃X = 1
b2QX + a2 − b2

b4

(
(2n+ 2)α2η(X)ξ − 2α2X

)
. (15.31)

Proposition 20 Under generalized D-conformal deformation on an α-Sasakian manifold the Ricci operator Q̃ is provided by formula
(15.31).

We can re-write formula (15.31) as follow

Q̃X = 1
b2QX + 2nα2 a

2 − b2

b4 η(X)ξ + 2α2 a
2 − b2

b4 φ2X.

From one hand we have

g(Q̃X, Y ) = 1
b2S(X,Y ) − 2α2 a

2 − b2

b4 g(X,Y ) + (2n+ 2)α2 a
2 − b2

b4 η(X)η(Y ). (15.32)

Taking Y = ξ, yields

η(Q̃X) = 1
b2S(X, ξ) + 2nα2 a

2 − b2

b4 η(X) = 2nα2 a
2

b4 η(X). (15.33)

The result is obtained using equations (15.1), (15.32) and (15.33)

S̃(X,Y ) = S(X,Y ) − 2α2 a
2 − b2

b2 g(X,Y ) + 2nα2 a
2

b4 η(X)η(Y ) + (2n+ 2)α2 a
2 − b2

b2 η(X)η(Y ). (15.34)

Proposition 21 Under generalized D-conformal deformation on an α-Sasakian manifold the Ricci curvature tensor S̃ is provided by
formula (15.34).
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By formulas (9.3) and formula from (15.34), we have

r̃ = S̃(ξ̃, ξ̃) +
2n+1∑
i=2

S̃(ẽi, ẽi) = 1
a2S(ξ, ξ) + 2nα2

b4 + 2nα2 a
2 − b2

a2b2 − 4nα2 a
2 − b2

b4 + 1
b2

2n+1∑
i=2

S(ei, ei).

Using equation (11.8) and
2n+1∑
i=2

S(ei, ei) = r − S(ξ, ξ).

We conclude the following

r̃ = 1
b2 r − 2nα2 a

2 − b2

b4 . (15.35)

Corollary 7 Under generalized D-conformal deformation on an α-Sasakian manifold the scalar curvature r̃ is provided by formula
(15.35).

Subsection 15.3

β-Kenmotsu manifolds

Let (M,φ, ξ, η, g) denote a β-Kenmotsu manifold. Utilizing equation (11.9), the derivative of η̃ and Φ̃ in (15.1) is{
dη̃ = da ∧ η

dΦ̃ = 2bdb ∧ Φ + b2dΦ =
(
2bdb+ 2b2βη

)
∧ Φ.

(15.36)

Case 1: (M,φ, ξ̃, η̃, g̃) is β̃-Kenmotsu, the following conditions must be satisfied{
dη̃ = 0,
dΦ̃ = 2β̃η̃ ∧ Φ̃ = 2ab2β̃η ∧ Φ.

(15.37)

In a manner akin to the previous case
da ∧ η = 0 =⇒ grada = ξ(a)ξ.

Upon selecting X = ξ followed by X = V ⊥ ξ in equation(
2bdb− 2b2βη

)
(X) = 2ab2β̃η(X),

yields the following outcomes

β̃ = β

a
+ ξ(b)

ab
and V (b) = 0 =⇒ gradb = ξ(b)ξ. (15.38)

Case 2: (M,φ, ξ̃, η̃, g̃) constitutes a C12 manifold, wherein the following conditions must be validated
dη̃ = ω ∧ η̃ = aω ∧ η, ω(ξ̃) = 0,
dω = 0,
dΦ̃ = 0,

(15.39)
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where ψ represents the g̃-dual of ω. By equating equations (15.36) and (15.39), we deduce

da ∧ η = aω ∧ η =⇒ dlna = ω and gradlna = ψ =⇒ ξ(a) = 0.

Alternatively, we have (
2bdb+ 2b2βη

)
(X) = 0.

Choosing X = ξ and subsequently X = V ⊥ ξ will yield

ξ(lnb) = −β and V (b) = 0 =⇒ gradlnb = −βξ. (15.40)

The resultant C12 structure is defined by (φ, η̃, ω, ξ̃, ψ), where

ω = dln(a), ψ = gradln(a), η̃(ψ) = 0 and ω(ξ̃) = 0.

Case 3: (M,φ, ξ̃, η̃, g̃) is a cosymplectic manifold. This conclusion can be readily inferred by setting β̃ = 0, resulting
in

β

a
+ ξ(b)

2ab = 0 =⇒ gradlnb = −2βξ. (15.41)

Theorem 13 Let (M,φ, ξ, η, g) be a β-Kenmotsu manifold. Then under generalized D-conformal deformation, we have:

• (M,φ, ξ̃, η̃, g̃) is cosymplectic if grada = ξ(a)ξ and gradlnb = −2βξ .

• (M,φ, ξ̃, η̃, g̃) is β̃-Kenmotsu if grada = ξ(a)ξ and gradb = ξ(b)ξ.

• (M,φ, η̃, ω, ξ̃, ψ) is C12-manifold if ξ(a) = 0 and gradlnb = −βξ.

Similar to the previous paragraphes, we shall investigate in depth the rigid case assuming grada = ξ(a)ξ and gradb =
ξ(b)ξ then, formula (15.4) becomes

2g̃(∇̃XY,Z) = 2b2g(∇XY, Z) + 2(a2 − b2)η(∇XY )η(Z) (15.42)

+ 2b
(
ξ(b)η(X)g(φY, φZ) + ξ(b)η(Y )g(φZ,φX) − ξ(b)η(Z)g(φX,φY )

)
+ 2aξ(a)η(X)η(Y )η(Z) + (a2 − b2)

(
(Lξg)(X,Y )η(Z) + 2dη(X,Z)η(Y ) + 2dη(Y,Z)η(X)

)
.

Recall that in a β-Kenmotsu manifold and from (11.9), we have

dη = 0 and
(
Lξg

)
(X,Y ) = 2β(g(φX,φY )).

Substituting in (15.42)

2g̃(∇̃XY,Z) = 2b2g(∇XY, Z) + 2(a2 − b2)η(∇XY )η(Z) + ξ(a2)η(X)η(Y )η(Z) (15.43)
+ ξ(b2)

(
η(X)g(Y,Z) + η(Y )g(X,Z) − 2η(X)η(Y )η(Z) − g(φX,φY )η(Z)

)
+ 2β(a2 − b2)g(φX,φY )η(Z).

Taking Z = ξ in (15.43), we get

η(∇̃XY ) = η(∇XY ) − ξ(b2)
2a2 g(φX,φY ) + ξ(a2)

2a2 η(X)η(Y ) + β
a2 − b2

a2 g(φX,φY ), (15.44)

substituting (15.44) in (15.43), we get

g(∇̃XY, Z) = g(∇XY,Z) + β
a2 − b2

a2 g(φX,φY )η(Z) + ξ(b2)
2a2 g(φX,φY )η(Z)

+ ξ(b2)
2b2

(
η(X)g(Y,Z) + η(Y )g(X,Z) − 2η(X)η(Y )η(Z)

)
+ ξ(a2)

2a2 η(X)η(Y )η(Z).
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Hence

∇̃XY = ∇XY + β
a2 − b2

a2 g(φX,φY )ξ + ξ(lna2)
2 η(X)η(Y )ξ (15.45)

+ ξ(lnb2)
2

(
η(X)Y + η(Y )X − 2η(X)η(Y )ξ

)
+ ξ(b2)

2a2 g(φX,φY )ξ.

Proposition 22 Under generalized D-conformal deformation on an β-Kenmotsu manifold the Levi-Cevita connection ∇̃ is provided
by formula (15.45).

In the context of this specific instance, we confine our examination to scenarios in which the variables a and b retain
fixed values, thereby simplifying formula (15.45) to

∇̃XY = ∇XY + β
a2 − b2

a2 g(φX,φY )ξ. (15.46)

The motivation behind this elucidation stems from an oversight identified within the context of [54]. The authors
therein employed formula (15.45), which was derived under the premise that the functions a and b solely depend on
the direction of ξ. Subsequently, they proceeded to calculate the Riemann tensor R̃ and the Ricci tensor S̃ under the
assumption that a and b remain constant in the direction of ξ. However, this approach yielded conflicting outcomes
since the combination of the aforementioned assumptions implies that a and b are reduced to constants.
Through extensive direct computations, employing equations (13.3) and (15.46). Firstly

∇̃X∇̃Y Z = ∇X

(
∇Y Z + β

a2 − b2

a2 g(φY, φZ)ξ
)

+ β
a2 − b2

a2 g(φX,φ∇Y Z)ξ

= ∇X∇Y Z +X(β)a
2 − b2

a2 g(φY, φZ)ξ − β2 a
2 − b2

a2 g(φY, φZ)φ2X

+ β
a2 − b2

a2

(
g(φ∇XY, φZ) − g(φX,φZ)η(Y ) + g(φY, φ∇XZ) − g(φY, φX)

)
ξ + β

a2 − b2

a2 g(φX,φ∇Y Z)ξ.

Similarly

∇̃Y ∇̃XZ = ∇Y ∇XZ + Y (β)a
2 − b2

a2 g(φX,φZ)ξ − β2 a
2 − b2

a2 g(φX,φZ)φ2Y

+ β
a2 − b2

a2

(
g(φ∇YX,φZ) − g(φY, φZ)η(X) + g(φX,φ∇Y Z) − g(φX,φY )

)
ξ + β

a2 − b2

a2 g(φY, φ∇XZ)ξ.

Finally

∇̃[X,Y ]Z = ∇[X,Y ]Z + β
a2 − b2

a2

(
g(φ∇XY, φZ) − g(φ∇YX,φZ)

)
ξ,

substituting in (13.3), we obtain

R̃(X,Y )Z = R(X,Y )Z + a2 − b2

a2

(
X(β)g(φY, φZ) − Y (β)g(φX,φZ)

)
ξ (15.47)

− β2 a
2 − b2

a2

(
g(φY, φZ)X − g(φX,φZ)Y

)
.

Proposition 23 Under generalized D-conformal deformation on an β-Kenmotsu manifold with deformation functions a and b are
constants, the Riemann curvature tensor R̃ is provided by formula (15.47).
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Using {ξ̃, ẽi} = { 1
aξ,

1
b ei}, where {i = 2, ..., 2n+ 1} and formula (15.47), we have{

R̃(X, ξ̃)ξ̃ = 1
b2R(X, ξ)ξ − a2−b2

a2b2 R(X, ξ)ξ,
R̃(X, ẽi)ẽi = 1

b2R(X, ei)ei + a2−b2
a2b2

(
X(β) − g(X, ei(β)ei)

)
ξ − β2 a2−b2

a2b2

(
X − g(X, ei)ei

)
.

(15.48)

Substituting (15.48) into (9.1), we get

Q̃X = 1
b2QX + (2n− 1)a

2 − b2
a2b2 X(β)ξ − (2n− 1)β2 a

2 − b2
a2b2 X − a2 − b2

a2b2 R(X, ξ)ξ. (15.49)

Proposition 24 Under generalized D-conformal deformation on an β-Kenmotsu manifold with deformation functions a and b are
constants, the Ricci operator Q̃ is provided by formula (15.49).

According to (9.2), (15.1) and (15.49), we have

S̃(X,Y ) = g̃(Q̃X, Y ) = b2g(Q̃X, Y ) + (a2 − b2)η(Q̃X)η(Y ) (15.50)

= S(X,Y ) + (2n− 1)(a2 − b2)
a2 X(β)η(Y ) − (2n− 1)β2 a

2 − b2

a2 g(X,Y ) − a2 − b2

a2 g(R(X, ξ)ξ, Y )

+ (2n− 1)a
2 − b2

b2 S(X, ξ)η(Y ) + (2n− 1)(a2 − b2)2

a2b2 X(β)η(Y ) − (2n− 1)β2 (a2 − b2)2

a2b2 η(X)η(Y ), (15.51)

hence

S̃(X,Y ) = S(X,Y ) + (2n− 1)a
2 − b2

b2 S(X, ξ)η(Y ) − (2n− 1)β2 a
2 − b2

a2 g(φX,φY ) − a2 − b2

a2 η(R(ξ,X)Y )

+ (2n− 1)a
2 − b2

b2 X(β)η(Y ) − (2n− 1)β2 a
2 − b2

b2 η(X)η(Y ). (15.52)

One could further simplify formula (15.50) by substituting in (11.13) and

η(R(ξ,X)Y ) = (β2 + ξ(β))
(
η(X)η(Y ) − g(X,Y )

)
= −(β2 + ξ(β))g(φX,φY ),

but it is deemed unecessary for all purposes in this book.

Proposition 25 Under generalized D-conformal deformation on an β-Kenmotsu manifold with deformation functions a and b are
constants, the Ricci curvature tensor S̃ is provided by formula (15.52).

By virtue of formula (9.3) and (15.52)

r̃ = 1
b2 r − a2 − b2

a2b2 S(ξ, ξ) − (4n2 − 1)β2 a
2 − b2

a2b2 + (2n− 1)a
2 − b2

a2b2 ξ(β). (15.53)

Corollary 8 Under generalized D-conformal deformation on a β-Kebmotsu manifold with deformation functions a and b are
constant, the scalar curvature r̃ is provided by formula (15.53).
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Subsection 15.4

C12 manifolds

An intriguing feature of C12 manifolds is the coexistence of both η and ω, either of which can be substituted into
equation (15.1). In the case of ω

φ̄X = a

b
ω(X)φψ + b

a
ω(φX)ψ, η̄ = bη, ω̄ = aω, ξ̄ = 1

b
ξ, ψ̄ = 1

a
ψ, ḡ = b2g + (a2 − b2)ω ⊗ ω. (15.54)

where a suitable choice for φ̄ has been selected to fulfill the conditions expressed in (10.5) and (10.6). From now on,
we shall call (15.54) ω-conformal deformation.

Proposition 26 (M, φ̄, ξ̄, η̄, ḡ) is an almost contact metric manifold.

15.4.1 C12 manifolds under η-conformal deformation
We will explore the η-conformal deformation (15.1) on a C12 manifold. Through direct computations utilizing Defini-
tion 20, we obtain {

dη̃ = da ∧ η + adη =
(
da+ aω

)
∧ η,

dΦ̃ = 2b.db ∧ Φ + bdΦ = 2bdb ∧ Φ.
(15.55)

Case 1: (M,φ, ξ̃, η̃, g̃) being β̃-Kenmotsu, the following conditions must be satisfied{
dη̃ = 0,
dΦ̃ = 2β̃η̃ ∧ Φ̃ = 2ab2β̃η ∧ Φ.

(15.56)

On one hand
2bdb(X) = 2ab2β̃η(X).

Taking X = ξ then X = V ⊥ ξ in this latter yields

β̃ = ξ(b)
ab

and gradb = ξ(b)ξ. (15.57)

On the other hand ((
da+ aω

)
∧ η

)
(X,Y ) =

(
da+ aω

)
(X)η(Y ) −

(
da+ aω

)
(Y )η(X) = 0.

Selecting X = ξ yields
ξ(a)η(Y ) = Y (a) − aω(Y ) =⇒ grada = ξ(a)ξ + aψ.

Case 2: (M,φ, ξ̃, η̃, g̃) being C12, the following conditions must be validated
dη̃ = ω̃ ∧ η̃ = aω̃ ∧ η, ω(ξ̃) = 0,
dω̃ = 0,
dΦ̃ = 0.

(15.58)

In order to attain dη̃ = ω̃ ∧ η̃, it is necessary for the functions a and b to be constant. Consequently, under these
conditions, (M,φ, ξ̃, η̃, g̃) is a C12 manifold.
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Case 3: If (M,φ, ξ̃, η̃, g̃) is cosymplectic, then setting β = 0 in equation (15.57) yields

β = ξ(b)
ab

= 0 =⇒ ξ(b) = 0 and gradb = ξ(b)ξ =⇒ b ∈ R∗.

Theorem 14 Let (M,φ, ξ, η, g) be a C12 manifold. Then under generalized D-conformal deformation, we have:

• (M,φ, ξ̃, η̃, g̃) is cosymplectic if grada = ξ(a)ξ + aψ and b ∈ R∗ .

• (M,φ, ξ̃, η̃, g̃) is β-Kenmotsu if grada = ξ(a)ξ + aψ and gradb = ξ(b)ξ.

• (M,φ, η̃, ω, ξ̃, ψ) is C12-manifold if a, b ∈ R∗.

We can encapsulate the preceding findings succinctly within the ensuing table:

Cosymplectic α̃-Sasakian β̃-Kenmotsu C12

Cosymplectic grada = ξ(a)ξ
b ∈ R∗

✗
a ∈ R∗

gradb = ξ(b)ξ
β = ξ(b)

ab

ξ(a) = 0, b = 1

α-Sasakian ✗ a, b ∈ R∗

α̃ = aα
b2

✗ ✗

β-Kenmotsu grada = ξ(a)ξ
gradlnb = −βξ

✗
grada = ξ(a)ξ
gradb = ξ(b)ξ
β̃ = β

a
+ ξ(b)

ab

gradlnb = −βξ
ξ(a) = 0

C12 grada = ξ(a)ξ + aψ
b ∈ R∗

✗
grada = ξ(a)ξ + aψ
gradb = ξ(b)ξ
β̃ = ξ(b)

ab

a, b ∈ R∗

Table 7. Generalized D-Conformal Deformation Of Certain Almost Contact Metric Structures

The transition from a β-Kenmotsu manifold to an α-Sasakian manifold (α ̸= 0) via generalized D-conformal deformation
is precluded. This restriction stems from the foundational principle that integrability is contingent upon the nullification
of the Nijenhuis tensor Nφ = 0, as delineated in (10.10). Notably, this tensor is solely dependent upon the tensor φ,
and the inherent invariance of φ under generalized D-conformal deformation, as explicated in (15.1), underscores the
inherent impossibility of effecting such a transition.
Using Kozsul’s formula (6.5) for the metric g̃ (15.1) along with (11.16) one can obtain

2g(∇̃XY,Z) + 2(a2 − 1)η(∇̃XY )η(Z) = 2g(∇XY, Z) + 2(a2 − 1)η(∇XY )η(Z) − 2(a2 − 1)η(X)η(Y )ω(Z). (15.59)

Taking Z = ξ in (15.1), we get
η̃(∇̃XY ) = η(∇XY ). (15.60)

Thus, substituting (15.60) in (15.59), we get

g(∇̃XY,Z) = g(∇XY, Z) + (1 − a2)η(X)η(Y )ω(Z),

which yields
∇̃XY = ∇XY + (1 − a2)η(X)η(Y )ψ. (15.61)

Proposition 27 Under η-conformal deformation on a C12 manifold the Levi-Cevita connection ∇̃ is provided by formula (15.61).

Now using formula (13.3) and (15.61), we compute
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15.4.2 C12 manifolds under ω conformal deformation
We will explore the ω-conformal deformation introduced in equation (15.54) within the context of 3-dimensional C12
manifolds. By employing explicit calculations based on the definitions provided in Definition 20, we obtain

dω̄ = da ∧ ω + adω = da ∧ ω,

dη̄ = db ∧ η + bdη =
(
dlnb+ ω

)
∧ η̄,

dΦ̄ = 2bdb ∧ Φ + bdΦ = 2db ∧ Φ̃.
(15.62)

From equations (15.62), the structure (φ, ξ̄, η̄, ḡ) is C12 if a = 1 and b is a non-zero constant. To reach a conclusion,
we must ensure that Nφ̄ = 0. First, recall the following results from [14]:

Corollary 9 For any 3-dimensional unit C12 manifold, we have

∇ξξ = ψ, ∇ξψ = ξ, ∇φψψ = (divψ − 1)φψ, ∇φψφψ = (1 − divψ)ψ,
∇ξφψ = ∇ψξ = ∇ψψ = ∇ψφψ = ∇φψξ = 0.

Using a φ-basis {ξ, ψ, φψ} (notice that a = 1 and b is a chosen constant that does not affect the derivations, thus the
choice of a φ-basis instead of a φ̄-basis), it suffices to verify that Nφ̄(ξ, ψ) = Nφ̄(ξ, φψ) = Nφ̄(ψ,φψ) = 0. Employing
Corollary 9, we have

[ξ, ψ] = ξ, [ξ, φψ] = 0, and [ψ,φψ] = (1 − divψ)φψ,

now, using (10.10) and (15.54), we obtain
Nφ̄(ξ, ψ) = φ̄2[ξ, ψ] − 1

b φ̄[ξ, φψ] = 0,
Nφ̄(ξ, φψ) = φ̄2[ξ, φψ] + bφ̄[ξ, ψ] = 0,
Nφ̄(ψ,ϖψ) = φ̄2[ψ,φψ] − [φψ,ψ] = −[ψ,φψ] − [φψ,ψ] = 0.

Summarizing all of the above, we have:

Proposition 28 A C12 structure is invariant under the following ω-conformal deformation

φ̄X = 1
b
ω(X)φψ + bω(φX)ψ, η̄ = bη, ω̄ = ω, ξ̄ = 1

b
ξ, ψ̄ = ψ, ḡ = b2g + (1 − b2)ω ⊗ ω.

From Kozsul’s formula, one can get

2b2g(∇̄XY, Z) + 2(1 − b2)ω(∇̄XY )ω(Z) = 2b2g(∇XY,Z) + 2(1 − b2)ω(∇XY )ω(Z)

+ (1 − b2)
(

(Lψg)(X,Y )ω(Z) + 2dω(X,Z)ω(Y ) + 2dω(Y,Z)ω(X)
)
.

Since dω = 0, then g(∇Xψ, Y ) = g(∇Y ψ,X), yields

(Lψg)(X,Y ) = g(∇Xψ, Y ) + g(∇Y ψ,X) = 2g(∇Xψ). (15.63)

Thus, we have

2b2g(∇̄XY, Z) + 2(1 − b2)ω(∇̄XY )ω(Z) = 2b2g(∇XY,Z) + 2(1 − b2)ω(∇XY )ω(Z)
+ 2(1 − b2)g(∇Xψ, Y )ω(Z). (15.64)

Taking Z = ψ in (3.15), we get
ω(∇̄XY ) = ω(∇XY ) + (1 − b2)g(∇XY,Z).

Finally
g(∇̄XY, Z) = g(∇XY,Z) + (1 − b2)g(∇Xψ, Y )ω(Z).

Hence
∇̄XY = ∇XY + (1 − b2)g(∇Xψ, Y )ψ. (15.65)

Proposition 29 Under ω-conformal deformation on an C12 manifold the Levi-Cevita connection ∇̄ is provided by formula (15.65).
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Let us denote the Riemannian curvature tensor R̄ associated with the metric ḡ defined by

R̄(X,Y )Z = ∇̄X∇̄Y Z − ∇̄Y ∇̄XZ − ∇̄[X,Y ]Z. (15.66)

Using (15.65), we have

∇̄X∇̄Y Z = ∇X∇Y Z + (1 − b2)
(
g(∇X∇Y ψ,Z)ψ + g(∇Y ψ,∇XZ)ψ + g(∇Xψ,∇Y Z)ψ + g(∇Y ψ,Z)∇Xψ

)
. (15.67)

In the same manner

∇̄Y ∇̄XZ = ∇Y ∇XZ + (1 − b2)
(
g(∇Y ∇Xψ,Z)ψ + g(∇Xψ,∇Y Z)ψ + g(∇Y ψ,∇XZ)ψ + g(∇Xψ,Z)∇Y ψ

)
. (15.68)

Also, we have

∇̄[X,Y ]Z = ∇[X,Y ] + (1 − b2)g(∇[X,Y ]ψ,Z)ψ. (15.69)

Hence, substituting (15.67), (15.68) and (15.69) in (15.66) yields

R̄(X,Y )Z = R(X,Y )Z + (1 − b2)
(
g
(
∇Y ψ,Z

)
∇Xψ − g

(
∇Xψ,Z

)
∇Y ψ − ω(R(X,Y )Z)ψ

)
. (15.70)

Proposition 30 Under ω-conformal deformation on an C12 manifold the Riemann curvature tensor R̄ is provided by formula (15.70).

Let us consider the orthonormal basis {ψ, ei}1≤i≤2n on the manifold M , relative to the metric g. It can be readily
demonstrated that the set {ψ, 1

b ei}1≤i≤2n forms an orthonormal frame on M in relation to the metric ḡ. By contracting
equation (15.70) with respect to the vectors Y and Z , we obtain

Q̄X =
i=2n∑
i=1

R̄(X, ēi)ēi + R̄(X,ψ)ψ

= 1
b2

i=2n∑
i=1

(
R(X, ei)ei + (1 − b2)

(
g(∇eiψ, ei)∇Xψ − g(∇Xψ, ei)∇eiψ − ω(R(X, ei)ei)ψ

))
+R(X,ψ)ψ.

Upon substituting expressions (5.2) and (7.2), the following outcomes are derived

Q̄X = 1
b2QX + 1 − b2

b2

(
divψ∇Xψ − S(X,ψ)ψ −R(X,ψ)ψ −

i=2n∑
i=1

g(∇Xψ, ei)∇eiψ

)
. (15.71)

Proposition 31 Under ω-conformal deformation on an C12 manifold the Ricci operator Q̄ is provided by formula (15.71).

Performing the inner product of (15.71) with any arbitrary vector field Y defined on the manifold M results in

S̄(X,Y ) = ḡ(Q̄X, Y ) = b2g(X,Y ) + (1 − b2)ω(Q̄X)ω(Y )

= S(X,Y ) + (1 − b2)
(

divψg(∇Xψ, Y ) − g(R(X,ψ)ψ, Y ) −
i=2n∑
i=1

g(∇Xψ, ei)g(∇eiψ, Y )
)
.

Using (5.2), one can observe that

i=2n∑
i=1

g(∇Xψ, ei)g(∇eiψ, Y ) = g

(
∇∑i=2n

i=1
g(∇Xψ,ei)ei

ψ, Y

)
= g
(
∇∇Xψψ, Y

)
.

Hence
S̄(X,Y ) = S(X,Y ) + (1 − b2)

(
divψg(∇Xψ, Y ) − g(R(X,ψ)ψ, Y ) − g(∇∇Xψψ, Y )

)
(15.72)

Proposition 32 Under ω-conformal deformation on an C12 manifold the Ricci curvature tensor S̄ is provided by formula (15.72).
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The outcomes derived from (15.72) manifest a discernible level of intricacy. Nevertheless, it is conceivable to distill and
articulate more accessible formulations specifically tailored to the 3-dimensional case. These simplified expressions not
only hold considerable significance for our present inquiry but also foreshadow their relevance in subsequent sections.
Using (5.2) and Corollary 9, we have

∇Xψ = η(X)ξ + (divψ − 1)ω ◦ φ(X)φψ.

With direct computations we have

∇ψ∇Xψ = η(∇ψX)ξ + (divψ − 1)ω ◦ φ(∇ψX)φψ = ∇∇ψXψ. (15.73)

Substituting (15.73) in (8.1), we get
R(X,ψ)ψ = −∇∇Xψψ. (15.74)

Thus, formula (15.72) becomes
S̄(X,Y ) = S(X,Y ) + (1 − b2)divψg(∇Xψ, Y ). (15.75)

Proposition 33 Under ω-conformal deformation on a 3-dimensional C12 manifold the Ricci curvature tensor S̄ is provided by formula
(15.75).

Using formulas (9.3) and (15.75), one can obtain

r̄ = 1
b2 r − 1 − b2

b2

(
S(ψ,ψ) − (divψ)2). (15.76)

Corollary 10 Under ω-conformal deformation on a 3-dimensional C12 manifold the scalar curvature r̄ is provided by formula
(15.76).

15.4.3 Lorentz C12 manifolds through metric deformation
Contrary to the Riemann case, any smooth manifold cannot admit a Lorentz structure,
in fact, this is possible if and only if there exists a global vector field ([58], page 149).
Additionally, the following well-known result shows how to obtain such a metric:

Figure 23. Hendrik An-
toon Lorentz 1853-1928.

Theorem 15 Let (M, g) be a Riemann manifold, V a unit global vector field and V ♭ its dual 1-
form. Then g̃ = g − 2V ♭ ⊗ V ♭ is a Lorentz metric on M . Furthermore, V becomes
time-like so the resulting Lorentz manifold is time-orient-able.

Definition 21 Let (M,φ, ξ, η, g) be a Lorentz almost contact manifold. M is said to be a Lorentz
almost contact C12-manifold if

dη = ω ∧ η and dΦ = 0

If, in addition Nφ = 0 then (M,φ, ξ, η, g) is called a Lorentz C12-manifold.

Now, we consider a C12-manifold (M2n+1, φ, ξ, η, g) and we obtain a Lorentz metric putting

g∗ = g − 2η ⊗ η. (15.77)

Theorem 16 The manifold (M2n+1, φ, ξ, η, g∗) is a Lorentz-C12-manifold.
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Proof Since (φ, ξ, η) is an almost contact structure, it is easily to see that ξ is time-like with respect to the metric g∗

g∗(ξ, ξ) = g(ξ, ξ) − 2η(ξ)η(ξ) = −1. (15.78)

We check the compatibility of g∗ with the structure, for any vector fields X and Y on M we have

g∗(φX,φY ) = g(φX,φY )
= g(X,Y ) − η(X)η(Y )
= g∗(X,Y ) + η(X)η(Y ).

Moreover, we have

Φ∗(X,Y ) = g∗(X,φY )
= Φ(X,Y ),

for any vector fields X and Y on M . So, we obtain dΦ∗ = dΦ = 0.
Finally, the integrability condition (i.e Nφ = 0) holds since it does not depend on the metric. Then, we obtain a
Lorentz-C12-manifold on M .

From now on, such a Lorentz-C12-manifold is said to be the associated Lorentz-C12-manifold.
To compare the Levi-Civita connections ∇ and ∇∗ with respect to the Riemannian metric g and the Lorentz one g∗,
by Koszul’s formula for ∇∗ and applying the definition of g∗ we have

g∗(∇∗
XY, Z

)
= g∗(∇XY, Z

)
−
(
g(∇Xξ, Y ) + g(∇Y ξ,X)

)
η(Z) − dη(X,Z)η(Y ) − dη(Y,Z)η(X).

With the help of (11.17) and Definition 20, one can get

g∗(∇∗
XY,Z

)
= g∗(∇XY,Z

)
+ η(X)η(Y )ω(Z),

since
ω(Z) = g(ψ,Z) = g̃(ψ,Z),

then
∇∗
XY = ∇XY + η(X)η(Y )ψ. (15.79)

Proposition 34 The Levi-Cevita connection ∇∗ associated with the metric g∗ on a C12 manifold is provided by formula (15.79).

As a consequence of the relation between the Levi-Civita connections, we have the following theorem:

Theorem 17 An almost contact Lorentzian manifold (M2n+1, φ, ξ, η, g̃) is a Lorentz-C12-manifold if and only if

(∇∗
Xφ)Y = η(X)ω(φY )ξ. (15.80)

Proof Using (15.79), we have

(∇∗
Xφ)Y = ∇∗

XφY − φ∇∗
XY

= (∇Xφ)Y − η(X)η(Y )φψ,

from (11.14), we get our formula.
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From formula (15.79), firstly we have

∇∗
X∇∗

Y Z = ∇X∇Y Z +
[(
η(∇XY ) − η(X)ω(Y )

)
η(Z) +

(
η(∇XZ) − η(X)ω(Z)

)
η(Y ) + η(X)η(∇Y Z)

]
ψ

+ η(Y )η(Z)∇Xψ. (15.81)

Secondly

∇∗
Y ∇∗

XZ = ∇Y ∇XZ +
[(
η(∇YX) − η(Y )ω(X)

)
η(Z) +

(
η(∇Y Z) − η(Y )ω(Z)

)
η(X) + η(Y )η(∇XZ)

]
ψ

+ η(X)η(Z)∇Y ψ. (15.82)

Finally
∇∗

[X,Y ]Z = ∇[X,Y ]Z + η(∇XY )η(Z)ψ − η(∇YX)η(Z)ψ. (15.83)

Substituting (15.81), (15.82) and (15.83) in (8.1), we evaluate

R∗(X,Y )Z = R(X,Y )Z + η(Z)
[(
η(Y )ω(X) − η(X)ω(Y )

)
ψ + η(Y )∇Xψ − η(X)∇Y ψ

]
, (15.84)

hence, substituting (11.15) into (15.84) yields

R∗(X,Y )Z = R(X,Y )Z − η(Z)R(X,Y )ξ. (15.85)

Proposition 35 The Riemann curvature tensor R∗ associated with the metric g∗ on a C12 manifold is provided by (15.85).

A standard orthonormalization process shows that if {ξ, ei}1≤i≤2n is a local orthonormal basis with respect to g then
it is a local pseudo-orthonormal basis with respect to g∗ . Using formulas (9.1) and (15.85)

Q∗X = R∗(X, ξ)ξ +
i=2n∑
i=1

R∗(X, ei)ei =
i=2n∑
i=1

R(X, ei)ei,

hence
Q∗X = QX −R(X, ξ)ξ. (15.86)

Proposition 36 The Ricci operator Q∗ associated with the metric g∗ on a C12 manifold is provided by (15.86).

By a simple computation using (9.2), (15.77) and (15.86), one can get

S∗(X,Y ) = S(X,Y ) − g(R(X, ξ)ξ, Y ) − 2η(QX)η(Y ),

again using formula (11.15), we obtain

S∗(X,Y ) = S(X,Y ) + ω(X)ω(Y ) + g(∇Xψ, Y ) − η(Y )g(∇Xψ, ξ) + 2η(X)η(Y )divψ,

using the fact g(∇Xψ, ξ) = −g(ψ,∇Xξ) = |ψ|2η(X), we conclude

S∗(X,Y ) = S(X,Y ) + (2divψ − |ψ|2)η(X)η(Y ) + ω(X)ω(Y ) + g(∇Xψ, Y ). (15.87)

Proposition 37 The Ricci curvature tensor S∗ associated with the metric g∗ on a C12 manifold is provided by (15.87).



Generalized D-Conformal Deformation C12 manifolds 72

Contacting formula (15.87) yields

r∗ = S∗(ξ, ξ) + S∗(ψ,ψ) +
i=2n−1∑
i=1

S∗(ei, ei). (15.88)

By virtue of (7.2) and (9.3), we get
r∗ = r + 3divψ. (15.89)

Corollary 11 The scalar curvature r∗ associated with the metric g∗ on a C12 manifold is provided by (15.89).



PART

VRicci Flow and Ricci-Solitons
In the present chapter, we initiate discussion on the Ricci flow equation, originally
formulated by R. Hamilton, as delineated in [43]. Essential foundational insights into
the Ricci flow equation are further expounded upon in [26].

Section 16. Ricci Flow.
Section 17. Some Exact Solu-
tions To Ricci Flow.
Section 18. Generalized Ricci-
Yamabe Soliton On
3-Dimensional Lie Groups.

Table 8. Contents for Part V

Section 16

RicciFlow

Definition 22 Consider a Riemannian manifold (M, g). The Ricci flow equation describes the
evolution of the Riemannian metric g over time

∂tg = −2S, (16.1)

where S refers to the Ricci tensor.

Figure 24. Richard Streit
Hamilton 1943-2024.

In a set of harmonic coordinates {x1, x2, ..., xn}

∆xi = 0, ∀i ∈ {1, ..., n},

where ∆ is the Laplace operator, and the Ricci flow equation is actually a heat equation
for the Riemannian metric [43].

Subsection 16.1

Geometric Interpretation of Ricci-flow

Figure 25. Ricci-flow on an
inflated sphere.

Ricci-flow is a way of changing the metric tensor g of a Riemannian manifold (M, g) over
time t so that the manifold becomes round (Approaching geometric characteristics
akin to those exhibited by a sphere). On the figure on the right, the Ricci flow
will inflate the region pointed out by the blue arrow. By convention we say that it has
negative Ricci curvature (i.e. S < 0). Hence, we can observe that the lenght increases
(i.e. g ↑)

Therefor, one can deduce that

∂tg = −2S,

where K is a positive constant. One must inquire about the case K = 2 from Hamilton,
as it remains an unresolved puzzle for myself. As an example, we shall solve the Ricci-
flow equation (16.1) for a 2-Sphere.

Example 16.2. Recall from Example 5.1

g =
(
g11 g12
g21 g22

)
=
(
R2 0
0 R2 sin2 θ

)
,

73
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and its Ricci tensor from (9.6)

S =
(
S11 S12
S21 S22

)
=
(

1 0
0 sin2 θ

)
.

Assuming that over time 0 ≤ t < ∞, only R changes and θ is time independant. Thus

∂tg =
(
∂tg11 ∂tg12
∂tg21 ∂tg22

)
=
(
∂tR

2 0
0 ∂tR

2 sin2 θ

)
=
(

2R∂tR 0
0 2R∂tR sin2 θ

)
.

Then substituting in (16.1), gives

∂tgt = −2S =⇒
(

2R∂tR 0
0 2R∂tR sin2 θ

)
= −2

(
1 0
0 sin2 θ

)
,

Wich leads to the simple to solve differential equation

2R∂tR = −2 =⇒ R(t) =
√

−2t+R2
0.

where R0 is the initial radius of the sphere at time t = 0. We say that a 2-Sphere of radius R has an extinction time
of t = R2

0
2 .

Section 17

Some Exact Solutions To Ricci Flow

Subsection 17.1

Einstein Manifolds

Figure 26. Albert Einstein
1879-1955.

An Einstein manifold, named in honor of Albert Einstein, is a Riemannian or pseudo-
Riemannian manifold, whose metric is a special solution to Einstein’s field equation with
cosmological constant

Sij −
(
Λ − 1

2r
)
gij = 8πG

c4 Tij ,

where Λ is the cosmological constant, G the gravitational constant, c the speed of light
and T is the stress-energy tensor. In vaccum, T = 0 the equation reduces to

Sij =
(
Λ − 1

2r
)
gij .

Thus, an Einstein manifold is a Riemannian or pseudo-Riemannian whose Ricci tensor
is proportional to the metric

S = λg. (17.1)

where λ is a constant. For any constant c, if g = cg0, from (13.10) we have

S(g) = S(g0) = λg0 = λ

c
g.

Using this, we can construct a family of solution to the Ricci-flow equation as follows. Consider g(t) = u(t)g0. If this
one parameter family is a solution to the Ricci-flow equation, then:

∂tgt = u′(t)g0 = −2S(u(t)g0) = −2S(g0) = −2λg0,
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where λ is a constant. Hence, we obtain

u′(t) = −2λ =⇒ u(t) = 1 − 2λt.

The cases λ > 0, λ = 0 and λ < 0 correspond to shrinking, steady and expanding solutions. Notice that the
solution exists for 0 ≤ t < 1

2λ and vanishes (or goes singular) at t = 1
2λ .

Over the course of the last decade, there were many generalization of Einstein manifolds, for example, we say that
(M, g) is an η-Einstein manifold if S satisfies:

S = µg + νη ⊗ η, (17.2)

and it is said almost quasi-Einstein and nearly quasi-Einstein, respectively if

S = cg + d
(
ω1 ⊗ ω2 + ω2 ⊗ ω1

)
, (17.3)

and
S = ag + bE, (17.4)

where a, b, c, d are functions, ω1, ω2 are 1-forms and E is a non-vanishing symmetric (0, 2)-tensor on M .
In physics, manifolds whose metric satisfies equation (17.2) are called perfect fluid spaces.

Subsection 17.2

Ricci-Soliton

A Ricci soliton denotes a solution to the Ricci flow equation (M, gt), where 0 ≤ t < T ≤ ∞, possessing the property
that for each t ∈ [0, T ), there exists a diffeomorphism

ϕt : M → M

generated by a vector field V and a constant σt such that

σtϕ
∗
t g0 = gt.

In essence, a Ricci soliton ensures that all Riemannian manifolds (M, gt) are isometric up to a varying scale factor,
which may depend on t. A method to construct Ricci solitons involves the following steps: Assume the existence of a
vector field X on M , a constant λ, and an initial metric g0 such that

−S(g0) = 1
2(LXg0) − λg0

Hence, a Ricci soliton is a triplet (g,X, λ) satisfying equation:

(LXg)(Y,Z) + 2S(Y,Z) = 2λg(Y, Z). (17.5)

The generalized Ricci-soliton equation in Riemann manifold (M, g) is defined by (see [56])

LV g = −2c1V
♭ ⊗ V ♭ + 2c2S + 2λg, (17.6)

where V ♭(X) = g(V,X) and c1, c2, λ ∈ R. Equation (17.6) is a generalization of:

• Killing’s equation c1 = c2 = λ = 0.
• Equation for homotheties c1 = c2 = 0.
• Ricci soliton c1 = 0, c2 = −1.
• Cases of Einstein-Weyl c1 = 1, c2 = −1

n−2 .
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• Metric projective structures with skew-symmetric Ricci tensor in projective class c1 = 1, c2 = − 1
n−1 , λ = 0.

• Vacuum near-horzion geometry equation c1 = 1, c2 = 1
2 .

Moreover, in the event that V is a Killing vector field (i.e., LV g = 0), equation (17.6) characterizes (M, g) as V ♭-
Einstein, given that c1 is non-zero, and it is termed Einstein if c1 = 0.
A further generalization of the Ricci-soliton equation in the Riemann manifold (M, g), given in [24] by the following
equation

LV1g = −2c1V
♭

2 ⊗ V ♭2 + 2c2S + 2λg, (17.7)

where V1, V2 are two vector fields on M .
Recently, in [6], the authors introduced the generalized η-Ricci soliton equation in Riemann manifold (M, g) by

LV g = −2c1V
♭ ⊗ V ♭ + 2c2S + 2λg + 2µη ⊗ η, (17.8)

where c1, c2, λ, µ ∈ R and η is a 1-form on M .
Inspired by equations (17.7) and (17.8), we can guess the existence of a generalization that includes all previous cases,
which we define by the following equation

LV1g = −2c1V
♭

2 ⊗ V ♭2 + 2c2S + 2λg + 2µη ⊗ η. (17.9)

We refer to this generalization as generalized η-Ricci bi-soliton and the confirmation of the existence of this
generalization will be in the last two theorems.
Conversely, a Ricci-Yamabe soliton (briefly, RYS) is defined as a semi-Riemannian manifold (Mn, g) equipped with a
vector field V on M that satisfies

LV g = 2αS + 2(λ+ rρ)g, (17.10)

where ρ ∈ R is constant and r denotes the scalar curvature, defined as the trace of the Ricci tensor S with respect to
the metric g

r = TrgS. (17.11)

Likewise, equation (17.10) is a natural generalization of:

• Ricci Soliton (briefly, RS) α = 1, ρ = 0.

• Ricci-Bourguignon Soliton (briefly, GBS) α = 1, ρ ∈ R.

• Yamabe Soliton (brielfly, YS) α = 0, ρ = −1.

Ricci-Yamabe solitons has been an active area of investigation in differential geometry. These solitons generalize both
Ricci solitons and Yamabe solitons, serving as self-similar solutions to the Ricci flow and the Yamabe flow, respectively.
Recent studies have explored various aspects of Ricci-Yamabe solitons, including their existence, uniqueness, and
classification under different geometric conditions. Notable contributions include the work of Deshmukh and Alodan
[33], which examined the geometric properties of Ricci-Yamabe solitons on warped product manifolds, and Blaga [14],
who studied η-Ricci-Yamabe solitons in the context of almost contact metric manifolds. These investigations provide
valuable insights into the interplay between curvature and the underlying geometry of the manifolds.
Motivated by the work of [57], we define a generalized Ricci-Yamabe soliton (briefly, GRYS) as follows

LV g = −2c1V
♭ ⊗ V ♭ + 2c2S + 2(λ+ rρ)g. (17.12)

Equation (17.12) is an immediate generalization of the following:

• GRS equation (17.6) for ρ = 0.

• RYS equation (17.10) for c1 = 0.
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Section 18

Generalized Ricci-Yamabe Soliton On 3-Dimensional
Lie Groups

This segment is dedicated to the computation of the generalized Ricci-Yamabe soliton (briefly, GRYS) on 3-dimensional
Lie groups.

Subsection 18.1

Left-Invariant 3-Dimensional Lie Groups

Figure 27. Leopold Kro-
necker 1823-1891.

A 3-dimensional left-invariant Lie group G is a smooth manifold of dimension 3 equipped
with a group structure such that left translations La defined by

La : G −→ G

x −→ La(x) = a.x,

for a, x ∈ G are diffeomorphisms. This implies that the tangent space TeG at the
identity element e ∈ G, equipped with the Lie bracket operation derived from the group
multiplication, forms a 3-dimensional Lie algebra.

A Riemannian frame on a 3-dimensional left-invariant Lie group (G, g) consists
of three smooth vector fields {e1, e2, e3} on G, which are left-invariant and form an
orthonormal basis with respect to the Riemannian metric g. Specifically, at each point
p ∈ G,

g(ei, ej)|p = δij ,

where δij is the Kronecker delta. In Jantzen’s work [47], L. Bianchi compiled a cat-

Figure 28. Luigi Bianchi
1856-1928.

alog of 3-dimensional real Lie algebras, accompanied by a demonstration that each
3-dimensional Lie algebra finds isomorphism with a singular entry on his list. Given our
focus on left-invariant structures, our analysis is confined to the Lie algebras associated
with their respective Lie groups. The ensuing outcome elucidates the various classes of
3-dimensional Lie algebras [60].

Proposition 38 Let g be a 3-dimensional real Lie algebra. Then if g is not abelian, it is isomorphic
to one and only one of the Lie algebras listed below:

Algebra Structure equations

A3,1 [e2, e3] = e1
A3,2 [e1, e3] = e1, [e2, e3] = e1 + e2
A3,3 [e1, e3] = e1, [e2, e3] = e2
A3,4 [e1, e3] = e1, [e2, e3] = −e2
Aδ

3,5 [e1, e3] = e1, [e2, e3] = δe2, (0 < |δ| < 1)
A3,6 [e1, e3] = −e2, [e2, e3] = e1
Aδ

3,7 [e1, e3] = −δe1 − e2, [e2, e3] = e1 + δe2, (δ > 0)
A3,8 [e1, e2] = e1, [e1, e3] = −2e2, [e2, e3] = e3
A3,9 [e1, e2] = e3, [e1, e3] = −e2, [e2, e3] = e1

Table 9. Classification of 3-Dimensional Real Lie Algebras and Their Structure Equations.
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Subsection 18.2

GRYS On 3-Dimensional Lie Groups

Our inquiry will delve into the presence of a GRYS (17.12) within 3-dimensional left-invariant Lie groups, on each
algebra A3,k, k ∈ {1, ..., 9}, with the potential vector field V

V = ae1 + be2 + ce3, and V ♭ ⊗ V ♭ =

a2 ab ac
ab b2 bc
ac bc c2

 .

Obviously, formula (17.12) is symmetric and we are lead to solve a system of 6 equations

(LV g)ij = −2c1ViVj + 2c2Sij + 2(λ+ rρ)δij . (18.1)

18.2.1 The algebra A3,1

The covariant derivatives of the basis elements are given by the following expressions

∇e1e1 = 0, ∇e1e2 = −1
2e3, ∇e1e3 = 1

2e2,

∇e2e1 = −1
2e3, ∇e2e2 = 0, ∇e2e3 = 1

2e1,

∇e3e1 = 1
2e2, ∇e3e2 = −1

2e1, ∇e3e3 = 0.

Using formulas (9.2), (6.27), and (17.11), we obtain

(LV g)ij =

 0 c −b
c 0 0

−b 0 0

 , Sij =

 1
2 0 0
0 − 1

2 0
0 0 − 1

2

 (18.2)

and the scalar curvature is
r = −1

2 . (18.3)

By directly substituting (18.2) into (18.1), we must address the challenge of solving

c1a
2 − c2

2 −
(
λ− ρ

2

)
= 0, (18.4)

c1b
2 + c2

2 −
(
λ− ρ

2

)
= 0, (18.5)

c1c
2 + c2

2 −
(
λ− ρ

2

)
= 0, (18.6)

c+ 2c1ab = 0, (18.7)
b− 2c1ac = 0, (18.8)

c1bc = 0. (18.9)

By analyzing various cases related to equation (18.9), we obtain the following results:
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• If c1 = 0, then b = c = 0 is obtained from (18.7) and (18.8). The system becomes

−c2

2 −
(
λ− ρ

2

)
= 0, (18.10)

c2

2 −
(
λ− ρ

2

)
= 0, . (18.11)

From one hand, summing equations (18.10) and (18.11) yields λ = ρ
2 . On the other hand, substracting equations

(18.10) and (18.11) results in c2 = 0.

• If c1 ̸= 0, then bc = 0. Assume b = 0, then c = 0 by virtue of (18.7). Substituting in (18.5) yields λ = c2
2 + ρ

2 ,
this along with (18.4) yields a = 0. Similar result to this latter is obtained in the case where c = 0.

In summary, the solutions of equation (18.1) within the algebra A3,1 is as follows

V = ae1, c1 = c2

a2 , λ = ρ

2 + c2

2 , a ∈ R∗ and c2, ρ ∈ R.

18.2.2 The algebra A3,2

The derivatives with respect to covariant bases are delineated as follows

∇e1e1 = −e3, ∇e1e2 = −1
2e3, ∇e1e3 = e1 + 1

2e2,

∇e2e1 = −1
2e3, ∇e2e2 = −e3, ∇e2e3 = 1

2e1 + e2,

∇e3e1 = 1
2e2, ∇e3e2 = −1

2e1, ∇e3e3 = 0.

Thus, from equations (9.2), (6.27), and (17.11), we derive

(LV g)ij =

 2c c −a− b
c 2c −b

−a− b −b 0

 , Sij =

− 3
2 −1 0

−1 − 5
2 0

0 0 − 5
2

 (18.12)

and the scalar curvature is
r = −13

2 . (18.13)

By employing equation (18.12) and (18.13) within (17.12), we are prompted to undertake the challenge of resolving

c1a
2 + 3

2c2 −
(
λ− 13

2 ρ
)

+ c = 0, (18.14)

c1b
2 + 5

2c2 −
(
λ− 13

2 ρ
)

+ c = 0, (18.15)

c1c
2 + 5

2c2 −
(
λ− 13

2 ρ
)

= 0, (18.16)

c1ab+ c2 + c

2 = 0, (18.17)

c1ac− a+ b

2 = 0, (18.18)

c1bc− b

2 = 0. (18.19)

Exploring different scenarios informed by equation (18.19), we discover:
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• If b = 0, then either a = 0 or c1c = 1
2 , as indicated by (18.18):

– If a = 0, the system of equations simplifies to

3
2c2 −

(
λ− 13

2 ρ
)

+ c = 0, (18.20)

5
2c2 −

(
λ− 13

2 ρ
)

+ c = 0, (18.21)

c1c
2 + 5

2c2 −
(
λ− 13

2 ρ
)

= 0, (18.22)

c2 + c

2 = 0. (18.23)

Subtracting (18.20) from (18.21) yields c2 = 0. Substituting this into (18.23) gives c = 0, thus λ = 13
2 ρ.

– If c1c = 1
2 , then substituting c = 1

2c1
results in

c1a
2 + 3

2c2 −
(
λ− 13

2 ρ
)

+ 1
2c1

= 0, (18.24)

5
2c2 −

(
λ− 13

2 ρ
)

+ 1
2c1

= 0, (18.25)

1
4c1

+ 5
2c2 −

(
λ− 13

2 ρ
)

= 0, (18.26)

c2 + 1
4c1

= 0. (18.27)

Subtracting (18.25) from (18.26), we obtain 1
c1

= 0, which has no solution.

• If c1c = 1
2 , then from (18.18) necessarily b = 0, and from (18.17) c2 = − 1

4c1
. Direct substitution gives

1
8c1

−
(
λ− 13

2 ρ
)

= 0, (18.28)

c1b
2 −

(
λ− 13

2 ρ
)

− 1
8c1

= 0, (18.29)

3
8c1

+
(
λ− 13

2 ρ
)

= 0. (18.30)

Summing equation (18.28) and (18.30) gives 1
c1

= 0, which has no solution.

Summarizing the above, equation (18.1) on the algebra A3,2 has no solution.

18.2.3 The algebra A3,3

The covariant derivatives of the basis elements are as follows:

∇e1e1 = −e3, ∇e1e2 = 0, ∇e1e3 = e1,

∇e2e1 = 0, ∇e2e2 = −e3, ∇e2e3 = e2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.
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Hence, from (9.2), (6.27), and (17.11), we have

(LV g)ij =

 2c 0 −a
0 2c −b

−a −b 0

 , Sij =

−2 0 0
0 −2 0
0 0 −2

 (18.31)

and the scalar curvature (17.11) is
r = −6. (18.32)

Upon substituting equations (18.31) and (18.32) into (17.12), we find it necessary to address the task of resolving

c1a
2 + 2c2 − λ+ 6ρ+ c = 0, (18.33)

c1b
2 + 2c2 − λ+ 6ρ+ c = 0, (18.34)
c1c

2 + 2c2 − λ+ 6ρ = 0, (18.35)
c1ab = 0, (18.36)

2c1ac− a = 0, (18.37)
2c1bc− b = 0. (18.38)

Examining various scenarios based on equation (18.36), the outcomes are as follows:

• If c1 = 0, then a = b = 0, and from (18.35) we get λ = 2c2 + 6ρ. Substituting in either (18.33) or (18.34) yields
c = 0.

• If ab = 0, we distringuish two particular cases:

– If a = 0 and b ̸= 0, then from (18.38) we have c1c = 1
2 . By direct substitution, we get

2c2 − λ+ 6ρ+ 1
2c1

= 0, (18.39)

c1b
2 + 2c2 − λ+ 6ρ+ 1

2c1
= 0, (18.40)

1
4c1

+ 2c2 − λ+ 6ρ = 0. (18.41)

Substituting (18.41) from (18.39) yields 1
c1

= 0, which has no solution.

– The case where a ̸= 0, b = 0 and c1c = 1
2 yields an identical result as previously discussed.

• If a = b = 0, we obtain

2c2 − λ+ 6ρ+ c = 0, (18.42)
c1c

2 + 2c2 − λ+ 6ρ = 0. (18.43)

Subtracting (18.41) from (18.43) provides c(c1c− 1) = 0. Therefore:

– Either c = 0 and λ = 2c2 + 6ρ.
– Or c = 1

c1
and λ = 2c2 + 6ρ+ 1

c1
.

In conclusion, the solution of equation (18.1) on the algebra A3,3 are given by

V = ce3, c1 = 1
c
, λ = 1

c1
+ 2c2 + 6ρ, where c ∈ R∗ and c2, ρ ∈ R.
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18.2.4 The algebra A3,4

The covariant derivatives of the basis elements are as follows

∇e1e1 = −e3, ∇e1e2 = 0, ∇e1e3 = e1,

∇e2e1 = 0, ∇e2e2 = e3, ∇e2e3 = −e2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

With the help of (9.2), (6.27), and (17.11), we have

(LV g)ij =

 2c 0 −a
0 −2c b

−a b 0

 , Sij =

0 0 0
0 0 0
0 0 −2

 (18.44)

and the scalar curvature is
r = −2. (18.45)

After substituting equations (18.44) and (18.45) into (18.1), we need to resolve

c1a
2 − λ+ 2ρ+ c = 0, (18.46)

c1b
2 − λ+ 2ρ− c = 0, (18.47)

c1c
2 + 2c2 − λ+ 2ρ = 0, (18.48)

c1ab = 0, (18.49)
a− 2c1ac = 0, (18.50)
b+ 2c1bc = 0. (18.51)

Considering different scenarios outlined in equation (18.49), the following observations arise:

• If c1 = 0, then (18.50) and (18.51) yield a = b = 0. By direct substitution, we obtain

λ = 2ρ+ c, (18.52)
λ = 2ρ− c, (18.53)
λ = 2c2 + 2ρ. (18.54)

Subtracting equation (18.53) from (18.52) gives c = 0. Summing equations (18.52) and (18.53) yields λ = 2ρ.
Putting all of the above in (18.54), we obtain c2 = 0.

• If ab = 0 and c1 ̸= 0, we consider three cases:

– If a = b = 0, again using equations (18.52), (18.53) and (18.54), we find c = 0, λ = 2ρ, and c2 = 0.
– If a = 0 and b ̸= 0, then c1c = − 1

2 . Substituting gives

λ+ 2ρ− 1
2c1

= 0, (18.55)

c1b
2 − λ+ 2ρ+ 1

2c1
= 0, (18.56)

1
4c1

+ 2c2 − λ+ 2ρ = 0. (18.57)

From (18.55), we get λ = 2ρ− 1
2c1

. Substituting in (18.56) yields b2 = − 1
2c2

1
, which has no real solutions.

– The case where b = 0, a ̸= 0, and c1c = − 1
2 is similar to the previous one.

Combining all the results, the solutions to equation (18.1) within the algebra A3,4 exhibits no solutions.
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18.2.5 The algebra Aδ
3,5

The covariant derivatives of the basis elements are as follows

∇e1e1 = −e3, ∇e1e2 = 0, ∇e1e3 = e1,

∇e2e1 = 0, ∇e2e2 = −δe3, ∇e2e3 = δe2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0,

where 0 < |δ| < 1. With direct computations, we have

(LV g)ij =

 2c 0 −a
0 2cδ −bδ

−a −bδ 0

 , Sij =

−1 − δ 0 0
0 −δ2 − δ 0
0 0 −δ2 − 1

 (18.58)

and the scalar curvature
r = −2δ2 − 2δ − 2. (18.59)

Substituting equations (18.58) into (18.1), we are compelled to engage in the process of resolving

c1a
2 + (1 + δ)c2 − λ+ 2(δ2 + δ + 1)ρ+ c = 0, (18.60)

c1b
2 + δ(δ + 1)c2 − λ+ 2(δ2 + δ + 1)ρ+ δc = 0, (18.61)
c1c

2 + (δ2 + 1)c2 − λ+ 2(δ2 + δ + 1)ρ = 0, (18.62)
c1ab = 0, (18.63)

c1ac− a

2 = 0, (18.64)

c1bc− δ
b

2 = 0. (18.65)

Evaluating different possibilities with respect to equation (18.63), we conclude:

• If c1 = 0, then equations (18.64) and (18.65) give a = b = 0. Thus, we have

(1 + δ)c2 − λ+ 2(δ2 + δ + 1)ρ+ c = 0, (18.66)
δ(δ + 1)c2 − λ+ 2(δ2 + δ + 1)ρ+ δc = 0, (18.67)

(δ2 + 1)c2 − λ+ 2(δ2 + δ + 1)ρ = 0. (18.68)

Subtracting equations (18.66) from (18.67), we find c = −(δ + 1)c2. From equation (18.68), λ = (δ2 + 1)c2 +
2(δ2 + δ+ 1)ρ. By substituting these results into either equation (18.66) or (18.67), we get (δ2 + 1)c2 = 0, hence
c2 = 0.

• If a = b = 0 and c1 ̸= 0, then equations (18.66) and (18.67) result in c = −(δ + 1)c2 and λ = 2(δ2 + δ + 1)ρ.
Substituting into (18.62), we obtain c2 = − δ2+1

(δ2+2δ+1)c1
.

• If a ̸= 0, b = 0, then from (18.64) we get c = 1
2c1

. Thus

c1a
2 + (1 + δ)c2 − λ+ 2(δ2 + δ + 1)ρ+ 1

2c1
= 0, (18.69)

δ(δ + 1)c2 − λ+ 2(δ2 + δ + 1)ρ+ δ

2c1
= 0, (18.70)

1
4c1

+ (δ2 + 1)c2 − λ+ 2(δ2 + δ + 1)ρ = 0. (18.71)
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Subtracting equation (18.70) from (18.71), we find c1 = −2δ+1
4(δ−1)c2

. Using these results along with equation (18.69), we
find a2 = −2δ2+δ−1

4c2
1

, which leads to an impossibility due to −2δ2 + δ − 1 < 0.

• If a = 0, b ̸= 0, then from (18.65) we get c = δ
2c1

. Using direct substitution, we have

(1 + δ)c2 − λ+ 2(δ2 + δ + 1)ρ+ δ

2c1
= 0, (18.72)

c1b
2 + δ(δ + 1)c2 − λ+ 2(δ2 + δ + 1)ρ+ δ2

2c1
= 0, (18.73)

δ2

4c1
+ (δ2 + 1)c2 − λ+ 2(δ2 + δ + 1)ρ = 0. (18.74)

Subtracting equation (18.73) from (18.74), we find c1 = δ−2
4(1−δ)c2

. From (18.72) we pull

λ = −δ2 − δ + 2
4(1 − δ)c1

.

Finally, substituting in (18.73), we obtain

b2 = −δ2 − δ + 2
4c2

1
,

for which is absurd due to the fact δ2 − δ + 2 > 0 for all 0 < |δ| < 1.

In summary, the equation (18.1) within the algebra Aδ
3,5 admits the following solution

V = ce3, c = −(δ + 1)c2, c2 = − δ2 + 1
(δ2 + 2δ + 1)c1

, λ = 2(δ2 + δ + 1)ρ, c1 ∈ R∗ and ρ ∈ R

18.2.6 The algebra A3,6

The covariant derivatives of the basis elements are as follows

∇e1e1 = 0, ∇e1e2 = 0, ∇e1e3 = 0,
∇e2e1 = 0, ∇e2e2 = 0, ∇e2e3 = 0,
∇e3e1 = e2, ∇e3e2 = −e1, ∇e3e3 = 0.

With direct computations, we have

(LV g)ij =

 0 0 −b
0 0 a

−b a 0

 , Sij =

0 0 0
0 0 0
0 0 0

 (18.75)

and the scalar curvature
r = 0. (18.76)

Substituting these into (18.1), we tackle the endeavor of resolving
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c1a
2 − λ = 0, (18.77)

c1b
2 − λ = 0, (18.78)

c1c
2 − λ = 0, (18.79)
c1ab = 0, (18.80)

c1ac− b

2 = 0, (18.81)

c1bc+ a

2 = 0. (18.82)

Reviewing several scenarios outlined by equation (18.80), the analysis indicates:

• If c1 = 0, then from (18.77), (18.81) and (18.82) we get λ = a = b = 0.

• Consider c1 ̸= 0:

– If a = 0, then from (18.81), b = 0, leading to λ = 0 and c = 0.
– Similarly, if b = 0, from (18.82), a = 0, resulting in λ = 0 and c = 0.

Combining all the results, the equation (18.1) within the algebra A3,6 satisfies only the Killing equation for V = ce3
where c ̸= 0.

18.2.7 The algebra Aδ
3,7

The covariant derivatives of the basis elements are as follows:

∇e1e1 = δe3, ∇e1e2 = 0, ∇e1e3 = −δe1,

∇e2e1 = 0, ∇e2e2 = −δe3, ∇e2e3 = δe2,

∇e3e1 = e2, ∇e3e2 = −e1, ∇e3e3 = 0,

where δ > 0.
With direct computations, we have

(LV g)ij =

 −2cδ 0 aδ − b
0 2cδ a− δb

aδ − b a− δb 0

 , Sij =

 0 2δ 0
2δ 0 0
0 0 −2δ2

 (18.83)

and the scalar curvature is
r = −2δ2. (18.84)

We need to solve the following equations from (18.1)

c1a
2 − λ+ 2δ2ρ− cδ = 0, (18.85)

c1b
2 − λ+ 2δ2ρ+ cδ = 0, (18.86)

c1c
2 + 2c2δ

2 − λ+ 2δ2ρ = 0, (18.87)
c1ab− 2c2δ = 0, (18.88)

c1ac+ a

2 δ − b

2 = 0, (18.89)

c1bc+ a

2 − b

2δ = 0. (18.90)

Analyzing equation (18.89), we obtain b = 2c1ac+ aδ. Substituting into (18.90) yields
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a

(
c2

1c
2 + 1 − δ

4

)
= 0. (18.91)

Reviewing several scenarios outlined by equation (18.91), the analysis indicates:

• If a = 0, substituting in (18.89) and using (18.88) gives b = 0 and c2 = 0. Substituting into (18.85) and (18.86)
gives c = 0 and λ = 2δ2ρ.

• If c1c =
√
δ−1
2 , which is valid only for δ ≥ 1, then by direct substitution we get:

– If δ > 1, then a = 0 and similar results are obtained as discussed previously.
– If δ = 1, then c1 = 0. In the first case, from (18.88) we get c2 = 0, and from (18.89) a = b. Hence, we are

left with

−λ+ 2ρ− c = 0, (18.92)
−λ+ 2ρ+ c = 0, (18.93)

−λ+ 2ρ = 0, (18.94)

which clearly gives λ = 2ρ and c = 0.
In the second case, where c = 0, again from (18.89) we have a = b, and using (18.88) we get a =

√
2c2
c1

.
Finally, from (18.87) we obtain λ = 2c2 + 2ρ.

Combining all the results, the solutions to equation (18.1) within the algebra Aδ
3,7 are

V = a(e1 + e2), c1 = 2c2

a2 , λ = 2c2 + 2ρ, a ∈ R∗ and c2, ρ ∈ R.

18.2.8 The algebra A3,8

The covariant derivatives of the basis elements are

∇e1e1 = −e2, ∇e1e2 = e1 + e3, ∇e1e3 = −e2,

∇e2e1 = e3, ∇e2e2 = 0, ∇e2e3 = −e1,

∇e3e1 = e2, ∇e3e2 = −e1 − e3, ∇e3e3 = e2.

From direct computations, we obtain

(LV g)ij =

 2b −a− 2c 0
−a− 2c 0 2a+ c

0 2a+ c −2b

 , Sij =

−2 0 −2
0 0 0

−2 0 −2

 . (18.95)

The scalar curvature is given by
r = −4. (18.96)

Therefore, upon substituting (18.95) and (18.96) into (18.1) the following equations must be satisfied
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c1a
2 + 2c2 − λ+ 4ρ+ b = 0, (18.97)

c1b
2 − λ+ 4ρ = 0, (18.98)

c1c
2 + 2c2 − λ+ 4ρ− b = 0, (18.99)

c1ab− a

2 − c = 0, (18.100)

c1ac+ 2c2 = 0, (18.101)

c1bc+ a+ c

2 = 0. (18.102)

From (18.100), we deduce c = c1ab− a
2 . Substituting this into (18.102) gives:

a

(
c2

1b
2 + 3

4

)
= 0.

Hence, a = 0 and c = 0. This implies c2 = 0. Substituting c2 = 0 into (18.98) yields λ = 4ρ. Finally, substituting
λ = 4ρ into either (18.97) or (18.99) provides b = 0.
In conclusion, equation (18.1) in the algebra A3,8 has no solution.

18.2.9 The algebra A3,9

The covariant derivatives of the basis elements are

∇e1e1 = 0, ∇e1e2 = 1
2e3, ∇e1e3 = −1

2e2,

∇e2e1 = −1
2e3, ∇e2e2 = 0, ∇e2e3 = 1

2e1,

∇e3e1 = 1
2e2, ∇e3e2 = −1

2e1, ∇e3e3 = 0.

From direct computations, we obtain

(LV g)ij =

0 0 0
0 0 0
0 0 0

 , Sij =

 1
2 0 0
0 1

2 0
0 0 1

2

 (18.103)

and the scalar curvature
r = 3

2 . (18.104)

Thus, the following equations must be satisfied

2c1a
2 − c2 − 2λ− 3ρ = 0, (18.105)

2c1b
2 − c2 − 2λ− 3ρ = 0, (18.106)

2c1c
2 − c2 − 2λ− 3ρ = 0, (18.107)

c1ab = 0, (18.108)
c1ac = 0, (18.109)
c1bc = 0. (18.110)

Analyzing equations (18.108), (18.109), and (18.110) yields

• If c1 = 0, then λ = − 1
2c2 − 3

2ρ, and c2, ρ ∈ R.

• If c1 ̸= 0, then a = b = c = 0, λ = − 1
2c2 − 3

2ρ, and c2, ρ ∈ R.
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Therefore, the solution set is

V = ae1 + be2 + ce3, c1 = 0, λ = −1
2c2 − 3

2ρ, and a, b, c, c2, ρ ∈ R.

Theorem 18 Generalized Ricci-Yamabe soliton equation

LV g = −2c1V
♭ ⊗ V ♭ + 2c2S + 2(λ+ rρ)g,

admits the following solutions on 3-dimensional left invariant Lie algebras:

• Algebra A3,1:
V = ae1, c1 = c2

a2 , λ = ρ

2 + c2

2 where a ∈ R∗ and c2, ρ ∈ R.

• Algebra A3,3:

V = ce3, c1 = 1
c
, λ = 1

c1
+ 2c2 + 6ρ, where c ∈ R∗ and c2, ρ ∈ R.

• Algebra Aδ
3,5:

V = ce3, c = −(δ + 1)c2, c2 = − δ2 + 1
(δ2 + 2δ + 1)c1

, λ = 2(δ2 + δ + 1)ρ,

where c1 ∈ R∗ and ρ ∈ R.

• Algebra Aδ
3,7:

V = a(e1 + e2), c1 = 2c2

a2 , λ = 2c2 + 2ρ, a ∈ R∗ and c2, ρ ∈ R.

• Algebra A3,9:

V = ae1 + be2 + ce3, c1 = 0, λ = −1
2c2 − 3

2ρ, and a, b, c, c2, ρ ∈ R.

We have extended the concept of the Ricci-Yamabe soliton through equation (18.1) and explored the presence of this
structure on left-invariant three-dimensional Lie groups. The findings provide concrete examples that substantiate the
existence of this structure, thus demonstrating its viability. This work opens a wide range of possibilities for future
research in this area. We can summarize the existence of various solitonic structure on left-invariant 3-dimensional Lie
algebras in the following:

Algebra GRYS GRS RBS RS YS PFS

A3,1 ✓ ✓ ✓ ✓ ✓ ✓

A3,2 ✗ ✗ ✗ ✗ ✗ ✗

A3,3 ✓ ✓ ✓ ✓ ✓ ✗

A3,4 ✗ ✗ ✗ ✗ ✗ ✗

Aδ
3,5 ✓ ✓ ✓ ✓ ✓ ✗

A3,6 ✗ ✗ ✗ ✗ ✗ ✗

Aδ
3,7 ✓ ✓ ✓ ✓ ✓ ✗

A3,8 ✗ ✗ ✗ ✗ ✗ ✗

A3,9 ✓ ✓ ✓ ✓ ✓ ✗

Table 10. Possible Solitonic Structure On Left-Invariant 3-Dimensional Lie Algebras
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Section C

Appendix C

Subsection C.1

Tensor Product

For non-negative integers r and s, a type (r, s) tensor on a vector space V is an element of

T rs (V) = V ⊗ · · · ⊗ V︸ ︷︷ ︸
r

⊗ V∗ ⊗ · · · ⊗ V∗︸ ︷︷ ︸
s

= V⊗r ⊗ (V∗)⊗s.

Here V∗ is the dual vector space (which consists of all linear maps f from V to the field K). There is a product map,
called the tensor product of tensors

T rs (V) ⊗K T r
′

s′ (V) → T r+r′

s+s′ (V).

If V is finite dimensional, then picking a basis of V and the corresponding dual basis of V∗ naturally induces a basis
of T rs (V) (this basis is described in the article on Kronecker products). In terms of these bases, the components of
a (tensor) product of two (or more) tensors can be computed. For example, if F and G are two covariant tensors of
orders m and n respectively (i.e. F ∈ T 0

m and G ∈ T 0
n), then the components of their tensor product are given by

(F ⊗G)i1i2···im+n = Fi1i2···imGim+1im+2···im+n .

Thus, the components of the tensor product of two tensors are the ordinary product of the components of each tensor.
Another example: let U be a tensor of type (1, 1) with components U ij , and let V be a tensor of type (1, 0) with
components V k. Then

(V ⊗ U)ikj = VkU
i
j .

In our case, consider the basis {e1, e2, e3} of the the vector space TeG. Let V ∈ TeG a tensor of type (1, 0)

V = ae1 + be2 + c3.

Using (5.6) and for an arbitrary vector field X in TeG, we obtain a tensor of type (0, 1), the dual of V

V ♭(X) = g(V,X) = ag(e1, X) + bg(e2, X) + cg(e3, X).

Hence, withing the co-frame {e1, e2, e3} (such that ei(ej) = δij)

V ♭ = ae1 + be2 + ce3.

Using previous definitions and remarks, V ♭ ⊗ V ♭ is a tensor of type (0, 2) with components(
V ♭ ⊗ V ♭

)
ij

=
(
V ♭ ⊗ V ♭

)
(ei, ej) = V ♭(ei)V ♭(ej) = ViVj .
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Subsection C.2

Covariant Derivative On Lie Algebras

Let {e1, ...en} be an orthonormal babis for the vector space TeG, then by the bilinearity of the Lie bracket it will be
completely determined by the elements [ei, ej ]. The strucutre constans Ckij are defined such that

[ei, ej ] =
i=n∑
k=1

Ckijek. (C.1)

Hence, using the the metric g we can get
Ckij = g([ei, ej ], ek). (C.2)

Using Kozsul’s formula (6.5) and (C.2), one can get

2g(∇eiej , ek) = g([ei, ej ], ek) + g([ek, ei], ej) − g([ej , ek], ei)
= Ckij + Cjki − Cijk. (C.3)

On the other hand, using formula (5.2) for ∇eiej

∇eiej =
k=n∑
k=1

g(∇eiej , ek)ek. (C.4)

Thus, substituting (C.3) into (C.4) yields

∇eiej = 1
2

k=n∑
k=1

(
Ckij + Cjki − Cijk

)
ek. (C.5)

As an application, we shall use datas provided in Table 9 to compute the covariant derivatives of the basis elements in
A3,1: The non-zero structure constants are C1

23 = 1. Using formula (C.5)

∇e1e1 = 1
2

((
C1

11 + C1
11 − C1

11
)
e1 +

(
C2

11 + C1
21 − C1

12
)
e2 +

(
C3

11 + C1
31 − C1

13
)
e3

)
= 0,

∇e1e2 = 1
2

((
C1

12 + C2
11 − C1

21
)
e1 +

(
C2

12 + C2
21 − C1

22
)
e2 +

(
C3

12 + C2
31 − C1

23
)
e3

)
= −1

2e3,

∇e1e3 = 1
2

((
C1

13 + C3
11 − C1

31
)
e1 +

(
C2

13 + C3
21 − C1

32
)
e2 +

(
C3

13 + C3
31 − C1

33
)
e3

)
= 1

2e2,

∇e2e1 = 1
2

((
C1

21 + C1
12 − C2

11
)
e1 +

(
C2

21 + C1
22 − C2

12
)
e2 +

(
C3

21 + C1
32 − C2

13
)
e3

)
= −1

2e3,

∇e2e2 = 1
2

((
C1

22 + C2
12 − C2

21
)
e1 +

(
C2

22 + C2
22 − C2

22
)
e2 +

(
C3

22 + C2
32 − C2

23
)
e3

)
= 0,

∇e2e3 = 1
2

((
C1

23 + C3
12 − C2

31
)
e1 +

(
C2

23 + C3
22 − C2

32
)
e2 +

(
C3

23 + C3
32 − C2

33
)
e3

)
= −1

2e1,
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∇e3e1 = 1
2

((
C1

31 + C1
13 − C3

11
)
e1 +

(
C2

31 + C1
23 − C3

12
)
e2 +

(
C3

31 + C1
33 − C3

13
)
e3

)
= 1

2e2,

∇e3e2 = 1
2

((
C1

32 + C2
13 − C3

21
)
e1 +

(
C2

32 + C2
23 − C3

22
)
e2 +

(
C3

32 + C2
33 − C3

23
)
e3

)
= −1

2e1,

∇e3e3 = 1
2

((
C1

33 + C3
13 − C3

31
)
e1 +

(
C2

33 + C3
23 − C3

32
)
e2 +

(
C3

33 + C3
33 − C3

33
)
e3

)
= 0.



PART

VIRicci-Soliton Under Deforma-
tions
In the concluding section of our study, we will delve into the dynamic properties of
Ricci solitons across various categories of manifolds subject to specific deformations.
Additionally, we aim to establish the presence of a rudimentary Ricci soliton within
select instances of C12 manifolds.

Section 19. Ricci-Soliton on
a Class of Riemannian mani-
fold under D-Isometric Defor-
mation.
Section 20. Ricci-Soliton on
Deformed C12-Manifolds.

Table 11. Contents for Part
VISection 19

Ricci-Soliton on a Class of Riemannian manifold under
D-Isometric Deformation

In this section, we will investigate Ricci-Soliton on compact gradient manifolds admitting a Jacobi-Type vector field
[31]. First, we have the following immediate result:

Theorem 19 Let (Mn, g) be a Riemannian manifold endowed with a unit closed vector field ξ admitting Ricci-Soliton (g, ξ, λ).
The following holds:

• r = nλ− divξ,

• λ is eigenvalue of Ricci operator Q with ξ its associated eigenvector.

In addition, if (Mn, g) is compact and ξ is of Jacobi-type, then:

• (Mn, g) is Einstein.

• r = nλ.

Proof Since (g, ξ, λ) is a Ricci-Soliton then equation (17.5) along with (14.1) gives

g(∇Xξ, Y ) + S(X,Y ) = λg(X,Y ). (19.1)

Computing the trace of S from equation (19.1) yields

r =
n∑
i=1

S(ei, ei) =
n∑
i=1

λg(ei, ei) −
n∑
i=1

g(∇eiξ, ei) = nλ− divξ.

Again taking X = ξ in (19.1) and using equations (11.20) and (14.1), we can obtain

S(ξ, Y ) = λη(Y ) ⇒ Qξ = λξ.

The second part is immediately obtained using Theorem 9.

Proposition 39 Let (Mn, g) be a Riemannian manifold endowed with a unit closed vector field ξ admitting (g, ξ, λ) Ricci-Soliton.
Then (g, fξ, λ) is a Ricci-Soliton if and only if f is constant.

92
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Proof Using the definition of the Lie derivative, we have

(LV g)(X,Y ) = f(Lξg)(X,Y ) +X(f)η(Y ) + Y (f)η(X).

Hence, from equation (17.5) we obtain

(Lfξg)(X,Y ) + 2S(X,Y ) − 2λg(X,Y ) = f(Lξg)(X,Y ) +X(f)η(Y ) (19.2)
+ Y (f)η(X) + 2S(X,Y ) − 2λg(X,Y ) = 0.

Consider {ξ, ei}2≤i≤n an orthonormal frame with respect to g and since (g, ξ, λ) is a Ricci-Soliton (S(ei, ξ) = 0),
substituting X = Y = ξ in (19.2) gives

ξ(f) = 0.

Again, putting X = ξ and Y = ei in (19.2) yields

ei(f) = 0.

In the following, we will study Ricci-Soliton behaviour under D-isometric deformation (14.4). First, we consider the
case where the potential field V is pointwise collinear with the vector field ξ (i.e V = fξ, f is a smooth function on
Mn). With direct computations we have

(LV g̃)(X,Y ) = g̃(∇̃XV, Y ) + g̃
(
∇̃Y V,X

)
= g̃

(
∇̃X(fξ), Y

)
+ g̃
(
∇̃Y (fξ), X

)
= 2fg(∇Xξ, Y ) + 2X(f)η(Y ) + 2Y (f)η(X)
= 2f(Lξg)(X,Y ) + 2X(f)η(Y ) + 2Y (f)η(X).

Thus
(LV g̃)(X,Y ) = 2(LV g)(X,Y ) = (L2V g)(X,Y ). (19.3)

Replacing (14.4), (14.12) and (19.3) in (17.5) we obtain

(LV g̃)(X,Y ) + 2S̃(X,Y ) − 2λg̃(X,Y ) = (L2V g)(X,Y ) + 2S(X,Y )
+ divξg(∇Xξ, Y ) − 2λg(X,Y ) − 2λη(X)η(Y ). (19.4)

Thus (M, g̃, fξ, λ) is a Ricci soliton if and only if

divξg(∇Xξ, Y ) − λη(X)η(Y ) = 0. (19.5)

Therefore, summing up the arguments above, we have the following theorem:

Theorem 20 Let (Mn, g) be a Riemannian manifold endowed with a unit closed Jacobi-Type vector field ξ admitting Ricci-
Soliton (g, 2fξ, λ). Then, under
D-isometric deformation (g̃, fξ, λ) is a Ricci-Soliton if and only if

divξg(∇Xξ, Y ) − λη(X)η(Y ) = 0,

and (g, 2fξ, λ) , (g̃, fξ, λ) are steady.

Corollary 12 Let (Mn, g) be a compact Riemannian manifold endowed with a unit closed Jacobi-Type vector field ξ. Then,
under D-isometric deformation η-Einstein Ricci-Soliton (g, fξ, λ) deforms to an Einstein metric.
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Next, we consider the case where V is orthogonal to ξ i.e. η(V ) = 0. We compute

g̃(∇̃XV, Y ) = g̃
(

∇XV + 1
2g(∇Xξ, V )ξ, Y

)
= g̃(∇XV, Y ) + 1

2g(∇Xξ, V )g̃(ξ, Y ),

knowing that g̃ = g + η ⊗ η and g(∇Xξ, V ) = −η
(
∇XV ), we get

g̃(∇̃XV, Y ) = g(∇XV, Y ).

Then
(LV g̃)(X,Y ) = g(∇XV, Y ) + g(∇Y V,X) = (LV g)(X,Y ). (19.6)

Replacing (14.4), (14.12) and (19.6) in (17.5), we obtain(
LV g̃ + 2S̃ − 2λg̃

)
(X,Y ) =

(
LV g + 2S − 2λg

)
(X,Y ) + g

(
divξ∇Xξ − 2λη(X)ξ, Y

)
. (19.7)

If (M, g, V, λ) is a Ricci-Soliton, the above equation takes the form(
LV g̃ + 2S̃ − 2λg̃

)
(X,Y ) = +g

(
divξ∇Xξ − 2λη(X)ξ, Y

)
.

Thus, (M, g̃, V, λ) is a Ricci-Soliton if and only if

divξ∇Xξ − 2λη(X)ξ = 0. (19.8)

By taking X = ξ in (19.8), we obtain:
λ = 0, (19.9)

substituting equations (19.8) and (19.9) in (14.12), we obtain

S̃ = S. (19.10)

Then we get:
LV g̃ + 2S̃ − 2λg̃ = LV g + 2S − 2λg − 2λ η ⊗ η.

Hence, we state the following:

Theorem 21 Let (M, g, V, λ) be a Ricci-Soliton with the potential vector field V orthogonal to ξ. Then (M, g̃, V, λ) is a steady
Ricci-Soliton.

Subsection 19.1

A Class of Examples

Example 19.2. Hyperbolic Cylinder:
Let M = Hn × R = {(xi, z) ∈ Rn+1/xn > 0}, where (xi, z)1≤i≤n are standard co-ordinate in Rn+1. Let {ei, ξ}1≤i≤n
be linearly independent vector fields given by

ei = xn
∂

∂xi
, ξ = ∂

∂z
.

We define a Riemannian metric g by

g = 1
x2
n

n∑
i=1

dx2
i + dz2.
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Let ∇ be the Riemannian connection of g, then we have

[ei, en] = −ei, [ei, ξ] = [ei, ej ] = 0, ∀i ̸= j ∈ {1, .., n− 1}.

By using the Koszul formula for the Riemannian metric g

2g(∇eiej , ek) = −g(ei, [ej , ek]) + g(ej , [ek, ei]) + g(ek, [ei, ej ]),

the non zero components of the Levi-Civita connection corresponding to g are given by

∇eiei = en, ∇eien = −ei, ∀i ∈ {1, .., n− 1}.

The non-vanishing curvature tensor R components are computed as

R(ei, ej)ej = −ei, R(ei, en)ei = en, R(ei, en)en = −ei, ∀i ̸= j ∈ {1, .., n− 1}.

The Ricci operator Q and the Ricci curvature S components are computed as

Qei = (1 − n)ei, S(ei, ej) = (1 − n)δij , S(ξ, ξ) = 0, ∀i ∈ {1, .., n}.

One can easily check that for f constant function on M , (g, fξ, λ) is a steady Ricci-Soliton. Since divξ = 0, using
Theorem 20, we obtain that (g̃, fξ, λ) is also a steady Ricci-Soliton such that

g̃ = 1
x2
n

n∑
i=1

dx2
i + 2dz2.

Considering Theorem 20 , it is proved that there exists an infinite number of Ricci-Solitons (M, gm, fξ, λ) where
gm = g +mη ⊗ η.

Example 19.3. 3-D Cigar-Soliton:
Let M = S1 × R × R and let {e1, e2, e3} be linearly independent vector fields given by

e1 = (1 + x2) ∂
∂x
, e2 = ∂

∂r
, e3 = 1

x

∂

∂t
.

and {θ1, θ2, θ3} be the dual frame of differential 1-forms such that

θ1 = 1
1 + x2 dx, θ2 = dr, θ3 = xdt.

We define a Riemannian metric g by g =
∑3
i=1 θ

i ⊗ θi, That is the form

g =

 1
(1+x2)2 0 0

0 1 0
0 0 x2

 .

The potential vector field is given by V = gradf = 2x(1 + x2)e1 where the potential function is f = ln(1 + x2).
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With simple computations one can find

S = −2(1 + x2)

 1 0 0
0 0 0
0 0 1

 , LV g = 4(1 + x2)

 1 0 0
0 0 0
0 0 1

 .

We can easily notice that LV g + 2S = 0 which implies that (M, g, V ) is a steady Ricci soliton.
We take ξ = e2 to ensure the conditions V ⊥ ξ and dθ2 = 0 then we deform the metric as follows

g̃ = g + θ2 ⊗ θ2 =

 1
(1+x2)2 0 0

0 2 0
0 0 x2

 .

Using formulas (19.6) and (19.10) we conclude that (M, g̃, V ) is a steady Ricci soliton aswell.

Section 20

Ricci-Soliton on Deformed C12-Manifolds

The significance inherent in establishing conditions for the triviality of a Ricci soliton arises from its role as a broader
conceptualization encompassing Einstein manifolds. In this context, our investigation commences by elucidating a
specific equivalence between these two constructs within the framework of C12-manifolds. The established results can
be found in [32]

Subsection 20.1

Under η-conformal deformation

Let us initially presume that (M, g) constitutes an Einstein manifold, denoted by the relation

S(X,Y ) = µg(X,Y ) + νη(X) ⊗ η(Y ) where µ+ ν = −divψ.

Subsequently, employing (15.87), we derive

S̃(X,Y ) = µg̃(X,Y ) + a2νη(X) ⊗ η(Y ) = µg̃(X,Y ) + νη̃(X) ⊗ η̃(Y ).

Consequently, our preliminary finding is articulated as:

Theorem 22 An η-Einstein C12 manifold is invariant under η-conformal deformation.

Continuing our analysis, through direct computations involving (15.1) and (15.61), we arrive at the following expression(
LV g̃

)
(X,Y ) = g̃(∇̃XV, Y ) + g̃(∇̃Y V,X)

=
(
LV g

)
(X,Y ) + (1 − a2)

(
η(∇XV )η(Y ) + η(∇Y V )η(X)

)
. (20.1)

By substituting expressions (15.1), (15.61), and (20.1) into the Ricci soliton equation (17.5), we obtain the subsequent
relation (

LV g̃
)
(X,Y ) + 2S̃(X,Y ) − 2λg̃(X,Y ) =

(
LV g

)
(X,Y ) + 2S(X,Y ) − 2λg(X,Y ) (20.2)

+ (1 − a2)
(

2(divψ + λ)η(X)η(Y ) + η(∇XV )η(Y ) + η(∇Y V )η(X)
)
.
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Case 01: Initially, we shall examine the vector field V = fξ to be pointwise colinear with ξ, where f represents a
smooth function on M

η(∇XV ) = X(f) + fη(∇Xξ) = X(f).

Substituting this expression into (20.2), the resulting equation is(
LV g̃

)
(X,Y ) + 2S̃(X,Y ) − 2λg̃(X,Y ) =

(
LV g

)
(X,Y ) + 2S(X,Y ) − 2λg(X,Y )

+ (1 − a2)
(

2(divψ + λ)η(X)η(Y ) +X[f ]η(Y ) + Y [f ]η(X)
)
.

If (g, V, λ) constitutes a Ricci soliton, then (g̃, V, λ) assumes the same role if and only if

2(divψ + λ)η(X)η(Y ) +X[f ]η(Y ) + Y [f ]η(X) = 0 (20.3)

Setting X = Y = ξ in (20.3), the ensuing expression is derived

ξ(f) = −λ+ divψ.

Consequently, our initial result manifests as:

Theorem 23 A Ricci soliton (g, fξ, λ) on a C12 manifold is invariant under η-conformal deformation if and only if
grad(f) = −(λ+ divψ)ξ.

Corollary 13 A Ricci soliton (g, fξ,−divψ) on a C12 manifold is invariant under η-conformal deformation.

Case 02: In this scenario, we consider the vector field V to be orthogonal to ξ. Consequently, we obtain the relationship

η(∇XV ) = −g(V,∇Xξ) =⇒

{
η(∇XV ) = fη(X), if V = fψ,

η(∇XV ) = 0, if not.
(20.4)

In the circumstance where V is perpendicular to both ξ and ψ according to (20.2), the triplet (g̃, V, λ) forms a Ricci
soliton if and only if

divψ + λ = 0 =⇒ λ = −divψ.

Conversely, if V is pointwise colinear with ψ, then

divψ + λ+ f = 0 =⇒ f = −(divψ + λ).

Hence, we articulate the ensuing results:

Theorem 24 A Ricci soliton (g, V,−divψ) on C12 manifold, where V is perpendicular to both ξ and ψ is invariant under η-
conformal deformation.

Theorem 25 A Ricci soliton (g, fψ, λ) on C12 manifold is invariant under η-conformal deformation if and only if f = −(divψ+λ).

Subsection 20.2

Under ω-conformal deformation

In this transformation, our focus is exclusively on the 3-dimensional case. Analogous to the preceding analysis, through
a direct examination of the formula (15.72), we observe the following relationship

S̄(X,Y ) = S(X,Y ) + (1 − b2)divψg(∇Xψ, Y ) = S(X,Y ) + 1
2(Lαψg)(X,Y ),
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where α = (1 − b2)divψ. If (g, αψ, λ) constitutes a Ricci soliton on (M, g), it is evident that λ = −b2divψ, thus

S̄(X,Y ) = S(X,Y ) + +1
2(Lαψg)(X,Y ) = λg(X,Y )

= −divψḡ(X,Y ) − (1 − b2)divψω(X)ω(Y ).

This leads to the subsequent result:

Proposition 40 A Ricci soliton (g, αψ,−b2divψ) on a C12 manifold becomes ω-Einstein under ω-conformal deformation where
α = (1 − b2)divψ and b is a constant.

Consider now an arbitrary vector field V on M . Utilizing (6.27), (15.54) and (15.65), we obtain(
LV ḡ

)
(X,Y ) = ḡ(∇̄XV, Y ) + ḡ(∇̄Y V,X) = b2(LV g)(X,Y ), (20.5)

Substituting (15.54), (15.75) and (20.5), we obtain(
LV ḡ

)
(X,Y ) + 2S̄(X,Y ) − 2λḡ(X,Y ) = b2(LV g)(X,Y ) + 2S(X,Y ) (20.6)

+ (1 − b2)divψ
(
Lψg

)
(X,Y ) − 2b2λg(X,Y ) − 2λ(1 − b2)ω(X)ω(Y )

Since (
Lψḡ

)
(X,Y ) =

(
Lψg

)
(X,Y ),

one can rewrite equation (20.6) as follows(
L 1
b2 V1 ḡ

)
(X,Y ) + 2S̄(X,Y ) − 2λḡ(X,Y ) =

(
LV1g

)
(X,Y ) + 2S(X,Y ) − 2b2λg(X,Y ) − 2λ(1 − b2)ω(X)ω(Y ),

where V1 = b2V − b2(divψ). We state the following:

Theorem 26 A generalized Ricci soliton (g, V1,−b2λ) on C12 manifold:

LV1g = −2c1V
♭

2 ⊗ V ♭2 + 2c2S + 2λg

where V1 = b2V − b2(divψ)ψ, V2 = ψ, c1 = λ(1 − b2) and c2 = 1, becomes a Ricci soliton (ḡ, 1
b2V1, λ) under

ω-conformal deformation.

Subsection 20.3

Ricci Soliton on C12 Lorentz-Manifolds

In [6], significant results concerning Ricci solitons on 3-dimensional C12-manifolds are presented. Here, we extend
these findings, demonstrating their validity for manifolds of arbitrary odd dimension. In this section, we explore the
behavior of Ricci solitons and generalized Ricci solitons within the framework of Lorentzian C12-manifolds. We begin
by introducing the fundamental concepts required for our analysis.
Let (M2n+1, φ, ξ, η, g) be a C12-manifold and (M2n+1, φ, ξ, η, g∗) it’s associated Lorentz-C12-manifold.

Proposition 41 Let (M2n+1, φ, ξ, η, g) be a C12-manifold and consider (M2n+1, φ, ξ, η, g∗) the associated Lorentz-C12-manifold
admitting (g, ξ, λ) Ricci-soliton. The following holds:

• (M, g∗) is Einstein.

• The scalar curvature is given by r∗ = (2n+ 1)divψ
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Proof Since (g∗, ξ, λ) is a Ricci-soliton, then

Lξg∗(X,Y ) + 2S∗(X,Y ) − 2λg∗(X,Y ) = 0.

From (15.79), we have
∇∗
Xξ = ∇Xξ + η(X)ψ,

and in view of (11.16), we get ∇∗
Xξ = 0. Then

Lξg∗(X,Y ) = 0.

Knowing that

r∗ =
2n+1∑

1
S∗(ei, ei),

we obtain the desired result.
For our first motivation, we consider the case where the potential field V be point-wise co-linear with the vector field
ξ i.e. V = fξ, where f is a function on M . We compute

(Lfξ g̃)(X,Y ) = g̃
(
∇̃X(fξ), Y

)
+ g̃
(
∇̃Y (fξ), X

)
= −X(f)η(Y ) − Y (f)η(X). (20.7)

Replacing (20.22), (15.87) and (15.77) in (17.5), we obtain

(Lfξ g̃)(X,Y ) + 2S̃(X,Y ) − 2λg̃(X,Y ) =Lψg(X,Y ) + 2ω(X)ω(Y ) + 2S(X,Y )
− 2λg(X,Y ) −X(f)η(Y ) − Y (f)η(X)
+ 2
(
2λ+ 2divψ − |ψ|2

)
η(X)η(Y ). (20.8)

(g̃, fξ, λ) is a Ricci-soliton if and only if

Lψg(X,Y ) = − 2ω(X)ω(Y ) − 2S(X,Y ) + 2λg(X,Y )
+X(f)η(Y ) + Y (f)η(X) − 2

(
2λ+ 2divψ − |ψ|2

)
η(X)η(Y ). (20.9)

By setting Y = ξ in (20.9), we obtain

X(f) =
(
2λ+ 2divψ − ξ(f)

)
η(X). (20.10)

Again replacing X by ξ in (20.10), we get

ξ(f) =λ+ divψ. (20.11)

Substituting this in (20.10), we have

X(f) =
(
λ+ divψ

)
η(X), (20.12)

witch implies

df =
(
λ+ divψ

)
η. (20.13)

Substituting (20.12) in (20.9) , we obtain

Lψg(X,Y ) = − 2ω(X)ω(Y ) − 2S(X,Y ) + 2λg(X,Y ) − 2
(
λ+ divψ − |ψ|2

)
η(X)η(Y ). (20.14)

Thus, we state the following:
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Theorem 27 Let (M2n+1, φ, ξ, η, g) be a C12-manifold and consider (M2n+1, φ, ξ, η, g∗) the associated Lorentz-C12-manifold. If
(g∗, fξ, λ) is a Ricci- soliton then g satisfies the generalized η-Ricci- soliton equation (17.8) with

V = ψ, c1 = 1, c2 = −1 where µ = −2
(
λ+ divψ − |ψ|2

)
∈ R and df =

(
λ+ divψ

)
η.

In addition, if λ = |ψ|2 − divψ ∈ R, then g satisfies the generalized Ricci-soliton equation (17.6) with V = ψ, c1 = 1,
c2 = −1 where df = |ψ|2η .

Conversely, suppose that g satisfies the generalized η-Ricci-soliton equation (17.8) with V = ψ, that is

Lψg = −2c1ω ⊗ ω + 2c2S + 2λg + µη ⊗ η, (20.15)

where c1, c2, λ, µ ∈ R.
Using (15.87) and (15.77) taking into account Lψg(X,Y ) = 2g(∇Xψ, Y ), (20.15) reduces to

c2S̃(X,Y ) = − λg̃(X,Y ) +
(
c2(2divψ − |ψ|2) − 2λ− µ

2
)
η(X)η(Y )

+ (1 + c2)g(∇Xψ, Y ) + (c1 + c2)ω(X)ω(Y ), (20.16)

i.e. g̃ is η-Einstein if and only if
c2 = −1 and c1 = 1.

So, (20.16) becomes

S̃(X,Y ) =λg̃(X,Y ) +
(
2λ+ 2divψ − |ψ|2 + µ

2
)
η(X)η(Y ), (20.17)

where 2λ+ 2divψ − |ψ|2 + µ
2 ∈ R. Further, setting X = Y = ξ in (20.17), we obtain

µ

2 = −λ− divψ + |ψ|2,

and (20.17) reduces to

S̃(X,Y ) =λg̃(X,Y ) − (λ+ divψ)η(X)η(Y ). (20.18)

on the other hand, if g satisfies the generalized Ricci-soliton equation (17.6) with V = ψ, from (20.17) with µ = 0 we
get

S̃(X,Y ) =λg̃(X,Y ) +
(
2λ+ 2divψ − |ψ|2

)
η(X)η(Y ), (20.19)

where 2λ+ 2divψ − |ψ|2 ∈ R. Again, setting X = Y = ξ in (20.19), we obtain

λ = |ψ|2 − divψ,

and (20.19) reduces to

S̃(X,Y ) =(|ψ|2 − divψ)g̃(X,Y ) + |ψ|2η(X)η(Y ), (20.20)

Therefore, we have the following:
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Theorem 28 Let (M,φ, ξ, η, g) be a C12-manifold with divψ ∈ R and consider (M,φ, ξ, η, g̃) the associated Lorentz-C12-manifold.

• If g satisfies the generalized η-Ricci-soliton equation (17.8) with

V = ψ, c1 = 1, c2 = −1, µ

2 = −λ− divψ + |ψ|2

then, (M, g∗) is η-Einstein manifold. In addition, if λ = −divψ, then (M, g∗) is Einstein manifold.

• If g satisfies the generalized Ricci-soliton equation (17.6) with

V = ψ, c1 = 1, c2 = −1, and λ = |ψ|2 − divψ

then, (M, g∗) is η-Einstein manifold.

For our second motivation, we consider the case where the potential field V be orthogonal to Reeb vector field ξ:

Theorem 29 Let (M,φ, ξ, η, g) be a C12-manifold and (M,φ, ξ, η, g∗) the associated Lorentz C12-manifold and V a vector field
on M orthogonal to ξ.
If (g∗, V, λ) is a Ricci-soliton then g satisfies the generalized η-Ricci bi-soliton equation (17.9) with

V1 = V + ψ, V2 = ψ, c1 = 1, c2 = −1, and µ = |ψ|2.

Proof Let V be orthogonal to ξ that is η(V ) = 0, it provides

η(∇XV ) = g(∇XV, ξ)
= −g(V,∇Xξ)
= η(X)ω(V ). (20.21)

So, using (15.79) and (15.77), one can get

LV g∗(X,Y ) =g∗(∇̃XV, Y
)

+ g∗(∇̃Y V,X
)

=LV g(X,Y ) − 4ω(V )η(X)η(Y ). (20.22)

Then, from (20.22), (15.87) and (15.77) we obtain

LV g∗(X,Y ) + 2S∗(X,Y ) − 2λg∗(X,Y ) =LV g(X,Y ) + 2S(X,Y ) − 2λg(X,Y )
+ 2ω(X)ω(Y ) + 2g(∇Xψ, Y )
+ 2
(
2λ+ 2divψ − 2ω(V ) − |ψ|2

)
η(X)η(Y ). (20.23)

Suppose that LV g∗(X,Y ) + 2S∗(X,Y ) − 2λg∗(X,Y ) = 0. Setting X = Y = ξ we get

λ = ω(V ) − divψ. (20.24)

Knowing that Lψg(X,Y ) = 2g(∇Xψ, Y ), the equation (20.23) becomes

L(V+ψ)g(X,Y ) = − 2ω(X)ω(Y ) − 2S(X,Y ) + 2λg(X,Y ) + 2|ψ|2η(X)η(Y ). (20.25)

This completes the proof.

Now, suppose that (g, V, λ) be a Ricci soliton, that is LV g+ 2S − 2λg = 0 with V orthogonal to ξ. Setting X = Y = ξ
we obtain

λ = ω(V ) − divψ. (20.26)



Ricci-Soliton on Deformed C12-Manifolds Ricci Soliton on C12 Lorentz-Manifolds 102

Using (20.22), (15.87), (15.77) and (20.26), one can get

L(V−ψ)g
∗(X,Y ) =2ω(X)ω(Y ) − 2S∗(X,Y ) + 2λg∗(X,Y ) + 2|ψ|2η(X)η(Y ). (20.27)

Therefore, we have the following theorem:

Theorem 30 Let (M,φ, ξ, η, g) be a C12-manifold and (M,φ, ξ, η, g∗) the associated Lorentz-C12-manifold and V a vector field
on M orthogonal to ξ.
If (g, V, λ) is a Ricci soliton then g∗ satisfies the generalized η-Ricci bi-soliton equation (17.9) with

V1 = V − ψ, V2 = ψ, c1 = −1, c2 = 1, and µ = |ψ|2.



References

[1] Alegre, P., Blair, D.E. & Carriazo, A. Generalized Sasakian-space-forms. Isr. J. Math. 141, 157–183 (2004). DOI:
10.1007/BF02772217.

[2] Arnold, V. I. (1989). Appendix 4 Contact Structures. Mathematical Methods of Classical Mechanics. Springer, pp. 349–370. ISBN-10:
147571694X, ISBN-13: 978-1475716948.

[3] Arnold, V. I. (1989). Contact Geometry and Wave Propagation. Monographie de l’Enseignement Mathématique. Conférences de
l’Union Mathématique Internationale. Université de Genève. zbMATH: 3601149, Zbl: 0386.70001.

[4] Barnes, A., & Rowlingson, R. R. (1989). Irrotational perfect fluids with a purely electric Weyl tensor. Classical and Quantum
Gravity, 6(7), 949–960. DOI: 10.1088/0264-9381/6/7/010.

[5] Bejan, C. L., & Crasmareanu, M. (2011). Second order parallel tensors and Ricci solitons in 3-dimensional normal paracontact
geometry. Publ. Math. Debrecen, 78, 235–243. DOI: 10.1007/s10455-014-9414-4.

[6] Bayour, B., & Beldjilali, G. (2022). Ricci solitons on 3-dimensional C12-Manifolds. Balkan Journal of Geometry and Its Applications,
27(2), 26–36. Available on ResearchGate.

[7] Beldjilali, G. (2022). Slant curves on 3-dimensional C12-Manifolds. Balkan Journal of Geometry and Its Applications, 27(2), 13–25.
Available on ResearchGate.

[8] Beldjilali, G. (2022). 3-dimensional C12-manifolds. Rev. Uni. Mat. Argentina. DOI: 10.33044/revuma.3088.

[9] Beldjilali, G. (2023). Classification of almost contact metric structures on 3D Lie groups. J. Math. Sci., 271, 210–222. DOI:
10.1007/s10958-023-06374-5.

[10] Beldjilali, G. & Belkhelfa, M. (2016). Kählerian structures on D-homothetic bi-warping. Journal of Geometry and Symmetry in
Physics, 42, 1–13. DOI: 10.7546/jgsp-42-2016-1-13.

[11] Besse, A. L. (1987). Einstein Manifolds. Classics in Mathematics. Berlin: Springer. ISBN: 978-3-540-74120-6.

[12] Bing, R. H. (1958). Necessary and sufficient conditions that a 3-manifold be S3. Annals of Mathematics, Second Series, 68(1),
17–37. DOI: 10.2307/1970041.

[13] Bing, R. H. (1964). Some aspects of the topology of 3-manifolds related to the Poincaré conjecture. Lectures on Modern
Mathematics, Vol. II. New York: Wiley, pp. 93–128. Available at: Archival Link.

[14] Blaga, A. M. (2015). η-Ricci solitons on para-Kenmotsu manifolds. Balkan J. Geom. Appl., 20, 1–13. Available at: PDF Link.

[15] Blair, D. E. Riemannian geometry of contact and symplectic manifolds (2nd ed.). Progress in Mathematics, 203. Birkhäuser
Boston, Ltd. DOI: 10.1007/978-0-8176-4959-3.

[16] Bouzir, H., Beldjilali, G., & Bayour, B. (2021). On Three Dimensional C12-Manifolds. Mediterr. J. Math., 18, 239. DOI:
10.1007/s00009-021-01921-3.

[17] Cartan, É. (1923). Sur les variétés à connexion affine, et la théorie de la relativité généralisée (première partie). Annales
Scientifiques de l’École Normale Supérieure, 40, 325–412. Available at: PDF Link.

[18] Cartan, É. (1924). Sur les variétés à connexion affine, et la théorie de la relativité généralisée (première partie) (Suite).
Annales Scientifiques de l’École Normale Supérieure, 41, 1–25. Available at: PDF Link.

[19] Cartan, É. (1986). On Manifolds with Affine Connection and the Theory of General Relativity. Humanities Press. ISBN-10:
8870880869, ISBN-13: 978-8870880861.

[20] Cartan, É. (1926). Les groupes d’holonomie des espaces généralisés. Acta Math., 48, 1–42. DOI: 10.1007/BF02629755.

[21] Cartan, É., with appendices by Hermann, R. (Ed.). (1951). Geometry of Riemannian Spaces. DOI: 10.1142/S0219199715500467.

[22] Catino, G., Mazzieri, L., & Roncoroni, A. (2016). Rigidity of gradient Einstein shrinkers. Communications in Contemporary
Mathematics, 18(06). DOI: 10.1142/S0219199715500467.

[23] Chen, B. -Y., Deshmukh, S., & Ishan, A. A. (2019). On Jacobi-Type Vector Fields on Riemannian Manifolds. Mathematics,
7(12), 1139. DOI: 10.3390/math7121139.

[24] Cherif, A. M., Zegga, K., & Beldjilali, G. (2022). On the Generalised Ricci Solitons and Sasakian Manifolds. Communications
in Mathematics, 30(11). DOI: 10.46298/cm.9311. arXiv: 2204.00063.

[25] Chinea, D., & Gonzalez, C. (1990). A classification of almost contact metric manifolds. Ann. Mat. Pura Appl., 156(4), 15–36.
DOI: 10.1007/BF01766972.

[26] Chow, B., Knopf, D., Bona, J. L., Loss, M. P., Landweber, P. S., Ratiu, S., & Stafford, J. T. (2013). The Ricci Flow: An Introduction
I. eBook ISBN: 978-1-4704-1337-8. Available at: AMS Bookstore.

[27] de Candia, S., & Falcitelli, M. (2019). Curvature of C5 ⊕ C12-Manifolds. Mediterr. J. Math.. DOI: 10.1007/s00009-019-1382-2.

[28] De, U. C., & Ghosh, S. (2013). D-Homothetic Deformation of Normal Almost Contact Metric Manifolds. Ukr. Math. J., 64,
1514–1530. DOI 10.1007/s11253-013-0732-7.

[29] De, U. C., & Tripathi, M. M. (2003). Ricci tensor in 3-dimensional Trans-Sasakian manifolds. Kyungpook Math. J., 43, 247–255.
Available at: Download PDF.

https://doi.org/10.1007/BF02772217
https://www.amazon.ca/Mathematical-Methods-Classical-Mechanics-Arnold/dp/147571694X
https://www.amazon.ca/Mathematical-Methods-Classical-Mechanics-Arnold/dp/147571694X
https://zbmath.org/0386.70001
https://zbmath.org/0386.70001
https://doi.org/10.1088/0264-9381/6/7/010
https://doi.org/10.1007/s10455-014-9414-4
https://www.researchgate.net/publication/361411150_Ricci_solitons_on_3-dimensional_C_12_-manifolds
https://www.researchgate.net/publication/361411061_Slant_curves_in_3-dimensional_C_12_-manifolds
https://doi.org/10.33044/revuma.3088
https://doi.org/10.1007/s10958-023-06374-5
https://doi.org/10.7546/jgsp-42-2016-1-13
https://www.lehmanns.de/shop/mathematik-informatik/8798784-9783540741206-einstein-manifolds
https://doi.org/10.2307/1970041
https://archivesspace.library.txstate.edu/repositories/2/archival_objects/5659
https://www.emis.de/journals/BJGA/v20n1/B20-bl-A39.pdf
https://doi.org/10.1007/978-0-8176-4959-3
https://doi.org/10.1007/s00009-021-01921-3
http://www.numdam.org/item/10.24033/asens.751.pdf
http://www.numdam.org/item/10.24033/asens.753.pdf
https://www.amazon.in/Manifolds-Connection-Relativity-Monographs-Textbooks/dp/8870880869
https://www.amazon.in/Manifolds-Connection-Relativity-Monographs-Textbooks/dp/8870880869
https://doi.org/10.1007/BF02629755
https://doi.org/10.1142/S0219199715500467
https://doi.org/10.1142/S0219199715500467
https://doi.org/10.3390/math7121139
https://doi.org/10.46298/cm.9311
https://arxiv.org/abs/2204.00063
https://doi.org/10.1007/BF01766972
https://bookstore.ams.org/surv-110
https://bookstore.ams.org/surv-110
https://doi.org/10.1007/s00009-019-1382-2
https://doi.org/10.1007/s11253-013-0732-7
https://kmj.knu.ac.kr/journal/download_pdf.php?spage=247&volume=43&number=2


[30] De, U. C., Yildiz, A., & Yaliniz, F. (2009). On φ-Recurrent Kenmotsu Manifolds. Turkish Journal of Mathematics, 33(1), Article
3. DOI: 10.3906/mat-0711-10.

[31] Delloum, A., & Beldjilali, G. (2023). Ricci soliton on a class of Riemannian manifolds under D-isometric deformation. Bulletin
of the Institute of Mathematics Academia Sinica, New Series. DOI: 10.21915/BIMAS.2023302.

[32] Delloum, A., & Beldjilali, G. (2024). Lorentz C12-Manifolds. Revista de la Unión Matemática Argentina. DOI: 10.33044/revuma.4064.

[33] Deshmukh, S., Al-Sodais, H., & Alodan, H. (2011). A Note on Ricci Solitons. Balkan Journal of Geometry and Its Applications, 16,
48–55. Available at: Link to Article.

[34] do Carmo, M. P. (1992). Riemannian Geometry. Mathematics: Theory and Applications. Birkhäuser Boston. ISBN 978-0-8176-3490-
2.

[35] Euler, L. (1736). Solutio problematis ad geometriam situs pertinentis. Comment. Acad. Sci. U. Petrop, 8, 128–140. Available at:
Link to Euler’s Work.

[36] Farkas, H. M., & Kra, I. (1980). Riemann Surfaces (2nd ed.). Springer-Verlag. DOI: 10.1007/978-1-4612-2034-3.

[37] Fernández-López, M., & García-Río, E. (2011). Rigidity of shrinking Ricci solitons. Math. Z., 269, 461–466. DOI: 10.1007/s00209-
010-0745-y.

[38] Frobenius, G. (1877). Ueber das Pfaffsche Problem. Journal für die reine und angewandte Mathematik, 1877(82), 230-315. DOI:
10.1515/crll.1877.82.230.

[39] Gray, A., & Hervella, L. M. (1980). The sixteen classes of almost Hermitian manifolds and their linear invariants. Annali di
Matematica pura ed applicata, 123, 35–58. DOI: https://doi.org/10.1007/BF01796539.

[40] Gray, A. (1966). Some examples of almost Hermitian manifolds. Illinois J. Math., 10, 353–366. DOI: 10.1215/ijm/1256055115.

[41] Ghosh, A., & Sharma, R. (2014). Sasakian metric as a Ricci soliton and related results. Journal of Geometry and Physics, 75,
1–6. DOI: 10.1016/j.geomphys.2013.08.016.

[42] Glass, E. N. (1975). The Weyl tensor and shear-free perfect fluids. J. Math. Phys., 16, 2361–2363. DOI: 10.1063/1.522497.

[43] Hamilton, R. S. (1982). Three-manifolds with positive Ricci curvature. J. Differential Geom., 17(2), 255–306. DOI:
10.4310/jdg/1214436922.

[44] Hansjörg, G. (2001). A brief history of contact geometry and topology. Expositiones Mathematicae, 19(1), 25–53. DOI:
10.1016/S0723-0869(01)80014-1.

[45] Halverson, D. M., & Repovš, D. (2008). The Bing-Borsuk and the Busemann conjectures. Mathematical Communications, 13(2),
163–184. Preuzetos. DOI: hrcak.srce.hr/30884.

[46] Innami, N. (1982). Splitting theorems of Riemannian manifolds. Compositio Mathematica, 47(3), 237–247. ISSN: 0010-437X.

[47] Jantzen, R. (2001). Editor’s Note: On the Three-Dimensional Spaces Which Admit a Continuous Group of Motions by
Luigi Bianchi. General Relativity and Gravitation, 33, 2157–2170. DOI: 10.1023/A:1015326128022.

[48] Lafuente, R., & Lauret, J. (2011). Structure of homogeneous Ricci solitons and the Alekseevskii conjecture. Journal of
Differential Geometry, 98(2), 315–347. DOI: 10.4310/jdg/1406552252.

[49] Lee, J. M. Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Springer, New York. DOI: 10.1007/978-1-4419-9982-
5.

[50] Marrero, J. C. (1992). The local structure of trans-Sasakian manifolds. Annali di Matematica pura ed applicata, 162, 77–86. DOI:
10.1007/BF01760000.

[51] Mars, M. (2000). Spacetime Ehlers group: Transformation law for the Weyl tensor. Classical and Quantum Gravity, 17(17),
3353–3372. DOI: 10.1088/0264-9381/18/4/311.

[52] Milnor, J. (2004). The Poincaré Conjecture 99 Years Later: A Progress Report. Available at:
math.stonybrook.edu/ jack/PREPRINTS/poiproof.

[53] Misner, C. W., Thorne, K. S., & Wheeler, J. A. (1973). Gravitation. W. H. Freeman. ISBN-10: 9780691177793, ISBN-13: 978-
0691177793.

[54] Nagaraja, H.G., Kiran Kumar, D.L. (2019). Ricci Solitons in Kenmotsu Manifold under Generalized D-Conformal Deforma-
tion. Lobachevskii Journal of Mathematics, 40, 195–200. DOI: 10.1134/S1995080219020112.

[55] Nagaraja, H. G., & Premalatha, C. R. (2012). Ricci solitons in f-Kenmotsu manifolds and 3-dimensional trans-Sasakian
manifolds. Progress in Applied Mathematics, 3, 1–6. Available on ResearchGate.

[56] Nurowski, P., & Randall, M. (2016). Generalized Ricci Solitons. Journal of Geometrical Analysis, 26, 1280–1345. 10.1007/s12220-
015-9592-8.

[57] Olszak, Z. (1986). Normal almost contact metric manifolds of dimension three. Annales Polonici Mathematici, 47, 41–50. DOI:
10.4064/ap-47-1-41-50.

https://doi.org/10.3906/mat-0711-10
https://doi.org/10.21915/BIMAS.2023302
https://doi.org/10.33044/revuma.4064
https://www.emis.de/journals/BJGA/v16n1/B16-1-de.pdf
https://link.springer.com/book/9780817634902
https://link.springer.com/book/9780817634902
https://scholarlycommons.pacific.edu/cgi/viewcontent.cgi?article=1052&context=euler-works
https://doi.org/10.1007/978-1-4612-2034-3
https://doi.org/10.1007/s00209-010-0745-y
https://doi.org/10.1007/s00209-010-0745-y
https://doi.org/10.1515/crll.1877.82.230
https://doi.org/10.1007/BF01796539
https://doi.org/10.1215/ijm/1256055115
https://doi.org/10.1016/j.geomphys.2013.08.016
https://doi.org/10.1063/1.522497
https://doi.org/10.4310/jdg/1214436922
https://doi.org/10.1016/S0723-0869(01)80014-1
https://hrcak.srce.hr/30884
http://archive.numdam.org/article/CM_1982__47_3_237_0.pdf
https://doi.org/10.1023/A:1015326128022
https://doi.org/10.4310/jdg/1406552252
https://doi.org/10.1007/978-1-4419-9982-5
https://doi.org/10.1007/978-1-4419-9982-5
https://link.springer.com/content/pdf/10.1007/BF01760000.pdf
https://doi.org/10.1088/0264-9381/18/4/311
https://www.math.stonybrook.edu/~jack/PREPRINTS/poiproof.pdf
https://www.amazon.com/Gravitation-Charles-W-Misner/dp/0691177791
https://www.amazon.com/Gravitation-Charles-W-Misner/dp/0691177791
https://www.amazon.com/Gravitation-Charles-W-Misner/dp/0691177791
https://doi.org/10.1134/S1995080219020112
https://www.researchgate.net/publication/266505223_Ricci_Solitons_in_f_-Kenmotsu_Manifolds_and_3-Dimensional_Trans-Sasakian_Manifolds
https://doi.org/10.1007/s12220-015-9592-8
https://doi.org/10.1007/s12220-015-9592-8
https://doi.org/10.4064/ap-47-1-41-50


[58] O’Neill, B. (1983). Semi-Riemannian Geometry. Academic Press, New York. ISBN-10: 0125267401, ISBN-13: 978-0125267403.

[59] Oubiña, J. A. (1985). New classes of almost contact metric structures. Publicationes Mathematicae Debrecen, 32(3-4), 187–193.
Available at: Link to Article.

[60] Ozdemir, N., Aktay, S., & Solgun, M. (2019). On generalized D-conformal deformations of certain almost contact metric
manifolds. Mathematics, 7, 168. 10.3390/math7020168.

[61] Patra, D.S. K-contact metrics as Ricci almost solitons. Beitr Algebra Geom, 62, 737–744 (2021). DOI: 10.1007/s13366-020-00539-y.

[62] Patera, J., Sharp, R. T., Winternitz, P., & Zassenhaus, H. (1976). Invariants of real low-dimensional Lie algebras. Journal of
Mathematical Physics, 17, 986–994. DOI: 10.1063/1.522992.

[63] Perelman, G. (2002). The entropy formula for the Ricci flow and its geometric applications. DOI: arXiv:math/0211159.

[64] Perelman, G. (2003). Ricci flow with surgery on three-manifolds. DOI: arXiv:math/0303109.

[65] Perelman, G. (2003). Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. DOI:
arXiv:math/0307245.

[66] Petersen, P., & Wylie, W. (2014). On the classification of gradient Ricci solitons. Geometry and Topology, 14(4), 2277–2300. DOI:
10.2140/gt.2010.14.2277.

[67] Schouten, J. A. (1954). Ricci-Calculus: An Introduction to Tensor Analysis and Its Geometrical Applications. 10.1007/978-
3-662-12927-2.

[68] Shaikh, A. A., Baishya, K. K., & Eyasmin, S. (2008). On D-Homothetic Deformation of Trans-Sasakian Structure. Demonstratio
Mathematica, 41(1), 171–188. DOI: 10.1515/dema-2008-0119.

[69] Sharma, R. (2008). Certain results on K-contact and (κ, µ)-contact manifolds. Journal of Geometry, 89, 138–147. DOI:
10.1007/s00022-008-2004-5.

[70] Spivak, M. (1970). A Comprehensive Introduction to Differential Geometry, Vol. 1. Boston, MA: Publish or Perish, Inc. ISBN-
10: 0914098705, ISBN-13: 978-0914098706.

[71] Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., & Herlt, E. (2003). Exact Solutions of Einstein’s Field Equations (2nd
ed.). Cambridge University Press. DOI: 10.1017/CBO9780511535185.

[72] Szpiro, G. (2008). Poincaré’s Prize: The Hundred-Year Quest to Solve One of Math’s Greatest Puzzles. ISBN-10: 0452289645, ISBN-
13: 978-0452289642.

[73] Taubes, G. (1987). What happens when Hubris meets Nemesis. Discover 8:66-77.

[74] Trautman, A. (2008). Remarks on the history of the notion of Lie differentiation. In O. Krupková & D. J. Saunders
(Eds.), Variations, Geometry and Physics: In Honour of Demeter Krupka’s Sixty-Fifth Birthday (pp. 297–302). New York: Nova Science.
Available at: PDF Link.

[75] Tu, L. W. (2011). An Introduction to Manifolds (2nd ed.). Universitext. Berlin, New York: Springer-Verlag. DOI: 10.1007/978-1-
4419-7400-6.

[76] Vaz, Jr., Jayme, and Roldão da Rocha, Jr. (2016). An Introduction to Clifford Algebras and Spinors (Oxford, 2016; online edn,
Oxford Academic, 18 Aug. 2016). DOI: 10.1093/acprof:oso/9780198782926.001.0001.

[77] Weyl, H. (1918). Raum, Zeit, Materie (5 editions to 1922, with notes by J. Ehlers, 1980; translated 4th ed. Space, Time, Matter by
H. Brose, 1922). Springer, Berlin. (Reprinted 1952 by Dover). ISBN-10: 1616404663, ISBN-13: 978-1616404666.

[78] Whitehead, J. H. C. (1934). Certain theorems about three-dimensional manifolds (I). The Quarterly Journal of Mathematics,
5(1), 308–320. DOI: 10.1093/qmath/os-5.1.308.

[79] Whitehead, J. H. C. (1935). A certain open manifold whose group is unity. The Quarterly Journal of Mathematics, 6(1), 268–279.
DOI: 10.1093/qmath/os-6.1.268.

[80] William C. Hoffman (1989). The visual cortex is a contact bundle. Applied Mathematics and Computation, 32(2–3), 137–167. DOI:
10.1016/0096-3003(89)90091-X.

[81] Yano, K. (1957). The Theory of Lie Derivatives and Its Applications. North-Holland. ISBN-10: 0486842096, ISBN-13: 978-
0486842097.

https://www.amazon.com/dp/0125267401
https://www.amazon.com/dp/9780125267403
https://publi.math.unideb.hu/load_doi.php?pdoi=10_5486_PMD_1985_32_3_4_07
https://doi.org/10.3390/math7020168
https://doi.org/10.1007/s13366-020-00539-y
https://doi.org/10.1063/1.522992
https://arxiv.org/abs/math/0211159
https://arxiv.org/abs/math/0303109
https://arxiv.org/abs/math/0307245
https://doi.org/10.2140/gt.2010.14.2277
https://doi.org/10.1007/978-3-662-12927-2
https://doi.org/10.1007/978-3-662-12927-2
https://doi.org/10.1515/dema-2008-0119
https://doi.org/10.1007/s00022-008-2004-5
https://www.amazon.com/Comprehensive-Introduction-Differential-Geometry-Vol/dp/0914098705
https://www.amazon.com/Comprehensive-Introduction-Differential-Geometry-Vol/dp/0914098705
https://doi.org/10.1017/CBO9780511535185
https://www.amazon.com/Poincares-Prize-Hundred-Year-Greatest-Puzzles/dp/0452289645
https://www.amazon.com/Poincares-Prize-Hundred-Year-Greatest-Puzzles/dp/0452289645
https://www.fuw.edu.pl/~amt/4Krupka.pdf
https://doi.org/10.1007/978-1-4419-7400-6
https://doi.org/10.1007/978-1-4419-7400-6
https://doi.org/10.1093/acprof:oso/9780198782926.001.0001
https://www.amazon.com/Space-Time-Matter-Hermann-Weyl/dp/1616404663
https://www.amazon.com/Space-Time-Matter-Hermann-Weyl/dp/1616404663
https://doi.org/10.1093/qmath/os-5.1.308
https://doi.org/10.1093/qmath/os-6.1.268
https://doi.org/10.1016/0096-3003(89)90091-X
https://www.amazon.com/Theory-Derivatives-Applicat-Dover-Mathematics/dp/0486842096
https://www.amazon.com/Theory-Derivatives-Applicat-Dover-Mathematics/dp/0486842096
https://www.amazon.com/Theory-Derivatives-Applicat-Dover-Mathematics/dp/0486842096

	I Introduction
	Prelude
	3-Dimensional Case and Poincaré Conjecture
	A Door Wide Open
	Our Part

	II Riemannian Geometry
	Metric Tensor
	Musical Isomorphism  and 

	Affine Connection
	Levi-Cevita Connection
	The exterior derivative
	Lie Derivative

	Special Differential Operators
	Gradient
	Divergeance
	Hessian
	Laplacian

	Riemann Curvature Tensor
	Sectional Curvature

	Ricci Tensor
	Appendix A

	III Almost Contact Structures
	Generalities
	Some Classes of Almost Contact Metric Structures
	Trans-Sasakian Manifolds
	-Sasakian Manifolds
	-Kenmotsu Manifolds
	C12 Manifolds

	Examples
	Appendix B

	IV Metric Deformations
	Conformal Deformation
	D-Isometric Deformation
	Generalized D-Conformal Deformation
	Cosymplectic manifolds
	-Sasakian manifolds
	-Kenmotsu manifolds
	C12 manifolds
	C12 manifolds under -conformal deformation
	C12 manifolds under  conformal deformation
	Lorentz C12 manifolds through metric deformation



	V Ricci Flow and Ricci-Solitons
	RicciFlow
	Geometric Interpretation of Ricci-flow

	Some Exact Solutions To Ricci Flow
	Einstein Manifolds
	Ricci-Soliton

	Generalized Ricci-Yamabe Soliton On 3-Dimensional Lie Groups
	Left-Invariant 3-Dimensional Lie Groups
	GRYS On 3-Dimensional Lie Groups
	The algebra A3,1
	The algebra A3,2
	The algebra A3,3
	The algebra A3,4
	The algebra A3,5
	The algebra A3,6
	The algebra A3,7
	The algebra A3,8
	The algebra A3,9


	Appendix C
	Tensor Product
	Covariant Derivative On Lie Algebras


	VI Ricci-Soliton Under Deformations
	Ricci-Soliton on a Class of Riemannian manifold under D-Isometric Deformation
	A Class of Examples

	Ricci-Soliton on Deformed C12-Manifolds
	Under -conformal deformation
	Under -conformal deformation
	Ricci Soliton on C12 Lorentz-Manifolds



