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PREFACE

This course is intended for second-year students in the LMD system (ST, SM),
includes the Mathematics 3 subject. It contains the essentials of the course with many simple,
illustrative examples without any tedious demonstrations to help students assimilate the
course quickly. Various exercises with solutions are offered at the end of each chapter to
allow students to test themselves.

| taught this subject for six years, sufficient time to figure out student’s difficulties
regarding certain concepts, hence my desire to make this course accessible to most students
whatever their level and to create my own exercises.

This handout which contains all the fundamental concepts related to this subject is
divided into three essentials parts. The first part contains chapter of simple and multiple
integrals starting by an interesting and consistent reminder about definite integrals. Multiple
integrals generalize the concept of integration to two and more dimensions. Double and triple
integrals are natural extensions of single integral, useful in calculating volumes, surfaces and
in various physical and technical applications. The second part contains chapter of series
(infinite series, sequences and series of functions, power series and Fourier series) which offer
a powerful tool for approximation, calculating and interpreting infinite sums. The third part
includes two chapters of transforms (Laplace transform and Fourier transform) invaluable key
techniques in several fields especially in engineering, physics and chemistry. Two other
supplementary chapters were added, namely chapter of improper integrals to enable us to
introduce transforms and chapter of differential equations containing ordinary differential
equations and partial differential equations which will be solved later by both transforms.

Finally, we hope that this work will provide useful support for second- year students
from various specialties, will assist them effectively throughout their learning journey and
contribute to their academic success. It is our duty to accept all objective criticism,

suggestion, opinions from fellow teacher and students to improve the quality of this handout.



Contents

Preface
Chapter | Simple and Multiple Integrals
L. DEFINITE INTEGIAL......ei ittt nne e e 1
I 3 =) T T4 SRS 1
1.2 Evaluation of definite INtEGral:..........coouiiiiiiiii s 2
| .2.1 Evaluation of definite integral using anti-derivative................ccoovviiiiiiiniiie e 2
| .2.2 Evaluation of definite integral by U-Substitution method: ..............cccooiiiiiiiii s 4
I .2.3 Evaluation of definite integral by integral by parts method: ............cccoooeiiiiiinies 5
1. DOUDIE INTEGIAL ...ttt enne s 6
11.1 Definition of double INtegral:...........ooviiiiiii s 6
11.2 Evaluation of double INtEGral:..........cooiiiiiiiii e 7
IL1.3 FUbini’s tREOTEIM: .. ..coiiiiiiiiiiiic et e e s e e e e e e e e e e ettt e e e e e e e e e seatbbereeeeeeeesanasareeeeas 8
11.4 Integral over a region D (calculation of VOIUMS): .......couiiiiiiiiii e 9
11.4.1 Integral over a rectangular region D:........c.ooiiiiiiiiiii e 10
11.4.2 Integral over a non rectangular and non circular region D: ........ccccooviiiiiiiiiiiiie e 11
11.4.2.1 Integral over a region bounded by two curves and two vertical lines:..............ccccvevveeiieeinnen. 11
11.4.2.2 Integral over a region bounded by two curves and two horizontal lines:...........c..cccoeevvveenen. 14
I1L.5.INtegral OVEr @ diSK D .. .vviiiiiii et e st e st e e et e e st e e saeeesnaee s 16
o (o] 11T PT PRSPPSO 18
Chapter Il Improper integrals
R o ¥ o To] PSP PRPPR PP 26
11.2 Definition of iIMProper INLEQIalS:.........cocviiiiiii i e e s 26
IV.2.1 Improper iNtegral tYPE L. v e e be e et ee e naae s 26
11.2.2 Improper iNtegral tYPE [l ... .o et be e et eeennee s 26
11.3 Convergence of imProper INTEGIalS: .........coiiii i saree s 26
11.3.1 Convergence of improper integral TYPE L ....ocve i 26
11.3.2 Convergence of improper integral tyPe .. .....coiiiiiii e 27
11.4 Properties of convergent improper iINtEOralS..........ccovviiiiiiiie et 28
LT I S PR PUTRRUPPPRPR 28
OO0 1Y =T £ =T ol ] RSP 29
11.6.1 DireCt COMPAIISON TEST: ..iivviiiiiie it ce ettt et e e st e e e st e e e br e e srbe e e stbeeesabeeenneeas 29
11.6.2 Limit COMPAIISON TEST: ...eiivriiiiiiei ittt e e e st e e e sab e e e br e e sabe e e stbeeesnbeeenneeas 29
11.7 Absolute Convergence of improper iNtegrals: .........ccooivviiiiii i 30
T (o] Y1 PSPPSRSO 31
Chapter 111 Differential Equations

III.1 Ordinary differential equations (ODE’S) ........ccciiiiiiiiiiiiiieiiiiee e 35

L R B T T [ TP 35



111.1.2 Linear Ordinary differential @qUatION.............ocviiiiiiiiiieie e 35

H1.1.3. First-order HNear ODE’S ........ccoviiiiiiiiieiiiiiie e s s sitie e e s sitiee e e s sttre e e s stae e e s sssbeeeessstreeessseeeeesnssnsaeennns 36
00 T T 114 o o USRS 36
111.1.3.2 Solving a first-order linear ODE’S .........ccciiiiiiiiiiiiiii et 36
111.1.4. Second-Order Linear ODE’s with Constant Coefficients...........cccceeviiveeeeiiiiee e i 38
I I T T4 o] o USSR 38
111.2 Partial differential equations (PDE’S) .......ccviiiiiiiiiiiiiie it 40
111.2.1 Definition of @ partial deriVatiVE ...........cccoiiiiiiiiie e 40
111.2.2 Definition of a partial differential equation (PDE).........ccccciiiiiiiiiiiiiieieeece e 41
111.2.2 Linear partial differential eqUAtION:............ocoiiiiiiiiiiiic e 42
111.2.3 Solving linear SeCONU-0rder PDE’S .........ccciiiiiiiiiii ittt 42
111.2.3 Separable variables MethOd: ..........c.ooiiiiii e 43
(T (o 11 SRS 45
Chapter IV series
Y 1) 1T T (=] TSR URRSTS 50
1V.1.1 Definition of an infiNite SEIES .......viiiiei i aee e 50
1V.1.2 Convergence of an iNFINItE SEITES: .........ciiiiiiiiieiie et 50
Y R B = ] 11 (o] 4 PSSP PR PR PP 51
1V.1.2.2 Generalization about gEOMELIIC SEITES: ... .iuviiiiei i it st see e 52
1V.1.2.3 Properties 0f CONVEIGENT SEIES .....cuviiiiieiiiee ittt se e st et e et e e s e e s a e e snraesbeaesanee s 53
PrOPOSIEION 2 & oottt e e et e st e et e e et e et e e e e e e e ara e e tr e a e e e nnreeanres 54
Y B =g -t PP P PR PPR PP 55
Y T R B = 11 [0 4 PSPPSR PSPPSR 55
Y N 1<) S =1 S PP P PR PPR PR 56
IV.1.5 Series With POSITIVE TEIMS: .. ....eiiiii ittt e et e e e stae e e naee s 56
IV.1.5.1 COMPAriSON TESL: ..uviiiiiiii it it s st e st e et e s e e e st e e e st e e abeaessbeeesseaeatseesareeesneeeas 56
IV.1.5.2 CAUCHY ROOE TESE: .. uiiiiiiiiiiie it se ettt et s e e st e et e e s ba e e srb e e e sta e e atreeanreeesnneeas 57
1V.1.5.3 D’ Alembert’s Ratio TESt: .....cciiiiiiiiiiiiieeii ittt e st e e e e e e s s sabrneeeaeeeeennnnes 58
IV.1.5.4 Limit COMPAIISON TEST: ... eiiiiiiitiee ittt st st sire ettt e st e e st e e e st e e s tr e e ssbe e e srbeeenteeeenneeas 59
IV. 1.6 ARLEINALING SEIIES: ..eiiuviieitiee it e et stie e se e et e s be e e st e e et e e st be e e stbeeestbeeabeeesrbeeesteeeeasseessteeesnneeas 60
YT R B = T[] 4 PSSP PR PSRRI 60
1V.1.6.2 Leibnitz Test ( AIternating SEres TESL): ...iiiii ettt e e 60
1V.1.6.7 Absolute CONVErgenCe OF @ SEIIES: ....iiiuiiiiiee ettt e e e e e e sbeeesaaee s 61
T I B ) 141 o o USSR 61
T A 1= T R USSR 61
EXErciSeS OF INFINILES SEITES ..eevviiiieiiie ettt et e ettt esre e e e e eneeanee s 61
IV.2. Sequences and Series Of TUNCIONS: .........oiuiiiiie e 68
1V.2. 1 Definition of Series of fUNCLIONS: ........ooiiiiiiie e 68

IV.2. 2. Convergence of a Series Of TUNCLIONS: .........cooiiiiiiiiiiii e 69



IV.2. 2.1 Pointwise convergence of a series of fUNCLIONS ...........cocviiieiiiiiieie e 69

Y Rt T 1 11 (oo SRS URRSUSO 69
1V.2.2.1.2 Domain of CONVEIGENCE D ......ooiiiiiiiiiici e 71
IV.2. 2.2 Uniform convergences of a series of TUNCHIONS ............cooiiiieiiiiiiiiie e 73
IV.2. 2.3 Normal Convergence of a Series of TUNCLIONS: .........cccoiiiiiieiiiiiiee e 75
Y e T R B =) 1 114 o] o USRS 75
IV.2. 2.3.2 WEIEISIIASS IM-T ESE: L.viiiiiiiiitie e it st ettt e et e e st e e st e e staa e et e e enteeesnbeeennaeeenneees 77
EXercises of Series Of TUNCLIONS: ........cooiiiii it srae e e nnaees 77
Y Tt I =) 10T AT o OSSPSR 82
1V.3.2 Radius Of CONVErgence Of @ POWET SEITES : ....ociuiiiiriiiieriie ittt 82
1V.3.3 Cauchy-Hadamard FOrmula: ............cooiiiiiiiiiic e 82
1V.3.4 ACUITION OF POWET SEITES: ...ttt ettt ettt ettt et e e e b e snneen 84
IV.3.5. POWET SEITES PrOPEITIES: ... ittt ittt ettt e et e e b e e b snneen 85
IV.3.6. Function representable by power series (RPS FUNCEION):........coooiiiiiiiiiiiiiiceee e 86
Y I T 101 o] o SR URRSTS 86
IV.3.60.2 TaYLOTS SETIES: ..viiiuviiiittiiiitite st sttt ettt ettt etttk e bt e sh et e st bt e e bb e e et et e shb e e e abb e e e breesnbeeesnneens 87
Proposition (SUFFICIENT CONDITION) .......iiiiiiie e 87
IV.3.7. Using Power series to Solve Differential EQUatIONS ...........ccccoviiviiiiee e 88
EXEICISES OF POWET SEITES ... eiitiiiiii ittt b ettt et ettt e bt e sb e e e e b e snee s 91
Solutions Of EXErCISES OF POWET SEITES .......ciuviiiieiiiiie ettt 91
TV FOUTTEE SBITES. ...ttt ettt etttk h et b e bt bt e bt e bt et et e et e e bt esreeenteene e 97
Y g (oo (1 o [o] PP P PR PPR PP 97
IV, 2 BASICS: ..veiiutietee ittt ettt ettt stttk ettt b e Rtk R et E R bt b e R e e e bt e b rb e be e nrenneeen 97
1V.4.2.1 Definition of a periodic FUNCLION: ............coiiiiiiii e 97
1V.4.2.2 Definition of an 0dd FUNCLION: .........c.ooiiiiiiiic e 98
1V.4.2.3 Definition of an eVen fUNCLION: ..........ooiiiiiiiiiiie e 98
1V.4.2.4 Definition of a piecewise continuous FUNCLION: ..........cccveiiiii i 98
IV.4.3DefiNition OF FOUIEE SEIES: .....iiviiiiiiiie ettt rae et e esneeens 99
IV.4.4 DiriChlet’s TREOTEM: .. .uuuuiiiiiie ittt s st e e e e e s s r e e e e e s s ssbbareeeeaeeeesannne 100
TV.4.5 Parseval’s TAENTILY: ...ccciivriieiiiiiee ittt ettt e et e e e s st e e e e anbeeeeeanes 103
EXEICISES OF FOUIET SEITES ... ccuviiiiiieiieiie ettt sttt te e e e e nes 105
Solution oOf eXerciSes Of FOUMEI SEITES ......ciuiiiiiiieiie ittt e e e 105
Chapter V Fourier Transform
RV 80 oo (1T {4 SRS PUR PSPPSR 111
V.2 DBIINIEION ...ttt et e st e et e et e e sb e et e e eneeenbeeneeeneeeneeas 111
V.3 Fourier transform PrOPEITIES: .......ciiiee ettt e e e tr e e s rbe e e srreesteeas 113
R 0 1100 o 1 TR 113
V.3.2 Frequential SRift ........ouoii e e 114

A R TR I [T o L] o [ SRS 114



V.3i4 DUBIILY ...ttt b et 114

V.3.5 Convolution and MOAUIBTION: ..........coiiiiiieie s 115
V.4 linearity of FOUTIEr transSform: ... ..o s 115
V.5 Inverse of FOUIEr TranSTOrM........c.uiiiiiiiiieiie st 115
V.6 Fourier Transform of Some common fUNCLIONS. ...........coiiiiiiieiiiii e 116
V.7 Fourier transform of a derivative ( differentiation in time-domain)...........ccccccovviiiiiiiiiinennn, 117
V.8 Using Fourier transform and its inverse for solving Partial differential equation (PDE): ............ 118
X CISES ..tttk et h Rt R ettt ne e 120
Chapter VI Laplace transform
VL L INEOTUCTION: L.ttt ettt b ettt ettt e e e b e enne s 125
A B ) T4 o o RS RSPS 125
V1.3 Laplace transform PrOPertiES: ... .cuue ettt 126
V1.4 linearity Of Laplace tranSfOrm: ..........ooiiiiiiiie e 127
V1.5 Inverse of Laplace Transform.........coui oot 127
V1.6 Laplace Transform and its inverse of some common fUNCLIONS. .........ccccovviiiieniinieeiicieen 128
V1.7 Laplace transform 0f @ GeriVALIVE ...........coouiiiiiiiiiiieie e 129
V1.8 Using Laplace transform and its inverse for solving differential equation: .............ccccccevvennnen. 129
EXEICISES ...ttt 131

R B BIICES & ittt 134



Chapter |
Simple and Multiple
Integrals



Chapter | Simple and Multiple Integrals

I. Definite integral:
I .1 Definitions:

Let f: X— R be a continuous function on X

X —f (x)

Let a, b be real numbers € X :

f; f(x)dx is called definite integral of f(x) on [a, b] (or from a to b)=Area of the region

bounded by the curve y= f(x), x-axis, straight line x=a and the straight line x=b.
Graphically: the curve of i(/x)

1>
C/ [ f(x)dx

a

v

A definite integral is just an area under a curve.

Examples
A ﬁ curve of f(x)
[, f(x)dx
-2 -1 2 >
f_—21 F(x)dx C/74/
A A curve of f(x

JZ, f(x)dx =A+B

Figure 1.1 Meaning of a definite integral

v
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1.2 Evaluation of Definite Integral:

How to compute the area f; f(x)dx ?

| .2.1 Evaluation of definite integral using anti-derivative:

f; f(x)dx= [F(x)]2=F(b) — F (a)where F is an anti-derivative of f(x).

F is called an anti-derivative of f if F’(x)=f(x). That is, it is a function whose derivative is f(x).

Examplel:

f(x)= x2

F(X)= x; , F(x)= x; + 2, F(x)= x;+ C (C a constant) are all anti-derivatives of f.

Note:

-All anti-derivatives of f are represented by: [ f(x)dx called indefinite integral of f.
So f x2dx="+C

Table 1.1 indefinite integral of some usual functions

f(x) J f(x)dx =F(x)+C
1 x+C
x" or# 1 e
r+1
e* e* +cC
1 Inx+ ¢
X
sin(x) -cos(X)+c
cos(x) sin(x)+c
1 ! arctg(x)+c
1+x2
1 arcsin(x)+c
V1 —x?
1 tan(x)+c
cos?(x)
1 -cot(x)+c
sin?(x)
Examples : 2
2 X212 22 02 4 2 2
1)f0xdx=[7]0=?—?=E=2foxdx Jy x dx
Note: 0 2 >
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This definition coincides with triangle area= % base. height:%. 22=2
A y:2
2) [[2dx=[2x]4=8-2=6 2 y/

] f142dx

1 »
T »

It is the rectangle area of length (4-1)=3 and width 2 ; 3.2=6
3

3)]exdx=[ex]g=e3—e°=e3—1
0

1.2.1.1 Properties of definite integrals:

1) f; cf(x)dx = c f: f(x)dx Vc aconstant.

b

b b
2)j(f(x)+g(x))dx = ff(x)dx+jg(x)dx

3) [} FOdx = [ f(x)dx + [ fF(x)dx c €]a, b.
8) [ (F(). g())dx # [ f(x)dx. [, g(x)dx

Examplel :

2 _ 2 _ sz_
Jo 2xdx =2 [, xdx—Z[?]O—AL

1
Example2:
Je(4cosx + x¥)dx = 4 [2 cosxdx + [2(x*)dx = 4[sinx]? + [Zj]i =4+ g

1) "and 2)

Example3:

2 2 )
x6 x> x3 x?

f(xz+x)(x3—1)dx=f(x5+x4—x2—x)dx=I—+—————l

0 0 0

Note:

-We can notice, it is easy to calculate f; f(x)dx if f(x) is one of usual functions of the table

or combinations of them (addition, subtraction, multiplication by a real).

-The question that now arises how to calculate fab (f (x). g(x))dx since it is different from
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[, fedx. [} g(x)dx.

If both fand g are polynomial functions, in general, we have just to develop and integrate
such as in example 3.

If one of them is not a polynomial function, we will use one of the following methods

U — Subtitution method
or
Integration by parts method

| .2.2 Evaluation of definite integral by U-Substitution method:
Most of the time, this method is used when we have a function and its derivative i.e our

definite integral is of formf:f(g (x)).g'(x)dx.
Note that we have g(x) and its derivativeg’(x).

This integral can be transformed into another form ( easy to integrate) by doing the following

substitution.

g(x)=U = dU= g’ (x)dxSo fabf(g(x)).g’(x)dx = f;((ab))f(U).dU
Then we can integrate f(U).

Examplel:

foz(xz +1)%2xdx a€eN
( 1
| ou

ifa = { oZu one can calculate(x? + 1)@ and then (x? + 1)%2x is a polynomial function that
lk 3

we can integrate easily.

If a > 4 then it takes time to compute(x? + 1)@ that is why we use U-Substitution method

(since we have a function and its derivatives)

Let us pick a=50

2

f(xz + 1)5%2xdx (1)
0

U-Substitution :
x> +1=U=2xdx =dU

x=0=U=1

x=2=U=5
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_ 5% 1 5%

5150077 — [V = 5% _
(1) becomes [ U dU_[51]1_51 o

Example2:
3

sz(x3 — 4)5dx (2)
0
U-Substitution :

U= ((x3-4)=3x%dx =dU
x=0=>U=-4

x=32U=3%-4=23

3 23

1 1 Us
= — 2 3 - 5 = — 5 = |—
2) 3j3x(x 4)Sdx 3fUdU l6

0 -4

Example 3:

f; 2xcos(x?)dx (3)
U-Substitution :
U=x?=2xdx =dU
x=0=U=0

x=1n1=2U = 12

51

_23° (—4)°
6 6

-4

3) = fonz cos(U) dU:[sin(U)]gzzsin(ﬂz) — sin(0)=sin(m?)

| .2.3 Evaluation of definite integral by integral by parts method:

b b

fU(x)V’(x)dx = [U)V(x)]: - f U'(x)V (x)dx

a a

Examplel :

1

fxe"‘dx

0

U=x = dU=dx

dV = e *dx=>V = —e™*

fol xe *dx =[—xe *]} — fol —e¥dx =[—xe ]} + fle‘xdx

UdV  =[—xe*]}+[-e*]}=—et—



Chapter | Simple and Multiple Integrals

Example 2:

T V4 T

foi(xginxc_ig = [—xcosx]g + f05 cosxdx = [—xcosx]g + [sinx]g =

Udv
I1. Double Integral:
I1.1 Definition of double integral:
Letf: AxB —»R Dbe a continuous function on AxB

(X1y)_>f(x' y)
A, B are intervals of R.

Let a, b, c, d be real constants such that a, b are elements ofAand c,dof B

f; fcd f(x,y)dydx isthe Volume of a solid bounded by the area z=f(x,y), xy- plane , planes
x=a, Xx=b, y=c and y=d.

Notes:

-Intersection between xy-plane and the four vertical planes x=a, x=b, y=c et y=d gives (a,b,c,d)
rectangle.

- f; fcd f(x,y)dydx is the Volume of a solid, its ceiling is a part of the surface z= f(x,y) and
its base is the full rectangle R=(a,b,c,d) ( see figure 1.2).

Figure 1.2 Meaning of a double integral
-Double integral provides a volume under a surface (z=f(x,y)) while a definite integral

provides an area under a curve (y=f(x)).
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Understanding Double Integrals

f(x)
a b X
integrals give the double integrals give the
area under a curve volume under a surface
b d b
J Preoax L7 Pfex, vraxdy
a C a

Figure 1.3 Indefinite integral vs double integral

11.2 Evaluation of double integral:
Iy 7 feoydydx = 71 £ y)dyldx
—>
S
2
To compute ff fcd f(x,y)dydx, first we calculate the definite integral (1) (where y plays the

role of the variable and x a constant); the result of (1) is a function g of x then we compute the
definite integral (2).

j f £ y)dydx = f f £x, y)dyldx f [g(0)]dx
Examplel: o '

21Y=2 1,4 1
f f x ydydx—f [f x%ydy] dx—f [z]y_ dx = [ x*[0 —J]dx =

=1

J2wan =2E] 7 =2 - o)
Example2:

2 3 2 2

ff xeYdydx = f[f xeYdyld f ey]y Sdx = fx[e3—1]dx

0 0 0 0 0
‘ X2 4

:[e3—1]fxdx=[e3—1] lTl =[e3—1]5=2[e3—1]

o x=0

Note:

One can generalize this notion to multiple integrals for example for function of three variables
f(x y,z) (triple integral):

18T f (o, 2) dzdydx = [ 1SS! £y, 2) dz)dy)dx
< >
)
3)

A
v
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To compute f: fcd fef f(x,y,2) dzdydx, first we calculate the definite integral (1) (where z
plays the role of the variable and x,y constants); the result of (1) is a function g of x and y
then we compute the definite integral (2) (where y plays the role of the variable and x a

constant).Finally we compute the definite integral (3).

I1.3 Fubini’s theorem:

Letf: AxB—— R be a continuous function on AxB
(X1y) _’f (X, y)

A, B are intervals of R

Leta, b, c,d be real constants such that a,b are elementsofA andc,dof B

x=b Y=d y=d x=p

thenf ff(x,y)dydx= J jf(x,y)dxdy

x=a y=c y=c x=a
Fubini’s theorem states that the order of integration (for a continuous function) does not
matter ; if we integrate first with respect to x and then with respect to y or vice versa.

Examplel :

1 2
.[ f x2ydydx
01
f(x,y) = x?y is a continuous function on RXR thus one can apply Fubini’s theorem

We have already found f f ’ x2ydydx =+

Let us calculate f f " xZydxdy:

=2 x=1 y=2 x=1 y=2 3
X
f fxydxdy— f fxydx fy[giﬁiédy
y=1 x= y=1 x=0 y=1
e 1 1 ' 1 y? 1 4
_ Sldy = = S DA el H
y=1 y=1

So Fubini’s theorem is well satisfied.

x=1 Y=2 Y=2 x=1
1
f f x?ydydx = f f x%ydxdy = 2
x=0 y=1 y=1 x=0
Example 2:
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2 3
f f xeYdydx
00

f(x,y) = xe¥ is a continuous function on RXR thus one can apply Fubini’s theorem

We have already found: [ fy 3xeydydx = 2[e3 — 1]

Let us compute fy [72 xe¥dx dy:

Y=3 x=2

2X2
j jxeydxdy— ey[ l
y=0 x=0
y:3yg _ A V=3 y _ 4 yy3 _
= [ eBldy =207 e¥dy = 2[5 = 2[e® — 1]

Consequently Fubini’s theorem is verified.

x=2 Y=3 y=3 x=2

f f xeYdydx = j j xeYdx dy = 2[e3 — 1]

x=0 y=0 y=0 x=0
Note:

-The choice of the integral to calculate first depends on which integral is easy to compute.

Example:
=1
Do 1)f fy o “—dyldx or Z)f f;:o 1+xxy dx]dy
A B

We choose 1) since integral A is easier to calculate than integral B.
NB: in A, we use a U-substitution method since we have a function (1+xy) and its
derivatives (x)
-Let us assume thatf (x,y) = k (k a constant).
f: fcd kdydx =volume of a parallelepiped of height k.
= [b-a].[d-c].k
By analogy, one can deduce:
f: fcd f(x,y)dydx =Volume of a parallelepiped whose ceiling is a surface
z=f(x,y) (not a plane)
11.4 Integral over a region D (calculation of volums):
Let : D— R be a continuous function on D (D a surface of R?)

(XY)—>f (x,¥)
] fD f(x,y)ds =Volume of a solid bounded by the region D and the surface z= f(x,y).
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Examplel:
D= (full) rectangle ={(x,y) E R* /a < x < bandc <y < d}
I, fx,y)ds = f; fcd f(x,y)dydx we get back to the first case seen above.

= Volume of a parallelepiped whose ceiling is a surface S and its
base is the region R ( full rectangle (a,b,c,d))

Figure 1.4 Integral over a full Rectangle R
Example2:
D=adisc R.

JI, f(x,y)ds = volume of a cylinder whose ceiling is a surface z=f(x,y).

Figure 1.5 Integral over a disk R
Example3:

D= any surface on xy-plane.
JI, f(x y)ds = volume of a solid of form D.

11.4.1 Integral over a rectangular region D:
D={(x,y) € R* /a< x < b and ¢ < y < d}=full rectangle.
wk

d

C

Q a_ b ,x

Figure 1.6 D a full rectangle in xy-plane

10
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|| revas = f f fx,y)dydx

We know how to calculate this double integral

b d b d d b
[ [ renavax = (1] reyaniax= [i] remaxay

if one apply Fubini’s theorem
11.4.2 Integral over a non rectangular and non circular region D:
We have two cases:
11.4.2.1 Integral over a region bounded by two curves and two vertical lines:

D={(x,y) ER*/{a < x <b and ¥, (x) <y < ¥ (x) where ¥,(x), ¥ (x) are cuves}

vl 150
N
e
1 2 b

Figure 1.7 D bounded by two vertical lines in xy-plane

Note :

¥ (x), ¥, (x) can be oblique lines so D will be for example of form:
Ya L
/

¥ (x)/

~\
Vi ——

»
»

0 a b X

Figure 1.8 D bounded by two vertical and two oblic lines in xy-plane

x=b Y= () x=p Y=¥X)
[[renas= [ | rapaar= [ | reyayax
D x=a y=¥,(x) x=a y=%¥ (x)

Examplel :
D={(xy)ER*/0<x<2 and0<y<Z}

11
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ﬂu y:X/2
<\/
D VY
P X »2 >

Figure 1.9 D a triangle in xy-plane

D is a triangle.
x=2 V=2 x=2 y:%
[[ranas= [ | rawnaac= [ ([ renaaa
D x=0 y=0 x=0 y=0

Let us take for examplef (x, y)=(x+1)y

x=0 2

(1) = (20530 + Dydyldz = [0+ 1) [y;]: dx = 720+ DL~ ojax

x=2 x=2 x=2
_f 1 xzd _f x3+x2d _x‘*_l_x3 _16+8_5
= ) GrDglax= | Gprgldr=imtal =337 756
x=0 x=0 x=0

Example2:
D={(x,y) ER?*/0<x<1andx <y <1}

A

1

y_\->I/D +— YX

0 1

—>
X

v

Figure 1.10 D a triangle in xy-plane

[l, e¥*ds =[5 ;2 e dydx = [[Z]1[;7) e’ dyldx

4—(r>

Integral (1) is difficult to calculate, let us apply Fubini’s theorem:

[ U e dyldx = 712 e dx]dy

>

)

Integral (2) is easy to calculate because x is the variable and y plays the role of a constant.

12
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y
dxldy = [ e [x*dy = f e’ ydy (D)

We do an U-substitution:
U=eY =dU = Zyeyzdy
y=0=>U=e=1
y=1=U=e

One replace in (1) :

Example3:
D={(X,yY)ER*/0<x<2andx*-1<y<x?+2}
y=x%+2

Ny =x%2-1

?

Figure 1.11 D a region bounded by two vertical lines in xy-plane
x=2 Y=x%+2 x=2 YV=x%+2

Joris= [ [ wvin= [t [ wyanae= | 5]

x=0 y=x2-1 x=0 y=x2-1

xX=2 X=2

= X[ 5 5 ] dx = x|

x=0 x=0

2

1 6x4+3x2“ 166 | 34
204 2 “2| 4 2

1
=5 [64+6] =35

13

(x2+2)%2 (x%—1)? 6x%+ 3

|

yx+2

] dx
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Example4 :
D={(xy) ER¥ -2<x <2 and 2<y < —;x?+3}

y=—ix2+3 y

AT

Figure 1.12 D a region bounded by two vertical lines in xy-plane

x= 2y———x 243 x=2 y———x 243
fj(x—y)ds— | j -yayax= [ [ j (x — y)dyldx
x=-2 x=-2
=2
7743 * 1 11
f xy—— dx = fx(—ZxZ+3)—2x—§[(—1x2+3)2—4]dx
x=-2 x==2
x=2
—f13+ 1x432+94d—fx413+32+ | d
= ¥ Xzl 2% ldx = | [p=g¥ T3 tx—3ldx
x==2 x==2
x5 1 1 1 5 172
_ |t a3, 2 2
l160 16" Ta¥ T le_
x=-2
I B S L P Y L T .
1160 4 160 4 T 160 4 -5

11.4.2.2 Integral over a region bounded by two curves and two horizontal lines:
D={(xy)/ #1(x) < x < ¥,(x) and c <y < d where ¥,(y), ¥,(y) are curbes}

* ()’) ()

Figure 1.13 D bounded by two horizontal lines in xy-plane

14
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=d (x=% =d. rx=%
[I, fGoyyds = 7012727 foyydxdy = L7720 f(x,y)dxldy

Note:
External integral is always the integral whose the limits of integration are constant.
Examplel :

D={(xy) ER*/1<x<e” and0<y<1}

A‘ll'

( e .

Figure 1.14 Graph of D

y=1 x=¢¥ y=1 y=1
> (e)? 1
ﬂxds— f f xdxdy = j[ —]¥z¢" dy = j( > _E)dy
y=0 x=1 y=0 y=0

This integral is difficult to calculate, let us apply Fubini’s theorem:

y=1 x=¢¥ x=e = x=e Y=1
f .[ xds = f f xdxdy = J- J- xdydx = [ J. xdyldx
y=0 x=0 x=1 y=inx x=1 y=inx

x=e

= f;c 1e[xy]y Inx dx _f

21x=e
1) = [x_] _
2 x=1

Let us use integration by parts method to compute (2):

x[1—Inx] dx= [ _fx dx — f;:le xlnx dx
—

«—
D )

N| =

e
2

Reminder: f; udv =[Uuv]s — f; vdu

x=e _ [x? € e x? _e? 1xze_e 1 1y 5
fle(lnx)xdx—[7lnx]1—f1;dx—7lne—5[7]l— — = Z[e —-1] = Z[e +1]
U dv
U=lnx=sdU=2dy, dv=xsV=2+C
Therefore
e? 1 1 3e? 1
= — — 1 _[p2 - __
ffxds (1) + () > 2+4[e +1] y 2
D

15
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Example2:
D={(xy)/y*<x<y?+3 and1<y<2}
A x = yz X = yz +3
2\ /‘\1
1
/ D /
i >
Figure 1.15 Graph of D
y=2x=y%+3 y=2 x=y%+3 y=2
_ _ x? x=y?+3
xyds xydxdy = xydx|dy )1[7]x=y2 dy
y=1 =1 y=1

y:
(y +3)2 y* 1j 1 6y* 9% .
~2)dy =5 6y2 +9)dy = = x=2

y:

9 1 36
]=§[42—6]=—=18

= [24+18 6
2 2

4 2
11.5.Integral over a disk D:
When D is a disk or a part of a disk, the double integral in Cartesian coordinates (X,y)
becomes difficult to manipulate, we have to change to polar coordinates.

( trian gular

square disk
D 'S{ q region D is a{ or
{rectangular apartofadisk
Cartesian coordinates (X,y) polar coordinates(r,0)
([ x=rcosb
! y = rsinf
x? + yz=r2 |l & O
k ; =tg0
ds = rdrd0 l

16
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. . 0= (r= .
I, fxy)ds _WIWE) Joo J._ f(rcos6,rsinB)rdrd 6
Example 1:
JI, xds

D={(x,y) ER?* /x?+y? <4and0<x <y } isapartofa disk.
2y x*+y?=2%=r?(circle of radius 2)

/ X=y
x=0 D / ~

»
»

Figure 1.16 D a part of a disk

0= r2 0=3 re2 =3 5
[[xas= | | reosorardo= [ [ [ recosvarido= | [5cosolrz3ao
D 7 =0 0=2 50 i

38 8 0= 8 v2. 8 4V2
e f— = — [ 2:— —_—— = — — —
= f 5 ¢0s0d 0 3[sm9]e=g 71—~

Example2:

I, O—x*—y?ds
D={(x,y)€ R?/ x? + y? < 1} is a disk of radiusL.

v

Figure 1.17 D an unit disk

We have: 9 —x? —y2 =9 — (x2 + y?) = 9—r?

17
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0=27 r=1 0=27 r=1
f(9—x2—y2)ds= f f (9—r?)rdrd6 = f [f (9r—r3)dr]d 6
0=0 r= 0=0 1r=0
0=2 r=1 9 27 0=2rx
j j9 3)dr]d o = do = i 1d6—17fd6
r=r)drld0 = [2 249=7
0=0 1=0 0=0
177
s
Exercises
Exercise 1 :

Evaluate the following indefinite integrals:

1)f xSdx [ 25xtdx  3)[5 a) [ ==
5) [(2x2 + x)dx 6) [(3sin(t) + t)dt

7) [ xydy 8)[ (ycos(t) + y*) dt
Exercise 2 :

Evaluate the given definite integrals:

1) [Sxdx  2) [ 25x*dx 3 [L5 N[ EE

11:3

V4

5) [[(2x* +x)dx  6) [A(3sin(t) + t)dt

Exercise 3 :
A) Which method we are going to use to compute each of the following definite integrals:

1)f03(2x3 + x)(x + 1)dx 2) f_ol 3e3tdt  3) fog(cos(y) + sin(y))dy

sm(x)dx =
4)f xInx dx 5) f3( oSGy 6) Jg xcos(x)dx

B) Evaluate the following definite integrals: 2) ; 4) ; 5) ; 6).
Exercise 4:

Evaluate the following double integrals:

D) xtyPdydx 2) [7e [ v dr do

), [ xeYdxdy 4) [T [ (62 + ty +1)dy dt

= — 1
5) f;:_()z L2002 + 23 + 4)dxdy

Exercise 5 :

18
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1) Let D={(x,y) € R?* /0< x < 2y and 0 < y < 1}be a region in xy-plane.
Computef, (4 + 2x —y*)ds

2) Let D={(x,y) € R* /0< x < 2 and 1 <y < e*}be a region in xy-plane.
Evaluateff, yds

Exercice6:
1) Determine region D in the following integrals and draw D.
2) Invert order of integrals.

3) Compute.
a. [T (x4 yR)dx dy

y=0 Yx=0
b) fx 0 ), - xzx 2y3dydx
Solutions:

Solution of exercise 1:
J f(x)dx=F(x)+C(C is a constant)

1) xbdx = % +C -—7 +C (C is a constant)

2)[ 25x*dx =25 [ x4dx=25f}?+c =25"?+c =5x5+C
at -3, XM~ X7~ 1

3) [ - =[t=3dt= — . tC=—7+C=-_5+C
4) [ =55 =10 [ = =10Inx +C

5) [(2x? + x)dx =2 [ x?dx + fxdeZ%3 + x?z +C
6) [ (3sin(t) + t)dt= 3 [ sintdt + [ tdt=-3cos(t )+ g +C
7) [ xydy=x[ ydy:xy?2+c (v is the variable, x plays the role of a constant)
8)[ (vcos(t) + y?) dt=y [ costdt + y? [ dt = ysin(t)+y?t+C (t is the variable, y plays the
role of a constant)
Solution of exercise 2 :
I, b f(x)dx=[F(x)]2=F(b) — F (a)where F is an anti-derivative of f(x).

127

1)f7 xodx=[2} =227 - 17)=

2) [, 25x*dx= =[5x%]%, =5[1° — (—3)°] =5(1+243)= 1220

2 dt 1 101 1 1 3 3
3) [, 5 ==l i - o= =3 - e =

4) [} = =10[Inx]3=10[In3-In1]=10In3

19
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2 13
5) f1(2x2+x)dx=[2 ]1 [2—+——z__1_]___§_§
6) J2(3sin(t) + O)dt ==[~3cos(t) + 12
4 4
T2 T2
=[—3cos> + @ (—3cos= + i]=[-3£+(n) (n) 3 2 427 5(7[)2
4 2 2 2 2

Solution of exercise 3:

A)

1)f03(2x3 + x)(x + 1)dx = f03(2x4 + 2x3 + x2 + x)dx

Anti-derivative method (since we know anti-derivatives of al | functions above).

2) f_ol 3e3tdt U-subtitution method because we have a function (3t) and its derivative(3)

3) J2(cos(y) + sin(y))dy Anti-derivative method.
4) [, * xInx integral by parts method

(x)dx
) f3 sin

(c0s())? U-substitution method because we have a function (cos(x)) and its

derivative (sin(x))

6) fog xcos(x)dx integral by parts method
B)

2) [°, 3e3tdt

U-substitution:

u=3t du= 3dt

t=-1 =u=-3

t=0=u=0

e—1

f_ol 3e3tdt = f_03 etdu==[e*]%;=e? — e73= 1-—=

83
4) [ 13 xInx dx
Integral by parts method:

[} uav = [uv1s - [7vau ) (1)
U=Inx :>du:‘i—x

dV=xdx=V = [ dV=/ xdx=2+C

f Inxxdx [lq:—] 13x2 xx :[|n3.372—ln1.§]-%f13xdx

20
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U dv by () 0

_9n3 1[x2]3_9ln3 1[32 12]_9ln3 4_9ln3—4
1

2 2

2 2 212 2 2 2 2
(x)dx
)f3 sin

(cos(x))?

U-substitution:
u=cos(x)= du=-sin(x) dx

2
x="— y=cos” = 2
4 4 2

x——:>u cost ==
3 2
T 1 1
3 sin()dx _ 2 du _ 37— _[(U) 3+1] _ _[ 1 ]E
2 (cos(x))3 f\f(uﬁ ff(U) du= = 3+1 g_ -2(n)2lyvz
2

1

N O S P A S S A I S
_2[(U)2]£_2[_ z] 2[4 2]=1
2

6) fog xcos(x)dx

Integral by parts method:
[Juav = [uv1s - [T vdu) (1)
U=x =du=dx

dV=cos(X)dx=V = [ dV=/ cos(x)dx= sin(x)+C

f6 xcos(x)dx = [x. sm(x) fﬁ sin(x) dx= [— sm— — 0.sin0]-[— cos(x)]g

u dv by (1)

=Iz -[ Cos— +COSO]— K _[__+1]__ n 2— \/— _n+61—26\/§

Solution of exercise4:

=3 =2 2
1)f;=1 fyyzo x2y3dydx = fx ) fy 2y3dydx

—[(*=3p (V=2 3 =32 y_4y= —
_fx=1 [ _, X*yidyldx= fx L X [4]y=0dx =

X is the constant and y is the variable to integrate

16

° 33 13, 104
fioix [——O]d - x2dx —4[ ] e
X is now the variable to m%;grate

0=¢ (=2 0=C_ (r=2
2) fozoﬁ f:zl r0*dr dE):fO:O6[f:=1 r0*dr]do

S

21
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0 is the constant and ris the variable to integrate

—00‘[ 6]_1d9 =

0 is now the variable to integrate.
3 0=3
_ 30 3 _ T 3
_[E? l _()__432
6=0

y=3 x=2 _(v=3[x2 x=z
N [ e dy= 1 xevdlay=) [S o] ay

=2 gez]de_f 5292 4o

0=0

y is the constant and x is the variable to integrate
_ 2 2 =

= ;:03[2?@’ —%ey] dyzg - S eV dy== [ey]i [e — e°]— [e3 —1]
t=2

Zy I f (t2 +ty + 1dydt= f f (zt2 +ty + 1)dg] dt

t is the constant and y is the variable to integrate

_pt=2 y2 y=1 =2 12 (-1)2
o [tzy +t-+ y]y=_1 dt=[_ [t>.1+ t+ 1—(t2(-1) + t——+

t=2
(—1)]dt= ft N t2+ +1+t2——+1 dt= ft [2t% + 2] dt= [2 +2t] "

tis noWhe variable to integrate
_rr 2° _28
=[2 P 0]= ;

S)f f; f(y; + x3 + 4)dxdy= f [j (yz +x3 + 4)dx]

y is the constant and X is the variaE\{rmagr'ate

=2, 1 4 x=3 =2 1 3% 1 14
I (e B e W ((Z ORI S IO R (CE Rt

4(D)] dy f Zy + —+8 dyf 2y2+28] dy

Yy is now the variabte 10 mtegrate

o+ vE s
[2 T+ zsyl =25 +28(2) — 0=2v/2% +56
2 y=0 2

Solution of exercise 5 :

DJf, (4+2x—y>ds =

22
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[ I 2y(4+2x—y2)dxdy=f [([227 (4 + 2x — y2)dx] dy

=1 2 x=2y =1
= e+ 22 —y20] T ay=[ 142y) + 4y2=2y*)dy

y=1
:[(Sy_2+4y_3_2y_4)] _4+__l 29
2 3 471,20 2 6

xX=2 Y2 y=eX
2ff, yds = [27 [ ydydx = [0 ydyldr= [ L da

_1 px=2 xX=2

1 x\2 _ =1 2x _ .2 1l ox  2.qx=2
=Jso [(e*)? — e?] dx o le e’]l dx=;[Ze e*x]i=5

11, 2 _ YL lr 4 4,2
= [2 e*—2e 2] ” [e* —4e” — 1]
Solution of exercise 6 :

a. [P T e + yR)dx dy

y=0 Yx=0
1) D={(xyY)ER*/0<y<1land0<x<1-y}
y
A
:l-y

I

Variation of y i D\\
o— 'x

\{

Variation of x

y=1—-x

L) 1 a4 yydxdy=[ 0 [T (x? + y?)dydx

3) Calcul:

1 1- 1-
[ Lo TR+ yDydyde = [T A yPydyldx =[Py +
(1—x)3 _
s 2 sy =[P - x) + o dx=
= _ 3 2_ 4 3 2
f;czol[ 4x +6: 3x+1]dx:§ [_4% + 6% _ 3%+X]§zé

=-1+2-2+1]=1

bfx Of 2x y3dydx

23
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1) D={(x,y) ER*/0<x <landx? <y <x}

/

V=X

v

Oe—1
-
Variation of x
y= Zx X=VYy
2)fx 0 Jy=1 “y>dydx = y=0 fx=y x*y dxdy
3) Calcul :
x= \/_ 1y 3
[ 5 xydaxdy = PR YRS dy =002 5 -2y ay
_fy=1[(J’)2 y6]d [ 1_21 ]y 1—L i—i—i_i
e Y= 0733 21 33 21 231
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Chapter 11 Improper integrals

I1.1 Introduction
Improper integrals have numerous applications across various fields of science,

engineering, and mathematics such as probability theory, quantum mechanics, fluid
mechanics and especially in signal processing where they are essential to compute Fourier
transform, which is used in analyzing signals and also to calculate Laplace Transform used in
solving differential equations. Both Laplace transform Fourier Transform are introduced in
this handout in chapter V111 and IX respectively.
11.2 Definition of improper integrals:

IVV.2.1 Improper integral type I:

They are all integrals of form: [ f(x)dx or [P F@dx or [*7 f(x)dx
Where f is a continuous function on [a, +oo[ , ] —oo, b] and ] —oo, oo respectively.

Examples

f_+1°°(x + 1)dx f_300 ﬁ dx fj;o e*dx
11.2.2 Improper integral type II:

They are all integrals of form a) or b) or ¢) (see below):
a) f;’f(x)dx Where f is a continuous function on Ja, b] but discontinuous at a.
Example:

2 2
f_lfw dx f(x)=2*2 js a continuous on ]-1, 10] but not at -1.
x+1 x+1

b) f; f(x)dx Where f is a continuous function on [a, b[ but discontinuous at b.

Example :

f_ozo £ x+1 dx f(x)= ETH is a continuous function on [-20, O[ but discontinuous at 0.

c) f: f(x)dx Where f is a continuous function on [a, b] but 3c€[a, b] such that

f is discontinuous at c.

Example:

f;O%dx f(x)= Wj;% is a continuous function on [3, 50] except at 7€ [3,50] .

11.3 Convergence of improper integrals:
11.3.1 Convergence of improper integral type I:
fa+°°f(X)dx ,f_boof(x)dx , 77 fGodx converge if

tliin f;f(x) dx exists and finite , tlir_n ftbf(x) dx exists and finite,

both (lim f_ot f(x)dx and Jim fot f (x)dx exist and finite) respectively.

t—>+o00
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Therefore, we write:
fa+°° fl)dx = tl_l;zrnoo fatf(x)dx, f_boof(x)dx=tgr_nOo ftbf(x)dx,

[ feodx = Jim J° fodx + Jlim Jy fG)dx respectively.

Note:
( +oo
t I or +o00
Iftlir_P fa f(x)dx = 4 + 00 then fa f(x)dx diverges

kdoes not exist
The same thing for tlir_n ftbf(x)dx.
Examples:
+oo ., T t . 1 _ t T
1)f_2 sin(x)dx —tl_l)I_Eloo fz sin(x)dx = t]_l)I_Eloo[ cos(x)]3 = cos2 tggrnoocost

This limit does not exist so f_+2°° sin(x)dx diverges

3 3
2 Xdx = lim *dx = lim[e*]3=e3 — limet=e3-0=¢3
) [, e*dx = lim J; e¥dx = lim[e*]§=e® — lime’=¢*-0=¢
3 3
So [~ e*dx convergesand [~ e*dx = e?

11.3.2 Convergence of improper integral type I1:

Let f be a continuous function on Ja, b] but discontinuous at a

. b
f: f(x)dx converges if tllrn+ [7 £(x)dx exists and finite
Sqt Ya

Therefore f; f(xX)dx = tll)rggr f: f(x)dx

Notes:

In the case of f a continuous function on [a, b] but not at c, ¢ €[a, b]

f:f(x)dx converges if both (lim ftf(x)dx and glrg ftbf(x)dx exist and finite)
a Se

t—c™
And f:f(x)dx = th—gl— f;f(x)dx + tll_)rcn+ ftbf(x)dx
Examples:

1av=1i Yl = i 4 _ _ 1 — Ind — (—o0) —
D, —dx = t11_>r(r)1+ J, —dx = tll_)r(r)gr [In(x)]f = In4 tll_)rg;r In(t) = In4 — (—0) =+
So f:idx diverges

2) [J ——dx
(x—-1)3

flx) = ! z Is continue on [0,3] but discontinue en x=1, so we have to split the integral into two

(x—1)3

integrals.
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1t 13

3 1 . - . -
——dx = lim f[j——dx + lim de=lim[3(x — 1)3]_ + lim[3(x — 1)3
Jo——= e am f ot A f ot t—>1-[ ( )3, t_)1+[ ( )3,
=3+325
So f03 > dx converges and f ——dx =3[1+ 23]
(x— 1)3 (x-1) 3
Notes:

-All examples seen above, we were able to compute the improper integral because we knew
the anti-derivative of the function f(x).

-Most of the time it is hard to calculate an improper integral (especially when the integrand
f(x) is complex thus it is difficult to find its anti-derivative) so we can just determine whether
it converges or diverges.

11.4 Properties of convergent improper integrals

Let fand g be continuous functions on Ja, b] but discontinuous at a.
1) If both ff f(x)dx and fab g(x)dx converge then f:[f (x)*g(x)]dx converges
2) If fff(x)dx converges then f: kf(x)dx converges, Vk € R

3)If either fff(x)dx or fab g(x)dx diverges then f:[f(x)ig(x)]dx diverges
Note:
All these properties work with all improper integral types.

11.5P-TEST

1)f+oo 1 {converges ifp>1,and f:ooxipdx = p—il

diverges ifp < 1,and f:ooxipdx =4

2)f converges if p < 1,and folxipdx =1
0 xp diverges ifp > 1,and folx—lpdx - _

Examples :
fmidx convergessincep=6>1and [ —dx = —— ==
1 x¢ g p= 1 %677 T 6-1 5
+o0 1 . . 1
L =1lc
J; gz dx diverges sincep =5 < 1
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11.6 Convergence tests

Convergence tests enable us just to determine whether an improper integral converges or

diverges without calculating its value.
11.6.1 Direct comparison test:
Let f and g be continuous function on [a,+ o[ such that 0< f(x) < g(x) Vx = a.

1) If [7” g(x)dx converges then [7 f(x)dx converges.

2) If [T f()dx diverges then [ g(x)dx diverges.

Example:
o) 4
1) f; Li(x)dx
X2
4
We have: Vx, 0< cos*(x) < 1 5900 c Lyx> 1
X2 x
. © . © 4
Since [ x—lgdx converges (according to P-test , pzz > 1), s0 does [, Cosxg(x) dx
o[y
X
2 In(x)

Notice that both functions In(x) and x are positive on [2, +oo[ and

1 1
In(x) < xvx > 2:%2;Vx> 2

Since [ i dx diverges (by P-test), so [, ﬁdx also diverges.

11.6.2 Limit comparison test:

Let f and g be positive and continuous function on [a,+ .

) 0 +o0 400 .
If xl—1>r-|r—100,g o= L7 {+oo thenboth [ f(x)dx and [~ g(x)dx converges or diverges.
Example
f+°° x*+2 J
3 x04+x3-—x x
4
We notice that f(x)= X;:—;Z_X inz as x = +oo

Let us choose then g(x)= xiz

x* +2 2004 1 o .
X 6 3 _ X“(x™ + X
tim L0) - gy XA = XOTHD g X
x—+0 g(x)  xo+oe 1 xo+00%X6 + X3 — X  xotoXx
XZ
4
Since f;ooxizdx converges (by P-test ), so does f;wxﬁ’:;z_x dx

Notes:

We can notice that convergence tests are applied for positive functions but we can generalize for

negative functions as well knowing that - [ —f(x)=[ f(x)
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So we can say that that convergence tests can be applied to functions that keeps a constant sign( either
positive or negative)

11.7 Absolute Convergence of improper integrals:

Let f be a continuous function on [a,b[ except at b.

The improper integral f: f(x)dx is said to be absolutely convergent if f:l f(x)|dx converges

Notes:

-This works for all types of improper integrals.

- If an improper integral converges absolutely then it converges.

Example:
oo si
Let us check the absolute convergence of [ === dx
sinx < 1
x% | 7 x?

oo |sinx

Since |. 1+°° xiz dx converges (by P-test ), so does | 1+ dx (by comparison test)

x2

o sinx

Therefore [ 1+ dx is absolutely convergent.

x2

Note:

Absolute Convergence can be applied to any functions specially to those changing sign( oscilate)
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Exercises
Exercisel
Find the values of the following improper integrals, if they converge.

1) folédx )" 5—dx 3) [77xe* dx

x2+1

Exercise2:
State whether the following improper integrals converge or diverge.

1)J-+00de 2) f+00 2x5 +2X31dx 3)f

1 x5+1

X+smZ x)
Exercise3:

Determine if the following improper integrals converge absolutely.

1) ;72X gy 2) ;" sin()dx

Solutions

Solution of exercisel:

11 1 1 . 11 11 11
1 J, Sdx = Jo x2dx = tll)rgl_[ZxZ]t =2-0=2.Thus || —dx converges and Jy Fdx=2

D [ g = lim arctang ()], = lim arctang(t) =0 =50 [ 57

x2+1

40 1 rr
dx =—
fO x2+1 2

3) f:: xe ™ dx
Start by splitting up the integral:
0 t

+o00
N2 . a2 . 2
xe ¥ dx = lim xe *dx+ lim | xe ™ dx
—o0 t—+o0 t—+o0
-t

If either [° xe™*"dx or [, xe=*" dx diverges, then [ xe~**dx diverges.
Let us compute each integral separately.
For the first integral:
0
lim | xe **dx
t—+oo
—t
By substitution:
u=—x? = du = —2xdx
. -1 00 -1 .. 0 -1 . _ -1 -1
Jim 22T etdu =2 lim [e¥] .= [0 — lim e~ ]= T [1-0]=

For the second integral, similarly:
lim f xe ¥’ dx = Jim —f “duz%l tl_i){fnw[e“]at2=_71 [O—l]=§

t—->+0

Since both integrals converges, so does [ xe **dxand [*” xe ™’ dx = _71 +% =0
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Solution of exercise2:
+oo 3
DS, =5d

Vx € [1,+oo[,ﬁ>o.

<L

x5+1 x5

Vx € [1,40o[,x* +1>x°=

Since [, ==

Therefore 3/, ——dx = [[" 2=

5+1

+00 2x5 +2X 1

2)J,

2x542x-1

Vx € [1,+0o], > 0.

x7+3

2x542x-1  2x5 2
7aS X = +oo

Vx7+3 vx7 x 2

Let us choose g(x)= —.
X 2

2x° 4+ 2x — 1 5
f(x 7 2x°x 2
lim —2 = li X+3  fim -2
x—+00 g(x) x—+00 % xX—+00 %7
X 2

+o0 2x5+2x—1

Since f1+°° gx@)dx = fl dx diverges (by P-test), so does [, ~7——dx (by limit comparison

test)
3

Vx € [1, 4+oo]

x+sm2 x)

reniag 1S @ positive function.

inx< in?(x) < in? < - >t
We have sinx< 1= sin*(x) < 1 =sin‘(x) +x <1+x = preeron o=
Let us check the convergence or divergence of f:mﬁdx :

1
x+sin2 (x)

400 1 _ . t — . _ . +co
J; pdx= tETw[lnll +xl]; =-m2+ t1—1>5-nooln|1 + t| = +oo thus diverges, so does |,

(by comparison test)
Note:

We could have determine the divergence of f —dx using the limit comparison test, knowing that

1
—~=-asx > +©
1+x X

Solution exercise3:

1) f+oo cos(x) dx

x*+3
+

[cos(x)| < 1=

cos(x)
x*+3

dx converges ?

lcos(x)| 1 1
< <=
x*+3 T x*+3 «x

+o0 cos(x)

Since f1 dx converges (according to P-test), so does f dx ( by comparison test).
2) [ sin(x—z)dx
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As x - +00,X12—> 0
1
andg(x):x—z.

We know that %ing L:tzl, let us call then f(x)= |sin(Xi2)

1
. f(x . sin(77)
lim & = lim #:
x>+ 8x)  t-0 =z

Due to P-test, [, g(x)dx = | 1+°°Xi2 dx converges, so does f1+°°|sin(xiz)

1
dx (by Limit comparison

test).
Therefore f, sin(xiz)dx converges absolutely
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Chapter 111 Differential Equations

I11.1 Ordinary differential equations (ODE’s)

111.1.1 Definition
An Ordinary differential equation (ODE) is an equations that contain a function (usually
denoted by y(x) or simply by y ) and some of its derivatives (the first derivative y" or higher-

order derivatives y”, y® .....).

Examples:

1) y+4y=0

2) vy =5+ 4e?

3) y'—y=0

4) y® —2y"y =In(x)
Notes:

- y'is sometimes written as :Z—i’ . We keep the first notation

- The word “ordinary” refers to the one variable x of the function y. If there are more
than one ( ie y(xq, x5, x5, ...) the equation become a partial differential equation see
after sectionV1.2.

- The function y(x) is the unknown of the equation.

- The highest order of the derivative in the equation is the order of the differential
equation.

Examples:
1) and 2) are first-order differential equations since we have only first derivative.
3) is asecond -order differential equation, it contains only second derivatives.
4) s a fifth -order differential equation because the fifth derivative y is the highest
order.

- The general solution of a differential equation is given by the set of all functions that

satisfy the equation.

Examples (above):

1) y+4y=0 solutions: y(x)=ke™**, ke R
5) ¥ =5+ 4e?* solutions: y(x)=5x+2e2* + ¢, ce R
6) y'"—y=0 solutions: y(x)= ae* + be ™™, a, be R

111.1.2 Linear Ordinary differential equation

We are not able to solve all differential equation because of the complexity of most of
them the reason why we are going to focus in this section on two types of equations: first-

order linear ODE’s and Second-Order Linear ODE’s with Constant Coefficients
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"« An nth order differential equation is linear if it is of form:
ao(X) y +a(X) y'+ - - - +an(x)y™ =1(x) (1)

where ai(x) are functions
Notes:
*If coefficients a; are constants ie (1) is written as agy + ar1y’+ - - - + any™ = f(x) the latter
one is a Linear ODE’s with constant Coefficients.
«if f(x)=0 then the equation ag(X) ¥ + a1(X) y’+ - - - +an(X)y™ = 0 is said to be homogenous.
Linear means: y and its derivatives (y’, y’’, ...) occurs at most to the first power and there is
no product between them.
Examples:

1) 2xy’+y y’+2=0 (not linear because of the product y y’)

2) Sin(x) y>+ y?=x? (not linear because of y?, y appears to the second powers)

3) x*y +Ln(x) y’+ 4y =e* (linear because satisfies all requirements cited above)

111.1.3. First-order linear ODE’s
111.1.3.1 Definition
First-order non-homogeneous linear ODE is of form:
y+b@)y=f(x) ()
b(x) and f(x) are functions of x
Note:
-If we have an equation of form: a(x)y’+ b(x)y=f(x). It is still a first-order non-

homogeneous linear ODE, we have just to divide by a(x).

111.1.3.2 Solving a first-order linear ODE’s
Steps to follow:

1)Find the homogenous solution (denoted y;) of the homogenous equation y’+ b(x)y=0.
2)Find a particular solution (denoted y,,) of the equation (I).

3) General solution of our equation (1) is yz=yy + ¥,

Trough an example, we are going to apply 1), 2) and 3)

Example: Solve xy’+2xy=x3

We can bring this equation to the standard form (1): y’+2y=x2 (ll)

1)Find the homogenous solution y, of equation y’+2y=0.

Separate variables:

We rearrange the equation so that dy and all other expression containing y are on the
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left and dx and all expressions containing x are on the right.
v’ +2y=0= ‘i’—y =—2dx for y# 0 (y=0 is an obvious solution)
since dy =y’ dx
Now, we can integrate: f% = [2dx = In|ly|=—2x+C
= plnlyl=p2x+C o ly| = eCe™? = y = ToCom2x o yy = Ke 2, KE R
Note:
- For any first-order non-homogeneous linear ODE ( y’+ b(x)y=0), the set of solutions is
yu = Ke JP®dx ke R

2)Find a particular solution y,, of the original equation (I1) y’+2y=x>

Sometimes the search for a particular solution is done by noticing an 'obvious'
solution. In most cases, it's difficult, so we use variation of parameters method to find this
particular solution.
Variation of Parameters:

Consider the function K (x)e™2* (as particular solution y,) , in which we have
replaced the constant parameter K with the function K(x). This technique is called variation of
parameters.

Let us determine K (x):
yp = K(x)e™2* (lll)
We differentiate (I11):
Vp' = (K(x))'e™®* =2 K(x)e*
Replace y," and y,, in the original equation (I1):
(K(x)) e~ — 2K(x)e?* + 2K(x)e *=x? = (K(x)) = x?e** = K(x) = [ x?e**dx
Using twice integration by parts method, we get expression of K(x):
K(X):%xzer 9 (%erx _ %er) _ éxzer — xe?* 4 2%
=y, = K(x)e™* =[%x2e2x —xe?* + e?*|e™
Thus our particular solution y,, = %xz —-x+1
3) General solution of our equation is y=yy + y,

So ys(x) = Ke‘2x+%x2—x+1, Ke R
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111.1.4. Second-Order Linear ODE’s with Constant Coefficients
111.1.4.1 Definition

Second-order ODE’s with Constant Coefficients are those containing the second derivative

y ', inwhich coefficients of y", y'and y are all constant. These equations are of form of:
ay'+by’ + cy =f(x) (V)

where a, b, c are constant and f a function of x

VI1.1.4.1.2 Solving a Second-Order Linear ODE with Constant Coefficients(my method)

We apply the same steps as for first-order linear ODE’s:

1)Find the homogenous solution y, of the homogenous equation ay”’+by’ + cy=0 (HE).

2)Find a particular solution y,, of the equation ( 1V)

3) General solution of our equation ( 1V)is ys=yy + ¥,

First step:

Let us determine yy, solution of ay"+by’ + cy=0 (HE).

We define a characteristic equation (CE) associated to homogenous equation (HE)by:

ar?+br + ¢=0 (CE)

—b—/A —-b+v A
If A= b? — 4ac > 0 = we have two real roots r; = Za\/_ y 2 = ;/_

and our homogenous solution yy, = kie™* + kye™* |, ki, k, € R
-b .
If A= b? — 4ac = 0 = we have a double real root r = = and our homogenous solution

Yy = (k1x+ kz)erx y kl' kz €ER

If A= b? — 4ac < 0 = we have two complex roots r; = _b;iﬂ =a — if,

—b+ivVA_ , . ax .
p=——=at i and our homogenous solution yy = e**(k,cos(Bx) + kysin(Bx))
ki, k, € R

Second step:
Let us determine a particular solution y, of the equation ay"'+by’ + cy =f(x) (1V):
It depends on the form of f(x).
1) If f(x)=P,(x)e’*,k € R (P,(x) is n'" order polynomial function)
Then we have three possibilities:
a- Ifk is not a root of the characteristic equation (see above) then y, = Q,,(x)e"*
Where Q,,(x)e** a polynomial function with the same order as P, (x).

b- Ifkisareal (simple) root of the characteristic equation then y, = @, (x)ek*x.
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c- Ifk is areal double root of the characteristic equation then y, = Q,, (x)e**x?.
In the three possibilities, we calculate y,",y,," and y, , put their expressions in the
equation ay “+by’ + cy =f(x) (1V) and by identification with f(x) we deduce Q,, (x).
2) If f(x)=e*(P,(x)sin(8x) + B,(x)cos(0x)),k € R
(P,(x), P,,(x) are n", m™" order polynomial functions respectively)
Then we have two possibilities (for each case):
a- If (k+i0) is not a root of the characteristic equation (seen above) then
v = € (Q;(x)sin(0x) + Q;(x) cos(6x))
Where Q,(x) a ™" order polynomial function such that I =max(n,m).
b- If (k+16) is a root of the characteristic equation then
Vp = xe"*(Q,(x)sin (6x)+ Q;(x)cos(6x))
In all these possibilities, we calculate y,", v, and y, , put their expressions in the
equation ay +by’ + cy =f(x) (1V) and by identification with f(x) we deduce Q,,(x).
3) General solution of our equation (IV)is ys=yy + ¥,
Example:
y"+y" — 6y =(2x+1) e™>* (Py(x)ek™)
1) Determine yy, solution of y""+y’ — 6y =0 (HE).

Characteristic equation: r2+r — 6=0 (CE)

A= 12 — 4(—6) = 25 > 0 = we have two real roots r; = %_5 =-3,1n=
and our homogenous solution y, = k;e 3% + k,e?* |, ki, k, € R
2) Determine a particular solution y, of the equation y"'+y’ — 6y =(2x+1) e™**
f(X)= (2x+1) e~2* of formP; (x)e* (P;(x) = (2x + 1) is first order polynomial function)
k=-2 is not a root of the characteristic equation then y,, = Q; (x)e™**
where Q,(x) = (ax + b) (Q,(x) is a polynomial function with the same order than P, (x))
To calculate constants a and b we have to compute y,,", y," and .
yp = (ax +b) e
yp' = e ?¥(—2ax — 2b + a)
yp” = e **(4ax + 4b — 4a)
Put expressions of y, ", y,,and y,in the original equation:
67‘(4ax + 4b — 4a) + eyx(—Zax —2b +a) — 6(ax + b) e”2=(2x+1) 67”"

After developing the left side, we obtain:
(-4a)x+(-4b-3a)= (2x+1)
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By identification, we have:

1 1
a=—=- and b ==
2 8

2x

Thus our particular solution y, (x) = (—%x + é)e_

Therefore our general solution
1 1. —2x
Yooy =yu(x) + y,(x) = ke + kzezx(—zx +2e Jki,k, ER

I11.2 Partial differential equations (PDE’s)

Many of PDEs are coming from different domains of physics (acoustics, optics,
elasticity, hydro and aerodynamics, electromagnetism, quantum mechanics, seismology etc).
However PDEs appear in other fields of science as well (like quantum chemistry, chemical
kinetics); some PDEs are coming from economics and financial mathematics, or computer
science.

111.2.1 Definition of a partial derivative

If we consider a function that depends on several variables, we can differentiate with

respect to either variable while keeping the other variable constant. For example, if we have a

function depending on two real variables u(x,y) taking its values in R.

We can compute the derivative with respect to x while keeping y fixed. This leads to Z—Z which
is called partial derivative of u with respect to x. Similarly, we can hold x fixed and
differentiate with respect to y g—; (it is the partial derivative of u with respect to y).

Examples:
1) u(x,y)=x?% + 3y3

g—z = 2xy (here y is considered as a constant)
g—; = x2 +9y2 (here x is held fixed)

2) u(xy,2)= x*lny + e>*sin(y) + zy + 10

Z—z = 4x3 Iny + 5e>* sin(y)(here y and are considered as a constant)
ou _ x* 5x .
&=y Te cos(y) + z (here x and z are held fixed)
Z—Z =y (here xand y are held fixed)
Notes:
du du

o 3y can be denoted also by u, , u,, respectively. We keep the first notation.

- All partial derivatives computed above are first-order-partial derivatives (since we
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differentiate the function u one time with respect to a certain variable. If we do it twice we

0%u 0%u  9%u 0%u

(0x)2 ' axdy ' dyodx ' (9y)?%

obtain second-order partial derivatives denoted by More generally,

9 ok
we can differentiate u more than twice such as — -

(a o Gy GoF which is an (i+j+k)-order partial

derivative.
Examples:
u(xy)=ye*
u ou
U _ xy 22— exy xy
P =yZe 3y e”” + yxe
d du _ 9%u ;2
—_—— — = — V) = 30Xy
dx dx  (9x)?  ox (y € ) y-e
9 du 9%u . 5
Z 7% -2 y XY\ — xy xy 2 Xy — Xy 2 xy
323y — 9edy — 9% (e +yxe*) =ye*¥ + ye*’ + y“xe 2ye*Y + y“xe
Q0u _ d2%u _ 9 . 5
— -2 VY = xy 2 xy
6y6x 8yax ay (y € ) 2ye +y xe
0 du 2%u d , x
— - = y xXyY) — Xy xy 2,Xy — Xy 2,xy
3y 3y 0y 3y (e™ + yxe*¥) = xe*¥ + xe* + yx‘e 2xe™ + yx‘e
9 9% 2 (2ye*V 4 y2xe)=2e*Y + 2yxe™ + yixe®
dy 0x dy dy
9 0u _ 94 du . .-
We can notice that 93y — ayox but in general it is not always true..

111.2.2 Definition of a partial differential equation (PDE)
A partial differential equation is an equation which involves a function depending on
more than one variable, and partial derivatives of the function.

Examples

1) g—Z=o

0%u

o2~ 0

2)

%u
0x0y -

3)

4) x+c2=0 is the transport equation.

0%u 0%u

) (0x)? ~ (9y)?

= 0 is the Laplace’s equation

au

“)=0 is the two-dimensional Heat equation

6) ((696)2 (63/)2

62u 2 62

) Gz = Gne

= 0 is the One-dimensional wave equation (or string equation)

Notes:

-All PDE’s above are of second order (except for 1 and 4, they are of a first order) since they
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involve second-order partial derivatives.
ot 9/ aku
(021 (2y) (0:0)F°

of partial derivatives i+ j+k that appears in the equation.

- If a PDE contains partial derivatives such as — its order is then the largest order

111.2.2 Linear partial differential equation:

A PDE is said to be linear if:

i) The function u and its partial derivatives occurs at first power

i) There is no product between the function u and its partial derivatives.

Otherwise it’s non-linear.

Note:
a2u\™M
- if u depends on two variables x and y, i) means there is no u™ ( )m (5) (axay) ..... :
m= 2
Examples:

1) All PDE’s above are linear since they satisfy both requirements.

2) 6_u+_+ u(x,t)=4x+t is linear

2) 2 ;’;‘ % = 2xsin(y) is linear

3) (g—z) *a )3 + 6x— = 0 is non- linear because of (—)2 (second power. The first
condition is not satisfied).

4) u(x, y) a” =x is non- linear because of the product u(x, y) g—z

(the second condition is not satisfied).
111.2.3 Solving linear second-order PDE’s

PDE’s are often hard to solve because of their complexity indeed they involve
functions of multiple variables, different partial derivatives and most of them are non linear.
The reason why we are going to restrain our study to linear second-order PDE’s using a
method called separable of variables to solve them and in chapter VV we will introduce a tool
to solve PDE’s called Fourier transform.

A general linear second —order PDE is of form:

0%u
A— B +C +D +E +Fu—G

(0x)2 9xdy (@ )2

Where all coefficients A, B,...G are functions of x and y.

Notes:
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-1f G=0= PDE is homogeneous.

- A solution of a linear second—order PDE is a function u(x, y) that possesses partial

derivatives in LPDE and satisfies the equation.

- if uy, u,, ... u3 are solution of homogeneous LPDE then u = c;u; + cyu,, ... +cusis also
a solution (superposition principle)

111.2.3 Separable variables method:

This method is about looking for a solution of form u(x,y)=f(x).g(y)

ou Y ou _ ’ 0%u _ 1
So X=1 (.90, 7 =000 (). 555 = FE" ). cte

At the end we have to solve two different equations.

Examplel:

9%u _ ,ou
(ax)z_ ay (I)

Let us put u(x,y)=Ff(x).g(y)

" _ ’ f”(x) _ g’_(Y)
()Becomes £ (De(y) = 4 1.9’ (=57 = 75 =
independent oy independent of x

From this equality we can deduce both of them are independent of x and y therefore they
are constant.

100 _ gy _
4£(x) gy

= f"(x) +4kf(x) =0 and g'(y) +kg(y) =0

—k (-k because it’s more convenient for next calculations)

We have three cases: k = 0,k < 0,k >0

" _ azf(x) _ of (x) _ _
f'x)=0= o) =0=> P =¢g>fx)=cx+c,

dg(x)
ay

1) k=0=
g'ly) =0= =0=>g9(y) =c;
So u(x,y)=f(x).g(y)= (c1x + c;) c3 = u(x,y)=a,x + by, a;, by ER

2) k<0=k=—a?

f"'(x) — 4a*f(x) = 0 g'(y) —a’g(y) =0
A second-order homogeneous EDO A first-order homogeneous EDO
r? —4a*=0 (CE) Solution g(y)= kse®? ks € R
Two real roots r; = 2a, 1, = —2a
solution  f(x) = k,e®™ + k,e™2%* |
ki, k, € R
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S0 u(Y)=f(¥).9(0)= (k1e*™ + kpe2%)(kse® ) = U(XY)= ape 28X+ 4 pyelax+aty

a, b, eR
k>0>k =a?

f" () + 4a?f(x) =0 g'(y) +a’g(y) =0
A second-order homogeneous EDO A first-order homogeneous EDO
r*+4a*=0 (CE) Solution g(y)= kge %Y ks € R

Two complex roots r; = —2ai , r, = 2ai
solution  f(x) = kycos2ax + kssin2ax

. ko ks € R

So u(x,y) =f(x).g(y)= a3e‘“2yc052ax + b3e‘“2ysin2ax , as,b; ER
Example2:
du_ ,du

Xa— ta (| |)

u(x,t)=f(x).g(t)

' _ / xf'() _tgr () _

(1) Becomes xf'(x)g(t) = tf(x).g'(t) > - ao - k

>xf'(x) + kf(x) =0 and tg'(t) + kg(t) =0

ff(x)=0=>f(x) =c

Dk=0= g'(y) = 0= g(y) = ¢, sou(x,y)=c; +c, =a;,a4 €ER
2)k #0
xf'(x) + kf(x) =0 tg'(t) + kg(t) =0
A first-order homogeneous EDO A first-order homogeneous EDO
xf'(x) = —kf (x) xg'(x) = —kg(x)
f'(x) _~k g'(®) _—k
fx)  x gy t
Integrate: In|f (x)|=-kin|x|+c3 Integrate: In|g(t)|=-kin|x|+c5
= f(x) = cux7k =9g(t) = cst™*
=solution f(x) =c,x™* , c, € R
Solution g(t)=cst™® ,cs € R

So u(x,t) =f(x).g(y)= a,(xt)™*, a, € R
Notes :

We have considered just two cases of k because of first-order homogeneous EDO (
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Chapter 111 Differential Equations

three cases when we have second-order homogeneous EDO).
Exercises
Exercicel:
Solve the following First-order ODE:
xy’—y=x2Inx
Exercice2:
Solve the following second-order ODE:
y"+y' — 6y = sinx
Exercice3:

Which of the following PDE’s are linear?

2%u
) dxdy

2) =2

+y23—z = 2xeY

= )2+(—) +6x5%=0

0% | Oy (X, )+2xt=0

3)(6t)2 Tox

4)x—+ya =ulx y)axay

Exercice4:

Solve the following simple PDE’s.

2
1) x5 5 0% _ g 3 aax;y

ax (0x )2 =0

Exerciceb:

Solve the following linear second-order PDE’s using separable of variables method:
ou

1) 3, Ca_=0 (the transport equation).
2) 2 1 2 0 (the Lapl tion)
(8x)2  (9y)? ¢ Lap ace’s cquation

Solution of exercise 1

We can bring this equation to the standard form (1): y’— %y:xlnx

1)Find the homogenous solution y, of equation y’— %y:O:
Separate variables:
, 1. _o _ dy_dx - s
y—;y—0:> i (since dy = y’ dx)
Integrate: fdy—y = f% = In|lyl=In|x| + C

= e!WVzel+C = |y| = ¢C|x| = y, = e“x = Kx, KER
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2) Find a particular solution y,, of y’— %y:xlnx () using variation of parameters:
¥, = K()x = y,'=K'®x + K(x)

Put expressions of y,, and y,," into (1):

K'®x + K(x) — iK(x)x = xlnx > K'® = Inx=> K(x) = [ Inx dx

Using integration by parts method, we get K(x) = xlnx —x+c¢, c €R

>y, = (xlnx —x + ¢)x

Therefore, our general solution: y; = Kx + (xlnx — x + ¢)x
Finally, y; = Lx + (xlnx —x)x, L € R
Solution of exercise2:
y"+y' — 6y = sinx
1) Determine y, of homogeneous equation y"'+y’ — 6y = 0
Characteristic equation (CE): r2+r — 6 = 0=0
A= 1+ 24 = 25 = two complex roots r; = %_5 =-3

—-1+5
r, = 2 =2

Soyy =yy = ke 3 +kpe?* |, ki, k, €ER

3) Determine a particular solution y,, of the equation y"'+y’ — 6y = sinx (lI)

f(x)= sin(x) of form e%*(P,(x) sin x + Ry (x) cosx) , here Py(x) = 1 and Ry(x) = 0
(0+1) is not a root of the characteristic equation (seen above) then

yp = €%(Qo(x) sinx + Sy(x) cosx)= Asinx + B cosx A, B constants

Let us determine A and B:

Yp = Asinx + B cosx

Yp = Acosx — Bsinx

Yy = —Asinx — Bcosx

Put expressions of y,, y, y, into equation (I1).

—Asinx — Bcosx+ Acosx — Bsinx — 6 Asinx — 6B cos x = sinx &

sinx [-A - B — 6A]+ cosx [-B + A — 6B]=sinx +0cosx &<

-7
{—7A—B=1 N i)
A—7B=0
Thus y, = — sinx + —
yp = 0 Sin x o CoOS X

. — -7 . -1
Therefore our general solution y; = kye™3* + k,e?* +oysinx +ycosx, ki k; € R
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Solution of exercise3

0%u
)_

u ..
2—: y
oxay TV o 2xe” s linear

2)ﬂ + (a—u)3 +6x2% =0 is non- linear because of (a—“)3 (Third power. The first
(0y)? dx dx dx )
condition is not satisfied).

0%u ou _ o
) (9t)2 *toxt u(x,t)+2xt=0 is linear

ou ou __ o*u . . o%u
4)x—+ Yo = u(x,y) xay is non- linear because of the product u(x, y)m
(the second condition is not satisfied).

Solution of exercice4:

Ju(xy) _
1) ox =0

That means the function u does not depend on the variable x, but only on the Variable y

= by integrating with respect to x, u(x,y)= f(y) where f(y) is any arbitrary function

ofy.
%u 9 [ou(y)] _
2) 0x)2 6x[ ax ] =0

That means the function % does not depend on the variable x, but only on the

variable y :%z f(y) =by integrating with respect to X, we get

u(x,y)=f(y)x+g(x), where f(y), g(x) are respectively any arbitrary function of y, x.

0%u 0 [6u
=

5] = 0 =by integrating with respect to x, we obtain Z—; = f(y)

) dxdy - dx
=hy integrating with respect to y, we get u(x,y)= [ f(y)dy +g(x)
= u(X,y)= F(y) +g(x) where F(y) is an anti-derivative of f.
Solution of exercice5:
1) 3—1:“3—3:0 ).
u(x,t)=f(x).g(t)
W= 1090 +of (g®) = 0> LE =EQ =k (kcste
>cf'(x) +kf(x) =0 and g'(t) + kg(t) =0

fl)=0=f(x) =¢

DE=0=10) =02 90) = o,

sou(x,y)=c; +c, =a;,a; ER
2)k #0
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cf'(x) + kf(x) =0 g'(t) +kg(t) =0
A first-order homogeneous EDO A first-order homogeneous EDO

k
=solution f(x) =a,e”<* , a; € R
Solution g(t)= a,e™*t ,a, € R

k
So u(x,t) =f(x).g(y)= aze <*e7*t ,a; € R

0%u
Z)W'I‘W 0 (||)

u(x,y)=f(x).a(y)

" " _f "(x) — 8"y (Y)
() & f"()gly) + f(x).97 (y)= 0= — T2 == === —k (kcste)

=—f"(x) +kf(x) =0 and g"(y) +kg(y) =0

" a a
f (x)—0=>(af(;) 0= ];Ecx)—clzf(x)—clx+cz

7 a 5]
g'(y) =028 = 0580 .5 () = o3y +c

1) k=0=

So u(x,yY)=f(x).9(y)= (c1x + c)(csy + ¢, )=, ¢ €ER
2) k<0=k=—a?

-f'(x) —a?f(x) =0 g"(y) —a’g(y) =0

A second-order homogeneous EDO A second-order homogeneous EDO
—r?2—a’=0 (CE) r?—a?=0 (CE)

Two complex roots r; = ia, 1, = —ia Tworealrootsr, =a, r, = —a

solution  f(x) = kqcos(ax) + k,sin(ax) solution g) = kze® + kye=* ,
ki k, € R ks k, € R

So u(x,y)=f(x).g(y)= (kicos(ax) + kysin(ax) )(kze®™ + kze™*), k; € R

Nk>0=k = a?

—f" () + a*f(x) = 0 g"(y) +a’g(y) =0
A second-order homogeneous EDO A second-order homogeneous EDO
—r?2+a?=0 (CE) r?+a?=0 (CE)
Tworealrootsr;, = a, r, = —« Two complexrootsr; = —ai , 1, = ai
solution f(x) = k™ + kge™* , solution g(y) = kgcosay + k;sinay
k, ks € R ke, k; € R

So u(x,y) =f(x).9(y)= (kse™ + kse™ ) (kgcosay + k,sinay), k; € R
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Chapter 1V Series

IV.1. Infinite series:

IVV.1.1 Definition of an infinite series

Let (Uy,)n=1be a sequence of real numbers so

Uit Uyt Ut =).n=1 Unis called an infinite series or more simply just a
series.

In other words an infinite series is an infinite sum of elements of a sequence or roughly
speaking it is an infinite sum of real numbers.

Ui, Uy, Usgyev v, are called terms of the series).,—; Uy,

-If (Up)nso then X2, U, is the associate series to this sequence.
If (U)ns3 then Y°_. U, isthe associate series to this sequence.
-The goal of chapter is to understand the meaning of such an infinite sum and to develop

methods to calculate it.

Examples:
1.let(1,2,3.......... ) be a sequence, one can write | tas :
U,=n Vn=>=1 sothe associate series is}),,_, n
2. Let (0,-1,-2,-3.......... ) be a sequence which can be defined also as follows:

U,=-n Vn >0 so the associate series is Yp—, —n

3. The general term of the following sequence (-6,-9,-12,-15.......... ) is
U,=-3n Vvn >2 so the associate series is Yy, —3n

Note:

The general term is usually given, so it is easy to write the series:

Example :
U,= % vn =2 so the associate series is Z,‘f:l%
IV.1.2 Convergence of an infinite series:

Let)._, U,be a series.

We build a sequence(S,,),»1 as follows:

Si= U

S= U+ U,

Se= U+ Uy+ Us

Si= Up+ Uyt ........ U,

This sequence(S,,)=11s called the sequence of partial sums of the series Y-y U,,.
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1VV.1.2.1 Definition:

The series). -, U,converges if and only if the sequence(S,,),,>1converges, and
otherwise the series diverges.

That is,);—, U,convergese< lim S, =S Sis a finite number

n—-+oo
In this case we write: Y\, U, = Sand Sis called sum of the series).;—; U,
Note:
+ oo

n—-+oo or

(

I or

If lim S, = 4 —oo then series )., U,diverges

I
kZ limits

( +00
l or
and Yo, U, = 4 —00
| or
kdoes not exist

Examples:

1) X (D"
Let(S,,),»1be its partial sums.
S1=U;=1
So= U+ U,=1+1
Ss= U;+ U+ Us=1+1+1

Sn= Uyt Uyt ........ Upy=1+1+1............. +1=n= lim S, = lim n = +o0
n—-+oo n—-+oo

Then series X,;—,(1)"diverges and Y;>_,(1)"= 40
2) 2= (=1)"

Si= U=-1

Sp= U+ Uy=-1+1=0

Se= U+ Uy+ Us=-1+1-1=-1

—1 if nis odd
= lim S, = or hence series Y-, (—1)™ diverges.
n—+oo 0if niseven
w 1
S)ano(g)n
Note:

1 . . . . 1
U, = (9™ is a geometric sequence with a common ratio r = =
n 8 8
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so Sn=U, + U;+ U,+....+ U, =1+ §+(§)2+ +(§)"is the finite sum of first terms of

geometric sequencethat we know how to compute it:

1— ()n+1
=1(—"=)
8
( )‘l’l+1
lim S, = lim( )
n—+oo n—+oo 1— g
Si ; Iyn+1 — . _ 1 _ 8
ince lim (g) =0= lim Sn—E_;
n—-+oo n—-+oo 8

So the geometric series). . “o(g )” converges and); 0( = 2

IV.1.2.2 Generalization about geometric series:
~o(q)™is ageometric series with a common ratio g ( q a real constant)

% o(@O=1+0+0%+. ...

Its partial sums S,, =1+q+g*+...... +q“—U0( ) sig# 1
where Uy = 1

lim S, = lim ( ) sig# 1

n—-+oo n—+oo
a) if-1<g<1
. nel_ . s 1-q™1\ _ 1
lim g™ *=0= lim S, = lim ( - )— -
n-+o n-+oo n-+o
b) ifg>1
n+1
lim g"*1=40= lim S, = lim (1 1q )—-oo
n-+o n- lim 4o n-+oo a
n—+oo
c) ifg< —1
. . 1_ n+1
lim g™t = {+oo ¥fn1.s Vel L, lim S, = lim bl
—oo if nis odd _ 1—gq
n-+o n- lim 4o n-+oo
n—+oo
_ {+oo if nis even
~ |—wifnisodd
d) ifg=1
lim S,= lim 1+g+g’+........+q"=lim1+ 14+ 1+ ..+ 1
n-+oo n-+oo n—+oo
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=limn+1=+4wx

n—+oo
e) Sig=-1

lim S,= lim 1+g+g?+.........+q"
n-+oo n-+oo

1 ifnis even

s _ e —1)"=
=liml—-14+1+- ..+ (1) {0 if nisodd

n-+oo
To summarize:
Geometric series).—,(q)™ converges if -1< g <1 and its sum S=)7°_(q)™ = ﬁ
Geometric series Y- ,(q)™ diverges if q< —1 orq > 1.
The above Example:
;‘{;0(%)” IS a geometric series with a common ratio qzé ;-1< % <1 converges and its sum

1 _8
1- 7
8

S=ErooQ" =

Example:
;‘fzo(g)”is a geometric series with a common ratio q=;3; % > 1so this series diverges

and T7_pG)"=+00

IVV.1.2.3 Properties of convergent series

Proposition 1:

if >0, U, converges= lim U, =0

n-+oo
Proof :
So= Uyt Uy ..., U,
Sna= Uy+ Uyt ........ Up_s
Sh- Sn1= Un
lim S, =S
n-+oo
If X, U, converges :>{ lim S, , =S
n-+oo

= lim (S, —-S,-1)= limS,— lim §,,_; =S—-S=0

n-+o n—+oo n—-+oo

The contrapositive of this theorem is called the divergence test:

If lim U, # 0=2,_, U, diverges

n—-+oo
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In other words, if lim U, of a given series does not exist or has a value other than zero, the

n—-+oo

series diverges.
This test (the divergence test) is easy to apply, can save us a lot of time and guesswork that is
why it is used a lot.

Note well that the converse is not true: if lim U, = 0 then the series does not necessarily

n——+oo

converge (It may converge or it may diverge)

Examplel :

i(l)”
n=0

lim (D" =1+ 0=;_,(1)"is divergent.

n—-+oo

Example2 :

i(—l)”
n=0

- 4y _ [ 1 ifniseven ® [ 1\Mic di
lim (=1) —{_1 1 is odd = n-1(—DMis divergent.

n—-+oo

Example3 :

[ee]

> (2+3)

n=1

lim (2 + %) =2#0=)7, (2 + %) is divergent.

n-+oo

Example4 :

s}
Z _n
n=0

lim —n = -0 % 0=),_, —ndiverges.
n-+o

Proposition 2 :
LetY -0 Un, 2n=p Unbe two series that are different just by a finite number of terms.

If Y=o Unis convergent and its sum is S= .77, Uy, is convergent
and ¥, Uy =S — (Up + Uy + . 4+Up_;)
Example:

1 - - . . . 1 1 .y s
;'{’=0(E)"|s a geometric series with a common ratio q=; ; -1< > <1 hence it is convergent
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and its sum S=},7° oG D

S0 Xn-3 G)nis also convergentand its sumS=3.;>_ (%)n =2- (1 + % + i)

- ()-
Proposition 3:
If Y_o Up and Y- Vi, are convergent then).._, (U, + V;,)is convergent.
If Y o Upis convergentthenzn=0 k.U, is convergentV k € R
And Yo k. Uy =k Xn—o Un
Example:
We know that ),? oG )”ls a convergent series= Y,»_, 3G )” converges
AN 2703 (3) = 30 (3)'
=3x2
=6
1V.1.3 P-Series:
1V.1.3.1 Definition:
Are series of the form Z,‘lenip, p is a real constant.

Examples:

(p 1) anz(p 2)2n13(p_3)2 1\/—(p )ang/ (p _)arepse”es

[1.1.3 .2 Convergence of P-series:

1 = converges if p> 1.

=1 - dlverges ifp<1.
Examplel :

;‘{;1% is divergent because p=1< 1
Example2:

n=177 _ converges since p=2> 1.
Example3 :

bl 1\/_ diverges because p-— <1
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IV.1.4 Abel’s Test:

Let Y7, a,. byan infinite series such as:
1) (ay),is an increasing sequence that converges to 0 ;a,, € R* Vn.
2) AM eR* ,Yp e N|XP_ b, <M

Then }.;°_; a,. by, is convergent.

Example :

; (—i)”

Let us choose a,, = %and b, = (—1)™ and check if Abel’s test is satisfied:

1 1 . . .
We have n+1>n D S —Dlpyg S a,thus (a,),Is an increasing sequence.
. 1
lim a, = lim —=0
n—-+oo n—-+o

Condition 1) is satisfied.

Let us find M such asvp € N|¥P_ (-1 < M :
P=1 [Yh=: (D" =1

P=2 X7, (=D"=l-1+1]=0
P=333_,(-D"=|-1+1-1|=1

P=4 ¥4_,(-1)"=|-14+1-1+1]| =0

So we have found M=2 such asvp € N|Y?_,(—1)"| < 2 Condition 2) is satisfied.

Conclusion :

- n- . .
n=1 ¢ i) IS a convergent series according to Abel’s Test.

IV.1.5 Series with positive terms:

are series )., aysuch that a,, > 0 vn.

Examples:

1
(o) = (o] (o 9] n
n=1, Zm=1M ) Y=t @

IV.1.5.1 Comparison Test:
Let)., a,be a series with positive terms.
1) If 3 3°_; bya series with positive terms that is convergent such that :
a, < b,Vn > n,
Then };°_; a,, is convergent.

2) If 3.7, c,a series with positive terms that is divergent such that:
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a, = c,Vn = n,
then }.>°_; a,is divergent.
Examplel:

Let be the following series Y,

o J—
n=1,,pn2

We are going to determine whether this series converges or diverges:

1 1
We have 2+n?2=n? Vno>—<-= vn
2+n

nZ
Since Yo 4 %is a P-Series ( p=2 > 1) that converges so Yo, ﬁ converges

according to comparison test 1).

Example2:

o 5™ + 4

21’1
n=1
n

5"+ 4> 0and2" >0V¥n >1="—=>0Vn > 150

n=1 52—:4 is a series with positive terms.
We have 5™ + 4 > 5™ \7’n=>52:4 = z—n vn

5™ 5.1 : . . . . 5 .
n=1 Pl %°=1(5)n IS @ geometric series with a common ratio q= 5>1 that diverges hence

1 52:4 is divergent according to comparison test 2).
So the general approach is this: If you believe that a new series is convergent, attempt to find
a convergent series whose terms are larger than the terms of the new series; if you believe that
a new series is divergent, attempt to find a divergent series whose terms are smaller than the

terms of the new series.
IV.1.5.2 Cauchy Root Test:
Let >, a,be a series with positive terms.

We suppose that lim %/a,, =L

n—-+oo

1) if L < 1then series Y.7_; a,is convergent.
2) If L > 1 then series Y., a,is divergent.
Note :

If L=1, use another test.
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Examplel :

0]

1

nn
n=1

n”>OVn>1=>nin>OVn>1=>Z°° L

n=1 nn

IS a series with positive terms.

n=1 nn

lim %/a, = lim ”/nin = lim %= 0=L<1 =¥Y=,—~ IS a convergent series

n—-+oo n—+oo n—+oo
according to Cauchy Root test 1).
Example2 :

2.2
n=0

2" > 0vn > 0= Y , 2"is a series with positive terms.
lim Yfa, = lim V2" = lim2=2=1L>1 =X ,2"%isa divergent series
n-+oo n-+oo n-+oo
according to Root test 2)
When an contains power of n, as in the above examples, the root test is often useful.
IV.1.5.3 D’ Alembert’s Ratio Test:

Let .o, a,be a series with positive terms.

We suppose that lim % =1L
n—-+oo n

1) if L <1 then series );,;—; a,is convergent.
2) If L > 1 then series Y.;—; a,is divergent.
Note:
If L=1, use another test.

Examplel :

[ee)

n

n!
n=1

~>0vn>1=%7 ~isaseries with positive terms.

: : +1 nl .1 : .
lim &2 = im —— %= lim ==0=L<1 =Y%,=isaconvergent series
an (n+1)! ' n n n!
n—+oo n—+oo n—+o

according to Ratio Testl).

Example2 :

Zn(%)”
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n(z)” >0vn>1 :>Zf1°=1n(§)” IS a series with positive terms.

n+1 5
n+1)(3 n+1)(3
It = iy 54) lim — () - =L>1%7.1n( >ynis a divergent series
n n-+o n" n-+oo "

according to Ratio test 2).
When (an) contains factorials, as in the above examples, the ratio test is often useful.
IV.1.5.4 Limit comparison Test:

Let).—; ayand X.>°_; b, be series with positive terms.

a

If lim b—” =L #+ {+(3>o then either both series converge or both diverge.

n—+oo
Tip:
We can compare a series (with Positive terms) to a well known series to determine if it
converges or diverges such as P-series, geometric series.

Determine if the following series converge or diverge:

Examplel :
i 1
3n3+1
n=1
Up =5 1,plckb e
_1 1 sy
an . 3n3+1 . 3 .n 0
lim —= lim ———= lim ———. n° = limc-—=—=L #
Y is rre 3N 1 3n® 3 {+oo
n n-+oo
—1bn — is a P-series with P=3, converges = Y.;°_, T3y converges according to
limit comparison test.
Example2 :
Un = s pick b,
s 1 1
. ni2 . . 0
lim 2= lim &2 = lim . e" = lim =1+
n-o+oo 1N n—+oo ein n—+oo et +2 1+ An {-|—OO
n—+oo

1 - - - . . 1 1 . s
=1 by = ;‘{3:1(;)" is a geometric series with a common ratio 9==3 ; -1< - <1 hence itis
convergent = Y7 a, = Yy —no converges according to limit comparison test.
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IV.1.6 Alternating series:
1V.1.6.1 Definition:

An alternating series is of form Y, (—=1)"a,, a, € R".
ne1(=D"a,=-a; + a—az + - .......
That is, series with both positive and negative terms, but in a regular pattern: they alternate.
(i.e infinite series in which the signs alternate).
Examplel:

"1
?]?:1 n an - ; E R+.

Example2:

e (=D"™? a, =n?€ R"
Example3:

PG = T (D" an = 5 € R
IV.1.6.2 Leibnitz Test ( Alternating series Test):
Alternating series Y.o_;(—1)"a,is convergent if

1)(a,)n is a decreasing sequence.
2) lim a,=0.

n—+oo
Examplel:

o] (_1)71

a 1
n=1 n ' n n

1 1. - . . e . . -
We havem < -ledn,q < ay e (a,)nis a decreasing sequence so condition 1) is satisfied.

lim a, = lim %: 0 so condition 2) is satisfied.
n-+o n—-+oo
=n"

1
n

Conclusion: the alternating series Yo is convergent.

Example2:
n=1 (D™ ay =n?
We have (n + 1)? > n?iea, ., = a, ie (a,)nis not a decreasing sequence so condition 1)
is not satisfied.
Conclusion: The alternating series Y, (—1)"n? is divergent since one of the condition is
not satisfied.

Example3:

-1 1
?10=1(7)n: ?:1(_1)712_11 » An =25
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1 1. . . e . . g
Ml >N — < Zn a1 < a, (a,)nis a decreasing sequence so condition 1) is satisfied.

2n+1 —

lim a, =lim zin: 0 so condition 2) is satisfied.

n—-+oo n—-+oo

. . . -1 .
Conclusion: the alternating series Z,?zl(?)" IS convergent.

IV.1.6.7 Absolute Convergence of a series:
IV.1.6.7. 1 Definition:

An infinite series is absolutely convergent if the absolute values of its terms form a
convergent series.
That is, Y;-; a, converges absolutely if }._;|a,| converges.
Example 1:
G Ol
n2

n=1
_\n
We have Y%, |( nlz) kS

n2

= ¥*_, = and we know that ¥_,

n=1n2

is a P-series (P=2> 1)

_q\n
converges = Yo7, ( nlz) converges absolutely.
Example 2 :
n
n=1
. -nn" o 1 . o 1. . _ T
1 | —| = 2= and since anlzls a P-series (P==1< 1so it diverges =
1 (_nlz) does not converge absolutely.

1VV.1.6.7.2 Theorem 4:

If a series converges absolutely then its converges (see examplel).
The contrapositive is not true (see example 2)

If it converges, but not absolutely, it is termed conditionally convergent (such as example 2).
Exercises of infinites series

Exercise 1:

Identify geometric series, P- series among the following infinite series and State whether

these series converge or diverge and evaluate their sum:
1- Yrmo(=5)"  2:Xpn(n*-2)  3-¥pin

4-Yn=0(—

Exercise 2:

5n°4+n

ji n __ ' E n N\
15 5 Zn:l(n) 6-20 25n5+2
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Chapter 1V Series

Suppose that:}_; a, = 3,20-1 b, = —3,a; = 4 and b; = —5. Compute the sum of the

D @ +2by) D (@ = b)) (@nas + buan)
n=1 n=2 n=1

following series:

Exercise 3:
Use the sequence of partial sums (S,,) to determine whether the following series converge or
diverges, find the exact value of their sum S:

LA - DT G- ) 2) Zrei i)

n+1

Exercise 4:
1- State whether these series converge or diverge and evaluate their sum:

2- Y2 2710 255t 430" 3-pplt
4-Y2_(n+4)! 5-2n- 5+6n3
5n5+n n 241
6 2n=0Ggriz)” T-2n=1 270
Exercise 5:

Use the Limit Comparison Test to determine whether the following series converge or

diverges and evaluate their sum S.

1y, o 2- Y2 o

n*+2n

2n+6
Exercise 6 :

State whether the following series converge or converge absolutely:
- Yaoa(=Dre™®  2-¥5_,(-1)"n® v (D" InG

Solutions of exercises of infinite series:

)

2+7

Solution of exercise 1:
1-3>_o(—5)™is a geometric series because of form).7_, g™ (q=cste) where q=-5<
—1thus); _,(—5)™ is divergente and its sum

_vo o _ecyn_fto if niseven
S=2n=0(=5) _{ —ooif n is odd

2-y°_(n* — 2)it is neither a geometric series nora P-series.

3-Yr_nTYr — is a P-series (of form};._ 1p) where p=7 > 1thus Y7_, n~ 7 is
convergent and its sum S=Y_, n~7 =A a finite number that exists but we cannot compute it.
4-y7_o(— %)" IS a geometric series with common ratio g=— 2 < q=- 12—5 <1 so this

15
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Chapter 1V

Series

i i Yo 21 __ 1 _ 15
series converges and its sum S=Y%_( 15) i 1_(_%) =1

5- Z$=1(%)”it IS not a geometric series because (% depends on n, it is not constant).

Yo 5n5+n)
0 25n5+2

Solution of exercise2:

it is neither a geometric series nor a P-series.

We have }.°_; a, = 3,X0-1 b, = —3= both series are convergent.

And we know

If Yoo Up and YooV, are convergent then Y>> (U, + V},) is convergent.

If Yo—o Uy, is convergent then .°_, k. Uy, is convergent V k € R

And Yoo k. Up = kX572 Un

So

1)Yx_,(a, + 2by,) is convergent and Y7 (ay, + 2b,) = Ygeq G + 2 Xy by,
=3 +2(-3)=-3

2) Z??:Z(an - bn)is convergent andz;’f:z(an —by) = %ozz an — 1010=2 b,

= Xne1an —ay) (=1 by —

= (3-4) - (-3-(-9))
=-3
2)Ym-1(ans1 + byyq) is also convergent and
Yin=1(@ns1 + bpi)=X0=2(ay + bp)=(X5-1 an — aq) +(Xy=1 by — by)
= (3-4) + (-3-(-5))
=1

Solution of exercise3:

) TG =)= Tia Uy

n+1

Let (S,,) be the sequence of partial sums of this series such that:
1 1 1 1

S, U =————=—_—=
=171 14171 2

1 1 1
SZ=U1+U2_I_E+E_

SZ:U1+U2+U3:%—%+ —;-l—l—l

3 4
e e Tt
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Chapter 1V Series

We know that :

Y7—4 U, converges < the sequence(S,,) converges< lim S,_A( a finite number).

n—-+o

+ oo

n—-+w ou

(

I ou
n=1 U, diverges <the sequence(S,,) diverges< lim S,,— 4 —o0

I

\2 limits

In this case:

. . 1 o 1 1. .
lim S, lim 1 ——=1 thus anl(; — —) s convergent.

n—+ow n—+ow

And X5 (———)—

n+1
2) ZroiInG) = Zioi I —In(n + 1) = X3, Uy
Let (S,,) be the sequence of partial sums of this series:
S;2U; =Inl —In2
S,-U; +U, =Inl—1In2+In2—-1In3
Sp=Ui + U+ +U, =Inl1 —In2+n2 -3+ - .....+lnn—=In(n + 1)
=nl-In(n+1)
lim S, lim —In(n+1) = -

n—-+oo n—+oo

Thus ¥, ln(#) is divergent and ¥*°_, ln(#) =—
Solution of exercise 3:

1_2 =1 Zn_lo_zzn 1 10

=1 T is a P-series with p=10> 1 so converges= 2).77_, T stays convergent (see above)

Its sum S=37_; 10— A a finite number that exists but we can not compute it.

2-Y7_1(n* + 3n)™is a series with positive terms whose general term is a power of n

consequently we apply Cauchy Root Test.
lim Y/a, = lim Y/ (n*+3n)" = lim (n* + 3n) = +00 > 1s0 Y7, (n* + 3n)™is

n—-+owo n—-+oo n—-+o

divergent and S=+o0

9
—Z‘” n |t is neither a geometric series nor a P-series.

Let us apply the dlvergence test:

. o9nd-4 . o
lim —— = lim — =9 # 0then X7

n-+oo n-+oo
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Chapter 1V Series

and S= Z°° = 4o

3+1

4 -Y»_o(n+ 4)! General term contains a factorial, let us use then D’ Alembert ratio Test:

lim ant1 _ lim (n+1+4)!: im (n+5)! _ lim (n+5)(nA4)(n+3)(H2).....24,
v O (Fd) n—>+oo(n+4)! o y(yz{)(/////) ...... %/

= lim (n + 5)=+c >1thus); _o(n + 4)!is dlvergent according to D’ Alembert ratio

n—-+oo

Test2) and S=X7_o(n+4)! =
5-2n-

-This series is neither a geometric series nor a P-series.

5+6n3

- If we apply the divergence Test:

lim

n-o+o

1 _— -
ekl then we can not say anything.

- We can not apply Cauchy Root Test because the general term —

5 is not a power of n.

- If we apply d’ Alembert ratio test:

lim %1 = Jim — "% — i ™ 1 then we can not say anything
an (n+1)5+6(n+1)3 ns '
n—-+oo n-+o n-+o

-Let us use ComparisonTest :

1 1
<_
n5+6n3 ns

n® 4+ 6n3>n°vn=
—IS a P-series with p=5>1 =converges= }.;;_, ———is convergent by Comparison

Test 1).

and S=).7_ 17- k a finite number.

6- X 0(255" 5+"2)”|s not a geometric series because q- |s not constant, g depends on n.
We notice that ( )” is positive and is a power of n consequently we apply Cauchy Root
Test.

. n _ . n| _5n54n L 5n° 1 5n5+n | -
lim Ya, = lim |(=5)"= lim ——== lim — = <1thenky_(<5)"is
n—-+oo n-—-+oo n—-+oo n—-+owo
convergent and S=Y2_( 55n 5++nz)” k a finite number.

n?+1
I Z Ln2inn

We do the same work as 5)
-This series is neither a geometric series nor a P-series.

- if we apply the divergence Test:
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Chapter 1V Series

. 241 _ 4. 2 . 1
lim -——=lim —— = lim — =0, use another test
n<lnn n<lnn inn
n—+owo n—>+ow n—-+o

2
-We can not apply Cauchy Root Test because the general term — L

n2inn

Is not a power of n.

- If we apply d’ Alembert ratio test:

Mm+1)2+1 2 5 .
. 2 +1)°+1)! . l l
lim (n+1) 2ln(n+1) lim n“((n+1) Jinn nmn _ lim nn _ = 1then use
ne+1 (n+1)2(n?2+)In(n+1) n*ln(n+1) Inn
n—-+oo n2inn n—+oo n—+oo n—--+oo
another test.

-Let us use Comparison Test :

2 2 2
Inn < nvn = n2lnn < n?nvVn=——>—vyn =50 :1 =1
n<lnn n n4lnn n n n
|s a P-series that diverges(since p=1< 1) = Y%_ |s divergent by Comparison 2).
+1
And S=X7_, 21 n— +o0

Solution of exercise4:

0 n+5
1-2:”:1 n4+2n
a, = 4+2 ,plckb
Note:

ey Ay IS the series which we want to know whether it converges or diverges.

=1 by, is the series that we choose and we know whether it converges or diverges.

We know that:}}_, n—13 is a convergent P-series (p=3>1).

n+5

o An _ i miian o qie, @SR o ont { 0 0 Qo N+5 .
lim "= lim pE lim ——=—= lim —=1%# +oo =Xy = n=1711am
n-+oo n-4+oc n n—-+oo n—-+oo
convergent.

2 Y= 12"+6
a, = 2n+6, pick b, =
1 . . . 1
We know that:)._; = 75:1(5)” is a convergent geometric series (-1<q:E<1).
11 11.2" 11.2" 11

. a . . . . -

lim 2= lim 23 = lim —— = lim —11;&{ S 1Ay = Y1 IS
n — 2" +6 400 2"+6
n-+oo n-o+owo 2 n-+oo n-+oo
convergent.

Solution of exerciseb:
1-Yn (=" e™"

Absolute convergence?
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Chapter 1V Series

1 1\". . . .
o_d(=Dre 2| =yr_ e " = =1 Tam = >4 (e—z) is a geometric series with a
- 1 1
common ratio == -1< q = - <1 that converges thus Yo_(=1)" e~2" converges

absolutely =Y%_,(—1)™ e 2™ converges.
Note:

If we have started first by studying convergence we have two ways to do that:

a) Yo_,(—1)"e~?" It is an alternating serieswith a,, = e 2" = € R,

ezn

Let us check Leibnitz Test:

1
e2(n+1) = g2n

) e > e2n o = (a,)nlis a decreasing sequence.

2 lim a, = lim ei =0 =conditions 1) and 2) are satisfied= Y.7»_,(—1)" e"?"is a

2n
n—-+owo n—+o

convergent alternating series and its sum S=Y7_; (—1)" e ~2"=k a finite number.

- n_ - - - - f—
b) Yo (1) e 2=)>_, (—1) is a geometric series with a common ratio q:e—z1

e2

- __1 ] : —J'® __1 n _ 1 — e?
1< — <1 hence it is convergent and its sum S Zn=°(e2) =T e

2) ¥*_,(—1)™n®is not a series with positive terms so we can not apply (Comparison test,
Cauchy Root test, d’Alembert ratio Test orlimit comparison test). It left only divergence
test or Leibnitz Test.

Divergence test:

+oo if niseven
lim (—=1)"*n°= or =3 2 limits #0=
n-+oo —oo if nisodd
*_,(—=1)™n>does not converge =Y.=_, (—1)™ n°does not converge absolutely.
2 31’12
n2+7

3n
n2+7

3= 2n=1(—1)"In(
Let us check Leibnitz Test:

) It is an alternating series with a,, = In(—) € R".

2 2
lim a, = lim In( 327:7) = lim ln(3l2) =In3=0 =condition 2) is not satisfied
n->+ow n—>+ow " n—-+oo n
2 2
=Y _(=1)"In (;;:7) does not converge =).7_;(—1)" In (;;17) does not converge
absolutely.
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Chapter 1V Series

IVV.2. Sequences and Series of functions:
IVV.2. 1 Definition of series of functions:
Let(f;,),»1be a sequence of real functions defined as:
fil—R,  fil—R,  fo:l—R
X—>fi(x)  X—>f(x) X—>f3(x)
| is a real interval.
SoY.-; fis a series of functions.
In other words, a series of functions is an infinite sum of elements of a sequence of functions
or simply it is an infinite sum of functions.
Examples:
Dfy: [0,1]] —5 R ie (f)nso IS @ Sequence of functions
X — fo(x) = x"
Forn=0 f,(x)=1
Forn=1 fi(x)=x
Forn=2 f,(x) = x*
o o) =20 ox™ =1+ x+x2+ x3 +x* + --- is a series of functions.
2) gnR—3R i.e (gn)n=1 IS @ sequence of functions
X—>gn(x) =~
Forn=1 g,(x)=x
Forn=2 g,(x) = g
Forn=3 g(x) =3
w1 gn(@) = Xioy T =x + 7+ + 5+ - isaseries of functions.
3) hy:R_3R i.e (h,)n=1 is @ sequence of functions
X—»h,(x) = %2
Forn=1 h,(x) = x?

x2

Forn=2 h,(x) = Py
xZ
Forn=3 h3(x) = by
2 3 4 . . .
YO b (x) = N2, =x24 X 4 2 L X s a series of functions.
n=1"n n=1 n 2 3 4
Note:

For a given value xoof X, Yo", f, (x,) becomes a series of numbers or just what we usually

call an infinite series (see chapter 2) .
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Chapter 1V Series

Examples:
1) Xp—ox™
For a given value xo of x: Xo:% n=ofn (%):Z,‘f:o(%)”is a series of numbers.
X0=4 Yo fn(4)= D_ o (4)™is a series of numbers.
2) Yo,z
For a given value xo0f X: Xo=1 X, fn(1)= 2?&1% Is a series of numbers.

X0=2 Yeq fn(2)== ;‘{;1% is a series of numbers.
- One way to study convergence of a series of functions is to give values to x and study
convergence of the corresponding series of numbers.
IVV.2. 2. Convergence of a series of functions:

We have two types of convergence for series of functions:
-Pointwise convergence.

- Uniform convergence.
IVV.2. 2.1 Pointwise convergence of a series of functions
1V.2. 2.1 .1 Definition
Let f,,: | —>Rbe a sequence of functions.
=1 fn(x)is said to converge pointwise to f at xo€ I if the infinite series) ;- f, (xo)
converges to f(xo).
Examplel:
o Xx™, X€l=[0,1]
xo:%, ;’fzo(%)” is a geometric series with a common ratio q:% that converges
= Y=o X' COnverges pointwise at XO:%tO f (xo), f a function to find.
xozg, ?10=1(§)" IS a geometric series with a common ratio qzé that converges
= Y=o X' converges pointwise at szgto f (xo), f a function to find.
x0=1, Xo=;1(1)™is a geometric series with a common ratioq=1that diverges= :;>_, x™does

not converge pointwise at xo=1.

Example2:

s}
n=1

Xo=1, Z;‘{;l% is a P-series (p=1) that diverges= Z;’;l% does not converge pointwise at

SR
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Chapter 1V Series

Xo=1.

X0=2, Y 1 =200 is a series in form of k. Z,‘f:l%(k a constant) that diverges=
?f=1; does not converge pointwise at Xo=2.

Vx €R" Z?f=1% =x Z,‘fﬂ% is a divergent series of function.

Example3:
2w
n=1
2
For xo=0 X».;_; 0=0+0+0+...... =0 =Y 4 % converges pointwise at Xo=0.

2
Xo# 0 Z?{’=1 =2y, 1is a series in form of k.3, %(k a constant) that diverges =

ol 1— " does not converge pointwise at Xo# 0.

Example4:
w n_1,2,3, . *
meiy =t I+ .. XER

Forx>0 lim% = %limn =+ #0= Z;‘;’:l% is divergent according to divergence test.

n—+o
n—+oo

Forx< 0 limg = %limn ——o#0=> Z;‘leg is divergent according to divergence test.
n—+o
n—+oo

Hence, Z,‘legdoes not converge pointwise at X, Vx € R".

Example5 :

0 X
n=1; X E R.

X0=0 X-; 0=0+0+0+...... = Z;‘{;O% converges pointwise at Xo=0.

Xo# 0 X%, = ~ xZ;?:liz is a series in form of k.}o_; = L (k a constant)

Since Y-, = is a P-series ( p=2) that converges = k. Y74 = converges also
= Z;‘{;l% converges pointwise at Xo# 0.

Consequently »:7°_; = ~_converges pointwise at X, Vx € R to a function f (to find).

Example6:
. X X
v () xER
First method:
X0=0 Xo_; 0=0+0+0+...... =3 (— — n—) converges pointwise at xo=0.

For xo # 0:
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Chapter 1V Series

Xo _ Xo __ (n+1)xp—nxy _ NXg+Xo—NXo _  Xo
n n+l n(n+1) - nn+1) B n(n+1)
[ee]
n=15n+1) n(n+1) Xo- Zn Lnm+1) n(n+1)
We study whether .. converges or diverges:

n=Ln(n+1) ( 1)
Comparison Test:

<L
n?+n- n?

nn+1)=n’+n=>n’>=

ne1 2|s a P-series ( p=2) that converges = )., —— converges according to comparison

n=1 ( )

testl) = x,. converges pointwise at x, (xpa constant € R")

Therefore ).>_, —— converges pointwise at x, Vx € R to fa function f to find.

n=1 ( )
Second method:

oo X X
n=1(n +1)xER

Sequence of partial sums:

Su(¥)=x —>

= Xy X_X
Sa(x)= x 27273

- Xy X _X X X
Sa(X)=x to—5+ ”
Si(X)=x A+ EELEZ 4 KA IS5 ()= -

2 2 3 3 4 n—-1 n—1 n n
Therefore lim S,(x)= lim x — ==X
n—+oo n—-+o n

We can conclude ., 1(— — —)converges pointwise at x, Vx € Rto f(x)= x.

Notes:
-In the last example, we were able to find the function f comparing to the example 5 where we
know just there exists.
-A convergent infinite series is equal to a number while a convergent series of function is
equal to a function
IV.2. 2.1.2 Domain of convergence D:
Let >0, f (x) be a series of function defined on I:
fon:l—»R
D={x, € I so that Y7, f(x,) converges pointwise}is called the domain of convergence.
i.e D is the set of those values x for which the series }.o—; £, ( x,) is convergent.

We are going to determine D for all the examples above.
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Chapter 1V Series

Examplel :
1) Xazo(x0)™, Xo€I=[0,1]
We have seen for every xo€l1=[0,1[ Y-o(xo)™ is @ geometric series with a common ratio Xo,
0 <xo<1= X7_y(x0)™ converges=D =[0,1[=I.
Note:

Ym=o(x0)™is a geometric series that converges to f(xo):l_%0 (see chapter 2)

Therefore Y., (x)™converges pointwise to f(x):rlx, x €l=[0,1]
This is another example where the function f is determined.
Example2:

;‘{;1%, X € R.
We have found that:

vx € R" ¥_,~ is a divergent series of function.

SIr S

For xo =0 Y-, = = Y=, 0 =0 is convergent

Thus D={0}
Example3:

>
n=1 n
We have found:
For Xo# 0 Z,"le%z is divergent.
For Xo =0 Z,"le%z is convergent.
= D={0}
Example4:
Wiz, XER'
We have seen Z;‘{;lgdoes not converge pointwise at X, Vx € R”.
= D=0
Example5:
;‘f;l%x € R.
We have found Z;‘{;o%converges pointwise at X, Vx € R.

= D=R
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Chapter 1V Series

Examples 6:
We have found }.;°_, (— - n—) converges pointwise at x, Vx € R.
= D=R
I1V.2. 2.2 Uniform convergences of a series of functions
n=1 fnls said to converge uniformly to fon I if:
lim supyer 1S, () = ()1 =0
Sup is the maximal value of |S, (x) — f(x)|determined on I.

(S, (x))nis the sequence of partial sums of Y77, f,, i.e

Sn(x)=f1(x) + fL,(0) + f(x) + - o+ (x)

Note:

The definition of the uniform convergence requires first to compute S, (x)and to have
expression of f(x).

Examplel:

We have seen Y._,(x)™converges pointwise to f(x):ﬁx el=[0,1]

Let us computeS,, (x):

S (O)=1+x+X2+......... x'=1 (/)
. 1— Xl’1+1
Jim suprepoa 1Sn(0) — fF()I = lim supxepo, T
L 1—xnt1_ xnt+1
Tl i, supeion [ = limsup [
n—-+oo

n+1

Put g,,(x)=

We look for the upper value of g,, (x)on interval 1=[0,1] :

n+1
We can get rid of the absolute value because XlTx > 0 on interval 1=[0,1] .

M+ DxM(1-x)+x"t1  pxO4xPnxPH1_xM+1px0+1 0 (_px+n+1)

On ()= (1-x)2 - (1-x)2 T (1-x)?
x=0
gn,(X)ZO if . _OTE

n
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Chapter 1V Series

Table of variation of g,, (x) :

0 1 n+1

X" + + +

—nx+n+1 + + -

x"(—nx+n+1) |+ + -
9r(x) I,

Since our work is on interval 1=[0,1] , g,, (x)reaches its maximal value on x=1 hence :

Xn+1

1—x

1n+1

= lim |::+oo # 0= Y_,(x)"does not converge uniformly to f

n—-+oo

lim su
am Pxefo,1]

onl.

1-1

Let us try to study uniform convergence on [0,A], A< 1:
The previous table is simplified to:

0 A 1
x" +
—nx+n+1 +

x"(—nx+n+1) |+

gn(X) M

gn (x) reaches its maximal value at x=A thus :

n+1 n+1 .
lim supyeo 4 );Tx = lim |7—|== limA"?! = 0 = ¥ (x)"converges uniformly to f on
n—-4oo n—-4oo N 400
[0,A].

Example6 (see above):

X X
wa(G-5) xer

We have found:

Sn(X)= x — %and f(X) = x.

. . x - x
M Supcyco oo 19200 = F(O] =l supsej-co oo [ ¥ = = X|= lim_ suprejco oo 3]

X
fuo=[|
Since x€]—oo, +oo[, f;, (x)does not have a maximal value on]—oo, +oo[
consequently Z?{ll(% — ﬁ)does not converge uniformly to fon]—oo, +oo[.

Let us check uniform convergence on[—1, +1]:

74




Chapter 1V Series

1

n

f,.(x) reaches its maximal value on x=—1and x = 1= lim sup lim

n-+oo x€[-11] |n n-+oo

lim ~=0 = Y-1C — ——)converge uniformly to f in[—1, +1].

n-+4ocon

Note:
In general, it is difficult to study uniform convergence because to find

liI_P Supyer 1S, (x) — f(x)| we have to :
n—-+oo

- Compute S,, (x), which is difficult to calculate in general.
- Have f (x)which is hard to find most of the time. In the majority of situation, f exists but we

are not able to calculate it (example 5).

ne1 12 where we have found this series converges pointwise to a function f(x) ( unknown)
n

but we know there exists and the sequence of partial sumsS,, (x) difficult to calculate S, (x),

X X X X

S, (x)= X‘|'2—2 + 3 + = + -+ e

That is why we usually use other methods to study uniform convergence for example normal
convergence.

IVV.2. 2.3 Normal Convergence of a series of functions:
1V.2. 2.3.1 Definition:

A series of function )., f,, converges normally on | if:

The infinite series Y7_; sup | f,(x)| converges.

Where the sup means the maximal value on the interval I.

Note:

If Yo fn converges normally on | then )7, f,,converges uniformly on I.
Examplel:

Let us study normal convergence of }»_,x™on [0,1].

For that we have to study convergence of the infinite series Y.5_o sup 01] [x™|
fu () = x|

It is obvious that f;, (x) reaches its maximum value at x=1= Y., sup__ [ ]Ix“IZZ;‘f:O 1™and

0,1
this series is divergent = Y.>_, x™does not converge normally on [0,1].

Let us study normal convergence of Y.»°_,x™on [0,a] a< 1:
The same work as before, the only difference is the boundaries of the interval.

fn () reaches its maximal value at x=a = Y.7_ sup__ [04] |x™|=Y = a™ is a geometric series
with a common ratio a< 1, is convergent = ),>°_, x™converges normally on [0,a].

Example5 (see above):
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o X
n=1ﬁx E R
We have found that}:;>_, = ~ converges pointwise on R.

Normal convergence on [-a, a] :

Yo o su =
n=0SUP,¢ [-aa] [n2

X
fn(x) = |F|
It is clear that £, (x)reaches its maximal value at x=—a and x = a
X |_vo [fa| _
:Zn 15upxe a,a) F_ n=1|,z| —

n 1 2 =a Zn 0 2
1
Since Y- 172 is a P-Series (p=2) so converges = a. Yo = converges also
=P = = converges normallyon [-a, a].

Example 6 (see above):

[ee]

zx X
n n+1)

n=1

Normal convergence on [-a, a] :

[5) X 2
Din=15Up —aal | | converges

n+1

© X_ X [=-y> _x*

Zn:O SUPrel-aa] In ~ nt1 Zn:l SUP e [-a,a] n(n+1)|
X)=|————
fn () |n(n + 1)|
: : _ _ o

f(x) reaches its maximal value at x=—a and x = a= Y SUP ¢ [_aa] n(n+1)| =D n(n+1)
.y 1
a n=14m+1)

(n+1) >n%*= ! <1
n(n ns——< —
n(n+1) n?

Since Y04 e —is a P-Series (p=2) so converges = Y.,

( 5 converges (thanks to

comparison test 1)) =a. Y. ,—o ——— converges also = )..° 1(— — —) converges normally

n=0 ( +1)
On [-a, a].
Example7:

oo
>
(n+1)3
n=1
Normal convergence on [-a, a]:
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0]

2

Z nx
SUp,e [—a,a] 3
o] n+1)
2
nx
fu(x) = (_I_—l)g
f,.(x) reaches its maximal value at x=—a and x = a
w na)?_ oy _ N
= L=y SUp |(n+1)3 =lnt1)3 T AL (nt1)3
1 1 n n 1
n+1)3¥>nds—< TR <3=3
( ) (n+1)3 MCTEE n?

© T converges according to comparison test 1= a? ¥_, -

n=1311)3 ——— converges also

)

2
=Y 1( 5 converges normally on [-a, a].

1V.2. 2.3.2 Weierstrass M-Test:
Let >.7_; f,(X) be a seriesof functions.
If1f, ()| <M, VxeI
And if Y°_; M, is an infinite series that converges then Y;>_, f,,(X) converges normally on I.
Examplel (see above):
o)™ x €[0,a] a< 1.
We have|(x)™| < a™, V x €[0,a].
o @™ is a geometric series with a common ratio a< 1 that

converges = Y., (x)™converges normally on [0,a].

Example5 (see above) :

X
1 5 X €[-a,a]

< n— V x €[-a,a].

2

bl 2- Do — Lis a P-Series (p =2) that converges = >..°_, 2(:onverges normally on [-a,a].

Exercises of series of functions:

Exercise 1:

Study the pointwise convergence and find domain of convergence of the following series of

functions:
[ee) o 2
a- Y=g cos(x)n’ b- 2o xz(g)n C-2in=1 (n7+10)
d Z 1x(x + 1)”' Z 1(11 +5)

Exercise 2 :
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Study the pointwise convergence and determine domain of convergence of this series of
function: Yoo x™(4)™.

1-Deduce its function sum f(x).

2-Show that this series of function converges uniformly on [0,a] (a<i).

Exercise 3:

(-
n=1 (lnx)n

1- Study the pointwise convergence on]1,+oo[ of this series of function:}.;’
2- Deduce its domain of convergence.

3-State whether this series converges or diverges uniformly on [a, +0] (a>1).
Solutions of series of functions

Solutions of exercisel:

a- Y cos(x)n®
For a given value Xo of X Y5, cosxyn® becomes an infinite series(of numbers)

Y €oSXuN3=c0SXy Yooy N3 =cQsXo Yt i3

a COHSJI

n=07, —is a P-series that diverges=cosxy Yn-1 — diverges also thusY»_, cosxn3does not

converge pointwise at X,vx

Domain of convergence of this series is D= @
b- X7 oxz( )"
2 2 . e . .
For a given value xo of X, X7, xoz(g)”: 2 ,‘f:o(g)" becomes an infinite series.
a constant”

;‘{’zo(z)”is ageometric series with a common ratiog = Ethat converges (since -1<3<1)

=x02 Y 0( )” convergesVx, ER =) Ox2( )™ converges pointwise at x, Vx € R.

Domain of convergence of this series is D= R=]-co, +oo[

c-2m

n=1 (n7+10)

becomes an infinite series.

For a given value Xoof X, Yoo 0( 7+10)

n4

) n4x0 =x Z
n=1n7410) Xo Zin= 1 (n7+10)

n4

Let us study convergence of the infinite series Yoo, e

- It is neither a geometric series nor a P-series.
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- If we apply Divergence Test; lim W’iw) = lim % = lim % = 0 thus we can not say
n—+oo n—-+oo n—-+oo
anything.
- Let us use Comparison Test :
1 n* n* 1

7 7 1
n 10>n’ = — = —_—=—
+ (n7+10) n? =~ (n7+10) n? n3

4

— 0 = is a P-series where p=3>1 that converges=J.,. Is convergent by

n=1 (n7+10)

Comparison Test 1) =x, convergesVx, €ER

n= T 7+10)

Soy.w converges pointwise at x, Vx € R

n=1 7+10)
Domain of convergence of this series is D= R=]-co, +oo[
d-Y_; x(x% + Dn!

For a given value xoof X, Yo, x0(x02 + 1)n! is an infinite series.

[ee]

z XO(.XOZ + 1)n' = xo(xoz + 1) Z n!
n=1

n=1
Convergence of Y»_,n!?
Let us use D’Alembert ratio test:

lim % = lim % = lim n+ 1 = +o0>1=)>_, nlis divergent

n—-+oo n—+oo n—-+o
=xo(x% + 1) X0, n! stays divergent=Y.._, x(x? + 1)n! does not converge pointwise at
X, VX

Domain of convergence of this series is D= @

e-2m. 1( )

n2+5

For a given value xo0f X, X7 1( )” is an infinite series with positive terms.

245

%)" is a power of n consequently we apply Cauchy Root Test.

lim */a, = lim nf( 2+5)" = lim (xz 5) =0<1 =)0 1( > 5)"converges VxgeR

n—-+oo n—+oo n-+oo

thus Y120, (=2

Domain of convergence of this series is D=R=]- oo, +oo[

= 5)” converges pointwise at x, VxeR
Solutions of exercice 2 :

1- For agiven value xo0f X, Y_(x)™(4)™ becomes an infinite series
n=0(%0)" (4" =X5-o(x04)"
Ym=o(4x)™is a geometric series with a common ratio g = 4x,that converges
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if -1<4xy<l =)0 (4xy)™ converges if - l<x0<l
thus X,>°_, x™(4)™ converges pointwise at x such that - —<x<—
Domain of convergence of this series is the interval ] - Z’ Z[:D

2- We know for a convergent geometric series).—,(q)™, its sum S=X°_,(q)" = 1%

So for a given value xo €] -, 7] Ei_o(4%0)"=——

o) 1 1
Thus Zn=0 Xn(4)n = Toax = f(X) VXE] - Z,z[
3-Let us prove normal convergence on [0,a] (a<%).

For that let us apply Weierstrass M-Test:

For a given value xoon [0,a] f,(xy)=(4x,)™,we are going to look for U,, such that

|fn(x0)| < Un
We have: x0e [0,a]= 4x,<da=(4x,)" <(4a)"

mo(4a)™ is a geometric series with a common ratiog= 4a<1 (since a<i)thus converges.
(Un =(4a)™ ) =X x™(4)"converges normally on [0,a] (a< i)
Therefore }.;7_, x™(4)™converges uniformly on [0,a] (a< 41)
Solutions of exercice3:

1- Xw

n=1 (lnx)n

-n"
(l)

- For all fixed x,€]1 ,+oo[ ; Inxy>0 then Y-, is an alternating series

. 1
with a, = W (an>0)

Vxo€]l ,+oo[

; i 1 H n+1 n 1 1
TPRE is a decreasing sequence (since(lnxy)"** >(Inx,) :)(lnxo)""'l <(lnx0n)
1
li =0
RIS
=Yme1 (l )n converges (by Leibnitz Test)
S0 Y1 ~1) converges pointwise at xe]1 , +oo[

(l)

-n"
( x0)"

domain of this series of function is ]1, 4+oo|.

2- we have found that };>_; —converges pointwise at xe]1, +oo[ thus convergence

3- To study the normal convergence, it is sufficient to study convergence of the infinite series
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=n"
n=1SUP | (Inx)™

N GO
fn(x)_ (lnx)™ B (lnx)™
f)=(n0) =, (== (ln) I o<
Table of variation of f, (x)
a +00
—n -
fn( )= W

fn(x)  _’

1

f.(x) reaches its maximal value at x=a, },-

n= 1 nayn
Convergence of the series 21?:1@ 7
Let us apply Cauchy’s Root Test :
n| 1 1 1

i o= i ey = 1 () =
ﬁ <1liflna>1l oe™>el = e < a>e
thus Yo 1 —= 0 ) = converges if a>e
Conclusion:

— 1(z does not converge normally on [a, +o0] (a>1) but converges normally

-n"
nx)"

on [a, +e0] (a>€) =Ly [a, +o0] (a¢)
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1VV.3 Power Series
1VV.3.1 Definition:

A power series (centered at 0) is a series of functions of the form),;”_; a, x™
where (a,,),=11S a real sequences and x€ R.

Examples:

1)2x”an=1 Vvn=0
n=0

n=1
)P La =—> vn=0
n=0(m+)(n+2) " (n+1)(n+2) =

Notes:
-S,(X)=ay + a;x + a,x? + --- +a,x™is an n" degree polynomial function therefore power
series Y-, a,x™is a generalization of a polynomial function.
-A power series, being a series of functions, we can then study its convergence like that of
series of functions ( see 11.2)
IVV.3.2 Radius of convergence of a power series :

Let >0, a,x™ be apower series then there exits R=> 0( can be equal to+o0) such that:
a)Ym=1 a,x™ converges absolutely for all reals x so that |x|<R.
b)Yo—; a,x™ diverges for all real x so that |x|>R.
c)For|x| =R the power series may converge or diverge.
R is called radius of convergence of }»_; a,x™.
Note:
-Radius of convergence R enable us to determine the domain of absolute convergence of the
power series Y., a,x™, which is the open interval ]-R, R[. To close the interval, we have to

study the absolute convergence at the boundaries (i.e x=*R)
IV.3.3 Cauchy-Hadamard formula:

Let >, a,x™ be a power series. Radius of convergence R is given by :

1)2 = lim [|&m
R an
n—-+oco
or

1 .
2)-= lim Yla,l
n-+oo
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Examplel:
o (D" (GOl
n=1" 0 G = e
l _ . n —1: ( 1) l —
== lim ,/lanl—hm — —hmn—O
n—-+o n—-+oo n—-+oo
= R=+o0
o (D™
Therefore V xe] — oo, +oo[ Yo, o converges absolutely.
Example 2:
Y120 x™; a, = (2n)!
1_ lim |%]= 1 (2(n+1)) i (2n+2)'| 1 (2n+2)(2n+1)(2n)!
R an (2n)! (2n)! (2n)!
n—+oo -+
= lim 2n+ 2)(2n +1) = lim 4n? = 4+
n—+oo n—+oo
=>R=0
thus ¥2°_, J;—!converges absolutely only at x=0.
Example 3:
o X", _ 1
n=1,2" an = n2
an (n +1)Z 2
n—-+oo n—-+o
n—-+oo
>R=1

SoVvxe]l —1,1[ Xn=q (_171),1’{ converges absolutely.

Let us check absolute convergence at x=-1 and x=1:

x=-1:
= El=so, & =3e L =y2 P-S 2) that
n=1|z| = Zn=1| 5| T 2Zn=13 = Zn=1 2|sa eries ( p=2) that converges

Therefore Y5>, 2converges absolutely at x=-1.

X =1:

xn .

171
nz| T 4n=1 =

s}
n=1

— 1— is a P-Series ( p=2) that converges

Soy® = = converges absolutely at x=1
Conclusion :

ol 1— converges absolutely on [-1, 1].
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1V.3.4 Addition of power series:
Let) >, a,x™and};>_, b,x™be two power series of radius of convergence R ,R’ respectively.
1- If R#R’ then radius of convergence R’ of the power series Yo, (a,+b,)x™
is R”=min{R, R’}.
2- If R=R’ then radius of convergence R>>> R .
Examples:
1- Let ), a,x™ be the power series Yo, 2,we have already calculated its radius of

convergence R=1

xn

And Z;.;)Zl bnxn = ;.1?:12_11

== lim Y/[b,] = lim ”/ | lim =S R=2

n—-+o n—-+oo n—-+oo

n2

Let us determine R*’ of X.>°_; (a,+b,)x™ = ,‘f:l(% +—

2”+n
Z( n22"

+1 2
i: lim Ani1+bns1 ~ lim 214 (n+1)2 n22n _ n2an ™lim+1)9)
R" an+bn (n+1)22n+1 " 2N yn?2 (n+1)227+1°  (274n?)
n-+co + n-+oo
I n2an @11 (n+1)2) I n? @11 (m+1)2) I on+1
= llm . = 11im = l1im
(n+1)22n+1 (2+n?2) (n+1)22° (2"+n?2) 2.2m
n-+oo n-+oo n-+oo
1 29
==.2=1=>R"=l.

N

According to 1) R’=min{R, R’}=min R’’=min{1, 2}=1.

2-Let Y'_; a,x™ be the series }.,_; x™whose radius of convergence R=1

And 52, by = 3, L2
1 1 bp11 (1—3"1) 3" | I 3" (1-3™1)
R' vor b, - N 3n+1 '(1 —3n) - n_l)Too 3n+l’ (1-3m)
_an+1
=L gim [EE0|=L 3= 15 R
BLICEED)

Let us determine R’ of Y7, (a,+b,)x™ = Y, (1+ %)x"

=3, e = N, ()

an+1

= = R”=3
3

1 . .
— = lim = lim
R an

n—+oo n—-+4oo

3n+1
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Accordingto 2) R”> R .
IVV.3.5. Power series properties:

Let Yo, a,x™ be a power series of radius of convergence R and f its sum f(x)=}7_, a,x™on
]-R, R[ then :

a
b

f is continue on ]-R, R[.

f is differentiable on]-R, R[ and its derivative is f’(x)=Xr=; na,x™ 1.

f is integrable and its primitive (or anti-derivative) F(X)=),, ﬁx"“.

c

Notes:

-A power series and its derivative have the same radius of convergence.

(mt1)an+a| _ lim
nan

n—-+oo n—->+oo

1
R

An+1|—

!

1 .
— = lim
R an

-A power series and its primitive have the same radius of convergence.

1 _ lim |8zt n+if |n+1 Gntil 1im  [E2ti|= 1
R" n+2) " an n+2) apn an
n—+oo n-—+oo
Example 1:
o (D)™™ H
Let Yoy — be a power series
Let us determine its radius of convergence R:
L him 141 D" =n v n | 1
—= lim = lim . = lim [———| =
R .ol an s+ DM (4 1)
D™ (=™

vx €]-1, 1[ Yoy

converges absolutely to f; f(x)=X,—,

n

(f exists but we do not know its expression).

f is differentiable on -1, 1[

vx €]-1, 1] f’(x)zz;?:l(—l)”%x”‘l =3 (—D)" M I=-14x-x? + x3 — e L
=(1-x+x? —x3 + oo )
=- Ym=o(—1D)"x™

=Y o(—x)™ wich is a geometric series of functions with a common ratio —x

(x)= -
>t (x)=-— (1)
By integrating (1), we find expression of f(x):
x -1

f(x)= [, —dt = |=In|(1 + O)|I§ = —In[(1+ x)|

1+t

Conclusion :

vx €]-1, 1], X2, (—131%“ converges absolutely to f; f(X)=- In|(1 + x)|

2 S = In(1 +x)
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vx €]-1, 1[, X, (—1)™x™ 1converges absolutely to f*; £(x)= - .

1+x
1

() = - —
Notes:
-Let X7, a,x™be a power series of radius of convergence R and f its sum f(X)=X77-; a,x™on
]-R, R[.
If we differentiate it £(x)=X-; na,x™ " will be a new power series of radius of
convergence R.
If we differentiate the new one £’ (x)=X7-; n(n — 1)a,x™ 2 will be a new power series of
radius of convergence R.
And so on.
Thus the sum of a power seriesy.—; a,x™ is infinitely differentiable (€ C*) on its interval of
convergence ]-R, R[and its derivatives are given term-by-term differentiation of the power
series.

- We can deduce the same thing for integration.
IVV.3.6. Function representable by power series (RPS Function):
1V.3.6.1 Definition:

Let f be a real function defined in a neighborhood of 0, we say that f is representable by a
power series if there exists A> 0 and a power series ).o—; a,x™ with radius of convergence
A such that: f(X)= Yo—; a,x™ Vx €]-A, Al.
Examplel:
Let f defined by f: :R-{1}—, R

x —»f(x)= i
f is representable by a power series in a neighborhood of 0 on ]-1, 1] because we know (see
1.2) :

—=Y* x" on]-1, 1[

1-x
Example2:
f:R-{2}—» R
X—>f(x)= -—
=1 __1 _1 1 _lyo Xp_lyw X _ge X"
f(X)— 2—x 2(1_§) 2 (1_§) 2 n—O(Z) 2 &n=0,n n=0yn+1

Hence f is representable by a power series in a neighborhood of 0 on ]-R, R[ :

1 yo x™ h _
2—x - n=0 2n+1 whnere an - 2n+1
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Apy1

2n+1

= lim iz =llmH —=>R—2
n—-+oo an n—-+o n-+oo

L =3, 2on]2, 2.
Proposition (necessary condition):

Let f be a real function defined in a neighborhood of 0.

If f is infinitely differentiable (€ C*) then f is representable by a power series in this
neighborhood.

Thus f € C*is a necessary condition.

I1V.3.6.2 Taylor’s Series:
Let f be a real function infinitely differentiable (€ C*) . We call Taylor’s series of f, the

POWer Series Yo ! n('o) n
Proposition (sufficient condition)
Let f be a real function defined in a neighborhood of 0 and infinitely differentiable (€ C*).

if IM> O such that vn eN and V x €]-R, R[ |f™(x)| < M then Taylor’s series of f

L0 ynon ]-R, R[.

n

Yo fn( I"© yn converges pointwise to fon ]-R, R[ i.e f(x)= 2oL

Explanation:

If fis infinitely differentiable and all its derivatives are bounded on ]-R, R[ then f is equal to
its Taylor’s series (i.e f is representable by a power series on ]-R, R[ ).

Examplel:

f(x)=sin(x) is infinitely differentiable and we have :

f”(x):sin(x+n§) n> 1 =all derivatives of f are bounded on]-1, 1[ V x € R (i.e M=1)

Hence f is representable by a power series (f is equal to its Taylor’s series)

sin(nZ
Vx €R sin(X)= Yo 70 yn = 0 (Z)x"

= Sin(0)+%sin( )x + —sm(n) x? + —sm( )x + —sm(Zn) x* + —sm(—)x +-

1
=0 + X +0 - X0 +0 +;x5+---

Vo (_1)Px2p+1
=m0
2p+1!

So Vx €R, sin(x)=%,_ oép?l. X

Example2:
f(x)=cos(x) is infinitely differentiable and all its derivatives are bounded on]-1, 1[ Vx € R
(i.e M=1)

Thus cos(x) is representable by a power series ( is equal to its Taylor’s series)
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! _\P _\P
f(x)=cos()= (sinx)’=( gz S x2+1) = 3, (S x2p+1) I

p= 02p+1' p=0\2p+1! p=0 " opt11
1)P
2p
Zp 0 2p!
V x € R, c0S(X) =)o c” —x?
p= 0 2p|

Example3:
f(x)=e*is infinitely differentiable.

Proposition:

Let Yo fn(lo) ™ be Taylor’s series of a function f infinitely differentiable.
5o D@ = f0)+f7(0)x + - +F7(0)x + Ry(x)

n+1
Where R, (x) = fT'(Z)x”“ is the reminder of Taylor’s series (0< z < x ou X< z < 0)

If lim R, (x) = 0then Taylor’s series of fconverges pointwise to f.

n—+oo

Let us check this condition for the function f(x)=e”.

_ M@ ns1_ € ns1
R,(x) = ——x"=—x

Ifo<z<x 0<|R,(x)| Si—flx”“l

ex
lim —'Ix“+1| =0= lim R,(x) =0
n—-+co " n—+oo

n+1
Ifx<z<0 0<]|R,(x) s%

|xn+1|

lim =0= lim R,(x) =0
n-+oo ' n-+o

So according to the proposition:
f(0) X

f(x)=e*, fis representable by its Taylor seriesat 0 i.e e* = 7", -
Since f™(0)=e® = 1, therefore e* =)7°_ 0 Vx ER

Note:

Now, knowing that some functions are representable by power series such as
(e*,sin(x), cos(x), — ...) we can deduce representation by power series of other functions

obtained by addltlon, subtractlon,(or in terms of finite combinations), differentiation,

integration of these familiar functions.
IVV.3.7. Using Power series to Solve Differential Equations

We call linear m™" order differential equation an equation of form:
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AX) Y™ B(X) Y™ + G(x) Y +H(X)Y=f(x)

Where:

Y: a function of x.

Ymoymoo , Y derivatives of Y of order (m, m-1,....).

A®x), B(x) ,....... , G(x),f(x) are functions of x.

Examples:

XY -(2x+1)Y +x2Y=3x

X2Y +4xY=0.

Let us solve the following differential equation:

Y-Y=0 (1)

The method :

Let us look for Y of form a power series:

Y=Y, a,x" (2)

We can differentiate power series term by term, so

Y=Er-1na,x" "t (3)

In order to compare the expressions for y and y’ more easily, we rewrite as follows:

Y =Xi_o(n+ Danx™ (4)

Substituting the expressions in Equations 2 and 4 into the differential equation (1), we obtain
n=o(M + D)ani1x"-X5-0 ayx™=0 (5)

or YXn=1[(n + Dany, —ay]x™ = 0 (6)

If two power series are equal, then the corresponding coefficients must be equal. Therefore,

the coefficients of series in Equation 6 must be 0:

(n+ Dayyy -a,=0 (7)

a
Saa =22 @)

Equation 8 is called a recursion relation. If a, is known, this equation allows us to determine

the remaining coefficients recursively by putting n= 0,1, 2, 3, ....in succession.

Putn=0: a, = %

Putn=lia, = 2=2
2 2.1

Putn=2:a, = 2=2
3 3.2.1

By now we see the pattern:
1 = i Dntn—1).... 1
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Qo ao
= - —
1 = 1 T

Putting this value back into Equation 2, we write the solution as
[od] — 0 a _ o XM _
Y=Yn=0 @nX"=Xn=0 (T(;!x”—ao Yr=o S age”

So then the solution is Y (x)=a,e*
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Exercises of Power series

Exercise 1:

Identify power series among the following series of functions and calculate their radius of

convergence:

) )Xo 2 OBy
it G &)1 n°x" acR

Exercise 2 :

Determine radius of convergence R, domain of pointwise convergence(P) and domain of

absolute convergence (A) of the following power series:

Ay, S b)Y

( +1)2
Exercise 3:

Determine representation by power series of the following functions:

NI)=Z—

D) 0=2; Do=e: -1 Ih(=3"

(2- x)(x 4)
Exercise 4:
Solve the following differential Equations using power series :
1) x%y" +4xy’ + 2y = e”*
2) y"+y = Owithy(0)= et y'(0) = 0
Solutions of exercises of Power series
Solutions of exercise 1 :
a) Xn=o

Radius of convergence R :

%z hm Ian = lim /3 = lim / )™ = lim g = R= —thusZ‘;;’ O—n converges

n—-+oo n-+o n—-+o n-+o

n

_3_n

absolutely on ]- Z’E['

b) Yz A 2-m)

C) e n— is not a power series because a,,=— depends on x (e*)

(2nhHx"

d) Zn 1 (n|)2
w (2nhx". . __ (2n)!
n=1" gz 1S @ POWer series where a, = =5
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Radius of convergence R :

(2(n+1))!

((n+1) N2
(2n)!
(nn?

(2n+2))!  (nh?
+ (n+1) !(n+1)! (2n)!

(2n+2))! (nhH?
((n+1) H% (2n)!

an+1

= lim

n—-+oo

1 ) .
== lim | = lim
R an

n—-+oo n-+oo

2
- lim (2n+2))2n+1) (2! (A2 | _ lim @nt20@n+y) _ .o 4L2 = 4—R=1
b (DAL @] nope (OFD (1D oo ™ 4

w (2nhHx"
n=1 (2

11
converges absolutely on ]- 2 [

e) Yr_y n%x™ acRis a power series wherea,,=n“
1 . . 1 . 1\ %
== lim |2 = lim = lim (5% = lim (1 +_) =1
R an n n

n—-+oo n—-+oo n—-+oo n—-+oo

|(n+ )

Ym=1 N%x™converges absolutely on]- 1,1 [.

Solutions of exercise 2 :

)n n
a)Xn-
n n 1 n

=1 ¢ 13 IS a power series where a,,= ={ lnz

Radius of convergence R:
(_1)n+1
2= lim |2 = lim [~ = lim = g
an [GEL In(1+ ) In
n-—-+oo n—-+oo Inn +0oo (o]

=R=1
Domain of pointwise convergence P:
R=1 =) ) converges absolutely on ]-1,1 [=FA =) 1+Converges pointwise on

]-11 [:>P:]-1,1 [

Let us study the pointwise convergence at x=1 :

- 1)n1n Z (-0

n= 1 n= 1 Inn
. . . 1
Itis an alternating series of form X7, (—1)"b,where b, = —

According to Leibnitz Test, both conditions are satisfied :

1

1) (by),is a decreasing sequence ( — < —
2) lim b, = limm =0
n—-+oo n—-+oo
thus X 1 - D% s convergent=73> 1—converges pointwise at x=1 =P=[-1,1]

Pointwise convergence at x=-1:

o (D 1)“_2 D2 g 1

n=1 Inn Inn  “"=1lyyp

Comparison Test:
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1 1
Vn=1l Inn<n =>—>-
Inn n

- 1. - - 1 .
since X —q —is a P-series that diverges=J. -4 — diverges

thus)y_ (_11 ) does not converge pointwise at x= -1=S5=]-1,1]

nn

Domain of absolute convergence A:

R=1 =this series converges absolutelyon ]-1,1 [=A.

Note :

We know that absolute convergence = pointwise convergence

(or the contrapositive) non-pointwise convergence = non-absolute convergence

We have found this series does not converge pointwise at x=1=this series does not converge
absolutely at x=1.

It left just to study absolute convergence at x= -1

Absolute convergence at x=-1:

(—1)“(—1)“|:Zoo 1

Inn n=11gp

that diverges ( see above)

o0
n=1

thus X.7— (_llznx does not converge absolutely at x=-1

So domain of absolute convergence does not change A=]-1,1 [.

x™3m . . 3n
b) Xn=1 —is a power series wherea,=——

(n+1)2

(n+1)

Radius of convergence R :

gn+1

1 . a . (n+2)?2 . AL (n+1)? .o 1

- = lim |[=2| = lim |~—z—/|= lim o )2:3 lim = =3 =R==

R an I N (n+2) 3
n-+oo n-+ow | (n+1)2 | n-+o n-+oo

Domain of absolute convergence:

1 © x™3n
R_§:> n=1 2
(n+1)

11
converges absolutely on ]-5,5 [

1
Absolute convergence at X=-

_Lingn
(33" | _ww 1

“dn=1
(n+1)2

©
n=1

(n+1)2

Comparaison Test:

1

(n+ 1) =n’*> <
(n+1)2 n2

> % is a P-series with a=2 that converges=)»_, ( L s convergent by comparison testl).
n n+

1)2

n3n 1
Thus ¥*_, ——— converges absolutely at x=--
(n+1)2 3
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1
Absolute convergence at X=3

Fnan 1
0 3 —_ 0 H
- = same reasonin
n=1 (n+1)2 n=1 (n+1)2 ( g)
© x™3n 1
Ym=1 converges absolutely at x=—
(n+1)? 3

Thus domain of absolute convergence A= % ].

Domain of pointwise convergence P:

We have found that ¥*_, —= converges absolutely on [éé ]:>Z°;§=1( 2 converges
n+
pointwise on [ §§] so domain of pointwise convergence P:[-éé]
Solutions of exercise 3:
5 5 . 1 .
1) f(X)ZE =- Tx =-5 an (SInCGE = ln=0 x™ VXE] - 1,1[)
X
2)g(X)=ez — 1
n
VX€ER, e* = ,?L°=0x—'
= — @ 27 )n — o) (Z)n _ \'o0 x"
ez =y y 1+Zn 1n—:ez - 1—1+Zn=1%— 1= n=1ynn;
_ ("
soVx ER, e*¥—1=)>_ Lyt
6X _ 6 _ 2 ne _ o 2n+1xn+1
2) h(x )_3 7% 3(1—§x) =3X (1 ZXZ 0( x)"=2XY - 0 3n T 4n=0" 5n
2n+1 n+1
h(X)=Xn=
_ a b .

4) I(x)= . X) (X T + 1) a, b real constant to determine after

n 1 1 n_ n_ b [0') E n
uz(l—g) +b—(4——x) 2 0( ) 4(1 ) 2 0( ) n=0 (4)

a b
= ‘;.lozo [2n+1 - 4_n+1] (X)n

Calcul of a and b:

x+1 _ a b
2-x)(x-4) (2-%) + (x-4) ()

To determine a :
1) Multiply both sides of equation (I) by (2-x) :

e TN T 5

We have

b
2/@(" - (A) s @

2) Putx=2:

/@

241 _
(-9
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3
So ->=a
2

To determine b :
1) Multiply both sides of equation (D by(x-4) :

_ b
e X/@ s (x )= 9+ _%(x//zt)
2) Put x=4:
4+1 a _
s a4 \4) +b
0
So -2=b
2
Consequently 1(3)= X [y — 7] (™= i ooz + 5] (0"

Solutions of exercise 4 :
1) x%y" + 4xy’ + 2y = e*
Y(X)=Zn=o anx"
Y O=E5s x> Xy (=550, X" =5, nanx"
because for n=0 term(na,, = 0) we can startﬁig sum at n=0
Y (=252 n(n — Dapx"?=x%y"(x) = Xiz, n(n — Dayx"=¥7 n(n — ayx™
because for n=0 term (na,, = 0) and = n(n — 1)a,, = 0)] we can start this
sum at n=0
Put expressions of y’’, y’, y in equation 1)
X2y" +4xy’ + 2y = e oY, n(n — 1)a,x" + 4250 na,x" + 235, a,x" = e
oY o[n?+3n + 2]ax™ =e*
Symom+ 1D+ 2)a,x™ =e*

n
© X

sincee* =X, —~

SYZ o+ 1) (N + 2)ax = X3y =

n!

By identification of both series (their coefficients are equals) :

1 1 _ 1

n+1)(n+2)a, = aVnzO Sy = T ) vn>0
, . R 15 1 n

Put a,, in our solution y(x) = X7, e X

Let us look for the function corresponding to this power series:

2 2 4-
1 n-lyo 1 n+2_1[x x

YO = 2o Gy X' 7 2n=0 Gy ot et @

+oe ]
. x _ ©o — —_— _— -
SINCE e™ = 2p= o il 1+ + 2)! + (3)! + (4)! + -1
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thus y(x)= = [e* —1—x]

22
2)y"+y = 0 (withy(0)=—and y'(0) = 0)

y(X)=Xn=o @nX"

Y (X)=En=1 nayx"!

Y (x)=En=2 n(n — 1a,x"~?
Put expressions of y"’and y in equation 2)

y'+y = 0Y 0, n(n — 1)a,x™" 2 + 25, a,x" =0
Let us unify powers (ie both expressions have the same powerx™)
For that, in the first expression put k=n-2 (<n=k+2):

y'+y = 0oX5 (k + 2)(k + D ag x* + Xy a,x" =0
And now rename k by n :
Tieo (k +2)(k + Dayox* + Z3_g anx™ =0
SYn—o M+ 2)(n + Dan2x™ + X7 anx™ =0
SLn=o[(n+2)(n + D)ags, + a,]x™ =0

So coefficients are equal to zero(n + 2)(n + 1)a,,, +a, =0 Vn=0

—-a

& Apyp = mVHZO
We have :
¥(0)=3 & Y(0)=X @, (0)"=ao + a1 (0) + a5 (0) + ... = 2 & ap=
y'(0) = 0=y’ (0)=X%_; na,0" 1=a; + 2a,(0) + 3a3(0)? + ---.= 0<=a;=0
We have found a,,, = m Vn>0
n=0 a,= (0+1_)CZ(())+2) - 2._1.12. = 2__21' ('since a(’:%)
n=1 as = m =0 (since a,=0)
n=2 Ay = (2+1_)(Z+2y: 2.1.;.3.4 - ﬁ
since a, = ﬁ
n=3 as = m = 0 (since a3=0)

if we keep going we will find :

as,+1=0 Vk>0

_(-nk
s YT vk=0
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It left only even powers in the solution y(X)=)>"_, a,x"

oo (_1)71 XZn_1 [ee] (_1)n 2n

=Y()=Er=0 A2nX*"SY(X)=2

n=0 5 (2n)! 24m=0 (2n)

Let us look for the function corresponding to this power series:

We know that cos(X)=Y o, %in S0 y(x):% cos(X).

IVV.4 Fourier Series
1V.4.1 Introduction:

Studying Fourier series is important in several fields particularly in physics and engineering.
In physics, many natural phenomena (such as sound waves, light waves and vibrations) are periodic.
Fourier series allow to represent complex periodic function as a sum of simpler sinusoidal ones, they

are therefore essential for modeling and analyzing phenomena cited above.

1VV.4.2 Basics:

1V.4.2.1 Definition of a periodic function:
f:-R—R is called a T-periodic function if f(x+T)=f(x)
Examples:

1)Functions sin and cos are 2z periodic functions.

2)Functions tang and cot are = periodic functions.

y = cos(x)

t\,‘i;‘
|
INE]
|
—_
e
<
----3
ol
O] —
Bl
)

Figure 1V.4.2 Graph of sin(x)
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! 4 7 o i st -
||I | 'Ir .III l :I

AN Y ANAN i . i
AT
[ ) P i i

| .
L
¥ rr = g ¥ I T X

Figure 1V.4.3 Graph of tan(x) and cot(x)

1V .4.2.2 Definition of an odd function:

f:R—R is said to be an odd function if f(-x)=-f(x)
Examples:
1) Functions sin, tang and cot are odd functions.

Figure 1V.4.4 sin(x) is an odd function
Notes:
If f is an odd function, then the graph of f is symmetric with respect to the origin.

If fis an odd function, then|” f(x)dx = 0.

1V.4.2.3 Definition of an even function:

f.R—R is said to be an even function if and f(-x) =f(x).
Example:

Function cos is an even function.

Figure 1V.4.5 cos(x) is an even function

Notes:

If f is an even function, then the graph of f is symmetric with respect to y-axis.

if f is an even function, then |7 f(x)dx = 2 [ f(x)dx.

1V.4.2.4 Definition of a piecewise continuous function:
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A function f: R — R is said to be piecewise continuous on an interval [a,b], if there exist a

finite number of points x,< x,< --- <xp of [a,b] such as on each open subinterval Ja, X[, ]x;

Xis1[ + 1Xp, B[ the function is continuous, and the four following limits exist ; lim flx) =

XX

fG)im f(x) = f(x™), f(a®) etf(b7).

XX
Example:
Graph of a piecewise continuous function.

s
a5
a4
0z
is 15 14 -1z oz os o5 o8 1 1z 14 18

1 o8 6 0s <02 0

Figure 1V.4.6 A piecewise continuous function

IV.4.3Definition of Fourier series:

Let f(X) be a T-periodic function, integrable in any closed interval of R.
The following trigonometric series:? + X_; a, cos(nwx) + b, sin(nwx)
is called the Fourier series associated to the function f(x).

We denote that by:

f(x) ~% + Y1 a, cos(nwx) + bysin(nwx)

where: sz?“
ap = %ffzf(x)daﬁé fOTf(x)dx
a, = %f_ng(x) cos(nwx) dx=% fOTf(x) cos(nwx) dx

b, = % f_gz f () sin(nwx) dx=% fOT £ () sin(nwx) dx

Notes:
-If f is 2z periodic, then

f(x) ~ ? + Y- ay cos(nx) + bysin(nx)
where: ag = %fjﬁf(x)dx:% foznf(x)dx
ay =~ [T f(x) cos(nwx) dx== [ f (x) cos(nwx) dx

by == [ £ () sin(nwx) dx== [ f (x) sin(nwx) dx

99



Chapter 1V Improper integrals

-If f is 2x periodic and even, then b, = %f;&) sin(nx) dx =0
Even. Odd
«—>
Odd
and
f(x) ~ ? + Ym—1 ay cos(nx)

where: a, = %f;f(x)dx

a, = 1 ffn ]:(_J:) cos(nx) dx = %f;f(x) cos(nx) dx

T
Even. Odd
Even
-If f is 2 periodic and odd then a,, = — [ £ cos () dx =0
odd. even
Odd
and
f(X) ~ Xpeq by sin(nx)
where: b,, = %f;f(x) sin(nx) dx
Examples
1)Let S be an odd 2x periodic function such as S(x) = 1 for 0 <x<mand f(nx) = 0 for n €Z.
S(X) ~ X1 bysin(nx)
where
n

by, = Ef S(x) sin(nx) dx = E[
T T

—cosnx]Tt 2{2 02020 }

n lp wl1’2'3’4’576" """
0
Thus,
2 2sin(x) 2sin(3x) . 2sin(5x) N sin(x) ., sin(3x) , sin(5x)
f(x)n[1+3+5+]_n[1+3+5+]

=y 4sin(@n+1)x)
T4m=1l g(2n+1)

IV.4.4 Dirichlet’s Theorem:
LetfbeaT (T:%“) periodic function such that:

1. fis continuous on any interval | = [a, a + T ] except for finite numbers of points in which f
has a hand-right limit f (x + 0)(f (x™))and a hand-left limit f (x — 0)(f (x ™))

2. fis differentiable on any interval | =]a, a + T [ except for finite numbers of points in which
f has a right derivative and a left one.

then, the Fourier series associated to the function f is such that :

% + Y a, cos(nwx) + b,sin(nwx)= f(x) , vx f continuous at x
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% + X, a, cos(nwx) + b,sin(nwx)= % ,Vx fis discontinuous at x

Note :

Fourier series decomposition consists in representing a periodic function as the sum of the
most elementary possible periodic functions (namely sines and cosines).

Examples

1)Let f be a 2n periodic function defined as :

f(X)=x V X,—n<x<m.

Let us check up if Direchlet’s requirements are satisfied :

f(x) A

-37T 0 TT

o]
d
L9
x

\
\

-27
Figure 1V.4.7 Graph of f(x)

The graph of f is drawn in 3 periods. We can notice that:
- fis continuous on ] — m,x[ and it is not continuous at —t and at ©
(because alsoxllrg L&) =n=+ Xl[rg_ f(x) =n
and Xl_l);nr f(x) =—n# X1_1)¥Tr1_ f (x) =n)
- fis differentiable on] — =, n[ and it is not differentiable at —x and at «, since it is not
continuous at these points .
So, Direchlet’s requirements are satisfied and thus;
f(X)=? + Yrq ay cos(nx) + bysin(nx)on | —x, nf
Since fis odd then a,=0 V n and
b, = %f;f(x) sin(nx) dx=% f;x sin(nx) dx

To compute b,,, we use integration by parts method:

b b
fU(x)V’(x)dx = [U)V' ()] - f U'(x)V (x)dx

Where U(x)=x, V’(x)=sin(nx)

2 n . _2 1 T 2m 1
bn== J, xsin(nx) dx== [—x;cos(nx)]o- = Jo — —cos(nx)dx
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:i [—n%cos(nn) - O] + ninf; cos(nx)dx
= -% cos(mr)+nin% sin(nn)
We know that: cos(nt) = (—1)" and sin(nn) = 0
S0 b, = (—1)m*12
and consequently f(x)=>s_, (—=1)"**? % sin(nx)V x€] —x, x|
2) Let f be an even =t periodic function defined as:

g(x)=1- z?xv X,0<X<m.

Figure 1V.4.8 Graph of g(x)
The graph of f is drawn in 3 periods. From the graph, we can see that g is continuous vV xeR
g is differentiable on any interval | =]0, x [ so Direchlet’s requirements are satisfied and thus ;
g(X)=% + Ymq Ay cos(nx) + bysin(nx) V xeR

Since g is even then b,,=0 V¥ n.

ag = %f;‘g(x)dx% Jya- 27")dx = % [(x - %]Z:O

n:% fong(x) cos(nx) deE f:(l — Z?x) cos(nx) dx
We use integration by parts method:

Where U(x)=(1 — 2, V’(x)=cos(nx)

2 2x. sin(nx)]™ 4 o, _ 4 cos(nx) _4(-(-1DM
a, == [(1 -3 —]0 + ﬁfo sin(nx) dx=—- [ ]

i3 n m2n2

Thus f(X)=X7= &cos(nx)v XER

0if niseven

Sincel — (=)™ = { then g(x) =%Z§,°:0 os(@p+DD), R

2ifnisodd’ (2p+1)?
Note:
_8 cos((2p+1)x)
g(x)= Z‘,p 0 prry ¥ XER

2

B _1_8 yoo 1 ;:T[—
For x=0, we have 9(0)=1=_z Xp=0 ;o757 = Lo=0 oo 5

We recall that In chapter 2 (infinite series), we knew that .7 > converges but we were

p"(z +1)2
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not able to evaluate its sum, now using Fourier series we can do it.

We can also deduce from this example the sum of %7, —

p2
Let S be the sum of X7, 2|eS == p—12
1 . 1 _m®, S 35S _m? 4m? _m?
S0S=2p=0 oz T =1 5 T T % 8 O w3 e
1 2
Thus, Z —2— and Zp 1(2 )Z_Z
IV.4.5 Parseval’s identity:
If fis T periodic and piecewise continuous
Then
2 (@) <
Qo
; f (FO? dx =24 > (a,)? + (by)?
n=1

(or - T(f(xnz dx =9+ T2 1 (a,) + (b)?)

Example 1 :

Let f be an even = periodic function defined as:

g(x):l-z?xv X,0<X<m.

We have already seen this example. The function f satisfies Parseval’s identity requirement.

We have found :

8

ag =0 Ay = mn_

2% - 64
f(g(x))z dx = Z( 2(211 + 1)2)2 f(l N _)2 dx = Z m*(2n + 1)*
n=1

(ee]

T [o'e]
2 ) 4x N 4x2 p Z 64 2 4x2 N 4x31" Z 64
o — _— = — o |lx——4+—| = S —
T ( T T ) dx 1114(2n +1D* = T on T3z 0 1114(2n + 1)*
n= n=

2 41'[2 41'[3 T o L2 6m® — 1213 + 8] w 64
o — —_— - = R
" Z 1'[4(2n + 1)4 61?2 Zl m*(2n + 1)*
n=

o 2 _ v 64 o 1 _n*
3 “M=lg4ans1)t n=1(2n+1)* 96
Example2

2
Given the Fourier series x? :"? +4y> ( nl) cos(nx)V x, -m < x < m(see

exercisela)below)

103



Chapter 1V

Improper integrals

1)

2 3n

Figure 1V.4.9 Graph of f(x)= x2vx € ]—m, [, 21t periodic

We can deduce the value of ;5> -

Indeed :

2m2 4(-1)"
Here a0=%,a =2CD

b, =0.

n n2

Using Parseval’s identity :
4

We have ziff xtdx = zl + Z;’f;l%

am?_ 16

45

[ee)

. 2nt 2
leenus——i+2n L 4=>

4

Therefore Y- — = "

n=1 n4
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Exercises of Fourier Series

Exercisel:

Let f be a 2 periodic function defined as:

a)f(x)=x?vx € |—m, n[

b)f(x)=x2vx € [0,27[

Determine Fourier series of f in both cases 1) and 2).
Exercise2:

Determine Fourier series of a 10 periodic function f, defined as

(0 if x €]-50]
F(X)'{ 3 if x €105

Exercise3d :
Consider a 2 periodic function defined as

(—x if x € [-m, 0]
F(X)_{ x if x €]0,m]

1) Determine Fourier series of f.

L . oo 1 o 1 o 1
2) Evaluate the sum of the following infinite series .anom ) Ln=1zand Yt a2

Solution of exercises of Fourier Series
Usually, what to do in a Fourier series exercise ?
e Draw the graph of f in several periods.
e Check parity, classe (continuity, differentiability) of f.
e Compute Fourier’s coefficients of f (an, bn according to the context).
e Apply Direchlet and/or Parseval’s identity.
Solution of exercisel
a)f(x)=x2vx € |—m, [
Graph of f

1)

Br -2t -m () T 2 3n

We have drawn the graph of f in 3 periods. We can see that our function is even so
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b, =0
Let us compute a, a,

_2 m 2 (1 _2(m3  2m?
Qo= Jo fOdx =2 fy x% dx= =i = =

T
2
a, = Ef x? cos(nx) dx
0

We use integration by parts method twice:

Where in the first one: U(x)=x2, V’(x)=cos(nx)

_2 Zsin(nx)n_i ™o P B L __ 4 _Xcos(nx)“_
an == [x —— ]0 — fo x sin(nx) dx==0 — fo x sin(nx) dx = ﬂn[ — ]0

#f; cos(nx) dx

4 [_ xcos(nx)]n
n 0

4 [_ xcos(nx)]“ _
mn

4 T
—mfo cos(nx)dx——1Tr1 w1

4 [_ sin(nx)]“ __ 4 [_ xcos(nx)]“ —_0= _ 4 [_TECOS(TLT[)] A=)
mn? n lop mn n 0 ~ m n " n2

Since f is continuous V x€ R

4(-1)"
n?2

2
Thus f(X)=aZ—0 + Yo q Ay cos(nwx)=2% + Yy cos(nx) V xeR

b) Graph of f

40

B0 —20 —1o o To =20 =

—10

We have drawn the graph of f in 6 periods. From the graph we can see that our function is
neither even nor odd.

Let us evaluate ay ay, by, :

ap = %foznf(x)dx = fozn x? dx=%@ = %

anZi foznf(x) cos(nx)dx:% fozn x? cos(nx)dx

Using integration by parts methods twice, we obtain :

an:% (see casel above, same thing just the interval has changed)

bn:% fozn f(x) sin(nx)dx:% ) 02“ x? sin(nx)dx

As above, we use integration by parts method twice:
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Y cos(nx)]zn 1 r2m _i[_ (2m)? cos(Znﬂ)] 1 (2m _ _4m
b, = n[ Xt = + mfo x cos(nx) dx =— |- +1mf0 x cos(nx) dx = —+
LM]Z“_; 2n EELIE _m_

— [ w1y e do sin(nx) dx=—=+0 f sin(nx) dx= =
LZ [_ cos(nx)]2“=_4_1; 40
mn n 0 n

4m
b,=— =

21
Fourier series of fis — + Y1 = cos(nx) - = sm(nx)
Solution of exercise2
Graph of f
5

20 -15 -10 -5 0 5 10 15 2

—5

an

The graph of f is drawn in 6 periods. We can notice that f is neither even nor odd function.
F is piecewise continuous on R, its discontinuity points are 5k (k€ R)

Let us compute ay ay, b,
T
ag = %f_zzf(x)dx=% fOTf(x)dx
2

a, = %f_ng(x) cos(nwx) dx=; fOTf(x) cos(nwx) dx

b, = % f_gz f () sin(nwx) dx=% fOT £ (x) sin(nwx) dx

__2x5(3)

ap== [ f @) dx== (7, fG) dx + = [ f () dx)== [T 3dx = 222 = 3

2 5 2 2 5 3|15 . .
an=-s JZs f(x)cos( Z:x)dxzﬁ Js SCOS(%)dx =: [Esm %]0=0 ifn# 0

bn=o |2 fGOsin(ES)dx= [ 3sin(“F) dx =

3 5 nmx\ |°_ 1 nmx 5_ —cos(nm) 1, _ 3(1-cos(nm))
[ o - oo ram 2 e

5 nmn nm nm nm

So the Fourier series of f is 3 + ¥y, 3(l%i(mmsin(m)
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Notes:

According to Direchlet’s theorem :

nmnx

% +ye, 3(1%;@@) sin (T) =f(x) in any point of continuity ( in particularly on

1-5,0[ and ]0,5[)

— + -y . ; } . A A .
Z + Yo dcostm) iy (@) = L&D ) iy any point of discontinuity in particulary at

nt 5 2
-5,0,5
Thus
(3 .. c
5 if x =—
- 0 if x€e]-5,0[
3 3(1 — cos(nm)) . ,nmx 3
2t ()= g ie=o
n=t 3 if x€]0,5[
3 .
L 7 if x=5
Solution of exercise3
f(x) f
-3t -2 -,'lt 0 'lt 2 ?l:t >
X

1) We have drawn the graph of f in 3 periods. We can see that our function is even so
b, =0

Let us compute a, a,

_2m 2 (m _ 2(m?
ap=_J, f()dx == [ xdx=="—=m

T

2
a, = Ef x cos(nx) dx

0
We use integration by parts method:
Where : U(X)=x, V’(x)=cos(nx)

2 sin(nx)
a, =—|x
s n

TC
]0 —ﬁf; sin(nx) dx=:0—%f0“ sin(nx) dx =

_i[_ cos(nx)]1T _—2(1-(-D)™ _2((-D"-1)
mn n - -

0 mn? mn?
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From the graph, we can see that f is continuous V xeR

f is differentiable on any interval | =]0, = [ so Direchlet’s requirements are satisfied and thus ;

2((= 1)
Tn

f(X)z? + Xn=10n COS(TlWx)% + Yoot cos(nx) Vv XeR

0if niseven

Since(—1)" — 1 = { then f(x)= T — 2522 LI y e

—2if nisodd (2p+1)?
T 4y cos((2p+1)x)
2) We have f(x)- P=0"apr1)? vV XER
o] 1 o] 1 — T[_Z
FOI’ X= O f(O) O—__ - p= 0(2p+1)2 = p=0 (2p+1)2 —_ 8 .
We have:
w 1 _ yoo 1 ) 1 —y'oo 1 lgoo 1 - m? i
p=1p2 - Zp=0 (2p+1)2 + p=1 (2p)? p=0 (2p+1)2 4 4p=1 p? + Z p?
3w 1_m
Taersi g

2 2
Thus, X5 = =Tandye, —==

P2 6 P=1(2p)2 7 24
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Chapter V Fourier Transform

V.1. Introduction:

Fourier transform is one of the important concepts used in analyzing signals because it
allows us to break down complex signals into their frequency components. This makes it
easier to filter, compress, and interpret the signals, which has applications in many fields
including telecommunication, audio, and control system. By working in the frequency domain
we can gain insights into periodicities and anomalies that are not easily visible in the time

domain.
V.2 Definition:

Let f be a function f: ]- oo, +cof— R/ C such that ff;lf(t)ldt is finite i.e. convergent.
t —»f(t)
Fourier transform of f(t) is the application f: ]—oo, +oo[ —» C
s —> f()=)"" f(t)e 2mstdy
where e ~2™st s the exponential complex: e!(=2™%) = cos(—2Tst) + i sin(—2Tist) (Euler’s
Formula)

Notes:

- f (s) is a complex number therefore it has a real part and an imaginary part (f (s) =a+ib) as

well as a magnitude ( |f (s)| = ,/(a)? + (b)?) and an argument (or phase).
- We can also denote Fourier transform of f(t) by F (f(t))= £ (s) = f_+;° f(t)e=2mistde
-Fourier transform is an improper integral since limits of integration are infinity, so the

condition required above ( f_J:oI f(t)|dt convergent) insure the existence of £(s)(just use the
comparison test see chapter 2)

-Fourier transform is a generalization of Fourier series (which is applied only for periodic
functions) to non-periodic functions.

-1t is important to mention that they are various definitions of Fourier transform and the
difference is about the factor (2z) where to put it and the sign in the exponential (+) or (-).
The consequences of that are only multiplicative factors in future formulas. All the

conventions are in use in practice. We will summarize these different variations below.

F(f(t)=1 (5) = [, f(t)eMistdt

L=v2mr M=zl
L=2n  M=4=1
L=1 M = +2n
L=1 M =+1
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Chapter V Fourier Transform

Our definition of the Fourier transform (L =1 M = -2n) is a standard one, used in mechanics,
electronics, quantum physics, etc.

- The variable t can be time , in this case, the variable s has the dimension of a

frequency (Hz). Then f (s) represents the frequency spectrum of the signal f(t).

- The wvariable t can be sometimes a position x (m); in this case, f
(k)= f_J’OZO f (x)e*dx) where the variable k== (. wavelength) has the dimension of the inverse
of a length so k is the so-called wave number.

When the function f(t) represents a signal e.g. an image, sound wave, electromagnetic wave (t

designating time or space variable), its Fourier transform £ (s) is its spectrum, with s
represents the frequency or pulsation. Therefore the Fourier transform converts the time-

domain signal into the frequency-domain representation f (s), which tells us what frequencies
are present in the signal and their corresponding amplitudes (| f (s)|), phases ( arg(f (s))),
and their power spectral density ( | (s)]) 2).
Examples:
1) f(t) =6()

§ is Dirac Delta Function or Unit Impulse Function is defined as 6(t) = 0, t# 0 such that

+o0
f s(H)dt =1,

It is zero everywhere except one point '0". Delta function in sometimes thought of having
infinite value at t=0.

We are going to use one property of Dirac function to compute its Fourier Transform, namely

f_ Oof ®)s®)dt = £(0),
Consequently,
F(5(1)=6 (s) = fjo‘:’ 5(t) e 2mist =g —2Tis0 =1

b —a<t<a

2) f(t):{o lt] >a

f is called the box (or gate) function. We are going to denote it by (rect)(t) for further use

(rect: referring to rectangle).
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b

Figure V.1 graph of the box functions

—oTrist +a —omist 2Ttist _ e—znisa _ e—zm’s(—a)
F(f(t)) - (S) f f(t)e dt= f be dt= b[ 21‘[15] B —2Tlis —2TUis
A A elX_p—ix
Knowing that sin(x)= SO
~ j— _b ei(2ams) _ ,—i(2ams) b sin(2artts)
f (s)=rect (s)= ns[ 2i ] sm(ZaT[S) —sm(ZaT[S) = 2a b—z‘ms

rect (5)=2ab 2239 for s 0
2aTs

For s=0, Tect (s)= [ bdt =2ab
We can notice that the Fourier Transform of the function box is the cardinal sine function by a
factor of 2ab (this function is denoted sinc, sinc(x)= Sir;—(x))

L
1‘/

—-20 =10 10 20

—0.5

sm(x)

Figure V.2 General shape of

V.3 Fourier transform properties:

V.3.1 time shift

F[f(t — ¢)] = e~22T5¢ £ (s) (time- shift)

Proof:

F[ftt — )] =/ f(t = c)e ™t dt

Substitute: u=t-c

F[fit = )] =/ f (e 20O duy=e=2mise [T f(u)e2Misu dyze~2MiseF(f{t))
— e—iZT[sc f (S)

Notes:

-1 f(t) is a signal, a shift in time does not affect the magnitude of the spectrum

(IF[f(t — o)1l = |e~2™c £ (s) | = |f (s)|) but alters its phase;
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Chapter V Fourier Transform

arg(e~2™c £ (s) = arg( f(s)) — 2Tsc
e ~12Ts¢ is called phase factor.

Example:
F[S (t—¢)]= g ~i2msc § (s) —p ~i2Tsc

V.3.2 Frequential shift

FLF(t) e?™] = f (s —c)

Proof:

FIf(t) e~®¢]= [ f(Dei2mete2mist e [* 7 £ (1)e2M6tdt=f (s — )
V.3.3 time- Scaling

FIfet] = £ ) aeR*

Proof:

FIf(ct)] =) f(cDe 2™ de

Substitute: u=ct

Ifc>0

FIFeO] =/ fwe ™™ e & =1 "% pru)e 2 Metqu = 1 f ()

Ifc< O

_(~® —2mis=du _ 4 —2mistdu _ 1 7 s
FIfeO] =/, fwe 2™ e = — [7 fu)e ™ 2= f ()
If f(t) is a signal, the time-scaling states that if a signal is expended in time by (c), then its

Fourier transform is compressed in frequency by the same amount.
V.3.4 Duality

Suppose f(t) has the Fourier Transform f(s) and we would like to evaluate the Fourier
transform of the new function £ (t) (we have to change s by t to determine it).

So F(f (t)=f(-s)  (we get back to the initial function)

We use this property specially to compute the Fourier transform of some complex function
that we cannot do it directly with the definition.
Examples:

1) We have found before, that the Fourier Transform of the function box (rect(t)) is the

sin(s)

cardinal sine function ie F(rect(t))= =sinc(s)

N

So by applying duality property, we obtain:
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F(@): rect (-s) and knowing that the function box is even so

b —a<s<a
s| >a

sin(t)

F( - )= rect (-s)=rect (s)= {O

2) We have found before that F(8 (t))=§ (s)=1
By using the duality property, we get
FIf (0] = f(=s) = F[5 (0] = fi-s) = F[1] = 6 (-s)
3)We have seen before that F[§ (t — c)]=e~2Tsac=F (s)
So F[f ()] = f(-s) = F[e7#™] = § (-s)

V.3.5 Convolution and Modulation:

The convolution of two functions in time is defined by
f(0*90)= ", fFWg(t —u)du
then F(f(t)*g(t))=F(f(1)). F(g(®) = f (5). g (5)
A function is modulated by another function if they are multiplied in time
Then F[f(t).g(t)1=F(f(t))*F(a(1)).
V.4 linearity of Fourier transform:
F(f(t) £9(1)) = F(f (1)) £F (9())
F(kf(t))=kF (f (t)) ke R*
Examples:
1) F(4-76 (t))=F(4)—F(76 (t))
=4F (1)-7F (5 (1))
=6 (—s) =7
2)F (58 + 36 (1)=5F (5 )+3F (8 (1)

b+ 3 —a<t<a
3 [t] >a

=5rect (s) +3 :{
V.5 Inverse of Fourier Transform
Definition:
Let f be a function: f: ]- oo, +oo] —R and F(s) Fourier transform of f(t)

t —)

ie £ (s) = F(f(t)) then f(t)= F~*(F(s)) = fj;of (s)e?™stds  where F~1is called the inverse
of Fourier transform.
-We notice that the expression of the inverse Fourier transform F~1is very similar to that of

Fourier transform F. Indeed, only the sign of the complex exponential changes:+i instead of —i
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- This inverse transformation implies that from the frequency representation of the signal we

can get its temporal representation.

Examples:
A) Using the definition

F—l(é‘(g)) = fj:: 5(5)62m5td5262m0t:1

. 2mist14 2Tita 2mit(—a)
F'(rect(s)) = [ be?™stds=p |*— ] = [e — L — ]
-a 2Tt 1_g 2Ttit 2Ttit
b [ei2amt_p—izamt , bsin(ZaT[t)
—_ — - = a —
Tt 21 2Tt

Therefore F"l(rect(s)) = 2absinc(2aTrt)
B) From the examples seen above in V11.2 we can say:
1) F@6@®)=1=F1(1) =6()
2) F(rect(t)) = sinc(s) = F~(sinc(s)) = rect(t)
Notes:
- the inverse of Fourier transform F~1 is also linear ie
F Y (c1 f1(8)* cof2(8))=c1 F7X (f1(S))+ 1 F1 (f,(S)) Ve, , ¢, real constant
V.6 Fourier Transform of some common functions.

Formulas are given both in frequency (s) and in angular frequency (o, ®w= 2ns) to enable

students to do a variety of exercises.

F (f(t)):f (S) :f_-:o f(t)e—zmsfdt — f(t): F_l(f(s)) — f_"';of (S)eznistds

F (f)=f (0)= " f()e " tdt e—=F(t)= F*(F()) = [ f (w)e™ dw

Notes:

All Properties seen above are not affected (if we change 21ts by w )

Table V.6 Fourier Transform of some usuel functions

f(t) F(f()=F (s) F(F©)= f ()
6(t) 1 1
p-altl _ e _ e
aZ + 4m?s? aZ + w?
e—at? Te ﬂzasz \/ie_i)—;
a a
Cos(2mat) %[5(5 +a)+68(s —a)] 7[6(w+ 27a) + 6(w- 27a)]
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i
sin(2mat) 2 [6(s +a) = (s in[s(w+ 21ma) - §(w— 27Ta)]
—a)]
rect(t) sinc(s) sinc(%)
sinc(t) rect(s) rect (%)
Note:

- To determine the Fourier transform of any function, we have either to use the table if this
function is a combination of functions cited in the table and using properties given above
(linearity, duality, time-shift.... ) or use the definition of the Fourier transform.

Examples:
1) Find Fourier transform of the following f(t):
_ 1 _gt2 1 _gr2y _ 1 _6t2\ _ 1w _m%s?
a- f(t)=2+ e =>F(2+-e™") = 2F(1) +;F(e ) =258(s) + e e
b- g(t)=t e~*It!
2|t|
we can write e #ltl=e™ =  in form of e =27%ltl where s, = 3

2 1 2 2s
)

2
_4'|t| - E P == = g — —
So F(t ej I( ( ) I(T[z SZ—%) l(n-Z (SZ_%)Z

FItF®] =i f° (s)
Thus F(t e *t)= —i(

4s )
4
7-[2(52_ F)Z

c- f(t)=sin(4t) -5
we can write Sin(4t) :sin(Zn%t) in form of sin(2mst) where s, = %
So F(sin(4t) -5) = F(sin(4t))-5 F(1)=3i[s6 (s +2) -5 (s = 2)] - 5 6(s)
V.7 Fourier transform of a derivative ( differentiation in time-domain)

Let fbe a function f: [, +oo[ — R such thatf “|£(©)|dt is convergent
t —» f(t)

and f' is its derivative then F[f’ (t)] =2Tti s f (s)

A brief proof:

9=y f(©)

Let us determine g (s):

We have F(f(t))= f (s) :fj;f(t)e‘z’”“dt (Fourier transform) (1)

And f(t)= fjozo f (s)e?™stds  (inverse of Fourier transform) (I1)
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400 d

- (f (S)eanst)ds)

© dt

g(t)—dtf(t)——(z w77 f (s)e¥stds) ——(2 [
=([7 2misf (s)eZmst)ds)=["" 2mi sf (s)e2™stds

g(t)f 2Tt sf (s)e?™istds

g (s) (similarity to (1) and (I1))
6= "2F(0) =2misf (5)
Thus F[f'" ()] =2mtis f ()
-For higher-order derivatives:
FLAF™ (©)]= (2nis)" £ (5)
Note:

- if formula are given with angular frequency (o) then
FLA™ 1= ()" f (o)
V.8 Using Fourier transform and its inverse for solving Partial differential
equation (PDE):
It is important to mention that in this section, we are going to work with the following

formulas (with o angular frequency and the variable position x ):
F (f9)=f ()= [7 fG)e ¥ dxe— f(x)= FL(F(w)) = [7) f (0)e*do
Solve the following PDE:

Pu _ 0% (1) —o<x < 400, t>0

atz ax2 x

ux,0)=f(x) (2) —oo <x < 4o (initial condition)
Z—’;(x,O)zo () —o<x< 4

lim u(x,t) =0 lim a—u(x, t)=0
X—+00 0X

X—+00

-Apply Fourier Transform to both sides of equation (1)

PRl =rga @
-Use property of Fourier transform of a second derivative (with respect to the variable x] for
the left side:

62
F [W = (iw)?*li(w, t)

400 94u _ 92 400
IR = L e 2 [ e =g,

Since e~ is independent of the variable t
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Therefore we obtain an ordinary differential equation (ODE) of second order (3) :

2 62 A A A~ ~
;?ﬁ(w, t) = (in)%t(n,t) & Eu(w, t) = —u)zu(u), t) S ' + 0?0=0 (3)

Here i(w, t) is the function to find

The characteristic equation of (2) is : r?+w? = r = fiw

So the solution is: @i(w, t)= A(w)cos(ot) + B(o)sin(wt) (4) (see chapter I11)

Let us determine A and B from equations (2) and (3):

(2) leads to i(w, 0)=F(w) and (4) gives @i(w, 0)=A(®) cos(0) + B(w) sin(0) = A(w)
Therefore A(o) =f (o)

(3) gives % (0,0) =0 and so (4) yields to % (0,0) = —wA(®)sin(0) + wB(w)cos(0)
= B(w) = 0.

Hence the solution for our (ODE) is @i(w, t) = f(®)cos(wt)

Now, we have just to invert ii(w, t) (using inverse Fourier Transform) to get our solution
u(x,t) of our PDE (1):

u(x, ©) = F{F(@)cos(@t)}=F {F@)[} = H{F2[F(o)eo] + F2[F(o)e]}

2

b¥ linearity of F~1

—{f(x+ ) + f(x — 1)}
Using the time-shift property
Finally u(x,t) = —{f(x + t) + f(x — 1)}
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Exercises
Exercisel

Let f be a function f: ]- oo, +0co[ —» R/ C such that ff;lf(t)ldt convergent.

t —f(t)
Compute the Fourier transform of f if f is an even, odd function respectively.

Exercise 2
Determine the Fourier transform of the following function (called the triangle function):

¢l

0 [t] >a
Exercise3

Find the Fourier transform of the following function using the time-shifting property

1, 4<t<6
f) = {O, otherwise
Exercise 4

Solve the following partial differential equation (Heat equation) using Fourier transform: Z—Lt‘ =

kg% (1) —o < x < 40
u(x,0)=6(x) (2) —oo < x < 4o (initial condition).
Solutions

Solution of exercisel:
We are going to use the definition with angular frequency (w):

a) if fisan even function then,
F (f(t)=f (0)= fjozo f(t)e“'“’tdt:fjaaf(t) [cos(—wt) + i sin(—wt)]dt

:f_+;° f(t) cos(wt) dt — lﬂs f (t)sin(wt)]dt (since cos is even and sin is odd)

f2f0+°° f(t) cos(wt) dt \O
. ) _ . +a _ +a
Knowing that:1) £(§) gog(wt)=an even functiong and [~ "g(t)dt = 2 [ g(t)dt
é(/en.even
2) f(¢ cg'ssw):an odd function h and f_+aa h(t)dt = 0.
even.odd

b) if fisan odd function then,
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F (f0)= ()= [, f (e dt=["][f(O)[cos(~wt) + i sin(-wt)]dt

=["7 f(©) cos(wt) dt — i [ f(t)sin(wt)]dt
< \ O g

=—2i [ f(¢) sin(wt) dt

(Same explanation like above)

Solution exercise2 :

1, 4<t<6
f) = {O, otherwise

Graph of f(t)
We can notice that f(t) is the rectangular function (where b=1, a=1)but shifted to the right by 3

units . Thus by putting ¢ = 3 in the time shift property, we get:
F(f(t))=F[rect(t - 3)] = e ~12™3 Fect (5)= 2 e~ie™ T2
Solution exercise 3:

0.1)

Graph of triangular function

We are going to use the definition with angular frequency (o) :

F(f0)=F (@)= ["7 f(©)e " dt=["7(1 = Dye-tdez2[" (1 - Hcos(wt) dt
Since f(t) is an even function

Integration by parts:

u=1 —2 = du:%1 dt, dv=cos(wt) dt :>V:i sin(wt)

2 a

207 (1= Hcos(wt) dt =2|(1 - Hsin(wt)]

7

0

+2 [ sin(wt)dt

Vo
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= [—cos(wt)]¢=

a(,\)2

32? [1 — cos(wa)]

Thus F (f(t))=—[1 — cos(wa)]

au)z
Notes :

-1f we continue calculations using properties of trigonometric functions, we will have:

[1— cos(wa)]= = [1 — (1 —2sin? (%)] = 2 sin? (M) =a Sin;_g 2 ) =asinc2(%)

= 2
aw aw 2 (2)

2
aw?
So We can notice that the Fourier Transform of the triangle function is the cardinal sine
function (by a factor of a), a similar result to that of rectangular function.

Solution of exercise 4:

2
Z—lt‘=ka—“ (1) —o0 < x < 400

0x?
u(x,0)=6(x) (2) —oo < x < 4oo (initial condition)
-Apply Fourier Transform to both sides of equation (1)

0%u

FI5] = F[ k53]

-Use linearity of Fourier transform

oa(xt) 0%u

at kF [6x2]
-Use property of Fourier transform of a second derivative
ou(x,t ou(x,t

u(at ) = k[(iw)?u(x, t)] © ugt ) = —kw?i(x, t)

Therefore we obtain an ordinary differential equation (ODE) of first order:

@ + ko?i(o,t) = 0 (4 is the function to find)

The solution is given by i (w,t)=C(w) e %t (3)(see chapter III)
Where C(w) is to determine from initial condition

Apply Fourier Transform to both sides of equation (2):

F [u(x,0)]=FIf(x)] < a(x,0) = §(w)

From (1) 1i(»,0)=C(w) e %= C(w)

Thus C(w)= §(w)= 1= @i(w )= e *o°t (3)
See table above

Apply inverse Fourier Transform to both sides of equation (3)

%2

~-1¢4 —p-1¢ ,—ko?t -1 =
Fl(ti(wt)=F~ (e )fu/(x;)__ T

2
See table above (F~1[ \/g e ] = e—2” where here a:ﬁ
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Chapter VI Laplace Transform

VI1.1. Introduction:

Laplace transform is a technique that involves taking a function (generally in terms of
time) and transforming it into another function, i.e., moving from one space to another space.
In this space, many things can be done, including solving differential equation more easily
than doing so directly and afterward, returning to the initial space via the inverse of the
Laplace transform. This technique is widely applied in engineering, physics, and control

theory.
V1.2 Definition:
Let f be a time function f: [0, +oo[ —> R such that f0+°°|f(t)|dt is convergent.
t —f(t)
Laplace transform of f(t) is the application F: [0, +oo[ — R
s —> F()=[" f(He~sdt
Notes:
- We can also denote Laplace transform of f(t) by £ (f(t)); £ (f(t))=F(s)= f0+°° f(t)estdt
-Laplace transform is an improper integral since the upper limit of integration is infinity, so
the condition cited above ( f0+°°| f(®)|dt convergent) insure the existence of F(s)(just use

the comparison test see chapter 2)
- Laplace transform is an integral all over time t.
- Laplace transform convert a function of time ( f(t)) into a function of frequency (F(s))
Examples:
We will calculate the Laplace transform of some basic functions, which will then be used to
find the Laplace transform of other more complex functions.

3) f(t) =1

L W= FO=f"1etdt =lim ([5e~td) =lim |
h—+c h—+o0 ho+00

e~sh 1 _1

SIS TS

N

= lim (—

—4 00

0
So f(t)=1 —— £ (1)==

4) f(t) = et
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o = —(s-nt1h
Lo(eH= FO=f,"etetdt =lim ([ etV =lm |[=—] =
hotoo ho+00 —(s=H g
-(s-1)h —(s=1)h
(s-1) s-1 s—=1  s-1
h—+o h—+o

\})‘ (for s> 1)

Sof(t)=et ——r (et)=s_i1 for s> 1
5) f()=t" n>1

L (eb)= F(S):f0+°° tme=Stdt = lim (ftt:oh trestdr)
h—+o0 —

b

We integrate (1) by parts, i.e., use f: Uu@)v'(t)det = [U®V()]L - ff U'(t)V(t)dt
Where :
U(t)=t" = U'(t)dt = nt"1dt

1
V'(t)dt = e Stdt=>V(t) = —;e‘“

: . h
F)=J, " t"e™tdt = lim [—t"se™]f — lim [ —Z¢n—lestde=" [7 ente~stde
h—o+ 00 ~

h—+o
o

Thus, F(s):g L")

Applying the formula recursively, we obtain

n!
gn+1

So for f(t)=t",n>1 £ (t")= =

sn+1

F(s)=

V1.3 Laplace transform properties:
a-If fand g differ only at a finite number of points then F=G

Examples:

3 t=1
t+ 1

f differs from the function zero just by one point (so we have found they have the

1) f(t) defined as f(t):{O has a Laplace transform F(s)=0

same Laplace transform F(s)=0.
3 —
2) f(t) defined as f(t):{ : 5 0 has a Laplace transform F(s)= % (the same as that of

1 t>0
f(t)=1)
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Laplace Transform

b-1f g(t) = f(at), a€ R; then G(s) = % F (i)
Example :

g(t)=e™

We have L(et) = s—% soL(g(t)) = 1:(e4t)—1 1 -

1
4(G-1)  s—4

Thus ifg(t)=e® so L(e™)=—"

c-If g(t) = e™f(t): then G(s) = F (s — a)
Example:

223 of form of eatf(t)

3!

g(t)=t’e

3!

6

We have L(t3) = = G(s)=F (s—a)=> L(e™%t3) =

S3+1
d- if g(t) = tf(t) then G(s) = —F'(s)
Example:

1

(s=3)?

g()= tegt of form of tf(t) = G(s) :_F,(S)z_(s%)’ . )

1

(s—3)?

=
so L (te3 )=

V1.4 linearity of Laplace transform:
L(f(t) £g(t)) = L(f (1)) £L(9(1))
L(kf(t))=KL (f (1)) ke R*
Examples:
1) £L(3-2e%)=L(3)-L(2¢e?)

=3L(1)-2L(e?)

1 2 _3s-5

s s—1_s(s—1)

)L + 5 tH+8e5)=2 L(1)+2 L(tH)+8L(e™)

11 .1 4! 1
== 4= — 48—
4s 2s%t1l 55
_1 12 8 _ s*(s—5)+48(s—5)+32s°
4s  s®  s-5 4(s—5)s°

_33s5-55*+485-240
4(s—5)s5

V1.5 Inverse of Laplace Transform

Definition:

(s+2)3t1

(s+2)*

Let f be a time function: f: [0, o[ —» R and F(s) the Laplace transform of f(t)
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t— f(t)
ie F(s) = £ (f(t)) then f(t)= £~ (F(s)) where £~ is called the inverse of Laplace transform.
Examples :

From the examples seen above we can say:

3) L(1)=1=L G) =1

4) L(ef)=m= L) =ef
Notes:
- the inverse of Laplace transform £~1 is also linear ie
L7 (cq Fi(S)+ cpF5(8))= ¢y L7 (F1(3))+ ¢y L7 (Fo(S)) V¢, , ¢, real constant
V1.6 Laplace Transform and its inverse of some common functions.

Table VI.1 LaplaceTransform of some usual functions and its inverse

f(t) L(f () F(s) L7H(F(s)
1 1 1 1
s S
e’ ﬁ ﬁ (a>0) e% (a>0)
t" (n>1) n! n! £
Sn+1 Sn+1
Cos(St) > S Cos(ft)
SZ+B SZ + BZ
sin(pt) B _ 1 1 t
e v 5 Sin(BY
Note:

-This Table shows how the Laplace transform converts the time-domain exponential,
...function into a rational function in the s- domain

- These functions, combined with the properties given above (linearity,.... ) enable us to
evaluate Laplace transform( and its inverse) of most of functions.

Examples:

1)Let us find Laplace transform of the following f(t):

5
s2+52

b- f(t)=t2 — 7 + cos(2t) = L(t? — 7 + cos(2t)) = L(t?)-7 L(1)+ L(cos(2t))

n 31 _ 3524+55++75
N s(s2+25)

a- f(t)=sin(5t) +3 = £(sin(5t) +3) = £(sin(5t))+5 £(1)=

! A 2
_£_71+ S . = L(f(t)): 65°—265“+8

e S 242 s3(s2+4)
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2)Let us find f(t) in the following cases:

Fo=—t -1t 5121 )_1.af L)_1 ‘%—ft
a (S)_zs+1_2s+§ 2s45) 2 o) =2¢ =0

2

1 1 1 1
- F(s)= = 57 = -1 s | =—= i =f
b- F(8)=53 T L <52+( = ) =sin(V3 )=f(t)

V1.7 Laplace transform of a derivative
Let f be a time function f: [0, +o[ —» R and f" is its derivative
t —f(t)

then L(f' ()= L(f (1)) — £(0) = sF(s) - f(0)
Note:
-The above formula is obtained by integration by parts method.
- Time-domain differentiation becomes multiplication by frequency variable s plus a term that
includes initial condition(—f(0)).
-For second-order derivatives, we have just to apply derivative formula twice:
L(F"(©)=s L(f'(®) = f'(0)=s[ s L(f(©) = £(0) ] ='(0)

=s2 L(f () — s £(0) — £'(0)

=s? F(s) = s f(0) — f'(0)
So for higher-order derivatives, similar formulas hold for L(f™(t))
LM ())=s"F(s) —s™ 1 £(0) —s™ 2 f'(0) = s f(0) . cev ev .. — £@D(0)
V1.8 Using Laplace transform and its inverse for solving differential
equation:

Examplel:
y()+yt)=1 (y(0)=0) it is a first order differential equation with limit condition.
Method of resolution:

Apply Laplace transform both sides of equation

Ly ©® + y©®) =_£(/1)$> L{y'®) + L(y®) =_195' sL(y(®) - y(@Q+ L(y®) = -

Linearity of £ Laplace transform of a derivative formu 0

1 1 1

= L(y®)s+1) === L(y®) = _1_

s(s+1) s (s+1)

Now, we apply inverse of Laplace transform both sides of equation:
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y(t)=£‘1(§—(s+=ﬁ_1(1)—ﬁ_1( —)=1-¢"

s (s+1)
Linearity of Z~*

Thus, our solution y(t)=1 — et

Example2:

y'(t) =5—2t, y(0) = 1.

Apply Laplace transform both sides of equation

L(y(®) =£(5 - 2t)= sL(y(©) —y(0) = 5L(1) — 2 L(t)

1
5 11 5 2 1
ﬁsﬁ(y(t))—l:g_zs_z:ﬁ(y(t))zs_z_s_3+;

Now, we apply inverse of Laplace transform both sides of equation:

— — 2 _ 1
0= 0G0 =50 () - ()0
Thus, our solution y(t)=5t —t*> + 1

Note:

Laplace transform turned a differential equation into an algebraic equation.
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Exercises

Exercise 1:

Determine Laplace transform of the following functions:

a) f(t)=t> + 3 b)f(t)= e5t — 20t° c) f(t)=6cos(4t) +9
A)f(t) = Zsin(6t) + 3 e 72 +7

Exercice 2 :

Find the inverse of Laplace transform of the following functions:

2) F(S)=— = b) FS)= ) FS)= 0y
D=5 ROt o

Exercise 3 :

Using Laplace transform and its inverse, solve the following differential equations :
1) x' =t?—-2 avec x(0) =3
2) x'+x =3cos(t) avec x(0) =5

Solution of exercise 1 :

a) f(t)=t2+3

2 — 2 _ 2! 1 _2+3s?
L(t*+ s;)jz;(t ) +3L(D)F o7 43 =
Linearity see table VI.1
Thus £(t* + 3)= 2:—3352

b)f(t)= e5t — 20t°

L(e% — 20t%) = £(e%F) — 20£L(t5) = - — 202, =" 212069)

s—5 s5+1 (s—5)s®

$6-2400s—12000
(s—5)s6

So L(e5t — 20t5) =

b) f(t)=6cos(4t) +9

L(6cos(4t) +9) = 6£L(cos(4)) +9 L(1) = 6 +9-

s2+42

1552 +144
(s2+42)s

Consequently £(6cos(4t) +9) =

d)f(t) = gsin(6t) + g e 2t +7

£Esin(6t) + e 2 +7) =2 £(sin(61)) +7 £(e2) + 7£(1) = g%
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30s(s5+2)+45(s2+6°)+21(s2+6%)(5+2)
B 3s(s2+6%)(5+2)
3 2
Thus cEsin(6t) +% 2t +7) = 25s3+72s +926OS+ 1512
3 3 3s(s2+67)(S+2)

Solution of exercice 2 :

a) F(S)=——

T 4-s
W G RS I S .

L ( 4_5) =L (5_4) = e (see table VI.1)

b) F(s)= =

— 5 — 5 2 5 ._ 2 5 .
L) = LGz = ;07 (g5) = 55in@

s2+22
d)F(s)= -
_1(3 +2) L_1(357+2) =§ _1(5%2) =_e_§t
)F(S)_z 2+5+ 5%_4
S st DT G 4

3x2

__L 1 )+ L~ 1(3+1)) 4L (_)
2+(\/_)Z

=%cos(\/§t) +o 1% -4
Solution of exercise 3:
Dx' =t? -2 avec x(0) =3
Apply Laplace transform both sides of equation
L(x(®) = L(t? = 2)= sL(x(1) —x(0) = L(t?) — 2 L(1)

3

ﬁSL(X(t))—3_i Zlﬁﬁ(x(t))_—_i_l_%

2+1 5.2 S
Now, we apply inverse of Laplace transform both sides of equation:
xO =L G -2+ =y = (Zsif) ! (533) +3L71()
Thus, our solution x(t):§t3 —t?+3

2) x' +x =3cos(t) avec x(0) =5

Apply Laplace transform both sides of equation

L(x'(t) + x(t)) = L(3cos(t)) = SL( x(t)) —x(0) + L( x(t)) = 3L(cos(t))

X(t)) a + bs+c

(s +1)(S+ﬁ)‘ (s+1) = (s2+1)

132

= L(




Chapter VI Laplace Transform

(According to partial fraction decomposition)

(a, b and ¢ constants to determine by identification)
Now, we apply inverse of Laplace transform both sides of equation:

_ =1, @ bs+c _ -1 1 -1(_s 1
x(®) =L ((s+1) + (52+1)) = X(t) =al ((s+1)) +DbL (52+1) + C(52+1)
Thus, our solution x(t)=ae™* + bcos(t) + csin(t) ( where a=— % b= % c=— %)
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