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PREFACE 

This course is intended for second-year students in the LMD system (ST, SM), 

includes the Mathematics 3 subject. It contains the essentials of the course with many simple, 

illustrative examples without any tedious demonstrations to help students assimilate the 

course quickly. Various exercises with solutions are offered at the end of each chapter to 

allow students to test themselves. 

I taught this subject for six years, sufficient time to figure out student’s difficulties 

regarding certain concepts, hence my desire to make this course accessible to most students 

whatever their level and to create  my own exercises. 

This handout which contains all the fundamental concepts related to this subject is 

divided into three essentials parts. The first part contains chapter of simple and multiple 

integrals starting by an interesting and consistent reminder about definite integrals. Multiple 

integrals generalize the concept of integration to two and more dimensions. Double and triple 

integrals are natural extensions of single integral, useful in calculating volumes, surfaces and 

in various physical and technical applications. The second part contains chapter of series 

(infinite series, sequences and series of functions, power series and Fourier series) which offer 

a powerful tool for approximation, calculating and interpreting infinite sums. The third part 

includes two chapters of transforms (Laplace transform and Fourier transform) invaluable key 

techniques in several fields especially in engineering, physics and chemistry. Two other 

supplementary chapters were added, namely chapter of improper integrals to enable us to 

introduce transforms and chapter of differential equations containing ordinary differential 

equations and partial differential equations which will be solved later by both transforms. 

Finally, we hope that this work will provide useful support for second- year students 

from various specialties, will assist them effectively throughout their learning journey and 

contribute to their academic success. It is our duty to accept all objective criticism, 

suggestion, opinions from fellow teacher and students to improve the quality of this handout. 
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I. Definite integral: 

I .1 Definitions: 

𝐿𝑒𝑡  𝑓: X         ℝ be a continuous function on X      

      x        𝑓(𝑥) 

Let a, b be 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 ∈ 𝑋 : 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 is called definite integral of f(x) on [a, b] (or from a to b)=Area of the region 

bounded by the curve y= f(x), x-axis, straight line x=a and the straight line x=b.  

Graphically:                                                     the curve of f(x) 

 

                                                                                                        ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 

                  a              b            

A definite integral is just an area under a curve. 

Examples 

                                                                                               A curve of f(x)   

                                                                                                           

                                                                                                    ∫ 𝑓(𝑥)𝑑𝑥
3

2
 

                           -2                -1                          2            3                                            

∫ 𝑓(𝑥)𝑑𝑥
−1

−2
                                                                                                                          

                                                                                                                                                                               

 

                                                                      A curve of f(x 

                                                        

∫ 𝑓(𝑥)𝑑𝑥
2

−2
 =A+B              

 

               -2                                            2 

 

Figure I.1 Meaning of a definite integral  

 

 

 

 

 

A 

B 

A 

B 
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I.2 Evaluation of Definite Integral: 

How to compute the area∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 ? 

I .2.1 Evaluation of definite integral using anti-derivative: 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= [𝐹(𝑥)]𝑎

𝑏=𝐹(𝑏) − 𝐹(𝑎)where F is an anti-derivative of f(x). 

F is called an anti-derivative of f if F’(x)=f(x). That is, it is a function whose derivative is f(x). 

Example1: 

f(x)= x2 

F(x)= 
𝑥3

3
  ,  F(x)= 

𝑥3

3
+ 2,  F(x)= 

𝑥3

3
+ C (C a constant) are all anti-derivatives of f. 

Note: 

-All anti-derivatives of f are represented by: ∫𝑓(𝑥)𝑑𝑥 called indefinite integral of f. 

   So ∫𝑥2𝑑𝑥= 
𝑥3

3
+ C 

Table I.1 indefinite integral of some usual functions               

f(x) ∫ 𝑓(𝑥)𝑑𝑥 =F(x)+C 

1 𝑥+c 

               𝑥𝑟   r≠ 1 𝑥𝑟+1

𝑟+1
+c 

𝑒𝑥 𝑒𝑥 +c 

1

𝑥
 

lnx+ c 

sin(x) -cos(x)+c 

cos(x) sin(x)+c 

1

1+𝑥2
 arctg(x)+c 

1

√1 − 𝑥2
 

arcsin(x)+c 

1

𝑐𝑜𝑠2(𝑥)
 

tan(x)+c 

1

𝑠𝑖𝑛2(𝑥)
 

-cot(x)+c 

Examples :                                                                    2 

1) ∫ 𝑥 𝑑𝑥
2

0
= [

𝑥2

2
]
0

2

=
22

2
−
02

2
=
4

2
= 2∫ 𝑥 𝑑𝑥

2

0
                                                  ∫ 𝑥 𝑑𝑥

2

0
 

                                                                                                             

Note:                                                                                 0                 2 
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This definition coincides with triangle area= 
1

2
 base. height=

1

2
. 2.2 = 2 

                                                                                                          y=2 

2) ∫ 2 𝑑𝑥
4

1
= [2𝑥]0

4 = 8 − 2 = 6              2 

                                                                                                             ∫ 2 𝑑𝑥
4

1
 

                                                                            1                       4 

It is the rectangle area of length (4-1)=3 and width 2 ; 3.2=6 

3)∫𝑒𝑥  𝑑𝑥

3

0

= [𝑒𝑥]0
3 = 𝑒3 − 𝑒0 = 𝑒3 − 1 

1.2.1.1 Properties of definite integrals: 

1) ∫ 𝑐𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 𝑐 ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
  ∀𝑐 a constant. 

2)∫(𝑓(𝑥) + 𝑔(𝑥))𝑑𝑥

𝑏

𝑎

= ∫𝑓(𝑥)𝑑𝑥

𝑏

𝑎

+∫𝑔(𝑥)𝑑𝑥

𝑏

𝑎

 

3) ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= ∫ 𝑓(𝑥)𝑑𝑥

𝑐

𝑎
+ ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑐
  𝑐 ∈]a, b[. 

4) ∫ (𝑓(𝑥). 𝑔(𝑥))𝑑𝑥
𝑏

𝑎
≠ ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
. ∫ 𝑔(𝑥)𝑑𝑥
𝑏

𝑎
 

Example1 : 

∫ 2𝑥𝑑𝑥
2

0
= 2∫ 𝑥𝑑𝑥

2

0
= 2 [

𝑥2

2
]
0

2

= 4 

     1)  

Example2: 

∫ (4𝑐𝑜𝑠𝑥 + 𝑥3)𝑑𝑥


2
0

= 4∫ 𝑐𝑜𝑠𝑥𝑑𝑥


2
0

+ ∫ (𝑥3)𝑑𝑥


2
0

= 4[𝑠𝑖𝑛𝑥]0



2 + [
𝑥4

4
]
0



2
= 4 +

4

64
 

1) and 2) 

Example3:  

∫(𝑥2 + 𝑥)(𝑥3 − 1)𝑑𝑥 =

2

0

∫(𝑥5 + 𝑥4 − 𝑥2 − 𝑥)𝑑𝑥 =

2

0

[
𝑥6

6
+
𝑥5

5
−
𝑥3

3
−
𝑥2

2
]
0

2

 

=
32

3
+
32

5
−
8

3
−
1

2
=
417

30
 

Note: 

-We can notice, it is easy to calculate ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
  if 𝑓(𝑥) is one of usual functions of the table 

or combinations of them (addition, subtraction, multiplication by a real). 

-The question that now arises how to calculate ∫ (𝑓(𝑥). 𝑔(𝑥))𝑑𝑥
𝑏

𝑎
 since it is different from 
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∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
. ∫ 𝑔(𝑥)𝑑𝑥
𝑏

𝑎
. 

If both f and g are polynomial functions, in general, we have just to develop and integrate 

such as in example 3. 

If one of them is not a polynomial function, we will use one of the following methods  

{
𝑈 − 𝑆𝑢𝑏𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛 𝑚𝑒𝑡ℎ𝑜𝑑 

𝑜𝑟
 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑏𝑦 𝑝𝑎𝑟𝑡𝑠 𝑚𝑒𝑡ℎ𝑜𝑑

 

I .2.2 Evaluation of definite integral by U-Substitution method: 

Most of the time, this method is used when we have a function and its derivative i.e our 

definite integral is of form∫ 𝑓(𝑔(𝑥)). 𝑔′(𝑥)𝑑𝑥
𝑏

𝑎
. 

Note that we have g(x) and its derivative𝑔′(𝑥). 

This integral can be transformed into another form ( easy to integrate) by doing the following 

substitution.  

𝑔(𝑥)=U ⇒ dU= 𝑔′(𝑥)𝑑𝑥So ∫ 𝑓(𝑔(𝑥)). 𝑔′(𝑥)𝑑𝑥
𝑏

𝑎
= ∫ 𝑓(𝑈). 𝑑𝑈

𝑔(𝑏)

𝑔(𝑎)
 

Then we can integrate f(U). 

Example1: 

∫ (𝑥2 + 1)𝑎2𝑥𝑑𝑥
2

0
    a ∈ N 

𝑖𝑓𝑎 =

{
 
 

 
 
1
𝑜𝑢
2
𝑜𝑢
3

 one can calculate(𝑥2 + 1)𝑎 and then (𝑥2 + 1)𝑎2𝑥   is a polynomial function that 

we can integrate easily. 

If 𝑎 > 4 then it takes time to compute(𝑥2 + 1)𝑎 that is why we use U-Substitution method 

(since we have a function and its derivatives) 

Let us pick a=50 

∫(𝑥2 + 1)502𝑥𝑑𝑥

2

0

   (1) 

U-Substitution : 

𝑥2 + 1 = 𝑈⇒2xdx = dU 

x=0⇒U=1 

x=2⇒U=5 
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(1) 𝑏𝑒𝑐𝑜𝑚𝑒𝑠 ∫ 𝑈50𝑑𝑈
5

1
= [

𝑈51

51
]
1

5

=
551

51
−

1

51
=
551−1

51
 

Example2: 

∫𝑥2(𝑥3 − 4)5𝑑𝑥

3

0

 (2) 

U-Substitution : 

𝑈 = (𝑥3 − 4)⇒3𝑥2𝑑𝑥 = 𝑑𝑈 

x=0⇒U=-4 

𝑥 = 3⇒𝑈 = 33 − 4 = 23 

(2) =
1

3
∫3𝑥2(𝑥3 − 4)5𝑑𝑥

3

0

=
1

3
∫ 𝑈5𝑑𝑈

23

−4

= [
𝑈6

6
]
−4

23

=
236

6
−
(−4)6

6
 

Example 3: 

∫ 2𝑥cos (𝑥2)𝑑𝑥
π

0
  (3) 

U-Substitution : 

𝑈 = 𝑥2⇒2𝑥𝑑𝑥 = 𝑑𝑈 

x=0⇒U=0 

𝑥 = π⇒𝑈 = π2 

(3) = ∫ cos(𝑈) 𝑑𝑈
π2

0
=[sin (𝑈)]0

π2=sin(π2) − sin (0)=sin(π2) 

 

I .2.3 Evaluation of definite integral by integral by parts method:  

∫𝑈(𝑥)𝑉′(𝑥)𝑑𝑥

𝑏

𝑎

= [𝑈(𝑥)𝑉(𝑥)]𝑎
𝑏 −∫𝑈′(𝑥)𝑉(𝑥)𝑑𝑥

𝑏

𝑎

 

Example1 : 

∫𝑥𝑒−𝑥𝑑𝑥

1

0

 

U=x ⇒ dU=dx 

𝑑𝑉 = 𝑒−𝑥𝑑𝑥⇒𝑉 = −𝑒−𝑥 

∫ 𝑥𝑒−𝑥𝑑𝑥 =
1

0
[−𝑥𝑒−𝑥]0

1 − ∫ −𝑒−𝑥𝑑𝑥 =
1

0
[−𝑥𝑒−𝑥]0

1 + ∫ 𝑒−𝑥𝑑𝑥 
1

0
 

 

  U  dV      = [−𝑥𝑒−𝑥]0
1 + [−𝑒−𝑥]0

1 = −𝑒−1 − 𝑒−1 + 1 = −2𝑒−1 + 1 
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Example 2: 

∫ (𝑥𝑠𝑖𝑛𝑥𝑑𝑥


2
0

=  [−𝑥𝑐𝑜𝑠𝑥]0



2 + ∫ 𝑐𝑜𝑠𝑥𝑑𝑥 = 


2
0

[−𝑥𝑐𝑜𝑠𝑥]0



2 + [𝑠𝑖𝑛𝑥]0



2 = 1 

 

     U dV 

II. Double Integral: 

II.1 Definition of double integral: 

𝐿𝑒𝑡𝑓: AxB         ℝ    be a continuous function on AxB      

           (x,y)        𝑓(𝑥, 𝑦) 

A, B are intervals of ℝ. 

Let a, b, c, d be real constants such that a, b  𝑎𝑟𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓𝐴 and c,d 𝑜𝑓 𝐵 

∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥
𝑑

𝑐

𝑏

𝑎
   is the Volume of a solid bounded by the area z=f(x,y), xy- plane , planes 

x=a, x=b, y=c and y=d. 

Notes: 

-Intersection between xy-plane and the four vertical planes x=a, x=b, y=c et y=d gives (a,b,c,d) 

rectangle. 

-∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥
𝑑

𝑐

𝑏

𝑎
  is the Volume of a solid, its ceiling is a part of the surface z= f(x,y) and 

its base is the full rectangle R=(a,b,c,d) ( see figure I.2). 

 

 

Figure I.2 Meaning of a double integral 

-Double integral provides a volume under a surface (z=f(x,y)) while a definite integral 

provides an area under a curve (y=f(x)). 
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Figure I.3 Indefinite integral vs double integral 

II.2 Evaluation of double integral: 

∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥 =
𝑑

𝑐

𝑏

𝑎
∫ [∫ 𝑓(𝑥, 𝑦)𝑑𝑦]𝑑𝑥

𝑑

𝑐

𝑏

𝑎
 

                                      (1) 

                                    (2) 

To compute∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥
𝑑

𝑐

𝑏

𝑎
,  first we calculate the definite integral (1) (where y plays the 

role of the variable and x a constant); the result of (1) is a function g of x then we compute the 

definite integral (2). 

∫∫𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥

𝑑

𝑐

𝑏

𝑎

= ∫[∫𝑓(𝑥, 𝑦)𝑑𝑦]𝑑𝑥

𝑑

𝑐

𝑏

𝑎

= ∫[𝑔(𝑥)]𝑑𝑥

𝑏

𝑎

 

Example1: 

∫ ∫ 𝑥2𝑦𝑑𝑦𝑑𝑥
2

1

1

0
= ∫ [∫ 𝑥2𝑦𝑑𝑦]𝑑𝑥

2

1

1

0
= ∫ 𝑥2 [

𝑦2

2
]
𝑦=1

𝑦=2

𝑑𝑥 = ∫ 𝑥2[
4

2
−
1

2
]𝑑𝑥

1

0

1

0
=

∫
3

2
𝑥2𝑑𝑥 =

3

2
[
𝑥3

3
]
𝑥=0

𝑥=11

0
=
3

2
[
1

3
− 0]= 

1

2
 

Example2: 

∫∫𝑥𝑒𝑦𝑑𝑦𝑑𝑥

3

0

2

0

= ∫[∫𝑥𝑒𝑦𝑑𝑦]𝑑𝑥

3

0

2

0

= ∫𝑥[𝑒𝑦]𝑦=0
𝑦=3
𝑑𝑥

2

0

= ∫𝑥[𝑒3 − 1]𝑑𝑥

2

0

 

= [𝑒3 − 1]∫𝑥𝑑𝑥

2

0

= [𝑒3 − 1] [
𝑥2

2
]
𝑥=0

𝑥=2

= [𝑒3 − 1] 
4

2
= 2[𝑒3 − 1] 

Note: 

One can generalize this notion to multiple integrals for example for function of three variables 

f(x,y,z) (triple integral): 

∫ ∫ ∫ 𝑓(𝑥, 𝑦, 𝑧)
𝑓

𝑒
𝑑𝑧𝑑𝑦𝑑𝑥 =

𝑑

𝑐

𝑏

𝑎
∫ [∫ [∫ 𝑓(𝑥, 𝑦, 𝑧)

𝑓

𝑒
𝑑𝑧]𝑑𝑦]𝑑𝑥

𝑑

𝑐

𝑏

𝑎
 

                                                            (1) 

                                                             (2) 

                                                            (3) 
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To compute∫ ∫ ∫ 𝑓(𝑥, 𝑦, 𝑧)
𝑓

𝑒
𝑑𝑧𝑑𝑦𝑑𝑥

𝑑

𝑐

𝑏

𝑎
,  first we calculate the definite integral (1) (where z 

plays the role of the variable and x,y  constants); the result of (1) is a function g of x and y 

then we compute the definite integral (2) (where y plays the role of the variable and x a  

constant).Finally we compute the definite integral (3). 

 

II.3 Fubini’s theorem: 

𝐿𝑒𝑡𝑓: AxB         ℝ   be a continuous function on AxB      

          (x,y)        𝑓(𝑥, 𝑦) 

A, B are intervals of ℝ 

Let a, b, c, d  be real constants such that a,b are  𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓𝐴  and c,d 𝑜𝑓 𝐵 

𝑡ℎ𝑒𝑛 ∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥

𝑦=𝑑

𝑦=𝑐

𝑥=𝑏

𝑥=𝑎

= ∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝑥=𝑏

𝑥=𝑎

𝑦=𝑑

𝑦=𝑐

 

Fubini’s theorem states that the order of integration (for a continuous function) does not 

matter ; if we integrate first with respect to x and then with respect to y or vice versa. 

Example1 : 

∫∫𝑥2𝑦𝑑𝑦𝑑𝑥

2

1

1

0

 

𝑓(𝑥, 𝑦) = 𝑥2 𝑦  is a continuous function on ℝxℝ thus one can apply Fubini’s theorem   

We have already found :∫ ∫ 𝑥2𝑦𝑑𝑦𝑑𝑥
𝑦=2

𝑦=1

𝑥=1

𝑥=0
=
1

2
 

Let us calculate∫ ∫ 𝑥2𝑦𝑑𝑥𝑑𝑦
𝑥=1

𝑥=0

𝑦=2

𝑦=1
: 

∫ ∫ 𝑥2𝑦𝑑𝑥𝑑𝑦 = ∫ [ ∫ 𝑥2𝑦𝑑𝑥]𝑑𝑦

𝑥=1

𝑥=0

𝑦=2

𝑦=1

𝑥=1

𝑥=0

𝑦=2

𝑦=1

= ∫ 𝑦[
𝑥3

3
]𝑥=0
𝑥=1𝑑𝑦

𝑦=2

𝑦=1

 

= ∫ 𝑦 [
1

3
]𝑑𝑦

𝑦=2

𝑦=1

=
1

3
∫ 𝑦𝑑𝑦

𝑦=2

𝑦=1

=
1

3
[
𝑦2

2
]𝑦=1
𝑦=2

=
1

3
[
4

2
−
1

2
] =

1

3
[
3

2
] =

1

2
 

So Fubini’s theorem is well satisfied. 

∫ ∫ 𝑥2𝑦𝑑𝑦𝑑𝑥

𝑦=2

𝑦=1

𝑥=1

𝑥=0

= ∫ ∫ 𝑥2𝑦𝑑𝑥𝑑𝑦

𝑥=1

𝑥=0

𝑦=2

𝑦=1

=
1

2
 

Example 2:  
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∫∫𝑥𝑒𝑦𝑑𝑦𝑑𝑥

3

0

2

0

 

𝑓(𝑥, 𝑦) = 𝑥𝑒𝑦 is a continuous function on ℝxℝ thus one can apply Fubini’s theorem   

We have already found: ∫ ∫ 𝑥𝑒𝑦𝑑𝑦𝑑𝑥
𝑦=3

𝑦=0

𝑥=2

𝑥=0
= 2[𝑒3 − 1] 

Let us compute ∫ ∫ 𝑥𝑒𝑦𝑑𝑥
𝑥=2

𝑥=0

𝑦=3

𝑦=0
𝑑𝑦: 

∫ ∫ 𝑥𝑒𝑦𝑑𝑥

𝑥=2

𝑥=0

𝑦=3

𝑦=0

𝑑𝑦 = ∫ 𝑒𝑦 [
𝑥2

2
]
𝑥=0

𝑥=2
𝑦=3

𝑦=0

𝑑𝑦 

                               = ∫ 𝑒𝑦[
4

2
]

𝑦=3

𝑦=0
𝑑𝑦 =

4

2
∫ 𝑒𝑦
𝑦=3

𝑦=0
𝑑𝑦 =

4

2
[𝑒𝑦]𝑦=0

𝑦=3
= 2[𝑒3 − 1] 

Consequently Fubini’s theorem is verified. 

∫ ∫ 𝑥𝑒𝑦𝑑𝑦𝑑𝑥 =

𝑦=3

𝑦=0

𝑥=2

𝑥=0

∫ ∫ 𝑥𝑒𝑦𝑑𝑥

𝑥=2

𝑥=0

𝑦=3

𝑦=0

𝑑𝑦 = 2[𝑒3 − 1] 

Note: 

-The choice of the integral to calculate first depends on which integral is easy to compute. 

Example: 

Do 1)∫ [∫
𝑥

1+𝑥𝑦
𝑑𝑦]𝑑𝑥

𝑦=2

𝑦=1

𝑥=1

𝑥=0
 𝑜𝑟  2)∫ [∫

𝑥

1+𝑥𝑦
𝑑𝑥]𝑑𝑦

𝑥=1

𝑥=0

𝑦=2

𝑦=1
 

                     A                                           B 

We choose 1) since integral A is easier to calculate than integral B. 

NB: in A, we use a U-substitution method since we have a function (1+xy) and its    

       derivatives (x) 

-Let us assume that𝑓(𝑥, 𝑦) = 𝑘 (k a constant). 

∫ ∫ 𝑘𝑑𝑦𝑑𝑥 =
𝑑

𝑐

𝑏

𝑎
volume of a parallelepiped of height k. 

                = [b-a].[d-c].k 

By analogy, one can deduce: 

∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥 =
𝑑

𝑐

𝑏

𝑎
Volume of a parallelepiped whose ceiling is a surface 

                                       z=𝑓(𝑥, 𝑦) (not a plane) 

II.4 Integral over a region D (calculation of volums): 

Let f: D         ℝ   be a continuous function on D (D a surface of ℝ2 ) 

        (x,y)       𝑓(𝑥, 𝑦) 

∬ 𝑓(𝑥, 𝑦)𝑑𝑠
𝐷

=Volume of a solid bounded by the region D and the surface z= f(x,y). 
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Example1: 

D= (full) rectangle ={(x,y) ∈ ℝ2 / 𝑎 ≤ 𝑥 ≤ 𝑏 𝑎𝑛𝑑 𝑐 ≤ 𝑦 ≤ 𝑑} 

∬ 𝑓(𝑥, 𝑦)𝑑𝑠 =
𝐷

∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥
𝑑

𝑐

𝑏

𝑎
  we get back to the first case seen above. 

                  = Volume of a parallelepiped whose ceiling is a surface S and its 

                      base is the region R ( full rectangle (a,b,c,d)) 

 

Figure I.4 Integral over a full Rectangle R 

Example2: 

D= a disc R. 

∬ 𝑓(𝑥, 𝑦)𝑑𝑠
𝐷

 = volume of a cylinder whose ceiling is a surface z=f(x,y). 

 

Figure I.5 Integral over a disk R 

Example3: 

D= any surface on xy-plane. 

∬ 𝑓(𝑥, 𝑦)𝑑𝑠
𝐷

 = volume of a solid of form D. 

II.4.1 Integral over a rectangular region D: 

D= {(x,y) ∈ ℝ2 / a≤ 𝑥 ≤ 𝑏 𝑎𝑛𝑑 𝑐 ≤ 𝑦 ≤ 𝑑}= full rectangle. 

                y 

                d                                            

                c               

                 o          a       b       x 

                    

                     Figure I.6 D a full rectangle in xy-plane 

D 
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∬𝑓(𝑥, 𝑦)𝑑𝑠

𝐷

= ∫∫𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥

𝑑

𝑐

𝑏

𝑎

 

We know how to calculate this double integral 

∫∫𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥

𝑑

𝑐

𝑏

𝑎

= ∫[∫𝑓(𝑥, 𝑦)𝑑𝑦]𝑑𝑥

𝑑

𝑐

𝑏

𝑎

= ∫[∫𝑓(𝑥, 𝑦)𝑑𝑥]𝑑𝑦

𝑏

𝑎

𝑑

𝑐

 

                 if one apply Fubini’s theorem 

II.4.2 Integral over a non rectangular and non circular region D: 

We have two cases: 

II.4.2.1 Integral over a region bounded by two curves and two vertical lines:  

D= {(x,y) ∈ ℝ2/ {𝑎 ≤ 𝑥 ≤ 𝑏  𝑎𝑛𝑑 1(𝑥) ≤ 𝑦 ≤ 2(𝑥)  𝑤ℎ𝑒𝑟𝑒 1(𝑥),2(𝑥) 𝑎𝑟𝑒 𝑐𝑢𝑣𝑒𝑠} 

                                                y              2(𝑥) 

                                                               

                                                                          1(𝑥)   

                                                          a       b                x 

                              

Figure I.7 D bounded by two vertical lines in xy-plane 

Note : 

1(𝑥),2(𝑥) can be oblique lines so D will be for example of form: 

                                                            y 

                                     

                                                  2(𝑥)                      

                                                       

1(𝑥) 

                                                            o        a       b            x           

                   Figure I.8 D bounded by two vertical and two oblic lines in xy-plane 

∬𝑓(𝑥, 𝑦)𝑑𝑠

𝐷

= ∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥

 𝑦=2(𝑥)

 𝑦=1(𝑥)

𝑥=𝑏

𝑥=𝑎

= ∫ [ ∫ 𝑓(𝑥, 𝑦)𝑑𝑦]𝑑𝑥

 𝑦=2(𝑥)

 𝑦=1(𝑥)

𝑥=𝑏

𝑥=𝑎

 

Example1 : 

D= {(x,y)∈ ℝ2 /0 ≤ 𝑥 ≤ 2  𝑎𝑛𝑑 0 ≤ 𝑦 ≤
𝑥

2
} 

 

 

 

D 

D 
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                                                                  y=x/2 

 

                                                                                           y 

                                                              0                x             2  

 

Figure I.9 D a triangle in xy-plane 

D is a triangle. 

∬𝑓(𝑥, 𝑦)𝑑𝑠 =

𝐷

∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥

𝑦=
𝑥
2

𝑦=0

𝑥=2

𝑥=0

= ∫ [ ∫ 𝑓(𝑥, 𝑦)𝑑𝑦]𝑑𝑥

𝑦=
𝑥
2

𝑦=0

𝑥=2

𝑥=0

(1) 

Let us take for example𝑓(𝑥, 𝑦)=(x+1)y 

(1) = ∫ [∫ (𝑥 + 1)𝑦𝑑𝑦]𝑑𝑥 = ∫ (𝑥 + 1)
𝑥=2

𝑥=0
[
𝑦2

2
]
𝑦=0

𝑦=
𝑥

2
𝑑𝑥

𝑦=
𝑥

2
𝑦=0

𝑥=2

𝑥=0
= ∫ (𝑥 + 1)

𝑥=2

𝑥=0
[
(
𝑥

2
)
2

2
− 0]𝑑𝑥 

= ∫ (𝑥 + 1)

𝑥=2

𝑥=0

[
𝑥2

8
] 𝑑𝑥 = ∫ (

𝑥3

8
+
𝑥2

8
)

𝑥=2

𝑥=0

𝑑𝑥 = [
𝑥4

32
+
𝑥3

24
]
𝑥=0

𝑥=2

=
16

32
+
8

24
=
5

6
 

Example2:  

D= {(x,y) ∈ ℝ2 / 0 ≤ 𝑥 ≤ 1  𝑎𝑛𝑑 𝑥 ≤ 𝑦 ≤ 1} 

 

                                                            1 

                                                    y                                     y=x 

                                                             0                  1 

x 

Figure I.10 D a triangle  in xy-plane 

 

∬ 𝑒𝑦
2
𝑑𝑠

𝐷
= ∫ ∫ 𝑒𝑦

2
𝑑𝑦𝑑𝑥

𝑦=1

𝑦=𝑥

𝑥=1

𝑥=0
= ∫ [∫ 𝑒𝑦

2
𝑑𝑦]𝑑𝑥

𝑦=1

𝑦=𝑥

𝑥=1

𝑥=0
 

                                                                         (1) 

Integral (1) is difficult to calculate, let us apply Fubini’s theorem: 

∫ [∫ 𝑒𝑦
2
𝑑𝑦]𝑑𝑥 = ∫ [∫ 𝑒𝑦

2
𝑑𝑥]𝑑𝑦

𝑥=𝑦

𝑥=0

𝑦=1

𝑦=0

𝑦=𝑥

𝑦=0

𝑥=1

𝑥=0
 

                                                       (2) 

Integral (2) is easy to calculate because x is the variable and y plays the role of a constant. 

D 

D 
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= ∫ [𝑒𝑦
2
∫ 𝑑𝑥]𝑑𝑦

𝑥=𝑦

𝑥=0

𝑦=1

𝑦=0

= ∫ 𝑒𝑦
2

𝑦=1

𝑦=0

[𝑥]𝑥=0
𝑥=𝑦
𝑑𝑦 = ∫ 𝑒𝑦

2

𝑦=1

𝑦=0

𝑦𝑑𝑦    (𝐼) 

We do an U-substitution: 

𝑈 = 𝑒𝑦
2
⇒dU = 2y𝑒𝑦

2
dy 

𝑦 = 0⇒𝑈 = 𝑒0 = 1 

𝑦 = 1⇒𝑈 = 𝑒 

One replace in (I) : 

(𝐼) = ∫
1

2

𝑈=𝑒

𝑈=1

𝑑𝑈 =
1

2
[𝑈]𝑈=1

𝑈=𝑒 =
1

 2
[𝑒 − 1] 

Example3: 

D= {(x,y) ∈ ℝ2 / 0 ≤ 𝑥 ≤ 2  𝑎𝑛𝑑 𝑥2 − 1 ≤ 𝑦 ≤ 𝑥2 + 2} 

                                    𝑦 = 𝑥2 + 2 

 

 

                                                                y          D  

                                                            0                             2                 

                                                                                                   𝑦 = 𝑥2 − 1 

 

 

Figure I.11 D a region bounded by two vertical lines in xy-plane 

∬𝑥𝑦𝑑𝑠

𝐷

= ∫ ∫ 𝑥𝑦𝑑𝑦𝑑𝑥

𝑦=𝑥2+2

𝑦=𝑥2−1

𝑥=2

𝑥=0

= ∫ [ ∫ 𝑥𝑦𝑑𝑦]𝑑𝑥

𝑦=𝑥2+2

𝑦=𝑥2−1

𝑥=2

𝑥=0

= ∫ [𝑥
𝑦2

2
]
𝑦=𝑥2−1

𝑦=𝑥2+2𝑥=2

𝑥=0

𝑑𝑥

= ∫ 𝑥[
(𝑥2 + 2)2

2
−
(𝑥2 − 1)2

2
]

𝑥=2

𝑥=0

𝑑𝑥 = ∫ 𝑥[
6𝑥2 + 3

2
] 𝑑𝑥

𝑥=2

𝑥=0

 

=
1

2
∫ 6𝑥3 + 3𝑥 𝑑𝑥 =

𝑥=2

𝑥=0

1

2
[
6𝑥4

4
+
3𝑥2

2
]
𝑥=0

𝑥=2

=
1

2
[
6 (16)

4
+
3(4)

2
] 

=
1

2
[64 + 6] = 35 
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Example4 : 

D= {(x,y) ∈ ℝ2/ −2 ≤ 𝑥 ≤ 2  𝑎𝑛𝑑  2 ≤ 𝑦 ≤ −
1

4
𝑥2 + 3} 

               𝑦 = −
1

4
𝑥2 + 3              y   

                                                           

                                                      2        

 

 

                                 -2                  0                     2                       x 

 

 

Figure I.12 D a region bounded by two vertical lines in xy-plane 

∬(𝑥 − 𝑦)𝑑𝑠

𝐷

= ∫ ∫ (𝑥 − 𝑦)𝑑𝑦𝑑𝑥

𝑦=−
1
4
𝑥2+3

𝑦=2

𝑥=2

𝑥=−2

= ∫ [ ∫ (𝑥 − 𝑦)𝑑𝑦]𝑑𝑥

𝑦=−
1
4
𝑥2+3

𝑦=2

𝑥=2

𝑥=−2

 

= ∫ [𝑥𝑦 −
𝑦2

2
]
𝑦=2

𝑦=−
1
4
𝑥2+3𝑥=2

𝑥=−2

𝑑𝑥 = ∫ 𝑥(−
1

4
𝑥2 + 3) − 2𝑥 −

1

2
[(−

1

4
𝑥2 + 3)2 − 4]𝑑𝑥

𝑥=2

𝑥=−2

 

= ∫ −
1

4
𝑥3 + 𝑥 −

1

2
[
𝑥4

16
−
3

2
𝑥2 + 9 − 4 ]𝑑𝑥

𝑥=2

𝑥=−2

= ∫ [
𝑥4

32
−
1

4
𝑥3 +

3

4
𝑥2 + 𝑥 −

5

2
] 𝑑𝑥

𝑥=2

𝑥=−2

 

=  [
𝑥5

160
−
1

16
𝑥4 +

1

4
𝑥3 +

1

2
𝑥2 −

5

2
 𝑥]

𝑥=−2

𝑥=2

 

= [
32

160
− 1 +

8

4
+ 2 − 5 +

32

160
+ 1 +

8

4
− 2 − 5] =

64

160
+
16

4
− 10 =

−28

5
 

II.4.2.2 Integral over a region bounded by two curves and two horizontal lines: 

D= {(x,y) / 1(𝑥) ≤ 𝑥 ≤ 2(𝑥) 𝑎𝑛𝑑 c ≤ 𝑦 ≤ 𝑑 𝑤ℎ𝑒𝑟𝑒 1(𝑦),2(𝑦) 𝑎𝑟𝑒 𝑐𝑢𝑟𝑏𝑒𝑠} 

 

                                                                1(𝑦)2(𝑦) 

                                         d   

                                                          D      

                                        c 

                              

 

Figure I.13 D bounded by two horizontal lines in xy-plane 

D 
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∬ 𝑓(𝑥, 𝑦)𝑑𝑠
𝐷

= ∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑥=2(𝑦)

𝑥=1(𝑦)

𝑦=𝑑

𝑦=𝑐
= ∫ [∫ 𝑓(𝑥, 𝑦)𝑑𝑥]𝑑𝑦

𝑥=2(𝑦)

𝑥=1(𝑦)

𝑦=𝑑

𝑦=𝑐
. 

 

Note: 

External integral is always the integral whose the limits of integration are constant. 

Example1 : 

D= {(x,y) ∈ ℝ2 / 1 ≤ 𝑥 ≤ 𝑒𝑦  𝑎𝑛𝑑 0 ≤ 𝑦 ≤ 1 }  

                              1 

                                             

                                            D                    𝑥 = 𝑒𝑦           

                             0            1                 e 

                                    Figure I.14 Graph of D 

∬𝑥𝑑𝑠

𝐷

= ∫ ∫ 𝑥𝑑𝑥𝑑𝑦

𝑥=𝑒𝑦

𝑥=1

𝑦=1

𝑦=0

= ∫ [
𝑥2

2
]𝑥=1
𝑥=𝑒𝑦

𝑦=1

𝑦=0

𝑑𝑦 = ∫ (
(𝑒𝑦)2

2
−
1

2
)𝑑𝑦

𝑦=1

𝑦=0

 

This integral is difficult to calculate, let us apply Fubini’s theorem: 

∬𝑥𝑑𝑠

𝐷

= ∫ ∫ 𝑥𝑑𝑥𝑑𝑦

𝑥=𝑒𝑦

𝑥=0

𝑦=1

𝑦=0

= ∫ ∫ 𝑥𝑑𝑦𝑑𝑥

𝑦=1

𝑦=𝑙𝑛𝑥

𝑥=𝑒

𝑥=1

= ∫ [ ∫ 𝑥𝑑𝑦]𝑑𝑥

𝑦=1

𝑦=𝑙𝑛𝑥

𝑥=𝑒

𝑥=1

 

= ∫ [𝑥𝑦]𝑦=𝑙𝑛𝑥  
𝑦=1𝑥=𝑒

𝑥=1
𝑑𝑥 = ∫ 𝑥[1 − 𝑙𝑛𝑥]

𝑥=𝑒

𝑥=1
𝑑𝑥 = ∫ 𝑥

𝑥=𝑒

𝑥=1
𝑑𝑥 − ∫ 𝑥𝑙𝑛𝑥

𝑥=𝑒

𝑥=1
𝑑𝑥 

          (1)                    (2) 

(1) =  [
𝑥2

2
]
𝑥=1

𝑥=𝑒

=
𝑒2

2
−
1

2
 

Let us use integration by parts method to compute (2): 

Reminder: ∫ 𝑈𝑑𝑉 =
𝑏

𝑎
[𝑈𝑉]𝑎

𝑏 − ∫ 𝑉𝑑𝑈
𝑏

𝑎
 

∫ (𝑙𝑛𝑥)𝑥
𝑥=𝑒

𝑥=1
𝑑𝑥 = [

𝑥2

2
𝑙𝑛𝑥 ]

1

𝑒

− ∫
𝑥2

2𝑥
𝑑𝑥

𝑒

1
=
𝑒2

2
𝑙𝑛𝑒 −

1

2
[
𝑥2

2
]
1

𝑒

=  
𝑒2

2
−
1

4
[𝑒2 − 1] =

1

4
[𝑒2 + 1] 

          U      dV 

𝑈 = 𝑙𝑛𝑥⇒ 𝑑𝑈 =
1

𝑥
𝑑𝑥,     dV=x⇒𝑉 =

𝑥2

2
+ 𝐶 

Therefore 

∬𝑥𝑑𝑠

𝐷

= (1) + (2) =  
𝑒2

2
−
1

2
+
1

4
[𝑒2 + 1] =

3𝑒2

4
−
1

4
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Example2: 

D= {(x,y) / 𝑦2 ≤ 𝑥 ≤ 𝑦2 + 3  𝑎𝑛𝑑 1 ≤ 𝑦 ≤ 2 }  

         𝑥 = 𝑦2               𝑥 = 𝑦2 + 3 

                                                  2 

                                                 1 

 

 

 

Figure I.15 Graph of D 

∬𝑥𝑦𝑑𝑠

𝐷

= ∫ ∫ 𝑥𝑦𝑑𝑥𝑑𝑦

𝑥=𝑦2+3

𝑥=𝑦2

𝑦=2

𝑦=1

= ∫ [ ∫ 𝑥𝑦𝑑𝑥]𝑑𝑦

𝑥=𝑦2+3

𝑥=𝑦2

𝑦=2

𝑦=1

∫ 𝑦[
𝑥2

2
]
𝑥=𝑦2
𝑥=𝑦2+3

𝑑𝑦

𝑦=2

𝑦=1

 

= ∫ 𝑦(
(𝑦2 + 3)2

2
−
𝑦4

2
)𝑑𝑦

𝑦=2

𝑦=1

=
1

2
∫ 𝑦(6𝑦2 + 9)

𝑦=2

𝑦=1

𝑑𝑦 =
1

2
[
6𝑦4

4
+
9𝑦2

2
]𝑥=1
𝑥=2 

=
1

2
[24 + 18 −

6

4
−
9

2
] =

1

2
[42 − 6] =

36

2
= 18 

II.5.Integral over a disk D: 

When D is a disk or a part of a disk, the double integral in Cartesian coordinates (x,y) 

becomes difficult to manipulate, we have to change to polar coordinates. 

D is

{
 
 

 
 
𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟

𝑜𝑟
𝑠𝑞𝑢𝑎𝑟𝑒
𝑜𝑢

𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟

region                               D is a{
𝑑𝑖𝑠𝑘
𝑜𝑟

𝑎 𝑝𝑎𝑟𝑡 𝑜𝑓𝑎 𝑑𝑖𝑠𝑘
 

 

 

Cartesian coordinates (x,y)                                                  polar coordinates(r,) 

                                                                                                          

{
 
 

 
 x = rcos
y = rsin

𝑥2 + 𝑦2 = 𝑟2
𝑦

𝑥
= 𝑡𝑔

      r            

 

                                                   𝑑𝑠 = 𝑟𝑑𝑟𝑑 

D 
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∬ 𝑓(𝑥, 𝑦)𝑑𝑠
𝐷

                       will be converted into    ∫ ∫ 𝑓(rcos, rsin)rdrd
𝑟=

𝑟=

=

=
 

 

 

 

 

 

Example 1: 

∬ 𝑥𝑑𝑠
𝐷

  

 D={(x,y) ∈ ℝ2 / 𝑥2 + 𝑦2 ≤ 4 𝑎𝑛𝑑 0 < 𝑥 < 𝑦   }  is a part of a disk. 

                                                  2         𝑥2 + 𝑦2 = 22 = 𝑟2(circle of radius 2) 

                     x=y  

                                         x=0                                                                       

 

                                                                                   2 

 

Figure I.16 D a part of a disk 

∬𝑥𝑑𝑠

𝐷

= ∫ ∫ 𝑟𝑐𝑜𝑠rdrd

𝑟=2

𝑟=0

=

2

=

4

 = ∫ [ ∫ 𝑟2𝑐𝑜𝑠dr]d

𝑟=2

𝑟=0

=

2

=

4

 = ∫ [
𝑟3

3
𝑐𝑜𝑠]𝑟=0

𝑟=2𝑑

=

2

=

4

 

= ∫
8

3
𝑐𝑜𝑠𝑑

=

2

=

4

 =
8

3
[𝑠𝑖𝑛]

=

4

=

2 =

8

3
[1 −

√2

2
] =

8

3
−
4√2

3
 

Example2: 

∬ (9 − 𝑥2 − 𝑦2)𝑑𝑠
𝐷

  

 D={(x,y)∈ ℝ2/ 𝑥2 + 𝑦2 ≤ 1} is a disk of radius1. 

 

 

 

 

 

 

Figure I.17 D an unit disk  

We have : 9 − 𝑥2 − 𝑦2 = 9 − (𝑥2 + 𝑦2) = 9−𝑟2  

D 

D 
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∬(9− 𝑥2 − 𝑦2)𝑑𝑠 =

𝐷

∫ ∫ (9−𝑟2)rdrd

𝑟=1

𝑟=0

=2

=0

 = ∫ [ ∫ (9𝑟−𝑟3)dr]d

𝑟=1

𝑟=0

=2

=0

 

= ∫ [ ∫ (9𝑟−𝑟3)dr]d

𝑟=1

𝑟=0

=2

=0

 = ∫ [
9𝑟2

2
−
𝑟4

4
]
0

1

𝑑

=2

=0

 = ∫ [
9

2
−
1

4
]𝑑

=2

=0

 =
17

4
∫ 𝑑

=2

=0

 

       =
17

4
[]0

2 =
17

2
 

Exercises 

Exercise 1 : 

Evaluate the following indefinite integrals:  

1)∫𝑥6𝑑𝑥            2)∫ 25𝑥4𝑑𝑥         3) ∫
𝑑𝑡

𝑡3
              4) ∫

10𝑑𝑥

𝑥
 

5) ∫(2𝑥2 + 𝑥)𝑑𝑥                    6) ∫(3sin (𝑡) + 𝑡)𝑑𝑡 

7) ∫ 𝑥𝑦𝑑𝑦                            8)∫(𝑦𝑐𝑜𝑠(𝑡) + 𝑦2) 𝑑𝑡 

 

Exercise 2 : 

Evaluate the given definite integrals:  

1) ∫ 𝑥6𝑑𝑥
2

0
         2) ∫ 25𝑥4𝑑𝑥

1

−3
             3) ∫

𝑑𝑡

𝑡3

2

−1
    4) ∫

10𝑑𝑥

𝑥

3

1
 

5)  ∫ (2𝑥2 + 𝑥)𝑑𝑥
2

1
        6)   ∫ (3sin (𝑡) + 𝑡)𝑑𝑡



2


4

 

Exercise 3 : 

A) Which method we are going to use to compute each of the following definite integrals:  

1)∫ (2𝑥3 + 𝑥)(𝑥 + 1)𝑑𝑥
3

0
          2) ∫ 3𝑒3𝑡𝑑𝑡

0

−1
       3) ∫ (cos (𝑦) + sin (𝑦)



2
0

)𝑑𝑦 

4) ∫ 𝑥𝑙𝑛𝑥
3

1
 dx  5) ∫

sin (𝑥 )𝑑𝑥

(cos (𝑥))3



3


4

    6) ∫ 𝑥𝑐𝑜𝑠(𝑥)𝑑𝑥


6
0

 

B) Evaluate the following definite integrals:  2) ; 4) ; 5) ; 6). 

Exercise 4: 

Evaluate the following double integrals:  

1)∫ ∫ 𝑥2𝑦3𝑑𝑦𝑑𝑥
𝑦=2

𝑦=0

𝑥=3

𝑥=1
                 2) ∫ ∫ 𝑟2𝑑𝑟

𝑟=2

𝑟=1

=


6
=0

𝑑 

 

3)∫ ∫ 𝑥𝑒𝑦𝑑𝑥
𝑥=2

𝑥=1

𝑦=3

𝑦=0
𝑑𝑦   4)  ∫ ∫ (𝑡2 + 𝑡𝑦 + 1)𝑑𝑦

𝑦=1

𝑦=−1

𝑡=2

𝑡=0
𝑑𝑡 

5) ∫ ∫ (𝑦
1

2 + 𝑥3 + 4)𝑑𝑥𝑑𝑦
𝑥=3

𝑥=1

𝑦=2

𝑦=0
 

Exercise 5 : 
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1) Let D={(x,y) ∈ ℝ2 / 0≤ 𝑥 ≤ 2𝑦 𝑎𝑛𝑑 0 ≤ 𝑦 ≤ 1}be a region in xy-plane.  

Compute∬ (4 + 2𝑥 − 𝑦2)𝑑𝑠
𝐷

 

2) Let D={(x,y) ∈ ℝ2 /0≤ 𝑥 ≤ 2 𝑎𝑛𝑑 1 ≤ 𝑦 ≤ 𝑒𝑥}be a region in xy-plane. 

Evaluate∬ 𝑦𝑑𝑠
𝐷

 

Exercice6: 

1) Determine region D in the following integrals and draw D. 

2) Invert order of integrals. 

3) Compute. 

a. ∫ ∫ (𝑥2 + 𝑦2)𝑑𝑥
𝑥=1−𝑦

𝑥=0
𝑑𝑦

𝑦=1

𝑦=0
 

b) ∫ ∫ 𝑥2𝑦3𝑑𝑦𝑑𝑥
𝑦=𝑥

𝑦=𝑥2
𝑥=1

𝑥=0
 

Solutions: 

Solution of exercise 1: 

∫ 𝑓(𝑥)𝑑𝑥= F(x)+C(C is a constant) 

1)∫𝑥6𝑑𝑥  =  
𝑥6+1

6+1
  +C =

𝑥7

7
  +C    (C is a constant) 

2)∫25𝑥4𝑑𝑥 =25 ∫ 𝑥4𝑑𝑥=25
𝑥4+1

4+1
+C =25

𝑥5

5
+C =5𝑥5+C  

  3) ∫
𝑑𝑡

𝑡3
 =∫ 𝑡−3𝑑𝑡= 

𝑥−3+1

−3+1
  +C= 

𝑥−2

−2
+C= - 

1

2𝑥2
+C  

4) ∫
10𝑑𝑥

𝑥
 =10∫

𝑑𝑥

𝑥
 =10lnx +C    

 5) ∫(2𝑥2 + 𝑥)𝑑𝑥 =2∫𝑥2𝑑𝑥 + ∫ 𝑥𝑑𝑥=2
𝑥3

3
+
𝑥2

2
+ 𝐶 

6) ∫(3sin (𝑡) + 𝑡)𝑑𝑡= 3∫𝑠𝑖𝑛𝑡𝑑𝑡 + ∫ 𝑡𝑑𝑡=-3cos(t )+ 
𝑡2

2
 +C   

7) ∫ 𝑥𝑦𝑑𝑦=x∫ 𝑦𝑑𝑦=x
𝑦2

2
+C (y is the variable, x plays the role of a constant) 

8)∫(𝑦𝑐𝑜𝑠(𝑡) + 𝑦2) 𝑑𝑡=𝑦 ∫ 𝑐𝑜𝑠𝑡 𝑑𝑡 + 𝑦2 ∫𝑑𝑡 = ysin(t)+𝑦2t+C  (t is the variable, y plays the 

role of a constant) 

Solution of exercise 2 : 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= [𝐹(𝑥)]𝑎

𝑏=𝐹(𝑏) − 𝐹(𝑎)where F is an anti-derivative of f(x). 

1)∫ 𝑥6𝑑𝑥
2

0
=[
𝑥7

7
]1
2 =

1

7
[27 − 17]=

127

7
 

2) ∫ 25𝑥4𝑑𝑥
1

−3
=  =[5𝑥5]−3

1 =5[15 − (−3)5] =5(1+243)= 1220 

 3) ∫
𝑑𝑡

𝑡3

2

−1
 ==[

1

−2𝑥2
]−1
1 =−

1

2
[
1

22
−

1

(−1)2
]= =−

1

2
[−

3

4
]= =

3

8
 

 4) ∫
10𝑑𝑥

𝑥

3

1
 =10[lnx]1

3=10[ln3-ln1]=10ln3 
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5)  ∫ (2𝑥2 + 𝑥)𝑑𝑥
2

1
 =[2

𝑥3

3
+
𝑥2

2
]1
2=[2

23

3
+
22

2
− 2

13

3
−
12

2
]=
14

3
−
3

2
 =
19

6
 

  6)   ∫ (3sin (𝑡) + 𝑡)𝑑𝑡


2


4

 ==[−3cos (t)  +  
𝑡2

2
]
4



2 

=[−3cos


4
+ 

(


4
)2

2
− (−3cos



2
+ 

(


2
)2

2
]=[-3

√2

2
+
()2

32
+
()2

8
=-3

√2

2
+
5()2

32
 

Solution of exercise 3: 

A)  

1)∫ (2𝑥3 + 𝑥)(𝑥 + 1)𝑑𝑥
3

0
 = ∫ (2𝑥4 + 2𝑥3 + 𝑥2 + 𝑥)𝑑𝑥

3

0
 

Anti-derivative method (since we know anti-derivatives of al l functions above). 

2)∫ 3𝑒3𝑡𝑑𝑡   
0

−1
U-subtitution method because we have a function (3t) and its derivative(3)       

  3) ∫ (cos (𝑦) + sin (𝑦


2
0

))𝑑𝑦   Anti-derivative method. 

4) ∫ 𝑥𝑙𝑛𝑥
3

1
    integral by parts method 

 5) ∫
sin (𝑥)𝑑𝑥

(cos (𝑥))3



3


4

   U-substitution method because we have a function (cos(x)) and its 

derivative (sin(x))         

6) ∫ 𝑥𝑐𝑜𝑠(𝑥)𝑑𝑥


6
0

    integral by parts method 

B)  

2) ∫ 3𝑒3𝑡𝑑𝑡
0

−1
 

U-substitution: 

u=3t  du= 3dt 

t=-1 u=-3 

t=0u=0 

∫ 3𝑒3𝑡𝑑𝑡
0

−1
= ∫ 𝑒𝑢𝑑𝑢

0

−3
==[𝑒𝑢]−3

0 =𝑒0 − 𝑒−3=1- 
1

𝑒3
=
𝑒3−1

𝑒3
 

4) ∫ 𝑥𝑙𝑛𝑥
3

1
 dx 

Integral by parts method: 

∫ 𝑈𝑑𝑉
𝑏

𝑎
= [𝑈𝑉]𝑎

𝑏 − ∫ 𝑉𝑑𝑈 ) 
𝑏

𝑎
(I) 

U=lnx   du=
𝑑𝑥

𝑥
 

dV= xdx𝑉 = ∫𝑑𝑉=∫𝑥𝑑𝑥= 
𝑥2

2
+C 

∫ 𝑙𝑛𝑥𝑥
3

1
dx  =[lnx.

𝑥2

2
]
1

3

- ∫
𝒙𝟐

𝟐
.

3

1

𝑑𝑥

𝑥
  =[ln3.

32

2
− 𝑙𝑛1.

12

2
]- 
𝟏

𝟐
∫ 𝒙
3

1
𝑑𝑥 
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 U      dV     by  (I)                                  0  

=
9𝑙𝑛3

2
 - 
𝟏

𝟐
[
𝑥2

2
]
1

3

=
9𝑙𝑛3

2
 - 
𝟏

𝟐
[
32

2
−
12

2
] =

9𝑙𝑛3

2
−
𝟒

𝟐
=
9𝑙𝑛3−4

𝟐
 

5) ∫
sin (𝑥)𝑑𝑥

(cos (𝑥))3



3


4

 

U-substitution: 

u=cos(x) du= -sin(x) dx 

x=


4
 u=cos



4
=
√2

2
 

x=


3
 u= cos



3
 =
1

2
 

∫
sin (𝑥)𝑑𝑥

(cos (𝑥))3



3


4

 = −∫
𝑑𝑢

(𝑈)3

1

2
√2

2

 = −∫ (𝑈)−3𝑑𝑢
1

2
√2

2

= = − [
(𝑈)−3+1

−3+1
]
√2

2

1

2
= −[

1

−2(𝑈)2
]
√2

2

1

2
 

=
1

2
[
1

(𝑈)2
]
√2

2

1

2
= 
1

2
[
1

(
1

2
)
2 −

1

(
√2

2
)
2]=

1

2
[4 − 2] = 1 

6) ∫ 𝑥𝑐𝑜𝑠(𝑥)𝑑𝑥


6
0

 

Integral by parts method: 

∫ 𝑈𝑑𝑉
𝑏

𝑎
= [𝑈𝑉]𝑎

𝑏 − ∫ 𝑉𝑑𝑈 ) 
𝑏

𝑎
(I) 

U=x   du=𝑑𝑥 

dV= cos(x)dx𝑉 = ∫𝑑𝑉=∫cos (𝑥)𝑑𝑥= sin (𝑥)+C 

∫ 𝑥𝑐𝑜𝑠(𝑥)𝑑𝑥 = 


6
0

[x. sin (𝑥)]0



6- ∫ sin (x)


6
0

𝑑𝑥=[


6
. 𝑠𝑖𝑛



6
− 0. 𝑠𝑖𝑛0]-[−cos(x)]0



6  

 

U       dV             by (I) 

= 


6

1

2
 -[-cos



6
 +cos0]= 



12
 -[-

√3

 2
+1]=



12
+
2−√3

2
 =
+6−6√3

12
 

Solution of exercise4: 

1)∫ ∫ 𝑥2𝑦3𝑑𝑦𝑑𝑥
𝑦=2

𝑦=0

𝑥=3

𝑥=1
 = ∫ ∫ 𝑥2𝑦3𝑑𝑦𝑑𝑥

𝑦=2

𝑦=0

𝑥=3

𝑥=1
 

=∫ [∫ 𝑥2𝑦3𝑑𝑦]𝑑𝑥
𝑦=2

𝑦=0

𝑥=3

𝑥=1
=∫ 𝑥2 [

𝑦4

4
]
𝑦=0

𝑦=2

𝑑𝑥 =
𝑥=3

𝑥=1
 

x is the constant and y is the variable to integrate 

∫ 𝑥2[
24

4
− 0]𝑑𝑥 =

16

4

𝑥=3

𝑥=1
∫ 𝑥2𝑑𝑥 =
𝑥=3

𝑥=1
4 [

𝑥3

3
]
𝑥=1

𝑥=3

=4 [
33

3
−
13

3
]=
104

3
 

x is now the variable to integrate 

2) ∫ ∫ 𝑟2𝑑𝑟
𝑟=2

𝑟=1

=


6
=0

𝑑=∫ [∫ 𝑟2𝑑𝑟
𝑟=2

𝑟=1

=


6
=0

]𝑑 
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 is the constant and 𝑟is the variable to integrate 

=∫ [
𝑟2

2

2]
𝑟=1

𝑟=2
=



6
=0

𝑑 =∫ [
22

2

2 −

12

2

2]

=


6
=0

𝑑 = ∫
3

2

2=



6
=0

𝑑 

 is now the variable to integrate. 

= [
3

2


3

3
]
=0

=


6

= 
1

2
(


6
)3-0=



432

3
 

3)∫ ∫ 𝑥𝑒𝑦𝑑𝑥
𝑥=2

𝑥=1

𝑦=3

𝑦=0
𝑑𝑦=∫ [∫ 𝑥𝑒𝑦𝑑𝑥

𝑥=2

𝑥=1

𝑦=3

𝑦=0
]𝑑𝑦=∫ [

𝑥2

2
𝑒𝑦]

𝑥=1

𝑥=2𝑦=3

𝑦=0
𝑑𝑦 

 

y is the constant and  𝑥 is the variable to integrate 

=∫ [
22

2
𝑒𝑦 −

12

2
𝑒𝑦]

𝑦=3

𝑦=0
𝑑𝑦= 

3

2
∫ 𝑒𝑦
𝑦=3

𝑦=0
𝑑𝑦= 

3

2
[𝑒𝑦]𝑦=0

𝑦=3
=
3

2
[𝑒3 − 𝑒0]=

3

2
[𝑒3 − 1] 

 

4)  ∫ ∫ (𝑡2 + 𝑡𝑦 + 1)𝑑𝑦
𝑦=1

𝑦=−1

𝑡=2

𝑡=0
𝑑𝑡=∫ [∫ (𝑡2 + 𝑡𝑦 + 1)𝑑𝑦

𝑦=1

𝑦=−1
]

𝑡=2

𝑡=0
𝑑𝑡 

t is the constant and  y is the variable to integrate 

= ∫ [𝑡2𝑦 + 𝑡
𝑦2

2
+ 𝑦]

𝑦=−1

𝑦=1𝑡=2

𝑡=0
𝑑𝑡 =∫ [𝑡2. 1 + 𝑡

12

2
+ 1−(𝑡2(−1) + 𝑡

(−1)2

2
+

𝑡=2

𝑡=0

(−1))] 𝑑𝑡=∫ [𝑡2 +
𝑡

2
+ 1+𝑡2 −

𝑡

2
+ 1]

𝑡=2

𝑡=0
𝑑𝑡=∫ [2𝑡2 + 2]

𝑡=2

𝑡=0
𝑑𝑡=[2

𝑡3

3
+ 2𝑡]

𝑡=0

𝑡=2

 

 

          t is now the variable to integrate 

=[2
23

3
+ 2.2 − 0]=

28

3
 

5) ∫ ∫ (𝑦
1

2 + 𝑥3 + 4)𝑑𝑥𝑑𝑦
𝑥=3

𝑥=1

𝑦=2

𝑦=0
= ∫ [∫ (𝑦

1

2 + 𝑥3 + 4)𝑑𝑥]𝑑𝑦
𝑥=3

𝑥=1

𝑦=2

𝑦=0
 

 

y is the constant and x is the variable to integrate 

=∫ [(𝑦
1

2𝑥 +
𝑥4

4
+ 4𝑥)]

𝑥=1

𝑥=3
𝑦=2

𝑦=0
 𝑑𝑦= ∫ [(𝑦

1

2(3) +
34

4
+ 4(3) − ((𝑦

1

21 +
14

4
+

𝑦=2

𝑦=0

4(1)]  𝑑𝑦 =∫ [2𝑦
1

2 +
80

4
+ 8]

𝑦=2

𝑦=0
 𝑑𝑦=∫ [2𝑦

1

2 + 28]
𝑦=2

𝑦=0
 𝑑𝑦 

                     y is now the variable to integrate 

= [2
𝑦
1
2
+1

1

2
+1
+ 28𝑦]

𝑦=0

𝑦=2

=2
2
3
2

3

2

+ 28(2) − 0= 
4

3
√23 +56 

Solution of exercise 5 : 

1)∬ (4 + 2𝑥 − 𝑦2)𝑑𝑠
𝐷

= 
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∫ ∫ (4 + 2𝑥 − 𝑦2)𝑑𝑥
𝑥=2𝑦

𝑥=0
𝑑𝑦

𝑦=1

𝑦=0
=∫ [(∫ (4 + 2𝑥 − 𝑦2)𝑑𝑥]

𝑥=2𝑦

𝑥=0
𝑑𝑦

𝑦=1

𝑦=0
 

=∫ [(4𝑥 + 2
𝑥2

2
−𝑦2𝑥)]

𝑥=0

𝑥=2𝑦

𝑑𝑦
𝑦=1

𝑦=0
=∫ [4(2𝑦) + 4𝑦2−2𝑦3)]𝑑𝑦

𝑦=1

𝑦=0
 

=[(8
𝑦2

2
+ 4

𝑦3

3
− 2

𝑦4

4
)]
𝑦=0

𝑦=1

= 4+
4

 3
-
1

 2
= 
29

 6
 

2)∬ 𝑦𝑑𝑠
𝐷

= ∫ ∫ 𝑦𝑑𝑦𝑑𝑥
𝑦=𝑒𝑥

𝑦=1
= ∫ [∫ 𝑦𝑑𝑦]𝑑𝑥

𝑦=𝑒𝑥

𝑦=1

𝑥=2

𝑥=0

𝑥=2

𝑥=0
=∫ [

𝑦

2

2
]𝑦=1
𝑦=𝑒𝑥

𝑑𝑥
𝑥=2

𝑥=0
 

=
1

2
∫ [(𝑒𝑥)2 − 𝑒2] 𝑑𝑥
𝑥=2

𝑥=0
=
1

2
∫ [𝑒2𝑥 − 𝑒2] 𝑑𝑥
𝑥=2

𝑥=0
=
1

2
[
1

2
𝑒2𝑥 − 𝑒2𝑥]𝑥=0

𝑥=2 

=
1

2
[
1

2
𝑒4 − 2 𝑒2 −

1

2
]=
1

4
[𝑒4 − 4𝑒2 − 1] 

Solution of exercise 6 : 

a . ∫ ∫ (𝑥2 + 𝑦2)𝑑𝑥
𝑥=1−𝑦

𝑥=0
𝑑𝑦

𝑦=1

𝑦=0
 

1) D={(x,y) ∈ ℝ2 / 0≤ 𝑦 ≤ 1 𝑎𝑛𝑑 0 ≤ 𝑥 ≤ 1 − 𝑦} 

                                                           y  

 

 

                                                                   x=1-y                                   

                                               1 

                       Variation of y                                       

                                                           0                                  x    

                                                              Variation of x     

 

2)∫ ∫ (𝑥2 + 𝑦2)𝑑𝑥
𝑥=1−𝑦

𝑥=0
𝑑𝑦

𝑦=1

𝑦=0
=∫ ∫ (𝑥2 + 𝑦2)𝑑𝑦𝑑𝑥

𝑦=1−𝑥

𝑦=0

𝑥=1

𝑥=0
 

      3) Calcul: 

∫ ∫ (𝑥2 + 𝑦2)𝑑𝑦𝑑𝑥
𝑦=1−𝑥

𝑦=0
= ∫ [∫ (𝑥2 + 𝑦2)𝑑𝑦]𝑑𝑥

𝑦=1−𝑥

𝑦=0

𝑥=1

𝑥=0

𝑥=1

𝑥=0
   =∫ [𝑥2𝑦 +

𝑥=1

𝑥=0

𝑦3

3
]𝑦=0
𝑦=1−𝑥

𝑑𝑥=∫ [𝑥2(1 − 𝑥) +
(1−𝑥)3

3
]𝑑𝑥

𝑥=1

𝑥=0
= 

∫ [
−4𝑥3+6𝑥2−3𝑥+1

3
]𝑑𝑥

𝑥=1

𝑥=0
=
1

3
[−4

𝑥4

4
+ 6

𝑥3

3
− 3

𝑥2

2
+ 𝑥]𝑥=0

𝑥=1 

=
1

3
[−1 + 2 −

3

2
+ 1] =

1

6
 

b. ∫ ∫ 𝑥2𝑦3𝑑𝑦𝑑𝑥
𝑦=𝑥

𝑦=𝑥2
𝑥=1

𝑥=0
 

 

 

 

D 
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1) D={(x,y) ∈ ℝ2 / 0≤ 𝑥 ≤ 1 𝑎𝑛𝑑 𝑥2 ≤ 𝑦 ≤ 𝑥} 

 

 

 

                         y=x  

                                                          y= 𝑥2 

0  1     

   Variation of x                                        

2)∫ ∫ 𝑥2𝑦3𝑑𝑦𝑑𝑥
𝑦=2𝑥

𝑦=1

𝑥=1

𝑥=0
 = ∫ ∫ 𝑥2𝑦3𝑑𝑥𝑑𝑦

𝑥=√𝑦

𝑥=𝑦

𝑦=1

𝑦=0
 

       3) Calcul : 

∫ ∫ 𝑥2𝑦3𝑑𝑥𝑑𝑦
𝑥=√𝑦

𝑥=𝑦

𝑦=1

𝑦=0
= ∫ [

𝑥

3

3
𝑦3]𝑥=𝑦

𝑥=√𝑦𝑦=1

𝑦=0
𝑑𝑦 =∫ [

(√𝑦)

3

3

𝑦3 −
𝑦

3

3
𝑦3]

𝑦=1

𝑦=0
𝑑𝑦 

=∫ [
(𝑦)

3

9

2 −
𝑦

3

6
]

𝑦=1

𝑦=0
𝑑𝑦 =[

𝑦

3.
11

2

11

2 −
𝑦

3.7

7
]𝑦=0
𝑦=1

= 
1
33

2

−
1

21
=
2

 33
−

1

21
=
3

231
 

 

 

 

 

 

 

D 
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II.1 Introduction 
Improper integrals have numerous applications across various fields of science, 

engineering, and mathematics such as probability theory, quantum mechanics, fluid 

mechanics and especially in signal processing where they are essential to compute Fourier 

transform, which is used in analyzing signals and also to calculate Laplace Transform used in 

solving differential equations. Both Laplace transform Fourier Transform are introduced in 

this handout in chapter VIII and IX respectively. 

II.2 Definition of improper integrals: 

         IV.2.1 Improper integral type I: 

 They are all integrals of form: ∫ 𝑓(𝑥)𝑑𝑥  
+∞

𝑎
or ∫ 𝑓(𝑥)𝑑𝑥

𝑏

−∞
  or  ∫ 𝑓(𝑥)𝑑𝑥 

+∞

−∞
 

Where f is a continuous function on [a, +∞[ , ] −∞, 𝑏] and ] −∞,∞[ respectively. 

Examples 

 ∫ (𝑥 + 1)𝑑𝑥  
+∞

−1
    ∫

2

𝑥−5
𝑑𝑥

3

−∞
        ∫ 𝑒𝑥𝑑𝑥 

+∞

−∞
 

     II.2.2 Improper integral type II: 

They are all integrals of form a) or b) or c) (see below):  

a) ∫ 𝑓(𝑥)𝑑𝑥  
𝑏

𝑎
 Where f is a continuous function on ]a, 𝑏] but discontinuous at a. 

Example: 

∫
𝑥2+𝑥+3

𝑥+1
𝑑𝑥  

10

−1
 f(x)= 

𝑥2+𝑥+3

𝑥+1
  is a continuous on ]-1, 10] but not at -1. 

𝑏) ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
  Where f is a continuous function on [a, 𝑏[ but discontinuous at b. 

Example : 

∫
𝑒𝑥+1

𝑥
𝑑𝑥

0

−20
   f(x)= 

𝑒𝑥+1

𝑥
 is a continuous function on [-20, 0[ but discontinuous at 0. 

𝑐)∫ 𝑓(𝑥)𝑑𝑥 
𝑏

𝑎
 Where f is a continuous function on [a, 𝑏] but ∃c∈[a, 𝑏] such that 

                                f is discontinuous at c. 

        Example: 

∫
𝑥𝑙𝑛(𝑥)+6

(𝑥+2)(𝑥−7)
𝑑𝑥

50

3
  f(x)= 

𝑒𝑥+6

(𝑥+2)(𝑥−7)
 is a continuous function on [3, 50] except at 7∈ [3, 50] . 

II.3 Convergence of improper integrals:  

  II.3.1 Convergence of improper integral type I: 

    ∫ 𝑓(𝑥)𝑑𝑥  
+∞

𝑎
, ∫ 𝑓(𝑥)𝑑𝑥
𝑏

−∞
  ,  ∫ 𝑓(𝑥)𝑑𝑥 

+∞

−∞
 converge if 

lim
𝑡→+∞

∫ 𝑓(𝑥)𝑑𝑥
𝑡

𝑎
 exists and finite , lim

𝑡→−∞
 ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑡
 exists and finite, 

both (lim
𝑡→+∞

∫ 𝑓(𝑥)𝑑𝑥 
0

−𝑡
 and lim

𝑡→+∞
∫ 𝑓(𝑥)𝑑𝑥 
𝑡

0
exist and finite) respectively. 
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Therefore, we write: 

∫ 𝑓(𝑥)𝑑𝑥  
+∞

𝑎
= lim
𝑡→+∞

∫ 𝑓(𝑥)𝑑𝑥
𝑡

𝑎
,       ∫ 𝑓(𝑥)𝑑𝑥

𝑏

−∞
= lim
𝑡→−∞

 ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑡
, 

 ∫ 𝑓(𝑥)𝑑𝑥 
+∞

−∞
= lim
𝑡→+∞

∫ 𝑓(𝑥)𝑑𝑥 + lim
𝑡→+∞

∫ 𝑓(𝑥)𝑑𝑥 
𝑡

0
 

0

−𝑡
 respectively. 

Note: 

If lim
𝑡→+∞

∫ 𝑓(𝑥)𝑑𝑥
𝑡

𝑎
=

{
 
 

 
 

+∞
𝑜𝑟
+∞
𝑜𝑟

𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡

 then ∫ 𝑓(𝑥)𝑑𝑥  
+∞

𝑎
diverges 

The same thing for lim
𝑡→−∞

 ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑡
. 

Examples: 

1)∫ sin (𝑥)𝑑𝑥  
+∞

−2
= lim
𝑡→+∞

∫ sin (𝑥)𝑑𝑥
𝑡

2
= lim
𝑡→+∞

[−cos (𝑥)]2
𝑡 = 𝑐𝑜𝑠2 − lim

𝑡→+∞
𝑐𝑜𝑠𝑡 

This limit does not exist so ∫ sin (𝑥)𝑑𝑥  
+∞

−2
diverges 

 

2) ∫ 𝑒𝑥𝑑𝑥
3

−∞
= lim
𝑡→−∞

 ∫ 𝑒𝑥𝑑𝑥
3

𝑡
= lim
𝑡→−∞

[𝑒𝑥]𝑡
3=𝑒3 − lim𝑒𝑡

𝑡→−∞
=𝑒3-0=𝑒3 

So ∫ 𝑒𝑥𝑑𝑥
3

−∞
  converges and ∫ 𝑒𝑥𝑑𝑥

3

−∞
= 𝑒3 

 II.3.2 Convergence of improper integral type II: 

 Let f be a continuous function on ]a, 𝑏] but discontinuous at a 

 

∫ 𝑓(𝑥)𝑑𝑥  
𝑏

𝑎
 converges if lim

𝑡→𝑎+
∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 exists and finite 

Therefore ∫ 𝑓(𝑥)𝑑𝑥  
𝑏

𝑎
= lim
𝑡→𝑎+

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 

Notes:  

In the case of f a continuous function on [a, 𝑏] but not at c, c ∈[a, 𝑏]  

∫ 𝑓(𝑥)𝑑𝑥  
𝑏

𝑎
 converges if both (lim

𝑡→𝑐−
∫ 𝑓(𝑥)𝑑𝑥 
𝑡

𝑎
 and lim

𝑡→𝑐+
∫ 𝑓(𝑥)𝑑𝑥 
𝑏

𝑡
exist and finite) 

And ∫ 𝑓(𝑥)𝑑𝑥  
𝑏

𝑎
= lim
𝑡→𝑐−

∫ 𝑓(𝑥)𝑑𝑥 
𝑡

𝑎
+ lim
𝑡→𝑐+

∫ 𝑓(𝑥)𝑑𝑥 
𝑏

𝑡
 

Examples: 

1)∫
1

𝑥
𝑑𝑥 =  lim

𝑡→0+
∫

1

𝑥
𝑑𝑥

4

𝑡
= lim
𝑡→0+

4

0
[ln (𝑥)]𝑡

4 = 𝑙𝑛4 − lim
𝑡→0+

ln(𝑡) = 𝑙𝑛4 − (−∞) = +∞ 

So ∫
1

𝑥
𝑑𝑥

4

0
  diverges 

2) ∫
1

(𝑥−1)
2
3

𝑑𝑥
3

0
 

𝑓(𝑥) =
1

(𝑥−1)
2
3

 is continue on [0,3] but discontinue en x=1, so we have to split the integral into two 

integrals. 
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∫
1

(𝑥−1)
2
3

𝑑𝑥 = lim
𝑡→1−

∫
1

(𝑥−1)
2
3

𝑑𝑥 
𝑡

0
+ lim
𝑡→1+

∫
1

(𝑥−1)
2
3

𝑑𝑥 
3

𝑡

3

0
= lim
𝑡→1−

[3(𝑥 − 1)
1

3]
0

𝑡

+ lim
𝑡→1+

[3(𝑥 − 1)
1

3]
𝑡

3

 

                      =3+3 2
1

3  

So ∫
1

(𝑥−1)
2
3

𝑑𝑥
3

0
  converges and ∫

1

(𝑥−1)
2
3

𝑑𝑥
3

0
=3[1+ 2

1

3 ] 

 

Notes: 

-All examples seen above, we were able to compute the improper integral because we knew 

the anti-derivative of the function f(x). 

-Most of the time it is hard to calculate an improper integral (especially when the integrand 

f(x) is complex thus it is difficult to find its anti-derivative) so we can just determine whether 

it converges or diverges. 

II.4 Properties of convergent improper integrals 

 Let f and g be continuous functions on ]a, 𝑏] but discontinuous at a. 

1)   If both ∫ 𝑓(𝑥)𝑑𝑥  
𝑏

𝑎
 and ∫ 𝑔(𝑥)𝑑𝑥  

𝑏

𝑎
 converge then ∫ [𝑓(𝑥) 𝑔(𝑥)−

+ ]𝑑𝑥 
𝑏

𝑎
converges 

2) If ∫ 𝑓(𝑥)𝑑𝑥  
𝑏

𝑎
converges then ∫ 𝑘𝑓(𝑥)𝑑𝑥  

𝑏

𝑎
converges,  ∀𝑘 ∈ ℝ 

3)If either ∫ 𝑓(𝑥)𝑑𝑥  
𝑏

𝑎
or ∫ 𝑔(𝑥)𝑑𝑥  

𝑏

𝑎
diverges then ∫ [𝑓(𝑥) 𝑔(𝑥)−

+ ]𝑑𝑥 
𝑏

𝑎
diverges 

Note: 

All these properties work with all improper integral types. 

II.5 P-TEST 

1)∫
1

𝑥𝑝
𝑑𝑥

+∞

1
 {
converges if p > 1 , and ∫

1

𝑥𝑝
+∞

1
𝑑𝑥 =

1

𝑝−1

diverges if 𝑝 ≤  1, and ∫
1

𝑥𝑝
+∞

1
𝑑𝑥 = +∞

  

     2)∫
1

𝑥𝑝
1

0
𝑑𝑥 {

converges if p < 1 , and ∫
1

𝑥𝑝
𝑑𝑥

1

0
= 1

diverges if 𝑝 ≥  1, and ∫
1

𝑥𝑝
1

0
𝑑𝑥 = −∞

  

    Examples : 

∫
1

𝑥6
𝑑𝑥

+∞

1
 converges since p = 6 > 1 and ∫

1

𝑥6
𝑑𝑥

+∞

1
=

1

6−1
=
1

5
 

∫
1

√𝑥

+∞

1
𝑑𝑥 diverges since p =

1

2
≤  1 
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II.6 Convergence tests 

Convergence tests enable us just to determine whether an improper integral converges or 

diverges without calculating its value.  

II.6.1 Direct comparison test: 

Let f and g be continuous function on [a,+ ∞[ such that 0≤ 𝑓(𝑥) ≤  g(x) ∀𝑥 ≥ 𝑎. 

1) If ∫ 𝑔(𝑥)𝑑𝑥
+∞

𝑎
 converges then ∫ 𝑓(𝑥)𝑑𝑥

+∞

𝑎
 converges. 

2) If ∫ 𝑓(𝑥)𝑑𝑥
+∞

𝑎
 diverges then ∫ 𝑔(𝑥)𝑑𝑥

+∞

𝑎
 diverges. 

Example: 

1)∫
𝑐𝑜𝑠4(𝑥)

𝑥
3
2

𝑑𝑥
+∞

1
  

We have: ∀𝑥, 0≤ 𝑐𝑜𝑠4(𝑥) ≤ 1 ⇒
𝑐𝑜𝑠4(𝑥)

𝑥
3
2

≤
1

𝑥
3
2

 ∀𝑥 ≥  1 

Since ∫
1

𝑥
3
2

𝑑𝑥
+∞

1
 converges (according to P-test , p=

3

2
> 1), so does ∫

𝑐𝑜𝑠4(𝑥)

𝑥
3
2

𝑑𝑥
+∞

1
 

2)∫
1

ln (𝑥)
𝑑𝑥

+∞

2

 

Notice that both functions ln(x) and x are positive on [2, +∞[ and 

  ln (𝑥) ≤ 𝑥 ∀𝑥 >  2⇒
1

ln (𝑥)
≥
1

x
 ∀𝑥 >  2 

Since ∫
1

𝑥
𝑑𝑥

+∞

1
 diverges (by P-test ), so ∫

1

ln (𝑥)
𝑑𝑥

+∞

2
 also diverges. 

II.6.2 Limit comparison test: 

Let f and g be positive and continuous function on [a,+ ∞[. 

If lim
𝑥→+∞

𝑓(𝑥)

𝑔(𝑥)
= 𝐿 ≠ {

0
+∞

 then both ∫ 𝑓(𝑥)𝑑𝑥
+∞

𝑎
 and ∫ 𝑔(𝑥)𝑑𝑥

+∞

𝑎
 converges or diverges. 

Example 

∫
𝑥4 + 2

x6 + x3 − x
𝑑𝑥

+∞

3

 

We notice that f(x)= 
𝑥4+2

x6+x3−x
 ~

1

x2
  as 𝑥 → +∞ 

Let us choose then  g(x)= 
1

x2
 

lim
𝑥→+∞

𝑓(𝑥)

𝑔(𝑥)
= lim
𝑥→+∞

𝑥4 + 2
x6 + x3 − x

1
x2

= lim
𝑥→+∞

x2(𝑥4 + 2)

x6 + x3 − x
= lim
𝑥→+∞

x6

x6
= 1 

Since ∫
1

x2
𝑑𝑥

+∞

1
 converges (by P-test ), so does ∫

𝑥4+2

x6+x3−x
𝑑𝑥

+∞

3
 

Notes: 

We can notice that convergence tests are applied for positive functions but we can generalize for 

negative functions as well knowing that -∫ −𝑓(𝑥)=∫ 𝑓(𝑥) 
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So we can say that that convergence tests can be applied to functions that keeps a constant sign( either 

positive or negative) 

II.7 Absolute Convergence of improper integrals: 

Let f be a continuous function on [a,b[ except at b. 

The improper integral ∫ 𝑓(𝑥)𝑑𝑥  
𝑏

𝑎
is said to be absolutely convergent if ∫ |𝑓(𝑥)|𝑑𝑥  

𝑏

𝑎
converges 

Notes: 

-This works for all types of improper integrals. 

- If an improper integral converges absolutely then it converges. 

Example: 

Let us check the absolute convergence of ∫
𝑠𝑖𝑛𝑥

x2
𝑑𝑥

+∞

1
 

|
𝑠𝑖𝑛𝑥

x2
| ≤

1

x2
 

Since ∫
1

x2
𝑑𝑥

+∞

1
 converges (by P-test ), so does ∫ |

𝑠𝑖𝑛𝑥

x2
| 𝑑𝑥

+∞

1
 (by comparison test) 

Therefore ∫
𝑠𝑖𝑛𝑥

x2
𝑑𝑥

+∞

1
 is absolutely convergent. 

Note: 

 Absolute Convergence can be applied to any functions specially to those changing sign( oscilate)  
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Exercises 

Exercise1 

Find the values of the following improper integrals, if they converge. 

1) ∫
1

√x
𝑑𝑥  

1

0
             2)∫

1

x2+1
𝑑𝑥  

+∞

0
  3)  ∫ 𝑥𝑒−𝑥

2
𝑑𝑥  

+∞

−∞
     

 

Exercise2: 

State whether the following improper integrals converge or diverge. 

1)∫
3

x5+1
𝑑𝑥  

+∞

1
                      2) ∫

2x5+2x−1

√x7+3
𝑑𝑥  

+∞

1
   3) ∫

1

x+sin2(x)
𝑑𝑥  

+∞

1
              

Exercise3: 

Determine if the following improper integrals converge absolutely. 

1) ∫
𝑐𝑜𝑠(𝑥)

𝑥4+3
𝑑𝑥  

+∞

1
                                 2) ∫ sin (

1

x2
)𝑑𝑥  

+∞

1
 

Solutions 

Solution of exercise1: 

1) ∫
1

√x
𝑑𝑥  

1

0
= ∫ 𝑥−

1

2𝑑𝑥  
1

0
= lim
𝑡→0−

[2𝑥
1

2]
𝑡

1

= 2− 0 = 2. Thus ∫
1

√x
𝑑𝑥  

1

0
converges and ∫

1

√x
𝑑𝑥 = 2  

1

0
 

2) ∫
1

x2+1
𝑑𝑥  

+∞

0
= lim
𝑡→+∞

[𝑎𝑟𝑐𝑡𝑎𝑛𝑔(𝑥)]
0
𝑡
= lim
𝑡→+∞

𝑎𝑟𝑐𝑡𝑎𝑛𝑔(𝑡)−0 =
𝜋

2
, so ∫

1

x2+1
𝑑𝑥 

+∞

0
converges and  

∫
1

x2+1
𝑑𝑥  

+∞

0
=
𝜋

2
 

 3)  ∫ 𝑥𝑒−𝑥
2
𝑑𝑥  

+∞

−∞
 

Start by splitting up the integral: 

∫ 𝑥𝑒−𝑥
2
𝑑𝑥 = 

+∞

−∞

lim
𝑡→+∞

∫𝑥𝑒−𝑥
2
𝑑𝑥 + lim

𝑡→+∞
∫𝑥𝑒−𝑥

2
𝑑𝑥 

𝑡

0

 

0

−𝑡

 

 

If either ∫ 𝑥𝑒−𝑥
2
𝑑𝑥 

0

−∞
or ∫ 𝑥𝑒−𝑥

2
𝑑𝑥 

+∞

0
diverges, then ∫ 𝑥𝑒−𝑥

2
𝑑𝑥 

+∞

−∞
 diverges. 

Let us compute each integral separately.  

For the first integral: 

lim
𝑡→+∞

∫𝑥𝑒−𝑥
2
𝑑𝑥 

0

−𝑡

 

By substitution: 

u=−𝑥2 ⇒𝑑𝑢 = −2𝑥dx 

lim
𝑡→+∞

−1

2
∫ 𝑒𝑢𝑑𝑢 =
0

−𝑡2
−1

2
  lim
𝑡→+∞

[𝑒𝑢]
−𝑡2
0

=
−1

2
[𝑒0 − lim

𝑡→+∞
𝑒−𝑡

2
]= 

−1

2
[1-0]=

−1

2
 

For the second integral, similarly: 

lim
𝑡→+∞

∫ 𝑥𝑒−𝑥
2
𝑑𝑥 

𝑡

0
= lim
𝑡→+∞

−1

2
∫ 𝑒𝑢𝑑𝑢 =
−𝑡2

0

−1

2
  lim
𝑡→+∞

[𝑒𝑢]
0
−𝑡2

=
−1

2
[0-1]= 

1

2
 

Since both integrals converges, so does ∫ 𝑥𝑒−𝑥
2
𝑑𝑥 

+∞

−∞
and ∫ 𝑥𝑒−𝑥

2
𝑑𝑥 

+∞

−∞
=
−1

2
+
1

2
= 0 
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Solution of exercise2: 

1)∫
3

x5+1
𝑑𝑥  

+∞

1
 

∀𝑥 ∈ [1,+∞[ , 
3

x5+1
> 0. 

∀𝑥 ∈ [1,+∞[ , x5 + 1 > x5⇒
1

x5+1 
<

1

x5 
 

Since ∫
3

x5+1
𝑑𝑥  

+∞

1
converges (by P-test), so does ∫

1

x5+1
𝑑𝑥  

+∞

1
(by comparison test).  

Therefore 3∫
1

x5+1
𝑑𝑥 = 

+∞

1
∫

3

x5+1
𝑑𝑥  

+∞

1
also converges. 

2) ∫
2x5+2x−1

√x7+3
𝑑𝑥  

+∞

1
 

∀𝑥 ∈ [1,+∞[,
2x5+2x−1

√x7+3
> 0. 

2x5+2x−1

√x7+3
~
2x5

√x7
 = 

2

x
−
3
2

 as 𝑥 → +∞ 

Let us choose g(x)= 
1

x
−
3
2

. 

lim
𝑥→+∞

f(x)

g(x)
= lim
𝑥→+∞

2x5 + 2x − 1

√x7 + 3
1

x
−
3

2

lim
𝑥→+∞

2x5x
−
3

2

√x7
= 2 

Since∫ 𝑔(𝑥)𝑑𝑥 = 
+∞

1 ∫
1

x
−
3
2

𝑑𝑥  
+∞

1
diverges (by P-test), so does ∫

2x5+2x−1

√x7+3
𝑑𝑥  

+∞

1
(by limit comparison 

test) 

3) ∫
1

x+sin2(x)
𝑑𝑥  

+∞

1
 

∀𝑥 ∈ [1,+∞[ , 
1

x+sin2(x)
 is a positive function. 

We have sinx≤ 1⇒ sin2(x) ≤ 1⇒ sin2(x) + x ≤ 1 + 𝑥 ⇒
1

sin2(x)+x 
≥

1

1+𝑥
 

Let us check the convergence or divergence of ∫
1

1+x
𝑑𝑥 ∶ 

+∞

1
 

∫
1

1+x
𝑑𝑥 =  lim

𝑡→+∞
[𝑙𝑛|1 + 𝑥|]

1
𝑡
=

+∞

1
− 𝑙𝑛2 + lim

𝑡→+∞
𝑙𝑛|1 + 𝑡| = +∞ thus diverges, so does ∫

1

x+sin2(x)
𝑑𝑥  

+∞

1
 

(by comparison test) 

Note: 

We could have determine the divergence of ∫
1

1+x
𝑑𝑥 

+∞

1
using the limit comparison test, knowing that 

1

1+x
~
1

x
  as 𝑥 → +∞ 

Solution  exercise3: 

1) ∫
𝑐𝑜𝑠(𝑥)

𝑥4+3
𝑑𝑥  

+∞

1
 

∫ |
𝑐𝑜𝑠(𝑥)

𝑥4+3
| 𝑑𝑥  

+∞

1
converges ? 

|𝑐𝑜𝑠(𝑥)| ≤ 1⇒
|𝑐𝑜𝑠(𝑥)|

𝑥4 + 3 
≤

1

𝑥4 +3
≤
1

𝑥4
 

Since∫
1

𝑥4
𝑑𝑥 

+∞

1
converges (according to P-test), so does ∫ |

𝑐𝑜𝑠(𝑥)

𝑥4+3
| 𝑑𝑥  

+∞

1
( by comparison test). 

2) ∫ sin (
1

x2
)𝑑𝑥  

+∞

1
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 As  𝑥 → +∞, 
1

x2
→ 0 

We know that lim
𝑡→0

𝑠𝑖𝑛𝑡

t
=1, let us call then f(x)= |sin (

1

x2
)|   and g(x)= 

1

x2
 . 

 lim
𝑥→+∞

f(x)

g(x)
= lim
𝑡→0

|sin (
1

x2
)|   

1

x2

=1 

Due to P-test, ∫ g(x)𝑑𝑥 = ∫
1

x2
𝑑𝑥  

+∞

1
 

+∞

1
converges, so does ∫ |sin (

1

x2
)|𝑑𝑥  

+∞

1
(by Limit comparison 

test). 

Therefore ∫ sin (
1

x2
)𝑑𝑥  

+∞

1
converges absolutely  
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III.1 Ordinary differential equations (ODE’s) 

 III.1.1 Definition 

An Ordinary differential equation (ODE) is an equations that contain a function (usually 

denoted by y(x) or simply by y ) and some of its derivatives (the first derivative 𝑦 ′  or higher-

order derivatives 𝑦′′, 𝑦(3)… . . ). 

Examples: 

1) 𝑦 ′ + 4𝑦 = 0 

2) 𝑦 ′ = 5 + 4𝑒2𝑥 

3) 𝑦′′ − 𝑦 = 0 

4) 𝑦(5) − 2𝑦′′𝑦 = ln (𝑥) 

Notes: 

- 𝑦 ′ is sometimes written as :
𝑑𝑦

𝑑𝑥
 . We keep the first notation 

- The word “ordinary” refers to the one variable x of the function y. If there are more 

than one ( ie y(𝑥1, 𝑥2, 𝑥3, … ) the equation become a partial differential equation see 

after sectionVI.2. 

- The function y(x) is the unknown of the equation. 

- The highest order of the derivative in the equation is the order of the differential 

equation. 

Examples: 

1) and  2) are first-order differential equations since we have only first derivative. 

3) is a second -order differential equation, it contains only second derivatives. 

4) Is a fifth -order differential equation because the fifth derivative 𝑦(5) is the highest 

order. 

- The general solution of a differential equation is given by the set of all functions that 

satisfy the equation. 

Examples (above): 

1) 𝑦 ′ + 4𝑦 = 0                          solutions: y(x)=𝑘𝑒−4𝑥, k∈ ℝ 

5) 𝑦 ′ = 5 + 4𝑒2𝑥                      solutions: y(x)=5x+2𝑒2𝑥 + 𝑐, c∈ ℝ 

6) 𝑦′′ − 𝑦 = 0                          solutions: y(x)= a𝑒𝑥 + 𝑏𝑒−𝑥, a, b∈ ℝ 

III.1.2 Linear Ordinary differential equation 

We are not able to solve all differential equation because of the complexity of most of 

them the reason why we are going to focus in this section on two types of equations: first-

order linear ODE’s and Second-Order Linear ODE’s with Constant Coefficients 
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´ • An nth order differential equation is linear if it is of form: 

a0(x) 𝑦 + a1(x) 𝑦’+ · · · + an(x)𝑦(𝑛) = f(x)  (1) 

where ai(x) are functions 

Notes: 

•If coefficients ai are constants ie (1) is written as a0y + a1y’+ · · · + an𝑦(𝑛) = f(x) the latter 

one is a Linear ODE’s with constant Coefficients. 

•if f(x)=0 then the equation a0(x) 𝑦 + a1(x) 𝑦’+ · · · + an(x)𝑦(𝑛) = 0 is said to be homogenous.  

•Linear means:  y and its derivatives (𝑦’, 𝑦’’ , ...) occurs at most to the first power and there is 

no product between them. 

Examples: 

1) 2x 𝑦’’+ 𝑦 𝑦’+ 2=0   (not linear because of the product 𝑦 𝑦’) 

2) Sin(x) 𝑦’+ 𝑦2=𝑥2   (not linear because of 𝑦2, y appears to the second powers) 

3) 𝑥4 𝑦’’+Ln(x) 𝑦’+ 4 𝑦 =𝑒𝑥  ( linear because satisfies all requirements cited above) 

 

III.1.3. First-order linear ODE’s 

 III.1.3.1 Definition 

First-order non-homogeneous linear ODE is of form: 

𝑦’+ 𝑏(𝑥)𝑦=𝑓(𝑥)     (I) 

b(x) and f(x) are functions of x 

Note: 

-If we have an equation of form: 𝑎(𝑥)𝑦’+ 𝑏(𝑥)𝑦=𝑓(𝑥). It is still a first-order non-

homogeneous linear ODE, we have just to divide by 𝑎(𝑥).     

III.1.3.2 Solving a first-order linear ODE’s  
Steps to follow: 

1)Find the homogenous solution (denoted 𝑦𝐻) of the homogenous equation 𝑦’+ 𝑏(𝑥)𝑦=0. 

2)Find a particular solution (denoted 𝑦𝑝) of the equation (I). 

3) General solution of our equation (I) is 𝑦𝐺=𝑦𝐻 + 𝑦𝑝 

Trough an example, we are going to apply 1), 2) and 3) 

Example: Solve 𝑥𝑦’+2𝑥𝑦=𝑥3     

We can bring this equation to the standard form (I):  𝑦’+2𝑦=𝑥2 (II) 

1)Find the homogenous solution 𝑦𝐻 of equation 𝑦’+2𝑦=0.    

Separate variables: 

We rearrange the equation so that dy and all other expression containing y are on the 
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left and dx and all expressions containing x are on the right. 

𝑦’+2𝑦=0⇒
𝑑𝑦

𝑦
 =−2𝑑𝑥   for  y≠ 0   (y=0 is an obvious solution)    

          since 𝑑𝑦 = 𝑦’ 𝑑𝑥 

Now, we can integrate: ∫
𝑑𝑦

𝑦
= ∫2𝑑𝑥 ⇒𝑙𝑛|𝑦|=−2𝑥 + 𝐶 

⇒ 𝑒𝑙𝑛|𝑦|=𝑒2𝑥+𝐶 ⇒|𝑦| = 𝑒𝐶𝑒−2𝑥  ⇒  𝑦 = 𝑒𝐶𝑒−2𝑥−
+

⇒ 𝑦𝐻  = 𝐾𝑒
−2𝑥, K∈ ℝ 

Note: 

- For any first-order non-homogeneous linear ODE ( 𝑦’+ 𝑏(𝑥)𝑦=0), the set of solutions is  

     𝑦𝐻  = 𝐾𝑒
−∫ 𝑏(𝑥)𝑑𝑥, K∈ ℝ 

2)Find a particular solution 𝑦𝑝 of the original equation (II) 𝑦’+2𝑦=𝑥2 

Sometimes the search for a particular solution is done by noticing an 'obvious' 

solution. In most cases, it's difficult, so we use variation of parameters method to find this 

particular solution. 

Variation of Parameters: 

Consider the function 𝐾(𝑥)𝑒−2𝑥 (as particular solution 𝑦𝑝) , in which we have 

replaced the constant parameter K with the function K(x). This technique is called variation of 

parameters. 

Let us determine 𝐾(𝑥): 

𝑦𝑝 = 𝐾(𝑥)𝑒
−2𝑥 (III) 

We differentiate (III): 

𝑦𝑝
′ = (𝐾(𝑥))′𝑒−2𝑥 − 2 𝐾(𝑥)𝑒2𝑥 

Replace 𝑦𝑝
′ and 𝑦𝑝 in the original equation (II): 

(𝐾(𝑥))′𝑒−2𝑥 − 2 𝐾(𝑥)𝑒2𝑥 + 2𝐾(𝑥)𝑒−2𝑥=𝑥2 ⇒(𝐾(𝑥))′ = 𝑥2𝑒2𝑥⇒  𝐾(𝑥) = ∫ 𝑥2𝑒2𝑥𝑑𝑥 

Using twice integration by parts method, we get expression of K(x): 

K(x)=
1

2
𝑥2𝑒2𝑥 − 2(

1

2
𝑥𝑒2𝑥 −

1

2
𝑒2𝑥) =

1

2
𝑥2𝑒2𝑥 − 𝑥𝑒2𝑥 + 𝑒2𝑥 

⇒𝑦𝑝 = 𝐾(𝑥)𝑒
−2𝑥 =[

1

2
𝑥2𝑒2𝑥 − 𝑥𝑒2𝑥 + 𝑒2𝑥]𝑒−2𝑥 

Thus our particular solution 𝑦𝑝 =
1

2
𝑥2 − 𝑥 + 1 

3) General solution of our equation is 𝑦𝐺=𝑦𝐻 + 𝑦𝑝 

So 𝑦𝐺(𝑥) =  𝐾𝑒
−2𝑥 +

1

2
𝑥2 − 𝑥 + 1,  K∈  ℝ 
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III.1.4. Second-Order Linear ODE’s with Constant Coefficients 

III.1.4.1 Definition 

Second-order ODE’s with Constant Coefficients are those containing the second derivative 

𝑦 ′′, in which  coefficients of 𝑦 ′′, 𝑦 ′and y are all constant. These equations are of form of: 

 a𝑦′′+b𝑦′ + 𝑐𝑦 =f(x)  ( IV) 

where a, b, c are constant and f a function of x 

VI.1.4.1.2 Solving a Second-Order Linear ODE with Constant Coefficients(my method) 

We apply the same steps as for first-order linear ODE’s: 

1)Find the homogenous solution  𝑦𝐻 of the homogenous equation a𝑦′′+b𝑦′ + 𝑐𝑦=0 (𝐻𝐸). 

2)Find a particular solution 𝑦𝑝 of the equation ( IV) 

3) General solution of our equation ( IV)is 𝑦𝐺=𝑦𝐻 + 𝑦𝑝 

First step: 

Let us determine 𝑦𝐻, solution of a𝑦′′+b𝑦′ + 𝑐𝑦=0 (𝐻𝐸). 

We define a characteristic equation (CE) associated to homogenous equation (𝐻𝐸)𝑏𝑦: 

a𝑟2+b𝑟 + 𝑐=0     (CE) 

If ∆= 𝑏2 − 4𝑎𝑐 > 0 ⇒ we have two real roots 𝑟1 =
−𝑏−√ ∆

2𝑎
 ,  𝑟2 =

−𝑏+√ ∆

2𝑎
 

and our homogenous solution  𝑦𝐻 = 𝑘1𝑒
𝑟1𝑥 + 𝑘2𝑒

𝑟2𝑥  ,   𝑘1, 𝑘2 ∈  ℝ 

If ∆= 𝑏2 − 4𝑎𝑐 = 0 ⇒ we have a double real root 𝑟 =
−𝑏

2𝑎
  and our homogenous solution  

 𝑦𝐻 = (𝑘1𝑥 + 𝑘2)𝑒
𝑟𝑥  ,   𝑘1, 𝑘2 ∈  ℝ 

If ∆= 𝑏2 − 4𝑎𝑐 < 0  ⇒ we have two complex roots 𝑟1 =
−𝑏−𝑖√ ∆

2𝑎
 =𝛼 − 𝑖𝛽,   

𝑟2 =
−𝑏+𝑖√ ∆

2𝑎
= 𝛼 + 𝑖𝛽 and our homogenous solution  𝑦𝐻 = 𝑒

𝛼𝑥(𝑘1cos (𝛽𝑥) + 𝑘2𝑠𝑖𝑛 (𝛽𝑥))  ,   

𝑘1, 𝑘2 ∈  ℝ 

Second step: 

Let us determine a particular solution 𝑦𝑝 of the equation a𝑦′′+b𝑦′ + 𝑐𝑦 =f(x)  ( IV): 

It depends on the form of f(x). 

1) If  f(x)=𝑃𝑛(𝑥)𝑒
𝑘𝑥 , 𝑘 ∈  ℝ    (𝑃𝑛(𝑥) is nth order polynomial function) 

Then we have three possibilities: 

a- If k is not a root of the characteristic equation (see above) then 𝑦𝑝 = 𝑄𝑛(𝑥)𝑒
𝑘𝑥 

Where 𝑄𝑛(𝑥)𝑒
𝑘𝑥 a polynomial function with the same order as 𝑃𝑛(𝑥). 

b- If k is a real (simple) root of the characteristic equation then 𝑦𝑝 = 𝑄𝑛(𝑥)𝑒
𝑘𝑥𝑥. 
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c- If k is a real double root of the characteristic equation then 𝑦𝑝 = 𝑄𝑛(𝑥)𝑒
𝑘𝑥𝑥2. 

   In the three possibilities, we calculate 𝑦𝑝
′′, 𝑦𝑝

′ 𝑎𝑛𝑑 𝑦𝑝 , put their expressions in the  

   equation a𝑦 ′′+b𝑦 ′ + 𝑐𝑦 =f(x)  ( IV) and by identification with f(x) we deduce 𝑄𝑛(𝑥). 

2) If  𝑓(x)=𝑒𝑘𝑥(𝑃𝑛(𝑥) sin(𝜃𝑥)+ 𝑃𝑚(𝑥)𝑐𝑜𝑠(𝜃𝑥)) , 𝑘 ∈  ℝ     

  (𝑃𝑛(𝑥),𝑃𝑚(𝑥) are nth, mth order polynomial functions respectively) 

Then we have two possibilities (for each case): 

a- If (k+i𝜃) is not a root of the characteristic equation (seen above) then 

 𝑦𝑝 = 𝑒𝑘𝑥(𝑄𝑙(𝑥)𝑠𝑖𝑛(𝜃𝑥) + 𝑄𝑙(𝑥)𝑐𝑜𝑠(𝜃𝑥)) 

Where 𝑄𝑙(𝑥) a 𝑙
 th order polynomial function such that 𝑙 =max(n,m). 

b- If (k+i𝜃) is a root of the characteristic equation then 

 𝑦𝑝 = 𝑥𝑒
𝑘𝑥(𝑄𝑙(𝑥)𝑠𝑖𝑛 (𝜃𝑥)+ 𝑄𝑙(𝑥)𝑐𝑜𝑠(𝜃𝑥))         

  In all these possibilities, we calculate 𝑦𝑝
′′, 𝑦𝑝

′ 𝑎𝑛𝑑 𝑦𝑝 , put their expressions in the  

   equation a𝑦 ′′+b𝑦 ′ + 𝑐𝑦 =f(x)  ( IV) and by identification with f(x) we deduce 𝑄𝑛(𝑥). 

3) General solution of our equation ( IV)is 𝑦𝐺=𝑦𝐻 + 𝑦𝑝 

Example: 

𝑦′′+𝑦′ − 6𝑦 =(2x+1) 𝑒−2𝑥  (𝑃1(𝑥)𝑒
𝑘𝑥) 

1) Determine 𝑦𝐻, solution of 𝑦′′+𝑦′ − 6𝑦 =0 (𝐻𝐸). 

Characteristic equation: 𝑟2+𝑟 − 6=0     (CE) 

∆= 12 − 4(−6) = 25 > 0 ⇒ we have two real roots 𝑟1 =
−1−5

2
= −3 ,  𝑟2 =

−1+5

2
= 2 

and our homogenous solution  𝑦𝐻 = 𝑘1𝑒
−3𝑥 + 𝑘2𝑒

2𝑥  ,   𝑘1, 𝑘2 ∈  ℝ 

2) Determine a particular solution 𝑦𝑝 of the equation 𝑦′′+𝑦′ − 6𝑦 =(2x+1) 𝑒−2𝑥  

f(x)= (2x+1) 𝑒−2𝑥 of form𝑃1(𝑥)𝑒
𝑘𝑥  (𝑃1(𝑥) = (2x + 1) is first order polynomial function) 

k=-2 is not a root of the characteristic equation then 𝑦𝑝 = 𝑄1(𝑥)𝑒
−2𝑥 

where 𝑄1(𝑥) = (𝑎𝑥 + 𝑏)  (𝑄1(𝑥) is a polynomial function with the same order than 𝑃1(𝑥)) 

To calculate constants a and b we have to compute 𝑦𝑝
′′, 𝑦𝑝

′ 𝑎𝑛𝑑 𝑦𝑝.  

𝑦𝑝 = (𝑎𝑥 + 𝑏)  𝑒
−2𝑥 

𝑦𝑝
′ = 𝑒−2𝑥(−2𝑎𝑥 − 2𝑏 + 𝑎) 

𝑦𝑝
′′ = 𝑒−2𝑥(4𝑎𝑥 + 4𝑏 − 4𝑎) 

Put expressions of 𝑦𝑝
′′, 𝑦𝑝

′ 𝑎𝑛𝑑 𝑦𝑝in the original equation: 

𝑒−2𝑥(4𝑎𝑥 + 4𝑏 − 4𝑎) + 𝑒−2𝑥(−2𝑎𝑥 − 2𝑏 + 𝑎) − 6(𝑎𝑥+ 𝑏) 𝑒−2𝑥 =(2x+1) 𝑒−2𝑥 

After developing the left side, we obtain: 

(-4a)x+(-4b-3a)= (2x+1) 
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By identification, we have: 

𝑎 = −
1

2
   and 𝑏 =

1

8
 

Thus our particular solution 𝑦𝑝(𝑥) = (−
1

2
𝑥 +

1

8
)𝑒
−2𝑥

 

Therefore our general solution  

𝑦𝐺(𝑥)=𝑦𝐻(𝑥) + 𝑦𝑝(𝑥) = 𝑘1𝑒
−3𝑥 + 𝑘2𝑒

2𝑥(−
1

2
𝑥 +

1

8
)𝑒
−2𝑥
  , 𝑘1, 𝑘2 ∈  ℝ 

III.2 Partial differential equations (PDE’s) 

Many of PDEs are coming from different domains of physics (acoustics, optics, 

elasticity, hydro and aerodynamics, electromagnetism, quantum mechanics, seismology etc). 

However PDEs appear in other fields of science as well (like quantum chemistry, chemical 

kinetics); some PDEs are coming from economics and financial mathematics, or computer 

science. 

III.2.1 Definition of a partial derivative 

 If we consider a function that depends on several variables, we can differentiate with 

respect to either variable while keeping the other variable constant. For example, if we have a 

function depending on two real variables u(x,y) taking its values in ℝ. 

We can compute the derivative with respect to x while keeping y fixed. This leads to 
𝜕𝑢

𝜕𝑥
 which 

is called partial derivative of u with respect to x. Similarly, we can hold x fixed and 

differentiate with respect to y  
𝜕𝑢

𝜕𝑦
  (it is the partial derivative of u with respect to y). 

Examples: 

1) u(x,y)= 𝑥2 + 3𝑦3 

𝜕𝑢

𝜕𝑥
= 2𝑥𝑦 (here y is considered as a constant) 

𝜕𝑢

𝜕𝑦
= 𝑥2 + 9𝑦2   (here x is held fixed) 

2) u(x,y,z)= 𝑥4𝑙𝑛𝑦 + 𝑒5𝑥 sin(𝑦) + 𝑧𝑦 + 10 

     
𝜕𝑢

𝜕𝑥
= 4𝑥3 𝑙𝑛𝑦 + 5𝑒5𝑥 sin(𝑦)(here y and  are considered as a constant) 

                  
𝜕𝑢

𝜕𝑦
=
𝑥4

𝑦
+ 𝑒5𝑥 cos(𝑦) + 𝑧  (here x and z are held fixed) 

               
𝜕𝑢

𝜕𝑧
= 𝑦  (here x and y are held fixed) 

  Notes: 

- 
𝜕𝑢

𝜕𝑥
, 
𝜕𝑢

𝜕𝑦 
 can be denoted also by 𝑢𝑥 , 𝑢𝑦 respectively. We keep the first notation. 

- All partial derivatives computed above are first-order-partial derivatives (since we 
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differentiate the function u one time with respect to a certain variable. If we do it twice we 

obtain second-order partial derivatives denoted by 
𝜕2𝑢

(𝜕𝑥)2
 , 

𝜕2𝑢

𝜕𝑥𝜕𝑦
 , 
𝜕2𝑢

𝜕𝑦𝜕𝑥
 , 

𝜕2𝑢

(𝜕𝑦)2
 . More generally, 

we can differentiate u more than twice such as 
𝜕𝑖

(𝜕𝑥)𝑖
𝜕𝑗

(𝜕𝑦)𝑗
𝜕𝑘𝑢

(𝜕𝑥)𝑘
 which is an (i+j+k)-order partial 

derivative.  

Examples:  

u(x,y)= 𝑦𝑒𝑥𝑦 

𝜕𝑢

𝜕𝑥
= 𝑦2𝑒𝑥𝑦              

𝜕𝑢

𝜕𝑦
= 𝑒𝑥𝑦 + 𝑦𝑥𝑒𝑥𝑦    

𝜕

𝜕𝑥

𝜕𝑢

𝜕𝑥
=

𝜕2𝑢

(𝜕𝑥)2
=

𝜕

𝜕𝑥
(𝑦2𝑒𝑥𝑦) = 𝑦3𝑒𝑥𝑦  

𝜕

𝜕𝑥

𝜕𝑢

𝜕𝑦
=

𝜕2𝑢

𝜕𝑥𝜕𝑦
=

𝜕

𝜕𝑥
(𝑒𝑥𝑦 + 𝑦𝑥𝑒𝑥𝑦) = 𝑦𝑒𝑥𝑦 + 𝑦𝑒𝑥𝑦 + 𝑦2𝑥𝑒𝑥𝑦 = 2𝑦𝑒𝑥𝑦 + 𝑦2𝑥𝑒𝑥𝑦 

𝜕

𝜕𝑦

𝜕𝑢

𝜕𝑥
=

𝜕2𝑢

𝜕𝑦𝜕𝑥
 = 

𝜕

𝜕𝑦
(𝑦2𝑒𝑥𝑦) = 2 𝑦𝑒𝑥𝑦 + 𝑦2𝑥𝑒𝑥𝑦 

                  
𝜕

𝜕𝑦

𝜕𝑢

𝜕𝑦
=

𝜕2𝑢

(𝜕𝑦)2
=

𝜕

𝜕𝑦
(𝑒𝑥𝑦 + 𝑦𝑥𝑒𝑥𝑦) = 𝑥𝑒𝑥𝑦 + 𝑥𝑒𝑥𝑦 + 𝑦𝑥2𝑒𝑥𝑦 = 2𝑥𝑒𝑥𝑦 + 𝑦𝑥2𝑒𝑥𝑦   

𝜕

𝜕𝑦

𝜕

𝜕𝑥

𝜕𝑢

𝜕𝑦
= 
𝜕

𝜕𝑦
(2𝑦𝑒𝑥𝑦 + 𝑦2𝑥𝑒𝑥𝑦)=2𝑒𝑥𝑦 + 2𝑦𝑥𝑒𝑥𝑦 + 𝑦2𝑥2𝑒𝑥𝑦 

We can notice that 
𝜕

𝜕𝑥

𝜕𝑢

𝜕𝑦
=

𝜕

𝜕𝑦

𝜕𝑢

𝜕𝑥
 but in general it is not always true.. 

III.2.2 Definition of a partial differential equation (PDE) 

A partial differential equation is an equation which involves a function depending on 

more than one variable, and partial derivatives of the function. 

Examples 

1) 
𝜕𝑢

𝜕𝑥
 = 0 

2) 
𝜕2𝑢

(𝜕𝑥)2
= 0 

3) 
𝜕2𝑢

𝜕𝑥𝜕𝑦
= 0 

4) 
𝜕𝑢

𝜕𝑡
 + c 

𝜕𝑢

𝜕𝑥
 = 0   is the transport equation. 

5) 
𝜕2𝑢

(𝜕𝑥)2
+

𝜕2𝑢

(𝜕𝑦)2
= 0 is the Laplace’s equation 

6) 
𝜕𝑢

𝜕𝑡
− 𝑐2(

𝜕2𝑢

(𝜕𝑥)2
+

𝜕2𝑢

(𝜕𝑦)2
)=0  is the two-dimensional Heat equation 

7) 
𝜕2𝑢

(𝜕𝑡)2
− 𝑐2

𝜕2𝑢

(𝜕𝑥)2
= 0  is the One-dimensional wave equation (or string equation) 

Notes: 

-All PDE’s above are of second order (except for 1 and 4, they are of a first order) since they 
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involve second-order partial derivatives. 

- If a PDE contains partial derivatives such as 
𝜕𝑖

(𝜕𝑥)𝑖
𝜕𝑗

(𝜕𝑦)𝑗
𝜕𝑘𝑢

(𝜕𝑥)𝑘
, its order is then the largest order 

of partial derivatives i+ j+k that appears in the equation. 

 

III.2.2 Linear partial differential equation: 

A PDE is said to be linear if: 

i)The function u and its partial derivatives occurs at first power 

ii)There is no product between the function u and its partial derivatives.   

Otherwise it’s non-linear. 

Note: 

- if u depends on two variables x and y, i) means there is no 𝑢𝑚 , (
𝜕𝑢

𝜕𝑥
)𝑚, (

𝜕𝑢

𝜕𝑥
)
𝑚

(
𝜕2𝑢

𝜕𝑥𝜕𝑦
)
𝑚

….., 

   m≥ 2 

Examples: 

1)  All  PDE’s above are linear since they satisfy both requirements. 

2)  
𝜕𝑢

𝜕𝑡
 + 
𝜕𝑢

𝜕𝑥
+ u(x,t)=4x+t  is linear 

2)   2xy
𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 5

𝜕𝑢

𝜕𝑥
= 2𝑥𝑠𝑖𝑛(𝑦) is linear 

3) (
𝜕𝑢

𝜕𝑥
)2+

𝜕3𝑢

(𝜕𝑦)3
+ 6𝑥

𝜕𝑢

𝜕𝑥
= 0  is non- linear because of (

𝜕𝑢

𝜕𝑥
)2 (second power. The first  

                                                  condition is not satisfied). 

4) 𝑢(𝑥, 𝑦)
𝜕𝑢

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
= 𝑥            is non- linear because of the product 𝑢(𝑥, 𝑦)

𝜕𝑢

𝜕𝑥
. 

                                                (the second condition is not satisfied). 

III.2.3 Solving linear second-order PDE’s  

PDE’s are often hard to solve because of their complexity indeed they involve 

functions of multiple variables, different partial derivatives and most of them are non linear. 

The reason why we are going to restrain our study to linear second-order PDE’s using a 

method called separable of variables to solve them and in chapter V we will introduce a tool 

to solve PDE’s called Fourier transform. 

A general linear second –order PDE is of form: 

A
𝜕2𝑢

(𝜕𝑥)2
+B

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝐶

𝜕2𝑢

(𝜕𝑦)2
+ 𝐷

𝜕𝑢

𝜕𝑥
+ 𝐸

𝜕𝑢

𝜕𝑦
+ 𝐹𝑢 = 𝐺 

Where all coefficients A, B,…G are functions of x and y. 

Notes: 
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-If G=0⇒ PDE is homogeneous. 

- A solution of a linear second–order PDE is a function u(x, y) that possesses partial 

derivatives in LPDE and satisfies the equation. 

- if 𝑢1, 𝑢2, … . 𝑢3 are solution of  homogeneous LPDE then 𝑢 = 𝑐1𝑢1 + 𝑐2𝑢2, … . +𝑐𝑘𝑢3is also  

  a solution  (superposition principle) 

III.2.3 Separable variables method: 

This method is about looking for a solution of form u(x,y)=f(x).g(y) 

So  
𝜕𝑢

𝜕𝑥
= f ′ (x).g(y),   

𝜕𝑢

𝜕𝑦
= f(x).g′ (y),   

𝜕2𝑢

(𝜕𝑦)2
= 𝑓(𝑥)g′′(y), ……etc 

At the end we have to solve two different equations. 

Example1:  

𝜕2𝑢

(𝜕𝑥)2
= 4

𝜕𝑢

𝜕𝑦
   (I) 

Let us put u(x,y)=f(x).g(y) 

(I)Becomes 𝑓′′(𝑥)g(y) = 4 f(x).g′ (y)⇒ 
𝑓′′(𝑥)

4f(x)
=
g′ (y)

g(y)
 

                         independent of y                           independent of x  

From this equality we can deduce both of them are independent of x and y therefore they 

are constant. 

𝑓′′(𝑥)

4f(x)
=
g′ (y)

g(y)
= −𝑘   ( -k because it’s more convenient for next calculations) 

⇒𝑓′′(𝑥) + 4𝑘f(x) = 0   and   g′(y) + kg(y) = 0 

We have three cases: 𝑘 = 0, 𝑘 < 0, 𝑘 > 0 

1) 𝑘 = 0 ⇒ {
𝑓′′(𝑥) = 0 ⇒

𝜕2𝑓(𝑥)

(𝜕𝑥)2
= 0⇒

𝜕𝑓(𝑥)

𝜕𝑥
= 𝑐1⇒𝑓(𝑥) = 𝑐1𝑥 + 𝑐2

g′(y) = 0⇒
𝜕𝑔(𝑥)

𝜕𝑦
= 0⇒𝑔(𝑦) = 𝑐3

 

So u(x,y)=f(x).g(y)= (𝑐1𝑥 + 𝑐2) 𝑐3⇒ u(x,y)= 𝑎1𝑥 + 𝑏1,    𝑎1, 𝑏1 ∈ ℝ 

2) 𝑘 < 0 ⇒𝑘 = −𝛼2 

𝑓′′(𝑥) − 4𝛼2f(x) = 0 

A second-order homogeneous EDO 

𝑟2 − 4𝛼2=0     (CE) 

Two real roots 𝑟1 = 2𝛼 ,  𝑟2 = −2𝛼 

solution  𝑓(𝑥) = 𝑘1𝑒
2𝛼𝑥 + 𝑘2𝑒

−2𝛼𝑥   ,   

𝑘1, 𝑘2 ∈  ℝ 

 

        g′(y) − 𝛼2g(y) = 0 

A first-order homogeneous EDO 

 Solution g(y)= 𝑘3𝑒
𝛼2𝑦  , 𝑘3 ∈  ℝ 
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So u(x,y)=f(x).g(y)= (𝑘1𝑒
2𝛼𝑥 + 𝑘2𝑒

−2𝛼𝑥)( 𝑘3𝑒
𝛼2𝑦) ⇒ u(x,y)= 𝑎2𝑒

−2𝛼𝑥+𝛼2𝑦 + 𝑏2𝑒
2𝛼𝑥+𝛼2𝑦 ,    

𝑎2, 𝑏2 ∈ ℝ 

3) 𝑘 > 0 ⇒𝑘 = 𝛼2 

𝑓′′(𝑥) + 4𝛼2f(x) = 0 

A second-order homogeneous EDO 

𝑟2 + 4𝛼2=0     (CE) 

Two complex roots 𝑟1 = −2𝛼𝑖 , 𝑟2 = 2𝛼𝑖 

solution  𝑓(𝑥) = 𝑘4𝑐𝑜𝑠2𝛼𝑥 + 𝑘5𝑠𝑖𝑛2𝛼𝑥  

,   𝑘4, 𝑘5 ∈  ℝ 

 

        g′(y) + 𝛼2g(y) = 0 

A first-order homogeneous EDO 

 Solution g(y)= 𝑘6𝑒
−𝛼2𝑦  , 𝑘6 ∈  ℝ 

   So u(x,y) =f(x).g(y)= 𝑎3𝑒
−𝛼2𝑦𝑐𝑜𝑠2𝛼𝑥 + 𝑏3𝑒

−𝛼2𝑦𝑠𝑖𝑛2𝛼𝑥 ,    𝑎3, 𝑏3 ∈ ℝ 

Example2:  

𝑥
𝜕𝑢

𝜕𝑥
= 𝑡

𝜕𝑢

𝜕𝑡
   (II) 

u(x,t)=f(x).g(t) 

(II) Becomes  x𝑓′(𝑥)g(t) = t f(x).g′(t) ⇒ 
𝑥𝑓′(𝑥)

f(x)
=
tg′ (t)

g(t)
 =−𝑘    

⇒𝑥𝑓′(𝑥) + 𝑘f(x) = 0   and   tg′(t) + kg(t) = 0 

1)𝑘 = 0 ⇒ {
𝑓′(𝑥) = 0 ⇒ 𝑓(𝑥) = 𝑐1

g′(y) = 0⇒𝑔(𝑦) = 𝑐2
  so u(x,y)= 𝑐1 + 𝑐2 = 𝑎1, 𝑎1 ∈ ℝ 

2)𝑘 ≠ 0 

𝑥𝑓′(𝑥) + 𝑘f(x) = 0    

A first-order homogeneous EDO 

𝑥𝑓′(𝑥) = −𝑘𝑓(𝑥) 

𝑓′(𝑥)

𝑓(𝑥)
=
−𝑘

𝑥
 

Integrate: ln|𝑓(𝑥)|=-k𝑙𝑛|𝑥|+𝑐3 

⇒𝑓(𝑥) = 𝑐4𝑥
−𝑘 

⇒solution  𝑓(𝑥) = 𝑐4𝑥
−𝑘  ,  𝑐4 ∈  ℝ 

 

        tg′(t) + kg(t) = 0 

A first-order homogeneous EDO 

𝑥𝑔′(𝑥) = −𝑘𝑔(𝑥) 

𝑔′(𝑡)

𝑔(𝑡)
=
−𝑘

𝑡
 

Integrate: ln|𝑔(𝑡)|=-k𝑙𝑛|𝑥|+𝑐3 

⇒𝑔(𝑡) = 𝑐5𝑡
−𝑘  

 

 Solution g(t)= 𝑐5𝑡
−𝑘  , 𝑐5 ∈  ℝ 

   So u(x,t) =f(x).g(y)= 𝑎2(𝑥𝑡)
−𝑘 , 𝑎2 ∈  ℝ 

Notes : 

We have considered just two cases of k because of first-order homogeneous EDO ( 
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three cases when we have second-order homogeneous EDO). 

Exercises 

Exercice1: 

Solve  the following First-order ODE: 

𝑥𝑦’−𝑦=𝑥2𝑙𝑛𝑥  

Exercice2: 

Solve the following second-order ODE: 

𝑦′′+𝑦′ − 6𝑦 = 𝑠𝑖𝑛𝑥 

Exercice3: 

Which of the following PDE’s are linear? 

     1) 
𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝑦2

𝜕𝑢

𝜕𝑥
= 2𝑥𝑒𝑦  

2)
𝜕2𝑢

(𝜕𝑦)2
+ (

𝜕𝑢

𝜕𝑥
)
3

+ 6𝑥
𝜕𝑢

𝜕𝑥
= 0   

3)
𝜕2𝑢

(𝜕𝑡)2
  + 

𝜕𝑢

𝜕𝑥
+ u(x,t)+2xt=0 

4 ) 𝑥
𝜕𝑢

𝜕𝑥
+ 𝑦

𝜕𝑢

𝜕𝑦
= 𝑢(𝑥, 𝑦)

𝜕2𝑢

𝜕𝑥𝜕𝑦
            

Exercice4: 

Solve the following simple PDE’s. 

1) 
𝜕𝑢(𝑥,𝑦)

𝜕𝑥
 = 0   2) 

𝜕2𝑢

(𝜕𝑥)2
= 0  3) 

𝜕2𝑢

𝜕𝑥𝜕𝑦
= 0 

Exercice5: 

Solve the following linear second-order PDE’s using separable of variables method: 

1) 
𝜕𝑢

𝜕𝑡
 + c 

𝜕𝑢

𝜕𝑥
 = 0   (the transport equation). 

2) 
𝜕2𝑢

(𝜕𝑥)2
+

𝜕2𝑢

(𝜕𝑦)2
= 0 ( the Laplace’s equation) 

 Solution of exercise 1   

We can bring this equation to the standard form (I):  𝑦’−
1

𝑥
𝑦=𝑥𝑙𝑛𝑥  

1)Find the homogenous solution 𝑦𝐻 of equation 𝑦’−
1

𝑥
𝑦=0:    

Separate variables: 

𝑦’−
1

𝑥
𝑦=0 ⇒

𝑑𝑦

𝑦
 = 
𝑑𝑥

𝑥
      (since 𝑑𝑦 = 𝑦’ 𝑑𝑥) 

Integrate: ∫
𝑑𝑦

𝑦
= ∫

𝑑𝑥

𝑥
 ⇒𝑙𝑛|𝑦|= 𝑙𝑛|𝑥| + 𝐶 

⇒ 𝑒𝑙𝑛|𝑦|=𝑒𝑙𝑛|𝑥|+𝐶 ⇒|𝑦| = 𝑒𝐶|𝑥| ⇒ 𝑦𝐻 = 𝑒
𝐶𝑥 = 𝐾𝑥, K∈ ℝ 
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2) Find a particular solution 𝑦𝑝 of 𝑦’−
1

𝑥
𝑦=𝑥𝑙𝑛𝑥 (I) using variation of parameters: 

𝑦𝑝 = 𝐾(𝑥)𝑥 ⇒ 𝑦𝑝′= 𝐾
′(𝑥)𝑥 + 𝐾(𝑥) 

Put expressions of 𝑦𝑝 and 𝑦𝑝′ into (I): 

𝐾′(𝑥)𝑥 + 𝐾(𝑥) −
1

𝑥
𝐾(𝑥)𝑥 =  𝑥𝑙𝑛𝑥 ⇒𝐾′(𝑥) = 𝑙𝑛𝑥⇒  𝐾(𝑥) = ∫ 𝑙𝑛𝑥 𝑑𝑥 

Using integration by parts method, we get 𝐾(𝑥) = 𝑥𝑙𝑛𝑥 − 𝑥 + 𝑐,   𝑐 ∈ ℝ 

⇒𝑦𝑝 = (𝑥𝑙𝑛𝑥 − 𝑥 + 𝑐)𝑥 

Therefore, our general solution: 𝑦𝐺 =  𝐾𝑥 + (𝑥𝑙𝑛𝑥 − 𝑥 + 𝑐)𝑥 

Finally, 𝑦𝐺 =  𝐿𝑥 + (𝑥𝑙𝑛𝑥 − 𝑥)𝑥, 𝐿 ∈ ℝ 

 Solution of exercise2: 

𝑦′′+𝑦′ − 6𝑦 = sinx 

1) Determine 𝑦𝐻 of homogeneous equation 𝑦′′+𝑦′ − 6𝑦 = 0 

Characteristic equation (CE): 𝑟2+𝑟 − 6 = 0=0 

∆= 1 + 24 = 25⇒  two complex roots 𝑟1 =
−1−5

2
= −3 

  𝑟2 =
−1+5

2
= 2  

So 𝑦𝐻 = 𝑦𝐻 = 𝑘1𝑒
−3𝑥 + 𝑘2𝑒

2𝑥  ,   𝑘1, 𝑘2 ∈  ℝ 

3) Determine a particular solution 𝑦𝑝 of the equation 𝑦′′+𝑦′ − 6𝑦 = sinx (II) 

f(x)= sin(x) of form  𝑒0𝑥(𝑃0(𝑥) sin 𝑥 + 𝑅0(𝑥) cos 𝑥) , here 𝑃0(𝑥) = 1 and 𝑅0(𝑥) = 0 

 (0+i) is not a root of the characteristic equation (seen above) then 

 𝑦𝑝 = 𝑒
0𝑥(𝑄0(𝑥) sin 𝑥 + 𝑆0(𝑥) cos 𝑥)= Asin 𝑥 + 𝐵 cos𝑥   A, B constants 

Let us determine A and B: 

𝑦𝑝 = Asin 𝑥 + 𝐵 cos 𝑥 

𝑦𝑝
′ = 𝐴𝑐𝑜𝑠𝑥 − 𝐵𝑠𝑖𝑛𝑥 

𝑦𝑝
′′ = −𝐴𝑠𝑖𝑛𝑥 − 𝐵𝑐𝑜𝑠𝑥 

Put expressions of 𝑦𝑝, 𝑦𝑝,
′  𝑦𝑝

′′ into equation (II). 

−𝐴𝑠𝑖𝑛𝑥 − 𝐵𝑐𝑜𝑠𝑥+ 𝐴𝑐𝑜𝑠𝑥 − 𝐵𝑠𝑖𝑛𝑥 − 6Asin 𝑥 − 6𝐵 cos 𝑥 = 𝑠𝑖𝑛𝑥 ⇔ 

𝑠𝑖𝑛𝑥 [−𝐴 –𝐵 − 6𝐴]+ 𝑐𝑜𝑠𝑥 [−𝐵 + 𝐴 − 6𝐵]= 𝑠𝑖𝑛𝑥 +0𝑐𝑜𝑠𝑥   ⇔ 

{
−7A− B = 1
𝐴 − 7𝐵 = 0

  ⇔{
A =

−7

50

𝐵 =
−1

50

 

Thus 𝑦𝑝 =
−7

50
sin 𝑥 +

−1

50
cos 𝑥 

 Therefore our general solution 𝑦𝐺 = 𝑘1𝑒
−3𝑥 + 𝑘2𝑒

2𝑥 +
−7

50
sin𝑥 +

−1

50
cos 𝑥 ,   𝑘1, 𝑘2 ∈  ℝ 
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Solution of exercise3 

     1) 
𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝑦2

𝜕𝑢

𝜕𝑥
= 2𝑥𝑒𝑦   is linear     

2)
𝜕2𝑢

(𝜕𝑦)2
+ (

𝜕𝑢

𝜕𝑥
)
3

+ 6𝑥
𝜕𝑢

𝜕𝑥
= 0  is non- linear because of (

𝜕𝑢

𝜕𝑥
)3 (Third power. The first  

                                                  condition is not satisfied). 

3) 
𝜕2𝑢

(𝜕𝑡)2
  + 

𝜕𝑢

𝜕𝑥
+ u(x,t)+2xt=0   is linear 

4 ) 𝑥
𝜕𝑢

𝜕𝑥
+ 𝑦

𝜕𝑢

𝜕𝑦
= 𝑢(𝑥, 𝑦)

𝜕2𝑢

𝜕𝑥𝜕𝑦
            is non- linear because of the product 𝑢(𝑥, 𝑦)

𝜕2𝑢

𝜕𝑥𝜕𝑦
 

                                                (the second condition is not satisfied). 

Solution of exercice4: 

1)
𝜕𝑢(𝑥,𝑦)

𝜕𝑥
 = 0   

    That means the function u does not depend on the variable x, but only on the Variable y                

 ⇒ by integrating with respect to x,  u(x,y)= f(y) where f(y) is any arbitrary function 

of y. 

2) 
𝜕2𝑢

(𝜕𝑥)2
= 0 ⇔

𝜕

𝜕𝑥
[
𝜕𝑢(𝑥,𝑦)

𝜕𝑥
] = 0  

That means the function 
𝜕𝑢(𝑥,𝑦)

𝜕𝑥
 does not depend on the variable x, but only on the 

variable y  ⇒
𝜕𝑢(𝑥,𝑦)

𝜕𝑥
= f(y)  ⇒by integrating with respect to x, we get     

u(x,y)=f(y)x+g(x), where f(y), g(x) are respectively  any arbitrary function of y, x. 

        3) 
𝜕2𝑢

𝜕𝑥𝜕𝑦
= 0⇔

𝜕

𝜕𝑥
[
𝜕𝑢

𝜕𝑦
] = 0 ⇒by integrating with respect to x, we obtain  

𝜕𝑢

𝜕𝑦
= f(y)   

           ⇒by integrating with respect to y, we get   u(x,y)= ∫ f(y)dy +g(x)  

                   ⇒ u(x,y)= 𝐹(𝑦) +g(x)   where F(y) is an anti-derivative of f. 

Solution of exercice5: 

1) 
𝜕𝑢

𝜕𝑡
 + c 

𝜕𝑢

𝜕𝑥
 = 0   (1). 

u(x,t)=f(x).g(t) 

(1)⇔ f(x).g′(t) +c𝑓′(𝑥)g(t) = 0 ⇒ 
𝑐𝑓′(𝑥)

f(x)
=
g′ (t)

g(t)
 =−𝑘  (k cste) 

⇒𝑐𝑓′(𝑥) + 𝑘f(x) = 0   and   g′(t) + kg(t) = 0 

1)𝑘 = 0 ⇒ {
𝑓′(𝑥) = 0 ⇒ 𝑓(𝑥) = 𝑐1

g′(y) = 0⇒𝑔(𝑦) = 𝑐2
  so u(x,y)= 𝑐1 + 𝑐2 = 𝑎1, 𝑎1 ∈ ℝ 

2)𝑘 ≠ 0 
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𝑐𝑓′(𝑥) + 𝑘f(x) = 0    

A first-order homogeneous EDO 

⇒solution  𝑓(𝑥) = 𝑎1𝑒
−
𝑘

𝑐
𝑥

  ,  𝑎1 ∈  ℝ 

 

        g′(t) + kg(t) = 0 

A first-order homogeneous EDO 

 

 Solution g(t)= 𝑎2𝑒
−𝑘𝑡  , 𝑎2 ∈  ℝ 

   So u(x,t) =f(x).g(y)= 𝑎3𝑒
−
𝑘

𝑐
𝑥𝑒−𝑘𝑡  , 𝑎3 ∈  ℝ 

2)
𝜕2𝑢

(𝜕𝑥)2
+

𝜕2𝑢

(𝜕𝑦)2
= 0   (II) 

u(x,y)=f(x).g(y) 

(II) ⇔ 𝑓′′(𝑥)g(y) + f(x).g′′ (y)= 0⇒− 
𝑓′′(𝑥)

f(x)
=
g′′ (y)

g(y)
= −𝑘  (k cste) 

⇒−𝑓′′(𝑥) + 𝑘f(x) = 0   and   g′′(y) + kg(y) = 0 

1) 𝑘 = 0 ⇒ {
𝑓′′(𝑥) = 0 ⇒

𝜕2𝑓(𝑥)

(𝜕𝑥)2
= 0⇒

𝜕𝑓(𝑥)

𝜕𝑥
= 𝑐1⇒𝑓(𝑥) = 𝑐1𝑥 + 𝑐2

g′′(y) = 0⇒
𝜕2𝑔(𝑦)

(𝜕𝑦)2
= 0⇒

𝜕𝑔(𝑦)

𝜕𝑦
= 𝑐3⇒𝑔(𝑦) = 𝑐3𝑦 + 𝑐4

 

So u(x,y)=f(x).g(y)= (𝑐1𝑥 + 𝑐2)(𝑐3𝑦 + 𝑐4 ) ⇒,    𝑐𝑖 ∈ ℝ 

2) 𝑘 < 0 ⇒𝑘 = −𝛼2 

-𝑓′′(𝑥) − 𝛼2f(x) = 0 

A second-order homogeneous EDO 

−𝑟2 −𝛼2=0     (CE) 

Two complex roots 𝑟1 = 𝑖𝛼 ,  𝑟2 = −𝑖𝛼 

solution  𝑓(𝑥) = 𝑘1cos (𝛼𝑥) + 𝑘2𝑠𝑖𝑛 (𝛼𝑥)    

𝑘1, 𝑘2 ∈  ℝ 

        g′′(y) − 𝛼2g(y) = 0 

A second-order homogeneous EDO 

 𝑟2 −𝛼2=0     (CE) 

Two real roots 𝑟1 = 𝛼 ,  𝑟2 = −𝛼 

solution  𝑔(𝑦) = 𝑘3𝑒
𝛼𝑦 + 𝑘4𝑒

−𝛼𝑦   ,   

𝑘3, 𝑘4 ∈  ℝ 

So u(x,y)=f(x).g(y)= (𝑘1cos (𝛼𝑥) + 𝑘2𝑠𝑖𝑛 (𝛼𝑥) )( 𝑘3𝑒
𝛼𝑦 + 𝑘3𝑒

−𝛼𝑦), 𝑘𝑖 ∈ ℝ 

 3) 𝑘 > 0 ⇒𝑘 = 𝛼2 

−𝑓′′(𝑥) + 𝛼2f(x) = 0 

A second-order homogeneous EDO 

−𝑟2 +𝛼2=0     (CE) 

Two real roots 𝑟1 = 𝛼 ,  𝑟2 = −𝛼 

solution  𝑓(𝑥) = 𝑘4𝑒
𝛼𝑥 + 𝑘5𝑒

−𝛼𝑥   ,   

𝑘4, 𝑘5 ∈  ℝ 

        g′′(y) + 𝛼2g(y) = 0 

A second-order homogeneous EDO 

𝑟2 + 𝛼2=0     (CE) 

 Two complex roots 𝑟1 = −𝛼𝑖 ,  𝑟2 = 𝛼𝑖 

solution  𝑔(𝑦) = 𝑘6𝑐𝑜𝑠𝛼𝑦 + 𝑘7𝑠𝑖𝑛𝛼𝑦  ,   

𝑘6, 𝑘7 ∈  ℝ 

   So u(x,y) =f(x).g(y)= (𝑘4𝑒
𝛼𝑥 + 𝑘5𝑒

−𝛼𝑥)(𝑘6𝑐𝑜𝑠𝛼𝑦 + 𝑘7𝑠𝑖𝑛𝛼𝑦),   𝑘𝑖 ∈ ℝ  
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IV.1.  Infinite series: 

IV.1.1 Definition of an infinite series 

Let (𝑈𝑛)𝑛≥1be a sequence of real numbers so 

𝑈1+ 𝑈2+ 𝑈3+……………..=∑ 𝑈𝑛
∞
𝑛=1 is called an infinite series or more simply just a  

series. 

In other words an infinite series is an infinite sum of elements of a sequence or roughly 

speaking it is an infinite sum of real numbers. 

𝑈1, 𝑈2,  𝑈3,………………..are called terms of the series∑ 𝑈𝑛
∞
𝑛=1  

Notes: 

-If  (𝑈𝑛)𝑛≥0   then  ∑ 𝑈𝑛
∞
𝑛=0   is the associate series to this sequence. 

If  (𝑈𝑛)𝑛≥3   then  ∑ 𝑈𝑛
∞
𝑛=3   is the associate series to this sequence. 

-The goal of chapter is to understand the meaning of such an infinite sum and to develop 

methods to calculate it. 

Examples: 

1 .Let (1, 2, 3……….) be a sequence, one can write I tas : 

  𝑈𝑛= n     ∀𝑛 ≥1     so the associate series is∑ 𝑛∞
𝑛=1  

2. Let (0,-1,-2,-3……….) be a sequence which can be defined also as follows: 

𝑈𝑛= -n     ∀𝑛 ≥0     so the associate series is ∑ −𝑛∞
𝑛=0  

 

3. The general term of the following sequence (-6,-9,-12,-15……….) is  

𝑈𝑛= -3n     ∀𝑛 ≥2     so the associate series is ∑ −3𝑛∞
𝑛=2  

Note: 

The general term is usually given, so it is easy to write the series: 

Example : 

𝑈𝑛= 
1

𝑛
 ∀𝑛 ≥2    so the associate series is ∑

1

𝑛

∞
𝑛=1  

IV.1.2 Convergence of an infinite series: 

Let∑ 𝑈𝑛
∞
𝑛=1 be a series. 

We build a sequence(𝑆𝑛)𝑛≥1 as follows: 

S1=    𝑈1 

S2=    𝑈1+ 𝑈2 

S3=    𝑈1+ 𝑈2+  𝑈3 

Sn=    𝑈1+ 𝑈2+ ……..𝑈𝑛 

This sequence(𝑆𝑛)𝑛≥1is called the sequence of partial sums of the series ∑ 𝑈𝑛
∞
𝑛=1 . 
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IV.1.2.1 Definition: 

The series∑ 𝑈𝑛
∞
𝑛=1 converges if and only if the sequence(𝑆𝑛)𝑛≥1converges, and 

otherwise the series diverges. 

That is,∑ 𝑈𝑛
∞
𝑛=1 converges⇔ lim

𝑛→+∞

𝑆𝑛 = 𝑆   S is a finite number 

In this case we write: ∑ 𝑈𝑛
∞
𝑛=1    = 𝑆and Sis called sum of the series∑ 𝑈𝑛

∞
𝑛=1  

Note: 

If lim
𝑛→+∞

𝑆𝑛 =

{
 
 

 
 

+∞
𝑜𝑟
−∞
𝑜𝑟

2 𝑙𝑖𝑚𝑖𝑡𝑠

then series ∑ 𝑈𝑛
∞
𝑛=1 diverges 

 

 and ∑ 𝑈𝑛
∞
𝑛=1 =

{
 
 

 
 

+∞
𝑜𝑟
−∞
𝑜𝑟

𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡

 

Examples: 

1) ∑ (1)𝑛∞
𝑛=1  

Let(𝑆𝑛)𝑛≥1be its partial sums. 

S1= 𝑈1=1 

S2=  𝑈1+ 𝑈2= 1+1 

S3=  𝑈1+ 𝑈2+  𝑈3=1+1+1 

Sn=  𝑈1+ 𝑈2+ ……..𝑈𝑛=1+1+1………….+1 =n⇒ lim
𝑛→+∞

𝑆𝑛 = lim
𝑛→+∞

𝑛 = +∞  

Then series ∑ (1)𝑛∞
𝑛=1 diverges and  ∑ (1)𝑛∞

𝑛=1 = +∞ 

2)∑ (−1)𝑛∞
𝑛=1  

S1=    𝑈1= -1 

S2=    𝑈1+ 𝑈2= -1+1=0 

S3=    𝑈1+ 𝑈2+  𝑈3=-1+1-1= -1 

⇒ lim
𝑛→+∞

𝑆𝑛 = {
−1  𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

𝑜𝑟
0 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

hence series ∑ (−1)𝑛∞
𝑛=1  diverges. 

3)∑ (
1

8
)𝑛∞

𝑛=0  

Note: 

𝑈𝑛 = (
1

8
)𝑛 is a geometric sequence with a common ratio 𝑟 =

1

8
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so Sn=𝑈0 + 𝑈1+ 𝑈2+…..+  𝑈𝑛 =1 +
1

8
+(
1

8
)2+……….+(

1

8
)𝑛is the finite sum of first terms of 

geometric sequencethat we know how to compute it: 

Sn=𝑈0(
1−𝑟𝑛+1

1−𝑟
) 

 =1(
1−(

1

8
)𝑛+1

1−
1

8

)  

lim
𝑛→+∞

𝑆𝑛 = lim
𝑛→+∞

(
1 − (

1
8
)𝑛+1

1 −
1
8

)  

Since lim
𝑛→+∞

(
1

8
)𝑛+1 = 0⇒ lim

𝑛→+∞

𝑆𝑛 =
1

1−
1

8

=
8

7
 

So the geometric series∑ (
1

8
)𝑛∞

𝑛=0  converges and∑ (
1

8
)𝑛∞

𝑛=0 =
8

7
 

IV.1.2.2 Generalization about geometric series: 

∑ (𝑞)𝑛∞
𝑛=0 is ageometric series with a common ratio q ( q a real constant) 

∑ (𝑞)𝑛∞
𝑛=0 =1+q+q2+…….... 

Its partial sums 𝑆𝑛 =1+q+q2+……....+qn=𝑈0(
1−𝑞𝑛+1

1−𝑞
)  si q≠ 1 

where 𝑈0 = 1 

lim
𝑛→+∞

𝑆𝑛 = lim
𝑛→+∞

(
1−𝑞𝑛+1

1−𝑞
)  si q≠ 1 

a) if -1< 𝑞 <1   

lim
𝑛→+∞

𝑞𝑛+1=0⇒ lim
𝑛→+∞

𝑆𝑛 = lim
𝑛→+∞

(
1−𝑞𝑛+1

1−𝑞
) =

1

1−𝑞
 

b) if q> 1 

lim
𝑛→+∞

𝑞𝑛+1=+∞⇒ lim
𝑛→ lim

𝑛→ +∞

+∞

𝑆𝑛 = lim
𝑛→+∞

(
1−𝑞𝑛+1

1−𝑞
)=-∞ 

c) if q< −1 

lim
𝑛→+∞

𝑞𝑛+1 = {
+∞  if n is even
−∞ 𝑖𝑓 n is odd

⇒ lim
𝑛→ lim

𝑛→ +∞

+∞

𝑆𝑛 = lim
𝑛→+∞

(
1 − 𝑞𝑛+1

1 − 𝑞
) 

                  =   {
+∞  if n is even
−∞ 𝑖𝑓 n is odd

 

d) if q=1 

lim
𝑛→+∞

𝑆𝑛= lim
𝑛→+∞

1+q+q2+……....+qn= lim
𝑛→+∞

1 + 1 + 1 + ⋯…+ 1 
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= lim
𝑛→+∞

𝑛 + 1 = +∞ 

e) Si q=-1 

lim
𝑛→+∞

𝑆𝑛= lim
𝑛→+∞

1+q+q2+……....+qn 

  = lim
𝑛→+∞

1 − 1 + 1 + ⋯…+ (−1)𝑛=   {
1  if n is even
0   𝑖𝑓 n is odd

 

To summarize: 

Geometric series∑ (𝑞)𝑛∞
𝑛=0  converges if -1< 𝑞 <1 and its sum S=∑ (𝑞)𝑛∞

𝑛=0 =
1

1−𝑞
 

Geometric series ∑ (𝑞)𝑛∞
𝑛=0  diverges if q≤ −1 𝑜𝑟𝑞 ≥ 1. 

The above Example: 

∑ (
1

8
)𝑛 ∞

𝑛=0 is a geometric series with a common ratio q=
1

8
  ; -1<

1

8
<1   converges and its sum 

S=∑ (
1

8
)𝑛∞

𝑛=0 =
1

1−
1

8

=
8

7
 

Example: 

∑ (
3

2
)𝑛∞

𝑛=0 is a geometric series with a common ratio q=
 3

2
; 
3

2
≥ 1so this series diverges 

and ∑ (
3

2
)𝑛∞

𝑛=0 =+∞ 

IV.1.2.3 Properties of convergent series  

Proposition 1: 

if  ∑ 𝑈𝑛
∞
𝑛=1    converges ⇒ lim

𝑛→+∞

𝑈𝑛 = 0 

Proof : 

Sn=  𝑈1+ 𝑈2+ ……..𝑈𝑛 

Sn-1=  𝑈1+ 𝑈2+ …….. 𝑈𝑛−1 

Sn- Sn-1= Un 

If  ∑ 𝑈𝑛
∞
𝑛=1  converges ⇒

{
 

 
lim
𝑛→+∞

𝑆𝑛 = S

lim
𝑛→+∞

𝑆𝑛−1 = S
 

⇒ lim
𝑛→+∞

(𝑆𝑛 − 𝑆𝑛−1) =  lim
𝑛→+∞

𝑆𝑛 − lim
𝑛→+∞

𝑆𝑛−1 = S − S = 0 

The contrapositive of this theorem  is called the divergence test: 

If lim
𝑛→+∞

𝑈𝑛 ≠ 0⇒∑ 𝑈𝑛
∞
𝑛=1   diverges 
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In other words, if lim
𝑛→+∞

𝑈𝑛  of a given series does not exist or has a value other than zero, the 

series diverges. 

This test (the divergence test) is easy to apply, can save us a lot of time and guesswork that is 

why it is used a lot. 

Note well that the converse is not true: if lim
𝑛→+∞

𝑈𝑛 = 0 then the series does not necessarily 

converge (It may converge or it may diverge) 

Example1 : 

∑(1)𝑛
∞

𝑛=0

 

lim
𝑛→+∞

(1)𝑛 = 1 ≠ 0⇒∑ (1)𝑛 ∞
𝑛=1 is divergent. 

Example2 : 

∑(−1)𝑛
∞

𝑛=0

 

lim
𝑛→+∞

(−1)𝑛 = {
1  if n is even
−1   if n is odd

⇒∑ (−1)𝑛∞
𝑛=1 is divergent. 

Example3 : 

∑(2 +
1

𝑛
)

∞

𝑛=1

 

lim
𝑛→+∞

(2 +
1

𝑛
) = 2 ≠ 0⇒∑ (2 +

1

𝑛
) ∞

𝑛=1 is divergent. 

Example4 : 

∑−𝑛

∞

𝑛=0

 

lim
𝑛→+∞

− 𝑛 = −∞ ≠ 0⇒∑ −𝑛 ∞
𝑛=1 diverges. 

Proposition 2 :  

Let∑ 𝑈𝑛
∞
𝑛=0 , ∑ 𝑈𝑛

∞
𝑛=𝑝 be two series that are different just by a finite number of terms. 

If ∑ 𝑈𝑛
∞
𝑛=0 is convergent and its sum is S⇒∑ 𝑈𝑛

∞
𝑛=𝑝 is convergent 

and ∑ Un
∞
n=p = S − (U0 + U1 +⋯ .+Up−1) 

Example: 

∑ (
1

2
)𝑛∞

𝑛=0 is a geometric series with a common ratio q=
1

2
  ; -1<

1

2
<1  hence it is convergent 
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and its sum S=∑ (
1

2
)𝑛∞

𝑛=0 =
1

1−
1

2

=2 

So ∑ (
1

2
)
𝑛

∞
𝑛=3 is also convergentand its sumS=∑ (

1

2
)
𝑛

∞
𝑛=3 = 2 − (1 +

1

2
+
1

4
) 

=2 − (
7

4
) =

1

4
 

Proposition 3: 

If ∑ 𝑈𝑛
∞
𝑛=0 𝑎𝑛𝑑∑ 𝑉𝑛

∞
𝑛=0 are convergent then∑ (𝑈𝑛

∞
𝑛=0 + 𝑉𝑛)is convergent. 

If ∑ 𝑈𝑛
∞
𝑛=0 is convergentthen∑ 𝑘. 𝑈𝑛

∞
𝑛=0  is convergent∀ 𝑘 ∈ 𝑅 

And ∑ 𝑘. 𝑈𝑛
∞
𝑛=0 = 𝑘∑ 𝑈𝑛

∞
𝑛=0  

Example: 

We know that ∑ (
1

2
)𝑛∞

𝑛=0 is a convergent series⇒∑ 3(
1

2
)𝑛∞

𝑛=0    converges 

And ∑ 3(
1

2
)
𝑛

∞
𝑛=0 = 3∑ (

1

2
)
𝑛

∞
𝑛=0  

                          =3x2 

                         =6 

IV.1.3 P-Series: 

IV.1.3.1 Definition: 

Are series of the form ∑
1

𝑛𝑝
∞
𝑛=1 ,  p is a real constant. 

Examples: 

∑
1

𝑛

∞
𝑛=1  (p=1),  ∑

1

𝑛2
∞
𝑛=1  (p=2) ,∑

1

𝑛3
∞
𝑛=1 (𝑝 = 3),∑

1

√𝑛

∞
𝑛=1  (p=

1

2
), ∑

1

𝑛
3
2⁄

∞
𝑛=1    (p=

3

2
) are P-séries. 

II.1.3 .2 Convergence of P-series: 

∑
1

𝑛𝑝
∞
𝑛=1  converges if p> 1. 

∑
1

𝑛𝑝
∞
𝑛=1  diverges if p ≤ 1. 

Example1 : 

∑
1 

𝑛

∞
𝑛=1  is divergent because p=1≤ 1 

Example2: 

∑
1

𝑛2
∞
𝑛=1  converges since p=2> 1.  

Example3 : 

∑
1

√𝑛

∞
𝑛=1   diverges because p=

1

2
≤ 1 
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IV.1.4 Abel’s Test: 

Let ∑ 𝑎𝑛 . 𝑏𝑛
∞
𝑛=1 an infinite series such as: 

1) (𝑎𝑛)𝑛is an increasing sequence that converges to 0 ;𝑎𝑛 ∈ ℝ
+ ∀𝑛. 

2) ∃𝑀 ∈ ℝ+ , ∀𝑝 ∈ 𝑁|∑ 𝑏𝑛
𝑝
𝑛=1 | < 𝑀 

Then  ∑ 𝑎𝑛 . 𝑏𝑛
∞
𝑛=1  is convergent. 

Example : 

∑
(−1)𝑛

𝑛

∞

𝑛=1

 

Let us choose 𝑎𝑛 =
1

𝑛
and 𝑏𝑛 = (−1)

𝑛 and check if Abel’s test is satisfied: 

We have n+1≥ 𝑛⇒
1

𝑛+1
≤
1

𝑛
⇒𝑎𝑛+1 ≤ 𝑎𝑛thus (𝑎𝑛)𝑛is an increasing sequence. 

lim
𝑛→+∞

𝑎𝑛 = lim
𝑛→+∞

1

𝑛
= 0 

Condition 1) is satisfied. 

Let us find M such as∀𝑝 ∈ 𝑁|∑ (−1)𝑛
𝑝
𝑛=1 | < 𝑀 : 

P=1   |∑ (−1)𝑛1
𝑛=1 | = 1 

P=2  |∑ (−1)𝑛2
𝑛=1 |=|−1 + 1| = 0 

P=3 ∑ (−1)𝑛3
𝑛=1 =|−1 + 1 − 1| = 1 

P=4  ∑ (−1)𝑛4
𝑛=1 =|−1 + 1 − 1 + 1| = 0 

So we have found M=2 such as∀𝑝 ∈ 𝑁|∑ (−1)𝑛
𝑝
𝑛=1 | < 2 Condition 2) is satisfied. 

Conclusion : 

∑
(−1)𝑛

𝑛

∞
𝑛=1 is a convergent series according to Abel’s Test. 

IV.1.5 Series with positive terms: 

are series  ∑ 𝑎𝑛
∞
𝑛=1 such that 𝑎𝑛 ≥ 0 ∀𝑛. 

Examples: 

∑
1

𝑛

∞
𝑛=1  ,   ∑ 𝑛∞

𝑛=1  , ∑ 𝑒𝑛∞
𝑛=1  

IV.1.5.1 Comparison Test: 

Let∑ 𝑎𝑛
∞
𝑛=1 be a series with positive terms. 

   1) If ∃ ∑ 𝑏𝑛
∞
𝑛=1 a series with positive terms that is convergent such that : 

𝑎𝑛 ≤ 𝑏𝑛∀𝑛 ≥ 𝑛0 

   Then ∑ 𝑎𝑛
∞
𝑛=1  is convergent. 

   2) If ∃ ∑ 𝑐𝑛
∞
𝑛=1 a series with positive terms that is divergent such that: 



Chapter IV   Series  

57 
 

𝑎𝑛 ≥ 𝑐𝑛∀𝑛 ≥ 𝑛0 

then ∑ 𝑎𝑛
∞
𝑛=1 is divergent. 

Example1: 

Let be the following series ∑
1

2+𝑛2
∞
𝑛=1  

We are going to determine whether this series converges or diverges: 

We have  2 + 𝑛2 ≥ 𝑛2   ∀𝑛⇒
1

2+𝑛2
≤

1

𝑛2
  ∀𝑛 

Since ∑
1

𝑛2
∞
𝑛=1 is a P-Series ( p=2 > 1) that converges so ∑

1

2+𝑛2
∞
𝑛=1  converges 

according to comparison test 1). 

Example2: 

∑
5𝑛 + 4

2𝑛

∞

𝑛=1

 

5𝑛 + 4 > 0 𝑎𝑛𝑑2𝑛 > 0 ∀𝑛 > 1⇒
5𝑛+4

2𝑛
> 0 ∀𝑛 > 1 so 

∑
5𝑛+4

2𝑛
∞
𝑛=1   is a series with positive terms. 

We have 5𝑛 + 4 ≥ 5𝑛   ∀𝑛⇒
5𝑛+4

2𝑛
≥
5𝑛

2𝑛
  ∀𝑛 

∑
5𝑛

2𝑛
∞
𝑛=1  =∑ (

5

2
)𝑛∞

𝑛=1  is a geometric series with a common ratio q= 
5

2
>1 that diverges hence 

∑
5𝑛+4

2𝑛
∞
𝑛=1   is divergent according to comparison test 2). 

So the general approach is this: If you believe that a new series is convergent, attempt to find 

a convergent series whose terms are larger than the terms of the new series; if you believe that 

a new series is divergent, attempt to find a divergent series whose terms are smaller than the 

terms of the new series. 

IV.1.5.2 Cauchy Root Test: 

Let ∑ 𝑎𝑛
∞
𝑛=1 be a series with positive terms. 

We suppose that lim
𝑛→+∞

√𝑎𝑛
𝑛 = 𝐿  

1) if 𝐿 < 1then series ∑ 𝑎𝑛
∞
𝑛=1 is convergent. 

2) If 𝐿 > 1 then series ∑ 𝑎𝑛
∞
𝑛=1 is divergent. 

Note : 

If L=1, use another test. 
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Example1 : 

∑
1

𝑛𝑛

∞

𝑛=1

 

𝑛𝑛 > 0 ∀𝑛 > 1⇒
1

𝑛𝑛
> 0 ∀𝑛 > 1⇒∑

1

𝑛𝑛
∞
𝑛=1 is a series with positive terms. 

lim
𝑛→+∞

√𝑎𝑛
𝑛 = lim

𝑛→+∞

√
1

𝑛𝑛

𝑛
= lim
𝑛→+∞

1

𝑛
= 0 = 𝐿 < 1 ⇒∑

1

𝑛𝑛
∞
𝑛=1  is a convergent series 

according to Cauchy Root test 1). 

Example2 : 

∑2𝑛
∞

𝑛=0

 

2𝑛 > 0 ∀𝑛 > 0⇒∑ 2𝑛∞
𝑛=0 is a series with positive terms. 

lim
𝑛→+∞

√𝑎𝑛
𝑛 = lim

𝑛→+∞

√2𝑛
𝑛

= lim
𝑛→+∞

2 = 2 = 𝐿 > 1 ⇒∑ 2𝑛∞
𝑛=0  is a  divergent series 

according to Root test 2) 

When an contains power of n, as in the above examples, the root test is often useful. 

IV.1.5.3 D’Alembert’s Ratio Test: 

Let ∑ 𝑎𝑛
∞
𝑛=1 be a series with positive terms. 

We suppose that lim
𝑛→+∞

𝑎𝑛+1

𝑎𝑛
= 𝐿  

1) if  𝐿 < 1 then series ∑ 𝑎𝑛
∞
𝑛=1 is convergent. 

2) If  𝐿 > 1 then series ∑ 𝑎𝑛
∞
𝑛=1 is divergent. 

Note: 

If L=1, use another test. 

Example1 : 

∑
𝑛

𝑛!

∞

𝑛=1

 

𝑛

𝑛!
> 0 ∀𝑛 > 1⇒∑

𝑛

𝑛!

∞
𝑛=1  is a series with positive terms. 

lim
𝑛→+∞

𝑎𝑛+1

𝑎𝑛
= lim
𝑛→+∞

𝑛+1

(𝑛+1)!
.
𝑛!

𝑛
= lim
𝑛→+∞

1

𝑛
= 0 = 𝐿 < 1 ⇒∑

𝑛

𝑛!

∞
𝑛=1  is a convergent series 

according to Ratio Test1). 

Example2 : 

∑𝑛(
5

4
)𝑛

∞

𝑛=1
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𝑛(
5

4
)𝑛 > 0  ∀𝑛 > 1⇒∑ 𝑛(

5

4
)𝑛∞

𝑛=1  is a series with positive terms. 

𝑎𝑛+1

𝑎𝑛
= lim
𝑛→+∞

(𝑛+1)(
5

4
)
𝑛+1

𝑛(
5

4
)𝑛

lim
𝑛→+∞

(𝑛+1)(
5

4
)

𝑛
= 
5

4
= 𝐿 > 1∑ 𝑛(

5

4
)𝑛∞

𝑛=1 is a divergent series 

according to Ratio test 2). 

When (an) contains factorials, as in the above examples, the ratio test is often useful. 

IV.1.5.4 Limit comparison Test: 

Let∑ 𝑎𝑛
∞
𝑛=1 and ∑ 𝑏𝑛

∞
𝑛=1 be series with positive terms. 

If lim
𝑛→+∞

𝑎𝑛

𝑏𝑛
= 𝐿 ≠ {

0
+∞

then either both series converge or both diverge. 

Tip: 

We can compare a series (with Positive terms) to a well known series to determine if it 

converges or diverges such as P-series, geometric series. 

Determine if the following series converge or diverge: 

Example1 : 

∑
1

3𝑛3 + 1

∞

𝑛=1

 

𝑎𝑛 =
1

3𝑛3+1
, pick 𝑏𝑛 =

1

𝑛3
 

lim
𝑛→+∞

𝑎𝑛
𝑏𝑛
=  lim

𝑛→+∞

1
3𝑛3 + 1
1
𝑛3

= lim
𝑛→+∞

1

3𝑛3 + 1
.  𝑛3 = lim

𝑛3

3𝑛3

𝑛→+∞

=
1

3
= 𝐿 ≠ {

0
+∞

 

∑ 𝑏𝑛
∞
𝑛=1 = ∑

1

𝑛3
∞
𝑛=1  is a P-series with P=3,  converges ⇒∑

1

3𝑛3+1

∞
𝑛=1   converges according to 

limit comparison test. 

Example2 : 

∑
1

𝑒𝑛 + 2

∞

𝑛=1

 

𝑎𝑛 =
1

𝑒𝑛+2
, pick 𝑏𝑛 =

1

𝑒𝑛
 

lim
𝑛→+∞

𝑎𝑛
𝑏𝑛
=  lim

𝑛→+∞

1
𝑒𝑛 + 2
1
𝑒𝑛

= lim
𝑛→+∞

1

𝑒𝑛 + 2
.  𝑒𝑛 = lim

1

1 +
2
𝑒𝑛

𝑛→+∞

= 1 ≠ {
0
+∞

 

∑ 𝑏𝑛
∞
𝑛=1 = ∑ (

1

𝑒
)𝑛∞

𝑛=1  is a geometric series with a common ratio q==
1

2
  ; -1<

1

𝑒
<1  hence it is 

convergent ⇒∑ 𝑎𝑛
∞
𝑛=1 = ∑

1

𝑒𝑛+2

∞
𝑛=1  converges according to limit comparison test. 
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 IV.1.6 Alternating series: 

IV.1.6.1 Definition: 

An alternating series is of form  ∑ (−1)𝑛𝑎𝑛
∞
𝑛=1 ,  𝑎𝑛 ∈  ℝ

+. 

∑ (−1)𝑛𝑎𝑛
∞
𝑛=1 = -𝑎1 + 𝑎2−𝑎3 +⋯……. 

That is, series with both positive and negative terms, but in a regular pattern: they alternate. 

(i.e infinite series in which the signs alternate). 

Example1: 

∑
(−1)𝑛

𝑛

∞
𝑛=1    𝑎𝑛 =

1

𝑛
∈  ℝ+. 

Example2: 

∑ (−1)𝑛𝑛2∞
𝑛=1      𝑎𝑛 = 𝑛

2 ∈  ℝ+. 

Example3: 

∑ (
−1

2
)𝑛∞

𝑛=1 = ∑ (−1)𝑛 .
1

2𝑛
∞
𝑛=1 𝑎𝑛 =

1

2𝑛
∈  ℝ++. 

IV.1.6.2 Leibnitz Test ( Alternating series Test): 

Alternating series  ∑ (−1)𝑛𝑎𝑛
∞
𝑛=1 is convergent if 

1)(𝑎𝑛)n  is a decreasing sequence. 

2) lim
𝑛→+∞

𝑎𝑛=0. 

Example1: 

∑
(−1)𝑛

𝑛

∞
𝑛=1    ,   𝑎𝑛 =

1

𝑛
 

We have
1

𝑛+1
≤
1

𝑛
ie𝑎𝑛+1 ≤ 𝑎𝑛 ie (𝑎𝑛)n is a decreasing sequence so condition 1) is satisfied. 

lim
𝑛→+∞

𝑎𝑛 = lim
𝑛→+∞

1

𝑛
= 0 so condition 2) is satisfied. 

Conclusion: the alternating series ∑
(−1)𝑛

𝑛

∞
𝑛=1  is convergent. 

Example2: 

∑ (−1)𝑛𝑛2∞
𝑛=1    ;  𝑎𝑛 = 𝑛

2 

We have (𝑛 + 1)2 ≥ 𝑛2ie𝑎𝑛+1 ≥ 𝑎𝑛 ie (𝑎𝑛)n is not a decreasing sequence so condition 1) 

is not satisfied. 

Conclusion: The alternating series  ∑ (−1)𝑛𝑛2∞
𝑛=1  is divergent since one of the condition is 

not satisfied. 

Example3: 

∑ (
−1

2
)𝑛∞

𝑛=1 = ∑ (−1)𝑛
1

2𝑛
∞
𝑛=1 ,    𝑎𝑛 =

1

2𝑛
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2𝑛+1 ≥ 2𝑛⇒
1

2𝑛+1
≤

1

2𝑛
𝑖𝑒𝑎𝑛+1 ≤ 𝑎𝑛(𝑎𝑛)nis a decreasing sequence so condition 1) is satisfied. 

lim
𝑛→+∞

𝑎𝑛 = lim
𝑛→+∞

1

2𝑛
= 0 so condition 2) is satisfied. 

Conclusion: the alternating series   ∑ (
−1

2
)𝑛 ∞

𝑛=1 is convergent. 

IV.1.6.7 Absolute Convergence of a series: 

IV.1.6.7. 1 Definition: 

An infinite series is absolutely convergent if the absolute values of its terms form a 

convergent series. 

That is,  ∑ 𝑎𝑛
∞
𝑛=1   converges absolutely if ∑ |𝑎𝑛|

∞
𝑛=1   converges. 

Example 1: 

∑
(−1)𝑛

𝑛2

∞

𝑛=1

 

We have ∑ |
(−1)𝑛

𝑛2
|∞

𝑛=1 = ∑
1

𝑛2
∞
𝑛=1  and we know that ∑

1 

𝑛2
 ∞

𝑛=1 is a P-series (P= 2> 1) 

converges ⇒∑
(−1)𝑛

𝑛2
∞
𝑛=1   converges absolutely. 

Example 2 : 

∑
(−1)𝑛

𝑛

∞

𝑛=1

 

∑ |
(−1)𝑛

𝑛
|∞

𝑛=1 = ∑
1

𝑛 

∞
𝑛=1  and since ∑

1

𝑛

∞
𝑛=1 is a P-series (P= =1≤ 1so it diverges ⇒  

∑
(−1)𝑛

𝑛2
∞
𝑛=1  does not converge absolutely. 

IV.1.6.7.2 Theorem 4: 

If a series converges absolutely then its converges (see example1). 

The contrapositive is not true (see example 2) 

If it converges, but not absolutely, it is termed conditionally convergent (such as example 2).  

Exercises of infinites series 

Exercise 1: 

Identify geometric series, P- series among the following infinite series and State whether 

these series converge or diverge and evaluate their sum: 

1- ∑ (−5)𝑛∞
𝑛=0      2-∑ (𝑛4 − 2∞

𝑛=1 )      3- ∑ 𝑛−7∞
𝑛=1  

4-∑ (−
2

15
)𝑛∞

𝑛=0          5 − ∑ (
3

𝑛
)𝑛∞

𝑛=1          6-∑
5𝑛5+𝑛

25𝑛5+2
∞
0  

Exercise 2: 
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Suppose that:∑ 𝑎𝑛 = 3
∞
𝑛=1 ,∑ 𝑏𝑛 = −3

∞
𝑛=1 ,𝑎1 = 4 and 𝑏1 = −5. Compute the sum of the 

following series: 

∑(𝑎𝑛 + 2𝑏𝑛)

∞

𝑛=1

∑(𝑎𝑛 − 𝑏𝑛)

∞

𝑛=2

∑(𝑎𝑛+1 + 𝑏𝑛+1)

∞

𝑛=1

 

Exercise 3: 

Use the sequence of partial sums (𝑺𝒏) to determine whether the following series converge or 

diverges, find the exact value of their sum S: 

∑ (1 − (−1)𝑛)∞
𝑛=1 ∑ (

1

𝑛
−

1

𝑛+1
)∞

𝑛=1              2) ∑ ln (
𝑛

𝑛+1
)∞

𝑛=1  

Exercise 4: 

1- State whether these series converge or diverge and evaluate their sum: 

2- ∑ 2𝑛−10∞
𝑛=1                       2-∑ (𝑛4 + 3𝑛)𝑛∞

𝑛=1            3 –∑
9𝑛3−4

𝑛3+1

∞
0  

 4 – ∑ (𝑛 + 4)!∞
𝑛=0                                 5 – ∑

1

𝑛5+6𝑛3
∞
𝑛=1  

6-    ∑ (
5𝑛5+𝑛

25𝑛5+2
)𝑛∞

𝑛=0                              7-∑
𝑛2+1

𝑛2𝑙𝑛𝑛

∞
𝑛=1  

Exercise 5: 

Use the Limit Comparison Test to determine whether the following series converge or 

diverges and evaluate their sum S. 

1-∑
𝑛+5

𝑛4+2𝑛

∞
𝑛=1                                      2-  ∑

11 

2𝑛+6

∞
𝑛=1  

Exercise 6 : 

State whether the following series converge or converge absolutely: 

1- ∑ (−1)𝑛∞
𝑛=1 𝑒−2𝑛      2- ∑ (−1)𝑛∞

𝑛=1 𝑛5      3- ∑ (−1)𝑛∞
𝑛=1 ln (

3𝑛2

𝑛2+7
) 

Solutions of exercises of infinite series: 

Solution of exercise 1: 

1-∑ (−5)𝑛∞
𝑛=0 is a geometric series because of form∑ 𝑞𝑛∞

𝑛=0 (q=cste)  where q=-5≤

−1thus∑ (−5)𝑛∞
𝑛=0  is divergente and its sum  

S= ∑ (−5)𝑛∞
𝑛=0 ={

+∞   if  n is even
−∞if n is odd

 

2- ∑ (𝑛4 − 2∞
𝑛=1 )it is neither a  geometric series nora P-series. 

3-  ∑ 𝑛−7∞
𝑛=1 ∑

1

𝑛7
∞
𝑛=1  is a P-series (of form∑

1

𝑛𝑝
∞
𝑛=1 ) where p=7 > 1 thus ∑ 𝑛−7∞

𝑛=1  is 

convergent and its sum S=∑ 𝑛−7∞
𝑛=1  =A a finite number that exists but we cannot compute it. 

4-∑ (−
2

15
)𝑛∞

𝑛=0  is a geometric series with common ratio q=−
2

15
    -1< 𝑞 = −

2

15
<1  so this 
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series converges and its sum S=∑ (−
2

15
)𝑛∞

𝑛=0  =
1

1−𝑞
=

1

1−(−
2

15
)
=
15

17
 

5- ∑ (
3

𝑛
)𝑛∞

𝑛=1 it is not a geometric series because (
3

𝑛
 depends on n, it is not constant). 

6-∑
5𝑛5+𝑛

25𝑛5+2

∞
0 )    it is neither a geometric series nor a P-series.  

Solution of exercise2: 

We have ∑ 𝑎𝑛 = 3,
∞
𝑛=1 ∑ 𝑏𝑛 = −3

∞
𝑛=1 ⇒ 𝑏𝑜𝑡ℎ 𝑠𝑒𝑟𝑖𝑒𝑠 𝑎𝑟𝑒 convergent. 

And we know  

If  ∑ 𝑈𝑛
∞
𝑛=0 𝑎𝑛𝑑 ∑ 𝑉𝑛

∞
𝑛=0   are convergent then ∑ (𝑈𝑛

∞
𝑛=0 + 𝑉𝑛) is convergent. 

If  ∑ 𝑈𝑛
∞
𝑛=0  is convergent then ∑ 𝑘. 𝑈𝑛

∞
𝑛=0  is convergent ∀ 𝑘 ∈ 𝑅 

                               And  ∑ 𝑘. 𝑈𝑛
∞
𝑛=0 = 𝑘∑ 𝑈𝑛

∞
𝑛=0  

So 

1)∑ (𝑎𝑛 + 2𝑏𝑛)
∞
𝑛=1  is convergent and ∑ (𝑎𝑛 + 2𝑏𝑛)

∞
𝑛=1 = ∑ 𝑎𝑛 +

∞
𝑛=1 2∑ 𝑏𝑛

∞
𝑛=1  

                                                                                           =3 +2(-3)=-3 

2) ∑ (𝑎𝑛 − 𝑏𝑛)
∞
𝑛=2 is convergent and∑ (𝑎𝑛 − 𝑏𝑛)

∞
𝑛=2 = ∑ 𝑎𝑛 −

∞
𝑛=2 ∑ 𝑏𝑛

∞
𝑛=2  

                                                                                     =  (∑ 𝑎𝑛 −
∞
𝑛=1 𝑎1) −(∑ 𝑏𝑛

∞
𝑛=1 − 𝑏1) 

= (3-4) - (-3-(-5)) 

                                                                                     =-3 

2)∑ (𝑎𝑛+1 + 𝑏𝑛+1)
∞
𝑛=1  is also convergent and 

∑ (𝑎𝑛+1 + 𝑏𝑛+1)
∞
𝑛=1 =∑ (𝑎𝑛 + 𝑏𝑛)

∞
𝑛=2 =(∑ 𝑎𝑛 −

∞
𝑛=1 𝑎1) +(∑ 𝑏𝑛

∞
𝑛=1 − 𝑏1) 

                                                             = (3-4) + (-3-(-5)) 

                                                              =1 

Solution of exercise3: 

1) ∑ (
1

𝑛
−

1

𝑛+1
)∞

𝑛=1  =   ∑ 𝑈𝑛
∞
𝑛=1  

Let (𝑆𝑛) be the sequence of partial sums of this series such that: 

𝑆1=𝑈1 =
1

1
−

1

1 + 1
=
1

1
−
1

2
 

𝑆2=𝑈1 +𝑈2 =
1

1
−
1

2
+
1

2
−
1

3
 

𝑆2=𝑈1 +𝑈2 + 𝑈3 =
1

1
−
1

2
+
1

2
−
1

3
+
1

3
−
1

4
 

𝑆𝑛=𝑈1 +𝑈2 + 𝑈3 +⋯ .+𝑈𝑛 =
1

1
−
1

2
+
1

2
−
1

3
+
1

3
−
1

4
+⋯ . .+

1

𝑛
−

1

𝑛+1
 

 

=1−
1

𝑛+1
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We know that : 

∑ 𝑈𝑛
∞
𝑛=1   converges  the sequence(𝑆𝑛) converge𝑠 lim

𝑛→+∞

𝑆𝑛=𝐴( 𝑎 𝑓𝑖𝑛𝑖𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟). 

∑ 𝑈𝑛
∞
𝑛=1   diverges the sequence(𝑆𝑛) diverge𝑠 lim

𝑛→+∞

𝑆𝑛=

{
 
 

 
 

+
𝑜𝑢
−
𝑜𝑢

2 𝑙𝑖𝑚𝑖𝑡𝑠

 

In this case: 

lim
𝑛→+∞

𝑆𝑛= lim
𝑛→+∞

1 −
1

𝑛+1
=1 thus ∑ (

1

𝑛
−

1

𝑛+1
)∞

𝑛=1  is convergent. 

And ∑ (
1

𝑛
−

1

𝑛+1
)∞

𝑛=1 = 1 

  2) ∑ ln (
𝑛

𝑛+1
)∞

𝑛=1 = ∑ lnn −ln (n∞
𝑛=1 + 1) = ∑ 𝑈𝑛

∞
𝑛=1  

Let (𝑆𝑛) be the sequence of partial sums of this series: 

𝑆1=𝑈1 = 𝑙𝑛1 − 𝑙𝑛2 

𝑆2=𝑈1 +𝑈2 = 𝑙𝑛1 − 𝑙𝑛2 + 𝑙𝑛2 − 𝑙𝑛3 

𝑆𝑛=𝑈1 +𝑈2 +⋯ .+𝑈𝑛 = 𝑙𝑛1 − 𝑙𝑛2 + 𝑙𝑛2 − 𝑙𝑛3 + ⋯… . .+lnn −ln (n + 1) 

    = 𝑙𝑛1 −ln (n + 1) 

lim
𝑛→+∞

𝑆𝑛= lim
𝑛→+∞

− ln(n + 1) = − 

Thus ∑ ln (
𝑛

𝑛+1
)∞

𝑛=1  is divergent and ∑ ln (
𝑛

𝑛+1
)∞

𝑛=1 = − 

Solution of exercise 3: 

1-∑ 2𝑛−10∞
𝑛=1 =2∑

1

𝑛10
∞
𝑛=1  

∑
1

𝑛10
∞
𝑛=1  is a P-series with p=10> 1 so converges 2∑

1

𝑛10
∞
𝑛=1  stays convergent (see above) 

Its sum S=∑
2

𝑛10
∞
𝑛=1 = A a finite number that exists but we can not compute it. 

2-∑ (𝑛4 + 3𝑛)𝑛∞
𝑛=1 is a series with positive terms whose general term is a power of n 

consequently we apply Cauchy Root Test. 

lim
𝑛→+∞

√𝑎𝑛
𝑛 = lim

𝑛→+∞

√(𝑛4 + 3𝑛)𝑛
𝑛 = lim

𝑛→+∞

(𝑛4 + 3𝑛) = +∞ > 1so ∑ (𝑛4 + 3𝑛)𝑛∞
𝑛=1  is 

divergent and  S=+∞ 

 3 –∑
9𝑛3−4

𝑛3+1

∞
0 it is neither a geometric series nor a P-series.  

Let us apply the divergence  test: 

lim
𝑛→+∞

9𝑛3−4

𝑛3+1
= lim
𝑛→+∞

9𝑛3

𝑛3
= 9 ≠ 0 then ∑

𝑛2+2

4𝑛2+1
  ∞

0 is divergent. 
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and S=∑
9𝑛3−4

𝑛3+1

∞
0 = +∞ 

4 – ∑ (𝑛 + 4)!∞
𝑛=0  General term contains a factorial, let us use then D’Alembert ratio Test: 

lim
𝑛→+∞

𝑎𝑛+1

𝑎𝑛
= lim
𝑛→+∞

(𝑛+1+4)!

(𝑛+4)!
= lim
𝑛→+∞

(𝑛+5)!

(𝑛+4)!
= lim
𝑛→+∞

(𝑛+5)(𝑛+4)(𝑛+3)(𝑛+2)……2.1

(𝑛+4)(𝑛+3)(𝑛+2)………2.1
 

= lim
𝑛→+∞

(𝑛 + 5)=+∞ >1 thus∑ (𝑛 + 4)!∞
𝑛=0  is divergent according to D’Alembert ratio 

Test2) and S=∑ (𝑛 + 4)!∞
𝑛=0  =+∞ 

5 – ∑
1

𝑛5+6𝑛3
∞
𝑛=1  

-This series is neither a geometric series nor a P-series. 

- If we apply the divergence Test: 

lim
𝑛→+∞

1

𝑛5+6𝑛3
 =0 then we can not say anything. 

- We can not apply Cauchy Root Test because the general term 
1

𝑛5+6𝑛3
 is not a power of n. 

- If we apply d’Alembert ratio test: 

lim
𝑛→+∞

𝑎𝑛+1

𝑎𝑛
= lim
𝑛→+∞

𝑛5+6𝑛3

(𝑛+1)5+6(𝑛+1)3
= lim
𝑛→+∞

𝑛5

𝑛5
= 1 then we can not say anything. 

-Let us use ComparisonTest : 

𝑛5 + 6𝑛3>𝑛5∀𝑛⇒
1

𝑛5+6𝑛3
<
1

𝑛5
 

∑
1

𝑛5
∞
𝑛=1 is a P-series with p=5>1 ⇒converges⇒∑

1

𝑛5+6𝑛3
∞
𝑛=1 is convergent by Comparison 

Test 1). 

and S=∑
1

𝑛5+6𝑛3
∞
𝑛=1 = k a finite number. 

  6-   ∑ (
5𝑛5+𝑛

25𝑛5+2
)𝑛∞

𝑛=0 is not a geometric series because q=
5𝑛5+𝑛

25𝑛5+2
is not constant, q depends on n. 

We notice that (
5𝑛5+𝑛

25𝑛5+2
)𝑛 is positive and is a power of n consequently we apply Cauchy Root 

Test. 

lim
𝑛→+∞

√𝑎𝑛
𝑛 = lim

𝑛→+∞

√(
5𝑛5+𝑛

25𝑛5+2
)𝑛

𝑛
= lim
𝑛→+∞

5𝑛5+𝑛

25𝑛5+2
= lim
𝑛→+∞

5𝑛5

25𝑛5
=
1

5
< 1then∑ (

5𝑛5+𝑛

25𝑛5+2
)𝑛∞

𝑛=0 is 

convergent and S=∑ (
5𝑛5+𝑛

25𝑛5+2
)𝑛∞

𝑛=0 =k a finite number. 

7-∑
𝑛2+1

𝑛2𝑙𝑛𝑛

∞
𝑛=1  

We do the same work as 5) 

-This series is neither a geometric series nor a P-series. 

- if we apply the divergence Test: 
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lim
𝑛→+∞

𝑛2+1

𝑛2𝑙𝑛𝑛
= lim
𝑛→+∞

𝑛2

𝑛2𝑙𝑛𝑛
 = lim
𝑛→+∞

1

𝑙𝑛𝑛
 =0 , use another test 

-We can not apply Cauchy Root Test because the general term  
𝑛2+1

𝑛2𝑙𝑛𝑛
 is not a power of n. 

- If we apply d’Alembert ratio test: 

lim
𝑛→+∞

(𝑛+1)2+1

(𝑛+1)2ln (𝑛+1)

𝑛2+1

𝑛2𝑙𝑛𝑛

= lim
𝑛→+∞

𝑛2((𝑛+1)2+1)𝑙𝑛𝑛

(𝑛+1)2(𝑛2+1)ln (𝑛+1)
= lim
𝑛→+∞

𝑛4𝑙𝑛𝑛

𝑛4ln (𝑛+1)
= lim
𝑛→+∞

𝑙𝑛𝑛

𝑙𝑛𝑛
= 1then use 

another test. 

-Let us use Comparison Test : 

𝑙𝑛𝑛 < 𝑛∀𝑛⇒𝑛2𝑙𝑛𝑛 < 𝑛2𝑛∀𝑛⇒
1

𝑛2𝑙𝑛𝑛
>
1

𝑛3
∀𝑛⇒

𝑛2+1

𝑛2𝑙𝑛𝑛
>
𝑛2+1

𝑛3
>
𝑛2

𝑛3
=
1

𝑛
 

∑
1

𝑛

∞
𝑛=1  is a P-series that diverges(since p=1≤ 1)⇒∑

𝑛2+1

𝑛2𝑙𝑛𝑛

∞
𝑛=1  is divergent by Comparison 2). 

And S=∑
𝑛2+1

𝑛2𝑙𝑛𝑛

∞
𝑛=1 = +∞ 

Solution of exercise4: 

1-∑
𝑛+5

𝑛4+2𝑛

∞
𝑛=1  

𝑎𝑛 =
𝑛+5

𝑛4+2𝑛
,pick𝑏𝑛 =

1

𝑛3
 

Note: 

∑ 𝑎𝑛
∞
𝑛=1  is the series which we want to know whether it converges or diverges. 

∑ 𝑏𝑛
∞
𝑛=1  is the series that we choose and we know whether it converges or diverges. 

We know that:∑
1

𝑛3
∞
𝑛=1  is a convergent P-series (p=3>1). 

lim
𝑛→+∞

𝑎𝑛

𝑏𝑛
= lim
𝑛→+∞

𝑛+5

𝑛4+2𝑛
1

𝑛3

= lim
𝑛→+∞

(𝑛+5)𝑛3

𝑛4+2𝑛
= lim
𝑛→+∞

𝑛4

𝑛4
= 1 ≠ {

0
+∞

∑ 𝑎𝑛
∞
𝑛=1 = ∑

𝑛+5

𝑛4+2𝑛

∞
𝑛=1 is 

convergent. 

2-  ∑
11 

2𝑛+6

∞
𝑛=1  

𝑎𝑛 =
11 

2𝑛+6
, pick 𝑏𝑛 =

1

2𝑛
 

We know that:∑
1

2𝑛
= ∑ (

1

2
)𝑛∞

𝑛=1   ∞
𝑛=1 is a convergent geometric series (-1q=

1

2
1). 

lim
𝑛→+∞

𝑎𝑛

𝑏𝑛
= lim
𝑛→+∞

11 

2𝑛+6
1

2𝑛

= lim
𝑛→+∞

11.2𝑛

2𝑛+6
= lim
𝑛→+∞

11.2𝑛

2𝑛
= 11 ≠ {

0
+∞

∑ 𝑎𝑛
∞
𝑛=1 = ∑

11 

2𝑛+6

∞
𝑛=1  is 

convergent. 

Solution of exercise5: 

1-∑ (−1)𝑛∞
𝑛=1 𝑒−2𝑛 

Absolute convergence? 
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∑ |(−1)𝑛𝑒−2𝑛|∞
𝑛=1  =∑ 𝑒−2𝑛 =∞

𝑛=1 ∑
1 

𝑒2𝑛
∞
𝑛=1 = ∑ (

1 

𝑒2
)
𝑛

∞
𝑛=1  is a geometric series with a 

common ratio q=
1 

𝑒2
 -1< 𝑞 =

1 

𝑒2
<1   that converges thus ∑ (−1)𝑛∞

𝑛=1 𝑒−2𝑛 converges 

absolutely ∑ (−1)𝑛∞
𝑛=1 𝑒−2𝑛 converges. 

Note: 

If we have started first by studying convergence we have two ways to do that: 

a) ∑ (−1)𝑛∞
𝑛=1 𝑒−2𝑛 It is an alternating serieswith 𝑎𝑛 = 𝑒

−2𝑛 =
1 

𝑒2𝑛
∈  ℝ+. 

Let us check Leibnitz Test: 

1) 𝑒2(𝑛+1) ≥ 𝑒2𝑛⇒
1 

𝑒2(𝑛+1)
≤

1 

𝑒2𝑛
⇒(𝑎𝑛)n is a decreasing sequence. 

2) lim
𝑛→+∞

𝑎𝑛 = lim
𝑛→+∞

1 

𝑒2𝑛
 =0 ⇒conditions 1) and 2) are satisfied⇒∑ (−1)𝑛∞

𝑛=1 𝑒−2𝑛is a 

convergent alternating series and its sum S=∑ (−1)𝑛∞
𝑛=1 𝑒−2𝑛=k a finite number. 

b) ∑ (−1)𝑛∞
𝑛=1 𝑒−2𝑛=∑ (

−1

𝑒2
)
𝑛

∞
𝑛=1 is a geometric series with a common ratio q=

−1

𝑒2
 

-1<
−1

𝑒2
<1 hence it is convergent and its sum S=∑ (

−1

𝑒2
)𝑛∞

𝑛=0 =
1

1−(
−1

𝑒2
)
=
𝑒2

𝑒2+1
 

2)∑ (−1)𝑛∞
𝑛=1 𝑛5is not a series with positive terms so we can not apply (Comparison test, 

Cauchy Root test, d’Alembert ratio Test orlimit comparison test). It left only divergence 

test or Leibnitz Test. 

Divergence test: 

lim
𝑛→+∞

(−1)𝑛𝑛5={
+∞  𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

𝑜𝑟
−∞   𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

 2 limits 0 

∑ (−1)𝑛∞
𝑛=1 𝑛5does not converge ∑ (−1)𝑛∞

𝑛=1 𝑛5does not converge absolutely. 

3 − ∑ (−1)𝑛∞
𝑛=1 ln (

3𝑛2

𝑛2+7
) It is an alternating series with 𝑎𝑛 = ln (

3𝑛2

𝑛2+7
) ∈  ℝ+. 

Let us check Leibnitz Test: 

lim
𝑛→+∞

𝑎𝑛 = lim
𝑛→+∞

ln (
3𝑛2

𝑛2+7
) = lim

𝑛→+∞

ln (
3𝑛2

𝑛2
) =ln30 condition 2) is not satisfied 

∑ (−1)𝑛∞
𝑛=1 ln (

3𝑛2

𝑛2+7
) does not converge ∑ (−1)𝑛∞

𝑛=1 ln (
3𝑛2

𝑛2+7
) does not converge 

absolutely. 
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IV.2. Sequences and Series of functions: 

IV.2. 1 Definition of series of functions: 

Let(𝑓𝑛)𝑛≥1be a sequence of real functions defined as: 

𝑓1:I         ℝ,       𝑓2:I        ℝ  ,       𝑓3:I        ℝ  ………………. 

   x        𝑓1(𝑥)       x        𝑓2(𝑥)       x        𝑓3(𝑥) 

I is a real interval. 

So∑ 𝑓𝑛
∞
𝑛=1 is a series of functions. 

In other words, a series of functions is an infinite sum of elements of a sequence of functions 

or simply it is an infinite sum of functions. 

Examples: 

1)𝑓𝑛:   [0,1]           ℝ     i.e (𝑓𝑛)𝑛≥0 is a sequence of functions 

               x           𝑓𝑛(𝑥) = 𝑥
𝑛 

For n=0   𝑓0(𝑥) = 1 

For n=1   𝑓1(𝑥) = 𝑥 

For n=2   𝑓2(𝑥) = 𝑥
2 

∑ 𝑓𝑛(𝑥)
∞
𝑛=0 = ∑ 𝑥𝑛∞

𝑛=0   =1 + 𝑥+𝑥2 + 𝑥3 + 𝑥4 +⋯  is a series of functions. 

2)     𝑔𝑛:ℝ         ℝ          i.e (𝑔𝑛)𝑛≥1 is a sequence of functions 

              x        𝑔𝑛(𝑥) =
𝑥

𝑛
 

For n=1   𝑔1(𝑥) = 𝑥 

For n=2   𝑔2(𝑥) =
𝑥

2
 

For n=3   𝑔(𝑥) =
𝑥

3
 

∑ 𝑔𝑛(𝑥)
∞
𝑛=1 = ∑

𝑥

𝑛

∞
𝑛=1   =𝑥 +

𝑥

2
+
𝑥

3
+
𝑥

4
+⋯  is a series of functions. 

3)     ℎ𝑛:ℝ           ℝ                 i.e (ℎ𝑛)𝑛≥1 is a sequence of functions 

              x         ℎ𝑛(𝑥) =
𝑥2

𝑛
 

For n=1   ℎ1(𝑥) = 𝑥
2 

For n=2   ℎ2(𝑥) =
𝑥2

2
 

For n=3   ℎ3(𝑥) =
𝑥2

3
 

∑ ℎ𝑛(𝑥)
∞
𝑛=1 = ∑

𝑥2

𝑛

∞
𝑛=1   =𝑥2+

𝑥

2

2
+
𝑥

3

3
+
𝑥

4

4
+⋯  is a series of functions. 

Note: 

For a given value x0 of x,  ∑ 𝑓𝑛(x0) 
∞
𝑛=1 becomes a series of numbers or just what we usually 

call an infinite series (see chapter 2) . 
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Examples: 

1) ∑ 𝑥𝑛∞
𝑛=0  

For a given value x0 of x:  x0=
1

2
 ∑ 𝑓𝑛(

1

2
)∞

𝑛=0 =∑ (
1

2
)𝑛∞

𝑛=0 is a series of numbers. 

                                          x0=4∑ 𝑓𝑛(4)
∞
𝑛=0 = ∑ (∞

𝑛=0 4)
𝑛is a series of numbers. 

2) ∑
𝑥

𝑛

∞
𝑛=1  

For a given value x0 of x:  x0=1   ∑ 𝑓𝑛(1)
∞
𝑛=1 = ∑

1

𝑛

∞
𝑛=1  is a series of numbers. 

                                    x0=2   ∑ 𝑓𝑛(2)
∞
𝑛=1 = = ∑

2

𝑛

∞
𝑛=1  is a series of numbers. 

- One way to study convergence of a series of functions is to give values to x and study 

convergence of the corresponding series of numbers.  

IV.2. 2. Convergence of a series of functions: 

We have two types of convergence for series of functions: 

-Pointwise convergence. 

- Uniform convergence. 

IV.2. 2.1 Pointwise convergence of a series of functions  

IV.2. 2.1 .1 Definition 

Let 𝑓𝑛 :   I         ℝbe a sequence of functions. 

∑ 𝑓𝑛(𝑥)
∞
𝑛=1 is said to converge pointwise to f at x0∈ I if the infinite series∑ 𝑓𝑛(𝑥0)

∞
𝑛=1  

converges to f(x0). 

Example1: 

∑ 𝑥𝑛 ,    ∞
𝑛=0 x∈I=[0,1] 

 x0=
1

2
, ∑ (

1

2
)𝑛∞

𝑛=0  is a geometric series with a common ratio  q=
1

2
 that converges 

⇒ ∑ 𝑥𝑛∞
𝑛=0 converges pointwise at x0=

1

2
to f (x0), f a function to find. 

x0=
1

3
, ∑ (∞

𝑛=1
1

3
)𝑛 is a geometric series with a common ratio  q=

1

3
that converges

⇒ ∑ 𝑥𝑛∞
𝑛=0 converges pointwise at x0=

1

3
to  f (x0), f a function to find. 

x0=1,  ∑ (∞
𝑛=1 1)

𝑛 is a geometric series with a common ratioq=1that diverges⇒∑ 𝑥𝑛∞
𝑛=0 does 

not converge pointwise at x0=1.   

Example2: 

∑
𝑥

𝑛

∞

𝑛=1

 

x0=1,  ∑
1 

𝑛

∞
𝑛=1   is a P-series (p=1) that diverges⇒∑

𝑥 

𝑛

∞
𝑛=1  does not converge pointwise at 
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x0=1.   

 x0=2, ∑
2

𝑛

∞
𝑛=1  = 2.∑

1

𝑛

∞
𝑛=1  is a series in form of k. ∑

1

𝑛

∞
𝑛=1 (k a constant) that diverges⇒ 

∑
𝑥

𝑛

∞
𝑛=1  does not converge pointwise at x0=2.    

∀𝑥 ∈ ℝ* ∑
𝑥

𝑛

∞
𝑛=1  =𝑥 ∑

1

𝑛

∞
𝑛=1  is a divergent series of function. 

Example3: 

∑
𝑥2

𝑛

∞

𝑛=1

 

For x0=0   ∑ 0∞
𝑛=1 =0+0+0+……=0 ⇒∑

𝑥2

𝑛

∞
𝑛=1   converges pointwise at x0=0.  

x0≠ 0∑
𝑥2

𝑛

∞
𝑛=1  =𝑥0

2∑
1

𝑛

∞
𝑛=1 is a series in form of  k.∑

1

𝑛

∞
𝑛=1 (k a constant) that diverges ⇒ 

∑
𝑥2

𝑛
 ∞

𝑛=1 does not converge pointwise at x0≠ 0.   

Example4: 

∑
𝑛

𝑥

∞
𝑛=1 =

1

𝑥
+
2

𝑥
+
3

𝑥
+⋯….      x∈ ℝ* 

For x > 0   lim
𝑛

𝑥
=
1

𝑥

𝑛→+∞

lim 𝑛
𝑛→+∞

 =+∞ ≠ 0⇒ ∑
𝑛

𝑥

∞
𝑛=1  is divergent according to divergence test. 

For x < 0  lim
𝑛

𝑥
=
1

𝑥

𝑛→+∞

lim 𝑛
𝑛→+∞

 =−∞ ≠ 0⇒ ∑
𝑛

𝑥

∞
𝑛=1  is divergent according to divergence test. 

Hence, ∑
𝑛

𝑥

∞
𝑛=1 does not converge pointwise at x, ∀𝑥 ∈ ℝ*. 

Example5 : 

∑
𝑥

𝑛2
∞
𝑛=1   𝑥 ∈ ℝ. 

x0=0   ∑ 0∞
𝑛=1 =0+0+0+……⇒ ∑

𝑥

𝑛2
∞
𝑛=0   converges pointwise at x0=0.  

x0≠ 0∑
𝑥

𝑛2
∞
𝑛=1  = 𝑥 ∑

1

𝑛2
∞
𝑛=1  is a series in form of  k.∑

1

𝑛2
∞
𝑛=1  (k a constant)  

Since ∑
1

𝑛2
∞
𝑛=1  is a P-series ( p=2) that converges ⇒ k. ∑

1

𝑛2
∞
𝑛=1   converges also 

⇒∑
𝑥

𝑛2
∞
𝑛=1   converges pointwise at x0≠ 0. 

Consequently ∑
𝑥

𝑛2
∞
𝑛=1  converges pointwise at x, ∀𝑥 ∈ ℝ to a function f (to find). 

Example6: 

∑ (
𝑥

𝑛
−

𝑥

𝑛+1
) ,∞

𝑛=1  𝑥 ∈ ℝ. 

First method: 

x0=0   ∑ 0∞
𝑛=1 =0+0+0+……⇒ ∑ (

𝑥

𝑛
−

𝑥

𝑛+1
)∞

𝑛=1  converges pointwise at x0=0.   

For x0 ≠ 0: 
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𝑥0

𝑛
−

𝑥0

𝑛+1
=
(𝑛+1)𝑥0−𝑛𝑥0

𝑛(𝑛+1)
=
𝑛𝑥0+𝑥0−𝑛𝑥0

𝑛(𝑛+1)
 = 

𝑥0

𝑛(𝑛+1)
 

∑
𝑥0

𝑛(𝑛+1)

∞
𝑛=1  = 𝑥0. ∑

1

𝑛(𝑛+1)

∞
𝑛=1  

We study whether ∑
1

𝑛(𝑛+1)
∞
𝑛=1  converges or diverges: 

Comparison Test: 

𝑛(𝑛 + 1) =  𝑛2 + 𝑛 ≥ 𝑛2 ⇒
1

𝑛2 + 𝑛
≤
1

𝑛2
 

∑
1

𝑛2
∞
𝑛=1 is a P-series ( p=2) that converges ⇒∑

1

𝑛(𝑛+1)
∞
𝑛=1  converges according to comparison 

test1) ⇒𝑥0. ∑
1

𝑛(𝑛+1)

∞
𝑛=1   converges pointwise at 𝑥0 (𝑥0a constant ∈ ℝ*) 

Therefore ∑
𝑥

𝑛(𝑛+1)

∞
𝑛=1  converges pointwise at 𝑥, ∀𝑥 ∈ ℝ to f a function f to find. 

Second method: 

∑ (
𝑥

𝑛
−

𝑥

𝑛+1
) ,∞

𝑛=1 𝑥 ∈ ℝ. 

Sequence of partial sums: 

S1(x)=𝑥 −
𝑥

2
 

S2(x)= 𝑥 −
𝑥

2
+ 
𝑥

2
−
𝑥

3
 

S3(x)= 𝑥 −
𝑥

2
+ 
𝑥

2
−
𝑥

3
+
𝑥

3
−
𝑥

4
 

Sn(x)= 𝑥 −
𝑥

2
+ 
𝑥

2
−
𝑥

3
+
𝑥

3
−
𝑥

4
+⋯……… .−

𝑥

𝑛−1
+

𝑥

𝑛−1
−
𝑥

𝑛
⇒Sn(x)= 𝑥 −

𝑥

𝑛
 

Therefore lim
𝑛→+∞

𝑆𝑛(𝑥)= lim
𝑛→+∞

𝑥 −
𝑥

𝑛
 = x 

We can conclude ∑ (
𝑥

𝑛
−

𝑥

𝑛+1
)∞

𝑛=1 converges pointwise at 𝑥, ∀𝑥 ∈ ℝ to f(x)= x. 

Notes: 

-In the last example, we were able to find the function f comparing to the example 5 where we 

know just there exists. 

-A convergent infinite series is equal to a number while a convergent series of function is 

equal to a function 

IV.2. 2.1.2 Domain of convergence D: 

Let ∑ 𝑓𝑛(𝑥)
∞
𝑛=1  be a series of function defined on I: 

                         𝑓𝑛 ∶ I          ℝ 

D={𝑥0 ∈ 𝐼 𝑠𝑜 𝑡ℎ𝑎𝑡 ∑ 𝑓𝑛(𝑥0)
∞
𝑛=1  converges pointwise}is called the domain of convergence. 

i.e D is the set of those values 𝑥0 for which the series ∑ 𝑓𝑛( 𝑥0)
∞
𝑛=1  is convergent. 

We are going to determine D for all the examples above. 
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Example1 : 

1) ∑ (𝑥0)
𝑛∞

𝑛=0 ,  x0∈I=[0,1] 

We have seen for every x0∈I=[0,1[  ∑ (𝑥0)
𝑛∞

𝑛=0  is a geometric series with a common ratio x0, 

0 ≤x0<1⇒∑ (𝑥0)
𝑛∞

𝑛=0  converges⇒D =[0,1[=I.   

Note: 

∑ (𝑥0)
𝑛∞

𝑛=0 is a geometric series that converges to f(x0)=
1

1−𝑥0
    (see chapter 2) 

Therefore ∑ (𝑥)𝑛∞
𝑛=0 converges pointwise to f(x)=

1

1−𝑥
,   𝑥 ∈I=[0,1[ 

This is another example where the function f is determined. 

Example2: 

∑
𝑥

𝑛
 ,    ∞

𝑛=1 x ∈ ℝ. 

We have found that:  

∀𝑥 ∈ ℝ*   ∑
𝑥

𝑛
  ∞

𝑛=1 is a divergent series of function. 

For x0 =0 ∑
𝑥

𝑛

∞
𝑛=1 = ∑ 0∞

𝑛=1  =0 is convergent 

Thus   D={0} 

Example3:  

∑
𝑥2

𝑛

∞

𝑛=1

 

We have found: 

For x0≠ 0   ∑
𝑥2

𝑛
  ∞

𝑛=1 is divergent. 

For x0 =0 ∑
𝑥2

𝑛
  ∞

𝑛=1 is convergent. 

⇒  D={0} 

Example4: 

∑
𝑛

𝑥

∞
𝑛=1  ,     x∈ ℝ.

* 

We have seen ∑
𝑛

𝑥

∞
𝑛=1 does not converge pointwise at x, ∀𝑥 ∈ ℝ*. 

⇒  D=∅ 

Example5: 

∑
𝑥

𝑛2
∞
𝑛=1 𝑥 ∈ ℝ. 

We have found ∑
𝑥

𝑛2
∞
𝑛=0 converges pointwise at x , ∀𝑥 ∈ ℝ. 

⇒  D=ℝ 
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Examples 6: 

We have found ∑ (
𝑥

𝑛
−

𝑥

𝑛+1
) ∞

𝑛=1 converges pointwise at 𝑥, ∀𝑥 ∈ ℝ. 

⇒  D=ℝ 

IV.2. 2.2 Uniform convergences of a series of functions 

∑ 𝑓𝑛
∞
𝑛=1 is said to converge uniformly to f on I if: 

lim
𝑛→+∞

𝑠𝑢𝑝𝑥∈𝐼 |𝑆𝑛(𝑥)− 𝑓(𝑥)| = 0 

Sup is the maximal value of  |𝑆𝑛(𝑥) − 𝑓(𝑥)|determined on I. 

(𝑆𝑛(𝑥))nis the sequence of partial sums of ∑ 𝑓𝑛  
∞
𝑛=1 i.e 

 

𝑆𝑛(𝑥)=𝑓1(𝑥) + 𝑓2(𝑥) + 𝑓(𝑥) + ⋯… .+𝑓𝑛(𝑥) 

Note: 

The definition of the uniform convergence requires first to compute 𝑆𝑛(𝑥)and to have 

expression of 𝑓(𝑥). 

Example1: 

We have seen ∑ (𝑥)𝑛∞
𝑛=0 converges pointwise to f(x)=

1

1−𝑥
𝑥 ∈I=[0,1[ 

Let us compute𝑆𝑛(𝑥): 

𝑆𝑛(𝑥)=1+x+x2+………+xn = 1. (
1−xn+1

1−𝑥
) 

lim
𝑛→+∞

𝑠𝑢𝑝𝑥∈[0,1[ |𝑆𝑛(𝑥)−𝑓(𝑥)| = lim
𝑛→+∞

𝑠𝑢𝑝𝑥∈[0,1[ |
1−xn+1

1−𝑥
−

1

1−𝑥
|= lim
𝑛→+∞

𝑠𝑢𝑝𝑥∈[0,1[ |
1−xn+1−1

1−𝑥
| = lim
𝑛→+∞

𝑠𝑢𝑝 |
xn+1

1−𝑥
| 

Put 𝑔𝑛(𝑥)= |
xn+1

1−𝑥
| 

We look for the upper value of 𝑔𝑛(𝑥)on interval I=[0,1[ : 

We can get rid of the absolute value because 
xn+1

1−𝑥
> 0 on interval I=[0,1[ . 

gn
’(x)= 

(𝑛+1)xn(1−x)+xn+1

(1−𝑥)2
=
𝑛xn+xn−nxn+1−xn+1+xn+1

(1−𝑥)2
=
xn(−nx+n+1)

(1−𝑥)2
 

gn
’(x)=0 if{

𝑥 = 0
𝑜𝑟

𝑥 =
𝑛+1

𝑛
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Table of variation of 𝑔𝑛(𝑥) : 

                                    0                                    1                                   n+1 

xn + + + 

−nx + n + 1 + + - 

xn(−nx + n + 1) + + - 

gn(x)    

 

Since our work is on interval I=[0,1[ , 𝑔𝑛(𝑥)reaches its maximal value on x=1 hence : 

lim
𝑛→+∞

𝑠𝑢𝑝𝑥∈[0,1[ |
xn+1

1−𝑥
| = lim

𝑛→+∞
|
1n+1

1−1
|==+∞ ≠ 0⇒ ∑ (𝑥)𝑛∞

𝑛=0 does not converge uniformly to f 

on I. 

Let us try to study uniform convergence on [0,A], A< 1: 

The previous table is simplified to: 

0                                    A                                   1 

xn + 

−nx + n + 1 + 

xn(−nx + n + 1) + 

gn(x)  

 

𝑔𝑛(𝑥) reaches its maximal value at x=A thus : 

lim
𝑛→+∞

𝑠𝑢𝑝𝑥∈[0,𝐴] |
xn+1

1−𝑥
|= lim

𝑛→+∞
|
An+1

1−𝐴
|== lim
𝑛→+∞

An+1 = 0⇒ ∑ (𝑥)𝑛∞
𝑛=0 converges uniformly to f on 

[0,A] . 

Example6 (see above): 

∑ (
𝑥

𝑛
−

𝑥

𝑛+1
),    ∞

𝑛=1 𝑥 ∈ ℝ. 

We have found: 

Sn(x)= 𝑥 −
𝑥

𝑛
and  f(x) = x. 

lim
𝑛→+∞

𝑠𝑢𝑝𝑥∈]−∞,+∞[ |𝑆𝑛(𝑥)−𝑓(𝑥)| = lim
𝑛→+∞

𝑠𝑢𝑝𝑥∈]−∞,+∞[ |𝑥−
𝑥

𝑛
− x|= lim

𝑛→+∞
𝑠𝑢𝑝𝑥∈]−∞,+∞[ |

𝑥

𝑛
| 

𝑓𝑛(𝑥)=|
𝑥

𝑛
| 

Since x∈]−∞,+∞[, 𝑓𝑛(𝑥)does not have a maximal value  on]−∞,+∞[ 

consequently  ∑ (
𝑥

𝑛
−

𝑥

𝑛+1
)∞

𝑛=1 does not converge uniformly to fon]−∞,+∞[. 

Let us check uniform convergence on[−1,+1]: 
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𝑓𝑛(𝑥) reaches its maximal value on  x=−1 𝑎𝑛𝑑 𝑥 = 1⇒ lim
𝑛→+∞

𝑠𝑢𝑝
𝑥∈[−1,1]

|
𝑥

𝑛
| = lim

𝑛→+∞
|
1−
+

𝑛
| =

lim
𝑛→+∞

1

𝑛
=0 ⇒∑ (

𝑥

𝑛
−

𝑥

𝑛+1
)∞

𝑛=1 converge uniformly to f  in[−1,+1]. 

Note: 

In general, it is difficult to study uniform convergence because to find 

lim
𝑛→+∞

𝑠𝑢𝑝𝑥∈𝐼 |𝑆𝑛(𝑥)−𝑓(𝑥)| we have to : 

- Compute 𝑆𝑛(𝑥), which is difficult to calculate in general. 

- Have 𝑓(𝑥)which is hard to find most of the time. In the majority of situation, f exists but we 

are not able to calculate it (example 5). 

∑
𝑥

𝑛2 

∞
𝑛=1  where we have found this series converges pointwise to a function f(x) ( unknown) 

but we know there exists and the sequence of partial sums𝑆𝑛(𝑥) difficult to calculate 𝑆𝑛(𝑥), 

𝑆𝑛(𝑥)= x+
𝑥

22
+
𝑥

3
+

𝑥

42
+⋯…+

𝑥

𝑛2
 

That is why we usually use other methods to study uniform convergence for example normal 

convergence. 

IV.2. 2.3 Normal Convergence of a series of functions: 

IV.2. 2.3.1 Definition: 

A series of function ∑ 𝑓𝑛
∞
𝑛=1  converges normally on I if: 

The infinite series ∑ 𝑠𝑢𝑝
𝑥∈𝐼
|𝑓𝑛(𝑥)|

∞
𝑛=1   converges. 

Where the sup means the maximal value on the interval I. 

Note: 

If ∑ 𝑓𝑛
∞
𝑛=1  converges normally on I then ∑ 𝑓𝑛

∞
𝑛=1 converges uniformly on I. 

Example1: 

Let us study normal convergence of  ∑ 𝑥𝑛∞
𝑛=0 on [0,1]. 

For that we have to study convergence of the infinite series ∑ 𝑠𝑢𝑝
𝑥∈ [0,1]

|𝑥𝑛|∞
𝑛=0  

𝑓𝑛(𝑥) = |𝑥
𝑛| 

It is obvious that 𝑓𝑛(𝑥)  reaches its maximum value at x=1⇒∑ 𝑠𝑢𝑝
𝑥∈ [0,1]

|𝑥𝑛|∞
𝑛=0 =∑ 1𝑛∞

𝑛=0 and 

this series is divergent ⇒∑ 𝑥𝑛∞
𝑛=0 does not converge normally on [0,1]. 

Let us study normal convergence of  ∑ 𝑥𝑛∞
𝑛=0 on [0,a] a< 1: 

The same work as before, the only difference is the boundaries of the interval. 

𝑓𝑛(𝑥) reaches its maximal value at x=𝑎⇒∑ 𝑠𝑢𝑝
𝑥∈ [0,a]

|𝑥𝑛|∞
𝑛=0 =∑ 𝑎𝑛 ∞

𝑛=0 is a geometric series 

with a common ratio a< 1, is convergent ⇒∑ 𝑥𝑛∞
𝑛=0 converges normally on [0,a]. 

Example5 (see above): 
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∑
𝑥

𝑛2
∞
𝑛=1 𝑥 ∈ ℝ. 

We have found that∑
𝑥

𝑛2
∞
𝑛=0  converges pointwise on ℝ. 

Normal convergence on [-a, a] : 

∑ 𝑠𝑢𝑝
𝑥∈ [−a,a]

|
𝑥

𝑛2
|∞

𝑛=0  converges ? 

𝑓𝑛(𝑥) = |
𝑥

𝑛2
| 

It is clear that 𝑓𝑛(𝑥)reaches its maximal value at x=−𝑎 𝑎𝑛𝑑 𝑥 = 𝑎 

⇒∑ 𝑠𝑢𝑝
𝑥∈ [−a,a]

|
𝑥

𝑛2
|∞

𝑛=1 =∑ |
𝑎−
+

𝑛2
|∞

𝑛=1 = 

∑
𝑎

𝑛2
∞
𝑛=1  = a. ∑

1

𝑛2
∞
𝑛=0  

Since ∑
1

𝑛2
∞
𝑛=1   is a P-Series (p=2) so converges ⇒ a. ∑

1

𝑛2
∞
𝑛=1  converges also 

⇒∑
𝑥

𝑛2
∞
𝑛=1  converges normallyon [-a, a]. 

Example 6 (see above): 

∑(
𝑥

𝑛
−

𝑥

𝑛 + 1
)

∞

𝑛=1

 

Normal convergence on [-a, a] : 

∑ 𝑠𝑢𝑝
𝑥∈ [−a,a]

|
𝑥

𝑛
−

𝑥

𝑛+1
|∞

𝑛=1  converges ? 

∑ 𝑠𝑢𝑝
𝑥∈ [−a,a]

|
𝑥

𝑛
−

𝑥

𝑛+1
|∞

𝑛=0  = ∑ 𝑠𝑢𝑝
𝑥∈ [−a,a]

|
𝑥

𝑛(𝑛+1)
|∞

𝑛=1  

𝑓𝑛(𝑥) = |
𝑥

𝑛(𝑛 + 1)
| 

𝑓𝑛(𝑥) reaches its maximal value at x=−𝑎 𝑎𝑛𝑑 𝑥 = 𝑎⇒∑ 𝑠𝑢𝑝
𝑥∈ [−a,a]

|
𝑥

𝑛(𝑛+1)
|∞

𝑛=1 =∑
𝑎

𝑛(𝑛+1)

∞
𝑛=1  

= a. ∑
1

𝑛(𝑛+1)

∞
𝑛=1  

𝑛(𝑛 + 1) > 𝑛2⇒
1

𝑛(𝑛 + 1)
<
1

𝑛2
 

Since ∑
1

𝑛2  

∞
𝑛=1 is a P-Series ( p=2) so converges ⇒∑

1

𝑛(𝑛+1)

∞
𝑛=1   converges (thanks to 

comparison test 1)) ⇒a. ∑
1

𝑛(𝑛+1)

∞
𝑛=0  converges also ⇒∑ (

𝑥

𝑛
−

𝑥

𝑛+1
)∞

𝑛=1   converges normally 

On [-a, a]. 

Example7: 

∑
𝑛𝑥2

(𝑛 + 1)3

∞

𝑛=1

 

Normal convergence on [-a, a]: 
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∑ 𝑠𝑢𝑝
𝑥∈ [−a,a]

|
𝑛𝑥2

(𝑛 + 1)3
|

∞

𝑛=1

 

𝑓𝑛(𝑥) = |
𝑛𝑥2

(𝑛 + 1)3
| 

𝑓𝑛(𝑥) reaches its maximal value at x=−𝑎 𝑎𝑛𝑑 𝑥 = 𝑎 

⇒∑ 𝑠𝑢𝑝 |
𝑛𝑥2

(𝑛+1)3
|∞

𝑛=1 =∑
𝑛( 𝑎−
+ )2

(𝑛+1)3
∞
𝑛=1 =𝑎2 ∑

𝑛

(𝑛+1)3
∞
𝑛=1  

(𝑛 + 1)3 > 𝑛3⇒
1

(𝑛 + 1)3
<
1

𝑛3
⇒

𝑛

(𝑛 + 1)3
<
𝑛

𝑛3
=
1

𝑛2
 

∑
𝑛

(𝑛+1)3
∞
𝑛=1    converges according to comparison test 1⇒𝑎2 ∑

𝑛

(𝑛+1)3
 ∞

𝑛=1 converges also 

⇒∑
𝑛𝑥2

(𝑛+1)3
∞
𝑛=1   converges normally on [-a, a]. 

IV.2. 2.3.2 Weierstrass M-Test: 

Let ∑ 𝑓𝑛
∞
𝑛=1 (x) be a seriesof functions. 

If |𝑓𝑛(𝑥)| ≤ 𝑀𝑛 ,   ∀ 𝑥 ∈ 𝐼 

And if  ∑ 𝑀𝑛 
∞
𝑛=1 is an infinite series that converges then ∑ 𝑓𝑛

∞
𝑛=1 (x) converges normally on I. 

Example1 (see above): 

∑ (𝑥)𝑛∞
𝑛=0 𝑥 ∈[0,a]  a< 1. 

We have|(𝑥)𝑛| ≤ 𝑎𝑛 , ∀ 𝑥 ∈[0,a]. 

∑ 𝑎𝑛  ∞
𝑛=0 is a geometric series with a common ratio a< 1 that 

converges ⇒∑ (𝑥)𝑛∞
𝑛=0 converges normally on [0,a]. 

Example5 (see above) : 

∑
𝑥

𝑛2
,   ∞

𝑛=1 𝑥 ∈[-a,a]   

We have: |
𝑥

𝑛2
| ≤

𝑎

𝑛2
   ∀ 𝑥 ∈[-a,a]. 

∑
𝑎

𝑛2
∞
𝑛=0 = a∑

1

𝑛2 
∞
𝑛=0 is a P-Series ( p =2) that converges ⇒∑

𝑥

𝑛2
∞
𝑛=1 converges normally on [-a,a].   

Exercises of series of functions: 

Exercise 1: 

Study the pointwise convergence and find domain of convergence of the following series of 

functions: 

  a-  ∑ cos (𝑥)𝑛3∞
𝑛=1        b-   ∑ 𝑥2(

2

9
)𝑛∞

𝑛=0        c-∑
𝑛4𝑥

(𝑛7+10)

∞
𝑛=1  

             d-∑ 𝑥(𝑥2 + 1)𝑛!                         ∞
𝑛=1 e-∑ (

𝑥4

𝑛2+5
)𝑛∞

𝑛=1  

Exercise 2 : 
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Study the pointwise convergence and determine domain of convergence of this series of 

function: ∑ 𝑥𝑛(4)𝑛∞
𝑛=0 . 

1-Deduce its function sum f(x). 

2-Show that this series of function converges uniformly on [0,a]  (a
1

4
). 

Exercise 3: 

1- Study the pointwise convergence on1,+ of this series of function:∑
(−1)𝑛

(𝑙𝑛𝑥)𝑛
∞
𝑛=1 . 

2- Deduce its domain of convergence.  

3-State whether this series converges or diverges uniformly on [a, +∞]  (a>1). 

Solutions of series of functions 

Solutions of exercise1: 

a- ∑ cos (𝑥)𝑛3∞
𝑛=1  

For a given value x0  of x ∑ 𝑐𝑜𝑠𝑥0𝑛
3 ∞

𝑛=1 becomes an infinite series(of numbers) 

∑ 𝑐𝑜𝑠𝑥0𝑛
3∞

𝑛=1 =𝑐𝑜𝑠𝑥0∑ 𝑛3∞
𝑛=1 =𝑐𝑜𝑠𝑥0∑

1

𝑛−3
∞
𝑛=1  

                                          a constant 

∑
1

𝑛−3
∞
𝑛=0 is a P-series that diverges𝑐𝑜𝑠𝑥0∑

1

𝑛−3
∞
𝑛=1  diverges also thus∑ 𝑐𝑜𝑠𝑥𝑛3∞

𝑛=1 does not 

converge pointwise at x,x 

Domain of convergence of this series is D= ∅ 

b-   ∑ 𝑥2(
2

9
)𝑛∞

𝑛=0  

For a given value x0  of x, ∑ 𝑥0
2(
2

9
)𝑛∞

𝑛=0 =𝑥0
2 ∑ (

2

9
)𝑛 ∞

𝑛=0 becomes an infinite series.  

                                             a constant 

∑ (
2

9
)𝑛∞

𝑛=0 is ageometric series with a common ratio𝑞 =  
2

9
that  converges (since -1

2

9
1) 

𝑥0
2 ∑ (

2

9
)𝑛∞

𝑛=0  converges𝑥0 ∈R ∑ 𝑥2(
2

9
)𝑛∞

𝑛=0 converges pointwise at 𝑥, 𝑥 ∈ ℝ. 

Domain of convergence of this series is D= ℝ=]-∞,+∞[ 

c-∑
𝑛4𝑥

(𝑛7+10)

∞
𝑛=1  

For a given value x0 of x, ∑
𝑛4𝑥0

(𝑛7+10)
 ∞

𝑛=0 becomes an infinite series.  

∑
𝑛4𝑥0

(𝑛7+10)

∞
𝑛=1  =𝑥0∑

𝑛4

(𝑛7+10)

∞
𝑛=1  

Let us study convergence of the infinite series ∑
𝑛4

(𝑛7+10)

∞
𝑛=1  : 

- It is neither a geometric series nor a P-series. 
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- If we apply Divergence Test; lim
𝑛→+∞

𝑛4

(𝑛7+10)
= lim
𝑛→+∞

𝑛4

𝑛7
= lim
𝑛→+∞

1

𝑛3
= 0 thus we can not say 

anything. 

- Let us use Comparison Test : 

𝑛7 + 10𝑛7
1

(𝑛7+10)

1

𝑛7


𝑛4

(𝑛7+10)

𝑛4

𝑛7
=

1

𝑛3
 

∑
1 

𝑛3
 ∞

𝑛=0 is a P-series where p=31 that converges∑
𝑛4

(𝑛7+10)

∞
𝑛=1  is convergent by 

Comparison Test 1) 𝑥0∑
𝑛4

(𝑛7+10)

∞
𝑛=1   converges𝑥0 ∈R 

So∑
𝑛4𝑥

(𝑛7+10)

∞
𝑛=1  converges pointwise at 𝑥, 𝑥 ∈ ℝ 

Domain of convergence of this series is D= ℝ=]-∞,+∞[ 

d-∑ 𝑥(𝑥2 + 1)𝑛!∞
𝑛=1  

For a given value x0 of x, ∑ 𝑥0(𝑥0
2 + 1)𝑛!  ∞

𝑛=1 is an infinite series. 

∑𝑥0(𝑥0
2 + 1)𝑛!

∞

𝑛=1

= 𝑥0(𝑥0
2 + 1)∑𝑛!

∞

𝑛=1

 

Convergence of  ∑ 𝑛!∞
𝑛=1  ? 

Let us use D’Alembert ratio test: 

lim
𝑛→+∞

𝑎𝑛+1

𝑎𝑛
= lim
𝑛→+∞

(𝑛+1)!

(𝑛)!
= lim
𝑛→+∞

𝑛 + 1 = +∞1∑ 𝑛! ∞
𝑛=1 is divergent 

𝑥0(𝑥0
2 + 1)∑ 𝑛! ∞

𝑛=1 stays divergent∑ 𝑥(𝑥2 + 1)𝑛!∞
𝑛=1  does not converge pointwise at 

x,x 

Domain of convergence of this series is D= ∅ 

e-∑ (
𝑥4

𝑛2+5
)𝑛∞

𝑛=1  

For a given value x0 of x, ∑ (
𝑥0
4

𝑛2+5
)𝑛 ∞

𝑛=1 is an infinite series with positive terms.  

(
𝑥0
4

𝑛2+5
)𝑛 is a power of n consequently we apply Cauchy Root Test. 

lim
𝑛→+∞

√𝑎𝑛
𝑛 = lim

𝑛→+∞

√(
𝑥0
4

𝑛2+5
)𝑛

𝑛
= lim
𝑛→+∞

(
𝑥0
4

𝑛2+5
) = 01 ∑ (

𝑥0
4

𝑛2+5
)𝑛∞

𝑛=1 converges 𝑥0ℝ 

thus ∑ (
𝑥0
4

𝑛2+5
)𝑛∞

𝑛=1  converges pointwise at  𝑥, 𝑥ℝ 

Domain of convergence of this series is D=ℝ=]- ∞,+∞[          

Solutions of exercice 2 : 

1- For a given value x0 of x,  ∑ (𝑥0)
𝑛(4)𝑛∞

𝑛=0  becomes an infinite series 

∑ (𝑥0)
𝑛(4)𝑛∞

𝑛=0  =∑ (𝑥04)
𝑛∞

𝑛=0  

∑ (4𝑥0)
𝑛 ∞

𝑛=0 is a geometric series with a common ratio 𝑞 = 4𝑥0that converges 
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 if -14𝑥01 ∑ (4𝑥0)
𝑛∞

𝑛=0  converges if  - 
1

4
𝑥0

1

4
 

thus ∑ 𝑥𝑛(4)𝑛∞
𝑛=0  converges pointwise at 𝑥 such that - 

1

4
𝑥

1

4
 

Domain of convergence of this series is the interval ] - 
1

4
,
1

4
[=D 

2- We know for a convergent geometric series∑ (𝑞)𝑛∞
𝑛=0 , its sum S=∑ (𝑞)𝑛∞

𝑛=0 =
1

1−𝑞
 

So for a given value x0 ] - 
1

4
,
1

4
[     ∑ (4𝑥0)

𝑛∞
𝑛=0 =

1

1−4x0
 

Thus ∑ 𝑥𝑛(4)𝑛∞
𝑛=0 =

1

1−4𝑥
= 𝑓(𝑥)   x] - 

1

4
,
1

4
[      

     3-Let us prove normal convergence on [0,a]  (a
1

4
). 

For that let us apply Weierstrass M-Test: 

For a given value x0 on [0,a]  𝑓𝑛(𝑥0)=(4𝑥0)
𝑛,we are going to look for 𝑈𝑛 such that 

|𝑓𝑛(𝑥0)| ≤ 𝑈𝑛 

We have: x0 [0,a] 4𝑥04𝑎(4𝑥0)
𝑛(4𝑎)𝑛 

∑ (4𝑎)𝑛 ∞
𝑛=0 is a geometric series with a common ratio𝑞= 4𝑎1 (since  a

1

4
)thus converges. 

(𝑈𝑛 =(4𝑎)𝑛 ) ∑ 𝑥𝑛(4)𝑛∞
𝑛=0 converges normally on [0,a]  (a 

1

4
 ) 

Therefore ∑ 𝑥𝑛(4)𝑛∞
𝑛=0 converges uniformly on [0,a]  (a 

1

4 
) 

Solutions of exercice3: 

1- ∑
(−1)𝑛

(𝑙𝑛𝑥)𝑛
∞
𝑛=1  

- For all fixed 𝑥01 ,+  ; 𝑙𝑛𝑥00  𝑡ℎ𝑒𝑛 ∑
(−1)𝑛

(𝑙𝑛𝑥)𝑛
  ∞

𝑛=1 is an alternating series 

with 𝑎𝑛 =
1

(𝑙𝑛𝑥)𝑛
  (𝑎𝑛0) 

𝑥01 ,+  

 
1

(𝑙𝑛𝑥0)
𝑛 is a decreasing sequence (since(𝑙𝑛𝑥0)

𝑛+1(𝑙𝑛𝑥0)
𝑛

1

(𝑙𝑛𝑥0)
𝑛+1 

1

(𝑙𝑛𝑥0
𝑛) 

 lim
𝑛→+∞

1

(𝑙𝑛𝑥0)
𝑛 = 0 

∑
(−1)𝑛

(𝑙𝑛𝑥0)
𝑛

∞
𝑛=1  converges (by Leibnitz Test) 

So ∑
(−1)𝑛

(𝑙𝑛𝑥0)
𝑛

∞
𝑛=1  converges pointwise at 𝑥1 ,+ 

 

2- we have found that ∑
(−1)𝑛

(𝑙𝑛𝑥0)
𝑛

∞
𝑛=1 converges pointwise at 𝑥1 , + thus convergence 

domain of this series of function is ]1, +∞[.  

3- To study the normal convergence, it is sufficient to study convergence of the infinite series 
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∑ 𝑠𝑢𝑝 |
(−1)𝑛

(𝑙𝑛𝑥)𝑛
|∞

𝑛=1  : 

𝑓𝑛(𝑥)= |
(−1)𝑛

(𝑙𝑛𝑥)𝑛
|= 

1

(𝑙𝑛𝑥)𝑛
  (since 𝑙𝑛𝑥0 𝑜𝑛 a , +) 

𝑓𝑛(𝑥)=(𝑙𝑛𝑥)
−𝑛𝑓′

𝑛
(𝑥)=−𝑛(𝑙𝑛𝑥)−𝑛−1=

−𝑛

(𝑙𝑛𝑥)𝑛+1
 0 

Table of variation of  𝑓𝑛(𝑥) 

                        a                                 +∞ 

𝑓𝑛
′(𝑥) =

−𝑛

(𝑙𝑛𝑥)𝑛+1
 

- 

𝑓𝑛(𝑥)  

𝑓𝑛(𝑥) reaches its maximal value at x=𝑎, ∑ 𝑠𝑢𝑝 |
(−1)𝑛

(𝑙𝑛𝑥)𝑛
|∞

𝑛=1 =∑
1

(𝑙𝑛𝑎)𝑛
∞
𝑛=1  

Convergence of the series  ∑
1

(𝑙𝑛𝑎)𝑛
∞
𝑛=1  ?: 

Let us apply Cauchy’s Root Test : 

lim
𝑛→+∞

√𝑎𝑛
𝑛 = lim

𝑛→+∞

√
1

(𝑙𝑛𝑎)𝑛
𝑛

= lim
𝑛→+∞

(
1

𝑙𝑛𝑎
) =

1

𝑙𝑛𝑎
 

1

𝑙𝑛𝑎
 1 if 𝑙𝑛𝑎1 𝑒𝑙𝑛𝑎 𝑒1 = 𝑒  𝑎 𝑒 

thus  ∑
1

(𝑙𝑛𝑎)𝑛
∞
𝑛=1  converges if 𝑎𝑒 

Conclusion: 

∑
(−1)𝑛

(𝑙𝑛𝑥)𝑛
∞
𝑛=1  does not converge normally on [a,+∞]  (a>1) but  converges  normally 

on [a, +∞]  (a>e) ∑
(−1)𝑛

(𝑙𝑛𝑥)𝑛
∞
𝑛=1  converges uniformly on [a, +∞]  (a>e)
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IV.3 Power Series 

IV.3.1 Definition: 

A power series (centered at 0) is a series of functions of the form∑ 𝑎𝑛𝑥
𝑛∞

𝑛=1  

where (𝑎𝑛)𝑛≥1is a real sequences and x∈ ℝ. 

Examples: 

1)∑𝑥𝑛
∞

𝑛=0

𝑎𝑛 = 1   ∀ 𝑛 ≥ 0 

2)∑
𝑥𝑛

𝑛

∞

𝑛=1

𝑎𝑛 =
𝑥

𝑛
   ∀ 𝑛 ≥ 1 

 3)∑
𝑥𝑛

(𝑛+1)(𝑛+2)

∞
𝑛=0 𝑎𝑛 =

1

(𝑛+1)(𝑛+2)
   ∀ 𝑛 ≥ 0 

Notes: 

-𝑆𝑛(x)=𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯+𝑎𝑛𝑥

𝑛is an nth degree polynomial function therefore power 

series ∑ 𝑎𝑛𝑥
𝑛∞

𝑛=0 is a generalization of a polynomial function. 

-A power series, being a series of functions, we can then study its convergence like that of 

series of functions ( see II.2) 

IV.3.2 Radius of convergence of a power series : 

Let ∑ 𝑎𝑛𝑥
𝑛∞

𝑛=1  be apower series then there exits R≥ 0( can be equal to+∞) such that: 

a)∑ 𝑎𝑛𝑥
𝑛∞

𝑛=1  converges absolutely for all reals x so that |𝑥|<R. 

b)∑ 𝑎𝑛𝑥
𝑛∞

𝑛=1  diverges for  all real x so that |𝑥|>R. 

c)For|𝑥| =R the power series may converge or diverge. 

R is called radius of convergence of  ∑ 𝑎𝑛𝑥
𝑛∞

𝑛=1 . 

Note: 

-Radius of convergence R enable us to determine the domain of absolute convergence of the 

power series ∑ 𝑎𝑛𝑥
𝑛∞

𝑛=1 , which is the open interval ]-R, R[. To close the interval, we have to 

study the absolute convergence at the boundaries (i.e x= 𝑅−
+ ) 

IV.3.3 Cauchy-Hadamard formula: 

Let  ∑ 𝑎𝑛𝑥
𝑛∞

𝑛=1  be a power series. Radius of convergence R is given by : 

1)
1

𝑅
= lim
𝑛→+∞

|
𝑎𝑛+1

𝑎𝑛
| 

                 𝑜𝑟 

2)
1

𝑅
= lim
𝑛→+∞

√|𝑎𝑛|
𝑛
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Example1: 

∑
(−1)𝑛𝑥𝑛

𝑛𝑛
∞
𝑛=1  ;  𝑎𝑛 =

(−1)𝑛

𝑛𝑛
 

1

𝑅
= lim
𝑛→+∞

√|𝑎𝑛|
𝑛

 = lim
𝑛→+∞

√|
(−1)𝑛

𝑛𝑛
|

𝑛
 = lim
𝑛→+∞

1

𝑛
= 0 

⇒ R= +∞ 

Therefore ∀ 𝑥𝜖] − ∞,+∞[  ∑
(−1)𝑛𝑥𝑛

𝑛𝑛
∞
𝑛=1    converges absolutely. 

Example 2: 

∑ (2𝑛)! 𝑥𝑛∞
𝑛=1 ;  𝑎𝑛 = (2𝑛)! 

1

𝑅
= lim
𝑛→+∞

|
𝑎𝑛+1

𝑎𝑛
|= lim
𝑛→+∞

|
(2(𝑛+1))!

(2𝑛)!
|= lim
𝑛→+∞

|
(2𝑛+2)!

(2𝑛)!
| lim
𝑛→+∞

(2𝑛+2)(2𝑛+1)(2𝑛)!

(2𝑛)!
 

      = lim
𝑛→+∞

(2𝑛 + 2)(2𝑛 + 1) = lim
𝑛→+∞

4𝑛2 = +∞ 

⇒ R= 0 

thus ∑
𝑥𝑛

𝑛!

∞
𝑛=0 converges absolutely only at x=0. 

Example 3: 

∑
𝑥𝑛

𝑛2
∞
𝑛=1 ;  𝑎𝑛 =

1

𝑛2
 

 
1

𝑅
= lim
𝑛→+∞

|
𝑎𝑛+1

𝑎𝑛
| = lim

𝑛→+∞

|
𝑛2

(𝑛+1)2
| = lim

𝑛2

𝑛2

𝑛→+∞

= 1 

⇒ R= 1  

So ∀ 𝑥𝜖] − 1,1[ ,∑
(−1)𝑛𝑥𝑛

𝑛𝑛
∞
𝑛=1  converges absolutely. 

Let us check absolute convergence at x=-1 and x=1: 

          x=-1: 

∑ |
𝑥𝑛

𝑛2
|∞

𝑛=1 = ∑ |
(−1)𝑛

𝑛2
| =∞

𝑛=1 ∑
1𝑛

𝑛2
∞
𝑛=1 = ∑

1

𝑛2
∞
𝑛=1  is a P-Series ( p=2) that converges 

Therefore ∑
𝑥𝑛

𝑛2
∞
𝑛=1 converges absolutely at x=-1. 

 x =1: 

∑ |
𝑥𝑛

𝑛2
|∞

𝑛=1 = ∑ |
1𝑛

𝑛2
| =∞

𝑛=1 ∑
1

𝑛2
∞
𝑛=1   is a P-Series ( p=2) that converges 

So ∑
𝑥𝑛

𝑛2
 ∞

𝑛=1 converges absolutely at x=1 

Conclusion : 

∑
𝑥𝑛

𝑛2
∞
𝑛=1  converges absolutely on [-1, 1]. 
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IV.3.4 Addition of power series: 

Let∑ 𝑎𝑛𝑥
𝑛∞

𝑛=1 and∑ 𝑏𝑛𝑥
𝑛∞

𝑛=1 be two power series of radius of convergence R ,R’ respectively. 

1- If R≠R’ then radius of convergence R’’of the power series ∑ (𝑎𝑛+𝑏𝑛)𝑥
𝑛∞

𝑛=1  

is    R’’=min{R, R’}. 

2- If  R=R’ then radius of convergence R’’> 𝑅 .    

Examples: 

1- Let ∑ 𝑎𝑛𝑥
𝑛 ∞

𝑛=1 be the power series ∑
𝑥𝑛

𝑛2
∞
𝑛=1 ,we have already calculated its radius of 

convergence R=1 

And ∑ 𝑏𝑛𝑥
𝑛∞

𝑛=1 = ∑
𝑥𝑛

2𝑛
∞
𝑛=1  

1

𝑅′
= lim
𝑛→+∞

√|𝑏𝑛|
𝑛

 = lim
𝑛→+∞

√|
1

2𝑛
|

𝑛
lim
𝑛→+∞

1

2
 =
1

2
⇒ R’= 2. 

𝑛2 

Let us determine R’’ of ∑ (𝑎𝑛+𝑏𝑛)𝑥
𝑛∞

𝑛=1 = ∑ (
1

𝑛2
+

1

2𝑛
)𝑥𝑛∞

𝑛=1  

= ∑(
2𝑛 + 𝑛2

𝑛22𝑛
)𝑥𝑛

∞

𝑛=1

 

1

𝑅′′
= lim
𝑛→+∞

|
𝑎𝑛+1+𝑏𝑛+1

𝑎𝑛+𝑏𝑛
| = lim

𝑛→+∞

|
2𝑛+1+(𝑛+1)2

(𝑛+1)22𝑛+1
.
𝑛22𝑛

2𝑛+𝑛2
|= lim
𝑛→+∞

|
𝑛22𝑛

(𝑛+1)22𝑛+1
.

 (2𝑛+1+(𝑛+1)2)

(2𝑛+𝑛2)
| 

               = lim
𝑛→+∞

|
𝑛22𝑛

(𝑛+1)22𝑛+1
.

 (2𝑛+1+(𝑛+1)2)

(2𝑛+𝑛2)
| = lim

𝑛→+∞

|
𝑛2

(𝑛+1)22
.

 (2𝑛+1+(𝑛+1)2)

(2𝑛+𝑛2)
| = lim
𝑛→+∞

|
 2𝑛+1

2.2𝑛
| 

=
1

2
. 2 = 1 ⇒ R’’=1. 

According to 1)   R’’=min{R, R’}=min R’’=min{1, 2}=1. 

2-Let ∑ 𝑎𝑛𝑥
𝑛 ∞

𝑛=1 be the series ∑ 𝑥𝑛∞
𝑛=1 whose radius of convergence R=1 

And ∑ 𝑏𝑛𝑥
𝑛∞

𝑛=1 = ∑
(1−3𝑛)𝑥𝑛

3𝑛
∞
𝑛=1  

1

𝑅′
= lim
𝑛→+∞

|
𝑏𝑛+1
𝑏𝑛
| = lim

𝑛→+∞

|
(1 − 3𝑛+1)

3𝑛+1
.

3𝑛

(1 − 3𝑛)
| = lim

𝑛→+∞

|
3𝑛

3𝑛+1
.
(1 − 3𝑛+1)

(1 − 3𝑛)
| 

     =
1

3
lim
𝑛→+∞

|
(1−3𝑛+1)

(1−3𝑛)
|= 

1

3
. 3 = 1 ⇒ R’=1. 

Let us determine R’’ of ∑ (𝑎𝑛+𝑏𝑛)𝑥
𝑛∞

𝑛=1 = ∑ (1+
(1−3𝑛)

3𝑛
)𝑥𝑛∞

𝑛=1  

=∑ (
3𝑛+1−3𝑛

3𝑛
)𝑥𝑛∞

𝑛=1 = ∑ (
1

3𝑛
)𝑥𝑛∞

𝑛=1  

1

𝑅′′
= lim
𝑛→+∞

|
𝑎𝑛+1

𝑎𝑛
| = lim

𝑛→+∞

|
3𝑛

3𝑛+1
|=
1

3
⇒ R’’=3 
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According to 2) R’’> 𝑅 .    

IV.3.5. Power series properties: 

Let ∑ 𝑎𝑛𝑥
𝑛∞

𝑛=1  be a power series of radius of convergence R and f its sum f(x)=∑ 𝑎𝑛𝑥
𝑛∞

𝑛=1 on 

]-R, R[ then : 

a- f is continue on ]-R, R[. 

b- f is differentiable on]-R, R[ and its derivative is f ’(x)=∑ 𝑛𝑎𝑛𝑥
𝑛−1∞

𝑛=1 . 

c- f is integrable and its primitive (or anti-derivative) F(x)=∑
𝑎𝑛

𝑛+1
𝑥𝑛+1∞

𝑛=1 . 

Notes: 

-A power series and its derivative have the same radius of convergence. 

1

𝑅′
= lim
𝑛→+∞

|
(𝑛+1)𝑎𝑛+1

𝑛𝑎𝑛
| = lim

𝑛→+∞

|
𝑎𝑛+1

𝑎𝑛
|= 

1

𝑅
 

-A power series and its primitive have the same radius of convergence. 

1

𝑅′′
= lim
𝑛→+∞

|
𝑎𝑛+1

(𝑛+2)
.
𝑛+1

𝑎𝑛
| = lim

𝑛→+∞

|
𝑛+1

(𝑛+2)

𝑎𝑛+1

𝑎𝑛
|= lim
𝑛→+∞

|
𝑎𝑛+1

𝑎𝑛
|=  

1

𝑅
 

Example 1: 

Let ∑
(−1)𝑛𝑥𝑛

𝑛

∞
𝑛=1  be a power series 

Let us determine its radius of convergence R: 

1

𝑅
= lim
𝑛→+∞

|
𝑎𝑛+1
𝑎𝑛
| = lim

𝑛→+∞

|
(−1)𝑛

(𝑛 + 1)
.
𝑛

(−1)𝑛
| = lim

𝑛→+∞

|
𝑛

(𝑛 + 1)
| = 1 

∀𝑥 ∈]-1, 1[, ∑
(−1)𝑛𝑥𝑛

𝑛

∞
𝑛=1   converges absolutely to f ; f(x)=∑

(−1)𝑛𝑥𝑛

𝑛

∞
𝑛=1  

(f exists but we do not know its expression). 

f is differentiable on ]-1, 1[  

∀𝑥 ∈]-1, 1[  f ’(x)=∑ (−1)𝑛
𝑛

𝑛
𝑥𝑛−1∞

𝑛=1 = ∑ (−1)𝑛𝑥𝑛−1∞
𝑛=1 =-1+x-𝑥2 + 𝑥3 −⋯… 

                              =-(1-x+𝑥2 − 𝑥3 +⋯………) 

                               =- ∑ (−1)𝑛𝑥𝑛∞
𝑛=0  

=-∑ (−𝑥)𝑛 ∞
𝑛=0 wich is a geometric series of functions with a common ratio –x 

⇒f ’(x)= - 
1

 1+𝑥
   (1) 

By integrating (1), we find expression of f(x): 

f(x)= ∫
−1

1+𝑡
𝑑𝑡 = |− ln|(1 + 𝑡)||0

𝑥  = −
𝑥

0
ln|(1 + 𝑥)| 

Conclusion : 

∀𝑥 ∈]-1, 1[, ∑
(−1)𝑛𝑥𝑛

𝑛

∞
𝑛=1   converges absolutely to f ; f(x)=- ln|(1 + 𝑥)| 

∑
(−1)𝑛𝑥𝑛

𝑛

∞
𝑛=1 = - ln(1 + 𝑥) 
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∀𝑥 ∈]-1, 1[, ∑ (−1)𝑛𝑥𝑛−1∞
𝑛=1 converges absolutely to f’; f’(x)= - 

1

 1+𝑥
 

∑ (−1)𝑛𝑥𝑛−1∞
𝑛=1 = - 

1

 1+𝑥
 

Notes: 

-Let ∑ 𝑎𝑛𝑥
𝑛 ∞

𝑛=1 be a power series of radius of convergence R and f its sum f(x)=∑ 𝑎𝑛𝑥
𝑛∞

𝑛=1 on 

]-R, R[ . 

If we differentiate it f ’(x)=∑ 𝑛𝑎𝑛𝑥
𝑛−1∞

𝑛=1  will be a new power series of radius of 

convergence R. 

If we differentiate the new one f’’(x)=∑ 𝑛(𝑛 − 1)𝑎𝑛𝑥
𝑛−2∞

𝑛=1  will be a new power series of 

radius of convergence R. 

And so on. 

Thus the sum of a power series∑ 𝑎𝑛𝑥
𝑛 ∞

𝑛=1 is infinitely differentiable (∈ 𝐶∞) on its interval of 

convergence ]-R, R[and its derivatives are given  term-by-term differentiation of the power 

series. 

- We can deduce the same thing for integration.  

IV.3.6. Function representable by power series (RPS Function):  

IV.3.6.1 Definition: 

Let f be a real function defined in a neighborhood of 0, we say that f is representable by a 

power series if there exists A> 0 and a power series ∑ 𝑎𝑛𝑥
𝑛∞

𝑛=1   with radius of convergence 

A such that: f(x)= ∑ 𝑎𝑛𝑥
𝑛∞

𝑛=1   ∀𝑥 ∈]-A, A[. 

Example1: 

Let f defined by f: :ℝ-{1}        ℝ 

                                    x          f(x)= 
1

1−𝑥
 

f is representable by a power series  in a neighborhood of 0 on  ]-1, 1[ because we know (see 

II.2) : 

1

1−𝑥
= ∑ 𝑥𝑛∞

𝑛=0   on ]-1, 1[ 

Example2: 

f :ℝ-{2}         ℝ 

          x        f(x)= 
1

2−𝑥
 

f(x)= 
1

2−𝑥
 =  

1

2(1−
𝑥

2
)
=
1

2

1

(1−
𝑥

2
)
=
1

2
∑ (

𝑥

2
)𝑛∞

𝑛=0 =
 1

2
∑

𝑥𝑛

2𝑛
∞
𝑛=0  =∑

𝑥𝑛

2𝑛+1
∞
𝑛=0  

Hence f is representable by a power series in a neighborhood of 0 on ]-R, R[ : 

1

2−𝑥
= ∑

𝑥𝑛

2𝑛+1
∞
𝑛=0  where 𝑎𝑛 =

1

2𝑛+1
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1

𝑅
= lim
𝑛→+∞

|
𝑎𝑛+1
𝑎𝑛
| = lim

𝑛→+∞

|
1

2𝑛+2
. 2𝑛+1| = lim

𝑛→+∞

|
1

2
|  =

1

2
⇒  𝑅 = 2 

1

2−𝑥
= ∑

𝑥𝑛

2𝑛+1
∞
𝑛=0 on]-2, 2[ . 

Proposition (necessary condition): 

Let f be a real function defined in a neighborhood of 0. 

If f is infinitely differentiable (∈ 𝐶∞) then f is representable by a power series in this 

neighborhood. 

Thus f ∈ 𝐶∞is a necessary condition. 

IV.3.6.2 Taylor’s Series: 
Let f be a real function infinitely differentiable (∈ 𝐶∞) . We call Taylor’s series of f, the 

power series ∑
𝑓𝑛(0)

𝑛!

∞
𝑛=0 𝑥𝑛 

Proposition (sufficient condition)  

Let f be a real function defined in a neighborhood of 0 and infinitely differentiable (∈ 𝐶∞). 

if ∃M> 0 such that ∀𝑛 ∈N and ∀ 𝑥 ∈]-R, R[   |𝑓𝑛(𝑥)| ≤ 𝑀 then Taylor’s series of f 

∑
𝑓𝑛(0)

𝑛!

∞
𝑛=0 𝑥𝑛 converges pointwise to f on ]-R, R[  i.e  f(x)= ∑

𝑓𝑛(0)

𝑛!

∞
𝑛=0 𝑥𝑛on ]-R, R[ . 

Explanation: 

If f is infinitely differentiable and all its derivatives are bounded on ]-R, R[   then f is equal to 

its Taylor’s series (i.e f is representable  by a power series on ]-R, R[   ). 

Example1: 

f(x)=sin(x) is infinitely differentiable and we have : 

𝑓𝑛(𝑥)=sin(x+n


2
)   n≥ 1⇒all derivatives of f are bounded on]-1, 1[   ∀ 𝑥 ∈ ℝ (i.e M=1) 

Hence f is representable by a power series (f is equal to its Taylor’s series) 

∀ 𝑥 ∈ ℝ  sin(x)= ∑
𝑓𝑛(0)

𝑛!

∞
𝑛=0 𝑥𝑛 = ∑

sin(n


2
)

𝑛!

∞
𝑛=0 𝑥𝑛 

                     = sin(0)+
1

1!
sin(



2
)𝑥 +

1

2!
sin() 𝑥2 +

1

3!
sin(

3

2
)𝑥3 +

1

4!
sin(2) 𝑥4 +

1

5!
sin (

5

2
)𝑥5 +⋯ 

                     =0     +  x         + 0                  -  
1

3!
𝑥3           + 0                  + 

1

5!
𝑥5 +⋯ .. 

                    =∑
(−1)𝑃

2𝑝+1!

∞
𝑝=0 𝑥2𝑝+1 

So  ∀ 𝑥 ∈ ℝ,  sin(x)= ∑
(−1)𝑃

2𝑝+1!

∞
𝑝=0 𝑥2𝑝+1 

Example2: 

f(x)=cos(x)  is infinitely differentiable and all its derivatives are bounded on ]-1, 1[   ∀ 𝑥 ∈ ℝ 

   (i.e M=1) 

Thus cos(x) is representable by a power series ( is equal to its Taylor’s series) 
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f(x)=cos(x)= (sinx)’=(∑
(−1)𝑃

2𝑝+1!

∞
𝑝=0 𝑥2𝑝+1)

′

= ∑ (
(−1)𝑃

2𝑝+1!
𝑥2𝑝+1)

′
∞
𝑝=0 =∑

(−1)𝑃2𝑝+1

2𝑝+1!

∞
𝑝=0 𝑥2𝑝 

=∑
(−1)𝑃

2𝑝!

∞
𝑝=0 𝑥2𝑝 

∀ 𝑥 ∈ ℝ,  cos(x)  =∑
(−1)𝑃

2𝑝!

∞
𝑝=0 𝑥2𝑝 

Example3: 

f(x)=𝑒𝑥is infinitely differentiable. 

Proposition: 

Let ∑
𝑓𝑛(0)

𝑛!

∞
𝑛=0 𝑥𝑛 be Taylor’s series of a function f infinitely differentiable. 

∑
𝑓𝑛(0)

𝑛!

∞
𝑛=0 𝑥𝑛  = f(0)+𝑓′(0)𝑥 +⋯ .+𝑓𝑛(0)𝑥𝑛 + 𝑅𝑛(𝑥) 

Where 𝑅𝑛(𝑥) =
𝑓𝑛+1(𝑧)

𝑛!
𝑥𝑛+1 is the reminder of Taylor’s series ( 0< 𝑧 < 𝑥 ou x< 𝑧 < 0) 

If lim
𝑛→+∞

𝑅𝑛(𝑥) = 0 then Taylor’s series of  f converges pointwise to f. 

Let us check this condition for the function f(x)=𝑒𝑥. 

𝑅𝑛(𝑥) =
𝑓𝑛+1(𝑧)

𝑛!
𝑥𝑛+1 = 

𝑒𝑧

𝑛!
𝑥𝑛+1  

If 0< 𝑧 < 𝑥    0 < |𝑅𝑛(𝑥)| ≤
𝑒𝑥

𝑛!
|𝑥𝑛+1 | 

lim
𝑛→+∞

𝑒𝑥

𝑛!
|𝑥𝑛+1 | = 0⇒ lim

𝑛→+∞

𝑅𝑛(𝑥) = 0 

If x< 𝑧 < 0       0 < |𝑅𝑛(𝑥)| ≤
|𝑥𝑛+1 |

𝑛!
 

lim
𝑛→+∞

|𝑥𝑛+1 |

𝑛!
= 0⇒ lim

𝑛→+∞

𝑅𝑛(𝑥) = 0 

So according to the proposition: 

f(x)=𝑒𝑥, f is representable by its Taylor series at 0 i.e  𝑒𝑥 = ∑
𝑓𝑛(0)

𝑛!

∞
𝑛=0 𝑥𝑛 

Since 𝑓𝑛(0)=𝑒0 = 1, therefore 𝑒𝑥  =∑
𝑥𝑛

𝑛!

∞
𝑛=0 ∀ 𝑥 ∈ ℝ 

Note: 

Now, knowing that some functions are representable by power series such as 

(𝑒𝑥 , sin (𝑥), cos (𝑥),
1

1−𝑥
…) we can deduce representation by power series of other functions 

obtained by addition, subtraction,(or in terms of finite combinations), differentiation, 

 integration of these familiar functions. 

IV.3.7. Using Power series to Solve Differential Equations 

We call linear mth order differential equation an equation of form: 
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A(x) Ym+ B(x) Ym-1……….+ G(x) Y’+H(x)Y=f(x) 

Where: 

Y: a function of x. 

Ym, Ym-1………., Y’ derivatives of Y of order (m, m-1,….). 

A(x), B(x) ,……., G(x),f(x) are functions of x. 

Examples: 

xY’’-(2x+1)Y’+x2Y=3x 

x2Y’+4xY=0. 

Let us solve the following differential equation: 

Y’-Y=0    (1) 

The  method : 

Let us look for Y of form a power series: 

Y=∑ 𝑎𝑛𝑥
𝑛∞

𝑛=0  (2) 

We can differentiate power series term by term, so 

Y’=∑ 𝑛𝑎𝑛𝑥
𝑛−1∞

𝑛=1  (3) 

In order to compare the expressions for y  and y’ more easily, we rewrite as follows: 

Y’=∑ (𝑛 + 1)𝑎𝑛+1𝑥
𝑛∞

𝑛=0   (4) 

Substituting the expressions in Equations 2 and 4 into the differential equation (1), we obtain 

∑ (𝑛 + 1)𝑎𝑛+1𝑥
𝑛∞

𝑛=0 -∑ 𝑎𝑛𝑥
𝑛∞

𝑛=0 =0   (5) 

or ∑ [(𝑛 + 1)𝑎𝑛+1 −
∞
𝑛=1 𝑎𝑛]𝑥

𝑛 = 0 (6) 

If two power series are equal, then the corresponding coefficients must be equal. Therefore, 

the coefficients of series in Equation 6 must be 0: 

(𝑛 + 1)𝑎𝑛+1  -𝑎𝑛=0   (7) 

⇒𝑎𝑛+1 =
𝑎𝑛

𝑛+1
             (8) 

Equation 8 is called a recursion relation. If 𝑎0 is known, this equation allows us to determine 

the remaining coefficients recursively by putting n= 0,1, 2, 3, ….in succession. 

Put n=0:    𝑎1 =
𝑎0

1
 

Put n=1:𝑎2 =
𝑎1

2
 = 

𝑎0

2.1
 

Put n=2:𝑎3 =
𝑎2

3
 = 

𝑎0

3.2.1
 

 

By now we see the pattern: 

𝑎𝑛+1 =
𝑎0

(𝑛 + 1)𝑛(𝑛 − 1)… . .1
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𝑎𝑛+1 =
𝑎0

(𝑛 + 1)!
⇒𝑎𝑛 =

𝑎0
(𝑛)!

 

Putting this value back into Equation 2, we write the solution as 

Y=∑ 𝑎𝑛𝑥
𝑛∞

𝑛=0 =∑
𝑎0

(𝑛)!
𝑥𝑛∞

𝑛=0 =𝑎0 ∑
𝑥𝑛

(𝑛)!

∞
𝑛=0 = 𝑎0𝑒

𝑥 

So then the solution is Y(x)=𝑎0𝑒
𝑥 
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Exercises of Power series 

Exercise 1: 

Identify power series among the following series of functions and calculate their radius of 

convergence: 

a)∑
7𝑛xn

3𝑛
∞
𝑛=0                  b)∑

x2

nxn
∞
𝑛=1               c)∑

xnex

n!

∞
𝑛=1  

          d)∑
(2n!)xn

(𝑛!)2
∞
𝑛=1                                   e)∑ 𝑛𝑥𝑛∞

𝑛=1 𝑅 

Exercise 2 : 

Determine radius of convergence R, domain of pointwise convergence(P) and domain of 

absolute convergence (A) of the following power series: 

              a)∑
(−1)nxn

lnn

∞
𝑛=1                                           b)∑

𝑥𝑛3𝑛

(𝑛+1)2
∞
𝑛=1  

Exercise 3: 

Determine representation by power series of the following functions: 

1) f(x)=
5

x−1
     2) g(x)= 𝑒

𝑥

2 − 1    3) h(x)=
6x

3−2x
     4) I(x)=

x+1

(2−x)(x−4)
 

Exercise 4: 

Solve the following differential Equations using power series : 

1) x2y′′ + 4xy′ + 2y = 𝑒𝑥 

2) y′′+y = 0withy(0)=
1

2
 et y′(0) = 0 

Solutions of exercises of Power series 

Solutions of exercise 1 : 

a) ∑
7𝑛xn

3𝑛
∞
𝑛=0  is a power series where 𝑎𝑛=

7𝑛

3𝑛
 

Radius of convergence R : 

1

𝑅
= lim
𝑛→+∞

√|𝑎𝑛|
𝑛 = lim

𝑛→+∞

√|
7𝑛

3𝑛
|

𝑛
= lim
𝑛→+∞

√(
7

3
)𝑛

𝑛
 = lim
𝑛→+∞

7

3
 =
7

3
R=

3

7
thus∑

7𝑛xn

3𝑛
∞
𝑛=0  converges 

absolutely on ]- 
7

3
,
7

3
[. 

b)   ∑
x2

nxn
∞
𝑛=1 = ∑

x2−n

n

∞
𝑛=1  is not a power series because of negative powerof x (x2−n) 

c)∑
xnex

n!

∞
𝑛=1  is not a power series because 𝑎𝑛=

ex

n!
 depends on x (𝑒𝑥) 

d) ∑
(2n!)xn

(𝑛!)2
∞
𝑛=1  

∑
(2n!)xn 

(𝑛!)2
∞
𝑛=1 is a power series where 𝑎𝑛 =

(2n)!

(n !)2
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Radius of convergence R : 

1

𝑅
= lim
𝑛→+∞

|
𝑎𝑛+1

𝑎𝑛
| = lim

𝑛→+∞

|

(2(n+1))!

((n+1) !)2

(2n)!

(n !)2

|= lim
𝑛→+∞

|
(2n+2))!

((n+1) !)2

(n !)2

(2n)!
|= lim
𝑛→+∞

|
(2n+2))!

(n+1) !(n+1) !

(n !)2

(2n)!
| 

   = lim
𝑛→+∞

|
(2n+2))(2n+1)(2n)!

(n+1) n!(n+1)n !

(n !)2

(2n)!
|= lim
𝑛→+∞

(2n+2))(2n+1)

(n+1) (n+1)
= lim
𝑛→+∞

4n2

𝑛2
= 4R=

1

4
 

∑
(2n!)xn

(𝑛!)2
 ∞

𝑛=1 converges absolutely on ]- 
1

4
,
1

4
 [. 

e) ∑ 𝑛𝑥𝑛∞
𝑛=1 𝑅is a power series where𝑎𝑛=𝑛 

1

𝑅
= lim
𝑛→+∞

|
𝑎𝑛+1

𝑎𝑛
| = lim

𝑛→+∞

|
(𝑛+1)

𝑛
|= lim
𝑛→+∞

(
𝑛+1

𝑛
) = lim

𝑛→+∞

(1 +
1

𝑛
)


= 1 

∑ 𝑛𝑥𝑛∞
𝑛=1 converges absolutely on ]- 1,1 [. 

Solutions of exercise 2 : 

a)∑
(−1)nxn

lnn

∞
𝑛=1  

∑
(−1)nxn

lnn
 ∞

𝑛=1 is a power series where 𝑎𝑛=
(−1)n

lnn
 

Radius of convergence R: 

1

𝑅
= lim
𝑛→+∞

|
𝑎𝑛+1

𝑎𝑛
| = lim

𝑛→+∞

|

(−1)n+1

ln (1+n)

(−1)n

lnn

| = lim
𝑛→+∞

lnn

ln (1+n)
= lim
𝑛→+∞

lnn

lnn
= 1 

R=1 

Domain of pointwise convergence P: 

R=1 ∑
(−1)nxn

lnn

∞
𝑛=1 converges absolutely on ]-1,1 [=A ∑

(−1)nxn

lnn

∞
𝑛=1 converges pointwise on 

]-1,1 [P=]-1,1 [ 

Let us study the pointwise convergence at x=1 : 

∑
(−1)n1n

lnn

∞
𝑛=1 = ∑

(−1)n

lnn

∞
𝑛=1  

It is an alternating series of form ∑ (−1)nbn
∞
𝑛=1 where bn =

1

lnn
 

According to Leibnitz Test, both conditions are satisfied : 

1) ( bn)nis a decreasing sequence (
1

lnn+1

1

lnn
) 

2) lim
𝑛→+∞

bn = lim
𝑛→+∞

1

lnn
= 0 

thus ∑
(−1)n

lnn
 ∞

𝑛=1 is convergent∑
(−1)nxn

lnn

∞
𝑛=1 converges pointwise at x=1 P=[-1,1[ 

Pointwise convergence at x= -1: 

∑
(−1)n(−1)n

lnn

∞
𝑛=1 =∑

(−1)2n

lnn

∞
𝑛=1 = ∑

1

lnn

∞
𝑛=1  

Comparison Test: 
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n1    lnnn 
1

lnn

1

n
 

since ∑
1

n

∞
𝑛=1  is a P-series that diverges∑

1

lnn

∞
𝑛=1  diverges 

thus∑
(−1)nxn

lnn

∞
𝑛=1  does not converge pointwise at x= -1S=]-1,1] 

Domain of absolute convergence A: 

R=1 this series converges absolutelyon ]-1,1 [=A. 

Note : 

We know that absolute convergence  pointwise convergence  

(or the contrapositive) non-pointwise convergence  non-absolute convergence 

We have found this series does not converge pointwise at x=1this series does not converge 

absolutely at x=1. 

It left just to study absolute convergence at x= -1 

Absolute convergence at x= -1 : 

∑ |
(−1)n(−1)n

lnn
|∞

𝑛=1 =∑
1

lnn
 ∞

𝑛=1 that diverges ( see above) 

thus ∑
(−1)nxn

lnn

∞
𝑛=1   does not converge absolutely at x=-1 

So domain of absolute convergence does not change A=]-1,1 [. 

b) ∑
𝑥𝑛3𝑛

(𝑛+1)2
∞
𝑛=1 is a power series where𝑎𝑛=

3𝑛

(𝑛+1)2
 

Radius of convergence R : 

1

𝑅
= lim
𝑛→+∞

|
𝑎𝑛+1

𝑎𝑛
| = lim

𝑛→+∞

|

3𝑛+1

(𝑛+2)2

3𝑛

(𝑛+1)2

|= lim
𝑛→+∞

3𝑛+1

3𝑛
(𝑛+1)2

  (𝑛+2)2
=3 lim

𝑛→+∞

𝑛2

𝑛2
 =3 R=

1

3
 

Domain of absolute convergence: 

R=
1

3
∑

𝑥𝑛3𝑛

(𝑛+1)2
∞
𝑛=1  converges absolutely on ]-

1

3
,
1

3
 [. 

Absolute convergence at x=-
1

3
 : 

∑ |
(−
1

3
)𝑛3𝑛

(𝑛+1)2
|∞

𝑛=1 =∑
1

(𝑛+1)2
∞
𝑛=1  

Comparaison Test: 

(𝑛 + 1)2 ≥ 𝑛2
1

(𝑛+1)2
≤ 

1

𝑛2
 

∑
1

𝑛2
 is a P-series with a=2 that converges∑

1

(𝑛+1)2
∞
𝑛=1  is convergent by comparison test1). 

Thus ∑
𝑥𝑛3𝑛

(𝑛+1)2
∞
𝑛=1  converges absolutely at x=-

1

3
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Absolute convergence at x=
1

3
 : 

∑ |
(
1

3
)𝑛3𝑛

(𝑛+1)2
|∞

𝑛=1  = ∑
1

(𝑛+1)2
∞
𝑛=1   (same reasoning) 

∑
𝑥𝑛3𝑛

(𝑛+1)2
∞
𝑛=1  converges absolutely at x=

1

3
 

Thus domain of absolute convergence A=[ -
1

3
,
1

3
 ]. 

Domain of pointwise convergence P: 

We have found that ∑
𝑥𝑛3𝑛

(𝑛+1)2
∞
𝑛=1  converges absolutely on [-

1

3
,
1

3
 ]∑

𝑥𝑛3𝑛

(𝑛+1)2
∞
𝑛=1  converges 

pointwise on [ -
1

3
,
1

3
 ] so domain of pointwise convergence P=[-

1

3
,
1

3
 ] 

Solutions of exercise 3: 

1) f(x)=
5

x−1
 = - 

5

1−x
= −5∑𝑥𝑛 (since

1

1−x
= ∑ 𝑥𝑛∞

𝑛=0 𝑥] − 1,1[) 

   2)g(x)= 𝑒
𝑥

2 − 1 

∀ 𝑥 ∈ ℝ, 𝑒𝑥  =∑
𝑥𝑛

𝑛!

∞
𝑛=0  

𝑒
𝑥

2 = ∑
(
𝑥

2
)𝑛

𝑛!

∞
𝑛=0 = 1+∑

(
𝑥

2
)𝑛

𝑛!

∞
𝑛=1 𝑒

𝑥

2 − 1=1+∑
(
𝑥

2
)𝑛

𝑛!

∞
𝑛=1 − 1 = ∑

(𝑥)𝑛

(2)𝑛𝑛!

∞
𝑛=1  

𝑠𝑜 ∀ 𝑥 ∈ ℝ,    𝑒𝑥 − 1=∑
(𝑥)𝑛

(2)𝑛𝑛!

∞
𝑛=1  

2) h(x)=
6x

3−2x
 =

6x

3(1−
2

3
x)
=
6

3
x.

1

(1−
2

3
x)

=2x∑ (
2

3
𝑥)𝑛∞

𝑛=0 =2x∑
2𝑛𝑥𝑛

3𝑛
=∞

𝑛=0 ∑
2𝑛+1𝑥𝑛+1

3𝑛
∞
𝑛=0  

h(x)=∑
2𝑛+1𝑥𝑛+1

3𝑛
∞
𝑛=0  

4) I(x)=
x+1

(2−x)(x−4)
 = 

a

(2−x)
+

b

(x−4)
    a, b real constant to determine after 

= a
1

2(1−
x

2
)
 +b

1

−(4−x)
 = 
𝑎

2
∑ (

x

2
)𝑛∞

𝑛=0 - 
𝑏

4

1

(1−
x

4
)
= 
𝑎

2
∑ (

x

2
)𝑛∞

𝑛=0 - 
𝑏

4
∑ (

x

4
)𝑛∞

𝑛=0  

= ∑ [
𝑎

2n+1
−

𝑏

4n+1
](x)𝑛∞

𝑛=0  

Calcul of a and b: 

We have 
x+1

(2−x)(x−4)
 = 

a

(2−x)
+

b

(x−4)
  (I) 

To determine a : 

1) Multiply both sides of equation (I) by (2-x) : 

x+1

(2−x)(x−4)
(2 − x)  = 

a

(2−x)
(2 − x) +

b

(x−4)
(2 − x)  

2) Put x=2 : 

2+1

(2−4)
  = 𝑎 +

b

(x−4)
(2 − 2)                              
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So  - 
3

2
= a 

To determine b : 

1) Multiply both sides of equation (I) by(x-4) : 

x+1

(2−x)(x−4)
(x − 4)= 

a

(2−x)
(x − 4) +

b

(x−4)
(x − 4)  

2) Put x=4: 

4+1

(2−4)
  = 𝑎 

a

(2−x)
(4 − 4) + 𝑏  

                                          0 

So  - 
5

2
= b 

Consequently   I(x)= ∑ [
𝑎

2n+1
−

𝑏

4n+1
](x)𝑛∞

𝑛=0 = ∑ [
−3

2n+2
+

5

2.  4n+1
](x)𝑛∞

𝑛=0  

Solutions of exercise 4 : 

1) x2y′′ + 4xy′ + 2y = 𝑒𝑥 

y(x)=∑ 𝑎𝑛x
𝑛∞

𝑛=0  

y’(x)=∑ 𝑛𝑎𝑛x
𝑛−1∞

𝑛=1  x y’(x)=∑ 𝑛𝑎𝑛x
𝑛∞

𝑛=1  =∑ 𝑛𝑎𝑛x
𝑛∞

𝑛=0  

because for n=0 term(𝑛𝑎𝑛 = 0)  we can start this sum at n=0 

y’’(x)=∑ 𝑛(𝑛 − 1)𝑎𝑛x
𝑛−2∞

𝑛=2 x2y’’(x) = ∑ 𝑛(𝑛 − 1)𝑎𝑛x
𝑛∞

𝑛=2 =∑ 𝑛(𝑛 − 1)𝑎𝑛x
𝑛∞

𝑛=0  

because for n=0 term (𝑛𝑎𝑛 = 0) and for n=1 term [𝑛(𝑛 − 1)𝑎𝑛 = 0)] we can start this 

sum at n=0 

Put expressions of y’’, y’, y in equation 1) 

x2y′′ + 4xy′ + 2y = 𝑒𝑥∑ 𝑛(𝑛 − 1)𝑎𝑛x
𝑛∞

𝑛=0 + 4∑ 𝑛𝑎𝑛x
𝑛∞

𝑛=0 + 2∑ 𝑎𝑛x
𝑛∞

𝑛=0 = 𝑒𝑥 

∑ [𝑛2 + 3𝑛 + 2]𝑎𝑛x
𝑛∞

𝑛=0 = 𝑒𝑥 

∑ (𝑛 + 1)(𝑛 + 2)𝑎𝑛x
𝑛∞

𝑛=0 = 𝑒𝑥 

since 𝑒𝑥 = ∑
𝑥𝑛

𝑛!

∞
𝑛=0  

∑ (𝑛 + 1)(𝑛 + 2)𝑎𝑛x
𝑛∞

𝑛=0 = ∑
𝑥𝑛

𝑛!

∞
𝑛=0  

By identification of both series (their coefficients are equals) : 

(𝑛 + 1)(𝑛 + 2)𝑎𝑛 =
1

𝑛!
n0  𝑎𝑛 =

1

(𝑛+1)(𝑛+2)𝑛!
= 

1

(𝑛+2)! 
  n0    

Put 𝑎𝑛 𝑖𝑛 𝑜𝑢𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑦(𝑥) = ∑
1

(𝑛+2)!
x𝑛∞

𝑛=0  

Let us look for the function corresponding to this power series: 

𝑦(𝑥) = ∑
1

(𝑛+2)!
x𝑛∞

𝑛=0 = 
1

𝑥2
∑

1

(𝑛+2)!
x𝑛+2∞

𝑛=0  =
1

𝑥2
[
𝑥2

(2)!
+

𝑥2

(3)!
+

𝑥4

(4)!
+⋯…] 

since  𝑒𝑥 = ∑
𝑥𝑛

𝑛!

∞
𝑛=0 = 1+

𝑥

1!
+

𝑥2

(2)!
+

𝑥2

(3)!
+

𝑥4

(4)!
+⋯…] 
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thus y(x)= 
1

𝑥2
[𝑒𝑥 − 1 − 𝑥] 

2)y′′+y = 0  (withy(0)=
1

2 
 and y′(0) = 0) 

y(x)=∑ 𝑎𝑛x
𝑛∞

𝑛=0  

y’(x)=∑ 𝑛𝑎𝑛x
𝑛−1∞

𝑛=1  

y’’(x)=∑ 𝑛(𝑛 − 1)𝑎𝑛x
𝑛−2∞

𝑛=2  

Put expressions of y′′and y in equation 2) 

y′′+y = 0∑ 𝑛(𝑛 − 1)𝑎𝑛x
𝑛−2∞

𝑛=2 +∑ 𝑎𝑛x
𝑛∞

𝑛=0  =0 

Let us unify powers (ie both expressions have the same power𝑥𝑛) 

For that, in the first expression put k=n-2 (n=k+2): 

y′′+y = 0∑ (𝑘 + 2)(𝑘 + 1)𝑎𝑘+2x
𝑘∞

𝑘=0 +∑ 𝑎𝑛x
𝑛∞

𝑛=0  =0 

And now rename k by n : 

∑ (𝑘 + 2)(𝑘 + 1)𝑎𝑘+2x
𝑘∞

𝑘=0 +∑ 𝑎𝑛x
𝑛∞

𝑛=0  =0 

∑ (𝑛 + 2)(𝑛 + 1)𝑎𝑛+2x
𝑛∞

𝑛=0 + ∑ 𝑎𝑛x
𝑛∞

𝑛=0  =0 

∑ [(𝑛 + 2)(𝑛 + 1)𝑎𝑛+2 + 𝑎𝑛]x
𝑛∞

𝑛=0  =0 

So coefficients are equal to zero(𝑛 + 2)(𝑛 + 1)𝑎𝑛+2 + 𝑎𝑛 = 0   n0 

         𝑎𝑛+2 =
−𝑎𝑛

(𝑛+1)(𝑛+2)
n0 

We have : 

y(0)=
1

2
  y(0)=∑ 𝑎𝑛(0)

𝑛∞
𝑛=0 =𝑎0 + 𝑎1(0) + 𝑎2(0)

2 +⋯… .=
1

2
  𝑎0=

1

2
 

y′(0) = 0y’(0)=∑ 𝑛𝑎𝑛0
𝑛−1∞

𝑛=1 = 𝑎1 + 2𝑎2(0) + 3𝑎3(0)
2 +⋯ .= 0𝑎1=0 

We have found  𝑎𝑛+2 =
−𝑎𝑛

(𝑛+1)(𝑛+2)
   n0 

n=0       𝑎2 =
−𝑎0

(0+1)(0+2)
=

−1

2.1.2.
  = 

−1

2.2!
  ( since 𝑎0=

1

2
) 

n=1               𝑎3 =
−𝑎1

(𝑛+1)(𝑛+2)
 =0     (𝑠𝑖𝑛𝑐𝑒 𝑎1=0) 

n=2               𝑎4 =
−𝑎2

(2+1)(2+2)
= 

1

2.1.2.3.4
=

1

2.4!
 

                             since 𝑎2 =
−1

2.2!
 

n=3                𝑎5 =
−𝑎3

(𝑛+1)(𝑛+2)
= 0  (𝑠𝑖𝑛𝑐𝑒 𝑎3=0) 

 

if we keep going we will find : 

         𝑎2𝑘+1 =0  k0 

   𝑎2𝑘 =
(−1)𝑘

2.(2𝑘)!
  k0 
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It left only even powers in the solution  y(x)=∑ 𝑎𝑛x
𝑛∞

𝑛=0  

y(x)=∑ 𝑎2𝑛x
2𝑛∞

𝑛=0 y(x)=∑
(−1)𝑛

2.(2𝑛)!
x2𝑛∞

𝑛=0 =
1

2
∑

(−1)𝑛

(2𝑛)!
x2𝑛∞

𝑛=0  

Let us look for the function corresponding to this power series: 

We know that cos(x)=∑
(−1)𝑛

(2𝑛)!
x2𝑛∞

𝑛=0    so y(x)=
1

2
 cos(x). 

IV.4 Fourier Series 

IV.4.1 Introduction: 

Studying Fourier series is important in several fields particularly in physics and engineering. 

In physics, many natural phenomena (such as sound waves, light waves and vibrations) are periodic. 

Fourier series allow to represent complex periodic function as a sum of simpler sinusoidal ones, they 

are therefore essential for modeling and analyzing phenomena cited above. 

IV.4.2 Basics: 

IV.4.2.1 Definition of a periodic function:  

f:ℝℝ is called a T-periodic function if f(x+T)=f(x) 

Examples: 

1)Functions sin and cos are 2π periodic functions. 

2)Functions tang and cot are π periodic functions. 

 

Figure IV.4.1 Graph of cos(x) 

 

Figure IV.4.2 Graph of sin(x) 
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Figure IV.4.3 Graph of tan(x) and cot(x) 

 

IV.4.2.2 Definition of an odd function: 

f:ℝℝ is said to be an odd function if f(-x)=-f(x)  

Examples: 

1) Functions sin, tang and cot are odd functions. 

 

Figure IV.4.4 sin(x) is an odd function 

Notes: 

If f is an odd function, then the graph of f is symmetric with respect to the origin. 

If f is an odd function, then∫ 𝑓(𝑥)𝑑𝑥
π

−π
= 0. 

IV.4.2.3 Definition of an even function: 

 f:ℝℝ is said to be an even function if and f(-x) =f(x). 

Example: 

Function cos is an even function. 

 

 

 

Figure IV.4.5 cos(x) is an even function 

 

Notes: 

If f is an even function, then the graph of f is symmetric with respect to y-axis. 

if f is an even function, then ∫ 𝑓(𝑥)𝑑𝑥
π

–π
= 2∫ 𝑓(𝑥)𝑑𝑥

π

0
. 

IV.4.2.4 Definition of a piecewise continuous function:  
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A function f : ℝ → ℝ is said to be piecewise continuous on an interval [a,b], if there exist a 

finite number of points x1< x2< ··· < xp of [a,b] such as on each open subinterval ]a, x1[ , ]xi, 

xi+1[ , ]xp, b[ the function is continuous, and the four following limits exist ; lim
𝑥
<
→𝑥𝑖

𝑓(𝑥) =

𝑓(𝑥−), lim
𝑥
>
→𝑥𝑖

𝑓(𝑥) = 𝑓(𝑥+) , 𝑓(𝑎+) 𝑒𝑡𝑓(𝑏−). 

Example: 

Graph of a piecewise continuous function. 

 

Figure IV.4.6 A piecewise continuous function 

IV.4.3Definition of Fourier series: 

Let f(x) be a T-periodic function, integrable in any closed interval of ℝ. 

The following trigonometric series:
𝑎0

2
+∑ 𝑎𝑛

∞
𝑛=1 cos(𝑛𝑤𝑥) + 𝑏𝑛sin(𝑛𝑤𝑥) 

is called the Fourier series associated to the function f(x). 

We denote that by: 

 f(x) ~
𝑎0

2
+∑ 𝑎𝑛

∞
𝑛=1 cos(𝑛𝑤𝑥) + 𝑏𝑛sin(𝑛𝑤𝑥) 

    where: w=
2π

𝑇
 

𝑎0 =
2

𝑇
∫ 𝑓(𝑥)𝑑𝑥
𝑇

2

−
𝑇

2

=
2

𝑇
∫ 𝑓(𝑥)𝑑𝑥
𝑇

0
 

𝑎𝑛 =
2

𝑇
∫ 𝑓(𝑥) cos(𝑛𝑤𝑥) 𝑑𝑥
𝑇

2

−
𝑇

2

=
2

𝑇
∫ 𝑓(𝑥) cos(𝑛𝑤𝑥) 𝑑𝑥
𝑇

0
 

𝑏𝑛 =
2

𝑇
∫ 𝑓(𝑥) sin(𝑛𝑤𝑥) 𝑑𝑥
𝑇

2

−
𝑇

2

=
2

𝑇
∫ 𝑓(𝑥) sin(𝑛𝑤𝑥) 𝑑𝑥
𝑇

0
 

Notes: 

-If f is 2π periodic, then  

f(x) ~ 
𝑎0

2
+∑ 𝑎𝑛

∞
𝑛=1 cos(𝑛𝑥) + 𝑏𝑛sin(𝑛𝑥) 

 where:   𝑎0 =
1

π
∫ 𝑓(𝑥)𝑑𝑥
π

−π
=
1

π
∫ 𝑓(𝑥)𝑑𝑥
2π

0
 

𝑎𝑛 =
1

π
∫ 𝑓(𝑥) cos(𝑛𝑤𝑥) 𝑑𝑥
π

−π
=
1

π
∫ 𝑓(𝑥) cos(𝑛𝑤𝑥) 𝑑𝑥
2π

0
 

𝑏𝑛 =
1

π
∫ 𝑓(𝑥) sin(𝑛𝑤𝑥) 𝑑𝑥
π

−π
=
1

π
∫ 𝑓(𝑥) sin(𝑛𝑤𝑥) 𝑑𝑥
2π

0
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-If f is 2π periodic and even, then  𝑏𝑛 =
1

π
∫ 𝑓(𝑥) sin(𝑛𝑥) 𝑑𝑥
π

−π
 =0 

                                                  Even. Odd 

                                                    Odd 

and  

f(x) ~ 
𝑎0

2
+∑ 𝑎𝑛

∞
𝑛=1 cos(𝑛𝑥) 

where:   𝑎0 =
2

π
∫ 𝑓(𝑥)𝑑𝑥
π

0
 

𝑎𝑛 =
1

π
∫ 𝑓(𝑥) cos(𝑛𝑥) 𝑑𝑥
π

−π
=
2

π
∫ 𝑓(𝑥) cos(𝑛𝑥) 𝑑𝑥
π

0
 

      Even. Odd 

          Even 

-If f is 2π periodic and odd then 𝑎𝑛 =
1

π
∫ 𝑓(𝑥) cos(𝑛𝑥) 𝑑𝑥
π

−π
 =0 

                                                     odd. even 

                                                        Odd 

and  

f(x) ~ ∑ 𝑏𝑛sin(𝑛𝑥)
∞
𝑛=1  

where: 𝑏𝑛 =
2

π
∫ 𝑓(𝑥) sin(𝑛𝑥) 𝑑𝑥
π

0
 

Examples 

1)Let S be an odd 2π periodic function such as S(x) = 1 for 0 <x<πand f(nπ) = 0 for n ∈ℤ. 

S(x) ~ ∑ 𝑏𝑛sin(𝑛𝑥)
∞
𝑛=1  

where 

𝑏𝑛 =
2

π
∫ 𝑆(𝑥) sin(𝑛𝑥) 𝑑𝑥

π

0

=
2

π
[
−𝑐𝑜𝑠𝑛𝑥

𝑛
]
0

π

=
2

π
{
2

1
,
0

2
,
2

3
,
0

4
,
2

5
,
0

6
,… . . } 

Thus, 

f(x) ~ 
2

π
[
2sin (𝑥)

1
+
2sin (3𝑥)

3
+
2sin (5𝑥)

5
+⋯] =

4

π
[
sin (𝑥)

1
+
sin (3𝑥)

3
+
sin (5𝑥)

5
+⋯] 

                                                                              =∑
4𝑠𝑖𝑛((2𝑛+1)𝑥)

π(2n+1)
∞
𝑛=1  

IV.4.4 Dirichlet’s Theorem: 

Let f be a T (T=
2π

ω
) periodic function such that:  

1. f is continuous on any interval I = [a, a + T ] except for finite numbers of points in which  f 

has a hand-right limit f (x + 0)(𝑓(𝑥+))and a hand-left limit f (x − 0)(𝑓(𝑥−)) 

2. f is differentiable on any interval I =]a, a + T [ except for finite numbers of points in which  

f has a right derivative and a left one.  

then, the Fourier series associated to the function f is such that : 

𝑎0

2
+ ∑ 𝑎𝑛

∞
𝑛=1 cos(𝑛𝑤𝑥)+ 𝑏𝑛sin(𝑛𝑤𝑥)= f(x) , ∀x  f continuous at x  
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𝑎0

2
+ ∑ 𝑎𝑛

∞
𝑛=1 cos(𝑛𝑤𝑥)+ 𝑏𝑛sin(𝑛𝑤𝑥)= 

𝑓(𝑥+)+𝑓(𝑥−)

𝟐
 , ∀x  f is discontinuous at x  

Note : 

Fourier series decomposition consists in representing a periodic function as the sum of the 

most elementary possible periodic functions (namely sines and cosines). 

Examples 

1)Let f be a 2π periodic function defined as :  

f(x)=x ∀ x,−π≤x<π.  

Let us check up if Direchlet’s requirements are satisfied : 

 

Figure IV.4.7 Graph of f(x) 

The graph of f is drawn in 3 periods. We can notice that: 

- f is continuous on ] − π,π[ and it is not continuous at −π and at π  

(because also lim
x→−π+ 

f (x) =−π ≠ lim
x→−π− 

f (x) =π  

   and lim
x→π+ 

f (x) =−π≠ lim
x→π− 

f (x) =π) 

- f is differentiable on] − π, π[ and it is not differentiable at −π and at π, since it is not 

continuous at these points . 

So, Direchlet’s requirements are satisfied and thus;  

f(x)=
𝑎0

2
+∑ 𝑎𝑛

∞
𝑛=1 cos(𝑛𝑥) + 𝑏𝑛sin(𝑛𝑥)on ] − π, π[ 

Since f is odd then 𝑎𝑛=0  ∀ n and 

𝑏𝑛 =
2

π
∫ 𝑓(𝑥) sin(𝑛𝑥) 𝑑𝑥
π

0
=
2

π
∫ 𝑥 sin(𝑛𝑥) 𝑑𝑥
π

0
 

To compute 𝑏𝑛, we use integration by parts method: 

∫𝑈(𝑥)𝑉′(𝑥)𝑑𝑥

𝑏

𝑎

= [𝑈(𝑥)𝑉′(𝑥)]𝑎
𝑏 −∫𝑈′(𝑥)𝑉(𝑥)𝑑𝑥

𝑏

𝑎

 

Where U(x)=x, V’(x)=sin(nx) 

𝑏𝑛=
2

π
∫ 𝑥 sin(𝑛𝑥)𝑑𝑥

π

0
=
2

π
[−𝑥

1

𝑛
cos (𝑛𝑥)]

0

π

- 
2

π
∫ −

1

𝑛
cos (𝑛𝑥)𝑑𝑥

π

0
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     =
2

π
[−π

1

𝑛
cos(nπ) − 0] +

2

nπ
∫ cos (𝑛𝑥)𝑑𝑥

π

0
 

     = -
2

n
cos(nπ)+

2

nπ

1

𝑛
sin (𝑛π) 

We know that: cos(nπ) = (−1)𝑛 and sin(𝑛π) = 0 

So 𝑏𝑛 = (−1)
𝑛+1 2

n
 

and consequently f(x)=∑ (−1)𝑛+1
2

n
sin(𝑛𝑥)∞

𝑛=1 ∀ x∈] −π, π[ 

2) Let f be an even π periodic function defined as:  

g(x)=1- 
2𝑥

π
∀ x,0≤x≤π.  

 

Figure IV.4.8 Graph of g(x) 

The graph of f is drawn in 3 periods. From the graph, we can see that g is continuous ∀ x∈ℝ 

g is differentiable on any interval I =]0, π [ so Direchlet’s requirements are satisfied and thus ;  

g(x)=
𝑎0

2
+∑ 𝑎𝑛

∞
𝑛=1 cos(𝑛𝑥) + 𝑏𝑛sin(𝑛𝑥)   ∀ x∈ℝ 

Since g is even then 𝑏𝑛=0  ∀ n. 

𝑎0 =
2

π
∫ 𝑔(𝑥)𝑑𝑥

π

0
=
2

π
∫ (1 −

2x

π
)𝑑𝑥

π

0
=
2

π
[(x −

x2

π
)]
0

π

=0 

 

𝑎𝑛=
2

π
∫ 𝑔(𝑥) cos(𝑛𝑥)𝑑𝑥

π

0
=
2

π
∫ (1 −

2𝑥

π
) cos(𝑛𝑥)𝑑𝑥

π

0
 

We use integration by parts method: 

Where  U(x)=(1 −
2𝑥

π
), V’(x)=cos(nx) 

𝑎𝑛 =
2

π
[(1 −

2𝑥

π
)
sin (𝑛𝑥)

𝑛
]
0

π
+

4

π2n
∫ sin(𝑛𝑥) 𝑑𝑥
π

0
=
4

π2n
[−

cos (𝑛𝑥)

𝑛
]
0

π
=
4(1−(−1)𝑛)

π2n2
 

Thus  f(x)=∑
4(1−(−1)𝑛

π2n2
∞
𝑛=1 cos(𝑛𝑥)∀ x∈ℝ 

Since1 − (−1)𝑛 = {
0 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
2 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

, then g(x) =
8

π2
∑

cos((2p+1)𝑥)

(2p+1)2
∞
𝑝=0 ∀ x∈ℝ 

Note: 

g(x)=
8

π2
∑

cos((2p+1)𝑥)

(2p+1)2
∞
𝑝=0 ∀ x∈ℝ 

For x=0, we have g(0)=1=
8

π2
∑

1

(2p+1)2
∞
𝑝=0 ⇒∑

1

(2p+1)2
∞
𝑝=0 =

π2

8
 

We recall that In chapter 2 (infinite series), we knew that ∑
1

(2p+1)2
∞
𝑝=0  converges but we were 
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not able to evaluate its sum, now using Fourier series we can do it. 

We can also deduce from this example the sum of ∑
1

p2
∞
𝑝=0  

Let S be the sum of ∑
1

p2
∞
𝑝=0 i.e S=∑

1

p2
∞
𝑝=0  

So S=∑
1

(2p+1)2
∞
𝑝=0 + ∑

1

(2p)2
∞
𝑝=1  =

π2

8
+ 
S

4
⇒
 3S

4
 =
π2

8
⇒S= 

4 π2

8𝑥3
 =
π2

6
 

Thus, ∑
1

p2
∞
𝑝=0 =

π2

6
and ∑

1

(2p)2
∞
𝑝=1 =

π2

24
 

IV.4.5 Parseval’s identity: 

If f is T periodic and piecewise continuous 

Then 

2

𝑇
∫(𝑓(𝑥))2

𝑇

0

𝑑𝑥 =
(𝑎0)

2

2
+∑(𝑎𝑛)

2 +

∞

𝑛=1

(𝑏𝑛)
2 

(or  
2

𝑇
∫ (𝑓(𝑥))2
𝑇

2

−
𝑇

2

𝑑𝑥 =
(𝑎0)

2

2
+ ∑ (𝑎𝑛)

2 +∞
𝑛=1 (𝑏𝑛)

2) 

Example 1 : 

Let f be an even π periodic function defined as:  

g(x)=1-
2𝑥

π
∀ x,0≤x≤π.  

We have already seen this example. The function f satisfies Parseval’s identity requirement.  

We have found : 

𝑎0 =0 ,𝑎𝑛 =
8

π2(2n+1)2
 n≥ 1 

2

π
∫(𝑔(𝑥))2

π

0

𝑑𝑥 = ∑(
8

π2(2n + 1)2
)2

∞

𝑛=1

⇔
2

π
∫(1 −

2𝑥

π
)2

π

0

𝑑𝑥 = ∑
64

π4(2n + 1)4

∞

𝑛=1

 

⇔
2

π
∫(1 −

4𝑥

π
+
4x2

π2
)

π

0

𝑑𝑥 = ∑
64

π4(2n + 1)4

∞

𝑛=1

⇔
2

π
[x −

4x2

2π
+
4x3

3π2
]
0

𝜋

= ∑
64

π4(2n + 1)4

∞

𝑛=1

 

⇔
2

π
[π −

4π2

2π
+
4π3

3π2
]
0

𝜋

= ∑
64

π4(2n + 1)4

∞

𝑛=1

⇔
2

π
[
6π3 − 12π3 + 8π3

6π2
] = ∑

64

π4(2n + 1)4

∞

𝑛=1

 

⇔
2

3
= ∑

64

π4(2n+1)4
∞
𝑛=1 ⇔∑

1

(2n+1)4
∞
𝑛=1 = 

π4

96
 

Example2 

Given the Fourier series 𝑥2 = 
π2

3
+ 4∑

(−1)𝑛

n2
∞
𝑛=1 cos(𝑛𝑥)∀ x, -π < 𝑥 < 𝜋(see 

exercise1a)below) 
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Figure IV.4.9 Graph of f(x)= 𝑥2∀𝑥 ∈ ]−π, π[, 2π periodic  

We can deduce the value of ∑
1

n4
∞
𝑛=1 . 

Indeed : 

Here  𝑎0 =
2π2

3
, 𝑎𝑛 =

4(−1)𝑛

n2
, 𝑏𝑛 = 0. 

Using Parseval’s identity : 

We have 
2

2π
∫ 𝑥4𝑑𝑥 =

2π4

2𝑥9
+

π

−π
∑

16

n4
∞
𝑛=1  

Given us 
2π4

5
=
2π4

9
+∑

16

n4
∞
𝑛=1 ⇒

8π4

45
=∑

16

n4
∞
𝑛=1  

Therefore ∑
1

n4
∞
𝑛=1 =

π4

90
. 
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Exercises of Fourier Series 

Exercise1: 

Let f be a 2π periodic function defined as: 

a)f(x)=𝑥2∀𝑥 ∈ ]−π, π[ 

b)f(x)=𝑥2∀𝑥 ∈ [0,2π[ 

Determine Fourier series of f in both cases 1) and 2).  

Exercise2: 

Determine Fourier series of a 10 periodic function f, defined as 

F(x)={
0   𝑖𝑓 𝑥 ∈ ]−5,0[

3   𝑖𝑓 𝑥 ∈ ]0,5[
 

Exercise3 : 

Consider a 2π periodic function defined as  

F(x)={
−𝑥   𝑖𝑓 𝑥 ∈ [−π, 0]

𝑥   𝑖𝑓 𝑥 ∈ ]0, π]
 

1) Determine Fourier series of f.  

2) Evaluate the sum of the following infinite series :∑
1

(2n+1)2
∞
𝑛=0  , ∑

1

n2
∞
𝑛=1 and ∑

1

(2n)2
∞
𝑛=1  

Solution of exercises of Fourier Series 

Usually, what to do in a Fourier series exercise ? 

 Draw the graph of f in several periods. 

 Check parity, classe (continuity, differentiability) of f. 

 Compute Fourier’s coefficients of f (an, bn according to the context). 

 Apply Direchlet and/or Parseval’s identity. 

Solution of exercise1 

a)f(x)=𝑥2∀𝑥 ∈ ]−π, π[ 

Graph of f 

 

We have drawn the graph of f in 3 periods. We can see that our function is even so 
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 𝑏𝑛 = 0 

Let us compute 𝑎0,   𝑎𝑛 

𝑎0=
2

π
∫ 𝑓(𝑥)𝑑𝑥
π

0
=
2

π
∫ 𝑥2
π

0
𝑑𝑥= 

 2(π)3

3π
=
2π2

3
 

𝑎𝑛 =
2

π
∫𝑥2 cos(𝑛𝑥)𝑑𝑥

π

0

 

We use integration by parts method twice: 

Where in the first one: U(x)=𝑥2, V’(x)=cos(nx) 

𝑎𝑛 =
2

π
[𝑥2

sin(𝑛𝑥)

𝑛
]
0

π

−
4

πn
∫ 𝑥 sin(𝑛𝑥) 𝑑𝑥
π

0
==0−

4

πn
∫ 𝑥 sin(𝑛𝑥) 𝑑𝑥
π

0
=-

4

πn
[−

xcos (𝑛𝑥)

𝑛
]
0

π
−

4

π𝑛2
∫ cos(𝑛𝑥) 𝑑𝑥
π

0
 

= −
4

πn
[−

xcos (𝑛𝑥)

𝑛
]
0

π

−
4

π𝑛2
∫ cos(𝑛𝑥)𝑑𝑥
π

0
= −

4

πn
[−

xcos (𝑛𝑥)

𝑛
]
0

π

−

4

π𝑛2
[−

sin (𝑛𝑥)

𝑛
]
0

π

=−
4

πn
[−

xcos(𝑛𝑥)

𝑛
]
0

π

− 0 = −
4

πn
⌈−

π cos(𝑛π)

𝑛
⌉=

 4(−1)𝑛

n2
 

Since f is continuous ∀  x∈ ℝ 

Thus f(x)=
𝑎0

2
+∑ 𝑎𝑛

∞
𝑛=1 cos(𝑛𝑤𝑥)=

2π2

3
+∑

4(−1)𝑛

n2
∞
𝑛=1 cos(𝑛𝑥)  ∀ x∈ℝ 

b) Graph of f 

 

We have drawn the graph of f in 6 periods. From the graph we can see that our function is 

neither even nor odd. 

Let us evaluate  𝑎0,   𝑎𝑛 , 𝑏𝑛 : 

𝑎0 =
1

π
∫ 𝑓(𝑥)𝑑𝑥
2π

0
= ∫ 𝑥2

2π

0
𝑑𝑥=

1

π

(2π)3

3
=
4π2

3
 

𝑎𝑛=
1

π
∫ 𝑓(𝑥)
2π

0
cos (𝑛𝑥)𝑑𝑥=

1

π
∫ 𝑥2
2π

0
cos (𝑛𝑥)𝑑𝑥 

Using integration by parts methods twice, we obtain : 

𝑎𝑛=
8

𝑛2
   (see case1 above, same thing just the interval has changed) 

𝑏𝑛=
1

π
∫ 𝑓(𝑥)
2π

0
sin (𝑛𝑥)𝑑𝑥=

1

π
∫ 𝑥2
2π

0
sin (𝑛𝑥)𝑑𝑥 

As above, we use integration by parts method twice: 
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𝑏𝑛 =
1

π
[−𝑥2

cos(𝑛𝑥)

𝑛
]
0

2π

+
1

πn
∫ 𝑥 cos(𝑛𝑥) 𝑑𝑥 =
2π

0

1

πn
⌈−

(2π)2 cos(2𝑛π)

𝑛
⌉ +

1

πn
∫ 𝑥 cos(𝑛𝑥) 𝑑𝑥
2π

0
= −

4π

n2
 + 

1

πn
[
xsin (𝑛𝑥)

𝑛
]
0

2π
−

1

π𝑛2
∫ sin(𝑛𝑥) 𝑑𝑥
2π

0
=−

4π

n2
+ 0−

1

π𝑛2
∫ sin(𝑛𝑥) 𝑑𝑥
2π

0
=−

4π

n2
−

1

π𝑛2
[−

cos (𝑛𝑥)

𝑛
]
0

2π
=−

4π

n2
+ 0 

𝑏𝑛=−
4π

n2
 

Fourier series of f is   
2π2

3
+ ∑

8

𝑛2
cos(𝑛𝑥) −

4π

n2
∞
𝑛=1 sin (nx) 

Solution of exercise2 

Graph of f 

 

The graph of f is drawn in 6 periods. We can notice that f is neither even nor odd function. 

F is piecewise continuous on ℝ, its discontinuity points are 5k (k∈ ℝ) 

Let us compute 𝑎0,   𝑎𝑛 , 𝑏𝑛  : 

𝑎0 =
2

𝑇
∫ 𝑓(𝑥)𝑑𝑥
𝑇

2

−
𝑇

2

=
2

𝑇
∫ 𝑓(𝑥)𝑑𝑥
𝑇

0
 

𝑎𝑛 =
2

𝑇
∫ 𝑓(𝑥) cos(𝑛𝑤𝑥) 𝑑𝑥
𝑇

2

−
𝑇

2

=
2

𝑇
∫ 𝑓(𝑥) cos(𝑛𝑤𝑥) 𝑑𝑥
𝑇

0
 

𝑏𝑛 =
2

𝑇
∫ 𝑓(𝑥) sin(𝑛𝑤𝑥) 𝑑𝑥
𝑇

2

−
𝑇

2

=
2

𝑇
∫ 𝑓(𝑥) sin(𝑛𝑤𝑥) 𝑑𝑥
𝑇

0
 

 

𝑎0=
2

10
∫ 𝑓(𝑥)
5

−5
𝑑𝑥=

2

10
(∫ 𝑓(𝑥)
0

−5
𝑑𝑥 +

1

10
∫ 𝑓(𝑥)
5

0
𝑑𝑥)=

2

10
∫ 3
5

0
𝑑𝑥 =

2𝑥5(3)

10
= 3 

𝑎𝑛=
2

10
∫ 𝑓(𝑥)cos (

2𝑛π𝑥

10

5

−5
)𝑑𝑥=

2

10
∫ 3cos (

𝑛π𝑥

5

5

0
)𝑑𝑥 =

3

5
[
5

𝑛π
𝑠𝑖𝑛

𝑛π𝑥

5
]
0

5

=0   if n≠ 0 

𝑏𝑛=
2

10
∫ 𝑓(𝑥)sin(

2𝑛π𝑥

10

5

−5
)𝑑𝑥=

2

10
∫ 3sin (

𝑛π𝑥

5

5

0
)𝑑𝑥 =

3

5
[−

5

𝑛π
cos (

𝑛π𝑥

5
)]
0

5

=3[−
1

𝑛π
cos (

𝑛π𝑥

5
)]
0

5

=3(
−cos (𝑛π)

𝑛π
+

1

𝑛π
) =

3(1−cos(𝑛π))

𝑛π
 

So the Fourier series of f is 
3

2
+∑

3(1−cos(𝑛π))

𝑛π

∞
𝑛=1 sin (

𝑛πx

5
) 
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Notes: 

According to Direchlet’s theorem : 

3

2
+∑

3(1−cos(𝑛π))

𝑛π

∞
𝑛=1 sin (

𝑛πx

5
) =f(x)  in any point of continuity ( in particularly on                   

]−5,0[ 𝑎𝑛𝑑 ]0,5[) 

3

2
+∑

3(1−cos(𝑛π))

𝑛π

∞
𝑛=1 sin (

𝑛πx

5
) =

𝑓(𝑥+)+𝑓(𝑥−)

𝟐
 in any point of discontinuity in particulary at  

-5, 0, 5                   

Thus  

3

2
+∑

3(1 − cos(𝑛π))

𝑛π

∞

𝑛=1

sin (
𝑛πx

5
) =

{
 
 
 
 

 
 
 
 
3

2  
  𝑖𝑓 𝑥 = −5

0   𝑖𝑓  𝑥 ∈ ]−5,0[

3

2  
  𝑖𝑓 𝑥 = 0

3   𝑖𝑓  𝑥 ∈ ]0,5[

3

2  
  𝑖𝑓 𝑥 = 5

 

Solution of exercise3 

 

1) We have drawn the graph of f in 3 periods. We can see that our function is even so 

 𝑏𝑛 = 0 

Let us compute  𝑎0,   𝑎𝑛 

𝑎0=
2

π
∫ 𝑓(𝑥)𝑑𝑥
π

0
=
2

π
∫ 𝑥
π

0
𝑑𝑥= 

 2(π)2

2π
= π 

𝑎𝑛 =
2

π
∫𝑥 cos(𝑛𝑥) 𝑑𝑥

π

0

 

We use integration by parts method: 

Where : U(x)=𝑥, V’(x)=cos(nx) 

𝑎𝑛 =
2

π
[𝑥
sin(𝑛𝑥)

𝑛
]
0

π

−
2

πn
∫ sin(𝑛𝑥) 𝑑𝑥
π

0
==0−

2

πn
∫ sin(𝑛𝑥) 𝑑𝑥
π

0
=

−
2

  πn
[−

cos(𝑛𝑥)

𝑛
]
0

π

=
−2(1−(−1)𝑛)

πn2
=
2((−1)𝑛−1)

πn2
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From the graph, we can see that f is continuous   ∀ x∈ℝ 

f is differentiable on any interval I =]0, π [ so Direchlet’s requirements are satisfied and thus ;  

f(x)=
𝑎0

2
+∑ 𝑎𝑛

∞
𝑛=1 cos(𝑛𝑤𝑥)=

π

2
+ ∑

2((−1)𝑛−1)

πn2
∞
𝑛=1 cos(𝑛𝑥)  ∀ x∈ℝ 

Since(−1)𝑛 − 1 = {
0 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
−2 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

, then f(x)= 
π

2
−
4

π
∑

cos((2p+1)𝑥)

(2p+1)2
∞
𝑝=0  ∀ x∈ℝ 

2) We have f(x)=
π

2
−
4

π
∑

cos((2p+1)𝑥)

(2p+1)2
∞
𝑝=0   ∀ x∈ℝ 

For x=0   f(0)=0=
π

2
−
4

π
∑

1

(2p+1)2
∞
𝑝=0 ⇒∑

1

(2p+1)2
∞
𝑝=0 =

π2

8
. 

We have: 

∑
1

𝑝2
∞
𝑝=1 = ∑

1

(2p+1)2
∞
𝑝=0 +∑

1

(2p)2
∞
𝑝=1  =∑

1

(2p+1)2
∞
𝑝=0 +

1

4
∑

1

𝑝2
∞
𝑝=1  = 

π2

8
+
1

4
∑

1

𝑝2
∞
𝑝=1  

⇒
 3

4
∑

1

𝑝2
∞
𝑝=1 = 

π2

8
 

⇒∑
1

𝑝2
∞
𝑝=1 = 

4 π2

8𝑥3
 =
π2

6
 

Thus, ∑
1

p2
∞
𝑝=0 =

π2

6
and ∑

1

(2p)2
∞
𝑝=1 =

π2

24
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V.1. Introduction: 

Fourier transform is one of the important concepts used in analyzing signals because it 

allows us to break down complex signals into their frequency components. This makes it 

easier to filter, compress, and interpret the signals, which has applications in many fields 

including telecommunication, audio, and control system. By working in the frequency domain 

we can gain insights into periodicities and anomalies that are not easily visible in the time 

domain. 

V.2 Definition: 

Let f be a function f:  ]- ∞, +∞[          ℝ/ 𝐶 such that ∫ |𝑓(𝑡)|𝑑𝑡 
+∞

−∞
is finite i.e. convergent. 

                                              t         f(t)    

Fourier transform of f(t) is the application    𝑓: ]−∞, +∞[         𝐶 

                                                                                                  s            𝑓 (s)=∫ 𝑓(𝑡)𝑒−2π𝑖𝑠𝑡𝑑𝑡
+∞

−∞
        

 where 𝑒−2π𝑖𝑠𝑡 is the exponential complex: 𝑒𝑖(−2π𝑠𝑡) = cos(−2π𝑠𝑡) + 𝑖 𝑠𝑖𝑛(−2π𝑠𝑡) (Euler’s 

Formula)  

Notes: 

-  𝑓 (s) is a complex number therefore it has a real part and an imaginary part (𝑓 (s) =a+ib) as 

well as a magnitude ( |𝑓 (s)| = √(𝑎)2 + (𝑏)2)  and an argument (or phase). 

 - We can also denote Fourier transform of f(t) by  𝐹 (f(t))= 𝑓 (s) =∫ 𝑓(𝑡)𝑒−2π𝑖𝑠𝑡𝑑𝑡
+∞

−∞
 

-Fourier transform is an improper integral since limits of integration are infinity, so the 

condition required above (∫ |𝑓(𝑡)|𝑑𝑡 
+∞

−∞
 convergent) insure the existence of 𝑓(𝑠)(just use the 

comparison test see chapter 2) 

-Fourier transform is a generalization of Fourier series (which is applied only for periodic 

functions) to non-periodic functions. 

-It is important to mention that they are various definitions of Fourier transform and the 

difference is about the factor (2π) where to put it and the sign in the exponential (+) or (-). 

The consequences of that are only multiplicative factors in future formulas. All the 

conventions are in use in practice. We will summarize these different variations below.  

𝐹 (f(t))= 𝑓 (s) =
1

L
∫ 𝑓(𝑡)𝑒𝑀𝑖𝑠𝑡𝑑𝑡
+∞

−∞
 

L = √2π    M = ±1  

L=2π         M = ±1 

L = 1          M = ±2π  

L = 1          M = ±1 
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Our definition of the Fourier transform (L = 1   M = -2π) is a standard one, used in mechanics, 

electronics, quantum physics, etc. 

- The variable t can be time , in this case, the variable s has the dimension of a 

frequency (Hz). Then 𝑓 (s) represents the frequency spectrum of the signal f(t). 

- The variable t can be sometimes a position x (m); in this case, 𝑓 

(k)=∫ 𝑓(𝑥)𝑒𝑖𝑘𝑡𝑑𝑥) 
+∞

−∞
where the variable k=

2π

λ
 (λ wavelength) has the dimension of the inverse 

of a length so k is the so-called wave number. 

When the function f(t) represents a signal e.g. an image, sound wave, electromagnetic wave (t 

designating time or space variable), its Fourier transform 𝑓(s) is its spectrum, with s 

represents the frequency or pulsation. Therefore the Fourier transform converts the time- 

domain signal into the frequency-domain representation 𝑓 (s), which tells us what frequencies 

are present in the signal and their corresponding amplitudes (|𝑓 (s)|), phases ( arg(𝑓̂ (s))), 

and their power spectral density ( |𝑓 (s)|) 2). 

Examples: 

1) f(t) =𝛿(𝑡)   

𝛿  is Dirac Delta Function or Unit Impulse Function is defined as 𝛿(𝑡) = 0, t≠ 0 such that 

∫ 𝛿(𝑡)𝑑𝑡 = 1,
+∞

−∞

 

 It is zero everywhere except one point '0'. Delta function in sometimes thought of having 

infinite value at t=0. 

We are going to use one property of Dirac function to compute its Fourier Transform, namely  

∫ 𝑓(𝑡)𝛿(𝑡)𝑑𝑡 = f(0),
+∞

−∞

 

  Consequently,  

F(𝛿(𝑡))=𝛿̂ (s) =  ∫ 𝛿(𝑡)𝑒−2π𝑖𝑠𝑡𝑑𝑡
+∞

−∞
=𝑒−2π𝑖𝑠0  =1  

2) 𝑓(𝑡) = {
𝑏        − 𝑎 ≤ 𝑡 ≤ 𝑎

0                       |𝑡|    > 𝑎     
 

f is called the box (or gate) function. We are going to denote it by (rect)(t) for further use 

(rect: referring to rectangle). 
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Figure V.1 graph of the box functions 

F(𝑓(𝑡)) =  𝑓̂ (s)=∫ 𝑓(𝑡)𝑒−2π𝑖𝑠𝑡𝑑𝑡
+∞

−∞
=∫ 𝑏𝑒−2π𝑖𝑠𝑡𝑑𝑡

+𝑎

−𝑎
=𝑏 [

𝑒−2π𝑖𝑠𝑡

−2π𝑖𝑠
]
−𝑎

𝑎

= 𝑏[
𝑒−2π𝑖𝑠𝑎

−2π𝑖𝑠
−
𝑒−2π𝑖𝑠(−𝑎)

−2π𝑖𝑠
] 

Knowing that sin(x)=
𝑒𝑖𝑥−𝑒−𝑖𝑥

2𝑖
   so 

𝑓 (s)= 𝑟𝑒𝑐𝑡̂ (s)= 
𝑏

π𝑠
[
𝑒𝑖(2𝑎πs)−𝑒−𝑖(2𝑎πs)

2𝑖
] =

𝑏

π𝑠
𝑠𝑖𝑛(2𝑎πs) = 2𝑎𝑏

2𝑎π𝑠
𝑠𝑖𝑛(2𝑎πs) = 2𝑎𝑏 sin (2𝑎πs)

2𝑎π𝑠
 

𝑟𝑒𝑐𝑡̂ (s)= 2𝑎𝑏
sin (2𝑎πs)

2𝑎π𝑠
   for s≠ 0 

For s=0, 𝑟𝑒𝑐𝑡̂ (s)= ∫ 𝑏𝑑𝑡
+𝑎

−𝑎
 =2ab 

We can notice that the Fourier Transform of the function box is the cardinal sine function by a 

factor of 2ab (this function is denoted sinc, sinc(x)=  
sin (𝑥)

𝑥
) 

 

Figure V.2 General shape of  
sin (𝑥)

𝑥
 . 

V.3 Fourier transform properties: 

V.3.1 time shift  

F[f(t − c)] = 𝑒−𝑖2π𝑠𝑐  𝑓 (s)  (time- shift) 

Proof: 

F[f(t − c)] =∫ 𝑓(𝑡 − 𝑐)𝑒−2π𝑖𝑠𝑡𝑑𝑡
+∞

−∞
 

Substitute: u=t-c 

F[f(t − c)] =∫ 𝑓(𝑢)𝑒−2π𝑖𝑠(𝑢+𝑐)𝑑𝑢
+∞

−∞
=𝑒−2π𝑖𝑠𝑐 ∫ 𝑓(𝑢)𝑒−2π𝑖𝑠𝑢𝑑𝑢

+∞

−∞
=𝑒−2π𝑖𝑠𝑐F(f(t)) 

= 𝑒−𝑖2π𝑠𝑐 𝑓 (s) 

Notes: 

-If f(t) is a signal, a shift in time does not affect the magnitude of the spectrum 

 (|F[f(t −  c)]| = |𝑒−𝑖2π𝑠𝑐  𝑓 (s)  | = |𝑓 (s)|) but alters its phase;  
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arg(𝑒−𝑖2π𝑠𝑐  𝑓 (s)   = arg ( 𝑓(s)) − 2π𝑠𝑐 

𝑒−𝑖2π𝑠𝑐  is called phase factor. 

 

Example: 

F[𝛿 (t − c)]= 𝑒−𝑖2π𝑠𝑐 𝛿̂ (s) =𝑒−𝑖2π𝑠𝑐  

                                   1 

V.3.2 Frequential shift 

 F[f(t) 𝑒𝑖2π𝑐𝑡] = 𝑓 (s − c)    

 Proof: 

F[f(t) 𝑒−𝑖𝑏𝑡]= ∫ 𝑓(t)𝑒𝑖2π𝑐𝑡𝑒−2π𝑖𝑠𝑡𝑑𝑡
+∞

−∞
∫ 𝑓(t)𝑒−𝑖2π(𝑠−𝑐)𝑡𝑑𝑡
+∞

−∞
=𝑓 (s − c)    

V.3.3 time- Scaling 

F[f(ct)] = 
1

|𝑐|
 𝑓 (

𝑠

𝑐
)   a∈R*  

Proof: 

F[f(ct)] =∫ 𝑓(ct)𝑒−2π𝑖𝑠𝑡𝑑𝑡
+∞

−∞
 

Substitute: u=ct 

If c> 0 

F[f(ct)] =∫ 𝑓(u)𝑒−2π𝑖𝑠
𝑢

𝑐
𝑑𝑢

𝑐

+∞

−∞
 = 
1

𝑐
∫ 𝑓(u)𝑒−2π𝑖

𝑠

𝑐
𝑢𝑑𝑢 =

1

𝑐

+∞

−∞
𝑓 (

𝑠

𝑐
) 

If c< 0 

F[f(ct)] =∫ 𝑓(u)𝑒−2π𝑖𝑠
𝑢

𝑐
𝑑𝑢

𝑐

−∞

+∞
= −∫ 𝑓(u)𝑒−2π𝑖𝑠

𝑢

𝑐
𝑑𝑢

𝑐

+∞

−∞
 = 

1

−𝑐
 𝑓 (

𝑠

𝑐
) 

If f(t) is a signal, the time-scaling states that if a signal is expended in time by (c), then its 

Fourier transform is compressed in frequency by the same amount. 

V.3.4 Duality 

Suppose f(t) has the Fourier Transform 𝑓(𝑠) and we would like to evaluate the Fourier 

transform of the new function 𝑓 (𝑡) (we have to change s by t to determine it). 

  So    F(𝑓 (t))=f(-s)       (we get back to the initial function) 

 We use this property specially to compute the Fourier transform of some complex function 

that we cannot do it directly with the definition. 

Examples: 

1) We have found before, that the Fourier Transform of the function box (rect(t)) is the 

cardinal  sine function  ie  F(rect(t))= 
sin (𝑠)

𝑠
 =sinc(s) 

So by applying duality property, we obtain: 
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𝐹(
sin(𝑡)

𝑡
)= rect (-s) and knowing that the function box is even so 

𝐹(
sin(𝑡)

𝑡
)= rect (-s)=rect (s)= {

𝑏        − 𝑎 ≤ 𝑠 ≤ 𝑎
0                       |𝑠|    > 𝑎     

 

2) We have found before that F(𝛿 (t))= 𝛿̂ (s)=1 

By using the duality property, we get 

F[𝑓 (t)] = f(−s) ⇒ F[𝛿̂ (t)] = f(−s) ⇒ F[1] = 𝛿 (−s) 

3)We have seen before that F[𝛿 (t − c)]=𝑒−𝑖2π𝑠𝑎𝑐=𝑓 (s) 

So F[𝑓 (t)] = f(−s) ⇒ F[𝑒−𝑖2π𝑡𝑐 ] = 𝛿 (−s) 

V.3.5 Convolution and Modulation: 

The convolution of two functions in time is defined by 

f(t)*g(t)= ∫ 𝑓(u)𝑔(𝑡 − 𝑢)𝑑𝑢
+∞

−∞
 

then F(f(t)*g(t))=F(f(t)). F(g(t))  =  𝑓 (s) . 𝑔̂ (s) 

A function is modulated by another function if they are multiplied in time 

Then F[f(t).g(t)]=F(f(t))*F(g(t)). 

V.4 linearity of Fourier transform: 

𝐹(f(t) ±g(t)) = 𝐹(f (t)) ±𝐹(g(t))  

𝐹(𝑘f(t))=kF (f (t))   k∈ ℝ∗ 

Examples: 

1) 𝐹(4-7𝛿 (t))=𝐹(4)−𝐹(7𝛿 (t)) 

             =4𝐹(1)−7𝐹(𝛿 (t)) 

             =𝛿 (−s) −7 

2)𝐹(5
sin (𝑡)

𝑡
+ 3𝛿 (t))=5𝐹(

sin (𝑡)

𝑡
)+3𝐹(𝛿 (t)) 

                           =5rect (s) +3 ={
𝑏 + 3        − 𝑎 ≤ 𝑡 ≤ 𝑎
3                       |𝑡|    > 𝑎     

                              

V.5 Inverse of Fourier Transform 

 Definition: 

Let f be a function: f:  ]- ∞, +∞[         ℝ and  F(s)  Fourier transform of f(t) 

                                           t            f(t)    

ie 𝑓 (s) = 𝐹(f(t))  then f(t)= 𝐹−1(𝑓̂(𝑠)) = ∫ 𝑓 (s)𝑒2π𝑖𝑠𝑡𝑑𝑠
+∞

−∞
      where 𝐹−1 is called the inverse 

of Fourier transform. 

-We notice that the expression of the inverse Fourier transform 𝐹−1is very similar to that of 

Fourier transform F. Indeed, only the sign of the complex exponential changes:+i instead of –i 
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- This inverse transformation implies that from the frequency representation of the signal we 

can get its temporal representation. 

 

Examples: 

A) Using the definition 

𝐹−1(𝛿(𝑠)) = ∫ 𝛿(𝑠)𝑒2π𝑖𝑠𝑡𝑑𝑠
+∞

−∞
=𝑒2π𝑖0𝑡=1 

𝐹−1(𝑟𝑒𝑐𝑡(𝑠)) = ∫ 𝑏𝑒2π𝑖𝑠𝑡𝑑𝑠
+𝑎

−𝑎
=𝑏 [

𝑒2π𝑖𝑠𝑡

2π𝑖𝑡
]
−𝑎

𝑎

= 𝑏 [
𝑒2π𝑖𝑡𝑎

2π𝑖𝑡
−
𝑒2π𝑖𝑡(−𝑎)

2π𝑖𝑡
] 

=
𝑏

πt
[
𝑒𝑖2𝑎πt−𝑒−𝑖2𝑎πt

2𝑖
] = 2𝑎𝑏

sin (2𝑎π𝑡)
2π𝑡

 

Therefore 𝐹−1(𝑟𝑒𝑐𝑡(𝑠)) = 2𝑎𝑏𝑠𝑖𝑛𝑐(2𝑎πt) 

B) From the examples seen above in VII.2 we can say: 

1) 𝐹 (𝛿(𝑡))= 1 ⇒ 𝐹−1(1) = 𝛿(𝑡) 

2) 𝐹(𝑟𝑒𝑐𝑡(𝑡)) = 𝑠𝑖𝑛𝑐(𝑠) ⇒𝐹−1(𝑠𝑖𝑛𝑐(𝑠) ) = 𝑟𝑒𝑐𝑡(𝑡) 

Notes: 

- the inverse of Fourier transform 𝐹−1 is also linear ie  

𝐹−1 (𝑐1𝑓1(s)+ 𝑐2𝑓2(s))= 𝑐1 𝐹
−1 (𝑓1(s))+ 𝑐1 𝐹

−1 (𝑓2(s))   ∀𝑐1 , 𝑐2 real constant 

V.6 Fourier Transform of some common functions. 

Formulas are given both in frequency (s) and in angular frequency (ω, ω= 2πs) to enable 

students to do a variety of exercises. 

   𝐹 (f(t))= 𝑓 (s) =∫ 𝑓(𝑡)𝑒−2π𝑖𝑠𝑡𝑑𝑡
+∞

−∞
                  f(t)= 𝐹−1(𝑓̂(𝑠)) = ∫ 𝑓 (s)𝑒2π𝑖𝑠𝑡𝑑𝑠

+∞

−∞
 

 

𝐹 (f(t))=𝑓 (ω)= ∫ 𝑓(𝑡)𝑒−𝑖ω𝑡𝑑𝑡
+∞

−∞
               f(t)= 𝐹−1(𝑓̂(ω)) = ∫ 𝑓 (ω)𝑒𝑖ω𝑡𝑑ω

+∞

−∞
 

Notes:  

All Properties seen above are not affected (if we change 2πs by ω ) 

Table V.6 Fourier Transform of some usuel functions 

f(t) 𝐹(𝑓(𝑡))= 𝑓 (s) 𝐹(𝑓(𝑡))= 𝑓 (ω) 

𝛿(𝑡) 1 1 

𝑒−𝑎|𝑡| 
2𝑎

a2 + 4𝜋2𝑠2
 

2𝑎

a2 + ω2
 

𝑒−𝑎𝑡
2
 √

𝜋

𝑎
𝑒− 

𝜋2𝑠2

𝑎  √
𝜋

𝑎
𝑒− 

ω2

4𝑎  

Cos(2𝜋𝑎𝑡) 
1

2
[𝛿(𝑠 + 𝑎) + 𝛿(𝑠 − 𝑎)] 𝜋[𝛿(ω+ 2𝜋𝑎) + 𝛿(ω− 2𝜋𝑎)] 
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sin(2𝜋𝑎𝑡) 
i

2
[𝛿(𝑠 + 𝑎) − 𝛿(𝑠

− 𝑎)] 
𝑖𝜋[𝛿(ω+ 2𝜋𝑎) − 𝛿(ω− 2𝜋𝑎)] 

rect(t) sinc(s) sinc(
ω

2𝜋
) 

sinc(t) rect(s) rect (
ω

2𝜋
) 

Note: 

- To determine the Fourier transform of any function, we have either to use the table if this 

function is a combination of functions cited in the table and using properties given above 

(linearity, duality, time-shift…. ) or use the definition of the Fourier transform. 

Examples: 

1) Find Fourier transform of  the following f(t): 

a- f(t)= 2+
1

7
𝑒−6𝑡

2
 ⇒F(2+

1

7
𝑒−6𝑡

2
) = 2F(1) +

1

7
𝐹(𝑒−6𝑡

2
) = 2𝛿(𝑠) +

1

7

√𝜋

6
𝑒− 

𝜋2𝑠2

6  

b- g(t)=𝑡 𝑒−4|𝑡|  

we can write 𝑒−4|𝑡|=𝑒
−2𝜋2|𝑡|

𝜋  in form of 𝑒−2𝜋𝑠0|𝑡|   where 𝑠0 =
2

𝜋
 

So F(𝑡 𝑒−4|𝑡|)=i(
1

𝜋

2

𝜋

𝑠2−(
2

𝜋
)2

)’  = i(
2

𝜋2
1

𝑠2− 
4

𝜋2

)’= −𝑖(
2

𝜋2
2𝑠

(𝑠2− 
4

𝜋2
)2

) 

F[tf(t)] = i 𝑓’ (s) 

Thus F(𝑡 𝑒−4|𝑡|)= −𝑖(
4𝑠

𝜋2(𝑠2− 
4

𝜋2
)2

) 

c- f(t)=sin(4t) -5 

we can write sin(4t) =sin(2𝜋
2

𝜋
𝑡) in form of sin(2𝜋𝑠0𝑡)  where 𝑠0 =

2

𝜋
 

𝑆𝑜 𝐹(sin(4t) -5)  =  𝐹(sin(4t))-5 𝐹(1)= 
1

2
i [𝛿 (𝑠 +

2

𝜋
) − 𝛿 (𝑠 −

2

𝜋
)] − 5 𝛿(𝑠) 

V.7 Fourier transform of a derivative ( differentiation in time-domain) 

Let f be a function f:  [, +∞[         ℝ such that ∫ |𝑓(𝑡)|𝑑𝑡 
+∞

−∞
is convergent  

                                      t         f(t)    

 and 𝑓′ is its derivative then F[𝑓′ (t)] =2πi s 𝑓 (s)   

A brief proof: 

g(t)=
𝑑

𝑑𝑡
𝑓(𝑡)  

Let us determine 𝑔̂ (s):  

We have 𝐹(f(t))= 𝑓 (s) =∫ 𝑓(𝑡)𝑒−2π𝑖𝑠𝑡𝑑𝑡
+∞

−∞
   (Fourier transform)    (I) 

And                    f(t)= ∫ 𝑓 (s)𝑒2π𝑖𝑠𝑡𝑑𝑠
+∞

−∞
     (inverse of Fourier transform)  (II) 
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g(t)=
𝑑

𝑑𝑡
𝑓(𝑡) = 

𝑑

𝑑𝑡
(2π∫ 𝑓 (s)𝑒2π𝑖𝑠𝑡𝑑𝑠)

+∞

−∞
 =
𝑑

𝑑𝑡
(2π∫

𝑑

𝑑𝑡
(𝑓 (s)𝑒2π𝑖𝑠𝑡)𝑑𝑠)

+∞

−∞
 

=(∫ 2π𝑖𝑠𝑓 (s)𝑒2π𝑖𝑠𝑡)𝑑𝑠)
+∞

−∞
=∫ 2π𝑖 𝑠𝑓 (s)𝑒2π𝑖𝑠𝑡𝑑𝑠

+∞

−∞
 

g(t)= ∫ 2π𝑖 𝑠𝑓 (s)𝑒2π𝑖𝑠𝑡𝑑𝑠
+∞

−∞
 

 

                              𝑔̂ (s)   (similarity to (I) and (II)) 

𝑔̂ (s)=
𝑑

𝑑𝑡
𝑓(𝑡)
̂

 =2π𝑖 𝑠𝑓 (s) 

Thus  F[𝑓′ (t)] =2πi s 𝑓 (s)   

-For higher-order derivatives: 

F[ 𝑓(𝑛) (t)]= (2πis)𝑛 𝑓 (s) 

Note: 

- if formula are given with angular frequency (ω) then 

F[ 𝑓(𝑛) (t)]= (iω)𝑛 𝑓 (ω) 

V.8 Using Fourier transform and its inverse for solving Partial differential 

equation (PDE): 

It is important to mention that in this section, we are going to work with the following 

formulas (with ω  angular frequency and the variable position x ): 

𝐹 (f(x))=𝑓 (ω)= ∫ 𝑓(𝑥)𝑒−𝑖ω𝑥𝑑𝑥
+∞

−∞
               f(x)= 𝐹−1(𝑓̂(ω)) = ∫ 𝑓 (ω)𝑒𝑖ω𝑥𝑑ω

+∞

−∞
 

Solve the following PDE: 

𝜕2𝑢

𝜕𝑡2
=
𝜕2𝑢

𝜕𝑥2
   (1)  −∞ < 𝑥 < +∞,    t> 0 

u(x,0)=f(x)    (2)      −∞ < 𝑥 < +∞   (initial condition) 

𝜕𝑢

𝜕𝑡
(𝑥, 0) = 0    (3)   −∞ < 𝑥 < +∞ 

lim
x→+∞

u(x, t) = 0       lim
x→+∞

𝜕𝑢

𝜕𝑥
(𝑥, 𝑡) = 0 

-Apply Fourier Transform to both sides of equation (1) 

𝐹 [
𝜕2𝑢

𝜕𝑡2
] = 𝐹[

𝜕2𝑢

𝜕𝑥2
] (2) 

-Use property of Fourier transform of a second derivative (with respect to the variable x] for 

the left side: 

𝐹 [
𝜕2𝑢

𝜕𝑡2
] = (iω)2𝑢̂(ω, 𝑡) 

𝐹 [
𝜕2𝑢

𝜕𝑡2
] = ∫

𝜕2𝑢

𝜕𝑡2
𝑒−𝑖ω𝑥𝑑𝑥

+∞

−∞
=
𝜕2

𝜕𝑡2
∫ 𝑢(𝑥, 𝑡)𝑒−𝑖ω𝑥𝑑𝑥
+∞

−∞
=
𝜕2

𝜕𝑡2
𝑢̂(ω, 𝑡) 

                                Since 𝑒−𝑖ω𝑥  is independent of the variable t 
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Therefore we obtain an ordinary differential equation (ODE) of second order (3) : 

𝜕2

𝜕𝑡2
𝑢̂(ω, 𝑡) = (iω)2𝑢̂(ω, 𝑡)  ⇔

𝜕2

𝜕𝑡2
𝑢̂(ω, 𝑡) = −ω2𝑢̂(ω, 𝑡)    ⇔  𝑢̂′′ + ω2𝑢̂=0 (3) 

Here 𝑢̂(ω, 𝑡) is the function to find 

The characteristic equation of (2) is : r2+ω2⇒ 𝑟 = 𝑖ω−
+   

 So the solution is: 𝑢̂(ω, 𝑡)= A(ω)cos (ωt) + B(ω)sin (ωt)  (4)  (see chapter III) 

Let us determine A and B from equations (2) and (3): 

(2) leads to 𝑢̂(ω, 0)=𝑓(ω)   and (4) gives  𝑢̂(ω, 0)=A(ω) cos(0) + B(ω) sin(0) = A(ω)   

Therefore A(ω) =𝑓(ω)    

(3) gives 
𝜕𝑢

𝜕𝑡
(ω, 0) = 0    and so (4) yields to 

𝜕𝑢

𝜕𝑡
(ω, 0) = −ωA(ω)sin (0) + ωB(ω)cos (0) 

⇒B(ω) = 0.  

Hence the solution for our (ODE) is 𝑢̂(ω, 𝑡) = 𝑓(ω)cos (ωt)    

Now, we have just to invert 𝑢̂(ω, 𝑡) (using inverse Fourier Transform) to get our solution  

u(x, t) of our PDE (1): 

u(x, t) = F−1{𝑓̂(ω)cos (ωt)}=F−1 {𝑓̂(ω)[
eωt+e−ωt

2
]} =

1

2
{F−1[𝑓̂(ω)eωt] + F−1[𝑓̂(ω)e−ωt]} 

                                                                             by linearity of F−1  

                                                                                =  
  1

2
{f(x + t) + f(x − t)} 

                                                                   Using the time-shift property 

Finally u(x, t) =
  1

2
{f(x + t) + f(x − t)} 
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Exercises 

Exercise1 

Let f be a function f:  ]- ∞, +∞[          ℝ/ 𝐶 such that ∫ |𝑓(𝑡)|𝑑𝑡 
+∞

−∞
 convergent. 

                                          t         f(t)    
Compute the Fourier transform of f if f is an even, odd function respectively.  

Exercise 2 

Determine the Fourier transform of the following function (called the triangle function): 

 𝑓(𝑡) = { 1 −
|𝑡|

𝑎
      − 𝑎 ≤ 𝑡 ≤ 𝑎

0                       |𝑡|    > 𝑎     
 

Exercise3 

Find the Fourier transform of the following function using the time-shifting property 

              𝑓(𝑡) = {
1,   4 ≤ 𝑡 ≤ 6 
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Exercise 4 

Solve the following partial differential equation (Heat equation) using Fourier transform: 
𝜕𝑢

𝜕𝑡
=

𝑘
𝜕2𝑢

𝜕𝑥2
   (1)  −∞ < 𝑥 < +∞ 

u(x,0)=𝛿(𝑥) (2)   −∞ < 𝑥 < +∞  (initial condition). 

Solutions 

Solution of exercise1: 

We are going to use the definition with angular frequency (ω): 

a) if f is an even function then, 

𝐹 (f(t))=𝑓 (ω)= ∫ 𝑓(𝑡)𝑒−𝑖ω𝑡𝑑𝑡
+∞

−∞
=∫ 𝑓(𝑡)[cos(−𝑤𝑡) + 𝑖 𝑠𝑖𝑛(−𝑤𝑡)]𝑑𝑡

+𝑎

−𝑎
 

                  =∫ 𝑓(𝑡) cos(𝑤𝑡) 𝑑𝑡
+∞

−∞
− 𝑖 ∫ 𝑓(𝑡)𝑠𝑖𝑛(𝑤𝑡)]𝑑𝑡

+∞

−∞
 (since cos is even and sin is odd) 

                  =2∫ 𝑓(𝑡) cos(𝑤𝑡) 𝑑𝑡
+∞

0
                                 0 

Knowing that:1) 𝑓(𝑡) cos(𝑤𝑡)=an even function g and ∫ 𝑔(𝑡)𝑑𝑡
+𝑎

−𝑎
= 2∫ 𝑔(𝑡)𝑑𝑡

+𝑎

0
 

                             even.even 

                        2) 𝑓(𝑡) cos(𝑤𝑡)=an odd function h and ∫ ℎ(𝑡)𝑑𝑡
+𝑎

−𝑎
= 0. 

                             even.odd 

b) if f is an odd function then, 
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𝐹 (f(t))=𝑓 (ω)= ∫ 𝑓(𝑡)𝑒−𝑖ω𝑡𝑑𝑡
+∞

−∞
=∫ [𝑓(𝑡)[cos(−𝑤𝑡) + 𝑖 𝑠𝑖𝑛(−𝑤𝑡)]𝑑𝑡

+𝑎

−𝑎
 

                  =∫ 𝑓(𝑡) cos(𝑤𝑡) 𝑑𝑡
+∞

−∞
− 𝑖 ∫ 𝑓(𝑡)𝑠𝑖𝑛(𝑤𝑡)]𝑑𝑡

+∞

−∞
  

                                         0 

                =−2𝑖 ∫ 𝑓(𝑡) sin(𝑤𝑡) 𝑑𝑡
+∞

0
   

(Same explanation like above)   

Solution exercise2 : 

              𝑓(𝑡) = {
1,   4 ≤ 𝑡 ≤ 6 
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

                                                                   Graph of f(t) 

We can notice that f(t) is the rectangular function (where b=1, a=1)but shifted to the right by 3 

units . Thus by putting c = 3 in the time shift property, we get: 

F(f(t))=F[rect(t – 3)] = 𝑒−𝑖2π𝑠3 𝑟𝑒𝑐𝑡̂ (s)= 2 𝑒−𝑖6π𝑠
sinc(2s)

2𝑠
 

Solution exercise 3: 

 

                                                      Graph of triangular function 

We are going to use the definition with angular frequency (ω) : 

𝐹 (f(t))=𝑓 (ω)= ∫ 𝑓(𝑡)𝑒−𝑖ω𝑡𝑑𝑡
+∞

−∞
=∫ (1 −

|𝑡|

𝑎
)𝑒−𝑖ω𝑡𝑑𝑡

+𝑎

−𝑎
=2∫ (1 −

𝑡

𝑎
)cos (ω𝑡) 𝑑𝑡

+𝑎 

0
 

                                                                                  Since f(t) is an even function 

Integration by parts: 

u= 1 −
𝑡

𝑎
  ⇒𝑑𝑢=

−1

𝑎
𝑑𝑡,    dv=cos (ω𝑡) 𝑑𝑡 ⇒v=

1

ω
 sin (ω𝑡) 

2∫ (1 −
𝑡

𝑎
)cos (ω𝑡) 𝑑𝑡

+𝑎 

0
=
2

ω
[(1 −

𝑡

𝑎
)sin (ω𝑡)]

0

𝑎

+
2

aω
∫ 𝑠𝑖𝑛(ω𝑡)𝑑𝑡
+𝑎 

0
 

 

                                                                0 
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                                            =
2

aω2
[−cos (ω𝑡)]0

𝑎=
2

aω2
[1 − cos(𝑤𝑎)] 

Thus 𝐹 (f(t))= 
2

aω2
[1 − cos(𝑤𝑎)] 

Notes : 

-If we continue calculations using properties of trigonometric functions, we will have: 

2

aω2
[1 − cos(𝑤𝑎)]= 

2

aω2
[1 − (1 − 2 sin2 (

𝑤𝑎

2
)] =

4

aω2
sin2 (

𝑤𝑎

2
) = 𝑎

sin2(
𝑤𝑎

2
)

(
𝑤𝑎

2
)2

 =asinc2(
𝑤𝑎

2
) 

So We can notice that the Fourier Transform of the triangle function is the cardinal sine 

function (by a factor of a), a similar result to that of rectangular function. 

Solution of exercise 4: 

𝜕𝑢

𝜕𝑡
= 𝑘

𝜕2𝑢

𝜕𝑥2
   (1)  −∞ < 𝑥 < +∞ 

u(x,0)=𝛿(𝑥) (2)   −∞ < 𝑥 < +∞  (initial condition) 

-Apply Fourier Transform to both sides of equation (1) 

F[
𝜕𝑢

𝜕𝑡
] = 𝐹[ 𝑘

𝜕2𝑢

𝜕𝑥2
]  

-Use linearity of Fourier transform   

 
𝜕𝑢̂(𝑥,𝑡)

𝜕𝑡
= 𝑘𝐹 [

𝜕2𝑢

𝜕𝑥2
] 

-Use property of Fourier transform of a second derivative 

𝜕𝑢̂(𝑥, 𝑡)

𝜕𝑡
= 𝑘[(iω)2𝑢̂(𝑥, 𝑡)]⇔

𝜕𝑢̂(𝑥, 𝑡)

𝜕𝑡
= −𝑘ω2𝑢̂(𝑥, 𝑡) 

Therefore we obtain an ordinary differential equation (ODE) of first order: 

𝜕𝑢(ω,𝑡)

𝜕𝑡
+ 𝑘ω2𝑢̂(ω, 𝑡) = 0  (𝑢̂ is the function to find) 

The solution is given by 𝑢̂(ω,t)=C(ω) 𝑒−𝑘ω
2𝑡 (3)(see chapter III) 

Where C(ω) is to determine from initial condition 

Apply Fourier Transform to both sides of equation (2): 

F [u(x,0)]=F[f(x)]  ⇔ 𝑢̂(𝑥, 0) = 𝛿̂(ω)       

From (III) 𝑢̂(ω,0)=C(ω) 𝑒−0= C(ω) 

Thus C(ω)= 𝛿̂(ω)= 1⇒ 𝑢̂(ω,t)= 𝑒−𝑘ω
2𝑡 (3) 

                       See table above 

Apply inverse Fourier Transform to both sides of equation (3) 

𝐹−1(𝑢̂(ω,t))=𝐹−1( 𝑒−𝑘ω
2𝑡)⇒  u(x, t) =

1

2√𝑘𝑡π
𝑒−

x2

4𝑘𝑡 

                       See table above (𝐹−1[√
𝜋

𝑎
𝑒− 

ω2

4𝑎 ] = 𝑒−𝑎t
2 , where here a=

1

4𝑘𝑡
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VI.1. Introduction: 

Laplace transform is a technique that involves taking a function (generally in terms of 

time) and transforming it into another function, i.e., moving from one space to another space. 

In this space, many things can be done, including solving differential equation more easily 

than doing so directly and afterward, returning to the initial space via the inverse of the 

Laplace transform. This technique is widely applied in engineering, physics, and control 

theory. 

VI.2 Definition: 

Let f be a time function f:  [0, +∞[         ℝ such that ∫ |𝑓(𝑡)|𝑑𝑡 
+∞

0
is convergent. 

                                              t         f(t)    

Laplace transform of f(t) is the application    F: [0, +∞[         ℝ 

                                                                                             s            F(s)=∫ 𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡
+∞

0
        

Notes: 

- We can also denote Laplace transform of f(t) by ℒ (f(t)); ℒ (f(t))=F(s)=∫ 𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡
+∞

0
 

-Laplace transform is an improper integral since the upper limit of integration is infinity, so 

  the condition cited above (∫ |𝑓(𝑡)|𝑑𝑡 
+∞

0
 convergent) insure the existence of 𝐹(𝑠)(just use 

the comparison test see chapter 2) 

-  Laplace transform is an integral all over time t.   

- Laplace transform convert a function of time ( f(t)) into a function of frequency (F(s)) 

Examples: 

We will calculate the Laplace transform of some basic functions, which will then be used to 

find the Laplace transform of other more complex functions. 

3) f(t) =1   

 ℒ (1)= F(s)=∫ 1𝑒−𝑠𝑡𝑑𝑡
+∞

0
 = lim

ℎ→+∞

( ∫ 𝑒−𝑠𝑡𝑑𝑡
𝑡=ℎ

𝑡=0
) = lim

ℎ→+∞

 [
𝑒−𝑠𝑡

−𝑠
]
0

ℎ

= lim
ℎ→+∞

[−
𝑒−𝑠ℎ

𝑠
+
1

𝑠
] 

      = lim
ℎ→+∞

(−
𝑒−𝑠ℎ

𝑠
) +

1

𝑠
  = 

1

𝑠
 

              0    

So f(t)=1              ℒ (1)= 
1

𝑠
 

4) f(t) = 𝑒𝑡 
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 ℒ (𝑒𝑡)= F(s)=∫ 𝑒𝑡𝑒−𝑠𝑡𝑑𝑡
+∞

0
 = lim

ℎ→+∞

( ∫ 𝑒−(𝑠−1)𝑡𝑑𝑡
𝑡=ℎ

𝑡=0
) = lim

ℎ→+∞

 [
𝑒−(𝑠−1)𝑡

−(𝑠−𝜆)
]
0

ℎ

= 

lim
ℎ→+∞

[−
𝑒−(𝑠−1)ℎ

(𝑠−1)
+

1

𝑠−1
] = lim

ℎ→+∞

(−
𝑒−(𝑠−1)ℎ

𝑠−1
) +

1

𝑠−1
  = 

1

𝑠−1
  

                                                               0   (for s> 1) 

So f(t)= 𝑒𝑡              ℒ (𝑒𝑡)= 
1

𝑠−1
     for s> 1 

5) f(t)= 𝑡𝑛 , n≥1 

ℒ (𝑒𝑡)= F(s)=∫ 𝑡𝑛𝑒−𝑠𝑡𝑑𝑡
+∞

0
 = lim
ℎ→+∞

( ∫ 𝑡𝑛𝑒−𝑠𝑡𝑑𝑡
𝑡=ℎ

𝑡=0
)  

                                                                           (I)  

We integrate (I) by parts, i.e., use ∫ 𝑈(𝑡)𝑉′(𝑡)𝑑𝑡
𝑏

𝑎
= [𝑈(𝑡)𝑉(𝑡)]𝑎

𝑏 − ∫ 𝑈′(𝑡)𝑉(𝑡)𝑑𝑡
𝑏

𝑎
 

Where : 

U(t)=𝑡𝑛 ⇒ 𝑈′(𝑡)𝑑𝑡 = 𝑛𝑡𝑛−1𝑑𝑡 

𝑉′(𝑡)𝑑𝑡 = 𝑒−𝑠𝑡𝑑𝑡⇒𝑉(𝑡) = −
1

𝑠
𝑒−𝑠𝑡 

F(s)=∫ 𝑡𝑛𝑒−𝑠𝑡𝑑𝑡
+∞

0
 = lim
ℎ→+∞

[−𝑡𝑛𝑠𝑒−𝑠𝑡]0
ℎ − lim

ℎ→+∞

∫ −
𝑛

𝑠
𝑡𝑛−1𝑒−𝑠𝑡𝑑𝑡

ℎ

0
=
𝑛

𝑠
∫ 𝑡𝑛−1𝑒−𝑠𝑡𝑑𝑡
+∞

0
 

                                                      0 

Thus, F(s)= 
𝑛

𝑠
 ℒ(𝑡𝑛−1) 

Applying the formula recursively, we obtain 

F(s)=
𝑛!

𝑠𝑛+1
 

So for f(t)= 𝑡𝑛 , n≥1    ℒ (𝑡𝑛)= 
𝑛!

𝑠𝑛+1
  

VI.3 Laplace transform properties: 

a-If f and g differ only at a finite number of points  then F = G  

Examples: 

1) f(t) defined as f(t)={
3    𝑡 = 1
0     𝑡 ≠   1   

 has a Laplace transform F(s)=0 

f differs from the function zero just by one point (so we have found they have the 

same Laplace transform F(s)=0. 

2) f(t) defined as f(t)={
3

4
    𝑡 = 0

1    𝑡 >   0   
has a Laplace transform F(s)= 

1

𝑆
 (the same as that of 

f(t)=1) 
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b-If g(t) = f(at), a∈ ℝ; then G(s) = 
1

𝑎
 F (

𝑠

𝑎
)  

Example : 

 g(t)=e
4t 

We have ℒ(e
t
) = 

1

𝑠−1
  so ℒ(𝑔(𝑡)) = ℒ(e

4t
)=

1

4

1

(
𝑠

4
−1)
=

1

𝑠−4
 

Thus  if g(t)=𝑒𝑎𝑡    so ℒ(e
at
)=

1

𝑠−𝑎

 

c-If g(t) = e
at

f(t); then G(s) = F (s − a) 

Example: 

g(t)=𝑡3e
-2t  

=e
-2t 
𝑡3  of form of  e

at
f(t)

 

We have ℒ(t3) =  
3!

s3+1
⇒ G(s) = F (s − a)⇒ℒ(𝑒−2𝑡t3) =

3!

(s+2)3+1
=

6

(s+2)4
 

d- if  g(t) = tf(t) then G(s) = −𝐹′(s)  

Example: 

g(t)= 𝑡𝑒
2

3
𝑡
 of form of tf(t) ⇒ G(s) =−𝐹′(s)=−(

1

𝑠−
2

3

)′ = −(−
1

(𝑠−
2

3
)2
) 

so ℒ (𝑡𝑒
2

3
𝑡)= 

1

(𝑠−
2

3
)2

 

VI.4 linearity of Laplace transform: 

ℒ(f(t) ±g(t)) = ℒ(f (t)) ±ℒ(g(t))  

ℒ(𝑘f(t))=kℒ (f (t))   k∈ ℝ∗ 

Examples: 

1) ℒ(3-2𝑒𝑡)=ℒ(3)-ℒ(2𝑒𝑡) 

             =3ℒ(1)-2ℒ(𝑒𝑡) 

             =3
1

s
- 
2

s−1
=
3s−5

s(s−1)
 

2)ℒ(
1

4
+
1

2
t4+8𝑒5𝑡)=

1

4
ℒ(1)+

1

2
ℒ(t4)+8ℒ(𝑒5𝑡) 

                           =
1

4

1

s
 +
1

2

4!

s4+1
+8

1

s−5
 

                                =
1

4𝑠
+
12

s5
+

8

s−5
=
s4(𝑠−5)+48(𝑠−5)+32s5

4(s−5)s5
 

                               =
33s5−5s4+48𝑠−240

4(s−5)s5
 

VI.5 Inverse of Laplace Transform 

 Definition: 

Let f be a time function: f:  [0, +∞[         ℝ and  F(s)  the Laplace transform of f(t) 
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                                                       t         f(t)    

ie F(s) = ℒ (f(t))  then f(t)= ℒ−1(𝐹(𝑠))  where ℒ−1 is called the inverse of Laplace transform. 

Examples : 

From the examples seen above we can say: 

3) ℒ (1)= 
1

𝑆
⇒ℒ−1 (

1

𝑆
) = 1 

4) ℒ (𝑒𝑡)=
1

𝑆−1
⇒ℒ−1(

1

𝑆−1
) = 𝑒𝑡 

Notes: 

- the inverse of Laplace transform ℒ−1 is also linear ie  

ℒ−1 (𝑐1 𝐹1(s)+ 𝑐2𝐹2(s))= 𝑐1 ℒ
−1 (𝐹1(s))+ 𝑐1 ℒ

−1 (𝐹2(s))   ∀𝑐1 , 𝑐2 real constant 

VI.6 Laplace Transform and its inverse of some common functions. 

Table VI.1 LaplaceTransform of some usual functions and its inverse 

f(t) ℒ(𝑓(𝑡)) F(s) ℒ−1(F(s)) 

1 1

𝑆
   1

𝑆
 

1 

𝑒𝑎𝑡  1

𝑆−𝑎
  

1

𝑆−𝑎
    ( a >0) 𝑒𝑎𝑡 (a >0) 

𝑡𝑛  (n≥ 1) 𝑛!

𝑠𝑛+1
 

𝑛!

𝑠𝑛+1
 𝑡𝑛 

Cos(𝛽𝑡) s

s2+β2
  s

s2 + β
2 Cos(𝛽𝑡) 

sin(𝛽𝑡) 𝜷

𝑠2+𝜷2
  1

s2 + β
2 

1

β
 sin(βt) 

Note: 

-This Table shows how the Laplace transform converts the time-domain exponential, 

…function into a rational function in the s- domain 

- These functions, combined with the properties given above (linearity,…. ) enable us to 

evaluate Laplace transform( and its inverse) of most of functions. 

Examples: 

1)Let us  find Laplace transform of  the following f(t): 

a- f(t)=sin(5t) +3 ⇒  ℒ(sin(5t) +3)  =  ℒ(sin(5t))+5 ℒ(1)= 
𝟓

𝑠2+𝟓2
+ 3

1

𝑆
=
𝟑𝑠2+𝟓𝒔++75

𝑠(𝑠2+25)
 

b- f(t)= 𝑡2 − 7 + cos (2𝑡)   ⇒  ℒ(𝑡2 − 7 + cos (2𝑡)) = ℒ(𝑡2)-7 ℒ(1)+ ℒ(cos (2𝑡)) 

= 
2!

𝑠3
− 7

1

𝑆
+

s

s2+22
  ⇒  ℒ (f(t))= 

−6𝑠4−26s2+8

𝑠3(s2+4)
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2)Let us  find f(t) in the following cases: 

a- F(s)= 
1

2𝑆+1
=
1

2
 
1

𝑆+
1

2

 ⇒ ℒ−1 (
1

2
 
1

𝑆+
1

2

) =
1

2
ℒ−1 ( 

1

𝑆+
1

2

) =
1

2
 𝑒
−
𝑡

2=f(t) 

b- F(s)=
1

s2+3
=

1

s2+(√3)
2 ⇒ℒ

−1 (
1

s2+(√3)
2) =

1

√3
sin (√3 t)=f(t) 

VI.7 Laplace transform of a derivative 

Let f be a time function f:  [0, +∞[         ℝ and 𝑓′ is its derivative 

                                              t         f(t)    

then ℒ(𝑓′(𝑡))= s ℒ(𝑓(𝑡)) − 𝑓(0) = 𝑠𝐹(𝑠) − 𝑓(0) 

Note: 

-The above formula is obtained by integration by parts method. 

- Time-domain differentiation becomes multiplication by frequency variable s plus a term that 

includes initial condition(−f(0)). 

-For second-order derivatives, we have just to apply derivative formula twice: 

ℒ(𝑓′′(𝑡))= s ℒ(𝑓′(𝑡)) − 𝑓′(0)=s[ s ℒ(𝑓(𝑡)) − 𝑓(0) ] −𝑓′(0) 

                                                 =𝑠2 ℒ(𝑓(𝑡)) − 𝑠 𝑓(0) − 𝑓′(0) 

                                                  =𝑠2 𝐹(𝑠) − 𝑠 𝑓(0) − 𝑓′(0) 

So for higher-order derivatives, similar formulas hold for ℒ(𝑓𝑛(𝑡)) 

ℒ(𝑓𝑛(𝑡))= 𝑠𝑛 𝐹(𝑠) − 𝑠𝑛−1 𝑓(0) − 𝑠𝑛−2 𝑓′(0) − 𝑠𝑛−3 𝑓′′(0)………… .− 𝑓(𝑛−1)(0) 

VI.8 Using Laplace transform and its inverse for solving differential 

equation: 

Example1: 

 y’(t) + y(t) = 1     (y(0)=0) it is a first order differential equation with limit condition. 

Method of resolution: 

Apply Laplace transform both sides of equation 

ℒ(y’(t)+  y(t)) = ℒ(1)⇒ℒ(y’(t)) + ℒ( y(t)) = ℒ(1)⇒  𝑠ℒ( y(t)) − y(0) + ℒ( y(t)) =
1

s
 

      Linearity of ℒ                                     Laplace transform of a derivative formula      0 

⇒  ℒ( y(t))(𝑆 + 1) =
1

s
⇒ ℒ( y(t)) =

1

s(s+1)
 = 
1

s
−

1

(s+1)
 

Now, we apply inverse of Laplace transform both sides of equation: 
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y(t) = ℒ−1(
1

s
−

1

(s+1)
)= ℒ−1 (

1

s
) − ℒ−1 (

1

(s+1)
) = 1 − 𝑒−𝑡 

    Linearity of ℒ−1 

Thus, our solution y(t)= 1 − 𝑒−𝑡 

Example2: 

y’(t)  = 5 − 2t, y(0) = 1. 

Apply Laplace transform both sides of equation  

ℒ(y’(t)) = ℒ(5 −  2t)⇒  𝑠ℒ( y(t))− y(0) = 5ℒ(1) − 2 ℒ(𝑡) 

                                                                          1 

⇒𝑠ℒ( y(t)) − 1 =
5

s
− 2

1!

s2
 
 
⇒ℒ( y(t)) =

5

s2
−
2

s3
+
1

s
 

Now, we apply inverse of Laplace transform both sides of equation: 

y(t) = ℒ−1(
5

s2
−
2

s3
+
1

s
) ⇒ y(t) = 5ℒ−1 (

1

s2
)− ℒ−1 (

2

s3
)+ ℒ−1(

1

s
) 

Thus, our solution y(t)= 5t − t2+ 1 

Note: 

Laplace transform turned a differential equation into an algebraic equation. 
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Exercises 

Exercise 1: 

Determine Laplace transform of the following functions: 

a) f(t)= t2 + 3                       b)f(t)= e5t − 20t5                    c) f(t)=6cos(4t) +9    

           d)f(t) =
5

3
sin(6t) +

4

3
 e−2t + 7                                   

Exercice 2 : 

Find the inverse of Laplace transform of the following functions: 

a) F(S)=−
1

4−S
                       b) F(S)= 

3

2S6
                   c) F(S)= 

5

S2+4
 

           d)F(S)= 
7

3S+2
         e) F(S)= 

S

2S2+5
+  

9

S4
−

4

𝑠
                  

Exercise 3 : 

Using Laplace transform and its inverse, solve the following differential equations : 

1)  x′ = 𝑡2 − 2   avec  x(0) =3 

2) x′ + x =3cos(t)    avec  x(0) =5 

Solution of exercise 1 : 

a) f(t)= t2 + 3   

ℒ(t2 + 3)= ℒ(t2)+3ℒ(1)= 
2!

𝑠2+1
 +3

1

𝑠
 =
2+3𝑠2

𝑠3
 

                     Linearity           see table VI.1 

       Thus ℒ(t2 + 3)= 
2+3𝑠2

𝑠3
 

       b)f(t)= e5t − 20t5  

       ℒ(e5t − 20t5) = ℒ(e5t) − 20ℒ(t5) =
1

𝑠−5
− 20

5!

𝑠5+1
=
𝑠6−20𝑥120(𝑠−5)

(𝑠−5)𝑠6
 

   So ℒ(e5t − 20t5) =  
𝑠6−2400𝑠−12000

(𝑠−5)𝑠6
 

b) f(t)=6cos(4t) +9  

ℒ(6cos(4t) + 9 ) = 6ℒ(cos(4t)) + 9 ℒ(1) = 6
s

s2+42
 +9

1

𝑠
  

   Consequently ℒ(6cos(4t) + 9 ) =
15s2+144

(s2+42)s
 

       d)f(t) =
5

3
sin(6t) +

4

3
 e−2t + 7       

        ℒ(
5

3
sin(6t) +

4

3
 e−2t + 7 ) = 

5

3
 ℒ(sin(6t)) +

4

3
ℒ(e−2t) + 7ℒ(1) =

5

3

𝟔

𝑠2+𝟔2
+
4

3
 
1

𝑆+2
+ 7

1

𝑠
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                                                             =   
𝟑𝟎𝒔(𝑆+2)+4𝑠(𝑠2+𝟔2)+21(𝑠2+𝟔2)(𝑆+2)

3𝑠(𝑠2+𝟔2)(𝑆+2)
       

Thus           ℒ(
5

3
sin(6t) +

4

3
 e−2t + 7 ) =  

𝟐𝟓𝑠3+𝟕𝟐𝑠2+𝟗𝟔𝟎𝒔+  𝟏𝟓𝟏𝟐

3𝑠(𝑠2+𝟔2)(𝑆+2)
      

Solution of exercice 2 : 

a) F(S)=−
1

4−S
    

ℒ−1 (−
1

4−S
) = ℒ−1 (

1

s−4
) = e4t (see table VI.1) 

         b) F(s)= 
3

2s6
    

          ℒ−1( 
5

s2+4
) =  ℒ−1( 

5

2

2

s2+22
) =  

5

2
ℒ−1( 

2

s2+22
) = 

5

2
𝑠in(2t) 

           d)F(s)= 
7

3s+2
   

ℒ−1( 
7

3s+2
) =  ℒ−1( 

7

3s+2
) =

7

3
 ℒ−1( 

1

s+
2

3

) = 
7

3
 e−

2

3
t
 

      e) F(s)= 
s

2s2+5
+  

9

s4
− 4   

ℒ−1 (
s

2s2+5
+  

9

s4
−

4

𝑠
 )=  ℒ−1 (

s

2s2+5
) + ℒ−1 (

9

s4
) − 4ℒ−1(

1

𝑠
 )     

                                  =
1

2
ℒ−1 (

s

s2+(√
5

2
)2
) +

3

2
 ℒ−1 (

3x2

s3+1
) ) − 4ℒ−1(

1

𝑠
 )     

                                  =
1

2
cos (√

5

2
t) +

3

2
 t3 − 4    

Solution of exercise 3: 

1)x′ = 𝑡2 − 2   avec  x(0) =3 

Apply Laplace transform both sides of equation  

ℒ(x’(t)) = ℒ(𝑡2 − 2)⇒  𝑠ℒ( x(t)) − x(0) = ℒ(𝑡2) − 2 ℒ(1) 

                                                                          3 

⇒𝑠ℒ( x(t))− 3 =
2!

𝑠2+1
− 2

1

s
 
 
⇒ℒ( x(t)) =

2

s4
−
2

𝑠2
+
3

s
 

Now, we apply inverse of Laplace transform both sides of equation: 

x(t) = ℒ−1(
2

s4
−

2

𝑠2
+
3

s
) ⇒ y(t) =

1

3
ℒ−1 (

2x3

s4
) − ℒ−1 (

2

s3
) + 3ℒ−1(

1

s
) 

Thus, our solution x(t)= 
1

3
𝑡3 − 𝑡2 +3 

2) x′ + x =3cos(t)    avec  x(0) =5 

Apply Laplace transform both sides of equation  

ℒ(x’(t) + x(t)) = ℒ(3cos(t))⇒  𝑠ℒ( x(t))− x(0) + ℒ( x(t)) = 3ℒ(cos (𝑡))                                                                          

⇒ℒ( x(t))[s + 1] = 3
𝑠

𝑠2+1
+ 5

 
⇒ℒ( x(t)) =

3s

(𝑠2+1)(𝑠+1)
= 

a

(𝑠+1)
+

bs+c

(𝑠2+1)
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                                                                              (According to partial fraction decomposition) 

 

 

 

(a, b and c constants to determine by identification) 

Now, we apply inverse of Laplace transform both sides of equation: 

x(t) = ℒ−1(
a

(𝑠+1)
+

bs+c

(𝑠2+1)
) ⇒ x(t) = 𝑎ℒ−1 (

1

(𝑠+1)
) + bℒ−1 (

s

𝑠2+1
) + 𝑐(

1

𝑠2+1
) 

Thus, our solution x(t)=𝑎e−t + bcos(t) + csin(t) ( where a=−
3

2
, b= 

3

2
, c=− 

3

2
 ) 
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