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Abstract

This thesis focuses on studying linear and nonlinear dynamic systems on time scales or both. The

aim of the study is, on one hand, to find the exact solution for the non-population conserving SIR

model on time scales, and on the other hand, to investigate the uniform stability of the SICA

model also on time scales. We introduce a fractional order SIR model and SICA model and we

prove the existence and the positivity of solution.

Key words: Time Scales, dynamic equations on time scales, deterministic epidemic model, model

SIR ,... existence of solution, SICA model for HIV transmission, permanence, almost periodic

solution, uniform asymptotic stability, numerical simulations, fractional order model, existence of

solution.
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Notations

T Time scales.

R Real numbers.

Z Integers.

N Natural numbers.

N0 Nonnegative integers.

hZ hz; z ∈ Z, where h is a fixed real number.

Pa,b ∪∞
k=0 [k(a+ b), k(a+ b) + a].

Q Rational numbers.

R \Q Irrational numbers.

C Complex numbers.

σ(.) Forward jump operator.

ρ(.) Backward jump operator.

µ(.) Graininess function.

f∆(.) Delta derivative of f at t on T.

∆ Usual forward difference operator.

Crd = Crd(T) = Crd(T,R) Set of rd-continuous function.

C1
rd = C1

rd(T) = C1
rd(T,R) Set of differentiable functions whose derivative is rd-continuous.

⊕ Circle plus (addition) on T.

⊖ Circle minus (subtraction on T).

ξh(.) Cylinder transformation.

R = R(R) = R(R,T) Set of all regrissive and rd-continuous functions.

R+ = R+(R) = R+(R,T) Set of all regrissive and rd-continuous functions such that



1 + µ(t)f(t) > 0, for all t ∈ T.

(p⊕ q)(.) Addition on R.

(p⊖ q)(.) Subtraction on R.

(p⊙ q)(.) Product on R.

ep(., s) Exponential function on time scales.
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Introduction

The historical trajectory of employing mathematical models to understand and predict the dy-

namics of disease transmission can be traced back to the pivotal year of 1766 and the work of

Daniel Bernoulli. Indeed, Bernoulli’s work laid a foundational understanding of the application of

mathematical principles in describing the intricate patterns of disease spread [20].

Fast forward to the year 1927, a crucial milestone emerged with the seminal publication of Ker-

mack and McKendrick [27]. In their groundbreaking work, they introduced the SIR (Susceptible–

Infected–Recovered/Removed) model for epidemics. This pioneering model not only provided a

conceptual framework for comprehending the transmission dynamics of infectious diseases, but

also set the stage for the development of numerous subsequent models. In fact, SIR type models,

with their compartmental classification of individuals into different classes, became a cornerstone

in the field of epidemiology, offering a versatile and widely adopted template for modeling various

contagious diseases [2].

Since then, the field has witnessed a burgeoning array of mathematical models, each tailored

to address specific nuances and challenges associated with different diseases. The continuous

evolution of these models reflects the ongoing commitment of researchers to refine and enhance

our understanding of epidemic dynamics, ultimately contributing to more effective strategies for

disease control and prevention [1].

Let N(t) = S(t) + I(t) + R(t) denote the total population at time t. The classical and more

standard SIR epidemic model assumes that there are no births or deaths during the period under

study, based on the assumption that these are on a much slower time scales and can therefore be



ignored. The combined dynamics is then given mathematically by


Ṡ(t) = −λS(t)I(t)

N(t)
,

İ(t) = λS(t)I(t)
N(t)

− γI(t),

Ṙ(t) = γI(t),

where λ > 0 is the infection rate and γ > 0 is the rate for which infected individuals recover.

Clearly, model SIR assumes the total population under study to be constant: (S(t) + I(t) +R(t))′ =

0. Some of its limitations stand out immediately: for diseases such as Ebola [3, 40] or COVID-19

[12, 46], where death rates are not negligible, then we do not have a constant population and model

SIR ceases to be valid.

In [12], Borkar and Manjunath propose a variant of SIR, called the SIR-NC model, that, unlike

the standard SIR model, does not assume the conservation of the population. Surprisingly, by

incorporating a nonzero death rate into the model, thus being more suitable to diseases like Ebola

or COVID-19, the new SIR-NC model is analytically tractable [12, 17].

Calculus on time scales is a mathematical area that generalizes the traditional calculus by uni-

fying continuous and discrete analysis on an arbitrary time scales. By combining both continuous

and discrete elements, time scales allow for a more flexible and inclusive approach to modeling

systems that exhibit both continuous and discrete behaviors (hybrid systems). The theory was

introduced by Stefan Hilger from 1988 to 1990 as a special case of a general analysis on measure

chains [21] (see also [4]).

The analysis on time scales allows one to generalize differential and difference equations, incor-

porating both continuous and discrete dynamics in a unified setting. Moreover, the new analysis

holds in any nonempty closed set, such as the set of integers, rationals, or more complex struc-

tures like the Cantor set, offering a more comprehensive mathematical framework for analyzing

and modeling systems with mixed continuous and discrete dynamics. This permits to extend the

applicability of traditional calculus to a broader. In particular, this is true in epidemic modeling,

where analysis on time scales have allowed the modeling of noncontinuous disease dynamics, e.g.

diseases where a virus remains unnoticed within the host for several years before continuing to

spread [10, 11].
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Here we investigate the SIR-NC model on an arbitrary time scales. Our results are then given on

chapter 2 Section 2.1: we formulate our SIR-NC model on time scales (cf. the dynamic system

(2.1), proving that there exists a unique solution (cf. Theorem 2.3). More than that, an explicit

analytical formula for the solution is obtained (cf. 2.4). We end with Section 2.2, discussing the

SIR-NC model on time scales with imported infections. Under some conditions, a closed formula

for the solution is also obtained (cf. Theorem 2.4). Along the text, two examples are given to illus-

trate the obtained results and showing how our results generalize those available in the literature

(cf. Example 2.1.1 and Example 2.2.1).

Infectious diseases pose a massive threat to humans and the economy of states. Proper under-

standing of disease dynamics plays an important role in curtailing infections in a community. The

implementation of suitable strategies against disease transmission is another challenge. A math-

ematical modeling approach is one key tool for addressing these challenges. A number of disease

models have been developed in the existing literature, which enable us to explore and control the

spread of infectious diseases more effectively.

Most of these models are based on integer-order differential equations (IDEs). However, in

recent years, it has been noted that fractional-order equations (FDEs) can provide additional in-

sights [28]. Let us consider the SIR model (Susceptibles, Infectives, Removed) as described in [19] :


dx(t)
dt

= −αy(t)x(t)
dy(t)
dt

= αy(t)x(t)− βy(t)

dz(t)
dt

= βy(t),

where N(t) = x(t) + y(t) + z(t) the total population at time t, x(t) represents susceptible, y(t)

represents number of infected and z(t) represents the number of recovered individuals. The initial

conditions are given by

x(0) = x0, y(0) = y0, z(0) = z0.

The complete model that describes the system of fractional differential equations is presented as

follows:

12




cdαx(t)
dtα

= −αy(t)x(t)
cdαy(t)
dtα

= αy(t)x(t)− βy(t)
cdαz(t)
dtα

= βy(t).

In 2015, the deterministic SICA model was first presented as a sub-system of a TB-HIV/AIDS

co-infection model [42]. One of the primary objectives of SICA models is to demonstrate how

some of the fundamental relationships between epidemiological variables and the general pattern

of the AIDS epidemic can be clarified using a straightforward mathematical model [36]. The

celebrated SICA mathematical model [13, 14, 34, 45, 49] divides the total human population into

four compartments, namely

� S(t): susceptible individuals at time t;

� I(t): HIV-infected individuals with no clinical symptoms of AIDS but able to transmit HIV

to other individuals at time t;

� C(t): HIV-infected individuals under antiretroviral therapy (ART), the so called chronic

stage with a viral load remaining low at time t;

� A(t): HIV-infected individuals with AIDS clinical symptoms at time t.

Under some realistic assumptions, the dynamics of the disease proliferation in a community is then

translated into a mathematical model given by the following system of four ordinary differential

equations [42, 43, 44]:



Ṡ(t) = Λ− βλ(t)S(t)− νS(t),

İ(t) = βλ(t)S(t)− (ρ+ ϕ+ ν)I(t) + γA(t) + ωC(t),

Ċ(t) = ϕI(t)− (ω + ν)C(t),

Ȧ(t) = ρI(t)− (γ + ν + d)A(t),

(1)

where Λ, β, ν, ρ, ϕ, γ, ω and d are real positive rates,

� Λ is the rate of new susceptible;

� β is the HIV transmission rate;

13



� ν is the natural death rate;

� ρ is the default treatment rate for I individuals;

� ϕ is the HIV treatment rate for I individuals;

� γ is the AIDS treatment rate;

� ω is the default treatment rate for C individuals;

� d is the AIDS induced death rate;

and where the effective contact rate with people infected with HIV is given by

λ(t) =
β

N(t)
(I(t) + ηCC(t) + ηAA(t))

with

� N(t) the total population at time t, that is,

N(t) = S(t) + I(t) + C(t) + A(t);

� 0 ≤ ηC ≤ 1 the modification parameter;

� ηA ≥ 1 the partial restoration parameter of immune function of individuals with HIV infection

that use correctly the ART treatment.

The study of dynamical systems on time scales is now a very active area of research. The

books of Bohner and Peterson [7, 8] offer a good introduction with applications to the time scales

calculus along with some advanced topics. Applications of the time scales calculus can be found

in many areas, including economics [9, 15, 48], ecology [37, 38, 52] and epidemics [11, 39, 24].

Here we generalize the SICA model by considering dynamic equations on time scales and study it

using the time-scales theory. By doing it, we unify the continuous and discrete-time models [49],

generalizing it also to other contexts like the quantum [25, 35] or mixed/hybrid settings [16, 50].

Recently, Prasad and Khuddush proved the existence and uniform asymptotic stability of posi-

tive and almost periodic solutions for a 3-species Lotka–Volterra competitive system on time scales

14



[38]. Moreover, they also studied the permanence and positive almost periodic solutions of a n-

species Lotka–Volterra system on time scales [37]. Motivated by these works, here we investigate

the permanence and uniform asymptotic stability of the unique positive almost periodic solution

of the following SICA model on time scales:



x∆1 (t) = Λ− βλ(t)xσ1 (t)− νxσ1 (t),

x∆2 (t) = βλ(t)x1(t)− (ρ+ ϕ+ ν)xσ2 (t) + γx4(t) + ωx3(t),

x∆3 (t) = ϕx2(t)− (ω + ν)xσ3 (t),

x∆4 (t) = ρx2(t)− (γ + ν + d)xσ4 (t),

where t ∈ T+, with T+ a nonempty closed subset of R+ =]0,+∞[.

Note that, in our notation, (x1(t), x2(t), x3(t), x4(t)) is interpreted as (S(t), I(t), C(t), A(t)).

The main objective of the thesis

We consider the time scales T and the SIR-NC model defined on T as follows:

S∆(t) = −λ S(t)Iσ(t)

S(t) + I(t)
− νSσ(t),

I∆(t) = λ
S(t)Iσ(t)

S(t) + I(t)
+ νSσ(t)− γIσ(t),

R∆(t) = γIσ(t),

where S, I, R : T −→ R+ and λ, γ, ν > 0, and we set N(t) := S(t) + I(t).

We seek the exact and unique solution, namely finding S(t), I(t), R(t) that satisfy the initial con-

ditions S(0) > 0, I(0) > 0, R(0) > 0.

We will prove the existence and uniqueness of solutions of the following fractional SIR model:


cdαx
dtα

= −αy(t)x(t)
cdαy
dtα

= αy(t)x(t)− βy(t)

cdαz
dtα

= βy(t)

15



Note that, in our notation, (x(t), y(t), z(t)) is interpreted as (S(t), I(t), R(t)). The initial conditions

are given by

x(0) = x0 ≥ 0, y(0) = y0 ≥ 0, z(0) = z0 ≥ 0.

Based on the works by Prasad and Khuddush [37],[39] on studying positive and uniformly

asymptotically stable almost periodic solutions for systems on time scales, including the Lotka-

Volterra models [38], we investigate the permanence and uniform asymptotic stability of the unique

positive almost periodic solution of the following SICA model on time scales:



S∆(t) = Λ− βλ(t)Sσ(t)− νSσ(t),

I∆(t) = βλ(t)S(t)− (ρ+ ϕ+ ν)Iσ(t) + γA(t) + ωC(t),

C∆(t) = ϕI(t)− (ω + ν)Cσ(t),

A∆(t) = ρI(t)− (γ + ν + d)Aσ(t),

where t ∈ T+, with T+ a nonempty closed subset of R+ =]0,+∞[.

Finally we prove the existence and uniqueness of solutions of the following Caputo fractional

SICA model:



C
t0
Dα
t w(t) = Λ− β(x(t) + ηyy(t) + ηzz(t))w(t)− µw(t),

C
t0
Dα
t x(t) = β(x(t) + ηyy(t) + ηzz(t))w(t)− ξ3x(t) + ωy(t) + γz(t),

C
t0
Dα
t y(t) = ϕx(t)− ξ2y(t),

C
t0
Dα
t z(t) = ρx(t)− ξ1z(t).

Note that, in our notation, (w(t), x(t), y(t), z(t)) is interpreted as (S(t), I(t), C(t), A(t)).

Tools and Techniques for Work

This thesis employs a variety of tools in time-scales calculus, encompassing differentiation and

integration, [7, 8]. It builds upon extensive studies within the field, focusing on the precise analysis

of solutions for epidemiological systems like the SIR model [10, 11], along with investigations into

asymptotic stability [47, 22], Also fractional operator [28, 29, 30, 31, 41]
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Description of the chapters and main results

In Chapter One, we include basic concepts in time-scale calculus, which are essential tools for

the different chapters. This chapter covers the necessary calculus and the fundamental existence

theory for dynamic systems on time scales, and we develop Lyapunov’s second method.

In chapter Two, we propose the following SIR-NC models on time scales T :



S∆(t) = −λ S(t)Iσ(t)

S(t) + I(t)
,

I∆(t) = λ
S(t)Iσ(t)

S(t) + I(t)
− γIσ(t),

R∆(t) = γIσ(t),

(2)

and 

S∆(t) = −λ S(t)Iσ(t)

S(t) + I(t)
− νSσ(t),

I∆(t) = λ
S(t)Iσ(t)

S(t) + I(t)
+ νSσ(t)− γIσ(t),

R∆(t) = γIσ(t),

(3)

where S, I, R : T −→ R+ and λ, γ, ν > 0, subject to given initial conditions

S(0) = S0, I(0) = I0, R(0) = R0 (4)

with S0 > 0, I0 > 0, and R0 ≥ 0. In the particular case T = R, problem (2)–(4) is studied in [12].

More precisely, we prove the following two theorems:

Theorem 0.1. [6] Let C =
S(0)

I(0)
. If γ − λ, p(t) ∈ R, then the unique solution to (3)–(4) is given

by

 S(t) = e(⊖p(t))⊕(γ−λ)(t, 0)S(0),

I(t) = e⊖p(t)(t, 0)I(0),

where p(t) = γ − λC

e⊖(γ−λ)(t, 0) + C
.

Theorem 0.2. [6] If ν, γ − λ ∈ R, then the solution to the SIR-NC system (2) with imported

17



infections is given as follows:


S(t) =

x(t)

1− x(t)
e⊖g(t)(t, 0)I(0),

I(t) = e⊖g(t)(t, 0)I(0),

t ∈ T, where S, I : T −→ R+, λ, γ, ν > 0, and g(t) = −λx(t) + γ − νxσ(t)

1− xσ(t)
,

x(t) =
x(0)

eν⊖(γ−λ)(t, 0)
(
1 + x(0)(γ−λ)

ν−γ+λ

)
− x(0)(γ−λ)

ν−γ+λ

.

In Chapter Three, we examine a fractional-order SIR model:


cdαx
dtα

= −αy(t)x(t)
cdαy
dtα

= αy(t)x(t)− βy(t)

cdαz
dtα

= βy(t)

(5)

Note that, in our notation, (x(t), y(t), z(t)) is interpreted as (S(t), I(t), R(t)), and cdα fractional

Caputo derivative having 0 < α ≤ 1. The initial conditions are given by

x(0) = x0 ≥ 0, y(0) = y0 ≥ 0, z(0) = z0 ≥ 0,

and we take the conditions of growth non-linear vector operator ϕ : R3
+ × [0, T ] −→ R+ as:

(A1) There is a constant Lϕ > 0; ∀(W (t), W ′(t)) ∈ R× R;

|ϕ(W (t), t)− ϕ(W ′(t), t)| ≤ Lϕ |W (t)−W ′(t)| .

(A2) there is a constants Cϕ > 0,Mϕ > 0;

|ϕ(W (t), t)| ≤ Cϕ |W |+Mϕ.

More precisely, we prove the following two theorems:

Theorem 0.3. Under the continuity of ϕ together with assumption (A2), system (5) has at least

18



one solution.

Theorem 0.4. Using (A1), system (5) has unique or one solution if Tα

Γ(α+1)
Lϕ < 1.

In Chapter Four, we investigate the permanence and existence of solutions, and provide

sufficient conditions to indicate the existence of a unique almost periodic uniformly asymptotically

stable solution of the following SICA model on time scales.



S∆(t) = Λ− βλ(t)Sσ(t)− νSσ(t),

I∆(t) = βλ(t)S(t)− (ρ+ ϕ+ ν)Iσ(t) + γA(t) + ωC(t),

C∆(t) = ϕI(t)− (ω + ν)Cσ(t),

A∆(t) = ρI(t)− (γ + ν + d)Aσ(t),

(6)

where t ∈ T+, with T+ a nonempty closed subset of R+ =]0,+∞[.

Under certain assumptions:

(H1) λ(t) is a bounded and almost periodic function satisfying

0 < λL ≤ λ(t) ≤ λU .

(H2) Γ2 < Γ1 with Γ1,Γ2 ∈ R+.

More precisely, we prove the following results

Lemma 0.1. [5] Suppose hypothesis (H1) holds. Then, for any positive solution (x1(t), x2(t), x3(t), x4(t))

of system (6), there exists positive constants M and T such that xi(t) ≤M , i = 1, 2, 3, 4, for t ≥ T .

Note that, in our notation, (x1(t), x2(t), x3(t), x4(t)) is interpreted as (S(t), I(t), C(t), A(t)).

Lemma 0.2. [5] Suppose that (H1) holds. Then, system (6) is permanent.

Theorem 0.5. [5] Suppose that (H1) and (H2) hold. Then the dynamic system (6) has a unique al-

most periodic solution Z(t) = (x1(t), x2(t), x3(t), x4(t)) ∈ Ω that is uniformly asymptotically stable.
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In chapitre Five, we examine the Caputo fractional order SICA model:



C
t0
Dα
t w(t) = Λ− β(x(t) + ηyy(t) + ηzz(t))w(t)− µw(t),

C
t0
Dα
t x(t) = β(x(t) + ηyy(t) + ηzz(t))w(t)− ξ3x(t) + ωy(t) + γz(t),

C
t0
Dα
t y(t) = ϕx(t)− ξ2y(t),

C
t0
Dα
t z(t) = ρx(t)− ξ1z(t).

(7)

And we take the conditions of growth non-linear vector operator ψ : [0, T ]× R4
+ −→ R+ as:

(A1) ∃ a constants Lψ > 0; ∀(U(t), U ′(t)) ∈ R× R ;

|ψ(U(t), t)− ψ(U ′(t), t)| ≤ Lψ|U(t)− U ′(t)|

.

(A2) ∃ a constants Cψ > 0,Mψ > 0;

| ψ(U(t), t) |≤ Cψ | U | +Mψ

. More precisely, we prove the following results

Theorem 0.6. Under the continuity of ψ together with assumption (A2), system(7) has at least

one solution.

Theorem 0.7. Using (A1), system (7) has unique or one solution if
Tα

Γ(α + 1)
Lψ < 1.

Contributions
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mission models on time scales, Applicationes Mathematicae, vol 51,2 (2024), pp. 163-177, Doi:

10.4064/am2521-6-2024

(2) N. Zine, Z. Belarbi and B. Bayour, Exact solution to a general tumor growth model on time

scales, Palestine Journal of math, vol 13 (1), 361-370, 2024.

(3) Z. Belarbi and B. Bayour, D. F. M. Torres, The non-population conserving SIR model on time

scales. In chapter 8 of Mathematical Analysis: Theory and Applications, Chapman& Hall, 2025.
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Chapter 1

Preliminaries

In this chapter, we introduce some basic concepts related to calculus on time scales, provide exact

solutions with given examples, discuss fractional operators, and explore stability. The definitions

and results presented in this chapter can be found in [7, 8, 10, 11, 47, 22, 18].

1.1 The Time Scales calculus

Definition 1.1.1. A time scales is an arbitrary nonempty closed subset of the real numbers. Thus

R, N0, N, Z.

i.e., the real numbers, the integers, the natural numbers, and the nonnegative integers are examples

of time scales, as are

[0, 1] ∪ [2, 3] , [0, 1] ∪ N, and the Cantor set,

while

Q, R \Q, C, (0, 1),

are not time scales. Throughout this thesis we will denote a time scales by the symbol T. We

assume throughout that a time scales T has the topology that it inherits from the real numbers with

the standard topology.

We will introduce the delta derivative f∆ for a function f defined on T, and it turns out that
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(i) f∆ = f
′
is the usual derivative if T = R and

(ii) f∆ = ∆f is the usual forward difference operator if T = Z.

In this section we introduce the basic notions connected to time scales. We start by defining the

forward and backward jump opertors.

Definition 1.1.2. Let T be a time scales . For t ∈ T we define the forward jump operator

σ : T −→ T by

σ(t) := inf {s ∈ T : s > t} for all t ∈ T,

while the backward jump operator ρ : T −→ T is defined by

ρ(t) := sup {s ∈ T : s < t} for allt ∈ T,

and the graininess function µ : T −→ [0,∞) is defined by

µ := σ(t)− t for all t ∈ T.

Using these operators, any t ∈ T can be classified as

• right-scattered (left-scatterd), if σ(t) > t (ρ(t) < t), and

• right-dense (left-dense), if σ(t) = t (ρ(t) = t).

We say that a point t ∈ T is isolated, if it is right and left-scattered. we say that a point t ∈ T is

dense, if it is right-and left-dense.

Example 1.1.1. Let us consider different time scales

• If T = R, we have σ(t) = ρ(t) = t, then t is dense.

• If T = Z, we have σ(t) = t+ 1 > t, and ρ(t) = t− 1 < t, then t is isolated.

• If T = N2
0 = {n2, n ∈ N0}, we have σ(t) = (

√
t + 1)2 > t, and ρ(t) = (

√
t − 1)2 < t, then t is

isolated.

• If T = [0, 1[ ∪ {1, 2, 5, 6}, we have σ(1) = 2 > 1, ρ(1) = 1 = t then 1 is right-scatterd and

left-dense. {2, 5, 6} are isolated.
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Definition 1.1.3. Let T be a time scales . For t ∈ T we define the set Tk by

Tk =

 T− ]ρ(supT), supT] if supT < +∞

T if supT = +∞.
(1.1)

If T has a left-scattered maximum M , then we define Tk = T− {M}, otherwise Tk = T.

Example 1.1.2. • Let T = {2, 4, 6, 8, ....}. We have supT = +∞ then Tk = T.

• Let T = ]−∞, 0] ∪ {1, 2, 5, 7}, we have supT = 7, and ρ(supT) = 5, then

Tk = T− ]5, 7] = ]−∞, 0] ∪ {1, 2, 5} .

Definition 1.1.4. Assume f : T −→ R is a function and let t ∈ T. The function is defined

fσ : T −→ R par

fσ(t) := (f ◦ σ)(t) = f(σ(t)), pour tout t ∈ T.

1.1.1 Differentiation

Definition 1.1.5. Let f : T −→ R and t ∈ Tk. If there exists f∆(t) ∈ R such that for all ε > 0,

there exists δ > 0 such that

∣∣f(σ(t))− f(s)− f∆(t)(σ(t)− s)
∣∣ ≤ ε |σ(t)− s| for all s ∈ (t− δ, t+ δ) ∩ T,

then we call f∆(t) the delta derivative of f at t ∈ Tk.

If f∆(t) exists for all t ∈ Tk, we say that f is delta differentiable (differentiable) and the function

f∆ : T −→ R is called delta derivative of f on Tk.

If f is differentiable at t ∈ Tk, then

f(σ(t)) = f(t) + µ(t)f∆(t).

The definition of a delta derivative can be extended to consider higher order derivatives. We

say that f is twice delta differentiable with the second (delta) derivative f∆∆, if f∆ is (delta)

differentiable on Tk2 = (Tk)k.
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Theorem 1.1. Let f : T −→ R and t ∈ Tk. Then, the following holds:

i. If t is right-dense, then

f∆(t) = lim
s−→t

f(t)− f(s)

t− s
,

provided that the limit exists (as a finite number).

ii. If f is continuous at the right-scattered point t, then

f∆(t) =
f(σ(t))− f(t)

µ(t)
.

Applying Theorem 1.1 for the case of T = R, that is, f∆(t) = f ′(t) for t ∈ R. For T = Z, that

is, f∆(t) = f(t + 1) − f(t) = ∆f(t) for t ∈ Z, where ∆ is the usual forward difference operator

defined by the last equation above.

Example 1.1.3. Let f : T −→ R a function defined by f(t) = logt, If T = qN0 , q > 1 we have

σ(t) = qt and µ(t) = t(q − 1), then

f∆(t) = lim
s−→t

f(σ(t))− f(s)

σ(t)− s
= lim

s−→t

log qt− log s

qt− s
=

log q

t(q − 1)
.

Example 1.1.4. (σ is in general not differentiable). Here we present an example of a time scales

T whose jump function σ : T −→ T is continuous but not differentiable at a right-dense point

t ∈ T. Let

T =
{
tn = (1/2)2

n

: n ∈ N0

}
∪ {0, 1} .

Then

σ(tn) = tn−1 −→ 0 = σ(0), n −→ ∞,
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and hence lim
s−→0

σ(s) = σ(0) so σ is continuous at 0. But

lim
s−→0

σ(σ(0))− σ(s)

σ(0)− s
= lim

s−→0

σ(s)

s

= lim
s−→0

√
s

s

∆ = lim
s−→0

1√
S

= ∞

(1.2)

so that σ is not differentiable at 0.

Theorem 1.2. Assume f, g : T −→ R are differentiable at t ∈ Tk. Then:

(i) The sum f + g : T −→ R is differentiable at t with

(f + g)∆(t) = f∆(t) + g∆(t).

(ii) For any constant α, αf : T −→ R is differentiable at t with

(αf)∆(t) = αf∆(t).

(iii) The product fg : T −→ R is differentiable at t with

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t) = f(t)g∆(t) + f∆(t)g(σ)(t).

(iv) If f(t)f(σ(t)) ̸= 0, then
1

f
is differentiable at t with

(
1

f

)∆

(t) = − f∆(t)

f(t)f(σ(t))
.

(v) If g(t)g(σ(t)) ̸= 0, then
f

g
is differentiable at t and

(
f

g

)∆

(t) =
f∆(t)g(t)− f(t)g∆(t)

g(t)g(σ(t))
.
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For T = R, we have fσ = f and gσ = g so that the classical product and quotient rule are retrieved.

In the case of T = Z, we have

(fg)∆(t) = ∆(fg)(t) = (∆f(t))g(t+ 1) + f(t)(∆g(t)) = (∆f(t))g(t) + f(t+ 1)(∆g(t)).

If g(t), g(t+ 1) ̸= 0, then

(
f

g

)∆

(t) = ∆

(
f(t)

g(t)

)
=

(∆f(t))g(t)− (∆g(t))f(t)

g(t)g(t+ 1)

Example 1.1.5. Let T = 2N0 = {2, 22, 23, ...}, then σ(t) = 2t, µ(t) = t and u, v : T −→ R, u(t) =

log(t), v(t) = et.

We have

u∆(t) =
u(σ(t))− u(t)

µ(t)
=
log(2t)− log(t)

t
=
log2

t
,

and

v∆(t) =
v(σ(t))− v(t)

µ(t)
=
e2t − et

t
,

then

(u(t)v(t))∆ = u(t)v∆(t) + u∆(t)vσ(t)

= log(t)
e2t − et

t
+
log(2)

t
e2t

=
et

t

(
(et − 1)log(t) + log(2)et

)
,

and

(
u(t)

v(t)

)∆

=
u∆(t)v(t)− u(t)v∆(t)

v(t)vσ(t)

=

log(2)

t
et − log(t)

e2t − et

t
e3t

=
log(2)− (et − 1)log(t)

te2t
.
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Theorem 1.3. ([8], Theorem 1.90). Let f : R −→ R be continuously differentiable and suppose

g : T −→ R is (delta) differentiable. Then f ◦ g : T −→ R is (delta) differentiable and

(f ◦ g)∆(t) =
{∫ 1

0

f ′(g(t) + hµ(t)g∆(t))dh

}
g∆(t).

An interesting observation is that the operators, ∆ and σ, do generally not commute, that is,

(f∆)σ ̸= (fσ)∆, Take for example T = qN0 with q > 1, then

(f∆)σ(t) =
f(q2t)− f(qt)

µ(qt)
̸= f(q2t)− f(qt)

µ(t)
= (fσ)∆(t),

since µ(qt) = qt(q − 1) ̸= t(q − 1) = µ(t).

Example 1.1.6. If x, y, and z are delta differentiable at t, then

(xyz)∆ = (x.(yz))∆ = x∆(yz) + xσ(yz)∆

= x∆yz + xσ(y∆z + yσz∆)

= x∆yz + xσy∆z + xσyσz∆.

(1.3)

Mean Value Results

Definition 1.1.6. We say that a function f : T −→ R is right-increasing at a point t0 ∈ T \

{maxT} provided

(i) if t0 is right-scatterd, then f(σ(t0)) > f(t0);

(ii) if t0 is right-dense, then there is a neighborhood U of t0 such that

f(t) > f(t0) for all t0 ∈ U with t > t0

Similarly, we say that f is a right-decreasing if above in (i), f(σ(t0)) < f(t0) and in (ii), f(t) <

f(t0).

Example 1.1.7. Let f : T −→ R a function define by f(t) = 2t,T = {t ∈ hZ ∪ [2, 3] , h > 0}.
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� If t0 ∈ hZ we have σ(t0) = t0 + h then t0 is right scatterd and

∀t0 ∈ T, f(σ(t0)) = 2t0 + 2h > f(t0)

then f is right-increasing at t0.

� If t0 ∈ ]2, 3[ , σ(t0) = t0 then t0 is dense and

f(t) > f(t0), ∀t ∈ ]2, 3[ with t > t0.

then f is increasing at t0.

Theorem 1.4. Suppose f : T −→ R is differentiable at t0 ∈ T \ {maxT}.

(i) If f∆(t0) > 0, then f is right-increasing.

(i) If f∆(t0) < 0, then f is right-decreasing.

Example 1.1.8. Let f : T −→ R a function define by f(t) = t2, T = {qn, q > 1, n ∈ N}, If

t0 ∈ T \ {∞} , σ(t) = qt > t and f∆(t) = (q + 1)t > 0, then f is right-increasing.

Definition 1.1.7. We say that a function f : T −→ R is right-maximum at t0 ∈ T \ {maxT}

provided.

(i) If t0 is right-scatterd, then f(σ(t0)) ≤ f(t0);

(ii) if t0 is right-dense, then there is a neighborhood U of t0 such that

f(t) ≤ f(t0) for all t ∈ U with t > t0

Similarly, we say that f its local right-minimum if in (i), f(σ(t0)) ≥ f(t0) and in (ii), f(t) ≥ f(t0).

Example 1.1.9. Let f : T −→ R a function define by f(t) = 2t, T = [0, 2] ∪ {3, 4, 5, 6}

� If t0 ∈ [0, 2] is dense and

∃D = ]0, 2] , f(t) ≥ f(t0), for all t ∈ D with t > t0.

since f assume its local minimum at t0.
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� If t0 = 4, σ(t0) = 5, t0 is right-scatterd, we have f(σ(4)) = 10 ≥ f(4) = 8 since f assume its

local right-minimum at t0 = 4.

Theorem 1.5. Suppose f : T −→ R is differentiable at t0 ∈ T \ {maxT}.

(i) If f∆(t0) > 0, then f assumes its local right-minimum at t0.

(ii) If f∆(t0) < 0, then f assumes its local right-maximum at t0.

Theorem 1.6. Suppose f : T −→ R is differentiable at t0 ∈ T \ {maxT}.

(i) If f assumes its local right-minimum at t0 , then f∆(t0) ≥ 0 .

(ii) If f assumes its local right-maximum at t0, then f
∆(t0) ≤ 0 .

Example 1.1.10. Let f : T −→ R a function define by f(t) = log(t), T =
√
n, n ∈ N0, t0 ∈

T \ {∞} , σ(t0) =
√
t20 + 1 we have

f∆(t0) =
f(σ(t0))− f(t0))

σ(t0)− t0
=
log(

√
t20 + 1)− log(t0)√
t20 + 1− t0

since log(
√
t20 + 1) > log(t0), and

√
t20 + 1 > t0 then f∆(t0) > 0 therefore f assumes its right-

minimum at t0..

Example 1.1.11. Let f : T −→ R a function define by f(t) =
1

t
, T = N \ {0} , σ(t0) = t0 + 1.

If t0 ∈ T \ {∞} we possess

f∆(t0) =
f(σ(t0))− f(t0)

σ(t0)− t0
= − 1

t0(t0 + 1)
< 0

then f assumes its right-maximum at t0.

Theorem 1.7. Let f be a continuous function on [a, b] that is differentiable on [a, b) (the differ-

entiability at a is understood as right-sided) and satisfies

f(a) = f(b).

Then there exist ξ, τ ∈ [a, b) such that

f∆(τ) ≤ 0 ≤ f∆(ξ).
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Theorem 1.8. Let f be a continuous function on [a, b] that is differentiable on [a, b). Then there

exist ξ, τ ∈ [a, b) such that

f∆(τ) ≤ f(b)− f(a)

b− a
≤ f∆(ξ).

Corollary 1.1. Let f be a continuous function on [a, b] that is differentiable on [a, b). If f∆(t) = 0

for all t ∈ [a, b), then f is a constant function on [a, b].

Corollary 1.2. Let f be a continuous function on [a, b] that is differentiable on [a, b). Then f is

increasing, decreasing, nondecreasing, and nonincreasing on [a, b] if f∆(t) > 0, f∆(t) < 0, f∆(t) ≥

0, and f∆(t) ≤ 0 for all t ∈ [a, b), respectively.

Definition 1.1.8. A function f : T −→ R is called pre-differentiable (with region of differentiation

D) provided that the following conditions hold:

(i) f is continuous on T;

(ii) D ⊂ Tk;

(iii) Tk \D countable and contains no right-scattered elements of T;

(iv) f is differentiable at each t ∈ D.

Theorem 1.9. Let f and g be real-valued functions defined on T. Suppose both f and g are

pre-differentiable with region of differentiation D. Then

∣∣f∆(t)
∣∣ ≤ g∆(t) for all t ∈ D,

implies

|f(r)− f(s)| ≤ g(r)− g(s) for r, s ∈ T with r ≤ s.

Proposition 1.1.1. Let γ : T −→ R be a strictly increasing function. Then γ(T) is a time scales

if and only if

(i) γ is continuous

and

(ii) γ is bounded above (respectively below) only when T is bounded above (respectively below).
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1.1.2 Integration

Definition 1.1.9. A function f : T −→ R is called regulated provided its right-sided limits exist

(finite) at all right-dense points in T and its left-sided limits exist (finite) at all left-dense points

in T.

Example 1.1.12. Let T = R and

f(t) =


2

t− 1
for t ∈ R \ 1

3 for t = 1
(1.4)

All points of T are denses and lim
t<−→1

f(t) = −∞, lim
t>−→1

f(t) = +∞. Therefore, the function f isn’t

regulated on R.

Example 1.1.13. Let T = N ∪ [0, 1] and

f(t) =
1

t
, g(t) =

t

t+ 1

We have 0 is left dense, and we obtain lim
t−→0

f(t) = ∞ then the function f isn’t regulated.

On the other hand, we have lim
t−→0

g(t) = 0 (exist and finite) then the function g is regulated.

Definition 1.1.10. A function f : T −→ R is called rd-continuous provided it is continuous at

right-dense points in T and its left-sided limits exist (finite) at left-dense points in T. The set of

rd-continuous functions f : T −→ R will be denoted in this thesis by

Crd = Crd(T) = Crd(T,R).

The set of functions f : T −→ R that are differentiable and whose derivative is rd-continuous is

denoted by

C1
rd = C1

rd(T) = C1
rd(T,R).

The main existence theorem for pre-antiderivatives now reads as follows.

Theorem 1.10. (Existence of Pre-Antiderivatives). Let f be regulated. Then there exists a func-
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tion F which is pre-differentiable with region of differentiation D such that

F∆(t) = f(t) holds for all t ∈ D.

Example 1.1.14. Let T = P2,1 =
∞⋃
k=0

[3k, 3k + 2] and let f : T −→ R be defined by

f(t) =


0 if t ∈

∞⋃
k=0

[3k, 3k + 1]

t− 3k − 1 if t ∈
∞⋃
k=0

[3k + 1, 3k + 2] , k ∈ N0.

Then f is pre-differentiable with

D := T \
∞⋃
k=0

{3k + 1}

Example 1.1.15. Let T = R and let f : T −→ R be defined by

f(t) =

 0 if t = 0

1

t
if t ∈ R \ {0} .

Then f is pre-differentiable with

D = R \ {0} .

Definition 1.1.11. Assume f : T −→ R is a regulated function. Any function F as in Theorem

1.10 is called a pre-antiderivative of f . We define the indefinite integral of a regulated function f

by ∫
f(t)∆t = F (t) + C,

where C is an arbitrary constant and F is a pre-antiderivative of f . We define the Cauchy integral

by ∫ s

τ

f(t)∆t = F (s)− F (τ) for all τ, s ∈ T.
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A function F : T −→ R is called an antiderivative of f : T −→ R provided

F∆(t) = f(t) holds for all t ∈ Tk.

Example 1.1.16. If T = Z, evaluate the indefinite integral

∫
at∆t,

where a ̸= 1 is a constant. Since

(
at

a− 1

)∆

=
at+1 − at

a− 1
= at,

we get that ∫
at∆t =

at

a− 1
+ C,

where C is an arbitrary constant.

Example 1.1.17. If T = Z, evaluate the indefinite integral

∫ (
2t+ 1 + e2t(e2 − 1)

)
∆t,

Since (
t2 + e2t

)∆
=

(
(σ(t))2 + e2σ(t)

)
− (t2 − e2t)

µ(t)
= 2t+ 1 + e2t(e2 − 1),

where σ(t) = t+ 1, µ(t) = 1 we get that

∫ (
2t+ 1 + e2t(e2 − 1)

)
∆t = t2 + e2t + C,

where C is an arbitrary constant

Theorem 1.11. (Existence of Antiderivatives). Every rd-continuous function has an antideriva-

tive. In particular if t0 ∈ T, then F defined by

F (t) :=

∫ t

t0

f(τ)∆τ for t ∈ T,
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is an antiderivative of f .

Theorem 1.12. If f ∈ Crd and t ∈ Tk, then

∫ σ(t)

t

f(τ)∆τ = µ(t)f(t).

The following theorem gives several elementary properties of the delta integral.

Theorem 1.13. If a, b, c ∈ T, a ∈ R, and f, g ∈ Crd, then

(i)

∫ b

a

[f(t) + g(t)]∆t =

∫ b

a

f(t)∆t+

∫ b

a

g(t)∆t;

(ii)

∫ b

a

(αf)(t)∆t = α

∫ b

a

f(t)∆t;

(iii)

∫ b

a

f(t)∆t = −
∫ a

b

f(t)∆t;

(iv)

∫ b

a

f(t)∆t =

∫ c

a

f(t)∆t+

∫ b

c

f(t)∆t;

(v)

∫ b

a

f(σ(t))g∆(t)∆t = (fg)(b)− (fg)(a)−
∫ b

a

f∆(t)g(t)∆t;

(vi)

∫ b

a

f(t)g∆(t)∆t = (fg)(b)− (fg)(a)−
∫ b

a

f∆(t)g(σ(t))∆t;

(vii)

∫ a

a

f(t)∆t = 0;

(viii) if f(t) ≥ 0 for all a ≤ t < b, then

∫ b

a

f(t)∆t ≥ 0;

(ix) if | f(t) |≤ g(t) on [a, b) , then

∣∣∣∣∫ b

a

f(t)∆t

∣∣∣∣ ≤ ∫ b

a

g(t)∆t.

(1.5)

Theorem 1.14. Let a, b ∈ T and f ∈ Crd.

(i) If T = R, then ∫ b

a

f(t)∆t =

∫ b

a

f(t)dt,

where the integral on the right is the usual Riemann integral from calculus.
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(ii) [a, b] consists of only isolated points, then

∫ b

a

f(t)∆t =



∑
t∈[a,b)

µ(t)f(t) if a < b

0 if a = b

−
∑
t∈[b,a)

µ(t)f(t) if a > b.

(iii) T = hZ = {hk : k ∈ Z}, where h > 0, then

∫ b

a

f(t)∆t =



b
h
−1∑

k= a
h

f(kh)h if a < b

0 if a = b

−
a
h
−1∑

k= b
h

f(kh)h if a > b.

(iv) If T = Z, then

∫ b

a

f(t)∆t =



b−1∑
t=a

f(t) if a < b

0 if a = b

−
a−1∑
t=b

f(t) if a > b.

Example 1.1.18. For T = Z, let’s calculate
∫ 4

1
(t2 + 2t+ 5

6
)∆t, we have

∫ 4

1

(t2 + 2t+
5

6
)∆t =

3∑
t=1

(t2 + 2t+
5

6
) =

57

2
.
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Example 1.1.19. Let T = Z, f(t) = t2 + t, we have

∫ t

0

f(t)∆t =

∫ t

0

(s2 + s)∆s =

t
h
−1∑

k=0

f(kh)h

= h3

t
h
−1∑

k=0

k2 + h2

t
h
−1∑

k=0

k

= h3
(
t

h
− 1)

t

h
(
2t

h
− 1)

6
+ h2

(
t

h
− 1)

t

h
2

=
ht

2
(
t

h
− 1)

2t− h+ 3

3
.

Theorem 1.15. (Change of Variable)

Let γ : T −→ R be a strictly increasing function such that T̃ = γ(T) is a time scales.

Let ∆̃ denote the ∆-derivative on T̃. Suppose f : T −→ R is ∆-integrable on each finite interval

of T. Suppose also that γ is ∆-differentiable and γ∆ is ∆-integrable, we have that

∫ b

a

f(t)γ∆(t)∆t =

∫ γ(b)

γ(a)

(f ◦ γ−1)(s)∆̃s,

for a, b ∈ T.

Example 1.1.20. Let T := N
1
2
0 = {

√
n : n ∈ N0}. Let’s calculate

∫ t

0

(√
τ 2 + 1 + τ

)
3τ

2

∆τ.

We take γ(t) = t2,

for t ∈ N
1
2
0 . Then γ : N

1
2
0 −→ R is strictly increasing and γ(N

1
2
0 ) = N0 is a time scales, and

γ∆(t) =
√
t2 + 1 + t.
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Hence if f(t) = 3t
2
we get from Theorem 1.15 that

∫ t

0

(√
τ 2 + 1 + τ

)
3τ

2

∆τ =

∫ t

0

f(τ)γ∆(τ)∆τ

=

∫ t2

0

f(
√
s)∆̃s

=

∫ t2

0

3s∆̃s

=

[
1

2
3s
]s=t2
s=0

=
1

2

(
3t

2 − 1
)
.

1.1.3 The Regressive Group

Definition 1.1.12. We say that a function T −→ R is regressive provided

1 + µ(t)p(t) ̸= 0 for all t ∈ Tk, (1.6)

holds. The set of all regressive and rd-continuous functions f : T −→ R will be denoted in this

thesis by

R = R(T) = R(T,R).

We define the set

R+ = R+(T) = R+(T,R) = {f ∈ R : 1 + µ(t)f(t) > 0, for all t ∈ T} .

Definition 1.1.13. Let p, q ∈ R, we define the circle plus addition ⊕ and the circle minus sub-

traction ⊖ on R by

(p⊕ q)(t) := p(t) + q(t) + µ(t)p(t)q(t) for all t ∈ T,

(p⊖ q)(t) :=
p(t)− q(t)

1 + µ(t)q(t)
for all t ∈ T.
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Let introduce the notation

R(α) =

 R if α ∈ N

R+ if α ∈ R \ N.

Not that p ∈ R+ implies that

1 + µ(t)p(t)τ > 0 for all τ ∈ [0, 1] .

Definition 1.1.14. For h > 0, define Zh to be the strip

Zh :=
{
z ∈ C : −π

h
< Im(z) ≤ π

h

}
Definition 1.1.15. If p ∈ R, then one defines the exponential function on time scales T by

ep(t, s) = exp

(∫ t

s

ξµ(τ))(p(τ))∆τ

)
, for t, s ∈ T,

where the cylinder transformation

ξh(z) =


Log(1 + hz)

h
if h ̸= 0

z if h = 0.

where Log is the principal logarithm function.

Example 1.1.21. Let α ∈ R be a constant and p : Z −→ R.

� If T = Z, then eα(t, t0) = (1 + α)t−t0 , for all t ∈ T.

� If T = Z, then ep(t)(t, t0) =
i=t∏
i=t0

(1 + p(i)),

� If T = R, then eα(t, t0) = eα(t−t0), for all t ∈ T.
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Example 1.1.22. Let T = {hZ, h > 0}, and α ∈ R be a constant then

eα(t, 0) = exp

(∫ t

0

log(1 + µ(τ)α)

µ(τ)
∆τ

)

= exp

(∫ t

0

log(1 + hα)

h
∆τ

)
= exp

 t
h
−1∑

τ=0

log(1 + hα)


= exp

(
t

h
log(1 + hα)

)
= (1 + hα)

t
h

Definition 1.1.16. For α ∈ R and p ∈ R, we define

(α⊙ p)(t) := αp(t)

∫ 1

0

(1 + µ(t)p(t)τ)α−1dτ.

Example 1.1.23. Let T = {hZ, h > 0} , α = 2, p(t) = t2 ∈ R, we have

α⊙ p(t) = 2⊙ t2 = 2t2
∫ 1

0

(1 + ht2τ)dτ

= 2t2
[
τ + ht2

τ 2

2

]1
0

= 2t2(1 +
ht2

2
)

= 2t2 + ht4.

Theorem 1.16. Suppose p ∈ R and fix t0 ∈ T. Then the initial value problem

y∆ = p(t)y, y(t0) = 1, (1.7)

has a unique solution on T, which is the exponential function.

Example 1.1.24. Let T = N2 = {n2, n ∈ N}. Proof that e1(t, 0) = 2
√
t(
√
t)!

We have σ(t) = (n+ 1)2 = t+ 2
√
t+ 1, then µ(t) = 2

√
t+ 1.

Let y(t) = 2
√
t(
√
t)!, we possess

y∆(t) =
y(σ(t))− y(t)

µ(t)
=

2
√
t+1(

√
t+ 1)!− 2

√
t(
√
t)!

2
√
t+ 1

=
2
√
t(
√
t)!(2(

√
t+ 1)− 1)

2
√
t+ 1

= 2
√
t(
√
t)!

= e1(t, 0),
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then e1(t, 0) = 2
√
t(
√
t)!.

Som useful properties of the exponential function are the following.

Theorem 1.17. If p ∈ R, then

� e0(t, s) = 1 and ep(t, t) = 1;

� ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);

�

1

ep(t, s)
= e⊖(t, s);

� ep(t, s) =
1

ep(s,t)
;

� ep(t, r)ep(r, s) = ep(t, s);

� ep(t, s)eq(t, s) = ep⊕q(t, s);

�

ep(t, s)

eq(t, s)
= ep⊖q(t, s);

�

(
1

ep(., s)

)∆

= − p(t)

eσp(., s)
;

� [ep(c, .)]
∆ = −p [ep(c, .)]σ , where c ∈ T.

Theorem 1.18. If α ∈ R and p ∈ R(α), then

eα⊙p = eαp .

1.2 Point fixed theorems

Let X and Y be Two Banach spaces, S a family of functions from X to Y , and A ⊂ X.

Definition 1.2.1. (Uniformly bounded) we call S uniformly bounded if there exists M > 0 such

that

∥ T ∥= sup
t∈A

|T (x)| ≤M on X for T ∈ S.
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Definition 1.2.2. (Equicontinuous) The family S is equicontinuous on A if for every ε > 0, there

exists a δ > 0 such that for every pair of elements x, y ∈ A and every T ∈ S we have

∥ y − x ∥X< δ ⇒∥ T (y)− T (x) ∥Y< ε.

Theorem 1.19. (Ascoli-Arzela theorem) Assume that A is a compact set in X. then a set S ⊂

C(A) is relatively compact in C(A) if and only if the functions in S are uniformly bounded and

equicontinuous on A.

Theorem 1.20. (Schauder theorem) Let A be a closed convex set in Banach space X and assume

that T : A −→ A is a continuous mapping such that T (A) is relatively compact subset of A. Then

T has a fixed point.

Theorem 1.21. (Banach theorem) Let T be a contraction on a Banach space X. Then T has a

unique fixed point.

1.3 Fractional operators

We now recall the celebrated gamma function.

Definition 1.3.1. (Gamma function). For complex numbers with a positive real part, the gamma

function Γ(t) is defined by the following convergent improper integral:

Γ(t) :=

∫ ∞

0

st−1e−sds.

Remark 1.3.1. The gamma function satisfies the following useful property:

Γ(t+ 1) = tΓ(t)

.

Definition 1.3.2. Let we have any operator say x(t), then we may define the arbitrary order

integration w.r.t t as

Iαt x(t) =
1

Γ(α)

∫ t

0

(t− ζ)α−1x(ζ)dζ, α > 0,
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such that integral on right side converges.

Definition 1.3.3. For any mapping x(t), one may define the non-integer order derivative in

Caputo sense w.r.t t as

cdαx(t)

dtα
=

1

Γ(n− α)

∫ t

0

(t− ζ)n−α−1 d
n

dζn
[x(ζ)]dζ, α > 0,

with right side is point wise continuous on R+ and n = [α] + 1. If α ∈ (0, 1], then we have

cdαx(t)

dtα
=

1

Γ(1− α)

∫ t

0

(t− ζ)−α
d

dζ
[x(ζ)]dζ, α > 0.

Lemma 1.1. The solution of
Cdαx(t)

dtα
= w(t), 0 < α < 1.

is

x(t) = c0 +
1

Γ(α)

∫ t

0

(t− ζ)α−1w(ζ)dζ.

1.4 Stability

In this section we discuss the stability of dynamics systems on time scales. Consider the dynamic

system

x∆ = f(t, x), t ∈ T, x(t0) = x0, t0 ≥ 0. (1.8)

Where f ∈ Crd [T× Rn,Rn] and x∆ denotes the deravative of x with respect to t ∈ T.

Definition 1.4.1. A function ϕ : [0, r] −→ [0,∞) is of class K if it is well-defined, continuous,

and strictly increasing on [0, r] with ϕ(0) = 0.

Definition 1.4.2. A continuous function P : Rn −→ R with P (0) = 0 is called positive definite

(negative definite) on D if there exists a function ϕ ∈ K, such that ϕ(|x|) ≤ P (x) (ϕ(|x|) ≤ −P (x))

for x ∈ D, where D is a compact set.

Definition 1.4.3. A continuous function P : Rn −→ R with P (0) = 0 is called positive semidefi-

nite (negative semidefinite) on D if P (x) ≥ 0 (P (x) ≤ 0), for all x ∈ D.
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Definition 1.4.4. The trivial solution of (1.8) is said to be

(i) stable if given an ϵ > 0 and t0 ∈ T, there exists a δ > 0 such that |x0| ≤ δ implies

|x(t)| ≤ ϵ, t ≥ t0;

(ii) asymptotically stable if it is stable and lim
t−→∞

|x(t)| = 0.

1.4.1 Comparison Theorems

Let V ∈ Crd
[
Tk × Rn,R+

]
Then we define

D+V ∆(t, x) =


V (σ(t), x(σ(t))− V (t, x(t))

µ(t)
, if σ(t) > t,

lim sup
s−→t+

V (s, x(t) + (s− t)f(t, x(t)))− V (t, x(t))

s− t
, if σ(t) = t

(1.9)

If V is differentiable, then D+V ∆(t, x) = V ∆(t, x).

Definition 1.4.5. Let V ∈ Crd
[
Tk × Rn,R+

]
. Then we define the generalized derivative of V (t, x)

relative to (1.8) as follows: given ϵ > 0, there exists a neighbourhood N(ϵ) of t ∈ T such that

1

µ(t, s)
[V (σ(t), x(σ(t)))− V (s, x(σ(t))− µ(t, s)f(t, x(t)))] < D+V ∆(t, x(t)) + ϵ

for each s ∈ N(ϵ) and s > t, where µ(t, s) = σ(t)− s and x(t) is any solution of (1.8).

Theorem 1.22 ([47]). Let V ∈ Crd
[
Tk × Rn,R+

]
, V (t, x) be locally Lipschitzian in x for each

t ∈ T which is rd, and let

D+V ∆(t, x(t)) ≤ g(t, V (t, x)),

where g ∈ Crd
[
Tk × R+,R+

]
, g(t, u)µ(t) + u is nondecreasing in u for each t ∈ T. Let r(t) =

r(t, t0, u0)) be the maximal solution of the scalar differential equation

u∆ = g(t, u), u(t0) = u0 ≥ 0
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existing on T. Then, V (t0, x0) ≤ u0 implies that V (t, x(t)) ≤ r(t, t0, u0), t ∈ T, t ≥ t0.

Corollary 1.3. The function g(t, u) ≡ 0 is admissible in Theorem 1.22 to yield

V (t, x(t)) ≤ V (t0, x0), t ∈ T.

1.4.2 Stability Criteria

In this subsection, we shall consider some simple stability results

Theorem 1.23. Assume that

(i) V ∈ Crd [T× Rn,R+], V (t, x) is locally Lipschitzian in x for each right dense;

(ii) b(∥ x ∥) ≤ V (t, x) ≤ a(∥ x ∥), for (t, x) ∈ T× Rn,

where a, b ∈ K = {ψ ∈ C [R+,R+] : ψ(0) = 0 and ψ(u) is increasing in u};

(iii) f(t, 0) = 0, g ∈ Crd [T× Rn,R] , g(t, u)µ(t) + u is nondecreasing in u for each t ∈ T, and

D+V ∆(t, x) ≤ g(t, V (t, x)), (t, x) ∈ T× Rn.

Then the stability properties of the trivial solution of

u∆ = g(t, u), u(t0) = u0 ≥ 0 (1.10)

imply the corresponding stability properties of the trivial solution of (1.8).

Corollary 1.4. :

(i) The function g(t, u) ≡ 0 is admissible in Theorem 1.23 to yield uniform stability of the zero

solution of (1.8).

(ii) The function g(t, u) = −c(u), c ∈ K, in Theorem 1.23 implies uniform asymptotic stability of

the trivial solution of (1.8).

Usually Lyapunov’s theorem on uniform asymptotic stability should have the assumption

V ∆(t, x) ≤ −c(|x|). However, it is easy to see that if V has an upper estimate as in (ii) of

Theorem 1.23, one can obtain the assumption of Corollary 1.4,(ii).
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Example 1.4.1. Consider the system


x∆(t) = −2x(t)− x(t)y(t),

y∆(t) = −2y(t) + x2(t),

(1.11)

where t ∈ T.

Let V (x, y) = x2 + y2. Then we have

V ∆(x, y) = (x2 + y2)∆

= x∆(2x(t) + µ(t)x∆(t))

+ y∆(t)
(
2y(t) + µ(t)y∆(t)

)
= (−2x(t)− x(t)y(t))(2x(t) + µ(t)(−2x(t)− x(t)y(t)))

+ (−2y(t) + x2)(2y(t) + µ(t)(−2y(t) + x2(t)))

= −4x2(t)− 4y2(t) + µ(t)(4x2(t) + x2(t)y2(t)

+ 4x2(t)y(t) + 4y2(t) + x4(t)− 4x2(t)y(t))

= −4x2(t)− 4y2(t) + µ(t)
(
4x2(t) + x2(t)y2(t) + 4y2(t) + x4(t)

)
.

When T = R , the system (1.11) becomes


x′(t) = −2x(t)− x(t)y(t),

y′(t) = −2y(t) + x2(t),

(1.12)

for t ≥ t0 = 0, say. For T = R, µ(t) = 0,∀t ∈ R and so V ∆ = −4x2 − 4y2 is negative definite.

By corollary 1.4 the trivial solution to (1.12) is asymptotically stable.

If T = Z, µ(t) = 1, then

V ∆ = x2y2 + x4 ≥ 0,

and thus, by Corollary (1.4) the trivial solution to (1.11) is unstable.
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Example 1.4.2. Cnsider the following system


x∆(t) = −x(t)− y

1 + x2 + y2
,

y∆(t) = −y(t) + x

1 + x2 + y2
,

(1.13)

on time scales T

Let V (x, y) = x2 + y2. Then we have

V ∆(x, y) = (x2 + y2)∆

= x∆(2x(t) + µ(t)x∆(t))

+ y∆(t)
(
2y(t) + µ(t)y∆(t)

)
= 2x

(
−x(t)− y

1 + x2 + y2

)
+ 2y

(
−y(t) + x

1 + x2 + y2

)
+ µ

[(
−x(t)− y

1 + x2 + y2

)2

+

(
−y(t) + x

1 + x2 + y2

)2
]

= −2x2 − 2y2 + µ

(
x2 + y2 +

x2 + y2

(1 + x2 + y2)2

)
≤ 2(µ− 1)V (x, y)..

If µ(t) ≤ 1 then

V ∆(x, y) ≤ 0

and thus by Corollary (1.4) , that system (1.13) is asymptotically stable.

If µ ≥ 2 then

V ∆(x, y) ≥ x2 + y2

(1 + x2 + y2)2
≥ 0,

From Corollary (1.4), the trivial solution to (1.13) is unstable.
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Chapter 2

The non-population conserving SIR

model on time scales

We study the non-population conserving SIR model on time scales based on the continuous-time

SIR-NC model [12] , reformulating it in the general time scales and deriving its solution.

Theorem 2.1 (Variation of constants, see Theorems 2.74 and 2.77 of [7]). Suppose p ∈ R and

f ∈ Crd. If t0 ∈ T and y0 ∈ R are given, then the unique solution of the IVP

y∆ = p(t)y + f(t), y(t0) = y0,

is given by

y(t) = ep(t, t0)y0 +

∫ t

t0

ep(t, σ(s))f(s)∆s.

Similarly, the unique solution of the IVP

y∆ = −p(t)yσ + f(t), y(t0) = y0,

is given by

y(t) = e⊖p(t, t0)y0 +

∫ t

t0

e⊖p(t, s)f(s)∆s.
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Theorem 2.2 (See Theorem 2.39 of [7]). If p ∈ R and a, b, c ∈ T, then

∫ b

a

p(t)ep(t, c)∆t = ep(b, c)− ep(a, c)

and ∫ b

a

p(t)ep(c, σ(t))∆t = ep(c, a)− ep(c, b).

2.1 The non-population conserving SIR model on time

scales (SIR-NC)

On a given time scales T, we propose the following SIR-NC model:



S∆(t) = −λ S(t)Iσ(t)

S(t) + I(t)
,

I∆(t) = λ
S(t)Iσ(t)

S(t) + I(t)
− γIσ(t),

R∆(t) = γIσ(t),

(2.1)

where S, I, R : T −→ R+ and λ, γ > 0, subject to given initial conditions

S(0) = S0, I(0) = I0, R(0) = R0 (2.2)

with S0 > 0, I0 > 0, and R0 ≥ 0. In the particular case T = R, problem (2.1)–(2.2) is studied in

[12].

We begin by remarking that it is enough to solve the first two equations of system (2.1). Indeed,

by knowing I(t) we immediately get R(t) from the 3rd equation of (2.1). For this reason, in the

sequel we restrict ourselves to the two-dimensional IVP


S∆(t) = −λ S(t)Iσ(t)

S(t) + I(t)
, S(0) = S0,

I∆(t) = λ
S(t)Iσ(t)

S(t) + I(t)
− γIσ(t), I(0) = I0.

(2.3)

Let N0 := I0 + S0 (we could also add R0, but since R(t) does not affect the evolution of (2.3), we
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consider here, without loss of generality, that R0 = 0).

It is easy to see that in our SIR-NC model, the condition for an epidemic outbreak is given by

I∆(0) > 0 ⇒ λ

γ
> 1 +

I0
S0

.

Theorem 2.3. Let C =
S(0)

I(0)
. If γ − λ, p(t) ∈ R, then the unique solution to (2.3) is given by

 S(t) = e(⊖p(t))⊕(γ−λ)(t, 0)S(0),

I(t) = e⊖p(t)(t, 0)I(0),
(2.4)

where p(t) = γ − λC

e⊖(γ−λ)(t, 0) + C
.

Proof 1. Let 
x(t) =

S(t)

S(t) + I(t)
,

y(t) =
I(t)

S(t) + I(t)
.

By the assumption that I(0) > 0 we have x(t) + y(t) = 1 and x(0) < 1. We can rewrite x∆(t) and

y∆(t) as follows:

x∆(t) =
S∆(t)(S(t) + I(t))− (S∆(t) + I∆(t))S(t)

(S(t) + I(t))(Sσ(t) + Iσ(t))

=
−λS(t)Iσ(t) + γS(t)Iσ(t)

(S(t) + I(t)) (Sσ(t) + Iσ(t))

= (γ − λ)
S(t)

(S(t) + I(t))

Iσ(t)

(Sσ(t) + Iσ(t))

= (γ − λ)x(t)yσ(t)

= (γ − λ)(1− xσ(t))x(t).

(2.5)

49



Applying the substitution z = 1
x
, we obtain the linear first-order dynamic equation

z∆ =
−x∆

xxσ

=
−(γ − λ)(1− xσ)x

xxσ

= −(γ − λ)zσ + (γ − λ).

(2.6)

Its solution is

z(t) = e⊖(γ−λ)(t, 0)z(0) +

∫ t

0

e⊖(γ−λ)(t, s)(γ − λ)∆s. (2.7)

Integrating yields

z(t) = e⊖(γ−λ)(t, 0)(z(0)− 1) + 1

and, re-substituting z = 1
x
, we obtain that

x(t) =
x(0)

e⊖(γ−λ)(t, 0)(1− x(0)) + x(0)
.

We have

I∆(t) = Iσ(t)

(
λ

S(t)

S(t) + I(t)
− γ

)
= −(γ − λx(t))Iσ(t).

Letting p(t) = γ − λx(t) ∈ R it follows that

I∆(t) = −p(t)Iσ(t).

Clearly,

I(t) = e⊖p(t)(t, 0)I(0), (2.8)
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where

p(t) = γ − λx(t)

= γ − λx(0)

e⊖(γ−λ)(t, 0)(1− x(0)) + x(0)

= γ − λC

e⊖(γ−λ)(t, 0) + C
,

and

S(t) =
−I(t)x(t)
x(t)− 1

=
I(t) C

e⊖(γ−λ)(t,0)+C

C
e⊖(γ−λ)(t,0)+C

− 1

= e(⊖p(t))⊕(γ−λ)(t, 0)S(0),

(2.9)

where C =
S(0)

I(0)
.

The proof for the time dependent γ and λ goes exactly the same way.

Remark 2.1.1. If γ = λ, then γ − λ ∈ R and, by Theorem 2.3, the solution of system (2.3) is

 S(t) = e⊖p(t)(t, 0)S(0),

I(t) = e⊖p(t)(t, 0)I(0),
(2.10)

where p(t) = λ
1+C

with C = S(0)
I(0)

.

As a corollary, we apply Theorem 2.3 to solve the discrete epidemic model


S(t+ 1) = S(t)− λS(t)I(t+ 1)

S(t) + I(t)
,

I(t+ 1) = I(t) +
λS(t)I(t+ 1)

S(t) + I(t)
− γI(t+ 1),

(2.11)

t ∈ Z, with initial conditions S(0) = S0 > 0, I(0) = I0 > 0, R(0) = R0 ≥ 0. Note that for any
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t ∈ Z we have

e(γ−λ)(t, 0) = exp

(∫ t

0

log(1 + (γ − λ))∆s

)
= exp

(
t−1∑
s=0

log(1 + (γ − λ))

)
= exp (t.log(1 + (γ − λ)))

= (1 + (γ − λ))t = δ(t)

(2.12)

and

p(t) = γ − λC

e⊖(γ−λ)(t, 0) + C

= γ − λC
1

e(γ−λ)(t,0)
+ C

=
γ + (γ − λ)Cδ(t)

1 + Cδ(t)
.

and

ep(t) = exp

(∫ t

0

log(1 +
γ + (γ − λ)Cδ(τ)

1 + Cδ(τ)
)∆τ

)
=

t−1∏
τ=0

(
1 + γ + (1 + γ − λ)Cδ(τ)

1 + Cδ(τ)

)

Corollary 2.1. If 1 + γ − λ, 1 + λ ̸= 0 for all t ∈ Z, then the unique solution to system (2.11) is

given by


S(t) = S(0)δ(t)

[
t−1∏
i=0

(
(1 + γ) + (1 + γ − λ)Cδ(i))

1 + Cδ(i)

)]−1

I(t) = I(0)

[
t−1∏
i=0

(
(1 + γ) + (1 + γ − λ)Cδ(i))

1 + Cδ(i)

)]−1 (2.13)

where C = S(0)
I(0)

and δ(t) = (1 + (γ − λ))t.
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For the more general case of time-dependent λ(t), γ(t), t ≥ 0, we similarly have

e(γ(t)−λ(t))(t, 0) = exp

(∫ t

0

log(1 + (γ(t)− λ(t)))∆s

)
= exp

(
t−1∑
s=0

log(1 + (γ − λ)(s))

)

=
t−1∏
s=0

(1 + (γ − λ)(s)),

(2.14)

and

p(t) = γ(t)− λ(t)C

e⊖(γ−λ)(t)(t, 0) + C

= γ(t)− λC
1

e(γ−λ)(t)(t,0)
+ C

= γ(t)− λC
1

t−1∏
s=0

(1 + (γ − λ)(s)))

+ C

= γ(t)−
λ(t)C

t−1∏
s=0

(1 + (γ − λ)(s))

1 + C
t−1∏
s=0

(1 + (γ − λ)(s))

=

γ(t) + C(γ − λ)(t)
t−1∏
s=0

(1 + (γ − λ)(s))

1 + C
t−1∏
s=0

(1 + (γ − λ)(s))

=
γ(t) + C(γ − λ)(t)δ(t)

1 + Cδ(t)
.

then

ep(t) = exp

(∫ t

0

log(1 +
γ(i) + C(γ − λ)(i)δ(i)

1 + Cδ(i)
)∆i

)
=

t−1∏
i=0

(
1 +

γ(i) + C(γ − λ)(i)δ(i)

1 + Cδ(i)

)

=
t−1∏
i=0

1 + γ(i) + C(1 + (γ − λ)(i))δ(i)

1 + Cδ(i)
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Where δ(t) =
t−1∏
s=0

(1 + (γ − λ)(s))

Corollary 2.2. If 1 + γ(t) − λ(t), 1 + λ(t) ̸= 0 for all t ∈ Z, then the unique solution to system

(2.11) is given by


S(t) = S(0)δ(t)

[
t−1∏
i=0

1 + γ(i) + C(1 + (γ − λ)(i))δ(i))

1 + Cδ(i)

]−1

I(t) = I(0)

[
t−1∏
i=0

(
(1 + γ(i)) + C(1 + (γ − λ)(i))δ(i))

1 + Cδ(i)

)]−1

.

Example 2.1.1. Let T = R and γ, λ ∈ R with γ ̸= λ. Then, by Theorem 2.3, the solution to

system (2.1) is given with

S(t) = S(0)
e

∫ t

0

(γ − λ)ds

e

∫ t

0

p(s)ds

= S(0)e(γ−λ)te
−

∫ t

0

γds
e

∫ t

0

λCe(γ−λ)s

1 + Ce(γ−λ)s
ds

= S(0)e−λte

λ

γ − λ
[ln(1+Ce(γ−λ)s)]

t

0

= S(0)e−λt
(
1 + Ce(γ−λ)t

1 + C

) λ
γ−λ

and

I(t) = I(0)e−γt
(
1 + Ce(γ−λ)t

1 + C

) λ
γ−λ

.

If γ = γ(t), λ = λ(t), t ≥ 0, t ∈ R, then the solution to system (2.1) is given with

S(t) = S(0)e

∫ t

0

(γ − λ)(s)ds
e

∫ t

0

(
−γ(s) + λ(s)Ce

∫ s
0 (γ−λ)(τ)dτ

1 + Ce
∫ s
0 (γ−λ)(τ)dτ

)
ds

Example 2.1.2. where λ = 0.5, γ = 0.2, S(0) = 80, I(0) = 20.

If T = R the solution of (2.1) is

54



(a) T = R (b) T = Z

Figure 2.1: Numerical solutions of (2.1) with λ = 0.5, γ = 0.2, S(0) = 80, I(0) = 20. (a), we
show the solution in the discrete-time case T = Z; and (b) we plot the solution to (2.1) for the
continuous time scales.



S(t) = 80.e−0.5t

(
1 + 4.e−0.3t

5

)−5
3

I(t) = 20.e−0.2t

(
1 + 4.e−0.3t

5

)−5
3

,

R(t) = 0.2
∫ t
0
= 20.e−0.2t

(
1 + 4.e−0.3t

5

)−5
3

,

If T = Z the solution of (2.1) is



S(t) = 80.(0.7)t

[
t−1∏
s=0

1.2 + 4.(0.7)s+1

1 + 4.(0.7)s

]−1

I(t) = 20.(0.7)t

[
t−1∏
s=0

1.2 + 4.(0.7)s+1

1 + 4.(0.7)s

]−1

,

R(t) = 100− 80.(0.7)t

[
t−1∏
s=0

1.2 + 4.(0.7)s+1

1 + 4.(0.7)s

]−1

− 20.(0.7)t

[
t−1∏
s=0

1.2 + 4.(0.7)s+1

1 + 4.(0.7)s

]−1

,
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2.2 The SIR-NC model with imported infections

On a general time scales T, we propose the following SIR-NC model with imported infections:



S∆(t) = −λ S(t)Iσ(t)

S(t) + I(t)
− νSσ(t),

I∆(t) = λ
S(t)Iσ(t)

S(t) + I(t)
+ νSσ(t)− γIσ(t),

R∆(t) = γIσ(t),

(2.15)

where S, I, R : T −→ R+ and λ, γ, ν > 0. Similarly to Section 2.1, we restrict our attention,

without loss of generality, to the first two equations of (2.15) and we set N(t) := S(t) + I(t).

We observe that here the condition for an epidemic to break out is given by

λ
I(0)

N(0)
+ ν > γ

I(0)

S(0)
.

Theorem 2.4. If ν, γ − λ ∈ R, then the solution to the SIR-NC system (2.15) with imported

infections is given as follows:


S(t) =

x(t)

1− x(t)
e⊖g(t)(t, 0)I(0),

I(t) = e⊖g(t)(t, 0)I(0),

(2.16)

t ∈ T, where S, I : T −→ R+, λ, γ, ν > 0, and

g(t) = −λx(t) + γ − νxσ(t)

1− xσ(t)
,

x(t) =
x(0)

eν⊖(γ−λ)(t, 0)
(
1 + x(0)(γ−λ)

ν−γ+λ

)
− x(0)(γ−λ)

ν−γ+λ

.
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Proof 2. Defining x(t) =
S(t)

N(t)
, we have

x∆(t) =
S∆(t)N(t)−N∆(t)S(t)

N(t)Nσ(t)

=
−λS(t)Iσ(t)− νSσ(t)N(t) + γIσS

N(t)Nσ(t)

= −λx(t)yσ(t)− νxσ(t) + γx(t)yσ(t)

= (γ − λ)

(
ν

λ− γ
− x(t)

)
xσ(t) + (γ − λ)x(t).

(2.17)

Since x(t) = xσ(t)− µ(t)x∆(t), then

x∆(t) = (γ − λ)

(
ν

λ− γ
− x(t)

)
xσ(t) + (γ − λ)

(
xσ(t)− µ(t)x∆(t)

)
,

and from it

((γ − λ)µ(t) + 1) x∆(t) = (γ − λ)

(
ν

λ− γ
− x(t)

)
xσ(t) + (γ − λ)xσ(t).

Then

x∆(t) =
γ − λ

1 + µ(t)(γ − λ)

(
ν

λ− γ
− x(t)

)
xσ(t) +

γ − λ

1 + µ(t)(γ − λ)
xσ(t).

Applying the substitution z = 1
x
it yields

z∆(t) =
ν − (γ − λ)

1 + µ(t)(γ − λ)
z(t) +

γ − λ

1 + µ(t)(γ − λ)
,

which has the solution

z(t) = eα(t, 0)z(0) +

∫ t

0

eα(t, σ(s))
γ − λ

1 + µ(t)(γ − λ)
∆s

with α = ν ⊖ (γ − λ). The solution is equivalent to

z(t) = eα(t, 0)z(0) +
γ − λ

ν − (γ − λ)

∫ t

0

αeα(t, σ(s))∆s

= eα(t, 0)z(0) +
γ − λ

ν − γ + λ
(eα(t, 0)− 1).
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Re-substituting x = 1
z
one has

x(t) =
x(0)

eα(t, 0)
(
1 + x(0)(γ−λ)

ν−γ+λ

)
− x(0)(γ−λ)

ν−γ+λ

,

and

I∆(t) = λIσ(t)x(t) + νSσ(t)− γIσ(t)

= (λx(t)− γ)Iσ(t) + νSσ(t).

From x(t) =
S(t)

S(t) + I(t)
it follows that S(t) =

I(t)x(t)

1− x(t)
and

I∆(t) = (λx(t)− γ)Iσ(t) +
νxσ(t)

1− xσ(t)
Iσ(t)

= −
(
−λx(t) + γ − νxσ(t)

1− xσ(t)

)
Iσ(t)

= −g(t)Iσ(t),

where g(t) = −λx(t) + γ − νxσ(t)

1− xσ(t)
. The solution is equivalently expressed as in (2.16).

As a corollary, we apply Theorem 2.4 to solve the discrete epidemic model


S(t+ 1) = S(t)− λ

S(t)I(t+ 1)

S(t) + I(t)
− νS(t+ 1),

I(t+ 1) = I(t) + λ
S(t)I(t+ 1)

S(t) + I(t)
+ νS(t+ 1)− γI(t+ 1),

(2.18)

t ∈ Z, with initial conditions S(0) = S0 > 0, I(0) = I0 > 0. Not that for any t ∈ Z we have

x(t) =
bC1

eα(t, 0) + C1

=
bC1

e( ν−γ+λ
1+γ−λ

)(t, 0) + C1

=
bC1(

1 + ν

1 + γ − λ

)t
+ C1

=
bC1

δ(t) + C1

,
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and

g(t) =
−λbC1

δ(t) + C1

+ γ − νbC1

δ(t+ 1) + (1− b)C1

,

then

eg(t)(t, 0) = exp

(∫ t

0

log

(
1− λbC1

δ(s) + C1

+ γ − νbC1

δ(s+ 1) + (1− b)C1

)
∆s

)
= exp

(
t−1∑
s=0

log

(
1− λbC1

δ(s) + C1

+ γ − νbC1

δ(s+ 1) + (1− b)C1

))

=
t−1∏
s=0

(
1− λbC1

δ(s) + C1

+ γ − νbC1

δ(s+ 1) + (1− b)C1

)
,

Corollary 2.3. If ν − γ + λ ̸= 0, 1 + γ − λ ̸= 0 for all t ∈ Z, then the unique solution to system

(2.18) is given by


S(t) =

bC1I(0)

δ(t) + (1− b)C1

[
t−1∏
s=0

(
1− λbC1

δ(s) + C1

+ γ − νbC1

δ(s+ 1) + (1− b)C1

)]−1

,

I(t) =

[
t−1∏
s=0

(
1− λbC1

δ(s) + C1

+ γ − νbC1

δ(s+ 1) + (1− b)C1

)]−1

I(0),

(2.19)

where C1 =
(λ− γ)x(0)

(λ− γ + ν) + (γ − λ)x(0)
, δ(t) =

(
1 + ν

1 + γ − λ

)t
, b =

ν − γ + λ

λ− γ
.

As in Example 2.1.1, a simple application is obtained from our Theorem 2.4 when we restrict

ourselves to the continuous case.

Example 2.2.1. If T = R, then system (2.15) reduces to


S ′(t) = −λ S(t)I(t)

S(t) + I(t)
− νS(t),

I ′(t) = λ
S(t)I(t)

S(t) + I(t)
+ νS(t)− γI(t),

R′(t) = γI(t),

(2.20)
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and, by Theorem 2.4, the solution to system (2.20) is


S(t) =

x(t)I(t)

1− x(t)
,

I(t) = e
∫ t
0 −g(s)dsI(0),

(2.21)

We have

−g(t) = λx(t) +
νx(t)

1− x(t)
− γ

=
νx(0)

eαt
(
1 + (γ−λ)x(0)

α

)
− x(0)(γ−λ

α
− 1)

+
λx(0)

eαt
(
1 + (γ−λ)x(0)

α

)
− x(0)γ−λ

α

− γ

=
ν

eαt
(
C+1
C

+ γ−λ
α

)
− ν

α

+
λ

eαt
(
C+1
C

+ γ−λ
α

)
− γ−λ

α

− γ

=
ναCe−αt

(α + νC)− νCe−αt
+

λαCe−αt

(α + νC)− (γ − λ)Ce−αt
− γ,

and

∫ t

0

−g(s)ds = ln

(
(α + νC)− νCe−αt

α

)
+ ln

(
(α + νC)− (γ − λ)Ce−αt

(α + νC)− (γ − λ)C

)− λ
λ−γ

− γt

and

e
∫ t
0 −g(s)ds = e−γt

(
(α + νC)− νCe−αt

α

)(
(α + νC)− (γ − λ)Ce−αt

(α + νC)− (γ − λ)C

)− λ
λ−γ

.

Then

I(t) = I(0)

(
(α + νC)− νCe−αt

α

)
e−γt

(
1 + C1e

−αt

1 + C1

)− λ
λ−γ

= I(0)

(
1 + C1e

−αt

1 + C1

)− λ
λ−γ

e−γt +
νS(0)

α

(
1− e−αt

)(1 + C1e
−αt

1 + C1

)− λ
λ−γ

e−γt (2.22)

=

(
1 + C1e

−αt

1 + C1

)− λ
λ−γ

e−γt
[
I(0) +

νS(0)

α

(
1− e−αt

)]

Where C1 =
C(λ−γ)

(λ−γ+ν)+Cν , C = S(0)
I(0)

, α = ν − (γ − λ)

Letting

S(t) =
x(t)I(t)

1− x(t)
,
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where

x(t)

1− x(t)
=

αCe−αt

νC + α− νCe−αt
,

we have

S(t) = I(0)e−γtCe−αt
(
1 + C1e

−αt

1 + C1

)− λ
λ−γ

= S(0)e−(λ+ν)t

(
1 + C1e

−αt

1 + C1

)− λ
λ−γ

Example 2.2.2. : Let us consider the SIR−NC model (2.15) with

where λ = 0.5, γ = 0.2, ν = 0.05, S(0) = 80, I(0) = 20.

If T = Z the solution of (2.15) is



S(t) =
560

11× 1.5t − 4

[
t−1∏
s=0

(
1.2− 14

11× 1.5s + 24
− 14

11× 1.5s+1 − 4

)]−1

,

I(t) = 20.

[
t−1∏
s=0

(
1.2− 14

11× 1.5s + 24
− 14

11× 1.5s+1 − 4

)]−1

,

R(t) = 100− 560

11× 1.5t − 4

[
t−1∏
s=0

(
1.2− 14

11× 1.5s + 24
− 14

11× 1.5s+1 − 4

)]−1

−20.

[
t−1∏
s=0

(
1.2− 14

11× 1.5s + 24
− 14

11× 1.5s+1 − 4

)]−1

,

If T = R the solution of (2.15) is



S(t) = 80.e−0.55.t

1 +
1.2

0.55
.e−0.35t

1 +
1.2

0.55


−5
3

I(t) = e−0.2t

(
20 +

4

0.35
(1− e−0.35t)

)1 +
1.2

0.55
.e−0.35t

1 +
1.2

0.55


−5
3

,

R(t) = 0.2
∫ t
0
e−0.2t

(
20 +

4

0.35
(1− e−0.35t)

)1 +
1.2

0.55
.e−0.35t

1 +
1.2

0.55


−5
3

,
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(a) T = R (b) T = Z

Figure 2.2: Numerical solutions of (2.15) with λ = 0.5, γ = 0.2, ν = 0.05, S(0) = 80, I(0) = 20.
(a), we show the solution in the discrete-time case T = Z; and (b) we plot the solution to (2.15)
for the continuous time scales

62



Chapter 3

Existence and uniqueness of solution for

a fractional order SIR model

We consider an extension of the SIR model.


dx(t)
dt

= −αy(t)x(t)
dy(t)
dt

= αy(t)x(t)− βy(t)

dz(t)
dt

= βy(t),

(3.1)

where N(t) = x(t) + y(t) + z(t) the total population at time t. Not that, in our natation,

(x(t), y(t), z(t)) is interpreted as (S(t), I(t), R(t)). The initial condition is given by

x(0) = x0, y(0) = y0, z(0) = z0.

The complete model that describes a system of caputo fractional differential equation is presented

as follows:


cdαx(t)
dtα

= −αy(t)x(t)
cdαy(t)
dtα

= αy(t)x(t)− βy(t)
cdαz(t)
dtα

= βy(t)

(3.2)

Where 0 < α ≤ 1.
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3.1 Main results

We will apply some basic theorems like Banach contraction and Schauder theorems to receives our

required result as 
cdαx(t)
dtα

= Φ1(x(t), y(t), z(t), t)
cdαy(t)
dtα

= Φ2(x(t), y(t), z(t), t)
cdαz(t)
dtα

= Φ3(x(t), y(t), z(t), t)

(3.3)

Upon integration for 0 < α ≤ 1 to equation (3.3), we get the given system as:



x(t) = x0 +
1

Γ(α)

∫ t

0

(t− s)α−1Φ1(x(t), y(t), z(t), t)ds

y(t) = y0 +
1

Γ(α)

∫ t

0

(t− s)α−1Φ2(x(t), y(t), z(t), t)ds

z(t) = z0 +
1

Γ(α)

∫ t

0

(t− s)α−1Φ3(x(t), y(t), z(t), t)ds

(3.4)

Now we will take 0 < t < T < ∞ and define Banach space as E = C(R3 × [0, T ], R+), then

E = E1 × E2 × E3 will also be the Banach space having the norm ∥(x, y, z)∥ = max
t∈[0, T ]

|x(t)| +

max
t∈[0, T ]

|y(t)|+ max
t∈[0, T ]

|z(t)|. Expressing the system (3.4) as

W (t) = W0(t) +
1

Γ(α)

∫ t

0

(t− ζ)α−1ϕ(W (ζ), ζ)dζ,

where

W (t) =


x(t)

y(t)

z(t)

,W0(t) =


x0(t)

y0(t)

z0(t)

,

and

ϕ(W (t), t) =


Φ1(x(t), y(t), z(t), t)

Φ2(x(t), y(t), z(t), t)

Φ3(x(t), y(t), z(t), t)

.
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We take the conditions of growth non-linear vector operator ϕ : R3 × [0, T ] −→ R+ as:

(A1) There is a constant Lϕ > 0; ∀(W1(t), W2(t)) ∈ R× R;

|ϕ(W1(t), t)− ϕ(W2(t), t)| ≤ Lϕ |W1(t)−W2(t)| .

(A2) there is a constants Cϕ > 0,Mϕ > 0;

|ϕ(W (t), t)| ≤ Cϕ |W |+Mϕ.

Definition 3.1.1. (See p. 118 of [18])

Let X, Y be topological spaces. A map f : X → Y is called compact if f(X) is contained in a

compact subset of Y .

3.2 Existence and uniqueness of solution

Theorem 3.1. Under the continuity of ϕ together with assumption (A2), system (3.3) has at least

one solution.

Proof 3. With the help of ”Schauder fixed point theorem”, we will prove that system (3.3) has

solution. Let take a function A : E −→ E is define by:

A(W (t)) = W0(t) +
1

Γ(α)

∫ t

0

(t− ζ)α−1ϕ(W (ζ), ζ)dζ.

The proof is given in several steps.

Step1: A is continuous. Let Wn be a sequence such that Wn −→ W in E.

Then for each 0 < t < T , suppose that B(t) = A(Wn(t))− A(W (t)) hence

|B(t)| ≤ 1

Γ(α)

∫ t

0

(t− ζ)α−1 |ϕ(Wn(ζ), ζ)− ϕ(W (ζ), ζ)| dζ,
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|B(t)| ≤ ∥ϕ(Wn(.), .)− ϕ(W (.), .)∥
Γ(α)

∫ t

0

(t− ζ)α−1dζ,

≤ Tα ∥ϕ(Wn(.), .)− ϕ(W (.), .)∥
Γ(α + 1)

.

Since ϕ is a continuous function, we have

|A(Wn(t))− A(W (t))| ≤ Tα

Γ(α+1)
∥ϕ(Wn(·), ·)− ϕ(W (·), ·)∥ → 0 as n→ ∞.

For the second of the proof we have to show that the set A(E) is relatively compact. Let V =

A(W ) ∈ A(E). Therefore, ∥A(W )∥ ≤ R. By hypothesis, at any W ∈ E, follows

|A(W (t))| ≤ |W0|+
1

Γ(α)

∫ t

0

(t− ζ)α−1 |ϕ(W (ζ), ζ)| dζ,

|A(W (t))| ≤ |W0|+
1

Γ(α)

∫ t

0

(t− ζ)α−1[Cϕ |W |+Mϕ]dζ,

≤ |W0|+
Tα

Γ(α + 1)
[Cϕ ∥W∥+Mϕ].

wich implies that

∥A(W )∥ ≤ |W0|+
Tα

Γ(α + 1)
[Cϕ ∥W∥+Mϕ] ≤ R,

Thus A(E) ⊂ E. From this we say that operator A is closed and bounded. Next we go ahead to

prove the result for completely continuous operator as:

Let t2 > t1 lies in [0, T ], suppose that B = A(W )(t2)− A(W )(t1) and K = CϕR +Mϕ Therefore

|B| ≤ 1

Γ(α)

[∫ t2

0

(t2 − ζ)α−1dζ −
∫ t1

0

(t1 − ζ)α−1dζ

]
K, (3.5)

|A(W )(t2)− A(W )(t1)| ≤ (CϕR +Mϕ)

Γ(α + 1)
[tα2 − tα1 ]. (3.6)

Now from (3.6), on can observe that as t1 approaches to t2, then right side also vanishes. So one

concludes that |A(W )(t2)− A(W )(t1)| tend to 0, as t1 tends to t2.

So A(E) is equicontinuous. By using ”Arzelà-Ascoli theorem”, the operator A is completely con-
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tinuous operator and also uniformly bounded proved already. By ”Schauder’s fixed point theorem”

system has one or more than one solution.

Further we proceeds for uniqueness as:

Theorem 3.2. Using (A1), system has unique or one solution if Tα

Γ(α+1)
Lϕ < 1.

Proof 4. Take A : E −→ E, consider W and W in E suppose that B = A(W )− A(W )as

∥∥B∥∥ = max
t∈[0,T ]

∣∣A(W )(t)− A(W (t))
∣∣

≤ Tα

Γ(α + 1)
Lϕ
∥∥W −W

∥∥ . (3.7)

From (3.7), follows ∥∥A(W )− A(W )
∥∥ ≤ Tα

Γ(α + 1)
Lϕ
∥∥W −W

∥∥ .
Hence A is contarction. By ”Banach contraction theorem” system has one solution. □
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Chapter 4

Uniform Stability of Dynamic SICA

HIV Transmission Models

In this chapter, we study the model SICA HIV Transmission Models on time scales, providing a

Lyapunov function definition. The study aims to demonstrate the system’s permanence, existence

of solutions, and establish sufficient conditions guaranteeing a unique almost periodic solution that

is uniformly asymptotically stable.

On a given time scales T, we propose the following SICA model :



x∆1 (t) = Λ− βλ(t)xσ1 (t)− νxσ1 (t),

x∆2 (t) = βλ(t)x1(t)− (ρ+ ϕ+ ν)xσ2 (t) + γx4(t) + ωx3(t),

x∆3 (t) = ϕx2(t)− (ω + ν)xσ3 (t),

x∆4 (t) = ρx2(t)− (γ + ν + d)xσ4 (t),

(4.1)

where t ∈ T+, with T+ a nonempty closed subset of R+ =]0,+∞[.

4.1 Definitions

Let f be a function defined on T+. We set

fL = inf
{
f(t) : t ∈ T+

}
and fU = sup

{
f(t) : t ∈ T+

}
.
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Lemma 4.1 (See [23]). Assume that a > 0, b > 0, and that −a ∈ R+. Then,

y∆(t) ≥ (≤) b− ayσ(t), y(t) > 0, t ∈ [t0,∞)T

implies that

y(t) ≥ (≤)
b

a

[
1 +

(
ay(t0)

b
− 1

)
e(⊖a)(t, t0)

]
, t ∈ [t0,∞)T.

Definition 4.1.1 (See [32]). A time scale T is called an almost periodic time scales if

Π = {τ ∈ R : t+ τ ∈ T for all t ∈ T} ≠ {0} .

Definition 4.1.2 (See [32]). Let T be an almost periodic time scales. A function x ∈ C(T,Rn) is

called an almost periodic function if the ε-translation set of x,

E {ε, x} = {τ ∈ Π :| x(t+ τ)− x(t) |< ε for all t ∈ T} ,

is a relatively dense set in T, that is, for all ε > 0 there exists a constant l(ε) > 0 such that each

interval of length l(ε) contains a η(ε) ∈ E {ε, x} such that |x(t + τ) − x(t)|< ε for all t ∈ T.

Moreover, τ is called the ε-translation number of x(t) and l(ε) is called the inclusion length of

E {ε, x}.

Definition 4.1.3 (See [32]). Let D be an open set in Rn and let T be a positive almost periodic

time scales. A function f ∈ C(T×D,Rn) is called an almost periodic function in t ∈ T, uniformly

for x ∈ D, if the ε-translation set of f ,

E {ε, f, S} = {τ ∈ Π :| f(t+ τ, x)− f(t, x) |< ε for all (t, x) ∈ T× S} ,

is a relatively dense set in T for all ε > 0 and for each compact subset S of D there exists a constant

l(ε,S) > 0 such that each interval of length l(ε, S) contains τ(ε,S) ∈ E {ε, f, S} such that

| f(t+ τ, x)− f(t, x) |< ε for all (t, x) ∈ T× S.
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Consider the system

x∆(t) = h(t, x) (4.2)

where h : T+ × SB −→ Rn, SB = {x ∈ Rn : ∥x∥ < B} and h(t, x) is almost periodic in t

uniformly for x ∈ SB and continuous in x.

Lemma 4.2 (See [51]). Suppose that there exists a Lyapunov function V (t, x, z) defined on T+ ×

SB × SB, that is, there exists a function V (t, x, z) satisfying the following conditions:

1. a(∥x− z∥) ≤ V (t, x, z) ≤ b(∥x− z∥), where a, b ∈ K with

K =
{
α ∈ C(R+,R+) : α(0) = 0, and α increasing

}
;

2. |V (t, x, z)− V (t, x1, z1)| ≤ L(∥x− x1∥+ ∥z − z1∥), where L > 0 is a constant;

3. D+V ∆(t, x, z) ≤ −cV (t, x, z), where c > 0 and −c ∈ R+.

Furthermore, if there exists a solution x(t) ∈ S of system (4.2) for t ∈ T+, where S ∪ SB is a

compact set, then there exist a unique almost periodic solution f(t) ∈ S of system (4.2), which is

uniformly asymptotically stable.

Definition 4.1.4 (See [37]). System (4.1) is said to be permanent if there exist positive constants

m and M such that

m ≤ lim inf
t−→∞

xi(t) ≤ lim sup
t−→∞

xi(t) ≤M, i = 1, 2, 3, 4,

for any solution (x1(t), x2(t), x3(t), x4(t)) of (4.1).

4.2 Permanence of positives solutions

The principal objective of this section is to establish sufficient conditions for system (4.1) to be

permanent. Let t0 ∈ T be a fixed positive initial time. We introduce the following assumption for

(4.1):
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(H1) λ(t) is a bounded and almost periodic function satisfying

0 < λL ≤ λ(t) ≤ λU .

Lemma 4.3. Suppose hypothesis (H1) holds. Then, for any positive solution (x1(t), x2(t), x3(t), x4(t))

of system (4.1), there exists positive constants M and T such that xi(t) ≤ M , i = 1, 2, 3, 4, for

t ≥ T .

Proof 5. Let Z(t) = (x1(t), x2(t), x3(t), x4(t)) be any positive solution of system (4.1). From the

ith equation of system (4.1), we have



x∆1 (t) ≤ Λ− (βλL + ν)xσ1 (t),

x∆2 (t) ≤ βλUM1 + (γ + ω)
Λ

ν
− (ρ+ ϕ+ ν)xσ2 (t),

x∆3 (t) ≤ ϕM2 − (ω + ν)xσ3 (t),

x∆4 (t) ≤ ρM2 − (γ + ν + d)xσ4 (t).

(4.3)

Hence, by Lemma 4.1, there exist positive constants Mi and Ti such that for any positive solution

(x1(t), x2(t), x3(t), x4(t)) of system (4.1), we have

x1(t) ≤
Λ

βλL + ν

[
1 +

(
(βλL + ν)x1(t0)

Λ
− 1

)
e⊖(βλL+ν)(t, t0)

]
.

If −(βλL + ν) < 0, then e⊖(βλL+ν)(t, t0) −→ 0 as t −→ ∞ and



x1(t) ≤M1 := Λ/(βλL + ν), for t ≥ T1,

x2(t) ≤M2 := β(λUM1 + (γ + ω)
Λ

ν
)/(ρ+ ϕ+ ν), for t ≥ T2,

x3(t) ≤M3 := ϕM2/(ω + ν), for t ≥ T3,

x4(t) ≤M4 := ρM2/(γ + ν + d), for t ≥ T4.

(4.4)

Let M = max
1≤i≤4

{Mi} and T = max
1≤i≤4

{Ti}. Then, xi(t) ≤M , i = 1, 2, 3, 4, for all t ≥ T .

Lemma 4.4. Suppose that (H1) holds. Then, system (4.1) is permanent.

Proof 6. Let Z(t) = (x1(t), x2(t), x3(t), x4(t)) be any positive solution of system (4.1). From the
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ith equation of system (4.1), we have



x∆1 (t) ≥ Λ− (βλU + ν)xσ1 (t),

x∆2 (t) ≥ βλLm1 − (ρ+ ϕ+ ν)xσ2 (t),

x∆3 (t) ≥ ϕm2 − (ω + ν)xσ3 (t),

x∆4 (t) ≥ ρm2 − (γ + ν + d)xσ4 (t).

(4.5)

From hypothesis (H1) and Lemma 4.1, there exists positive constants mi > 0 such that for any

positive solution (x1(t), x2(t), x3(t), x4(t)) of system (4.1) there exists T̂i such that



x1(t) ≥ m1 := Λ/(βλU + ν), for t ≥ T̂1,

x2(t) ≥ m2 := (βλLm1)/(ρ+ ϕ+ ν), for t ≥ T̂2,

x3(t) ≥ m3 := ϕm2/(ω + ν), for t ≥ T̂3,

x4(t) ≥ m4 := ρm2/(γ + ν + d), for t ≥ T̂4.

(4.6)

Let m = min1≤i≤4 {mi} and T̂ = max1≤i≤4

{
T̂i

}
. We conclude that xi(t) ≥ m, i = 1, 2, 3, 4, for all

t ≥ T̂ .

4.3 Uniform asymptotic stability

In this section, we prove sufficient conditions for the existence and uniform asymptotic stability of

the unique positive almost periodic solution to system (4.1). Let us define

Ω :=

{
Z(t) = (x1(t), x2(t), x3(t), x4(t)) ∈ (R+)4 : (x1(t), x2(t), x3(t), x4(t))

is a solution of (4.1) with 0 < m ≤ xi ≤M, i = 1, . . . 4, and N(t) ≤ Λ

ν

}
.

72



It is clear that Ω is an invariant set of system (4.1) and, by Lemma 4.4, we have Ω ̸= ∅. We

introduce some more notation. Let

a1 := βλL + ν,

a2 := ρ+ ϕ+ ν,

a3 := ω + ν,

a4 := γ + ν + d,

b1 :=

(
βλU +

β2M

2m

)
,

b2 := (ρ+ ϕ) ,

b3 :=

(
ω +

β2M

2m
ηC

)
,

b4 :=

(
γ +

β2M

2m
ηA

)
.

Moreover, let Γ1 := min
1≤i≤4

ai and Γ2 := max
1≤i≤4

bi. In our next result (Theorem 4.1) we assume the

following additional hypothesis:

(H2) Γ2 < Γ1 with Γ1,Γ2 ∈ R+.

Theorem 4.1. Suppose that (H1) and (H2) hold. Then the dynamic system (4.1) has a unique

almost periodic solution Z(t) = (x1(t), x2(t), x3(t), x4(t)) ∈ Ω that is uniformly asymptotically

stable.

Proof 7. According to Lemma 4.1, every solution

Z(t) = (x1(t), x2(t), x3(t), x4(t))

of system (4.1) satisfies xLi ≤ xi(t) ≤ xUi , i = 1, . . . , 4, and |xi| ≤ Ki, i = 1, . . . , 4. Denote

∥ Z ∥ =∥ (x1(t), x2(t), x3(t), x4(t)) ∥

= sup
t∈T+

(| x1(t) | + | x2(t) | + | x3(t) | + | x4(t) |) .

Let Z(t) = (x1(t), x2(t), x3(t), x4(t)) and Ẑ(t) = (x̂1(t), x̂2(t), x̂3(t), x̂4(t)) be two positive solutions
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of (4.1). Then ∥ Z ∥≤ K and ∥ Ẑ ∥≤ K, where

K =
i=4∑
i=1

Ki.

In view of (4.1), we have



x∆1 (t) = Λ− βλ(t)xσ1 (t)− νxσ1 (t),

x∆2 (t) = βλ(t)x1(t)− (ρ+ ϕ+ ν)xσ2 (t) + γx4(t) + ωx3(t),

x∆3 (t) = ϕx2(t)− (ω + ν)xσ3 (t),

x∆4 (t) = ρx2(t)− (γ + ν + d)xσ4 (t),

and 

x̂∆1 (t) = Λ− βλ̂(t)x̂σ1 (t)− νx̂σ1 (t),

x̂∆2 (t) = βλ̂(t)x̂1(t)− (ρ+ ϕ+ ν)x̂σ2 (t) + γx̂4(t) + ωx̂3(t),

x̂∆3 (t) = ϕx̂2(t)− (ω + ν)x̂σ3 (t),

x̂∆4 (t) = ρx̂2(t)− (γ + ν + d)x̂σ4 (t).

Define the Lyapunov function V (t, Z, Ẑ) on T+ × Ω× Ω as

V (t, Z, Ẑ) =
i=4∑
i=1

| xi(t)− x̂i(t) |=
i=4∑
i=1

Vi(t),

where Vi(t) =| xi(t)− x̂i(t) |. The two norms

∥ Z(t)− Ẑ(t) ∥= sup
t∈T+

i=4∑
i=1

| xi(t)− x̂i(t) |

and

∥ Z(t)− Ẑ(t) ∥∗= sup
t∈T+

(
i=4∑
i=1

(xi(t)− x̂i(t))
2

) 1
2

are equivalent, that is, there exist two constants η1 and η2 > 0 such that

η1 ∥ Z(t)− Ẑ(t) ∥∗≤∥ Z(t)− Ẑ(t) ∥≤ η2 ∥ Z(t)− Ẑ(t) ∥∗ .
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Hence,

η1 ∥ Z(t)− Ẑ(t) ∥∗≤ V (t, Z, Ẑ) ≤ η2 ∥ Z(t)− Ẑ(t) ∥∗ .

Let a, b ∈ C(R+,R+), a(x) = η1x and b(x) = η2x. Then the assumption (i) of Lemma 4.2 is

satisfied. Moreover,

| V (t, Z, Ẑ)− V (t, Z∗, Ẑ∗) | =

∣∣∣∣∣
i=4∑
i=1

| xi(t)− x̂i(t) | −
i=4∑
i=1

| x∗i (t)− x̂∗i (t) |

∣∣∣∣∣
≤

i=4∑
i=1

| (xi(t)− x̂i(t))−
(
x∗i (t)− x̂∗i (t)

)
|

≤
i=4∑
i=1

| (xi(t)− x∗i (t)) +
(
x̂∗i(t)− x̂i(t)

)
|

≤
i=4∑
i=1

| (xi(t)− x∗i (t)) | +
i=4∑
i=1

|
(
x̂∗i(t)− x̂i(t)

)
|

≤ L
(
∥ Z(t)− Z∗(t) ∥ + ∥ Ẑ(t)− Ẑ∗(t) ∥

)
,

where L = 1, so that condition (ii) of Lemma 4.2 is also satisfied. Now, let vi(t) = xi(t) − x̂i(t),

i = 1, . . . , 4. We compute and estimate the Dini derivative D+V ∆ of V along the associated product

system (4.1). Using Lemma 4.1 of [33], it follows that D+V ∆
1 (t) ≤ sign(vσ1 (t))(v1(t))

∆. For more

details on D+V ∆
1 (t) see [22, 26]. Now, let us begin computing

D+V ∆
1 (t) ≤ sign(vσ1 (t))(v1(t))

∆

= sign(vσ1 (t))[−βλ(t)xσ1 (t)− νxσ1 (t) + βλ̂(t)x̂σ1 (t) + νx̂σ1 (t)]

= sign(vσ1 (t))[−βλ(t)(xσ1 (t)− x̂σ1 (t))− ν(xσ1 (t)− x̂σ1 (t))]

−βx̂σ1 (t)(λ(t)− λ̂(t))]

= sign(vσ1 (t))[−(βλ(t) + ν)(xσ1 (t)− x̂σ1 (t))

−βx̂σ1 (t)(λ(t)− λ̂(t))]

≤ −(βλ(t) + ν) | xσ1 (t)− x̂σ1 (t)) | +βx̂σ1 (t) | λ(t)− λ̂(t) |

≤ −(βλL(t) + ν) | xσ1 (t)− x̂σ1 (t)) | +βx̂σ1 (t) | λ(t)− λ̂(t) |

≤ −(βλL(t) + ν) | xσ1 (t)− x̂σ1 (t)) | +βM | λ(t)− λ̂(t) |,
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that is,

D+V ∆
1 (t) ≤ −(βλL(t) + ν) | x̂σ1 (t)− x̂σ1 (t) | +(βM) | λ(t)− λ̂(t) | .

Let v2(t) = x2(t)− x̂2(t). Similarly, we have

D+V ∆
2 (t) ≤ sign(vσ2 (t))(v2(t))

∆

= sign(vσ2 (t))[βλ(t)x1(t)− (ρ+ ϕ+ ν)xσ2 (t) + γx4(t)

+ ωx3(t)− βλ̂(t)x̂1(t) + (ρ+ ϕ+ ν)x̂σ2 (t)− γx̂4(t)− ωx̂3(t)]

= sign(vσ2 (t))[(βλ(t)x1(t)− βλ̂(t)x̂1(t))− (ρ+ ϕ+ ν)(xσ2 (t)− x̂σ2 (t))

+ γ(x4(t)− x̂4(t)) + ω(x3(t)− x̂3(t))]

= sign(vσ2 (t))[β(λ(t)(x1(t)− x̂1(t)) + x̂1(t)(λ(t)− λ̂(t)))

− (ρ+ ϕ+ ν)(xσ2 (t)− x̂σ2 (t)) + γ(x4(t)− x̂4(t)) + ω(x3(t)− x̂3(t))]

= sign(vσ2 (t))[βλ(t)(x1(t)− x̂1(t)) + βx̂1(t)(λ(t)− λ̂(t))

− (ρ+ ϕ+ ν)(xσ2 (t)− x̂σ2 (t)) + γ(x4(t)− x̂4(t)) + ω(x3(t)− x̂3(t))]

≤ βλU | x1(t)− x̂1(t) | +βM | λ(t)− λ̂(t) |

− (ρ+ ϕ+ ν) | xσ2 (t)− x̂σ2 (t) | +γ | x4(t)− x̂4(t) |

+ ω | x3(t)− x̂3(t) |;

for v3(t) = x3(t)− x̂3(t) one has

D+V ∆
3 (t) ≤ sign(vσ3 (t))(v3(t))

∆

= sign(vσ3 (t))[ϕx2(t)− (ω + ν)xσ3 (t)− ϕx̂2(t) + (ω + ν)x̂σ3 (t)]

≤ ϕ | x2(t)− x̂2(t) | −(ω + ν) | xσ3 (t)− x̂σ3 (t) |;

and for v4(t) = x4(t)− x̂4(t) we have

D+V ∆
4 (t) ≤ ρ | x2(t)− x̂2(t) | −(γ + ν + d) | xσ4 (t)− x̂σ4 (t) | .
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Since

λ(t) =
β

N(t)
(x1(t) + ηCx3(t) + ηA)x4(t),

it follows that

D+V ∆(t) ≤ −(βλL(t) + ν) | xσ1 (t)− x̂σ1 (t)) | +(βM) | λ(t)− λ̂(t) |

+ βλU | x1(t)− x̂1(t) | +βM | λ(t)− λ̂(t) |

− (ρ+ ϕ+ ν) | xσ2 (t)− x̂σ2 (t) | +γ | x4(t)− x̂4(t) |

+ ω | x3(t)− x̂3(t) | +ϕ | x2(t)− x̂2(t) |

− (ω + ν) | xσ3 (t)− x̂σ3 (t) |

+ ρ | x2(t)− x̂2(t) | −(γ + ν + d) | xσ4 (t)− x̂σ4 (t) | .

(4.7)

Therefore,

|λ(t)− λ̂(t)| ≤ β

4m
[| x1(t)− x̂1(t) | +ηC | x3(t)− x̂3(t) |

+ηA | x4(t)− x̂4(t) |] ,

where 0 ≤ ηC ≤ 1, ηA ≥ 1, and β > 0. The inequality (4.7) becomes

D+V ∆(t) ≤ −(βλL + ν) | xσ1 (t)− x̂σ1 (t) | −(ρ+ ϕ+ ν) | xσ2 (t)− x̂σ2 (t) |

− (ω + ν) | xσ3 (t)− x̂σ3 (t) | −(γ + ν + d) | xσ4 (t)− x̂σ4 (t) |

+ 2βM | λ(t)− λ̂(t) | +(βλU) | x1(t)− x̂1(t) | +γ | x4(t)− x̂4(t) |

+ ω | x3(t)− x̂3(t) | +(ρ+ ϕ) | x2(t)− x̂2(t) |

= −
(
βλL + ν

)
| xσ1 (t)− x̂σ1 (t) | −(ρ+ ϕ+ ν) | xσ2 (t)− x̂σ2 (t) |

− (ω + ν) | xσ3 (t)− x̂σ3 (t) | −(γ + ν + d) | xσ4 (t)− x̂σ4 (t) |

+ β

(
λU +

βM

2m

)
| x1(t)− x̂1(t) | +(ρ+ ϕ) | x2(t)− x̂2(t) |

+

(
ω +

β2M

2m
ηC

)
| x3(t)− x̂3(t) |

+

(
γ +

β2M

2m
ηA

)
| x4(t)− x̂4(t) | .
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From the previous inequality we can write

D+V ∆(t) ≤ −(βλL + ν) | xσ1 (t)− x̂σ1 (t) | −(ρ+ ϕ+ ν) | xσ2 (t)− x̂σ2 (t) |

−(ω + ν) | xσ3 (t)− x̂σ3 (t) | −(γ + ν + d) | xσ4 (t)− x̂σ4 (t) |

+

(
βλU +

β2M

2m

)
| x1(t)− x̂1(t) |

+(ϕ+ ρ) | x2(t)− x̂2(t) |

+

(
ω +

β2M

2m
ηC

)
| x3(t)− x̂3(t) |

+

(
γ +

β2M

2m
ηA

)
| x4(t)− x̂4(t) |

= −a1 | xσ1 (t)− x̂σ1 (t) | −a2 | xσ2 (t)− x̂σ2 (t) |

−a3 | xσ3 (t)− x̂σ3 (t) | −a4 | xσ4 (t)− x̂σ4 (t) |

+b1 | x1(t)− x̂1(t) | +b2 | x2(t)− x̂2(t) |

+b3 | x3(t)− x̂3(t)|+ b4 | x4(t)− x̂4(t) |

= −Γ1V (σ(t)) + Γ2V (t)

= (Γ2 − Γ1)V (t)− Γ1µ(t)D
+V ∆(t)

and it follows that D+V ∆(t) ≤ Γ2 − Γ1

(1 + Γ1µ)
V (t) = −ΨV (t). By hypothesis (H2), one has −Ψ ∈ R+

and Ψ =
Γ1 − Γ2

(1 + Γ1µ)
> 0. Thus, the assumption (iii) of Lemma 4.2 is satisfied. Furthermore,

the conditions (i) and (ii) of Lemma 4.2 also hold. For condition (i) we consider two functions

a, b ∈ C(R+) with a(x) = η1x and b(x) = η2x. For condition (ii) we put L = 1. So there exists a

unique uniformly asymptotically stable almost periodic solution Z(t) = (x1(t), x2(t), x3(t), x4(t)) of

the dynamic system (4.1) with Z(t) ∈ Ω. □

Example 4.3.1. Motivated by [34] and the case of Morocco, we consider system (4.1) for T = Z+:



∆x1(t) = Λ− βλ(t)x1(t+ 1)− νx1(t+ 1),

∆x2(t) = βλ(t)x1(t)− (ρ+ ϕ+ ν)x2(t+ 1) + γx4(t) + ωx3(t),

∆x3(t) = ϕx2(t)− (ω + ν)x3(t+ 1),

∆x4(t) = ρx2(t)− (γ + ν + d)x4(t+ 1),

(4.8)
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Figure 4.1: Example 4.3.1: solution of 4.8 during 7 years.

where

x1(0) = 1− 11

N0

, x2(0) =
2

N0

, x3(0) = 0, x4(0) =
9

N0

,

with N0 = 325235, Λ = 2190, β = 2.710−7, ν = 0.39, ρ = 0.2, ϕ = 0.1, γ = 0.33, ω = 0.09,

and d = 1. System 4.8 is permanent. Furthermore, m1 = 5615.381462, m2 = 5.47870412010−9,

m3 = 1.14139669210−9, m4 = 6.37058618610−10, M1 = 5615.384615, M2 = 0.002773104793,

M3 = 0.0005777301652, and M4 = 0.0003224540457. The conditions of Theorem 4.1 are verified

with 0.37 = Γ2 < Γ1 = 0.39 and Ψ = 0.01391941151. Therefore, system 4.8 has a unique positive

almost periodic solution, which is uniformly asymptotic stable. In Figure 4.1 we plot the solution

for the first 7 years with ηC = 0.5 and ηA = 1.5.
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4.4 Conclusion

We have investigated the uniform stability of the singular positive solution in an HIV/AIDS epi-

demic model, specifically the SICA model on an arbitrary time scale. The purpose of incorporating

time scales is to integrate both continuous and discrete time models. We established the perma-

nence of each solution and, using a suitable Lyapunov function, we derived a sufficient condition

for uniform asymptotic stability of the solution. Additionally, we presented an illustrative example

to substantiate our analytical results.
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Chapter 5

Existence and uniqueness of solution for

a fractional order SICA HIV

Transmission models

On considere the model SICA suivant:

dw(t)

dt
= Λ− βλ(t)w(t)− µw(t)

dx(t)

dt
= βλ(t)w(t)− (ρ+ ϕ+ µ)x(t) + γz(t) + ωy(t),

dy(t)

dt
= ϕx(t)− (ω + µ)y(t),

dz(t)

dt
= ρx(t)− (γ + µ+ d)z(t).

N(t) = w(t) + x(t) + y(t) + z(t) the total population at time t.

Let us consider the Caputo fractional order SICA model:



C
t0
Dα
t w(t) = Λ− β(x(t) + ηyy(t) + ηzz(t))w(t)− µw(t),

C
t0
Dα
t x(t) = β(x(t) + ηyy(t) + ηzz(t))w(t)− ξ3x(t) + ωy(t) + γz(t),

C
t0
Dα
t y(t) = ϕx(t)− ξ2y(t),

C
t0
Dα
t z(t) = ρx(t)− ξ1z(t).
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5.1 Main results

We will apply some basic theorems like Banach contraction and Schauder theorems to receives our

required result as 

cdαw(t)
dtα

= ω1(w(t), x(t), y(t), z(t), t)
cdαx(t)
dtα

= ω2(w(t), x(t), y(t), z(t), t)
cdαy(t)
dtα

= ω3(w(t), x(t), y(t), z(t), t)
cdαz(t)
dtα

= ω4(w(t), x(t), y(t), z(t), t).

(5.1)

Now we will take 0 < t < T < ∞ and define Banach space as E = C([0, T ] × R4,R+), then

E = E1×E2×E3×E4 will also be the Banach space having the norm ∥(w, x, y, z)∥ = max
t∈[0, T ]

|w(t)|+

max
t∈[0, T ]

|x(t)|+ max
t∈[0, T ]

|y(t)|+ max
t∈[0, T ]

|z(t)|.

U(t) = U0 +
1

Γ(α)

∫ t

0

(t− ζ)α−1ψ(U(ζ), ζ)dζ,

where

U(t) =



w(t)

x(t)

y(t)

z(t)

, U0(t) =



w0

x0(t)

y0(t)

z0(t)

, ψ(U(t), t) =



ω1(w(t), x(t), y(t), z(t), t)

ω2(w(t), x(t), y(t), z(t), t)

ω3(w(t), x(t), y(t), z(t), t)

ω4(w(t), x(t), y(t), z(t), t).

We take the conditions of growth non-linear vector operator ψ : [0, T ]× R4 −→ R+ as:

(A1) ∃ a constants Lψ > 0; ∀(U1(t), U2(t)) ∈ R× R ;

|ψ(U1(t), t)− ψ(U2(t), t)| ≤ Lψ|U1(t)− U2(t)|

.

(A2) ∃ a constants Cψ > 0,Mψ > 0;

| ψ(U(t), t) |≤ Cψ | U | +Mψ
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.

5.2 Existence and uniqueness of solution

Theorem 5.1. Under the continuity of ψ together with assumption (A2), system(5.1) has at least

one solution.

Proof 8. With the help of ”Schauder fixed point theorem”, we will derive our result.

Let D : E −→ E is define by:

D(U(t)) = U0 +
1

Γ(α)

∫ t

0

(t− ζ)α−1ψ(U(ζ), ζ)dζ.

at any U ∈ E, follows

|D(U(t))| ≤ |U0|+
1

Γ(α)

∫ t

0

(t− ζ)α−1|ψ(U(ζ), ζ)|dζ

≤ |U0|+
1

Γ(α)

∫ t

0

(t− ζ)α−1[Cψ|U |+Mψ]dζ

≤ |U0|+
Tα

Γ(α + 1)
[Cψ|U |+Mψ],

wich implies that

∥D(U)∥ ≤ |U0|+
Tα

Γ(α + 1)
[Cψ|U |+Mψ]

≤ ρ.

From this we say that operator D is closed and bounded. Next we go ahead to prove the result for

completely continuous operator as:

Let t2 > t1 lies in [0, T ], and take

|D(U)(t2)−D(U)(t1)| =
∣∣∣∣ 1

Γ(α)

∫ t2

0

(t2 − ζ)α−1ψ(U(ζ), ζ)dζ − 1

Γ(α)

∫ t1

0

(t1 − ζ)α−1ψ(U(ζ), ζ)dζ

∣∣∣∣
≤ 1

Γ(α)

[∫ t2

0

(t2 − ζ)α−1dζ −
∫ t1

0

(t1 − ζ)α−1dζ

]
(CψR +Mψ),

83



then

|D(U)(t2)−D(U)(t1)| ≤
(CψR +Mψ)

Γ(α + 1)
[tα2 − tα1 ] (5.2)

Now from (5.2), on can observe that as t1 approaches to t2, then right side also vanishes.So one

concludes that |D(U)(t2)−D(U)(t1)| tend to 0, as t1 tends to t2. So D(E) is equicontinuous. By

using ”Arzelà-Ascoli theorem”, the operator D is completely continuous operator and also uniformly

bounded proved already. By ”Schauder’s fixed point theorem” system has one or more than one

solution. □

Further we procceeds for uniqueness as

Theorem 5.2. Using (A1), system (5.1) has unique or one solution if
Tα

Γ(α + 1)
Lψ < 1.

Proof 9. Take D : E −→ E, consider U and Ū in E as

∥∥D(U)−D(Ū)
∥∥ = max

t∈[0,T ]

∣∣∣∣ 1

Γ(α)

∫ t

0

(t− ζ)α−1ψ(U(ζ), ζ)dζ − 1

Γ(α)

∫ t

0

(t− ζ)α−1ψ(Ū(ζ), ζ)dζ

∣∣∣∣
≤ Tα

Γ(α + 1)
Lψ∥U − Ū∥.

(5.3)

From (5.3), follows ∥∥D(U)−D(Ū)
∥∥ ≤ Tα

Γ(α + 1)
Lψ∥U − Ū∥.

Hence D is contraction. By ”Banach contraction theorem” system (5.1) has one solution. □
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Perspective
Here, we provide a list of the main research perspectives that emerge at the end of this thesis:

� Study the stability of epidemic models on time scales.

� Comparison theorems of the stability of epidemic models on time scales.
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[3] I. Area, F. Ndáırou, J. J. Nieto, C. J. Silva and D. F. M. Torres, Ebola model and optimal

control with vaccination constraints J. Ind. Manag. Optim. 14 (2018), no. 2, 427–446.

[4] B. Aulbach and S. Hilger, A unified approach to continuous and discrete dynamics, Colloq.

Math. Soc. János Bolyai 53 (1990), 37–56.

[5] Z. Belarbi and B. Bayour, D. F. M. Torres, Uniform stability of dynamic SICA HIV transmis-

sion models on time scales, Applicationes Mathematicae, vol 51,2 (2024), pp. 163-177, Dol:

10.4064/am2521-6-2024

[6] Z. Belarbi and B. Bayour, D. F. M. Torres, The non-population conserving SIR model on

time scales. In chapter 8 of Mathematical Analysis: Theory and Applications, Chapman&

Hall, 2025.

[7] M. Bohner and A. Peterson, Dynamic equations on time scales, Birkhäuser Boston, Boston,
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