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Introduction 

I'm delighted to share my experience of teaching the "Operations Research" module. 

This book is made up of a set of fundamental chapters that have been presented in 

the form of courses for several specialties in the field of economics. I have based my 

approach on simplicity and methodological presentation of the content, while staying 

as far away as possible from pure mathematical presentation, since this product is 

intended primarily for students of economics, business and management sciences.  

Examples and exercises presented in all chapters are direct problems of economic 

application, this to better understand the use of models of operational research to 

the business enterprise itself. 

This edition will be followed by other improvements including the introduction of new 

chapters concerning decision theory namely: the decision tree, ordering problem, 

project management etc.   

Furthermore, the use of computer tools for solving problems of operational research 

is almost necessary to solving large-scale problems, which is why a new work will be 

prepared in this regard. 

Let's address this work to our teaching colleagues and students. All that's left for me 

to do is ask readers to send me their comments or remarks on the content and 

methods used, so as to make it a certified reference. 

 

 

Dr. HAMADOUCHE M.A.  
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Chapter 1 

1 Introduction to the operations research 

1.1 Definition 

There is no longer an exact definition of operations research, which is why 

researchers have defined it differently, depending on their research and application 

context. G.KIMBALL and P.MORSE define it as a scientific method providing 

executive management with a quantitative tool for decision-making. R.ACKOFF and 

G.CHORCHMAN have defined operations research as the use of scientific methods 

and models to solve problems related to operating systems, in order to provide 

decision-makers with optimal solutions, or practical decision theory, the use of 

scientific and mathematical methods that enable executives to solve problems, 

according to M.STARR and M.MILLER. Also, H.WANGER defined operational 

research as the use of scientific principles to solve executive managers' problems. 

 

 

 

These definitions are common to a number of keywords, namely: scientific method, 

models and tools, which in fact constitute mathematical and statistical models, 

managers' problems, decisions, optimal solutions. These are essentially the result of 

the understanding and use of this discipline by researchers in different fields.              

Overall, operational research can be defined as the set of rational methods and 

techniques for analyzing and synthesizing organizational phenomena, which can be 

used to develop better decisions. 

 

1.2 History  

As early as the 17th century, mathematicians such as Blaise Pascal tried to solve 

decision problems under uncertainty using mathematical expectation. Others, in the 

18th and 19th centuries, solved combinatorial problems.  

But it wasn't until the Second World War that the practice was first organized and 

acquired its name. In 1940, Patrick Blackett was called in by the British General Staff 

to lead the first operational research team, to solve problems such as the optimal 
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siting of surveillance radars. The success of this research encouraged the 

Americans to use the various tools of operational research 

 

The word "Operational" comes from the fact that the first application of a working 

group organized in this discipline was to military operations. The name has stuck 

ever since, even if the military is no longer the practice's main field of application.  

After the war, techniques developed considerably, thanks in particular to the 

explosion in computer computing capacity. The range of applications also multiplied.   

1.3 Applications fields  

Operational research can help the decision-makers when faced with a problem 

belonging to one of the following types:  

1.3.1 Combinatory problems 

A problem is called a combinatory problem when it includes a large number of 

acceptable solutions among which one is looking for an optimal solution or close to 

the optimal one.  

Typical example: determining where to locate 5 distribution centers out of 30 

possible sites, so that transport costs between these centers and customers are kept 

to a minimum. This problem cannot be solved by simply listing the possible solutions 

in the human mind, because there are 30 * 29 * 28 * 27 * 26 = 17,100,720 (!). And 

even if a problem of this size could be solved by enumeration by a computer, 

decision-makers are regularly faced with infinitely more complex problems, where 

the number of acceptable solutions can be counted in billions of billions. 

1.3.2 Random problems  

A problem is called random if it consists of finding an optimal solution to a problem 

that is posed in uncertain terms.  

Typical example: knowing the random distribution of the number of people entering a 

municipal administration in a minute and the random Distribution of a person's case 

processing time, determine the minimum number of checkpoints to open so that a 

person has less than 5% chance of having to wait more than 15 minutes. 
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1.3.3 Competitive problems  

A problem is called a competitive problem if it is to find an optimal solution to a 

problem whose terms depend on the interrelationship between its own actions and 

those of other decision-makers.   

Typical example: setting a sales price policy, knowing that the results of such a 

policy depend on the policy those competitors will adopt. 

 

 

1.4 Relations with others disciplines  

Operational research is at the crossroads of different sciences;  

1.4.1 Economy  

In addition to the fact that the main practical applications are in this area, economic 

analysis is often needed to define the objective to be achieved or to identify the 

constraints of a problem.   

1.4.2 Computer science 

Advances in computer science are closely linked to the growth in operational 

research applications. Significant computing power is required to solve large-scale 

problems. However, this power is far from being a panacea: it has been proven that 

certain problems, including some related to operational research, cannot be solved 

optimally by a computer in a reasonable time, even if we consider computers a 

billion times more powerful than those of today. For these problems, the operational 

researcher will most often call on techniques borrowed from artificial intelligence, 

enabling solutions close to the optimum to be found in an acceptable amount of 

time.  

It can also be a field of application, in terms of locating servers, the number of 

servers to be set up to obtain a reasonable response time, etc....  

1.4.3 Mathematics  

Many of the methods used by operational research are derived from various 

mathematical theories. In this sense, operational research is a branch of applied 

mathematics. 

1.5 Principle of  operational research  

Operational research is based on a scientific principle that begins with the creation 

of the appropriate model until its resolution and the application of the optimal 
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decision. The use of operational research as a decision-making tool in the company 

must necessarily follow a certain path of operation: 

- Determine all the components of the problem studied and the relationship of 

influence between them.. 

- Build the appropriate mathematical model. 

- Examine the model introduced to take into account all the factors that 

influence the primary objective. 

- Determine the optimal solution for the model and then check its feasibility. 
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Chapter 2 

2 Linear Programming 

There are mathematical methods that allow solving problems with defined objectives, 

such as maximizing profit or minimizing cost under a set of constraints. This 

technique is used to solve optimization problems. 

Linear programming (PL) is one of the most powerful and most widely used tools in 

"industrial" application among decision-making technologies. It is used in several 

areas, namely: Production Planning; Resource Allocation; Production Choices; 

Investment Choices and Plans; Distribution Problems; Staff Affection and 

Management; Project Management, and many others. ... 

 

 

2.1 Definition 

It is a mathematical technique used to deal systematically with complex problems 

where several activities compete for limited resources and an overall objective (profit 

maximization, cost minimization, etc.) is to be found. 

2.2 Making Linear Programming model 

Building the LP model is the key step in the overall process. In fact, it is the 

representation of real relationships by hypothetical mathematical functions, based on 

the examination and analysis of what already exists (the real problem). Such a 

model is created in just a few steps: 

2.2.1 Define the decision variables 

It presents the quantities that the decision-maker must know (unknown) and in 

addition these values have a direct influence on the value of the economic function. 

For example, the number of units produced, number of operating hours, ...     

 

Linear Programmin

The assumption that the 

phenomenon studied 

varies in a linear way 

Establishing a model to 

solve a problem 

Fig 1 1 Linear programming 
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2.2.2 Economic function (or objective function) 

It is a function that presents mathematically the main objective of the problem, it is 

characterized by a sense of preference that can be the maximization (benefit, 

production,...) or the minimization (cost, number of employees,...). 

Exemple : 𝑀𝑎𝑥: 𝑍 = 3𝑋1 + 7𝑋2 + 8𝑋3    

with : 𝑋1, 𝑋2, 𝑋3 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

      3, 7, 8 associated coefficients  with the three variables that represent, for example, 
the sales price, the profit of one unit of each product. 

2.2.3 Functional Constraints 

A set of constraints that mathematically translates into equations and/or inequations 
(inequalities), all the factors that have an impact on the components of the problem 
being studied. These are generally associated with the consumption of limited 
resources (raw materials, working hours, number of employees, etc.).     

Exemple : 20𝑋1 − 10𝑋2 ≤ 170 a constraint in the form of an inequality "less than or 

equal to" a limited quantity of resources "170". Obviously, a constraint can be an 

equation or an inequality (≤,≥, <, > ). 

A linear program is generically expressed as: 

 

 𝑀𝑎𝑥: 𝑍 = 𝑐1𝑋1    + ⋯+ 𝑐𝑗𝑋𝑗 +⋯+  𝑐𝑛𝑋𝑛 

                                                    𝑎11𝑋1   + ⋯ + 𝑎1𝑗𝑋𝑗 +⋯+  𝑎1𝑛𝑋𝑛     ≤  𝑏1       

⋮                         ⋮ 

                                                     𝑎𝑖1𝑋1   + ⋯ + 𝑎𝑖𝑗𝑋𝑗 +⋯+  𝑎𝑖𝑛𝑋𝑛     ≤  𝑏𝑖       

⋮                         ⋮ 

                                                    𝑎𝑚1𝑋1   + ⋯ + 𝑎𝑚𝑗𝑋𝑗 +⋯+ 𝑎𝑚𝑛𝑋𝑛   ≤  𝑏𝑚     

                                                          ∀ 𝑗 ;  𝑋𝑗 ≥ 0  𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑛𝑜𝑛 −

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑖𝑡𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛    

Or, in a more compact form: 

                                                              𝑀𝑎𝑥: 𝑍 = ∑𝑛𝑗=1 𝑐𝑗𝑋𝑗  

                                                                       ∑𝑛𝑗=1 𝑎𝑖𝑗𝑋𝑗  ≤  𝑏𝑖       𝑖 = 1…𝑚 

                                                                               
∀ 𝑗 ;  𝑋𝑗 ≥ 0  𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑛𝑜𝑛 − 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑖𝑡𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛     

Taking the following example to better understand the steps to follow in order to 

establish a linear program for a given problem:  

 

Problem : A company produces several types of washing powder. This company 

received an order of 12000 kg of a type of powder that is constructed by the 

compilation of three products (A, B, C) and the characteristics of the powder 

requested are: 
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1. The quantity delivered contains at least 3000 kg of product B. 

2. The quantity delivered does not contain more than 4000 kg of product A. 

3. The quantity delivered contains a maximum of 2000 kg of product C. 

If the cost of one kilogram of product B is 2 dinars, 3 dinars for the kg of product C 

and 4 dinars for the third product. 

Write the linear program that minimizes total cost. 

 

Solution : 

The company received an order of 12000 kg on a single type of powder, so the 

overall problem is to minimize the purchase costs of the three raw materials (RM) 

while meeting the conditions required by this order and not forgetting the quantity 

requested since a quantity in addition to the RM entails additional charges.   

Decision variables : 

It is a matter of calculating the quantities of the three RMs, which directly influence 

the total cost value, so: we note by 𝑋1, 𝑋2, 𝑋3, respectively the quantity of three raw 

materials A, B and C.   

Economic Function : 

The aim objective is to minimize raw material purchasing costs the preference 

sense is the minimization.  

the cost of one kg of product A is 4 dinars 

   then the cost of the quantity  𝑋1 kg of the product A, is 4𝑋1 dinars 

the cost of one kg of product B is 2 dinars 

   then the cost of the quantity  𝑋2 kg of the product B, is 2𝑋2 dinars 

the cost of one kg of product C is 3 dinars 

   then the cost of the quantity  𝑋3 kg of the product C, is 3𝑋3 dinars 

 

Which gives the total cost : 𝑊 = 4𝑋1 + 2𝑋2 + 3𝑋3 

The economic function is as follows:   𝑀𝐼𝑁: 𝑊 = 4𝑋1 + 2𝑋2 + 3𝑋3………(1) 
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The constraints : 

1- constraint of product A 

The condition of "the quantity delivered does not contain more than 4000 kg of product A" is 

mathematically translated as:    𝑋1 ≤ 4000………(2) 

2- constraint of product B 

The condition of "the quantity delivered contains at least 3000 kg of product B" is 

mathematically translated as:     𝑋2 ≥ 3000………(3) 

3- constraint of product C 

The condition of "the quantity delivered contains no more than 2000 kg of product C" is 

mathematically translated as:    𝑋3 ≤ 2000………(4) 

4- constraint of requested quantity 

The quantity requested is 12000 kg, which is mathematically translated as the sum of the 

three quantities: 𝑋1 + 𝑋2 + 𝑋3 = 12000 But if we express this constraint in the form of 

equality, we do not have sufficient guarantees to ensure the production of 12000 kg, for this 

purpose this constraint will take the form of an inequality:   𝑋1 + 𝑋2 + 𝑋3 ≥ 12000………(5) 

 

Adding the non-negative constraint (because of the positive quantities). 

 

The model of the associated LP is the following: 

 

                                        𝑀𝐼𝑁: 𝑊 = 4𝑋1 + 2𝑋2 + 3𝑋3                                                                                     

                                                                  𝑋1 ≤ 4000  

                                                                  𝑋2 ≥ 3000  

                                                                 𝑋3 ≤ 2000 

                                                                 𝑋1 + 𝑋2 + 𝑋3 ≥ 12000 

                                                                 𝑋1, 𝑋2, 𝑋3 ≥ 0 

 

Note: As the creation of the LP model represents a very important step, on which the 
action of decision-making on a given problem is articulated, it is necessary to present 
the resolution of a series of exercises in order to present as many cases as possible.  
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2.3 Exercises 

Exercise 2.1 : 

A national company produces two types of mattress (A and B) which each require 

three phases: the cutting phase, the folding phase in the form of rolls and the 

packaging phase. 

 

  The table below shows the time spent in 

minutes for the two types over the three 

production phases.   

 

 

 

It is given that the profit for each unit of type A is 1200 dinars and 800 dinars for that 

of type B. Write the linear program whose aim is to maximize the profit margin. 

Exercise 2.2 A craftsman makes two items A and B, each requiring two operations: 
machining and heat treatment. Product A undergoes machining for 1 hour and heat 
treatment for 3 hours. Product B undergoes machining for 2 hours and heat treatment 
for 3 hours. In addition, 2kg of raw materials are used in the composition of A and 
1kg in that of B. The manufacture of B ends with a finishing operation during 1 hour. 

Every 3 weeks, the craftsman has the use of the machine shop for 80 hours and the 
furnace for 150 hours. In addition, during this period, he cannot devote more than 35 
hours to finishing work or store more than 80kg of raw material. 

What quantities of A and B must the craftsman make during this period if the profit 
margin is 30 euros for item A and 20 euros for item B? 

Exercise 2.3 The VALAY quarry company supplies the Roads and Bridges Authority 
with gravel of various calibres; the contract, awarded for a global price, covers the 
following quantities: 13,500 tonnes of calibre 1 gravel, 11,200 tonnes of calibre 2 
gravel and 5,000 tonnes of calibre 3 gravel. VALAY rents two quarries: P1 at 19.40 
euros per tonne and P2 at 20 euros per tonne. After extraction, the stone is weighed 
and then crushed: each quarry supplies, per tonne of stone weighed, the quantities 
defined in the following table (the residual sand has no market value): 

 

 calibre 1 calibre 2 calibre 3 

stone of P1 0, 36t 0, 4t 0, 16t 

stone of P2 0, 45t 0, 2t 0, 10t 

 

The company wants to define its programme for extracting stones from P1 and P2 in 

such a way as to minimize the rental cost. Give a solution to this problem. 

 Available 

time (min) 

Mattress types  

B A 

2100 5 9 Phase 01 

 1900 7 5 Phase 02 

2500 3 2 Phase 03 
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Exercise 2.4 In a cafeteria, 2 types of frozen dessert are served, based on exotic 
cocktails, ice cream and candied fruit: the Creole and the Tropical. The Creole 
requires 8cl of exotic cocktail, 2dl of ice cream and 15g of candied fruit. 

The tropical requires 5cl of exotic cocktail, 2dl of ice cream and 25g of candied fruit. 
Each day, the patisserie workshop can prepare 1,600cl of exotic cocktail, 520dl of ice 
cream and 5kg of candied fruit. A Creole is sold for 1.2 euros and a tropical for 1 
euro. Maximising profits. 

 

Exercise 2.5 A business men specializes in producing leather shoes. He makes two 
types of shoe: hand-sewn A shoes and glued B shoes. His supply of leather does not 
allow him to make more than 120 shoes a week. What's more, he can't sell more 
than 100 shoes B and 70 shoes A during this period. It takes him 4 hours to make a 
pair of shoes A, and 1 hour to make a pair of shoes B. With his workers, he has 240 
hours of work per week. 

He can sell shoes A for 150 euros and shoes B for 50 euros. How many pairs of A 
and B shoes should he make per week to maximize his revenue? 

 

Exercise 2.6 A company has 10,000 m² of cardboard in stock, it manufactures and 
markets 2 types of cardboard box. The manufacture of a type 1 or 2 cardboard box 
requires 1 and 2 m² of cardboard respectively, as well as 2 and 3 minutes of 
assembly time. Only 200 hours of work are available over the coming week. The 
boxes are stapled, and four times as many staples are needed for a type 2 of box as 
for a type 1 of box. The available stock of staples enables a maximum of 15,000 
boxes of the first type to be assembled. The boxes are priced at 3 and 5 respectively. 

a) Formulate the problem of finding a production plan which maximizes the 
company's turnover in the form of a linear program. Clearly specify the decision 
variables, the objective function and the constraints. 

b) Determine an optimal production plan by solving the obtained linear program by 
graphical method (see the solutions section in Chapter 3). 
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Exercise solutions 

Solution 2.1 

(a) Decision variables 

Let  𝑋1 : be the number of  mattresses type A; 

         𝑋2 : be the number of  mattresses type B. 

(b) Economic function 

The aim is to maximize the profit margin. 

The profit on one unit of mattress A is 1200 Dinars. 

   The profit on  𝑋1 units of mattress A is 1200 𝑋1 Dinars. 

The profit on one unit of mattress B is 800 Dinars 

   The profit on 𝑋2 units of mattress B is 800 𝑋2 Dinars 

the profit margin is : 𝑍 = 1200𝑋1 + 800𝑋2 

So the economic function is : 𝑀𝑎𝑥: 𝑍 = 1200𝑋1 + 800𝑋2 

(b) Constraints 

Phase 01 constraint 

One unit of mattress A requires 9 minutes , so 9𝑋1 minutes are needed for 𝑋1 units. 

One unit of mattress B takes 5 minutes, so 5𝑋2 minutes are needed for 𝑋2 units. 

The duration of phase 01 is limited by 2100 minutes, which gives the following form 
of the constraint : 9𝑋1 + 5𝑋2 ≤ 2100 

Phase 02 constraint 

5𝑋1 minutes are needed for 𝑋1 units type A, and 7𝑋1 minutes are needed for 𝑋1 units 
type B, 

With a maximum duration of 1900 minutes, the constraint is written as :  

5𝑋1 + 7𝑋2 ≤ 1900 

Phase 03 constraint 

The time required to produce 𝑋1, 𝑋2 units of mattress A and B is:  2𝑋1 + 3𝑋2 which 

must not exceed 2500 minutes, so :  2𝑋1 + 3𝑋2 ≤ 2500 

 

 

This gives us the following linear program: 

    𝑀𝑎𝑥: 𝑍 = 1200𝑋1 + 800𝑋2  

9𝑋1 + 5𝑋2 ≤ 2100 

5𝑋1 + 7𝑋2 ≤ 1900 

2𝑋1 + 3𝑋2 ≤ 2500 

𝑋1, 𝑋2 ≥ 0 

Please refer to chapter 3 to see the resolution of this model,  
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Solution 2.2 

(a) Decision variables 

Let  𝑋1 : be number of items A; 

         𝑋2 : be number of items B. 

(b) Economic function 

The aim is to maximize the profit margin. 

The profit on one unit of items type A is 30 euros. 

   The profit on  𝑋1 units of mattress A is 30𝑋1€ 

The profit on one unit of items B is 20 euros 

   The profit on 𝑋2 units of items B is 20𝑋2€ 

the global profit margin is : 𝑍 = 30𝑋1 + 20𝑋2 

So the economic function is : 𝑀𝑎𝑥: 𝑍 = 30𝑋1 + 20𝑋2 

(b) Functional Contraints 

The machining constraint 

A unit of product A is machined for one hour 

   Then 𝑋1 units of product A are machined for 𝑋1 h 

A unit of product B is machined for 2 hours  

   Then 𝑋2 units of product B are machined for 2𝑋2 hours 

the craftsman has the machine shop at his disposal for 80 hours, so :  𝑋1 + 2𝑋2 ≤ 80 

The heat treatment constraint 

One unit of product A requires 3 hours, so 3 𝑋1 hours are needed for 𝑋1 units. 

One unit of product B requires 3 hours, so 3 𝑋2 hours are needed for 𝑋2 units. 

During this phase, the artisan does not have the furnace available for more than 150 
hours, which gives the following form of the constraint: 3𝑋1+3𝑋2≤150 

The finishing constraint 

The manufacture of B ends with a finishing phase lasting 1 hour for each unit.  

The duration of this phase is limited to 35 hours, so the constraint : 𝑋2≤35 

The raw material constraint 

2kg of raw material goes into the composition of A and 1kg into that of B. 

So the quantity of the raw material consumed is: 2𝑋1+𝑋2 

The maximum storage threshold is 80kg: 2𝑋1+𝑋2≤80 

We therefore have the following linear program: 

    𝑀𝑎𝑥: 𝑍 = 30𝑋1 + 20𝑋2  

𝑋1 + 2𝑋2 ≤ 80 

3𝑋1 + 3𝑋2 ≤ 150 

                                                                          𝑋2 ≤ 35  

2𝑋1 + 𝑋2 ≤ 80 

𝑋1, 𝑋2 ≥ 0 

Please refer to chapter 3 to see the resolution of this model,  
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Solution 2.3 

The aim is to determine the quantities of stone in tonnes from the two quarries P1 

and P2 required to meet VALAY's needs (which are 13,500 T, 11,200 T and 5,000 T 

of calibre 1, 2 and 3 respectively). 

(a) Decision variables 

Let 𝑋1: quantity of stone extracted from the quarry P1 ; 

      𝑋2: quantity of stone extracted from the quarry P2. 

(b) The economic function 

The objective is to minimize the quarry rental costs, 

The rental price for one tonne of P1 is €19.40 

    so the rental price of 𝑋1 tonnes of P1 is 19.40𝑋1 €. 

The rental price for one tonne of P2 is €20  

    so the rental price for 𝑋1 tonnes of P2 is 20𝑋1 €. 

The overall rental cost is: 𝑊 = 19.40𝑋1 + 20𝑋2 

The economic function is: 𝑀𝑖𝑛:  𝑊 = 19.40𝑋1 + 20𝑋2 

(c) Constraints 

The quantities required for the three calibers are defined, using information in the 

table: 

●  The caliber1 constraint 

One tonne of P1 stone provides 0.36 t of caliber1 gravel 

   𝑋1 tonnes of P1 stone provides 0.36𝑋1 tonnes of caliber1 gravel 

One tonne of P2 stone provides 0.45 t of caliber1 gravel 

   𝑋2 tonnes of stone from P2 provides 0.45𝑋2 tonnes of caliber1 gravel 

Consequently, the quantity extracted from caliber1 is:  0.36𝑋1 + 0.45𝑋2, which must 
be at least 13,500 tonnes (to meet requirements). 

So the constraint is written as follows: 0.36𝑋1 + 0.45𝑋2 ≥ 13500 

With the same explanation we retain : 

● The caliber2 constraint: 

                       0.41𝑋1 + 0.2𝑋2 ≥ 11200 

● The caliber3 constraint: 

0.16𝑋1 + 0.11𝑋2 ≥ 5000 

therefore, we have the following linear program: 

𝑀𝑖𝑛:  𝑊 = 19.40𝑋1 + 20𝑋2 

                                                                    0.36𝑋1 + 0.45𝑋2 ≥ 13500  

                                                                    0.41𝑋1 + 0.2𝑋2 ≥ 11200  

                                                                    0.16𝑋1 + 0.11𝑋2 ≥ 5000  

𝑋1, 𝑋2 ≥ 0 

Please refer to chapter 3 to see the resolution of this model,  
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Solution 2.4 

 (a) Decision variables 

Let 𝑋1  be the number of Creole units; 

         𝑋2 : the number of tropical units . 

(b) The economic function 

The objective is to maximize the profit of this cafeteria. 

The selling price of one unit of Creole is €1.2. 

   The selling price of 𝑋1  units of Creole is €1.2𝑋1  

The retail price of one unit of tropical is €1 

   The selling price of 𝑋2  units of tropical is 𝑋2  €. 

The total profit is : 𝑍 = 1.2𝑋1 + 𝑋2 

So the economic function is : 𝑀𝑎𝑥: 𝑍 = 1.2𝑋1 + 𝑋2 

(b) Constraints 

● The exotic cocktail constraint  

One unit of Creole requires 8cl, so 8𝑋1cl are needed to prepare 𝑋1 units. 

One unit of tropical requires 5cl, so 5𝑋2cl are needed to prepare 𝑋2 units. 

The patisserie can prepare 1600cl of exotic cocktail every day, which gives the 
constraint :  8𝑋1 + 5𝑋2 ≤ 1600 

● The ice cream constraint  

A unit of Creole requires 2 dl, so 2𝑋1dl are needed to prepare 𝑋1 units. 

A tropical unit requires 2 dl, so 2𝑋2dl are needed to prepare 𝑋2units. 

The pastry shop can prepare 520 dl of ice cream per day, which gives the constraint : 

                              2𝑋1 + 2𝑋2 ≤ 520 

● The candied fruit constraint 

One unit of Creole requires 15g, so 15𝑋1g is needed to prepare 𝑋1 units. 

One unit of tropical requires 25 g, so 25𝑋2g are needed to prepare 𝑋1 units. 

The pastry shop can prepare 5 kg (5000 g) of candied fruit per day, which gives the 
constraint : 15𝑋1 + 25𝑋2 ≤ 5000 

 

We have the following linear program: 

 

 

    𝑀𝑎𝑥: 𝑍 = 1.2𝑋1 + 𝑋2  

8𝑋1 + 5𝑋2 ≤ 1600 

2𝑋1 + 2𝑋2 ≤ 520 

15𝑋1 + 25𝑋2 ≤ 5000 

𝑋1, 𝑋2 ≥ 0 

Please refer to chapter 3 to see the resolution of this model,  
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Solution 2.5 

Let be the following decision variables: 

𝑋1: the quantity of shoes A produced; 

𝑋2: the quantity of shoes B produced. 

The objective function is to maximise the revenue obtained during a working week: 

The selling price of a pair of shoes A is 150 euros and that of B is 50 euros, so the 
overall revenue is  : 𝑍 = 150𝑋1 + 50𝑋2 

So the objective function is given by : 𝑀𝑎𝑥: 𝑍 = 150𝑋1 + 50𝑋2 

The "leather" material constraint 

The number of shoes produced per week must not exceed 120, so :  

               𝑋1 + 𝑋2 ≤ 120   

● Sales quantity constraints 

shoes  Type A  :  𝑋1 ≤ 70               i.e. we don't produce more than we can sell 

 shoes  Type B : 𝑋2 ≤ 100                                   

● The working hours constraint 

240 hours of work is possible during the week and since a pair of shoes A and B 
require 4 and 1 hours of work respectively, this will give: 4𝑋1 + 𝑋2 ≤ 240 

 therefore, we have the following linear program: 

 

 

𝑀𝑎𝑥: 𝑍 = 150𝑋1 + 50𝑋2 

                                                                                𝑋1 + 𝑋2 ≤ 120  

                                                                                𝑋1 ≤ 70  

                                                                                𝑋2 ≤ 100  

                                                                              4𝑋1 + 𝑋2 ≤ 240  

                                                                                𝑋1, 𝑋2 ≥ 0  

Please refer to chapter 3 to see the resolution of this model,  

 

 

Solution 2.6 

Let be the following decision variables: 

𝑋1: number of type 1 boxes produced; 

𝑋2: number of type 2 boxes produced. 

We have the following constraints: 

- on square meters of cardboard:  𝑋1 + 2𝑋2 ≤ 10000 

- assembly time in minutes: 2𝑋1 + 3𝑋2 ≤ 200 ∗ 60 

- on the number of staples: 𝑋1 + 4𝑋2 ≤ 15000 

The objective function to be maximized: corresponds to the turnover obtained from 
the sale of the boxes:      𝑀𝑎𝑥: 𝑍 = 3𝑋1 + 5𝑋2  
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 therefore, we have the following linear program: 

                                        𝑀𝑎𝑥: 𝑍 = 3𝑋1 + 5𝑋2  

                                             S.c :        𝑋1 + 2𝑋2 ≤ 10000  

                                                         2𝑋1 + 3𝑋2 ≤ 12000  

                                                           𝑋1 + 4𝑋2 ≤ 15000  

                                                          𝑋1, 𝑋2 ≥ 0     

 

Please refer to chapter 3 to see the resolution of this model,  
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Chapter 3 

3 Graphical method and the resolution of LP model 

3.1 Introduction 

The graphical method is a simple method that is based on the graphical 

representation of the lines. However, its use is limited in some cases: 

- If the number of variables exceeds two variables1, 

- If the number of constraints increases significantly. 

3.2 Treatments 

When we want to represent the solutions of the inequation in a plan OXY 

3𝑥 + 3𝑦 ≤ 150, There are two tricks: 

(1) We transform inequality into one of the four possible forms:  

        y < ax + b ;  y > ax + b ; y ≤ ax + b ; y ≥ ax + b. 

For example   

       3y ≤ -3X + 150 where y ≤ -x + 50. drawing the line represented by  y = -x + 50. 

The set of points M(x; y) whose coordinates verify the inequation is the closed half-

plane located below the equation line    y = -x + 50, line included. 

(2) drawing the line represented by  3𝑥 + 3𝑦 = 150. The set of points M(x; y) whose 

coordinates verify the inequation is the closed half-plane located below the equation 

line 3x+3y = 150, line included.  

For the general form ' ax+by < c ; ax+by > c ; ax+by ≤ c ; ax+by ≥ c', The following 

figure shows the possible cases for determining the solutions: 

                                            
1
 The use of the graphical method is possible in the case of three variables (each constraint is represented 

graphically by a plan) and then the feasible solution, if it exists, is presented by a volume.   
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Consequently, to determine the solutions of a system of two unknown inequalities, it 

is sufficient to construct the corresponding straight and half-plans that designate the 

space verifying each inequality, the intersection of all half-planes is the 

representation of the feasible solutions. 

Adding that for the resolution of a linear program, it remains the search for an optimal 

solution (which is described by the economic function) among the set of feasible 

solutions. 

Let's take, by the two tips, example 2.5 from the previous lesson: 

Whether the LP model is as follows:          𝑀𝑎𝑥: 𝑍 = 150𝑋1 + 50𝑋2                                                                                           

                                                                              𝑋1 + 𝑋2 ≤ 120  

                                                                                𝑋1 ≤ 70  

                                                                                𝑋2 ≤ 100  

                                                                              4𝑋1 + 𝑋2 ≤ 240  

                                                                                𝑋1, 𝑋2 ≥ 0  

Tips 1 : 

The variable X2 is isolated from the two inequations (1 and 4): 

                                                                     

         𝑋2 ≤ −𝑋1 + 120 

         𝑋1 ≤ 70                         

        𝑋2 ≤ 100  

        𝑋2 ≤ −4𝑋1 + 240 

         𝑋1 ≥ 0 

         𝑋2 ≥ 0 

First, we need to identify the pairs (x, y) verifying the system. 

 

 

Slope<0 Slope>0 

ax+by>c   (si b>0) 

ax+by<c   (si b<0) 

ax+by<c   (si b>0) 

ax+by>c   (si b<0) 

ax+by>c   (si b>0) 

ax+by<c   (si b<0) 

ax+by<c   (si b>0) 

ax+by>c   (si b<0) 

Fig 1 1 Feasible solutions of an inequality based on slope value  
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– The coordinate points (x, y) verifying inequality 𝑋2 ≤ −𝑋1 + 120 are the points 

belonging to one of the half-plane bounded by the line equation 𝑋2 = −𝑋1 + 120. The 

suitable half-plane is the one below the line (since there is " ≤ " ). 

– The coordinate points (x, y) verifying inequality 𝑋2 ≤ 100 are the points belonging to 
one of the half-plane bounded by the line equation 𝑋2 = 100 qui est parallèle à l'axe des 

abscisses. 

– The coordinate points (x, y) verifying inequality 𝑋1 ≤ 70 are the points belonging to 
one of the half-plane bounded by the line equation 𝑋1 = 70 qui est parallèle à l'axe des 

ordonnées. 

– The coordinate points (x, y) verifying inequality 𝑋2 ≤ −4𝑋1 + 240 are the points 
belonging to one of the half-plane bounded by the line equation 𝑋2 = −4𝑋1 + 240 

– The coordinate points (x, y) verifying inequality 𝑋1 ≥ 0 are the points belonging to 
the half-plan of the positive abscises, 

– The coordinate points (x, y) verifying inequality 𝑋2 ≥ 0 are the points belonging to 
the half-plane of the positive ordinates, 

 

We choose to color in gray the part that is not suitable. 

 

 

 

 
We're determining 

With the constraints 

of non-negativity 

Then add 

Solutions réalisables 

O 

Then add Then add  

C(40,8

 
A(6

 

B(20,

 
A(0,

 

On trace la droite d'Iso-bénéfice 

  
On translate la droite d'Iso-

bénéfice d'une manière parallèle, 

tous les points qui appartiennent à 

cette droite et coupe la zone des 

solutions réalisables représentent 

des points de même bénéfice. 
La dernière intersection représente 

la solution optimale ici c'est le 

point C(40,80) qui donne un 

bénéfice de 10000 Dinars 
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The figure above shows the steps involved in graphically solving the given LP modal. 

The search for the optimum has been based on the translation of the iso-benefit line 

(purely graphical) whatever is possible with calculations; so if the optimum solution of 

a PL exists, it is at the edges of the area of feasible solutions. To determine it, all we 

have to do is calculate the value of the economic function in all the corners of the 

feasible solution space, taking the highest value for maximization and the lowest for 

minimization. 

 

Tips 2 : we plot the lines equation of the four constraints  

        𝑋1 + 𝑋2 = 120  

                 𝑋1 = 70  

                 𝑋2 = 100  

      4𝑋1 + 𝑋2 = 240  

The information presented in figure is used to determine the space of feasible 

solutions for each constraint, and finally to determine the optimal solution. 

3.3 Particular cases 

1. If the constraints of the linear program are incompatible, the polygon of feasible 

solutions is empty: the linear program then has no solution 

2. If the polygon is open upwards, a maximization problem has no solution, as the 

reference line can move upwards indefinitely. 

3.The optimal solution, if any, is always at one of the corners of the polygon 

4. If the coordinates of the point S found as a solution are not integer, then we must 

look for a point on the polygon with integer coordinates that is close to the point S. 

5. If the reference line is parallel to one of the sides of the polygon, the problem has 

an infinite number of alternative solutions. 

The straight lines defining the vertex correspond to resources that have been 

completely used up, known as scarce resources. Other resources not fully utilized 

are said to be in overabundance. 

 

3.4 Resolution of the exercises of the previous chapter 

Solution 2.1 

Let's use the two tips for Example 2.1 in the previous course: 

Let's consider the following LP model: 
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                                  𝑀𝑎𝑥: 𝑍 = 1200𝑋1 + 800𝑋2  

9𝑋1 + 5𝑋2 ≤ 2100 

5𝑋1 + 7𝑋2 ≤ 1900 

2𝑋1 + 3𝑋2 ≤ 2500 

𝑋1, 𝑋2 ≥ 0 

 

 

Using tips 1 : 

We isolate the variable 𝑋2 from the three inequalities :                                                        

         𝑋2 ≤ −
9

5
𝑋1 + 420 

         𝑋2 ≤ −
5

7
𝑋1 +

1900

7
 

         𝑋2 ≤ −
2

3
𝑋1 +

2500

3
 

         𝑋1 ≥ 0        𝑋2 ≥ 0 

First, we need to determine the (x, y) pairs that verify the system. 

 

– The coordinate points (x, y) verifying inequality 𝑋2 ≤ −
9

5
𝑋1 + 420 are the points 

belonging to one of the half-plane bounded by the line equation 𝑋2 = −
9

5
𝑋1 + 420. The 

suitable half-plane is the one below the line (since there is " ≤ " ). 

– The coordinate points (x, y) verifying inequality 𝑋2 ≤ −
5

7
𝑋1 +

1900

7
 are the points 

belonging to one of the half-plane bounded by the line equation 𝑋2 = −
5

7
𝑋1 +

1900

7
 

– The coordinate points (x, y) verifying inequality 𝑋2 ≤ −
2

3
𝑋1 +

2500

3
 are the points 

belonging to one of the half-plane bounded by the line equation 𝑋2 = −
2

3
𝑋1 +

2500

3
 

– The coordinate points (x, y) verifying inequality 𝑋1 ≥ 0 are the points belonging to 

one of the half-plane of the positive abscises, 

– The coordinate points (x, y) verifying inequality 𝑋2 ≥ 0 are the points belonging to 

one of the half-plane of the positive ordinates, 

 

 

We choose to color in grey the part that is not suitable. 
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Note that the values of the optimal solution are not integer values. 

Solution 2.2 

The aim is to maximize value of  𝑍 = 30𝑋1 + 20𝑋2  under the following constraints: 

 : 

𝑋1 + 2𝑋2 ≤ 80 

3𝑋1 + 3𝑋2 ≤ 150 

                                                                     𝑋2 ≤ 35  

2𝑋1 + 𝑋2 ≤ 80 

𝑋1, 𝑋2 ≥ 0 

We draw the straight lines corresponding to the four constraints, then determine the 

space of points that satisfy all the constraints. The solution steps are described in the 

figure below:  

 

We determine 

 

We can see that constraint (3) is 

supplementary. 

We add 

 

Feasible solutions 

 

O 

A(0,

 
B(136.84,1

 
C(,

0) 

Thus, the optimal solution is given 

by point B(136.84,173.58) which 

gives Z=303157.89 

Fig 1 3  Steps of solution 2.1 
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The coordinates of the polygon points are determined: ABCDE. 

 X1 X2 Z  

A 0 35 700 The maximum value of 
the economic function is 
1300, which corresponds 
to the following solution : 
X1=30, X2=20. 

B 10 35 1000 

C 20 30 1200 

D 30 20 1300 

E 40 0 1200 

 

Solution 2.3                                    𝑀𝑖𝑛:  𝑊 = 19.40𝑋1 + 20𝑋2 

                                                                    0.36𝑋1 + 0.45𝑋2 ≥ 13500  

                                                                    0.41𝑋1 + 0.2𝑋2 ≥ 11200  

                                                                    0.16𝑋1 + 0.11𝑋2 ≥ 5000  

𝑋1, 𝑋2 ≥ 0 

The resolution is shown in the following figure : 

 

 

 

 

Solution 2.4 

𝑀𝑎𝑥: 𝑍 = 1.2𝑋1 + 𝑋2  

8𝑋1 + 5𝑋2 ≤ 1600 

 

We determine the 

space of points that 

satisfies all the 

constraints; the 

area of feasible 

solutions is the 

hexagon OABCDE. 

A B C 
D 

E 
O 

Fig 1 4 Graphical resolution  (2.2) 

 

The part that 
doesn't fit is 
coloured in 
grey. 

 

A 

B 
C 

D 

The Iso-cost line is shifted parallel to the first 
contact (we are looking for the MIN) with the 
feasible solution. The optimal solution is point 
C(,); with W=680000.  

 

Fig 1 5 Graphical Solution of the problem (2.3) 
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2𝑋1 + 2𝑋2 ≤ 520 

15𝑋1 + 25𝑋2 ≤ 5000 

𝑋1, 𝑋2 ≥ 0 

 

Solution 2.6 

 

 

Simply represent the admissible domain D of the 

linear program and find the point on the edge of 

D that maximizes the function 3X1 + 5X2. This is 

done in the figure opposite, and we see that the 

optimal plan is to produce 600 type 1 boxes ( x1= 

600) and 3600 type 2 boxes (x2 = 3600), for 

sales worth 19,800 UM (z = 19,800). 

 

 

 

 

  

 

The part that 
doesn't fit is 
coloured in 
grey. 

 

A 
B 

C 

The Iso-cost line is shifted 
parallel to the last contact (MAX) 
with the feasible solution . The 
optimal solution is expressed by 
the point B(120,128); with Z=272.  

 

Fig. 1 7 Résolution graphique (2.6) 
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Chapter 4 

4 Simplex method 

4.1 Introduction 

We now are ready to begin studying the simplex method, a general procedure for 
solving linear programming problems. Developed by George Dantzig in 1947, it has 
proved to be a remarkably efficient method that is used routinely to solve huge 
problems on today’s computers. Except for its use on tiny problems, this method is 
always executed on a computer, and sophisticated software packages are widely 
available. Extensions and variations of the simplex method also are used to perform 
postoptimality analysis (including sensitivity analysis) on the model. 

This chapter describes and illustrates the main features of the simplex method. The 

first section introduces its general nature, including its geometric interpretation. The 

following three sections then develop the procedure for solving any linear 

programming model that is in our standard form (maximization, all functional 

constraints in form, and nonnegativity constraints on all variables) and has only 

nonnegative right-hand sides bi in the functional constraints.  

It will be necessary to bear in mind that the Simplex method only works with problem 

constraints whose constraints are of the "<=" type (less than or equal to) and whose 

independent coefficients are greater than or equal to 0. Thus, restrictions should be 

normalized to meet these requirements before starting the Simplex algorithm. In the 

event that constraints of type "≥" (greater than or equal to) or "=" (equal to) appear 

after this process, or cannot be modified, it will be necessary to use other solving 

methods, such as the Two-Phase method or the penalty method (known as Big-M). 

 

4.2 The essence of the Simplex Method 

The simplex method is an algebraic procedure, it is based on the determination of a 

feasible basic solution, so several iterations are triggered until the optimal solution is 

obtained, if it exists. The first step (initial basic solution) consists of choosing a 

number of variables (equal to the number of the functional constraints) known as 

basic variables (BV).    

A basic variable must satisfy two conditions 

▪ Its coefficient in the associated constraint is equal to "1", 

▪ Its coefficient is zero in the other constraints. 

At each iteration, a single BV is varied by choosing an incoming variable (from the 

non-basic variables) and an outgoing variable (from the basis variables). Obviously, 

the choice of these two types of variable is no longer random. An incoming variable is 
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the one that most improves the EF value (increase in the case of maximization and 

decrease in the case of minimization). The outgoing variable is the one that has the 

least influence.       

4.3 Adaptation model  

Using the simplex method requires the linear model to be adapted into a 

mathematical equation model known as the standard model, with an objective 

function to be optimized.    

The standard model must satisfy the following conditions: 

1. The objective will be to maximize or minimize the value of the objective 

function (for example, increase profits or reduce losses, respectively). 

2. All constraints must be equality equations (mathematical identities). 

3. All variables (Xj) must be a positive or zero value (non-negativity condition). 

4. The independent terms (bi) in each equation must be positive. 

  The general form of the standard model is given by : 

Objective function : 𝑀𝑎𝑥: 𝑍 = 𝑐1𝑋1    + ⋯+ 𝑐𝑗𝑋𝑗 +⋯+  𝑐𝑛𝑋𝑛 

under constraints :                 𝑎11𝑋1   + ⋯ + 𝑎1𝑗𝑋𝑗 +⋯+  𝑎1𝑛𝑋𝑛 + 𝑋𝑛+1
𝑒 =  𝑏1                      

       ⋮                         ⋮ 

                                                                     

     𝑎𝑖1𝑋1   + ⋯ + 𝑎𝑖𝑗𝑋𝑗 +⋯+  𝑎𝑖𝑛𝑋𝑛   + 𝑋𝑛+𝑖
𝑒 = 𝑏𝑖       

⋮                         ⋮ 

                                                               

     𝑎𝑚1𝑋1   + ⋯ + 𝑎𝑚𝑗𝑋𝑗 +⋯+ 𝑎𝑚𝑛𝑋𝑛  + 𝑋𝑛+𝑚
𝑒 = 𝑏𝑚     

                                                             ∀ 𝑖, 𝑗 ;  𝑋𝑗, 𝑋𝑛+𝑖 ≥ 0  𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑛𝑜𝑛 −

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑖𝑡𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛     

With :  𝑋𝑛+𝑖
𝑒  : slack variable for the respective functional constraint i. 

     we consider that the constraints of the linear model are inequalities of the type ≤, 
(less than or equal) 

 

Thus, the simplex table is presented us follow: 

Variables   𝑋1  - 𝑋𝑗  - 𝑋𝑛  𝑋𝑛+1
𝑒   - 𝑋𝑛+𝑚

𝑒    ↓ Coefficients des 

VB 

Coefficients of the 
EF 

Cj 𝐶1   𝐶𝑗   𝐶𝑛  0  0 
Bi Cbi 

Basic variables 

𝑋𝑛+1
𝑒   𝑎11   𝑎1𝑗   𝑎1𝑛  1 - 0 𝑏1  Cj (𝑋𝑛+1

𝑒 ) 

 ---  ---  --- ---  --- - --- 

𝑋𝑛+𝑖
𝑒   𝑎𝑖1   𝑎𝑖𝑗   𝑎𝑖𝑛  0 - 0 𝑏𝑖  Cj (𝑋𝑛+𝑖

𝑒 ) 

 ---  ---  --- ---  --- - --- 

𝑋𝑛+𝑚
𝑒   𝑎𝑚1   𝑎𝑚𝑗   𝑎𝑚𝑛  0 - 1 𝑏𝑚  Cj (𝑋𝑛+𝑚

𝑒 ) 
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Value of  EF  𝑍𝑗  𝑍1   𝑍𝑗   𝑍𝑛  0  0 Z  

Marginal cost ∆𝑍  ∆𝑍1   ∆𝑍𝑗   ∆𝑍𝑛  0  0 ↑ Available resources  

Tableau  4-1  Overview of the simplex table 

 

Information can be extracted from the simplex table: 

●  The basic variables and their values: each BV is associated with a constraint, 

and they are shown in the first column of the table (Xn+1e, ..., Xn+me). 

Column Bi includes the values of the BVs (b1, ...., bm). 

● Non-basic variables: represent the other variables that do not appear in the BV 

column. Their values are automatically reset to zero (0).  

● The value of the objective function: is shown on the penultimate line in the box 

corresponding to the bi column (Z). 

● Marginal costs: the marginal cost of a Non-basic variable (NBV) represents the 

effect on the optimal value of the EF resulting to a unit increase of this NBV. It 

is assumed that the marginal cost of a BV is null in all cases. These values are 

given in the last line of the table. 

● Verification of the stopping criterion: this is the optimality condition which is 

based on the sign of the different values of the marginal costs according to the 

direction of the objective function: 

● For maximization case: marginal costs are negative or null. 

● For minimization case: marginal costs are positive or null. 

● Marginal prices of constraints: represent the effect on the optimal value of the 

EF resulting to a unit increase in the available resource (bi) of this constraint. 

 

4.4 Simplex algorithm 

Take the following example: 

Max z = 2X1+ 3X2              its standard form is given by :     Max z = 2X1 + 3X2 

   s.c.       X1 +2X2 ≤ 20                                                                 s.c.       X1 +2X2 +S1 = 20 

               X1 +   X2 ≤ 12                                                                             X1 +   X2  +S2 = 12 

               X1 , X2  ≥ 0                                                                               X1, X2, S1, S2  ≥ 0   

 

 

We have four variables and two functional constraints, according to the simplex 

algorithm we need to choose two variables as basic variables (which verify the two 

conditions in section 4.2). In this case, the slack variables S1 and S2 are the basic 

variables. 

Note: At any iteration of the simplex method, step 2 uses the minimum ratio test to 
determine which basic variable drops to zero first as the entering basic variable is 
increased. Decreasing this basic variable to zero will convert it to a nonbasic variable 
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for the next solution. Therefore, this variable is called the leaving basic variable for 
the current iteration (because it is leaving the basis). 

 

The initial simplex table : 

 

MAX X1 X2 S1 S2   

Cj 2 3 0 0 Bi Cbi 

20/2=10 S1 1 2 1 0 20 0 

12/1=12 S2 1 1 0 1 12 0 

Zj 0 0 0 0 0  

∆𝑍 2 3 0 0   

 

The marginal costs of the VHBs are positive and since we are dealing with a 

maximization problem, this means that we have the possibility to improve the current 

solution. So we apply the Danzig criteria to choose an entering basic variable (EBV) 

and a leaving basic variable (LBV).  

The entering basic variable is the variable with the highest marginal cost (∆Z) among 

the positive values, the X2 variable (from now on, the X2 column is known as the pivot 

column). 

The leaving basic variable is the variable which minimizes the quotient bi/ai2 (we 

divide only on the positive values); with ai2 the coefficient of the entering basic 

variable in constraint i. which results in the leaving basic variable being S1 (the row of 

variable S1 is called the pivot row). 

● The transition to the next table is based on the following rules: 

● The elements of the pivot line are divided by the value of the pivot. 

● The elements of the other rows are obtained by : 

The new line = the old line - ai2* the new pivot line (here a22=1 for line 2) 

 

 i.e. :              [1 1 0 1 12] 

                         -(1)*[1/2 1 1/2 0 10] 

  ------------------------------------ 

          [1/2 0 -1/2 1 2] 

 MAX X1 X2 S1 S2   

Cj 2 3 0 0 Bi Cbi 

10/(0.5)=20 X2 1/2 1 1/2 0 10 3 

2/0.5=4 S2 1/2 0 -1/2 1 2 0 

Zj 3/2 3 3/2 0 30  

∆𝑍=Cj-Zj 1/2 0 -3/2 0   

The marginal cost of the NBV X1 is positive, which means that the current solution is 
no longer optimal, so we go through the same rules in the 2nd iteration : 
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MAX X1↓ X2 S1 S2   

Cj 2 3 0 0 Bi Cbi 

10/0.5=20 X2 1/2 1 1/2 0 10 3 

2/0.5=4 ←S2 1/2 0 -1/2 1 2 0 

Zj 3/2 3 3/2 0 30  

∆𝑍=Cj-Zj 1/2 0 -3/2 0   

Entering basic variable (EBV) : X1 

Leaving basic variable (LBV) : S1 

 

 

 

MAX X1↓ X2 S1 S2   

Cj 2 3 0 0 Bi Cbi 

 X2 0 1 1 -1 8 3 

 X1 1 0 -1 2 4 2 

Zj 2 3 1 1 32  

∆𝑍=Cj-Zj 0 0 -1 -1   

 

The stopping criterion is verified in the table above (marginal costs are negative or 
null), adding that X1 and X2 have positive values (no contradiction with the 
nonnegative condition) then we say that the current solution is optimal with : X1= 4, 
X2=8, Z=32. (S1=0, S2=0 means that the available quantities of the two constraints 
have been totally consumed). 

 

4.5 Particular cases 

▪ After choosing an entering basic variable, if there is no leaving basic variable 

(the coefficients of all the BV in the pivot column are negative or null) then the 

solution is unbounded. 

▪ Degenerate basic solution if one or more basic variables are null (no more 

bijection between admissible basic solutions and extreme points). 

▪ The presence of an entering basic variable with null marginal cost gives rise to 

an infinite number of alternative solutions (this is justified by the fact that 

changing the basic variables has no change in the value of the objective 

function).  

▪  

 

 

 

 

 



35               

 

4.6 Exercises 

Exercise 4.1 : 

Suppose the following linear program:  Max z = 2X1 + 3X2 

subject to      2X1 +3X2 ≥ 10 

               X1          ≤ 30 

               X2  ≤ 20 

               X1 , X2  ≥ 0 

● Define the LP model up to the second simplex step.  

● Is the current solution feasible ? justify it ? 

● Is the current solution optimal ? why ? 

● Deduce the values of the decision variables. 

● What is the value of the objective function ? 

 

 

 

Exercice 4.2 :  

Solve the following LP using the simplex method: 

                                  Max z = 2X1 + X2                                     

                 subject to     X1 - 2X2  ≤ 2   

                                  -2X1 + X2  ≤ 2 

                                      X1 , X2  ≥ 0                                                              

 

Exercice 4.3 : Solve the following LP using the simplex method:  

Max z = 2X1 -  X2 + 3X3                                    

                 subject to    X1  -   X2 + 5X3 ≤ 10   

                                 -4X1 + 2X2 - 6X3  ≥ -80 

                                     X1 , X2 , X3 ≥ 0             

                                                  

Exercice 4.4 : Solve the following LP using the simplex method: 

        Max z = 3X1 + 7X2                                     

                 subject to   2X1 + 8X2  ≤ 16   

                                    2X1 + 4X2  ≤ 8 

                                        X1 , X2  ≥ 0                        
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Exercise solutions 

 

Solution 4.1 : 

The standard form of the linear program is us follow:  Max z = 2X1 + 3X2 

                                      subject to     -2X1 -3X2 + S1= -10 

                                                          X1   + S2=  30 

                                    X2  + S3=  20 

                                                  X1 , X2 , S1, S2, S3 ≥ 0 

 

 

● Is the current solution feasible? justify it? 

Yes, it is feasible because there is no contradiction with the nonegative condition 
(X1=0, X2=20, S1=50, S2=30, S3=0). 

● Is the current solution optimal ? why ? 

It is not optimal because there is still a positive marginal cost (that of X1). 

● Deduce the values of the decision variables. 

Values of the basis variables are the corresponding values in the bi column: 

X2=20, S1=50, S2=30. 

Values of the nonbasic variables are nils: 

X1=0, S3=0. 

● What is the value of the objective function ? 

Z=60. 

 

Solution 4.2 : 

The standard form of the linear program is us follow: 

Max z = 2X1 + X2                                     

                 subject to     X1 - 2X2  + S1= 2   

MAX X1 X2↓ S1 S2 S3   EBV: X2 (the highest marginal cost) 

LBV: S3  (negative or nil coefficients are 

not taken into account). 

 the pivot value = 1 

Cj 2 3 0 0 0 Bi Cbi 

/ S1 -2 -3 1 0 0 -10 0 

/ S2 1 0 0 1 0 30 0 

20/1=20 ←S3 0 1 0 0 1 20 0 

Zj 0 0 0 0 0 0  

∆𝑍=Cj-Zj 2 3 0 0 0   

 X1 X2↓ S1 S2 S3   Applying the transformation rules, we 

obtain the table opposite. 

At this point, the stop criterion has not 

been met, and since only the first two 

tables are requested, we'll stop here. 

 

 

Cj 2 3 0 0 0 Bi Cbi 

/ S1 -2 0 1 0 3 50 0 

/ S2 1 0 0 1 0 30 0 

 X2 0 1 0 0 1 20 3 

Zj 0 3 0 0 3 60  

∆𝑍=Cj-Zj 2 0 0 0 -3   
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                    -2X1 +  X2  + S2= 2 

                            X1 , X2 , S1, S2 ≥ 0         

                                                      

MAX X1↓ X2 S1 S2   EBV: X1 (the highest marginal cost) 

LBV: S1  (negative or nil coefficients are not 

taken into account). 

 the pivot value = 1 

Cj 2 1 0 0 Bi Cbi 

2/1=2 ←S1 1 -2 1 0 2 0 

/ S2 -2 1 0 1 2 0 

Zj 0 0 0 0 0  

∆𝑍=Cj-Zj 2 1 0 0   

 X1 X2↓ S1 S2   Applying the transformation rules, we obtain 

the table opposite. 

At this point, the stop criterion has not been 

met, 

then we choose the EBV which is X2 BUT 

the choice of the LBV is impossible because 

of the negative coefficients (-2 and -3) ; 

the solution is unbounded. 

 

Cj 2 1 0 0 Bi Cbi 

/ X1 1 -2 1 0 2 2 

/ S2 0 -3 2 1 6 0 

Zj 2 -4 2 0 4  

∆𝑍=Cj-Zj 

0 5 -2 0  

 

 

 

Solution 4.3 : 

The standard form of the linear program is us follow: 

                                                     Max z = 2X1 -  X2 + 3X3                                    

                                                     subject to    X1  -   X2 + 5X3 + S1 =  10   

                                                                         4X1 - 2X2 + 6X3  + S2 = 80 

                                                                         X1 , X2 , X3, S1, S2 ≥ 0              

 

                                                 

MAX X1 X2 X3↓ S1 S2   
EBV: X3 (the highest marginal 

cost) 

LBV: S1  (negative or nil 

coefficients are not taken into 

account). 

the pivot value = 5 

Cj 2 -1 3 0 0 Bi Cbi 

10/5=2 ←S1 1 -1 5 1 0 10 0 

80/6=13.33 S2 4 -2 6 0 1 80 0 

Zj 0 0 0 0 0 0  

∆𝑍=Cj-Zj 2 -1 3 0 0   

 X1↓ X2 X3 S1 S2   Applying the transformation rules, 

we obtain the table in opposite. 

At this point, the stop criterion has 

not been met. 

then we choose the EBV which is 

X1  ; 

the pivot value  = 1/5. 

Cj 2 -1 3 0 0 Bi Cbi 

2/1/5=10 ←X3 1/5 -1/5 1 1 0 2 3 

68/14/5=24.2 S2 14/5 -4/5 0 0 1 68 0 

Zj 3/5 -3/5 3 3 0 6  

∆𝑍=Cj-Zj 7/5 -2/5 0 -3 0   

 X1 X2↓ X3 S1 S2   Continuing with the choice of 

EBV (X2) and the LBV (S2), the Cj 2 -1 3 0 0 Bi Cbi 
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10/5=2 X1 1 -1 5 5 0 10 2 pivot value = 2 ; 

80/6=13.33 ←S2 0 2 -14 -14 1 40 0 

Zj 2 -2 10 10 0 0  

∆𝑍=Cj-Zj 0 1 -7 -10 0 20  

 X1↓ X2 X3 S1 S2   

We note that there is a 

NBV(X3) with nil marginal cost, 

this means that there are an 

infinite number of alternative 

solutions 

Cj 2 -1 3 0 0 Bi Cbi 

2/1/5=10 X1 1 0 -2 -2 1/2 30 2 

68/14/5=24.2 X2 0 1 -7 -7 1/2 20 -1 

Zj 2 -1 3 3 1/2 6  

∆𝑍=Cj-Zj 0 0 0 -3 -1/2   

 

Solution 4.4 : The standard form of the linear program is us follow: 

        Max z = 3X1 + 7X2                                     

                 subject to   2X1 + 8X2  + S1 =   16   

                                    2X1 + 4X2  + S2 =   8 

                                       X1 , X2 , S1, S2 ≥ 0 

 

MAX X1 X2↓ S1 S2   

EBV: X2 (the highest marginal cost) 

LBV: In this case, we have two 

possibilities, since the quotients are the 

same. We chose S1. 

the pivot value = 8 

Cj 3 7 0 0 Bi Cbi 

16/8=2 ←S1 2 8 1 0 16 0 

8/4=2 S2 2 4 0 1 8 0 

Zj 0 0 0 0 0  

∆𝑍=Cj-Zj 3 7 0 0   

        

 X1↓ X2 S1 S2   

Applying the transformation rules, we 

obtain the table in opposite. 

At this point, the stopping criterion is 

not verified, so we choose the EBV, 

which is X1, and the LBV, which is S2; 

the value pivot = 1. 

Cj 3 7 0 0 Bi Cbi 

2/1/4=8 X2 1/4 1 1/8 0 2 7 

0/1=0 ←S2 1 0 -1/2 1 0 0 

Zj 7/4 7 7/8 0 14  

∆𝑍=Cj-Zj 
5/4 0 -7/8 0  

 

 

 X1 X2↓ S1 S2   The stopping criterion is then verified, 

but we note the values of the solution 

(X1=0, X2=2, Z=14) have not changed 

between the last two tables: the 

solution is said to be degenerate. This 

situation results from the fact that a 

constraint is in begging.  

Cj 3 7 0 0 Bi Cbi 

 X2 0 1 1/4 -1/4 2 7 

 X1 1 0 -1/2 1 0 3 

Zj 3 7 1/4 5/4 14  

∆𝑍=Cj-Zj 0 0 -1/4 -5/4   
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Chapter 5 

5 The Big M and two-phases method 

5.1 Limits of the simplex method 

The independent terms (bi) of each constraint must be non-negative in order to use 

the Simplex method. To this end, if any of the constraints have a negative 

independent term, it must be multiplied by "-1" (bearing in mind that this operation 

also affects the type of constraint). 

It can be found that in the constraints where we have to change the signs of the 

constants, the types of inequalities are "≤" (after the operation, they will stay of type 

"≥"), so it will be necessary to develop other methods. This disadvantage is not 

controllable, but otherwise it could occur in the opposite case and be beneficial if the 

independent terms are negative in all inequality constraints of type "≥". If there are 

constraints of type "=" they do not lead to advantages or disadvantages because it 

would still be necessary to apply one of the two methods: the Two Phases method or 

the penalty method (known as Big-M). 

In summary, there are cases where the application of the simplex becomes 

impossible because of two essential points: 

● If it is impossible to determine the basic variables (no variables verify the BV 

conditions), 

● If the solution is not feasible (there is a contradiction with the non-negativity 

condition). 

5.2 Functional constraints normalization 

● Constraint of type (≤): To normalize an inequation constraint of type "≤", we add 

a new positive variable, called the slack variable Xe or Si . This new variable does not 

appear in the objective function because it is a variable that expresses the difference 

between the two sides of the inequation (implicit variable). 

𝑎11𝑋1   + ⋯+  𝑎1𝑛𝑋𝑛  ≤  𝑏1       𝑎11𝑋1   + ⋯+  𝑎1𝑛𝑋𝑛 + 𝑋
𝑒 = 𝑏1     

 

● Constraint of type (≥): In this case, we have to subtract a positive quantity which 
is represented by a new variable called the slack variable. This new variable does not 
appear in the objective function, Inequations containing the "≥" type of inequality 
would be: 

𝑎11𝑋1   + ⋯+  𝑎1𝑛𝑋𝑛  ≥  𝑏1       𝑎11𝑋1   + ⋯+  𝑎1𝑛𝑋𝑛 − 𝑋
𝑒 = 𝑏1     

During the first iteration of the Simplex method, it will be impossible to choose the 
base variables (the non-negativity condition is no longer verified). We need to add 
another XR variable, called the artificial variable, which will appear in the objective 
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function depending on the method used and by adding it to the corresponding 
constraint. As follows: 

           𝑎11𝑋1   + ⋯+  𝑎1𝑛𝑋𝑛 − 𝑋
𝑒 + 𝑋𝑅 = 𝑏1     

 

● Constraint type (=) : despite being identities between the two sides of the 
equation, we also need to add artificial variables XR in order to allow the choice of 
BV. Logically, this operation is false (adding a more value to an equality to one side 
!), although it is mandatory to start the simplex algorithm, but it will be necessary to 
ensure that these artificial variables have a nil value at the end of the solution. The 
constraint is as follows: 

𝑎11𝑋1   + ⋯+  𝑎1𝑛𝑋𝑛 = 𝑏1       𝑎11𝑋1   + ⋯+  𝑎1𝑛𝑋𝑛 + 𝑋
𝑅 = 𝑏1     

 

When the artificial variables appear in the standard or canonical form of the problem, 
it will be evident that one of the following methods is used: 

5.3 Two phases method 

In the first phase, all the artificial variables are driven to zero (because of the penalty 
of M per unit for being greater than zero) in order to reach an initial basic feasible 
(BF) solution for the real problem. In the second phase, all the artificial variables are 
kept at zero (because of this same penalty) while the simplex method generates a 
sequence of BF solutions for the real problem that leads to an optimal solution. The 
two-phase method described next is a streamlined procedure for performing these 
two phases directly, without even introducing M explicitly. 

The first phase aims to solve the auxiliary problem W' which is based on the artificial 

variables in order to bring the sum of the artificial variables to zero (in order to avoid 

mathematical inconsistencies). Once the first problem has been solved, and as long 

as the result is as expected, the resulting table is reorganized for use in the second 

phase of the original problem. Otherwise, the problem is not feasible, i.e. there is no 

solution, and it is not necessary to continue with the second phase. 

To better understand this method, here is the LP: 

Min W = 2X1 + X2                                    so, its standard form is :             [a new  EF] 

                 s.t.     X1 + 3X2 ≥ 30      s.t.     X1 + 3X2 - S1 + R1 = 30   

                         4X1 + 2X2 ≥ 40            4X1 + 2X2 – S2+ R2 = 40 

                          X1 , X2 ≥ 0                X1, X2, R1, R2 ≥ 0 

The first phase consists of solving the LP by modifying its objective function 
with a new minimisation function which is represented by the addition of the 
artificial variables values; i.e.: Min2 W'=R1+R2 the calculation rules are the same 
as for the simplex method except that for this phase, the objective is to bring 
the value of W' to zero. 

                                            
2
 In all cases, the new EF takes the direction of minimisation even if the original EF has the direction of 

maximization. 
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Phase 1 

MIN 
X1

↓ 
X2 S1 S2 R1 R2   

LBV
3
: X1  

X1: the EF value will be reduced 

by (-5)*10=-50 

X2: the EF value will be reduced 

by (-5)*10=-50 

where the value 10 represents the 

smallest quotient resulting from 

the choice of the LBV. 

LBV: R2.   

The pivot value = 4 

Cj 0 0 0 0 1 1 Bi 
Cb

i 

30/1=30 R1 1 3 -1 0 1 0 30 1 

40/4=10 
←R

2 

4 2 0 -1 0 1 40 1 

W'j 5 5 -1 -1 1 1 70  

∆𝑊′=Cj-W'j -5 -5 1 1 0 0   

MIN X1 
X2

↓ 
S1 S2 R1 R2 Bi 

Cb

i 

EBV : X2  the smallest negative 

value of the marginal cost. 

LBV : R1 the smallest quotient 

value. 

the pivot value = 5/2. 

20/(5/2)=8 
←R

1 

0 
5/

2 
-1 

1/

4 
1 -1/4 20 1 

10/(1/2)=20 X1 1 
1/

2 
0 

-

1/

4 

0 1/4 10 0 

W'j 0 
5/

2 
-1 

1/

4 
1 -1/4 20  

∆𝑊′=Cj-W'j 0 

-

5/

2 

1 

-

1/

4 

0 1/4   

MIN X1 X2 S1 S2 R1 R2 Bi 
Cb

i 

 Then the value of the FE W' is 

zero, which confirms that the LP 

has a solution and that the table 

opposite represents the initial table 

of the 
2nd

 phase. 

  

 X2 0 1 
-

2/5 

1/

10 
2/5 

-

1/1

0 

8 0 

 X1 1 0 1/5 

-

5/

10 

-1/5 
3/1

0 
6 0 

W'j 0 0 0 0 0 0 0  

∆𝑊′=Cj-W'j 0 0 0 0 -1 -1   

Phase 2 





 The values in the table opposite 

are the same as in the previous 

table, except that the columns 

associated with the artificial 

MIN 
X

1 
X2 S1 S2 R1 R2   

Cj 2 1 0 0   Bi Cb

i 

1  X2 0 1 
-

2/5 

1/

10 
  8 

 X1 1 0 1/5 -   6 2 

                                            
3
 The two variables X1, X2 have the same marginal cost, so the EF can be determined in an optional way, or the 

variable that minimizes the EF the most can be selected. 
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5/

10 

variables are eliminated and the 

coefficients of the original EF (W) 

are used. 

 

 

Wj 2 1 0 

-

1/

2 
  20  

∆𝑊=Cj-Wj 0 0 0 
1/

2 
    

The stopping criterion is verified (in the case of Min, all the marginal costs are 
positive or nil), but we notice that a NBV variable (S1) with a marginal cost equal to 
zero; this means that there is a set of alternative optimal solutions4.  

 

5.4 Méthode du pénalité (Big-M) 

The calculation rules remain the same as with the simplex method. Except that the 
effect of artificial variables (AVs) on the search for the EF’s optimum must be 
eliminated. To do this, the VAs are added to the original EF as follows: 

(1) The EF is to be maximized: all artificial variables are given the same coefficient (-
M) in the EF. 

(2) The EF is to be minimized: all artificial variables given the same coefficient (+M) 
in the EF. 

Where : M represents a very large value ( from which come the two words Big-M and 
penalty). 

Exemple : case of two artificial variables 

Min W = 2X1 + X2     => Min W = 2X1 + X2 + MR1+ MR2 

Max Z = 2X1 + X2     => Max Z = 2X1 + X2 - MR1 - MR2 

 

Taking the previous LP : 

Min W = 2X1 + X2                           so, its standard form is :   Min W = 2X1 + X2 + MR1+ MR2  

                 s.t.     X1 + 3X2 ≥ 30      s.t.     X1 + 3X2 - S1 + R1 = 30   

                         4X1 + 2X2 ≥ 40            4X1 + 2X2 – S2+ R2 = 40 

                          X1 , X2 ≥ 0               X1, X2, R1, R2 ≥ 0 

 

1 MIN X1 X2↓ S1 S2 R1 R2   

Cj 2 1 0 0 +M +M Bi Cbi 

30/3=10 ←R1 1 3 -1 0 1 0 30 +M 

40/2=20 R2 4 2 0 -1 0 1 40 +M 

W'j 5M 5M -M -M M M 70M  

                                            
4
 Graphically, this set of points lies on the straight line bounded by the two points : A(8.6) and B(0.20) and the 

EF value remains stable (W=20). 
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∆𝑊′=Cj-W'j 2-5M 1-5M M M 0 0   

2 MIN X1↓ X2 S1 S2 R1 R2 Bi Cbi 

10/(1/3)=3

0 
X2 1/3 1 -1/3 0 1/3 0 10 1 

20/(10/3)=

6 
←R2 10/3 0 2/3 -1 -2/3 1 20 +M 

W'j 

1/3+10/3

M 
1 

-

1/3+2/3M 
-M 1/3-2/3M M 

10+20

M 
 

∆𝑊′=Cj-W'j 
1

3
+
10

3
𝑀 0 

1

3
−
2

3
𝑀 M −

1

3
+
5

3
𝑀 0   

3 MIN X1 X2 S1 S2 R1 R2 Bi Cbi 

 X2 0 1 -2/5 1/10 2/5 -1/10 8 1 

 X1 1 0 1/5 
-

3/10 
-1/5 3/10 6 2 

W'j 2 1 0 -1/2 0 1/5 20  

∆𝑊′=Cj-W'j 0 0 0 1/2 M 
M-

1/5 
  

All marginal costs are positive or nil (stopping criterion is verified) but the marginal 
cost of the nonbasic variable S1 is nil, which is the case for alternative optimal 
solutions. 

 

 

5.5 Exercises 

Exercise 5.1 (reflection) 

Given the following LP :  

● Check whether the LP has a solution? 

● If so, determine it without solving the LP. 

 

Exercise 5.2 

A maximization problem is presented in the form of 
the following LP: 

● Solve this LP using the penalty method. 

● Explain economically the solution obtained. 

 

 

Exercise 5.3 

We want to solve the LP shown opposite using the 
two-phase method: 

● Determine the condition for choosing the 

Min W = 3X1 + 2X2                                                                             

s.c.    X1 +  X2 ≥ 2    

       2X1 + 3X2 ≤ 4 

          X1 , X2 ≥ 0              [A] 

 

Max z = 4X1 + 5X2                                                                             

s.c.   -X1 + 3X2 ≤ 2       

          X1 +   X2 ≥ 2 

                    X2 =3 

          X1 , X2 ≥ 0             [B] 

 

Max z = 2X1 + 3X2                                                                             

s.c.   5/2X1 + 2X2 ≤ 5       

          5X1 +   4X2 ≥ 20 

          X1 , X2 ≥ 0             [C] 
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entering basic variable for the first phase. Justify your choice ? 

● Solve the LP. 

● How does the value of the EF vary (does it increase or decrease)? Why? 

 

Exercise 5.4 

 

- Deduce that the LP [D] has no solution? 

- Check the answer graphically? 

- Solve LPs [D] and [E] using the penalty or 
two-phase methods. 

-  

 

Exercise 5.5 

Solve the following LPs using the two-phase method and then the penalty method: 

 

 

 

 

Solutions 

Solution 5.1 : 

● If the solution to the LP shown here exists, it lies in 
the first quarter of the representation space. This is 
justified by the fact that we have two variables X1 , X2 
which have positive values (the non-negativity 
condition). So all we need to do is to check whether the constraints intersect in the 
first quarter: 

   X1 +  X2 = 2    

 2X1 + 3X2 = 4     cela donne : X1 =2 , X2=0 

● Since you are asked to determine the optimal solution without solving the LP, we'll 
show you this trick: the slopes of the lines representing the two constraints are 
respectively P1=-1, P2=-2/3 and since (1) the two constraints are opposite, (2) the 
constraint with the greater slope value is expressed as an inequality of type (≤), (3) 
the intersection is located on the x-axis; we deduce that the optimal solution is indeed 
the point of intersection (X1 =2 , X2=0). 

Solution 5.2 : 

● The standard form of the LP is given by : 

 

 

Max z = 2X1 + X2                                                                             

s.c.   3X1 + 2X2 ≤ 6   

        2X1  + 3X2  ≥ 12 

          X1 , X2 ≥ 0             [D]     

 
Min z = 2X1 + 2X2 + 6X3                                                                             

s.c.  2X1 -  2X2 -  X3  ≤ 1  

         X1 +  2X2          ≥ 1 

         X1 , X2 , X3  ≥ 0            [E] 

 

Max z = 4X1 + 14X2                                                                             

s.c.   2X1 + 7X2  ≤ 21   

         7X1 +  2X2 ≥ 21 

           X1 , X2 ≥ 0    

 

Max z =  X1 - X2 + X3                                                                             

s.c.    2X1 -    X2+ 2X3  ≤ 4  

         2X1  -  3X2 +   X3 ≤ -5 

         - X1 +   X2 -  2X3 ≤ -1 

          X1 , X2 , X3  ≥ 0    

 

Min W = 3X1 + 2X2                                                                             

s.c.    X1 +  X2 ≥ 2    

       2X1 + 3X2 ≤ 4 

          X1 , X2 ≥ 0              [A] 

 

Max z = 4X1 + 5X2  -MR1 –MR2                                                                           

s.c.   -X1 + 3X2 + S1 = 2       

          X1 +   X2 – S2 +R1 = 2 

                    X2 +R2 =3 

          X1, X2, S1, S2, R1, R2 ≥ 0  
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1 MAX X1 X2↓ S1 S2 R1 R2   

Cj 4 5 0 0 -M -M Bi Cbi 

2/3 ←S1 -1 3 1 0 0 0 2 0 

2/1=2 R1 1 1 0 -1 1 0 2 -M 

3/1=3 R2 0 1 0 0 0 1 3 -M 

Zj -M -2M 0 M -M -M -5M  

∆𝑍=Cj-Zj 4+M 5+2M 0 -M 0 0   

2 MAX X1↓ X2 S1 S2 R1 R2 Bi Cbi 

/ X2 -1/3 1 1/3 0 0 0 2/3 5 

(4/3)/(4/3)=1 ←R1 4/3 0 -1/3 -1 1 0 4/3 -M 

(7/3)/(1/3)=7 R2 1/3 0 -1/3 0 0 1 7/3 -M 

Zj -5/3+5/3M 5 5/3+2/3M M -M -M 
10

3
−
11

3
𝑀  

∆𝑍=Cj-Zj 
17

3
+
5

3
𝑀 0 −

5

3
−
2

3
𝑀 -M 0 0   

 

 

3 MAX X1 X2 S1 S2↓ R1 R2 Bi Cbi 

/ X2 0 1 1/4 -1/4 2/5 0 1 5 

/ X1 1 0 -1/4 -3/4 -1/5 0 1 4 

2/(1/4)=8 ←R2 0 0 -1/4 1/4 -1/4 1 2 -M 

Zj 4 5 
1

4
+
𝑀

4
 

−17

4
−
𝑀

4
 

17

4
+
𝑀

4
 -M 9-2M  

∆𝑍=Cj-Zj 0 0 −
1

4
−
𝑀

4
 

17

4
+
𝑀

4
 −

17

4
−
5𝑀

4
 0   

4 MAX X1 X2 S1↓ S2 R1 R2 Bi Cbi 

/ X2 0 1 0 0 0 0 3 5 

/ X1 1 0 -1 0 0 0 7 4 

/ S2 0 0 -1 1 -1 4 8 0 

Zj 4 5 -4 0 0 0 43  

∆𝑍=Cj-Zj 0 0 4 0 -M -M   

In Table 4, variable S1 is chosen as the entering basic variable but it is impossible to 
choose the leaving basic variable, so this is the case of an unbounded solution. 

● The solution obtained is expressed in seven units of  X1 and three units of X2, 
giving a profit of 43. But in reality this solution represents the smallest value of the 
EF, i.e. since the space of feasible solutions is not bounded on the high side, there 
may be other solutions which give a larger value of the EF. Consequently, the 
decision-maker alone has the capacity (power, experience, etc.) to determine the 
maximum level that can be reached depending on what already exists. 
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Solution 5.3 : 

To use the two-phase method, we define an economic function represented by the 
sum of the artificial variables. To determine the condition for choosing the entranting 
basic variable for the first phase, it should be noted that the direction of preference of 
the new function will be minimized in all cases, even if the original EF is to be 
maximized (as in this case). Consequently, the entranting basic variable is the one 
with the smallest negative value among the negative values of the marginal costs. 

This condition is justified by the fact that the objective of the first phase is to br the 
artificial variables values to zero, i.e. the value of the new EF will be zero, which is 
why we deduce that the LP receives a solution. 

 

 

 

- La the standard form is : 

We define a new EF expressed by the sum of 
the artificial variables. 

 

 

 

 

1 MIN X1 X2↓ S1 S2 R1   

Cj 0 0 0 0 1 Bi Cbi 

5/(5/2)=2 ←S1 5/2 2 1 0 0 5 0 

20/5=4 R1 5 4 0 -1 1 20 1 

W'j 5 4 0 -1 1 20  

∆𝑊′=Cj-W'j -5 -4 0 1 0   

2 MIN X1↓ X2 S1 S2 R1 Bi Cbi 

/ X2 1 4/5 2/5 0 0 2 0 

/ R1 0 -1 -2/5 -1 1 10 1 

Wj 0 -1 -2/5 -1 1 10  

∆𝑊′=Cj-W'j 0 1 2/5 1 0   

All the marginal costs are positive or nil, so there are no variables that minimize the 
EF; this is the end of the first phase. But we notice that there is an artificial variable 
with value zero (R1=10), which implies that the LP has no solution. 

For the first phase, the value of the EF is decreasing (20 then 10), because the 
algorithm of this method aims to make all the artificial variables zero in the first phase 
in order to correct the suppliant that was added at the start. 

 

 

Min W' = R1                                                                             

s.c.   5/2X1 + 2X2 + S1 = 5       

          5X1 +   4X2 – S2 + R1 = 20 

        X1 , X2 , , S1, S2 , R1 ≥ 0             [C] 
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Chapter 6 

6 Duality theory 

6.1 Introduction   

One of the most important discoveries in the early development of linear 
programming was the concept of duality and its many important ramifications. This 
discovery revealed that every linear programming problem has associated with it 
another linear programming problem called the dual. The relationships between the 
dual problem and the original problem (called the primal) prove to be extremely 
useful in a variety of ways.  

6.2 Economic illustration 
5
 

(a) A family uses 6 food products as a source of vitamin A and C 

 

 Products (unit/kg) Demand 
(unit) 1 2 3 4 5 6 

Vitamin A 1 0 2 2 1 2 9 

Vitamin C 0 1 3 1 3 2 19 

Price per Kg 35 30 60 50 27 22  

The aim is to satisfy vitamin requirements at minimum total cost. 

(b) A product salesman wants to convince the family to buy his products. 

What selling price WA  and WC? 

● to be competitive (with food products) 

● and maximize profit. 

The situation in cases 'a' and 'b' can be generalized as follows: 

Primal problem (product demand): what quantity Xi of resource i should be 
purchased to satisfy demand at minimum cost? 

(𝐶𝑗 ∗ 𝑋𝑖 )        S.T : 𝑎𝑖𝑗𝑋𝑖 ≥ 𝑏𝑖 𝐶𝑗    ∀𝑗 

Dual problem (product seller): at what price should the products be offered to 
maximize profit while remaining competitive? 

((𝑏𝑖 ∗ 𝑌𝑗 )        S.T : 𝑎𝑗𝑖𝑌𝑗 ≤ 𝐶𝑗   ∀𝑖 

 

                                            

5
 Example taken from "Cours de recherche opérationnelle" Nadia Brauner 

. 
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6.3 Transformation steps 

1) The preference sens of the EF will be reversed (Max�Min and vice versa). 

2) The coefficients of the FE of the primal represent the independent terms of the 
constraints (bi). 

3) The values of the independent terms of the primal represent the coefficients of the 
FE of the dual. 

4) The transpose of the matrix of coefficients associated with the primal constraints 
represents the coefficients of the dual variables. 

5) The constraints of the dual will be represented by inequalities (≤, ≥) or equalities 
(=) depending on the non-negativity condition of the primal. 

6) The condition of non-negativity of the dual is based on the type (≤, ≥, =) of the 
constraints of the primal. 

Then the links between the primal program and its dual are as follows: 

 

Primal program Dual program 

Maximization 

n basic variables 

m functional constraints 

Aij 

Cj 

Bi 

constraints≤  

variables ≥ 

contraintes =  (as equalities) 

variables libres <>0 

Minimization 

n functional  constraints 

m basic variables 

A
T
 =Aji 

Bi 

Cj 

variables ≥ 

constraints≥ (as inequalities) 

variables <>0 

contraintes = (as equalities) 

 

 

Example 1 : let the following LP:   

 

 

 

The formulation of the dual model is as follows : 

● The number of basic variables in the 
dual is three (Y1, Y2, Y3) � it represent the 
primal constraints number. 

● X1 and X2 are positive � all dual 
constraints are inequalities of type (≤ since 
all primal constraints are of type  ≥)  

● Dual EF is to maximize (since primal 
EF is to minimize. 

●         The primal EF coefficients are the 

values of dual independent terms (4, 1).  

Min W = 4X1 + X2                                                                             

s.c.   30X1  + 10X2  ≥ 100 

       125X1 + 12X2  ≥ 200  

       120X1 + 15X2  ≥ 150        

        X1 , X2 ≥ 0  

Min W = 4X1 + X2                PRIMAL                                                                           

s.c.   30X1  + 10X2  ≥ 100       …Y1 

       125X1 + 12X2  ≥ 200       …Y2 

       120X1 + 15X2  ≥ 150       …Y3 

        X1 , X2 ≥ 0  

Max Z = 100Y1 + 200Y2 + 150Y3   DUAL                                                                          

s.c.   30X1 + 125Y2+ 120Y3  ≤ 4 …X1 

        10X1 +    12Y2+  15Y3  ≤ 1 …X2 

           Y1 , Y2, Y3 ≥ 0  
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● The primal independent terms represent dual EF coefficients (100, 200, 150). 

● The constraint coefficients of the dual are obtained from the transpose matrix 
of constraint coefficients of the primal. 

● All primal constraints are inequalities than the non-negativity condition is 

imposed for all dual variables. 

 

 

Example 2 : Let the following LP: 

 

 

Before we begin, we need to consider 
these points: 

● First, we need to standardize the 
inequality of constraints in type ≤ since the EF is Max. 

● The second constraint is an equation 
● The variable X3 may be positive or negative. 

So, here are the steps of the transformation: 

we have three dual basic variables (Y1, 

Y2, Y3) � it is the primal functional 

constraints number. 

● we have four dual functional 
constraints � it is the primal basic 
variables number. 

● X1, X2 and X4 are positive values 

all corresponding functional constraints in the  dual are represented by 

inequalities of type (≥ since the primal functional  constraints are of type ≤)  

● Dual EF is to minimize (since primal EF is to maximize. 

● The dual EF coefficients are the independants terms in the primal functional 

constraints (18, 20, -9). 

● The dual independants terms are 

coefficients of the primal EF (1, 1, -1, -1). 

● The dual constraint coefficients are 
obtained from the transpose matrix of primal 
constraint coefficients. 

●  The third constraint of the dual is an 

equation because the variable X3 of the 

primal is in free sign 

● The variable Y2 is in free sign since the corresponding constraint in the primal 

is an equation. 

Max Z =  X1 + X2 - X3 - X4      PRIMAL                                                                       
s.c.   3X1 - 2X2 + X3 + 5X4 ≤ 18 

        5X1 + 6X3 = 20  

          X1 - X2 + 4X3 + X4 ≥ 9        

        X1 , X2 , X4 ≥ 0 

        X3 < >0  (signe libre) 

Max Z =  X1 + X2 - X3 - X4      PRIMAL                                                                       
s.c.   3X1 - 2X2 + X3 + 5X4 ≤ 18   …Y1 

        5X1 + 6X3 = 20                     …Y2 

         - X1 + X2 - 4X3 - X4 ≤ -9        …Y3 

        X1 , X2 , X4 ≥ 0 

        X3 < >0  (en signe libre) 

Min W =  18Y1 + 20Y2 – 9Y3   DUAL                                                                       
s.c.    3Y1 + 5Y2 -  Y3  ≥ 1      …X1 

        -2Y1 +   Y3 ≥ 1               …X2 

           Y1 + 6Y2 - 4Y3 = -1     …X3 

         5Y1 -   Y3  ≥ -1               …X4 

        Y1 , Y3  ≥ 0 

        Y2 < >0  (en signe libre) 
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∑ 𝑋𝑗𝑌𝑚+𝑗 = 0
𝑛
𝑗=1   (1)                                                     

∑ 𝑎𝑖𝑗𝑋𝑗 =
𝑛
𝑗=1 𝑏𝑖  (2) 

∑ 𝑎𝑗𝑖𝑌𝑖 − 𝑌𝑚+𝑗 =
𝑚
𝑖=1 𝐶𝑗 (3) 

𝑋𝑗 ≥ 0  (4) 

𝑌𝑚+𝑗 ≥ 0 (5) 

● Les variables Y1, Y2 sont non-négatives puisque leurs contraintes 

correspondantes dans le primal sont des inéquations. 

● The variables Y1, Y2 are non-negative since their corresponding constraints in the 

primal are inequalities. 

 

 

 

 

6.4 Duality conditions 

Depending on their general form, LPs can be classified into three groups: 

6.4.1 First group 

6.4.1.1 Presentation  

 

Le the LP : 

PRIMAL (I) DUAL (II) 

These two LPs are dual and as a result, on the one hand, if there is a solution to 

program I, a solution to program II is found by writing its m inequalities (which 

correspond to the VBs) in the form of equations, and on the other hand, if there is a 

solution to program II, a solution to program I is found by determining a basis 

grouping m variables corresponding to the m inequalities expressed in the form of 

equalities. 

Converting inequalities into equations using the slack variables gives  :  

 

 

 

PRI

MAL (I) 
DUAL (II) under his standard form 

 

So the duality conditions are the following:      

 The first condition results from the fact that if the 

slack variable value Ym+j is zero (probably a non-

basic variable), the variable Xj will not be zero 

(probably a base variable) and vice versa. The 

other conditions result from the two LPs (the primal 

and its dual). 

Max Z =  ∑ 𝐶𝑗𝑋𝑗
𝑛
𝑗=1                                                                                   

s.c.   ∑ 𝑎𝑖𝑗𝑋𝑗 =
𝑛
𝑗=1 𝑏𝑖  ; 𝑖 = 1,… ,𝑚 

        𝑋𝑗 ≥ 0                  ; 𝑗 = 1,… , 𝑛 

Min W =  ∑ 𝑏𝑖𝑌𝑖
𝑚
𝑖=1                                                                                  

s.c.   ∑ 𝑎𝑗𝑖𝑌𝑖 ≥
𝑚
𝑖=1 𝐶𝑗  ; 𝑗 = 1,… , 𝑛 

        𝑌𝑖 ≤≥ 0              ; 𝑖 = 1,… ,𝑚 

Max Z =  ∑ 𝐶𝑗𝑋𝑗
𝑛
𝑗=1                                                                                   

s.c.   ∑ 𝑎𝑖𝑗𝑋𝑗 =
𝑛
𝑗=1 𝑏𝑖  ; 𝑖 = 1,… ,𝑚 

        𝑋𝑗 ≥ 0                  ; 𝑗 = 1,… , 𝑛 

Min W =  ∑ 𝑏𝑖𝑌𝑖
𝑚
𝑖=1                                                                                  

s.c.   ∑ 𝑎𝑗𝑖𝑌𝑖 − 𝑌𝑚+𝑗 =
𝑚
𝑖=1 𝐶𝑗  ; 𝑗 = 1,… , 𝑛 

        𝑌𝑖 ≤≥ 0 , 𝑌𝑚+𝑗 ≥ 0         ; 𝑖 = 1,… ,𝑚 



51               

 

 

 

The same conditions apply in the following case: 

PRIMAL (I) 

 

DUAL (II) 

6.4.1.2 Exercises and solutions  

 

Exercise 6.1 : 

A primal program and its dual are given as follows: 

PRIMAL (I) 
DUAL (II) 

If the optimal primal solution is given by: 

 Z∗ = 5 ; X1 = 0 (NBV); X2 = 3 (BV); X3 = 1 (BV) 

Deduce the optimal solution from its dual. 

Solution 6.1 : 

The dual standard for is: 

 

 

 

 

According to the optimal solution of the 

primal model, the variables X2 and X3are 

basic variables, so according to the first duality condition the slack variables of the 

dual model associated with the constraints corresponding to the variables X2 and X3 

are nonbasic variables (NBV) so: 

     Y4 = Y5 = 0   (1).   Then:     Y1 + 2Y2 = 3         so:      Y1 =
11

3
 ;  Y2 = −

1

3
 

  −Y1 + 3Y2 = −4  

By replacing the two values in the first constraint: 

      2 (
11

3
) + (

−1

3
) − Y3 = 5  ⟹ Y3 = 2   ;      W∗ = 2(

11

3
) + 7 (

−1

3
) = 5.  

The optimal solution of the dual is:  W∗ = 5 ;  Y1 =
11

3
 ;  Y2 = −

1

3
 ;  Y3 = 2 ;  Y4 = Y5 =

0      

Min W =  ∑ 𝐶𝑗𝑋𝑗
𝑛
𝑗=1                                                                                   

s.c.   ∑ 𝑎𝑖𝑗𝑋𝑗 =
𝑛
𝑗=1 𝑏𝑖  ; 𝑖 = 1,… ,𝑚 

        𝑋𝑗 ≥ 0                  ; 𝑗 = 1,… , 𝑛 

Max Z =  ∑ 𝑏𝑖𝑌𝑖
𝑚
𝑖=1                                                                                  

s.c.   ∑ 𝑎𝑗𝑖𝑌𝑖 ≤
𝑚
𝑖=1 𝐶𝑗  ; 𝑗 = 1,… , 𝑛 

        𝑌𝑖 ≤≥ 0              ; 𝑖 = 1,… ,𝑚 

Max Z =  5𝑋1 + 3𝑋2 − 4𝑋3                                                                                  
s.c.   2𝑋1 + 𝑋2 −   𝑋3 = 2        𝑌1    

          𝑋1 + 2𝑋2 + 3𝑋3 = 7        𝑌2        

         𝑋𝑗 ≥ 0     ; ∀𝑗 

Min W =  2𝑌1 + 7𝑌2                                                                                  
s.c.   2𝑌1 +   𝑌2 ≥ 5           𝑋1 

           𝑌1 + 2𝑌2 ≥ 3           𝑋2 

        −𝑌1 + 3𝑌2 ≥ −4       𝑋3 

         𝑌𝑖 ≤≥ 0     ; ∀𝑖 

Min W =  2𝑌1 + 7𝑌2                                                                                  
s.c.   2𝑌1 +   𝑌2 − 𝒀𝟑 = 5           𝑋1 

           𝑌1 + 2𝑌2 − 𝒀𝟒 = 3           𝑋2 

        −𝑌1 + 3𝑌2 − 𝒀𝟓 = −4       𝑋3 

         𝑌𝑖 ≥ 0     ; ∀𝑖 

         𝑌3, 𝑌4, 𝑌5 ≥ 0    Slack variables 

d'écart 
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The values of the slack variables mean that the available quantities in constraints 2 
and 3 are fully exploited, but there are still two (02) unconsumed units in the first 
constraint. 

Exercise 6.2: 

A primal program and its dual are given as follows: 

PRIMAL (I) 
DUAL (II) 

The optimal solution of the dual is given by : 

  Y1 = −
1

4
 (BV); Y2 =

15

4
 (VB); Y3 = Y5 = 0 (NBV) 

● Give the values of 𝒁∗ 𝐞𝐭  𝒀𝟒. 

● Deduce the optimal solution of the primal model. 

Solution 6.2: 

By numerical application we find:   Z∗ = −
1

4
+
15

4
=

7

2
   

For the second constraint: Y1 + 2Y2 + Y4 = 8 ⟺ Y4 = 8 − Y1 − 2Y2  ⟺  Y4 =
3

4
   

To deduce the optimal solution, we have : 

Since the variables Y3 et Y5 are nonbasic variables, then X1 et X3 are basic variables. 

Thus, since the number of basic variables is equal to the number of constraints; the 

case of the primal is two (02) variables; then the variable X2 will be a nonbasic 

variable. 

We replace X2 = 0  in the two constraints of primal model: 

      3X1 −  5X3 = 1  

        X1 +  X3 = 1     ⇒   X1 = 
3

4
   ;  X3 =

1

4
     et   W∗ = 3(

3

4
) + 8(0) + 5(

1

4
) =

7

2
          

 

6.4.2 Seconde group 

6.4.2.1 Presentation  

 

Let the LP model: 

PRIMAL (I) DUAL (II) 

 

 

Transforming the inequalities into equalities using the slack variables gives: 

Min W =  3𝑋1 + 8𝑋2 + 5𝑋3                                                                                  
s.c.   3𝑋1 + 𝑋2 −  5𝑋3 = 1        𝑌1    

          𝑋1 + 2𝑋2 +  𝑋3 = 1        𝑌2        

         𝑋𝑗 ≥ 0     ; ∀𝑗 

Max Z =   𝑌1 + 𝑌2                                                                                  
s.c.      3𝑌1 +  𝑌2 ≤ 3            𝑋1 

              𝑌1 + 2𝑌2 ≤ 8           𝑋2 

        −5𝑌1 +  𝑌2 ≤ 5           𝑋3 

         𝑌𝑖 ≤≥ 0     ; ∀𝑖 

Max Z =  ∑ 𝐶𝑗𝑋𝑗
𝑛
𝑗=1                                                                                   

s.c.   ∑ 𝑎𝑖𝑗𝑋𝑗 ≤
𝑛
𝑗=1 𝑏𝑖  ; 𝑖 = 1,… ,𝑚 

        𝑋𝑗 ≥ 0                  ; 𝑗 = 1,… , 𝑛 

Min W =  ∑ 𝑏𝑖𝑌𝑖
𝑚
𝑖=1                                                                                  

s.c.   ∑ 𝑎𝑗𝑖𝑌𝑖 ≥
𝑚
𝑖=1 𝐶𝑗  ; 𝑗 = 1,… , 𝑛 

        𝑌𝑖 ≥ 0              ; 𝑖 = 1,… ,𝑚 
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∑ 𝑋𝑗𝑌𝑚+𝑗 = 0
𝑛
𝑗=1   (1) 

∑ 𝑌𝑖𝑋𝑛+𝑖 = 0
𝑚
𝑖=1   (2)                                                     

∑ 𝑎𝑖𝑗𝑋𝑗 + 𝑋𝑛+𝑖 =
𝑛
𝑗=1 𝑏𝑖  (3) 

∑ 𝑎𝑗𝑖𝑌𝑖 − 𝑌𝑚+𝑗 =
𝑚
𝑖=1 𝐶𝑗 (4) 

𝑋𝑗 ≥ 0 , 𝑌𝑖 ≥ 0    

𝑌𝑚+𝑗 ≥ 0, 𝑋𝑛+𝑖 ≥ 0 (5) 

 

 

PRI

MA

L (I) DUAL (II) standard form  

 The duality conditions are as follows: 

      

 

 

 

The first two conditions mean that if the slack 
variable Ym+j is nonbasic variable, the variable Xj will be a basic variable and vice 

versa. We also deduce that if the slack variable Xn+i is nonbasic variable, the variable 
Yi will be a basic variable and vice versa. 

6.4.2.2 Exercises and solutions  

Exercise 6.3: 

Let the LP as follows: 

PRIMAL (I) 

- Write its dual model. 

The primal optimal solution is given by: 

 Z∗ =
384

7
 ;  X1 = 0 (NBV); X2 =

48

7
 (BV); X3 =

288

7
 (BV) 

- Deduce the optimal solution of its dual model. 

Solution 6.3: 

Applying the transformation rules from primal to dual, here is the dual model of the 

given program: 

 Writing the dual in its standard form gives: 

 

 

 

 

According to the first two duality 

conditions: 

 

 

 

Max Z =  ∑ 𝐶𝑗𝑋𝑗
𝑛
𝑗=1                                                                                   

s.c.   ∑ 𝑎𝑖𝑗𝑋𝑗 + 𝑋𝑛+𝑖 =
𝑛
𝑗=1 𝑏𝑖  ; 𝑖 = 1,… ,𝑚 

        𝑋𝑗 ≥ 0, 𝑋𝑛+𝑖  ≥ 0            ; 𝑗 = 1,… , 𝑛 

Min W =  ∑ 𝑏𝑖𝑌𝑖
𝑚
𝑖=1                                                                                  

s.c.   ∑ 𝑎𝑗𝑖𝑌𝑖 − 𝑌𝑚+𝑗 =
𝑚
𝑖=1 𝐶𝑗  ; 𝑗 = 1,… , 𝑛 

        𝑌𝑖 ≥ 0 , 𝑌𝑚+𝑗 ≥ 0         ; 𝑖 = 1,… ,𝑚 

Min W =  48𝑌1                                                                                  
s.c.      𝑌1 − 7𝑌2 ≥ 0           𝑋1 

           𝑌1 + 6𝑌2 ≥ 2           𝑋2 

           𝑌1 −  𝑌2 ≥ 1           𝑋3 

         𝑌𝑖 ≥ 0     ; ∀𝑖 

Max Z =  2𝑋2 + 𝑋3                                                                                  
s.t.          𝑋1 + 𝑋2 +   𝑋3 ≤ 48       𝑌1    

          −7𝑋1 + 6𝑋2 − 𝑋3 ≤ 0        𝑌2        

         𝑋𝑗 ≥ 0     ; ∀𝑗 

Min W =  48𝑌1                                                                                  
s.c.      𝑌1 − 7𝑌2 − 𝒀𝟑 = 0           𝑋1 

           𝑌1 + 6𝑌2 − 𝒀𝟒 = 2           𝑋2 

           𝑌1 −  𝑌2 − 𝒀𝟓 = 1           𝑋3 

          𝑌𝑖 ≥ 0     ; ∀𝑖 

          𝑌3 ≥ 0, 𝑌4 ≥ 0, 𝑌5 ≥ 0 
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Given that X2, X3 are basic variables, this means that the slack variables Y4, Y5 will be 

NBV in the optimal solution, i.e. we just need to solve the following system of 

equations: 

𝑌1 − 7𝑌2 − 𝒀𝟑 = 0     𝒀𝟑 = 1 7⁄                   

⟺ 𝒀𝟏 = 8 7⁄      ⟹   𝑊∗ = 48(
8

7
) =

384

7
 𝑌1 + 6𝑌2  = 2             

𝑌1 −  𝑌2  = 1                             𝒀𝟐 = 1 7⁄         so, all duality conditions are verified. 

6.4.3 Third group 

6.4.3.1 Presentation  

 

Consider the LP 

shown opposite: 

The constraints are 

in the form of 

equalities and 

inequalities. 

 

PRIMAL (I) 

Its dual is  :  

The constraints are 

also expressed in 

the form of 

equalities and 

inequalities BUT on 

the basis of the 

nonnegative 

condition of the 

primal. 

 

DUAL (II) 

Programs I and II are dual and solving one of them leads to the solution of the other. 

Note that when writing the constraints of the dual, constraint j is written as an equality 

if the corresponding variable has a free sign in the primal (no nonnegative condition), 

otherwise constraint j is written as an inequality. 

We can also see that a variable in the dual is no longer subject to the nonnegative 

constraint if it corresponds to a constraint in the form of equality in the primal. On the 

other hand, the variable is subject to the nonnegative constraint if it corresponds to a 

constraint in the form of an inequality. 

6.4.3.2 Exercises and solutions 

Exercice 6.4 : 

Let the LP model as follows:  

Write its dual model. 

The dual optimal solution is given by: 

  Y2 = 3 (BV); Y3 = 1 (BV); Y5 = 6 (BV) 

Min W =  ∑ 𝑏𝑖𝑌𝑖
𝐿
𝑖=1 + ∑ 𝑏𝑖𝑌𝑖

𝑚
𝑖=𝐿+1                                                                                  

s.c.   ∑ 𝑎𝑗𝑖𝑌𝑖 +∑ 𝑎𝑗𝑖𝑌𝑖
𝑚
𝑖=𝐿+1 ≥𝐿

𝑖=1 𝐶𝑗  ; 𝑗 = 1,… , 𝑘 

        ∑ 𝑎𝑗𝑖𝑌𝑖 + ∑ 𝑎𝑗𝑖𝑌𝑖
𝑚
𝑖=𝐿+1 =𝐿

𝑖=1 𝐶𝑗  ; 𝑗 = 𝑘 + 1,… , 𝑛      

        𝑌𝑖 ≥ 0              ; 𝑖 = 1,… , 𝐿 

        𝑌𝑖 ≤≥ 0          ; 𝑖 = 𝐿 + 1,… ,𝑚 

Max Z =  ∑ 𝐶𝑗𝑋𝑗 + ∑ 𝐶𝑗𝑋𝑗
𝑛
𝑗=𝑘+1

𝑘
𝑗=1                                                                                   

s.c.   ∑ 𝑎𝑖𝑗𝑋𝑗 + ∑ 𝑎𝑖𝑗𝑋𝑗
𝑛
𝑗=𝑘+1 ≤𝑘

𝑗=1 𝑏𝑖  ; 𝑖 = 1,… , 𝐿 

        ∑ 𝑎𝑖𝑗𝑋𝑗 + ∑ 𝑎𝑖𝑗𝑋𝑗
𝑛
𝑗=𝑘+1 =𝑘

𝑗=1 𝑏𝑖  ; 𝑖 = 𝐿 + 1,… ,𝑚      

         𝑋𝑗 ≥ 0                  ; 𝑗 = 1,… , 𝑘 

         𝑋𝑗 ≤≥ 0              ; 𝑗 = 𝑘 + 1,… , 𝑛 

Min W =  2𝑋1 − 4𝑋2 + 11𝑋3                                                                                  
s.c.         2𝑋1 + 𝑋2 +   𝑋3 ≥ 1       𝑌1    

               𝑋1 −  𝑋2 +  𝑋3 ≥ 7        𝑌2        

            − 𝑋1 −  𝑋2 + 2𝑋3 = 1     𝑌3 

            𝑋𝑗 ≥ 0     ; ∀𝑗 = 1,3 
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Deduce the optimal solution of this model. 

Solution 6.4 : 

The dual program is as follows:  

 

 

From the given solution, we can deduce that 
the variables 𝒀𝟏, 𝒀𝟒  (the slack variables) are nonbasic variables. 

 The standard form of the given primal program is : 

 

 

 

 

  Y2  is a basic variable  ⟺  X5 = 0  
(Nonbasic variable) 

  Y5  is a basic variable  ⟺  X3 = 0 (Nonbasic variable),    

 (N.A) :                                                   

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Then 

 

 

 

so : 𝑊∗ =

  2(3) − 4(−4) + 11(0) = 22 

Max Z =   𝑌1 + 7𝑌2 + 𝑌3                                                                                  
s.c.         2𝑌1 + 𝑌2 −   𝑌3 ≤ 2          𝑋1    

               𝑌1 −  𝑌2 −  𝑌3 = −4        𝑋2        

              𝑌1 +  𝑌2 + 2𝑌3 ≤ 11         𝑋3 

              𝑌𝑗 ≥ 0     ; ∀𝑖 = 1,2 

𝑿𝟒, 𝑿𝟓 ≥ 0 

Min W =  2𝑋1 − 4𝑋2 + 11𝑋3                                                                                  
s.c.         2𝑋1 + 𝑋2 +   𝑋3 − 𝑿𝟒 = 1       𝑌1    

               𝑋1 −  𝑋2 +  𝑋3 − 𝑿𝟓 = 7        𝑌2        

            − 𝑋1 −  𝑋2 + 2𝑋3 = 1                𝑌3 

            𝑋𝑗 ≥ 0     ; ∀𝑗 = 1,3 

    2𝑋1 + 𝑋2 − 𝑿𝟒 = 1       

      𝑋1 −  𝑋2 = 7       

 − 𝑋1 −  𝑋2 = 1                 

     𝑿𝟒 = 1       

     𝑋2 = −4        

     𝑋1 = 3                 
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Chapter 7 

7 Dual Simplex method 

7.1 Introduction  

 

The final solution of a linear program can be determined if two conditions are verified: 

- The solution must be feasible, i.e. it must satisfy the nonnegative constraint. 
- The solution must be optimal, i.e. the stopping criterion is verified (no entering 

basic variable). 

In some cases, the stopping condition is verified (optimality) but the solution is no 
longer feasible due to at least one negative value of one of the variables if the model 
does not accept negative values. In this particular case, the simplex algorithm is 
limited since one of the conditions for its application is that the independent 
coefficients associated with the constraints must be positive. The implication of the 
weakness of the simplex algorithm to other principles has given rise to a new method 
called Dual Simplex. 

The dual simplex method treats the LP from two sides: the primal side (to achieve the 
stopping criterion based on marginal costs) and the dual side (to ensure that the 
base variables do not receive values that are in conflict with the nonnegative 
constraint). Consequently, the user of this method must initially choose the direction 
of treatment, i.e. : Primal then dual or dual then primal, depending on the case. 

7.2 Essence of dual simplex  

(a) Primal then dual: the program is processed on both sides until the stopping 
criterion based on marginal costs is satisfied first and then the criterion of the 
feasibility of the solution (which concerns the bi values). 

(b) Dual then primal: this is the opposite of the previous case, i.e. the program is 
processed on both sides until the feasibility criterion is reached first and the stopping 
criterion based on marginal costs is reached second. 

Using the following linear program as an example, to explain dual method steps: 

 The standard form is 
The aim is to add the 

slack variables 
without worrying 

about negative values 
of Bi 

 

The first simplex table is given as follows: 

MIN X1↓ X2 S1 S2   

 

Cj 1 3 0 0 Bi Cbi 

 S1 1 -2 1 0 1 0 

 ←S2 2- -3 0 1 -3 0 

Wj 0 0 0 0 0  

∆𝑾=Cj-Wj 1 3 0 0   

 

Min W =  𝑋1 + 3𝑋2                                                                                  
s.c.     𝑋1 − 2𝑋2 ≤ 1    

        2𝑋1 + 3𝑋2 ≥ 3      

         𝑋1, 𝑋2 ≥ 0  

Min W =  𝑋1 + 3𝑋2                                                                                  
s.c.     𝑋1 − 2𝑋2 +𝑿𝟑 = 1    

     −2𝑋1 − 3𝑋2 +𝑿𝟒 = −3      

         𝑋1, 𝑋2 ≥ 0  



57               

 

Remember that we treat a minimization problem and we can see that the stopping 
criterion has already been verified (the marginal costs ∆𝑾 are all positive or zero 
(there is no question of treating the primal side of the program). We can also see that 
the value of the slack variable S2 is negative (it must necessarily be positive 
according to the nonnegative condition), so it's clear that we first need to solve the 
dual side of the problem (eliminate the negative values of Bi that contradict the 
nonnegative constraint). 

In the case of dual-primal -particularly for the dual part- we need to determine the 
leaving basic variable (LBV) first and then the entering basic variable. To do this, we 
must follow a specific logic: 

  The leaving basic variable is determined by: 𝑀𝑎𝑥 {𝑏𝑖;  ∀𝑏𝑖 ≤ 0} the variable 
corresponding to the largest value of bi must be chosen from the negative values 
only. This criterion remains valid for the maximization and minimization cases. 

  The entering basic variable is determined by: 𝑀𝑖𝑛 {|
∆𝑤

𝑎𝑘𝑗
| ;  ∀𝑎𝑘𝑗 < 0} we must choose 

the variable corresponding to the smallest quotient in absolute value of the marginal 
costs over the negative values of the line corresponding to the leaving basic variable. 
This criterion is valid for the maximization and minimization cases. 

. In the case of this exercise, the LBV is X1 (a single negative value in bi) and the 

EBV is S2 (𝑀𝑖𝑛 {|
1

−2
| , |

3

−3
|} = {

1

2
}), so the pivot value is (-2). 

Applying the same rules for moving from one solution (table) to another presented in 
Chapter 4 (the simplex method), here is the following simplex table: 

 

 

MIN X1 X2↓ S1 S2   

Note that there is also a negative value 

in bi, so we continue the dual  :  

LBV : S1 (a single negative value) 

EBV : X2 (a single negative value at 

the pivot line)  pivot=-7/2 

Cj 1 3 0 0 Bi Cbi 

 ←S1 0 7/2- 1 1/2 -1/2 0 

 X1 1 3/2 0 -1/2 3/2 1 

Wj 1 3/2 0 -1/2 3/2  

∆𝑾=Cj-Wj 0 3/2 0 1/2   

MIN X1 X2 S1 S2   Note that all the values of bi are 

positive, so the improvement of the 

dual is complete. Turning now to the 

primal, we see that all the marginal 

costs are positive or zero, so the 

stopping criterion for the primal is 

satisfied.  the solution is optimal  

Cj 1 3 0 0 Bi Cbi 

 X2 0 1 -2/7 -1/7 1/7 3 

 X1 1 0 3/7 -2/7 9/7 1 

Wj 1 3 -3/7 -5/7 12/7  

∆𝑾=Cj-Wj 0 0 3/7 5/7   

Note: 

In the case of dual treatment, we see that the variation of the economic function 
takes place in the opposite way; for minimization the value of the EF increases and it 
decreases for maximization. This is justified by the fact that the dual treatment is 
simply a correction (or improvement) applied to the linear program to make the 
solution feasible (so that it does not contradict the non-negativity constraint). 
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7.3 Exercises and solutions  

Exercise 7.1 

Solve the following LP using the dual simplex method (Primal-Dual and Dual-Primal): 

 

Solution 7.1 

 

 

The standard form is: 

 

(1). Primal-Dual: 

The first simplex table is given as follows: 

MAX X1 X2 X3↓ X4 X5   

Primal 

EBV: X3 (the single positive value 

of ∆𝒁). 

LBV: X4 (the single positive value) 

Cj -6 -5 2 0 0 Bi Cbi 

-2/1=-2 ←X4 -1 -1 1 1 0 -2 0 

- X5 -1 -2 -3 0 1 -3 0 

Zj 0 0 0 0 0 0  

∆𝒁=Cj-Zj -6 -5 2 0 0   

MAX X1 X2↓ X3 X4 X5   Primal 

When the values of ∆𝒁 are all 

negative or zero, the primal 

stopping criterion is complete. 

Moving on to Dual : 

LBV: X3 (the greatest negative 

value of bi). 

EBV: X2 (Min {|
−4

−1
| , |

−3

−1
|}) 

Cj -6 -5 2 0 0 Bi Cbi 

-2/1=-2 ←X3 -1 1- 1 1 0 -2 2 

- X5 -4 -5 0 3 1 -9 0 

Zj -2 -2 2 2 0 -4  

∆𝒁=Cj-Zj -4 -3 0 -2 0  

 

MAX X1 X2 X3 X4 X5   
Dual 

All values of bi are positive. In 

addition, all marginal costs are 

negative or zero, so this is the 

optimal solution.  

 

Cj -6 -5 2 0 0 Bi Cbi 

 X2 1 1 -1 -1 0 2 -5 

 X5 1 0 -5 -2 1 1 0 

Zj -5 -5 5 5 0 -10  

∆𝒁=Cj-Zj -1 0 -3 -5 0   

The solution is: X1=X3=0, X2=2, Z*=-10. (X5=1 - i.e. there is one unit that is not 
consumed from the second constraint -, X4=0 – the value available for the first 
constraint has been completely used-). 

 

 

Max Z =  −6𝑋1 − 5𝑋2 + 2𝑋3                                                                                  
s.c.     −𝑋1 − 𝑋2 + 𝑋3 ≤ −2    

        −𝑋1 − 2𝑋2 − 3𝑋3 ≥ −3      

         𝑋1, 𝑋2, 𝑋3 ≥ 0  

Max Z =  −6𝑋1 − 5𝑋2 + 2𝑋3                                                                                  
s.c.     −𝑋1 − 𝑋2 + 𝑋3 + 𝑿𝟒 = −2    

        −𝑋1 − 2𝑋2 − 3𝑋3 + 𝑿𝟓 = −3      

         𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5 ≥ 0  

Max Z =  −6𝑋1 − 5𝑋2 + 2𝑋3                                                                                  
s.c.     −𝑋1 − 𝑋2 + 𝑋3 ≤ −2    

        −𝑋1 − 2𝑋2 − 3𝑋3 ≥ −3      

         𝑋1, 𝑋2, 𝑋3 ≥ 0  
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(2). Dual-Primal : 

MAX X1 X2↓ X3 X4 X5   
Dual 

 LBV: X3 (the greatest negative 

value of bi). 

EBV: X2 (Min {|
−6

−1
| , |

−5

−1
|}) 

Pivot=-1 

Cj -6 -5 2 0 0 Bi Cbi 

-2/1=-2 ←X4 -1 1- 1 1 0 -2 0 

- X5 -1 -2 -3 0 1 -3 0 

Zj 0 0 0 0 0 0  

∆𝒁=Cj-Zj -6 -5 2 0 0   

MAX X1 X2↓ X3 X4 X5   Dual 

All values of bi are positive. In 

addition, all marginal costs are 

negative or zero, so this is the 

optimal solution.  

 

 

Cj -6 -5 2 0 0 Bi Cbi 

 ←X2 1 1 -1 -1 0 2 -5 

 X5 1 0 -5 -2 1 1 0 

Zj -5 -5 5 5 0 -10  

∆𝒁=Cj-Zj -1 0 -3 -5 0   

 

Exercice 7.2 

- Solve the LP below using the graphical method. 
- Solve it using the dual simplex method (Primal-Dual or Dual-Primal). 
- Compare the obtained results. 

 

 

- Write the dual program. 
- Deduce its optimal solution based on the duality conditions 

 

Solution 7.1 

Graphical resolution: the lines corresponding to the constraints are represented 
graphically, then the set of feasible solutions to the problem is determined, and finally 
the optimal solution is defined if it exists 

 

  𝑋2 ≤ 2 

Max Z =  2𝑋1 + 𝑋2                                                                                  
s.c.     𝑋1 − 2𝑋2 ≤ −1    

      − 𝑋1 + 𝑋2 ≤ 1  

     −2𝑋1 + 6𝑋2 ≤ 9          

         𝑋1, 𝑋2 ≥ 0  

The space of points 

that satisfies all the 

constraints is 

determined; the 

area of feasible 

solutions is the 

polygon ABCDE.. 
B 

C D E 

A 

Figure 7.  -1 Steps of solution 7.1 
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According to the following table, the optimal solution is represented by point E ; 
X1=3, X2=2, Z*=8.  

EF Values X2 X1 Points 

0.5 1/2 0 A 

1 1 0 B 

13/4 7/4 3/4 C 

5 2 3/2 D 

8 2 3 E 

 

 

Solving with the dual simplex method: the standard form is as follows: 

 

The steps involved in solving the problem are shown in the tables below. Note here 
that we will start with the dual : 

MAX X1 X2↓ X3 X4 X5 X6   

Dual 

 LBV: X3 (greatest negative 

value of bi). 

VE: X2 (Min {|
1

−2
|}) 

Pivot=-2 

Cj 2 1 0 0 0 0 Bi Cbi 

- ←X3 1 2- 1 0 0 0 -1 0 

- X4 0 1 0 1 0 0 2 0 

- X5 -1 1 0 0 1 0 1 0 

- X6 -2 6 0 0 0 1 9 0 

Zj 0 0 0 0 0 0 0  

∆𝒁=Cj-Zj 2 1 0 0 0    

MAX X1↓ X2 X3 X4 X5 X6   

Dual 

All bi values are positive. 

Changing to PrimalEBV: X1 

LBV: X4 

Pivot=1/2 

 

Cj 2 1 0 0 0 0 Bi Cbi 

- X2 -1/2 1 -1/2 0 0 0 1/2 1 

(3/2)/(1/2)=3 ←X4 1/2 0 1/2 1 0 0 3/2 0 

- X5 -1/2 0 1/2 0 1 0 1/2 0 

6/1=6 X6 1 0 3 0 0 1 6 0 

Zj -1/2 1 -1/2 0 0 0 1/2  

∆𝒁=Cj-Zj 5/2 0 1/2 0 0 0   

MAX X1↓ X2 X3 X4 X5 X6   Primal 

All marginal costs are negative 

or zero. So the solution is 

optimal 

X1=3, X2=2, Z
*
=8 

 

Cj 2 1 0 0 0 0 Bi Cbi 

- X2 0 1 0 1 0 0 2 1 

(3/2)/(1/2)=3 ←X1 1 0 1 2 0 0 3 2 

- X5 0 0 1 1 1 0 2 0 

6/1=6 X6 0 0 2 -2 0 1 3 0 

  𝑋2 + 𝑿𝟒 = 2 

Max Z =  2𝑋1 + 𝑋2                                                                                  
s.c.     𝑋1 − 2𝑋2 +𝑿𝟑 = −1    

      − 𝑋1 + 𝑋2 + 𝑿𝟓 = 1  

     −2𝑋1 + 6𝑋2 + 𝑿𝟔 = 9          

         𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6 ≥ 0  
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Zj 2 1 2 5 0 0 8  

∆𝒁=Cj-Zj 0 0 -2 -5 0 0   

Comparison: note that each simplex table is represented by a point on the graph; 

table 1 represents the origin O(0,0) of the graph, then the simplex algorithm traverses 

the perimeter of the zone of feasible solutions because table 2 represents the point 

A(0,1/2). Moving from one table to another ensure that the right sense towards 

convergence to the optimal. 

 

 

The dual program:  

 Standard form 

The primal optimal solution is : X1=3, X2=2, X5=2, X6=3, Z*=8, X3=X4=0 (VHB). 

X1, X2 are BV  Y5,Y6 are NBV So: Y5=Y6=0 

X5, X6 are BV  Y3,Y4 are NBV So: Y3=Y4=0 replacing values in constraints: 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Min W =  −𝑌1 + 2𝑌2 + 𝑌3 + 9𝑌4                                                                                  
s.c.     𝑌1 − 𝑌3 − 2𝑌4  ≥ 2               𝑋1 

     −2𝑌1 + 𝑌2 + 𝑌3 + 6𝑌4 ≥ 1       𝑋2         

         𝑌1, 𝑌2, 𝑌3, 𝑌4 ≥ 0  

Min W =  −𝑌1 + 2𝑌2 + 𝑌3 + 9𝑌4                                                                                  
s.c.     𝑌1 − 𝑌3 − 2𝑌4 − 𝑌5 = 2               𝑋1 

     −2𝑌1 + 𝑌2 + 𝑌3 + 6𝑌4 − 𝑌6 = 1       𝑋2         

         𝑌1, 𝑌2, 𝑌3, 𝑌4 ≥ 0  

𝑌1 = 2                                 𝑌1 = 2                

−2𝑌1 + 𝑌2 = 1      Donc:   𝑌2 = 5   et W*=8             

    



62               

 

Chapter 8 

8 Integer Programming 

8.1 Introduction 

You saw several examples of the numerous and diverse applications of linear 
programming. However, one key limitation that prevents many more applications is 
the assumption of divisibility, which requires that noninteger values be permissible for 
decision variables. In many practical problems, the decision variables actually make 
sense only if they have integer values. For example, it is often necessary to assign 
people, machines, and vehicles to activities in integer quantities. If requiring integer 
values is the only way in which a problem deviates from a linear programming 
formulation, then it is an integer programming (IP) problem. (The more complete 
name is integer linear programming, but the adjective linear normally is dropped 
except when this problem is contrasted with the more esoteric integer nonlinear 
programming problem) 

The mathematical model for integer programming is the linear programming model 
with the one additional restriction that the variables must have integer values. If only 
some of the variables are required to have integer values (so the divisibility 
assumption holds for the rest), this model is referred to as mixed integer 
programming (MIP). When distinguishing the all-integer problem from this mixed 
case, we call the former pure integer programming. 

Searching for the optimal solution of a model IP requires two essential steps: 

(1) Solving the original LP with the appropriate method and if the optimal solution is 
not integer we move on to the second step. 

(2) Separating the solution found in the previous step, with the aim of finding the 
closest integer solution to the original solution. 

In this context, there are methods such as:  

- Branch-and-Bound method. 
- Gomory cutting method. 

8.2 Comments on the IP 

Note that in all cases of the IP, the integer solution is always poorer in terms of EF 
value than the original (non-integer) solution. In maximization, the integer solution 
represents the lower bound solution. For minimization, it represents the upper bound 
solution. 

 

 

 

 

 

Let the following example:  Max Z=11X1+22X2 

                                                            S.C : 4X1+7X2 ≤ 13 

                                                                   X1,X2≥0 are integer values 

 



63               

 

 

 

Without the integrity constraint, the optimum solution is at the point X1= 0 and X2 = 
13/7. If we consider only points with integer coordinates, the optimum is reached at 
the point X1 = 3 and X2=0, which obviously cannot be obtained by rounding the real 
solution. In addition, the optimum value for the objective is only 33, whereas it is 39 in 
the case of real variables. 

 

8.3 Branch-and-Bound method 

The LP is solved without the integrity condition and if the optimal solution is not an 
integer, new models are constructed by adding new constraints according to the 
following logic: 

Given (Xj) in real value represented by di, the value of Xj lies in [di1, di2] with di1, di2 
representing two consecutive integer values (di1 ≤ Xj ≤ di2). 

For example, the value 4.63 lies between the two integer values 4 and 5. 

So to exclude the value of Xj to be real value, we add two new constraints: 

 (a)  Xj ≤ di1     (b) Xj ≥ di2, which results in two new LPs. we continue the separation 
procedure until we reach an optimal solution in integer values. 

 

Exercice 8.1: Let the following LP: 

        Max Z=20 X1+2 X2 

               S.C : 4X1+10X2 ≤ 22 

                    X1,X2 ≥ 0 are integer. 

Using the simplex method, the solution is: X1=11/2 ; X2=0 ; Z*=110. 

MAX X1 X2 S1   

Cj 20 2 0 Bi Cbi 

 X1 1 5/2 1/4 11/2 20 

Zj 20 50 5 110  

∆𝒁=Cj-Zj 0 -48 -5   

Optimal solution in noninteger 

number X1=0, X2=13/7, Z=39 

Optimal solution in integer number 

X1=3, X2=0, Z=33 
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X1=11/2 so : 5 ≤X1≤6 and to exclude X1 from this interval, two constraints are 

necessary: 

  X1 ≤5 and X1≥6 which results in two new linear programs to solve. 

 LP 1.2 LP 1.3 

  

We solve the two LPs: 

LP 1.2 :   

MAX X1 X2 S1 S2   

Cj 20 2 0 0 Bi Cbi 

 X2 0 1 1/10 -4/10 1/5 2 

 X1 1 0 0 1 5 20 

Zj 20 2 1/5 96/5 502/5  

∆𝒁=Cj-Zj 0 0 -1/5 -96/5   

 

The optimal solution is: X1=5 ; X2=1/5 ; Z*= 502/5. 

LP 1.3: this program has no solution because the minimum value of X1 is 6 according 
to constraint 2. If we replace this value in the first constraint, the constraint is no 
longer verified. 

So we continue with the resolution of LP 1.2: the value of X2 is between 0 and 1, 

hence the addition of the constraints; X2 ≤0 et X2≥1 and two new LP are being 

introduced: 

LP 1.2.1 LP 1.2.2 

  

The LP 1.2.1 presents a contradiction with the nonnegative constraint. 

Solving LP 1.2.2 gives the following solution: 

MAX X1 X2 S1 S2 S3   

Cj 20 2 0 0 0 Bi Cbi 

 X1 1 0 1/4 0 10/4 3 20 

 S2 0 0 -1/4 1 -10/4 2 0 

 X2 0 1 0 0 -1 1 2 

Max Z =  20𝑋1 +  2𝑋2                                                                                  
s.c.    4𝑋1 + 10𝑋2 ≤ 22    

        𝑋1 ≤ 5      

         𝑋1, 𝑋2 ≥ 0  

Max Z =  20𝑋1 +  2𝑋2                                                                                  
s.c.    4𝑋1 + 10𝑋2 ≤ 22    

        𝑋1 ≥ 6      

         𝑋1, 𝑋2 ≥ 0  

Max Z =  20𝑋1 +  2𝑋2                                                                                  
s.c.    4𝑋1 + 10𝑋2 ≤ 22    

           𝑋1 ≤ 5      

          𝑋2 ≤ 0      

          𝑋1, 𝑋2 ≥ 0    

Max Z =  20𝑋1 +  2𝑋2                                                                                  
s.c.    4𝑋1 + 10𝑋2 ≤ 22    

           𝑋1 ≤ 5      

          𝑋2 ≥ 1      

          𝑋1, 𝑋2 ≥ 0    
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Zj 20 2 5 0 48 62  

∆𝒁=Cj-Zj 0 0 -5 0 -48   

So : X1=3 ; X2=1 ; Z*= 62. Integer optimal solution. 

 

 
 

 

 

 

  

 Original Program  

 X1=5.5 

X2=0 

Z*=120 

    

 LP 1.2  LP 1.3  

X1=5 

X2=0.2 

Z*=100.4 

Non Feasible 

Solution 

   

   

 LP 1.2.1 

 

LP 1.2.2 

 
 

Non Feasible 

Solution 

X1=3 

X2=1 

Z*=62 

 Figure 8-2 : Branch and bound procedure. 
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Chapter 9 

9 Sensibility Analysis 

9.1 Definition  

One of the key uses of duality theory lies in the interpretation and implementation of 

sensitivity analysis. Sensitivity analysis is a very important part of almost every linear 

programming study. Because most of the parameter values used in the original 

model are just estimates of future conditions, the effect on the optimal solution if 

other conditions prevail instead needs to be investigated. Furthermore, certain 

parameter values (such as resource amounts) may represent managerial decisions, 

in which case the choice of the parameter values may be the main issue to be 

studied, which can be done through sensitivity analysis. 

Sensitivity analysis is used to examine the stability of the optimal solution of the linear 
program following the variation of one of its parameters, i.e.: 

(a) Variation of the objective function coefficients (cj). 

(b) Variation in the resources available in the constraints (bi). 

(c) Variation of the variable coefficients in the constraints (aij). 

(d) Addition of a new activity (new variable). 

(e) Addition of a new constraint. 

The following example will be used to present the sensitivity analysis on the various 
parameters of the linear program: 

 

The optimal solution is shown in the table below: 

MAX X1 X2 X3 X4 X5   

Cj 3 2 1 0 0 Bi Cbi 

working times X1 1 0 10/7 4/7 -1/7 20/7 3 

Aluminium plates X2 0 1 1/7 -1/7 2/7 2/7 2 

Zj 3 2 32/7 10/7 1/7 64/7  

∆𝒁=Cj-Zj 
0 0 -25/7 -10/7 -1/7 

 marginal 

coast 

P'j is the vector associated with the variable Xj in the optimal solution table: 

 

𝑃′1 = (
1

0
) ; 𝑃′2 = (

0

1
) ; 𝑃′3 = (

10
7⁄

1
7⁄
) ; 𝑃′4 = (

4
7⁄

−1
7⁄
) ; 𝑃′5 = (

−1
7⁄

2
7⁄
)  𝑒𝑡  𝑏′𝑖 = (

20
7⁄

2
7⁄
)  

 

  𝑋1 + 4𝑋2 + 2𝑋3 ≤ 4 

Max Z =  3𝑋1 +  2𝑋2 + 𝑋3                                                                                  
s.c.    2𝑋1 + 𝑋2 + 3𝑋3 ≤ 6    

         𝑋1, 𝑋2, 𝑋3 ≥ 0  
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And Pj is the vector associated with the variable Xj in the standard form of the LP : 

𝑃1 = (
2

1
) ; 𝑃2 = (

1

4
) ; 𝑃3 = (

3

2
) ; 𝑃4 = (

1

0
) ; 𝑃5 = (

0

1
)  𝑒𝑡  𝑏𝑖 = (

6

4
)  

9.2 Make Change on the EF coefficients 

Depending on the solution of the given LP, there are two basic variables (X1 and X2) 
as well as the variable X3 which is nonbasic variable. The interval of variation of the 
values is then determined in two distinct ways for the case of a basic or nonbasic 
variable: 

(a) Coefficients of basic variables 

- Variable X1 : 

The coefficient of the variable X1 represents the benefit of one unit of product 1, so 
an increase or decrease in this value means a proportional variation in the EF value 
(the overall benefit). But in reality, there are thresholds of variation for the solution to 
remain optimal, i.e. all marginal costs remain zero or negative (the case of 
maximization). To determine the variation thresholds, we have to do is express the 
marginal costs (𝐶j

′) of the NBVs as a function of C1 (coefficient of X1 in the EF). 

The marginal cost is given by:  

𝐶j
′ = 𝐶𝑗 − 𝑍𝑗 ⟹  𝐶j

′ = 𝐶𝑗 − (𝐶𝑏𝑖 ∗ 𝑃𝑗
′) 

1- marginal cost of X3 : 

𝐶3
′ = 𝐶3 − (𝐶𝑏𝑖 ∗ 𝑃3

′)  ⟺ 𝐶3
′ = 𝐶3 − (𝐶1 2) ∗ (

10
7⁄

1
7⁄
) ⇒ 𝐶3

′ =
−10

7
𝐶1 +

5

7
................(1) 

2- marginal cost of X4 : 

𝐶4
′ = 𝐶4 − (𝐶𝑏𝑖 ∗ 𝑃4

′)  ⟺ 𝐶4
′ = 𝐶4 − (𝐶1 2) ∗ (

4
7⁄

−1
7⁄
) ⇒ 𝐶4

′ =
−4

7
𝐶1 +

2

7
................(2) 

3- marginal cost of X5 : 

𝐶5
′ = 𝐶5 − (𝐶𝑏𝑖 ∗ 𝑃5

′)  ⟺ 𝐶5
′ = 𝐶5 − (𝐶1 2) ∗ (

−1
7⁄

2
7⁄
) ⇒ 𝐶5

′ =
1

7
𝐶1 −

4

7
................(3) 

The solution remains optimal only if: 

∀j ;  Cj
′ ≤ 0⟺

{
 
 

 
 − 

10

7
 𝐶1 +

5

7
  ≤ 0 

− 
4

7
 𝐶1 +

2

7
  ≤ 0

  
1

7
 𝐶1 −

4

7
  ≤ 0    

⟺

{
 
 

 
  𝐶1 ≥

1

2
 

 𝐶1 ≥
1

2
   𝐶1 ≤ 4    

⟹
1

2
  ≤  𝐶1 ≤ 4  

So we can vary the profit of product 1 in the interval [
1

2
, 4] and the solution remains optimal 

even though the overall profit will have changed (the values of the variables will also have 
changed). 

 

- Variable X2 : 

In the same way, we will determine the variation interval of product 2 profit:  
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1- marginal cost of X3 : 

𝐶3
′ = 𝐶3 − (𝐶𝑏𝑖 ∗ 𝑃3

′)  ⟺ 𝐶3
′ = 𝐶3 − (3 𝐶2) ∗ (

10
7⁄

1
7⁄
) ⇒ 𝐶3

′ =
−1

7
𝐶2 −

23

7
................(1) 

2- marginal cost of X4 : 

𝐶4
′ = 𝐶4 − (𝐶𝑏𝑖 ∗ 𝑃4

′)  ⟺ 𝐶4
′ = 𝐶4 − (3 𝐶2) ∗ (

4
7⁄

−1
7⁄
) ⇒ 𝐶4

′ =
1

7
𝐶2 −

12

7
................(2) 

3- marginal cost of X5 : 

𝐶5
′ = 𝐶5 − (𝐶𝑏𝑖 ∗ 𝑃5

′)  ⟺ 𝐶5
′ = 𝐶5 − (3 𝐶2) ∗ (

−1
7⁄

2
7⁄
) ⇒ 𝐶5

′ =
−2

7
𝐶2 +

3

7
................(3) 

The solution remains optimal only if: 

∀j ;  Cj
′ ≤ 0 ⟺

{
 
 

 
 
−1

7
𝐶2 −

23

7
  ≤ 0 

1

7
𝐶2 −

12

7
  ≤ 0

  
−2

7
𝐶2 +

3

7
  ≤ 0    

⟺{

 𝐶2 ≥ −23 
𝐶2 ≤ 12

  𝐶2 ≥
3

2
    

⟹
3

2
  ≤  𝐶2 ≤ 12  

So we can vary the profit of product 2 in the interval [
3

2
, 12] and the solution remains optimal 

even though the overall profit will have changed (the values of the variables will also have 
changed). 

 

(b) Coefficients of nonbasic variables 

This section only concerns the original variables of the LP model wich are nonbasic 
variable at the optimal solution, i.e. X3, whereas the variance variables X4 and X5 are 
not affected (zero coefficients in the EF). If the coefficient of X3 changes, this only 
causes the change of 𝐶3

′  in the simplex table, so : 

𝐶3
′ = 𝐶3 − (𝐶𝑏𝑖 ∗ 𝑃3

′)  ⟺ 𝐶3
′ = 𝐶3 − (3 2) ∗ (

10
7⁄

1
7⁄
) ⇒ 𝐶3

′ = 𝐶3 −
32

7
 

The solution remains optimal only if:: 𝐶3
′ ≤ 0 ⟺ 𝐶3 −

32

7
≤ 0  donc  𝐶3 ≤

32

7
 

If the profit on product 3 is less than 
32

7
 , it is no longer economical for the company to 

produce it. 

Suppose that the profit of product 3 equals 5, in which case its marginal cost is 
positive. This will lead to a change in the basic variables, since the solution is not 
optimal. 

(c) Coefficients of basic and nonbasic variables at the same time 

Suppose the EF is as follows: Max Z = 𝑋1 +  3𝑋2 + 2𝑋3 . Although the change is 
made in the three coefficients within the ranges determined in sections a and b, we 
can’t affirm that the solution remains optimal. Consequently, recalculation of all 
marginal costs is strongly recommended. 

1- marginal cost of X1 : 

𝐶1
′ = 𝐶1 − (𝐶𝑏𝑖 ∗ 𝑃1

′)  ⟺ 𝐶1
′ = 1 − (1 3) ∗ (

1
0
) ⇒ 𝐶1

′ = 0............................(1) 
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2- marginal cost of X2 : 

𝐶2
′ = 𝐶2 − (𝐶𝑏𝑖 ∗ 𝑃2

′)  ⟺ 𝐶2
′ = 3 − (1 3) ∗ (

0
1
) ⇒ 𝐶2

′ = 0............................(2) 

3- marginal cost of X3 : 

𝐶3
′ = 𝐶3 − (𝐶𝑏𝑖 ∗ 𝑃3

′)  ⟺ 𝐶3
′ = 2 − (1 3) ∗ (

10
7⁄

1
7⁄
) ⇒ 𝐶3

′ =
1

7
.....................(3) 

4- marginal cost of X4 : 

𝐶4
′ = 𝐶4 − (𝐶𝑏𝑖 ∗ 𝑃4

′)  ⟺ 𝐶4
′ = 0 − (1 3) ∗ (

4
7⁄

−1
7⁄
) ⇒ 𝐶4

′ = −
1

7
................(4) 

5- marginal cost of X5 : 

𝐶5
′ = 𝐶5 − (𝐶𝑏𝑖 ∗ 𝑃5

′)  ⟺ 𝐶5
′ = 0 − (1 3) ∗ (

−1
7⁄

2
7⁄
) ⇒ 𝐶5

′ = −
5

7
................(5) 

So the solution is not optimal because of the positive value of the marginal cost of 
X3.  

   

9.3 Make Change on the available resources of constraints (bi) 

Changing one of the values of bi means changing the value of the base variables (𝑏i
′) 

and subsequently the value of FE. So, as long as the values of 𝑏i
′ do not contradict 

the nonnegative constraint, the solution remains feasible. 

Then we define a matrix relationship that links each column of the initial simplex table 
of an LP with it corresponding column in the table of the optimal solution as follows. 

𝑃j
′ = 𝐵−1 ∗ 𝑃𝑗 ; 

With : 𝑃𝑗 , 𝑃j
′ columns associated with the variable Xj respectively in the initial and the optimal 

solution tables. 

           𝐵−1 : inverse matrix of the transition matrix. 

For 𝑏i
′ values, the matrix relationship is done by: 𝑏i

′ = 𝐵−1 ∗ 𝑏𝑖 

 

 

 

How to determine the B and B-1 matrix values? 

 

Values of B matrix 
are taken from the 
initial simplex table 

BV of 
optimal 
table ↓ 

 

Values of B
-1

 matrix 
are taken from the 

optimal simplex table 

BV of 
initial 

table ↓ 

X1 X2 X4 X5 

BV of → 
initial 
table 

B= 

X4 2 1 
BV of → 
optimal 
table  B-1= 

X1 4

7
 −

1

7
 

X5 1 4 X2 
−
1

7
 

2

7
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9.3.1  Making change in working time values (first constraint) 

We suppose that the available value for the first constraint is unknown (b1) ; 

𝑏i
′ = 𝐵−1 ∗ 𝑏𝑖  ⟺ 𝑏i

′ = |

4

7
−
1

7

−
1

7

2

7
 
| 𝑥 (

𝑏1
4
) = (

4

7
𝑏1 −

4

7
−1

7
𝑏1 +

8

7

) 

The solution is feasible if: ∀𝑖 , bi
′ ≥ 0 ⟺ {

4

7
𝑏1 −

4

7
≥ 0

−1

7
𝑏1 +

8

7
≥ 0

 ⟺ {
𝑏1 ≥ 1

𝑏1 ≤ 8
⟹ 𝟏 ≤ 𝒃𝟏 ≤ 𝟖 

9.3.2 Making change on Aluminium plates values (second constraint) 

We suppose that the available value for the second constraint is unknown (b2) ; 

𝑏i
′ = 𝐵−1 ∗ 𝑏𝑖  ⟺ 𝑏i

′ = |

4

7
−
1

7

−
1

7

2

7
 
| 𝑥 (

6

𝑏2
) = (

−1

7
𝑏2 +

24

7
2

7
𝑏2 −

6

7

) 

The solution is feasible if: ∀𝑖 , bi
′ ≥ 0 ⟺ {

−1

7
𝑏2 +

24

7
≥ 0

2

7
𝑏2 −

6

7
≥ 0

 ⟺ {
𝑏2 ≤ 24

𝑏2 ≥ 3
⟹ 𝟑 ≤ 𝒃𝟐 ≤ 𝟐𝟒 

Case 1: we suppose that the number of plates is equal to 5, this value belongs to the 
interval [3, 24] i.e. the solution remains optimal but its value changes. 
  

𝑏i
′ = 𝐵−1 ∗ 𝑏𝑖  ⟺ 𝑏i

′ = |

4

7
−
1

7

−
1

7

2

7
 
| 𝑥 (

6

𝟓
) = (

19

7
4

7

) 

The optimal solution is : X1=
19

7
 , X2=

4

7
, , X3=0 , Z*= 

 65

7
. 

Although the value of FE has increased by 
 1

7
, it is necessary to check whether this 

increase is beneficial or not? 

The cost
6
 of increasing one unit from bi of the second constraint is: 

 2

7
.. 

So the profit recorded is: 
 65

7
−
 64

7
=

 1

7
 this is less than the cost  

2

7
 so this increase is not 

beneficial for the company. 

Case 1 : we suppose that the number of plates equals 25, this value is at the back of 
the interval [3, 24] i.e. the solution will not be feasible (therefore not optimal). In this 
case we use the dual simplex method. 

9.4 Make change in constraints matrix values 

(a) change variable coefficients in constraints (aij) 

                                            

6
 This is shown in the box where the constraint line intersects the column of the slack variable used for this 

constraint. 
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The characteristics of a product can be changed so that the solution remains optimal. 
In particular, we're talking about the needs of a unit in terms of number of hours or 
number of aluminium panels. There are often two cases: 

- Variation in the information of a nonbasic variable: 

It is assumed that the aluminium panel’s requirements of product 3 (X3) are reduced 

to a single panel, so 𝑃3 (
3
1
), the aim is to measure the impact of this change on the 

optimality of the program. 

𝑃3
′ = 𝐵−1 ∗ 𝑃3  ⟺ 𝑃3

′ = |

4

7
−
1

7

−
1

7

2

7
 
| 𝑥 (

3

1
) = (

11

7
−1

7

) 

So, the marginal cost is :  

𝐶3
′ = 𝐶3 − (𝐶𝑏𝑖 ∗ 𝑃3

′)  ⟺ 𝐶3
′ = 1 − (1 3) ∗ (

11
7⁄

−1
7⁄
) ⇒ 𝐶3

′ =
−24

7
 

The solution remains optimal, we conclude that the production of product 3 is not yet 
benefic. 

 - Variation in the information of a basic variable: 

In this case, it is preferable to solve the LP again because the change in the 
coefficients of VB (the case of X1 and X2) in the constraints influences all the values 
of the optimal table  

(b) Add a new activity (new variable) 

We suppose that the company is aiming to produce a new product, so the decision-
maker is looking to see whether the new product - depending on its characteristics - 
will be economical for the company. 

For example, the following characteristics are proposed: 

The new product (X6) requires two (02) units of working hours and two units of 

aluminium panals, the unit profit is 2 monetary units. Therefore,  𝐶6 = 2 et 𝑃6 (
2
2
), 

𝑃6
′ = 𝐵−1 ∗ 𝑃6  ⟺ 𝑃6

′ = |

4

7
−
1

7

−
1

7

2

7
 
| 𝑥 (

2

2
) = (

6

7
2

7

) 

So :  𝐶6
′ = 𝐶6 − (𝐶𝑏𝑖 ∗ 𝑃6

′)  ⟺ 𝐶6
′ = 2 − (1 3) ∗ (

6
7⁄

2
7⁄
) ⇒ 𝐶6

′ =
−8

7
 

The marginal cost of NBV X6 is negative, i.e. producing the new product is 
uneconomical. We can deduce that its production will reduce overall profit by value7 

(
−8

7
). 

(c) Add a new constraint 

Before adding a constraint, it is first necessary to check whether this constraint is 
verified by the optimal solution of the LP. There are two possible cases: 

                                            
7
 The impact of a NBV on the value of  EF is the product of  its marginal cost and the smallest ratio of the 

leaving variable, in our case: 
−8

7
𝑥1 =

−8

7
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(a) the constraint is verified; it is therefore considered to be supplicant to the LP and 
can therefore be ignored. 

(b) the optimal solution does not satisfy the constraint, so it has to be added in the 
program and consequently the solution will be modified. 

Example 1 : add the following constraint : 2X1+X2+2X3 ≤ 8. 

(N.A):   2(20
7
)+ 2

7
+2(0) = 42

7
=6 which is less than 8. Then the constraint is verified and 

can be ignored. 

Example 2 : Let adding the constraint 2X1+X2+2X3 ≤ 5. According to the previous 

example, this constraint is no longer verified by the optimal solution. Here are the 
necessary steps: 

We transform the constraint into an equality: 2X1+X2+2X3 = 5 (with X6 as the slack variable). 

The constraint is added to the optimal simplex table, but we notice that there are 
some anomalies to be sorted out; we need to check the characteristics of the basic 
variables, i.e. a basic variable must have a coefficient equal to one (1) in the 
associated constraint and zero for the rest of the constraints. This approach concerns 
the variables X1, X2, X6. 

 

 

MAX X1 X2 X3 X4 X5 X6   

Cj 3 2 1 0 0 0 Bi Cbi 

Heures de travail X1 1 0 10/7 4/7 -1/7 0 20/7 3 

Plaques en aluminium X2 0 1 1/7 -1/7 2/7 0 2/7 2 

Nouvelle contrainte X6 2 1 2 0 0 1 5 0 

Zj 3 2 32/7 10/7 1/7  64/7  

∆𝒁=Cj-Zj 
0 0 -25/7 -10/7 -1/7 

  Coûts 

marginaux 

So we multiply the first constraint by (-2) and the second by (-1) and we add up the 
three constraints according to the following table: 

Constraint1x(-2) -2 0 -20/7 -8/7 2/7 0 -40/7 

Constraint2x (-1) 0 -1 -1/7 1/7 -2/7 0 -2/7 

New Constraint 2 1 2 0 0 1 5 

By addition: 0 0 -1 -1 0 1 -1 

 

 

 

So the resulting simplex table will be as follows: 

MAX X1 X2 X3 X4↓ X5 X6   This solution 

is not feasible 

(negative 

value of X6) 

Dual Simplex 

LBV: X6 

EBV:X4 

Pivot = -1 

Cj 3 2 1 0 0 0 Bi Cbi 

working hours X1 1 0 10/7 4/7 -1/7 0 20/7 3 

Aluminium panals X2 0 1 1/7 -1/7 2/7 0 2/7 2 

New Constraint ←X6 0 0 -1 -1 0 1 -1 0 

Zj 3 2 32/7 10/7 1/7 0 64/7  

∆𝒁=Cj-Zj 0 0 -25/7 -10/7 -1/7 0  marginal 
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cost 

MAX X1 X2 X3 X4 X5 X6   

Optimal and 

feasible 

solution  

 

Cj 3 2 1 0 0 
0 

Bi Cb

i 

working hours X1 1 0 6/7 0 -1/7 4/7 16/7 3 

Aluminium panals X2 0 1 2/7 0 2/7 -1/7 3/7 2 

New Constraint X4 0 0 1 1 0 -1 1 0 

Zj 3 2 22/7 0 1/7 10/7 54/7  

∆𝒁=Cj-Zj 
0 0 -15/7 0 -1/7 -10/7 

 marginal 

cost 

 

In this example, we have covered practically all the possible scenarios that can be 
presented when analyzing the sensitivity of the results of a given LP. Sensitivity 
analysis is an essential step for decision-makers, as it provides key information for 
analyzing the optimal solution and, of course, for future forecasts. 

 

Exercise: 

A company produces two types of cosmetic products using two machines. The 
information required is shown in the following table: 

 

 

 

 

 Define the quantity to be 
produced to maximize profit. 

 Define the interval of variation of the profit associated with product1. 
 Define the variation thresholds for the available hours for machine1. 
 Study the possibility to add a new product which is characterized by:  

the unit profit is 7 u.m, it requires 3h, 2h respectively on machine1 and machine2. 

Solution : 

The LP for this problem is expressed as: 

  

The optimal solution is as follows: 

MAX X1↓ X2 X3 X4   

Cj 8 6 0 0 Bi Cbi 

Machine1 ←X3 4 2 1 0 60 0 

Machine2 X4 2 4 0 1 48 0 

Zj 0 0 0 0 0  

Available hours Product2 Product1  

60 2 4 Machine 1 

48 4 2 Machine 1 

 6 8 Profil 

Max Z =  8𝑋1 +  6𝑋2                                                                                  
s.c.   4𝑋1 +  2𝑋2 ≤ 60    

         2𝑋1 +  4𝑋2 ≤ 48 

         𝑋1, 𝑋2 ≥ 0  
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∆𝒁=Cj-Zj 8 6 0 0  

MAX X1 X2↓ X3 X4   

Machine1 X1 1 1/2 1/4 0 15 8 

Machine2 ←X4 0 3 -1/2 1 18 0 

Zj 8 4 2 0 120  

∆𝒁=Cj-Zj 0 6 -2 0  

MAX X1 X2 X3 X4   

Machine1 X1 1 0 1/3 -1/6 12 8 

Machine2 X2 0 1 -1/6 1/3 6 6 

Zj 8 6 5/3 2/3 132  

∆𝒁=Cj-Zj 0 6 -2 -2/3  

The quantities are 12 units of product1 and 6 units of product2 which a profit of 132 
u.m.. 

 

 Define the interval of variation of the profit associated with product1 

To define the thresholds for this variation, we have to express the marginal costs (𝐶j
′) 

of the N as a function of C1 (coefficient of X1 in the EF). 

 

The marginal cost is: 𝐶j
′ = 𝐶𝑗 − 𝑍𝑗 ⟹  𝐶j

′ = 𝐶𝑗 − (𝐶𝑏𝑖 ∗ 𝑃𝑗
′)  

1- marginal cost of X3 : 

𝐶3
′ = 𝐶3 − (𝐶𝑏𝑖 ∗ 𝑃3

′)  ⟺ 𝐶3
′ = 0 − (𝐶1 6) ∗ (

1
3⁄

−1
6⁄
) ⇒ 𝐶3

′ =
−1

3
𝐶1 + 1................(1) 

2- marginal cost of X4 : 

𝐶4
′ = 𝐶4 − (𝐶𝑏𝑖 ∗ 𝑃4

′)  ⟺ 𝐶4
′ = 0 − (𝐶1 6) ∗ (

−1
6⁄

1
3⁄
) ⇒ 𝐶4

′ =
1

6
𝐶1 − 2................(2) 

The solution remains optimal only if: 

∀j ;  Cj
′ ≤ 0 ⟺

{
 
 

 
 −1

3
𝐶1 + 1  ≤ 0 

1

6
𝐶1 − 2  ≤ 0

   

⟺ {
 𝐶1 ≥ 3 
 𝐶1 ≤ 12

 
⟹ 3  ≤  𝐶1 ≤ 12  

So we can vary the benefit of product 1 in the interval [3,12]  and the solution remains 
optimal. 

 Define the variation thresholds for the available hours for machine1. 

We suppose that the available value for the first constraint is unknown (b1); 

𝑏i
′ = 𝐵−1 ∗ 𝑏𝑖  ⟺ 𝑏i

′ = |

1

3
−
1

6

−
1

6

1

3
 
| 𝑥 (

𝑏1
48
) = (

1

3
𝑏1 − 8

−1

6
𝑏1 + 16

) 

The solution is feasible if: ∀𝑖 , bi
′ ≥ 0 ⟺ {

1

3
𝑏1 − 8 ≥ 0

−1

6
𝑏1 + 16 ≥ 0

 ⟺ {
𝑏1 ≥ 24

𝑏1 ≤ 96
⟹ 𝟐𝟒 ≤ 𝒃𝟏 ≤ 𝟗𝟔 
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 Study the possibility to add a new product which is characterized by: the unit profit 
is 7 u.m, it requires 3h, 2h respectively on machine1 and machine2. 
We have: 

𝑃3
′ = 𝐵−1 ∗ 𝑃3  ⟺ 𝑃3

′ = |

1

3
−
1

6

−
1

6

1

3
 
| 𝑥 (

3

2
) = (

2

3
1

6

) 

𝐶5
′ = 𝐶5 − (𝐶𝑏𝑖 ∗ 𝑃5

′)  ⟺ 𝐶5
′ = 7 − (8 6) ∗ (

2

3
1

6

) ⇒ 𝐶5
′ =

2

3
. Production of the new product is 

beneficial (positive marginal cost). 

 

Exercise without solution :   

Let the following LP :  

 

The optimal solution is as presented : 

MAX X1 X2 X3 X4 X5   

Cj 5 3 0 0 0 Bi Cbi 

 X3 0 0 1 1/7 3/7 36/7 0 

Working hours X1 1 0 0 2/7 -1/7 2/7 5 

Panals X2 0 1 0 3/7 2/7 24/7 3 

Zj 5 3 0 19/7 1/7 82/7  

∆𝒁=Cj-Zj 0 0 0 -19/7 -1/7 
 Marginal 

costs 

 Define the interval of variation in all EF coefficients. 
 Define the variation thresholds for the available resources in all constraints. 

 

 

 

 

 

 

 

 

 

 

 

 

Max Z =  5𝑋1 +  3𝑋2                                                                                  
s.c.    𝑋1 −  𝑋2 ≤ 2    

       2𝑋1 +  𝑋2 ≤ 4 

    −3𝑋1 + 2𝑋2 ≤ 6 

         𝑋1, 𝑋2 ≥ 0  
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Chapter 10 

10 Transportation Problème –cass of minimization- 

10.1 Définition 

Previous Chapters emphasized the wide applicability of linear programming. We 
continue to broaden our horizons in this chapter by discussing a particularly important 
type of linear programming problems. It is called the transportation problem, received 
this name because many of its applications involve determining how to optimally 
transport goods. However, some of its important applications (e.g., production 
scheduling) actually have nothing to do with transportation. 

A transport problem can be presented as follows: 

 A product must be transported from sources (factories) to destinations (depots, 

customers). 

 Objective: define the quantity sent from each source to each destination by 

minimizing transport costs. Costs are proportional to the quantities 

transported. 

 Contraintes d’offre limitée aux sources et de demande à satisfaire aux destinations. 

 

 

 

 

 

 

 

Fig 10.1: Network presentation 

 

10.2 Presentation 

A set of cities supplied with drinking water by pumping stations. Each station is 
characterised by the quantity of water pumped in m3/day: 

 Station1 delivers quantity S1. 
 Station2 delivers the quantity S2. The stations represent the sources. 
 Station3 delivers quantity S3. 

The daily drinking water requirements of the towns represent the daily quantities 
demanded: 

 City1 consumes the quantity D1. 
 City2 consumes the quantity D2. 
 City3 consumes the quantity D3. The cities represent the destinations. 
 City4 consumes quantity D4. 

Pumping costs are recorded and presented in the following form: 
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Destinations 

City 1 City 2 City 3 City 4 
S

o
u

rc
e

s
 

Station1 C11 C12 C13 C14 

Station2 C21 C22 C23 C24 

Station3 C31 C32 C33 C34 

where: Cij present the cost of 1 m3 pumped from station 'i' to city 'j'. 

The aim is to satisfy the daily drinking water needs of the cities while respecting the 
capacity of each station, and all this with a minimum overall cost. 

We need to define the quantity of water in m3 distributed from each station to the four 
cities. Xij is the quantity of water in m3 distributed from station 'i' to city 'j', as shown in 
the table below: 

 Ville1 Ville2 Ville3 Ville4 

Station1 X11 X12 X13 X14 

Station2 X21 X22 X23 X24 

Station3 X31 X32 X33 X34 

10.3 Transportation problem model 

All the information can then be grouped together in a single table: 

 

 

 

 

 

 

 

 

 

 

the transportation table is expressed as follows: 

with: 

si : sources 

Si : quantity provided by the source si. 

dj : destinations 

Dj: quantity requested by the destination dj. 

Cij: transportation cost of one unit from si to 
dj 

Xij: quantity transported from si to dj. 

 

 

A transportation problem is described mathematically by  

(1) a global cost W : 

 Ville4 Ville3 Ville2 Ville1  

S1  C14  C13  C12  C11 
Station1 

X14 X13 X12 X11 

S2  C24  C23  C22  C21 
Station3 

X24 X23 X22 X21 

S3  C34  C33  C32  C31 
Station2 

X34 X33 Xm2 Xm1 

 D4 D3 D2 D1  

  

 dn …... d2 d1  

S1  C1n 
…... 

 C12  C11 s1 
X1n X12 X11 

S2  C2n 
…... 

 C22  C21 s2 
X2n X22 X21 

…... ……… …... ………… ……… …... 

Sm  Cmn 
…... 

 Cm2  Cm1 sm 
Xmn Xm2 Xm1 

 Dn …... D2 D1  
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W= C11X11+ C12X12+ C13X13+ C14X14+ C21X21+ C22X22+ C23X23+ C24X24+ C31X31+ C32X32+ 

C33X33+ C34X34 

So,    𝑤 = ∑ ∑ 𝐶𝑖𝑗𝑋𝑖𝑗
4
𝑗=1

3
𝑖=1  

 

(2) quantities transported from sources : 

Source1 : X11+ X12+ X13+ X14=S1 

Source2 : X21+ X22+ X23+ X24=S2 

Source3 : X31+ X32+ X33+ X34=S3 

So,    ∑ 𝑋𝑖𝑗
4
𝑗=1 = 𝑆𝑖 ;  𝑖 = 1,2,3 

 

(3) quantities transported to destinations :  

City1 : X11+ X21+ X31 =D1 

City2 : X12+ X22+ X32 =D2 

City3 : X13+ X23+ X33 =D3 

City4 : X14+ X24+ X34 =D3 

So,    ∑ 𝑋𝑖𝑗
3
𝑖=1 = 𝐷𝑗  ; 𝑗 = 1,2,3,4 

The transportation model is expressed mathematically in the following general form:    

𝑀𝑖𝑛 𝑤 = ∑ ∑ 𝐶𝑖𝑗𝑋𝑖𝑗
4
𝑗=1

3
𝑖=1  

     S.T :    

{
 
 

 
 
∑ 𝑋𝑖𝑗
4
𝑗=1 = 𝑆𝑖 ; 𝑝𝑜𝑢𝑟 𝑖 = 1,2,3 

∑ 𝑋𝑖𝑗
3
𝑖=1 = 𝐷𝑗  ; 𝑝𝑜𝑢𝑟 𝑗 = 1,2,3,4

∑ 𝑆𝑖
3
𝑖=1 = ∑ 𝐷4

𝑗=1 𝑗
 

𝑋𝑖𝑗 ≥ 0

 

     

10.4  Solving a transportation problem 

Before starting to solve a transport problem, it is almost necessary to check that the 
supply and demand quantities are equal. If this is not the case, more details and 
tricks are presented in section  10.5.  

10.4.1 Search a initial basic feasible solution 

10.4.1.1 North-West Corner Method 

A simple and efficient technique to search an initial basic feasible solution for a 

transportation problem in operations research.  

Its principle is to choose at each stage the variable located at the intersection of the 

first row and the first column of the reduced table. So, starting from the top left-hand 

corner of the table, here are the steps: 

1. allocate as much as possible to the current cell and adjust supply and demand; 

2. move one cell to the right (zero demand) or down (zero supply); 

3. repeat until all the supply has been allocated. 
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10.4.1.2 Minimum cost method 

At each stage, choose the variable Cpq corresponding to the lowest cost in the 
reduced table 

  𝐶𝑝𝑞 = min𝑖𝑗(𝐶𝑖𝑗) 

Here are the detailed steps: 

Select the minimum cost cell. 

1. allocate as much as possible to the current cell and adjust supply and demand; 

2. Select the minimum cost cell with non-zero demand and supply; 

3. Repeat until all the supply has been allocated. 

10.4.1.3 Vogel's Approximation Method (VAM) 

It is based on the calculation of penalties, generally the solution is very approximate 
to the optimal solution: 

1. for each row (column) with non-zero supply (demand), calculate a penalty equal to 

the difference between the two lowest costs in the row (column); 

2. select the row or column with the maximum penalty and select the cell with the 

minimum cost in the row or column; 

3. allocate as much as possible to the current cell; 

4. when only one row or column remains: select the cell with the lowest cost. 

 

10.4.2 Research to the optimal solution 

Having defined a basic solution that can be implemented using one of the three 
previous methods, we then try to find an optimal solution using one of the two 
methods: 

10.4.2.1 Modified Distribution method (MODI) 

The dual program of a transportation model is given by : 

𝑀𝑎𝑥: 𝑍 =∑𝑎𝑖

𝑚

𝑖=1

𝑢𝑖 +∑𝑏𝑗

𝑛

𝑗=1

𝑣𝑗 

𝑎𝑣𝑒𝑐 ∶  𝑢𝑖 + 𝑣𝑗 > 𝐶𝑖𝑗 ; 𝑖 = 1,… ,𝑚, 𝑗 = 1,… , 𝑛 

Note that 𝑢𝑖, 𝑣𝑗 are free values calculated for all basic variables according to the 

formula: 

𝐶𝑖𝑗 = 𝑢𝑖 + 𝑣𝑗;  ∀𝑋𝑖𝑗 > 0 

Note: in the transportation table, cells with positive values represent basic variables 
cells, while empty cells represent nonbasic variables. 

This gives (m + n -1) equalities with (m + n) unknowns quantities. We fix u1 = 0 to 
solve recursively the following system: 

𝐶𝑖𝑗 = 𝑢𝑖 + 𝑣𝑗;  𝑓𝑜𝑟 𝑋𝑖𝑗 > 0  i.e. for filled cells. 

The values of ui, vj are recorded in the transportation table at the beginning of the 

corresponding rows and columns. 
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Once you have calculated the value of the dual variables, it is easy to calculate the 
value of the components of the relative cost vector for each nonbasic variable: 

𝐶𝑖𝑗 − (𝑢𝑖 + 𝑣𝑗) ≥ 0;  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑁𝐵𝑉. 

Thus, the basic solution is optimal only if: 

𝐶𝑖𝑗 − (𝑢𝑖 + 𝑣𝑗) ≥ 0;  𝑓𝑜𝑟 𝑋𝑖𝑗 > 0 

If one of these components is negative, then we are not at the optimum and must 

define the LBC and EBV to preserve eligibility: 

Two objectives need to be checked:  

1. supply and demand must continue to be satisfied; 

2. all transported quantities must remain positive. 

To achieve this we must: 

 Define the Entering variable characterized by the smallest value of negative 
relative costs. 
 Construct a cycle running through the basic variables, starting from and returning 
to the Entering variable (the cycle must contain only horizontal and vertical lines and 
we do not count the BV that are not at the corner of the cycle); 
 Alternately mark with + and - the variables which make up the selected cycle, 
starting with the entering variable. 
 Move along rows and columns, alternately adding and removing the smallest of 

the quantities preceded by a minus sign (-), corresponding to the leaving variable 

 Recalculate the new values of the dual variables, then the values of the relative 

costs. If the latter are not negative, then the solution is optimal, otherwise the 

previous steps are repeated until the optimum is reached.   

 

Example 1: Let the closet cycle:  𝑋12 → 𝑋13 → 𝑋23 → 𝑋22 → 𝑋12, here, the entering 

variable is 𝑋12, et 𝑋13, 𝑋23, 𝑋22 are basic variables with the following values 

respectively 50, 20,65: Applying the rules described above we have : 

Cycle 𝑋12 → 𝑋13 → 𝑋23 → 𝑋22 → 𝑋12 

Sign +      -           +          -       

BV values                      50           20          65 

The smallest value preceded by the minus sign (-) is 50  LV: 𝑋13 

Treatment       +50        -50       +50      -50             

BV new values          50                         70           15             

 

10.4.2.2 Stepping stone method 

The algorithm for this method is most similar to the previous method, although we 
first define the cycles for all the nonbasic variables and then calculate the relative 
cost of each cycle as follows: 

 Taking the cycle in example 1 and assuming that the unit costs are respectively 

9, 10.5 ,12   and 8 for the Entering variable, then the relative cost of the cycle is: 

𝑋12 → 𝑋13 → 𝑋23 → 𝑋22 → 𝑋12 

       8  −   9  +   10.5 −    12  = −2.5        
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 The Entering variable corresponds to the cycle with the smallest negative cost. 
 Alternately mark with + and - the variables which make up the selected cycle, 
starting with the Entering variable. 
 Move along the rows and columns, alternately adding and removing the smallest 
of the quantities preceded by a minus sign (-), corresponding to the outgoing 
variable. 
 Adjust the transport table with the new values. 
 Reconstruct all the cycles associated with the NB variables, then their relative cost 
values. If the values are not negative, then the solution is optimal, otherwise the 
previous steps are repeated until the optimum is reached. 
 

Exercise 10.1:                        

Three factories (A1, A2, A3) supply the same type of raw material to four micro-

enterprises (S1, S2, S3, S4). The information on supply and demand and the unit 
cost of transport is shown in the table opposite: 

Define the lowest-cost transportation strategy. 

 

Solution 10.1: 

We will solve this example using all studied 

methods: 

1- Verifying the condition of equality between supply and demand : 

∀𝑖, 𝑗; ∑ 𝑆𝑖
3
𝑖=1 = ∑ 𝐷𝑗

4
𝑗=1  ,  Requested quantity =30+90+80+20=220 

                                          Offered quantity =30+40+150=220    so the condition is 

satisfied 

The transportation table is shown below: 

 

 

 

 

 

 

 

2- defining a basic 
feasible solution:  

(a) North-West Corner Method: 

- The cell in the North-West corner is C11, the supply from source A1 is equal to the 
demand from customer B1, so cell C11 receives the quantity 30, i.e. X11=30. We 
adjust the values in the table. 

- The cell in the North-West corner is C22, Min {90,40}={40} so X22=40. 

- The North-West corner cell is C32, Min {50,150}={50} so X32=50 

- The North-West corner cell is C33, Min {80,100}={80} so X33=80. 

- There remains only the quantity requested from customer B4 which, according to 
the table, corresponds to the quantity of supply remaining from source A3, so X34=20. 

 

Offer B4 B3 B2 B1  

30 2 5 2 3 A1 

40 7 8 5 6 A2 

150 6 4 8 2 A3 

 20 80 90 30 Demand 

 B4 B3 B2 B1  

30 

 

 2  5  2  3 
A1 

    

40 
 7  8  5  6 

A2 
    

150  6  4  8  2 
A3 

    

220 

220 

20 80 90 30 
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Important: the number of occupied cells (corresponding to the number of BV) is 5, 
whereas it should be (m+n-1=6; with 'm' the number of sources and 'n' the number of 
customers). In this case, we add the quantity to one of the empty cells (in our case, 
cell C12). 

The global cost is :  W= C11X11+ C12X12+ C23X23+C32X32+ C33X33+ C34X34 

                               W= 3*30 +2*𝜀+5*40+8*50+4*80+6*20=1130+2𝜺   

 

 

(b) Minimum cost method: 

For each iteration, the cell containing the smallest cost value is selected, with supply 
and demand being adjusted each time. 

- The smallest cost value (=2) corresponds to the three cells [C12, C14, C31], starting 
with X12 which will receive the quantity 30. 

- The cell C31, Min {30,150}={30} so  X31=30. 

- We therefore look for the cell with the lowest cost without taking into account the 
first row (supply delivered) and the first column (demand satisfied). This is cell C33; 
Min {80,120}={80} so X33=80 
- Cell C22 contains the minimum cost of the remaining cells, so Min{60,40}={40}, so 
X22=40 
- There are still two cells that need to be filled to satisfy the requests of customers B2 
and B4. Therefore, X34=20 and X32=20. 
  

 

 

 

 

 

 

 

 B4 B3 B2 B1  

30 0 

 

 2  5  2  3 
A1 

  𝜀 30 

40 0 
 7  8  5  6 

A2 
  40  

150 100 

20 0 

 6  4  8  2 
A3 

20 80 50  

220 

220 

20 0 80 0 90 50 0 30 0 

 

 

 B4 B3 B2 B1  

30 0 

 

 2  5  2  3 
A1 

  30  

40 0 
 7  8  5  6 

A2 
  40  

150 120 
40 0 

 

 

6  4  8  2 
A3 

20 80 20 30 

220 

220 

20 0 80 0 90 60 20 0 30 0 
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Important: the number of occupied cells (corresponding to the number of BV) is 6, 
whereas it should be (m+n-1=6; with 'm' the number of sources and 'n' the number of 
customers). In this case, the condition is verified. 

The global cost is :  W= C12X12+ C22X22+ C31X31+C32X32+ C33X33+ C34X34 

                               W= 2*30 +5*40+2*30+8*20+4*80+6*20=920   

 

(c) Méthode approximative de Vogel (VAM) :  

In each case, we calculate the penalties for the rows and columns which have a non-
zero quantity of supply or demand. For example, for the first row the lowest cost is 2, 
the next value is 3, so the penalty is P1=3-2=1. The result is that column B4 has 
received the largest penalty (=4), in this column the smallest cost corresponds to cell 
C14, so X14=20. 
After adjusting supply and demand, we recalculate the penalties for the rows and 
columns with non-zero supply or demand quantities. 
The largest penalty corresponds to the 2nd column for which the small cost equals 2. 
Then X12=10. 
Recalculating the penalties, we notice that the first and third columns have the same penalty 

(=4), we chose the first column because it contains the smallest cost (=2), so X31=30. 

And X33=80 , X22=40 , X32=40.  

 

 

 

 

 

 

 

 

 

The 

number of BV equals (6), which is the same number given by the formula (m+n-1), so 
the condition is satisfied. 

The overall cost is:  W= C12X12+ C14X14+ C22X22+ C31X31+C32X32+ C33X33 

                               W= 2*10 +2*20+5*40+2*30+8*40+4*80=960   

Note: three different basic feasible solutions have been selected, and the least-cost 
solution is the closest to the optimum solution. 

2- determining the optimal solution as follows: For the initial solution, logically the 
solution closest to the optimal solution should be used (the lowest overall cost), but 
since the aim of this course is to explain the algorithms of the methods in detail, the 
initial solution is the one obtained by the north-west corner method.  

(a) Modified Distribution method (MODI) 

We calculate ui, vj accorfing to the formula:  Cij = ui + vj;  ∀Xij > 0  

Penalties supplay B4 B3 B2 B1  

1  1  -  - 30 10 0 

 

 2  5  2  3 
A1 

20  10  

1  1  1  3 
40 0 

 7  8  5  6 
A2 

  40  

2  2  2  4 150 120 
40 0 

 6  4  8  2 
A3 

 80 40 30 

  20 0 80 0 90 80 40 0 30 0 Demand 

 4 1 3 1 

Penalties 
 - 1 3 1 

 - 4 3 4 

 - 4 3 - 
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So, it result (m + n -1) equalities with (m + n) unknown values. We have set u1 = 0 

and recursively solve the following system: 

BV  𝑢1 = 0 than, 

X11 𝐶11 = 𝑢1 + 𝑣1  𝑣1 = 3  

X12 𝐶12 = 𝑢1 + 𝑣2  𝑣2 = 2  

X22 𝐶22 = 𝑢2 + 𝑣2  𝑢2 = 3  

X32 𝐶32 = 𝑢3 + 𝑣2  𝑢3 = 6  

X33 𝐶33 = 𝑢3 + 𝑣3  𝑣3=-2 

X34 𝐶34 = 𝑢3 + 𝑣4  𝑣4 = 0  

The values of ui, vj are listed in the transportation table at the beginning of the 

corresponding rows and columns. Then, we calculate the value of the components of 
the relative cost vector for each non-basic variable:  𝐶𝑖𝑗 − (𝑢𝑖 + 𝑣𝑗) ≥ 0;  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑁𝐵𝑉. 

We can see that the cost relating to NBV X31 is negative, so it is the entering variable 
(EV). So we construct a cycle starting from this cell and closing on it.  

 

 

 

 

 

The closed cycle will be: 
X31X32 X12 X11 
X31 

Applying the principle of this method to define the leaving variable 

Cycle 𝑋31 → 𝑋32 → 𝑋12 → 𝑋11 → 𝑋31  

Sign +           -           +          -            

BV values 30                         𝜀           50 

The smallest value preceded by the sign (-) is 30  LV: 𝑋11 

Treatment +30        -30         +30         -30             

New values of BV 30         20           30                            

The second iteration is shown in the table below: 

 

 

 

 

 

 

 

Note that all relative costs 
are positive, i.e. the solution 

B4 B3 B2 B1  

0 -2 2 3 
        Vj    

   Ui 

 

 2  5  2  3 
0 A1 

2  7  𝜀 30 

 7  8  5  6 
3 A2 

4     7  40 0  

 6  4  8  2 
6 A3 

20 80 50 -7  

B4 B3 B2 B1  

0 -2 2 -4 
        Vj    

   Ui 

 

 2  5  2  3 
0 A1 

2  7  30 7  

 7  8  5  6 
3 A2 

4  7  40 7  

 6  4  8  2 
6 A3 

20 80 20  30 
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is optimal. 

The overall cost is:  W= C12X12+ C22X22+ C31X31+C32X32+ C33X33+ C34X34 

                               W= 2*30 +5*40+2*30+8*20+4*80+6*20=920   

 

(b) Stepping Stone method  

We take the initial solution obtained by Vogel's approximate method as our starting 
point. 

 

 

 

 

 

 

 

We define the closed cycles 
corresponding to the NBV and then calculate the relative costs for each cycle: 

NBV Cycle Cost 

X11 𝑋11 → 𝑋12 → 𝑋32 → 𝑋31 → 𝑋11  3-2+8-2=7 

X13 𝑋13 → 𝑋33 → 𝑋32 → 𝑋12 → 𝑋13  5-4+8-2=7 

X21 𝑋21 → 𝑋22 → 𝑋32 → 𝑋31 → 𝑋21  6-5+8-2=7 

X23 𝑋32 → 𝑋33 → 𝑋32 → 𝑋22 → 𝑋32  8-4+8-5=7 

X24 𝑋24 → 𝑋14 → 𝑋12 → 𝑋22 → 𝑋24  7-2+2-5=2 

X34 𝑋34 → 𝑋14 → 𝑋12 → 𝑋32 → 𝑋34  6-2+2-8=-2 

 

 

 

 

The entering variable is X34 : 

Cycle 𝑋34 → 𝑋14 → 𝑋12 → 𝑋32 → 𝑋34  

Sign +           -           +          -            

BV values 40                         10           20 

The smallest value preceded by the sign (-) is 20  LV: 𝑋14 

Treatment +20        -20         +20         -20             

New values of BV 20                          30          20              

The result are as follows : 

 

 

 

Once again, we define the 
closed cycles corresponding 
to the NBV and then 
calculate the relative costs 

B4 B3 B2 B1  

 2  5  2  3 
A1 

20  10  

 7  8  5  6 
A2 

  40  

 6  4  8  2 
A3 

 80 40 30 

B4 B3 B2 B1  

 2  5  2  3 
A1 

  30  

 7  8  5  6 
A2 

  40  

 6  4  8  2 
A3 

20 80 20 30 
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for each cycle: 

VHB Cycle Coût relatif 

X11 𝑋11 → 𝑋12 → 𝑋32 → 𝑋31 → 𝑋11  3-2+8-2=7 

X13 𝑋13 → 𝑋33 → 𝑋32 → 𝑋12 → 𝑋13  5-4+8-2=7 

X14 𝑋14 → 𝑋34 → 𝑋32 → 𝑋12 → 𝑋14  2-6+8-2=2 

X21 𝑋21 → 𝑋22 → 𝑋32 → 𝑋31 → 𝑋21  6-5+8-2=7 

X23 𝑋32 → 𝑋33 → 𝑋32 → 𝑋22 → 𝑋32  8-4+8-5=7 

X24 𝑋24 → 𝑋14 → 𝑋12 → 𝑋22 → 𝑋24  7-2+2-5=2 

 

All the relative costs are positive, which means that there is no NB variable that 
reduces the overall cost, so this solution is optimal. 

The overall cost is : W= C12X12+ C22X22+ C31X31+C32X32+ C33X33+ C34X34 

                              W= 2*30 +5*40+2*30+8*20+4*80+6*20=920     

 

10.5 Unbalanced problem 

The model is said to be unbalanced if supply does not equal demand. To this end, 
we introduce an artificial source (if demand exceeds supply) or an artificial 
destination (if supply exceeds demand). The artificial source and destination are 
characterised by zero costs.  

10.6 Transshipment problem 

A transportation problem allows only shipments that go directly from supply points to 
demand points. In many situations, shipments are allowed between supply points or 
between demand points. Sometimes there may also be points (called transshipment 
points) through which goods can be transshipped on their journey from a supply point 
to a demand point. The optimal solution to a transshipment problem can be found by 
solving a transportation problem. 

For example, two plants P1 and P2 serve 3 vendors D1, D2 and D3, via two transit 
centers T1 and T2 (see diagram below). 

 
Transformation en problème de transport : 

Define a supply point to be a point that can send goods to another point but cannot 
receive goods from any other point. 

Similarly, a demand point is a point that can receive goods from other points but 
cannot send goods to any other point. 
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A transshipment point is a point that can both receive goods from other points and 
send goods to other points. 

– Transshipment points are both sources and destinations for the transport problem 

– Buffer: quantity needed to transport all the demand through the transshipment 
point. In our example : B = 1000+1200=2200. 

 T1 T2 D1 D2 D3 Supply 

P1 3 4 M M M 1000 

P2 2 5 M M M 1200 

T1 0 7 8 6 M 2200 

T2 M 0 M 4 9 2200 

D1 M M 0 5 M 2200 

D2 M M M 0 3 2200 

Demand 2200 2200 3000 3100 500  

For T1 and T2, the quantity requested is the same since the two transshipment points 
receive the products from the two sources P1 and P2 (the sum of the quantities). 

Customer D1 requests a quantity of 800, although he has the option of delivering the 
product to customer D2, so the buffer must be added, i.e. 800+2200=3000. The 
same applies to customer D2; 900+2200=3100 is the quantity requested. Customers 
D1 and D2 are transshipment points. Customer D3 represents a demand point, i.e. 
the quantity requested is 500. 

The value M represents a very high transport cost, which really means that there is 
no relationship between the source and the destination. Using the methods 
described, we can easily reach the optimal solution. 

Exercise:10.1  

Let the following transshipment problem: 
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10.7 Other uses of the transportation problem 

The transportation model is not limited to the transportation of products between 
geographical sources and destinations. In fact, it can be adapted to other economic 
minimization problems such as financing projects, carrying out projects at minimum 
cost, investment choices, planning purchase or sale operations, supply problems 
and, of course, there are a multitude of cases that can easily be adapted to the 
transport model. By example, here are two cases: 

Example 1 (Production planification) 

A company manufactures rucksacks, for which demand from March to June is 100, 
200, 180 and 300 units respectively. Production for these months is 50, 180, 280 and 
270, respectively. 

Demand can be satisfied: 
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1. by the current month's production ($40 / bag); 

2. by the production of a previous month (+ $0.5 / bag / month for storage); 

3. by the following month's production (+ $2 / bag / month late delivery penalty). 

Correspondence with the transportation model: 

Transport Production – stocks  

Source i 

Destination j 

Supply at the source i 

Demand at the destination j 

Transportation cost from i to 

j 

Production period  i 

Demand period  j 

Production capacity at period i 

Demand for period j 

Unit cost (production + inventory + penalty) 

for production in period i for period j 

March, April, May, June 

March, April, May, June 

50, 180, 280, 270. 

100, 200, 180, 300. 

 

See the following table 

Cost table: 

 March April May June supply 

March 40 42.5 45 47.5 50 

April 42.5 40 42.5 45 180 

May 45 42.5 40 42.5 280 

June 47.5 45 42.5 40 270 

Demand 100 200 180 300  

 

Exercice 10.2 (résolu) : 

The sports activities league of the University of Mascara has organized a football 
competition. Three football pitches were selected (Africa unit stadium, d'El Bordj 
stadium and Tighennif stadium) to program one match per day. The Sociales office of 
the University of Mascara has been commissioned to transport participants and 
spectators from three starting points (the 2000-bed university campus, the Mamounia 
center and the Sid Said center) by mini-bus with a capacity of 30 seats. The following 
table describes the different transport costs.      

 

 

 

 

 

 

- Define a feasible basic solution to the problem. 

- Define the optimal solution and calculate the overall transport cost. 

Assume that the chosen solution involves a single journey (one way or return), and 
that the competition has been programmed over three days: 

- What will the overall cost be? 

- Define the number of buses needed for the transport according to the solution 
obtained. 

 

Solution 10.2 

Students number Stadium  

Tighennif El Bordj Africane  unit  

90 6.5 7.5 5 City of university 

90 6.5 7.5 5 Pole  of Sidi Said 

95 9 8 5.5 Pole  of Mamounia 

 85 70 120  
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Note that the problem is balanced, i.e. the number of students equals the number of 
places available: 90+90+95 = 120+70+85 = 275.  

 

 

- Defining a feasible basic solution: using the Minimum cost method 

 

- We then check the optimality of the solution using the modified distribution method. 

Constructing the closed cycle corresponds to NBV X31 :  

X31 X33 X23 X21 
X31 

    +        -        +          -       
      

60      30                  25     

+25     -25     +25    -25       
    

25                  85       5         
    

 

 

 

 

 

Nb students St. Tighennif St. El Bordj St. Mascara  

From the obtained basic 
solution, we can see that 

the number of VBs is 
equal to (m+n-1), i.e. 5 

basic variables. 

90  0  6.5  7.5  5 
2000 lits 

  90 

90  60  0  6.5  7.5  5 
Sidi Said 

60  30 

95  25  0  9  8  5.5 
Mamounia 

25 70  

         275   

    275 
85  25  0 70  0 120  30  0 

Capacité 

The overall cost is : W= 5*90+5*30+6.5*60+8*70+9*25=1775 um. 

6.5 5.5 5 ui    vj Calculate the values of the dual variables that 

satisfy the relationship: Cij=ui+vj for all the 

base variables. Assuming u1=0, we obtain 

recursively: u2=0, u3=2.5, v1=5, v2=5.5, 

v3=6.5. 

If we now calculate the costs relating to the 

NBV, we can see that there are negative 

values, i.e. the solution is not optimal. 

 6.5  7.5  5 
0 

    90 

 6.5  7.5  5 
0 

60   30 

 9  8  5.5 
2.5 

25 70   

2.5 0 

2.5 

-1.5 
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The table is as follows: 

Remark: 

There are NBV with a zero relative cost, which means that the current solution can be 
changed while keeping the same value of the economic function (1725 um), because 
the relative cost of a NBV represents its influence on the value of the EF if this 
variable is retained as an input variable in the base. 

If we consider that the variable X12 is a EV, the solution will be as follows: 

X11=20, X12=70, X21=5, X23=85, X31=95. Ce qui donne W=1725 um. 

It will be the same case if we choose X13 or X22 as the base input variable. We say 
that there are alternative solutions. 

Supposing that the solution chosen corresponds to a single journey (outward or 
return), this gives six (6) journeys for duration of three days: 

- Overall cost = 1725*6=10350 um 
- The number of buses required for transport according to the solution obtained will 
be: 

1. To transport 90 students from the university campus to the African Unity 
Sports Centre, three (3) buses are needed (90/30=3). 

2. To transport 5 students from the Mamounia pole and 25 students from the 
Sidi Said pole all to the African Unity Omnisports, one (1) bus is required. 

3. To transport 70 students from the pole of Mamounia towards the stadium of 
El Bordj, it requires three (3) buses (70/30=2.33). 

4. To transport 85 students from the Sidi Said pole to the Tighennif stadium, 
three (3) buses are needed (85/30=2.83). 

So ten (10) buses are therefore needed to transport the students over three 
days. 

 

Exercise 10.3: 

A factory of plastic products has three warehouses located in Mascara, Oran and 
Algiers. Following a stock shortage of a type of raw material essential to the 
manufacture of a product which has been in high demand by its four major 
customers, the decision-makers are looking for a better delivery strategy in terms of 
cost and time. Information on supply and demand and the unit cost of transport is 
presented in the table below: 

6.5 7.5 5 ui    vj 

The values of the dual variables that satisfy 

the relationship: Cij=ui+vj for all the base 

variables are calculated again. Assuming 

u1=0, we obtain recursively: u2=0, u3=0.5, 

v1=5, v2=7.5, v3=6.5. 

The costs relating to the NBV are all positive, 

so the solution is optimal. 

 6.5  7.5  5 
0 

    90 

 6.5  7.5  5 
0 

85   5 

 9  8  5.5 
0.5 

  70    25 

The overall cost is : W= 5*90+5*5+6.5*85+5.5*25+8*70=1725 um. 

0 0 

0 

2 
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- Define the optimal transport strategy. 

- How can you justify that this strategy is optimal in terms of time? 

 

 Customer1 Customer 2 Customer 3 Customer 4 supply 

Mascara 2 3 7 11 200 

Oran 5 8 5 12 125 

Algiers 14 13 3 4 75 

Demand 100 20 80 200  
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Chapter 11 

11 Transportation problem – case of maximization- 

11.1 Introduction 

The use of transportation problems is not limited to minimization problems, as they 
can be applied to profit maximization problems, production maximization problems, 
etc. Overall, they are applicable to any maximization problem that can be adapted to 
a structure consistent with transportation models. Unlike the minimization problems, 
the economic function takes the direction of maximization and unit costs are replaced 
by unit profits as appropriate. 

11.2 Mathematical form 

The transportation model is expressed mathematically by the general form : 

    𝑀𝑎𝑥 𝑧 = ∑ ∑ 𝐶𝑖𝑗𝑋𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=1  

     S.C :    

{
 
 

 
 
∑ 𝑋𝑖𝑗
𝑛
𝑗=1 = 𝑆𝑖 ; 𝑝𝑜𝑢𝑟 𝑖 = 1,2, … ,𝑚 

∑ 𝑋𝑖𝑗
𝑚
𝑖=1 = 𝐷𝑗  ; 𝑝𝑜𝑢𝑟 𝑗 = 1,2, … , 𝑛

∑ 𝑆𝑖
𝑚
𝑖=1 = ∑ 𝐷𝑛

𝑗=1 𝑗
 

𝑋𝑖𝑗 ≥ 0, 𝐶𝑖𝑗 ≥ 0

 

With: "m" number of sources, "n" number of destinations, "Dj" quantities requested, 
"Si" supply quantities. 

11.3 Transportation problem resolution  

There is not much difference between solving maximization and minimization 
problems, except for a few adjustments to the methods presented in the previous 
chapter. Firstly, the constraint of equality of supply and demand quantities must 
always be checked. If this is not the case, artificial sources (or destinations) are 
added. 

11.3.1 Searching of initial basic solution 

a- North-West Corner Method: at each stage, choose the variable located at the 
intersection of the first row and the first column of the reduced table. So, starting from 
the top left-hand corner of the table, here are the steps: 

1. allocate as much as possible to the current cell and adjust supply and demand ; 

2. move one cell to the right (zero demand) or the bottom (zero supply); 

3. Repeat until all the supply has been allocated. 

 

b- Maximum profit method: at each stage, choose the variable Cpq corresponding to 

the greatest profit in the reduced table. .  𝐶𝑝𝑞 = max𝑖𝑗(𝐶𝑖𝑗) 

Here are the detailed steps: 

Select the maximum profit cell. 

1. Allocate as much as possible to the current cell and adjust supply and demand; 

2. Select the maximum profit cell with non-zero demand and supply; 
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3. Repeat until all the supply has been allocated. 

c- Vogel's Approximation Method (VAM): it is based on calculating the values 
corresponding to the difference between the two largest successive profits for each 
row (column) with non-zero supply (demand), then selecting the row or column with 
the maximum value and selecting the cell with the maximum profit in the row or 
column; and so on until all the supply is allocated. 

11.3.2 Searching for optimal solution  

The two methods described in the previous chapter are used: 

a- Modified Distribution method (MODI) 

The dual program of a transportation problem is given by: 

𝑀𝑖𝑛:𝑊 =∑𝑎𝑖

𝑚

𝑖=1

𝑢𝑖 +∑𝑏𝑗

𝑛

𝑗=1

𝑣𝑗 

𝑤𝑖𝑡ℎ ∶  𝑢𝑖 + 𝑣𝑗 > 𝐶𝑖𝑗 ; 𝑖 = 1,… ,𝑚, 𝑗 = 1,… , 𝑛 

Once the value of the dual variables has been calculated, it is easy to calculate the 
components value of the relative profit vector for each nonbasic variable: 

Cij − (ui + vj) ≤ 0;  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑁𝐵𝑉. 

Thus, the basic solution considered is optimal if and only if: 

𝐶𝑖𝑗 − (𝑢𝑖 + 𝑣𝑗) ≤ 0;  𝑝𝑜𝑢𝑟 𝑡𝑜𝑢𝑡 𝑋𝑖𝑗 > 0 

If one of these components is negative, then we are not at the optimum and must 
define the leaving and entering variables to preserve eligibility: 

To do this we must: 

 Define the entering variable which is characterized by the largest value of positive 
relative profits. 
 Construct a cycle running through the basic variables, starting from and returning 
to the entering variable; 
 Alternately mark with + and - the variables which make up the selected cycle, 
starting with the entering variable. 
 Move along rows and columns, alternately adding and removing the smallest 
quantity among the quantities preceded by a minus sign (-), which corresponds to 
the leaving variable. 
 Recalculate the new values of the dual variables, then the values of the relative 
profits. If the latter are not positive, then the solution is optimal, otherwise the 
previous steps are repeated until the optimum is reached. 

b- Stepping stone method 

We define the closed cycles for all the nonbasic variables and then calculate the 
relative benefit of each cycle as if we were in the minimization case. 

 The Entering variable corresponds to the cycle with the greatest positive benefit. 
 The rest of the steps are identical to the modified distribution method. 

Exercice résolu : 

A transportation company has received an order from a principal to transport 
potatoes from three ports to three stocks. The company's profit changes according to 
the distance covered. The information on the quantities in tonnes of supply and 
demand and the profit (x1000) in dinars are shown in the following table: 

 Stock 1 Stock 2 Stock 3 supply 
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(tonnes) 

Port 1 9 3 1 200 

Port 2 6 3 0.5 150 

Port 3 4 0.5 8 250 

Demand (tonnes) 280 220 100  

- Define the best transport strategy to ensure maximum profit. 

Solution : 

Note that the sum of the quantities demanded is equal to the sum of the quantities 
offered, so we can define a basic solution that can be achieved using the maximum 
profit method: 

1. The highest profit is entered in cell (1,1), for which 200 T are offered and 280 T are 
requested, so variable X11 receives 200. 
2. The next largest profit is in cell (3,3), so X33 receives 100, so the demand for 
stock 3 is fully met. 
3. At this stage, the largest profit is that of cell (2,1) and since the remaining demand 
from stock 1 is 80, the supply from port 2 is 150, so variable X21 receives 80. 
4. Next, cell (3,1) has the highest profit, but since the quantity requested has been 
completely paid for, we move on to cell (1,2) with a profit of 3,000 dinars, but we 
notice that the supply quantity has been completely consumed. We move on to cell 
(2.1) with a profit of 3,000 dinars, where the offer quantity is 70 and the requested 
quantity is 220. Variable X21 therefore receives 70, i.e. the offer for port 2 is 
consumed. 
5. All that remains is cell (3,2) with available supply and demand quantities. So X32 
receives 150. The basic solution is shown in the following table: 

 

 

 

 

 

 

 

 

The overall 
profit is: Z= 
(9*200+6*80+3*70+0.5*150+8*100)*103 =3365*103  um. 

We examine the optimality of this solution using the stepping stone method. We 
begin by calculating the relative benefits of empty cells (NBV): 

NBV Cycle relative profits 

X12 𝑋12 → 𝑋22 → 𝑋21 → 𝑋11 → 𝑋12  3-3+6-9=-3 

X13 𝑋13 → 𝑋33 → 𝑋32 → 𝑋22 → 𝑋21 → 𝑋11 → 𝑋13  1-8+0.5-3+6-9=-12.5 

X23 𝑋23 → 𝑋33 → 𝑋32 → 𝑋22 → 𝑋23  0.5-8+0.5-3=-10 

X31 𝑋31 → 𝑋21 → 𝑋22 → 𝑋32 → 𝑋31  4-6+3-0.5=0.5 

The solution is not optimal because there are NBV with a positive relative benefit, so 
the EV is X31 : 

supply (tons) Stock 3 Stock 2 Stock 1  

200  0 
 1  3  9 Port 1 

  200 

150  70  0 
 0.5  3  6 Port 2 

 70 80 

250  150  0 
 8  0.5  4 Port 3 

100 150  

            600       

600 100  0 220  150 0 280  80  0 Demand 
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𝑋31 → 𝑋21 → 𝑋22 → 𝑋32 → 𝑋31  

+           -            +           -                               

70        150                                     80 

+80         -80        +80       -80                             

 80                        150       70                             

The solution is as follows: 

 

 

 

Calculating the relative benefits of empty cells (NBV) : 

NBV Cycle relative profits 

X12 𝑋12 → 𝑋32 → 𝑋31 → 𝑋11 → 𝑋12  3-0.5+4-9=-2.5 

X13 𝑋13 → 𝑋33 → 𝑋31 → 𝑋11 → 𝑋13  1-8+4-9=-12 

X21 𝑋21 → 𝑋22 → 𝑋32 → 𝑋31 → 𝑋21  6-3+0.5-4=-0.5 

X23 𝑋23 → 𝑋33 → 𝑋32 → 𝑋22 → 𝑋23  0.5-8+0.5-3=-10 

All relative profits are negative, so there is no nonbasic variable that can increase 
overall profit, so the solution is optimal. 

The overall profit is :Z= (9*200+3*150+4*80+0.5*70+8*100)*103 =3405*103  um. 

This solution is expressed as follows: 

The company has to transport a quantity of 200 tonnes from port1 to stock1, 150 
tonnes from port2 to stock2 and 250 tonnes from port3, distributed among the three 
stocks in quantities of 80, 70 and 100 respectively. 

The company will earn the sum of : 3 405 000 um. 

Exercise: 

A fish delivery company aims to satisfy the needs of its customers in the West while 
respecting the quantity requested and the delivery time. To this end, he has set up 
four depots, well distributed geographically in relation to his customers. He usually 
brings in fish from three fisheries (Oran, Mostaganem and Ain Témouchent). The 
earnings per load of fish as well as the supply quantities and capacities (per unit) of 
the depots are shown in the following table: 

  Dépôt1 Dépôt2 Dépôt3 Dépôt4 Offre 

P
ê

c
h
e

r

ie
s
 

 

Oran 10 30 20 11 200 

Mostaganem 12 7 9 20 350 

Ain Témouchent 30 14 16 18 180 

 Capacité d'accueil 260 300 120 50  

 Using all studied methods, to help this delivery driver in his mission. 

 Supply (tons) Stock 3 Stock 2 Stock 1  

200 
 1  3  9 Port 1 

  200 

150  
 0.5  3  6 Port 2 

 150  

250  
 8  0.5  4 Port 3 

100 70 80 

            600       

600 100   220   280   Demand 
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 Explain the retuned solution. 
 What is the total gain? 
 Comment on the delivery time problem. 
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