الجمهورية الجزائرية الديمقراطية الشعبية

**République Algérienne Démocratique et Populaire** 

و البحث العلمي وزارة التعليم العالى

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

**Université MUSTAPHA Stambouli** 

جامعة مصطفى اسطمبولي معسكر

Faculté des Sciences de la Nature et de la Vie

Département De Biologie

Laboratoire de Bioconversion, de Génie Microbiologique et de Sécurité Sanitaire

# THESE de DOCTORAT

Spécialité : Science de la Vie

# Intitulée

# Analyse et optimisation du traitement de l'azote par les

# boues activées : Cas de la station d'épuration de Saida

#### Présentée par : ZAIRI Souad

Le : 11/12/2024 à la bibliothèque centrale de la faculté

**Devant le jury :** 

| Président     | BENYOUCEF Madani  | Pr  | Université de Mascara |
|---------------|-------------------|-----|-----------------------|
| Examinateur   | KAHLOULA Khaled   | Pr  | Université de Saida   |
| Examinateur   | BOUKHARI Yahia    | MCA | Université de Mascra  |
| Examinateur   | MOSTEFAI Asma     | Pr  | Université de Saida   |
| Encadrant     | MEDDAH Boumediene | Pr  | Université de Mascara |
| Co- Encadrant | SLIMANI Miloud    | Pr  | Université de Saida   |

Année Universitaire : 2024 - 2025

#### Remerciements

Tout d'abord, j'exprime ma sincère gratitude à Allah Azza Wa Djell. Grâce à Sa miséricorde, Sa force et Son soutien, j'ai pu surmonter les défis et poursuivre mon objectif avec détermination et persévérance.

- Je tiens à exprimer mes plus sincères remerciements à Monsieur le Professeur Boumediene MEDDAH de l'Université de Mascara et à Monsieur le Professeur Miloud SLIMANI de l'Université de Saïda pour avoir accepté de m'encadrer et de me guider tout aulong de cette thèse. Leur soutien indéfectible, leurs conseils avisés et leur dévouement ont étéessentiels à la réalisation de ce travail.

- Je tiens également à exprimer ma profonde gratitude à Monsieur Madani BENYOUCEF, Professeur à l'Université de Mascara, pour l'honneur qu'il m'a fait en présidant le jury de ma thèse. Mes remerciements s'adressent également à Khaled KAHLOULA, Professeur à l'Université de Saida, ainsi qu'à Monsieur Yahiya BOUKHARI, Professeur à l'Université de Mascra, et à Madame Asma MOSTFAI, Professeur à l'Université de Saida, pour leur contribution et leur engagement dans ce processus.

- Je souhaite exprimer ma profonde gratitude à Madame VéroniqueDeluchat professeure à l'Université de Limoges. Son enseignement en 2006 a éveillé en moi une passion durable pour le traitement des eaux résiduaires. Toujours disponible pour répondre à mes questions, elle a également facilité mes contacts avec des experts en modélisation. Je remercieégalement Monsieur le Professeur Michel BAUDU pour son accueil chaleureux au laboratoire GRESSE Limoges lors de mon stage, ce qui a grandement enrichi mes connaissances pratiques.

- Je tiens à remercier chaleureusement les ingénieurs de l'ONA pour leur aide précieuse, qui a facilité l'accès à la station d'épuration et permis la collecte des données nécessaires. Leur disponibilité et collaboration ont été essentielles pour observer le fonctionnement des ouvrages et discuter des problèmes rencontrés sur le terrain.

- Je remercie sincèrement les ingénieurs de la DRE, en particulier ceux du service assainissement, et plus particulièrement mes amies Atmani K., Rammas F., et Hmimi, pour leur soutien constant, leur disponibilité et leurs conseils précieux tout au long de ce travail.

- *Je tiens également à exprimer ma gratitude aux enseignants du département Génie Civil et Hydraulique* pour leur encouragement constant, dont l'insistance à persévérer a été une source précieuse de motivation. Un remerciement spécial va à Mademoiselle le Docteur A. Rahmani, dont le soutien indéfectible et les conseils précieux ont été essentiels pour me guider dans le processus de publication et renforcer ma confiance en mes capacités.

« Ce qui est plus triste qu'une œuvre inachevée, c'est une œuvre jamais commencée. » Christinna Rosseti

#### Dédicaces

À mon père, symbole de défi et de patience, dont le soutien indéfectible et la foi en moi ont été une source constante d'inspiration. Depuis le début de cette aventure, il m'a toujours encouragé et assisté, me permettant d'atteindre mes objectifs avec détermination.

À ma mère, symbole de bonté et d'amour inconditionnel, qui m'a toujours poussée à persévérer et ne jamais abandonner, même dans les moments les plus difficiles. Ses encouragements inlassables ont été un pilier fondamental tout au long de ce parcours.

À mes enfants, Wissem, Samah, Abdelkader, et Meriem, qui ont partagé ce rêve avec moi et qui ont été une source constante de motivation et de joie. Leur présence et leur soutien ont illuminé mon chemin tout au long de ce parcours.

À mon mari, dont la confiance inébranlable en moi a constitué un soutien inestimable.

À ma sœur et sa famille, ainsi qu'à mes frères et leurs familles, pour leur amour et leur soutien inconditionnel. Vous avez tous été à mes côtés, me donnant la force de poursuivre mes aspirations.

À toute ma grande famille, mes amies et tous ceux qui m'ont apporté leur affection et leur soutien. Votre présence et vos encouragements ont été essentiels pour mener à bien ce projet.

À tous les étudiants que j'ai eu le plaisir d'enseigner et d'encadrer. Leur enthousiasme et leurs questions stimulantes m'ont constamment poussé à perfectionner mon niveau et à approfondir mes connaissances.

Je vous dédie ce travail avec toute ma gratitude et mon affection.

#### RESUME

#### Résumé

Cette étude vise à démontrer comment la modélisation mathématique peut être utilisée pour optimiser le fonctionnement d'une station d'épuration à boues activées, en particulier en ce qui concerne le traitement de l'azote, la réduction de la consommation énergétique, ainsi que l'amélioration du fonctionnement des clarificateurs. La station d'épuration de Saïda, en Algérie, a été choisie comme étude de cas. Cette analyse vise à illustrer comment des techniques de modélisation avancées peuvent non seulement améliorer l'efficacité du traitement de l'azote, mais également favoriser une gestion énergétique plus économique des installations d'épuration. Pour atteindre cet objectif, le modèle de boues activées ASM2dModTemp, intégré à la plateforme de simulation WEST+2020, a été utilisé. Ce modèle a été calibré et validé à partir de données réelles d'exploitation. La simulation dynamique réalisée à l'aide de ce modèle vise à évaluer l'impact de différents scénarios de contrôle sur la performance du traitement de l'azote ainsi que sur la consommation d'énergie. Une stratégie de contrôle par rétroaction, utilisant un contrôleur On/Off, a été testée pour réguler le fonctionnement du bassin biologique et du clarificateur. Les contrôleurs ont été implémentés sur une ligne tandis que l'autre ligne a servi de référence pour comparaison. Les résultats montrent que l'aération représente 51 % de l'énergie totale requise dans une station d'épuration. L'approche de contrôle utilisée permet de maintenir l'efficacité du traitement tout en produisant une qualité d'effluent excellente. Des réductions significatives ont été obtenues, notamment une baisse de 93 % de la demande en oxygène, 98 % des solides en suspension, 20 % pour le phosphore total, et 98 % des niveaux d'ammonium. Cette approche a permis de réduire la consommation d'énergie de 26 % en un mois d'implémentation sur une seule filière de traitement. En utilisant la station de Saïda comme référence, cette étude illustre le potentiel de la modélisation mathématique pour améliorer à la fois la qualité de l'effluent et l'efficacité énergétique des stations d'épuration.

**Mots-clés :** STEP boues activées ; pollution azotée ; bassin d'aération ; stratégie de contrôle de l'aération ; modèle de boues activées ASM2dModTemp ; optimisation de traitement ; simulations dynamiques ; consommation d'énergie.

# Abstract

This study aims to demonstrate how mathematical modeling can be used to optimize the operation of an activated sludge wastewater treatment plant, particularly regarding nitrogen treatment, energy consumption reduction, and clarifier performance improvement. The Saïda wastewater treatment plant in Algeria was selected as a case study. This analysis aims to illustrate how advanced modeling techniques can not only improve nitrogen treatment efficiency but also promote more economical energy management in treatment facilities. To achieve this objective, the ASM2dModTemp activated sludge model, integrated with the WEST+2020 simulation platform, was used. This model was calibrated and validated using real operational data. The dynamic simulation performed with this model evaluates the impact of different control scenarios on nitrogen treatment performance and energy consumption. A feedback control strategy using an On/Off controller was tested to regulate the operation of the biological tank and the clarifier. The controllers were implemented on one treatment line, while the other line served as a reference for comparison. The results show that aeration accounts for 51% of the total energy required in a wastewater treatment plant. The control approach used maintains treatment efficiency while producing excellent effluent quality. Significant reductions were achieved, including a 93% decrease in oxygen demand, 98% in suspended solids, 20% in total phosphorus, and 98% in ammonium levels. This approach reduced energy consumption by 26% over one month of implementation on a single treatment line. Using the Saïda plant as a reference, this study demonstrates the potential of mathematical modeling to improve both effluent quality and energy efficiency in wastewater treatment plants.

**Keywords**: Activated sludge WWTP; nitrogen pollution; aeration basin; aeration control strategy; ASM2dModTemp activated sludge model; treatment optimization; dynamic simulations; energy consumption.

#### الخلاصة

تهدف هذه الدراسة إلى توضيح كيفية استخدام النمذجة الرياضية لتحسين تشغيل محطة معالجة مياه الصرف الصحي القائمة على الحماة المنشطة، وخاصة فيما يتعلق بمعالجة النيتروجين، وتقليل استهلاك الطاقة، وتحسين أداء المُرَسِبات (المُصنَقيات). تم اختيار محطة معالجة مياه الصرف الصحي في سعيدة بالجزائر كدر اسة حالة. تهدف هذه التحليل إلى الفهار كيف يمكن لتقنيات النمذجة المتقدمة أن تحسن كفاءة معالجة النيتروجين وتشجع على إدارة أكثر اقتصادية للطاقة في الفهار كيف يمكن لتقنيات النمذجة المتقدمة أن تحسن كفاءة معالجة النيتروجين وتشجع على إدارة أكثر اقتصادية للطاقة في المدمج مع منصة المحاكاة والمحقورة معالجة النيتروجين وتشجع على إدارة أكثر اقتصادية للطاقة في معايرة هذا الموذج الماتي النمذجة المنشطة المدمج مع منصة المحاكاة والتحقق من صحته باستخدام بيانات تشغيلية حقيقية. تهدف المحاكاة الديناميكية التي 2000 المنشطة تم معايرة هذا النموذج والتحقق من صحته باستخدام بيانات تشغيلية حقيقية. تهدف المحاكاة الديناميكية التي 2000 الحاقة بم معايرة هذا النموذج والتحقق من صحته باستخدام بيانات تشغيلية حقيقية. تهدف المحاكاة الديناميكية التي 2000 الحافي تم معايرة تم معايرة النياميكية التي 2000 معات معالجة النيتروجين واستهلاك الطاقة. تم معايرة المنوذج إلى تقييم تأثير سيناريوهات التحكم المختلفة على أداء معالجة النيتروجين واستهلاك الطاقة. تم أجريت باستخدام يل الخان المحرفي المحل المنات الديناميكية التي 2000 الحافة. تم أجريت باستخدام هذا النموذج إلى تقييم تأثير سيناريوهات التحكم المختلفة على أداء معالجة النيتروجين واستهلاك الطاقة. تم أجريت باستخدام هذا النموذج إلى تقيم تشغيل الخزان البيولوجي والمرضيسة 2000 (On روليان المروات النبولوجي والمرضيات مياه الحرف الخر كمرجع للمقارنة. أظهرت النتائج أن التهوية تمثل 51% من إجهائي الحل الحرفي المائين المحي ما معالجة مياه العال المون الحمي في في المعان الماقة. تم معايرة المعالجة مع أجهزة الحال إلى التحرم على في إدان النبويوم. هوا الأول الخر كمرجع للمقارنة. أظهرت النتائج أن التهوية تمثل 51% من إحمالي الفوسفور، و100 مل إحمالي الفران النبويوم في طل الأك موليون التحق المائية معام موادة المعالجة معاه مالوبة في إحمالي الفوسفور، و100 مل إحمالي الفوسفور، و100 في نلك انخفاض بنسبة 20% في طل الأكسجين، و 98% في الموا الصل الحاقة، و20% في

#### الكلمات المفتاحية

محطة معالجة مياه الصرف بالحمأة المنشطة؛ تلوث النيتروجين؛ حوض التهوية؛ استر اتيجية التحكم في التهوية؛ نموذج تحسين المعالجة ؛ المحاكاة الديناميكية ؛ استهلاك الطاقةASM2dModTemp الحمأة المنشطة.

# Tables des matières

| RESUME      |                                                                         | i           |
|-------------|-------------------------------------------------------------------------|-------------|
| Abstract    |                                                                         | ii          |
| الخلاصة     |                                                                         | iii         |
| Tables des  | s matières                                                              | iv          |
| Listos dos  | f annua                                                                 |             |
| Listes des  | ngures                                                                  | VIII        |
| Liste des t | ableaux                                                                 | xi          |
| Nomencla    | ture                                                                    | xiii        |
| INTRODU     | UCTION GENERALE                                                         | 1           |
| - (         |                                                                         | 4           |
| • (         | contexte et motivation                                                  | 4           |
| PREMIE      | RE PARTIE SYNTHESE BIBLIOGRAPHIQUE                                      | 9           |
| Chanitra l  | Principos fondamentaur du traitement des eaur résiduaires par hou       | os activáos |
| 10          | . I Tincipes jonuameniaux au traitement des eaux residuares par bouc    | s activees  |
| 10          |                                                                         |             |
| 1.1 (       | Composition et Caractéristiques des Eaux Résiduaires Urbaines           |             |
| 1.1.1       | La classification de la pollution                                       | 11          |
| 1.1.2       | Proprietes chimiques et physiques                                       |             |
| 1.1.3       | Composants organiques                                                   | 14          |
| 1.1.4       | Constituants inorganiques non métalliques                               |             |
| 1.1.5       | Paramètres de Boues                                                     |             |
| 1.1.6       | Micro-organismes                                                        | 17          |
| 1.1.7       | Définitions et Facteurs Influents sur l'Equivalent Habitant (EH)        | 17          |
| 1.1.8       | Ratios                                                                  |             |
| 1.2 7       | Traitement biologique des Eaux Résiduaires                              | 19          |
| 1.2.1       | Les mécanismes de traitement biologique                                 |             |
| 1.2.2       | Le procédé à boues activées                                             |             |
| 1.2         | .2.1 Perspective historique                                             |             |
| 1.2         | .2.2 Les étapes d'épuration dans une station d'épuration à boues activ  | vées 22     |
| 1.2         | 2.3 Paramètres de fonctionnement du Système de Traitement par           |             |
| Bo          | uesActivées                                                             |             |
| 1.2         | 2.4 Évolution des Régimes de Charge de pollution dans les Boues A       | ctivées 31  |
| 1.3 H       | Bases Nutritionnelles et Processus Métaboliques dans les Boues Activées | 3 32        |

| 1.4    | Dis                                                 | position des Bassins en Fonction des Objectifs Épuratoires de la STEP | 33 |
|--------|-----------------------------------------------------|-----------------------------------------------------------------------|----|
| 1.4    | 4.1                                                 | Élimination Biologique de la pollution Carbonée                       | 33 |
| 1.4    | 1.4.2 Élimination Biologique de la pollution azotée |                                                                       |    |
| 1.4    | 4.3                                                 | Élimination Biologique de la pollution phosphorée                     | 36 |
| 1.5    | Co                                                  | nclusion                                                              | 37 |
| Chapit | re II.                                              | Traitement de la pollution azotée en boues activées                   | 38 |
| 2.1    | Les                                                 | rejets d'azote urbain                                                 | 41 |
| 2.2    | Prii                                                | ncipes Théoriques du Traitement de l'Azote dans les Boues Activées    | 43 |
| 2.2    | 2.1                                                 | Nitrification                                                         | 43 |
|        | 2.2.1.                                              | 1 Nitritation                                                         | 44 |
|        | 2.2.1.2                                             | 2 Nitratation                                                         | 45 |
|        | 2.2.1.                                              | 3 Stæchiométrie et rendement de la nitrification                      | 45 |
|        | 2.2.1.4                                             | 4 Cinétique de croissance des espèces nitrifiantes                    | 46 |
| 2.2    | 2.2                                                 | Dénitrification                                                       | 48 |
|        | 2.2.2.                                              | 1 Métabolisme dénitrifiant                                            | 49 |
|        | 2.2.2.2                                             | 2 Biochimie et stœchiométrie de la dénitrification                    | 49 |
| 2.2    | 2.3                                                 | Facteurs du milieu influençant la nitrification/dénitrification       | 51 |
|        | 2.2.3.                                              | <i>l</i> Nitrification                                                | 51 |
|        | 2.2.3.2                                             | 2 Dénitrification                                                     | 52 |
| 2.3    | Pro                                                 | cessus de traitement de l'azote                                       | 53 |
| 2.4    | Co                                                  | nclusion                                                              | 55 |
| Chapit | re III.                                             | Simulation et optimisation des stations d'épuration a boues activées  | 56 |
| 3.1    | L'ir                                                | nportance des Modèles Mathématiques                                   | 60 |
|        | • M                                                 | odélisation des Stations d'Épuration des Eaux Résiduaires             | 61 |
| 3.2    | Des                                                 | scription du modèle de boues activées (ASM2dModTemp)                  | 63 |
| 3.2    | 2.1                                                 | Modèles à l'état stationnaire et modèles de simulation dynamique      | 64 |
| 3.2    | 2.2                                                 | Composants du Modèle                                                  | 64 |
| 3.2    | 2.3                                                 | Les composants biologiques                                            | 65 |
| 3.2    | 2.4                                                 | Les processus modélisés dans ASM2dModTemp                             | 68 |
|        | 3.2.4.                                              | 1 Processus d'hydrolyse                                               | 69 |
|        | 3.2.4.2                                             | 2 Processus d'organismes hétérotrophes                                | 70 |
|        | 3.2.4.                                              | 3 Processus des organismes accumulateurs de phosphate                 | 70 |
|        | 3.2.4.4                                             | 4 Processus d'organismes autotrophes                                  | 72 |
|        | 3.2.4.:                                             | 5 Dépendance de la concentration en oxygène à la température          | 72 |

| 3.3 Co       | ontrôle d'aération et consommation d'énergie                          | 73 |  |
|--------------|-----------------------------------------------------------------------|----|--|
| 3.3.1        | Aération                                                              | 76 |  |
| 3.3.2        | 3.3.2 Aérateurs de surface                                            |    |  |
| 3.3.3        | Optimisation de l'aération                                            | 77 |  |
| 3.3.3        | 3.1 Application du Feedback et des Contrôleurs PI                     | 80 |  |
| 3.3.3        | 3.2 Processus de Feedback dans une Station à Boues Activée            | 80 |  |
| 3.3.3        | 3.3 Stratégies de contrôle de la concentration en oxygène dissous     | 81 |  |
| 3.3.3        | 3.4 Les différentes méthodes de contrôle                              | 82 |  |
| 3.3.3        | 3.5 Méthodes de contrôle conventionnelles                             | 82 |  |
| 3.           | 3.3.5.1 Contrôle classique                                            | 82 |  |
| 3.           | 3.3.5.2 Modèle de contrôle prédictif                                  | 82 |  |
| 3.3.3        | 3.6 Méthodes de contrôle intelligentes                                | 83 |  |
| 3.3.3        | 3.7 Méthodes de contrôle hybrides                                     | 83 |  |
| 3.3.4        | Défis et Méthodologies de Modélisation pour le Contrôle des Processus | 84 |  |
| 3.3.5        | Paramètres du modèle                                                  | 85 |  |
| 3.3.6        | Bilan de matière                                                      | 86 |  |
| 3.3.7        | Processus d'Étalonnage du Modèle ASM2ModTemp                          | 86 |  |
| 3.3.7        | 7.1 Collecte des Données Initiales                                    | 86 |  |
| 3.3.7        | 7.2 Sélection des Paramètres Clés                                     | 86 |  |
| 3.3.7        | 7.3 Ajustement du Modèle dans WEST                                    | 87 |  |
| 3.3.7        | 7.4 Analyse de Sensibilité dans WEST+2020                             | 87 |  |
| 3.3.7        | 7.5 Protocole d'Étalonnage                                            | 87 |  |
| 3.3.7        | 7.6 Processus de Validation du Modèle ASM2ModTemp                     | 87 |  |
| 3.4 C        | onclusion                                                             | 88 |  |
| DEUXIEM      | E PARTIE MATERIELS ET METHODES                                        | 89 |  |
| APPLICAT     | TION DE LA METHODOLOGIE SUR LE CAS DE LA STATION                      |    |  |
| D'EPURAT     | ΓΙΟΝ DE SAIDA                                                         | 90 |  |
| 4.1 In       | troduction                                                            | 90 |  |
| 4.2 Co       | ontexte et Objectifs de l'Optimisation                                | 90 |  |
| 4.3 <b>M</b> | latériels et méthodes                                                 | 91 |  |
| 4.3.1        | 4.3.1 Présentation de la station d'épuration de Saida                 |    |  |
| 4.3.1        | Emplacement et fiche technique de la station d'épuration              | 91 |  |
| 4.3.2        | Protocole expérimental                                                | 92 |  |

| 4.3.     | 4.3.3 Présentation du Processus d'Épuration des Eaux Résiduaires |                                                                                                  |      |  |  |
|----------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------|--|--|
| 4.3.     | .4                                                               | tratégie de Recherche et Modélisation96                                                          |      |  |  |
| 4.3.     | .5                                                               | otimisation du Traitement de l'Azote98                                                           |      |  |  |
| 2        | 4.3.5.                                                           | Méthodologie d'optimisation du traitement de l'azote                                             | . 99 |  |  |
| 2        | 4.3.5.2                                                          | <ul> <li>Adaptation et Calibrage du Modèle ASM2dModTemp à la STEP de Said</li> <li>99</li> </ul> | a    |  |  |
| 2        | 4.3.5.3                                                          | 3 Modèle de Fractionnement                                                                       | 100  |  |  |
| 2        | 4.3.5.4                                                          | Données pour l'Étalonnage et la Validation de WEST <sup>+</sup> 2020                             | 102  |  |  |
| 4.3.     | .6                                                               | Optimisation du fonctionnement de Clarificateur                                                  | 105  |  |  |
| 2        | 4.3.6.                                                           | Méthodologie d'optimisation des clarificateurs                                                   | 105  |  |  |
| 2        | 4.3.6.2                                                          | 2 Présentation du modèle de Takács_SVI pour un décanteur secondaire 1                            | 107  |  |  |
| 2        | 4.3.6.3                                                          | 3 Description du modèle Takács _SVI 1                                                            | 108  |  |  |
| 4        | 4.3.6.4                                                          | Le Calibrage du modèle Takács_SVI                                                                | 112  |  |  |
| 4        | 4.3.6.                                                           | 5 Les variables manipulées pour l'optimisation                                                   | 112  |  |  |
| 2        | 4.3.6.0                                                          | 5 Contrôle de flux de recirculation                                                              | 113  |  |  |
| 4.4      | Rés                                                              | ultats et discussion1                                                                            | 115  |  |  |
| 4.4.     | .1                                                               | Évaluation des performances de traitement1                                                       | 115  |  |  |
| 4.4.     | .2                                                               | Évaluation des Besoins Énergétiques1                                                             | 122  |  |  |
| 4.4.     | .3                                                               | Influence des contrôleurs On/Off sur la consommation d'énergie                                   | 124  |  |  |
| 4.4.     | .4                                                               | Évaluation des performances de clarificateurRecirculation des boues                              | 130  |  |  |
| 2        | 4.4.4.                                                           | L'extraction des boues                                                                           | 134  |  |  |
| 2        | 4.4.4.2                                                          | 2 Indice de volume de boues SVI                                                                  | 137  |  |  |
| 4.5      | Co                                                               | nclusion                                                                                         | 139  |  |  |
| CONCI    | LUSI                                                             | ON GENERALE & PERSPECTIVES1                                                                      | 141  |  |  |
| Concl    | lusion                                                           | générale1                                                                                        | 142  |  |  |
| Limit    | ations                                                           | & perspectives                                                                                   | 142  |  |  |
| Persp    | Perspectives de Recherche Future                                 |                                                                                                  |      |  |  |
| REFER    | RENC                                                             | ES BIBLIOGRAPHIQUES1                                                                             | 150  |  |  |
| A NINE Y | VEC                                                              |                                                                                                  | 172  |  |  |
|          | ZLO.                                                             | 1                                                                                                | 113  |  |  |

# Listes des figures

| FIGURE 1 LE RESULTAT DE L'ANALYSE DE LA DBO EN FOCTION DE TEMPS ET DE LA                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TEMPERATURE                                                                                                                                                           |
| FIGURE 2 ÉTAPES DU PROCESSUS DE DEGRADATION BIOLOGIQUE                                                                                                                |
| FIGURE 3 LE PROCEDE A BOUES ACTIVEES DE BASE                                                                                                                          |
| FIGURE 4 SCHEMA SIMPLIFIE D'UN REACTEUR A BOUES ACTIVEES AVEC RECYCLAGE ET                                                                                            |
| EXTRACTION DES BOUES                                                                                                                                                  |
| Figure 5 Evolution du Rapport F/M dans les boues activees $\dots 27$                                                                                                  |
| FIGURE 6 METABOLISME D'UNE BACTERIE HETEROTROPHE OU AUTOTROPHE                                                                                                        |
| FIGURE 7 SCHEMA D'UNE STEP A BOUES ACTIVEES AVEC UN BASSIN UNIQUE                                                                                                     |
| FIGURE 8 SCHEMA D'UNE STEP A BOUES ACTIVEES AVEC UN BASSIN D'ANOXIE EN TETE                                                                                           |
| FIGURE 9 SCHEMA D'UNE STEP A BOUES ACTIVEES AVEC UN BASSIN D'ANAEROBIE ET UN                                                                                          |
| BASSIN D'ANOXIE                                                                                                                                                       |
| FIGURE 10 CYCLE DE L'AZOTE DANS LES STATIONS A BOUES ACTIVEES                                                                                                         |
| FIGURE 11 FORMALISME DE LA CROISSANCE BACTERIENNE AUTOTROPHE                                                                                                          |
| FIGURE 12 FORMALISME DE LA CROISSANCE BACTERIENNE HETEROTROPHE                                                                                                        |
| $Figure \ 13 \ Schema \ des \ etapes \ du \ processus \ d'elimination \ biologique \ de \ l'azote 54$                                                                 |
| FIGURE 14 LA MODELISATION DES BOUES ACTIVEES DANS LA LITTERATURE                                                                                                      |
| FIGURE 15 ANALYSE DES DOMAINES D'APPLICATION DES MODELES ASM                                                                                                          |
| Figure 16 Connexion entre les observations du monde reel et un modele de station                                                                                      |
| COMPRENANT PLUSIEURS SOUS-MODELES, IMPLEMENTE DANS UN LOGICIEL DE                                                                                                     |
| SIMULATION                                                                                                                                                            |
| FIGURE 17 DESCRIPTION SCHEMATIQUE DE LA CHAINE DE CONTROLE D'UNE STATION                                                                                              |
| D'EPURATION DES EAUX RESIDUAIRES                                                                                                                                      |
| FIGURE 18 SCHEMA DE CONTROLE PAR RETROACTION (FEEDBACK) DANS UN SYSTEME DE                                                                                            |
| TRAITEMENT A BOUES ACTIVEES                                                                                                                                           |
| $Figure \ 19 \ C {\rm Lassification} \ {\rm des} \ {\rm methodes} \ {\rm de} \ {\rm controle} \ {\rm de} \ {\rm la} \ {\rm concentration} \ {\rm en} \ {\rm oxygene}$ |
| DISSOUS (DO) DANS LES STATIONS D'EPURATION DES EAUX RESIDUAIRES                                                                                                       |
| FIGURE 20 ZONE D'ETUDE (STEP DE SAIDA)                                                                                                                                |
| FIGURE 21 SCHEMA GENERAL DE LA STEP DE SAIDA                                                                                                                          |
| FIGURE 22 (A) DISPOSITION DE LA STATION D'EPURATION DES EAUX RESIDUAIRES (STEP) DE                                                                                    |
| SAIDA, INTERFACE WEST, (B) SYSTEME DE CONTROLE ET D'ACOUISITION DE DONNEES 96                                                                                         |

| FIGURE 23 FRACTIONNEMENT DES EAUX RESIDUAIRES ENTRANTES EN COMPOSANTS DE DCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DANS ASM2DMODTEMP, WEST+2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| FIGURE 24 Schema de controle de l'oxygene dissous (DO) et de l'ammonium ( $NH_{4^+}$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| FIGURE 25 DIRECTIONS DES FLUX DANS L'APPROCHE DU MODELE TAKACS_SVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| FIGURE 26 DECOUPAGE EN 10 COUCHES DU DECANTEUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| FIGURE 27 COURBE DE VITESSE DE SEDIMENTATION ET CONCENTRATION SEUIL DES SOLIDES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| EN SUSPENSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| FIGURE 28 L'INTEGRATION DES CONTROLEURS DE RECIRCULATION DES BOUES DANS LA STEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DE SAIDA113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $Figure \ 29 \ Series \ temporelles \ du \ debit \ des \ eaux \ residuaires \ pour \ le \ mois \ d'aout \ \ 115$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $Figure \ 30 \ {\rm Variation} \ {\rm des} \ {\rm concentrations} \ {\rm de} \ {\rm pollution} \ {\rm dans} \ {\rm l'effluent} \ {\rm de} \ {\rm la} \ {\rm STEP} \ {\rm de}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SAIDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| FIGURE 31 RESULTATS DE LA SIMULATION DES PERFORMANCES DE LA STEP DE SAIDA POUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| LES PARAMETRES (A)TN, (B)TP, (C) COD ET (D) MES118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| FIGURE 32 COMPARAISON ENTRE LES MESURES EXPERIMENTALES DE LA DEMANDE CHIMIQUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EN OXYGENE (DCO) ET LES VALEURS OBTENUES DIRECTEMENT A PARTIR DE WEST $+2020$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| FIGURE 33 RESULTATS DE LA SIMULATION DES PERFORMANCES DE LA STEP DE SAIDA POUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 119 FIGURE 33 RESULTATS DE LA SIMULATION DES PERFORMANCES DE LA STEP DE SAIDA POUR LES BACTERIES HETEROTROPHES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>119</li> <li>FIGURE 33 RESULTATS DE LA SIMULATION DES PERFORMANCES DE LA STEP DE SAIDA POUR<br/>LES BACTERIES HETEROTROPHES</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>119</li> <li>FIGURE 33 RESULTATS DE LA SIMULATION DES PERFORMANCES DE LA STEP DE SAIDA POUR<br/>LES BACTERIES HETEROTROPHES</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>119</li> <li>FIGURE 33 RESULTATS DE LA SIMULATION DES PERFORMANCES DE LA STEP DE SAIDA POUR<br/>LES BACTERIES HETEROTROPHES</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>119</li> <li>FIGURE 33 RESULTATS DE LA SIMULATION DES PERFORMANCES DE LA STEP DE SAIDA POUR<br/>LES BACTERIES HETEROTROPHES</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>119</li> <li>FIGURE 33 RESULTATS DE LA SIMULATION DES PERFORMANCES DE LA STEP DE SAIDA POUR<br/>LES BACTERIES HETEROTROPHES</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 119 FIGURE 33 RESULTATS DE LA SIMULATION DES PERFORMANCES DE LA STEP DE SAIDA POUR LES BACTERIES HETEROTROPHES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 119 FIGURE 33 RESULTATS DE LA SIMULATION DES PERFORMANCES DE LA STEP DE SAIDA POUR LES BACTERIES HETEROTROPHES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>119</li> <li>FIGURE 33 RESULTATS DE LA SIMULATION DES PERFORMANCES DE LA STEP DE SAIDA POUR<br/>LES BACTERIES HETEROTROPHES</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>119</li> <li>FIGURE 33 RESULTATS DE LA SIMULATION DES PERFORMANCES DE LA STEP DE SAIDA POUR<br/>LES BACTERIES HETEROTROPHES</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>119</li> <li>FIGURE 33 RESULTATS DE LA SIMULATION DES PERFORMANCES DE LA STEP DE SAIDA POUR<br/>LES BACTERIES HETEROTROPHES</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>119</li> <li>FIGURE 33 RESULTATS DE LA SIMULATION DES PERFORMANCES DE LA STEP DE SAIDA POUR<br/>LES BACTERIES HETEROTROPHES</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 119         FIGURE 33 RESULTATS DE LA SIMULATION DES PERFORMANCES DE LA STEP DE SAIDA POUR         LES BACTERIES HETEROTROPHES       120         FIGURE 34 RESULTATS DE LA SIMULATION DES PERFORMANCES DE LA STEP DE SAIDA POUR         LES BACTERIES AUTOTROPHES       121         FIGURE 35 STATISTIQUES DE FONCTIONNEMENT DE LA STATION D'EPURATION DE SAÏDA       121         FIGURE 36 LA VARIATION DE LA CONCENTRATION EN OXYGENE ET DU COEFFICIENT KLA DANS       124         FIGURE 36 LA VARIATION, (A) AVANT LE CONTROLE ON/OFF (B) APRES LE CONTROLE ON/OFF       126         FIGURE 37 IMPACT DU CONTROLEUR ON/OFF SUR LA CONCENTRATION EN OXYGENE DANS LE       127         FIGURE 38 OPTIMISATION DE LA PUISSANCE D'AERATION DANS LE BASSIN A BOUES ACTIVEES       127         FIGURE 39 COUT DE LA CONSOMMATION D'ENERGIE DANS LE BASSIN D'AERATION DE LA STEP       129 |

| FIGURE 40 Comparaison entre les mesures experimentales des MES et les valeurs    |
|----------------------------------------------------------------------------------|
| MODELISEES PAR WEST+2020                                                         |
| FIGURE 41 VARIATION DE LA CONCENTRATION D'AMMONIUM DANS L'EAU TRAITEE (EFFLUENT) |
| ET DE LA CONCENTRATION D'OXYGENE DANS LA BASSIN BIOLOGIQUE EN FONCTION DU        |
| TEMPS                                                                            |
| FIGURE 42 STRUCTURE DE CONTROLE BASEE SUR ON/OFF DU FLUX WAS                     |
| FIGURE 43 VARIATION DES CONCENTRATIONS EN $MES$ dans le bassin d'aeration en     |
| FONCTION DES DEBITS DE PURGE                                                     |
| FIGURE 44 PROFIL DES BOUES DANS LE CLARIFICATEUR (WEST+2020)137                  |
| FIGURE 45 IMPACT DE LA VARIATION DU SVI SUR LA HAUTEUR DES BOUES DANS LE         |
| CLARIFICATEUR ET LE TEMPS DE SEJOUR                                              |

# Liste des tableaux

| <b>TABLEAU 1</b> CLASSIFICATION DES COMPOSES DE L'EFFLUENT SUIVANT LEUR TAILLE                      |
|-----------------------------------------------------------------------------------------------------|
| <b>TABLEAU 2</b> CLASSIFICATION DES COMPOSES DE L'EFFLUENT SUIVANT LEUR NATURE CHIMIQUE.            |
|                                                                                                     |
| <b>TABLEAU 3</b> CONCENTRATIONS DE MICROORGANISMES DANS LES EAUX RESIDUAIRES (NOMBRE                |
| DE MICROORGANISMES PAR 100 mL)                                                                      |
| <b>TABLEAU 4</b> VARIATIONS DE LA CHARGE PERSONNELLE                                                |
| <b>TABLEAU 5</b> VALEURS DE COMPOSITION DES EAUX RESIDUAIRES BRUTES       18                        |
| <b>TABLEAU 6</b> RATIOS TYPIQUES DANS LES EAUX RESIDUAIRES MUNICIPALES       19         19       19 |
| TABLEAU 7 PARAMETRES OPERATIONNELS DES BOUES ACTIVEES – VALEURS TYPIQUES                            |
| TABLEAU 8 TECHNOLOGIES STANDARDS POUR ELIMINER LE NH3/NH4+ DES EAUX RESIDUAIRES. 41                 |
| TABLEAU 9 VALEURS DES PRINCIPAUX ELEMENTS POLLUANTS D'UNE EAU BRUTE RESIDUAIRE                      |
| URBAINE                                                                                             |
| TABLEAU 10 RENDEMENTS THEORIQUES DE LA REACTION DE NITRIFICATION                                    |
| <b>TABLEAU 11</b> VARIATION DU TAUX DE CROISSANCE MAXIMAL DES ESPECES NITRIFIANTES 48               |
| <b>TABLEAU 12</b> APERÇU DES MODELES DE BOUES ACTIVEES    59                                        |
| TABLEAU 13    Les variables du modele ASM2dModTemp    65                                            |
| TABLEAU 14 LES COMPOSANTS DU MODELE ASM2DMODTEMP EN MATIERE ORGANIQUE                               |
| TABLEAU 15 LES COMPOSANTS DU MODELE ASM2DMODTEMP EN BIOMASSE       67                               |
| <b>TABLEAU 16</b> Les composants du modele en nutriments       68                                   |
| TABLEAU 17 LES PROCESSUS DU MODELE ASM2DMODTEMP                                                     |
| <b>TABLEAU 18</b> FICHE TECHNIQUE DE LA STATION D'EPURATION DE SAIDA       92                       |
| <b>TABLEAU 19</b> PRINCIPES DE MESURE DES DIFFERENTS PARAMETRES ETUDIES)       93                   |
| TABLEAU 20 PARAMETRES DE FRACTIONNEMENT ASM2DMODTEMP, WEST +2020                                    |
| TABLEAU 21 CARACTERISTIQUES DES EAUX RESIDUAIRES INFLUENTES ET PARAMETRES DE                        |
| Fonctionnement de la STEP de Saida103                                                               |
| <b>TABLEAU 22</b> VARIABLES D'INTERFACE DU CONTROLEUR MARCHE/ARRET                                  |
| TABLEAU 23 RELATION ENTRE LA CHARGE MASSIQUE ET L'AGE DES BOUES (AGUILAR-LOPEZ.,                    |
| 2013)                                                                                               |
| TABLEAU 24 EFFICACITE DE L'ELIMINATION ET CONCENTRATIONS INFLUENT-EFFLUENT                          |
| (VALEURS MOYENNES MENSUELLES D'AOUT 2020)                                                           |

| TABLEAU 25 STATISTIQUES DE FONCTIONNEMENT DE LA STATION D'EPURATION DE SAÏDA     |
|----------------------------------------------------------------------------------|
| DURANT LA PERIODE D'ETUDE(ONA, 2020)                                             |
| TABLEAU 26 CONSOMMATION D'ENERGIE DU BASSIN D'AERATION DANS UN SECTEUR DE LA     |
| STATION D'EPURATION DE SAIDA, AOUT (SIMULATION WEST+ 2020)125                    |
| TABLEAU 27 RESULTATS DE LA SIMULATION APRES LE CONTROLE DE LA RECIRCULATION DES  |
| BOUES (WEST+2020)                                                                |
| <b>TABLEAU 28</b> Les connexions appropriées du controleur On/Off (WEST+2020)135 |
| TABLEAU 29 RESULTATS DE LA SIMULATION DES EFFETS DU SVI SUR LA SEDIMENTATION     |
| (WEST+2020)                                                                      |

## Nomenclature

#### Concentrations

MLSS Concentration de la biomasse dans le réacteur (mg/l) Se Concentration en Pollution Soluble de l'Effluent  $(mg.l^{-1})$ S<sub>ND</sub> concentration en azote organique biodégradable soluble (mgN.l<sup>-1</sup>)  $S_{NH}$  concentration en azote ammoniacal (mgN.1<sup>-1</sup>)  $S_{NO}$  concentration en nitrates-nitrites (mgN.l<sup>-1</sup>)  $S_0$  concentration en oxygène dissous (mgO<sub>2</sub>.1<sup>-1</sup>) So\* concentration en oxygène dissous à saturation  $(mgO_2.l^{-1})$ S<sub>s</sub> concentration en substrat rapidement biodégradable (mgO<sub>2</sub>. $l^{-1}$ ) X est la concentration en biomasse dans le réacteur  $(kg/m^3)$ Xe Concentration en Matières en Suspension (mg.1-<sup>1</sup>)  $X_B$  concentration en biomasse (gO<sub>2</sub>.m<sup>-3</sup>) X<sub>BA</sub> concentration en biomasse autotrophe (mgO<sub>2</sub>. l<sup>-</sup> <sup>1</sup>) X<sub>BH</sub> concentration en biomasse hétérotrophe  $(mgO_2.l^{-1})$ X<sub>I</sub> concentration en composés organiques inertes particulaires (mgO<sub>2</sub>. l<sup>-1</sup>) X<sub>ND</sub> concentration en azote organique biodégradable particulaire (mgN. 1<sup>-1</sup>) X<sub>P</sub> concentration en particule de biomasse morte  $(mgO2. 1^{-1})$ X<sub>S</sub> concentration en substrat lentement biodégradable (mgO2.L-1)  $X_{SS}$  concentration en substrat (mgO<sub>2</sub>. l<sup>-1</sup>) Xw Concentration en Biomasse du Décanteur (mg.l-<sup>1</sup>) **Paramètres** b coefficient de mortalité de la biomasse  $(j^{-1})$ b<sub>H</sub> coefficient de mortalité de la biomasse hétérotrophe (j<sup>-1</sup>) b<sub>A</sub> coefficient de mortalité de la biomasse autotrophe  $(j^{-1})$ f<sub>P</sub> fraction de DCO inerte générée par la biomasse morte (-) ixB fraction d'azote dans la biomasse hétérotrophe (gN .gO2-1) ID\_Saturation : Régulateur proportionnel-intégraldérivé avec saturation Kxs coefficient de demi-saturation en substrat biodégradable (gO<sub>2</sub>.l<sup>-1</sup>) K<sub>inhib</sub> constante d'inhibition (g.l<sup>-1</sup>) kla coefficient de transfert de l'oxygène  $(j^{-1})$ 

#### Mesures

DBO<sub>5</sub> Demande Biochimique en Oxygène à 5 jours (mgO<sub>2</sub>. $l^{-1}$ ) DBO<sub>21</sub> Demande Biochimique en Oxygène à 21 jours (mgO<sub>2</sub>,  $1^{-1}$ ) DCO Demande Chimique en Oxygène (mgO<sub>2</sub>, 1<sup>-1</sup>) DCO<sub>S</sub> Demande Chimique soluble en Oxygène (mgO<sub>2</sub>,  $l^{-1}$ ) DCO<sub>P</sub> Demande Chimique particulaire en Oxygène (mgO<sub>2</sub>.  $l^{-1}$ ) DO : Oxygène dissous DCOT Demande Chimique totale en Oxygène  $(mgO_2, 1^{-1})$ IM indice de Molhman (ml.g<sup>-1</sup>) MES Matières En Suspension (mg.l<sup>-1</sup>) MVS Matières Volatiles Sèches (mg.l<sup>-1</sup>) NH4+ : Ammonium TKN : Azote Kjeldahl total (AKT) TN : Azote total TP : Phosphore total TSS: Matières en suspension totales (MES) Débits, surfaces et volumes Q débit en sortie de réacteur biologique  $(m^3.j^{-1})$ Q<sub>0</sub> débit d'entrée de l'effluent dans le réacteur biologique (m<sup>3</sup>.j<sup>-1</sup>)  $Q_A$  débit de recirculation interne (m<sup>3</sup>.j<sup>-1</sup>)  $Q_e$  débit de sortie de l'eau épurée (m<sup>3</sup>.j<sup>-1</sup>)  $Q_R$  débit de recyclage des boues (m<sup>3</sup>.j<sup>-1</sup>)  $Q_w$  débit d'extraction des boues (m<sup>3</sup>.j<sup>-1</sup>) S surface  $(m^2)$ V volume du réacteur biologique (m<sup>3</sup>)

#### Caractéristiques de fonctionnement d'une station

STEP Stations d'épuration des eaux résiduaires  $C_m$  charge massique (kg DBO<sub>5</sub> /j/kg MVS)  $C_V$  Charge volumique (kgDBO<sub>5</sub> /j/m<sup>3</sup>) F/M rapport alimentation/biomasse R le taux de recyclage des boues (%)  $M_x$  est la masse totale de biomasse dans le réacteur (kg)  $\tau$  temps de séjour hydraulique (h) SRT l'age des boues (j) IR (Internal Recycle) Recirculation Interne (RI) RAS (Return Activated Sludge) Retour des Boues Activées WAS (Waste Activated Sludge) Extraction des Boues Activées Logiciel  $K_N$  coefficient de demi-saturation en azote (gN.l<sup>-1</sup>)  $K_{NH}$  coefficient de demi-saturation en azote

ammoniacal  $(gNH_3-N.1^{-1})$ K<sub>NO</sub> coefficient de demi-saturation en nitrates-

nitrites (gNO<sub>3</sub>-N.l<sup>-1</sup>)

 $K_{OA}$  constante de demi-saturation en oxygène dissous pour la biomasse autotrophe (gO<sub>2</sub>.l<sup>-1</sup>)  $K_{OH}$  coefficient de demi-saturation en oxygène dissous pour la biomasse hétérotrophe (gO<sub>2</sub>.l<sup>-1</sup>)

K\_P : Facteur de proportionnalité

 $K_S$  coefficient de demi-saturation en substrat rapidement biodégradable (gO<sub>2</sub>.l<sup>-1</sup>)

PI\_Saturation : Régulateur proportionnel-intégral avec saturation

T\_I : Temps intégral

T\_D : Temps dérivé

Y taux de conversion du substrat en biomasse (gDCO formée . gDCO oxydée<sup>-1</sup>)

 $Y_A$  taux de conversion du substrat en biomasse associé aux bactéries autotrophes (gO2 formée . gN oxydé<sup>-1</sup>)

 $Y_H$  taux de conversion du substrat en biomasse des bactéries hétérotrophes (gO2 formée . gO2 oxydée<sup>-1</sup>)

 $y_S$  : Valeur de consigne pour la variable contrôlée  $y_S$  : Valeur de consigne pour la variable contrôlée

 $\mu$  taux spécifique de croissance (j-1)  $\mu^{A}$  taux de croissance maximal de la

biomasse autotrophe (j-1)

 $\mu$ <sup>^</sup>H taux de croissance maximal de la

biomasse hétérotrophe (j-1)

 $\mu_{max}$  taux maximal de croissance (j-1)

ASM1 Activated Sludge Model N°1

ASM3 Activated Sludge Model N°3

ASM2dModTemp Activated Sludge Model version

2d du modèle Model Temperature

WEST Wastewater Treatment Plant Engine for

Simulation and Training

W : Wastewater (eaux résiduaires)

E : Engine (moteur)

S : Simulation (simulation)

T : Training (formation)

# **INTRODUCTION GENERALE**

# Introduction générale

Le monde s'efforce actuellement d'atteindre les objectifs du développement durable. L'exploration du rôle de la technologie pour atteindre ces objectifs est cruciale pour les décideurs, car elle leur permettra de surmonter les compromis potentiels et de trouver des solutions efficaces (Khaled et al., 2022).

Les eaux résiduaires ont longtemps été perçues comme une menace potentielle pour la santé publique, notamment dans les zones urbaines, en raison des risques qu'elles représentent pour la propagation des maladies et la pollution des ressources en eau. Leur rejet non traité dans l'environnement pouvant entraîner des contaminations bactériologiques et chimiques, mettant en danger la qualité de l'eau potable et des écosystèmes aquatiques (Wu et al., 2016 ; Aghalari et al., 2020). Cette perception négative a conduit à des politiques de gestion centrées principalement sur leurs éliminations rapides. Cependant, avec les avancées technologiques et la prise de conscience croissante des enjeux liés à la durabilité, les eaux résiduaires sont de plus en plus considérées comme une ressource précieuse pouvant être récupérée et réutilisée, notamment à des fins agricoles ou industrielles. Cette évolution a profondément modifié la perception des eaux usées, les faisant passer d'un déchet problématique à une ressource précieuse au sein d'une économie circulaire, où elles peuvent être récupérées, traitées et réutilisées de manière durable.

Dans ce contexte, les stations d'épuration des eaux résiduaires (STEP) émergent comme des infrastructures urbaines essentielles, jouant un rôle fondamental dans le traitement des eaux usées municipales et industrielles. Elles garantissent ainsi un environnement aquatique sain tout en protégeant la santé publique. Pour remplir ces fonctions essentielles, il est impératif que les STEP atteignent les normes de qualité d'effluent établies, tout en garantissant une rentabilité opérationnelle. Cette dualité d'exigences souligne l'importance d'optimiser les processus de traitement afin de conjuguer performance environnementale et viabilité économique (Laëtitia FRAT., 2020).

Le procédé de boues activées (BA) est reconnu comme le procédé le plus utilisé pour le traitement des eaux résiduaires. Il est un domaine dynamique et complexe qui nécessite une compréhension approfondie des interactions microbiennes et une adaptation constante aux nouvelles découvertes et technologies pour maintenir et améliorer son efficacité.

2

Plusieurs groupes différents d'hétérotrophes et d'autotrophes peuvent désormais être maintenus ensemble pour effectuer différentes fonctions, telles que l'élimination du carbone organique, la nitrification et la dénitrification, l'élimination biologique du phosphore, etc. Aujourd'hui, leurs activités métaboliques peuvent être prédites par modélisation et contrôlées individuellement par une manipulation élaborée des paramètres du système, afin de garantir une performance optimale du procédé (Barker, P.S. and Dold, P.L., 1997 ; Choubert J.M et al., 2005 ; Brdjanovic, D., 2015 ; Dai H., 2021).

Face à l'urbanisation rapide et à l'industrialisation croissante, l'amélioration de l'efficacité des processus de traitement des eaux usées devient impérative pour répondre aux normes environnementales et de santé publique. Cette thèse se concentre spécifiquement sur l'optimisation du traitement de l'azote dans une station d'épuration des eaux usées à boues activées, en intégrant des techniques de modélisation avancées. Cette recherche vise à accroître l'efficacité globale de l'élimination de l'azote et à réduire la consommation d'énergie.

À travers des simulations théoriques validées par des applications réelles, cette recherche vise à proposer des solutions pratiques adaptées aux exigences croissantes liées à la croissance démographique, aux activités industrielles et à la durabilité environnementale. Cette optimisation implique plusieurs défis interconnectés, nécessitant des solutions ciblées pour améliorer l'efficacité des processus de traitement (Angelakis et Snyder, 2015 ; Longo et al., 2016).

Pour relever les défis liés à l'optimisation des stations d'épuration des eaux résiduaires (STEP), il est essentiel d'adopter une approche globale qui tient compte à la fois des aspects techniques et économiques. L'un des principaux obstacles réside dans la présence de capteurs fiables pour évaluer les variables essentielles du processus. Grâce aux progrès de l'instrumentation, il a été possible de concevoir des solutions à la fois économiques et précises pour mesurer les principaux polluants (Åmand, L et al., 2013). Le défi suivant, plus difficile, consiste à améliorer les conditions de fonctionnement d'une STEP. Cette optimisation vise à minimiser les coûts d'exploitation tout en respectant les limites de rejet des effluents. Les principales variables à optimiser incluent le temps de rétention des solides (SRT), le taux d'aération et le débit de recyclage interne (De Ketele et al., 2018 ; Kim et al., 2015 ; Newhart et al., 2019 ; Qiao et Zhang, 2018). La quantification de la performance environnementale et économique est cruciale dans le développement de stratégies de contrôle pour ces processus (Benedetti et al., 2010 ; Flores-Alsina et al., 2014). L'optimisation efficace des STEP repose sur des méthodes de modélisation mathématique (Hreiz et al., 2015), permettant non seulement la conception et le contrôle des processus mais aussi l'évaluation des émissions de gaz à effet de serre (Baalbaki et al., 2017). Toutefois, la mise en œuvre de ces méthodes est compliquée par le coût élevé des tests, la durée nécessaire pour évaluer les lois de contrôle en conditions réelles, et les variations des charges d'entrée dues aux changements saisonniers et aux évolutions démographiques et industrielles. Les contraintes légales limitent également les possibilités de tester de nouveaux paramètres en pratique. Ainsi, bien que des solutions théoriques et des modèles mathématiques avancés existent, leur application efficace nécessite une validation rigoureuse sur le terrain. Pour surmonter ces défis, l'optimisation du fonctionnement d'une STEP doit principalement s'appuyer sur des études théoriques réalisées par le biais de simulations avant toute validation sur le terrain. Cette approche est facilitée par les nombreuses techniques d'optimisation disponibles et par l'amélioration continue des modèles de processus des STEP, qui ont gagné en fiabilité depuis leur introduction dans les années 1980. En outre, la modélisation et la simulation sont essentielles pour élaborer des scénarios d'exploitation améliorés, explorer des alternatives de conception, et développer des stratégies de contrôle efficaces.

La gestion durable des installations de stations d'épuration des eaux résiduaires (STEP) est essentielle pour équilibrer les exigences de développement économique avec les impératifs environnementaux. Cela nécessite une surveillance rigoureuse des sources de pollution et de la qualité de l'eau, ainsi qu'une analyse approfondie des données d'observation par le biais de méthodes mathématiques et statistiques (Burgan et al., 2012). Bien que des solutions théoriques aient été développées dans la littérature scientifique, ce travail représente une contribution à ce domaine en visant à offrir des solutions pratiques pour relever les défis contemporains associés au traitement des eaux résiduaires.

## • Contexte et motivation

La problématique de l'eau en Algérie est marquée par un stress hydrique croissant, aggravé par des sécheresses fréquentes, l'envasement des barrages et une gestion insuffisante des ressources hydriques. Le déficit pluviométrique accentue l'inefficacité des barrages, dont 80 % sont envasés, compromettant ainsi leur rôle dans l'approvisionnement en eau. Selon un rapport publié en août 2019 par le World Resources Institute (WRI), l'Algérie se classe parmi les trente pays les plus touchés par le stress hydrique au niveau mondial. Face à ces défis, les décideurs insistent sur l'urgence d'adopter des solutions économiquement viables, comme le traitement des eaux résiduaires, afin de réduire la pression sur les ressources en eau potable en favorisant leur réutilisation dans l'industrie et l'agriculture, deux secteurs à forte consommation d'eau.

Cette approche vise à limiter la demande sur les ressources conventionnelles tout en offrant une alternative durable aux besoins en eau, qui ne cessent d'augmenter. Dans ce contexte, un traitement efficace des eaux résiduaires est indispensable, tout en optimisant les coûts d'exploitation. Le contrôle de la qualité des eaux traitées est ainsi devenu un objectif central de cette étude, afin d'assurer un équilibre entre performance du traitement et viabilité économique.

Le procédé des boues activées, utilisé dans plus de 70 % des unités de dépollution en Algérie, selon l'Office National d'Assainissement (ONA, 2020), reste la méthode la plus répandue pour le traitement des eaux résiduaires. Actuellement, l'Algérie compte 200 stations d'épuration (STEP) avec une capacité de production de 500 millions de m<sup>3</sup>/an, chiffre qui devrait atteindre 1 milliard de m<sup>3</sup>/an d'ici 2032, en forte hausse par rapport à la capacité des 10 stations existantes en 2000. Néanmoins, seulement 50 % de ces eaux sont effectivement traitées, avec une réutilisation marginale pour l'irrigation agricole et le secteur industriel. La plupart des stations d'épuration rencontrent des difficultés significatives pour éliminer les nutriments, ce qui les empêche de respecter les normes de rejet d'azote et de phosphore (ONA, 2020). La qualité des effluents rejetés constitue un problème environnemental grave, avec des normes de plus en plus strictes imposées par la législation. Le respect de ces normes requiert des stratégies de contrôle sophistiquées capables de gérer des systèmes non linéaires et multivariables avec des dynamiques complexes (Zuluaga-Bedoya et al., 2018). En outre, les stations de traitement d'eau résiduaires sont de grands consommateurs d'énergie (Stathatoua et al., 2019 ; Jiang et al., 2020). Face à ces défis, la gestion durable des ressources en eau nécessite une amélioration significative des performances des stations d'épuration, particulièrement en ce qui concerne le traitement de l'azote. L'accumulation de nitrates et de nitrites, due à un traitement insuffisant de l'azote, entraîne des phénomènes d'eutrophisation qui dégradent la qualité de l'eau. De plus, de nombreuses stations utilisant des procédés classiques ne disposent pas de systèmes de dénitrification efficaces pour transformer les nitrates en azote gazeux, ce qui est essentiel pour réduire leur impact environnemental. Malgré une introduction partielle de l'automatisation au début des années 2010, les installations sont encore souvent équipées de dispositifs de contrôle basiques, insuffisants pour répondre aux variations de charge et aux besoins de performance en temps réel. Ce manque de flexibilité, associé à une formation souvent insuffisante des opérateurs, à une communication déficiente entre les parties prenantes et à une instrumentation technologiquement dépassée, aggravent les problèmes opérationnels.

Dans ce contexte, la motivation centrale de cette thèse est de développer des solutions innovantes pour optimiser le traitement de l'azote dans les stations d'épuration algériennes. En utilisant le modèle ASM2dModTemp, capable de modéliser les organismes accumulant le phosphore (PAOs) et d'intégrer les processus de nitrification, l'objectif est de réduire l'empreinte environnementale des rejets d'eaux résiduaires, en minimisant notamment la contribution à l'eutrophisation des milieux aquatiques. L'optimisation de la gestion de l'aération, en utilisant des contrôleurs sophistiqués, est une voie prometteuse pour améliorer la conformité des stations aux normes d'effluents. L'adoption de systèmes de contrôle avancés pourrait non seulement réduire les coûts d'exploitation, mais aussi servir de base pour la conception future des stations d'épuration, garantissant ainsi une gestion plus efficace et durable des ressources en eau.

Pour atteindre l'objectif de cette recherche, une approche de contrôle de l'aération et de la clarification a été testée sur un modèle, en utilisant des données réelles de la STEP de Saida en Algérie. La simulation dynamique a été réalisée par WEST+2020 (World Engine for Simulation, Training, and Automation) en utilisant le modèle ASM2dModTemp. Les méthodes de contrôle par rétroaction ont été mises en place pour le contrôle de l'ammonium dans l'effluent, ainsi que l'extraction des boues dans le clarificateur. Cette approche permet d'ajuster la puissance des aérateurs en temps réel, en fonction de l'évolution des paramètres mesurés, garantissant ainsi une optimisation de l'aération en fonction des besoins biologiques du système. Par ailleurs, la régulation basée sur le débit de recirculation des boues et le taux d'extraction de la biomasse a permis d'ajuster finement ces paramètres, garantissant un équilibre optimal entre la séparation des boues et la qualité de l'effluent clarifié. La méthodologie proposée vise à optimiser l'efficacité des STEP et la consommation d'énergie grâce à une gestion robuste du processus d'aération.

Notre travail de recherche est structuré en deux parties. Il débute par une introduction générale au contexte de recherche permettant d'exposer les défis majeurs identifiés dans l'optimisation des stations d'épuration des eaux résiduaires (STEP). Elle présente en outre, les motivations à cette recherche, particulièrement en matière de réduction de la consommation énergétique et d'amélioration de l'efficacité du traitement de l'azote. La première partie, composée de trois chapitres, développe les bases théoriques et conceptuelles : Le chapitre I se concentre sur les principes fondamentaux du traitement des eaux résiduaires par boues activées. Il débute par une description approfondie des eaux résiduaires, suivie de la présentation des principales lois de fonctionnement des procédés de boues activées et les différents types de processus disponibles.

Les objectifs clés à prendre en compte pour évaluer les performances d'une station d'épuration sont ensuite décrites. La théorie du traitement de la pollution azotée dans les systèmes de boues activées est abordée dans le deuxième chapitre. Il offre une explication approfondie des paramètres azotés, en examinant leurs principales caractéristiques, leurs modifications au sein du système de traitement, ainsi que les éléments qui influencent ces processus. Dans ce chapitre, les fondements sont posés pour étudier les techniques d'optimisation et d'amélioration des performances de traitement de l'azote.

Le chapitre III expose ensuite l'importance des modèles mathématiques dans la simulation des stations d'épuration à boues activées. Cette thèse se focalise sur le modèle « ASM2dModTemp », en détaillant ses composants et les processus qu'il modélise. Une stratégie pour la construction de modèles est présentée, accompagnée d'une discussion approfondie sur la validation des modèles. Les méthodes d'évaluation de la structure des modèles, d'identifiabilité des modèles, d'estimation des états et des paramètres, etc., sont passées en revue. Le chapitre explore comment ce modèle est utilisé pour optimiser les stratégies de contrôle des STEP.

La deuxième partie est consacrée aux matériels et méthodes utilisés, ainsi qu'à la présentation des résultats obtenus, suivie d'une discussion approfondie de ceux-ci. Cette section applique la méthodologie d'optimisation au cas concret de la station d'épuration de Saida, démontrant ainsi la mise en œuvre pratique du modèle étudié. Elle débute par une description détaillée de la zone d'étude, offrant un aperçu complet des caractéristiques spécifiques de la station de Saida. Par la suite, une analyse des méthodes employées pour évaluer les paramètres physico-chimiques des eaux usées est présentée, soulignant leur importance pour une meilleure compréhension du processus de traitement. Le processus d'épuration est ensuite examiné en détail, avec une description des différentes étapes et technologies mises en œuvre au sein de la station. La stratégie de recherche et de modélisation est ensuite développée, mettant en évidence les approches méthodologiques adoptées pour adapter et optimiser le traitement dans le contexte spécifique de cette station. Une attention particulière est portée à l'optimisation du traitement de l'azote, qui constitue un des enjeux majeurs de l'étude. Cette partie se termine par une analyse approfondie des résultats obtenus et une discussion sur leur signification et leurs implications.

Enfin, le manuscrit se conclut par une présentation des conclusions générales et une discussion des limites de l'étude, ainsi que des perspectives pour de futures recherches. Une synthèse des travaux de recherche à venir est également fournie, mettant en lumière les directions potentielles pour approfondir les investigations et améliorer les méthodologies appliquées.

# PREMIERE PARTIE SYNTHESE BIBLIOGRAPHIQUE

# Chapitre I. Principes fondamentaux du traitement des eaux résiduaires par boues activées

Le traitement des eaux résiduaires est un processus complexe qui utilise une combinaison de procédés mécaniques, physiques, chimiques et biologiques pour éliminer les contaminants et atteindre une qualité suffisante avant de rejeter les eaux traitées dans l'environnement récepteur. La dégradation biologique de la matière organique est un processus essentiel dans plusieurs domaines, notamment dans le traitement des eaux résiduaires, la gestion des déchets solides, l'agriculture et la restauration des sols contaminés. Ces applications permettent de résoudre des problèmes environnementaux et économiques tout en contribuant à la durabilité des ressources naturelles. Les équations de bilan jouent un rôle fondamental dans la modélisation et l'analyse des processus biologiques et chimiques au sein du réacteur biologique. Ces équations permettent de suivre l'évolution de différentes variables, telles que les concentrations en biomasse, substrat, oxygène, azote, etc., dans le système. Dans ce chapitre, nous abordons en détail le mécanisme du procédé des boues activées, en retraçant son évolution progressive au fil du temps. Nous examinons également les paramètres clés qui influencent l'efficacité du processus, les divers systèmes d'aération utilisés, ainsi que les différentes configurations d'usines conçues autour de ce procédé.

#### • Etat de l'art

Il est agréable de pouvoir constater que l'art de l'élimination des eaux résiduaires est en état de progression active. De nombreux travaux dans ce domaine introduisent des changements et des améliorations, certains dans des détails ou des conceptions, d'autres dans les principes fondamentaux de fonctionnement. Le système de boues activées pour le traitement biologique des eaux résiduaires consiste essentiellement en un réacteur à boues activées et un bassin de décantation. Les rapports sur l'analyse des performances des stations de boues activées basés sur l'interaction réacteur-décanteur sont plutôt rares. Sherrard et Kincannon (1974) ont proposé une corrélation entre le temps moyen de rétention des solides, le ratio de recirculation des boues et le facteur de concentration des boues dans le bassin de décantation afin de choisir le débit admissible d'une station de boues activées. Sheintuch (1987) a introduit le concept de réponse du système pour analyser les interactions des fonctions du réacteur et du bassin de décantation.

Mais c'est Cho et al. (1996) qui ont décrit de manière très complète l'interaction réacteur-bassin de décantation. Ils ont utilisé le ratio de recirculation des boues et le ratio de boues résiduelles comme paramètres de fonctionnement et ont obtenu les réponses des variables de sortie telles que la concentration en biomasse dans l'aérateur, les polluants dissous et la concentration en solides dans l'effluent. Diehl et Jeppsson (1998) ont présenté un modèle de simulation dynamique d'une station de boues activées. Pour décrire la sédimentation continue dans le clarificateur secondaire, un modèle unidimensionnel basé sur une équation différentielle partielle non linéaire a été proposé. L'analyse du processus de décantation reposait sur un traitement mathématique rigoureux de l'équation. Cependant, le modèle Diehl-Jeppsson ne corrèle pas de manière exhaustive la dynamique du réacteur avec celle du bassin de décantation.

# 1.1 Composition et Caractéristiques des Eaux Résiduaires Urbaines

Les caractéristiques des eaux résiduaires entrant dans les stations d'épuration (STEP) varient en fonction de plusieurs facteurs, tels que mentionné par (Almeida.M.C., 2000) :

**Caractéristiques des eaux résiduaires entrant dans le système d'égouts** : Elles peuvent inclure les eaux de ruissellement, les effluents domestiques, les eaux résiduaires commerciales ou industrielles, l'infiltration, ainsi que les caractéristiques sociales de la population raccordée.

**Type et caractéristiques du système de drainage** : Cela comprend la séparation ou la combinaison des systèmes, l'extension, la pente, etc.

**Processus physiques, chimiques et biochimiques se produisant au sein du réseau d'égouts:** Ces processus dépendent de la température, du temps de transport, de l'apport en oxygène, entre autres.

Fluctuations de débit en période sèche/humide : Celles-ci varient selon l'heure de la journée, le jour de la semaine et le mois.

## 1.1.1 La classification de la pollution

# • Classification en fonction de la taille

La plupart des effluents pollués sont des mélanges très complexes dont la composition varie suivant leur provenance industrielle, agricole ou urbaine. L'évaluation de la pollution est donc basée sur des classifications selon les propriétés globales de l'effluent. La classification la plus immédiate de ces composés est de les répertorier en fonction de leur taille (Tableau 1).

| Classification   | Diamètres<br>des particules<br>(µm) | Caractéristique                                        | Exemple de composé                                                        |
|------------------|-------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------|
| Soluble          | <0.08                               |                                                        | Carbohydrates simples, acides aminés, acides                              |
|                  |                                     |                                                        | gras volatils, protéines,<br>polysacharides (amidon,<br>cellulose).       |
| Colloïdale       | 0.08 - 1                            | Limite entre phase solide et soluble                   | Graisses, bactéries libres, débris cellulaires,                           |
| Supra-colloidale | 1 - 100                             | Matières fines en suspension,<br>visibles à l'œil nu ; | Fibres cellulosiques,<br>agrégats lipidiques, flocs<br>bactériens, macro- |
|                  |                                     | Contribue à la turbidité de l'eau                      | protéines                                                                 |
| Particulaire     | > 100                               | Composés grossiers                                     |                                                                           |

**Tableau 1** Classification des composés de l'effluent suivant leur taille (Sperandio., 1998 ; Cindy BASSOMPIERRE., 2007).

#### Classification des polluants selon leur dégradabilité

Les polluants sont distingués en matières organiques et inorganiques selon leur structure chimique (Tableau 2). Ils sont également classés en deux catégories principales selon leur capacité à être dégradés (OIE., 2008) :

#### 1. Matières biodégradables

Rapidement biodégradables : Substances solubles directement assimilées par les bactéries.

Lentement biodégradables : Substrats particulaires nécessitant des processus intermédiaires avant leur assimilation.

#### 2. **Matières non biodégradables**

Substances inertes, comme les métaux lourds ou les produits de la décomposition des microorganismes, qui ne subissent aucune transformation biologique.

| Classification    | Caractéristique                     | Exemple de composé                 |  |
|-------------------|-------------------------------------|------------------------------------|--|
| Matière organique | Possède au moins un atome de        | Hydrates de carbone protéines      |  |
| Wattere organique | and and 116 hours of a month of the | mydrates de carbone, proteines,    |  |
|                   | carbone ne a un atome d'hydrogene   | maneres grasses, nunes, pesucides, |  |
|                   |                                     | phénols, azote organique           |  |
| Matière           | Ne contient pas de carbone          | Métaux lourds, azote ammoniacal,   |  |
| inorganique       |                                     | nitrates et nitrites, phosphates,  |  |
|                   |                                     | sulfates, chlorures,               |  |

**Tableau 2** Classification des composés de l'effluent suivant leur nature chimique (Cindy BASSOMPIERRE., 2007).

Les paramètres les plus pertinents utilisés pour caractériser les eaux résiduaires sont présentés ci-dessous.

#### 1.1.2 Propriétés chimiques et physiques

• **Potentiel redox** : Le potentiel redox est une mesure utilisée pour indiquer quelles réactions d'oxydoréduction peuvent se produire, il est très utile pour identifier les conditions environnementales dans l'eau (OAI., 2008).

• **Température** : La température est un paramètre très important car elle influence la concentration d'oxygène dissous, les processus chimiques et biologiques, ainsi que leurs taux respectifs (OAI., 2008).

• **Matières en suspension (MES)** : Les MES comprennent les solides en suspension volatils (MVS) (matière organique) et les résidus cellulaires issus de la respiration endogène (matière inorganique) et sont généralement utilisés dans le contrôle de l'exploitation des STEP. Les MVS permettent d'estimer la quantité de matière organique présente dans les eaux résiduaires (Almeida.M.C., 2000).

#### • pH

La mesure du pH est très importante, car la plupart des processus biologiques se déroulent dans une plage de pH comprise entre 6,5 et 8,5 (Ferreira., 2006).

#### • Alcalinité

L'alcalinité des eaux résiduaires résulte de la présence d'ions  $OH^-$ ,  $CO_3^{2-}$  et  $HCO_3^{2-}$ . Dans les stations d'épuration à boues activées, de nombreux processus biochimiques modifient l'alcalinité des eaux résiduaires, ce qui influence la valeur du pH et, par conséquent, les conditions environnementales pour l'activité biologique (OAI., 2008).

## 1.1.3 Composants organiques

La matière organique est le principal polluant dans les eaux résiduaires. Traditionnellement, la matière organique a été mesurée par la DBO (demande biochimique en oxygène) et la DCO (demande chimique en oxygène). L'analyse de la DCO est rapide et simple (surtout si le mercure est utilisé). En revanche, l'analyse de la DBO est lente et fastidieuse en raison de la nécessité de réaliser des séries de dilutions (Di Fraia S et al., 2018)

## • Demande biochimique en oxygène (DBO)

La DBO mesure la quantité d'oxygène consommée pour la dégradation biochimique de la matière organique (demande carbonée) et pour l'oxydation des matières inorganiques telles que les sulfures et le fer ferreux, pendant une période d'incubation spécifiée (généralement 5 jours à 20°C). Elle mesure également l'oxygène utilisé pour oxyder les formes réduites d'azote (demande azotée) sauf si un inhibiteur est utilisé (Henze et al., 1995 ; Almeida.M.C., 2000). La Figure 1 montre la dépendance du temps et de la température dans l'analyse de la DBO.



Figure 1 Le résultat de l'analyse de la DBO en foction de temps et de la température (Almeida.M.C., 2000).

## • Demande chimique en oxygène (DCO)

La Demande Chimique en Oxygène (DCO) mesure la quantité d'oxygène nécessaire pour oxyder chimiquement la matière organique dans un échantillon d'eau. Le test DCO mesure l'équivalent en oxygène de la matière organique pouvant être oxydée en utilisant un agent oxydant chimique puissant (généralement du dichromate de potassium) dans une solution acide. Cette mesure est une bonne estimation du contenu total en matière organique (Henze et al., 1995)

## • Acides Gras Volatils (AGV)

Les AGV sont des composés organiques à chaîne courte produits lors de la fermentation de matières organiques dans des conditions anaérobies. Ils sont souvent utilisés comme un indicateur de la quantité de matière organique facilement dégradable dans les eaux résiduaires (Almeida.M.C., 2000).

## • Taux d'absorption de l'oxygène (OUR)

L'OUR est le taux auquel les micro-organismes consomment de l'oxygène lorsqu'ils se nourrissent. Il peut être utilisé comme une mesure de l'activité biologique ; des OUR élevés indiquent une activité biologique élevée. L'OUR est généralement mesuré en milligrammes d'oxygène consommé par litre de mélange boueux par heure (mg O<sub>2</sub>/l/h).

Il est déterminé en mesurant la diminution de la concentration en oxygène dissous dans le réacteur au fil du temps. Cette mesure peut être effectuée de manière continue à l'aide de capteurs d'oxygène dissous ou de manière ponctuelle dans des échantillons prélevés Di Trapani D et al., 2015).

• **MVS** (Matières Volatiles en Suspension : Cette mesure représente la fraction des matières en suspension dans l'eau qui est volatilisée lorsqu'elle est chauffée à des températures élevées. Les MVS sont généralement composées de matière organique (biomasse, micro-organismes, etc.) (OAI., 2008)

# 1.1.4 Constituants inorganiques non métalliques

# • Oxygène dissous (OD)

La concentration en oxygène dissous (OD) est un paramètre clé pour le suivi de la qualité de l'eau. Les niveaux d'OD varient en fonction des conditions physiques, chimiques et biochimiques présentes dans l'eau. En équilibre avec l'air, la solubilité de l'oxygène dissous, appelée valeur de saturation, diminue lorsque la température et la salinité augmentent, ou lorsque la pression diminue (Almeida.M.C., 2000).

## • Azote

Dans les eaux résiduaires, l'azote se trouve généralement sous forme de nitrate (NO3-), nitrite (NO2), ammoniaque (NH3), ion ammonium (NH4 +) et azote organique. Analytiquement,

l'azote organique et l'ammoniaque peuvent être déterminés par la méthode de l'azote Kjeldahl, qui mesure l'azote total non oxydé (Almeida, 2000). Tout comme pour les composants du DCO, les composants de l'azote peuvent être divisés en plusieurs fractions présentées plus en détail au chapitre III.

#### • Phosphore

Le phosphore présent dans l'eau et les eaux résiduaires se trouve presque toujours sous forme de phosphore organique et de polyphosphate (PO43-), utilisés pour la synthèse cellulaire et le transport de l'énergie. Il se trouve en solution sous forme de particules, de détritus ou dans les corps d'organismes aquatiques. Les détergents provenant des eaux résiduaires domestiques et les engrais entraînés par les eaux de ruissellement sont les principales sources de ce contaminant (Henze et al., 2000).

## 1.1.5 Paramètres de Boues

IM et IB, qui évaluent la performance des boues en termes de décantabilité. L'Indice de Mohlman (IM) et l'Indice des Boues (IB) sont des paramètres utilisés pour évaluer l'aptitude des boues à se décantées. Ces indices mesurent le volume apparent occupé par un gramme de boue après 30 minutes de décantation dans une éprouvette d'un litre (OIA., 2008).

**Indice de Mohlman (IM)** : L'IM est calculé en mesurant le volume décanté ( $V_{30}$ ) d'un échantillon de boue sans dilution après 30 minutes de décantation, puis en le divisant par la masse de matières sèches (MES) en grammes (Eq 1).

$$IM (ml/g) = V30 (sans dilution) (ml) / MES (g)$$
(1)

**Indice des Boues (IB) :** L'IB est calculé de manière similaire à l'IM, mais il prend en compte le volume décanté après dilution si nécessaire, pour des concentrations plus élevées. La dilution est appliquée pour que le volume décanté ne dépasse pas 300 ml (Eq 2).

$$IB (ml/g) = V30 x dilution* (ml) / MES (g)$$
(2)

Les IM et IB sont comparables pour des boues peu concentrées (moins de 3 g MES/L). Pour des boues plus concentrées, l'IB est préféré, car il ajuste le volume mesuré avec une dilution pour éviter des volumes trop élevés. Les indices IM et IB fournissent des informations cruciales sur la décantabilité des boues, mais ces valeurs ne sont pas constantes. Elles varient en fonction du type de traitement appliqué et des caractéristiques spécifiques des boues, influençant leur capacité à se séparer efficacement dans les processus de traitement des eaux résiduaires (Takács I., 1991).

## 1.1.6 Micro-organismes

Les eaux résiduaires sont infectieuses. La gestion historique des eaux résiduaires était principalement motivée par le désir d'éloigner les éléments infectieux de la population dans les villes. Les micro-organismes présents dans les eaux résiduaires proviennent principalement des excréments humains, ainsi que de l'industrie alimentaire. La forte concentration de micro-organismes peut créer un risque sanitaire grave lorsque les eaux résiduaires brutes sont rejetées dans les milieux récepteurs (OIE., 2008). Le Tableau 3 donne une idée de la concentration de micro-organismes dans les eaux résiduaires domestiques.

| Mico-organismes         | Elevé             | Faible            |
|-------------------------|-------------------|-------------------|
| E.coli                  | 5.10 <sup>8</sup> | 10 <sup>6</sup>   |
| Coliformes              | 10 <sup>13</sup>  | 10 <sup>11</sup>  |
| Clostridium perfringens | $5.10^{4}$        | 10 <sup>3</sup>   |
| Streptocoques fécaux    | 10 <sup>8</sup>   | 10 <sup>6</sup>   |
| Salmonelle              | 300               | 50                |
| Campylobacter           | 10 <sup>5</sup>   | 5.10 <sup>3</sup> |
| Listeria                | 10 <sup>4</sup>   | $5.10^{2}$        |
| Staphylococcus aureus   | 10 <sup>5</sup>   | 5.10 <sup>3</sup> |
| Coliphages              | 5.10 <sup>5</sup> | $10^{4}$          |
| Giardia                 | 10 <sup>3</sup>   | 10 <sup>2</sup>   |
| Nématodes               | 20                | 5                 |
| Entérovirus             | 10 <sup>4</sup>   | 10 <sup>3</sup>   |
| Rotavirus               | 100               | 20                |

**Tableau 3** Concentrations de microorganismes dans les eaux résiduaires (nombre de microorganismes par 100 ml) (Henze et al., 2001)

# 1.1.7 Définitions et Facteurs Influents sur l'Équivalent Habitant (EH)

Les eaux résiduaires provenant des habitants sont souvent exprimées en équivalent population (PE). Le PE peut être exprimé en volume d'eau ou en DBO. Les deux définitions utilisées mondialement sont les suivantes :

# 1 EH = 0,2 m<sup>3</sup>/j 1 EH = 60 g DBO/j

Ces deux définitions sont basées sur des valeurs fixes et non modifiables. La contribution réelle d'une personne vivant dans un bassin versant, appelée Charge Personnelle (PL), peut varier considérablement (Tableau 4). Les raisons de cette variation peuvent inclure le lieu de travail en dehors du bassin versant, des facteurs socio-économiques, le mode de vie, le type d'installation domestique, etc.

| Paramètres | Unité                 | Intervalle |
|------------|-----------------------|------------|
| DCO        | g/hab.j               | 25-200     |
| DBO        | g/hab.j               | 15-80      |
| Nitrogen   | g/hab.j               | 2-15       |
| Phosphore  | g/hab.j               | 1-3        |
| Eau usée   | m <sup>3</sup> /hab.j | 0.05-0.40  |

Tableau 4 Variations de la charge personnelle (Henze et al., 2000)

Le Tableau 5 présente les valeurs typiques des paramètres caractérisant les eaux résiduaires domestiques brutes, variant de très faibles à très concentrées.

| Paramètres       | Unités     | Très faible     | Faible | Modéré          | Fort |
|------------------|------------|-----------------|--------|-----------------|------|
| DCO              | mg/l       | 210             | 320    | 525             | 740  |
| DBO <sub>5</sub> | mg/l       | 100             | 150    | 250             | 350  |
| MES              | mg/l       | 120             | 190    | 300             | 450  |
| N total          | mg/l       | 20              | 30     | 50              | 80   |
| P total          | mg/l       | 4               | 6      | 10              | 14   |
| alcalinité       | mg/l       | 5               | 5      | 5               | 5    |
| pН               | -          | 7               | 7      | 7               | 7    |
| Coliformes       | NPP/100 ml | 10 <sup>7</sup> | 107    | 10 <sup>7</sup> | 107  |

Tableau 5 Valeurs de composition des eaux résiduaires brutes(Henze et al., 1997)

#### 1.1.8 Ratios

Le rapport entre les différents composants des eaux résiduaires influence considérablement le choix et le fonctionnement des processus de traitement. Par exemple, un faible rapport

carbone/azote peut nécessiter l'ajout de carbone externe pour optimiser la dénitrification, tandis qu'une forte concentration en nitrates ou une faible teneur en AGV complique l'élimination biologique du phosphore. Un rapport DCO/DBO élevé suggère une dégradabilité biologique limitée de la matière organique. Enfin, un fort rapport MVS/MES dans les solides en suspension favorise leur digestion en conditions anaérobies (ANNEXE 8). Le Tableau 6 présente les rapports typiques dans les eaux résiduaires municipales (OIE., 2008).

| Élevé       | Moyen                                                                                              | Faible                                                                                                                      |
|-------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 2.5 - 3.5   | 2.0 -2.5                                                                                           | 1.5-2.0                                                                                                                     |
| 0.12 - 0.08 | 0.08 - 0.04                                                                                        | 0.04-0.02                                                                                                                   |
| 12-16       | 8-12                                                                                               | 6-8                                                                                                                         |
| 45-60       | 35-45                                                                                              | 20-35                                                                                                                       |
| 6-8         | 4-6                                                                                                | 3-4                                                                                                                         |
| 20-30       | 15-20                                                                                              | 10-15                                                                                                                       |
| 1.6-2.0     | 1.4-1.6                                                                                            | 1.2-1.4                                                                                                                     |
| 0.8-0.9     | 0.6-0.8                                                                                            | 0.4-0.6                                                                                                                     |
| 3-3.5       | 2.5-3                                                                                              | 2-2.5                                                                                                                       |
|             | Élevé<br>2.5 - 3.5<br>0.12 - 0.08<br>12-16<br>45-60<br>6-8<br>20-30<br>1.6-2.0<br>0.8-0.9<br>3-3.5 | ÉlevéMoyen2.5 - 3.52.0 - 2.50.12 - 0.080.08 - 0.0412-168-1245-6035-456-84-620-3015-201.6-2.01.4-1.60.8-0.90.6-0.83-3.52.5-3 |

Tableau 6 Ratios typiques dans les eaux résiduaires municipales(OIE., 2008)

# **1.2 Traitement biologique des Eaux Résiduaires**

Les stations d'épuration des eaux résiduaires existent depuis plus de 100 ans, depuis la découverte du procédé des boues activées, ce qui a conduit à la mise en œuvre de nombreuses technologies et concepts de processus matures dans la pratique (Gujer W., 2006). Le traitement biologique des eaux résiduaires est une méthode largement utilisée pour purifier l'eau contaminée par des matières organiques et des nutriments. Les systèmes de traitement des eaux résiduaires exploitent l'activité d'une population bactérienne pour dégrader les polluants, celleci assimile alors la matière organique pour son propre développement et produire de l'eau propre. Deux grandes catégories de procédés peuvent être identifiées dans le domaine du traitement des eaux résiduaires : les procédés à cultures fixées, où les micro-organismes se développent sur des supports, et les procédés à culture libre, où les micro-organismes sont maintenus en suspension dans le mélange à traiter. Chaque catégorie englobe plusieurs techniques, et le choix de l'une ou l'autre dépend de plusieurs facteurs, notamment de l'espace
disponible pour l'installation, de la charge de l'effluent, et de la quantité de polluants à éliminer. Parmi les techniques les plus couramment utilisées, on peut citer :

• L'utilisation du lit bactérien ou granulaire (culture fixe) consiste à évacuer l'eau à traiter sur un support. Le lit granulaire, en particulier, ne nécessite pas de clarificateur, ce qui réduit les coûts de fonctionnement. Le rendement est considéré comme moyen pour un lit bactérien et avantageux pour un lit granulaire. Ce dispositif est solide contre les chocs toxiques et garantit un fonctionnement stable, même s'il y a un risque de colmatage.

• L'utilisation des biodisques (culture fixe) consiste à fixer la biomasse sur des disques tournants qui sont en partie immergés dans le mélange à traiter. Le fonctionnement de ce système est à moindre coût et est particulièrement efficace pour les charges basses. Toutefois, il est vulnérable aux conditions météorologiques, en particulier à la détérioration du biofilm.

• Le lagunage (culture libre) : faible concentration d'organismes épurateurs, de la taille d'un étang, utilisé lorsque de vastes espaces sont disponibles, coûts de construction et de fonctionnement faibles, rendement élevé, fonctionnement relativement stable ;

• Les boues activées (culture libre) : Cette méthode se déroule en deux étapes : d'abord, la biomasse est exposée aux eaux résiduaires dans un réacteur, puis les solides sont séparés de la phase liquide purifiée par décantation. Selon les propriétés des effluents à traiter, ce processus peut poser des difficultés, en particulier pour le traitement de l'azote et du phosphore, ou en cas de fluctuations importantes des flux à traiter. (Cindy Bassompierre., 2007)

# 1.2.1 Les mécanismes de traitement biologique

Les mécanismes de traitement biologique des eaux résiduaires sont similaires pour différents procédés comme les boues activées, les lits bactériens et les lagunages. La dégradation commence par l'hydrolyse des particules et macromolécules en composés plus simples, permettant leur assimilation par les bactéries, tout comme les substances dissoutes (DAIRI Sabri., 2017). L'efficacité de chaque étape dépend de la disponibilité du substrat, du régime hydraulique des réacteurs, et des conditions environnementales, telles que la température (Figure 2).



Figure 2 Étapes du processus de dégradation biologique(DAIRI Sabri., 2017)

# 1.2.2 Le procédé à boues activées

Dans le procédé à boues activées, une suspension de biomasse bactérienne est responsable de l'élimination des polluants. Le procédé comprend des étapes d'aération continue des eaux résiduaires, suivies d'une séparation des boues activées par décantation, et d'un recyclage des boues pour maintenir une concentration élevée de microorganismes. Selon la conception et l'application spécifique, une station d'épuration des eaux résiduaires à boues activées (STEP) peut réaliser l'élimination des substances carbonées organiques, l'élimination biologique de l'azote (N) et du phosphore (P). [Henze et al., 2000 ; Wagner et al., 2000 ; Jeguirim M et al., 2018]

# **1.2.2.1** Perspective historique

Le procédé des boues activées a été découvert au Royaume-Uni en 1914 par Edward Arden et William T. Lockett. En observant que les solides floculants formés lors de l'aération des eaux résiduaires pouvaient être récupérés et réutilisés, ils ont développé une méthode innovante pour améliorer le traitement des eaux. Ce procédé consistait à réintroduire les boues activées dans le processus d'aération, augmentant ainsi l'efficacité du traitement et permettant de gérer de plus grands volumes d'eaux résiduaires tout en produisant des effluents de meilleure qualité. Leur travail a montré que l'épuration ne dépendait pas uniquement de l'aération, mais aussi de la présence et de la proportion des boues activées dans le processus. Initialement en mode discontinu, ce procédé a évolué vers un système continu incluant un bassin d'aération, un bassin de décantation, et un recyclage des boues activées (OIE., 2008).

# 1.2.2.2 Les étapes d'épuration dans une station d'épuration à boues activées

Avant de passer au traitement secondaire, les eaux résiduaires subissent un prétraitement, qui représente la première phase d'épuration des eaux résiduaires. Il prépare efficacement les eaux résiduaires pour les étapes ultérieures en retirant les matières solides grossières, les graisses, les huiles et les sédiments lourds assurant ainsi une meilleure performance et efficacité des processus de traitement secondaire et tertiaire.

#### • Prétraitements

Les traitements mécaniques permettent de retirer de l'effluent brut les déchets volumineux, sables, graisses et éventuellement les matières en suspension, de façon à protéger les ouvrages en aval, faciliter le traitement, réduire la taille des ouvrages. Cet ensemble d'opérations s'appelle le prétraitement et la décantation primaire. Cependant, les déchets colloïdaux et dissous ne sont pas suffisamment éliminés par ces processus de séparation et doivent donc être éliminés par une étape de traitement secondaire (Liu et al., 2012 ; Metcalf et Eddy, 2014)



#### • Traitement secondaire

Le traitement secondaire peut être défini comme "le traitement des eaux résiduaires par un processus impliquant un traitement biologique". Le processus biologique dans un bioréacteur est principalement conduit par des bactéries. Elles consomment la matière organique dissoute présente dans les eaux résiduaires, ce processus de bioconversion transforme cette matière organique en une biomasse bactérienne dense, permettant ainsi de purifier les eaux résiduaires. Le bioréacteur offre des conditions bio-environnementales appropriées pour que les micro-organismes se reproduisent et utilisent la matière organique dissoute comme source d'énergie. Pour que ce traitement soit efficace, il est crucial de séparer la biomasse bactérienne des eaux

résiduaires traitées. Cette étape de séparation est réalisée par décantation secondaire (Jes la Cour Jansen et al., 2019).



Figure 3 Le Procédé à boues activées de Base (OIE., 2008)

La Figure 3 présente les principales composantes d'une installation typique, y compris le bassin d'aération, le clarificateur et le circuit de recirculation des boues activées (RAS).

# • Entrée des eaux résiduaires (Influent)

Les eaux résiduaires brutes, contenant des matières organiques et des nutriments, sont introduites dans le système.

# • Bioréacteur :

Le réacteur à boues activées est un dispositif continu où des micro-organismes en suspension dégradent les matières organiques en présence d'oxygène.

# • Décanteur Secondaire (ou Clarificateur) :

Il s'agit d'un réservoir où les boues activées (biomasse floculée) sont séparées gravitationnellement des eaux résiduaires traitées. L'effluent traité déborde et se déverse vers des traitements supplémentaires, tandis que les boues extraites sont recyclées ou traitées.



# • Ligne de Recyclage des Boues

La ligne de recyclage des boues renvoie une grande partie des boues sédimentées (qui se sont déposées au fond du décanteur secondaire) vers le bioréacteur. Cela permet de maintenir une concentration élevée de bactéries dans le réacteur.

# • Ligne d'Élimination des Boues

La ligne d'élimination des boues est située au fond du clarificateur et permet de retirer une petite fraction de boues du système. Cette élimination est effectuée pour maintenir une concentration appropriée de biomasse dans le bioréacteur.

# • Effluent

L'eau clarifiée, désormais épurée des polluants, est rejetée dans le milieu récepteur ou peut subir un traitement supplémentaire avant son rejet ou réutilisation.

# • Traitement des Boues Excédentaires

Les boues excédentaires retirées sont traitées séparément. Ce traitement peut inclure des processus tels que la déshydratation, l'incinération ou le compostage, afin de réduire le volume de boues et de gérer les déchets de manière appropriée.

# 1.2.2.3 Paramètres de fonctionnement du Système de Traitement par Boues Activées

Dans le contexte du traitement des eaux résiduaires par boues activées, plusieurs paramètres et équations permettent de modéliser et d'analyser le fonctionnement du réacteur biologique.

L'installation de traitement par boues activées (Figure 4) est constituée d'un réacteur biologique de volume (V) contenant de la boue en concentration (X) recevant un effluent de concentration (S<sub>0</sub>) à un volume journalier (Q) (J. Cassidy et al., 2020). Pour renvoyer la boue du décanteur en tête du réacteur, un taux de recyclage (R) est appliqué. Une partie du flux de pollution carboné éliminé est transformé en biomasse dont l'essentiel est retiré par les extractions (concentration  $X_w$  avec un débit  $\sigma$ .Q). L'effluent traité obtenu alors en sortie a une concentration en pollution soluble (S<sub>e</sub>) et en matières en suspension (X<sub>e</sub>).



Figure 04 Schéma Simplifié d'un Réacteur à Boues Activées avec Recyclage et Extraction des Boues (OIE., 2008)

# 1. Volume du Réacteur (V)

Le volume du réacteur biologique (V) est le volume total du réacteur où se déroule le processus de traitement. Il détermine la capacité du réacteur à contenir les boues et à traiter les eaux résiduaires.

# 2. Concentration en Biomasse (X)

La concentration en biomasse (X) est la quantité de biomasse active présente dans le réacteur, exprimée en kg/m<sup>3</sup>. Elle influence directement la capacité du réacteur à dégrader les polluants organiques.

# 3. Concentration en Substrat de l'Effluent (S0)

La concentration en substrat (S0) est la concentration initiale en polluant organique (par exemple, Demande Biochimique en Oxygène, DBO) dans l'effluent entrant dans le réacteur, mesurée en mg/L.

# 4. Débit Journalier (Q)

Le débit journalier (Q) est le volume d'effluent traité par jour, exprimé en m³/jour. Il influence le temps de séjour hydraulique dans le réacteur.

# 5. Concentration en Biomasse du Décanteur (Xw)

La concentration en biomasse extraite du réacteur et éliminée est notée Xw, et elle est exprimée en kg/m<sup>3</sup>. Cette biomasse est retirée du système à un débit constant  $\sigma \cdot Q$ .

# 6. Concentration en Pollution Soluble de l'Effluent (Se)

La concentration en pollution soluble (Se) est la concentration en polluants organiques restant dans l'effluent traité, mesurée en mg/l. Elle représente la charge de pollution que le système n'a pas pu éliminer.

# 7. Concentration en Matières en Suspension (Xe)

La concentration en matières en suspension (Xe) est la quantité de boues ou de particules non dissoutes dans l'effluent traité, exprimée en kg/m<sup>3</sup>. Dans ce contexte, il est supposé que les pertes de biomasse dans l'effluent sont négligeables (i.e., Xe≈0).

# 8. Équilibre entre Alimentation et Biomasse

Le ratio F/M est le rapport alimentation/biomasse, est un paramètre clé dans la gestion des systèmes de traitement des eaux résiduaires par boues activées. Il représente le rapport entre la quantité de matière organique (nourriture) disponible pour les micro-organismes et la quantité de biomasse présente dans le système.

Le ratio F/M se calcule de la manière suivante :

$$F/M = \frac{Q.S_0}{V.MLSS}$$
(3)  
Où :

Q : Débit des eaux résiduaires dans le réacteur (m<sup>3</sup>/jour).

 $S_{0}$  : Concentration de la demande biochimique en oxygène (DBO) ou en COD dans l'eau influente (mg/L).

V : Volume du réacteur (m<sup>3</sup>).

 $\mbox{MLSS}$  : Concentration de la biomasse (matières en suspension totales) dans le réacteur, exprimée en (mg/L)

Le ratio F/M (quantité de matière organique par rapport à la biomasse) influence le traitement des eaux résiduaires (Figure 5) :

• Un ratio F/M élevé témoigne d'une forte quantité de matière organique par rapport à la biomasse, ce qui peut entraîner une croissance bactérienne rapide mais dispersée, rendant la décantation plus difficile et signalant une charge organique excessive.

• Une faible proportion de matière organique dans la biomasse indique un manque de matière organique, ce qui ralentit l'activité microbienne et peut entraîner un vieillissement des boues et une diminution des performances.

• Le rapport F/M idéal se trouve entre 0,2 et 0,5 kg DBO/kg MVS/jour, ce qui favorise une formation optimale de flocs, une décantation efficace et un rendement optimal du produit.



Figure 05 Evolution du rapport F/M dans les boues activées (OIE., 2008)

# 9. Taux de Recyclage (R)

Le taux de recyclage (R) est défini comme le rapport entre le débit de boues recirculées ( $Q_R$ ) du décanteur vers le réacteur biologique et le débit d'entrée de l'effluent (Q) dans le système (KHERFANE W., 2017):

$$\boldsymbol{R} = \frac{\boldsymbol{Q}_{\boldsymbol{R}}}{\boldsymbol{Q}} \tag{4}$$

QR : débit de boues recirculées (m3/jour)

## Q : débit d'entrée de l'effluent (m3/jour)

Le rôle principal de ce taux est d'augmenter la concentration en biomasse dans le réacteur, ce qui améliore la dégradation des polluants organiques et optimise le processus de traitement. Pour un réacteur biologique, la masse totale de biomasse dans le réacteur est la somme de la biomasse influencée par le flux d'entrée, le recyclage, et l'extraction. La masse de biomasse dans le réacteur est donnée par (Benoît B., 2009):

$$M_X = X \cdot V_M \tag{5}$$

#### Où :

Mx est la masse totale de biomasse dans le réacteur (en kg),

X est la concentration en biomasse dans le réacteur (en kg/m<sup>3</sup>),

V est le volume du réacteur (en m<sup>3</sup>).

Le flux de biomasse entrant dans le réacteur comprend le flux de boues recyclées et le flux de biomasse avec l'effluent entrant :

Flux de biomasse entrant=
$$R.X_W + Q.X$$
 (6)

Le flux de biomasse sortant est principalement constitué de la biomasse éliminée :

Flux de biomasse sortant=
$$\sigma \cdot Q \cdot X w$$
 (7)

À l'état d'équilibre, le bilan de biomasse est :

$$R.X_W + Q.X = \sigma.Q.X_W + \frac{X.V}{SRT}$$
(8)

On peut exprimer le taux de recyclage R comme (Eq 9) :

$$R = \frac{\sigma.Q.X_W + \frac{X.V}{SRT} - Q.X}{X_W} \tag{9}$$

Le taux de recyclage (R) est un paramètre crucial dans le fonctionnement d'un réacteur biologique de traitement par boues activées. Sa gestion efficace permet de maintenir une concentration optimale en biomasse, d'améliorer l'efficacité du traitement, et de gérer les coûts opérationnels associés à la gestion des boues.

#### 10. Temps de Séjour Hydraulique (τ)

Le temps de séjour hydraulique ( $\tau$ ) est défini comme le rapport entre le volume du réacteur (V) et le débit journalier (Q) :

$$\tau = V/Q \tag{10}$$

Il représente le temps moyen que les eaux résiduaires passent dans le réacteur.

#### 11. Age des boues

Lorsque le système fonctionne en régime permanent, la boue extraite permet de définir le temps de séjour moyen des boues dans le système (aussi appelé « âge des boues » et noté (SRT) comme le rapport de la masse totale de boue divisé par la quantité de boue journellement extraite. En introduisant l'équation (II.8), l'âge des boues (SRT) s'exprime par l'Eq 11.

$$SRT = \frac{X.V}{(1-\sigma)QX_e + \sigma QX_W} = \frac{X.\tau}{(1-\sigma)X_e + \sigma X_W}$$
(11)

Dans l'hypothèse où les pertes de biomasses dans l'eau de sortie sont négligeables (i.e. Xe  $\approx$  0), l'Équation 11 exprimant l'âge des boues se simplifie sous la forme (Eq 12) :

$$SRT = \frac{\tau}{\sigma} \cdot \frac{X}{X_w}$$
(12)

#### 12. Vitesse de Croissance de la Biomasse (rX)

Soit  $r_x$  la vitesse de croissance de la biomasse correspond à la quantité de biomasse produite par unité de temps dans le réacteur. Cette vitesse est proportionnelle à la concentration de biomasse. Cette vitesse est proportionnelle à la concentration de biomasse X et au taux de croissance spécifique net  $\mu$ -b (Benoît B., 2009). Le bilan en biomasse s'écrit :

$$r_X V = (\mu - b) X V = (1 - \sigma) Q X_e + \sigma Q X_W = \frac{X V}{SRT}$$
(13)

Soit, en utilisant l'équation 13 :  $r_X V = \frac{X.V}{SRT}$  d'où l'expression suivante :

$$\mu - b = \mu - b = \frac{1}{SRT} \tag{14}$$

#### 13. Bilan en Substrat

Le bilan en substrat se traduit par :

$$Q.S_0 = QS_e + r_s.V \tag{15}$$

Ou rs est la vitesse de consommation du substrat, calculée comme :

$$r_S = \frac{Q.(S_0 - S_e)}{V} \tag{16}$$

# 14. Relation entre le Taux de Croissance de la Biomasse et le Substrat

La relation entre la vitesse de croissance de la biomasse ( $\mu$ ) et le substrat est donnée par (Benoît B., 2009) :

Y.r<sub>S</sub> = 
$$\mu$$
.X, on en déduit que  $\mu = \frac{Y.r_S}{X} = \frac{Y.Q.(S_0 - S_e)}{X}$  (17)

alors 
$$\mu = \frac{Y.(S_0 - S_e)}{X.\tau} = \frac{Y.S_0.(\frac{S_0 - S_e}{S_0})}{X.\tau}$$
 (18)

Où :

Y est le rendement de croissance (quantité de biomasse produite par unité de substrat consommé).

# 15. Charge massique (Cm) et charge volumique (Cv)

Cm (kg DBO5  $j^{-1}$  kg MVS<sup>-1</sup>) = kg DBO5  $j^{-1}$  (entrant sur le biologique) / kg MVS (dans le bassin) (OIE., 2008).

$$Charge\ massique = \frac{Nourriture}{Bouches\ à\ nourrir}$$
(19)

$$C_m = \frac{Q.[DB05]}{[MVS].V_{BA}} \tag{20}$$

 $\mathbf{Q}$ : Débit journalier (m<sup>3</sup>/j) entrant dans le bassin d'aération ;

 $[\mathbf{DBO_5}]$ : Concentration moyenne (kg.m<sup>-3</sup>) en DBO5 de l'influent à l'entrée du bassin d'aération de l'influent à l'entrée du bassin d'aération ;

[MVS]BA : Concentration en (kg .m<sup>-3</sup>) en MVS des boues dans le bassin d'aération ;

**VBA**: Volume bassin d'aération (m<sup>3</sup>)

# 16. MLSS (Mixed Liquor Suspended Solids)

Le MLSS est la concentration totale des solides en suspension, incluant les boues activées et autres particules, dans le bassin d'aération d'une station d'épuration. Il influence l'efficacité du traitement, une concentration trop basse peut indiquer une biomasse insuffisante, tandis qu'une concentration trop élevée peut causer des problèmes de décantation. Le MLSS est essentiel pour ajuster les conditions opérationnelles et évaluer la performance du traitement (Benoît B., 2009).

# 17. Expression du Taux de Croissance de la Biomasse

L'expression du taux de croissance de la biomasse en fonction de la charge massique s'exprime alors par l'Éq 19 (Benoît B., 2009 ; J. Cassidy et al 2020) :

 $\mu = Y.C_m.\rho$ 

#### 18. Âge des Boues en Fonction de la Charge Massique

L'âge de boues (SRT) s'exprime ainsi en fonction de la charge massique et le rendement d'élimination du carbone par l'Eq 22 (Benoît B., 2009 ; Cassidy et al 2020):

$$\frac{1}{SRT} = \mu - b = Y.C_m.\rho - b \tag{22}$$

#### 19. Le temps de contact (Tc) de l'eau à traiter avec les boues activées

Tc (heure) = Volume du bassin (m<sup>3</sup>) / ((débit de l'effluent (m3 h<sup>-1</sup>) + débit de recirculation des boues (m<sup>3</sup> h<sup>-1</sup>))

#### 1.2.2.4 Évolution des Régimes de Charge de pollution dans les Boues Activées

Le traitement des eaux résiduaires par boues activées a évolué pour améliorer la qualité des effluents et la gestion des boues. Initialement, les systèmes en régime de forte charge traitaient rapidement les effluents mais avec des limites sur l'élimination de la DBO5 et la nitrification. Le régime de moyenne charge a apporté un meilleur équilibre entre efficacité et coût, tandis que le régime d'aération prolongée optimise l'oxydation des matières organiques par un temps de séjour plus long. Les paramètres de charge massique et volumique sont cruciaux pour ajuster la gestion de la demande en oxygène et l'efficacité du traitement. Tableau 7 présente les plages typiques pour plusieurs paramètres opérationnels des processus de traitement des eaux résiduaires par boues activées en fonction de la charge de pollution traitée.

| Type de<br>charge     | Charge<br>volumique<br>(kg O <sub>2</sub> /<br>m <sup>3</sup> / j) | Charge<br>massique<br>(kg O <sub>2</sub> / kg<br>MVS/j) | Temps de<br>séjour des<br>boues SRT<br>(j) | Concentration<br>en MLSS<br>(g/m <sup>3</sup> ) | Rapport F/M<br>(kg DBO5/kg<br>MVS) | Qr/Q <sub>0</sub><br>(%) |
|-----------------------|--------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------|-------------------------------------------------|------------------------------------|--------------------------|
| Forte charge          | 1.5 - 3                                                            | > 0.4                                                   | 5 à 15                                     | 3000 à 5000                                     | 0,2 à 0,5                          | 50 à 70                  |
| Moyenne<br>charge     | 0.5 - 1.5                                                          | 0.15 - 0.4                                              | 10 à 20                                    | 2000 à 3000                                     | 0,1 à 0,2                          | 30 à 50                  |
| Faible<br>charge ou   | 0.3-0.4                                                            | 0.07 - 0.15                                             | 15 à 30                                    | 1000 à 2000                                     | 0,05 à 0,1                         | 10 à 30                  |
| Aération<br>prolongée | < 0.3                                                              | < 0.07                                                  | 15 à 30                                    | 1000 à 2000                                     | 0,05 à 0,1                         | 10 à 30                  |

**Tableau 7** Paramètres Opérationnels des Boues Activées – Valeurs Typiques (Metcalf & Eddy., 2003)

# 1.3 Bases Nutritionnelles et Processus Métaboliques dans les Boues Activées

Dans le contexte du traitement des eaux résiduaires par boues activées, plusieurs paramètres et équations permettent de modéliser et d'analyser le fonctionnement du réacteur biologique. Les équations de bilan jouent un rôle fondamental dans la modélisation et l'analyse des processus biologiques et chimiques au sein du réacteur biologique. Ces équations permettent de suivre l'évolution de différentes variables, telles que les concentrations en biomasse, substrat, oxygène, azote, etc., dans le système.

Les micro-organismes traitent la matière organique dans les eaux résiduaires par deux processus principaux. L'oxydation biologique dégrade la matière organique en produits finaux, tels que des minéraux, qui restent dissous et sont évacués avec l'effluent (Eq.21). La biosynthèse, quant à elle, convertit la matière organique colloïdale et dissoute en nouvelles cellules, formant une biomasse dense, éliminée ultérieurement par sédimentation (Eq. 22). La figure 1 illustre ces mécanismes.

L'oxydation biologique suit une équation générale, illustrée par l'Éq 23:

# Matière organique + $O_2 \rightarrow CO_2 + H_2O + Minéraux$ (23)

L'équation de base de la biosynthèse, illustrée par l'Éq 24, est la suivante :

# Matière organique + Nutriments $\rightarrow$ Nouvelles cellules (biomasse) (24)

Ces processus métaboliques peuvent être divisés en trois catégories principales (Figure 6) :

• Le processus du catabolisme consiste à décomposer les substances nutritives en éléments plus simples tels que le pyruvate (produit final de la glycolyse). Ce processus, qui se produit de manière exothermique, produit de l'énergie qui est employée pour favoriser la croissance et le maintien des cellules.

• L'anabolisme désigne les réactions qui permettent de synthétiser les composants cellulaires. Cette activité, qui est endothermique, exploite l'énergie produite par le catabolisme afin de favoriser la croissance et la division cellulaire.

• Le processus de respiration endogène implique l'oxydation des composés cellulaires afin de générer des résidus (tels que les matières carbonées et azotées), ce qui permet aux cellules de satisfaire leurs besoins énergétiques lorsque le substrat est insuffisant. (BASSOMPIERRE, Cindy, 2007)



*Figure 06* Métabolisme d'une bactérie hétérotrophe ou autotrophe (Cindy BASSOMPIERRE., 2007)

# 1.4 Disposition des Bassins en Fonction des Objectifs Épuratoires de la STEP

La conception d'une station d'épuration repose sur la capacité à atteindre des objectifs épuratoires spécifiques tout en optimisant l'efficacité du processus de traitement des eaux résiduaires. Les objectifs principaux incluent l'élimination efficace de la matière organique (DBO5), la réduction des composés azotés (nitrification et dénitrification) et la suppression du phosphore. Chacun de ces objectifs requiert une disposition particulière des bassins et des réacteurs au sein de l'installation. L'aération est importante pour fournir suffisamment d'OD pour les organismes aérobies effectuant l'élimination de la DBO et la nitrification dans les usines à boues activées, ainsi que pour maintenir la biomasse en suspension (DHI., 2020).

#### 1.4.1 Élimination Biologique de la pollution Carbonée

L'élimination biologique du carbone dans le traitement des eaux résiduaires, mesurée par la demande biologique en oxygène (DBO), repose sur les microorganismes hétérotrophes qui utilisent l'oxygène dissous pour décomposer les composés organiques en dioxyde de carbone, eau et biomasse. Dans ce cas, un seul bassin d'aération est adapté à cette conception, il est le cœur du processus d'élimination biologique du carbone. La taille du bassin et la concentration de biomasse (MLSS) sont ajustées pour maintenir un rapport F/M optimal (Figure 7). Un temps de séjour hydraulique (TRH) suffisant permet une dégradation complète des matières

organiques, tandis qu'une aération efficace assure des niveaux d'oxygène dissous adéquats pour le métabolisme des microorganismes (DHI., 2020).



*Figure 07* Schéma d'une STEP à boues activées avec un bassin unique (WEST+2020)

# 1.4.2 Élimination Biologique de la pollution azotée

L'élimination de l'azote, comprenant la nitrification et la dénitrification, requiert des conditions spécifiques. La nitrification se déroule en milieu aérobie, tandis que la dénitrification nécessite des conditions anoxiques sans oxygène. Pour une efficacité optimale, le système doit permettre une alternance entre ces deux conditions, soit en utilisant des bassins séparés, soit en contrôlant les cycles d'aération dans un même bassin. L'optimisation passe par un contrôle précis des cycles d'aération et de l'environnement anoxique, ainsi que l'ajout de sources de carbone externe peut parfois être nécessaire pour maximiser la dénitrification. La capacité de nitrification peut être ajustée par la régulation de l'aération, ainsi que par la gestion du temps de rétention des solides (SRT), de la température, du pH, et en évitant les inhibitions toxiques. Les flux de boues activées et le recyclage des nitrates peuvent également influencer l'efficacité du processus.

#### 1. Zone d'anoxie en tête

Dans cette configuration, la station d'épuration est dotée d'une zone anoxique en tête, où l'eau usée, la recirculation des boues, et la boue activée recirculée sont introduites (Pynaert et al., 2004). Cette zone favorise une grande partie de la dénitrification en utilisant l'eau usée comme source de carbone, les boues recirculées pour apporter des micro-organismes déjà en anoxie, et la liqueur mixte contenant des nitrates. L'efficacité de la dénitrification dépend des taux de recirculation des boues et de la liqueur mixte ainsi que du temps de passage dans cette zone (Figure 8).

- Taux de recirculation des boues  $\approx 150 \%$
- Taux de recirculation de liqueur mixte  $\approx 300$  à 400 %
- Temps de passage en zone anoxie  $\approx 1$  à 2 heures.



Figure 08 Schéma d'une STEP à boues activées avec un bassin d'anoxie en tête (WEST+2020)

# 2. Syncopage de l'aération

, l'alternance des conditions aérobie et anoxique est assurée par un fonctionnement Un bassin d'aération dans lequel on termine l'épuration de la pollution carbonée, on réalise la nitrification, et par syncopage de l'aération, on termine la dénitrification. Dans cette configuration discontinu du dispositif d'aération (une dizaine de cycles par jour environ). La nitrification se déroule pendant les phases aérobies et la dénitrification pendant les phases anoxiques (OIE., 2008). Le réglage de la durée des cycles peut être réalisé selon différentes stratégies :

Programmation fixe sur horloge;

- Asservissement par rapport à des seuils d'oxygène dissous ;
- Asservissement par rapport à des seuils de potentiel redox ;
- Asservissement par rapport à des seuils de concentration en ammonium et nitrates.

Une concentration trop faible en DO inhibera la croissance et pourra également provoquer la croissance de bactéries filamenteuses pouvant entraîner une formation de mousse et une détérioration de la décantation des boues (gonflement), ce qui entraînera une augmentation concentrations de biomasse dans les effluents et peut entraîner des émissions d'oxyde d'azote.

Une concentration trop élevée d'OD n'est pas souhaitable car elle nécessite beaucoup d'énergie avec une amélioration marginale de la qualité de traitement (Kampschreur et al., 2009). Dans le processus de dénitrification, les bactéries hétérotrophes utilisent le NO<sub>2</sub> ou le NO<sub>3</sub> comme accepteur d'électrons dans leur métabolisme, ce qui réduit le NO<sub>2</sub> et le NO<sub>3</sub> en azote gazeux (N2) et les deux sont donc importants pour l'élimination de l'azote (la Cour Jansen et al., 2019). L'aération est une partie coûteuse et consommatrice d'énergie du processus de traitement et revêt une grande importance pour les résultats du traitement, qui sont tous deux des incitations à l'optimiser (Åmand et al., 2013).

## 1.4.3 Élimination Biologique de la pollution phosphorée

L'élimination du phosphore dans les systèmes à boues activées est assurée par des bactéries polyphosphates (PAO), qui stockent le phosphore en excès en conditions aérobies et le relâchent en conditions anaérobies pour obtenir de l'énergie. Ce processus favorise la croissance des PAOs, tels que les espèces d'Acinetobacter, qui alternent entre des phases anaérobies, où elles libèrent le phosphate, et des phases aérobies, où elles le réabsorbent et le stockent sous forme de polyphosphate (Figure 9). Ce processus réduit la concentration totale de phosphore, qui est éliminé avec les boues en excès.

Les équations impliquées dans la suppression biologique du phosphore en conditions anaérobies et aérobies sont les suivantes :

 $PAO_{S} + polyphosphate stocké + Mg^{+2} + K^{+} + glycogène + AGV \longrightarrow PAO_{S} + biopolymères$  $+Mg^{+2} + K^{+} + CO_{2} + H_{2}O + PO_{4}^{-3}$ (25)

 $PAO_{S}+ biopolymères Stockés + Mg^{+2} + K^{+} + O2(NO_{3}^{-}) + PO_{4}^{-3} \longrightarrow PAO_{S} + polyphosphate stocké + Mg^{+2} + K^{+} + CO_{2} + H2O + glycogne$ (26)



Figure 09 Schéma d'une STEP à boues activées avec un bassin d'anaérobie et un bassin d'anoxie (WEST+2020)

# 1.5 Conclusion

La dégradation biologique de la matière organique joue un rôle crucial dans la gestion durable des ressources naturelles et la protection de l'environnement. Les processus biologiques offrent des solutions efficaces et écologiques aux défis environnementaux et économiques. En exploitant le pouvoir des micro-organismes, nous pouvons non seulement réduire la pollution, mais aussi valoriser les déchets en produits utiles, contribuant ainsi à une économie circulaire et durable. L'optimisation des systèmes à boues activées pour l'élimination du carbone, de l'azote, et du phosphore nécessite une compréhension approfondie des processus microbiens en jeu et une gestion attentive des paramètres opérationnels. En équilibrant les conditions aérobie, anoxique, et anaérobie, et en ajustant les temps de séjour, les opérateurs peuvent maximiser l'efficacité de traitement et répondre aux exigences environnementales croissantes. Cela souligne l'importance des nombreuses recherches consacrées au contrôle de l'aération. Notre étude s'inscrit dans cette dynamique de recherche, visant à optimiser ce paramètre crucial pour améliorer l'efficacité des systèmes de traitement des eaux résiduaires.

# 2 Chapitre II. Traitement de la pollution azotée en boues activées

L'azote (N) est un élément fondamental dans les biomolécules comme les protéines, les acides nucléiques, les enzymes, les bactéries dénitrifiantes, les bactéries nitrifiantes et les bactéries ammonifiantes. Il est indispensable à la croissance des plantes, à la photosynthèse, au transfert d'énergie et à la synthèse des engrais (Parsons c et al., 2021). Les bactéries nitrifiantes et dénitrifiantes jouent un rôle crucial dans le cycle de l'azote en convertissant différentes formes d'azote pour être utilisées ou éliminées dans les systèmes biologiques.

Cependant, un excès d'azote peut nuire aux écosystèmes aquatiques, provoquant l'eutrophisation des systèmes amphibiens et l'épuisement de l'oxygène dissous, ce qui pourrait entraîner la mort des poissons et d'autres organismes marins (Ahmed S.F et al., 2022). De plus, le lessivage des nitrates du sol peut contaminer les eaux souterraines, ce qui, une fois ingéré, pourrait provoquer une méthémoglobinémie chez les nourrissons de moins de trois mois (Ward M.H et al., 2018). Étant donné que les eaux résiduaires industrielles, les eaux résiduaires agricoles et les eaux résiduaires domestiques contiennent souvent divers polluants contenant de l'azote (tels que l'azote ammoniacal, l'azote nitrite, l'azote nitrate, etc.), la dénitrification des eaux résiduaires est essentielle pour réduire les rejets incontrôlés d'eaux résiduaires en dessous de la norme requise (Rajta A et al., 2020). Ce chapitre se consacre à l'analyse approfondie de l'efficacité et de la complexité des processus biologiques impliqués dans l'élimination de l'azote des eaux résiduaires. Il met particulièrement l'accent sur les étapes critiques de la nitrification et de la dénitrification, en explorant leur rôle central dans le traitement des effluents et les défis associés à leur mise en œuvre optimale.

#### • Etat de l'art

Jusqu'à présent, plusieurs études ont été réalisées sur l'élimination de l'azote des eaux résiduaires. Mishra et all. (Mishra S et al., 2022) se sont concentrés sur l'examen de l'efficacité et de la complexité des processus biologiques pour éliminer l'azote des eaux résiduaires. Ils ont discuté des paramètres opérationnels clés, tels que la température, le pH, la concentration d'oxygène dissous et la charge de pollution, qui influencent le rendement des procédés biologiques. Ils ont également analysé différentes configurations de bioréacteurs, comme les réacteurs séquentiels discontinus (SBR), les réacteurs à biofilm, et les réacteurs à lit mobile, pour déterminer quelles configurations offrent les meilleurs résultats en termes d'élimination de l'azote. Yellezuome et al. (Yellezuome D et al., 2022) ont examiné la technologie de stripping

de l'ammoniac, qui consiste à retirer l'ammoniac des eaux résiduaires en le transformant en phase gazeuse. Leur revue a mis en avant les avantages de cette méthode, comme son efficacité à des températures élevées, et ses inconvénients, tels que les coûts énergétiques élevés et la nécessité de traiter les émissions gazeuses d'ammoniac. Karri et al. (Karri R.R et al., 2018) ont étudié diverses technologies pour éliminer l'ammoniac et ses composés associés des eaux résiduaires, en se concentrant sur le processus d'adsorption. Leur revue a exploré comment différents matériaux adsorbants, comme le charbon actif et les zéolithes, peuvent être utilisés pour capter et retenir l'ammoniac. Ils ont également discuté des effets des paramètres de processus, tels que la température, le temps de contact, et la concentration initiale d'ammoniac, sur l'efficacité de l'adsorption. Leur analyse a permis d'identifier les conditions optimales pour maximiser l'élimination de l'ammoniac des eaux résiduaires.

De nos jours, les principales méthodes d'élimination de l'azote des eaux résiduaires peuvent être divisées en processus physiques, chimiques et biologiques (Winkler M.K et al., 2019). Les méthodes de traitement physique, telles que le décapage de l'ammoniac, l'échange d'ions et l'adsorption [Jiang Z et al., 2022 ; Scandelai A et al., 2020 ; Priya E et al., 2022], ont des taux de rétention élevés pour les polluants organiques (Gupta V.K et al., 2012). Néanmoins, ces méthodes sont coûteuses et provoquent une pollution secondaire qui nécessite un traitement supplémentaire (Cai Y et al., 2022). Cependant, les méthodes chimiques demandent beaucoup de main d'œuvre, sont coûteuses et nécessitent un traitement secondaire (Cruz H et al., 2019). Grâce aux actions microbiennes, les processus biologiques convertissent l'azote organique et l'azote ammoniacal présents dans les eaux résiduaires en nitrates et nitrites, qui sont finalement convertis en azote par ammonisation, nitrification et dénitrification (Dai H et al., 2021). L'option biologique est mature, avec une grande efficacité de dégradation des polluants et aucune pollution secondaire. Cependant, le processus est fastidieux, nécessitant souvent des sources de carbone supplémentaires et consommant une quantité importante d'énergie (McCarty P.L., 2018).

L'essor de la technologie de détection rapide sur site a rendu la détection de la concentration d'azote ammoniacal plus efficace, rapide et rentable, permettant une évaluation précoce et précise essentielle pour la santé humaine et la sécurité de l'eau environnementale (Umapathi R et al., 2022). Les exigences de rejet de plus en plus strictes en matière de teneur en azote ont conduit à des recherches approfondies pour améliorer l'efficacité de la dénitrification. Une recherche sur "ScienceDirect" a révélé que plus de 70 000 articles sur la dénitrification des eaux

résiduaires ont été publiés entre 2012 et 2021, principalement dans des revues spécialisées en sciences de l'environnement, en génie chimique et en énergie (Venkateswara Raju C et al., 2023). Avec les diverses applications de l'azote, la demande en azote augmente progressivement. De nombreuses ressources en azote existent dans l'eau et le sol en tant que polluants typiques après utilisation (Conant R.T et al., 2013). La récupération de l'azote est donc cruciale pour l'économie circulaire et la dépollution de l'environnement.

Actuellement, plusieurs études ont été publiées sur la récupération de l'azote. Qin et al. (Qin Y et al., 2023) ont souligné l'importance de cette récupération et ont présenté plusieurs technologies pour purifier l'azote dans les eaux résiduaires domestiques, comme la concentration excessive de boues activées, l'échange et l'adsorption d'ions, l'électrodialyse, et ont évalué les progrès et la compatibilité de ces technologies de surconcentration de N. Rahimi et al. (Rahimi S et al., 2020) ont discuté des processus biologiques de dénitrification de base dans le traitement des eaux résiduaires, y compris la nitrification, la dénitrification et l'anammox, en examinant les facteurs physico-chimiques influents, les avantages et les défis de ces méthodes. Cependant, ces technologies présentent encore des défauts. La méthode biologique ne convient qu'aux eaux résiduaires à faible teneur en azote ammoniacal et est lente. La méthode chimique, appropriée pour les eaux résiduaires à haute teneur en azote ammoniacal, peut provoquer une pollution secondaire en raison des produits chimiques ajoutés. La méthode physique est moins efficace pour récupérer l'azote (Wang Z et al., 2017 ; Huang H et al., 2015). Il est donc difficile d'augmenter l'efficacité de la récupération de l'azote à partir de diverses eaux résiduaires concentrées tout en respectant la norme de rejet.

Les méthodes actuelles d'élimination du NH3/NH4+ présentent des avantages et des limites environnementaux et techniques. Le Tableau 8 résume plusieurs techniques d'élimination des ions NH<sub>3</sub>/NH<sub>4</sub><sup>+</sup>, notamment la précipitation chimique, l'adsorption et les processus biologiques.

| Méthodes               |                                                    | Environnement de travail                                                                                                 | Avantages                                                                                                              | Lacune                                                                                                                                                              | Efficacité<br>d'élimination |
|------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Précipitation chimique | Chen Y et al., 2013 ; Bi W et<br>al., 2014]        | Nécessite un pH et<br>une température<br>spécifiques                                                                     | Produit des engrais<br>précieux à un coût<br>modéré.                                                                   | Nécessite une source<br>supplémentaire de<br>magnésium ; engage<br>des frais de phosphate ;<br>introduit de nouveaux<br>contaminants                                | 20–98%                      |
| Méthode d'adsorption   | [Jeguirim M et al., 2018 ; Ren Z]<br>et al., 2021] | Large plage de<br>température et de<br>pH                                                                                | Élimination simple<br>et efficace du<br>NH4+ ; capable de<br>fonctionner à de<br>faibles<br>concentrations de<br>NH4+  | Les adsorbants ont des<br>efficacités<br>d'élimination<br>différentes                                                                                               | 43–97%                      |
| Méthode biologique     | [Rahimi S et al., 2020 ;<br>Miao L et al., 2019]   | La croissance<br>d'algues<br>hétérotrophes,<br>photosynthétiques<br>ou bactériennes est<br>sensible à la<br>température. | Pas besoin de<br>réactifs chimiques<br>et de configurations<br>compliquées ;<br>haute efficacité de<br>dénitrification | Coût élevé; nécessite<br>une source de carbone<br>externe ; fonctionne<br>uniquement à de faibles<br>concentrations<br>d'entrée/sortie ; temps<br>de démarrage long | 70-99%                      |

**Tableau 8** Technologies standards pour éliminer le NH3/NH4+ des eaux résiduaires (YifanZhou et al., 2023)

#### 2.1 Les rejets d'azote urbain

Outre des bactéries et certains types de déchets, les eaux résiduaires urbaines charrient principalement de l'azote et des phosphates. La pollution azotée dans les eaux résiduaires est constituée essentiellement de :

-L'azote organique provenant surtout des déjections humaines et des rejets des industries agroalimentaires.

-L'azote ammoniacal provenant des rejets industriels ou de transformations de l'azote organique des eaux résiduaires domestiques par des processus biochimiques naturels dans le réseau d'égout. On admet que la pollution journalière d'un habitant est comprise entre12 et 15 g d'azote Kjeldahl total (NTK) (NTK = azote organique + azote ammoniacal).

-Les autres formes de l'azote, notamment le nitrate et le nitrite représentent moins de 1 % de l'azote global (NGL) arrivant en tête de station d'épuration (NGL = NTK + azote nitreux + azote nitrique) (OIE., 2008).

Une eau résiduaire urbaine (eau brute), contient en moyenne, 10-20 mg N/l d'azote organique, 30-40 mgN/l d'azote ammoniacal, et moins de 1 mgN/l d'azote nitreux et nitrique (Tableau 9).

*Tableau 9* Valeurs des principaux éléments polluants d'une eau brute résiduaire urbaine (Gaëlle TALLEC., 2005).

| Paramètres       | Concentration (mg/l)                                                   | Flux (g/Hab/j) |
|------------------|------------------------------------------------------------------------|----------------|
| DBO <sub>5</sub> | 250                                                                    | 60             |
| DCO              | 300 - 700                                                              | 120            |
| NTK              | $60-70\begin{cases} 40 \text{ NH}_4^+ \\ 20 \text{ N}_4 \end{pmatrix}$ | 15             |
| P total          | 20 N org<br>15                                                         | 4              |

# -Impact des Déchets Azotés sur la Qualité de l'Eau Réceptrice et Ses Conséquences Environnementales et Sanitaires

Dans l'effluent final d'un processus de boues activées, la présence de déchets azotés ou contenant de l'azote peut avoir un impact négatif ou polluer la qualité de l'eau réceptrice. L'eau réceptrice est principalement contaminée par les ions ammonium (NH4+), les ions nitrite (NO2–) et les ions nitrate (NO3–). Les ions sont des substances chimiques à charge négative (–) ou positive (+). Les préoccupations significatives liées à la pollution par les déchets azotés incluent la diminution de l'oxygène dissous (O<sub>2</sub>), la toxicité, l'eutrophisation et la méthémoglobinémie (OIE., 2008).

## 2.2 Principes Théoriques du Traitement de l'Azote dans les Boues Activées

L'azote est éliminé par voie biologique par des microorganismes qui peuvent l'utiliser comme source d'énergie pour leur croissance. Les eaux résiduaires urbaines contiennent de l'azote sous forme d'azote ammoniacal, qui contient l'ammonium (NH4<sup>+</sup>) et la forme libre de l'ammoniaque (NH3). Il est issu d'un processus d'ammonification de l'azote organique. On procède à l'élimination des ions ammonium jusqu'à ce qu'ils se transforment en diazote gazeux (N2) en deux étapes successives, à savoir la nitrification et la dénitrification. Deux types de biomasse sont à l'origine de ces principaux processus : (OIE., 2008)

• La biomasse autotrophe qui assure les réactions d'oxydation de l'ammonium en nitrites puis en nitrates sous conditions aérobies. (OIE., 2008)

• La biomasse hétérotrophe, responsable des réactions de transformation des polluants organiques en conditions aérobies avec l'oxygène comme accepteur d'électrons ou en conditions anoxies accompagné d'une consommation des nitrates qui remplacent l'oxygène. C'est pourquoi la dénitrification les transforme en nitrites avant de passer à l'état Gazeux de diazote (Figure 10). Il convient de souligner que lors de toute transformation biologique, les deux espèces éliminent l'azote ammoniacal par l'assimilation. (OIE., 2008)



Figure 10 Cycle de l'Azote dans les Stations à Boues Activées (Rajta A et al., 2020)

# 2.2.1 Nitrification

La nitrification biologique est un processus par lequel des bactéries autotrophes oxydent l'azote ammoniacal en nitrates à l'aide de nitrites. Pour leur métabolisme, ces bactéries consomment de l'ammonium ou du nitrite, le dioxyde de carbone est utilisé comme source de carbone pour la croissance cellulaire, et l'oxygène est l'accepteur final d'électrons. Près de 95 % de l'énergie libérée lors de l'oxydation est dissipée sous forme de chaleur pour produire du pouvoir réducteur nécessaire à la fixation du CO2, tandis que le reste est utilisé pour la synthèse cellulaire. Les deux étapes de la nitrification sont la nitritation, qui oxyde l'ammonium en nitrites, et la nitratation, qui transforme les nitrites en nitrates (Alalewi A et al., 2017).

#### 2.2.1.1 Nitritation

Les bactéries autotrophes, nitritantes ou ammonio-oxydantes (AOB), sont responsables de la nitritation et se divisent en cinq genres : Nitrosomonas, Nitrosococcus, Nitrosospira, Nitrosolobus et Nitrosovibrio. Ces genres se distinguent par leurs paramètres cinétiques. Nitrosomonas a longtemps été la seule espèce reconnue et est la plus étudiée, servant souvent de modèle l'étude nitritation (Choubert 2002). pour de la J.M., L'enzyme Ammonium Monooxygénase (AMO) catalyse la première phase de l'oxydation de l'ammonium (NH4+) en hydroxylamine (NH2OH). La présence de cette enzyme dans la membrane cellulaire des bactéries nitrifiantes nécessite l'utilisation d'oxygène et d'éléments réducteurs pour réaliser cette transformation cruciale dans le processus de nitrification. Eq 27. (Alalewi A et al., 2017).

$$NH_4^+ + O_2 + H^+ + 2e^- \longrightarrow NH_2OH + H_2O$$
 (27)

Oxydation de l'hydroxylamine en nitrite par l'enzyme « Hydroxylamine Oxydoréductase » (HAO) : (Alalewi A et al., 2017)..

$$NH_2OH + H_2O \longrightarrow NO_2^- + 4e^- + 5H^+$$
 (28)

L'équation globale d'oxydation de l'ammonium en nitrite est alors donnée par l'Eq 29 :

$$NH_4^+ + 1,5O_2 \longrightarrow NO_2^- + 2H^+ + H_2O$$
 (29)

A cette réaction s'ajoute celle de la synthèse de la biomasse durant laquelle l'espèce nitrifiante utilise l'azote pour ses besoins de croissance. Elle est décrite par l'Eq 30 : (Choubert J.M., 2002).

$$4CO_2 + HCO_3 + NH_4 + H_2O \longrightarrow C_5H_7NO_2 + 5O_2$$
(30)

La combinaison des équations 29 et 30 donne l'équation globale de la réaction de nitritation décrite par l'Eq 31 (Choubert J.M., 2002):

$$55NH_4^+ + 76O_2 + 109 HCO_3^- \longrightarrow 54 NO_2^- + C_5H_7NO_2 + 57 H_2O + 104 H_2CO_3$$
(31)

Cette équation permet de déterminer le rendement en cellule et d'identifier les besoins en oxygène et en carbone minéral (Turkmenler, 2019; Li et al., 2019a)

#### 2.2.1.2 Nitratation

Les bactéries autotrophes appelées nitratantes ou nitrite-oxydantes (NOB), qui sont des genres tels que Nitrobacter, Nitrococcus, Nitrospina et Nitrospira, sont responsables de la réaction de nitratation. Pendant longtemps, Nitrobacter a été considérée comme la principale espèce responsable de l'oxydation des nitrites, ce qui en fait une référence pour la nitratation. Contrairement à la réaction de nitritation, la nitratation se fait en une seule étape par le biais de l'enzyme « Nitrite Oxydoréductase » (NOS) selon le schéma réactionnel suivant : (Tchobanoglus et al., 2003).

$$NO_2^- + H_2O \longrightarrow NO_3^- + 2e^- + 2H^+$$
(32)

Elle est accompagnée par la consommation de l'oxygène comme accepteur d'électrons final. Leur combinaison donne l'équation de la réaction d'oxydoréduction globale de la nitratation décrite par l'équation 33 (Choubert J.M., 2002) :

$$NO_2^- + 0.5O_2 \longrightarrow NO_3^-$$
 (33)

La synthèse bactérienne est écrite par l'équation globale de nitritation Eq 34 (Choubert J.M., 2002) :

$$400 \text{ NO}_{2}^{-} + \text{NH}_{4}^{+} + 4\text{H}_{2}\text{CO}_{3} + \text{HCO}_{3}^{-} + 195\text{O}_{2} \longrightarrow \text{C}_{5}\text{H}_{7}\text{NO}_{2} + 3\text{H}_{2}\text{O} + 400 \text{ NO}_{3}^{-}$$
(34)

#### 2.2.1.3 Stechiométrie et rendement de la nitrification

Le processus de nitrification se fait par une nitritation suivie d'une nitratation. Il est à noter que la vitesse de nitratation est plus rapide que la nitritation, donc celle-ci est l'étape limitant la nitrification (Kim et al., 2008). Ainsi, pour représenter la réaction totale de nitrification, les deux équations 30 et 32 sont additionnées pour donner l'équation 33 (Baalbaki, Z et al., 2017):

| Rendements                          | Nitritation | Nitratation | Nitrification |
|-------------------------------------|-------------|-------------|---------------|
| En production de biomasse (gDCO/gN) | 0,15        | 0,02        | 0,17          |
| De consommation $(gO_2/gN)$         | 3,16        | 1,11        | 4,25          |

Tableau 10 Rendements théoriques de la réaction de nitrification (LAHDHIRI A., 2015).

#### 2.2.1.4 Cinétique de croissance des espèces nitrifiantes

La croissance bactérienne autotrophe se fait selon le formalisme présenté sur la Figure 11:  $Y_A$  est le rendement en biomasse autotrophe de la nitrification. Ce formalisme peut être décrit mathématiquement par des vitesses réactionnelles d'ordre 1 par rapport à la biomasse eq 36 :



Figure 11 Formalisme de la croissance bactérienne autotrophe (LAHDHIRI Ameni., 2015)

Le taux de croissance de la biomasse, noté  $\mu$ , est influencé par divers paramètres, tandis que la constante de décès, b, représente la diminution des bactéries. La dynamique de croissance est généralement modélisée par une équation de type Monod, qui décrit la consommation d'ammonium en tenant compte des limitations environnementales telles que la concentration en substrat, la disponibilité en oxygène, la présence d'inhibiteurs, ainsi que la température et le pH (Eq 37) (Charley et al., 1980)

$$\mu = \mu_{max} f(Inhibitions) \frac{s}{\kappa + s}$$
(37)

μ: Taux de croissance spécifique des microorganismes.

 $\mu$ max : Taux de croissance maximal des microorganismes en l'absence de limitations (c'est-àdire, lorsque le substrat est en excès et qu'il n'y a pas d'inhibition). f(Inhibitions) : Facteur qui représente l'effet des inhibiteurs présents dans le milieu. Ce facteur est généralement une fonction qui diminue la valeur de  $\mu$  en fonction de la concentration ou de l'intensité des inhibiteurs. Si les inhibiteurs sont absents ou négligeables, ce facteur vaut 1, et si l'inhibition est forte, il réduit significativement  $\mu$ .

**S** : Concentration du substrat disponible pour les microorganismes.

**K**: Constante de demi-saturation pour le substrat. Cette constante représente la concentration de substrat à laquelle le taux de croissance est la moitié de  $\mu_{max}$ .

Le taux de croissance maximal,  $\mu_{max}$ , correspond à la croissance de l'espèce lorsque le substrat n'est pas limitant et qu'il n'y a pas d'inhibition dans le milieu. Ce taux varie considérablement pour les populations nitrifiantes en fonction de la nature de la biomasse, des conditions de croissance, et des limitations en substrat et oxygène. Charley et al. (1980) proposent une équation pour décrire  $\mu_{max}$  à une température donnée, en fonction des concentrations d'oxygène et d'ammonium Eq 38.

$$\mu_A(T) = \mu_{A.max}(T) \frac{[O_2]}{[O_2] + K_{O.A}} \frac{[N - NH_4^+]}{[N - NH_4^+] + K_{NH}}$$
(38)

 $\mu_A(T)$ : Taux de croissance spécifique des bactéries nitrifiantes à la température T.

 $\mu_A$ .max: Taux de croissance maximal des bactéries nitrifiantes à la température T, lorsque les conditions sont optimales (substrat et oxygène non limitants).

**[O2]** : Concentration d'oxygène dissous dans le milieu.

**K**<sub>0.A</sub> : Constante de demi-saturation pour l'oxygène, représentant la concentration d'oxygène à laquelle le taux de croissance est la moitié de  $\mu_{A.max}$ 

[N–NH4<sup>+</sup>] : Concentration d'ammonium (NH4<sup>+</sup>) dans le milieu.

 $\mathbf{K}_{NH}$ : Constante de demi-saturation pour l'ammonium, représentant la concentration d'ammonium à laquelle le taux de croissance est la moitié de  $\mu_{A.max}$ 

Différentes valeurs relevées de la littérature sont présentées dans le Tableau 11

| Biomasses                                                       | Procédé        | Température<br>(°C) | μ <sub>max</sub> (j <sup>-1</sup> ) | Auteurs                   |
|-----------------------------------------------------------------|----------------|---------------------|-------------------------------------|---------------------------|
| 9                                                               |                | 20 <u>+</u> 1       | 1,05 – 1,4                          | Münz et al., 2011         |
| Biomasse autotrophe Biomasse autotroph<br>nitratante nitritante | Boues activées | 20 <u>+</u> 1       | 0,72 <u>+</u> 0,2                   | Münz et al., 2010         |
|                                                                 |                | 25                  | 0,43 <u>+</u><br>0,24               | Chandran et al.,<br>2008  |
|                                                                 |                | 20 - 22             | 2,71 <u>+</u><br>0,26               | Park et Noguera.,<br>2004 |
|                                                                 |                | 20                  | 0,91 –<br>1,31                      | Münz et al., 2011         |
|                                                                 |                | 20 <u>+</u> 1       | 0,42 <u>+</u> 0,2                   | Münz et al., 2010         |
|                                                                 |                | 25                  | 0,55 +<br>0,24                      | Chandran et al.,<br>2008  |

**Tableau 11** Variation du taux de croissance maximal des espèces nitrifiantes (LAHDHIRI Ameni., 2015)

Il convient de souligner que, malgré les variations des valeurs du taux de croissance maximal, elles demeurent très faibles par rapport à celles des espèces hétérotrophes ( $\mu$ max,H = 6 j<sup>-1</sup> à 20°C et pH 7 selon Henze et al., 2000). Cela explique pourquoi les réacteurs utilisent des âges de boues élevés, ce qui permet aux espèces autotrophes de s'installer et d'éviter leur perte par entraînement hors du système (Stephenson et al., 2000).

#### 2.2.2 Dénitrification

Les formes oxydées de l'azote (nitrates, nitrites...) sont utilisées comme accepteurs d'électrons finaux et réduites en diazote gazeux lors de la dénitrification. Selon Choubert L.M. (2002), l'équation stoechiométrique de la réaction biologique de la dénitrification Eq 39 :

$$NO_{3}^{-} + 0,0714 C_{18}H_{19}O_{9}N + H^{+} \longrightarrow 0,5 N_{2} + 1,214CO_{2} + 0,0714HCO_{3}^{-} + 0,0714NH_{4}^{+} + H_{2}O$$
(39)

Elle est réalisée par des bactéries hétérotrophes en conditions d'anoxie (absence d'oxygène dissous) et avec dégradation de la pollution organique.

#### 2.2.2.1 Métabolisme dénitrifiant

Les deux étapes de la dénitrification sont la dénitratation (conversion des nitrates en nitrites) et la dénitritation (conversion des nitrites en diazote). Plusieurs intermédiaires sont utilisés dans cette réaction, tels que le nitrite, l'oxyde nitrique (NO) et l'oxyde nitreux (N2O). La dénitritation est généralement 1,5 à 2 fois plus rapide que la dénitratation, ce qui permet d'éviter l'accumulation de nitrites. Les micro-organismes hétérotrophes aérobies, appelés espèces dénitrifiantes, ont la capacité de diminuer les nitrates dans des conditions anoxiques en utilisant l'oxygène ou les formes oxydées de l'azote comme accepteur final d'électrons (Choubert L.M., 2005).

#### 2.2.2.2 Biochimie et stœchiométrie de la dénitrification

En utilisant un rapport C/N de 1,1016 g C/g N, on peut déterminer la Demande Chimique en Oxygène (DCO) nécessaire pour atteindre le degré d'oxydation des produits finaux, comme le montre la réaction d'oxydation du composé organique (Eq 40) :

$$C_{18}H_{19}O_9N + \frac{73}{4}O_2 \longrightarrow 18CO_2 + \frac{19}{2}H_2O + \frac{1}{2}N_2$$
 (40)

Cela donne un rapport DCO/C de 2,7. En combinant les équations 37 et 38, la valeur minimale du rapport DCO/N est de 2,97, proche des valeurs obtenues par (Zhu G et al., 2008) pour le méthanol et l'acide acétique (2,84 et 2,5 respectivement), et de la valeur proposée par Henze et al. (2000) de 2,86, indépendamment de la matière organique.

#### Exemple de Calcul

Supposons qu'on a un échantillon d'eau avec 10 g d'azote (N). Pour déterminer la quantité de DCO requise :

#### Calcul de la DCO pour 10 g d'azote :

1 gramme d'azote à éliminer par dénitrification a besoin de 2,97 grammes de DCO pour effectuer ce traitement.

DCO nécessaire=Quantité d'azote ×Rapport DCO/N

Donc, pour éliminer 10 grammes d'azote par dénitrification, il faut 29,7 grammes de DCO.

Pour illustrer la relation entre le rapport DCO/N et le taux de conversion, un système biologique aéré traitant une pollution organique est représenté simplifié comme indiqué dans la Figure 12



Figure 12 Formalisme de la croissance bactérienne hétérotrophe (LAHDHIRI Ameni., 2015).

 $Y_H$  est la fraction de la Demande Chimique en Oxygène (DCO) éliminée qui est convertie en biomasse. En d'autres termes,  $Y_H$  représente la part de la DCO traitée qui est utilisée pour la croissance des micro-organismes. Lorsque l'on parle de l'oxygène dissous en relation avec la DCO, on utilise la notation 1 g O2 = -1 g DCO pour indiquer que l'oxygène est consommé lors de l'oxydation de la DCO. Ainsi, pour chaque gramme de DCO éliminée, un gramme d'oxygène est utilisé. En tenant compte de la conversion en biomasse (représentée par  $Y_H$ ), les besoins en oxygène nécessaires pour oxyder un gramme de DCO sont ajustés par la fraction non convertie en biomasse. Cela se traduit par la formule suivante : (1 -  $Y_H$ ) g DCO.

Les processus de croissance bactérienne dans des conditions anoxiques sont semblables à ceux observés en présence d'oxygène, mais avec les nitrates comme accepteurs d'électrons. Selon Henze et al. (2000), la consommation de 1 gramme de nitrate entraîne la dégradation de 2,86 grammes de Demande Chimique en Oxygène (DCO). En tenant compte de la synthèse cellulaire nécessaire pour dégrader 1 gramme de nitrate, la quantité réelle de DCO dégradée serait ajustée par le facteur  $\frac{2,86}{1-Y_H}$ , où Y<sub>H</sub> le rendement de la biomasse. De plus, en utilisant le concept d'équivalent-électron, on peut établir une relation entre la consommation de nitrate et la quantité de DCO éliminée, en passant de l'oxygène au nitrate (LAHDHIRI Ameni., 2015).

Les équations suivantes montrent la consommation d'oxygène et de nitrate pour des réactions spécifiques :

$$\frac{1}{4} O_2 + H^+ + e^- \longrightarrow \frac{1}{2} H_2 O \tag{41}$$

Cette réaction indique que 1 équivalent-électron est requis pour la réduction de 0,25 mole d'oxygène.

$$\frac{1}{5} NO_3^- + \frac{6}{5} H^+ + e^- \longrightarrow \frac{1}{10} N_2 + \frac{3}{5} H_2 O$$
(42)

Cette réaction indique que 1 équivalent-électron est requis pour la réduction de 0,2 mole de nitrate.

D'après les équations 39 et 40, un équivalent électron correspond à 8 g O<sub>2</sub> et 2,8 g N-NO<sub>3</sub><sup>-</sup> ce qui donne un rapport de 8/2,8=2,86 g O2/g N-NO<sub>3</sub><sup>-</sup>. On retrouve la même valeur que celle indiquée par Henze et al. (2000), indépendante de la nature de la pollution organique et la plus rencontrée dans la littérature. La quantité de nitrates nécessaire à l'oxydation de 1 g de DCO est ensuite déterminée, elle est égale à  $\frac{1-Y_H}{2.86}$  (LAHDHIRI Ameni., 2015).

#### 2.2.3 Facteurs du milieu influençant la nitrification/dénitrification

La nitrification et la dénitrification sont fortement influencées par des facteurs tels que la concentration en oxygène dissous, le pH, la température, la charge en carbone organique et la présence d'inhibiteurs. Les conditions optimales pour chaque processus sont cruciales pour garantir une efficacité maximale dans le traitement des eaux résiduaires.

#### 2.2.3.1 Nitrification

#### - Oxygène Dissous

Dans les stations d'épuration, l'oxygénation dépend de la charge appliquée aux bassins d'aération. En général, environ 4,6 kg d'O<sub>2</sub> sont nécessaires pour oxyder un kilogramme d'azote ou 1,2 kg d'O<sub>2</sub> pour kilogramme de DBO<sub>5</sub>. Une concentration de 1 à 2 mg O<sub>2</sub>/L est maintenue dans les bassins d'aération, avec une augmentation nécessaire d'environ 40 % d'O<sub>2</sub> pour les stations à charge moyenne (Gaëlle TALLEC, 2005).

- рН

Les bactéries nitrifiantes fonctionnent de manière optimale entre pH 7,5 et 8,5. Un pH inférieur à cette plage ralentit la nitrification, tandis qu'un pH supérieur n'a pas d'effet significatif. Audelà du pH optimal (7 à 9), la nitrification est inhibée par l'ammoniac (NH<sub>3</sub>) et l'acide nitreux (HNO<sub>2</sub>).(Gaëlle TALLEC, 2005). La vitesse de croissance maximale des bactéries nitrifiantes est affectée par le pH, décrite par l'équation 43.

(43)

 $\mu_{A.max} (pH) = \mu_{A.max} \left( pH_{optimal} \right) \frac{200}{200 + 10^{pH_{optimal} - pH}}$ 

## Température

Les bactéries nitrifiantes croissent mieux entre 28 et 36°C. À des températures supérieures à 30°C, les AOB (bactéries oxydant l'ammoniac) sont plus actives que les NOB (bactéries oxydant le nitrite), avec une vitesse de croissance presque deux fois plus rapide. En revanche, à des températures inférieures à 25°C, les NOB surpassent les AOB (Hanaki et al., 1990a; Hanaki et al., 1990b).

$$\mu_{max,AOB} = e^{0,0179T - 0,4104} \tag{44}$$

$$\mu_{max.NOB} = e^{0,01108T - 0,2139} \tag{45}$$

 $\mu_{max}$  est exprimée en j<sup>-1</sup> et la température en °C.

# - Charge en Carbone Organique

Les fortes charges organiques peuvent limiter la nitrification en raison de la concurrence entre les bactéries hétérotrophes et autotrophes pour l'azote. Un faible rapport DBO<sub>5</sub>/N enrichit les boues en autotrophes, tandis qu'une baisse brusque du rapport C/N perturbe la nitrification (Li et al., 2019b).

#### - Inhibiteurs

Outre l'ammoniac et l'acide nitreux, certains acides volatils gras et métaux lourds inhibent les NOB. Les microorganismes nitrifiants montrent une grande capacité d'adaptation à ces inhibiteurs (Gaëlle TALLEC, 2005).

# 2.2.3.2 Dénitrification

# - Température

La dénitrification est efficace entre 5 et 75°C, généralement réalisée par des espèces mésophiles. Une augmentation de la température réduit la concentration d'oxygène dissous, favorisant ainsi la dénitrification, car les bactéries hétérotrophes consomment préférentiellement l'oxygène plutôt que le nitrate comme accepteur d'électrons (Sperandio M., 1998).

# -pH

Le pH optimal pour la dénitrification est compris entre 7 et 8,5. Un pH au-delà de 9 peut inhiber le processus, tandis qu'un pH acide peut entraîner une réduction incomplète de l'azote (Knowles, 1982).

# - Concentration en Oxygène Dissous

Les bactéries dénitrifiantes sont des aérobies facultatifs et préfèrent l'oxygène comme accepteur d'électrons. Une concentration élevée en oxygène dissous inhibe la dénitrification en ralentissant les différentes étapes du processus, avec un effet significatif même à des concentrations très faibles. Les coefficients de transfert d'oxygène dans les bassins anoxies peuvent varier, affectant l'apport en oxygène aux boues (Winkler M.K.& Straka L2019).

# 2.3 Processus de traitement de l'azote

Pour le traitement de l'azote dans les stations d'épuration des eaux résiduaires, plusieurs processus biologiques et physico-chimiques sont impliqués (Figure 13):

# -Hydrolyse :

L'hydrolyse est la première étape du traitement de l'azote, où les grandes molécules organiques contenant de l'azote (comme les protéines) sont dégradées en molécules plus petites (acides aminés et ammoniac). Cette étape est essentielle pour rendre l'azote disponible pour les bactéries qui réaliseront la nitrification. Cette étape a pour objectif la transformation des formes organiques complexes d'azote en ammoniac (NH<sub>4</sub><sup>+</sup>), qui est la forme d'azote la plus simple et la plus accessible pour les processus biologiques suivants (Wang W et al., 2019).

# -Ammonification :

Lors de l'ammonification, les micro-organismes convertissent l'azote organique en ammoniac. Ce processus se produit généralement dans les conditions anaérobies ou anoxiques, où les micro-organismes utilisent l'azote organique comme source d'énergie (Yellezuome D et al., 2022).

# -Nitrification

La nitrification est un processus aérobie en deux étapes, réalisé par deux groupes de bactéries nitrifiantes. D'abord, les bactéries Nitrosomonas oxydent l'ammoniac (NH4<sup>+</sup>) en nitrites (NO2<sup>-</sup>).

Ensuite, les bactéries Nitrobacter convertissent les nitrites en nitrates ( $NO_{3}^{-}$ ) (OIE., 2008 ; Yellezuome D et al., 2022).

# -Dénitrification :

La dénitrification est un processus anoxique où les bactéries hétérotrophes utilisent les nitrates  $(NO_{3}^{-})$  comme accepteur d'électrons en l'absence d'oxygène, les convertissant en azote gazeux  $(N_{2})$  qui est ensuite libéré dans l'atmosphère (OIE., 2008 ; Yellezuome D et al., 2022).



Figure 13 Schéma des étapes du processus d'élimination biologique de l'azote (OAI., 2008)

# 2.4 Conclusion

En conclusion, ce chapitre a permis de mettre en lumière l'importance cruciale des processus biologiques d'élimination de la pollution azotée des eaux résiduaires, en détaillant les étapes et les équations de la nitrification et de la dénitrification. Ces processus, bien que complexes, sont essentiels pour atteindre les objectifs épuratoires et réduire l'impact environnemental des rejets d'effluents. La compréhension approfondie de ces mécanismes biologiques permet non seulement d'optimiser les performances des stations d'épuration, mais aussi de répondre aux exigences réglementaires de plus en plus strictes en matière de protection des écosystèmes aquatiques. En maîtrisant ces processus, il devient possible d'améliorer l'efficacité globale du traitement des eaux résiduaires, contribuant ainsi à la préservation de la qualité de l'eau et à la protection de l'environnement. Une compréhension approfondie des paramètres et des processus impliqués dans le traitement de la pollution azotée est fondamentale pour optimiser les systèmes de boues activées.
## **3** Chapitre III. Simulation et optimisation des stations d'épuration a boues activées

Ce chapitre explore en profondeur les aspects de la simulation et de l'optimisation des stations d'épuration à boues activées, en mettant particulièrement l'accent sur le modèle ASM2dModTemp, utilisé pour la modélisation des procédés biologiques dans ces systèmes. Les stations d'épuration à boues activées, qui jouent un rôle crucial dans le traitement des eaux résiduaires, reposent sur des modèles mathématiques sophistiqués pour optimiser leurs performances et garantir une conformité aux normes environnementales. Ce modèle permet de simuler les dynamiques de traitement de l'azote et de phosphore, en tenant compte des variations de température et d'autres facteurs influents. En détaillant les équations de modélisation associées, ce chapitre fournit une compréhension approfondie des mécanismes sous-jacents aux processus de boues activées. Les différentes étapes de la modélisation des stations d'épuration à boues activées y compris la formulation des équations mathématiques qui décrivent les processus biologiques, les réactions chimiques et les interactions entre les différents composants du système. En outre, les approches d'optimisation utilisées pour améliorer l'efficacité opérationnelle des stations ont été examinées, en réduisant les coûts et en minimisant l'impact environnemental.

#### • Etat de l'art

La modélisation des processus biologiques de traitement des eaux résiduaires est essentielle pour comprendre, concevoir et optimiser les systèmes d'épuration modernes. Depuis les premières tentatives dans les années 1960, la complexité et la précision des modèles ont considérablement évolué, reflétant une meilleure compréhension des processus biologiques sous-jacents et des interactions chimiques impliquées. Cet état de l'art retrace l'évolution des modèles utilisés, en mettant l'accent sur les avancées majeures et les contributions des différents modèles, notamment ceux intégrés dans les logiciels de simulation contemporains. Les premières tentatives de modélisation dynamique des processus biologiques de traitement des eaux résiduaires ont débuté avec des modèles à deux variables d'état, décrivant la dégradation du substrat et la formation de la biomasse à l'aide de cinétiques d'ordre 1 (McKinney., 1962). Ces modèles étaient relativement simples et rudimentaires, se concentrant principalement sur la relation entre la biomasse et le substrat. Cependant, ils ont posé les bases de la modélisation moderne en démontrant l'utilité de telles approches pour le dimensionnement et l'optimisation des systèmes de traitement des eaux résiduaires. Avec l'avancement des connaissances scientifiques et technologiques, les modèles ont évolué pour intégrer un plus grand nombre de variables d'état et de processus. Un tournant majeur a été l'adoption de la cinétique de Monod, largement acceptée pour décrire les processus biologiques complexes impliqués dans les systèmes de boues activées. Marais et Ekama (1976) ont proposé un modèle fonctionnant sous des conditions aérobies et en régime permanent, marquant le passage à des modèles dynamiques plus sophistiqués. Ce modèle a ensuite été étendu par Dold et al. (1980) pour inclure des hypothèses clés telles que le bi-substrat et la mort-régénération, permettant une meilleure représentation des processus biologiques. Ces premiers modèles dynamiques ont prouvé leur utilité non seulement pour le dimensionnement, mais aussi pour l'optimisation et le contrôle des systèmes de traitement des eaux résiduaires dans diverses configurations, incluant la bioremédiation du carbone, de l'azote et du phosphore. Les ASM ont été initialement concus pour les procédés de boues activées conventionnels, opérant sous des conditions de fonctionnement typiques, avec des TRS (Temps de Retenue des Solides) de 3 à 15 jours, des TRH (Temps de Retenue Hydraulique) variant entre 3 et 5 heures, et des concentrations de MES allant de 1,5 à 4 g/L dans des systèmes parfaitement agités (Tchobanoglous et al., 2003 ; Metcalf et Eddy, 2003). Cependant, étant donné que le BRM (Bioreacteurs à Membranes) utilise le processus de boues activées comme composant principal, les modèles ASM ont été adaptés depuis la fin des années 1990 (Chaize et Huyard, 1991 ; Wagner et Rosenwinkel, 2000 ; Wintgens et al., 2003 ; Delrue et al., 2010) pour simuler les cinétiques de la biomasse dans un BRM, avec quelques ajustements spécifiques à ce type de système. L'introduction du concept d'équivalence d'oxygène par Gujer et Jenkins (1975) a marqué un tournant en permettant de mieux équilibrer et représenter les processus liés à la matière organique, ouvrant ainsi la voie aux modèles ASM basés sur la demande chimique en oxygène (DCO). Développés par Henze et ses collègues au fil des décennies, ces modèles (ASM1 en 1987, ASM2 en 1995, ASM2 d en 1999, et ASM<sub>3</sub> également en 1999) sont basés sur la demande chimique en oxygène (DCO) pour modéliser les processus de traitement des eaux résiduaires biologiques (ANNEXES 2 et 3). Ils ont été initialement conçus pour les procédés à boues activées conventionnels opérant sous des conditions de fonctionnement usuelles, mais ont depuis été adaptés pour une variété de systèmes d'épuration. Ces modèles ASM sont intégrés dans la majorité des logiciels de simulation modernes, tels que ASIM, BioWin, GPS-X, WEST, et DESASS. Pour une application réussie de ces modèles, il est crucial de les calibrer correctement afin de simuler avec précision les cinétiques relatives à la biomasse et de prévoir le comportement des systèmes de traitement. En effet, les ASM permettent non seulement de simuler les processus biologiques, mais aussi d'optimiser les stratégies de gestion pour améliorer l'efficacité des stations de traitement des eaux résiduaires. La recherche académique continue de générer des modèles de plus en plus complexes, souvent basés sur des extensions des modèles ASM pour mieux représenter l'élimination de l'azote, du phosphore et de la DCO dans les systèmes de traitement des eaux résiduaires. Ces modèles sont essentiels pour la compréhension des procédés, le dimensionnement, l'optimisation et le contrôle des systèmes de traitement des eaux. Les ASM sont donc largement reconnues et utilisées pour simuler avec précision les processus des stations d'épuration des eaux résiduaires et optimiser leur efficacité. En 1983, l'Association Internationale pour la Qualité de l'Eau (IAWQ) a constitué un groupe de travail pour développer des modèles pratiques pour la conception et l'exploitation des systèmes de traitement biologique des eaux résiduaires. Le résultat de ce travail a été le modèle IAWQ Activated Sludge Model No.1(Henze et al., 1987). Ce modèle, bien qu'ayant été étendu pour intégrer de nouvelles fractions de DCO et des processus tels que l'élimination biologique du phosphore, reste l'un des plus utilisés dans le monde pour modéliser les processus de traitement des eaux résiduaires. Le modèle IAWQ No.1 a introduit des concepts innovants tels que les fonctions de commutation pour activer et désactiver progressivement les équations de taux de processus en fonction des conditions environnementales. Ces fonctions, qui sont des expressions de type Monod, permettent de réduire les problèmes d'instabilité numérique lors des simulations. De plus, la présentation structurelle des modèles biocinétiques via un format matriciel a facilité la compréhension et l'application de ces modèles dans la pratique. L'ASM2 (Henze et al., 1995) a étendu les capacités de l'ASM1 en incluant les processus biologiques et chimiques d'élimination du phosphore. Le modèle ASM2d (Henze et al., 1999), basé sur l'ASM2, a ajouté l'activité dénitrifiante des OAP (organismes accumulateurs de phosphore). L'ASM3 (Gujer et al., 2000) a été conçu pour devenir le nouveau modèle standard, corrigeant un certain nombre de défauts de l'ASM1 et incluant de plus les processus de stockage interne des composés, qui jouent un rôle important dans le métabolisme des organismes. Koch et al. (2000) ont conclu que les modèles ASM1 et ASM3 sont tous deux capables de décrire le comportement dynamique dans les STEP municipales courantes. La Figure 14 montre un intérêt continu pour les études utilisant ces modèles. Ces modèles, qui sont principalement basés sur une extension des modèles ASM pour décrire les performances d'élimination de l'azote, du phosphore et de la DCO de l'usine.





Les ASM sont des modèles dynamiques robustes largement utilisés pour la compréhension des procédés basés sur les boues activées ainsi que leur dimensionnement, optimisation et contrôle. Il existe différentes versions des ASM : ASM1 (Henze et al., 2000a) ; Modèle Barker & Dold (New General) (Barker et Dold, 1997); ASM<sub>2</sub>d (Henze et al., 2000b) ; ASM3 (Gujer et al., 2000) ; ASM<sub>3</sub>+BioP (Rieger et al., 2001) ; ASM<sub>2</sub>d+TUD (Meijer, 2004) ; UCTPHO+ (Hu et al., 2007). Ces modèles intègrent la plupart des procédés et concepts modélisés dans les boues activées (Tableau 12).

| Model          | Nitrification | Denitrification | Reactions | State variables | Références           |
|----------------|---------------|-----------------|-----------|-----------------|----------------------|
| ASM1           | Х             | X               | 8         | 13              | Henze et al. (1987)  |
| ASM2           | х             | х               | 19        | 19              | Henze et al. (1995)  |
| ASM2d          | х             | х               | 21        | 19              | Henze et al. (1999)  |
| ASM3           | х             | X               | 12        | 13              | Gujer et al. (1999)  |
| ASM3-<br>BIO-P | Х             | Х               | 23        | 17              | Rieger et al. (2001) |

Tableau 12 Aperçu des modèles de boues activées (Sin G & Al R., 2021)

Ces modèles ASM sont largement reconnus et utilisés dans le domaine du traitement des eaux résiduaires. Ils permettent :

Une simulation plus précise et une optimisation efficace des processus biologiques et chimiques impliqués dans les systèmes de boues activées ;

- De prévoir le comportement des systèmes de traitement ;
- De tester différentes stratégies de gestion et d'améliorer l'efficacité des STEP.

Un aspect non résolu dans l'ASM2 concernait la nitrification associée aux bactéries ccumulatrices de polyphosphates (PAOs). Des études postérieures (Mino et al., 1995 ; Meinhol et al., 1999 ; Karm-Jespersen et Henze, 1993) ont démontré que les PAOs pouvaient être subdivisées en deux fractions distinctes dans le cadre de la modélisation, l'une d'entre elles étant capable de dénitrifier. Cette découverte a souligné le besoin d'une mise à jour du modèle ASM2, menant à l'élaboration du modèle ASM2d. Le modèle ASM2d intègre les capacités de dénitrification des PAOs, offrant ainsi une représentation plus précise des processus complexes dans les stations de traitement biologiques des eaux résiduaires. L'ASM2dModTemp prend en compte la bifraction des PAOs, permettant une modélisation plus précise des processus de nitrification et de dénitrification dans les réacteurs biologiques. Cette capacité est cruciale pour simuler les conditions réelles de traitement où les PAOs jouent un rôle significatif.

## 3.1 L'importance des Modèles Mathématiques

Le terme « modèle » peut désigner différents types, tels que les modèles linguistiques, visuels, physiques et mathématiques. Dans cette étude, nous nous concentrerons spécifiquement sur les modèles mathématiques. Ceux-ci utilisent un cadre mathématique pour établir des relations précises entre les entrées, les sorties et les caractéristiques d'un système à travers diverses équations. Les modèles mathématiques permettent de conceptualiser et de transmettre des connaissances sur un processus, de formuler et de tester des hypothèses, ainsi que de prédire et d'optimiser le comportement des systèmes dans diverses conditions (Rieger et al., 2012). Ils sont essentiels lorsque les expérimentations pratiques sont trop coûteuses, dangereuses, chronophages ou impossibles, en offrant une alternative pour étudier et simuler le comportement des systèmes sans multiplier les expériences réelles. L'objectif d'un modèle est donc de décrire le comportement d'un système donné aussi précisément que possible (Hauduc et al., 2009). Les modèles sont ainsi des outils précieux qui permettent d'étudier le comportement statique et dynamique d'un système, réduisant ainsi le nombre d'expériences pratiques nécessaires, lesquelles peuvent être coûteuses et chronophages (Jeppsson, 1996). Cependant, aucun modèle ne reflète entièrement la réalité. Le système d'intérêt peut être complexe, et les modèles peuvent devoir être simplifiés pour être utiles aux modélisateurs et aux praticiens (c'est-à-dire que des hypothèses doivent être faites, des conditions limites doivent être établies, et la propagation des erreurs en conséquence doit être considérée et évaluée).

## • Modélisation des Stations d'Épuration des Eaux Résiduaires

La modélisation des processus biologiques de traitement des eaux résiduaires est actuellement un domaine de recherche très actif. En général, on utilise des modèles mathématiques où des équations de divers types sont définies pour relier les entrées, les sorties et les caractéristiques d'un système. Les études de modèles des stations d'épuration des eaux résiduaires (STEP) peuvent avoir différents objectifs :

(1) apprentissage, c'est-à-dire utiliser des simulations pour augmenter la compréhension du processus ;

(2) conception, c'est-à-dire évaluer plusieurs alternatives de conception pour une nouvelle STEP ou l'extension de celles existantes ;

(3) optimisation et contrôle des processus, c'est-à-dire évaluer plusieurs scénarios susceptibles d'améliorer le fonctionnement et/ou de réduire les coûts.

L'utilisation des modèles ASM dans le domaine du traitement des eaux résiduaires est principalement orientée vers l'optimisation des procédés, représentant 53 % des applications. Ces modèles sont essentiels pour améliorer l'efficacité opérationnelle et réduire les coûts des stations d'épuration. Ils jouent également un rôle crucial dans la réhabilitation des stations d'épuration, avec un pourcentage de 30 %. En ce qui concerne le dimensionnement des stations d'épuration, les modèles ASM sont utilisés dans 24 % des cas. Les stratégies de contrôle, représentant 20 % des applications, bénéficient également des modèles ASM pour développer des approches efficaces de gestion et de régulation des procédés, assurant ainsi un fonctionnement optimal des stations d'épuration. Le reste des applications des modèles ASM se répartit entre divers domaines, optimisation en temps de pluie et du réseau, recherche et formation, les modèles ASM sont également utilisés pour traiter des effluents spécifiques nécessitant des approches adaptées.

Diverses autres applications complètent l'utilisation des modèles ASM dans le traitement des eaux résiduaires. Ces répartitions montrent l'importance et la polyvalence des modèles ASM dans l'amélioration et la gestion des systèmes de traitement des eaux résiduaires. (Figure 15)



Figure 15 Analyse des Domaines d'Application des Modèles ASM(OIE., 2008)

La Figure 16 montre comment les observations du monde réel sont traduites en un modèle de station de traitement. Les modèles de stations nécessitent un certain nombre d'entrées, qui sont ensuite utilisées pour produire une prédiction (une sortie). Souvent, le modèle nécessite des entrées qui doivent être générées à partir de diverses observations obtenues sur le système réel. Les entrées du modèle ne sont pas standardisées et peuvent différer d'un modèle à l'autre. Ces différences dépendent de l'objectif et de la complexité du modèle.





## 3.2 Description du modèle de boues activées (ASM2dModTemp)

Le modèle ASM2dModTemp est une extension du modèle ASM2d, développé à partir des précédents modèles ASM, est une avancée significative dans la modélisation des processus de traitement des eaux résiduaires. Il intègre des fonctionnalités améliorées pour la simulation de la dynamique des nutriments, en particulier la phosphore et l'azote, et ajuste les processus en fonction de la température, ce qui est crucial pour l'optimisation des systèmes de boues activées. L'extension apportée par Gernaey et al., 2004 à ce modèle consiste à rendre les taux de désintégration des processus dépendants de l'accepteur d'électrons. En termes simples, cela signifie que les vitesses de désintégration des matières organiques dans le modèle ne sont plus fixes mais varient en fonction du type d'accepteur d'électrons présent dans l'environnement. Les accepteurs d'électrons peuvent être l'oxygène (dans des conditions aérobies), les nitrates (dans des conditions anoxiques), ou d'autres composés dans des conditions spécifiques. Cette modification permet de mieux représenter la réalité des processus biologiques dans les stations de traitement des eaux résiduaires, où la disponibilité des accepteurs d'électrons influence fortement les taux de réaction. En ajustant les taux de désintégration en fonction des accepteurs d'électrons, le modèle devient plus précis et peut mieux prédire les performances du traitement biologique sous différentes conditions opératoires. Le modèle ajuste aussi les taux de réaction biologiques en fonction des changements de température. Cela permet une modélisation plus précise des performances des réacteurs de boues activées en tenant compte de l'impact thermique sur les processus tels que la nitrification, la dénitrification et la décomposition des boues. L'inclusion de la température améliore la précision des prévisions et l'optimisation opérationnelle, facilitant ainsi une gestion plus efficace des systèmes de traitement des eaux résiduaires en adaptant les conditions opérationnelles aux variations thermiques.

Le modèle ASM2dModTemp est présenté sous forme matricielle dans l'Annexe 5, selon Henze et al. (2000). La matrice comprend 19 composants et 21 équations de taux de processus, qui traduisent la transformation biologique de chaque composant. Les Facteurs de conversion, les paramètres cinétiques et stœchiométriques par défaut du modèle sont également présentés et décrits plus en détail dans les Tableaux de de l'ANNEXE 5.

#### 3.2.1 Modèles à l'état stationnaire et modèles de simulation dynamique

Pour la modélisation mathématique des systèmes de traitement des eaux résiduaires, deux niveaux de modèles mathématiques ont généralement été développés : les modèles à l'état stationnaire et les modèles de simulation dynamique. Les modèles à l'état stationnaire ont des débits et des charges constants et sont relativement simples. Cette simplicité rend ces modèles très utiles pour la conception. Dans ces modèles, il n'est pas nécessaire de fournir une description complète des paramètres du système, mais plutôt de déterminer les paramètres de conception importants à partir des critères de performance. Les modèles dynamiques sont beaucoup plus complexes que les modèles à l'état stationnaire et présentent des débits et des charges variables, ce qui fait que le temps est inclus comme paramètre. Les modèles de simulation dynamique sont donc utiles pour prédire la réponse du système en fonction du temps pour un système existant ou proposé. Cependant, leur complexité exige que beaucoup plus de constantes cinétiques et stœchiométriques soient fournies et que tous les paramètres de conception du système soient spécifiés. Les modèles à l'état stationnaire sont très utiles pour calculer les conditions initiales nécessaires au démarrage des modèles de simulation dynamique tels que les volumes des réacteurs, les débits de recyclage et d'évacuation, ainsi que les valeurs des diverses concentrations dans le ou les réacteurs et pour vérifier les résultats des modèles de simulation.

#### 3.2.2 Composants du Modèle

Tous les symboles pour les composants du modèle distinguent entre les composants solubles (notés "S") et les composants particulaires (notés "X"). Au sein des systèmes de boues activées, les composants particulaires sont supposés être associés aux boues activées (floculés sur les boues activées). Ils peuvent être concentrés par décantation ou épaississement dans les clarificateurs, tandis que les composants solubles seront uniquement transportés avec l'eau. Tous les composants particulaires du modèle (X) doivent être électriquement neutres (sans charges ioniques), tandis que les composants solubles (S) peuvent porter une charge ionique. Les définitions des composants solubles, 'S' et des composants particulaires 'X' sont détaillées dans ANNEXE 1.

## 3.2.3 Les composants biologiques

Dans le modèle ASM2dModTemp, les variables d'état identifient les composants clés du processus de traitement des eaux résiduaires et forment le vecteur de composant du modèle. Les variables d'état sont des quantités qui décrivent l'état actuel du système de traitement des eaux résiduaires à un moment donné. Elles incluent les concentrations de différents composants dans le réacteur, et sont cruciales pour prédire le comportement du système et pour la simulation dynamique (Tableau 13).

| Nom    | La description                                                                | Unités     |
|--------|-------------------------------------------------------------------------------|------------|
| H2O    | Eau                                                                           | m3 / j     |
| SI     | Matière soluble inerte                                                        | g DCO / m3 |
| S_0    | Oxygène dissous                                                               | g DCO / m3 |
| S_N2   | Azote gazeux                                                                  | g N / m3   |
| S_F    | Matière organique fermentescible et facilement biodégradable                  | g DCO / m3 |
| S_A    | Produits de fermentation, considérés comme de l'acétate                       | g DCO / m3 |
| S_NO   | Nitrate (NO3-N) et nitrite (NO2-N) azote                                      | g N / m3   |
| S_PO   | Phosphore inorganique soluble, principalement orthophosphates                 | g P / m3   |
| S_NH   | Azote ammoniacal (NH4-N)                                                      | g N / m3   |
| S_ALK  | Alcalinité                                                                    | Mol        |
| X_I    | Matière particulaire inerte                                                   | g DCO / m3 |
| X_S    | Matière lentement biodégradable                                               | g DCO / m3 |
| X_H    | Organismes hétérotrophes                                                      | g DCO / m3 |
| X_PAO  | Organismes accumulateurs de phosphore                                         | g DCO / m3 |
| X_PP   | Polyphosphate                                                                 | g DCO / m3 |
| X_PHA  | Produit de stockage interne des cellules d'organismes accumulant du phosphore | g DCO / m3 |
| X_AUT  | Biomasse autotrophique                                                        | g DCO / m3 |
| X_TSS  | Total des solides en suspension                                               | g TSS / m3 |
| X_MEOH | Hydroxydes métalliques                                                        | g DCO / m3 |
| X_MEP  | Phosphate métallique                                                          | g DCO / m3 |

**Tableau 13** les variables du modèle ASM2dModTemp (DHI., 2020)

Les composants du modèle sont divisés en deux grands groupes, les solubles et les particules. Tous les composants particulaires doivent être électriquement neutres, mais les solubles peuvent porter des charges ioniques.

La matière organique facilement biodégradable est subdivisée en deux catégories : la matière organique fermentescible et la matière organique facilement biodégradable, notées respectivement S\_F et S\_A. Pour les calculs stœchiométriques, il est supposé que S\_A est

uniquement constituée d'acétate, bien qu'en réalité, il existe une gamme variée de produits de fermentation. La matière organique lentement biodégradable, notée X\_S, est considérée comme particulaire. La matière organique soluble inerte, notée S\_I, ne peut plus être dégradée dans les stations d'épuration considérées. De même, la matière organique particulaire inerte, notée X\_I, n'est pas dégradée dans le système. La matière organique particulaire inerte X\_I n'est pas non plus dégradée dans le système (Tableau 15).

| Matière organique         |                                     |                          |                                   |            |
|---------------------------|-------------------------------------|--------------------------|-----------------------------------|------------|
| Matière organique soluble |                                     |                          | Matière organique<br>particulaire |            |
| COD inerte                | Matière facilement<br>biodégradable |                          | COD in outo                       | Lentement. |
|                           | Fermentescible                      | Produits de fermentation | COD merte                         | Biodégr.   |
| S_I                       | S_F                                 | S_A                      | X_I                               | X_S        |

Tableau 14 Les composants du modèle ASM2dModTemp en matière organique (DHI., 2020)

L'hétérogénéité de la biomasse s'exprime par trois types d'organismes : le X\_AUT nitrifiant (autotrophe), le X\_H hétérotrophe et les organismes accumulateurs de phosphate X\_PAO (Tableau 4.3).

- **Organismes nitrifiants (X\_AUT)** sont aérobies obligatoires et ils sont supposés oxyder l'ammonium S\_NH directement en nitrate S\_NO.

- Organismes hétérotrophes (X\_H) sont supposés se développer en conditions aérobies (avec oxygène), anoxiques (sans oxygène mais en présence de nitrates ou nitrites), et sont également actives en conditions anaérobies (sans oxygène et sans nitrates ou nitrites). Elles utilisent des composés organiques comme source d'énergie et de carbone. Leur activité est cruciale dans la dégradation de la matière organique et le processus de dénitrification.

- Organismes accumulateurs de phosphates (X\_PAO) : Ces organismes ont la capacité de stocker le phosphore dans leurs cellules. Ils sont essentiels pour l'élimination biologique du phosphore. Les PAOs peuvent utiliser les produits de fermentation et dénitrifier les composés azotés en conditions anoxiques, où le N<sub>2</sub> est le produit final de la dénitrification.

La concentration des organismes accumulateurs de phosphate n'inclut pas les produits de stockage interne poly-phosphates X\_PP et les produits de stockage organique interne de cellule X\_PHA :

1. **Poly-phosphates** (**X\_PP**) : Les poly-phosphates sont des réserves internes de phosphore présentes dans les cellules des PAOs (organismes accumulateurs de phosphates). Ils sont essentiels pour le processus de stockage et de libération de phosphore pendant les cycles d'aération et de dénitrification. Bien que les poly-phosphates soient une fraction importante des boues activées, ils ne sont pas exprimés en termes de Demande Chimique en Oxygène (COD), car ils ne sont pas directement dégradés ou mesurés dans les termes de la demande en oxygène du système.

2. **Produits de stockage organique interne des cellules (X\_PHA)** : Ces produits incluent des composés comme les poly-hydroxy-alcanoates (PHA), le glycogène, et d'autres réserves énergétiques stockées à l'intérieur des cellules des PAOs. Ces produits sont importants pour la fonction métabolique des PAOs, en particulier pour leur capacité à accumuler du phosphore et à dénitrifier. Cependant, dans le modèle, ces produits ne sont pas directement identifiables chimiquement.

3. **Modélisation stœchiométrique** : Pour simplifier la modélisation stœchiométrique, les produits de stockage organique interne des cellules sont représentés par le poly-hydroxybutyrate (PHB,  $C_4H_6O_2$ ). Ce choix est fait parce que le PHB est un exemple typique de PHA et permet de représenter les propriétés fonctionnelles des produits de stockage organique interne des cellules sans devoir identifier chaque type de composé spécifique.

| La biomasse               |                             |                                       |                                              |            |  |
|---------------------------|-----------------------------|---------------------------------------|----------------------------------------------|------------|--|
|                           |                             | Organismes accumulateurs de phosphate |                                              |            |  |
| Organismes<br>autotrophes | Organismes<br>hétérotrophes | La biomasse                           | Produits de stockage interne<br>des cellules |            |  |
|                           |                             |                                       | Polyphosphate                                | Organiques |  |
| X_AUT                     | X_H                         | X_PAO                                 | X_PP                                         | X_PHA      |  |

 Tableau 15 Les composants du modèle ASM2dModTemp en biomasse (DHI., 2020)

Pour la modélisation de l'élimination du phosphate inorganique soluble phosphate S\_PO est ajouté. Pour l'équilibre des charges électriques, on suppose que S\_PO existe de 50%  $H_2PO_4^-$  et 50%  $HPO_4^{2-}$  indépendant du pH.

| Les nutriments    |         |          |                          |
|-------------------|---------|----------|--------------------------|
| Azote inorganique |         |          | Phosphate<br>inorganique |
| Azote gazeux      | Nitrate | Ammoniac |                          |
| S_NH              | S_NO    | S_NH     | S_PO                     |

Tableau 16 Les composants du modèle en nutriments (DHI., 2020)

Les autres composants du modèle sont:

**DO**: L'oxygène dissous peut être soumis à un échange de gaz.

**S\_ALK**: L'alcalinité est utilisée dans le modèle pour approximer la continuité des charges électriques. On suppose qu'il n'existe que du bicarbonate (HCO3-). Cela peut donner une indication précoce des conditions de pH bas.

**X\_TSS**: Le total des solides en suspension (TSS) permet l'inclusion de particules minérales et de poly-phosphate.

## 3.2.4 Les processus modélisés dans ASM2dModTemp

Les processus modélisés dans la catégorie de modèle ASM2dMod Temp sont répertoriés dans le tableau 17.

| La description                                              |
|-------------------------------------------------------------|
| Hydrolyse aérobie                                           |
| Hydrolyse anoxique                                          |
| Hydrolyse anaérobie                                         |
| Croissance hétérotrophique sur matière fermentescible et    |
| facilement biodégradable                                    |
| Croissance hétérotrophique sur les produits de fermentation |
| Dénitrification sur matière fermentescible et facilement    |
| biodégradable                                               |
| Dénitrification sur les produits de fermentation            |
| Fermentation                                                |
| Lyse des organismes hétérotrophes                           |
| Stockage du matériel de stockage organique interne de la    |
| cellule                                                     |
|                                                             |

| StorageOfXPP    | Stockage aérobie du poly-phosphate                                                                                     |
|-----------------|------------------------------------------------------------------------------------------------------------------------|
| AnStorageOfXPP  | Stockage anoxique de poly-phosphate                                                                                    |
| AerGrowthOnXPHA | Croissance aérobie d'organismes accumulant du phosphate<br>sur le matériel de stockage organique interne de la cellule |
| DenitrifByXPAO  | Croissance anoxique d'organismes accumulant du phosphate                                                               |
|                 | sur le matériel de stockage organique interne de la cellule                                                            |
| LysisOfXPAO     | Lyse des organismes accumulateurs de phosphore                                                                         |
| LysisOfXPP      | Lyse du poly-phosphate                                                                                                 |
| LysisOfXPHA     | Lyse du matériau de stockage organique interne de la cellule                                                           |
| GrowthOfAuto    | Croissance d'organismes autotrophes                                                                                    |
| LysisOfAuto     | Lyse des organismes autotrophes                                                                                        |
| Précipitation   | Précipitation simultanée de phosphore                                                                                  |
| Redissolution   | Redissolution simultanée du phosphore                                                                                  |
| Aération        | Aération                                                                                                               |

#### 3.2.4.1 Processus d'hydrolyse

La matière X\_S lentement biodégradable est convertie en matière S\_F fermentescible et facilement biodégradable au moyen de processus enzymatiques externes. Seuls les organismes hétérotrophes X\_H peuvent catalyser l'hydrolyse. On suppose qu'en raison de l'hydrolyse, une petite fraction f\_S\_I de matière organique soluble inerte S\_I est également libérée. Il existe des preuves expérimentales que la vitesse d'hydrolyse dépend des accepteurs d'électrons disponibles. L'hydrolyse se produit en contact étroit entre la matière lentement biodégradable et les organismes hétérotrophes. Par conséquent, il est également supposé être limité en surface (DHI., 2020).

-L'hydrolyse aérobie se produit lorsqu'il y a suffisamment d'oxygène dissous S\_O.

-Une hydrolyse anoxique se produit lorsqu'il y a peu d'oxygène dissous S\_O et suffisamment de nitrates S\_NO présents. L'hydrolyse anoxique est plus lente que l'hydrolyse aérobie et donc la vitesse est réduite d'un facteur n\_NO\_hyd (DHI., 2020).

-L'hydrolyse anaérobie se produit lorsqu'il y a peu d'oxygène dissous S\_O et de nitrate S\_NO. L'hydrolyse anoxique est plus lente que l'hydrolyse aérobie et par conséquent la vitesse est réduite d'un facteur n\_fe (DHI., 2020).

La fraction d'azote dans la matière lentement biodégradable est supposée constante, il n'est donc pas nécessaire d'inclure un processus d'hydrolyse séparé pour l'azote organique particulaire (DHI., 2020).

#### 3.2.4.2 Processus d'organismes hétérotrophes

La croissance aérobie d'organismes hétérotrophes X\_H sur de la matière fermentescible facilement biodégradable S\_F et la croissance aérobie sur les produits de fermentation sont modélisées comme deux processus parallèles. Les deux ont le même taux de croissance et le même coefficient de rendement (DHI., 2020).

La croissance anoxique d'organismes hétérotrophes X\_H sur une matière fermentescible facilement biodégradable S\_F et sur des produits de fermentation S\_A est modélisée de la même manière que la croissance aérobie. Comme accepteur d'électrons, le nitrate S\_NO est utilisé. Un facteur de correction n\_g corrige le fait que tous les organismes hétérotrophes X\_H ne peuvent pas se développer sur nitrate et le fait que la dénitrification ne se déroule qu'à un taux réduit. On fait l'hypothèse que tout nitrate S\_NO est réduit en diazote S\_N<sub>2</sub> (DHI., 2020).

Dans des conditions anaérobies, les organismes hétéréotrophes peuvent transformer la matière fermentescible et facilement biodégradable S\_F en produits de fermentation S\_A. La fermentation est modélisée comme un simple processus de transformation. En raison du fait que la fermentation libère des composants chargés négatifs, l'alcalinité S\_ALK est utilisée pour maintenir la continuité électrique (DHI., 2020).

La lyse des organismes hétérotrophes X\_H est la somme de tous les processus de désintégration. Le taux dépend de l'accepteur d'électrons. Le processus d'ammonification est ignoré dans l'ASM2dTemp en raison de l'hypothèse que la matière fermentescible et facilement biodégradable S\_F contient une fraction constante d'azote et de phosphore (DHI., 2020).

#### 3.2.4.3 Processus des organismes accumulateurs de phosphate

Certains organismes, appelés organismes accumulateurs de phosphate X\_PAO, sont connus pour leur potentiel d'accumulation de phosphate. Le phosphate s'accumule sous forme de polyphosphate X\_PP (DHI., 2020).

Dans le modèle ASM2Temp, on a supposé que les organismes accumulateurs de phosphate ne pouvaient pas dénitrifier. La capacité dénitrifiante des organismes accumulateurs de phosphate a été mise en œuvre dans le modèle ASM2dTemp parce que des preuves expérimentales sont disponibles que certains des organismes accumulateurs de phosphate peuvent dénitrifier. Mais on ne tient toujours pas compte de l'importance du glycogène en tant que matériau de stockage organique interne des cellules (DHI., 2020).

Les organismes accumulateurs de phosphate X\_PAO utilisent l'énergie, issue de la libération du poly-phosphate X\_PP sous forme de phosphate S\_PO, pour stocker les produits de

fermentation externe S\_A sous forme de matériau de stockage interne cellulaire X\_PHA. Cependant, on a pensé qu'il ne se déroulait que dans des conditions anaérobies, il a également été observé dans des conditions anoxiques et aérobies. Le modèle ne contient donc pas de termes d'inhibition pour le manque d'oxygène S\_O et la présence de nitrate S\_NO (DHI., 2020). Le stockage aérobie du phosphate S\_PO sous forme de poly-phosphate X\_PP nécessite les organismes accumulateurs de phosphate X\_PAO pour obtenir de l'énergie. L'énergie peut être obtenue à partir de l'oxydation du matériau de stockage organique interne de la cellule X\_PHA. Lorsque la teneur en phosphate des organismes accumulateurs de phosphate S\_PO a tendance à s'arrêter. Ceci est modélisé en utilisant un terme d'inhibition K\_MAX (DHI., 2020).

Le stockage anoxique du phosphate S\_PO sous forme de poly-phosphate X\_PP nécessite les organismes accumulateurs de phosphate X\_PAO pour obtenir de l'énergie. L'énergie peut être obtenue à partir de la respiration anoxique du matériau de stockage organique interne de la cellule X\_PHA. Lorsque la teneur en phosphate des organismes accumulateurs de phosphate X\_PAO devient trop élevée, le stockage du phosphate S\_PO a tendance à s'arrêter. Ceci est modélisé en utilisant un terme d'inhibition K\_MAX (DHI., 2020).

Dans des conditions aérobies, les organismes accumulateurs de phosphate X\_PAO sont supposés se développer uniquement sur les produits de stockage organique interne des cellules X\_PHA. Le phosphate S\_PO est utilisé comme nutriment pour la croissance. On néglige le fait que les produits de fermentation solubles S\_A, sur lesquels poussent les organismes accumulateurs de phosphate X\_PAO, ne peuvent devenir disponibles, dans une purification biologique, dans des conditions aérobies (DHI., 2020).

Les organismes accumulateurs de phosphate X\_PAO peuvent également se développer dans des conditions anoxiques. Ici aussi, on suppose que la croissance ne se fait que sur les produits de stockage organique interne des cellules X\_PHA. Le phosphate S\_PO est utilisé comme nutriment pour la croissance. On néglige le fait que les produits de fermentation solubles S\_A, sur lesquels poussent les organismes accumulateurs de phosphate X\_PAO, ne peuvent pas devenir disponibles, dans une purification biologique, dans des conditions aérobies (DHI., 2020).

La mort, la respiration endogène et l'entretien, combinés à la lyse, entraînent la perte des trois fractions des organismes accumulateurs de phosphate (les organismes X\_PAO, le polyphosphate X\_PP et les produits de stockage organique interne de la cellule X\_PHA). Tous les

trois sont modélisés comme un processus de premier ordre par rapport au composant considéré: le taux dépend de l'accepteur d'électrons.

- Lyse des organismes accumulateurs de phosphate X\_PAO. On suppose qu'ils se désintègrent en substrat X\_S lentement biodégradable (DHI., 2020).

- Lyse du poly-phosphate X\_PP. Il existe des preuves expérimentales que le poly-phosphate X\_PP se désintègre plus rapidement que les deux autres composants. Cela peut être prédit en utilisant un taux accru b\_PP. On suppose que le poly-phosphate X\_PP se désintègre en phosphate S\_PO.

- Lyse des produits de stockage organique interne des cellules X\_PHA, qui sont supposés se désintégrer en produits de fermentation S\_A (DHI., 2020).

#### 3.2.4.4 Processus d'organismes autotrophes

Le composant intermédiaire de la nitrification, le nitrite, n'est pas inclus dans le modèle ASM2dTemp. On suppose que l'ammonium S\_NH est oxydé directement en nitrate S\_NO. La croissance d'organismes autotrophes ne se produit que dans des conditions aérobies. La nitrification conduit au nitrate S\_NO et donc la quantité d'alcalinité S\_ALK est réduite afin de conserver la continuité électrique. Les organismes autotrophes ont également une absorption de phosphate. La lyse des organismes autotrophes est la somme de tous les processus de désintégration. Le taux dépend de l'accepteur d'électrons (DHL, 2020).

## 3.2.4.5 Dépendance de la concentration en oxygène à la température

La dépendance de la concentration de saturation en oxygène est calculée comme suit: (DHI., 2020)

$$S_{0,Sat} = 14,65 - 0,41 T + 0,00799T^2 - 0,0000778T^3$$
(46)

La correction de température est calculée comme suit:

$$K_T = K_{T_{ref}} \cdot \theta^{(T-T_{ref})} \tag{47}$$

Où:

 $-k\tau$  désigne le paramètre cinétique : c'est-à-dire le taux de croissance spécifique maximum ( $\mu$ ), le coefficient de dégradation (b) ou la constante d'hydrolyse (k) à la température actuelle T;

 $T_{ref}$  est la temperature de référence (20°C);

 $-\theta$  est la constante de Arrhenius.

## 3.3 Contrôle d'aération et consommation d'énergie

Le contrôle d'aération dans les stations d'épuration des eaux résiduaires (STEP) joue un rôle crucial dans l'optimisation non seulement du traitement de l'azote mais aussi la consommation d'énergie, un paramètre essentiel pour répondre aux normes environnementales strictes. L'aération est un processus fondamental dans le traitement biologique des eaux résiduaires, fournissant l'oxygène nécessaire aux microorganismes pour dégrader les polluants organiques et convertir l'ammonium en nitrate. Toutefois, ce processus représente également une part importante de la consommation énergétique totale des STEP, souvent de l'ordre de 40 à 75 % selon la taille et le type de station (Mamais et al., 2015). L'efficacité de l'aération est ainsi directement liée à l'empreinte énergétique des stations, faisant de la gestion de l'aération un levier majeur pour réduire les coûts opérationnels et améliorer la durabilité (Han H et al., 2020).

Cette section explore les méthodes actuelles de contrôle de l'aération en mettant l'accent sur leur impact sur la consommation d'énergie et le traitement de l'azote. Nous examinerons les défis associés à la gestion énergétique dans les STEP, les approches les plus récentes en matière de contrôle de l'aération, et les opportunités offertes par les technologies avancées pour améliorer l'efficacité énergétique tout en optimisant le traitement de l'azote. En analysant les stratégies de contrôle les plus prometteuses, nous mettrons en lumière les meilleures pratiques pour atteindre un équilibre optimal entre performance de traitement et gestion des coûts.

#### - Etat de l'art

Cette section passe en revue la consommation d'énergie liée à l'aération dans les réacteurs biologiques et les méthodes de contrôle pour les STEP. Dans les STEP, la majorité de l'énergie est consommée par les systèmes d'aération. Ces systèmes sont essentiels pour soutenir à la fois l'oxydation biochimique de la matière organique et la conversion de l'ammonium en nitrate. L'aération des bassins biologiques apporte de l'oxygène aux boues, ce qui aide à dégrader la matière organique et à réduire les concentrations d'azote. Cela nécessite de maintenir une concentration en OD adéquate (Hernández-del-Olmo et al., 2016 ; Huang et al., 2020). Pour garantir une bonne qualité des effluents, la concentration en OD doit être maintenue suffisamment élevée. Plusieurs variables sont manipulées dans les STEP pour contrôler le processus de boues activées, telles que la concentration en oxygène dissous (OD), la concentration en ammonium, le flux de recyclage interne, le flux de recyclage des boues ou le

dosage de carbone externe (Descoins et al., 2012 ; Zuluaga-Bedoya et al., 2018 ; Wang et al., 2019; Chabi et Hammar, 2019). L'aération est généralement le plus grand consommateur d'énergie dans les STEP, représentant entre 40 % et 75 % de la demande énergétique totale (Mamais et al., 2015). Selon Panepinto et al., la consommation énergétique totale des STEP en Italie a été estimée à 66,78 GWh/an, dont environ 50 % provient de l'aération des bassins de boues activées (Panepinto et al., 2016). L'étude de Dabrowski et al. (2016) a conclu que l'évaluation de la consommation d'énergie dans les usines de traitement des boues montrait que l'aération des processus de traitement biologique pouvait représenter jusqu'à 47 % de la consommation électrique de l'usine. La principale consommation d'énergie concerne la phase d'aération, qui représente plus de la moitié de la demande énergétique de l'usine, soit 55,6 %. Masłoń (2017) a également noté que, dans le cas des usines de traitement par boues activées, environ 50 % de l'énergie est utilisée pour l'aération et le mélange. Dans la plupart des STEP moyennes et grandes avec des systèmes de boues activées, l'aération représente environ 50 à 60 % de la consommation énergétique totale (Dairi et al., 2017). La phase d'aération des boues activées est la plus grande contribution à la consommation énergétique totale, représentant entre 50 et 70 % (Lozano Avilés et al., 2019). Environ 60 à 70 % de l'énergie est utilisée dans le traitement biologique (Li et al., 2019a, 2019b). Siatou et al. (2020) ont conclu que, dans une STEP moyenne, le processus d'aération est le principal poste de consommation d'énergie, représentant environ 67,2 % de l'approvisionnement énergétique électrique total de l'usine. L'aération est l'un des processus les plus énergivores, consommant entre 50 % et 90 % de l'énergie requise par une STEP (Skouteris et al., 2020). L'aération dans le traitement biologique (50 à 70 % de l'énergie consommée dans une STEP standard), le décantation primaire et secondaire avec pompage des boues (14 %), et la déshydratation des solides (généralement 7 %) sont les principaux contributeurs (Campo et al., 2022). Une étude de recherche menée par Muloiwa et al. (2023) a montré que l'aération biologique consomme le plus d'énergie (67,3 %) dans le traitement des eaux résiduaires par rapport aux processus de traitement physique (18,8 %) et aux produits chimiques (13,9 %). En Algérie, les systèmes d'aération des usines de boues activées représentent à eux seuls plus de 50 % de l'énergie consommée (Office National d'Assainissement de Saida, 2020). Plusieurs applications de contrôle ont été étudiées dans la littérature, telles que le contrôleur à logique floue (FLC), le contrôleur prédictif de modèle (MPC), le contrôle proportionnel-intégral (PI), le contrôle d'aération basé sur l'ammoniac (ABAC), les modèles ANN et le contrôle intelligent utilisant un algorithme de Q-learning. Ces applications ont été examinées dans diverses combinaisons hiérarchiques de PI, MPC et FLC,

révélant un compromis entre les coûts opérationnels et la qualité des effluents. Différents modèles (linéaires, exponentiels et logarithmiques) ont été comparés aux réseaux de neurones et aux modèles de forêt aléatoire en utilisant une base de données de 317 STEP employant des processus de boues activées situées dans le nord-ouest de l'Europe. Les résultats ont montré que les indicateurs de performance des modèles de coût basés sur l'apprentissage automatique (MLCM) ont surpassé ceux trouvés dans la littérature, mettant en évidence la puissance des techniques d'apprentissage automatique dans la modélisation de la consommation d'énergie des STEP (Torregrossa et al., 2017). Le contrôle limité de l'aération à base d'ammoniac vise à prévenir une nitrification complète et à maintenir la concentration en ammoniac dans l'effluent à un point de consigne généralement compris entre 1 et 2 mgN/L (Amand et al., 2013). Cette stratégie de contrôle est utilisée pour maintenir les niveaux d'ammoniac légèrement élevés tout en respectant les normes d'émission (Rieger et al., 2014). Plusieurs techniques de comparaison de l'énergie utilisant des indicateurs de performance clés (KPI) calculés à partir de données facilement mesurables de la plupart des STEP ont été examinées. Longo et al. (2016) ont décrit trois approches différentes : une approche normalisée, une approche statistique et des techniques de programmation utilisant l'analyse d'enveloppement des données. Oulebsir et al. (2020) ont proposé une méthodologie pour sélectionner les meilleures pratiques de consommation d'énergie basées sur différents KPI calculés à partir de données généralement mesurées dans les STEP à une échelle quotidienne, et pour optimiser la consommation d'énergie en utilisant un réseau neuronal profond formé avec les données sélectionnées. L'avantage principal de cette méthode est qu'elle peut être utilisée sur plusieurs STEP comme outil de diagnostic ou pour prédire la consommation quotidienne d'énergie de la STEP (Oulebsir et al., 2020).

Revollar et al. (2018) ont mis en œuvre une stratégie en cascade utilisant le contrôle PI pour la DO et l'ammoniac sur la plateforme BSM2, ce qui a entraîné une amélioration de 9 % des coûts opérationnels. Maheswari et al. (2021) ont développé un système de contrôle en cascade pour un traitement biologique en trois étapes, en se concentrant sur les fluctuations d'ammoniac. Malgré des coûts opérationnels plus élevés, une amélioration de l'indice de qualité de l'effluent (IQE) a été observée (Maheswari et al., 2021). Shiek et al. (2021) ont mis en œuvre le contrôle basé sur l'ammoniac (ABAC) avec quatre combinaisons différentes de contrôleurs : PI-MPC, MPC-MPC, PI-flou et MPC-flou, ce qui a entraîné un compromis entre l'indice des coûts opérationnels (OCI) et l'IQE. Leur étude a montré une amélioration de 18 % du taux d'élimination de l'ammoniac avec MPC-MPC, mais l'élimination du phosphore n'a pas été

significativement affectée. En tant que stratégie de contrôle avancée, le modèle de contrôle prédictif (PCM) a été progressivement appliqué dans les STEP avec de larges perspectives d'application (Sadeghassadi et al., 2018). Récemment, l'intelligence artificielle avec des algorithmes puissants a suscité un grand intérêt de la part des chercheurs. Elle a été utilisée par certains chercheurs pour équilibrer la relation entre la qualité de l'effluent et les coûts opérationnels (Qiao et al., 2019; Han et al., 2020). Les modèles de réseaux neuronaux artificiels (ANN) mentionnés dans la littérature, en particulier ceux axés sur la stabilité de Lyapunov, les réseaux neuronaux à fonction de base radiale (RBF) en contexte récurrent, et les contrôleurs PID optimisés avec l'algorithme d'optimisation basé sur l'apprentissage, sont remarquables (Kumar et al., 2020). Le modèle utilisant des réseaux neuronaux RBF en couches de contexte récurrent pour l'identification des systèmes dynamiques non linéaires offre une perspective intéressante sur la modélisation des variations temporelles dans les systèmes complexes. Cette approche pourrait être bénéfique pour capturer les fluctuations dynamiques des niveaux de pollution, des flux d'oxygène, etc., dans notre contexte de traitement des eaux résiduaires (Kumar, 2024). Le modèle utilisant des contrôleurs PID optimisés avec l'algorithme d'optimisation basé sur l'apprentissage pour le système de balle et de poutre souligne l'importance d'optimiser les paramètres de contrôle pour améliorer la performance du système (Chaturvedi et al., 2023).

Une mise en œuvre judicieuse et une compréhension approfondie des limitations de ces approches sont essentielles pour en tirer pleinement parti dans le traitement des eaux résiduaires. Une collaboration étroite entre les experts en traitement de l'eau et les spécialistes du contrôle et de la modélisation est souvent nécessaire pour assurer le succès de ces approches.

#### 3.3.1 Aération

La fonction de l'aération est de transférer l'oxygène au mélange liquide pour la biodégradation aérobie et l'élimination des contaminants. Le taux de transfert air-liquide est l'entrée principale pour décrire le processus d'aération, car il regroupe différentes informations sur le système d'aération (type de système d'aération utilisé, débit d'air fourni, efficacité de l'aération, etc.). Le coefficient d'échange de l'oxygène (kLa) est utilisé et modifié pour ajuster les conditions de fonctionnement du système d'aération, par exemple, pour augmenter ou diminuer le niveau désiré de DO dans les réacteurs à boues activées. Le changement de concentration en oxygène dû à l'aération est exprimé par la formule suivante : (Han H et al., 2020).

$$\rho_0 = K_L a. \left( S_{0,Sat} - S_0 \right)$$

Où :

 $\rho_0$ : Le taux de transfert air-liquide (en mg/L·h). Il représente la quantité d'oxygène transférée à l'eau par unité de temps.

 $K_{La}$ : Le coefficient d'échange de l'oxygène (j<sup>-1</sup>)

 $S_{0,Sat}$ : Concentration d'oxygène dissous à saturation (en mg/L). C'est la concentration maximale d'oxygène que l'eau peut dissoudre à une température donnée. Elle dépend de la température de l'eau et de la pression atmosphérique.

 $S_0$ : Concentration d'oxygène dissous actuelle (en mg/L). C'est la concentration d'oxygène effectivement présente dans l'eau avant le processus de transfert.

#### **3.3.2** Aérateurs de surface

Il s'agit d'un modèle simple d'aération qui calcule la valeur de  $k_{La}$  en fonction de l'efficacité de l'aération, de la puissance absorbée, et du gradient d'oxygène par rapport à la saturation à la température de fonctionnement (DHI., 2020):

$$K_L a = \frac{AE.P}{(C_S - C_0).V} \tag{49}$$

Où :

- AE représente l'efficacité de l'aération (kg O2/kWh)

- **P** est la puissance absorbée (W)

-  $\beta$  est un facteur de correction pour la concentration d'oxygène à saturation (–)

-  $C_S$  et  $C_0$  désignent respectivement la concentration d'oxygène à saturation et la concentration d'oxygène dissous dans le réservoir d'air (g  $\rm O_2/m^3)$ 

- V est le volume du réservoir d'air comprimé (m<sup>3</sup>) (MIKE, 2020).

## 3.3.3 Optimisation de l'aération

Le contrôle automatique des processus dans les stations d'épuration des eaux résiduaires (STEP) est essentiel pour obtenir un traitement optimal tout en minimisant l'utilisation de ressources elles que les produits chimiques et l'énergie. Le niveau de contrôle va des simples contrôleurs de rétroaction (tels que les contrôleurs PI qui sont les plus largement utilisés aujourd'hui) aux

(48)

méthodes avancées telles que le contrôle prédictif de modèle (MPC), où les algorithmes d'optimisation et les prédictions de modèles sont utilisés pour résoudre les problèmes de contrôle et les algorithmes d'intelligence artificielle (Figure), ont un grand potentiel car ils permettent de contrôler une variété d'objectifs (par exemple, les coûts opérationnels, la consommation d'énergie, émissions de gaz à effet de serre) et peuvent prendre en compte des systèmes complexes difficiles à optimiser avec des méthodes plus simples (Åmand et al., 2013 ; Stare et al., 2007). Il est possible d'imposer des contraintes aux deux États et le signal de contrôle qui en fait un outil puissant. Le contrôleur prédictif peut être utilisé pour contrôler directement le processus, ou dans une structure de contrôle hiérarchique où un MPC de haut niveau transmet des points de consigne aux contrôleurs de niveau inférieur (Duzinkiewicz et al., 2009 ; Vega et al., 2014).

Le contrôle des stations d'épuration repose sur quatre piliers (Figure 17) :

• Une compréhension approfondie des opérations de la station et de sa dynamique, résumée dans un modèle mathématique du processus approprié ;

• Des capteurs qui fournissent des données en temps réel sur certaines variables de sortie du processus et les perturbations qui agissent sur lui ;

• Des stratégies de contrôle adéquates qui cherchent à minimiser les écarts par rapport aux objectifs de contrôle (Les actionneurs exécutent les commandes des contrôleurs en activant ou ajustant des équipements tels que pompes, vannes ou aérateurs dans la station d'épuration. Ils sont essentiels pour traduire les décisions de contrôle en actions physiques, permettant d'ajuster les conditions de traitement de l'eau en temps réel.



*Figure 17* Description schématique de la chaîne de contrôle d'une station d'épuration des eaux résiduaires(Vanrolleghem, 1994).

Ces méthodes permettent d'ajuster les niveaux d'aération en réponse aux variations des chargespolluantes et aux conditions opérationnelles, optimisant ainsi à la fois la consommationd'énergie et l'efficacité du traitement. Par exemple, un contrôle basé sur la concentration d'ammonium dans l'effluent peut aider à maintenir des niveaux d'azote conformes aux normes tout en réduisant les coûts énergétiques associés à une aération excessive. Le contrôle précis del'aération est essentiel pour optimiser le traitement de l'azote. En ajustant les taux d'aération enfonction des besoins biologiques, il est possible de maintenir des niveaux adéquats d'oxy-gène dissous, favorisant ainsi les processus de nitrification et de dénitrification, tout en minimisantles excès d'aération qui peuvent conduire à une consommation énergétique excessive (DHI.,2020).

Le contrôle par saturation PI est un contrôle en boucle fermée qui comprend deux terme (P, I).

**Proportionnel (P)** : Ajuste l'apport d'air (via des compresseurs ou des aérateurs) proportionnellement à l'écart entre le niveau d'OD mesuré et le niveau d'OD souhaité.

**Intégral (I)** : Corrige les écarts accumulés au fil du temps, en ajustant l'apport d'air pour compenser les déviations persistantes (DHI., 2020).

Sa fonctionnalité inclut la capacité à gérer les réponses transitoires à l'état stationnaire, offrant ainsi les solutions les plus simples mais les plus efficaces aux grands problèmes de contrôle dans le monde réel. Grâce à l'utilisation d'une boucle de contrôle, il permet de réguler l'aération, d'éviter un apport excessif d'air (perte d'énergie), et potentiellement d'améliorer la stabilité du processus (Eq 50). Le taux de transfert air-liquide est l'entrée principale décrivant le processus d'aération, car il rassemble différentes informations sur le système d'aération (type de système utilisé, débit d'air fourni, efficacité de l'aération, etc.). Une manipulation du k<sub>L</sub>a est utilisée pour atteindre la concentration en oxygène dissous (DO) souhaitée dans les réacteurs à boues activées. Le gain indique l'efficacité du contrôleur à réguler la variable autour de son point de consigne (Eq 51). L'action de contrôle est proportionnelle à l'erreur, c'est-à-dire la différence entre le point de consigne et la valeur mesurée (signal d'entrée), son intégrale, et sa première dérivée (DHI., 2020).

#### е=уѕ-ум

Où :

- e : représente l'erreur
- $\mathbf{y}_{M}$ : est la sortie mesurée par le capteur
- $\mathbf{y}_{S}$ : est la valeur de consigne pour la variable contrôlée

$$u = u_0 + K_p \cdot e + \frac{K_P}{T_I} \cdot \int e + K_P \cdot T_D \cdot \frac{de}{dt}$$
(51)

Où :

 $u_0$  est l'action de contrôle de base (-)

K<sub>p</sub> est le facteur de proportionnalité (-), ou gain du contrôleur

 $T_I$  et  $T_D$  désignent les périodes de temps intégrale et dérivée (j) = 0,1 pour les deux.

#### 3.3.3.1 Application du Feedback et des Contrôleurs PI

Dans le domaine du contrôle des processus, l'application du feedback est essentielle pour maintenir la stabilité et optimiser la performance des systèmes complexes dans les stations d'épuration des eaux résiduaires, notamment l'aération, qui est un facteur clé dans la réduction des niveaux de nutriments et de polluants (Chaturvedi, S et al., 2023).

Feedback (Rétroaction) : Le feedback est une méthode de régulation où les sorties du système sont constamment surveillées et utilisées pour ajuster les entrées afin de maintenir les performances souhaitées. Cette approche permet de corriger les écarts entre la valeur mesurée et la valeur cible en temps réel, en ajustant les paramètres du système en fonction des erreurs détectées (DHI., 2020).

#### 3.3.3.2 Processus de Feedback dans une Station à Boues Activée

Des capteurs mesurent en continu les niveaux d'oxygène dissous et d'ammonium dans les bassins de traitement (Figure 4.4). Les valeurs mesurées sont comparées aux valeurs cibles prédéfinies. Les contrôleurs PI calculent les ajustements nécessaires pour réduire les écarts entre les valeurs mesurées et les valeurs cibles. Par exemple, si le niveau d'oxygène est trop bas, le contrôleur augmente l'apport d'air. Si la concentration d'ammonium est trop élevée, le contrôleur peut ajuster le débit de recirculation ou le temps de rétention pour améliorer la

(50)

nitrification. Les ajustements sont effectués automatiquement via les équipements de la station, comme les aérateurs ou les pompes. Dans le contexte de la station d'épuration étudiée, le feedback aide à réguler le niveau d'oxygène dissous (DO) ou la concentration d'ammonium en fonction des mesures réelles de l'effluent. En utilisant ces techniques, les opérateurs peuvent :

**-Optimiser la performance** : Les contrôleurs PI permettent d'ajuster les conditions de fonctionnement, telles que le taux d'aération, pour maximiser l'efficacité du traitement tout en répondant aux variations des charges polluantes et des conditions opérationnelles.

**-Réduire la consommation d'énergie** : En maintenant les paramètres de traitement près des valeurs optimales, il est possible de réduire les coûts énergétiques, notamment en ajustant l'aération en fonction des besoins réels.

-Améliorer la qualité des effluents : Un contrôle précis des processus permet de garantir que les effluents respectent les normes environnementales en matière de qualité, en ajustant en temps réel les paramètres de traitement.



*Figure 18* Schéma de contrôle par rétroaction (Feedback) dans un système de traitement à boues activées (DHI., 2020).

#### 3.3.3.3 Stratégies de contrôle de la concentration en oxygène dissous

La réalisation d'un contrôle DO précis est d'une importance vitale à bien des égards. Selon le développement continu des systèmes de contrôle et des différentes exigences de contrôle DO, différentes approches de contrôle ont été adoptées dans le passé.

#### 3.3.3.4 Les différentes méthodes de contrôle

Dans le domaine du contrôle des processus industriels, il existe une variété de méthodes permettant de réguler efficacement les paramètres critiques, tels que la concentration d'oxygène dissous (OD). Ces méthodes se déclinent en plusieurs catégories, allant des approches conventionnelles aux techniques plus avancées et hybrides. Chacune de ces méthodes présente des caractéristiques spécifiques qui les rendent adaptées à des contextes variés (Figure 19)

#### 3.3.3.5 Méthodes de contrôle conventionnelles

Les méthodes de contrôle conventionnelles sont les méthodes de contrôle les plus largement utilisées dans les applications pratiques industrielles et agricoles. Ils peuvent être classés en deux types : le contrôle classique et le contrôle moderne. Au cours des dernières années, les chercheurs et les ingénieurs ont utilisé ces méthodes de contrôle conventionnelles pour contrôler la concentration d'OD dans différents scénarios (Khan et al. 2018 ; Revollar et al. 2018 ; Angani et al. 2019). Cette section passe en revue certaines branches clés des méthodes conventionnelles de contrôle de la concentration d'OD.

#### 3.3.3.5.1 Contrôle classique

Les méthodes de contrôle classiques sont les méthodes de contrôle les plus largement utilisées dans les pratiques réelles de production industrielle et agricole. Le premier contrôle marche/arrêt et le contrôle PID ultérieur appartiennent tous deux au contrôle classique. En particulier, le contrôle PID est largement bien accueilli par les ingénieurs et les experts techniques, en raison de sa structure simple, de sa robustesse et de son adaptabilité, ainsi que de sa capacité à répondre aux besoins de la plupart des applications pratiques. Le contrôle PID, à savoir le contrôle proportionnel-intégral-dérivé, est un contrôle de rétroaction et a trois termes (P, I, D) dont la fonctionnalité couvre la capacité de traiter les réponses transitoires et en régime permanent, et offre ainsi les solutions les plus simples mais les plus efficaces à de vastes problèmes de contrôle du monde réel (Shah & Agashe., 2016). Dans la pratique du contrôle DO, les experts et les ingénieurs choisissent généralement différents types de contrôleurs PID, y compris les contrôleurs P, PI, PD et PID, en fonction des différentes exigences du système réel.

#### 3.3.3.5.2 Modèle de contrôle prédictif

Le modèle de contrôle prédictif a été initialement proposé dans l'industrie pétrochimique, visant à résoudre des problèmes difficiles à traiter pour le contrôle PID classique. En tant que stratégie de contrôle avancée basée sur un modèle, elle consiste en la prédiction du modèle, l'optimisation du roulement et la correction de la rétroaction. Théoriquement, cette méthode a l'avantage de traiter des problèmes de commande optimale variables ou non, linéaires ou non, retardés ou non retardés. Par conséquent, il obtient des applications de plus en plus étendues dans divers domaines de contrôle, en particulier dans le domaine du contrôle de processus (Markéta Andreides et al., 2022).

#### **3.3.3.6** Méthodes de contrôle intelligentes

Le contrôle intelligent est un mode de contrôle ou un système de contrôle qui peut efficacement surmonter la grande complexité et l'incertitude de l'objet et l'environnement contrôlés et atteindre l'objectif souhaité. L'idée initiale du contrôle intelligent a été proposée pour la première fois par le professeur Fu jingsun dans les années 1960, afin de réaliser la modernisation et l'automatisation des systèmes de contrôle Après cela, l'intelligence artificielle est progressivement entrée dans le cadre des systèmes de contrôle. Ces dernières années, la combinaison de la théorie du contrôle et des technologies informatiques intelligentes, qui contient principalement la logique floue et le réseau neuronal, a été plus proche et plus profonde (Kumar R et al., 2020).

#### **3.3.3.7** Méthodes de contrôle hybrides

Étant donné que les différentes méthodes de contrôle mentionnées ci-dessus ont non seulement leurs propres avantages, mais également certaines limitations inhérentes lorsqu'elles sont utilisées individuellement, les méthodes de contrôle hybrides se sont développées progressivement en combinant deux ou plusieurs méthodes de contrôle ensemble. De manière générale, les méthodes de lutte hybrides pourraient toujours obtenir de meilleurs résultats en bénéficiant des qualités des méthodes de contrôle intelligentes et de contrôleurs classiques forme un type de méthodes de contrôle hybrides typiques, y compris les méthodes de contrôle PID flou et PID de réseau neuronal. Les méthodes de contrôle intelligentes agissent en tant que contrôleurs de supervision tandis que les contrôleurs PID agissent en tant que contrôleurs de régulation pour envoyer des signaux d'exécution aux actionneurs. De plus, les méthodes de contrôle intelligentes sont également combinées avec la méthode MPC pour obtenir de meilleures performances que la simple adoption d'une seule méthode de contrôle (Li et al. 2020).



*Figure 19* Classification des méthodes de contrôle de la concentration en oxygène dissous (DO) dans les stations d'épuration des eaux résiduaires(Daoliang Li et al., 2022)

#### 3.3.4 Défis et Méthodologies de Modélisation pour le Contrôle des Processus

La modélisation est une phase cruciale dans la résolution de tout problème de contrôle, car la conception efficace d'un contrôleur repose sur une compréhension précise de la dynamique du système à réguler. La création et l'identification d'un modèle approprié sont donc des étapes fondamentales dans les projets de contrôle modernes. La qualité du système de contrôle est étroitement liée à la compréhension que le concepteur a des dynamiques et des limitations du système. Bien que les modèles statistiques linéaires soient souvent utilisés pour la construction et l'identification de modèles de processus, cette approche montre ses limites, notamment pour des systèmes complexes comme les stations d'épuration, qui ne peuvent être correctement décrits par des équations linéaires. Ces modèles linéaires fournissent peu d'informations sur les caractéristiques physiques des systèmes, ce qui les rend inadaptés aux systèmes non linéaires observés dans les procédés industriels actuels.

Face à la diversité et à la complexité des systèmes non linéaires, il est essentiel de développer des méthodes de modélisation et d'estimation de paramètres adaptés. Les processus biotechnologiques, tels que ceux des bioréacteurs dans les stations d'épuration, posent des défis particuliers en raison de leur complexité, impliquant de nombreuses réactions et espèces d'organismes. Ces processus nécessitent des modèles détaillés pour une prédiction précise, mais ces modèles peuvent être peu pratiques pour le contrôle des processus, soulignant la nécessité d'équilibrer la précision et la praticité dans la modélisation et le contrôle des systèmes complexes.

Nous avons opté pour cette étude dans le but de développer une approche de modélisation qui surmonte les limitations des modèles linéaires traditionnels, en offrant une représentation plus précise des systèmes non linéaires complexes rencontrés dans les stations d'épuration. Cette recherche vise à proposer une méthodologie de modélisation et de contrôle qui permette d'optimiser l'efficacité des procédés de traitement des eaux résiduaires, en particulier pour le traitement de l'azote, tout en réduisant la consommation d'énergie. L'impact potentiel de cette étude est significatif, car elle pourrait fournir des outils plus robustes et efficaces pour la gestion des stations d'épuration, contribuant ainsi à la réalisation des objectifs de développement durable en matière de protection de l'environnement et de gestion des ressources en eau.

#### 3.3.5 Paramètres du modèle

L'utilisateur du Modèle de Boues Activées N° 2 (ASM2 et ASM2d) doit déterminer les concentrations des composants des eaux résiduaires ainsi que les paramètres stœchiométriques et cinétiques pour chaque cas spécifique. Bien que les paramètres spécifiques ne soient pas inclus dans ASM<sub>2</sub> ou ASM<sub>2</sub>d, ils sont essentiels pour l'application du modèle. Le groupe de travail propose une liste de concentrations typiques et de paramètres du modèle pour un effluent primaire, à utiliser comme référence pour tester le code informatique et concevoir des expériences pour affiner ces paramètres.

Les paramètres définis pour la catégorie de modèle ASM2dMod sont répertoriés dans l'Annexe 4. Le tableau 6.1 (Annexe 6) contient une liste de tous les composants du modèle et des concentrations typiques dans un effluent primaire. Les paramètres stœchiométriques et cinétiques utilisés dans les modèles ASM2 et ASM2d, bien qu'établis sur la base de nombreuses études expérimentales, ne sont pas encore totalement calibrés pour une "eau usée typique". Une matrice stœchiométrique complète pour l'ASM2d est présentée dans le Tableau 6.2 (Annexe 6), Le Tableau 6.4 (Annexe6) ne sont pas destiné à faire partie de l'ASM2d, mais il devrait plutôt indiquer des valeurs approximatives des coefficients stœchiométriques  $n_{j,i}$ . Le Tableau 6.4 peut être utilisé pour tester le code informatique, qui pourrait être développé pour prédire les coefficients stœchiométriques  $n_{j,i}$  en se basant sur les facteurs de conversion et les constantes stœchiométriques comme introduits dans le Tableau 6.2.

## 3.3.6 Bilan de matière

Les équations de bilan sont des concepts fondamentaux qui sous-tendent l'ensemble du processus de traitement des eaux résiduaires par boues activées. Elles offrent une perspective quantitative sur les flux de matière dans le système, permettant ainsi une meilleure compréhension et une optimisation plus fine des performances des stations d'épuration.

Un bilan de matière définit la variation de la quantité d'un composé comme étant la somme de ce qui est apporté ou produit, diminué de ce qui est soutiré ou consommé, soit :

$$Accumulation = (Entrée + Production) - (Sortie + Consommation)$$
(52)

L'écriture d'un bilan pour chaque composé aboutit à la proposition d'un modèle global du procédé. La partie traduisant les réactions biologiques est représentée par les termes Production et Consommation.

## 3.3.7 Processus d'Étalonnage du Modèle ASM2ModTemp

## **3.3.7.1** Collecte des Données Initiales

La campagne de collecte de données sur le terrain est la première étape de l'étalonnage du modèle ASM2ModTemp. L'objectif de cette campagne est de mesurer les débits influents et les effluents, les concentrations en matières organiques, en azote et en phosphore, ainsi que des paramètres opérationnels tels que le temps de rétention des boues (SRT), les débits hydrauliques et les points de consigne opérationnels (DHI., 2020).

## 3.3.7.2 Sélection des Paramètres Clés

Pour le modèle ASM2ModTemp, la précision de la simulation repose sur certains paramètres essentiels, tels que les constantes de vitesse des processus biologiques (nitrification, dénitrification, prise en charge du phosphore), les coefficients de saturation et les rendements

des microorganismes (voir Annexe 6). L'ajustement de ces paramètres permet d'aligner les résultats simulés avec les données expérimentales lors de l'étalonnage (Henze et al., 2000)

#### 3.3.7.3 Ajustement du Modèle dans WEST

Le modèle est ajusté dans l'environnement WEST+2020, qui permet de simuler les processus en exploitant les données recueillies. Grâce à des algorithmes d'optimisation intégrés, le logiciel permet de réaliser des itérations automatiques afin de réduire l'écart entre les données simulées et les données réelles (DHI., 2020).

#### 3.3.7.4 Analyse de Sensibilité dans WEST+2020

L'analyse de sensibilité est essentielle pour comprendre l'impact de chaque paramètre sur les résultats du modèle. Dans WEST<sup>+</sup>2020, cette analyse peut être réalisée en variant systématiquement les paramètres et en observant l'effet sur les résultats de simulation. Cette étape permet de hiérarchiser les paramètres en fonction de leur importance et de concentrer les efforts d'étalonnage sur les paramètres les plus influents (DHI., 2020).

## 3.3.7.5 Protocole d'Étalonnage

Le protocole suivi pour l'étalonnage du modèle ASM2ModTemp est adapté en fonction des exigences spécifiques de l'étude. Ce protocole intègre l'expertise acquise dans la modélisation des processus biologiques ainsi que les outils disponibles dans WEST<sup>+</sup>2020 pour l'optimisation et l'ajustement des paramètres (Hauduc H et al., 2011).

## 3.3.7.6 Processus de Validation du Modèle ASM2ModTemp

La validation du modèle **ASM2ModTemp** requiert un ensemble de données indépendantes de celles utilisées pour l'étalonnage. Ces données peuvent provenir de périodes différentes de fonctionnement de la station ou d'autres scénarios opérationnels non inclus dans l'étalonnage initial. Les simulations sont ensuite réalisées avec ces nouvelles données, et les résultats sont comparés aux mesures réelles. WEST<sup>+</sup>2020 facilite cette comparaison en offrant des outils graphiques et statistiques pour évaluer la concordance entre les résultats simulés et les observations. Une fois validé, le modèle ASM2ModTemp est considéré comme fiable pour des simulations futures. Cette validation permet de s'assurer que le modèle peut être utilisé pour des prédictions précises sous diverses conditions opérationnelles et pour l'optimisation des processus de la station (Hauduc H et al., 2011).

## 3.4 Conclusion

Ce chapitre a fourni un aperçu complet des principes fondamentaux et des évolutions historiques de la modélisation du processus des boues activées, en mettant en lumière la diversité des modèles développés au fil des décennies pour simuler et optimiser ce procédé. La revue des différentes approches de modélisation, particulièrement celle du Modèle de Boues Activées ASM2dModTemp, met en évidence l'évolution et la complexité croissantes des outils disponibles pour le traitement des eaux résiduaires, spécifiquement dans le cadre de la gestion de l'azote. La description des processus biologiques clés et la formulation des modèles associés permettent de mieux comprendre les mécanismes sous-jacents au traitement biologique, tout en soulignant l'importance des capacités de mesure et de manipulation des variables et paramètres du système. Ce cadre théorique et technique constitue la base essentielle pour les analyses, simulations et optimisations qui seront explorées dans les chapitres suivants de cette thèse.

# DEUXIEME PARTIE MATERIELS ET METHODES

# 4 APPLICATION DE LA METHODOLOGIE SUR LE CAS DE LA STATION D'EPURATION DE SAIDA

## 4.1 Introduction

Ce chapitre décrit les matériels et méthodes utilisés pour optimiser à la fois l'élimination de l'azote et le fonctionnement des clarificateurs dans la station d'épuration de Saida, Algérie. Il présente le site expérimental et ses ouvrages, en mettant l'accent sur le bassin d'aération, clé pour la dégradation des polluants et énergivore. L'étude débute par une brève présentation du procédé de la STEP, suivie de la méthodologie pour les prélèvements et analyses des eaux résiduaires, permettant de caractériser les variations des charges polluantes et l'efficacité des processus. Le chapitre détaille également l'implantation de la STEP dans le logiciel WEST+2020, en utilisant le modèle ASM2dModTemp, ainsi que l'application des contrôleurs pour réguler et optimiser les conditions opérationnelles. Une attention particulière est portée à l'optimisation du fonctionnement des clarificateurs pour améliorer la séparation des boues et des effluents traités. Enfin, une analyse du fonctionnement global de la STEP de Saida est réalisée, mettant en lumière les implications des résultats pour l'optimisation du traitement de l'azote et des clarificateurs dans les stations à boues activées.

## 4.2 Contexte et Objectifs de l'Optimisation

Dans le contexte actuel de gestion des stations d'épuration, l'optimisation des processus de traitement est essentielle pour faire face à des défis tels que l'augmentation des charges polluantes et les exigences environnementales strictes. La station d'épuration étudiée doit répondre à des enjeux cruciaux, notamment la réduction des concentrations d'azote dans les effluents et l'amélioration de l'efficacité des clarificateurs. Le bassin d'aération, en tant qu'élément clé, joue un rôle central dans la dégradation des polluants tout en étant l'ouvrage le plus énergivore. De même, l'efficacité des clarificateurs joue un rôle vital dans la séparation des boues et des effluents traités, influençant directement la qualité des eaux traitées et le rendement global du processus. L'objectif principal de cette étude est de mettre en œuvre une méthodologie d'optimisation adaptée à la station d'épuration de Saida, en se concentrant sur deux aspects clés, le traitement de l'azote et le fonctionnement des clarificateurs.

## 4.3 Matériels et méthodes

## 4.3.1 Présentation de la station d'épuration de Saida

La station d'épuration de Saida constitue un élément central de la gestion des eaux résiduaires dans la région de Saida. Conçue pour traiter des eaux résiduaires urbaines, cette installation est équipée de divers ouvrages et équipements essentiels pour assurer un traitement efficace et conforme aux normes environnementales.

## • Emplacement et fiche technique de la station d'épuration

La station d'épuration (STEP) étudiée est située au nord-ouest de la ville de Saida, en Algérie. Elle se trouve à 2 km de la ville, dans la zone industrielle, et occupe une superficie de 11,47 hectares, à une altitude de 903 mètres. Ses coordonnées géographiques sont : longitude 0°08'48.89" Est et latitude 34°52'19.41" Nord (Figure 20). La station a été conçue et construite par la société espagnole DEISA du groupe COMSA. Mise en service en 2010, elle a d'abord été exploitée par COMSA pendant deux ans, avant que l'Office National d'Assainissement (ONA) ne prenne en charge son exploitation. Elle a été réalisée dans le but de traiter les eaux résiduaires domestiques de la ville de Saida, pour les réutiliser dans l'irrigation, protéger les eaux de la nappe phréatique de Saida et le milieu récepteur Oued Saida qui est son point de rejet final.



Figure 20 Zone d'étude (STEP de Saida)
La station d'épuration de Saida fonctionne selon un système à boues activées à faible charge, équipée de deux lignes de traitement biologique parallèles. Chaque ligne de traitement comprend un réacteur biologique, où se déroulent les processus de dégradation biologique des polluants, suivi d'un clarificateur, qui permet la séparation des boues activées du liquide clarifié. Ce système, considéré comme assez conventionnel dans le domaine du traitement des eaux résiduaires, a été conçu pour assurer une épuration efficace tout en maintenant des charges hydrauliques et organiques relativement faibles. Elle traite à la fois les eaux résiduaires municipales et une partie des eaux résiduaires industrielles avec une capacité nominale de 150000 EH et un débit moyen de 30.000 m³/j. Les caractéristiques de la station sont sont répertoriées dans le Tableau 18.

| Paramètres                                     | Valeurs                                                |
|------------------------------------------------|--------------------------------------------------------|
| Horizon D'étude                                | 2025                                                   |
| Population (EH)                                | 150 000                                                |
| Débit d'eau                                    |                                                        |
| Moyenne journalière (m3/j)                     | 30 000                                                 |
| Temps sec maximal (m3/j)                       | 48 900                                                 |
| Temps pluvieux maximal (m3/j)                  | 60 000                                                 |
| Charges polluantes pendant les périodes sèches |                                                        |
| DBO5 (kg/j)                                    | 9 000                                                  |
| MES (kg/j)                                     | 12 000                                                 |
| Nature des eaux brutes                         | Domestiques et industrielles                           |
| Type de réseau                                 | Unitaire                                               |
| Principe de traitement                         | Biologique à faible charge en aération prolongée       |
| Normes de rejet                                | DBO <sub>5</sub> < 30 mg/L, MES< 30 mg/L, DCO< 90 mg/L |

 Tableau 18 Fiche technique de la station d'épuration de Saida\*

\* Source: Office national d'assainissement

## 4.3.2 Protocole expérimental

Cette station a été choisie comme étude de cas de référence, offrant un accès aux données sur le fonctionnement du procédé à boues activées. Les expériences ont été réalisées dans le laboratoire de l'ONA de la station, et l'étude s'est déroulée sur une période de cinq mois, d'avril à aout 2020. Le protocole d'analyse des paramètres étudiés est cité dans l'annexe 08. La caractérisation des rejets d'eau résiduaire, a été réalisée sur des prélèvements, effectués les mois étudiés. Les mesures de température et de pH ont été effectuées "in situ" à l'aide d'un modèle multiparamétrique WTW 340i. Les analyses physico-chimiques, les matières en suspension MES, demande chimique en oxygène DCO et demande biochimique en oxygène DBO5 ont été mesurés selon les méthodes décrites dans la norme (ANNEXE 10).

## -Méthodes Analytiques pour l'Évaluation des Paramètres Physico-Chimiques

La température, le pH et la conductivité électrique sont mesurés à l'aide d'un thermomètre (Checktemp Dip - HI98539) - d'un conductimètre (HACH HQ 1110) et d'un pH-mètre (HACH HQ 1110, IP67), respectivement. Pour les solides en suspension, l'analyse est basée sur une filtration suivie d'un séchage à 105°C pendant 2 heures. La DBO5 a été déterminée à l'aide d'un BOD-mètre (OXITOP112). Le COD a été mesuré avec une station de minéralisation (Hach, DRB 200). Pour la mesure des teneurs en nitrate, ammonium, nitrite et phosphore, un bloc de digestion (BUCHI Speed Digester K-436) et une unité de distillation (BUCHI K-350) ont été utilisés. Les résultats ont été lus avec un spectrophotomètre (Annexe 10), conformément aux normes spécifiques (Tableau 19).

| Parameter                        | Abbreviation     | Standards  |
|----------------------------------|------------------|------------|
|                                  |                  |            |
| Suspended matter                 | TSS              | NF T90-105 |
| Biochemical oxygen               | BOD <sub>5</sub> | NF T90-103 |
| demand<br>Chemical oxygen demand | COD              | NF T90-101 |
| Nitrates                         | NO3-             | NF T90-012 |
| Nitrites                         | NO2-             | NF T90-013 |
| Ammonium                         | NH4+             | NF T90-015 |
| Total phosphorus                 | Pt               | NF T90-023 |
| Conductivity                     | Cond             | NFT90-31   |

**Tableau 19** Principes de mesure des différents paramètres étudiés (J. Rodier et al., 2016 ; ONA., 2020)

Les normes NF T90 sont des normes françaises spécifiquement utilisées pour les méthodes d'analyse dans le domaine de l'environnement, en particulier pour l'analyse de l'eau. Chaque

norme décrit une méthode spécifique pour mesurer un paramètre particulier ou une série de paramètres (Rodier., 2016)

# 4.3.3 Présentation du Processus d'Épuration des Eaux Résiduaires

Les effluents arrivent à la station d'épuration et passent d'abord par un piège à sable. Ils subissent ensuite un prétraitement classique, comprenant une unité de dégrillage (à la fois manuelle et automatique) avec des dégrilleurs grossiers et fins, ainsi qu'un dessableurdéhuilleur intégré, chargé d'éliminer les sables et les huiles. Après le prétraitement, les effluents sont pompés vers un bassin unique où se déroulent l'oxydation biologique et la nitrification, avec agitation et aération assurées par des aérateurs mécaniques de surface (turbines). Les effluents traités sont ensuite dirigés vers un clarificateur pour la séparation des boues. Une partie des boues est recirculée en amont du traitement biologique pour optimiser le processus, tandis que l'autre partie est dirigée vers le traitement des boues pour une gestion ultérieure. Le processus se termine par une désinfection finale des effluents (Figure 21).



Figure 21 Schéma général de la STEP de Saida

Le traitement secondaire utilise un système complet de boues activées, constitué de deux lignes de traitement parallèles. Chaque ligne comprend un réacteur biologique d'une capacité unitaire de 13 068 m<sup>3</sup>, mesurant 44 m de largeur, 66 m de longueur, avec une hauteur d'eau de 4,5 m. Chaque réacteur est suivi d'un décanteur, ayant une surface de 1452 m<sup>2</sup> et un volume de 5082 m<sup>3</sup>. (COMSA, 2010). Pour éviter la surcharge du bioréacteur par les micro-organismes, l'excès

de boues est évacué, épaissi, puis déshydraté sur des lits de séchage avant d'être éliminé [Figure 22(b)]. Le liquide mixte est aéré et agité par six aérateurs de surface à axe vertical à basse vitesse identiques, montés sur des passerelles en béton armé avec un large corps en béton et un escalier d'accès, chacun fournissant une puissance de 75 Kw (ANNEXE 9). Des articles publiés par de nombreux chercheurs ont mis en évidence leur forte consommation d'énergie, avec une consommation associée allant de 0,128 à 2,280 kWh/m3 d'effluent (Siatou et al., 2020). Le débit de sortie des bassins de décantation secondaire retourne dans les bassins d'oxydation à un ratio de 1,2 afin de fournir les besoins en nutriments des bactéries et de maintenir une concentration adéquate en solides. Pendant le fonctionnement du processus, la concentration en oxygène dissous (OD) est maintenue à environ 2 mg/L. Le transfert d'oxygène est assuré par 6 (six) aérateurs de surface identiques, de type axe vertical et à vitesse de rotation lente, ces appareils sont montés sur passerelles en béton armé avec grande-corps et escalier d'accès en béton délivrant une puissance de 75 kW chacune (Figure 22(a)). Pour le bassin d'aération, avec un objectif de rejet inférieur à 30 mg/L en DBO5, le rendement d'épuration est estimé à environ 95%. En se basant sur ce rendement, les données suivantes ont été considérées :

- **Charge volumique** : 0,34 kg DBO5/m<sup>3</sup>/jour
- **Concentration des boues** : 5 g/L
- **Charge massique** : 0,07 kg DBO5/kg de boues/jour

Ces paramètres reflètent les conditions opérationnelles du bassin d'aération, avec une charge volumique indiquant la quantité de matière organique traitée par unité de volume de réacteur par jour. La concentration des boues représente la masse de boues activées en suspension dans l'eau, tandis que la charge massique exprime la quantité de DBO<sub>5</sub> éliminée par kilogramme de boues activées par jour.



#### One treatment line of Saida WWTP.

(a)

*Figure 22 (a)* Disposition de la station d'épuration des eaux résiduaires (STEP) de Saida, interface WEST. (b) Système de contrôle et d'acquisition de données

#### 4.3.4 Stratégie de Recherche et Modélisation

Dans le cadre de cette étude, une stratégie de contrôle pour la STEP de Saida a été testée. Le logiciel WEST<sup>+</sup>2020 a été utilisé pour effectuer des simulations dynamiques décrivant les principaux processus biologiques et physiques impliqués. Le comportement dynamique des STEP est influencé par des variations simultanées des objectifs, telles que les conditions environnementales incertaines, les interactions entre les variables de processus, et les fluctuations du débit et de la composition des effluents (Man et al., 2018 ; Pang et al., 2019). Ces variations compliquent la mise en œuvre de contrôles opérationnels optimaux. Les données d'exploitation ont été obtenues auprès de l'Office National de l'Assainissement de Saida (ONA de Saida., 2020) et du Département d'Assainissement de la Direction des Ressources en Eau de Saida (DRE de Saida., 2020). Les données ont ensuite été examinées pour sélectionner le mois d'août 2020 pour l'étalonnage du logiciel, pour lequel des informations étaient disponibles sur le processus de traitement, la capacité de conception, la demande chimique en oxygène (DEO), la demande biologique en oxygène (DBO5), les solides en suspension (MES), les concentrations d'ammonium (NH4<sup>+</sup>) dans l'influent et l'effluent, le taux de charge moyen et la

consommation énergétique mensuelle. L'une des lignes de traitement, avec une capacité nominale de 15 000 m<sup>3</sup>/jour (COMSA, 2010), a été utilisée comme ligne de test [Figure 2(a)]. Pour évaluer et optimiser le fonctionnement global de la station d'épuration, des simulations des processus de traitement biologique (Bassin d'aération) ont été réalisées à l'aide du logiciel. Le modèle ASM2dModTemp a été choisi pour modéliser les systèmes existants et les processus de traitement afin de tenir compte des spécificités opérationnelles de l'usine. Un contrôleur PI a été implémenté dans le modèle pour réguler à la fois le kLa (coefficient de transfert d'oxygène) et la concentration en oxygène dissous (DO). Un contrôleur d'aération on/off a été installé pour surveiller l'impact de l'échelle de traitement et de l'élimination du NH<sub>4</sub>+ sur la consommation d'énergie du traitement des eaux résiduaires.

## -WEST+2020 Outil de Simulation et de Modélisation

WEST<sup>+</sup>2020 fournit une plate-forme pour la simulation des processus de traitement des eaux résiduaires via des modèles de boues activées modifiés (ASM). Le logiciel WEST+2020 (licence académique ANNEXE 14) est la 5ème version repensée de WEST (Wastewater Treatment Plant Engine for Simulation and Training), c'est un outil puissant et convivial pour la modélisation dynamique et la simulation de l'installation municipale de récupération des ressources en eau (Water Resource Recovery Facility, WRRF) et du système d'eau urbain intégré (Integrated Urban Water System, IUWS). La vaste bibliothèque de modèles de pointe de WEST permet de modéliser et d'évaluer presque tous les types de WRRF modernes et une variété de systèmes IUWS (DHI, MIKE., 2020). Il permet aux consultants et ingénieurs d'optimiser les processus de traitement des eaux résiduaires. Avec sa flexibilité et sa structure de modèle entièrement ouverte (n'importe quel modèle dans la bibliothèque peut être changer sans limitations) en combinaison avec des outils spécifiques pour un étalonnage facile du modèle et une évaluation des performances de l'usine (analyse de sensibilité, estimation des paramètres, analyse de scénarios et analyse d'incertitude) et pour la minimisation des fonctions objectifs (par exemple les coûts), WEST<sup>+</sup> est l'outil le plus puissant de la suite (DHI, MIKE, 2020).

Dans l'environnement de modélisation graphique de WEST<sup>+</sup>, la disposition physique de l'usine peut être reconstruite et chaque bloc de construction peut être lié à un modèle spécifique à partir de la base de modèles. (Vanhooren H et al. 2003).

Modéliser une station d'épuration nécessite en fait l'utilisation de plusieurs modèles (Gillot et

al., 2006):

-Un modèle hydrodynamique (représentant le comportement hydraulique de l'installation...),

-Un modèle d'aération,

-Des modèles pour les procédés physico-chimiques (variation du pH et de l'alcalinité, floculation, précipitation, décantation...),

-Des modèles biocinétiques (procédés biologiques),

-Un modèle de fractionnement : conversion des mesures réalisées sur l'affluent (DCO, NTK...) en variables d'état des modèles biocinétiques (fractions de substrat lentement et rapidement biodégradables...).

# 4.3.5 Optimisation du Traitement de l'Azote

Dans le cadre de l'optimisation du traitement de l'azote dans les stations d'épuration par boues activées, l'utilisation de modèles avancés est cruciale pour atteindre des performances épuratoires optimales. Le modèle ASM2dModTemp (Activated Sludge Model No. 2d with Temperature Correction) représente une évolution significative par rapport aux modèles de base tels que l'ASM<sub>1</sub>. ASM<sub>2</sub>dModTemp est une extension d'ASM<sub>2</sub>, intégrant non seulement les processus de dégradation de la matière organique et de l'azote, mais aussi les dynamiques complexes de la déphosphatation biologique. Ce modèle permet de simuler avec précision les processus de stockage et de libération du phosphore par les microorganismes, offrant ainsi une représentation plus complète des phénomènes biologiques dans les stations d'épuration. Un aspect distinctif d'ASM2dModTemp est sa capacité à corriger les cinétiques des réactions en fonction de la température, ce qui le rend particulièrement adapté pour les simulations sous diverses conditions climatiques. Cette correction permet d'ajuster les taux de réaction en fonction des variations saisonnières, améliorant ainsi la précision des prévisions et des optimisations. Par ailleurs, ASM2dModTemp permet de modéliser simultanément la croissance et le stockage des substrats par les microorganismes, une fonctionnalité essentielle pour une représentation fidèle des processus biologiques dans les systèmes de traitement des eaux résiduaires. Les paramètres avancés et les constantes cinétiques ajustées du modèle permettent une calibration précise et une adaptation aux spécificités des installations locales.

De nombreuses fluctuations dans les conditions opérationnelles, telles que les variations de débit, de charge polluante, et de composition des eaux résiduaires, augmentent les défis liés à la mise en œuvre optimale des tâches de contrôle opérationnel dans les applications pratiques (Man et al., 2018 ; Pang et al., 2019). Les méthodes d'optimisation avancées et les stratégies de

contrôle sont rarement appliquées en raison de leur complexité et des contraintes économiques du secteur. Actuellement, les stations d'épuration (STEP) adoptent des solutions de compromis basées sur l'expertise des opérateurs pour équilibrer les objectifs opérationnels. L'analyse de performance met principalement l'accent sur la consommation d'énergie, un facteur crucial influençant les coûts opérationnels et environnementaux, et qui est au cœur de la plupart des actions de contrôle. La conservation de l'énergie reste donc une préoccupation majeure pour les décennies à venir (Ghoneim et al., 2016 ; Revollar et al., 2018 ; Żyłka et al., 2021).

## 4.3.5.1 Méthodologie d'optimisation du traitement de l'azote

Le modèle ASM2dModTemp a été sélectionné pour modéliser les systèmes et les processus de traitement existants afin de refléter les particularités opérationnelles de l'usine. Ce modèle, basé sur les boues activées, est utilisé avec le simulateur WEST<sup>+</sup>2020, en suivant les directives fournies par le groupe IWA concernant l'utilisation des modèles de boues activées (Rieger et al., 2013 ; Hauduc et al., 2011). Ces directives offrent un cadre méthodologique pour l'étalonnage, la simulation et la création d'une plateforme virtuelle de tests.

# 4.3.5.2 Adaptation et Calibrage du Modèle ASM2dModTemp à la STEP de Saida

Le modèle constitue un environnement de simulation pour les STEP, définissant la disposition de l'usine, le modèle de simulation, les charges tributaires, les procédures de test et les critères d'évaluation. La modélisation concerne la construction de la STEP de Saïda sur le logiciel WEST+2020, à travers la combinaison de différents blocs, chaque bloc représentant une unité de l'usine. Divers capteurs, utilisés comme sources visuelles, peuvent être placés à différents points de l'usine pour obtenir des informations sur les flux, ce qui a permis de tester les simulations. Le réservoir biologique est modélisé par le modèle FixVolume ASU, et le bassin de décantation secondaire est modélisé par le modèle de vitesse de sédimentation Takács\_SVI (Sludge Volume Index) (Takács et al., 1991 ; MIKE, 2020 ; Aguilar-López et al., 2013). Une représentation schématique de la configuration de référence est présentée dans la Figure 3(a).

Le modèle ASM2dModTemp a été calibré en fonction de la configuration spécifique des réacteurs et des flux de la station d'épuration municipale étudiée. Ce calibrage a été réalisé en utilisant les données mesurées collectées entre Avril et Aout 2020 au sein de cette installation. La station d'épuration de Saida adopte une configuration aérobie, ce qui signifie que le traitement des eaux résiduaires repose sur des processus biologiques nécessitant de l'oxygène dissous pour la dégradation de la pollution carbonée (MES, DBO5, DCO) et la nitrification. Le

modèle ASM2d, enrichi et adapté aux spécificités de cette station, prend en compte ces dynamiques pour simuler avec précision le comportement de la station sous différentes conditions opérationnelles. L'ajustement du modèle en fonction des données réelles de la station permet d'améliorer la précision des simulations et de fournir des prévisions fiables pour l'optimisation des performances de la station d'épuration.

Les coefficients stœchiométriques, tels que les rendements de croissance et les taux de consommation de substrat, ainsi que les paramètres cinétiques, comme les vitesses maximales de croissance et les constantes de demi-saturation, définissent la dynamique des réactions au sein du modèle (ASM2dModTemp) utilisé dans cette étude sont ajustés. Pour une compréhension détaillée des ajustements effectués y compris les valeurs spécifiques utilisées les ANNEXES 4, 6 et 7 fournissent une description approfondie des données saisies, des paramètres ajustés.

Pour la simulation à l'état stable et la simulation dynamique du modèle, les quantités de modèle sont essentielles pour évaluer avec précision les performances du système (l'ANNEXE 5). Les ajustements de ces paramètres permettent de refléter de manière fidèle les conditions opérationnelles réelles et d'optimiser le fonctionnement du bassin d'aération dans les simulations. Les expériences de simulation en régime permanent (steady-state) et dynamique ont leur propre ensemble distinct de propriétés. Ces propriétés peuvent être accessibles via le bouton Simulation dans le groupe Propriétés du menu Projet, ce qui affichera les fenêtres de dialogue illustrée à l'ANNEXE 11.

# 4.3.5.3 Modèle de Fractionnement

Les résultats opérationnels basés sur la simulation, le temps de rétention des solides, la qualité des effluents, la demande en oxygène et la production de boues peuvent être considérablement influencés par les fractions de la DCO. L'objectif de cette étape est de créer le modèle de fractionnement, c'est-à-dire l'interface entre l'ensemble des variables d'entrée (composants définis par l'utilisateur) et l'ensemble des variables de sortie (le vecteur des composants pour le modèle instance/catégorie sélectionné).

La Figure 23 montre le graphique de fractionnement initial où : les flèches bleues représentent les variables d'entrée du modèle de fractionnement. Les variables sortant du modèle de fractionnement sont indiquées par les flèches vertes.



Figure 23 Fractionnement des eaux résiduaires entrantes en composants de DCO dans ASM2dModTemp, WEST+2020

L'application de ce modèle nécessite la caractérisation des tributaires sur la base de la DCO, qui est ensuite divisée en plusieurs fractions en fonction des variables du modèle (Henze et al., 1995 ; Barker et Dold, 1997 ; Henze et al., 1999 ; Dubreuil et al., 2013). Les paramètres d'entrée pour les méthodes de fractionnement appliquées sont les MES et la DCO de l'effluent primaire réel (Figure 5). Les paramètres utilisés sont ceux déterminés à 20°C (Henze et al., 2000). Une procédure standardisée et une procédure modifiée, telles que proposées par Hauduc et al. (2009, 2011), sont utilisées pour les paramètres de fractionnement ASM2dModTemp, comme répertorié dans le Tableau 20.

Tableau 20 Paramètres de fractionnement ASM2dModTemp, WEST +2020

| Name      | Type     | Description                     | Default<br>value | Group                  |
|-----------|----------|---------------------------------|------------------|------------------------|
| f_S_A     | Fraction | Soluble COD to SA ratio         | 0.25             | Composition parameters |
| f_S_F     | Fraction | Soluble COD to SF ratio         | 0.375            | Composition parameters |
| f_S_NH    | Fraction | Total nitrogen to ammonia ratio | 0.6              | Composition parameters |
| f_S_PO    | Fraction | Total phosphorous to PO ratio   | 0.6              | Composition parameters |
| F_TSS_COD | Fraction | TSS to COD conversion factor    | 0.75             | Conversion factor      |
| f_X_H     | Fraction | Particulate COD to X_H ratio    | 0.17             | Composition parameters |
| fX_S      | Fraction | Particulate COD to X_S ratio    | 0.69             | Composition parameters |

# 4.3.5.4 Données pour l'Étalonnage et la Validation de WEST+2020

Les données d'entrée pour les simulations proviennent des paramètres de fonctionnement de la station d'épuration de Saida (ONA., 2020) et des normes d'analyse (Rodier et al., 2016). Elles couvrent la période d'avril à juillet pour l'étalonnage et août 2020 pour la validation. Les valeurs des paramètres de fonctionnement et des caractéristiques des eaux résiduaires utilisées pour l'étalonnage et la validation du modèle sont présentées dans le Tableau 21. Les simulations ont été réalisées en considérant un processus constant avec un âge des boues de 18 jours et une température moyenne de 23°C, mesurée durant la période de référence. Le modèle a été ajusté pour les flux d'influent, d'effluent, de boues recyclées et de boues excédentaires. Les procédures d'étalonnage et de validation du modèle en régime permanent ont suivi les directives décrites par Hauduc et al. (2009 ; 2011). Sous les conditions normales de la station étudiée, différentes variantes de contrôle de la zone d'aération ont été testées. Une fois le modèle étalonné et validé, il a été utilisé pour évaluer la performance de la station d'épuration et confirmer l'approche de fractionnement et de modélisation de la DCO pour une optimisation adéquate (Drewnowski et al., 2019). Un scénario basé sur le contrôle marche/arrêt en cascade avec un contrôleur PI de l'aération dans le bassin biologique a été mis en place pour analyser la qualité de l'eau traitée et les coûts de l'aération, en tenant compte de paramètres tels que la DCO, la DBO5, les MES, les nitrates, l'ammonium et le phosphore total. Cette stratégie de contrôle a été simulée sur 100 jours de fonctionnement constant pour garantir un état stationnaire. Le modèle suppose que la station d'épuration a atteint cet état stationnaire, incluant la concentration moyenne de l'effluent et l'équilibre des solides pour des conditions initiales optimales durant la simulation dynamique (Wang et al., 2019). Après une simulation en régime permanent préliminaire, le système atteint son état d'équilibre, qui est ensuite utilisé comme condition initiale réaliste pour la simulation dynamique sur 31 jours. La stratégie de contrôle est appliquée, la performance est évaluée et les coûts sont estimés. Le système permet aux points de consigne de l'aérateur de varier en fonction des concentrations d'ammonium et de phosphore total dans l'effluent.

| D                                 | 17-1                        |
|-----------------------------------|-----------------------------|
| Parametres                        | Valeurs                     |
| Débit Moy, Min et Max $(m^3/d)$   | 12694,06 - 10453 - 15178,98 |
| DCO(mg/l)                         | 672 <u>+</u> 50             |
| $DBO_5 (mg/l)$                    | <u>384 + 55</u>             |
| MES(mg/l)                         | <i>410<u>+</u>67</i>        |
| $NH_4^+$                          | 45 <u>+</u> 5               |
| NO <sub>3</sub> -                 | $2 \pm 0, 1$                |
| TP                                | 17 <u>+</u> 7               |
| MLSS                              | $4 \pm 1,4$                 |
| Temps de séjour hydraulique (TSH) | 10,4 <u>+</u> 4             |
| Age des boues (j)                 | 16,3 <u>+</u> 3             |
| рН                                | $7,1\pm0,1$                 |
| $Temp(^{\circ}c)$                 | 22,9 <u>+</u> 4,5           |

**Tableau 21** Caractéristiques des Eaux Résiduaires Influentes et paramètres de Fonctionnementde la STEP de Saida (données d'août 2020)

Le contrôle est limité entre des valeurs inférieure ( $u_{Min}$ ) et supérieure ( $u_{Max}$ ) pour le signal de sortie. WEST+2020 permet l'utilisation d'une stratégie de contrôle supplémentaire (Tableau 22) qui réplique le fonctionnement typique d'une grande station d'épuration. Le contrôleur marche/arrêt améliore le contrôle de l'aération en réduisant l'intensité de l'aération lorsqu'elle est moins nécessaire, ce qui permet d'économiser de l'énergie et de réduire les coûts d'exploitation (Figure 24).

En fonction de la concentration d'ammonium dans l'effluent, l'action de contrôle modifie la consigne de DO (oxygène dissous) du contrôleur d'aération existant. L'action de contrôle a deux états (c'est-à-dire « marche » et « arrêt ») correspondant aux deux seuils de la valeur mesurée (signal d'entrée).

 $Y_{M} < Y_{Min} : u = u_{Min}$  $Y_{Min} \le Y_{M} < Y_{Max} : u = u_{t-\Delta t}$  $Y_{M} \ge Y_{Max} : u = u_{Max}$ 

Où :

- $Y_{Min}$  et  $Y_{Max}$  désignent les seuils inférieur et supérieur (-) du signal entrant.
- $u_{\text{Min}}$  et  $u_{\text{Max}}$  indiquent les états correspondants (-), c'est-à-dire les signaux de sortie.
- $u_{t-\Delta t}$  est le signal de sortie à l'étape de temps précédente.

À l'intérieur de la bande (-), l'action de contrôle ne change pas.



Figure 24 Schéma de contrôle de l'oxygène dissous (DO) et de l'ammonium (NH<sub>4</sub><sup>+</sup>).

Un pseudo-code détaillant les différentes étapes de la méthode de contrôle proposée. Ce pseudocode illustre le processus de gestion des flux dans la station d'épuration en suivant une série d'étapes clés. Il commence par l'initialisation des paramètres de contrôle et des capteurs nécessaires. Ensuite, il décrit la boucle de contrôle continue, où les mesures des variables d'entrée sont prises et les paramètres de contrôle ajustés en fonction du débit influent et des concentrations dans l'effluent. Le code prévoit également des ajustements dynamiques en cas de variations importantes et termine par la sauvegarde des résultats pour une analyse et une optimisation ultérieure. Cette approche permet d'assurer une gestion efficace du traitement des eaux résiduaires en réagissant aux conditions changeantes et en optimisant les performances du système (ANNEXE 12).

# **4.3.6** Optimisation du fonctionnement de Clarificateur

Le clarificateur reflète le fonctionnement du bassin d'aération et de l'ensemble de la station d'épuration, agissant comme un miroir de l'efficacité globale du traitement des eaux résiduaires. Il joue un rôle crucial dans le traitement par boues activées, en assurant la séparation des solides issus du bassin d'aération et l'épaississement des boues. Les exploitants des stations d'épuration (STEP) rencontrent souvent des difficultés à prévoir la remontée du lit de boues, due à des variations des charges hydrauliques ou organiques, faute de modèles de prédiction adéquats. Le modèle unidimensionnel de clarificateur, basé sur la vitesse de sédimentation de Takács\_SVI et la théorie des flux, est largement utilisé pour prédire les concentrations de matières en suspension dans les effluents et le sous-écoulement (Takács, I et al., 1991). L'objectif de cette partie est de vérifier si ce modèle est capable de prédire avec précision la hauteur du lit de boues dans des conditions réelles, malgré les variations dans les propriétés des boues. Cela permettra de déterminer la pertinence du modèle pour des applications à grande échelle, tout en tenant compte de ces changements dans les caractéristiques des boues, qui peuvent affecter les performances de la station.

# 4.3.6.1 Méthodologie d'optimisation des clarificateurs

Cette section analyse le clarificateur secondaire de la station d'épuration objet de l'étude, en se concentrant sur son optimisation. Elle aborde également les modèles de vitesse de sédimentation et du clarificateur secondaire, en se basant sur l'indice de boues (SVI). Cette partie vise à optimiser les valeurs des paramètres de décantation du modèle Takács\_SVI pour simuler, via le logiciel WEST+2020, le comportement du voile de boue dans des

clarificateurs secondaires. Une augmentation de la concentration des boues dans le clarificateur permet de maintenir une biomasse efficace dans le réacteur biologique tout en réduisant le besoin en débit de recirculation. Cela a pour effet de limiter le flux d'entrée sur le clarificateur, optimisant ainsi le fonctionnement global du système de traitement des eaux résiduaires. Il permet de réduire les coûts d'opération tout en maintenant une performance de traitement efficace. Pour chaque ouvrage de la station d'épuration, il est essentiel d'associer un modèle spécifique à l'objet traité. Pour cette étude, nous avons sélectionné les modèles suivants : le modèle FixVol ASU pour le bassin d'aération et le modèle Takács\_SVI pour le clarificateur. Ces choix ont été faits en fonction des caractéristiques et des besoins spécifiques de chaque ouvrage. Les variables propres à chaque objet ont été soigneusement saisies, comme détaillé dans l'Annexe 4. Cela inclut notamment les caractéristiques de l'effluent brut et les dimensions physiques des ouvrages. Nous avons ensuite configuré l'environnement graphique en définissant les fenêtres nécessaires pour la visualisation des variables de contrôle et des variables de sortie. La saisie des données a été suivie par une compilation complète des informations, permettant d'effectuer les simulations requises. Ces simulations ont été réalisées pour caractériser aussi bien les régimes permanents que les régimes dynamiques du système. Ce processus a permis d'obtenir une vue détaillée et précise des performances des ouvrages en conditions variées, facilitant ainsi l'optimisation et l'analyse des processus de traitement (DHI., 2020). Le présent travail a été effectué pour le mois d'Aout 2020, il ne concerne dans sa grande majorité que les clarificateurs intégrés dans un système à boues activées à très faible charge ou aération prolongée, le cas de la STEP de Saida. Le paramètre clé de dimensionnement le plus fréquent est la Charge massique, Cm, exprimée en kg de DBO5 par kg de MVS et par jour. Ce paramètre a des conséquences sur la production spécifique de boue et donc l'âge des boues contenues dans le système, le taux de MVS des boues, le rendement dont les ordres de grandeurs sont explicités au tableau 23.

| Charges des boues activées | Charge massique     | Age des boues |  |  |
|----------------------------|---------------------|---------------|--|--|
|                            | (kg DBO5/kgMVS. j)  | (jour)        |  |  |
| Très forte charge          | Cm > 1              | A < 1         |  |  |
| Forte charge               | $0.5 < Cm \le 1$    | A < 2         |  |  |
| Moyenne charge             | $0,25 < Cm \le 0,5$ | A < 5         |  |  |
| Faible charge              | $0,1 < Cm \le 0,25$ | 5 < A < 10    |  |  |
| Aération prolongée         | $Cm \le 0,1$        | A > 15        |  |  |

 Tableau 23 Relation entre la charge massique et l'âge des boues (Aguilar-López., 2013)

## 4.3.6.2 Présentation du modèle de Takács\_SVI pour un décanteur secondaire

Le modèle Takács et al., 1991 traite les différentes zones de sédimentation avec les équations appropriées en couches horizontales homogènes selon un axe vertical (Figure 25). Le modèle est basé sur la théorie des flux. Il est supposé que dans les clarificateurs, les profils de vitesses horizontales sont uniformes et que les gradients horizontaux de concentration sont négligeables. Par conséquent, seuls les processus dans la dimension verticale sont modélisés. Le cylindre de décantation idéalisé résultant est traité comme un réacteur à écoulement continu. À la section d'entrée, l'écoulement entrant et les suspensions introduites sont répartis de manière homogène sur la section transversale horizontale, et la suspension est diluée par convection ainsi que par d'autres processus de transport. Le flux est divisé en un flux descendant vers la sortie inférieure et un flux ascendant vers la sortie de l'effluent en haut. Le liquide et les solides en suspension pénètrent dans le cylindre par la section transversale d'entrée et sont extraits en bas et en haut.



*Figure 25 Directions des flux dans l'approche du modèle Takács\_SVI (Takács\_SVI., 1991)* Pour intégrer l'effet du SVI dans le modèle de Takács, il est possible de modifier les paramètres de vitesse de sédimentation, notamment  $r_h$ , qui influence la vitesse à laquelle les particules solides se déposent. En utilisant une corrélation entre le SVI et  $r_h$ , on peut ajuster  $r_h$  en fonction des variations du SVI.

#### 4.3.6.3 Description du modèle Takács \_SVI

Le modèle Takács décrit le décanteur en une superposition de 10 couches de même épaisseur (figure 26) entre lesquelles s'effectuent des transferts de matière et propose une vitesse de décantation en double exponentielle. Le modèle Takács \_SVI est une extension du modèle de Takács dans lequel une disposition est prévue pour l'estimation du paramètre de sédimentation via la mesure de l'indice de volume des boues (SVI), selon Daigger., 1995.

$$r_H = \frac{0.148 + 0.00210.SVI}{1000} \tag{62}$$

Le modèle original de Takács modélise la vitesse de sédimentation des boues dans un clarificateur. Il utilise un paramètre spécifique pour décrire comment les boues se déposent. Ce paramètre est essentiel pour simuler correctement le comportement des boues dans le clarificateur. L'amélioration apportée au modèle permet de calculer ce paramètre de

sédimentation à partir de la mesure de l'Indice de Volume des Boues (SVI). Le SVI est une mesure couramment utilisée pour évaluer la capacité des boues à se compacter après sédimentation. Le modèle de Takács est basé sur le modèle de Vitasovic. Le décanteur est modélisé avec un certain nombre de couches (NR\_OF\_LAYERS) autour desquelles un bilan des solides est effectué (Figure 26)

Certaines hypothèses sont faites :

• Les solides entrants sont immédiatement répartis de manière homogène sur la couche d'alimentation.

• Seul l'écoulement vertical est pris en compte.



Figure 26 Découpage en 10 couches du décanteur (Takács et al., 1991)

La vitesse de sédimentation du lit de boues a été trouvée comme étant une fonction non linéaire de la concentration en solides. Dans le modèle de Vitasovic, le flux de sédimentation est dû à la fois à la décantation gravitaire et au flux de masse. Le flux de masse est ascendant au-dessus de la couche d'alimentation et résulte du débit de surverse. En dessous de la couche d'alimentation, le flux de masse est descendant et résulte du débit de soutirage.

## -Flux de Masse Ascendant (J\_asc)

$$J_{asc} = X_{L,i}. V_{asc}$$
(63)

 $\mathbf{J}_{asc}$ : Flux de masse ascendant (kg/m<sup>2</sup>·s)

 $X_{L,i}$ : concentration des solides dans le liquide à la couche i (solids concentration in the liquid at layer i) (kg/m<sup>3</sup> ou g/m<sup>3</sup>)

**V**<sub>asc</sub> : Vitesse ascendante (m/s)

## Calcul de la Vitesse Ascendante (vasc)

$$V_{asc} = \frac{Q_{sortie}}{S}$$
(64)

vasc: Vitesse ascendante (m/s)
Qsortie: Débit de sortie (m<sup>3</sup>/s)
S: Section transversale (m<sup>2</sup>)

## -Flux de Masse Descendant (J\_desc)

$$J_{\rm desc} = X_{L,i}.V_{\rm desc} \tag{65}$$

**J**<sub>desc</sub> : Flux de masse descendant (kg/m<sup>2</sup>·s)

 $X_{L,i}$ : concentration des solides dans le liquide à la couche i (solids concentration in the liquid at layer i) (kg/m<sup>3</sup> ou g/m<sup>3</sup>)

**V**<sub>desc</sub> : Vitesse descendante (m/s)

# Calcul de la Vitesse Descendante ( $v_{desc}$ )

$$V_{desc} = \frac{Q_{bas}}{s}$$

# -Flux Gravitationnel (J\_g)

Le flux gravitationnel est toujours descendant

 $J_{\rm g}=X_{L,i}.\,V_{\rm s}$ 

(66)

## Calcul de la Vitesse de Sédimentation (Vs)

Le calcul de la vitesse de sédimentation  $V_s$  dépend de la concentration des particules.

 $(X < X_{Min}): v_S = 0$ 

$$(X \ge X_{Min}): V_{s} = V_{0}. e^{-r_{H,X_{j}}} - V_{0}. e^{-r_{p,X_{j}}}$$
(67)

#### **Concentration Minimale (X\_Min)**

$$X_{Min} = f_{ns} \cdot \frac{X_{in}}{Q_{in}} \tag{68}$$

Où :

- X<sub>in</sub> est la concentration des solides (g/m<sup>3</sup>) dans l'eau entrante
- $X_j = X_{L,i} X_{Min}$

Au-dessus de la concentration minimale, la vitesse de sédimentation suit l'équation de Vesilind pour les grandes particules avec une correction pour les particules plus petites (Figure 27)



Figure 27 Courbe de Vitesse de Sédimentation et Concentration Seuil des Solides en Suspension (DHI., 2020)

Pour les couches au-dessus de la couche d'alimentation, une concentration seuil de solides en suspension ( $X_T$ ) est ajoutée. La concentration seuil est la concentration maximale que la couche inférieure peut supporter. Cela constitue une limitation pour le flux descendant des solides (WEST<sup>+</sup>2020).

La consommation d'énergie pour le pompage est estimée comme suit

$$P_{Pump} = \frac{F.Q_{out}}{24} \tag{69}$$

Où :

*F* indique l'énergie de pompage par unité de débit (kWh/m<sup>3</sup>)

Qout désigne le débit d'effluent (m3/jour)

#### 4.3.6.4 Le Calibrage du modèle Takács\_SVI

Pour calibrer le modèle, nous avons utilisé la vitesse maximale de sédimentation de Vesilind  $(V_0)$ , obtenue à partir de la corrélation WEST<sup>+</sup>2020, comme point de départ. Ensuite, le paramètre lié à la zone d'épaississement (r<sub>h</sub>) a été ajusté de manière à ce que la hauteur du voile de boue et les concentrations de MES recirculées simulées correspondent aux données mesurées. En adoptant une approche où V<sub>0</sub> et r<sub>h</sub> sont considérés comme interdépendants, nous reconnaissons qu'il s'agit d'une approximation. Toutefois, l'impact de cette simplification sur la qualité des résultats sera soigneusement évalué. En calibrant le modèle comme si V0 et rh étaient interdépendants, nous reconnaissons faire une approximation, dont nous évaluerons l'impact sur les résultats.

## 4.3.6.5 Les variables manipulées pour l'optimisation

Pour l'optimisation des clarificateurs, les variables manipulées sont principalement liées au comportement des boues et au flux hydraulique à l'intérieur du clarificateur. Parmi ces variables, on retrouve la concentration en solides dans l'effluent, la vitesse de sédimentation des boues, le débit de recirculation, et le taux de d'extraction des boues épaissies. L'optimisation de ces paramètres permet de garantir une séparation efficace des solides et un épaississement optimal des boues, tout en prévenant des problèmes tels que la remontée du lit de boues ou les pertes de matières en suspension. Une gestion rigoureuse de ces variables est

essentielle pour améliorer la performance globale du clarificateur et assurer une qualité constante des effluents.

## 4.3.6.6 Contrôle de flux de recirculation

Un clarificateur bien optimisé permet d'assurer une sédimentation efficace des boues, tout en minimisant la perte de biomasse active et en garantissant une qualité d'effluent conforme aux normes environnementales. Cette approche repose sur l'intégration des contrôleurs de rapport (Ratio Controllers) à des endroits stratégiques pour moduler les flux (IR, RAS et WAS). Elle permet d'ajuster automatiquement ces débits en fonction des variations du débit d'entrée, permettant ainsi une meilleure stabilité du processus de clarification. Deux contrôleurs de rapport ont été implantés :

-Ratio contrôleur 1 a été placé à proximité du séparateur "IR\_recycle", permettant de réguler le débit de recirculation interne (IR) en fonction du débit d'entrée mesuré par le capteur situé à l'entrée de la station.

-Ratio Contrôleur 2 a été positionné près du clarificateur, désigné "SST" (Séparateur des Solides en Suspension), afin de moduler le débit de retour des boues activées (RAS). Ce contrôleur permet d'adapter dynamiquement le débit de RAS en fonction des variations du débit d'entrée, garantissant ainsi un retour approprié de la biomasse au bassin d'aération. (Figure 29)



Figure 28 L'intégration des contrôleurs de recirculation des boues dans la STEP de Saida (WEST+2020)

Dans cette simulation, les ratios appliqués aux flux de recirculation ont été spécifiquement définis pour optimiser le processus. Le Ratio Contrôleur 1, chargé de réguler la recirculation interne (RI), a été fixé à 70 % (10 625,28 m³/j) du débit influent (15178,98 m³/j) , garantissant ainsi un recyclage substantiel du flux pour maximiser l'élimination des nutriments. Quant au Ratio Contrôleur 2, qui contrôle le retour des boues activées (RAS) depuis le clarificateur, il a été défini à 80 % (12 143,18 m³/j) du débit d'influent, permettant de maintenir un équilibre optimal entre l'extraction des boues et le retour de la biomasse active vers le bassin d'aération. Ces choix de ratios visent à assurer une performance stable et efficace du système, même en présence de variations importantes du débit d'entrée.

# 4.4 Résultats et discussion

La section des résultats et discussions est divisée en deux parties principales. La première traite du suivi des performances biologiques de la station d'épuration, tandis que la seconde offre une comparaison de la consommation d'énergie et des coûts dans le bassin d'aération dans les deux cas, avec et sans contrôle de l'aération.

# 4.4.1 Évaluation des performances de traitement

La quantité d'eaux résiduaires et la concentration des polluants (DCO, DBO5, MES, NH4<sup>+</sup>, NO3<sup>-</sup> et Pt) sont les facteurs directement pris en compte pour évaluer les performances de la station d'épuration. Le débit des eaux résiduaires est un élément clé dans la simulation de la station d'épuration. Étant donné que la station est soumise à des variations de débits d'entrée, il est nécessaire de définir des séries chronologiques de débits. Selon la disponibilité des données, la série chronologique des données d'août 2020 a été utilisée pour la simulation.



# Figure 29 Séries temporelles du débit des eaux résiduaires pour le mois d'août

La Figure 30 montre la variation des débits moyens journaliers à l'entrée et à la sortie de la station d'épuration (pour une seule filière), allant de 11 500 à 16 000 m<sup>3</sup>/j. La différence entre les débits influents et effluents correspond au débit des boues rejetées. Le comportement des eaux résiduaires est très variable et peut changer d'un jour à l'autre en raison de divers facteurs externes. Les économies d'eau, les déversements accidentels dans le système d'égouts et la connexion de nouveaux utilisateurs peuvent modifier la charge hydraulique. Le débit moyen quotidien a varié entre 0,15 m<sup>3</sup>/Eh-j et 0,21 m<sup>3</sup>/Eh-j, avec une moyenne de 0,18 m<sup>3</sup>/Eh-j. Cette valeur moyenne est proche du volume quotidien d'eaux résiduaires par habitant rapporté dans d'autres études (Aguilar-López et al., 2013 ; Newhart et al., 2019).

La variation des concentrations de polluants aux entrées de la STEP de Saida est montrée à la Figure 31. Les divers contaminants, tels que la demande biologique en oxygène (DBO5), la DCO et les solides en suspension totaux (SST), sont exprimés en mg/l.



Figure 30 Variation des concentrations de pollution dans l'effluent de la STEP de Saida

De hautes efficacités d'élimination du COD (Demande Chimique en Oxygène), des MEST (Matières En Suspension Totales), de l'azote total (TN), du phosphore total (TP) et de l'ammonium (NH<sub>4</sub><sup>+</sup>) sont rapportées, ce qui indique une bonne performance de la station d'épuration. Cependant, en comparaison avec l'efficacité standard qu'une station d'épuration devrait atteindre, la station d'épuration de Saïda a atteint les valeurs d'efficacité et respecté les normes de qualité applicables à la pollution carbonée et à la nitrification. Les résultats de simulation obtenus sont présentés dans le Tableau 24.

Le taux d'élimination (R, %) d'une station d'épuration peut être calculé comme le rapport entre la charge éliminée de l'effluent et celle de l'influent, selon l'expression suivante :

$$R = rac{(C_{ ext{influent}} - C_{ ext{effluent}})}{C_{ ext{influent}}} imes 100$$

- **C**<sub>influent</sub> : La concentration des polluants dans l'effluent entrant (influent).
- **C**effluent : La concentration des polluants dans l'effluent sortant (effluent).

Le taux d'élimination (R) exprime l'efficacité du traitement en pourcentage. Il indique la proportion de la charge polluante initiale qui a été enlevée par la station d'épuration. Plus ce taux est élevé, plus l'efficacité de l'élimination des polluants est grande.

| Parameters              | Influent | Effluent | Removal<br>Efficiency (%) |
|-------------------------|----------|----------|---------------------------|
| Water $(m^3/d)$         | 15178,98 | 14628,98 | -                         |
| Temperature(°c)         | 24,56    | 23, 3    | -                         |
| COD (mg/l)              | 721,90   | 49,74    | 93                        |
| TSS (mg/l)              | 476,58   | 11,62    | 98                        |
| NH4 <sup>+</sup> (mg/l) | 35,50    | 0,58     | 98                        |
| TN (mg/l)               | 64,11    | 34,89    | 46                        |
| NO3 <sup>-</sup> (mg/l) | 0,01     | 33,68    | -                         |
| TP (mg/l)               | 28,9     | 23,10    | 20                        |

**Tableau 24** Efficacité de l'élimination et concentrations influent-effluent (valeurs moyennes mensuelles d'août 2020)

Selon les résultats illustrés dans la Figure 32, Les concentrations de COD dans l'influent varient entre 198 mg/l et 998 mg/l avec une moyenne mensuelle d'environ 565,81 mg/l [Figure 32 (c)]. Les MEST varient entre 120 mg/l et 650 mg/l avec une moyenne mensuelle d'environ 364,01 mg/l [Figure 32 (d)]. Les TN varient également entre 20 mg/l et 90 mg/l avec une moyenne mensuelle de 53,59 mg/l [Figure 32 (a)]. Le phosphore total (TP) varie de 5 mg/l à 25 mg/l avec une moyenne mensuelle de 13,92 mg/l [Figure 32 (b)]. Les paramètres montrent une variation considérable au cours du mois (31 jours), reflétant des fluctuations dans la qualité des eaux résiduaires entrantes qui peuvent être influencées par des facteurs externes tels que des décharges accidentelles, des changements dans la consommation d'eau, et l'ajout de nouveaux utilisateurs au réseau d'assainissement. Ces variations mettent en évidence la nécessité d'un contrôle précis et d'une adaptation continue du processus de traitement pour maintenir une performance optimale de la station d'épuration.



Figure 31 Résultats de la Simulation des Performances de la STEP de Saida pour les Paramètres (a)TN, (b)TP, (c) COD et (d) MES

L'oxygénation favorise la croissance des bactéries responsables de la dégradation des composés organiques présents dans les eaux résiduaires. Ces bactéries utilisent l'oxygène pour métaboliser les composés organiques en dioxyde de carbone, en eau et en biomasse. Ce processus permet de recycler les micro-organismes utilisés dans le traitement et d'obtenir une eau traitée avec une DCO réduite. Les valeurs de DCO dans l'eau traitée à la STEP de Saïda sont inférieures à la valeur guide fixée par la norme algérienne, ce qui témoigne d'une bonne efficacité du traitement. De plus, la concentration en matières en suspension (MES) dans l'effluent est très faible, respectant ainsi les normes recommandées pour le rejet des effluents. Le traitement a permis une réduction significative du phosphore total (20%) et de l'azote total (40%) dans les effluents, grâce notamment à leur incorporation dans la biomasse des micro-organismes présents dans les

bassins d'aération. Des micro-organismes spécifiques, appelés accumulateurs de polyphosphates (PAO), sont utilisés pour éliminer le phosphore. Ces micro-organismes stockent le phosphore sous forme de polyphosphates dans leurs cellules, contribuant ainsi à réduire la concentration de phosphore dans les effluents. Une concentration plus faible de DCO, de MES, d'azote total et de phosphore total a été observée dans les affluents aux jours 6–7 et 21–22, ce qui peut être attribué à des événements de réduction de charge, tels que des diminutions des rejets industriels, plutôt qu'à des événements pluvieux. Cela indique la sensibilité du système de traitement aux variations des charges entrantes (Figure 5.8).

Pour évaluer les performances de la STEP de Saïda, il est essentiel de comparer les mesures expérimentales de la DCO avec les valeurs obtenues par le modèle de simulation WEST+2020. Cette comparaison permet de vérifier la précision et la fiabilité du modèle, en examinant dans quelle mesure il peut reproduire les conditions réelles observées sur le terrain. En analysant les écarts entre les mesures expérimentales et les résultats du modèle, il est possible d'identifier les points forts du modèle ainsi que les aspects à améliorer pour une meilleure optimisation des processus de traitement des eaux résiduaires. Cette analyse comparative constitue donc une étape cruciale dans l'évaluation et l'ajustement du modèle de simulation pour qu'il reflète fidèlement les performances réelles de la station d'épuration.



*Figure 32* Comparaison entre les mesures expérimentales de la demande chimique en oxygène (DCO) et les valeurs obtenues directement à partir de WEST+2020

Les résultats de la simulation montrent une très bonne corrélation (r=0,93) entre les valeurs mesurées et celles calculées par WEST+2020 pour la DCO (Figure 33). L'analyse des résultats obtenus à partir du modèle et des mesures révèle les mêmes tendances : les valeurs calculées et mesurées sont très proches et ne posent aucun problème en ce qui concerne les réglementations, notamment le respect des valeurs de rejet pour la DCO : 50 mg/l. En particulier pour les faibles charges, la simulation semble représenter fidèlement la réalité.



Figure 33 Résultats de la Simulation des Performances de la STEP de Saida pour les bactéries hétérotrophes

Les bactéries hétérotrophes, qui sont responsables de la dégradation des matières organiques dans les eaux résiduaires, ont une plage de température optimale pour leur croissance maximale. Cette plage peut varier en fonction des espèces bactériennes spécifiques et des conditions environnementales. En général, les températures optimales pour la croissance des bactéries hétérotrophes se situent souvent entre 20°C et 40°C. En dessous ou au-dessus de cette plage optimale, la croissance bactérienne peut être ralentie ou inhibée. Les températures optimales favorisent une activité bactérienne maximale, essentielle pour un traitement efficace des eaux résiduaires.

Selon les résultats obtenus (Figure 34), la concentration de bactéries hétérotrophes augmente avec la température, atteignant un pic de plus de 1100 mg/l entre 28°C et 29°C, mais diminue à environ 800 mg/l lorsque la température baisse. Cela indique que les bactéries se développent mieux à ces températures plus élevées. Une population hétérotrophe stable est observée, avec une légère diminution correspondant à des événements de charge influente réduite (jours 5-7,

jours 21-23). Une concentration relativement basse de substrat à dégradabilité lente est indiquée (<50 mg/L). Cela suggère que l'hydrolyse du substrat (dégradation initiale des matières organiques complexes) ne limite pas la croissance des bactéries. En d'autres termes, les bactéries ont suffisamment de biomasse active pour traiter les matières organiques, et les produits de dégradation sont en quantité moindre dans les boues.



Figure 34 Résultats de la Simulation des Performances de la STEP de Saida pour les bactéries autotrophes

Dans la Figure 35, on peut observer une population de bactéries nitrifiantes stable, avec une performance de nitrification efficace et une conversion presque complète de l'ammonium entrant (S\_NH) en nitrate (S\_NO). On note une légère diminution de la concentration des bactéries autotrophes, correspondant à des périodes de réduction de la charge influente (jours 5–7, jours 21–23). La concentration des nitrifiants dans un système de traitement des eaux résiduaires est étroitement liée à la charge moyenne d'ammonium (NH<sub>4</sub><sup>+</sup>) dans l'effluent. Cette concentration de nitrifiants évolue lentement, généralement sur plusieurs jours, ce qui signifie que les ajustements dans l'intensité de l'aération sont contraînts par la fraction de nitrifiants déjà présents dans le système. En effet, l'efficacité du contrôle de l'ammonium par augmentation de l'aération est limitée par la quantité de nitrifiants disponibles. Ainsi, même si l'intensité de l'aération est augmentée, la capacité du système à traiter l'ammonium est principalement limitée par la concentration et l'activité des nitrifiants présents. Étant donné l'ampleur des données générées, il n'est pas possible de présenter tous les résultats détaillés dans ce document.

Cependant, un exemple des résultats obtenus lors d'un scénario de contrôle est fourni dans l'Annexe 14.

# 4.4.2 Évaluation des Besoins Énergétiques

Une évaluation comparative de la consommation énergétique unitaire des stations d'épuration dans différents pays a montré que la consommation énergétique unitaire exprimée en kWh/m<sup>3</sup> doit être prise en compte dans les études sur l'efficacité des stations d'épuration. Les données disponibles dans la littérature indiquent que la consommation spécifique d'énergie électrique pour les stations à boues activées varie entre 0,5 et 0,7 kWh/m<sup>3</sup> d'eau traitée. L'état de la consommation énergétique pour le traitement des eaux résiduaires à Saïda a été évalué en utilisant les données opérationnelles mensuelles de la station d'épuration pour la période d'avril à août 2020, en raison de la disponibilité des données opérationnelles mensuelles durant cette période (Tableau 25).

L'analyse des données mensuelles révèle comment la consommation d'énergie fluctue en fonction des conditions opérationnelles de la station d'épuration pendant cette période. Ces données mensuelles soulignent comment les variations de la charge hydraulique et des niveaux de pollution ont un impact direct sur la consommation énergétique de la station d'épuration. Cela souligne l'importance de surveiller et d'ajuster les processus opérationnels pour optimiser l'utilisation de l'énergie tout en maintenant l'efficacité du traitement des eaux résiduaires.

|               |                                  | COD                             | BOD5              |                       |                           | D (0) 1 -                       |                    |                   | Ratios  |             |            |
|---------------|----------------------------------|---------------------------------|-------------------|-----------------------|---------------------------|---------------------------------|--------------------|-------------------|---------|-------------|------------|
| Saida<br>WWTP | wastewater<br>flow<br>(m3/month) | Polluting<br>load<br>(kg/month) | Polluting<br>load | Energy<br>(kwh/month) | Energy cost<br>(AD/month) | Purified<br>water<br>(m3/Month) | Kwh/m <sup>3</sup> | DA/m <sup>3</sup> | DA /Kwh | Energy/BOD5 | Energy/COD |
|               |                                  |                                 | (kg/month)        |                       |                           |                                 |                    |                   |         | (kwh/kg)    | (Kwh/Kg)   |
| April         | 645713,4                         | 424234                          | 209211,1          | 264783                | 1207410,3                 | 625690,2                        | 0,42               | 1,93              | 4,56    | 1,27        | 0,62       |
| May           | 690376,2                         | 500085,5                        | 243979            | 276380,5              | 1260294,9                 | 667243,38                       | 0,41               | 1,89              | 4,56    | 1,13        | 0,55       |
| June          | 719626,2                         | 538376,3                        | 298189,1          | 285415,7              | 1301495,6                 | 697554,25                       | 0,41               | 1,87              | 4,56    | 0,96        | 0,53       |
| July          | 775633,5                         | 569315                          | 284657,5          | 297005,6              | 1354345,5                 | 749993,4                        | 0,40               | 1,81              | 4,56    | 1,04        | 0,52       |
| August        | 758972,6                         | 547934,5                        | 294351,7          | 295064,4              | 1364895,6                 | 756738,3                        | 0,39               | 1,80              | 4,56    | 1,02        | 0,54       |
| The average   | 718064,38                        | 515989,06                       | 266077,68         | 283729,84             | 1297688,38                | 699443,906                      | 0,40               | 1,86              | 4,56    | 1,08        | 0,55       |

 Tableau 25 Statistiques de fonctionnement de la station d'épuration de Saïda durant la période d'étude(ONA, 2020)

Source: Office National d'Assainissement de Saida (2020)

## 4.4.3 Influence des contrôleurs On/Off sur la consommation d'énergie

Cette section présente les résultats des simulations concernant les besoins en énergie dans le bassin d'aération d'une seule station d'épuration étudiée pour le mois d'août (Figure 36). Les simulations ont été effectuées pour évaluer comment l'utilisation de contrôleurs On/Off influence la consommation d'énergie dans le bassin d'aération de la station d'épuration. Les contrôleurs On/Off permettent de réguler l'aération en fonction des seuils prédéfinis, réduisant ainsi l'intensité de l'aération lorsque cela est possible. Les résultats des simulations montrent les variations de la consommation d'énergie en fonction des réglages du contrôleur On/Off pendant le mois d'août. Cette période a été choisie en raison de ses températures élevées et de la charge élevée de l'effluent, fournissant des conditions critiques pour évaluer l'efficacité du contrôle de l'aération. Une comparaison de la consommation d'énergie avec et sans le contrôle On/Off a été effectuée.



*Figure 35* Statistiques de fonctionnement de la station d'épuration de Saïda durant la période d'étude

La consommation énergétique de la STEP de Saida en août est de 147 532,2 kWh/mois pour une ligne de traitement (ONA., 2020). La consommation d'énergie du bassin d'aération avant le contrôle de l'aération est de 75 241,422 kWh/mois. Cela signifie que l'aération représente à elle seule 51 % de la consommation totale d'énergie.

**Tableau 26** Consommation d'énergie du bassin d'aération dans un secteur de la station d'épuration de Saida, août (Simulation WEST+ 2020)

| AERATION             | COD load   | BOD5 load  | PURIFIED<br>WATER       | Oxygene | kLa     | Aeration<br>Energy energy co<br>(kwh/month) (DA/<br>month) | Aeration<br>energy cost | Ratios             |                   |         |                    |               |  |
|----------------------|------------|------------|-------------------------|---------|---------|------------------------------------------------------------|-------------------------|--------------------|-------------------|---------|--------------------|---------------|--|
| (On/Off)             | (kg/month) | (kg/month) | (m <sup>3</sup> /month) | (mg/l)  | ) (1/d) |                                                            | (DA/<br>month)          | Kwh/m <sup>3</sup> | DA/m <sup>3</sup> | DA /Kwh | Kwh/<br>kg<br>BOD5 | Kwh/kg<br>COD |  |
| without<br>controlor |            |            |                         | 1,99    | 82,86   | 75 241,42                                                  | 343100,88               | 0,23               | 1,39              | 4,56    | 0,64               | 0,39          |  |
| With controtor       | 194425,8   | 116655,48  | 324043                  | 0,53    | 60,85   | 55678,65                                                   | 253894,64               | 0,17               | 1,04              | 4,56    | 0,47               | 0,29          |  |
| Earnings             |            |            |                         |         |         |                                                            |                         | 26%                |                   |         |                    |               |  |

D'après le tableau 26, les résultats de la simulation montrent que l'intégration du contrôleur on/off dans le réacteur biologique de la station d'épuration de Saida a entraîné une réduction notable de la consommation d'énergie pour l'aération. Avant l'implémentation de ce contrôleur, l'énergie consommée pour l'aération s'élevait à 75 241,42 kWh par mois, représentant 51 % de la consommation totale d'énergie de la station. Après l'introduction du contrôleur on/off, la consommation énergétique a été réduite à 55 678,65 kWh par mois. Cette diminution indique une amélioration significative de l'efficacité énergétique, calculée en fonction du volume d'eau usée traitée (kWh/m<sup>3</sup>). Le contrôleur on/off ajuste l'aération en fonction des besoins spécifiques du système, permettant ainsi une gestion plus efficace de l'énergie et une réduction des coûts opérationnels, tout en optimisant l'efficacité énergétique globale de la station.



*Figure 36* La Variation de la concentration en oxygène et du coefficient kLa dans le bassin d'aération, (a) avant le contrôle on/off (b) après le contrôle on/off

Une augmentation du coefficient de transfert d'oxygène (kLa) dans la zone aérée favorise la croissance des bactéries nitrifiantes en fournissant davantage d'oxygène dissous nécessaire à leur métabolisme. Cela entraîne une accélération du taux de nitrification, ce qui se traduit par une diminution des niveaux d'ammonium dans l'effluent, car une plus grande quantité est convertie en nitrites et en nitrates [Figure 36 (a)].

L'optimisation du processus d'aération est obtenue lorsque la variable de contrôle de l'aération (coefficient de transfert d'oxygène, kLa) est minimisée et que la concentration moyenne quotidienne d'ammonium dans les eaux résiduaires atteint le niveau souhaité. La concentration en oxygène est également une variable clé du processus à contrôler pour l'élimination des nutriments. L'utilisation d'un contrôleur on/off a réduit l'intensité de l'aération, et la concentration en oxygène est passée de 1,99 mg/l à 0,53 mg/l lorsque la concentration d'ammonium dans l'effluent est suffisamment basse [Figure 36 (b)].

Le NH4-N suit une courbe de Monod typique, suggérant une augmentation linéaire de l'activité des bactéries nitrifiantes avec l'augmentation de l'oxygène dissous jusqu'à un certain point (par exemple, 2 mg O2/l), et une augmentation au-delà de ce point n'apporte aucun bénéfice supplémentaire puisque le taux de nitrification est limité cinétiquement par la concentration des nitrifiants. La nitrification représente une demande importante en oxygène, ce qui pèse sur la consommation d'énergie de l'aération (Figure 37).



**Figure 37** Impact du contrôleur On/Off sur la concentration en oxygène dans le bassin d'aération; concentrations d'ammonium et de nitrates dans l'effluent de la STEP de Saïda en fonction du temps.
Le contrôleur d'aération régule plus efficacement l'apport en oxygène nécessaire au processus de traitement, évitant ainsi un surcroît de consommation énergétique. La réduction de la consommation d'énergie se traduit directement par des économies financières substantielles. En utilisant le contrôleur d'aération, les coûts associés à l'aération, qui représentent souvent une part importante des dépenses liées au traitement des eaux résiduaires, sont significativement réduits. L'optimisation de l'efficacité énergétique, les ratios kWh/m<sup>3</sup> et DA/m<sup>3</sup> sont des indicateurs clés de l'efficacité du processus de traitement. Le coefficient de consommation d'énergie dans les bassins d'aération ne dépasse pas la valeur moyenne, qui est de 0,71 kWh/m<sup>3</sup> (Wang et al., 2016; Wakeel et al., 2016; Di Fraia et al., 2018). Avec le contrôleur d'aération, ces ratios sont améliorés, passant de 0,23 à 0,17 kWh/m<sup>3</sup> et de 1,39 à 1,04 DA/m<sup>3</sup>, ce qui reflète une utilisation plus efficace de l'énergie (Tableau 26). Améliorer ce ratio avec le contrôleur d'aération montre que l'énergie est utilisée plus efficacement pour réaliser le traitement, ce qui est bénéfique d'un point de vue gestion des ressources énergétiques. Les ratios kWh/kg BOD5 et kWh/kg COD mesurent l'efficacité énergétique de la charge organique traitée. La valeur habituelle rapportée par d'autres études pour le processus de boues activées est de 2 kWh/kg BOD5 éliminé (Struk-Sokołowska et al., 2018; Kazimierowicz et al., 2021; Żyłka et al., 2021). Les résultats de simulation montrent que ce ratio passe de 0,64 à 0,47 kWh/kg BOD5, et de 0,39 à 0,29 kWh/kg COD (Tableau 26). L'amélioration de ces ratios avec le contrôleur d'aération indique une optimisation du processus de traitement, où moins d'énergie est nécessaire pour traiter la même quantité de polluants, démontrant une meilleure performance du système.

Réduire la concentration en oxygène dans le bassin d'aération entraîne une baisse significative de la demande en oxygène, réduisant ainsi le besoin d'une aération intense. Cette optimisation réduit donc la consommation d'énergie nécessaire pour fournir cet oxygène supplémentaire, entraînant des économies substantielles sur les coûts d'exploitation.



*Figure 38* Optimisation de la puissance d'aération dans le bassin à boues activées (WEST+ 2020)

En comparant les deux situations, l'utilisation du contrôleur d'aération a permis une réduction significative de la consommation d'énergie dans le bassin d'aération, passant de 75 241,42 kWh/mois à 55 678,65 kWh/mois, ce qui représente une réduction d'environ 26 % dans un secteur unique, démontrant l'efficacité du contrôleur dans la régulation de l'aération pour une utilisation plus judicieuse de l'énergie (Figure 39).

L'implémentation d'un système de contrôle de l'aération a permis d'ajuster la quantité d'oxygène utilisée en fonction des besoins réels du processus de traitement des eaux résiduaires. Cette optimisation a conduit à une réduction notable de la consommation d'énergie, particulièrement dans le bassin d'aération où l'oxygène est injecté pour soutenir les processus biologiques de traitement. En conséquence, les coûts énergétiques, qui constituent une part importante du budget opérationnel d'une station d'épuration, ont été significativement réduits.

Après la mise en œuvre du contrôle de l'aération, la réduction de la consommation d'énergie a entraîné une diminution des coûts énergétiques associés à l'aération. Plus précisément, les coûts sont passés d'une moyenne de 343 100,88 DA à 253 864,64 DA, ce qui représente un gain opérationnel moyen de 89 206,24 DA par mois. Cette économie financière significative souligne l'impact positif du contrôleur d'aération sur les coûts opérationnels (Figure 40).



*Figure 39* Coût de la consommation d'énergie dans le bassin d'aération de la STEP de Saïda, WEST+2020

#### 4.4.4 Évaluation des performances de clarificateur

Pour évaluer les performances du clarificateur, il est essentiel de comparer les données expérimentales des matières en suspension (MES) avec les valeurs simulées par le modèle. Les MES constituent un indicateur clé de l'efficacité du clarificateur, car elles représentent la quantité de particules solides présentes dans l'eau traitée. Cette comparaison a pour objectif de vérifier dans quelle mesure le modèle parvient à reproduire les conditions réelles du système de traitement des eaux. Une correspondance étroite entre les valeurs mesurées et simulées indique que le modèle est capable de capturer les dynamiques physiques et chimiques du clarificateur avec précision. En revanche, si des écarts significatifs sont constatés, cela peut suggérer que certains paramètres du modèle doivent être ajustés ou que des phénomènes complexes ne sont pas correctement représentés (Ben Li., 2014).

En validant la capacité du modèle ASM2dModTemp à simuler fidèlement les conditions réelles, cette comparaison permet de renforcer la confiance dans l'utilisation de WEST<sup>+</sup>2020 pour la prédiction des performances futures du clarificateur et l'optimisation de son fonctionnement.



*Figure 40* Comparaison entre les mesures expérimentales des MES et les valeurs modélisées par WEST+2020

Pour la STEP de Saida, les valeurs simulées des concentrations en matières en suspension (MES) concordent globalement bien avec les mesures expérimentales, ce qui témoigne de la précision et de la fiabilité du modèle utilisé dans le logiciel. Bien que de légers écarts aient été observés certains jours, où les valeurs simulées sont légèrement plus élevées, ces différences restent minimes. Cela indique que le modèle capture efficacement la dynamique des MES dans la station. Ces résultats montrent que le logiciel est capable de reproduire fidèlement les conditions réelles et d'optimiser les performances du système, tout en permettant d'anticiper d'éventuelles fluctuations (Figure 28).

Les résultats de simulation obtenus après le contrôle de la recirculation interne (IR), du retour des boues activées (RAS) et de l'extraction des boues (WAS) montrent une performance différenciée selon les différents paramètres de traitement.

**Tableau 27** Résultats de la simulation après le contrôle de la recirculation des boues (WEST+2020)

| Variable   | Criterion          | Value     |      |
|------------|--------------------|-----------|------|
| Out_COD    |                    |           |      |
|            | Minimum            | 33,57823  | 93 % |
|            | Maximum            | 66,891814 |      |
|            | Mean               | 51,928024 |      |
|            | Standard Deviation | 5,685276  |      |
| Out_(S_NH) |                    |           |      |

|            | Minimum<br>Maximum<br>Mean<br>Standard Deviation | 0,14081327<br>2,600931<br>0,52158445<br>0,38075483 | 98 % |
|------------|--------------------------------------------------|----------------------------------------------------|------|
| Out_(S_NO) |                                                  |                                                    |      |
|            | Minimum                                          | 19,163536                                          | -    |
|            | Maximum                                          | 53,77617                                           |      |
|            | Mean                                             | 39,949526                                          |      |
|            | Standard Deviation                               | 7,6978787                                          |      |
| Out_TP     |                                                  |                                                    |      |
|            | Minimum                                          | 5,5259843                                          | 19 % |
|            | Maximum                                          | 14,585906                                          |      |
|            | Mean                                             | 10,884771                                          |      |
|            | Standard Deviation                               | 1,9723096                                          |      |
| Out_TSS    |                                                  |                                                    |      |
|            | Minimum                                          | 9,301053                                           | 97 % |
|            | Maximum                                          | 31,373922                                          |      |
|            | Mean                                             | 14,859536                                          |      |
|            | Standard Deviation                               | 3,8589227                                          |      |

Pour la DCO Un taux d'élimination de 93 %, Un taux d'élimination de 98 % de l'ammonium et 97 % est le taux d'élimination des solides en suspension (MES). Cette combinaison optimale de recirculation interne (RI), retour des boues (RAR), et extraction de boues (WAS) a permis une bonne dégradation de la matière organique dans le système. L'ammonium présent dans l'influent a été transformé à 98% en nitrate (NO<sub>3</sub><sup>-</sup>) dans les zones aérobies (Figure 41). Ce taux élevé est généralement un indicateur d'une bonne oxygénation et d'une concentration suffisante en biomasse active capable d'effectuer la nitrification. Une élévation des concentrations des nitrates dans l'effluent peut suggérer que la dénitrification ne se produit pas efficacement ou que la quantité de nitrate produite par la nitrification dépasse celle qui est réduite en azote gazeux. Ce problème peut être attribué à un manque de conditions anoxiques ou à une insuffisance dans le système de dénitrification. Pour aborder ce défi, une approche de contrôle a été étudiée dans la partie précédente, visant spécifiquement à résoudre le problème d'élimination de l'azote, tant pour la nitrification que pour la dénitrification. Cette approche constituait l'objectif principal de l'étude, visant à optimiser les processus de traitement afin de maintenir un équilibre efficace entre la production et la réduction des nitrates dans le système. Le taux d'élimination des matières en suspension (TSS) de 97 % atteste d'une excellente performance de sédimentation dans le clarificateur ainsi que d'une gestion efficace des boues. Ce résultat démontre que le clarificateur est très performant pour séparer les solides en suspension de l'effluent, garantissant une clarification optimale de l'eau traitée (Tableau 27). La gestion des boues, intégrant le retour des boues activées (RAS) et l'extraction des boues

excédentaires (WAS), a également été adéquate, permettant le maintien d'une concentration optimale de biomasse dans le système. Ce taux élevé d'élimination des MES (TSS) indique que le système de traitement est bien équilibré et efficace, favorisant une élimination maximale des solides en suspension et contribuant à la qualité globale de l'effluent final.



*Figure 41* Variation de la concentration d'ammonium dans l'eau traitée (effluent) et de la concentration d'oxygène dans la bassin biologique en fonction du temps

La Figure 41 illustre des fluctuations significatives dans les concentrations d'ammonium, qui varient considérablement, atteignant 1,6 mg/l et chutant jusqu'à environ 0,1 mg/l. Ces variations sont souvent corrélées aux changements dans les niveaux d'oxygène dans le réservoir aéré, dont les concentrations oscillent entre environ 0,2 mg/L et 1,8 mg/L. Les pics et les creux des niveaux d'oxygène correspondent généralement aux variations observées dans les concentrations d'ammonium. La relation inverse entre les deux lignes suggère que lorsque les niveaux d'oxygène augmentent dans le réservoir aéré, la concentration d'ammonium dans l'effluent a tendance à diminuer, et vice versa. Les fluctuations périodiques des concentrations d'oxygène et d'ammonium indiquent que le système subit une nitification. Cette analyse suggère qu'une optimisation du contrôle de l'oxygène pourrait aider à stabiliser les concentrations d'ammonium dans l'effluent.

#### 4.4.4.1 L'extraction des boues

L'extraction des boues (d'où le flux de WAS) est la variable manipulée la plus importante dans un système de traitement des eaux résiduaires (DHI., 2020). Le flux WAS détermine le temps de séjour moyen des solides dans le système (également connu sous le nom de temps de séjour solide, SRT) et il affecte les quantités de solides présentes (plus il y a de boues gaspillées, plus la quantité de solides dans le système est faible). C'est pourquoi le flux de WAS est généralement utilisé pour contrôler la concentration de biomasse dans les réacteurs à boues activées, également définis comme MLSS (solides en suspension de liqueur mixte). Le but est de mettre en œuvre une structure de contrôle simple (basée sur l'activation ou la désactivation du flux WAS) afin de maintenir la concentration MLSS dans les bioréacteurs dans une plage souhaitée (Figure 42).



#### Figure 42 Structure de contrôle basée sur On/Off du flux WAS

Un bloc «On/Off Controller», a été installé près du séparateur de déchets de boues WAS. Les connexions appropriées sont résumées comme dans le Tableau 28 :

Le but de ce contrôleur est de maintenir la concentration de solides dans les réservoirs (MLSS ou TSS) à environ 5000 g / m 3 ( y\_Min == 4800 g / m 3, y\_Max = 5200 g / m 3) en agissant sur le débit de perte (u\_Max = 500 m 3 / d, u\_Min = 150 m3 / j)

| Terminal «De»     |          | Terminal «À»      |          |  |
|-------------------|----------|-------------------|----------|--|
| Bloquer           | Variable | Bloquer           | Variable |  |
| Réservoir aéré    | TSS      | On Off Controller | y_M      |  |
| On Off Controller | u        | Déchets de boues  | Q_Out2   |  |

Tableau 28 Les connexions appropriées du contrôleur On/Off (WEST+2020)

Le contrôleur ajuste le processus de purge des boues en fonction de la concentration de matières en suspension totales (TSS) dans le réservoir aéré. Lorsque la concentration de TSS dépasse 5,2 g/L, le contrôleur augmente la quantité de boues éliminées, dans le but de faire baisser cette concentration. Inversement, lorsque la concentration de TSS descend en dessous de 4,8 g/L, le contrôleur réduit la quantité de boues purgées, ce qui permet d'augmenter la concentration de TSS dans le réservoir. Ce mécanisme de contrôle vise à maintenir la concentration de TSS dans une plage optimale pour le fonctionnement du système. Une concentration trop élevée de TSS dans le réservoir aéré peut entraîner des problèmes comme une surcharge de biomasse et une mauvaise sédimentation dans le clarificateur. En éliminant davantage de boues lorsque cette concentration dépasse 5,2 g/L, on évite ces problèmes.



*Figure 43* Variation des concentrations en MES dans le bassin d'aération en fonction des débits de purge.

La Figure 43 présente l'évolution de la concentration des matières en suspension totales (TSS) dans le bassin d'aération ainsi que le débit de purge (wastage flow) au fil du temps. La concentration des TSS dans le bassin d'aération (g/m<sup>3</sup>) augmente progressivement lorsque le débit de purge est constant ou faible. Une tendance générale à la hausse, mais avec des oscillations régulières, probablement liées aux changements dans le débit de purge ou à la dynamique du processus biologique. À chaque augmentation du débit de purge, la concentration des TSS diminue légèrement, ce qui est cohérent avec les principes de fonctionnement des bassins d'aération, plus de biomasse est retirée du système, la concentration des solides dans le bassin d'aération est réduite. Cette gestion permet de maintenir des niveaux appropriés de biomasse dans le système afin de garantir un traitement optimal des eaux résiduaires.



Figure 44 Profil des boues dans le clarificateur (WEST+2020)

Le profil des boues montre des variations significatives dans l'accumulation des boues à différentes couches du clarificateur, ce qui peut offrir des indications précieuses sur le fonctionnement du système. Les premières couches montrent une accumulation progressive des boues, ce qui est généralement attendu et indique que le processus de sédimentation fonctionne correctement dans ces zones. Une accumulation régulière ici est généralement un signe de conditions de fonctionnement normales. L'augmentation marquée dans la couche 5 pourrait signaler un problème ou une anomalie, comme une augmentation de la densité des boues ou une variation dans le taux de sédimentation. Cela peut être causé par des changements dans les conditions de fonctionnement, tels qu'une variation du débit ou de la charge organique. La stabilité dans ces couches suggère que le système a atteint un état d'équilibre, ce qui est souvent un bon signe de la performance continue du clarificateur dans ces zones. Cette augmentation très importante indique une accumulation excessive de boues dans la couche 10, ce qui pourrait signaler une surcharge du clarificateur (Figure 44).

#### 4.4.4.2 Indice de volume de boues SVI

La décantation des boues est l'une des caractéristiques les plus importantes du procédé à boues activées (ASP). Le gonflement des boues, entraînant une mauvaise décantation dans le clarificateur secondaire et permettant à la biomasse non décantée de s'échapper avec l'effluent, est causé par le développement excessif de bactéries filamenteuses. Le gonflement des boues est l'un des principaux problèmes opérationnels des systèmes à boues activées. La valeur de l'indice des boues SVI est la mesure standard des caractéristiques physiques des boues activées solides, utilisées pour caractériser quantitativement le gonflement des boues (LEPORCQ C et al 2009). Il est un indicateur crucial de la qualité de la sédimentation des boues dans le clarificateur. Un SVI faible est associé à des boues denses et bien décantées, tandis qu'un SVI élevé, reflète une tendance à des boues filamenteuses ou difficilement décantables. La relation entre le SVI, la hauteur des boues et les TSS est illustrée dans le tableau 29.

| SVI | Hauteur des boues | r <sub>H</sub>      | TSS                 |
|-----|-------------------|---------------------|---------------------|
|     | (m)               | (m <sup>3</sup> /g) | (g/m <sup>3</sup> ) |
| 100 | 0,7               | 0,000358            | 938,425222579261    |
| 140 | 0,7               | 0,000442            | 943,764385563562    |
| 200 | 1,05              | 0,000568            | 1198,93560128176    |

Tableau 29 Résultats de la Simulation des Effets du SVI sur la Sédimentation (WEST+2020)

Le Tableau 29 met en évidence trois paramètres clés dans le fonctionnement d'un clarificateur de station de traitement des eaux résiduaires : l'Indice de Volume des Boues (SVI), la hauteur des boues et la concentration de solides en suspension totaux (TSS). Les résultats de la simulation, manipulant différents niveaux de SVI, permettent de comprendre l'impact de ce paramètre sur la performance du clarificateur. À un SVI de 100, les boues se sédimentent efficacement, avec une hauteur de boues modérée de 0,7 mètre et un paramètre de sédimentation entravée (r<sub>H</sub>) faible de 0,000358 m<sup>3</sup>/g. La concentration des matières en suspension totales (TSS) est relativement basse à 938,43 mg/L, indiquant une qualité d'effluent satisfaisante. En revanche, lorsque le SVI augmente à 140, bien que la hauteur des boues reste stable à 0,7 mètre, l'efficacité de la sédimentation diminue légèrement. Le r<sub>H</sub> augmente à  $0,000442 \text{ m}^{3}/\text{g}$  et la concentration de TSS monte à 943,76 mg/L, signalant une légère détérioration de la qualité de l'effluent. À un SVI de 200, la capacité de sédimentation est considérablement compromise, comme en témoigne l'augmentation de la hauteur des boues à 1,05 mètre et un  $r_{\rm H}$  élevé de 0,000568 m<sup>3</sup>/g. La concentration des TSS grimpe de manière significative à 1198,94 mg/L, révélant une dégradation notable de la qualité de l'effluent due à une accumulation accrue de boues et à une sédimentation inefficace. Ces résultats soulignent l'impact direct du SVI sur la performance du clarificateur et la qualité finale de l'effluent. Dans cette étude, les résultats de simulation montrent une relation claire entre le SVI et l'efficacité de la sédimentation ainsi que la qualité de l'effluent.



*Figure 45* Impact de la Variation du SVI sur la hauteur des boues dans le clarificateur et le temps de séjour.

Bien que l'Indice de Volume des Boues (SVI) puisse varier, le Temps de Séjour des Boues (SRT) reste relativement stable, oscillant entre 16 et 18 jours. Cette stabilité du SRT, malgré les fluctuations du SVI, confirme ce qui a été observé dans la littérature, à savoir que le SRT est principalement influencé par la biomasse active et les conditions de traitement dans le réacteur, plutôt que par la capacité des boues à se sédimenter, indiquée par le SVI. En d'autres termes, même si un SVI plus élevé ou plus bas peut refléter des changements dans la sédimentation des boues, le temps durant lequel les boues restent dans le système pour être stabilisées et traitées reste constant tant que les conditions opérationnelles et la biomasse active demeurent inchangées (Figure 45)

#### 4.5 Conclusion

L'étude menée a permis de démontrer l'efficacité du modèle ASM2dModTemp pour optimiser le traitement de l'azote et le fonctionnement de clarificateur au sein de la station d'épuration de Saida. Les résultats ont montré que les simulations réalisées à l'aide du logiciel WEST+2020 ont bien correspondu aux données expérimentales, En particulier, concernant l'élimination des pollutions carbonée et azotée, la nitrification est entièrement réalisée, tandis que la dénitrification et la déphosphatation interviennent de manière implicite au sein du processus global de dégradation. Le traitement de l'azote, qui implique des processus comme la nitrificationet la dénitrification, est énergivore en raison de la forte demande en oxygène nécessaire à lacroissance des bactéries nitrifiantes. Toutefois, une gestion efficace de ces processus,notamment par l'utilisation de contrôleurs d'aération tels que les contrôleurs PI et on/off, permetde réduire de manière significative la consommation d'énergie tout en maintenant une performance de traitement optimale. En ajustant l'apport en oxygène aux besoins réels du processus biologique, il est possible de minimiser le gaspillage d'énergie sans compromettre l'efficacité de l'élimination de la pollution azotées et phosphorées. De plus, l'intégration de l'estimation du paramètre de sédimentation via le SVI rend le modèle plus précis et applicable dans des situations réelles. Cela permet aux ingénieurs d'utiliser des données mesurées directement sur le terrain (le SVI) pour affiner leurs simulations, ce qui améliore la précision des prévisions concernant le comportement des boues dans un clarificateur secondaire. Les simulations ont mis en lumière l'importance de la gestion des conditions opérationnelles telles que le débit de recirculation et l'aération, avec des ajustements précis des paramètres ayant un impact direct sur l'efficacité du traitement.

### CONCLUSION GENERALE & PERSPECTIVES

### Conclusion générale

La présente recherche est une contribution à l'optimisation des performances des stations d'épuration des eaux usées (STEP) à boues activées. Le processus de traitement des eaux résiduaires est généralement exploité dans des conditions de charge très variables, dues aux changements temporels du débit et de la composition des eaux résiduaires.

Un traitement biologique efficace des effluents contribue à une augmentation rapide des coûts d'exploitation associés à la consommation d'énergie et la gestion de la qualité des rejets, c'est pourquoi, la complexité des processus à boues activées nécessite des techniques de modélisation de plus en plus précises et développées. Les modèles de boues activées (ASM) et leurs dérivés ont révolutionné la modélisation des processus biologiques de traitement des eaux résiduaires. Ils ont permis d'améliorer l'efficacité des STEP tout en abordant les défis liés à la consommation énergétique et à la qualité des effluents. Ces modèles sont devenus des outils indispensables pour la simulation, l'optimisation et le contrôle des systèmes de traitement, permettant aux ingénieurs et chercheurs de mieux comprendre et gérer les processus complexes impliqués dans le traitement des eaux résiduaires. L'évolution continue de ces modèles, soutenue par la recherche académique, garantit leur pertinence et leur efficacité pour répondre aux défis actuels et futurs du traitement des eaux résiduaires. Cette étude répond aux défis environnementaux et technologiques en développant des solutions concrètes pour optimiser le traitement de l'azote, favoriser l'économie d'énergie et réduire les coûts d'exploitation des stations d'épuration (STEP), tout en contribuant à une gestion plus durable des ressources en eau en Algérie. Elle a permis de développer une méthodologie efficace pour l'optimisation du traitement de l'azote en utilisant le modèle de simulation ASM2dModTemp et le modèle Tackas\_SVI de décantation dans le clarificateur de la STEP à boues activées de la wilaya de Saida.

En utilisant le logiciel de simulation WEST+2020, basé sur les concepts et les équations de modélisation ASM2dModTemp une analyse de plusieurs scénarios de contrôle de l'aération et de l'extraction des boues a été testée. L'approche adoptée s'est concentrée sur l'ajustement de plusieurs paramètres de simulation au cours du mois d'août 2020, une période marquée par des températures élevées. L'ensemble des mesures nécessaires des paramètres de pollution, tels que la DCO, MES, DBO5, NH4+, et le phosphore total, était disponible, ce qui a grandement facilité le calibrage précis du modèle. Ces données ont été exploitées pour optimiser à la fois

l'élimination biologique des nutriments et la consommation énergétique, améliorant ainsi significativement la performance opérationnelle de la station d'épuration. Les stratégies de contrôle en cascade PI avec contrôle on/off pour contrôler la concentration en oxygène dissous (DO) dans les processus à boues activées ont été investiguées, simulées et évaluées selon les critères définis dans ASM2dModTemp. De ce fait, le contrôleur PI peut être utilisé à différents niveaux de contrôle, et sa capacité à répondre rapidement pour ajuster le taux d'oxygène dissous (OD) proche du point de consigne est cruciale. Ensuite, dans une plage restreinte autour de ce point de consigne, une stratégie de contrôle en cascade on/off a pu être mise en œuvre pour optimiser les performances de traitement et de fonctionnement. A partir des résultats de la simulation, la stratégie de contrôle de l'aération en cascade PI avec contrôleur on/off a atteint de meilleurs indices de performance en termes d'élimination de la pollution carbonée et de nitrification, et a également réduit la consommation d'énergie due à l'aération. Les résultats de la simulation ont montré que les concentrations de DCO (Demande Chimique en Oxygène) mesurées à la sortie de la station correspondaient étroitement aux valeurs prédites par le modèle de simulation utilisé. Cette corrélation satisfaisante indique que le modèle est capable de reproduire de manière fiable les conditions réelles du processus de traitement des eaux usées. Les résultats ont montré également que l'aération des réacteurs biologiques représentait la plus grande part de la consommation totale d'énergie et constituait de ce fait, une part importante du budget d'exploitation de la STEP de Saïda, avec 51% des besoins totaux en énergie. Ces résultats démontrent une amélioration remarquable de l'efficacité du traitement, avec des réductions significatives de la demande chimique en oxygène (DCO) de 93 %, des matières en suspension de 98 %, de l'ammonium de 98 % et de 20 % pour le phosphore total. De plus, la consommation d'énergie a été réduite de 26 % sur une ligne de traitement, ce qui représente une avancée notable dans la gestion énergétique des STEP.

En intégrant ce modèle dans un outil d'aide à la décision, les opérateurs de la station d'épuration peuvent l'utiliser pour prévoir et ajuster les paramètres du traitement, tels que l'aération ou l'extraction des boues, en fonction des prévisions de qualité de l'eau en sortie. Cela permet de mieux contrôler le processus biologique des boues activées et d'optimiser la gestion de la station, notamment en garantissant que les niveaux de DCO respectent les normes environnementales. Le modèle devient ainsi un atout précieux pour assurer une gestion proactive et efficace de la qualité des eaux traitées, réduisant ainsi les risques d'erreurs ou de dépassement des seuils réglementaires. L'ajout de contrôleurs automatiques permet également une surveillance plus fréquente et réactive des conditions au sein du bassin d'aération et du

clarificateur. Cette surveillance continue offre la possibilité d'intervenir rapidement pour corriger d'éventuelles dérives dans les paramètres critiques, réduisant ainsi les risques de non-conformité avec les seuils réglementaires et assurant une qualité constante des eaux traitées.

Les conclusions de cette recherche offrent une base solide pour l'optimisation des procédés de traitement des eaux résiduaires, ouvrant la voie à des améliorations opérationnelles significatives et à des économies d'énergie. L'intégration de modèles de simulation avancés, combinée à une gestion précise des paramètres de contrôle, révèle un potentiel considérable pour optimiser les performances des stations d'épuration dans divers contextes régionaux et climatiques. Cependant, il est essentiel que les opérateurs veillent à maintenir ces systèmes en bon état et appliquent des stratégies efficaces de contrôle de l'aération des réacteurs biologiques afin de maximiser l'efficacité énergétique.

L'application de modèles mathématiques avancés et de simulations dans cette étude, a démontré que des gains significatifs en termes d'efficacité énergétique et de traitement des polluants pouvaient être réalisés. D'un point de vue économique et environnemental, l'optimisation dynamique se révèle être un outil puissant pour les ingénieurs, leur permettant de déterminer la conception optimale des systèmes de traitement des eaux résiduaires. Les exploitants de stations d'épuration sont de plus en plus contraints d'adopter des solutions d'optimisation pour réduire les coûts énergétiques, notamment ceux liés aux processus les plus énergivores. Dans ce contexte, l'utilisation de technologies avancées, telles que la modélisation mathématique, la simulation informatique, et le contrôle matériel, devient essentielle. Ces technologies permettent d'analyser diverses solutions en peu de temps et avec un budget limité, intégrant ainsi la modélisation dans la conception et l'exploitation des systèmes. Ce processus permet d'acquérir des connaissances cruciales sur les mécanismes opérationnels et les stratégies d'optimisation.

Ce travail ouvre la voie à des études futures visant à affiner ces modèles et à explorer des solutions innovantes, répondant ainsi aux exigences croissantes en matière de durabilité environnementale et de gestion des ressources en eau. Ces avancées, en phase avec les préoccupations mondiales actuelles, contribuent à rendre le traitement des eaux usées plus efficace et respectueux de l'environnement.

Bien que des avancées significatives aient été réalisées dans les stations d'épuration à boues activées, plusieurs aspects présentent encore des limitations qui méritent d'être soulignées. Ces avancées ont permis une amélioration notable des capacités de traitement, mais des défis subsistent, en particulier en ce qui concerne l'optimisation de la gestion des boues, la réduction de la consommation énergétique, et l'intégration des technologies de traitement des nutriments comme l'azote et le phosphore. Ainsi, en s'appuyant sur les résultats obtenus, cette recherche ouvre de nouvelles perspectives de développement et d'investigation, qui pourront enrichir les futures initiatives d'optimisation des stations d'épuration.

#### **Limitations & perspectives**

#### Limite 1 : Domaine de validité du modèle

La première limitation majeure de cette méthodologie réside dans la nécessité d'un modèle de la station d'épuration (STEP) dont le domaine de validité couvre adéquatement les paramètres explorés lors de la manipulation des systèmes de contrôle. Cette limitation est cruciale car le domaine de validité des modèles utilisés est souvent mal défini. Par exemple, il n'est pas évident qu'un modèle calibré pour une STEP avec des unités de boues activées fonctionnant sous des charges élevées ou moyennes et avec des concentrations d'oxygène presque séquencées (0 ou 2 mg/L) puisse être appliqué à la même STEP en aération prolongée avec des concentrations d'oxygène très faibles. Cette incertitude quant à la transférabilité des modèles entre différents modes de fonctionnement met en lumière la nécessité d'une meilleure compréhension et définition du domaine de validité des modèles.

#### Perspective 1 : Développement de modèles adaptatifs

Pour pallier cette limitation, il serait pertinent de développer des modèles adaptatifs ou « étendus » capables de simuler différents scénarios d'exploitation de la STEP. Ces modèles pourraient inclure des mécanismes permettant de capturer les variations dans les conditions de fonctionnement, telles que les changements dans les concentrations d'oxygène et les charges organiques. Par exemple, la modélisation de la diversité de la biomasse et l'analyse de son impact sur la stabilité du fonctionnement de la STEP pourraient offrir des insights précieux. Une étude plus approfondie pourrait être nécessaire pour développer des modèles qui intègrent ces variables et valider leur applicabilité dans divers scénarios de fonctionnement.

#### Limite 2 : Connaissance des caractéristiques de l'influent

Une autre contrainte importante réside dans la nécessité d'une connaissance précise des caractéristiques de l'influent pour générer des ensembles de données fiables couvrant diverses conditions météorologiques et périodes. Une information détaillée sur l'influent est cruciale pour créer des ensembles de données représentatifs pour les périodes sèches, les événements pluvieux, et les longues périodes. Cependant, même si une station d'épuration (STEP) n'a pas des ressources aussi abondantes qu'une grande installation en termes de données détaillées sur l'influent (les eaux résiduaires entrant dans la station), elle peut tout de même fournir des informations précieuses. Cette capacité est renforcée lorsque les données disponibles sont associées à des modèles phénoménologiques de l'influent. Bien que la validité des ensembles de données ainsi générés puisse être limitée, cette approche représente un point de départ qui peut être amélioré à mesure que la compréhension des caractéristiques de l'influent progresse.

#### Perspective 2 : Développement d'outils d'assistance à la modélisation de l'influent

Pour surmonter les limitations actuelles, le développement d'outils spécifiques facilitant la modélisation de l'influent est recommandé. Ces outils devraient inclure des modules pour l'acquisition, l'analyse, et la gestion des données, ainsi que des recommandations sur les niveaux de calibration nécessaires, afin d'améliorer la précision et l'accessibilité des méthodologies en pratique. En parallèle, des technologies avancées comme les biofiltres et les réacteurs à membranes peuvent offrir des solutions efficaces pour le traitement des eaux résiduaires, bien qu'elles puissent entraîner des coûts supplémentaires. L'intégration de ces solutions dans les stations d'épuration nécessite une sensibilisation accrue aux défis futurs liés à la disponibilité de l'eau potable, afin de justifier les investissements nécessaires tout en optimisant les performances des installations.

#### Limite 3 : Optimisation Incomplète des Paramètres Internes du Contrôleur

La méthodologie actuelle a principalement focalisé son optimisation sur les points de consigne et les limites du contrôleur, en négligeant les paramètres internes du contrôleur, tels que ceux qui influencent sa stabilité et sa vitesse de réponse. Bien que les paramètres internes actuellement utilisés soient considérés comme appropriés pour les points de consigne testés, une optimisation plus approfondie de ces paramètres pourrait affiner davantage les résultats.

#### Perspective 3 : Intégration de l'optimisation des paramètres internes du contrôleur

Pour surmonter cette limitation, il serait bénéfique d'intégrer l'optimisation des paramètres internes du contrôleur en parallèle avec celle des points de consigne et des limites. Une approche possible consiste à mener une optimisation en deux étapes : d'abord, une optimisation globale des points de consigne et des limites est réalisée, suivie par une optimisation plus ciblée des paramètres internes pour chaque solution proposée. Cette méthode permettrait de maintenir un bon équilibre entre la qualité des effluents, la consommation d'énergie et la stabilité du contrôle. En affinant les paramètres internes de cette manière, on pourrait obtenir une meilleure précision et une performance globale améliorée des systèmes de contrôle dans le traitement des eaux résiduaires.

#### Limite 4 : Importance de l'Expertise en Modélisation pour une Optimisation Précise

Enfin, l'application de cette méthodologie exige une expertise approfondie en modélisation de l'élimination biologique des différentes formes de pollution, ainsi qu'une compréhension des variations de la biomasse épuratrice. Cette expertise est cruciale pour sélectionner les paramétrages adéquats, définir les objectifs et les contraintes appropriés, et effectuer une analyse précise des résultats d'optimisation pour éviter les interprétations erronées. Bien que la méthodologie fournisse un outil précieux, elle ne remplace pas l'expertise d'un spécialiste en modèles de stations d'épuration (STEP), mais peut servir de support complémentaire.

# Perspective 4 : Développement d'outils conviviaux pour l'optimisation des STEP et collaboration entre experts et praticiens

Pour pallier cette limitation, il est recommandé de développer des outils conviviaux qui intègrent des connaissances expertes en modélisation tout en étant accessibles aux utilisateurs non spécialistes. Un tel outil pourrait simplifier la sélection des paramétrages, la définition des objectifs, et l'interprétation des résultats, tout en offrant des recommandations basées sur des normes éprouvées. De plus, une collaboration étroite entre les experts en modélisation et les praticiens de terrain pourrait faciliter l'application de cette méthodologie, enrichir la compréhension des dynamiques complexes de la STEP, et garantir une utilisation plus efficace des outils d'optimisation.

#### **Perspective Finale**

Une perspective prometteuse pour cette recherche est l'élargissement de la méthodologie à d'autres problèmes d'optimisation. En effet, au-delà de l'optimisation des stations d'épuration

(STEP), cette approche pourrait être adaptée à des objectifs variés tels que le dimensionnement des équipements, la gestion des coûts d'investissement et de maintenance, ainsi que l'optimisation de systèmes différents de l'aération des boues activées. En outre, la méthodologie pourrait également être exploitée pour concevoir des configurations d'usines plus résilientes aux perturbations et pour évaluer les risques de dysfonctionnement. Cette extension pourrait non seulement enrichir les applications pratiques de la méthodologie, mais aussi contribuer à une meilleure compréhension et gestion des systèmes complexes de traitement des eaux résiduaires, en offrant des solutions robustes et adaptées aux défis futurs.

#### Perspectives de Recherche Future

Pour faire avancer le domaine de l'optimisation des systèmes de traitement des eaux résiduaires, plusieurs axes de recherche prometteurs peuvent être explorés :

#### Intégration des Effets Climatiques et Environnementaux :

Les impacts du changement climatique sur les performances des stations d'épuration devraient être examinés plus en profondeur. Cela inclut l'étude des effets des variations de température, de la fréquence des pluies extrêmes et de la qualité de l'eau d'entrée sur les processus biologiques et chimiques. La modélisation dynamique prenant en compte ces variables pourrait offrir des solutions adaptées aux conditions changeantes.

#### Développement de Modèles Multidimensionnels :

Les recherches futures pourraient se concentrer sur le développement de modèles multidimensionnels qui intègrent des aspects économiques, sociaux et environnementaux. Ces modèles pourraient aider à optimiser non seulement les performances techniques mais aussi les coûts opérationnels et l'impact environnemental des stations d'épuration.

#### **Optimisation des Processus de Réutilisation et de Récupération des Ressources** :

Face aux défis globaux du changement climatique et de la pénurie d'eau, les eaux résiduaires sont désormais considérées comme une ressource précieuse plutôt qu'un problème. Cette nouvelle perception est alimentée par la possibilité de récupérer de précieuses ressources telles que l'eau, l'énergie et les nutriments à partir des eaux résiduaires. En mettant en œuvre des technologies avancées, les eaux résiduaires peuvent être recyclées et réutilisées, ce qui

contribue à la conservation de l'eau. L'énergie contenue dans la matière organique des eaux résiduaires peut également être exploitée pour produire de l'énergie renouvelable, tandis que des nutriments comme l'azote et le phosphore peuvent être récupérés pour fabriquer des engrais. Cette approche intégrée soutient la tendance mondiale vers la durabilité et l'efficacité des ressources, faisant des eaux résiduaires un élément clé pour relever les défis environnementaux futurs. L'optimisation des processus de récupération des ressources telles que l'eau, les nutriments et l'énergie est un domaine de recherche crucial. Explorer de nouvelles technologies et approches pour maximiser la récupération des ressources et réduire les déchets peut conduire à des systèmes de traitement des eaux résiduaires plus durables et économiquement viables.

#### Application des Technologies Avancées de Surveillance et de Contrôle :

L'intégration de technologies avancées telles que l'Internet des objets (IoT), l'intelligence artificielle (IA) et l'apprentissage automatique dans les systèmes de contrôle des stations d'épuration pourrait améliorer la précision et l'efficacité du traitement. Des recherches sur la manière dont ces technologies peuvent être appliquées pour optimiser les processus en temps réel sont prometteuses. Par exemple, l'utilisation de modèles de réseaux de neurones artificiels multicouches (ANN) ou de réseaux de neurones basés sur des fonctions radiales (RBF) permettrait une meilleure compréhension et une optimisation plus précise des processus. L'intégration de ces approches d'optimisation pourrait être appliquée à l'ensemble du système STEP pour réduire la consommation d'énergie tout en maintenant l'efficacité du traitement des eaux résiduaires.

#### Étude des Interactions Microbiennes Complexes :

Une meilleure compréhension des interactions microbiennes dans les systèmes de traitement est nécessaire pour optimiser les processus biologiques. Des recherches sur la dynamique des communautés microbiennes et leur influence sur les processus de traitement, notamment en conditions variées, peuvent fournir des informations précieuses pour l'amélioration des performances des modèles.

En examinant ces perspectives et en comparant les similitudes et les divergences avec notre approche actuelle, nous pourrions approfondir notre compréhension des systèmes dynamiques complexes et faire progresser la recherche appliquée dans ce domaine. En poursuivant ces axes de recherche, nous avons l'opportunité de perfectionner les systèmes de traitement des eaux résiduaires, de relever les défis émergents et de favoriser un environnement plus durable et plus efficace.

## REFERENCES BIBLIOGRAPHIQUES

- Aghalari, Z., Dahms, H.U., Sillanpaa, M., Sosa-Hernandez, J.E. and Parra-Saldívar, R. (2020) Effectiveness of wastewater treatment systems in removing microbial agents: a systematic review', Glob. Health, Vol. 16, No. 1, p.13, BioMed Central Ltd., https://doi.org/10.1186/s12992-020-0546-y.
- Aguilar-López, R., López-Pérez, P.A., Peña-Caballero, V. and Maya-Yescas, R. (2013) Regulation of an activate sludge wastewater plant via robust active control design, International Journal of Environmental Research, Winter, Vol. 7, No. 1, pp.61–68, ISSN: 1735-6865.
- Ahmed S.F., Kumar P.S., Kabir M., Zuhara F.T., Mehjabin A., Tasannum N., Hoang A.T., Kabir Z., Mofijur M (2022) Threats, Challenges and Sustainable Conservation Strategies for Freshwater Biodiversity. Environ. Res. 214:113808. doi: 10.1016/j.envres.2022.113808
- Alalewi, A., & Chen, S. (2017). Nutrient removal evaluation using the ASM2dModel. Current Journal of Applied Science and Technology, 24(3),1–10.
- Almeida, M. C. (2000). Pollutant transformation processes in sewers under aerobic dry weather flow conditions. PhD. Collection Teses e Programas de Investigação LNEC 17. LNEC, Lisbon.
- Åmand, L., Olsson, G., & Carlsson, B. (2013). Aeration control A review. Water Science and Technology, Vol. 67, No. 11, pp.2374–2398, <u>https://doi.org/10.2166/wst.2013.139</u>.
- Andreas N. Angelakis and Shane A. Snyder (2015) Wastewater Treatment and Reuse: Past, Present, and Future Water, Vol. 7, pp.4887–4895, https://doi.org/10.3390/w7094887.
- Angelakis, A.N. and Snyder, S.A. (2015) Wastewater treatment and reuse: past, present, and future, Water, Vol. 7, pp.4887–4895, https://doi.org/10.3390/w7094887.
- Anthonisen A.C., Loehr R.C., Prakasam T.B.S., Srinath E.G. (1976) Inhibition of nitrification by ammonia and nitrous-acid. J. Water Pollut. Control Fed. 48: 835.
- Ardern E. and Lockett W.T. (1914) Experiments on the oxidation of sewage without the aid of filters. J. Soc Chem Ind., 33, 523.
- Aslan S., Dahab M. (2008) Nitritation and denitritation of ammonium-rich wastewater using fluidized-bed biofilm reactors. J. Hazard. Mater. 156: 56.
- Aslan S., Miller L., Dahab M. (2009) Ammonium oxidation via nitrite accumulation under limited oxygen concentration in sequencing batch reactors. Bioresource Technol. 100: 659.

- Ayesa, E., De la Sota, A., Grau, P., Sagarna, J.M., Salterain, A., Suescun, J (2006) Supervisory control strategies for the new WWTP of Galindo-Bilbao: the long run from the conceptual design to the full-scale experimental validation. Wat. Sci. Tech. 53 (4e5), 193-201.
- Baalbaki, Z., Torfs, E., Maere, T., Yargeau, V., Vanrolleghem, P.A (2017) Dynamic modelling of solids in a full-scale activated sludge plant preceded by CEPT as a preliminary step for micropollutant removal modelling. Bioproc. Biosyst. Eng. 40, 499–510. <u>https://doi.org/10.1007/s00449-016-1715-5</u>.
- Barker, P.S. and Dold, P.L. (1997) General model for biological nutrient removal activated sludge systems: model presentation, Water Environ. Res., Vol. 69, No. 5, pp.969–984, DOI: 10.2175/106143097X125669.
- Bastin G., Dochain D (1990) On-line estimation and adaptative control of bioreactors. Amsterdam, Elsevier, 1990, 379 p.
- Benedetti, L., De Baets, B., Nopens, I., Vanrolleghem, P.A (2010) Multi-criteria analysis of wastewater treatment plant design and control scenarios under uncertainty. Environ. Model. Softw 25, 616–621. <u>https://doi.org/10.1016/J.ENVSOFT.2009.06.003</u>.
- Ben Li, Michael K. Stenstrom (2014) Dynamic one-dimensional modeling of secondary settling tanks and design impacts of sizing decisions Water rechearch, 50, 160-170 https://doi.org/10.1016/j.watres.2013.11.037
- Benoît BERAUD (2009) Méthodologie d'optimisation du contrôle/commande des usines de traitement des eaux résiduaires urbaines basée sur la modélisation et les algorithmes génétiques multi-objectifs, Thèse de Université MONTPELLIER II Sciences et Techniques du languedoc
- Bixio, D., Parmentier, G., Rousseau, D., Verdonck, F., Meirlaen, J., Vanrolleghem, P.A., Thoeye, C (2002) A quantitative risk analysis tool for design/simulation of wastewater treatment plants. Wat. Sci. Tech. 46 (4-5), 301-307.
- Bougard D. (2004) Traitement biologique d'effluents azotes avec arrêt de la nitrification au stade nitrite. Ecole nationale agronomique de Montpellier, France.
- Bougard D., Bernet N., Chèneby D., Delgenès J.P. (2006) Nitrification of a high-strength wastewater in an inverse turbulent bed reactor: Effect of temperature on nitrite accumulation. Proc. Biochem. 41, 106.
- Brdjanovic, D., Meijer, S.C.F., Lopez-Vazquez, C.M., Hooijmans, C.M. and Van Loosdrecht, M.C.M. (2015) Applications of Activated Sludge Models, Vol. 14, IWA Publishing,

https://doi.org/10.2166/9781780404660.

- Burgan, H.İ., Içağa, Y., Bostanoğlu, Y. and Kilit, M. (2012) 'Water quality tendency of akarçay river between 2006–2011', Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, Vol. 19, No. 3, pp.127–132, DOI: 10.5505/pajes.2013.46855
- Cai Y., Zhu M., Meng X., Zhou J.L., Zhang H., Shen X (2022) The Role of Biochar on Alleviating Ammonia Toxicity in Anaerobic Digestion of Nitrogen-Rich Wastes: A Review. Bioresour. Technol. 351:126924. doi: 10.1016/j.biortech.2022.126924.
- Campo, G., Miggiano, A., Panepinto, D. and Zanetti (2022) Insights into the domestic wastewater treatment (DWWT) regimes: a review, *Water*, MDPI, https://doi.org/10.3390/w14213542.
- Centre de recherche en environnement (2023) Séminaire national sur l'innovation pour la réutilisation et la valorisation des eaux résiduaires, SNIRVEu'23, Annaba, Algérie
- Chabi, M. and Hammar, Y. (2019) 'Modélisation de la dépense énergétique dans une stationd'épuration a boues actives: cas de la station de Souk Ahras', *Rev. Sci. Technol.*, Vol. 25, No. 1, pp.144–154, https://www.asjp.cerist.dz/en/article/150753.
- Chaize S., Huyard A. (1991) Membrane bioreactors on domestic wastewater treatment sludge production and modeling approach. Water Science and Technology 23: 1591-1600.
- Chandran K., Hu Z. Q., Smets B. F. (2008) A critical comparison of extant batch respirometric and substrate depletion assays for estimation of nitrification biokinetics. Biotechnology and Bioengineering 101(1): 62-72.
- Charley R.C., Hooper D.G., McLee A.G. (1980) Nitrification kinetics in activated sludge at various temperatures and dissolved oxygen concentrations. Water Research 14: 1387-1396.
- Chaturvedi, S., Kumar, N. and Kumar, R. (2023) 'Two feedback PID controllers tuned with teaching-learning-based optimization algorithm for ball and beam system', IETE Journal of Research, pp.1–10, <u>https://doi.org/10.1080/03772063.2023.2284955</u>.
- Chen Y., Liu C., Nie J., Luo X., Wang D (2013) Chemical Precipitation and Biosorption Treating Landfill Leachate to Remove Ammonium-Nitrogen. Clean Techn. Environ. Policy. 2013;15:395–399. doi: 10.1007/s10098-012-0511-4.
- Cho SH, Chang HN, Prost C (1996) Steady state analysis of the coupling aerator and secondary settling tank in activated sludge process. Water Res 30(11):2601–2608

- Choubert J.M. (2002) Analyse et optimisation du traitement de l'azote par boues activées à basse température. Université Louis Pasteur, Strasbourg I, France.
- Choubert J.M. Racaul Y., Grasmick A., Beck C., Heduit A. (2005) Nitrogen removal from urban wastewater by activated sludge process operated over the conventional carbon loading rate limit at low temperature. Water SA 4.
- Chuang H.P., Ohashi A., Imachi H., Tandukar M., Harada H. (2007) Effective partial nitrification to nitrite by downflow hanging sponge reactor under limited oxygen condition. Water Research 41: 295.
- Cindy BASSOMPIERRE (2007) procédé à boues activées pour le traitement d'effluents papetiers : de la conception d'un pilote a la validation de modèles. Thèse de doctorat. Spécialité Automatique. Institut National Polytechnique de Grenoble
- Ciuła, J. (2021). Modeling the migration of anthropogenic pollution from active municipal landfill in groundwaters. Architecture Civil Engineering Environment, 14(2), 81–90.
- Coen, F., Vanderhaeghen, B., Boonen, I., Vanrolleghem, P.A., Van Eyck, L., Van Meenen, P(1996) Nitrogen removal upgrade of a WWTP within existing reactor volumes: a simulation supported scenario analysis. Water Sci. Technol. 34 (3-4), 339–346.
- COMSA (2010) Construction and Operation File for the SAIDA Wastewater Treatment Plant,
- Conant R.T., Berdanier A.B., Grace P.R (2013) Patterns and Trends in Nitrogen Use and Nitrogen Recovery Efficiency in World Agriculture. Glob. Biogeochem. Cycles. 27:558–566. doi: 10.1002/gbc.20053.
- Cruz H., Law Y.Y., Guest J.S., Rabaey K., Batstone D., Laycock B., Verstraete W., Pikaar I (2019) Mainstream Ammonium Recovery to Advance Sustainable Urban Wastewater Management. Environ. Sci. Technol. 53:11066–11079. doi: 10.1021/acs.est.9b00603.
- Dąbrowski, W., Żyłka, R. and Rynkiewicz, M. (2016) 'Evaluation of energy consumption in agro-industrial wastewater treatment plant', Journal of Ecological Engineering, Vol. 17, No. 3, pp.73–78, DOI: 10.12911/22998993/63306.
- Dai H., Han T., Sun T., Zhu H., Wang X., Lu X (2021) Nitrous Oxide Emission during Denitrifying Phosphorus Removal Process: A Review on the Mechanisms and Influencing Factors. J. Environ. Manag. 2021;278:111561. doi: 10.1016/j.jenvman.2020.111561.
- Dairi, S., Djebbar, Y., Hammar, Y. and Mrad, D. (2017) 'Dynamic simulation for wastewater treatment plants management: case of Souk-Ahras Region, North-Eastern Algeria', Journal of Water and Land Development, http://www.itp.edu.pl/wydawnictwo/journal; http://www.degruyter.com/view/j/jwld.
- DAIGGER G.T. Development of refined clarifier operating diagrams using an updated settling

characteristics database. Water Environment Research, Volume 67 (1), 1995.

- Daoliang Li, Mi Zou, Lingwei Jiang; Dissolved oxygen control strategies for water treatment: a review. *Water Sci Technol* 15 September 2022; 86 (6): 1444–1466. doi: <u>https://doi.org/10.2166/wst.2022.281</u>
- De Ketele, J., Davister, D., Ikumi, D.S (2018) Applying performance indices in plantwide modelling for a comparative study of wastewater treatment plant operational strategies. Water S.A. 44, 539–550. <u>https://doi.org/10.4314/wsa.v44i4.03</u>.
- Delrue F., Racault Y., Choubert J.M., Sperandio M. (2010) Modelling a full scale membrane bioreactor using activated sludge model no.1: challenges and solutions. Water Science and Technology 62 (10): 2205–221.
- Descoins, N., Deleris, S., Lestienne, R., Trouvé, E. and Maréchal, F. (2012) 'Energy efficiency in waste water treatments plants: optimization of activated sludge process coupled with anaerobic digestion', Energy, Vol. 41, No. 1, pp.153–164 <u>https://doi.org/10.1016/j.energy. 2011.03.078</u>.
- DHI, MIKE (2020) WEST\_User Guides & Getting started tutoriel for WEST<sup>+</sup>2020.
- Di Fraia, S., Massarottia, N. and Vanolia, L. (2018) 'A novel energy assessment of urban wastewater treatment plants', Energy Convers. Manag., Vol. 163, pp.304–313, https://doi.org/ 10.1016/j.enconman.2018.02.058.
- Di Trapani D., Mannina G., Torregrossa M., Viviani G. (2010) Comparison between hybrid moving bed biofilm reactor and activated sludge system: A pilot plant experiment. Water Science and Technology 61: 891–902.
- Di Trapani D., Di Bella G., Mannina G., Torregrossa M., Viviani G. (2015) Effect of C/N shock variation on the performances of a moving bed membrane bioreactor. Bioresource Technology 189: 250–257.
- Diehl S, Jeppsson U (1998) A model of the settler coupled to the biological reactor. Water Research 32(2):331–342
- Dinçer Ali R., Kargi F. (2000) Kinetics of sequential nitrification and denitrification processes. Enzyme and Microbial Technology 27: 37-42.
- Direction des ressources en eau de Saida (2020) Rapport Mensuel d'Exploitation de la Station d'Épuration de Saïda pour la Période d'Avril à Août 2020, Service d'Assainissement.
- Dochain, D., & Vanrolleghem, P. (2005). Dynamical modelling and estimation in wastewater treatment processes. IWA Publishing, London, UK. https://doi.org/10.2166/9781780403045.

- Dold P.L., Ekama G.A., Marais G.v.R. (1980) A general model for the activated sludge process. Prog. Water Technol. 12: 47-77. Enzyme and Microbial Technology 27: 37-42.
- Drewnowski, J., Remiszewska-Skwarek, A., Duda, S. and Łagód, G. (2019) 'Aeration process in bioreactors as the main energy consumer in a wastewater treatment plant', Review of Solutions and Methods of Process Optimization, Processes, MDPI, <u>https://doi.org/10.3390/pr7050311</u>.
- Droste, R.L. (1997). Theory and practice of water and wastewater treatment. John Wiley&Sons: New York.
- Dubreuil, A., Assoumou, E., Bouckaert, S., Selosse, S. and Maïzi, N. (2013) 'Water modeling in an energy optimization framework the water-scarce Middle East context', Applied Energy, Vol. 101, pp.268–279, <u>https://doi.org/10.1016/j.apenergy.2012.06.032</u>.
- Dudley, J., Buck, G., Ashley, R., &Jack, A. (2002). Experience and extensions to the ASM2 family of models. Water Science & Technology, 45(6), 177–186.
- Duzinkiewicz, K., Brdys, M. A., Kurek, W., & Piotrowski, R. (2009). Genetic hybrid predictive controller for optimized dissolved-oxygen tracking at lower control level. IEEE Transactions on Control Systems Technology, 17(5), 1183–1192.
- Ferreira, F. (2006). Modelação e gestão integrada de sistemas de águas residuais. PhD. UTL, Instituto Superior Técnico, Departamento de Engenharia Civil, Lisboa.
- Flores-Alsina, X., Rodríguez-Roda, I., Sin, G., Gernaey, K (2008) Multi-criteria evaluation of wastewater treatment plant control strategies under uncertainty.Wat. Res. 42, 4485-4497
- Flores-Alsina, X., Arnell, M., Amerlinck, Y., Corominas, L., Gernaey, K.V., Guo, L., Lindblom, E., Nopens, I., Porro, J., Shaw, A., Snip, L., Vanrolleghem, P.A., Jeppsson, U (2014) Balancing effluent quality, economic cost and greenhouse gas emissions during the evaluation of (plant-wide) control/operational strategies in WWTPs. Sci. Total Environ. 466–467, 616–624. <u>https://doi.org/10.1016/J.SCITOTENV.2013.07.</u>
- Gaëlle TALLEC (2005) ÉMISSIONS D'OXYDE NITREUX LORS DU TRAITEMENT DE L'AZOTE EN STATION D'ÉPURATION, Agglomération parisienne. Thèse de doctorat, Sciences et Techniques de l'Environnement. Ecole nationale des ponts et chaussées.
- Galií A., Dosta J., Van Loosdrecht M.C.M, Mata-Alvarez J. (2006) Biological nitrogen removal via nitrite of reject water with a SBR and chemostat SHARON=denitrification process. Indust. Eng. Chem. Res. 45: 7656.
- Garrido J. M., van Benthum W. A. J., van Loosdrecht M. C. M., Heijnen J. J. (1997) Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Biotechnology and Bioengineering 53 (2): 168-178.

- Gernaey K.V, Mark C.M van Loosdrecht, Mogens Henze, Morten Lind, Sten B Jørgensen (2004) Activated sludge wastewater treatment plant modelling and simulation: state of the art. Environmental Modelling & Software, Volume 19, Issue 9, Pages 763-783 https://doi.org/10.1016/j.envsoft.2003.03.005
- Ghoneim, A., Helal, A.M. and Abdel Wahab, G. (2016) 'Minimizing energy consumption in wastewater treatment plants', 2016 3rd International Conference on Renewable Energies for Developing Countries, DOI: 10.1109/REDEC.2016.7577507.
- Gujer, W (2006) Activated sludge modelling: past, present and future. Water Sci. Technol. 53, 111–119.
- Gujer, W. & Jenkins, D (1975) Contact stabilization activated-sludge process, oxygen utilization, sludge production and efficiency. Water Research 9 (5–6), 553–560.
- Gujer, W., Henze, M., Mino, T. and Van Loosdrecht, M. (1999) 'Activated sludge model No. 3', Water Science and Technology, Vol. 39, No. 1, pp.183–193, <u>https://doi.org/10.2166/wst. 1999.0039</u>.
- Gupta V.K., Ali I., Saleh T.A., Nayak A., Agarwal S (2012) Chemical Treatment Technologies for Waste-Water Recycling—An Overview. RSC Adv. 2:6380–6388. doi: 10.1039/c2ra20340e.
- Han, H., Liu, Z., Hou, Y. and Qiao, J. (2020) Data-driven multiobjective predictive control for wastewater treatment process, IEEE Transactions on Industrial Informatics, Vol. 16, No. 4, pp.2767–2775, DOI: 10.1109/TII.2019.2940663.
- Hanaki K., Wantawin C., Ohgaki S. (1990a) Effects of the activity of heterotrophs on nitrification in a suspended-growth reactor. Water Research 24: 289-296.
- Hanaki K., Wantawin C., Ohgaki S. (1990b) Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended-growth reactor. Water Research 24: 297-302.
- Hauduc, H., Gillot, S., Rieger, L., Ohtsuki, T., Shaw, A., Takács, I. and Winkler, S.S. (2009) 'Activated sludge modelling in practice: an international survey', Water Science & Technology, Vol. 60, No. 8, IWA Publishing, DOI: 10.2166/wst.2009.223.
- Hauduc, H., Rieger, L., Shaw, A.R. and Takács, I. (2011) 'Activated sludge modelling: development and potential use of a practical applications database', Article in Water Science & Technology, June, DOI: 10.2166/wst.2011.368.
- Henze, M., Grady, C. P. L., Gujer, W., Marais, G. V. R. & Matsuo, T (1987) A general model for single-sludge wastewater treatment systems .Water Research 21 (5), 505–515.

- Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M. C. & Marais, G. R (1995) 'Activated Sludge Model No. 2. IAWQ Scientific and technical report No. 3, IAWQ, London, England.
- Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M. C., Marais, G. V. R. & Van Loosdrecht, M. C. M (1999) Activated sludge model No.2d,ASM2d. Water Science And Technology 39 (1), 165–182.
- Henze, M., Gujer, W., Mino, T., van Loosdrecht, M.C.M (2000) Activated Sludge Models SM1, ASM2, ASM2D, ASM3, Edition: IAWPRC scientific and technical reports no.9, IAWPRC Publisher: IWA publishing, ISBN: 9781780402369
- Henze, M., Harremoes, P., la Cour Jansen, J. L. & Arvin, E. (2002) Wastewater Treatment: Biological and Chemical Processes. Springer Science & Business Media, Berlin Heidelberg, Germany.
- Henze, M. & Comeau, Y (2008) Biological Wastewater Treatment: Principles Modelling and Design pp. 33–52. IWA Publishing, London, UK.
- Henze, M., van Loosdrecht, M. C. M., Ekama, G. A., & Brdjanovic, D. (2015). Biological Wastewater Treatment: Principles, Modelling and Design. Water Intelligence Online, 7(0), 9781780401867–9781780401867. doi:10.2166/9781780401867
- Hernández-del-Olmo, F., Gaudioso, E., Dormido, R. and Duro, N. (2016) 'Energy and environmental efficiency for the N-ammonia removal process in wastewater treatment plants by means of reinforcement learning', Energies, Vol. 9, No. 9, p.755, https://doi.org/10.3390/ en9090755.
- Hoover, S. R. & Porges, N (1952) 'Assimilation of dairy wastes by activated sludge .2. The equation of synthesis and rate of oxygen utilization'. Sewage and Industrial Wastes 24 (3), 306–312. https://www.jstor.org/stable/25031842.
- Hreiz, R., Latifi, M.A., Roche, N (2015) Optimal design and operation of activated sludgeprocesses: state-of-the-art. Chem. Eng. J. 281, 900–920. <u>https://doi.org/10.1016/J.CEJ.2015.06.125</u>.
- Huang H., Liu J., Ding L (2015) Recovery of Phosphate and Ammonia Nitrogen from the Anaerobic Digestion Supernatant of Activated Sludge by Chemical Precipitation. J. Clean. Prod. 102:437–446. doi: 10.1016/j.jclepro.2015.04.117.
- Huang, F., Shen, W., Zhang, X. and Seferlis, P. (2020) 'Impacts of dissolved oxygen control on different greenhouse gas emission sources in wastewater treatment process', Journal of Cleaner, Vol. 274, p.123233, <u>https://doi.org/10.1016/j.jclepro.2020.123233</u>.

- Hulsbeek, J., Kruit, J., Roeleveld, P., & van Loosdrecht, M. (2002). A pratical protocol for dynamic modeling of activated sludge systems. Wat. Sci. Tech., 45 (6), 127-136.
- J. Cassidy, T. Silva, N. Semião, P. Ramalho , A. Santos and J. Feliciano (2020) Improving wastewater treatment plants operational efficiency and effectiveness through an integrated performance assessment system, H<sub>2</sub>Open Journal Vol 3 No 1 doi: 10.2166/h2oj.2020.007
- Jeguirim M., Belhachemi M., Limousy L., Bennici S (2018) Adsorption/Reduction of Nitrogen Dioxide on Activated Carbons: Textural Properties versus Surface Chemistry—A Review. Chem. Eng. J. 347: 493–504. doi: 10.1016/j.cej.2018.04.063.
- Jeppsson. U (1996) Modelling aspects of wastewater treatment processes .PhD Thesis, Lund Institute of Technology, Sweden. http://www.iea.lth.se/publications.
- Jes la Cour Jansen, J., Arvin, E., Henze, M., & Harremoës, P (2019) Wastewater Treatment -Biological and Chemical Processes. (P. Barnholdt Kristofferson, Ed.) (4th ed.). Copenhagen: Polyteknisk Forlag.
- Jiang Z., Yu H., Zhuo X., Bai X., Shen J., Zhang H (2022) Efficient Treatment of Aged Landfill Leachate Containing High Ammonia Nitrogen Concentration Using Dynamic Wave Stripping: Insights into Influencing Factors and Kinetic Mechanism. Waste Manag.150:48–56. doi: 10.1016/j.wasman.2022.06.035.
- Jiang, L-M., Chen, L., Zhou, Z., Sun, D., Li, Y., Zhang, M., Liu, Y., Du, S., Chen, G. and Yao, J. (2020) 'Fouling characterization and aeration performance recovery of fine-pore diffusers operated for 10 years in a full-scale wastewater treatment plant', Bioresource Technology, Vol. 307, p.123197, <u>https://doi.org/10.1016/j.biortech.2020.123197</u>.
- Kampschreur, M. J., Temmink, H., Kleerebezem, R., Jetten, M. S. M., & van Loosdrecht, M. C. M. (2009). Nitrous oxide emission during wastewater treatment. Water Research, 43(17), 4093–4103.
- Karri R.R., Sahu J.N., Chimmiri V (2018) Critical Review of Abatement of Ammonia from Wastewater. J. Mol. Liq. 261:21–31. doi: 10.1016/j.molliq.2018.03.120.
- Kazimierowicz, J., Bartkowska, I. and Walery, M. (2021) 'Effect of low-temperature conditioning of excess dairy sewage sludge with the use of solidified carbon dioxide on the efficiency of methane fermentation', Energies, Vol. 14, No. 1, p.150, https://doi.org/10.3390/ en14010150.
- Khaled, O., Nabila, S., Enas Taha, S., Mohammad, A.A., Mohamed, S.M. and Olabi, A. (2022) 'The role of wastewater treatment in achieving sustainable development goals (SDGs) and sustainability guideline', Energy Nexus, Vol. 7, p.100112, https://doi.org/10.1016/j.nexus. 2022.100112.

- Khan, O., Madhuranthakam, C.M.R., Douglas, P., Lau, H., Sun, J. and Farrell, P. (2018) 'Optimized PID controller for an industrial biological fermentation process', Journal of Process Control, Vol. 71, pp.75–89, <u>https://doi.org/10.1016/j.nexus.2022.100112</u>.
- KHERFANE Wahida, 2017. Etude de l'hydrodynamique des bassins d'aération. Thèse de doctorat, Universite badji-mokhtar-annaba, Algérie.
- Kim J.H., Guo X., Park H.S. (2008) Comparison study of the effects of temperature and free ammonia concentration on nitrification and nitrite accumulation. Proc. Biochem. 43: 154.
- Kim, D., Bowen, J.D., Ozelkan, E.C (2015) Optimization of wastewater treatment plant operation for greenhouse gas mitigation. J. Environ. Manag. 163, 39–48. <u>https://doi.org/10.1016/j.jenvman.2015.07.005</u>.
- Knowles G., Downing A.L., Barrett M.J. (1965) Determination of kinetic constants for nitrifying bacteria in mixed culture, with the aid of an electronic computer. Journal of General Microbiology 38:263-278.
- Kryłów, M., Kwaśny, J., & Balcerzak, W. (2017). Contamination of waters and bottom sediments with PAHs and their derivatives. Literature review. Przemysł Chemiczny, 8, 1695–1698.
- Kumar, R. (2024) 'Recurrent context layered radial basis function neural network for the identification of nonlinear dynamical systems', Neurocomputing, Vol. 580, p.127524, <u>https://doi.org/10.1016/j.neucom.2024.127524</u>.
- Kumar, R., Srivastava, S. and Mohindru, A (2020) 'Lyapunov stability dynamic back propagation-based comparative study of different types of functional link neural networks for the identification of nonlinear systems', Soft Comput., Vol. 24, pp.5463–5482, https://doi.org/ 10.1007/s00500-019-04496-0.
- Laëtitia FRAT (2020) Caractérisation des eaux résiduaires d'un réseau d'assainissement pour un diagnostic des pollutions en amont des stations d'épuration : de l'analyse physicochimique au développement d'un nouveau bioessai toxicologique. Thèse de doctorat, l'Institut des sciences et industries du vivant et de l'environnement (AgroParisTech)
- Lahdhiri Ameni (2015) Compréhension des processus biologiques dans les bioréacteurs à membranes : Choix d'un outil simplifié de simulation et identification des critères déterminant le contrôle des processus. Thèse de doctorat, Universite de Montpellier et Universite de Gabes.
- Langergraber, G., Rieger, L., Winkler, S., Alex, J., Wiese, J., Owerdieck, C., et al. (2004). A guideline for simulation studies of wastewater treatment plants. Water Sci. Tech., 50 (7), 131-138.

- Leiv Rieger, Sylvie Gillot, Günter Langergraber, Takayuki Ohtsuki, Andrew Shaw, Imre Takács and Stefan Winkler (2013) Guidelines for Using Activated Sludge Models, Authored by the IWA Task Group on Good Modelling Practice, IWA Publishing, Alliance House. Scientific and Technical Report No. 22.
- Lemos, D., Dias, A.C., Gabarrell, X. and Arroja, L. (2013) 'Environmental assessment of an urban water system', J. Clean Production, Vol. 54, pp.157–165, <u>https://doi.org/10.1016/j.jclepro. 2013.04.029</u>.
- LEPORCQ Cédric, CHOUBERT Jean-Marc, GUILLET Agnès, CADET Catherine, AUROUSSEAU Marc, CANLER Jean-Pierre (2009) Takács model validation to predict sludge blanket height in secondary clarifiers of activated sludge process. Récents Progrès en Génie des Procédés, Numéro 98 – 2009 2-910239-72-1, Ed. SFGP, Paris, France
- Li, L., Dzakpasu, M., Yang, B., Zhang, W., Yang, Y. and Wang, X.C. (2019a) 'A novel index of total oxygen demand for the comprehensive evaluation of energy consumption for urban wastewater treatment', Applied Energy, Vol. 236, pp.253–261, https://doi.org/10.1016/j.apenergy.2018.11.101.
- Li, Z., Zou, Z. and Wang, L. (2019b) Analysis and Forecasting of the Energy Consumption in Wastewater Treatment Plant, Article ID 8690898, 8pp, Mathematical Problems in Engineering, Hindawi, <u>https://doi.org/10.1155/2019/8690898</u>.
- Lipińska, D. (2016). Podstawy inżynierii środowiska. (Fundamentals of environmental engineering). Łódź: Wydawnictwo Uniwersytetu Łódzkiego.
- Liu, C., Li, S., Zhang, F (2011) The oxygen transfer efficiency and economic cost analysis of aeration system in municipal wastewater treatment plant. Energy Proc. 5, 2437-2443.
- Liu, F., Ouedraogo, A., Manghee, S. and Danilenko, A. (2012) A Primer on Energy Efficiency for Municipal Water and Wastewater Utilities, Energy Sector Management Assistance Program (ESMAP) <u>https://openknowledge.worldbank.org/handle/10986/18060</u>.
- Longo, S., Mirko d'Antoni, B., Bongards, M., Chaparro, A., Cronrath, A., Fatone, F., Lema, J.M., Mauricio-Iglesias, M., Soares, A. and Hospido, (2016) 'A monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement', Appl. Energy, Vol. 179, pp.1251–1268, https://doi.org/10.1016/j.apenergy. 2016.07.043.
- Lozano Avilés, A.B., Velázquez, F.C. and Pascual del Riquelme, M.L. (2019) 'Methodology for energy optimization in wastewater treatment plants', Phase I: Control of the Best Operating Conditions, MDPI, Sustainability, <u>https://doi.org/10.3390/su11143919</u>.
- Maheswari. P, Sheik, A. G, Tejaswini, E. S. S. and Ambati. S. R (2020) Nested control loop configuration for a three stage biological wastewater treatment process" Chemical

Product and Process Modeling, vol. 16, no. 2, 2020, pp. 87-100. https://doi.org/10.1515/ cppm-2020-0035.

- Mamais, D., Noutsopoulos, C., Dimopoulou, A., Stasinakis, A. and Lekkas, T (2015) 'Wastewater treatment process impact on energy savings and greenhouse gas emissions', Water Science and Technology, Vol. 71, pp.303–308, <u>https://doi.org/10.2166/wst.2014.521</u>.
- Man, Y., Shen, W.H., Chen, X.Q., Long, Z. and Corriou, J.P. (2018) 'Dissolved oxygen control strategies for the industrial sequencing batch reactor of the wastewater treatment process in the papermaking industry', Environmental Science – Water Research & Technology, Vol. 4, No. 5, pp.654–662, <u>https://doi.org/10.1039/C8EW00035B</u>.
- Marais G.V.R., Ekama G.A. (1976) The activated sludge process. Part 1 steady-state behaviour. Water SA 2 : 163-199.
- Markéta Andreides ; Petr Dolejš and Jan Bartáček (2022) The prediction of WWTP influent characteristics: Good practices and challenges. Journal of Water Process Engineering Volume 49, 103009 https://doi.org/10.1016/j.jwpe.2022.103009
- Martin G. (1979) Le problème de l'azote dans les eaux. Technique et Documentation ed; 1979.
- Masłoń, A. (2017) 'Analysis of energy consumption at the Rzeszów Wastewater Treatment Plant', E3S Web of Conferences, Vol. 22, p.00115, DOI: 10.1051/e3sconf/20172200115.
- McCarty P.L (2018) What Is the Best Biological Process for Nitrogen Removal: When and Why? Environ. Sci. Technol. 2018;52:3835–3841. doi: 10.1021/acs.est.7b05832.
- Metcalf & Eddy (1991). Wastewater engineering: treatment, disposal and reuse (3rd ed.). McGraw-Hill.
- Metcalf & Eddy (2003), Inc, (revised by Tchobanoglous, G, Burton, F.L., Stensel, H.D., Wastewater Engineering Treatment and Reuse, 4th Edition, New York, NY,
- Miao L., Yang G., Tao T., Peng Y. Recent Advances in Nitrogen Removal from Landfill Leachate Using Biological Treatments—A Review. J. Environ. Manag. 2019;235:178– 185. doi: 10.1016/j.jenvman.2019.01.057.

- Mishra S., Singh V., Cheng L., Hussain A., Ormeci B (2022) Nitrogen Removal from Wastewater: A Comprehensive Review of Biological Nitrogen Removal Processes, Critical Operation Parameters and Bioreactor Design. J. Environ. Chem.Eng.10:107387. doi: 10.1016/j.jece.2022.107387.
- Muloiwa, M., Dinka, M.O. and Nyende-Byakika, S. (2023) 'Modelling and optimization of energy consumption in the activated sludge biological aeration unit', Water Practice and Technology, Vol. 18, No. 1, pp.140–158, <u>https://doi.org/10.2166/wpt.2022.154</u>.
- Münz G., Mori G., Vannini C., Lubello C. (2010) Kinetic parameters and inhibition response of ammonia- and nitrite-oxidizing bacteria in membrane bioreactors and conventional activated sludge processes. Environmental Technology 31(14): 1557-1564.
- Münz G., Lubello C., Oleszkiewicz J. A. (2011) Factors affecting the growth rates of ammonium and nitrite oxidizing bacteria. Chemosphere 83(5): 720-725.
- Newhart, K.B., Holloway, R.W., Hering, A.S. and Cath, T.Y. (2019) 'Data-driven performance analyses of wastewater treatment plants: a review', Water Research, Vol. 157, pp.498– 513, https://doi.org/10.1016/j.watres.2019.03.030.
- Nopens, I., Benedetti, L., Jeppsson, U., Pons, M.N., Alex, J., Copp, J.B., Gernaey, K.V., Rosen, C., Steyer, J.P., Vanrolleghem, P.A (2010) Benchmark simulation model No 2: finalisation of plant layout and default control strategy.Wat. Sci. Tech. 62 (9), 1967-1974.
- Obaideen, K., Shehata, N., Sayed, E.T., Abdelkareem, M.A., Mahmoud, M.S. and Olabi, A.G. (2022) 'The role of wastewater treatment in achieving sustainable development goals (SDGs) and sustainability guideline', Energy Nexus, Vol. 7, p.100112 https://doi.org/10.1016/j.nexus.2022.100112.
- Office National d'Assainissement de Saida (2020) Rapport sur le coût énergétique, Direction de l'Exploitation et de la Maintenance, Département de Saïda.
- Office International de l'Eau (2008) Conception et dimensionnement des stations d'épuration à boues activées, DFE/CNFME/L:\utilisat\JP\F07\DOCPDA~1\Traitement par boues activées RP F7.doc\05/04/2008
- Olsson, G., & Newell, B. (2005). Wastewater treatment systems: Modelling, diagnosis and control. IWA Publishing, London. https://doi.org/10.2166/9781780402864
- Ostace, G.S., Cristea, V.M., Agachi, P.S., 2011. Cost reduction of the wastewater treatment plant operation by MPC based on modified ASM1 with two-step nitrification/denitrification model. Comput. Chem. Eng. 35, 2469-2479.
- Oulebsir, R., Lefkir, A., Safri, A. and Bermad, A. (2020) 'Optimization of the energy consumption in activated sludge process using deep learning selective modeling', Biomass and Bioenergy, January, Vol. 132, p.105420, <u>https://doi.org/10.1016/j.biombioe.2019.105420</u>.
- Panepinto, D., Fiore, S., Zappone, M., Genon, G. and Meucci, L. (2016) 'Evaluation of the energy efficiency of a large wastewater treatment plant in Italy', Applied Energy, Vol. 161, pp.404–411, <u>https://doi.org/10.1016/j.apenergy.2015.10.027</u>.
- Pang, J., Yang, S., He, L., Chen, Y. and Ren, N. (2019) 'Intelligent control/operational strategies in WWTPs through an integrated Q-learning algorithm with ASM2d – guided reward', Water, Vol. 11, No. 5, p.927, <u>https://doi.org/10.3390/w11050927</u>.
- Park H. D., Noguera D. R. (2004) Evaluating the effect of dissolved oxygen on ammonia oxidizing bacterial communities in activated sludge. Water Research 38 (14-15): 3275-3286.
- Parsons C., Stüeken E.E., Rosen C.J., Mateos K., Anderson R.E (2021) Radiation of Nitrogen-Metabolizing Enzymes across the Tree of Life Tracks Environmental Transitions in Earth History. Geobiology. 19:18–34. doi: 10.1111/gbi.12419.
- Peng Y.Z., Zhu G.B. (2006) Biological nitrogen removal with nitrification and denitrification via nitrite pathway. Appl. Microbiol. Biotechnol. 73: 15.
- Petersen, B., Gernaey, K., Henze, M., Vanrolleghem, P.A (2002) Evaluation of an ASM1 model calibration procedure on a municipal-industrial wastewater treatment plant. J. Hydroinformatics 4, 15–38.
- Pinheiro, A., Cabral, M., Antunes, S., Broco, N. and Covas, D. (2018) 'Estimating capital costs of wastewater treatment plants at the strategical level', Urban Water J., Vol. 15, No. 8, pp.732–740, <u>https://doi.org/10.1080/1573062X.2018.1547409</u>.
- Poduska R.A., Andrews J.F. (1975) Dynamics of nitrification in the activated sludge process. Journal of the Water Pollution Control Federation 47(11):2599-2620.
- Priya E., Kumar S., Verma C., Sarkar S., Maji P.K. A (2022) Comprehensive Review on Technological Advances of Adsorption for Removing Nitrate and Phosphate from Waste Water. J. Water Process Eng. 49:103159. doi: 10.1016/j.jwpe.2022.103159.
- Przydatek, G., Kochanek, A., & Basta, M. (2017). Analysis of Changes in Municipal Waste management at the county level, Environmental Science Journal of Ecological Engineering DOI:10.12911/22998993/66259.

- Pynaert K., Smets B.F., Beheydt D., Verstraete W. (2004) Start-up of autotrophic nitrogen removal reactors via sequential biocatalyst addition. Environ. Sci. Technol. 38: 1228.
- Qiao, J., Zhang, W (2018) Dynamic multi-objective optimization control for wastewater treatment process. Neural Comput. Appl. 29, 1261–1271. https://doi.org/10.1007/s00521-016-2642-8.
- Qiao, J.F., Hou, Y. and Han, H.G. (2019) Optimal control for wastewater treatment process based on an adaptive multi-objective differential evolution algorithm. Neural Computing & Applications, Vol. 31, No. 7, pp.2537–2550.
- Qin Y., Wang K., Xia Q., Yu S., Zhang M., An Y., Zhao X., Zhou Z (2023) Up-Concentration of Nitrogen from Domestic Wastewater: A Sustainable Strategy from Removal to Recovery. Chem. Eng. J.451:138789. doi: 10.1016/j.cej.2022.138789.
- Rahimi S., Modin O., Mijakovic I (2020) Technologies for Biological Removal and Recovery of Nitrogen from Wastewater. Biotechnol. Adv. 2020;43:107570. doi: 10.1016/j.biotechadv.2020.107570.
- Rajta A., Bhatia R., Setia H., Pathania P (2020) Role of Heterotrophic Aerobic Denitrifying Bacteria in Nitrate Removal from Wastewater. J. Appl. Microbiol. 128:1261–1278. doi: 10.1111/jam.14476.
- Ren Z., Jia B., Zhang G., Fu X., Wang Z., Wang P., Lv L (2021) Study on Adsorption of Ammonia Nitrogen by Iron-Loaded Activated Carbon from Low Temperature Wastewater. Chemosphere. 262:127895. doi: 10.1016/j.chemosphere.2020.127895.
- René Dupont, Claus Dahl (1995) A one-dimensional model for a secondary settling tank including density current and short-circuiting. Water Science and Technology, Volume 31, Issue 2, 1995, Pages 215-224 https://doi.org/10.1016/0273-1223(95)00194-R
- Revollar, S., Vilanova, R., Francisco, M. and Vega, P. (2018) 'PI dissolved oxygen control in wastewater treatment plants for plantwide nitrogen removal efficiency', IFAC-Papers Online, Vol. 51, No. 4, pp.450–455, <u>https://doi.org/10.1016/j.ifacol.2018.06.136</u>.
- Riddell MDR, Lee JS, Wilson TE (1983) Method for estimating the capacity of an activated sludge plant. J WPCF 55(4):360–368
- Rieger, L., Koch, G., Ku<sup>-</sup>hni, M., Gujer, W., Siegrist, H (2001) The EAWAG bio-P module for activated sludge model No. 3. Water Res. 35, 3887–3903.
- Rieger, L., Gillot, S., Langergraber, G., Ohtsuki, T., Shaw, A., Takacs, I., Winkler, S (2012)
  Guidelines for Using Activated Sludge Models, IWA Publishing, ISBN : 9781843391746, London, UK, 312 p.

- Rieger, L., Takacs, I., Shaw, A., Winkler, S., Ohtsuki, T., Langergraber, G., Gillot, S (2010) Editorial :Status and future of wastewater treatment modeling, Water Science and Technology, 64(1), p. 821-823.
- Rieger.L, Jones .R. M, Dold. P. L and Bott .C.B (2014) Ammonia-based feedforward and edback aeration control in activated sludge processes , Water Environment Research Vol. 86, No. 1, pp. 63-73 (11 pages) <u>https://www.jstor.org/stable/24584969</u>
- Rijn, J., Tal, Y., & Schreier, H. J. (2006). Denitrification in recirculating systems: Theory and applications. Aquacultural Engineering, 34(3), 364–376.
- Rivas, A., Irizar, I., Ayesa, E., 2008. Model-based optimisation of wastewater treatment plants design. Environ. Modell. Softw. 23, 435-450.
- Roberta Muoio, Laura Palli, Iacopo Ducci, Ester Coppini, Elena Bettazzi, Daniele Daddi, Donatella Fibbi, Riccardo Gori (2019) Optimization of a large industrial wastewater treatment plant using a modeling approach: A case study. Journal of Environmental Management 249, 109436. https://doi.org/10.1016/j.jenvman.2019.109436.
- Rodier, J., Legube, B. and Merlet, N. (2016) 'Water analysis control and interpretation', Edition
   10 Chapter Muds, Deposits and Sediments, Chemical Analysis, Dunod [online]
   https://www.researchgate.net/publication/311638413.
- Rodriguez-Garcia, G., Molinos-Senante, M., Hospido, A., Hern\_andez-Sancho, F., Moreira, M.T., Feijoo, G (2011) Environmental and economic profile of six typologies of wastewater treatment plants, Water Research Volume 45, Issue 18, Pages 5997-6010, https://doi.org/10.1016/j.watres.2011.08.053
- Sadeghassadi, M., Macnab, C.J.B., Gopaluni, B. and Westwick, D. (2018) 'Application of neural networks for optimal-setpoint design and MPC control in biological wastewater treatment', Computers & Chemical Engineering, Vol. 115, pp.150–160, https://doi.org/10.1016/j.compchemeng.2018.04.007.
- SAFAR-ZITOUN Mohamed (2019) PLAN NATIONAL SECHERESSE ALGERIE LIGNES DIRECTRICES EN VUE DE SON OPERATIONNALISATION. Consultant CNULCD Alger, Ministère de l'agriculture, du développement rural et de la pèche, Direction générale des forets
- Sara Patrícia da Silva Batista Pinto (2010) Contribution to dynamic simulation of activated sludge wastewater treatment plants, Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente, Universidade Técnica de Lisboa.

- Scandelai A.P.J., Zotesso J.P., Jegatheesan V., Cardozo-Filho L., Tavares C.R.G (2020) Intensification of Supercritical Water Oxidation (ScWO) Process for Landfill Leachate Treatment through Ion Exchange with Zeolite. Waste Manag. 101:259–267. doi: 10.1016/j.wasman.2019.10.005.
- Schroeder E.D. (1985) Nitrification in activated sludge processes. In: M. Moo-Young CWR, J.A. Howell, ed. Comprehensive Biotechnology. Vol. 4. Oxford: Pergamon Press: 871-880.
- Shah Pritesh & Agashe Sudhir (2016) Review of fractional PID controller. MechatronicsVolume38, September2016,Pages29-41https://doi.org/10.1016/j.mechatronics.2016.06.00529-41
- Shaw, A., Rieger, L., Takács, I., Winkler, S., Ohtsuki, T., Langergraber, G., Gillot, S (2011) Realizing the Benefits of Good Modeling Practice, in : Proceedings 84th Annual WEF Conference and Exposition, Los Angeles, USA, October 15-19.
- Sheintuch M (1987) Steady state modeling of reactor-settler interaction. Water Res 21(12):1463–1472
- Sherrard JH, Kincannon DF (1974) Operational control concepts for the activated sludge processes. Wat Sewage Works, March, pp 44–66
- Shiek, A.G., Machavolu, V.R.K., Seepana, M.M. et al. Design of control strategies for nutrient removal in a biological wastewater treatment process. Environ Sci Pollut Res 28, 12092–12106 (2021). https://doi.org/10.1007/s11356-020-09347-2
- Siatou, A., Manali, A. and Gikas, P. (2020) 'Energy consumption and internal distribution in activated sludge wastewater treatment plants of Greece', Water, Vol. 12, No. 4, p.1204, https://doi.org/10.3390/w12041204.
- Sin, G., van Hulle, S. W., De Pauw, D. J., van Griensven, A., & Vanrolleghem, P. A. (2005). A critical comparison of systematic calibration protocols for activated sludge models: A SWOT analysis. Water Res, 39, 2459-2474
- Sin G & Al Resul (2021) Activated sludge models at the crossroad of artificial intelligence— A perspective on advancing process modeling. npj Clean Water 4, 16. <u>https://doi.org/10.1038/s41545-021-00106-5</u>
- Skouteris, G., Rodriguez-Garcia, G., Reinecke, S.F. and Hampel, U. (2020) 'The use of pure oxygen for aeration in aerobic wastewater treatment: a review of its potential and limitations', Bioresource Technology, Vol. 312, p.123595, https://doi.org/10.1016/j.biortech.2020.123595.

- Sorensen B.H., Jorgensen S.E. (1993) The removal of nitrogen compounds from wastewater Amsterdam: Elsevier; Studies in Environmental Science 54.
- Sperandio M (1998) Développement d'une procédure de compartimentation d'une eau résiduaire urbaine et application à la modélisation dynamique de procédés à boues activées. Th : Génie des Procédés, INSA Toulouse, 1998, 221 p.
- Sperandio, M., Héran, M., Gillot, S (2007) Modélisation dynamique des procédés biologiques de traitement des eaux, Techniques de l'Ingénieur, W 6 500, 18 p.
- Stare, A., Vrečko, D., Hvala, N., & Strmčnik, S. (2007). Comparison of control strategies for nitrogen removal in an activated sludge process in terms of operating costs: A simulation study. Water Research, 41(9), 2004–2014.
- Stathatoua, P.M., Dedousis, P., Arampatzis, G., Grigoropoulou, H. and Assimacopoulos, D. (2019) Energy savings and reduced emissions in combined natural and engineered systems for wastewater treatment and reuse: the WWTP of Antiparos Island, Greece, Desalination and Water Treatment, DOI: 10.5004/dwt.2019.23995.
- Stephenson T., Judd S., Jefferson B., Brindle K. (2000) Membrane bioreactors for wastewater treatment, IWA Publishing, London.
- Struk-Sokołowska, J., Mielcarek, A., Wiater, J. and Rodziewicz, J. (2018) Impacts of dairy wastewater and pre-aeration on the performance of SBR treating municipal sewage, Desalin. Water. Treat., Vol. 105, pp.41–50, <u>https://doi.org/10.5004/dwt.2018.22031</u>.
- Takács, I., Patry, G.G. and Nolasco, D. (1991) 'A dynamic model of the clarification-thickening process', Water Research, Vol. 25, No. 10, pp.1263–1271, https://doi.org/10.1016/0043-1354(91)90066-Y.
- Tan T.W., Ng H.Y. (2007) Influence of mixed liquor recycle ratio and dissolved oxygen on performance of pre-denitrification submerged membrane bioreactors. Water Research 42 (4–5): 1122–1132.
- Tchobanoglous G., Burton F.L., Stensel H.D. (2004) Metcalf & Eddy: Wastewater Engineering: Treatment and Reuse. New York: McGraw-Hill.
- Tchobanoglous, G., Burton, F., Stensel, D. and Metcalf, E. (2003) Wastewater Engineering, Treatment and Reuse, 4th ed., McGraw Hill: New York, NY, USA file:///C:/ Users/ DELL/Downloads/WastewaterEngbyMecalfandEddy2003.pdf. Technology, 67(11), 2374–2398.

- Thiem L.T., Alkhatib E.A. (1988) In situ adaptation of activated sludge by shock loading to enhance treatment of high ammonia content petrochemical wastewater. Journal WPCF 60(7): 1245-1252.
- Torregrossa, D., Hernández-Sancho, F., Hansen, J., Cornelissen, A., Popov, T., Schutz, G.(2017) Energy saving in wastewater treatment plants: a plant-generic cooperative<br/>decision support system. J. Clean. Prod.167https://doi.org/10.1016/j.jclepro.2017.08.181.ISSN09596526.http://www.sciencedirect.com/science/article/pii/S0959652617319145.
- Turkmenler, H. (2019) 'Investigation of energy efficiency in Gebze Wastewater Treatment Plant', International Journal of Environmental Science and Technology, https://doi.org/10.1007/ s13762-019-02236-3.
- Umapathi R., Ghoreishian S.M., Sonwal S., Rani G.M., Huh Y.S (2022) Portable Electrochemical Sensing Methodologies for On-Site Detection of Pesticide Residues in Fruits and Vegetables. Coord. Chem. Rev.453:214305. doi: 10.1016/j.ccr.2021.214305.
- Vadivelu V.M., Keller J., Yuan Z. (2007a) Free ammonia and free nitrous acid inhibition on the anabolic and catabolic processes of Nitrosomonas and Nitrobacter. Water Science and Technology 56: 89.
- Vadivelu V.M., Keller J., Yuan Z. (2007b) Effect of free ammonia on the respiration and growth. Water Research, 16 Jan 2007, 41(4):826-834 https://doi.org/10.1016/j.watres.2006.11.030
- Vadivelu V.M., Yuan Z., Fux C., Keller J. (2006) The inhibitory effects of free nitrous acid on the energy generation and growth processes of an enriched Nitrobacter culture. Environ. Sci. Technol. 40: 4442.
- Vanhooren, H., Meirlaen, J., Amerlinck, Y., Claeys, F., Vangheluwe, H. and Vanrolleghem, P.A. (2003) 'WEST: modeling biological wastewater treatment', J. Hydroinformatics, Vol. 5, No. 1, pp.27–50, https://doi.org/10.2166/hydro.2003.0003.
- Vanrolleghem, P.A. (1994), On-Line Modelling of Activated Sludge Processes: Development of an Adaptive Sensor. Ph.D. dissertation, Laboratory of Microbial Ecology, University of Gent, Gent, Belgium.
- Vanrolleghem, P.A., Insel, G., Petersen, B., Sin, G., De Pauw, D., Nopens, I., Weijers, S., Gernaey, K. (2003). A comprehensive model calibration procedure for activated sludge models. In: Proceedings: WEFTEC 2003, 76th Annual Technical Exhibition and Conference.

- Vanrolleghem, P.A., Jeppsson, U., Carstensen, J., Carlssont, B., Olsson, G (1996) Integration of wastewater treatment plant design and operation- a systematic approach using cost functions. Wat. Sci. Tech. 34 (3-4), 159-171.
- VAXELAIRE Jean, 1994. Etude et modélisation de l'aération des stations d'épuration des eaux résiduaires urbaines par agitation mécanique de surface. Thèse de doctorat, Institut national polytechnique de Lorraine.
- Vega, P., Revollar, S., Francisco, M., & Martín, J. M. (2014). Integration of set point optimization techniques into nonlinear MPC for improving the operation of WWTPs. Computers and Chemical Engineering, 68, 78–95.

Venkateswara Raju C., Hwan Cho C., Mohana Rani G., Manju V., Umapathi R., Suk Huh Y., Pil Park J(2023) Emerging Insights into the Use of Carbon-Based Nanomaterials for the Electrochemical Detection of Heavy Metal Ions. Coord. Chem. Rev.476:214920. doi: 10.1016/j.ccr.2022.214920.

- VERMANDE Stéphanie, 2005. Modélisation hydrodynamique et biologique des bassins d'aération. Thèse de doctorat, INSA Toulouse.
- Wagner J., Rosenwinkel K.H. (2000) Sludge production in membrane bioreactors under different conditions. Water Science and Technology 41(10-11): 251-258.
- Wakeel, M., Chen, B., Hayat, T., Alsaedi, A. and Ahmad, B. (2016) 'Energy consumption for water use cycles in different countries: a review', Appl. Energy, Vol. 178, pp.868–885, https://doi.org/10.1016/j.apenergy.2016.06.114.
- Wang J. L., Yang N. (2004) Partial nitrification under limited dissolved oxygen conditions. Process Biochemistry 39 (10): 1223-1229
- Wang, H., Yang, Y., Keller, A.A., Li, X., Feng, S., Dong, Y. and Li, F. (2016) 'Comparative analysis of energy intensity and carbon emissions in wastewater treatment in USA, Germany, China, and South Africa', Appl. Energy, Vol. 184, pp.873–881, https://doi.org/10.1016/j. apenergy.2016.07.061.
- Wang Z., Wu Q., Li J., Qiu S., Cao D., Xu Y., Liu Z., Yu X., Sun Y(2017) Two Benzoyl Coumarin Amide Fluorescence Chemosensors for Cyanide Anions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 183:1–6. doi: 10.1016/j.saa.2017.04.008.
- Wang, W., Shi, C., Yang, J., Zeng, M., Dai, Z. and Zhang, Z. (2019) 'Modelling performance of oxidation ditch in wastewater treatment plant by STOAT software', IOP Conference

Series: Earth and Environmental Science, Vol. 300, No. 3, DOI: 10.1088/1755-1315/300/3/032065.

- Ward M.H., Jones R.R., Brender J.D., De Kok T.M., Weyer P.J., Nolan B.T., Villanueva C.M., Van Breda S.G (2018) Drinking Water Nitrate and Human Health: An Updated Review. Int. J. Environ. Res. Public Health. 15:1557. doi: 10.3390/ijerph15071557.
- Winkler M.K.& Straka L (2019) New Directions in Biological Nitrogen Removal and RecoveryfromWastewater. Curr.doi: 10.1016/j.copbio.2018.12.007.Opin.
- Wintgens T., Rosen J., Melin T., Brepols C., Drensla K., Engelhardt N (2003) Modelling of a membrane bioreactor system for municipal wastewater treatment. Journal of Membrane Science 216 (1-2): 55-65.
- Wu, X., Yang, Y., Wu, G., Mao, J. and Zhou, T (2016) 'Simulation and optimization of a coking wastewater biological treatment process by activated sludge models (ASM)', Journal of Environmental Management, Vol. 165, pp.235–242, https://doi.org/10.1016/j.jenvman.2015. 09.041.
- Wysowska, E., Wiewiórska, I., & Kicińska, A (2021) The impact of different stages of water treatment process on the number of selected bacteria. Water Resources and Industry, 26, 100167.
- Xue Y., Yang F., Liu S., Fu Z. (2009) The influence of controlling factors on the start-up and operation for partial nitrification in membrane bioreactor. Bioresource Technology 100: 1055.
- Yellezuome D., Zhu X., Wang Z., Liu R (2022) Mitigation of Ammonia Inhibition in Anaerobic Digestion of Nitrogen-Rich Substrates for Biogas Production by Ammonia Stripping: A Review. Renew. Sustain. Energy Rev. 157:112043. doi: 10.1016/j.rser.2021.112043.
- Yifan Zhou, Yingying Zhu, Jinyuan Zhu, Chaoran Li, and Geng Chen (2023) A ComprehensiveReview on Wastewater Nitrogen Removal and Its Recovery Processes Int J Environ Res45678XCVDPublicHealth.20(4):3429.PMID: 36834120doi: 10.3390/ijerph20043429
- Zhu G., Peng Y., Li B., Guo J., Yang Q., Wang S. (2008) Biological removal of nitrogen from wastewater. Reviews of Environmental Contamination and Toxicology 192: 159-195.
- Zuluaga-Bedoya, C., Ruiz-Botero, M., Ospina-Alarcón, M. and Garcia-Tirado, J. (2018) 'A dynamical model of an aeration plant for wastewater treatment using a phenomenological-based semi-physical modeling methodology', Computers &

Chemical Engineering, Vol. 117, pp.420–432, https://doi.org/10.1016/j.compchemeng.2018.07.008.

Żyłka, R., Karolinczak, B. and Dąbrowski, W. (2021) 'Structure and indicators of electric energy consumption in dairy wastewater treatment plant', Science of the Total Environment, Vol. 782, p.146599, <u>https://doi.org/10.1016/j.scitotenv.2021.146599</u>.

# ANNEXES

# **ANNEXE 1.** Définition des composants

# Composants solubles, 'S' :

**SA** [**M**(**COD**)] : Produits de fermentation, considérés comme de l'acétate. Étant donné que la fermentation est incluse dans les processus biologiques, les produits de fermentation doivent être modélisés séparément des autres matières organiques solubles. Ce sont des produits finaux de la fermentation. Pour tous les calculs stœchiométriques, on suppose que SA est égal à l'acétate ; en réalité, toute une gamme d'autres produits de fermentation dominés par l'acétate est possible.

S<sub>ALK</sub> [mol(HCO<sub>3</sub>] : alcalinité des eaux résiduaires. L'alcalinité est utilisée pour approximer la conservation des charges électriques dans les réactions biologiques. L'alcalinité est introduite afin d'obtenir une indication précoce des conditions de pH faibles possibles, qui pourraient inhiber certains processus biologiques. Pour tous les calculs stœchiométriques, SALK est supposé être du bicarbonate, HCOJ' uniquement.

 $S_F$  [M(COD)]: substrats organiques fermentescibles, facilement biodégradables. Cette fraction de la DCO soluble est directement disponible pour la biodégradation par les organismes hétérotrophes. On suppose que le SF peut servir de substrat pour la fermentation, il n'inclut donc pas les produits de fermentation.

**SI** [**M**(**COD**)] : matière organique soluble inerte. La principale caractéristique de S, est que ces matières organiques ne peuvent pas être dégradées davantage dans les stations d'épuration traitées dans ce rapport. On suppose que cette matière fait partie de l'influent et qu'elle est également produite dans le contexte de l'hydrolyse des substrats particulaires Xs.

 $S_{N2}$  [M(N)]: Diazote, N2. SN2 est supposé être le seul produit azoté de la dénitrification. SN2 peut être soumis à un échange gazeux, parallèlement à l'oxygène,  $S_{02}$ .

 $S_{NH4}$  [M(N)] : ammonium et azote ammoniacal. Pour le bilan des charges électriques, on suppose que SNH4 est entièrement constitué de NH4<sup>+</sup>

 $S_{NO3}$  [M(N)]: azote nitrate et nitrite (N0<sub>3</sub><sup>-</sup>+ N0<sub>2</sub><sup>-</sup> -N). On suppose que SN03 comprend aussi bien l'azote nitrate que l'azote nitrite, puisque le nitrite n'est pas inclus comme composant séparé

du modèle. Pour tous les calculs stoechiométriques (conservation de la DCO), SN03 est considéré comme étant uniquement N03' -N.

S<sub>02</sub> [M(02)] Oxygène dissous. L'oxygène dissous peut être soumis à un échange gazeux.

SPQ4 [M(P)]l : phosphore soluble inorganique, principalement des orthophosphates. Pour le bilan des charges électriques, on suppose que SPQ4 est constitué de 50 % de H2P04' et de 50 % de HPOl', indépendamment du pH.

Ss [M(COD)] : Substrat facilement biodégradable. Ce composant a été introduit dans ASMI. Dans ASM2, il est remplacé par la somme de SF + SA.

# Composants particulaires 'X?:

 $X_{AUT}$  [M(COD)] : Organismes nitrifiants. Les organismes nitrifiants sont responsables de la nitrification ; ils sont aérobies obligatoires, chimio-litho-autotrophes. On suppose que les nitrificateurs oxydent l'ammonium SNH4 directement en nitrate SNOJ (les nitrificateurs comprennent à la fois les oxydants d'ammonium et de nitrite).

XH [M(COD)] : Organismes hétérotrophes. Ces organismes sont supposés être les organismes hétérotrophes « polyvalents », ils peuvent croître de manière aérobie et anoxique (dénitrification) et être actifs de manière anaérobie (fermentation). Ils sont responsables de l'hydrolyse des substrats particulaires Xs et peuvent utiliser tous les substrats organiques dégradables dans toutes les conditions environnementales pertinentes.

X1 [M(COO)] : Matière organique particulaire inerte. Ce matériau n'est pas dégradé dans les systèmes concernés. Il est floculé sur les boues activées. XI peut être une fraction de l'influent ou peut être produit dans le contexte de décomposition de la biomasse.

XMeOH [M(TSS)] : Hydroxydes métalliques. Ce composant représente la capacité de liaison au phosphore d'éventuels hydroxydes métalliques, qui peuvent être présents dans les eaux résiduaires ou ajoutés au système. Pour tous les calculs stœchiométriques, on suppose que ce composant est composé de Fe(OHh. Il est possible de « remplacer » ce composant par d'autres réactifs ; cela nécessiterait une adaptation des informations stœchiométriques et cinétiques.

XMeP [M(TSS)] : Métal-phosphate, MeP04. Ce composant résulte de la liaison du phosphore aux hydroxydes métalliques. Pour tous les calculs stœchiométriques, on suppose que ce composant est composé de FeP04. Il est possible de « remplacer » ce composant par d'autres produits de précipitation ; cela nécessiterait une adaptation des informations stœchiométriques et cinétiques

XPAO [M(COO)] : Organismes accumulant le phosphate : PAO. Ces organismes sont supposés être représentatifs de tous les types d'organismes accumulant le polyphosphate. La concentration de XPAO n'inclut pas les produits de stockage interne cellulaire Xpp et XPHA, mais seulement la biomasse « réelle ». Dans ASM2, on suppose que ces organismes peuvent croître dans un environnement anoxique ainsi qu'aérobie alors que dans ASM2, seule la croissance aérobie est prise en compte.

XPHA [M(COO)]; Produit de stockage interne cellulaire d'organismes accumulant le phosphore, PAO. Il comprend principalement les polyhydroxyalcanoates (pHA). Il n'est présent qu'associé à XPAo ; il n'est cependant pas inclus dans la masse de XPAO. XPHA ne peut pas être directement comparé aux concentrations de PHA mesurées analytiquement ; XPHA n'est qu'un composant fonctionnel nécessaire à la modélisation mais pas directement identifiable chimiquement. Le XPHA peut cependant être récupéré dans l'analyse COO, où il doit satisfaire à la conservation COO. Pour des considérations stoechiométriques, le PHA est supposé avoir la composition chimique du polyhydroxybutyrate (C $_4H_6O_2$ )n.

Xpp [M(P)] : Polyphosphate. Le polyphosphate est un produit de stockage inorganique interne de la cellule de PAO. Il n'apparaît qu'associé au XPAO ; il n'est cependant pas inclus dans la masse du XPAO. Il fait partie du phosphore particulaire et peut être observé analytiquement. Pour des considérations stoechiométriques, les polyphosphates sont supposés avoir la composition de <Ko.33Mgo.33PO)n.

Xs [M(COO]) : Substrats lentement biodégradables. Les substrats lentement biodégradables sont des substrats organiques colloïdaux et particulaires de haut poids moléculaire qui doivent subir une hydrolyse externe de la cellule avant d'être disponibles pour la dégradation. On suppose que les produits de l'hydrolyse (SF) peuvent fermenter.

XI SS [M(TSS)] ; Total des solides en suspension, TSS. Les solides en suspension totaux sont introduits dans les modèles biocinétiques afin de calculer leur concentration via la stoechiométrie. Étant donné que l'élimination du phosphore et la précipitation introduisent des fractions minérales dans les boues activées, la prédiction des TSS est importante.

## ANNEXE 2. ASM1Temp (WEST+2020)

## About the category

The activated sludge unit models in this category are based on the ASM1 (*Activated Sludge Model No. 1*, IAWQ) model published by the International Association on Water Quality (IAWQ) Task Group on Mathematical Modelling for Design and Operation of Biological Wastewater Treatment Processes (Henze et al., 1987).

The original ASM1 model has been extended with:

- Temperature correction
- Ammonium limitation for aerobic and anoxic growth of heterotrophs

# The biological components

The state variables that identify the Components of the ASM1 model category (and constitute the **component vector**) are listed in the following table.

| Name  | Description                                       | Units                |
|-------|---------------------------------------------------|----------------------|
| H2O   | Water                                             | m <sup>3</sup> /d    |
| S_I   | Inert soluble organic matter                      | g COD/m <sup>3</sup> |
| S_S   | Readily biodegradable substrate                   | g COD/m <sup>3</sup> |
| S_0   | Dissolved oxygen                                  | g COD/m <sup>3</sup> |
| S_NO  | Nitrate and nitrite                               | g N/m <sup>3</sup>   |
| S_NH  | Total ammonium nitrogen, $NH^+_4 + NH_3$          | g N/m <sup>3</sup>   |
| S_ND  | Soluble biodegradable organic nitrogen            | g N/m <sup>3</sup>   |
| S_ALK | Alkalinity                                        | mol/m <sup>3</sup>   |
| X_I   | Inert particulate organic matter                  | g COD/m <sup>3</sup> |
| X_S   | Slowly biodegradable substrate                    | g COD/m <sup>3</sup> |
| X_BH  | Active heterotrophic biomass                      | g COD/m <sup>3</sup> |
| X_BA  | Active autotrophic biomass                        | g COD/m <sup>3</sup> |
| X_P   | Particulate products resulting from biomass decay | g COD/m <sup>3</sup> |
| X_ND  | Particulate biodegradable organic nitrogen        | g N/m <sup>3</sup>   |

The ASM1Temp model takes into account carbon removal, nitrification and denitrification.

To model the process, the system is divided into separate components. There are two large groups of components, the carbonaceous organic matter, expressed in COD, and the nitrogenous components.

| Total COD         |             |                       |             |                 |            |
|-------------------|-------------|-----------------------|-------------|-----------------|------------|
| Biodegradable COD |             | Non-biodegradable COD |             | Active mass COD |            |
| Soluble           | Particulate | Soluble               | Particulate | Heterotrophs    | Autotrophs |
| S_S               | X_S         | S_I                   | X_I, X_P    | X_BH            | X_BA       |

 $S_S$  is the readily biodegradable matter and  $X_S$  is the slowly biodegradable COD. The latter consists of large organic molecules, as well soluble as particulate, which cannot migrate through the cell membrane and should first be hydrolysed before they become available.

The non-biodegradable particulate COD exists of X\_I and X\_P. **X\_I** is the inert particulate COD that is a part of the waste water. **X\_P** is the inert particulate COD resulting from the decay of the biomass.

**X\_BH** is the heterotrophic biomass and **X\_BA** the autotrophic biomass.

**Heterotrophs** are organisms that need external Carbon sources for growth and gain of energy. **Autotrophs** are organisms that do not need external carbon sources for growth and gain of energy.

| Total Kjeldahl Nitrogen, TKN |                     |           |                   |           |        |         |  |
|------------------------------|---------------------|-----------|-------------------|-----------|--------|---------|--|
| <b>E</b>                     | Organically bound N |           |                   |           |        | Nitrate |  |
| rree a                       | Soluble organ       | nic N     | Particulate or    | rganic N  | Active | &       |  |
| ammonia                      | Non-<br>biodegr N   | Biodegr N | Non-<br>biodegr N | Biodegr N | mass N | Nitrite |  |
| S_NH                         | S_NI                | S_ND      | X_NI,<br>X_NP     | X_ND      | X_NB   | S_NO    |  |

 $S_NH$  is the ammonia concentration (both as free ammonia and in saline form).  $S_ND$  and  $X_ND$  are the nitrogen parts of the soluble and particulate matter. Those three are measured with the **Total Kjeldahl Nitrogen**.

**Total Kjeldahl Nitrogen** is a determination method for organic and ammonia nitrogen. The organic nitrogen is destructed to ammonia in sulphuric acid and then the ammonia is distillated with a strong alkali.

Total Kjeldahl Nitrogen does not cover nitrate and nitrite, so **S\_NO** is considered a separate component.

Not all components of the Total Kjeldahl Nitrogen are implemented in the model. The nonbiodegradable soluble S\_NI and particulate nitrogen X\_NI&X\_NP aren't specifically mentioned in the model, but the last two are easily calculated. The active mass nitrogen is only present because of the release of biodegradable particulate nitrogen from the decay of biomass. Other components in the model are:

**S\_O**: Dissolved oxygen

**S\_Alk**: Alkalinity, used in the model to keep the charge balance in equilibrium

#### The processes

The processes modelled within the ASM1 model category are listed in the following table.

| Name             | Description                                |
|------------------|--------------------------------------------|
| AerGrowthHetero  | Aerobic growth of heterotrophs             |
| AnGrowthHetero   | Anoxic growth of heterotrophs              |
| AerGrowthAuto    | Aerobic growth of autotrophs               |
| DecayOfHetero    | Decay of heterotrophs                      |
| DecayOfAuto      | Decay of autotrophs                        |
| AmmonOfSolOrgN   | Ammonification of soluble organic nitrogen |
| HydrolOfEntrOrg  | Hydrolysis of entrapped organics           |
| HydrolOfEntrOrgN | Hydrolysis of entrapped organic nitrogen   |
| Aeration         | Aeration                                   |

- For the aerobic growth the heterotrophic biomass consumes readily biodegradable matter S\_S and dissolved oxygen S\_O, which are both speed limiting. As nitrogen source for growth, ammonia S\_NH is used, which is also speed limiting. Only a fraction of the S\_S is used for growth (expressed by the heterotrophic yield Y\_H), the rest is used for energy supply.
- In absence of oxygen the heterotrophic biomass can grow on nitrate as electron acceptor, with production of nitrogen gas (denitrification) and consumes readily biodegradable substrate. This is called anoxic growth. Anoxic growth is severely deteriorated by the presence of oxygen. The consumption of readily biodegradable matter S\_S and the concentration of nitrate S\_NO are speed limiting. As nitrogen source for growth, ammonia S\_NH is used, which is also speed limiting. A correction factor  $n_g$  (<1) is added in the calculations because the maximum growth speed is smaller for anoxic then for aerobic growth of heterotrophs. Only a part of the heterotroph biomass is capable of anoxic growth.
- Nitrification is related to the aerobic growth of autotroph biomass. These oxidise ammonia to nitrate with the consumption of oxygen. Some ammonia is also used as nitrogen source for building into the cells. The cell yield coefficient is low, so there isn't much growth of autotrophs.
- Decay of heterotroph biomass is modelled by the death-regeneration-concept (Dold et al. 1980). Decay happens at a certain speed. A part of the decay products is considered as non-biodegradable and is added to the X\_P fraction. The rest is considered to be slow biodegradable X\_S. The nitrogen associated with this last part becomes available as X\_ND. There is no oxygen involved in the process, so it happens at the same speed under aerobic, anoxic and anaerobic conditions.
- Decay of autotrophs cf. the decay of heterotrophs.
- The nitrogen part of the soluble organic matter is converted to S\_NH by ammonification. This is a first order process catalysed by active heterotrophic biomass.#
- Slowly biodegradable matter X\_S is hydrolysed to S\_S, which is available for growth, outside the cells. This happens by means of extra cellular enzymes produced by the biomass. Hydrolysis is modelled on the basis of surface-reaction-kinetics and only under aerobic or anoxic circumstances. A correction factor  $n_h$  (<1) is added for the anoxic conditions. The rate is proportional with the amount of biomass but saturates when the amount of substrate becomes large in comparison with the amount of biomass.
  - Hydrolyses of the entrapped organic nitrogen happens with a rate proportional to the hydrolyses of the entrapped organic matter.

The change of the components is also modelled.

For instance, for the change of active mass of heterotrophs, the reactions involved are aerobic growth, anoxic growth and decay.

$$\rho_{BH} = \left(\mu_{BH} \cdot \frac{S_S}{K_S + S_S} \cdot \frac{S_{NH}}{K_{NH,H} + S_{NH}} \cdot \left(\frac{S_O}{K_{O,H} + S_O} + n_g \cdot \frac{K_{O,H}}{K_{O,H} + S_O} \cdot \frac{S_{NO}}{K_{NO} + S_{NO}}\right) - b_{BH}\right) \cdot X_{BH}$$

The term  $\overline{K_{O,H}+S_O}$  is an example of the **Monod** kinetics. When  $K_{O,H}$  is small then the function almost equals 1 for high oxygen concentrations and approaches 0 for low oxygen concentrations. This term is used as switching function for processes that need oxygen.

K<sub>O,H</sub>

The term  $K_{O,H}+S_O$  reaches 1 for small oxygen concentrations and almost 0 for high oxygen concentrations. This term is used as switching function for processes that deteriorate in the presence of oxygen.

The change in oxygen concentration by means of aeration is expressed by the following formula:

 $\rho_o = k_L a \cdot \left( S_{o,Sat} - S_o \right)$ 

# **Temperature dependency**

The dependency of the oxygen saturation concentration is calculated as follows:

$$S_{o,Sat} = 290326 \cdot EXP\left(-66.7354 + \frac{87.4755}{\frac{T+273.15}{100}} + 24.4526 \cdot ln\left(\frac{T+273.15}{100}\right)\right)$$

The temperature correction is calculated as follows:

$$k_{T} = k_{T_{ref}} \cdot \theta^{\left(T - T_{ref}\right)}$$

where:

 $k_T$  denotes the kinetic parameter: i.e. the maximum specific growth rate ( $\mu$ ), the decay coefficient (**b**) or the hydrolysis constant (**k**) at the actual temperature T;

 $T_{ref}$  is the reference temperature (20°C); and

 $\theta$  is the Arrhenius constant.

## Parameters

The parameters defined for the ASM1 model category are listed in the following tables.

Group: Conversion & Composition factors

| Name      | Description                                         | Value | Units     |
|-----------|-----------------------------------------------------|-------|-----------|
| i_X_B     | Mass of nitrogen per mass of COD in biomass         | 0.086 | g N/g COD |
| i_X_P     | Mass of nitrogen per mass of COD in products formed | 0.06  | g N/g COD |
| i_N_S_I   | Mass of nitrogen per mass of inert soluble COD      | 0*    | g N/g COD |
| F_TSS_COD | Fraction TSS/COD                                    | 0.75  |           |
| F_BOD_COD | Conversion factor BOD/COD                           | 0.65  |           |

\* This parameter should be set to 0.01 if inert organic nitrogen is explicitly considered

# Group: Stoichiometry

| Name | Description                                   | Value | Units       |
|------|-----------------------------------------------|-------|-------------|
| Y_H  | Yield for heterotrophic biomass               | 0.67  | g COD/g COD |
| Y_A  | Yield for autotrophic biomass                 | 0.24  | g COD/g N   |
| f_P  | Fraction of biomass converted to inert matter | 0.08  |             |

Group: Kinetics

| Name   | Description                                                             | Value | Units                               |
|--------|-------------------------------------------------------------------------|-------|-------------------------------------|
| mu_H   | Max specific growth rate for heterotrophic biomass                      | 6     | 1/d                                 |
| b_H    | Decay coefficient for heterotrophic biomass                             | 0.62  | 1/d                                 |
| mu_A   | Max specific growth rate for autotrophic biomass                        | 0.8   | 1/d                                 |
| b_A    | Decay coefficient for autotrophic biomass                               | 0.15  | 1/d                                 |
| k_a    | Maximum specific ammonification rate                                    | 0.08  | g COD/g COD/d                       |
| k_h    | Maximum specific hydrolysis rate                                        | 3     | g COD/g COD/d                       |
| K_X    | Half-saturation coeff. for hydrolysis of slowly biodegradable substrate | 0.03  | g COD/g COD                         |
| K_S    | Half-saturation coefficient for heterotrophic biomass                   | 20    | g COD/m <sup>3</sup>                |
| K_OH   | O <sub>2</sub> half-saturation coeff. for heterotrophic biomass         | 0.2   | g COD/m <sup>3</sup>                |
| K_NO   | Nitrate half-saturation coeff. for heterotrophic biomass                | 0.5   | g NO <sub>3</sub> -N/m <sup>3</sup> |
| K_OA   | O <sub>2</sub> half-saturation coeff. for autotrophic biomass           | 0.4   | g COD/m <sup>3</sup>                |
| K_NH_H | Half-saturation coefficient of heterotrophs for ammonium                | 0.05  | g NH <sub>3</sub> -N/m <sup>3</sup> |
| K_NH   | Ammonia half-saturation coeff. for autotrophic biomass                  | 1     | g NH <sub>3</sub> -N/m <sup>3</sup> |
| n_g    | Correction factor for anoxic growth of heterotrophs                     | 0.8   |                                     |
| n_h    | Correction factor for anoxic hydrolysis                                 | 0.4   |                                     |

The default values are with reference to a temperature of 20°C (**Temp\_Ref**).

Group: <u>Temperature correction factors</u>

| Name       | Description                                   | Value | Units |
|------------|-----------------------------------------------|-------|-------|
| Temp_Ref   | Reference temperature for Arrhenius equations | 20.0  | °C    |
| theta_mu_H | Temperature correction factor for mu_H        | 1.072 |       |
| theta_b_H  | Temperature correction factor for b_H         | 1.116 |       |
| theta_mu_A | Temperature correction factor for mu_A        | 1.103 |       |

| theta_b_A | Temperature correction factor for b_A | 1.116 |  |
|-----------|---------------------------------------|-------|--|
| theta_K_X | Temperature correction factor for K_X | 1.116 |  |
| theta_k_a | Temperature correction factor for k_a | 1.072 |  |
| theta_k_h | Temperature correction factor for k_h | 1.116 |  |

#### **State Variables**

| Name           | Description                             | Units |
|----------------|-----------------------------------------|-------|
| K_X_Temp       | K_X at the system temperature           |       |
| S_O_Saturation | Oxygen saturation concentration         | g/m3  |
| X_TSS          | Concentration of Total suspended solids | g/m3  |
| b_A_Temp       | b_A at the system temperature           |       |
| b_H_Temp       | b_H at the system temperature           |       |
| k_a_Temp       | k_a at the system temperature           |       |
| k_h_Temp       | k_h at the system temperature           |       |
| mu_A_Temp      | mu_A at the system temperature          |       |
| mu_H_Temp      | mu_H at the system temperature          |       |

# **Derived State Variables**

None

# **Interface Variables**

| Name       | Terminal | Description                          | Value | Units  |
|------------|----------|--------------------------------------|-------|--------|
| AUR        | out_2    | Ammonium Uptake Rate                 |       | g/m3/d |
| DO         | out_2    | Dissolved oxygen concentration       |       | g/m3   |
| Kla_ASU    | out_2    | Kla                                  |       | 1/d    |
| NH4        | out_2    | Ammonium concentration               |       | g/m3   |
| NO3        | out_2    | Nitrate+Nitrite concentration        |       | g/m3   |
| NPR        | out_2    | Nitrate Production Rate              |       | g/m3/d |
| NUR        | out_2    | Nitrate Uptake Rate                  |       | g/m3/d |
| OUR_ASU    | out_2    | Oxygen Uptake Rate                   |       | g/m3/d |
| OfflineBOD | out_2    | Biological Oxygen Demand             |       | g/m3   |
| OfflineTKN | out_2    | Total Kjeldal nitrogen concentration |       | g/m3   |
| OnlineCOD  | out_2    | Chemical Oxygen Demand               |       | g/m3   |
| OnlineTN   | out_2    | Total nitrogen concentration         |       | g/m3   |
| TSS        | out_2    | Total suspended solids concentration |       | g/m3   |
| V_ASU      | out_2    | Volume                               |       | m3     |

#### **ANNEXE 3.** ASM3 (WEST<sup>+</sup>2020)

#### About the category

The IAWQ (International Association on Water Quality) Activated sludge model  $n^{\circ}3$  (ASM3) is a model developed by the IAWQ Task Group on Mathematical Modelling for Design and Operation of Biological Wastewater Treatment, with the intention to correct the defects in ASM1:

- ASM1 includes biodegradable soluble and particulate organic nitrogen as model components, which cannot be easily measured
- The kinetics of ammonification in ASM1 cannot really be quantified
- ASM1 includes two components of inert particulate organic material depending on its origin. In reality it is not possible to differentiate X\_I and X\_P
- Hydrolysis has a dominating effect on oxygen consumption and denitrification by heterotrophs. It is also difficult to quantify the kinetic parameters of the hydrolysis process
- Endogenous respiration is in ASM1 described by lysis, hydrolysis and growth
- The storage of poly-hydroxy-alkanoates and glycogen under aerobic and anoxic conditions is not modelled in ASM1
- It is not possible in ASM1 to differentiate decay rates of nitrifiers under aerobic and anoxic conditions
- Mixed liquor suspended solids are not included in ASM1

The published ASM3 model has been extended with temperature correction.

#### The biological components

The state variables that identify the Components of the ASM3 model category (and constitute the **component vector**) are listed in the following table.

| Name  | Description                                     | Units                |
|-------|-------------------------------------------------|----------------------|
| H2O   | Water                                           | $m^{3}/d$            |
| S_I   | Inert soluble organic matter                    | g COD/m <sup>3</sup> |
| S_S   | Readily biodegradable substrate                 | g COD/m <sup>3</sup> |
| S_0   | Dissolved oxygen                                | g COD/m <sup>3</sup> |
| S_NO  | Nitrate and nitrite                             | g N/m <sup>3</sup>   |
| S_NH  | Total ammonium nitrogen, $NH^+_4 + NH_3$        | g N/m <sup>3</sup>   |
| S_N2  | Dinitrogen                                      | g N/m <sup>3</sup>   |
| S_ALK | Alkalinity                                      | mol/m <sup>3</sup>   |
| X_I   | Inert particulate organic matter                | g COD/m <sup>3</sup> |
| X_S   | Slowly biodegradable substrate                  | g COD/m <sup>3</sup> |
| X_H   | Active heterotrophic biomass                    | g COD/m <sup>3</sup> |
| X_A   | Active autotrophic biomass                      | g COD/m <sup>3</sup> |
| X_STO | Cell internal storage products of heterotrophic | $\sigma COD/m^3$     |
|       | organisms                                       | g COD/III            |
| X_TSS | Total Suspended Solids                          | g TSS/m <sup>3</sup> |

The ASM3Temp model takes into account carbon removal, nitrification and denitrification.

The components in the model are divided into two large groups, the solubles and the particulates. A big difference between ASM3 and ASM1, ASM2(d) is that the soluble components can be separated from the particulate components with a filtration over a 0.45  $\mu$ m membrane. All particulate components must be electrically neutral but the solubles may carry ionic charges.

The readily biodegradable substrate **S\_S** is assumed to be stored as a cell internal storage product of the heterotrophic organisms **X\_STO** before it is consumed. The cell internal storage product of the heterotrophic cannot be compared with analytical measured polyhydroxy-alkanoates or glycogen. It might be recovered through COD conservation. For stoichiometric considerations it is assumed to have the chemical composition of hydroxybutyrate (C<sub>4</sub>H<sub>6</sub>O<sub>2</sub>)<sub>n</sub>. The slowly biodegradable organic substrate **X\_S** is assumed to be particulate.

The inert soluble organic matter  $S_I$  cannot be further degraded in the treatment plants here considered. The inert particulate organic matter  $X_I$  is also not degraded in the system. It may be a fraction of the influent or an end product of biomass decay.

| Organic matter                        |     |           |                         |  |
|---------------------------------------|-----|-----------|-------------------------|--|
| Soluble organics Particulate organics |     |           |                         |  |
| Inert COD Readily<br>biodegradable    |     | Inert COD | Slowly<br>biodegradable |  |
| S_I                                   | S_S | X_I       | X_S                     |  |

The biomass is considered to exist of heterotrophs **X\_H** and nitrifiers **X\_A**.

**Heterotrophs** are organisms that need external Carbon sources for growth and gain of energy. They can grow as well aerobically as anoxic. They use the slowly biodegradable substrate for hydrolysis. The heterotrophs store readily biodegradable substrate S\_S as cell internal storage products X\_STO before further degradation.

**Nitrifiers** (chemo-litho-autotrophs) are organisms that don't need external Carbon sources for growth and gain of energy. They are assumed to oxidize ammonium **S\_NH** directly into nitrate **S\_NO**.

The heterotrophic organisms are assumed to grow as well aerobic as anoxic. The only activity of heterotrophs under anaerobic conditions is the cell external hydrolysis. Dinitrogen  $S_N2$  is assumed to be the only product of denitrification (anoxic growth). Dinitrogen  $S_N2$  is subject to gas exchange.

| Biomass                                |          |                       |  |
|----------------------------------------|----------|-----------------------|--|
| Heterotrophic organisms                |          |                       |  |
| Nitrifying organisms Cell internal sto |          | Cell internal storage |  |
|                                        | products |                       |  |
| X_A                                    | X_H      | X_STO                 |  |

| Nutrients          |                   |         |  |  |
|--------------------|-------------------|---------|--|--|
| Inorganic nitrogen |                   |         |  |  |
| Dinitrogen gas     | Nitrate + Nitrite | Ammonia |  |  |
| S_N2               | S_NO              | S_NH    |  |  |

Other components in the model are:

**S\_O**: Soluble Oxygen may be subject to gas exchange.

**S\_ALK**: Alkalinity is used in the model to approximate the continuity of the electrical charges. It is assumed to exist only of bicarbonate ( $HCO_3^{-}$ ). It can give an early indication of low pH conditions.

**X\_TSS**: Total suspended solids (TSS) allow for the inclusion of mineral particulates and poly-phosphate.

#### The processes

The processes modelled within the ASM3 model category are listed in the following table.

| Name              | Description                                               |
|-------------------|-----------------------------------------------------------|
| Hydrolysis        | Hydrolysis                                                |
| AerStorageOfCOD   | Aerobic storage of readily biodegradable substrate        |
| AnoxStorageOfCOD  | Anoxic storage of readily biodegradable substrate         |
| AerGrowth         | Aerobic growth of heterotrophic organisms                 |
| AnoxGrowth        | Anoxic growth of heterotrophic organisms                  |
| AerEndogRespOfXH  | Aerobic endogenous respiration of heterotrophic organisms |
| AnoxEndogRespOfXH | Anoxic endogenous respiration of heterotrophic organisms  |
| AerRespOfPHA      | Aerobic respiration of storage products                   |
| AnoxRespOfPHA     | Anoxic respiration of storage products                    |
| Nitrification     | Nitrification                                             |
| AerEndogRespOfXA  | Aerobic endogenous respiration of autotrophic organisms   |
| AnoxEndogRespOfXA | Anoxic endogenous respiration of autotrophic organisms    |
| Aeration          | Aeration                                                  |

## Hydrolysis processes

Slowly biodegradable substrate X\_S is converted to readily biodegradable substrate S\_S. Due to hydrolysis, also a small fraction  $f_S_I$  of inert soluble organic matter S\_I is released. Hydrolysis is assumed to be independent of the electron donor. The fraction of nitrogen in the slowly biodegradable substrate is assumed to be constant, so it is not necessary to include a separate hydrolysis process for the particulate organic nitrogen. The difference to ASM1 is that hydrolysis is supposed to be less dominating on the oxygen and nitrogen consumption.

#### **Processes of heterotrophic organisms**

- Aerobic storage of readily biodegradable substrate describes the storage of readily biodegradable substrate S\_S as cell internal storage products X\_STO. The energy required for this process is obtained from aerobic respiration.
- Anoxic storage of readily biodegradable substrate describes the storage of readily biodegradable substrate S\_S as cell internal storage products X\_STO. The energy required for this process is obtained from anoxic respiration. The reduced speed of storage under anoxic circumstances is modeled with a reduction term n\_NO.
- Aerobic growth of heterotrophic organisms X\_H occurs only on cell internal storage products.
- Anoxic growth of heterotrophic organisms X\_H occurs only on cell internal storage products. Here nitrate S\_NO is the electron acceptor. The reduced speed of growth under anoxic circumstances is modeled with a reduction term n\_NO. The assumption is made that all nitrate S\_NO is reduced to dinitrogen S\_N2.

- Aerobic endogenous respiration combines all loss of biomass and requirements of energy not used for growth. E.g. decay, endogenous respiration, lysis, predation...
- Anoxic endogenous respiration combines all loss of biomass and requirements of energy not used for growth. E.g. decay, endogenous respiration, lysis, predation... This process is slower than the aerobic endogenous respiration.
- Aerobic respiration of storage products takes care of the fact that cell internal storage products decay together with the biomass.
- Anoxic respiration of storage products takes care of the fact that cell internal storage products decay together with the biomass. It is slower than the aerobic respiration.

The process of ammonification is ignored in the ASM3Temp because of the assumption that all the organic components contain a constant fraction of nitrogen.

#### Processes of autotrophic organisms

The intermediate component of nitrification, nitrite, is not included in the ASM3Temp model. It is assumed that ammonium S\_NH is oxidized directly to nitrate S\_NO.

- Nitrification occurs with the growth of autotrophic organisms. This only occurs under aerobic conditions. Nitrification results in nitrate S\_NO and therefor the amount of alkalinity S\_ALK is reduced in order to keep the electrical continuity.
- Aerobic endogenous respiration combines all loss of biomass and requirements of energy not used for growth. E.g. decay, endogenous respiration, lysis, predation...
- Anoxic endogenous respiration combines all loss of biomass and requirements of energy not used for growth. E.g. decay, endogenous respiration, lysis, predation... This process is slower than the aerobic endogenous respiration.

#### Aeration

The change in oxygen concentration by means of aeration is expressed by the following formula:

$$\rho_O = k_L a \cdot \left( S_{O,Sat} - S_O \right)$$

#### **Temperature dependency**

The dependency of the oxygen saturation concentration is calculated as follows:

$$S_{0,Sat} = 290326 \cdot EXP\left(-66.7354 + \frac{87.4755}{\frac{T+273.15}{100}} + 24.4526 \cdot ln\left(\frac{T+273.15}{100}\right)\right)$$

The temperature correction is calculated as follows:

$$k_T = k_{T_{ref}} \cdot \theta^{\left(T - T_{ref}\right)}$$

where:

 $\cdot$   $k_T$  denotes the kinetic parameter: i.e. the maximum specific growth rate ( $\mu$ ), the decay coefficient (**b**) or the hydrolysis constant (**k**) at the actual temperature T;

 $T_{ref}$  is the reference temperature (20°C); and

 $\theta$  is the Arrhenius constant.

## Parameters

.

The parameters defined for the ASM3 model category are listed in the following tables.

Group: Conversion & Composition factors

| Name      | Description                                           | Value | Units       |
|-----------|-------------------------------------------------------|-------|-------------|
| i_N_BM    | Nitrogen content of biomass                           | 0.07  | g N/g COD   |
| i_N_S_S   | Nitrogen content of soluble substrate S_S             | 0.03  | g N/g COD   |
| i_N_S_I   | Nitrogen content of inert soluble COD S_I             | 0.01  | g N/g COD   |
| i_N_X_I   | Nitrogen content of inert particulate<br>COD X_I      | 0.02  | g N/g COD   |
| i_N_X_S   | i_N_X_S Nitrogen content of particulate substrate X S |       | g N/g COD   |
| i_TS_BM   | TSS to biomass ratio for X_H, X_A                     | 0.9   | g TSS/g COD |
| i_TS_X_I  | TSS to X_I ratio                                      | 0.75  | g TSS/g COD |
| i_TS_X_S  | TSS to X_S ratio                                      | 0.75  | g TSS/g COD |
| i_TS_STO  | TSS to X_STO ratio based on PHB                       | 0.6   | g TSS/g COD |
| F_BOD_COD | Conversion factor BOD/COD                             | 0.65  |             |

Group: <u>Stoichiometry</u>

| Name     | Description                                         | Value | Units       |
|----------|-----------------------------------------------------|-------|-------------|
| Y_H_O2   | Aerobic yield of heterotrophic biomass per X_STO    | 0.63  | g COD/g COD |
| Y_H_NO   | Anoxic yield of heterotrophic biomass per X_STO     | 0.54  | g COD/g COD |
| Y_A      | Yield for autotrophic biomass                       | 0.24  | g COD/g N   |
| Y_STO_O2 | Aerobic yield of stored product per S_S             | 0.85  | g COD/g COD |
| Y_STO_NO | Anoxic yield of stored product per S_S              | 0.8   | g COD/g COD |
| f_S_I    | Production of S_I in hydrolysis                     | 0.0   |             |
| f_X_I    | Production of X_I in aerobic endogenous respiration | 0.2   |             |

Group: Kinetics

| Name   | Description                                        | Value | Units |
|--------|----------------------------------------------------|-------|-------|
| mu_H   | Max specific growth rate for heterotrophic biomass | 2     | 1/d   |
| b_H_O2 | Aerobic endogenous respiration rate of X_H         | 0.2   | 1/d   |
| b_H_NO | Aerobic endogenous respiration rate of X_H         | 0.1   | 1/d   |

| mu_A     | Max specific growth rate for autotrophic biomass | 1.0  | 1/d                                 |
|----------|--------------------------------------------------|------|-------------------------------------|
| b_A_O2   | Aerobic endogenous respiration rate of X_A       | 0.15 | 1/d                                 |
| b_A_NO   | Anoxic endogenous respiration rate of X_A        | 0.05 | 1/d                                 |
| b_STO_O2 | Aerobic respiration rate for X_STO               | 0.2  | 1/d                                 |
| b_STO_NO | Anoxic respiration rate for X_STO                | 0.1  | 1/d                                 |
| k_h      | Hydrolysis rate constant                         | 3    | g COD/g COD/d                       |
| K_X      | Hydrolysis saturation constant                   | 1    | g COD/g COD                         |
| K_S      | Saturation constant for substrate S_S            | 2    | g COD/m <sup>3</sup>                |
| K_O      | Saturation constant for S_O                      | 0.2  | g COD/m <sup>3</sup>                |
| K_NH     | Ammonium saturation as nutrient                  | 0.01 | g NH <sub>4</sub> -N/m <sup>3</sup> |
| K_NO     | Saturation constant for S_NO                     | 0.5  | g NO <sub>3</sub> -N/m <sup>3</sup> |
| K_A_NH   | Ammonium substrate concentration for X_A         | 1    | g COD/m <sup>3</sup>                |
| K_A_O    | Oxygen saturation for nitrifiers                 | 0.5  | g COD/m <sup>3</sup>                |
| K_A_HCO  | Bicarbonate saturation for nitrifiers            | 0.5  | mol/m <sup>3</sup>                  |
| K_HCO    | Bicarbonate saturation constant of X_H           | 0.1  | mol/m <sup>3</sup>                  |
| K_STO    | Saturation constant for X_STO                    | 1    | g COD/m <sup>3</sup>                |
| k_STO    | Storage rate constant                            | 5    | 1/d                                 |
| n_NO     | Anoxic reduction factor                          | 0.6  |                                     |

The default values are with reference to a temperature of 20°C (**Temp\_Ref**).

| Group: Temperature correction factor | S |
|--------------------------------------|---|
|--------------------------------------|---|

| Name                                                      | Description                                   | Value | Units |
|-----------------------------------------------------------|-----------------------------------------------|-------|-------|
| Temp_Ref                                                  | Reference temperature for Arrhenius equations | 20.0  | °C    |
| theta_mu_H                                                | Temperature correction factor for mu_H        | 1.072 |       |
| theta_b_H_O2                                              | 1.072                                         |       |       |
| theta_b_H_NO                                              | Temperature correction factor for<br>b_H_NO   | 1.072 |       |
| theta_mu_A                                                | Temperature correction factor for mu_A        | 1.111 |       |
| theta_b_A_O2                                              | Temperature correction factor for b_A_O2      | 1.116 |       |
| theta_b_A_NOTemperature correction factor for<br>b_A_NO   |                                               | 1.096 |       |
| theta_b_STO_O2 Temperature correction factor for b_STO_O2 |                                               | 1.072 |       |
| theta_b_STO_NO Temperature correction factor for b_STO_NO |                                               | 1.072 |       |
| theta_k_STO                                               | Temperature correction factor for k_STO       | 1.072 |       |
| theta_k_h Temperature correction factor for k_h 1.041 -   |                                               |       |       |

**State Variables** 

| Name                                                  | Description                                             | Units            |
|-------------------------------------------------------|---------------------------------------------------------|------------------|
| <b>S_O_Saturation</b> Oxygen saturation concentration |                                                         | g/m <sup>3</sup> |
| b_A_NO_Temp                                           | b_A_NO at the system temperature                        |                  |
| b_A_O2_Temp                                           | b_A_O2 at the system temperature                        |                  |
| b_H_NO_Temp                                           | b_H_NO at the system temperature                        |                  |
| b_H_O2_Temp                                           | b_H_O2 at the system temperature                        |                  |
| b_STO_NO_Temp                                         | b_STO_NO at the system temperature                      |                  |
| b_STO_O2_Temp                                         | <b>b_STO_O2_Temp</b> b_STO_O2 at the system temperature |                  |
| k_STO_Temp                                            | k_STO at the system temperature                         |                  |
| k_h_Temp                                              | k_h at the system temperature                           |                  |
| mu_A_Temp                                             | mu_A at the system temperature                          |                  |
| mu_H_Temp                                             | mu_H at the system temperature                          |                  |

# **Derived State Variables**

#### **Interface Variables**

| Name       | Terminal | Description                          | Value | Units               |
|------------|----------|--------------------------------------|-------|---------------------|
| AUR        | out_2    | Ammonium Uptake Rate                 |       | g/m <sup>3</sup> /d |
| DO         | out_2    | Dissolved oxygen concentration       |       | g/m <sup>3</sup>    |
| Kla_ASU    | out_2    | Kla                                  |       | 1/d                 |
| NH4        | out_2    | Ammonium concentration               |       | g/m <sup>3</sup>    |
| NO3        | out_2    | Nitrate+Nitrite concentration        |       | g/m <sup>3</sup>    |
| NPR        | out_2    | Nitrate Production Rate              |       | g/m <sup>3</sup> /d |
| NUR        | out_2    | Nitrate Uptake Rate                  |       | g/m <sup>3</sup> /d |
| OUR_ASU    | out_2    | Oxygen Uptake Rate                   |       | g/m <sup>3</sup> /d |
| OfflineBOD | out_2    | Biological Oxygen Demand             |       | g/m <sup>3</sup>    |
| OfflineTKN | out_2    | Total Kjeldal nitrogen concentration |       | g/m <sup>3</sup>    |
| OnlineCOD  | out_2    | Chemical Oxygen Demand               |       | g/m <sup>3</sup>    |
| OnlineTN   | out_2    | Total nitrogen concentration         |       | g/m <sup>3</sup>    |
| TSS        | out_2    | Total suspended solids concentration |       | g/m <sup>3</sup>    |
| V_ASU      | out_2    | Volume                               |       | m <sup>3</sup>      |

## ANNEXE 4. Groupes du modèle ASM2dModTemp

| Groupe: | Facteurs | de | conversion | et de | o com | nosition | (A | SM2dM   | AndTe    | (am |
|---------|----------|----|------------|-------|-------|----------|----|---------|----------|-----|
| oroupe. | racturs  | uc | conversion | ci ut | , com | position | П  | bivi2ur | /10u I C | mp) |

| Nom       | La description                                        | Valeur | Unités           |
|-----------|-------------------------------------------------------|--------|------------------|
| i_N_BM    | Teneur en azote de la biomasse                        | 0,07   | g N / g<br>DCO   |
| i_N_S_F   | Teneur en azote du substrat soluble S_F               | 0,03   | g N / g<br>DCO   |
| i_N_S_I   | Teneur en azote de la DCO soluble inerte<br>S I       | 0,01   | g N / g<br>DCO   |
| i_N_X_I   | Teneur en azote des particules inertes COD<br>X_I     | 0,02   | g N / g<br>DCO   |
| i_N_X_S   | Teneur en azote du substrat particulaire X_S          | 0,04   | g N / g<br>DCO   |
| i_P_BM    | Teneur en phosphore de la biomasse                    | 0,02   | g P / g<br>DCO   |
| i_P_S_F   | Teneur en phosphore du substrat soluble<br>S_F        | 0,01   | g P / g<br>DCO   |
| i_P_S_I   | Teneur en phosphore de la DCO soluble inerte S_I      | 0,0    | g P / g<br>DCO   |
| i_P_X_I   | Teneur en phosphore des particules inertes<br>COD X_I | 0,01   | g P / g<br>DCO   |
| i_P_X_S   | Teneur en phosphore du substrat particulaire X_S      | 0,01   | g P / g<br>DCO   |
| i_TSS_BM  | Rapport TSS / biomasse pour X_H, X_PAO, X_AUT         | 0,9    | g TSS / g<br>DCO |
| i_TSS_X_I | Rapport TSS sur X_I                                   | 0,75   | g TSS / g<br>DCO |
| i_TSS_X_S | Rapport TSS / X_S                                     | 0,75   | g TSS / g<br>DCO |
| F_BOD_COD | Facteur de conversion DBO / DCO                       | 0,65   |                  |

# Groupe: Stoechiométrie (ASM2dModTemp)

| Nom   | La description                        | Valeur | Unités           |
|-------|---------------------------------------|--------|------------------|
| Y_H   | Rendement de la biomasse hétérotrophe | 0,625  | g DCO / g<br>DCO |
| Y_AUT | Rendement de la biomasse autotrophe   | 0,24   | g DCO / g<br>DCO |
| Y_PAO | Rendement pour les PAO                | 0,625  | g DCO / g<br>DCO |

| Y_PHA | Exigence PHA pour le stockage PP                     | 0,2 | g DCO / g<br>DCO |
|-------|------------------------------------------------------|-----|------------------|
| Y_PO  | Exigence PP (version S_PO4) par PHA stocké           | 0,4 | g DCO / g<br>DCO |
| f_S_I | Fraction de DCO inerte dans le substrat particulaire | 0,0 |                  |
| f_X_I | Fraction de DCO inerte générée lors de la lyse       | 0,1 |                  |

| Nom    | La description                                                         | Valeur* | J |
|--------|------------------------------------------------------------------------|---------|---|
| mu_H   | Taux de croissance spécifique maximal<br>pour la biomasse hétérotrophe | 6       | 1 |
| b_H    | Constante de vitesse pour la lyse et la désintégration                 | 0,4     | 1 |
| mu_AUT | Taux de croissance spécifique maximal pour la biomasse autotrophe      | 1.0     | 1 |
| b_AUT  | Coefficient de désintégration de la biomasse autotrophe                | 0,15    | 1 |
| mu_PAO | Taux de croissance spécifique maximal                                  | 1.0     | 1 |

Groupe: Cinétique (ASM2dModTemn)

| Nom       | La description                                                      | Valeur* | Unités          |
|-----------|---------------------------------------------------------------------|---------|-----------------|
| mu_H      | Taux de croissance spécifique maximal pour la biomasse hétérotrophe | 6       | 1 / j           |
| b_H       | Constante de vitesse pour la lyse et la désintégration              | 0,4     | 1 / j           |
| mu_AUT    | Taux de croissance spécifique maximal pour la biomasse autotrophe   | 1.0     | 1 / j           |
| b_AUT     | Coefficient de désintégration de la biomasse autotrophe             | 0,15    | 1 / j           |
| mu_PAO    | Taux de croissance spécifique maximal pour les PAO                  | 1.0     | 1 / j           |
| b_PAO     | Constante de vitesse pour la lyse de X_PAO                          | 0,2     | 1 / j           |
| b_PHA     | Constante de vitesse pour la lyse de X PHA                          | 0,2     | 1 / j           |
| b_PP      | Constante de vitesse pour la lyse de X_PP                           | 0,2     | 1/j             |
| K_A       | Coeff de saturation pour S_A (acétate)                              | 4       | g DCO / m3      |
| K_F       | Coeff de saturation / inhibition pour la croissance sur S_F         | 4       | g DCO / m3      |
| K_0       | Coefficient de saturation / inhibition de l'oxygène                 | 0,2     | g DCO / m3      |
| K_O_AUT   | Coeff de saturation / inhibition des autotrophes pour l'oxygène     | 0,5     | g DCO / m3      |
| K_NH      | Coeff de saturation pour l'ammonium (nutriment)                     | 0,05    | g / m3          |
| K_NH_AUT  | Coeff de saturation des autotrophes pour l'ammonium                 | 1       | g / m3          |
| K_NO      | Coefficient de saturation des nitrates                              | 0,5     | g NO3-N /<br>m3 |
| K_P       | Coeff de saturation pour le phosphore (nutriment)                   | 0,01    | g / m3          |
| K_PHA     | Coeff de saturation pour PHA                                        | 0,01    | g / m3          |
| K_PP      | Coeff de saturation du poly-phosphate                               | 0,01    | g / m3          |
| K_PS      | Coeff de saturation pour le phosphore dans le stockage PP           | 0,2     | g / m3          |
| K_ALK     | Coeff de saturation pour l'alcalinité (HCO3-)                       | 0,1     | g / m3          |
| K_ALK_AUT | Coeff de saturation des autotrophes pour l'alcalinité               | 0,5     | g / m3          |

| K_IPP      | Coefficient d'inhibition pour le stockage<br>X_PP                       | 0,02 | g / m3 |
|------------|-------------------------------------------------------------------------|------|--------|
| K_MAX      | Rapport maximum de X_PP / X_PAO                                         | 0,34 | g / m3 |
| K_X        | Coefficient de saturation pour la DCO particulaire                      | 0,1  | g / m3 |
| K_fe       | Coeff de saturation pour la fermentation sur S_F                        | 4    | g / m3 |
| Q_PHA      | Constante de débit pour le stockage de PHA (base: X_PP)                 | 3    | 1 / j  |
| Q_PP       | Constante de débit pour le stockage du PP                               | 1,5  | 1 / j  |
| Q_fe       | Taux maximum de fermentation                                            | 3    | 1 / j  |
| k_PRE      | Constante de taux pour les précipitations P                             | 1    | 1 / j  |
| k_RED      | Constante de taux pour la redissolution P                               | 0,6  | 1 / j  |
| n_NO_Het   | Facteur de réduction pour la dénitrification                            | 0,8  |        |
| n_NO_Het_d | Facteur de réduction anoxique pour la désintégration des hétérotrophes  | 0,5  |        |
| n_NO_AUT_d | Facteur de réduction anoxique pour la désintégration des autotrophes    | 0,33 |        |
| n_NO_Hyd   | Facteur de réduction de l'hydrolyse anoxique                            | 0,6  |        |
| n_NO_PAO   | Quantité de PAO actifs dans des conditions anoxiques                    | 0,6  |        |
| n_NO_P_d   | Facteur de réduction anoxique pour la désintégration des PAO, PP et PHA | 0,33 |        |
| n_fe       | Facteur de réduction de l'hydrolyse<br>anaérobie                        | 0,4  |        |

\*Les valeurs par défaut se réfèrent à une température de 20 ° C (Temp\_Ref).

| or caper r accents ac correction ac comperator contraction realized and | Groupe: | Facteurs of | de correction | de température | (ASM2dModTemp) |
|-------------------------------------------------------------------------|---------|-------------|---------------|----------------|----------------|
|-------------------------------------------------------------------------|---------|-------------|---------------|----------------|----------------|

|              | <b>T 1</b> <i>1 1</i>                                   | <b>T</b> 7 <b>1</b> | <b>T</b> T •// |
|--------------|---------------------------------------------------------|---------------------|----------------|
| Nom          | La description                                          | Valeur              | Unites         |
| Temp_Ref     | Température de référence pour les équations d'Arrhenius | 20,0                | ° C            |
| theta_mu_H   | Facteur de correction de température pour mu_H          | 1,072               |                |
| theta_b_H    | Facteur de correction de température pour<br>b_H        | 1,072               |                |
| theta_mu_AUT | Facteur de correction de température pour mu_AUT        | 1.111               |                |
| theta_mu_PAO | Facteur de correction de température pour mu_PAO        | 1,041               |                |
| theta_b_AUT  | Facteur de correction de température pour<br>b_AUT      | 1.116               |                |
| theta_b_PAO  | Facteur de correction de température pour<br>b_PAO      | 1,072               |                |
| theta_K_X    | Facteur de correction de température pour K_X           | 0,896               |                |
|              |                                                         |                     |                |

| theta_k_h   | Facteur de correction de température pour k_h      | 1,041 |  |
|-------------|----------------------------------------------------|-------|--|
| theta_Q_PHA | Facteur de correction de température pour Q_PHA    | 1,041 |  |
| theta_Q_PP  | Facteur de correction de température pour Q_PP     | 1,041 |  |
| theta_Q_fe  | Facteur de correction de température pour Q_fe     | 1,072 |  |
| theta_b_PHA | Facteur de correction de température pour<br>b_PHA | 1,072 |  |
| theta_b_PP  | Facteur de correction de température pour<br>b_PP  | 1,072 |  |

# Variables d'état (ASM2dModTemp)

| Nom            | La description                         | Unités |
|----------------|----------------------------------------|--------|
| K_X_Temp       | K_X à la température du système        |        |
| Q_PHA_Temp     | Q_PHA à la température du système      |        |
| Q_PP_Temp      | Q_PP à la température du système       |        |
| Q_fe_Temp      | Q_fe à la température du système       |        |
| S_O_Saturation | Concentration de saturation en oxygène | g / m3 |
| b_AUT_Temp     | b_AUT à la température du système      |        |
| b_H_Temp       | b_H à la température du système        |        |
| b_PAO_Temp     | b_PAO à la température du système      |        |
| b_PHA_Temp     | b_PAO à la température du système      |        |
| b_PP_Temp      | b_PP à la température du système       |        |
| k_h_Temp       | k_h à la température du système        |        |
| mu_AUT_Temp    | mu_A à la température du système       |        |
| mu_H_Temp      | mu_H à la température du système       |        |
| mu_PAO_Temp    | mu_PAO à la température du système     |        |

# Variables d'état dérivées (ASM2dModTemp)

# Variables d'interface

| Nom     | Terminal | La description                     | Valeur | Unités          |
|---------|----------|------------------------------------|--------|-----------------|
| AUR     | out_2    | Taux d'absorption d'ammonium       |        | g / m3 / j      |
| FAIRE   | out_2    | Concentration en oxygène dissous   |        | g / m3          |
| Kla_ASU | out_2    | Kla                                |        | j <sup>-1</sup> |
| NH4     | out_2    | Concentration d'ammonium           |        | g / m3          |
| NO 3    | out_2    | Concentration en nitrate + nitrite |        | g / m3          |
| NPR     | out_2    | Taux de production de nitrate      |        | g / m3 / j      |
| NUR     | out_2    | Taux d'absorption des nitrates     |        | g / m3 / j      |

| OUR_ASU        | out_2 | Taux d'absorption d'oxygène                   |  | g / m3 / j |
|----------------|-------|-----------------------------------------------|--|------------|
| Hors ligne BOD | out_2 | Demande biologique en oxygène                 |  | g / m3     |
| Hors ligne TKN | out_2 | Concentration totale d'azote Kjeldal          |  | g / m3     |
| OnlineCOD      | out_2 | La demande chimique en oxygène                |  | g / m3     |
| OnlineTN       | out_2 | Concentration totale d'azote                  |  | g / m3     |
| OnlineTP       | out_2 | Concentration totale de phosphore             |  | g / m3     |
| PO4            | out_2 | Concentration en phosphate                    |  | g / m3     |
| PUR            | out_2 | Taux d'absorption du phosphate                |  | g / m3 / j |
| TSS            | out_2 | Concentration totale de solides en suspension |  | g / m3     |
| V_ASU          | out_2 | Le volume                                     |  | m3         |

# Les paramètres du modèle Takács\_SVI

| Name              | Description                                                   | Value   | Units |
|-------------------|---------------------------------------------------------------|---------|-------|
| F_MES_DCO         | MES/DCO ratio                                                 | 0.75    |       |
| S                 | surface du clarificateur                                      | 1452    | m2    |
| Н                 | Hauteur du clarificateur                                      | 3,5     | m     |
| X_T               | Concentration seuil des solides en suspension                 | 3,000   | g/m3  |
| X_Lim             | Concentration minimale dans le tapis de boues                 | 900     | g/m3  |
| r_P               | Paramètre de sédimentation à faible concentration             | 0.00286 | m3/g  |
| v0                | Vitesse de sédimentation théorique maximale                   | 474     | m/d   |
| v00               | Vitesse de sédimentation pratique maximale                    | 250     | m/d   |
| f_ns              | Fraction non décantable des solides en suspension             | 0.00228 |       |
| F_Energy_FlowRate | Facteur de conversion Énergie<br>nécessaire/Débit de la pompe | 0.04    |       |

# Les variables d'état du modèle Takács\_SVI

| Name           | Description                                                   | Units |
|----------------|---------------------------------------------------------------|-------|
| Q_In           | Débit d'entrée                                                | m3/d  |
| Q_Out          | Débit de sortie                                               | m3/d  |
| Q_Under_Actual | Débit réel de sous-flux                                       | m3/d  |
| X_In           | Concentration des solides en suspension à l'entrée            | g/m3  |
| X_Out          | Concentration des solides en suspension à la sortie           | g/m3  |
| X_Under        | Concentration des solides en suspension dans le sous-<br>flux | g/m3  |
| X_Min          | Concentration des boues non décantables                       | g/m3  |
| H_S            | Hauteur du tapis de boues                                     | m     |
| r_H            | Paramètre de sédimentation entravée                           | m3/g  |

Les variables d'état dérivées du modèle Takács\_SVI

| Name    | Description                                            | Units |
|---------|--------------------------------------------------------|-------|
| X_Layer | Concentration des solides dans chaque couche (vecteur) | g/m3  |

## Les variables d'interface du modèle Takács\_SVI

| Name                  | Terminal | Description                                                               | Value | Units |
|-----------------------|----------|---------------------------------------------------------------------------|-------|-------|
| Inflow                | in_1     | Vecteur de débit d'entrée                                                 |       | g/d   |
| Outflow               | out_1    | Vecteur de débit de sortie                                                |       | g/d   |
| Underflow             | out_2    | Vecteur de sous-flux                                                      |       | g/d   |
| Sludge_Blanket_Height | out_2    | Hauteur du tapis de boues                                                 |       | m     |
| MES                   | out_2    | Concentration des solides en<br>suspension (MES) dans le<br>clarificateur |       | g/m3  |
| V_Clarifier           | out_2    | Volume du clarificateu                                                    |       | m3    |
| PumpingEnergy         | out_2    | Énergie de pompage                                                        |       | kWh   |
| PumpingPower          | out_2    | Consommation d'énergie de<br>pompage                                      |       | W     |
| Q_Under               | in_2     | Débit de sous-flux souhaité                                               | 200.0 | m3/d  |
| SVI                   | in_2     | Indice de volume des boues (IVB)                                          | 100.0 | ml/g  |

# ANNEXE 5. Model Quantities (WEST2020)

# **Steady State Simulation**

## .ASU\_Aero: Parameters

| Name    | Unit   | Value | Initial | Default | Lower | Upper |
|---------|--------|-------|---------|---------|-------|-------|
|         |        |       | Value   | Value   | bound | bound |
| b_AUT   | 1/d    | 0.15  |         | 0.15    | 0     | 20    |
| b_H     | 1/d    | 0.62  |         | 0.4     | 0     | 20    |
| b_PAO   | 1/d    | 0.2   |         | 0.2     | 0     | 20    |
| b_PHA   | 1/d    | 0.2   |         | 0.2     | 0     | 20    |
| b_PP    | 1/d    | 0.2   |         | 0.2     | 0     | 20    |
| F_BOD_C | -      | 0.65  |         | 0.65    | 0     | 1     |
| OD      |        |       |         |         |       |       |
| f_S_I   | -      | 0     |         | 0       | 0     | 1     |
| f_X_I   | -      | 0.08  |         | 0.1     | 0     | 1     |
| i_N_BM  | g/gCOD | 0.086 |         | 0.07    | 0     | 1     |
| i_N_S_F | g/gCOD | 0.03  |         | 0.03    | 0     | 1     |
| i_N_S_I | g/gCOD | 0.01  |         | 0.01    | 0     | 1     |
| i_N_X_I | g/gCOD | 0.06  |         | 0.02    | 0     | 1     |
| i_N_X_S | g/gCOD | 0.03  |         | 0.04    | 0     | 1     |
| i_P_BM  | g/gCOD | 0.02  |         | 0.02    | 0     | 1     |
| i_P_S_F | g/gCOD | 0.01  |         | 0.01    | 0     | 1     |
| i_P_S_I | g/gCOD | 0     |         | 0       | 0     | 1     |
| i_P_X_I | g/gCOD | 0.01  |         | 0.01    | 0     | 1     |
| i_P_X_S | g/gCOD | 0.01  |         | 0.01    | 0     | 1     |

| i_TSS_B<br>M    | g/gCOD            | 0.9                  | 0.9   | 0    | 1    |
|-----------------|-------------------|----------------------|-------|------|------|
| i_TSS_X_<br>I   | g/gCOD            | 0.75                 | 0.75  | 0    | 1    |
| i_TSS_X_<br>S   | g/gCOD            | 0.75                 | 0.75  | 0    | 1    |
| K_A             | g/m3              | 4                    | 4     | 0    | 100  |
| K_ALK           | g/m3              | 0.1                  | 0.1   | 0    | 100  |
| K_ALK_<br>AUT   | g/m3              | 0.5                  | 0.5   | 0    | 100  |
| K_F             | g/m3              | 20                   | 4     | 0    | 100  |
| K_fe            | g/m3              | 4                    | 4     | 0    | 100  |
| k_h             | gCOD/(gC<br>OD*d) | 3                    | 3     | 0    | 25   |
| K_IPP           | g/m3              | 0.02                 | 0.02  | 0    | 100  |
| K_MAX           | g/m3              | 0.34                 | 0.34  | 0    | 100  |
| K_NH            | g/m3              | 0.05                 | 0.05  | 0    | 100  |
| K_NH_A<br>UT    | g/m3              | 1                    | 1     | 0    | 100  |
| K_NO            | g/m3              | 0.5                  | 0.5   | 0    | 100  |
| K_O             | g/m3              | 0.2                  | 0.2   | 0    | 100  |
| K_O_AU<br>T     | g/m3              | 0.4                  | 0.5   | 0    | 100  |
| K_P             | g/m3              | 0.01                 | 0.01  | 0    | 100  |
| K_PHA           | g/m3              | 0.01                 | 0.01  | 0    | 100  |
| K_PP            | g/m3              | 0.01                 | 0.01  | 0    | 100  |
| k_PRE           | 1/d               | 1                    | 1     | 0    | 20   |
| K_PS            | g/m3              | 0.2                  | 0.2   | 0    | 100  |
| k_RED           | 1/d               | 0.6                  | 0.6   | 0    | 20   |
| K_X             | g/m3              | 0.03                 | 0.1   | 0    | 100  |
| Kla             | 1/d               | 122.26910<br>4630601 | 0     | 0    | 5000 |
| Kla_Min         | 1/d               | 20                   | 20    | 0    | 5000 |
| ME_unit         | kWh/m3/d          | 0.005                | 0.005 | -INF | +INF |
| Mixing_W        |                   | 0                    | 0     | 0    | 1    |
| hen_Aerat<br>ed |                   |                      |       |      |      |
| mu_AUT          | 1/d               | 0.8                  | 1     | 0    | 100  |
| mu_H            | 1/d               | 6                    | 6     | 0    | 100  |
| mu_PAO          | 1/d               | 1                    | 1     | 0    | 100  |
| n_fe            | -                 | 0.4                  | 0.4   | 0    | 1    |
| n_NO_AU<br>T_d  | -                 | 1                    | 0.33  | 0    | 1    |
| n_NO_Het        | -                 | 0.8                  | 0.8   | 0    | 1    |
| n_NO_Het<br>_d  | -                 | 1                    | 0.5   | 0    | 1    |
| n_NO_Hy<br>d    | -                 | 0.4                  | 0.6   | 0    | 1    |

| n_NO_P_<br>d     | -             | 1      | 0.33  | 0       | 1    |
|------------------|---------------|--------|-------|---------|------|
| n_NO_PA<br>O     | -             | 0.6    | 0.6   | 0       | 1    |
| OTR_Ener<br>gy   | g/kWh         | 1800   | 1800  | -INF    | +INF |
| Q_fe             | 1/d           | 0.0001 | 3     | 0       | 20   |
| Q_PHA            | 1/d           | 3      | 3     | 0       | 20   |
| Q_PP             | 1/d           | 1.5    | 1.5   | 0       | 20   |
| Temp             | degC          | 20     | 15    | -273.15 | +INF |
| Temp_Ref         | degC          | 20     | 20    | -273.15 | +INF |
| theta_b_A<br>UT  |               | 1.116  | 1.116 | -INF    | +INF |
| theta_b_H        |               | 1.072  | 1.072 | -INF    | +INF |
| theta_b_P<br>AO  |               | 1.072  | 1.072 | -INF    | +INF |
| theta_b_P<br>HA  |               | 1.072  | 1.072 | -INF    | +INF |
| theta_b_P<br>P   |               | 1.072  | 1.072 | -INF    | +INF |
| theta_k_h        |               | 1.041  | 1.041 | -INF    | +INF |
| theta_K_X        |               | 0.896  | 0.896 | -INF    | +INF |
| theta_mu_<br>AUT |               | 1.111  | 1.111 | -INF    | +INF |
| theta_mu_<br>H   |               | 1.072  | 1.072 | -INF    | +INF |
| theta_mu_<br>PAO |               | 1.041  | 1.041 | -INF    | +INF |
| theta_Q_fe       |               | 1.072  | 1.072 | -INF    | +INF |
| theta_Q_P<br>HA  |               | 1.041  | 1.041 | -INF    | +INF |
| theta_Q_P<br>P   |               | 1.041  | 1.041 | -INF    | +INF |
| Vol              | m3            | 350    | 1000  | 0       | +INF |
| Y_AUT            | gCOD/gN       | 0.24   | 0.24  | 0       | 4.57 |
| Y_H              | gCOD/gC<br>OD | 0.67   | 0.625 | 0       | 1    |
| Y_PAO            | -             | 0.67   | 0.625 | 0       | +INF |
| Y_PHA            | -             | 0.2    | 0.2   | 0       | +INF |
| Y_PO             | -             | 0.4    | 0.4   | 0       | +INF |

Multi\_Efluente: Parameters

| Name          | Unit    | Value | Initial<br>Value | Default<br>Value | Lower<br>bound | Upper<br>bound |
|---------------|---------|-------|------------------|------------------|----------------|----------------|
| F_BOD_C<br>OD | -       | 0.65  |                  | 0.65             | 0              | 1              |
| f_X_I         | -       | 0.2   |                  | 0.1              | 0              | 1              |
| i_COD_V       | gCOD/gV | 1.42  |                  | 1.42             | -INF           | +INF           |
| SS       | S       |       |      |   |    |
|----------|---------|-------|------|---|----|
| i_N_BM   | gN/gCOD | 0.086 | 0.07 | 0 | 1  |
| i_N_S_F  | gN/gCOD | 0.03  | 0.03 | 0 | 1  |
| i_N_S_I  | gN/gCOD | 0.01  | 0.01 | 0 | 1  |
| i_N_X_I  | gN/gCOD | 0.06  | 0.03 | 0 | 1  |
| i_N_X_S  | gN/gCOD | 0.03  | 0.04 | 0 | 1  |
| i_P_BM   | gP/gCOD | 0.02  | 0.02 | 0 | 10 |
| i_P_S_F  | gP/gCOD | 0.01  | 0.01 | 0 | 10 |
| i_P_S_I  | gP/gCOD | 0     | 0    | 0 | 10 |
| i_P_X_I  | gP/gCOD | 0.01  | 0.01 | 0 | 10 |
| i_P_X_S  | gP/gCOD | 0.01  | 0.01 | 0 | 10 |
| i_TSS_B  | g/gCOD  | 0.9   | 0.9  | 0 | 1  |
| Μ        |         |       |      |   |    |
| i_TSS_X_ | g/gCOD  | 0.75  | 0.75 | 0 | 1  |
| Ι        |         |       |      |   |    |
| i_TSS_X_ | g/gCOD  | 0.75  | 0.75 | 0 | 1  |
| S        |         |       |      |   |    |

.Multi\_Influente: Parameters

| Name     | Unit    | Value | Initial | Default | Lower | Upper |
|----------|---------|-------|---------|---------|-------|-------|
|          |         |       | Value   | Value   | bound | bound |
| F_BOD_C  | -       | 0.65  |         | 0.65    | 0     | 1     |
| OD       |         |       |         |         |       |       |
| f_X_I    | -       | 0.2   |         | 0.1     | 0     | 1     |
| i_COD_V  | gCOD/gV | 1.42  |         | 1.42    | -INF  | +INF  |
| SS       | S       |       |         |         |       |       |
| i_N_BM   | gN/gCOD | 0.086 |         | 0.07    | 0     | 1     |
| i_N_S_F  | gN/gCOD | 0.03  |         | 0.03    | 0     | 1     |
| i_N_S_I  | gN/gCOD | 0.01  |         | 0.01    | 0     | 1     |
| i_N_X_I  | gN/gCOD | 0.06  |         | 0.03    | 0     | 1     |
| i_N_X_S  | gN/gCOD | 0.03  |         | 0.04    | 0     | 1     |
| i_P_BM   | gP/gCOD | 0.02  |         | 0.02    | 0     | 10    |
| i_P_S_F  | gP/gCOD | 0.01  |         | 0.01    | 0     | 10    |
| i_P_S_I  | gP/gCOD | 0     |         | 0       | 0     | 10    |
| i_P_X_I  | gP/gCOD | 0.01  |         | 0.01    | 0     | 10    |
| i_P_X_S  | gP/gCOD | 0.01  |         | 0.01    | 0     | 10    |
| i_TSS_B  | g/gCOD  | 0.9   |         | 0.9     | 0     | 1     |
| М        |         |       |         |         |       |       |
| i_TSS_X_ | g/gCOD  | 0.75  |         | 0.75    | 0     | 1     |
| Ι        |         |       |         |         |       |       |
| i_TSS_X_ | g/gCOD  | 0.75  |         | 0.75    | 0     | 1     |
| S        |         |       |         |         |       |       |

.SST\_1: Parameters

| Name      | Unit   | Value | Initial<br>Value | Default<br>Value | Lower<br>bound | Upper<br>bound |
|-----------|--------|-------|------------------|------------------|----------------|----------------|
| F_Energy_ | kWh/m3 | 0.04  |                  | 0.04             | -INF           | +INF           |

| -    | 0.005          |                               | 0.005                         | 0                                                                                                         | 1                                                                                                                                       |
|------|----------------|-------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| -    | 0.75           |                               | 0.75                          | 0                                                                                                         | 1                                                                                                                                       |
|      |                |                               |                               |                                                                                                           |                                                                                                                                         |
| m3/d | 510            |                               | 10                            | 0                                                                                                         | +INF                                                                                                                                    |
| -    | -<br>-<br>m3/d | - 0.005<br>- 0.75<br>m3/d 510 | - 0.005<br>- 0.75<br>m3/d 510 | -         0.005         0.005           -         0.75         0.75           m3/d         510         10 | -         0.005         0.005         0           -         0.75         0.75         0           m3/d         510         10         0 |

**Dynamic Simulation** 

# .ASU\_Aero: Parameters

| Name     | Unit     | Value | Initial | Default | Lower | Upper |
|----------|----------|-------|---------|---------|-------|-------|
|          |          |       | Value   | Value   | bound | bound |
| b_AUT    | 1/d      | 0.15  |         | 0.15    | 0     | 20    |
| b_H      | 1/d      | 0.62  |         | 0.4     | 0     | 20    |
| b_PAO    | 1/d      | 0.2   |         | 0.2     | 0     | 20    |
| b_PHA    | 1/d      | 0.2   |         | 0.2     | 0     | 20    |
| b_PP     | 1/d      | 0.2   |         | 0.2     | 0     | 20    |
| F_BOD_C  | -        | 0.65  |         | 0.65    | 0     | 1     |
| OD       |          |       |         |         |       |       |
| f_S_I    | -        | 0     |         | 0       | 0     | 1     |
| f_X_I    | -        | 0.08  |         | 0.1     | 0     | 1     |
| i_N_BM   | g/gCOD   | 0.086 |         | 0.07    | 0     | 1     |
| i_N_S_F  | g/gCOD   | 0.03  |         | 0.03    | 0     | 1     |
| i_N_S_I  | g/gCOD   | 0.01  |         | 0.01    | 0     | 1     |
| i_N_X_I  | g/gCOD   | 0.06  |         | 0.02    | 0     | 1     |
| i_N_X_S  | g/gCOD   | 0.03  |         | 0.04    | 0     | 1     |
| i_P_BM   | g/gCOD   | 0.02  |         | 0.02    | 0     | 1     |
| i_P_S_F  | g/gCOD   | 0.01  |         | 0.01    | 0     | 1     |
| i_P_S_I  | g/gCOD   | 0     |         | 0       | 0     | 1     |
| i_P_X_I  | g/gCOD   | 0.01  |         | 0.01    | 0     | 1     |
| i_P_X_S  | g/gCOD   | 0.01  |         | 0.01    | 0     | 1     |
| i_TSS_B  | g/gCOD   | 0.9   |         | 0.9     | 0     | 1     |
| М        | 00       |       |         |         |       |       |
| i_TSS_X_ | g/gCOD   | 0.75  |         | 0.75    | 0     | 1     |
| Ι        |          |       |         |         |       |       |
| i_TSS_X_ | g/gCOD   | 0.75  |         | 0.75    | 0     | 1     |
| S        |          |       |         |         |       |       |
| K_A      | g/m3     | 4     |         | 4       | 0     | 100   |
| K_ALK    | g/m3     | 0.1   |         | 0.1     | 0     | 100   |
| K_ALK_   | g/m3     | 0.5   |         | 0.5     | 0     | 100   |
| AUT      |          |       |         |         |       |       |
| K_F      | g/m3     | 20    |         | 4       | 0     | 100   |
| K_fe     | g/m3     | 4     |         | 4       | 0     | 100   |
| k_h      | gCOD/(gC | 3     |         | 3       | 0     | 25    |
|          | OD*d)    |       |         |         |       |       |
| K_IPP    | g/m3     | 0.02  |         | 0.02    | 0     | 100   |
| K_MAX    | g/m3     | 0.34  |         | 0.34    | 0     | 100   |
| K_NH     | g/m3     | 0.05  |         | 0.05    | 0     | 100   |

| K_NH_A<br>UT                | g/m3     | 1                    | 1     | 0       | 100  |
|-----------------------------|----------|----------------------|-------|---------|------|
| K_NO                        | g/m3     | 0.5                  | 0.5   | 0       | 100  |
| K_O                         | g/m3     | 0.2                  | 0.2   | 0       | 100  |
| K_O_AU<br>T                 | g/m3     | 0.4                  | 0.5   | 0       | 100  |
| K_P                         | g/m3     | 0.01                 | 0.01  | 0       | 100  |
| K_PHA                       | g/m3     | 0.01                 | 0.01  | 0       | 100  |
| K_PP                        | g/m3     | 0.01                 | 0.01  | 0       | 100  |
| k_PRE                       | 1/d      | 1                    | 1     | 0       | 20   |
| K_PS                        | g/m3     | 0.2                  | 0.2   | 0       | 100  |
| k_RED                       | 1/d      | 0.6                  | 0.6   | 0       | 20   |
| K_X                         | g/m3     | 0.03                 | 0.1   | 0       | 100  |
| Kla                         | 1/d      | 122.26910<br>4630601 | 0     | 0       | 5000 |
| Kla_Min                     | 1/d      | 20                   | 20    | 0       | 5000 |
| ME_unit                     | kWh/m3/d | 0.005                | 0.005 | -INF    | +INF |
| Mixing_W<br>hen_Aerat<br>ed |          | 0                    | 0     | 0       | 1    |
| mu_AUT                      | 1/d      | 0.8                  | 1     | 0       | 100  |
| mu_H                        | 1/d      | 6                    | 6     | 0       | 100  |
| mu_PAO                      | 1/d      | 1                    | 1     | 0       | 100  |
| n_fe                        | -        | 0.4                  | 0.4   | 0       | 1    |
| n_NO_AU<br>T_d              | -        | 1                    | 0.33  | 0       | 1    |
| n_NO_Het                    | -        | 0.8                  | 0.8   | 0       | 1    |
| n_NO_Het<br>_d              | -        | 1                    | 0.5   | 0       | 1    |
| n_NO_Hy<br>d                | -        | 0.4                  | 0.6   | 0       | 1    |
| n_NO_P_<br>d                | -        | 1                    | 0.33  | 0       | 1    |
| n_NO_PA<br>O                | -        | 0.6                  | 0.6   | 0       | 1    |
| OTR_Ener<br>gy              | g/kWh    | 1800                 | 1800  | -INF    | +INF |
| Q_fe                        | 1/d      | 0.0001               | 3     | 0       | 20   |
| Q_PHA                       | 1/d      | 3                    | 3     | 0       | 20   |
| Q_PP                        | 1/d      | 1.5                  | 1.5   | 0       | 20   |
| Temp                        | degC     | 20                   | 15    | -273.15 | +INF |
| Temp_Ref                    | degC     | 20                   | 20    | -273.15 | +INF |
| theta_b_A<br>UT             |          | 1.116                | 1.116 | -INF    | +INF |
| theta_b_H                   |          | 1.072                | 1.072 | -INF    | +INF |
| theta_b_P<br>AO             |          | 1.072                | 1.072 | -INF    | +INF |
| theta_b_P<br>HA             |          | 1.072                | 1.072 | -INF    | +INF |

| theta_b_P<br>P   |               | 1.072 | 1.072 | -INF | +INF |
|------------------|---------------|-------|-------|------|------|
| theta_k_h        |               | 1.041 | 1.041 | -INF | +INF |
| theta_K_X        |               | 0.896 | 0.896 | -INF | +INF |
| theta_mu_<br>AUT |               | 1.111 | 1.111 | -INF | +INF |
| theta_mu_<br>H   |               | 1.072 | 1.072 | -INF | +INF |
| theta_mu_<br>PAO |               | 1.041 | 1.041 | -INF | +INF |
| theta_Q_fe       |               | 1.072 | 1.072 | -INF | +INF |
| theta_Q_P<br>HA  |               | 1.041 | 1.041 | -INF | +INF |
| theta_Q_P<br>P   |               | 1.041 | 1.041 | -INF | +INF |
| Vol              | m3            | 350   | 1000  | 0    | +INF |
| Y_AUT            | gCOD/gN       | 0.24  | 0.24  | 0    | 4.57 |
| Y_H              | gCOD/gC<br>OD | 0.67  | 0.625 | 0    | 1    |
| Y_PAO            | -             | 0.67  | 0.625 | 0    | +INF |
| Y_PHA            | -             | 0.2   | 0.2   | 0    | +INF |
| Y_PO             | -             | 0.4   | 0.4   | 0    | +INF |

Multi\_BioOut: Parameters

| Name     | Unit    | Value | Initial | Default | Lower | Upper |
|----------|---------|-------|---------|---------|-------|-------|
|          |         |       | Value   | Value   | bound | bound |
| F_BOD_C  | -       | 0.65  |         | 0.65    | 0     | 1     |
| OD       |         |       |         |         |       |       |
| f_X_I    | -       | 0.2   |         | 0.1     | 0     | 1     |
| i_COD_V  | gCOD/gV | 1.42  |         | 1.42    | -INF  | +INF  |
| SS       | S       |       |         |         |       |       |
| i_N_BM   | gN/gCOD | 0.086 |         | 0.07    | 0     | 1     |
| i_N_S_F  | gN/gCOD | 0.03  |         | 0.03    | 0     | 1     |
| i_N_S_I  | gN/gCOD | 0.01  |         | 0.01    | 0     | 1     |
| i_N_X_I  | gN/gCOD | 0.06  |         | 0.03    | 0     | 1     |
| i_N_X_S  | gN/gCOD | 0.03  |         | 0.04    | 0     | 1     |
| i_P_BM   | gP/gCOD | 0.02  |         | 0.02    | 0     | 10    |
| i_P_S_F  | gP/gCOD | 0.01  |         | 0.01    | 0     | 10    |
| i_P_S_I  | gP/gCOD | 0     |         | 0       | 0     | 10    |
| i_P_X_I  | gP/gCOD | 0.01  |         | 0.01    | 0     | 10    |
| i_P_X_S  | gP/gCOD | 0.01  |         | 0.01    | 0     | 10    |
| i_TSS_B  | g/gCOD  | 0.9   |         | 0.9     | 0     | 1     |
| М        |         |       |         |         |       |       |
| i_TSS_X_ | g/gCOD  | 0.75  |         | 0.75    | 0     | 1     |
| Ι        |         |       |         |         |       |       |
| i_TSS_X_ | g/gCOD  | 0.75  |         | 0.75    | 0     | 1     |
| S        |         |       |         |         |       |       |

Multi\_Efluente: Parameters

| Name          | Unit         | Value | Initial<br>Value | Default<br>Value | Lower<br>bound | Upper<br>bound |
|---------------|--------------|-------|------------------|------------------|----------------|----------------|
| F_BOD_C       | -            | 0.65  |                  | 0.65             | 0              | 1              |
| f_X_I         | -            | 0.2   |                  | 0.1              | 0              | 1              |
| i_COD_V<br>SS | gCOD/gV<br>S | 1.42  |                  | 1.42             | -INF           | +INF           |
| i_N_BM        | gN/gCOD      | 0.086 |                  | 0.07             | 0              | 1              |
| i_N_S_F       | gN/gCOD      | 0.03  |                  | 0.03             | 0              | 1              |
| i_N_S_I       | gN/gCOD      | 0.01  |                  | 0.01             | 0              | 1              |
| i_N_X_I       | gN/gCOD      | 0.06  |                  | 0.03             | 0              | 1              |
| i_N_X_S       | gN/gCOD      | 0.03  |                  | 0.04             | 0              | 1              |
| i_P_BM        | gP/gCOD      | 0.02  |                  | 0.02             | 0              | 10             |
| i_P_S_F       | gP/gCOD      | 0.01  |                  | 0.01             | 0              | 10             |
| i_P_S_I       | gP/gCOD      | 0     |                  | 0                | 0              | 10             |
| i_P_X_I       | gP/gCOD      | 0.01  |                  | 0.01             | 0              | 10             |
| i_P_X_S       | gP/gCOD      | 0.01  |                  | 0.01             | 0              | 10             |
| i_TSS_B<br>M  | g/gCOD       | 0.9   |                  | 0.9              | 0              | 1              |
| i_TSS_X_<br>I | g/gCOD       | 0.75  |                  | 0.75             | 0              | 1              |
| i_TSS_X_<br>S | g/gCOD       | 0.75  |                  | 0.75             | 0              | 1              |

Multi\_Influente: Parameters

| Name     | Unit    | Value | Initial<br>Value | Default<br>Value | Lower | Upper<br>bound |
|----------|---------|-------|------------------|------------------|-------|----------------|
| F BOD C  | -       | 0.65  | value            | 0.65             | 0     | 1              |
| OD       |         |       |                  |                  |       |                |
| f_X_I    | -       | 0.2   |                  | 0.1              | 0     | 1              |
| i_COD_V  | gCOD/gV | 1.42  |                  | 1.42             | -INF  | +INF           |
| SS       | S       |       |                  |                  |       |                |
| i_N_BM   | gN/gCOD | 0.086 |                  | 0.07             | 0     | 1              |
| i_N_S_F  | gN/gCOD | 0.03  |                  | 0.03             | 0     | 1              |
| i_N_S_I  | gN/gCOD | 0.01  |                  | 0.01             | 0     | 1              |
| i_N_X_I  | gN/gCOD | 0.06  |                  | 0.03             | 0     | 1              |
| i_N_X_S  | gN/gCOD | 0.03  |                  | 0.04             | 0     | 1              |
| i_P_BM   | gP/gCOD | 0.02  |                  | 0.02             | 0     | 10             |
| i_P_S_F  | gP/gCOD | 0.01  |                  | 0.01             | 0     | 10             |
| i_P_S_I  | gP/gCOD | 0     |                  | 0                | 0     | 10             |
| i_P_X_I  | gP/gCOD | 0.01  |                  | 0.01             | 0     | 10             |
| i_P_X_S  | gP/gCOD | 0.01  |                  | 0.01             | 0     | 10             |
| i_TSS_B  | g/gCOD  | 0.9   |                  | 0.9              | 0     | 1              |
| М        |         |       |                  |                  |       |                |
| i_TSS_X_ | g/gCOD  | 0.75  |                  | 0.75             | 0     | 1              |
| Ι        |         |       |                  |                  |       |                |
| i_TSS_X_ | g/gCOD  | 0.75  |                  | 0.75             | 0     | 1              |
| S        |         |       |                  |                  |       |                |

#### .SST\_1: Parameters

| Name      | Unit   | Value | Initial | Default | Lower | Upper |
|-----------|--------|-------|---------|---------|-------|-------|
|           |        |       | Value   | Value   | bound | bound |
| F_Energy_ | kWh/m3 | 0.04  |         | 0.04    | -INF  | +INF  |
| FlowRate  |        |       |         |         |       |       |
| f_ns      | -      | 0.005 |         | 0.005   | 0     | 1     |
| F_TSS_C   | -      | 0.75  |         | 0.75    | 0     | 1     |
| OD        |        |       |         |         |       |       |
| Q_Under   | m3/d   | 510   |         | 10      | 0     | +INF  |

# ANNEXE 6

**Tableau 6.1.** Facteurs de conversion  $i_{c,i}$  à appliquer dans l'équation de conservation de l'ASM2. Les valeurs manquantes sont égales à 0.

| Index c:         | Conservation for   |                | COD    | N                               | Р                               | Charge            | Mass                          |
|------------------|--------------------|----------------|--------|---------------------------------|---------------------------------|-------------------|-------------------------------|
| Factor           | Conservation for   |                | icon;  | in ;                            | i                               | icharge i         | inssi                         |
| index <i>i</i> : | Component          | Units          | g COD  | g N                             | g P                             | mole <sup>+</sup> | g TSS                         |
| 1                | $S_{O_2}$          | $g O_2$        | -1     |                                 |                                 |                   |                               |
| 2                | $S_{ m F}$         | g COD          | 1      | $i_{\mathrm{N},S_{\mathrm{F}}}$ | $i_{\mathrm{P},S_{\mathrm{F}}}$ |                   |                               |
| 3                | $S_{\rm A}$        | g COD          | 1      |                                 |                                 | -1/64             |                               |
| 4                | $S_{ m NH_4}$      | g N            |        | 1                               |                                 | +1/14             |                               |
| 5                | $S_{\rm NO_3}$     | g N            | -64/14 | 1                               |                                 | -1/14             |                               |
| 6                | $S_{\rm PO_4}$     | g P            |        |                                 | 1                               | -1.5/31           |                               |
| 7                | SI                 | g COD          | 1      | $i_{\mathrm{N},S_{\mathrm{I}}}$ | $i_{\mathrm{P},S_{\mathrm{I}}}$ |                   |                               |
| 8                | $S_{ m ALK}$       | mole $HCO_3^-$ |        |                                 |                                 | -1                |                               |
| 9                | $S_{ m N_2}$       | g N            | -24/14 | 1                               |                                 |                   |                               |
| 10               | $X_{\mathrm{I}}$   | g COD          | 1      | $i_{\mathrm{N},X_{\mathrm{I}}}$ | $i_{\mathrm{P},X_{\mathrm{I}}}$ |                   | $i_{\text{TSS},X_{\text{I}}}$ |
| 11               | $X_{ m S}$         | g COD          | 1      | $i_{N,X_S}$                     | $i_{\mathrm{P},X_{\mathrm{S}}}$ |                   | $i_{\text{TSS},X_{\text{S}}}$ |
| 12               | $X_{ m H}$         | g COD          | 1      | $i_{ m N,BM}$                   | $i_{ m P,BM}$                   |                   | $i_{\rm TSS,BM}$              |
| 13               | $X_{\mathrm{PAO}}$ | g COD          | 1      | $i_{ m N,BM}$                   | $i_{ m P,BM}$                   |                   | $i_{\rm TSS,BM}$              |
| 14               | $X_{\rm PP}$       | g P            |        |                                 | 1                               | $-1/31^{a)}$      | 3.23                          |
| 15               | $X_{ m PHA}$       | g COD          | 1      |                                 |                                 |                   | 0.60                          |
| 16               | $X_{ m AUT}$       | g COD          | 1      | $i_{ m N,BM}$                   | $i_{ m P,BM}$                   |                   | $i_{ m TSS,BM}$               |
| 17               | $X_{\rm TSS}$      | g TSS          |        |                                 |                                 |                   | $-1^{b)}$                     |
| 18               | $X_{ m MeOH}$      | g TSS          |        |                                 |                                 |                   | 1                             |
| 19               | $X_{ m MeP}$       | g TSS          |        |                                 | 0.205                           |                   | 1                             |

Tableau 6.2. Stœchiométrie des processus d'hydrolyse.

|   | Process              | $S_{ m F}$                | $S_{ m NH_4}$          | $S_{{ m PO}_4}$        | $S_{\mathrm{I}}$     | $S_{\mathrm{ALK}}$     | $X_{\rm S}$ | $X_{ m TSS}$           |
|---|----------------------|---------------------------|------------------------|------------------------|----------------------|------------------------|-------------|------------------------|
| 1 | Aerobic hydrolysis   | $1 - f_{S_{I}}$           | $ u_{1,\mathrm{NH}_4}$ | $ u_{1,\mathrm{PO}_4}$ | $f_{S_{I}}$          | $v_{1,\mathrm{ALK}}$   | -1          | $\nu_{1,\mathrm{TSS}}$ |
| 2 | Anoxic hydrolysis    | $1 - f_{S_{I}}$           | $ u_{2,{ m NH}_4}$     | $ u_{2,\mathrm{PO}_4}$ | $f_{S_{I}}$          | $ u_{2,\mathrm{ALK}}$  | $^{-1}$     | $\nu_{2,\mathrm{TSS}}$ |
| 3 | Anaerobic hydrolysis | $1 - f_{S_{\mathrm{II}}}$ | $ u_{3,{ m NH}_4}$     | $ u_{3,\mathrm{PO}_4}$ | $f_{S_{\mathrm{I}}}$ | $\nu_{3,\mathrm{ALK}}$ | -1          | $\nu_{3,\mathrm{TSS}}$ |

Tableau 6.3. Stœchiométrie des organismes hétérotrophes facultatifs X<sub>H</sub>

|   | Process                                                                         | $S_{\mathrm{O}_2}$             | $S_{\rm F}$                 | $S_{ m A}$                  | ${S}_{{ m NO}_3}$                           | $S_{ m N_2}$                                 | $X_{\mathrm{I}}$     | $X_{\rm S}$              | $X_{\rm H}$ |
|---|---------------------------------------------------------------------------------|--------------------------------|-----------------------------|-----------------------------|---------------------------------------------|----------------------------------------------|----------------------|--------------------------|-------------|
| 4 | Aerobic growth on $S_{\rm F}$                                                   | $1 - \frac{1}{Y_{\mathrm{H}}}$ | $-\frac{1}{Y_{\mathrm{H}}}$ |                             |                                             |                                              |                      |                          | 1           |
| 5 | $\begin{array}{c} \text{Aerobic growth} \\ \text{on } S_{\text{A}} \end{array}$ | $1 - \frac{1}{Y_{\mathrm{H}}}$ |                             | $-\frac{1}{Y_{\mathrm{H}}}$ |                                             |                                              |                      |                          | 1           |
| 6 | Anoxic growth on $S_{\rm A}$                                                    |                                | $-\frac{1}{Y_{\mathrm{H}}}$ |                             | $-\frac{1-Y_{\rm H}}{2.86\cdot Y_{\rm H}}$  | $\frac{1 - Y_{\rm H}}{2.86 \cdot Y_{\rm H}}$ |                      |                          | 1           |
| 7 | Anoxic growth<br>on $S_A$ ,<br>Denitrification                                  |                                |                             | $-rac{1}{Y_{ m H}}$        | $-\frac{1-Y_{\rm H}}{2.86 \cdot Y_{\rm H}}$ | $-\frac{1-Y_{\rm H}}{2.86 \cdot Y_{\rm H}}$  |                      |                          | 1           |
| 8 | Fermentation                                                                    |                                | -1                          | 1                           |                                             |                                              |                      |                          |             |
| 9 | Lysis                                                                           |                                |                             |                             |                                             |                                              | $f_{X_{\mathrm{I}}}$ | $1 - f_{X_{\mathrm{I}}}$ | -1          |

Tableau 6.4. Stœchiométrie des organismes accumulant du phosphore (PAO) pour l'ASM2d.

|    | Process                              | $S_{\mathrm{O}_2}$      | $S_{\mathrm{A}}$ | $S_{ m N_2}$              | $S_{\rm NO_3}$           | $S_{\rm PO_4}$         | $X_{\mathrm{I}}$     | $X_{\rm S}$             | $X_{\rm PAO}$ | $X_{\rm PP}$ | $X_{ m PHA}$   |
|----|--------------------------------------|-------------------------|------------------|---------------------------|--------------------------|------------------------|----------------------|-------------------------|---------------|--------------|----------------|
| 10 | Storage of $X_{\text{PHA}}$          |                         | -1               |                           |                          | $Y_{\rm PO_4}$         |                      |                         |               | $-Y_{PO_4}$  | 1              |
| 11 | Aerobic storage of $X_{\rm PP}$      | $-Y_{\rm PHA}$          |                  |                           |                          | -1                     |                      |                         |               | 1            | $-Y_{\rm PHA}$ |
| 12 | Anoxic storage of $X_{\rm PP}$       |                         |                  | $-\nu_{12,\mathrm{NO}_3}$ | $\nu_{12,\mathrm{NO}_3}$ | -1                     |                      |                         |               | 1            | $-Y_{\rm PHA}$ |
| 13 | Aerobic growth of $X_{\text{PAO}}$   | $\nu_{13,\mathrm{O}_2}$ |                  |                           |                          | $-i_{\rm PBM}$         |                      |                         | 1             |              | $-1/Y_{\rm H}$ |
| 14 | Anoxic growth<br>of X <sub>PAO</sub> |                         |                  | $-\nu_{14,\mathrm{NO}_3}$ | $v_{14,\mathrm{NO}_3}$   | $-i_{ m PBM}$          |                      |                         | 1             |              | $-1/Y_{\rm H}$ |
| 15 | Lysis of $X_{\text{PAO}}$            |                         |                  |                           |                          | $v_{15,\mathrm{PO}_4}$ | $f_{X_{\mathrm{I}}}$ | $1-f_{X_{\mathrm{II}}}$ | -1            |              |                |
| 16 | Lysis of $X_{\rm PP}$                |                         |                  |                           |                          | 1                      |                      |                         |               | $^{-1}$      |                |
| 17 | Lysis of $X_{\text{PHA}}$            |                         | 1                |                           |                          |                        |                      |                         |               |              | $^{-1}$        |

**Tableau 6.5.** Stechiométrie des processus de croissance et de dégradation des organismes nitrifiants X<sub>AUT</sub>.

|    | Process                     | $S_{O_2}$                             | $S_{ m NH_4}$           | $S_{\rm NO_3}$  | $S_{\rm PO_4}$           | $X_{\mathrm{I}}$     | $X_{\rm S}$              | $X_{\rm AUT}$ |
|----|-----------------------------|---------------------------------------|-------------------------|-----------------|--------------------------|----------------------|--------------------------|---------------|
| 18 | Aerobic growth of $X_{AUT}$ | $-\frac{4.57 - Y_{\rm A}}{Y_{\rm A}}$ | $ u_{18,{ m NH}_4}$     | $\frac{1}{Y_a}$ | $-i_{ m P,BM}$           |                      |                          | 1             |
| 19 | Lysis                       |                                       | $ u_{19,\mathrm{NH}_4}$ | a               | $\nu_{19,\mathrm{PO}_4}$ | $f_{X_{\mathrm{I}}}$ | $1 - f_{X_{\mathrm{I}}}$ | -1            |

Tableau 6.6. Stœchiométrie des processus décrivant la précipitation simultanée du phosphore.

|          | Process                        | $S_{{ m PO}_4}$ | $S_{\rm ALK}$                      | $X_{\rm MeOH}$  | $X_{\mathrm{MeP}}$ | $X_{\rm TSS}$   |  |
|----------|--------------------------------|-----------------|------------------------------------|-----------------|--------------------|-----------------|--|
| 20<br>21 | Precipitation<br>Redissolution | -1<br>1         | ${ u_{20,~ m ALK}} u_{21,~ m ALK}$ | $-3.45 \\ 3.45$ | $4.87 \\ -4.87$    | $1.42 \\ -1.42$ |  |

Tableau 6.7. Équations des taux de processus pour l'ASM2d.

| j        | Process                   | Process rate equation $\rho_j$ , $\rho_j \ge 0$ [M <sub>I</sub> L <sup>-3</sup> T <sup>-1</sup> ]                                                                                                                                                                                                                                                                         |
|----------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hy       | drolysis processes:       |                                                                                                                                                                                                                                                                                                                                                                           |
| 1        | Aerobic                   | $K_{\rm H} = \frac{S_{\rm O_2}}{1} = \frac{X_{\rm S}/X_{\rm H}}{X_{\rm S}} + X_{\rm H}$                                                                                                                                                                                                                                                                                   |
|          | hydrolysis                | $K_{\rm h} = \frac{K_{\rm O_2} + S_{\rm O_2}}{K_{\rm X} + X_{\rm S}/X_{\rm H}}$                                                                                                                                                                                                                                                                                           |
| 2        | Anoxic                    | $K_{\rm O_2}$ $K_{\rm O_2}$ $S_{\rm NO_3}$ $X_{\rm S}/X_{\rm H}$ $X_{\rm S}$                                                                                                                                                                                                                                                                                              |
|          | hydrolysis                | $K_{\rm h} = \eta_{\rm NO_3} + \frac{1}{K_{\rm O_2} + S_{\rm O_2}} + \frac{1}{K_{\rm NO_3} + S_{\rm NO_3}} + \frac{1}{K_{\rm X} + X_{\rm S}/X_{\rm H}} + \frac{1}{K_{\rm H}}$                                                                                                                                                                                             |
| 3        | Anaerobic                 | $K_{\rm NO_2}$ $K_{\rm NO_3}$ $X_{\rm S}/X_{\rm H}$ $K$                                                                                                                                                                                                                                                                                                                   |
|          | hydrolysis                | $K_{\rm h} \cdot \eta_{\rm fe} \cdot \frac{1}{K_{\rm O_2} + S_{\rm O_2}} \cdot \frac{1}{K_{\rm NO_3} + S_{\rm NO_3}} \cdot \frac{1}{K_{\rm X} + X_{\rm S}/X_{\rm H}} \cdot X_{\rm H}$                                                                                                                                                                                     |
| Het      | terotrophic organis       | ms: X <sub>H</sub>                                                                                                                                                                                                                                                                                                                                                        |
| <b>4</b> | Growth on                 | Son Se Se Snith Spor Salk                                                                                                                                                                                                                                                                                                                                                 |
|          | fermentable               | $\mu_{\rm H} \cdot \frac{1}{K_{\rm O} + S_{\rm O}} \cdot \frac{S_{\rm F}}{K_{\rm F} + S_{\rm F}} \cdot \frac{S_{\rm F}}{S_{\rm F} + S_{\rm A}} \cdot \frac{1}{K_{\rm NH} + S_{\rm NH}} \cdot \frac{1}{K_{\rm F} + S_{\rm PO}} \cdot \frac{1}{K_{\rm ALK}} \cdot \frac{S_{\rm ALK}}{K_{\rm ALK} + S_{\rm ALK}} \cdot X_{\rm H}$                                            |
|          | substrates, $S_{\rm F}$   | $\mathbf{x}_{0_2}$ , $\mathbf{b}_{0_2}$ , $\mathbf{x}_{\mathbf{F}}$ , $\mathbf{b}_{\mathbf{F}}$ , $\mathbf{b}_{\mathbf{F}}$ , $\mathbf{b}_{\mathbf{A}}$ , $\mathbf{x}_{\mathrm{NH}_4}$ , $\mathbf{b}_{\mathrm{NH}_4}$ , $\mathbf{x}_{\mathbf{F}}$ , $\mathbf{b}_{\mathrm{FO}_4}$ , $\mathbf{x}_{\mathrm{ALK}}$ , $\mathbf{b}_{\mathrm{ALK}}$                              |
| 5        | Growth on                 | $S_{O_2}$ $S_A$ $S_A$ $S_{NH_4}$ $S_{PO_4}$ $S_{ALK}$                                                                                                                                                                                                                                                                                                                     |
|          | fermentation              | $\mu_{\rm H} \cdot \frac{1}{K_{\rm O_2} + S_{\rm O_2}} \cdot \frac{1}{K_{\rm A} + S_{\rm A}} \cdot \frac{1}{S_{\rm F} + S_{\rm A}} \cdot \frac{1}{K_{\rm NH_4} + S_{\rm NH_4}} \cdot \frac{1}{K_{\rm P} + S_{\rm PO_4}} \cdot \frac{1}{K_{\rm ALK} + S_{\rm ALK}} \cdot X_{\rm H}$                                                                                        |
| _        | products, $S_A$           |                                                                                                                                                                                                                                                                                                                                                                           |
| 6        | Denitrification           | $K_{\mathrm{O}_2}$ $K_{\mathrm{NO}_3}$ $S_\mathrm{F}$ $S_\mathrm{F}$ $S_{\mathrm{NH}_4}$ $S_{\mathrm{PO}_4}$ $S_{\mathrm{ALK}}$                                                                                                                                                                                                                                           |
|          | with fermentable          | $\mu_{\rm H} \cdot \eta_{\rm NO_3} \cdot \frac{1}{K_{\rm O_2} + S_{\rm O_2}} \cdot \frac{1}{K_{\rm NO_3} + S_{\rm NO_3}} \cdot \frac{1}{K_{\rm F} + S_{\rm F}} \cdot \frac{1}{S_{\rm F} + S_{\rm A}} \cdot \frac{1}{K_{\rm NH_4} + S_{\rm NH_4}} \cdot \frac{1}{K_{\rm P} + S_{\rm PO_4}} \cdot \frac{1}{K_{\rm ALK} + S_{\rm ALK}} \cdot X_{\rm H}$                      |
| -        | Desitates, 5 <sub>F</sub> |                                                                                                                                                                                                                                                                                                                                                                           |
| 1        | Denitrification           | $K_{O_2}$ $K_{NO_3}$ $S_A$ $S_A$ $S_{NH_4}$ $S_{PO_4}$ $S_{ALK}$ $Y_{ALK}$                                                                                                                                                                                                                                                                                                |
|          | products. $S_{\Lambda}$   | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                     |
| _        | F                         | $K_{\rm O_2}$ $K_{\rm NO_2}$ $S_{\rm F}$ $S_{\rm ALK}$                                                                                                                                                                                                                                                                                                                    |
| 8        | Fermentation              | $q_{\rm fe} \cdot \frac{1}{K_{\Omega_0} + S_{\Omega_0}} \cdot \frac{1}{K_{\rm N\Omega_0} + S_{\rm N\Omega_0}} \cdot \frac{1}{K_{\rm F} + S_{\rm F}} \cdot \frac{1}{K_{\rm ALK} + S_{\rm ALK}} \cdot X_{\rm H}$                                                                                                                                                            |
|          |                           |                                                                                                                                                                                                                                                                                                                                                                           |
| 9        | I veis                    | $b_{1} \cdot X_{2}$                                                                                                                                                                                                                                                                                                                                                       |
| Ph       | omborus-accumula          | $v_{\rm H} \propto A_{\rm H}$                                                                                                                                                                                                                                                                                                                                             |
| 10       | Storage of                | $S_A = S_{ALK} = X_{PP}/X_{PAO}$                                                                                                                                                                                                                                                                                                                                          |
| 10       | X <sub>PHA</sub>          | $q_{\text{PHA}} \cdot \frac{1}{K_A + S_A} \cdot \frac{1}{K_{A1K} + S_{A1K}} \cdot \frac{1}{K_{PP} + X_{PP}/X_{PAO}} \cdot X_{PAO}$                                                                                                                                                                                                                                        |
| 11       | Aerobic                   |                                                                                                                                                                                                                                                                                                                                                                           |
|          | storage                   | $q_{PP} \cdot \frac{S_{O_2}}{W} \cdot \frac{S_{PO_4}}{W} \cdot \frac{S_{ALK}}{W} \cdot \frac{S_{ALK}}{W} \cdot \frac{X_{PHA}/X_{PAO}}{W} \cdot \frac{K_{MAX} - X_{PP}/X_{PAO}}{W} \cdot X_{PAO}$                                                                                                                                                                          |
|          | of $X_{\rm PP}$           | $K_{O_2} + S_{O_2}$ $K_{PS} + S_{PO_4}$ $K_{ALK} + S_{ALK}$ $K_{PHA} + X_{PHA}/X_{PAO}$ $K_{PP} + K_{MAX} - X_{PP}/X_{PAO}$                                                                                                                                                                                                                                               |
| 12       | Anoxic                    | Ke Suc                                                                                                                                                                                                                                                                                                                                                                    |
|          | storage                   | $\rho_{12} = \rho_{11} \cdot \eta_{NO_3} \cdot \frac{\kappa_{O_2}}{S_2} \cdot \frac{S_{NO_3}}{K_{NO_3} + S_{NO_3}}$                                                                                                                                                                                                                                                       |
|          | of $X_{\rm PP}$           | $S_{O_2}$ $K_{NO_3} + S_{NO_3}$                                                                                                                                                                                                                                                                                                                                           |
| 13       | Aerobic                   | $S_{\Omega_2}$ $S_{NH}$ $S_{P\Omega_2}$ $S_{ALK}$ $X_{PHA}/X_{PA\Omega_2}$                                                                                                                                                                                                                                                                                                |
|          | growth                    | $\mu_{\text{PAO}} \cdot \frac{\sigma_2}{K_{\text{O}} + S_{\text{O}}} \cdot \frac{M_{\text{H}_4}}{K_{\text{NH}_4} + S_{\text{NH}_4}} \cdot \frac{104}{K_{\text{P}} + S_{\text{PO}}} \cdot \frac{\sigma_{\text{ALK}}}{K_{\text{ALK}} + S_{\text{ALK}}} \cdot \frac{M_{\text{H}_4} + M_{\text{H}_4}}{K_{\text{PH}_4} + X_{\text{PH}_4}/X_{\text{PAO}}} \cdot X_{\text{PAO}}$ |
|          | on $X_{\rm PHA}$          |                                                                                                                                                                                                                                                                                                                                                                           |
| 14       | Anoxic                    | $K_{ m O_2}$ $S_{ m NO_3}$                                                                                                                                                                                                                                                                                                                                                |
|          | growth                    | $\rho_{14} = \rho_{13} \cdot \eta_{\mathrm{NO}_3} \cdot \frac{1}{S_{\mathrm{O}_3}} \cdot \frac{1}{K_{\mathrm{NO}_3} + S_{\mathrm{NO}_3}}$                                                                                                                                                                                                                                 |
| 15       | Luris of V                | h = Y = S = /(K + S)                                                                                                                                                                                                                                                                                                                                                      |
| 16       | Lysis of X <sub>PAO</sub> | $b_{\text{PAO}} \cdot X_{\text{PAO}} \cdot S_{\text{ALK}} / (K_{\text{ALK}} + S_{\text{ALK}})$                                                                                                                                                                                                                                                                            |
| 17       | Lysis of Xpu              | $b_{\text{PP}} \cdot A_{\text{PP}} \cdot S_{\text{ALK}} / (K_{\text{ALK}} + S_{\text{ALK}})$                                                                                                                                                                                                                                                                              |
| Na       | trifuing organisms (      | autotrophic organisms); Y                                                                                                                                                                                                                                                                                                                                                 |
| 18       | Aprobio                   | autorophic organisms). A <sub>AUI</sub>                                                                                                                                                                                                                                                                                                                                   |
| 10       | growth                    | $\mu_{\text{ALT}}$ : $\frac{S_{\text{O}_2}}{S_{\text{NH}_4}}$ : $\frac{S_{\text{PO}_4}}{S_{\text{ALK}}}$ : $\frac{S_{\text{ALK}}}{S_{\text{ALK}}}$ : $X_{\text{ALT}}$                                                                                                                                                                                                     |
|          | of $X_{\rm AUT}$          | $K_{O_2} + S_{O_2} + S_{O_2} + S_{NH_4} + S_{NH_4} + S_{PO_4} + S_{PO_4} + S_{ALK} + S_{ALK}$                                                                                                                                                                                                                                                                             |
| 19       | Lysis of $X_{AUT}$        | $b_{ m AUT} \cdot X_{ m AUT}$                                                                                                                                                                                                                                                                                                                                             |
| Sir      | nultaneous precipite      | ation of phosphorus with ferric hydroxide $Fe(OH)_3$                                                                                                                                                                                                                                                                                                                      |
| 20       | Precipitation             | $k_{\rm PRE} \cdot S_{\rm PO_4} \cdot X_{\rm MeOH}$                                                                                                                                                                                                                                                                                                                       |
|          | -                         |                                                                                                                                                                                                                                                                                                                                                                           |

## ANNEXE 7

| Table  | 7.1   | :  | Brève    | définition | des | composants | du | modèle e | composition | typique | des | eaux |
|--------|-------|----|----------|------------|-----|------------|----|----------|-------------|---------|-----|------|
| résidu | aires | (e | effluent | primaire)  |     |            |    |          |             |         |     |      |

|                    | $COD_{tot}$ = 260 g COD m <sup>-3</sup> , TKN = 25 g N m | $^{-3}$ , TP = 6 g P | m <sup>-3</sup>                                         |  |  |  |  |  |
|--------------------|----------------------------------------------------------|----------------------|---------------------------------------------------------|--|--|--|--|--|
| Dissolved c        | components:                                              |                      |                                                         |  |  |  |  |  |
| $S_{\mathrm{O}_2}$ | Dissolved oxygen                                         | 0                    | ${ m g~O_2~m^{-3}}$                                     |  |  |  |  |  |
| $S_{\rm F}$        | Readily biodegradable substrate                          | 30                   | g COD m <sup>-3</sup>                                   |  |  |  |  |  |
| SA                 | Fermentation products (acetate)                          | 20                   | g COD m <sup>-3</sup>                                   |  |  |  |  |  |
| $S_{\rm NH_4}$     | Ammonium                                                 | 16                   | g N m <sup>-3</sup>                                     |  |  |  |  |  |
| $S_{NO_3}$         | Nitrate (plus nitrite)                                   | 0                    | $ m g~N~m^{-3}$                                         |  |  |  |  |  |
| $S_{\rm PO_4}$     | Phosphate                                                | 3.6                  | $ m g~P~m^{-3}$                                         |  |  |  |  |  |
| $S_{I}$            | Inert, bon-biodegradable organics                        | 30                   | g COD m <sup>-3</sup>                                   |  |  |  |  |  |
| $S_{ALK}$          | Bicarbonate alkalinity                                   | 5                    | mole $HCO_3 m^{-3}$                                     |  |  |  |  |  |
| Particulate        | Particulate components:                                  |                      |                                                         |  |  |  |  |  |
| $X_{\rm I}$        | Inert, non-biodegradable organics                        | 25                   | g COD m <sup>-3</sup>                                   |  |  |  |  |  |
| $X_{\rm S}$        | Slowly biodegradable substrate                           | 125                  | g COD m <sup>-3</sup>                                   |  |  |  |  |  |
| $X_{ m H}$         | Heterotrophic biomass                                    | 30                   | g COD m <sup>-3</sup>                                   |  |  |  |  |  |
| $X_{\mathrm{PAO}}$ | Phosphorus-accumulating organisms, PAO                   | 0                    | g COD m <sup>-3</sup>                                   |  |  |  |  |  |
| $X_{ m PP}$        | Stored poly-phosphate of PAO                             | 0                    | $\stackrel{\circ}{\mathrm{g}}\mathrm{P}\mathrm{m}^{-3}$ |  |  |  |  |  |
| $X_{\rm PHA}$      | Organic storage products of PAO                          | 0                    | g COD m <sup>-3</sup>                                   |  |  |  |  |  |
| $X_{ m AUT}$       | Autotrophic, nitrifying biomass                          | 0                    | g COD m <sup>-3</sup>                                   |  |  |  |  |  |
| $X_{\rm MeOH}$     | 'Ferric-hydroxide', Fe(OH) <sub>3</sub>                  | 0                    | $ m g~Fe(OH)_3~m^{-3}$                                  |  |  |  |  |  |
| $X_{\mathrm{MeP}}$ | 'Ferric-phosphate', FePO4                                | 0                    | $ m g~FePO_4~m^{-3}$                                    |  |  |  |  |  |
| X <sub>TSS</sub>   | $Particulate\ material\ as\ model\ component^{a)}$       | 180 <sup>a)</sup>    | g TSS m <sup>-3</sup>                                   |  |  |  |  |  |

Table 7.2: Paramètres du modèle qui sont relativement constants d'un cas à l'autre

| Parameter                   | Name                                                                            | Typical<br>value, 20 °C | Unit                                               |
|-----------------------------|---------------------------------------------------------------------------------|-------------------------|----------------------------------------------------|
| Y <sub>H</sub>              | Heterotrophic yield on $S_{\rm F}$ and $S_{\rm A}$                              | 0.63                    | $g \operatorname{COD} (g \operatorname{COD})^{-1}$ |
| $Y_{AUT}$                   | Autotrophic yield on nitrate produced                                           | 0.24                    | $g \operatorname{COD} (g N)^{-1}$                  |
| $\mu_{ m H}$                | Heterotrophic growth rate on substrates $S_{\rm F}$ and $S_{\rm A}$             | 6                       | $d^{-1}$                                           |
| $K_{O_2}$                   | Heterotrophic saturation coefficient for oxygen                                 | 0.2                     | $\mathrm{g}\mathrm{O}_2\mathrm{m}^{-3}$            |
| $K_{\rm F}$ and $K_{\rm A}$ | Heterotrophic saturation coefficient for substrates $S_{\rm F}$ and $S_{\rm F}$ | $S_A = 4$               | g COD m <sup>-3</sup>                              |
| $K_{\rm NO_3}$              | Heterotrophic saturation coefficient for nitrate-nitrogen                       | 0.5                     | g N m <sup>-3</sup>                                |
| $K_{O_2}$                   | Autotrophic saturation coefficient for oxygen                                   | 0.5                     | $\mathrm{g}\mathrm{O}_2\mathrm{m}^{-3}$            |
| $K_{ m NH4}$                | Autotrophic saturation coefficient for ammonium-nitrogen                        | 1.0                     | g N m <sup>-3</sup>                                |

|                                  | Typical conversion factors for conservation                             | equation |                                                          |
|----------------------------------|-------------------------------------------------------------------------|----------|----------------------------------------------------------|
| Nitrogen:                        |                                                                         |          |                                                          |
| Soluble m                        | aterial:                                                                |          |                                                          |
| $i_{\mathrm{N},S_{\mathrm{I}}}$  | N content of inert soluble COD $S_{\rm I}$                              | 0.01     | $g N (g COD)^{-1}$                                       |
| $i_{\mathrm{N},S_\mathrm{F}}$    | N content of fermentable substrates $S_{\rm F}$                         | 0.03     | g N (g COD)-1                                            |
| Particulat                       | e material:                                                             |          |                                                          |
| $i_{\mathrm{N},X_{\mathrm{I}}}$  | N content of inert particulate COD $X_{\rm I}$                          | 0.02     | $g N (g COD)^{-1}$                                       |
| $i_{\mathrm{N},X_{\mathrm{S}}}$  | N content of slowly biodegradable substrate $X_{\rm S}$                 | 0.04     | g N (g COD)-1                                            |
| $i_{ m N,BM}$                    | N content of biomass, $X_{\rm H}$ , $X_{\rm PAO}$ , $X_{\rm AUT}$       | 0.07     | $g N (g COD)^{-1}$                                       |
| Phosphorus:                      |                                                                         |          |                                                          |
| Soluble m                        | aterial:                                                                |          |                                                          |
| $i_{\mathrm{P},S_{\mathrm{II}}}$ | P content of inert soluble COD $S_{I}$                                  | 0.00     | g P (g COD)-1                                            |
| $i_{\mathrm{P},S_{\mathrm{F}}}$  | P content of fermentable substrates $S_{\rm F}$                         | 0.01     | $g P (g COD)^{-1}$                                       |
| Particulat                       | e material:                                                             |          |                                                          |
| $i_{\mathrm{P},X_{\mathrm{I}}}$  | P content of inert particulate COD X <sub>I</sub>                       | 0.01     | $g P (g COD)^{-1}$                                       |
| $i_{\mathrm{P},X_\mathrm{F}}$    | P content of slowly biodegradable substrate $X_{\rm S}$                 | 0.01     | g P (g COD)-1                                            |
| $i_{ m P,BM}$                    | P content of biomass, $X_{\rm H}$ , $X_{\rm PAO}$ , $X_{\rm AUT}$       | 0.02     | $\widetilde{g} P (\widetilde{g} COD)^{-1}$               |
| Total suspen                     | ded solids: TSS                                                         |          |                                                          |
| $i_{\text{TSS},X_1}$             | TSS to COD ratio for $X_{\rm I}$                                        | 0.75     | g TSS (g COD)-1                                          |
| $i_{\text{TSS},X_{\text{S}}}$    | TSS to COD ratio for $X_{\rm S}$                                        | 0.75     | g TSS (g COD)-1                                          |
| $i_{ m TSS,BM}$                  | TSS to COD ratio for biomass, $X_{\rm H}$ , $X_{\rm PAO}$ , $X_{\rm A}$ | 0.90     | $\widetilde{g}$ TSS ( $\widetilde{g}$ COD) <sup>-1</sup> |

Tableau 7.3. Définition et valeurs typiques des coefficients stœchiométriques de l'ASM2.

# Typical stoichiometric parameters

| Production of $S_1$ in hydrolysis                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $g \text{ COD } (g \text{ COD})^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| e biomass: X <sub>H</sub>                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Yield coefficient                                       | 0.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $g \text{ COD } (g \text{ COD})^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Fraction of inert COD generated in biomass lysis        | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g COD (g COD)-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Phosphorus-accumulating organisms: XPAO                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Yield coefficient (biomass/PHA)                         | 0.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $g \text{ COD } (g \text{ COD})^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| PP requirement (PO <sub>4</sub> release) per PHA stored | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g P (g COD)-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| PHA requirement for PP storage                          | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g COD (g P)-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| Fraction of inert COD generated in biomass lysis        | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $g \text{ COD } (g \text{ COD})^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Nitrifying organisms: X <sub>AUT</sub>                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Yield of autotrophic biomass per NO3-N                  | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $g \operatorname{COD} (g \operatorname{N})^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| Fraction of inert COD generated in biomass lysis        | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $g \text{ COD } (g \text{ COD})^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                         | Production of $S_{I}$ in hydrolysis<br><i>c biomass:</i> $X_{H}$<br>Yield coefficient<br>Fraction of inert COD generated in biomass lysis<br><i>ccumulating organisms:</i> $X_{PAO}$<br>Yield coefficient (biomass/PHA)<br>PP requirement (PO <sub>4</sub> release) per PHA stored<br>PHA requirement for PP storage<br>Fraction of inert COD generated in biomass lysis<br><i>ganisms:</i> $X_{AUT}$<br>Yield of autotrophic biomass per NO <sub>3</sub> <sup>-</sup> -N<br>Fraction of inert COD generated in biomass lysis | Production of $S_1$ in hydrolysis0c biomass: $X_H$ 0.625Yield coefficient0.625Fraction of inert COD generated in biomass lysis0.10ccumulating organisms: $X_{PAO}$ 0.625Yield coefficient (biomass/PHA)0.625PP requirement (PO4 release) per PHA stored0.40PHA requirement for PP storage0.20Fraction of inert COD generated in biomass lysis0.10canisms: $X_{AUT}$ 0.24Yield of autotrophic biomass per NO <sub>3</sub> -N0.24Fraction of inert COD generated in biomass lysis0.10 |  |  |  |  |  |

| Temperature:                                                                                                  | 20 °C | 10 °C | Units                                                            |
|---------------------------------------------------------------------------------------------------------------|-------|-------|------------------------------------------------------------------|
| <i>Hydrolysis of particulate substrate:</i> X <sub>S</sub>                                                    |       |       |                                                                  |
| $K_{\rm h}$ = Hydrolysis rate constant                                                                        | 3.00  | 2.00  | $d^{-1}$                                                         |
| $\eta_{\rm NO_3}$ = Anoxic hydrolysis reduction factor                                                        | 0.60  | 0.60  | -                                                                |
| $\eta_{\rm fe}$ = Anaerobic hydrolysis reduction factor                                                       | 0.40  | 0.40  | _                                                                |
| $K_{O_2}$ = Saturation/inhibition coefficient for oxygen                                                      | 0.20  | 0.20  | $\mathrm{g}\mathrm{O}_2\mathrm{m}^{-3}$                          |
| $K_{\rm NO_3}$ = Saturation/inhibition coefficient for nitrate                                                | 0.50  | 0.50  | $g N m^{-3}$                                                     |
| $K_{\rm X}$ = Saturation coefficient for particulate COD                                                      | 0.10  | 0.10  | $\mathrm{g}X_\mathrm{S}(\mathrm{g}X_\mathrm{H})^{-1}$            |
| Heterotrophic organisms: $X_{\rm H}$                                                                          |       |       |                                                                  |
| $\mu_{\rm H}$ = Maximum growth rate on substrate                                                              | 6.00  | 3.00  | $g X_{S} (g X_{H})^{-1} d^{-1}$                                  |
| $q_{\rm fe}$ = Maximum rate for fermentation                                                                  | 3.00  | 1.50  | ${ m g} \; S_{ m F} \; ({ m g} \; X_{ m H})^{-1} \; { m d}^{-1}$ |
| $\eta_{\rm NO_3}$ = Reduction factor for denitrification                                                      | 0.80  | 0.80  | -                                                                |
| $b_{\rm H}$ = Rate constant for lysis and decay                                                               | 0.40  | 0.20  | d-1                                                              |
| $K_{O_2}$ = Saturation/inhibition coefficient for oxygen                                                      | 0.20  | 0.20  | $g O_2 m^{-3}$                                                   |
| $K_{\rm F}$ = Saturation coefficient for growth on $S_{\rm F}$                                                | 4.00  | 4.00  | g COD m <sup>-3</sup>                                            |
| $K_{\rm fe}$ = Saturation coefficient for termentation of $S_{\rm F}$                                         | 4.00  | 4.00  | g COD m <sup>-3</sup>                                            |
| $K_{\rm A}$ = Saturation coefficient for growth on acetate $S_{\rm A}$                                        | 4.00  | 4.00  | g COD m <sup>-3</sup>                                            |
| $K_{\rm NO_3}$ = Saturation/inhibition coefficient for nitrate                                                | 0.50  | 0.50  | $g N m^{-3}$                                                     |
| $K_{\rm NH_4}$ = Saturation coefficient for ammonium (nutrient)                                               | 0.05  | 0.05  | $g N m^{-3}$                                                     |
| $K_{\rm P}$ = Saturation coefficient for phosphate (nutrient)                                                 | 0.01  | 0.01  | g P m <sup>-5</sup>                                              |
| $K_{ALK}$ = Saturation coefficient for alkalinity (HCO <sub>3</sub> )                                         | 0.10  | 0.10  | mole $HCO_3 \text{ m}^{-3}$                                      |
| Phosphorus-accumulating organisms: $X_{PAO}$                                                                  | 2.00  | 2 00  | $\alpha V (\alpha V) = 1 d - 1$                                  |
| $q_{\text{PHA}}$ = Nate constant for storage of $\Lambda_{\text{PHA}}$ (base $\Lambda_{\text{PP}}$ )          | 3.00  | 2.00  | $g \Lambda_{PHA} (g \Lambda_{PAO})^{-1} d^{-1}$                  |
| $q_{PP}$ = Mate constant for storage of $A_{PP}$                                                              | 1.00  | 1.00  | d-1                                                              |
| $\mu_{\text{PAO}}$ = Maximum growth rate of TAO<br>$n_{\text{NO}}$ = Beduction factor for anoxic activity     | 0.60  | 0.60  | u<br>_                                                           |
| $\eta_{\rm NO_3}$ = Reduction factor for anomic activity<br>$h_{\rm NO_3}$ = Bate for lysis of $Y_{\rm NO_3}$ | 0.00  | 0.00  | d-1                                                              |
| $b_{PAO} = Rate for hysis of X_{PAO}$                                                                         | 0.20  | 0.10  | d-1                                                              |
| $b_{\rm PPP} = \text{Rate for lysis of } X_{\rm PP}$                                                          | 0.20  | 0.10  | d-1                                                              |
| $V_{\text{PHA}}$ = Nate for hysis of $X_{\text{PHA}}$                                                         | 0.20  | 0.10  | $\sigma \Omega_{2} m^{-3}$                                       |
| $K_{O_2}$ = Saturation coefficient for pitrate S                                                              | 0.20  | 0.20  | $g O_2 m^{-3}$                                                   |
| $K_{NO_3}$ = Saturation coefficient for instate, $S_{NO_3}$                                                   | 0.50  | 0.50  | $g N m^{2}$                                                      |
| $K_{\rm A}$ = Saturation coefficient for acetate, $S_{\rm A}$                                                 | 4.00  | 4.00  | g COD m <sup>-s</sup>                                            |
| $K_{\rm NH_4}$ = Saturation coefficient for ammonium (nutrient)                                               | 0.05  | 0.05  | g N m <sup>-0</sup>                                              |
| $K_{PS}$ = Saturation coefficient for phosphorus in storage of PP                                             | 0.20  | 0.20  | g P m <sup>-3</sup>                                              |
| $K_{\rm P}$ = Saturation coefficient for phosphate (nutrient)                                                 | 0.01  | 0.01  | g P m <sup>-3</sup>                                              |
| $K_{ALK}$ = Saturation coefficient for alkalinity (HCO <sub>3</sub> )                                         | 0.10  | 0.10  | mole HCO <sub>3</sub> m <sup>-3</sup>                            |
| $K_{\rm PP}$ = Saturation coefficient for poly-phosphate                                                      | 0.01  | 0.01  | $\mathrm{g}X_{\mathrm{PP}}(\mathrm{g}X_{\mathrm{PAO}})^{-1}$     |
| $K_{\text{MAX}}$ = Maximum ratio of $X_{\text{PP}}/X_{\text{PAO}}$                                            | 0.34  | 0.34  | $\mathrm{g}X_{\mathrm{PP}}(\mathrm{g}X_{\mathrm{PAO}})^{-1}$     |
| $K_{\text{IPP}}$ = Inhibition coefficient for PP storage                                                      | 0.02  | 0.02  | $g X_{PP} (g X_{PAO})^{-1}$                                      |
| $K_{\text{PHA}}$ = Saturation coefficient for PHA                                                             | 0.01  | 0.01  | ${ m g}  X_{ m PHA}  ({ m g}  X_{ m PAO})^{-1}$                  |
| Nitrifying organisms (autotrophic organisms): $X_{AUT}$                                                       |       |       |                                                                  |
| $\mu_{AUT}$ = Maximum growth rate of $X_{AUT}$                                                                | 1.00  | 0.35  | $d^{-1}$                                                         |
| $b_{\text{AUT}}$ = Decay rate of $X_{\text{AUT}}$                                                             | 0.15  | 0.05  | $d^{-1}$                                                         |
| $K_{\Omega_{0}}$ = Saturation coefficient for oxygen                                                          | 0.50  | 0.50  | $g O_2 m^{-3}$                                                   |
| $K_{\rm NH.}$ = Saturation coefficient for ammonium (substrate)                                               | 1.00  | 1.00  | g N m <sup>-3</sup>                                              |
| $K_{\rm resc} = \text{Saturation coefficient for alkalinity (HCO_)}$                                          | 0.50  | 0.50  | mole $HCO_{-}m^{-3}$                                             |
| $K_{ALK}$ = Saturation coefficient for alkalinity ( $1100_3$ )                                                | 0.01  | 0.01  | $r P m^{-3}$                                                     |
| R <sub>P</sub> = Saturation coefficient for phosphorus (nutrient)                                             | 0.01  | 0.01  | gim                                                              |
| rrecipitation:                                                                                                | 1.00  | 1.00  | $-3/2 E_{2}(OII) = 1 + 1$                                        |
| $\kappa_{\rm PRE}$ = Nate constant for P precipitation                                                        | 1.00  | 1.00  | $m^{5} (g r e(OH)_{3})^{-1} d^{-1}$                              |
| $\kappa_{\rm RED}$ = Kate constant for redissolution                                                          | 0.60  | 0.60  |                                                                  |
| $K_{ALK}$ = Saturation coefficient for alkalinity                                                             | 0.50  | 0.50  | mole HCO <sub>3</sub> m <sup>-3</sup>                            |

# Tableau 7.4 Définition et valeurs typiques des paramètres cinétiques de l'ASM2d.

**Tableau 7.5.** Exemple d'une matrice stœchiométrique pour l'ASM2d, pour les composants solubles et particulaires ainsi que pour les processus de précipitation.

|          |                                      | Stoichio                    | ometric r   | natrix fo   | r soluble   | e compone       | ents              |                    |              |                |
|----------|--------------------------------------|-----------------------------|-------------|-------------|-------------|-----------------|-------------------|--------------------|--------------|----------------|
| Pro      | cess component<br>expressed as →     | $S_{O_2}$<br>O <sub>2</sub> | $S_{\rm F}$ | $S_{\rm A}$ | $S_{\rm I}$ | $S_{ m NH_4}$ N | $S_{ m N_2}$<br>N | $S_{ m NO_3}$<br>N | $S_{PO_4}$ P | $S_{ALK}$ mole |
| 1        | Aerobic hydrolysis                   | 02                          | 1.00        | 002         | 002         | 0.01            |                   |                    |              | 0.001          |
| 2        | Anoxic hydrolysis                    |                             | 1.00        |             |             | 0.01            |                   |                    |              | 0.001          |
| 3        | Anaerobic hydrolysis                 |                             | 1.00        |             |             | 0.01            |                   |                    |              | 0.001          |
| Het      | erotrophic organisms: X <sub>H</sub> |                             |             |             |             |                 |                   |                    |              |                |
| 4        | Growth on $S_{\rm F}$                | -0.60                       | -1.60       |             |             | -0.022          |                   |                    | -0.004       | -0.001         |
| <b>5</b> | Growth on $S_A$                      | -0.60                       |             | -1.60       |             | -0.07           |                   |                    | -0.02        | 0.021          |
| 6        | Denitrification with $S_{\rm F}$     |                             | -1.60       |             |             | -0.022          | 0.21              | -0.21              | -0.004       | 0.014          |
| 7        | Denitrification with $S_{\Lambda}$   |                             |             | -1.60       |             | -0.07           | 0.21              | -0.21              | -0.02        | 0.036          |
| 8        | Fermentation of $S_{\rm F}$          |                             | -1          | 1           |             | 0.03            |                   |                    | 0.01         | -0.014         |
| 9        | Lysis                                |                             |             |             |             | 0.031           |                   |                    | 0.01         | 0.002          |
| Pho      | sphorus-accumulating org             | zanisms (                   | PAO): X     | PAO         |             |                 |                   |                    |              |                |
| 10       | Storage of PHA                       | , ,                         |             | -1          |             |                 |                   |                    | 0.40         | 0.009          |
| 11       | Aerobic storage of PP                | -0.20                       |             |             |             |                 |                   |                    | -1           | 0.016          |
| 12       | Anoxic storage of PP                 |                             |             |             |             |                 | 0.07              | -0.07              | -1           | 0.021          |
| 13       | Aerobic growth                       | -0.60                       |             |             |             | -0.07           |                   |                    | -0.02        | -0.004         |
| 14       | Anoxic growth                        |                             |             |             |             | -0.07           | 0.21              | -0.21              | -0.02        | 0.011          |
| 15       | Lysis of PAO                         |                             |             |             |             | 0.031           |                   |                    | 0.01         | 0.002          |
| 16       | Lysis of PP                          |                             |             |             |             |                 |                   |                    | 1            | -0.016         |
| 17       | Lysis of PHA                         |                             |             | 1           |             |                 |                   |                    |              | -0.016         |
| Niti     | rifying organisms (autotro           | phic org                    | anisms):    | $X_{AUT}$   |             |                 |                   |                    |              |                |
| 18       | Aerobic growth                       | ່ -18.0ັ                    | ,           |             |             | -4.24           |                   | 4.17               | -0.02        | -0.60          |
| 19       | Lysis                                |                             |             |             |             | 0.031           |                   |                    | 0.01         | 0.002          |
| Sim      | ultaneous precipitation of           | phospho                     | orus with   | i ferric h  | ydroxide    | $e(Fe(OH_3))$   | )):               |                    |              |                |
| 20       | Precipitation                        | , ,                         |             |             | 5           |                 |                   |                    | $^{-1}$      | 0.048          |
| 21       | Redissolution                        |                             |             |             |             |                 |                   |                    | 1            | -0.048         |
|          |                                      |                             |             |             |             |                 |                   |                    |              |                |

|          | Stoichiometric matrix for particulate components               |             |             |                  |               |              |               |             |                  |                |               |
|----------|----------------------------------------------------------------|-------------|-------------|------------------|---------------|--------------|---------------|-------------|------------------|----------------|---------------|
| Pro      | cess component                                                 | $X_{\rm I}$ | $X_{\rm S}$ | $X_{\mathrm{H}}$ | $X_{\rm PAO}$ | $X_{\rm PP}$ | $X_{\rm PHA}$ | $X_{\rm A}$ | X <sub>TSS</sub> | $X_{\rm MeOH}$ | $X_{\rm MeP}$ |
|          | expressed as $\rightarrow$                                     | COD         | COD         | COD              | COD           | Р            | COD           | COD         | TSS              | TSS            | TSS           |
| 1        | Aerobic hydrolysis                                             |             | -1          |                  |               |              |               |             | -0.75            |                |               |
| 2        | Anoxic hydrolysis                                              |             | -1          |                  |               |              |               |             | -0.75            |                |               |
| 3        | Anaerobic hydrolysis                                           |             | -1          |                  |               |              |               |             | -0.75            |                |               |
| Het      | erotrophic organisms: $X_H$                                    |             |             |                  |               |              |               |             |                  |                |               |
| <b>4</b> | Growth on $S_{\rm S}$                                          |             |             | 1                |               |              |               |             | 0.90             |                |               |
| <b>5</b> | Growth on $S_A$                                                |             |             | 1                |               |              |               |             | 0.90             |                |               |
| 6        | Denitrification with $S_{\rm S}$                               |             |             | 1                |               |              |               |             | 0.90             |                |               |
| 7        | Denitrification with $S_A$                                     |             |             | 1                |               |              |               |             | 0.90             |                |               |
| 8        | Fermentation                                                   |             |             |                  |               |              |               |             |                  |                |               |
| 9        | Lysis                                                          | 0.10        | 0.9         | -1               |               |              |               |             | -0.15            |                |               |
| Pho      | sphorus-accumulating or                                        | ganisms     | (PAO):      | $X_{\rm PAO}$    |               |              |               |             |                  |                |               |
| 10       | Storage of PHA                                                 |             |             |                  |               | -0.40        | 1             |             | -0.69            |                |               |
| 11       | Aerobic storage of PP                                          |             |             |                  |               | 1            | -0.20         |             | 3.11             |                |               |
| 12       | Anoxic storage of PP                                           |             |             |                  |               | 1            | -0.20         |             | 3.11             |                |               |
| 13       | Aerobic growth                                                 |             |             |                  | 1             |              | -1.60         |             | -0.06            |                |               |
| 14       | Anoxic growth                                                  |             |             |                  | 1             |              | -1.60         |             | -0.06            |                |               |
| 15       | Lysis of PAO                                                   | 0.10        | 0.90        |                  | -1            |              |               |             | -0.15            |                |               |
| 16       | Lysis of PP                                                    |             |             |                  |               | $^{-1}$      |               |             | -3.23            |                |               |
| 17       | Lysis of PHA                                                   |             |             |                  |               |              | -1            |             | -0.60            |                |               |
| Niti     | Nitrifying organisms (autotrophic organisms): X <sub>AUT</sub> |             |             |                  |               |              |               |             |                  |                |               |
| 18       | Aerobic growth                                                 |             |             |                  |               |              |               | 1           | 0.90             |                |               |
| 19       | Lysis                                                          | 0.10        | 0.90        |                  |               |              |               | -1          | -0.15            |                |               |
| Sim      | ultaneous precipitation of                                     | f phospl    | horus w     | ith ferri        | c hydro:      | cide (Fe     | $(OH_3)):$    |             |                  |                |               |
| 20       | Precipitation                                                  | . ,         |             | v                | U             |              |               |             | 1.42             | -3.45          | 4.87          |
| 21       | Redissolution                                                  |             |             |                  |               |              |               |             | -1.42            | 3.45           | -4.87         |

212

#### **ANNEXE 8. Définition des Ratios**

#### Ratio DCO/DBO

Le ratio DCO/DBO est un indicateur clé utilisé pour évaluer la nature de la matière organique présente dans les eaux résiduaires et pour déterminer la facilité ou la difficulté avec laquelle cette matière peut être biodégradée par des micro-organismes. Il est utilisé pour évaluer l'efficacité des traitements des eaux résiduaires : Un ratio élevé après traitement peut indiquer que des substances organiques réfractaires persistent, ce qui pourrait nécessiter un traitement supplémentaire. Pour Caractériser les eaux résiduaires, il aide à identifier si les eaux résiduaires proviennent d'une source domestique, industrielle ou mixte, et à déterminer les stratégies de traitement appropriées. Les ingénieurs utilisent ce ratio pour concevoir des processus de traitement adaptés, comme les systèmes de traitement biologique ou chimique.

#### Ratio VFA/COD

Le ratio AGV/DCO indique la proportion de la matière organique facilement dégradable (AGV) par rapport à la matière organique totale (DCO) dans l'échantillon. Un ratio élevé de AGV/DCO peut indiquer que la matière organique dans l'échantillon est majoritairement composée de composés facilement biodégradables. Cela peut être utile pour évaluer le potentiel de dégradation biologique dans des processus tels que la digestion anaérobie. Dans le contexte du traitement des eaux résiduaires, ce ratio est souvent utilisé pour contrôler et optimiser les processus biologiques, notamment dans les systèmes de digestion anaérobie ou pour évaluer la performance des stations d'épuration.

#### Ratio COD/TOC

La relation entre le COD et le TOC peut varier en fonction de la nature des substances organiques présentes dans l'eau. Le rapport COD/TOC est souvent utilisé pour estimer la biodégradabilité des substances organiques dans l'eau. Un rapport élevé peut indiquer une présence plus importante de substances organiques difficilement biodégradables, tandis qu'un rapport plus faible pourrait indiquer une matière organique plus facilement dégradable.

#### **Ratio DCO/TN**

Le ratio DCO/TN (Demande Chimique en Oxygène / Azote Total) est un indicateur utilisé dans le traitement des eaux résiduaires pour évaluer la proportion de matière organique par rapport à la quantité d'azote total présente dans un échantillon. Ratio Élevé Indique une forte proportion de matière organique par rapport à l'azote. Cela signifie que les eaux résiduaires contiennent plus de composés organiques par rapport à l'azote total. Un ratio élevé peut rendre le traitement biologique de l'azote plus efficace, car les bactéries dénitrifiantes utilisent la matière organique comme source de carbone. **Ratio Bas i**ndique une faible proportion de matière organique par rapport à l'azote. Cela peut poser des défis pour le traitement biologique, car il pourrait manquer de carbone organique nécessaire pour la dénitrification, ce qui pourrait limiter l'efficacité de la réduction de l'azote.

#### **Ratio DCO/TP**

Le ratio DCO/TP (Demande Chimique en Oxygène / Total Phosphore) est un indicateur clé utilisé dans la gestion et le traitement des eaux résiduaires. Il permet d'évaluer la relation entre la charge organique et la charge en phosphore, ce qui est essentiel pour optimiser les processus de traitement biologique et assurer une élimination efficace des nutriments. Un Ratio Élevé Indique une charge organique élevée par rapport à la charge en phosphore. Signifie que le système dispose de suffisamment de carbone pour les micro-organismes afin d'assimiler le phosphore, ce qui est favorable pour les processus de suppression biologique du phosphore. Un Ratio Faible pose des problèmes dans les processus biologiques, car les micro-organismes peuvent manquer de carbone pour une assimilation efficace du phosphore. Le ratio DCO/TN est donc un indicateur clé pour ajuster les processus de traitement des eaux résiduaires, en particulier dans les systèmes visant à la réduction de l'azote, comme la nitrificationdénitrification. Un bon équilibre entre la matière organique et l'azote est essentiel pour optimiser ces processus.

#### **Ration DBO/TN**

Le ratio DBO/TN (Demande Biochimique en Oxygène / Azote Total) est un indicateur utilisé pour évaluer la proportion de matière organique biodégradable par rapport à la quantité d'azote total dans les eaux résiduaires. Un **Ratio Élevé** indique une proportion importante de matière organique biodégradable par rapport à l'azote total. Cela signifie que les eaux résiduaires contiennent beaucoup de matière organique que les micro-organismes peuvent facilement décomposer. Ce ratio élevé est favorable pour les processus biologiques, tels que la nitrification et la dénitrification, car les micro-organismes utilisent la matière organique comme source de carbone pour réduire l'azote. Un ratio faible signifie que la proportion de matière organique biodégradable est faible par rapport à l'azote total. Cela peut poser des défis pour les traitements

biologiques des eaux résiduaires, en particulier pour la dénitrification, car une source de carbone insuffisante peut limiter l'efficacité de la réduction de l'azote.

#### **Ratio DBO/TP**

Le ratio DBO/TP est un indicateur utilisé dans le traitement des eaux résiduaires pour évaluer la proportion de matière organique biodégradable (DBO) par rapport à la quantité totale de phosphore (TP) dans les eaux résiduaires. Il est crucial pour la gestion du traitement biologique des eaux résiduaires, en particulier dans les systèmes où la réduction du phosphore est un objectif clé. Un bon équilibre entre la matière organique biodégradable et le phosphore est nécessaire pour garantir une bonne efficacité de l'élimination du phosphore. Un ratio Élevé indique que les eaux résiduaires contiennent une grande quantité de matière organique biodégradable par rapport à la quantité de phosphore. Un ratio faible signifie qu'il y a moins de matière organique biodégradable disponible par rapport à la quantité de phosphore dans les eaux résiduaires. Cela peut poser des problèmes pour les processus biologiques, notamment pour la consommation efficace de phosphore par les micro-organismes. Dans certains cas, un faible ratio peut conduire à des difficultés dans le contrôle du phosphore dans les systèmes biologiques.

#### **Ratio MVS/MES**

Le ratio MVS/MES est un indicateur clé dans le domaine du traitement des eaux résiduaires, particulièrement dans les stations d'épuration à boues activées. Ce ratio permet de déterminer la proportion de matières volatiles en suspension (MVS) par rapport aux matières en suspension totales (MES). Un ratio MVS/MES élevé (**proche de 1**) indique que la majeure partie des matières en suspension est organique, ce qui est typique dans les boues activées bien entretenues où la biomasse microbienne est majoritairement active. Un ratio faible suggère une proportion plus élevée de matières inorganiques ou une réduction de la biomasse active. Cela peut être le signe d'un déséquilibre dans le processus biologique, comme une surcharge en matières non biodégradables ou une accumulation de matières inorganiques.

## Ratio DCO/COT

Le ratio **DCO/COT** est un indicateur utilisé dans le traitement des eaux résiduaires pour évaluer la qualité de l'eau et la charge organique des effluents. Il donne une indication sur la nature de la matière organique présente dans l'eau. Dans les eaux résiduaires domestiques ou municipales, le ratio DCO/COT se situe généralement entre 2 et 3. Cela signifie que pour chaque unité de

carbone organique, il faut environ 2 à 3 unités d'oxygène pour l'oxyder. Un ratio DCO/COT plus élevé peut indiquer la présence de composés organiques plus récalcitrants ou difficilement biodégradables, nécessitant une plus grande quantité d'oxygène pour leur oxydation chimique. Cela peut aussi refléter une pollution plus complexe ou industrielle. Un ratio DCO/COT plus faible peut indiquer la présence de composés organiques plus facilement biodégradables ou une eau contenant principalement des substances plus simples à oxyder. En comprenant ce ratio, les opérateurs peuvent ajuster les processus de traitement pour améliorer l'efficacité de l'oxydation de la matière organique et réduire la charge polluante.

#### **Ratio DCO/MVS**

D'un autre côté, la détermination de la DCO des boues activées n'est pas une mesure courante dans les données de routine des STEP en raison des problèmes liés à la préparation des échantillons et à la procédure. Il existe quelques règles empiriques pour lier la DCO et les mesures de routine pour la matière organique dans les STEP, notamment pour le ratio DCO/MVS. La valeur la plus courante est de 1,42 pour le ratio DCO/MVS pour les boues activées résiduelles (WAS) dans une STEP. Cette valeur est basée sur des calculs théoriques avec une formule chimique pour la biomasse (Hoover & Porges (1952)) et est utilisée dans de nombreuses publications et manuels dans le domaine de l'épuration.

# ANNEXE 9. Caractéristiques des ouvrages de la STEP de Saida

# 1. Prétraitement

| Ouvrage           | Description                      | Les caractéristiques             |
|-------------------|----------------------------------|----------------------------------|
|                   | Un déversoir d'orage installé à  | Longueur 20 m                    |
|                   | l'amont de la STEP déverse le    | Largeur 20 m                     |
| Déversoir d'orage | surplus de débit admissible      | Hauteur 2.5 m                    |
|                   | dans le by-pass général de la    | Volume total 1000 m <sub>3</sub> |
|                   | STEP vers l'Oued.                |                                  |
|                   | Un piège à sable est un bassin   |                                  |
|                   | spécial pour le traitement       |                                  |
|                   | mécanique des eaux               |                                  |
| piège à sable     | résiduaires. Il sert à la        |                                  |
|                   | séparation de particules plus    |                                  |
|                   | grosses dans le domaine de       |                                  |
|                   | prétraitement                    |                                  |
|                   |                                  | Grille grossière manuelle        |
|                   |                                  | Nombre de grille 01              |
|                   | Il consiste à faire passer les   | Largeur de la grille 1500 mm     |
|                   | eaux résiduaires a travers des   | Longueur de la grille 6000 mm    |
| Dégrillage        | grilles dont les barreaux plus   | Grille fine automatique          |
|                   | ou moins espacés, retiennent     | Nombre de grille 02              |
|                   | les éléments les plus grossiers. | Largeur de la grille 1000 mm     |
|                   |                                  | Nombre de barreaux 33            |
|                   |                                  | Séparation entre barreaux 20 mm  |

|                     | Les opérations dessablage et                     | Nombre des unités  | 02                   |
|---------------------|--------------------------------------------------|--------------------|----------------------|
|                     | déshuilage sont combinées Largeur du déssableur  |                    | 03 m                 |
|                     | dans le même ouvrage, elles Largeur du déshuileu |                    | 01 m                 |
| dessablage-         | consistent à séparer de                          | Longueur totale    | 18 m                 |
| déshuilage          | l'effluent brut les sables et les                | Hauteur totale     | 5 m                  |
|                     | graviers par décantation, et                     | Hauteur de l'eau   | 4 m                  |
|                     | elles permettent aussi                           | Volume utile total | 242.9 m <sub>3</sub> |
|                     | d'éliminer les huiles et les                     |                    |                      |
|                     | graisses par flottation.                         |                    |                      |
|                     | Une station de relevage, de 4                    |                    |                      |
|                     | pompes immergées de marque                       |                    |                      |
|                     | ABS et de 42kg de poids                          |                    |                      |
| station de relevage | chacune, est utilisée pour                       |                    |                      |
|                     | amener l'eau qui a subit le                      |                    |                      |
|                     | traitement physique au bassin                    |                    |                      |
|                     | d'aération pour le traitement                    |                    |                      |
|                     | biologique.                                      |                    |                      |

# 2. Ouvrages biologiques

| Ouvrage           | Description                     | ]        | Les caractéristiques |
|-------------------|---------------------------------|----------|----------------------|
|                   | Dans ce type de traitement, les | Unité    | 02                   |
| Bassin d'aération | bactéries provoquent une        | Forme    | rectangulaire        |
|                   | oxydation directe des matières  | Longueur | 66 m                 |
|                   | organiques des eaux résiduaires | Largeur  | 44 m                 |

|                  | à partir de l'oxygène dissous       | Profondeur totale     | 5 m                   |
|------------------|-------------------------------------|-----------------------|-----------------------|
|                  | dans l'eau.                         | Hauteur béton         | 5.60 m                |
|                  |                                     | Hauteur eau           | 4.5 m                 |
|                  |                                     | Volume utile unitaire | 13.068m <sub>3</sub>  |
|                  |                                     | Volume utile total    | 26.136 m <sub>3</sub> |
|                  | c'est un bassin cylindro-conique    | Nombre                | 02                    |
| Décanteur        | où s'effectue la séparation         | Diamètre              | 43 m                  |
| secondaire ou    | boues-liquide par décantation       | Surface unitaire      | 1.452 m <sub>2</sub>  |
| clarificateur    | sous l'effet de gravité.            | Volume unitaire       | 3.50 m                |
|                  |                                     | Hauteur d'eau         | 5.0827 m <sub>3</sub> |
|                  | C'est le processus                  | Longueur              | 30 m                  |
|                  | complémentaire des eaux             | Largeur               | 12 m                  |
| bassin de        | traitées, particulièrement dans le  | Hauteur totale        | 4 m                   |
| chloration       | cas ou l'on veut utiliser cette eau | Hauteur utile         | 3.5 m                 |
| (stérilisation)  | pour l'irrigation. La stérilisation | Volume                | 1.260 m <sub>3</sub>  |
|                  | est effectuée par le chlore         |                       |                       |
|                  | gazeux.                             |                       |                       |
|                  | L'épaississement c'est la           | Nombre                | 01                    |
|                  | première étape de traitement des    | Diamètre              | 16 m                  |
| Epaississeur des | boues qui sert à la réduction de    | Hauteur               | 4 m                   |
| boues            | leur volume pour qu'elle soit       | Surface               | 201.1 m               |
|                  | ensuite pompée vers les lits de     | Volume                | 804.25 m <sub>3</sub> |
|                  | séchage.                            |                       |                       |
|                  |                                     | Nombre total des lits | 20                    |

| Lits de séchage | Les boues épaissies sont ensuite | Longueur                            | 30                 |
|-----------------|----------------------------------|-------------------------------------|--------------------|
|                 | retirées de l'épaississeur et    | Largeur                             | 15                 |
|                 | acheminées vers les lits de      | La surface totale à mettre en œuvre | 9000m <sub>2</sub> |
|                 | séchage                          | La production annuelle des boues    | 83.865m3/an        |

# 3. Appareil de mesure d'oxygène (sondes d'oxygène)

| Nombre                    | 4 unités                     |
|---------------------------|------------------------------|
| Marque                    | E+H                          |
| Modèle-type               | LIQUISYS COM-253             |
| Echelle                   | 0-20 ppm                     |
| Alimentation-fréquence    | 220V / 50Hz                  |
| Sortie                    | 0-20 A                       |
| Indicateur                | Numérique                    |
| Sonde de mesure           |                              |
| Modèle                    | COS-41                       |
| Longueur câble/protection | 7m / IP-68                   |
| Système de mesure         | Potentiomètre à 2 électrodes |

# 4. Caractéristiques des turbines aération

| 12 unités                         |
|-----------------------------------|
| SPAANS BABCOCK                    |
|                                   |
| 02 MAX230 (deux vitesses)         |
| 2200                              |
| 2300mm                            |
| 115,3 / 48,9 kg O <sub>2</sub> /h |
| 54,5 / 23Kw                       |
|                                   |

| Immersion nominale          | 9,8 cm                          |
|-----------------------------|---------------------------------|
| Moteur                      | I                               |
| Fabricant                   | WEG                             |
| Référence                   | 2800S/M4/6                      |
| Туре                        | Tri-phase,asynchrone            |
| Voltage-fréquence           | 400/600-50 Hz                   |
| Méthode de démarrage        | Etoile/triangle (haute vitesse) |
|                             | Triangle (baise vitesse)        |
| Puissance installée         | 80/54 kW                        |
| Réducteur                   |                                 |
| Fabricant                   | FLENDER                         |
| Туре                        | H3SV7                           |
| Puissance                   | 109 kW DIN                      |
| Durée de vie des roulements | 50.000 h ISO B10                |

Caractéristiques des pompes de recirculation

Une fois la liqueur mélangée est dans le décanteur, les boues sont descendu à la partie inferieur de celui, une quantité va être recirculé vers le bassin d'aération. Dans le cas de la STEP de SAIDA, la recirculation est assurée pat trois pompes de **750 m<sup>3</sup>/h**.

Pompes centrifuges submersibles recirculation des boues (3Ut)

| Marque               | ABS      |
|----------------------|----------|
|                      |          |
| Modèle-type          | AFP3071  |
|                      |          |
| Débit nominale       | 750 m3/h |
|                      |          |
| Hauteur manométrique | 4,64 m   |
|                      |          |
| Puissance absorbée   | 15 kW    |
|                      |          |
| Diamètre sortie      | 300 mm   |
|                      |          |

| Voltage/fréquence  | 400V-50 Hz |
|--------------------|------------|
| Puissange          | 16,91 kW   |
| Vitesse moteur     | 725 rpm    |
| Intensité nominale | 32,30 A    |

#### Caractéristiques des pompes de purge

Au fond des décanteurs on élimine les boues en excès, et on les évacuer vers l'épaississeur pour réduire la fraction liquide. Dans la STEP de SAIDA, le purge est assuré par deux pompes. Pompes centrifuges submersibles purge des boues (2Ut)

| Marque               | ABS                      |
|----------------------|--------------------------|
| Modèle-type          | AFP1041.3. M 22/4-D01-10 |
| Débit nominale       | 100 m <sup>3</sup> /h    |
| Hauteur manométrique | 4 m.c.a                  |
| Puissance absorbée   | 2,22 kW                  |
| Diamètre sortie      | 100 mm                   |
| Voltage / fréquence  | 400V-50 Hz               |
| Puissance            | 2,88 kW                  |
| Vitesse moteur       | 1450 rpm                 |
| Intensité nominale   | 4,9 A                    |

## ANNEXE 10

#### 1.Température (Thermomètre - Checktemp Dip - HI98539)

• **Principe** : La température est mesurée à l'aide d'un thermomètre numérique. Le Checktemp Dip utilise un capteur de température (généralement un thermistor) qui change de résistance en fonction de la température ambiante. Ce changement de résistance est converti en une lecture de température, affichée sur l'écran du thermomètre.

#### 2. pH (pH-mètre - HACH HQ 1110, IP67)

• **Principe** : Le pH-mètre mesure l'activité des ions hydrogène (H<sup>+</sup>) dans une solution, exprimée en termes de pH. L'instrument utilise une électrode combinée, composée d'une électrode de verre (sensible aux ions H<sup>+</sup>) et d'une électrode de référence. Lorsque l'électrode est immergée dans une solution, elle génère une tension proportionnelle à la concentration des ions hydrogène, que le pH-mètre convertit en une valeur de pH.

#### 3. Conductivité électrique (Conductimètre - HACH HQ 1110)

• **Principe** : La conductivité électrique mesure la capacité d'une solution à conduire un courant électrique, liée à la concentration des ions dissous dans la solution. Le conductimètre applique un courant entre deux électrodes immergées dans la solution et mesure la résistance électrique. Cette résistance est inversement proportionnelle à la conductivité, que l'appareil calcule et affiche.

#### 4. Solides en suspension (Filtration et séchage à $105^{\circ}C$ )

Principe : Les solides en suspension sont mesurés en filtrant un échantillon d'eau à travers un filtre de taille connue (généralement 0,45 μm). Les solides retenus sur le filtre sont ensuite séchés à 105°C pendant 2 heures pour éliminer toute humidité. Le poids des solides secs retenus est déterminé par pesée avant et après séchage, permettant de calculer la concentration de solides en suspension.

#### 5. Demande biochimique en oxygène sur 5 jours (DBO5) - (BOD-mètre OXITOP112)

• **Principe** : La DBO5 mesure la quantité d'oxygène dissous consommée par les microorganismes pour dégrader la matière organique présente dans un échantillon d'eau sur une période de 5 jours. L'échantillon est placé dans un flacon hermétiquement fermé, et l'appareil OXITOP112 mesure la diminution de la pression d'oxygène, convertissant cette diminution en une valeur de DBO5.

#### 6. Demande chimique en oxygène (DCO) - (Station de minéralisation Hach DRB 200)

• **Principe** : La DCO est une mesure de la quantité d'oxygène nécessaire pour oxyder toute la matière organique présente dans l'eau, à l'aide d'un agent oxydant fort

(généralement du dichromate de potassium). L'échantillon est chauffé dans un tube de digestion avec un réactif spécifique dans la station de minéralisation (Hach DRB 200), puis la quantité d'oxygène consommée est mesurée, ce qui donne la valeur de la DCO.

# 7. Nitrate, ammonium, nitrite et phosphore (Digestion BUCHI Speed Digester K-436 et distillation BUCHI K-350)

- Principe :
  - Digestion : L'échantillon est d'abord digéré à l'aide du BUCHI Speed Digester K-436 pour convertir les formes organiques des nutriments (comme l'azote ou le phosphore) en formes inorganiques.
  - **Distillation** : Après digestion, l'échantillon est soumis à une distillation à l'aide du BUCHI K-350 pour séparer les composés volatils ou pour libérer les ions cibles (comme l'ammonium) dans une forme mesurable.
  - **Lecture au spectrophotomètre** : Après la digestion et la distillation, les concentrations de nitrate, ammonium, nitrite et phosphore sont déterminées par spectrophotométrie, qui mesure l'absorbance d'une solution à une longueur d'onde spécifique correspondant à chaque ion.

#### 8. Protocole expérimental des analyses physico-chimiques

Les analyses physico-chimiques des effluents (pH, température T°, matière en suspension MES, demande chimique en oxygène DCO, demande biochimique en oxygène DBO<sub>5</sub>) ont été effectuées selon les méthodes suivantes :

#### 8.1Prélèvement d'eau

Le prélèvement s'effectue pour l'eau d'entrée, de sortie, ainsi que des bassins d'aération et. Il

existe deux façons de prélèvement :

## 8.2Prélèvements automatiques :

Toutes les 15mn un volume d'eau de 100 ml est prélevé par le préleveur automatique durant 24h, on remplit dans un flacon d'un litre un échantillon moyen. Les Prélèvements s'effectuent à l'entrée de la station (E), c'est une eau brute qui n'a subie aucun traitement, et à la sortie (S) avant d'être reversé dans l'oued de SAIDA.

#### 8.3Prélèvement manuel :

Le point d'échantillonnage est l'un des facteurs les plus importants, il doit être choisi judicieusement. Le choix de points d'échantillonnage représentatifs doit s'appuyer sur une déduction logique tenant compte les objectifs et les substances à analyser. Généralement, il se situe à un endroit de l'effluent ou il y a suffisamment de turbulences pour assurer

l'homogénéité, et dans les canaux ouverts, il se situe au centre du canal et à une profondeur permettant la prise d'échantillons même en condition de débit minimum. Les différents prélèvements pris pendant toute la journée (environ 4 heures entre chacun) sont mélangés pour l'analyse afin d'avoir une valeur moyenne.

#### Le protocole expérimentale

#### -Le potentiel Hydrogène (pH)

Ce paramètre a été mesuré au moyen d'un pH mètre :

- 1) l'étalonnage de l'appareil sur les trois points de calibration : 4,01 ; 7,0 ; 9,21 ;
- 2) Le lavage de l'électrode à l'eau distillée ;
- 3) Le démarrage de la mesure en appuyant sur le bouton analyse échantillon ;
- 4) La lecture se fait une fois les chiffres se stabilisent ;
- 5) L'électrode a été lavée à l'eau distillée et remet dans la solution électrolyte de KCL.

#### -La température

La mesure de la température s'effectue à l'aide d'un thermomètre (plage de mesure (0-30°C) plongé à l'intérieur d'un bécher de 100 ml. La lecture est faite après stabilisation du thermomètre en degré Celsius (°C).

#### -Les Matières en suspension

#### a) Equipements utilisés :

-Pompe à vide ;

- -Unité de filtration ;
- -Filtres de microfibres de verre ;
- -Balance de précision électronique ;

-Pince.

#### b) Protocole expérimental

- 1) Peser le filtre vide P<sub>0</sub> dans la balance électronique ;
- 2) Placer le filtre sur l'entonnoir de l'unité de filtration (partie lisse en bas) ;

- 3) Agiter le flacon de l'échantillon ;
- 4) Verser un volume V= 50ml d'eau dans l'éprouvette graduée ;
- 5) Filtrer à vide l'échantillon ;
- 6) Libérer le dispositif sous vide lorsque le filtre est pratiquement sec ;
- 7) Retirer avec précaution le papier filtre à l'aide d'une pince à extrémité plate ;
- 8) Placer le filtre sur un support de séchage (ex capsule) ;
- 9) Sécher le filtre dans l'étuve à 105 C  $^{\rm o}$  pendant deux heures ;
- 10) Reporter la capsule dans le dessiccateur ;

11) Peser P<sub>1</sub>, et calculer [MES] mg/l =  $\frac{P_1 - P_0}{V * 1000}$ 

# -La demande biochimique en oxygène DBO5

## a) Equipements utilisées :

- Têtes mesureurs (OXYTOP);
- Ampoules de mesure marron ;
- Agitateurs magnétiques ;
- Lentilles de NAOH ;
- Armoire thermostatique de température constante à  $20^{\circ}$  C.

# b)Protocol expérimental

Pour la réalisation de cette analyse les étapes suivantes sont respectées :

1) Remplir deux flacons, le premier par 97 ml d'eau usée et le second par 365 ml d'eau épurée ;

2) Placer un barreau magnétique dans chacun des flacons pour l'homogénéisation du milieu interne ;

3) Verser le gel nutriment DBO pour activer les bactéries ;

4) Rajouter 1g d'hydroxyde potassium (KOH) dans les bouchons hermétiques pour absorber l'humidité (CO2) ;

5) Visser l'oxytope sur le flacon, ensuite on règle les plages des mesures de [0 à 600] pour les eaux résiduaires et de [0 à 90] pour les eaux épurées ;

6) Placés les flacons dans l'armoire thermostatique sur l'agitateur ;

7) L'incubation des échantillons dure 05 jours à une température de 20°C, Les valeurs prises, seront celles affichées à la fin des 05jours.

Le milieu étant sombre pour éviter la photosynthèse des plantes microscopique présentes dans l'eau.

## -La demande chimique en oxygène DCO

Le test consiste en une oxydation chimique par un oxydant fort, acide à température élevée par le bichromate de potassium, acide sulfurique, sulfate de mercure.

## a) Equipements utilisées

-Kit pour DCO LCK 314 (moins concentré réservé pour l'eau de sortie qui est moins chargé) et LCK 514 (plus concentré et ces kits sont spécifiquement pour l'eau d'entrée) ;

-Pipette graduée de 2 ml ;

-Réacteur DCO ;

-Spectrophotomètre.

# b) La procédure expérimentale consiste à :

1) Allumer le spectrophotomètre pour calibrage automatique ;

2) Remplir une pupitre 2 ml de chaque échantillon (entrée et sortie) ;

3) Ouvrir le bouchon du kit pour DCO LCK 314 et LCK 514 adéquat soigneusement et ajuster l'échantillon ;

4) Bien fermer le kit et mélanger délicatement (réaction thermique immédiate) ;

5) Placer les deux kits dans le réacteur DCO ;

6) Programmer le réacteur DCO à 148C° pendant deux heures ;

7) Après refroidissement du kit lire au spectrophotomètre ;

8) Lire la valeur affichée par le code à barre imprimé sur le kit.



PH mètre



Dispositif de filtration sous vide



Balance de précision







Spectrophotomètre



Réactifs de la DCO

Les équipements des analyses physico-chimiques
| 5.140184               | 50.573758              | 0.1830709  | 42.589734 | 12.211392 |
|------------------------|------------------------|------------|-----------|-----------|
| 5.1500446              | 50.265944              | 0.17782219 | 42.497819 | 12.109862 |
| 5.1600256              | 49.972078              | 0.17617877 | 42.404673 | 12.018912 |
| 5.1704061              | 49.671316              | 0.172292   | 42.318265 | 11.92517  |
| 5.180435               | 49.35804               | 0.16616673 | 42.250542 | 11.809569 |
| 5.1901615              | 49.060269              | 0.16438619 | 42.185666 | 11.69906  |
| 5.2001113              | 48.769319              | 0.16170904 | 42.127816 | 11.592643 |
| 5.2100396              | 48.4/0243              | 0.15686765 | 42.089665 | 11.469028 |
| 5.2201514              | 48.169011              | 0.15513274 | 42.056061 | 11.340268 |
| 5.2302364              | 47.891/07              | 0.15367725 | 42.029027 | 11.226322 |
| 5.2401075              | 47.636403              | 0.15321259 | 42.006882 | 11.124452 |
| 5.2500657              | 47.403381              | 0.15356566 | 41.900090 | 10 077447 |
| 5 2702305              | 47.194970              | 0.15470500 | 41.950140 | 10.975106 |
| 5 2805325              | 47 020763              | 0.16678918 | 41 774035 | 11 093626 |
| 5 2903651              | 47 062625              | 0.17160712 | 41 643714 | 11 258182 |
| 5.3002517              | 47.311276              | 0.18586032 | 41.423331 | 11.597099 |
| 5.310278               | 48.027442              | 0.19942849 | 41.12185  | 12.32221  |
| 5.3200444              | 48.843845              | 0.21619293 | 40.820006 | 13.107836 |
| 5.3300356              | 49.994521              | 0.280362   | 40.457974 | 14.104056 |
| 5.340233               | 52.052645              | 0.38003889 | 40.079885 | 15.735766 |
| 5.3501781              | 53.872543              | 0.43300579 | 39.765782 | 17.159296 |
| 5.3600798              | 55.609899              | 0.54207966 | 39.430444 | 18.455322 |
| 5.3705181              | 58.399639              | 0.72436509 | 39.074473 | 20.511991 |
| 5.3803717              | 60.400725              | 0.82855496 | 38.821335 | 21.95369  |
| 5.3903883              | 61.800022              | 0.9510902  | 38.594414 | 22.896923 |
| 5.4002872              | 62.719137              | 1.0688448  | 38.433083 | 23.459818 |
| 5.4104481              | 63.199398              | 1.1433034  | 38.32246  | 23.683363 |
| 5.4204898              | 63.260497              | 1.1756697  | 38.262736 | 23.610894 |
| 5.4300927              | 62.833543              | 1.1678235  | 38.253755 | 23.207293 |
| 5.4400985              | 62.415831              | 1.1530841  | 38.251547 | 22.815843 |
| 5.4503032              | 62.091794              | 1.1197703  | 38.261939 | 22.52096  |
| 5.4601321              | 61.481856              | 1.049319   | 38.295551 | 22.042677 |
| 5.4702628              | 60.848529              | 0.98818694 | 38.313049 | 21.551614 |
| 5.4800826              | 60.416836              | 0.93089027 | 38.3188/5 | 21.23/011 |
| 5.4900203              | 59./5/93/              | 0.83518487 | 38.330068 | 20.787534 |
| 5.5000564              | 50.909295              | 0.73471000 | 20,200003 | 20.240023 |
| 5 5204275              | 57 725/7/              | 0.09433319 | 38 190316 | 19.902337 |
| 5 5304124              | 56 936262              | 0.01243437 | 38 093675 | 19 018144 |
| 5 5412792              | 56 295188              | 0.51193358 | 37 957581 | 18 681839 |
| 5.5515389              | 55.67298               | 0.46544282 | 37.816138 | 18.38834  |
| 5.5606121              | 55.10655               | 0.43447483 | 37.667968 | 18.129072 |
| 5.5706583              | 54.5992                | 0.41666629 | 37.488279 | 17.940407 |
| 5.5811517              | 54.07506               | 0.39332953 | 37.295676 | 17.770017 |
| 5.5903532              | 53.579432              | 0.37535572 | 37.117999 | 17.604478 |
| 5.6000081              | 53.126227              | 0.36714193 | 36.923673 | 17.481868 |
| 5.6104041              | 52.676453              | 0.35342098 | 36.710712 | 17.392069 |
| 5.6204411              | 52.244907              | 0.33526945 | 36.492043 | 17.319241 |
| 5.6304566              | 51.845615              | 0.3275229  | 36.265777 | 17.267842 |
| 5.640121               | 51.439824              | 0.31645188 | 36.050542 | 17.200492 |
| 5.6504406              | 50.881652              | 0.30412029 | 35.832889 | 17.015451 |
| 5.6600445              | 50.372397              | 0.3005261  | 35.630285 | 16.843684 |
| 5.6705005              | 49.865379              | 0.300739   | 35.42486  | 16.672099 |
| 5.6804596              | 49.3/6197              | 0.30641904 | 35.2560/6 | 16.46/892 |
| 5.69U3/38<br>5.7001250 | 48.931103              | 0.31004/21 | 35.LU1953 | 16.28/009 |
| 5./UUL358              | 40.019406<br>10 500006 | 0.3242/428 | 34.901915 | 16.17224F |
| J./1U3ZZ4              | 40.022230              | 0.30412801 | 34.039203 | 10.1/3345 |

| 5.7202402              | 48.548392              | 0.38574374              | 34.75621               | 16.247588 |
|------------------------|------------------------|-------------------------|------------------------|-----------|
| 5.730077               | 48.646964              | 0.40854669              | 34.683392<br>37 591557 | 16.351835 |
| 5 7500226              | 49.040219              | 0.44307303              | 34.391334              | 17 30544  |
| 5.7604337              | 50.679514              | 0.48718829              | 34.378104              | 17.959879 |
| 5.7701                 | 51.218563              | 0.50291665              | 34.271059              | 18.380582 |
| 5.7800944              | 51.918265              | 0.52360391              | 34.146151              | 18.920923 |
| 5.7903827              | 52.5073                | 0.53737884              | 34.025245              | 19.371943 |
| 5.8000495              | 52.88222               | 0.55052399              | 33.909135              | 19.64973  |
| 5.810437               | 53.508239              | 0.56969708              | 33.765455              | 20.119274 |
| 5.820439               | 54.134474              | 0.57997272              | 33.62183               | 20.595549 |
| 5.8300306              | 54.54857               | 0.58473525              | 33.475073              | 20.913035 |
| 5.840129               | 55.391735              | 0.58616789              | 33.27171               | 21.59157  |
| 5.8502565              | 56.230609              | 0.5841/965              | 33.046453              | 22.2843/5 |
| 5.86U5112<br>5.9701531 | 56.63/11<br>56.944709  | 0.57769921              | 32.814828              | 22.654001 |
| 5 8802361              | 57 149947              | 0.53808535              | 32.370730              | 22.90730  |
| 5 890314               | 57 163667              | 0.5251259               | 32 013556              | 23.200332 |
| 5.9001064              | 57.126499              | 0.49522095              | 31.719026              | 23.53631  |
| 5.9108093              | 57.048851              | 0.46628091              | 31.36966               | 23.673005 |
| 5.9200676              | 56.907437              | 0.45333138              | 31.057759              | 23.734922 |
| 5.9304868              | 56.676191              | 0.42235418              | 30.692463              | 23.780267 |
| 5.9400432              | 56.389856              | 0.40051283              | 30.342086              | 23.777626 |
| 5.9501721              | 56.053919              | 0.39074503              | 29.966712              | 23.746963 |
| 5.9600486              | 55.603185              | 0.37569799              | 29.610855              | 23.638162 |
| 5.9/02/2               | 54.999666              | 0.361/610/              | 29.24/809              | 23.42692  |
| 5 9902669              | 54.479343              | 0.33393207              | 28 550765              | 23.270373 |
| 6.0005881              | 53.515873              | 0.33287145              | 28.190986              | 23.096511 |
| 6.0101045              | 53.152316              | 0.32849752              | 27.859053              | 23.091777 |
| 6.0203327              | 52.666311              | 0.31737074              | 27.515183              | 23.02761  |
| 6.03033                | 51.920679              | 0.30179977              | 27.190477              | 22.76616  |
| 6.04052                | 51.105045              | 0.29310504              | 26.864456              | 22.449801 |
| 6.050857               | 50.362774              | 0.28321435              | 26.548952              | 22.19896  |
| 6.060106<br>6.0700486  | 49.4/6861              | 0.2/593/91              | 26.282646              | 21.804166 |
| 6 0804767              | 40.040431              | 0.27040129              | 25.900044              | 21.49303  |
| 6.0905022              | 47.813204              | 0.30349396              | 25.468177              | 21.473536 |
| 6.1006879              | 47.650697              | 0.31503495              | 25.227971              | 21.676092 |
| 6.1104357              | 47.413524              | 0.31484785              | 25.008758              | 21.803968 |
| 6.1200343              | 47.227802              | 0.30341285              | 24.781327              | 21.982272 |
| 6.1304569              | 46.929278              | 0.291486                | 24.524622              | 22.098487 |
| 6.1403384              | 46.552314              | 0.28587101              | 24.280208              | 22.126887 |
| 6.1501436              | 46.022996              | 0.2/4/1412              | 24.041993              | 22.02/345 |
| 6.1703026              | 45.40908               | 0.26949525              | 23.784914              | 21.8/41/4 |
| 6 1800541              | 44.955800              | 0.20034307              | 23.330173              | 21.700070 |
| 6.1905069              | 43.893405              | 0.27049878              | 23.11711               | 21.529424 |
| 6.2000281              | 43.419846              | 0.27210884              | 22.927528              | 21.405907 |
| 6.2100246              | 42.884801              | 0.27983269              | 22.751399              | 21.230632 |
| 6.2200222              | 42.256619              | 0.28591551              | 22.601031              | 20.96919  |
| 6.2302031              | 41.714429              | 0.28818588              | 22.460837              | 20.770635 |
| 6.2400378              | 41.273879              | 0.28371577              | 22.332823              | 20.640572 |
| 0.23U1954              | 4U.818389<br>40 116710 | U.2//U542<br>0 27389169 | 22.199998              | 20.503184 |
| 6.2702677              | 40.246433              | 0.2760009               | 21.924231              | 20.423004 |
| 6.2800275              | 40.410419              | 0.28329763              | 21.776668              | 20.757494 |
| 6.2910892              | 40.724588              | 0.29009091              | 21.613378              | 21.177897 |

| 6.3003719 | 40.988427 | 0.31802086 | 21.474994 | 21.496462 |
|-----------|-----------|------------|-----------|-----------|
| 6.3105872 | 42.100647 | 0.40916134 | 21.347452 | 22.418893 |
| 6.3200843 | 43.474722 | 0.50564427 | 21.311093 | 23.496967 |
| 6.3303555 | 44.520347 | 0.62926464 | 21.328193 | 24.24846  |
| 6.3400706 | 46.856656 | 0.89642154 | 21.424319 | 25.854572 |
| 6.3500134 | 49.458674 | 1.1499053  | 21.63046  | 27.609482 |
| 6.3602121 | 50.986671 | 1.3608211  | 21.907119 | 28.50322  |
| 6.3700852 | 54.10085  | 1.6838654  | 22.171974 | 30.578287 |
| 6.380298  | 56.091828 | 1.9760014  | 22.509503 | 31.764868 |
| 6.3908266 | 56.862074 | 2.20206    | 22.900559 | 32.004953 |
| 6.4004411 | 57.307052 | 2.3468076  | 23.275053 | 32.03984  |
| 6.4106346 | 57.705889 | 2.4287635  | 23.674092 | 32.048803 |
| 6.4202448 | 58.059698 | 2.468833   | 24.047209 | 32.062345 |
| 6.4303623 | 57.343709 | 2.3647112  | 24.466778 | 31.296447 |
| 6.4400223 | 56.078692 | 2.1839182  | 24.870087 | 30.159234 |
| 6.4502841 | 55.3/81/8 | 2.0028276  | 25.259971 | 29.469205 |
| 6.4600/11 | 54.256026 | 1.7529114  | 25.633022 | 28.53413  |
| 6.4/00519 | 52.503027 | 1.46/0/26  | 25.983434 | 2/.14///8 |
| 6.480063  | 51.418915 | 1.2452223  | 26.25432  | 26.289127 |
| 6.4900454 | 50.49163  | 1.035/95   | 26.4//589 | 25.590763 |
| 6.5001397 | 49.013083 | 0.8468/304 | 26.645412 | 24.482946 |
| 6.5100263 | 47.998751 | 0./342/489 | 26.730583 | 23./3/98  |
| 6.5206347 | 47.300042 | 0.63580128 | 26.7/1591 | 23.26/415 |
| 6.5303/13 | 46.443827 | 0.54925666 | 26./6359  | 22.689448 |
| 6.5410305 | 45.75293  | 0.496/1/33 | 26.698237 | 22.250122 |
| 6.5503169 | 45.35093  | 0.45/65008 | 26.618002 | 22.037777 |
| 6.56UI5/3 | 44.818199 | 0.41141596 | 26.303821 | 21.743076 |
| 6 5002102 | 44.339822 | 0.30000009 | 20.342301 | 21.01009  |
| 6.5805192 | 44.054907 | 0.3/433340 | 26.199666 | 21.413734 |
| 6.5913/52 | 43.000948 | 0.3554514  | 26.02008  | 21.200011 |
| 6 6101215 | 43.313010 | 0.34075409 | 25.0/1/15 | 21.124104 |
| 6 6200251 | 42.901995 | 0.34003442 | 25.700250 | 21.010333 |
| 6 6300466 | 42.400321 | 0.32399760 | 25.333374 | 20.759956 |
| 6 6409105 | 41.939031 | 0.31/02752 | 25.220466 | 20.314010 |
| 6 6502713 | 41.298756 | 0.31402752 | 25.068136 | 20.37023  |
| 6 6602614 | 41 090351 | 0.30024111 | 24 906984 | 20.300112 |
| 6 6705328 | 40 908703 | 0.30327814 | 24.900904 | 20.235504 |
| 6.680435  | 40.700781 | 0.30338936 | 24.60146  | 20.101683 |
| 6.6905553 | 40.39649  | 0.31121304 | 24.476885 | 19.882344 |
| 6.7000087 | 40.162303 | 0.31596935 | 24.375099 | 19.709371 |
| 6.7100178 | 39.886135 | 0.3397724  | 24.306574 | 19.455357 |
| 6.7201914 | 39.509058 | 0.36421182 | 24.287634 | 19.087269 |
| 6.7300606 | 39.274988 | 0.3749978  | 24.29456  | 18.82619  |
| 6.7403653 | 39.302136 | 0.39408443 | 24.307567 | 18.749816 |
| 6.7501549 | 39.600736 | 0.41321273 | 24.329221 | 18.882648 |
| 6.7600887 | 39.983005 | 0.42310096 | 24.360717 | 19.080185 |
| 6.7700163 | 40.419356 | 0.44795515 | 24.383751 | 19.321251 |
| 6.7801348 | 41.347573 | 0.49072582 | 24.405434 | 19.952693 |
| 6.7900336 | 42.267799 | 0.52067105 | 24.445984 | 20.586262 |
| 6.8000362 | 42.892455 | 0.55088013 | 24.49646  | 20.995511 |
| 6.8107109 | 43.625079 | 0.59116183 | 24.569934 | 21.500151 |
| 6.820355  | 43.816578 | 0.60508326 | 24.664887 | 21.591981 |
| 6.8308675 | 43.814494 | 0.6078802  | 24.781282 | 21.534851 |
| 6.8407561 | 43.513663 | 0.60202264 | 24.903602 | 21.259136 |
| 6.850722  | 43.31538  | 0.59591401 | 25.019124 | 21.069042 |
| 6.860169  | 43.274507 | 0.58729028 | 25.117006 | 21.006388 |
| 6.8704735 | 43.579617 | 0.5604788  | 25.183314 | 21.220823 |

| 6.8801165             | 43.981851 | 0.53705588 | 25.208411 | 21.518182  |
|-----------------------|-----------|------------|-----------|------------|
| 6.8900721             | 44 246889 | 0.52402356 | 25,214269 | 21,713796  |
| 6 9001633             | 44 512268 | 0 50572554 | 25 192265 | 21 934569  |
| 6 9103451             | 44 767454 | 0.49865392 | 25.149863 | 22 168162  |
| 6 9201586             | 44 882682 | 0.49000002 | 25.149000 | 22.100102  |
| 6 930052              | 45.002002 | 0.49700393 | 25.103033 | 22.230404  |
| 6 0401651             | 45.090021 | 0.49997750 | 21.062006 | 22.JJJJUZZ |
| 6 0501265             | 45.470212 | 0.49040377 | 24.902000 | 22.931373  |
| 0.9301303             | 45.720595 | 0.49293003 | 24.070323 | 23.221223  |
| 6.9600831<br>C 070275 | 45.951295 | 0.4/155152 | 24.703402 | 23.511587  |
| 6.9/03/5              | 46.184369 | 0.44452487 | 24.61/248 | 23.856417  |
| 6.9801635             | 46.19/289 | 0.43151558 | 24.459182 | 24.006023  |
| 6.9902861             | 45.915993 | 0.39/83563 | 24.2922/8 | 23.936641  |
| /.00011               | 45.334622 | 0.36143827 | 24.110618 | 23.628/6   |
| 7.0102441             | 44.76005  | 0.34326293 | 23.903258 | 23.32726   |
| 7.0203487             | 44.26236  | 0.32278719 | 23.696915 | 23.090695  |
| 7.0302131             | 43.550543 | 0.30236414 | 23.492838 | 22.688167  |
| 7.0402335             | 42.922357 | 0.29353635 | 23.280615 | 22.352694  |
| 7.0500366             | 42.449235 | 0.28501244 | 23.079609 | 22.138311  |
| 7.0602238             | 41.742179 | 0.27050208 | 22.880753 | 21.751399  |
| 7.0708317             | 41.062509 | 0.26082144 | 22.670505 | 21.388692  |
| 7.0807092             | 40.613055 | 0.25031533 | 22.474911 | 21.192803  |
| 7.0902371             | 40.139573 | 0.23325923 | 22.279873 | 20.97172   |
| 7.1000046             | 39.71671  | 0.22382691 | 22.069453 | 20.790863  |
| 7.1110436             | 39.363743 | 0.21876048 | 21.831238 | 20.675278  |
| 7.1203817             | 39.049947 | 0.21187317 | 21.632542 | 20.548707  |
| 7.1301976             | 38.734958 | 0.20833459 | 21.424426 | 20.418364  |
| 7.1403861             | 38.482207 | 0.20637156 | 21.211854 | 20.334694  |
| 7.1507405             | 38.257793 | 0.20008511 | 20.998712 | 20.253389  |
| 7.1604706             | 38.026358 | 0.19496744 | 20.798833 | 20.151029  |
| 7.1704184             | 37.824865 | 0.19266756 | 20.597043 | 20.07042   |
| 7.1801456             | 37.480429 | 0.18594132 | 20.413592 | 19.859648  |
| 7.1904153             | 36.90267  | 0.18335245 | 20.234835 | 19.465606  |
| 7.200181              | 36.436871 | 0.18314935 | 20.072799 | 19.154152  |
| 7.2100885             | 35.872707 | 0.18590721 | 19.938142 | 18.767879  |
| 7.2200111             | 35.131046 | 0.18849187 | 19.83145  | 18.238437  |
| 7.2302931             | 34.524798 | 0.18951891 | 19.73201  | 17.812687  |
| 7.2401834             | 34.134306 | 0.19097181 | 19.646165 | 17.54395   |
| 7.2506314             | 33.808357 | 0.19254603 | 19.564424 | 17.317973  |
| 7.260008              | 33.630391 | 0.19316944 | 19.494112 | 17.202172  |
| 7.2703154             | 33.678009 | 0.2071025  | 19.409325 | 17.24733   |
| 7.2803811             | 34.295946 | 0.23310664 | 19.326865 | 17.713585  |
| 7.2905299             | 35.175423 | 0.25005288 | 19.262174 | 18.373339  |
| 7.3002317             | 35.937564 | 0.28422753 | 19.20201  | 18.91156   |
| 7.3101211             | 37.540756 | 0.36047094 | 19.163929 | 20.036135  |
| 7.3200449             | 39.272136 | 0.42881408 | 19.192774 | 21.211226  |
| 7.330164              | 40.553111 | 0.51538298 | 19.262757 | 21.964029  |
| 7.3401488             | 42.860549 | 0.72874208 | 19.408478 | 23.348027  |
| 7.3504649             | 45.480403 | 0.94876454 | 19.679184 | 24.899922  |
| 7.3601031             | 47.163203 | 1.1270628  | 19.994846 | 25.737007  |
| 7.3703247             | 50.912065 | 1.510086   | 20.341492 | 28.069812  |
| 7.3801045             | 54.64781  | 1.8817926  | 20.727084 | 30.408098  |
| 7.3902634             | 56.588363 | 2.1776988  | 21.183168 | 31.359538  |
| 7.400018              | 57.605197 | 2.380587   | 21.642739 | 31.675064  |
| 7.410443              | 58.346265 | 2.5027154  | 22.138127 | 31.806222  |
| 7.4201405             | 58.88244  | 2.5742842  | 22.59156  | 31.8413    |
| 7.430517              | 59.316343 | 2.5389176  | 23.058955 | 31.864142  |
| 7.4402493             | 59.321426 | 2.4328714  | 23.478879 | 31.629757  |
| 7.4502712             | 59.330894 | 2.320437   | 23.879686 | 31.412807  |

| 7 4600322 | 58 633404             | 2 113536                 | 24 26961  | 30 730221 |
|-----------|-----------------------|--------------------------|-----------|-----------|
| 7.4000522 | 50.000404<br>57 00061 | 1 020/00                 | 24.20001  | 20 620067 |
| 7.470055  | J7.JJ0004             | 1 (011010                | 24.042092 | 29.030007 |
| 7.4801687 | 56.628176             | 1.6011212                | 24.9509   | 28.99594  |
| 7.4902289 | 55.909417             | 1.326758                 | 25.207413 | 28.421054 |
| 7.5000771 | 54.652811             | 1.046197                 | 25.381776 | 27.467849 |
| 7.5102459 | 53.763791             | 0.84857906               | 25.447763 | 26.807868 |
| 7.5205607 | 52.987235             | 0.68727319               | 25.443907 | 26.269226 |
| 7.5311196 | 51.461021             | 0.54849371               | 25.374838 | 25.169865 |
| 7.5407388 | 50.381788             | 0.48542678               | 25.249964 | 24.411361 |
| 7.5502357 | 49.70516              | 0.44250032               | 25.107461 | 23.974944 |
| 7.5607889 | 48.655585             | 0.39917515               | 24.93843  | 23.257091 |
| 7.5700737 | 48.065795             | 0.38305903               | 24.770626 | 22.879945 |
| 7.5806348 | 47.716185             | 0.37509343               | 24.577773 | 22.689454 |
| 7 590197  | 47 399719             | 0 36828244               | 24 412044 | 22 494624 |
| 7 6007793 | 46 996564             | 0 36446568               | 24 239074 | 22.191021 |
| 7 6101067 | 16 728755             | 0.36220568               | 24.233074 | 22.220020 |
| 7.0101007 | 40.720733             | 0.30220300               | 24.097274 | 22.002334 |
| 7.6209845 | 45.996128             | 0.35565016               | 23.968459 | 21.538361 |
| 7.630986  | 43.230333             | 0.35268274               | 23.867769 | 20.997234 |
| 7.6406984 | 44./89524             | 0.35259779               | 23.778017 | 20.6/5312 |
| 7.6500117 | 44.235435             | 0.35475491               | 23.720859 | 20.274723 |
| 7.6604051 | 43.559836             | 0.35839536               | 23.681722 | 19.774537 |
| 7.6704586 | 43.122931             | 0.36140436               | 23.6552   | 19.454695 |
| 7.6800935 | 42.634874             | 0.3723018                | 23.664667 | 19.074024 |
| 7.6902604 | 42.08979              | 0.39398596               | 23.711433 | 18.61732  |
| 7.7003325 | 41.751267             | 0.40704413               | 23.781329 | 18.311877 |
| 7.7103319 | 41.583978             | 0.45355239               | 23.890762 | 18.0766   |
| 7.7201177 | 41.491397             | 0.50055945               | 24.054066 | 17.860558 |
| 7.7301897 | 41.506622             | 0.52569781               | 24.257184 | 17.716549 |
| 7.7401456 | 41.702905             | 0.55845671               | 24.470865 | 17.685552 |
| 7.7501054 | 42.092801             | 0.59262218               | 24 703273 | 17.784282 |
| 7 7604145 | 42 542126             | 0 61231144               | 24 959196 | 17 920621 |
| 7 7703257 | 12.912120             | 0 63503869               | 25 207333 | 18 037609 |
| 7 7901963 | 42.000000             | 0.66397735               | 25.207555 | 10.03/003 |
| 7.7001005 | 43.491327             | 0.00007700               | 25.459070 | 10.231373 |
| 7.7903233 | 44.000330             | 0.00302010               | 25.754047 | 10.413324 |
| 7.0003300 | 44.412344             | 0.70020303<br>0.71710170 | 25.999269 | 10.524082 |
| 7.0101341 | 44./0000              | 0.71719179               | 20.209204 | 10.621035 |
| 7.8203572 | 45.UI/639             | 0.72319724               | 26.559961 | 18.605394 |
| 7.8301048 | 45.1/31/3             | 0.72141941               | 26.839/3/ | 18.548829 |
| 7.8411234 | 45.091497             | 0./0/62/84               | 27.165558 | 18.2998   |
| 7.8507252 | 44.985255             | 0.69554256               | 27.441896 | 18.062933 |
| 7.860816  | 44.970358             | 0.68007459               | 27.720693 | 17.899807 |
| 7.8708537 | 44.936256             | 0.64526698               | 27.980576 | 17.744376 |
| 7.8803609 | 44.909117             | 0.61611742               | 28.200181 | 17.612188 |
| 7.8903555 | 44.928277             | 0.59523207               | 28.410479 | 17.519059 |
| 7.9003736 | 44.813277             | 0.55391384               | 28.6076   | 17.34681  |
| 7.9104599 | 44.595409             | 0.52010509               | 28.780016 | 17.10691  |
| 7.9202745 | 44.441539             | 0.50275937               | 28.926274 | 16.92435  |
| 7.9300911 | 44.210929             | 0.47038959               | 29.066981 | 16.704161 |
| 7.9404282 | 43.86154              | 0.43756304               | 29.19594  | 16.40108  |
| 7.9500232 | 43.593795             | 0.42276921               | 29.294903 | 16.166856 |
| 7.9602341 | 43.268281             | 0.38801438               | 29.396553 | 15.904626 |
| 7.9701045 | 42.860181             | 0.35690605               | 29.474182 | 15.586147 |
| 7.9801682 | 42.503838             | 0.34326006               | 29.530814 | 15.310078 |
| 7.9901463 | 42.17691              | 0.31884318               | 29.585659 | 15.064188 |
| 8.0002387 | 41.769547             | 0.29443509               | 29.628498 | 14.756434 |
| 8.0104838 | 41,401362             | 0.28406992               | 29.654724 | 14 480161 |
| 8 0202715 | 41 09271              | 0 26695046               | 29 681441 | 14 254331 |
| 8.0306149 | 40.682072             | 0.24559428               | 29.705653 | 13,950909 |
| C.000140  | 10.002072             | 5.2.355720               |           |           |

| 8.0401612<br>8.0505915 | 40.316536<br>39.976487 | 0.23645913<br>0.22416289 | 29.716392<br>29.728426 | 13.682557<br>13.440359 |
|------------------------|------------------------|--------------------------|------------------------|------------------------|
| 8.07099                | 39.244953              | 0.20179029               | 29.740079              | 12.917759              |
| 8.0802697              | 38.982627              | 0.19672127               | 29.74908               | 12.73664               |
| 8.0903114              | 38.684784              | 0.18790662               | 29.759727              | 12.528032              |
| 8.1106972              | 38.402124<br>38.170913 | 0.18348133               | 29.768322              | 12.33124               |
| 8.120416               | 37.943728              | 0.17273454               | 29.790241              | 12.019941              |
| 8.1301719              | 37.726221              | 0.16844395               | 29.801222              | 11.872298              |
| 8.1400225              | 37.540269              | 0.16636827               | 29.81094               | 11.749935              |
| 8.1505626              | 37.339944              | 0.15579646               | 29.82/416              | 11.615071              |
| 8.1702772              | 36.991997              | 0.15436792               | 29.856518              | 11.379032              |
| 8.1805294              | 36.829625              | 0.14960271               | 29.876995              | 11.265378              |
| 8.1903614              | 36.678201              | 0.14679343               | 29.896995              | 11.157217              |
| 8.2100826              | 36.428149              | 0.1438604                | 29.915629              | 10.979396              |
| 8.2203387              | 36.313803              | 0.14223819               | 29.962958              | 10.895102              |
| 8.2301649              | 36.218968              | 0.14191211               | 29.986281              | 10.825517              |
| 8.2401243              | 36.139854              | 0.14125956               | 30.012612              | 10.763599              |
| 8.2603476              | 36.009342              | 0.14085212               | 30.072114              | 10.650433              |
| 8.2701403              | 35.989893              | 0.14711113               | 30.095853              | 10.618625              |
| 8.2804125              | 36.054549              | 0.16048541               | 30.116528              | 10.635709              |
| 8.2902654              | 36.185735              | 0.16886225               | 30.14289               | 10.698809              |
| 8.3104967              | 36.821211              | 0.23791191               | 30.197589              | 11.01361               |
| 8.3200356              | 37.391926              | 0.27565301               | 30.268691              | 11.316094              |
| 8.3302241              | 38.107072              | 0.33591941               | 30.367706              | 11.662334              |
| 8.3402426              | 39.28824               | 0.48509679               | 30.530094              | 12.228146              |
| 8.3601794              | 42.244963              | 0.70311558               | 31.107296              | 13.657297              |
| 8.3700752              | 44.277262              | 0.90920503               | 31.426709              | 14.656883              |
| 8.3800333              | 46.758636              | 1.1077514                | 31.808351              | 15.955645              |
| 8.39007                | 48.801462<br>50 628758 | 1.246/802                | 32.251159              | 16.911365              |
| 8.4107627              | 52.192621              | 1.5213435                | 33.227573              | 18.244481              |
| 8.420197               | 53.224938              | 1.5877627                | 33.70779               | 18.490245              |
| 8.4300342              | 53.891232              | 1.6024356                | 34.23159               | 18.493739              |
| 8.4401217              | 54.177215<br>54 409606 | 1.5680433                | 34.786439              | 17 955469              |
| 8.4602143              | 54.378883              | 1.4258461                | 35.891104              | 17.533482              |
| 8.4701565              | 54.049922              | 1.2964471                | 36.445634              | 16.920599              |
| 8.480049               | 53.850419              | 1.1960322                | 36.953672              | 16.422274              |
| 8.4901024              | 53./33435<br>53.54431  | 1.0787179                | 37.441425              | 15.647405              |
| 8.5100484              | 53.436553              | 0.86829214               | 38.266513              | 15.332863              |
| 8.5205001              | 53.402062              | 0.78609162               | 38.619916              | 15.107356              |
| 8.5302561              | 53.359868              | 0.70668612               | 38.896691              | 14.929909              |
| 8.5507238              | 53.431701              | 0.61146502               | 39.326574              | 14.738738              |
| 8.5611702              | 53.493078              | 0.55759478               | 39.473757              | 14.714463              |
| 8.5703228              | 53.547793              | 0.52802188               | 39.565727              | 14.70591               |
| 8.5803285              | 53.594623<br>53 603878 | 0.50280798               | 39.64245<br>39 684185  | 14.70231<br>14.702240  |
| 8.600364               | 53.581091              | 0.43895724               | 39.695447              | 14.688784              |
| 8.6101656              | 53.538904              | 0.42137031               | 39.69362               | 14.666904              |

| 8 6203872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53 33802               | 0 38575259 | 30 680818 | 1/ 535163 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------|-----------|-----------|
| 0.0203072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53.0002                | 0.00070200 |           | 14 24(205 |
| 8.6303309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53.062225              | 0.36270767 | 39.669009 | 14.346385 |
| 8.6403754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 52.819603              | 0.35275858 | 39.634609 | 14.184266 |
| 8.6504995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 52.593539              | 0.33919422 | 39.597457 | 14.032855 |
| 8.6600751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 52.425532              | 0.33454264 | 39.553737 | 13.920329 |
| 8.6702381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 52.300759              | 0.33427295 | 39.504671 | 13.840666 |
| 8 6801194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 52 257584              | 0 34227951 | 39 456147 | 13 8086   |
| 9 6002164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 52.237301              | 0.36312303 | 30 11116  | 13 944256 |
| 0.0902104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 52.51045               | 0.30312393 | 39.41140  | 12.044230 |
| 8./00142/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 52.422379              | 0.3/5/5838 | 39.383162 | 13.909548 |
| 8.7102442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 52.662147              | 0.42945872 | 39.360009 | 14.048568 |
| 8.7202102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53.05769               | 0.48489307 | 39.375439 | 14.289539 |
| 8.7302149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53.458188              | 0.51323346 | 39.427272 | 14.529438 |
| 8.7400254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53.841019              | 0.53846571 | 39.482653 | 14.740078 |
| 8.7501211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 54.299149              | 0.55957159 | 39.541295 | 14.9974   |
| 8.7601066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 54 71475               | 0.56941101 | 39.604865 | 15 222339 |
| 8 770146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 55 135934              | 0 5837699  | 39 644988 | 15 451064 |
| 0.770140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 55 025332              | 0.60247175 | 30 642127 | 15 005/04 |
| 0.7001492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55.025552              | 0.00247175 | 39.042127 | 10.900404 |
| 8./90182/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 56.628498              | 0.61448516 | 39.62413  | 16.463197 |
| 8.8002411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 57.248455              | 0.62290408 | 39.585948 | 16.895413 |
| 8.8101477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 58.019813              | 0.62959334 | 39.507802 | 17.478558 |
| 8.8201228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 58.564357              | 0.63243531 | 39.42949  | 17.89454  |
| 8.830441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 58.873492              | 0.6331442  | 39.343336 | 18.161476 |
| 8.8403743                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 58.998573              | 0.63334599 | 39.259352 | 18.315997 |
| 8.850319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 59.021285              | 0.63147274 | 39.177968 | 18 395119 |
| 8 8606912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 58 895218              | 0 61623012 | 39 103433 | 18 378098 |
| 0.0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.000210              | 0.01023012 | 20 044761 | 10.570050 |
| 0.0702203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.529170              | 0.5055720  | 39.044/01 | 17 000050 |
| 8.8800679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 58.1/1063              | 0.56/18452 | 38.9/1428 | 17.968256 |
| 8.8904225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 57.781738              | 0.54001805 | 38.897526 | 17.7487   |
| 8.9003098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 57.296679              | 0.50852057 | 38.827407 | 17.461683 |
| 8.9105361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 56.865288              | 0.49307294 | 38.73943  | 17.220478 |
| 8.9205457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 56.498681              | 0.48037759 | 38.652941 | 17.047188 |
| 8.9301032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 56.080619              | 0.46499282 | 38.577497 | 16.854776 |
| 8.9403256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55.662968              | 0.45657949 | 38,492309 | 16.671532 |
| 8 9501828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55 271415              | 0 44443025 | 38 418131 | 16 508421 |
| 8 9601746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 54 75692               | 0 42180459 | 38 358516 | 16 252963 |
| 0.0001740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 54.210205              | 0.42100433 | 20.202205 | 15 075220 |
| 0.9702330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 54.219595              | 0.4095055  | 30.292203 | 15.975550 |
| 8.9800332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53./6/831              | 0.39904/91 | 38.229982 | 15./6120/ |
| 8.9901106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53.245133              | 0.38105827 | 38.1845/5 | 15.49/656 |
| 9.0000423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 52.680947              | 0.37008842 | 38.141554 | 15.194047 |
| 9.0104132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 52.180737              | 0.36248367 | 38.098724 | 14.947545 |
| 9.0203522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 51.692463              | 0.3487084  | 38.070176 | 14.709057 |
| 9.0309158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 51.168481              | 0.33832465 | 38.0387   | 14.450115 |
| 9.0410652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.74268               | 0.33046936 | 38.004835 | 14.264741 |
| 9 0509937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50 336485              | 0 31370829 | 37 972817 | 14 099792 |
| 9 0600321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 49 948949              | 0 30082846 | 37 936361 | 13 937129 |
| 0.0704409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40 544112              | 0.202104   | 27 001256 | 12 700707 |
| 9.0704400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 49.344113              | 0.292104   | 37.091230 | 12 507170 |
| 9.0803248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 49.109237              | 0.2/53018  | 37.864627 | 13.58/1/9 |
| 9.0902124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48.56/59               | 0.2582/625 | 3/.84983/ | 13.298/99 |
| 9.1002138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48.073791              | 0.25162938 | 37.82787  | 13.046974 |
| 9.1104354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 47.595812              | 0.24081782 | 37.81505  | 12.805127 |
| 9.1206717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 47.123332              | 0.22930766 | 37.80581  | 12.56157  |
| 9.1305395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46.727073              | 0.22544121 | 37.791188 | 12.371662 |
| 9.1405457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46.366528              | 0.21814685 | 37.779995 | 12.20855  |
| 9.1504103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46.012456              | 0.20740345 | 37.773134 | 12.042194 |
| 9.1602717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 45.689801              | 0.203699   | 37.7606   | 11.898599 |
| 9 1701035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 45 201217              | 0 10600105 | 37 752210 | 11 768/55 |
| $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $ | 45.59131/<br>A5 005646 | 0.10610010 | 27 7/011F | 11 60E071 |
| 9.10UI1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 43.083646              | 0.10051005 | 3/./40113 | 11 400007 |
| 9.1905165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 44./85833              | 0.18251926 | 3/./3/411 | 11.488007 |

| 9.2012244                                                    | 44.510354                                                   | 0.17893601                                                        | 37.725675                                                   | 11.37039                                                     |
|--------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|
| 9.2101531                                                    | 44.300596                                                   | 0.17524237                                                        | 37.714632                                                   | 11.285466                                                    |
| 9.2203692                                                    | 44.082598                                                   | 0.17384322                                                        | 37.699014                                                   | 11.204828                                                    |
| 9.2300873                                                    | 43.897869                                                   | 0.17294768                                                        | 37.683146                                                   | 11.144939                                                    |
| 9.2402765                                                    | 43.729791                                                   | 0.1723354                                                         | 37.661721                                                   | 11.10122                                                     |
| 9.2501824                                                    | 43.590079                                                   | 0.17228052                                                        | 37.637938                                                   | 11.077432                                                    |
| 9.2602585                                                    | 43.462442                                                   | 0.17263128                                                        | 37.612036                                                   | 11.063624                                                    |
| 9.2700157                                                    | 43.383829                                                   | 0.18035377                                                        | 37.569229                                                   | 11.083635                                                    |
| 9.280143                                                     | 43.392463                                                   | 0.1876314                                                         | 37.514932                                                   | 11.178145                                                    |
| 9.2910321                                                    | 43.449907                                                   | 0.19794651                                                        | 37.448615                                                   | 11.31224                                                     |
| 9.3009491                                                    | 43.663859                                                   | 0.22830561                                                        | 37.356063                                                   | 11.547218                                                    |
| 9.3107444                                                    | 44.108991                                                   | 0.2553026                                                         | 37.263847                                                   | 11.955234                                                    |
| 9.3200029                                                    | 44.569279                                                   | 0.27969987                                                        | 37.189107                                                   | 12.348501                                                    |
| 9.3300273                                                    | 45.294704                                                   | 0.362749                                                          | 37.115915                                                   | 12.861042                                                    |
| 9.3402315                                                    | 46.508168                                                   | 0.49064381                                                        | 37.112903                                                   | 13.631264                                                    |
| 9.3501436                                                    | 47.664435                                                   | 0.56292749                                                        | 37.18146                                                    | 14.335515                                                    |
| 9.3600812                                                    | 49.041198                                                   | 0.70370767                                                        | 37.247799                                                   | 15.11765                                                     |
| 9.3703387                                                    | 51.753946                                                   | 0.93453616                                                        | 37.286483                                                   | 16.85571                                                     |
| 9.380113                                                     | 54.238788                                                   | 1.0822941                                                         | 37.391709                                                   | 18.434476                                                    |
| 9.390237                                                     | 56.565536                                                   | 1.2450972                                                         | 37.483738                                                   | 19.859046                                                    |
| 9.4005513                                                    | 58.615037                                                   | 1.3761467                                                         | 37.596029                                                   | 21.063615                                                    |
| 9.4100145                                                    | 59.815572                                                   | 1.4537418                                                         | 37.728971                                                   | 21.651738                                                    |
| 9.4204211                                                    | 60.319636                                                   | 1.4757255                                                         | 37.925512                                                   | 21.683783                                                    |
| 9.4300569                                                    | 60.01161                                                    | 1.4228638                                                         | 38.164171                                                   | 21.13793                                                     |
| 9.4401149                                                    | 59.662011                                                   | 1.3645374                                                         | 38.405724                                                   | 20.555797                                                    |
| 9.4504461                                                    | 59.488623                                                   | 1.2863846                                                         | 38.648102                                                   | 20.14528                                                     |
| 9.4601897                                                    | 59.061056                                                   | 1.1592206                                                         | 38.883492                                                   | 19.629167                                                    |
| 9.4702197                                                    | 58.616642                                                   | 1.0508773                                                         | 39.084226                                                   | 19.111408                                                    |
| 9.480123                                                     | 58.299605                                                   | 0.95300839                                                        | 39.25536                                                    | 18.732411                                                    |
| 9.4901142                                                    | 57.627079                                                   | 0.8156599                                                         | 39.441069                                                   | 18.13068                                                     |
| 9.5104775                                                    | 56.065903                                                   | 0.63477074                                                        | 39.698292                                                   | 16.788324                                                    |
| 9.5201342                                                    | 55.374329                                                   | 0.55283488                                                        | 39.802156                                                   | 16.22711                                                     |
| 9.5303814                                                    | 54.564599                                                   | 0.48895623                                                        | 39.882614                                                   | 15.577966                                                    |
| 9.5402174                                                    | 53.996072                                                   | 0.45430729                                                        | 39.930971                                                   | 15.126027                                                    |
| 9.5514642                                                    | 53.377691                                                   | 0.40364241                                                        | 39.983938                                                   | 14.65176                                                     |
| 9.5607479<br>9.5705261<br>9.5804649<br>9.590181<br>9.6008651 | 52.869523<br>52.462854<br>52.111735<br>51.777888            | 0.3729415<br>0.35650722<br>0.33216131<br>0.30878919<br>0.29881727 | 40.008397<br>40.015212<br>40.014955<br>40.000034            | 14.266061<br>13.965543<br>13.719265<br>13.491621             |
| 9.6104836<br>9.6201911<br>9.6303794<br>9.6401795             | 51.27497<br>51.145422<br>51.057815<br>51.02106<br>51.048452 | 0.28918859<br>0.28236177<br>0.2805561<br>0.28067117<br>0.28472775 | 39.9257<br>39.863416<br>39.790698<br>39.710269<br>39.618443 | 13.177729<br>13.124393<br>13.107959<br>13.131691<br>13.20619 |
| 9.6601112                                                    | 51.092062                                                   | 0.28745831                                                        | 39.530616                                                   | 13.291545                                                    |
| 9.6700813                                                    | 51.136865                                                   | 0.29611594                                                        | 39.445193                                                   | 13.368719                                                    |
| 9.6801264                                                    | 51.228122                                                   | 0.31629654                                                        | 39.367783                                                   | 13.464217                                                    |
| 9.690358                                                     | 51.328756                                                   | 0.32685382                                                        | 39.306889                                                   | 13.562322                                                    |
| 9.7000315                                                    | 51.454439                                                   | 0.34832436                                                        | 39.25522                                                    | 13.661133                                                    |
| 9.7102414                                                    | 51.734846                                                   | 0.40256328                                                        | 39.217397                                                   | 13.841173                                                    |
| 9.7201771                                                    | 52.077105                                                   | 0.43345385                                                        | 39.222323                                                   | 14.060908                                                    |
| 9.7300425                                                    | 52.419237                                                   | 0.46467805                                                        | 39.243572                                                   | 14.262275                                                    |
| 9.7401153                                                    | 52.881435                                                   | 0.51959077                                                        | 39.269329                                                   | 14.532137                                                    |
| 9.7501097                                                    | 53.474149                                                   | 0.55872667                                                        | 39.320893                                                   | 14.901593                                                    |
| 9.7604117                                                    | 54.004792                                                   | 0.58813411                                                        | 39.38762                                                    | 15.548085                                                    |
| 9.7702022                                                    | 54.560461                                                   | 0.63206448                                                        | 39.440784                                                   |                                                              |

| 9.7805425<br>9.7900236 | 55.279005<br>55.808544 | 0.67233044<br>0.69658376 | 39.503944<br>39.570539 | 16.010811<br>16.33892 |
|------------------------|------------------------|--------------------------|------------------------|-----------------------|
| 9.8003619<br>9.8104822 | 56.391957<br>57.040914 | 0.72944817               | 39.628308              | 16./1942 17.171452    |
| 9.82006                | 57.478549              | 0.77100322               | 39.736505              | 17.465018             |
| 9.8306678              | 57.825675              | 0.76900195<br>0.75653211 | 39.805277              | 17.625686             |
| 9.8500235              | 57.860119              | 0.74610508               | 39.921754              | 17.652117             |
| 9.8604102              | 57.792861<br>57.475554 | 0.71645395               | 39.986312              | 17.572401             |
| 9.8803224              | 57.18392               | 0.63494702               | 40.093642              | 17.052244             |
| 9.890092               | 56.897515              | 0.59641731               | 40.130326              | 16.812809             |
| 9.9102909              | 56.201928              | 0.51784832               | 40.133007              | 16.259486             |
| 9.920301               | 55.962345              | 0.49052384               | 40.12931               | 16.082312             |
| 9.9305149              | 55.665414<br>55.408516 | 0.45006032<br>0.43121912 | 40.096182              | 15.880176             |
| 9.9500166              | 55.108902              | 0.40873114               | 39.993234              | 15.513724             |
| 9.9601208              | 54.612318              | 0.37482602               | 39.964554              | 15.172403             |
| 9.9800096              | 53.643336              | 0.34580293               | 39.885692              | 14.50633              |
| 9.9900149              | 53.236138              | 0.32876823               | 39.846038              | 14.247353             |
| 10.000061              | 52.8/9421 52.59635     | 0.31920096               | 39.79649<br>39.740178  | 14.030259             |
| 10.020735              | 52.343659              | 0.30101686               | 39.677306              | 13.763152             |
| 10.030053              | 52.13635<br>51 909351  | 0.29347079               | 39.611614<br>39.52428  | 13.681393             |
| 10.050669              | 51.733641              | 0.2771426                | 39.443861              | 13.575248             |
| 10.060042              | 51.581158              | 0.26927973               | 39.344293              | 13.574039             |
| 10.080219              | 51.42645               | 0.25893101               | 39.222/58              | 13.65588              |
| 10.09044               | 51.284865              | 0.25109473               | 38.91551               | 13.803811             |
| 10.100181              | 51.244246              | 0.24807045<br>0.24119569 | 38.743397              | 13.943476             |
| 10.120551              | 51.15408               | 0.23149094               | 38.314878              | 14.280655             |
| 10.131163              | 51.099938              | 0.22765394               | 38.065034              | 14.462871             |
| 10.140358              | 50.871647              | 0.2091055                | 37.578611              | 14.712721             |
| 10.161048              | 50.662757              | 0.20461244               | 37.283737              | 14.799323             |
| 10.170152              | 50.438571              | 0.19858051               | 37.034748              | 14.835291             |
| 10.190158              | 49.965963              | 0.18637948               | 36.444665              | 14.946472             |
| 10.200105              | 49.80609               | 0.18641768               | 36.127185              | 15.064913             |
| 10.220035              | 50.023504              | 0.18934742               | 35.415333              | 15.737611             |
| 10.230126              | 50.041236              | 0.18921552               | 35.057833              | 15.99978              |
| 10.250235              | 49.822616              | 0.1848/428               | 34.727632              | 15.938269             |
| 10.26021               | 48.912606              | 0.18049644               | 34.108205              | 15.800305             |
| 10.270643              | 48.486513<br>48.316521 | 0.18935133               | 33.791596              | 15.697049             |
| 10.290291              | 48.207629              | 0.20916729               | 33.204907              | 15.914067             |
| 10.300064              | 48.357781              | 0.2435349                | 32.908176              | 16.241361             |
| 10.320166              | 40.029010<br>49.146003 | 0.31027791               | 32.393153              | 17.237013             |
| 10.330021              | 49.341809              | 0.39600729               | 32.228364              | 17.455001             |
| 10.340279              | 49.555715<br>49.743982 | 0.52089885               | 32.19611<br>32.248406  | 17.617214             |

| 10.360414 | 50.20931  | 0.72823716 | 32.344577 | 17.801119 |
|-----------|-----------|------------|-----------|-----------|
| 10.370485 | 51.577316 | 0.94558051 | 32.494256 | 18.603481 |
| 10.380246 | 52.820911 | 1.0890226  | 32.71931  | 19.311101 |
| 10.39023  | 54.080659 | 1.2613189  | 32.97725  | 19.990681 |
| 10.400552 | 55.315842 | 1.4373786  | 33.289075 | 20.62279  |
| 10.410306 | 56.147482 | 1.5530872  | 33.624729 | 20.967406 |
| 10.420256 | 56.617187 | 1.6124357  | 33,996563 | 21 044939 |
| 10.430225 | 56.783565 | 1.6045429  | 34.383573 | 20.918332 |
| 10.44031  | 56,916509 | 1 5820769  | 34 76322  | 20.774297 |
| 10.450004 | 57 10421  | 1 5351328  | 35,110728 | 20.700772 |
| 10.460208 | 57.254598 | 1.4198043  | 35.447351 | 20.618734 |
| 10.470182 | 57.388145 | 1.3135643  | 35.727517 | 20.540226 |
| 10.480234 | 57.469052 | 1.2045875  | 35.974519 | 20.441088 |
| 10.490033 | 57.105236 | 1.0472073  | 36.212255 | 20.039752 |
| 10.500048 | 56.383637 | 0.90989559 | 36.408662 | 19.363482 |
| 10.510292 | 55.879686 | 0.80689426 | 36.561205 | 18.871835 |
| 10.520177 | 55.22874  | 0.69312528 | 36.693279 | 18.299839 |
| 10.530713 | 54.414814 | 0.60084963 | 36.78424  | 17.606878 |
| 10.540146 | 53.931374 | 0.55123926 | 36.824383 | 17.190437 |
| 10.550408 | 53.429544 | 0.48720047 | 36.848127 | 16.784855 |
| 10.560824 | 52.879741 | 0.43465145 | 36.833533 | 16.358295 |
| 10.570709 | 52.511624 | 0.40968904 | 36.787794 | 16.082764 |
| 10.580027 | 52.244114 | 0.3800039  | 36.720177 | 15.909307 |
| 10.590012 | 52.071207 | 0.3492468  | 36.60323  | 15.840209 |
| 10.601069 | 51.952953 | 0.33515789 | 36.445127 | 15.83004  |
| 10.610282 | 51.905554 | 0.3189232  | 36.288473 | 15.887027 |
| 10.62045  | 51.872101 | 0.29900926 | 36.084466 | 15.993342 |
| 10.630457 | 51.815454 | 0.29196718 | 35.869173 | 16.083589 |
| 10.640297 | 51.735987 | 0.28601946 | 35.644625 | 16.168955 |
| 10.65019  | 51.706676 | 0.28746426 | 35.406588 | 16.307559 |
| 10.660032 | 51.665477 | 0.29004789 | 35.173574 | 16.434149 |
| 10.670247 | 51.60352  | 0.30440514 | 34.939313 | 16.542897 |
| 10.680046 | 51.633921 | 0.33738554 | 34.733341 | 16.703307 |
| 10.690115 | 51.681805 | 0.35515941 | 34.553118 | 16.873825 |
| 10.700271 | 51.792331 | 0.39578048 | 34.383425 | 17.074393 |
| 10.71006  | 52.260347 | 0.49247263 | 34.244363 | 17.513267 |
| 10.720205 | 52.928    | 0.55752818 | 34.171412 | 18.100966 |
| 10.730195 | 53.444338 | 0.61982677 | 34.126582 | 18.549487 |
| 10.740046 | 54.319841 | 0.7067795  | 34.071723 | 19.26283  |
| 10.75004  | 55.584634 | 0.7733178  | 34.034945 | 20.284669 |
| 10.760227 | 56.416513 | 0.82112465 | 34.008981 | 20.963834 |
| 10.770075 | 57.649382 | 0.93629034 | 33.92796  | 21.970566 |
| 10.780386 | 59.974758 | 1.0870358  | 33.837758 | 23.862201 |
| 10.790093 | 61.218405 | 1.1953613  | 33.772273 | 24.919149 |
| 10.800194 | 63.079287 | 1.3147662  | 33.640395 | 26.523555 |
| 10.810016 | 65.702037 | 1.4105602  | 33.457331 | 28.778127 |
| 10.820404 | 66.590065 | 1.4694833  | 33.286495 | 29.692066 |
| 10.830253 | 66.828401 | 1.463427   | 33.119481 | 30.111586 |
| 10.841095 | 66.881684 | 1.3971784  | 32.912065 | 30.432224 |
| 10.850555 | 66.658798 | 1.341601   | 32.721446 | 30.49859  |
| 10.860066 | 65.935259 | 1.234279   | 32.545118 | 30.185344 |
| 10.8702   | 63.725148 | 1.0489772  | 32.394935 | 28.721635 |
| 10.880018 | 62.301017 | 0.92346961 | 32.203346 | 27.850144 |
| 10.890195 | 60.714448 | 0.78754935 | 32.018259 | 26.848979 |
| 10.900148 | 57.97873  | 0.63518021 | 31.881331 | 24.912895 |
| 10.910274 | 55.980888 | 0.55192173 | 31.687312 | 23.539922 |
| 10.920031 | 54.525477 | 0.48573454 | 31.506704 | 22.571627 |
| 10.930273 | 52.577736 | U.41061999 | 31.351358 | 21.200767 |

| 10 040017  |           | 0 27012464 | 21 170000    | 00 155001  |
|------------|-----------|------------|--------------|------------|
| 10.94001/  | 51.0/0554 | 0.3/813464 | 31.1/9293    | 20.155231  |
| 10.950178  | 50.01252  | 0.3547135  | 31.004864    | 19.464166  |
| 10 960132  | 48 948758 | 0 32965098 | 30 862685    | 18 758252  |
| 10.000102  | 40.040700 | 0.02000000 | 20.002005    | 10.1100252 |
| 10.9/02/6  | 4/.9/094  | 0.318183/  | 30./18845    | 18.113885  |
| 10.980066  | 47.273268 | 0.30950368 | 30.590914    | 17.681652  |
| 10.990032  | 46.500892 | 0.29134715 | 30,491626    | 17.182413  |
| 11 000000  | AE ((7077 | 0.000070   | 20 200041    | 1.0 00000  |
| 11.000029  | 45.66/2// | 0.280673   | 30.398641    | 16.625504  |
| 11.01016   | 45.025103 | 0.27324723 | 30.310083    | 16.216505  |
| 11.020244  | 44.382373 | 0.2596722  | 30.245584    | 15.797855  |
| 11 031164  | 43 642317 | 0 25043161 | 30 185594    | 15 300743  |
| 11 041107  | 40.114005 | 0.23043101 | 20.1000074   | 14 0000745 |
| 11.04119/  | 43.114995 | 0.245402/  | 30.1331/1    | 14.963227  |
| 11.051266  | 42.627408 | 0.23674116 | 30.091561    | 14.657228  |
| 11.060562  | 42,200602 | 0.23137748 | 30.054839    | 14.391888  |
| 11 07050   | 11 02612  | 0 22054542 | 20.01270     | 1 / 10150  |
| 11.07030   | 41.03012  | 0.22034343 | 30.01370     | 14.10130   |
| 11.080501  | 41.534975 | 0.22272121 | 29.971816    | 14.024836  |
| 11.090545  | 41.291083 | 0.21706421 | 29.920197    | 13.919685  |
| 11 10029   | 41 102416 | 0 21514841 | 29 865687    | 13 856502  |
| 11 110405  | 11.102110 | 0.21011011 | 20.001000    | 12.020002  |
| 11.110405  | 40.952338 | 0.21009061 | 29.801228    | 13.83602   |
| 11.120139  | 40.825861 | 0.20298015 | 29.727625    | 13.842168  |
| 11.130357  | 40.696602 | 0.20035339 | 29.645646    | 13.852198  |
| 11 1/0633  | 10 52/92/ | 0 10/70668 | 29 56567     | 13 8350//  |
| 11.140000  | 40.524924 | 0.19479000 | 29.30307     | 13.033044  |
| 11.150295  | 40.26991/ | 0.188415/8 | 29.496543    | 13./48694  |
| 11.160937  | 39.971602 | 0.18666791 | 29.418641    | 13.638365  |
| 11.170542  | 39.705386 | 0.18594961 | 29.351113    | 13.544099  |
| 11 100370  | 30 17552  | 0 107350/7 | 20 279/5     | 13 /00703  |
| 11.100370  | J9.47JJZ  | 0.10/5594/ | 29.27045     | 13.409723  |
| 11.190362  | 39.287502 | 0.18857083 | 29.205092    | 13.46932   |
| 11.200156  | 39.190301 | 0.19385307 | 29.11895     | 13.523524  |
| 11 210257  | 39.370642 | 0.20711055 | 28,992885    | 13.81517   |
| 11 220105  | 20 755607 | 0 21210045 | 20.0552000   | 14 270002  |
| 11.220195  | 59.155001 | 0.21310945 | 20.003123    | 14.270092  |
| 11.230182  | 40.108644 | 0.21858364 | 28.729318    | 14.70008   |
| 11.240009  | 40.474902 | 0.21940556 | 28.583018    | 15.130864  |
| 11.250167  | 40.770077 | 0.21880697 | 28.42566     | 15.507294  |
| 11 260462  | 10 002122 | 0 21702607 | 20 26506     | 15 750202  |
| 11.200402  | 40.903123 | 0.21/0209/ | 20.20300     | 15.750295  |
| 11.270588  | 41.059014 | 0.22210848 | 28.086128    | 15.989962  |
| 11.280348  | 41.415078 | 0.22720777 | 27.904569    | 16.376558  |
| 11.290125  | 41.690788 | 0.23511064 | 27.721364    | 16.690458  |
| 11 200227  | 12 10/072 | 0 26120262 | 27.517721    | 17 14645   |
| 11.300327  | 42.104972 | 0.20120202 | 27.317731    | 17.14045   |
| 11.31009/  | 42.980/8/ | 0.28/48265 | 27.333951    | 1/.808063  |
| 11.320158  | 43.649968 | 0.31412185 | 27.162944    | 18.337816  |
| 11.330257  | 44.639716 | 0.39953654 | 27.009556    | 18,98571   |
| 11 3/023   | 16 113081 | 0 5206601  | 26 931244    | 20 096389  |
| 11.04020   | 40.410001 | 0.5200001  | 20.951244    | 20.090309  |
| 11.35016/  | 4/.//0918 | 0.5906444/ | 26.923388    | 20.858464  |
| 11.360256  | 49.334393 | 0.71721653 | 26.938805    | 21.677883  |
| 11.37051   | 52.03368  | 0.91272128 | 26.991164    | 23.300078  |
| 11 300273  | 53 053071 | 1 035/150  | 27 111203    | 21 220615  |
| 11.300273  | 55.955071 | 1.0334139  | 27.111003    | 24.559015  |
| 11.390261  | 55.62353  | 1.1718381  | 27.260762    | 25.15772   |
| 11.400232  | 56.781031 | 1.2925758  | 27.460201    | 25.585071  |
| 11.41037   | 57.511179 | 1.3712933  | 27.699838    | 25.690535  |
| 11 120222  | 57 670704 | 1 2060161  |              | 25 40005   |
| 11 420224  |           | 1 25270401 | 21.919192    |            |
| 11.430364  | 56./46124 | 1.353/266  | 28.328162    | 24.310546  |
| 11.440084  | 56.002767 | 1.3067479  | 28.662146    | 23.389663  |
| 11.450165  | 55.38198  | 1.2279245  | 29.029757    | 22.58499   |
| 11 160007  | 53 001507 | 1 00/3200  | 20 151000    | 21 165240  |
| 11 470022/ |           | 1.0040000  | 29.494002    | 21.100249  |
| 11.4/0053  | 52.549648 | 0.96800997 | 29.83/96     | 19.825861  |
| 11.480091  | 51.72309  | 0.86921789 | 30.201228    | 18.929632  |
| 11.490083  | 50.803169 | 0.75149627 | 30.560998    | 17.997302  |
| 11 50014   | 49 902501 | 0.6656879  | 30 877047    | 17.086636  |
| 11 510075  | 10 260100 | 0 6000010  | 21 1 = 0.017 | 16 100000  |
| C/UUIC.II  | 47.307107 | 0.0033738  | 2T.TOU2T/    | 10.4020/1  |

| 11 520609 | 10 7005                | 0 53705370              | 21 122710             | 15 967339             |
|-----------|------------------------|-------------------------|-----------------------|-----------------------|
| 11 520090 | 40.7995                | 0.001045                | 51.455740             | 15.007550             |
| 11.550857 | 48.210045              | 0.48981245              | 31.6/401              | 15.252685             |
| 11.540//9 | 47.822059              | 0.46259//1              | 31.88/14/             | 14.808926             |
| 11.55135  | 47.416977              | 0.42849041              | 32.116048             | 14.358205             |
| 11.560064 | 47.070575              | 0.40733547              | 32.296678             | 13.980703             |
| 11.570829 | 46.789733              | 0.39569383              | 32.502478             | 13.634302             |
| 11.580207 | 46.632687              | 0.38533807              | 32.673677             | 13.410337             |
| 11.590026 | 46.548321              | 0.37587367              | 32.839443             | 13.247809             |
| 11.600428 | 46.534668              | 0.37231837              | 33.004399             | 13.138357             |
| 11.610726 | 46.594784              | 0.37129349              | 33.151508             | 13.098716             |
| 11 620407 | 46.766338              | 0.37339641              | 33,26773              | 13,167978             |
| 11 630316 | 46 974428              | 0 37502468              | 33 382391             | 13 26806              |
| 11 640053 | 47 2107                | 0.38055103              | 33 479329             | 13 401943             |
| 11 650268 | 17 601596              | 0.30683789              | 33 556574             | 13 672707             |
| 11.660052 | 47.004590              | 0.39003709              | 22 622575             | 12 05/17              |
| 11.000032 | 40.000404              | 0.40500000              | 22 700260             | 13.95414<br>14.262422 |
| 11.670246 | 48.439211              | 0.42670892              | 33.700300             | 14.203433             |
| 11.680033 | 49.074162              | 0.46933385              | 33.743523             | 14./39616             |
| 11.690027 | 49.806016              | 0.49396506              | 33.805935             | 15.294919             |
| 11.700336 | 50.46013               | 0.53160173              | 33.87378              | 15.770577             |
| 11.710032 | 51.172249              | 0.60480778              | 33.949665             | 16.248618             |
| 11.720189 | 51.897543              | 0.6568031               | 34.073282             | 16.724092             |
| 11.730099 | 52.453691              | 0.7002928               | 34.21444              | 17.049156             |
| 11.740079 | 53.084758              | 0.74486033              | 34.354749             | 17.411537             |
| 11.75018  | 53.832644              | 0.77389642              | 34.500881             | 17.863859             |
| 11.760303 | 54.39158               | 0.78756063              | 34.648753             | 18.167513             |
| 11.770259 | 54.957138              | 0.78843817              | 34.767598             | 18.48359              |
| 11.780009 | 55.618162              | 0.78353761              | 34.856835             | 18.886862             |
| 11.790071 | 56.125634              | 0.77536931              | 34.935384             | 19.174931             |
| 11 800215 | 56 58026               | 0 75015394              | 34 98326              | 19 441876             |
| 11 810456 | 57 018968              | 0 7186515               | 34 9942               | 19 713568             |
| 11 820474 | 57 261925              | 0.69874451              | 31 992311             | 19 83798/             |
| 11 020750 | 57 202512              | 0.67212576              | 24.992314             | 10 726000             |
| 11.030730 | 57.202512              | 0.07212370              | 34.990904             | 19.720909             |
| 11.040400 | 56.849594              | 0.64/34304              | 35.01481              | 19.300234             |
| 11.850441 | 56.586842              | 0.63213261              | 35.023899             | 19.115945             |
| 11.860154 | 56.276199              | 0.6104656               | 35.051255             | 18.813579             |
| 11.8/082/ | 55.5//099              | 0.5/698/5               | 35.113588             | 18.202228             |
| 11.880002 | 55.107553              | 0.56147628              | 35.158197             | 17.779685             |
| 11.890539 | 54.618815              | 0.53875436              | 35.229264             | 17.340429             |
| 11.900574 | 53.908731              | 0.50644546              | 35.33198              | 16.733879             |
| 11.910199 | 53.3413                | 0.49054001              | 35.420507             | 16.239601             |
| 11.920051 | 52.841286              | 0.47144114              | 35.526067             | 15.802784             |
| 11.930154 | 52.21957               | 0.44529654              | 35.663268             | 15.274298             |
| 11.940089 | 51.682968              | 0.43276039              | 35.791244             | 14.810724             |
| 11.950172 | 51.279417              | 0.42401059              | 35.920209             | 14.462411             |
| 11.960137 | 50.930892              | 0.41353301              | 36.051207             | 14.183125             |
| 11.970132 | 50.655466              | 0.40825983              | 36.177558             | 13.965467             |
| 11.980003 | 50.442486              | 0.40254201              | 36.301953             | 13.807313             |
| 11.990069 | 50.194888              | 0.3841699               | 36.439355             | 13.633362             |
| 12.00021  | 49.904624              | 0.37142728              | 36.571267             | 13.424864             |
| 12.010634 | 49.647921              | 0.36114451              | 36.702749             | 13.24491              |
| 12.0201   | 49.397923              | 0.34327538              | 36.825517             | 13.071769             |
| 12 030905 | 49 097704              | 0 32885771              | 36 955092             | 12 862142             |
| 12 010603 | 18 8671104             | 0 31003705              | 30.555050             | 12 700100             |
| 12 050010 | -U.UU/449<br>10 600010 | 0.317100                | 37 176007             | 10 556505             |
| 12 060220 | 40.023U10<br>10 201650 | 0.JUL/122<br>0.20770122 | 37 96010              | 12.JJ0323             |
| 12 070/11 | 40.JO1000              | 0.20119133              | J1.20010<br>27 250000 | 12.4U0UZL             |
| 12.070411 | 40.100200              | 0.200109/9              | 31.338098             | 10 107146             |
| 12.0806/2 | 4/.90/439              | 0.20555406              | 31.453434             | 11 070545             |
| 12.090282 | 47.636316              | 0.25245164              | 37.541744             | 11.978547             |

| 12 100021 | 47 387547 | 0 24714579 | 37 623681 | 11 839056 |
|-----------|-----------|------------|-----------|-----------|
| 12.110173 | 47.307347 | 0.23653061 | 37 712076 | 11 609307 |
| 12.110173 | 47.129040 | 0.23033901 | 37.712970 | 11 520566 |
| 12.120647 | 40.042130 | 0.222/04   | 37.804511 | 11.000007 |
| 12.130429 | 46.599374 | 0.21811184 | 37.881613 | 11.409257 |
| 12.140439 | 46.362435 | 0.20945629 | 37.960645 | 11.28//01 |
| 12.150396 | 46.130561 | 0.19872503 | 38.032863 | 11.172205 |
| 12.160194 | 45.923213 | 0.19548593 | 38.095124 | 11.075522 |
| 12.170451 | 45.726715 | 0.19075611 | 38.154561 | 10.994092 |
| 12.180228 | 45.55394  | 0.18383011 | 38.200759 | 10.933474 |
| 12.190357 | 45.391491 | 0.18154517 | 38.240575 | 10.884923 |
| 12.200168 | 45.243727 | 0.17908955 | 38.276932 | 10.847135 |
| 12.210209 | 45.094977 | 0.17602059 | 38.312392 | 10.812415 |
| 12.220445 | 44.948025 | 0.17506468 | 38.346158 | 10.780405 |
| 12.230061 | 44.815086 | 0.17455787 | 38.377225 | 10.754626 |
| 12.240172 | 44.682782 | 0.17346428 | 38,405586 | 10.734193 |
| 12.250226 | 44.56124  | 0.17302385 | 38.429836 | 10.722442 |
| 12 260382 | 44 444498 | 0 17260434 | 38 451738 | 10 714934 |
| 12.200302 | 44 350958 | 0 17621066 | 38 459969 | 10 724136 |
| 12.2703   | 4.330330  | 0.17054620 | 30,455505 | 10.724130 |
| 12.200312 | 44.291907 | 0.17954029 | 30.401100 | 10.704130 |
| 12.291013 | 44.240323 | 0.10337319 | 30.4J/4IZ | 10.010099 |
| 12.30013  | 44.265424 | 0.20264364 | 38.439351 | 10.906112 |
| 12.310051 | 44.381029 | 0.22113608 | 38.420878 | 11.0/2/32 |
| 12.320339 | 44.543318 | 0.2394245  | 38.412056 | 11.261744 |
| 12.330178 | 44.850299 | 0.30028588 | 38.412686 | 11.496929 |
| 12.340326 | 45.443427 | 0.39030457 | 38.476835 | 11.870789 |
| 12.350241 | 46.058391 | 0.43698663 | 38.596756 | 12.241578 |
| 12.360064 | 46.816102 | 0.52401263 | 38.729062 | 12.648364 |
| 12.370208 | 48.074264 | 0.64997502 | 38.878325 | 13.35649  |
| 12.380156 | 49.348688 | 0.71958176 | 39.07946  | 14.074053 |
| 12.390091 | 50.665933 | 0.797818   | 39.278747 | 14.785613 |
| 12.400457 | 52.06256  | 0.87573411 | 39.498277 | 15.515041 |
| 12.41036  | 53.16875  | 0.91735861 | 39.734472 | 16.038879 |
| 12.420458 | 53.931497 | 0.93279717 | 39.997172 | 16.298244 |
| 12.430199 | 54.333432 | 0.92382709 | 40.268694 | 16.305176 |
| 12 440478 | 54 625246 | 0.9125725  | 40 548946 | 16.217678 |
| 12 450346 | 54 884259 | 0 89479583 | 40 808502 | 16 141666 |
| 12.100010 | 55 064582 | 0 85444185 | 41 053745 | 16 057375 |
| 12.40015  | 55 228859 | 0.03444103 | 41 275801 | 15 974482 |
| 12.470004 | 55 354956 | 0.78475071 | 41 488702 | 15 886382 |
| 12.400114 | 55 212603 | 0.70901/03 | A1 717037 | 15 63196  |
| 12.490000 | 51 012510 | 0.70091403 | 41.02/222 | 15 207206 |
| 12.500017 | 54.043310 | 0.04094052 | 41.924525 | 14 022241 |
| 12.510470 | 54.520500 | 0.59919691 | 42.119003 | 14.032341 |
| 12.520297 | 54.1///32 | 0.54555682 | 42.296109 | 14.462108 |
| 12.530278 | 53.842109 | 0.50692667 | 42.446099 | 14.113835 |
| 12.540515 | 53.619166 | 0.485/385/ | 42.5/0199 | 13.865381 |
| 12.550549 | 53.479102 | 0.45938345 | 42.662744 | 13.720956 |
| 12.560417 | 53.405324 | 0.43682821 | 42.719661 | 13.656315 |
| 12.570636 | 53.361727 | 0.42407916 | 42.761831 | 13.624891 |
| 12.580127 | 53.291345 | 0.40695037 | 42.789321 | 13.599538 |
| 12.591024 | 53.161047 | 0.38845112 | 42.801938 | 13.558445 |
| 12.601077 | 53.038441 | 0.38044641 | 42.801951 | 13.52398  |
| 12.610429 | 52.893501 | 0.36747104 | 42.799886 | 13.48336  |
| 12.620534 | 52.658907 | 0.34876727 | 42.794743 | 13.389694 |
| 12.630354 | 52.431117 | 0.3410889  | 42.779148 | 13.299034 |
| 12.6405   | 52.184942 | 0.33069298 | 42.762278 | 13.201624 |
| 12.650487 | 51.944348 | 0.3213147  | 42.738974 | 13.109859 |
| 12.660283 | 51.733587 | 0.31849081 | 42.709674 | 13.038549 |
| 12.670147 | 51.561212 | 0.31853494 | 42.675873 | 12.99472  |
|           |           |            |           |           |

| 12.680477 | 51.43567               | 0.32186381 | 42.637662              | 12.982426 |
|-----------|------------------------|------------|------------------------|-----------|
| 12.690569 | 51.338375              | 0.32419384 | 42.603177              | 12.987024 |
| 12.700189 | 51.271535              | 0.33250599 | 42.576466              | 12.99369  |
| 12.710185 | 51.257938              | 0.35676424 | 42.569611              | 12.9989   |
| 12.720026 | 51.255786              | 0.3700684  | 42.58834               | 13.000899 |
| 12.730148 | 51.290678              | 0.38613468 | 42.616711              | 13.011128 |
| 12.740098 | 51.46814               | 0.41733525 | 42.628482              | 13.109939 |
| 12.750208 | 51.823486              | 0.43844305 | 42.64346               | 13.34642  |
| 12.760125 | 52.184957              | 0.45280947 | 42.655028              | 13.584974 |
| 12.770114 | 52.651894              | 0.47151895 | 42.640656              | 13.904256 |
| 12.780181 | 53.217558              | 0.48505761 | 42.615532              | 14.303904 |
| 12.790169 | 53.6696L               | 0.49215303 | 42.593213              | 14.614586 |
| 12.000402 | 54.075285<br>57 752511 | 0.5013525  | 42.558221              | 14.0000/9 |
| 12.810175 | 54.455511<br>57.761893 | 0.50952555 | 42.517004              | 15 3472   |
| 12.02040  | 55 003914              | 0.52333553 | 42.47555               | 15 514133 |
| 12.840056 | 55,203949              | 0.53212743 | 42.382837              | 15.666832 |
| 12.850447 | 55.365625              | 0.53650228 | 42.337807              | 15.792845 |
| 12.860371 | 55.454088              | 0.53801898 | 42.296023              | 15.876216 |
| 12.870292 | 55.475479              | 0.53509929 | 42.255255              | 15.920821 |
| 12.880899 | 55.461033              | 0.53253511 | 42.210685              | 15.941292 |
| 12.890645 | 55.402374              | 0.52410513 | 42.173048              | 15.934771 |
| 12.900107 | 55.207324              | 0.50370123 | 42.144904              | 15.831741 |
| 12.910169 | 54.976334              | 0.49145548 | 42.105714              | 15.703791 |
| 12.920216 | 54.707288              | 0.47106527 | 42.072177              | 15.554533 |
| 12.930317 | 54.290015              | 0.43713008 | 42.047619              | 15.300732 |
| 12.940412 | 53.872948              | 0.42031389 | 42.006816              | 15.046063 |
| 12.950388 | 53.481472              | 0.40327246 | 41.971096              | 14.819069 |
| 12.96006  | 53.002739              | 0.37885842 | 41.954854              | 14.534059 |
| 12.970208 | 52.490555              | 0.36576756 | 41.931432              | 14.224784 |
| 12.980148 | 52.048831              | 0.3542594  | 41.912316              | 13.9/3983 |
| 12.990086 | 51.563519              | 0.33003773 | 41.914517              | 13.690433 |
| 13.000117 | 51.04536               | 0.31498828 | 41.913117              | 13.3/3866 |
| 13.020358 | 50.161073              | 0.30343411 | 41.910393              | 12 865848 |
| 13 03034  | 49 73896               | 0.20407930 | 41 917839              | 12.601040 |
| 13.041295 | 49.350168              | 0.26449937 | 41.911197              | 12.415845 |
| 13.050822 | 49.036189              | 0.25222084 | 41.905267              | 12.262626 |
| 13.060129 | 48.738502              | 0.24285058 | 41.892948              | 12.12228  |
| 13.070717 | 48.437042              | 0.23649043 | 41.876063              | 11.992252 |
| 13.080018 | 48.161175              | 0.22422284 | 41.870794              | 11.868931 |
| 13.09019  | 47.816268              | 0.2104571  | 41.871078              | 11.695299 |
| 13.101008 | 47.478507              | 0.2050498  | 41.863801              | 11.533074 |
| 13.110318 | 47.201793              | 0.19801759 | 41.856622              | 11.405776 |
| 13.120201 | 46.940526              | 0.19083449 | 41.833981              | 11.302578 |
| 13.13006  | 46.711424              | 0.18855284 | 41.803836              | 11.225843 |
| 13.14031  | 46.503587              | 0.18406209 | 41.761787              | 11.176209 |
| 13.150357 | 46.322289              | 0.17734042 | 41.705892              | 11.152614 |
| 13.160012 | 46.161666              | 0.17531238 | 41.645566              | 11.141542 |
| 13.1/0/44 | 45.985682              | 0.1/149/42 | 41.5/6121              | 11.132428 |
| 13.100439 | 45.825771              | 0.16519292 | 41.307441<br>A1 A32107 | 11 11/602 |
| 13 200314 | 45.050504              | 0.16446791 | 41.452197              | 11 112409 |
| 13.210128 | 45.364919              | 0.16456945 | 41.257567              | 11.134119 |
| 13.220252 | 45.24884               | 0.16479959 | 41.15546               | 11.175248 |
| 13.230484 | 45.134639              | 0.16496735 | 41.048782              | 11.219541 |
| 13.240309 | 45.027297              | 0.16318235 | 40.941974              | 11.264705 |
| 13.250519 | 44.908083              | 0.16219475 | 40.828138              | 11.305251 |

| 13 260219 | 44 783081 | 0 16104869 | 40 71996              | 11 333491          |
|-----------|-----------|------------|-----------------------|--------------------|
| 13 270269 | 11.709001 | 0 162128   | 10.599675             | 11 362038          |
| 12 2006   | 44.059020 | 0.16262767 | 40.399073             | 11 11/066          |
| 12.2000   | 44.559019 | 0.10302707 | 40.47010              | 11.414000          |
| 13.290214 | 44.4/4646 | 0.1669/81  | 40.346549             | 11.403443          |
| 13.300299 | 44.456436 | 0.1/950981 | 40.202542             | 11.555531          |
| 13.310199 | 44.547933 | 0.19189129 | 40.057961             | 11.720965          |
| 13.320751 | 44.684906 | 0.20689256 | 39.90554              | 11.910225          |
| 13.330423 | 45.016787 | 0.25539807 | 39.748675             | 12.184564          |
| 13.340227 | 45.752844 | 0.32167777 | 39.607997             | 12.705667          |
| 13.350257 | 46.552011 | 0.35571578 | 39.506338             | 13.25586           |
| 13.360206 | 47.478464 | 0.42136692 | 39.407965             | 13.841377          |
| 13.370102 | 48.732163 | 0.51353405 | 39.332139             | 14.619121          |
| 13.380168 | 49.890254 | 0.5625219  | 39.307116             | 15.311597          |
| 13.39027  | 50.954466 | 0.62652888 | 39.292864             | 15.897825          |
| 13.400211 | 52.051613 | 0.69851265 | 39.293602             | 16.495699          |
| 13.410065 | 52.978817 | 0.73678803 | 39.326403             | 16.969538          |
| 13.420059 | 53.650219 | 0.75541844 | 39.369885             | 17.260991          |
| 13 430212 | 54 136141 | 0.75613401 | 39.414542             | 17,445619          |
| 13 440198 | 54 496136 | 0 7530576  | 39 454541             | 17 547925          |
| 13 450384 | 54 720843 | 0.74355634 | 39 497561             | 17 569749          |
| 13 460337 | 54 706999 | 0.72256640 | 30 5/0761             | 17 /5052           |
| 12 470011 | 54.700000 | 0.72230049 | 39.349701             | 17.43932           |
| 13.470011 | 54.615/42 | 0.70723192 | 39.594202             | 17.301441          |
| 13.480012 | 54.499556 | 0.68806861 | 39.642375             | 1/.146938          |
| 13.490099 | 54.118539 | 0.6429493  | 39.723385             | 16.81/641          |
| 13.500142 | 53.530563 | 0.60567762 | 39.801683             | 16.330267          |
| 13.510113 | 53.070321 | 0.57719754 | 39.872787             | 15.953339          |
| 13.520107 | 52.506485 | 0.53147684 | 39.968566             | 15.514214          |
| 13.530696 | 51.781244 | 0.49126303 | 40.068598             | 14.951066          |
| 13.540396 | 51.261009 | 0.46718206 | 40.149287             | 14.553846          |
| 13.55057  | 50.686526 | 0.42949702 | 40.252843             | 14.125659          |
| 13.56015  | 50.083074 | 0.3984572  | 40.352122             | 13.673879          |
| 13.57051  | 49.567954 | 0.38113328 | 40.4448               | 13.294427          |
| 13.58054  | 49.099538 | 0.35647538 | 40.547406             | 12.953415          |
| 13.590451 | 48.615789 | 0.33268305 | 40.654101             | 12.596575          |
| 13.600047 | 48.236671 | 0.32283581 | 40.745273             | 12.320832          |
| 13.611123 | 47.846956 | 0.30604709 | 40.855966             | 12.043285          |
| 13.62051  | 47.531953 | 0.29038385 | 40.946724             | 11.823782          |
| 13.630317 | 47.259852 | 0.28387779 | 41.030852             | 11.640017          |
| 13.640191 | 47.020659 | 0.27576285 | 41.111444             | 11.487938          |
| 13.65004  | 46.825249 | 0.27082958 | 41.179605             | 11.3773            |
| 13.66057  | 46.66143  | 0.27036402 | 41,245742             | 11,294998          |
| 13.670192 | 46.56043  | 0.27656845 | 41,296991             | 11,259437          |
| 13 680204 | 46 541603 | 0 29288822 | 41 338077             | 11 290852          |
| 13 690366 | 46 57093  | 0.20200022 | 41 387478             | 11 360292          |
| 13 700174 | 46.57055  | 0.31872511 | A1 A31731             | 11 /53151          |
| 13.700174 | 40.050708 | 0.31072311 | 41.431/31             | 11 625221          |
| 12 720002 | 40.000009 | 0.3030/932 | 41.4/294<br>A1 5A1000 | 11 0 <i>4</i> 7777 |
| 12.720003 | 47.103002 | 0.30004010 | 41.541285             | 10 07576           |
| 13./3013  | 47.5215   | 0.413/5034 | 41.619361             | 12.0/5/6           |
| 13.740131 | 47.946802 | 0.45129857 | 41.689191             | 12.34966/          |
| 13./50136 | 48.445513 | 0.4/5402/8 | 41.//0338             | 12.0/8015          |
| 13./60439 | 48.903155 | 0.49113199 | 41.85/516             | 12.96/942          |
| 13.770116 | 49.378385 | 0.51308763 | 41.912993             | 13.272877          |
| 13.780264 | 50.00245  | 0.53158018 | 41.955378             | 13.697052          |
| 13.790109 | 50.532688 | 0.54189388 | 41.991777             | 14.052943          |
| 13.800004 | 51.107336 | 0.55219952 | 41.99112              | 14.456391          |
| 13.810075 | 51.819853 | 0.55909012 | 41.954609             | 14.984286          |
| 13.82073  | 52.425515 | 0.56175123 | 41.911135             | 15.43428           |
| 13.830307 | 52.840563 | 0.56043232 | 41.849698             | 15.758711          |

| 13.840406<br>13.850151<br>13.860136 | 53.256266<br>53.521123<br>53.590799 | 0.5563377<br>0.55207868<br>0.53488909 | 41.759059<br>41.669184<br>41.58786 | 16.107757<br>16.342575<br>16.437023 |
|-------------------------------------|-------------------------------------|---------------------------------------|------------------------------------|-------------------------------------|
| 13.870554<br>13.880113              | 53.194822<br>52.790078              | 0.50021594                            | 41.539791<br>41.486757             | 16.165704<br>15.88159               |
| 13.89021                            | 52.315802                           | 0.45874058                            | 41.454196                          | 15.542124                           |
| 13.900167                           | 51.64/265                           | 0.42265235                            | 41.456325                          | 15.043963                           |
| 13.920151                           | 50.528305                           | 0.38299309                            | 41.44696                           | 14.213828                           |
| 13.930095                           | 49.957709                           | 0.35080501                            | 41.466595                          | 13.792062                           |
| 13.950089                           | 49.070915                           | 0.32352343                            | 41.463285                          | 13.148219                           |
| 13.960125                           | 48.804362                           | 0.3015213                             | 41.425887                          | 12.982587                           |
| 13.970314                           | 48.633339                           | 0.29051568                            | 41.360339                          | 12.898089                           |
| 13.990114                           | 48.352246                           | 0.26106293                            | 41.210478                          | 12.795557                           |
| 14.000054                           | 48.136784                           | 0.25093026                            | 41.128506                          | 12.689277                           |
| 14.010374                           | 47.686351                           | 0.24479929                            | 41.043397                          | 12.58356                            |
| 14.030628                           | 47.454791                           | 0.23162738                            | 40.876416                          | 12.36307                            |
| 14.040081                           | 47.276579                           | 0.22896601                            | 40.790331                          | 12.292277                           |
| 14.060468                           | 47.019848                           | 0.21698382                            | 40.560654                          | 12.26381                            |
| 14.070197                           | 46.924745                           | 0.21406067                            | 40.440261                          | 12.277267                           |
| 14.080584                           | 46.797043                           | 0.207286                              | 40.312443                          | 12.27733                            |
| 14.100474                           | 46.452947                           | 0.19854108                            | 40.065448                          | 12.208149                           |
| 14.110663                           | 46.24581                            | 0.19322216                            | 39.947349                          | 12.149628                           |
| 14.120604                           | 45.981901                           | 0.18714629                            | 39.84603                           | 12.039653                           |
| 14.140841                           | 45.458675                           | 0.18233026                            | 39.645561                          | 11.822546                           |
| 14.150954                           | 45.208966                           | 0.1789235                             | 39.549095                          | 11.72451                            |
| 14.170409                           | 45.001823                           | 0.1751053                             | 39.4594<br>39.362102               | 11.586763                           |
| 14.180109                           | 44.583384                           | 0.17033439                            | 39.272102                          | 11.523481                           |
| 14.19062                            | 44.366305                           | 0.16860411                            | 39.172667                          | 11.45961                            |
| 14.210888                           | 43.992294                           | 0.16020211                            | 38.974035                          | 11.3657                             |
| 14.220368                           | 43.836084                           | 0.15827454                            | 38.873292                          | 11.334863                           |
| 14.230073                           | 43.685826                           | 0.15590769                            | 38.769823                          | 11.30837                            |
| 14.250058                           | 43.337783                           | 0.15089844                            | 38.578733                          | 11.204645                           |
| 14.260308                           | 43.152451                           | 0.15034329                            | 38.48852                           | 11.140653                           |
| 14.270199                           | 42.993729                           | 0.15/163/9                            | 38.397761                          | 11.089094                           |
| 14.290191                           | 42.847419                           | 0.17256658                            | 38.206927                          | 11.119178                           |
| 14.300007                           | 42.931485                           | 0.2004613                             | 38.084414                          | 11.251916                           |
| 14.320151                           | 43.659626                           | 0.25664089                            | 37.845921                          | 11.932281                           |
| 14.330007                           | 44.253292                           | 0.33662189                            | 37.747385                          | 12.363142                           |
| 14.340012                           | 45.263109                           | 0.45957827                            | 37.716987                          | 13.015309                           |
| 14.360075                           | 47.457752                           | 0.67215739                            | 37.817759                          | 14.325428                           |
| 14.370009                           | 49.424995                           | 0.91646616                            | 37.894234                          | 15.547982                           |
| 14.380151                           | 51.423984<br>53.209409              | 1.0900708                             | 38.06395                           | 16.786315                           |
| 14.400319                           | 54.977422                           | 1.5393412                             | 38.464177                          | 18.872837                           |
| 14.410035                           | 56.227964                           | 1.7086316                             | 38.72333                           | 19.531099                           |

| 14.420313             | 56.952319               | 1.8206277                | 39.042762              | 19.790397              |
|-----------------------|-------------------------|--------------------------|------------------------|------------------------|
| 14.430191             | 57.110804               | 1.8496661                | 39.393354              | 19.664724              |
| 14.440393             | 57.145329               | 1.8531635                | 39.761524              | 19.446645              |
| 14.450132             | 57.12759                | 1.8141336                | 40.125993              | 19.225831              |
| 14.460066             | 56.764231               | 1.690153                 | 40.527278              | 18.774268              |
| 14.470217             | 56.31891                | 1.5599243                | 40.914611              | 18.263534              |
| 14.480276             | 56.022714               | 1.4272594                | 41.274053              | 17.893442              |
| 14.490219             | 55.567139               | 1.2399172                | 41.621441              | 17.439351              |
| 14.500017             | 55.045841               | 1.0758471                | 41.909855              | 16.942652              |
| 14.510044             | 54.687332               | 0.94542618               | 42.145653              | 16.585788              |
| 14.520611             | 54.2331                 | 0.78797934               | 42.358309              | 16.180255              |
| 14.530022             | 53.717618               | 0.67567551               | 42.490546              | 15.738415              |
| 14.540936             | 53.270724               | 0.59596622               | 42.584398              | 15.352306              |
| 14.551069             | 52.814101               | 0.51475338               | 42.651094              | 14.974964              |
| 14.560235             | 52.343524               | 0.4578197                | 42.678512              | 14.590484              |
| 14.570817             | 51.935137               | 0.42587014               | 42.673351              | 14.257322              |
| 14.581652             | 51.576095               | 0.39048382               | 42.653956              | 13.97513               |
| 14.590015             | 51.308895               | 0.36759521               | 42.624391              | 13.770558              |
| 14.60043              | 51.053994               | 0.35571726               | 42.57051               | 13.579791              |
| 14.61012              | 50.869415               | 0.34679498               | 42.508616              | 13.455904              |
| 14.620025             | 50.773264               | 0.34304614               | 42.423318              | 13.424583              |
| 14.630529             | 50.72776                | 0.34273346               | 42.327518              | 13.439658              |
| 14.640266             | 50.720532               | 0.3479634                | 42.224963              | 13.497833              |
| 14.650255             | 50.863898               | 0.36549146               | 42.09247               | 13.700889              |
| 14.660278             | 51.06565                | 0.37537796               | 41.965681              | 13.952339              |
| 14.670024             | 51.294641               | 0.3958151                | 41.827453              | 14.229425              |
| 14.680396             | 51.743957               | 0.43808959               | 41.655329              | 14.69613               |
| 14.690289             | 52.212653               | 0.4600938                | 41.510784              | 15.173546              |
| 14.700112             | 52.596508               | 0.48763546               | 41.37267               | 15.559364              |
| 14.710085             | 53.092012               | 0.54140092               | 41.237082              | 15.971919              |
| 14.720027             | 53.573311               | 0.57655164               | 41.133933              | 16.360142              |
| 14.730135             | 53.975958               | 0.60982052               | 41.040728              | 16.659852              |
| 14.740007             | 54.559488               | 0.65756608               | 40.926323              | 17.077232              |
| 14.750194             | 55.415824               | 0.69438076               | 40.809605              | 17.707699              |
| 14.760278             | 56.03026                | 0.71845239               | 40.697778              | 18.147645              |
| 14.770218             | 56.608557               | 0.74560831               | 40.581964              | 18.564078              |
| 14.780144             | 57.042911               | 0.7683435                | 40.479273              | 18.871611              |
| 14.790404             | 57.271753               | 0.78628444               | 40.392991              | 19.020808              |
| 14.800379             | 57.264632               | 0.81121324               | 40.342968              | 18.993069              |
| 14.81088              | 57.058364               | 0.83561159               | 40.32995               | 18.810629              |
| 14.820287             | 56.907575               | 0.84193034               | 40.336257              | 18.675243              |
| 14.830845             | 56.617727               | 0.82223621               | 40.37372               | 18.434043              |
| 14.840624             | 56.156002               | 0.78659283               | 40.423335              | 18.060035              |
| 14.850046             | 55.829144               | 0.76323045               | 40.459161              | 17.792661              |
| 14.860263             | 55.510355               | 0.72911868               | 40.499588              | 17.537029              |
| 14.8/009/             | 55.1588/2               | 0.6889/233               | 40.532685              | 17.263186              |
| 14.880406             | 54.88/265               | 0.664/5609               | 40.54/286              | 1/.052/6/              |
| 14.890/83             | 54.662315               | 0.63/04604               | 40.557096              | 16.88807               |
| 14.90008              | 54.345/1/               | 0.60355144               | 40.5704                | 16.658854              |
| 14.910456             | 54.025288               | 0.58307662               | 40.569389              | 16.428286              |
| 14.920244             | 53.733562               | 0.56360486               | 40.5/312/              | 16.225215              |
| 14.930338             | JJ.JULZ/6               | 0.53522299               | 40.392344              | 15.920524              |
| 14.94041/             | JZ. YI4483<br>50 564100 | 0.3200269                | 40.00194/              | 15 110000              |
| 14.900220             | JZ.J04123<br>52 100206  | U.4303/30/<br>0 /5710001 | 40.010323<br>10 612775 | 15 007010              |
| 1/ 07001              | JZ,1U0290<br>51 600106  | 0.4J/10301<br>0 /335155  | 40.042//J              | 11 761102              |
| 14.97001<br>14.980156 | 51 21/011               | 0.4323133<br>0 11050065  | 40.030320              | 14./04492<br>11 /09505 |
| 14 990027             | 50 734848               | 0.37406044               | 40.677779              | 14 15888               |
|                       | 0.01010                 | 0.07100011               | 10.01111               | - · · · 0000           |

| 15.000038 | 50.179697 | 0.35088185 | 40.694835 | 13.763668 |
|-----------|-----------|------------|-----------|-----------|
| 15.010469 | 49.699995 | 0.33485963 | 40.709816 | 13.429601 |
| 15.02065  | 49.21592  | 0.30910454 | 40.7453   | 13.087402 |
| 15.03002  | 48.755782 | 0.29309462 | 40.777369 | 12.754905 |
| 15.04055  | 48.336135 | 0.28247574 | 40.808642 | 12.459334 |
| 15.050347 | 47.964891 | 0.26504337 | 40.849971 | 12.199434 |
| 15.060345 | 47.584595 | 0.25060567 | 40.893315 | 11.929849 |
| 15.070504 | 47.266806 | 0.24365317 | 40.930879 | 11.710399 |
| 15.080554 | 46.980897 | 0.23084473 | 40.974139 | 11.514049 |
| 15.090799 | 46.699238 | 0.21851654 | 41.016975 | 11.31803  |
| 15.100168 | 46.482932 | 0.21431587 | 41.04907  | 11.171859 |
| 15.110185 | 46.284367 | 0.20746371 | 41.077765 | 11.041763 |
| 15.120154 | 46.139023 | 0.20042899 | 41.083674 | 10.959533 |
| 15.130378 | 46.023838 | 0.19807774 | 41.08001  | 10.904759 |
| 15.140069 | 45.947808 | 0.19412332 | 41.060569 | 10.884832 |
| 15.150466 | 45.911472 | 0.18861048 | 41.012188 | 10.909748 |
| 15.160752 | 45.895345 | 0.18725002 | 40.954837 | 10.953237 |
| 15.170068 | 45.890604 | 0.18658239 | 40.894435 | 11.003499 |
| 15.180039 | 45.904133 | 0.18636005 | 40.815519 | 11.077495 |
| 15.190216 | 45.922544 | 0.18647945 | 40.731583 | 11.158302 |
| 15.200385 | 45.923678 | 0.18581266 | 40.648671 | 11.224962 |
| 15.210179 | 45.897107 | 0.18402239 | 40.572268 | 11.265334 |
| 15.220716 | 45.840566 | 0.18340802 | 40.491045 | 11.285443 |
| 15.23025  | 45.777186 | 0.18293278 | 40.417702 | 11.293074 |
| 15.24006  | 45.721138 | 0.18109026 | 40.330151 | 11.310457 |
| 15.250054 | 45.689657 | 0.18005384 | 40.230551 | 11.351692 |
| 15.260029 | 45.659512 | 0.17867789 | 40.125376 | 11.395508 |
| 15.27013  | 45.663663 | 0.17948532 | 39.997697 | 11.468889 |
| 15.28034  | 45.726964 | 0.18103703 | 39.854102 | 11.59294  |
| 15.290903 | 45.800788 | 0.18559515 | 39.700988 | 11.723323 |
| 15.300032 | 45.92522  | 0.20160112 | 39.555777 | 11.871213 |
| 15.310486 | 46.179608 | 0.22076531 | 39.394507 | 12.117259 |
| 15.320255 | 46.429378 | 0.2446668  | 39.256372 | 12.337802 |
| 15.330069 | 46.84852  | 0.3333561  | 39.142954 | 12.62166  |
| 15.340387 | 47.659283 | 0.47684988 | 39.130595 | 13.112404 |
| 15.35031  | 48.457909 | 0.55667105 | 39.206095 | 13.574183 |
| 15.360176 | 49.398403 | 0.70203931 | 39.312244 | 14.07208  |
| 15.370075 | 50.940454 | 0.91960713 | 39.450055 | 14.969441 |
| 15.380064 | 52.467217 | 1.067278   | 39.669883 | 15.848812 |
| 15.390227 | 53.985442 | 1.2391507  | 39.904886 | 16.688121 |
| 15.400047 | 55.570707 | 1.4201538  | 40.139755 | 17.583595 |
| 15.41008  | 56.914859 | 1.5554493  | 40.419134 | 18.295569 |
| 15.4204   | 57.823074 | 1.6435329  | 40.729792 | 18.685266 |
| 15.430047 | 58.324719 | 1.6671741  | 41.037516 | 18.821475 |
| 15.440166 | 58.678573 | 1.6709687  | 41.360857 | 18.843718 |
| 15.45025  | 58.768212 | 1.6308804  | 41.710091 | 18.68689  |
| 15.460055 | 58.281688 | 1.5157201  | 42.110014 | 18.119142 |
| 15.470093 | 57.637003 | 1.3988236  | 42.509099 | 17.425846 |
| 15.480257 | 57.205473 | 1.2884503  | 42.892968 | 16.91522  |
| 15.490023 | 56.807772 | 1.1684524  | 43.244015 | 16.473393 |
| 15.500065 | 56.499793 | 1.068571   | 43.560126 | 16.111034 |
| 15.510143 | 56.340436 | 0.9934776  | 43.835077 | 15.882787 |
| 15.520346 | 56.159778 | 0.89692483 | 44.089224 | 15.680325 |
| 15.530018 | 55.903141 | 0.81308095 | 44.292299 | 15.438/91 |
| 15.541034 | 55.664U82 | 0./4421526 | 44.48181  | 10.219//6 |
| 15.331142 | JJ.JJ4539 | 0.000330/6 | 44.634695 | 14.9805/1 |
| 15.36U313 | 55.00190/ | 0.59459114 | 44./36269 | 14./19023 |
| 12.2/128/ | J4.664886 | 0.54983111 | 44.814952 | 14.4/9207 |

| 15.58102954.37735815.59082554.075685                                              | 0.50194597<br>0.45810632                                         | 44.862436<br>44.877573                                        | 14.291797<br>14.102392                                        |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|
| 15.600343   53.835112     15.600343   53.607570                                   | 0.43760561                                                       | 44.866897                                                     | 13.961562                                                     |
| 15.620656 53.337431                                                               | 0.38952945                                                       | 44.84555                                                      | 13.683525                                                     |
| 15.630055 53.125932                                                               | 0.38096668                                                       | 44.769296                                                     | 13.568826                                                     |
| 15.640427 52.914015                                                               | 0.37237709                                                       | 44.724247                                                     | 13.455384                                                     |
| 15.650705 52.700031                                                               | 0.36542983                                                       | 44.686737                                                     | 13.330089                                                     |
| 15.660476 52.52141<br>15.670582 52.369155                                         | 0.36352963                                                       | 44.650157<br>44.619528                                        | 13.227763                                                     |
| 15.680451 52.24905                                                                | 0.37395905                                                       | 44.604795                                                     | 13.053127                                                     |
| 15.690119 52.154068                                                               | 0.3792541                                                        | 44.600487                                                     | 12.983881                                                     |
| 15.700212 52.119863                                                               | 0.39880541                                                       | 44.602982                                                     | 12.943439                                                     |
| 15.71025 52.218495                                                                | 0.45234639                                                       | 44.628124                                                     | 12.963599                                                     |
| 15.720166 52.380241<br>15.730207 52.580432                                        | 0.48504055                                                       | 44.6954/5                                                     | 13.023666<br>13.092538                                        |
| 15.740135 52.866894                                                               | 0.55747728                                                       | 44.882694                                                     | 13.201935                                                     |
| 15.750023 53.211063                                                               | 0.58372194                                                       | 44.999237                                                     | 13.350724                                                     |
| 15.760424 53.560969                                                               | 0.59969025                                                       | 45.129507                                                     | 13.491137                                                     |
| 15.770034 53.952312                                                               | 0.62179849                                                       | 45.227757                                                     | 13.664587                                                     |
| 15.780398     54.524863       15.790561     55.065232                             | 0.64314227                                                       | 45.318422                                                     | 13.9/246<br>14 261857                                         |
| 15.801182 55.723453                                                               | 0.67993741                                                       | 45.436995                                                     | 14.65375                                                      |
| 15.810638 56.475398                                                               | 0.69694913                                                       | 45.438214                                                     | 15.150972                                                     |
| 15.820278 57.120996                                                               | 0.70915962                                                       | 45.43606                                                      | 15.570159                                                     |
| 15.830425 57.777093                                                               | 0.72820773                                                       | 45.398276                                                     | 16.018863                                                     |
| 15.840434 58.543857<br>15.85006 59.116059                                         | 0.74918227                                                       | 45.326099                                                     | 16.587829                                                     |
| 15.860036 59.497352                                                               | 0.75157648                                                       | 45.188203                                                     | 17.313257                                                     |
| 15.870834 59.582296                                                               | 0.71186934                                                       | 45.106741                                                     | 17.407432                                                     |
| 15.880065 59.545465                                                               | 0.68907765                                                       | 45.021942                                                     | 17.405315                                                     |
| 15.890589 59.382302                                                               | 0.64817788                                                       | 44.923485                                                     | 17.325037                                                     |
| 15.900338 58.98/1/2                                                               | 0.59386/89                                                       | 44.835207                                                     | 16 922956                                                     |
| 15.920018 58.200527                                                               | 0.5354278                                                        | 44.614262                                                     | 16.597753                                                     |
| 15.930144 57.603114                                                               | 0.49485689                                                       | 44.527418                                                     | 16.218505                                                     |
| 15.940062 57.03141                                                                | 0.47382343                                                       | 44.431034                                                     | 15.854155                                                     |
| 15.950282 56.486034                                                               | 0.44990017                                                       | 44.348181                                                     | 15.515473                                                     |
| 15.960163 55./98///                                                               | 0.41346/64                                                       | 44.310333                                                     | 15.05/69                                                      |
| 15.980051 54.522338                                                               | 0.37846962                                                       | 44.230789                                                     | 14.202008                                                     |
| 15.990055 53.99144                                                                | 0.35186285                                                       | 44.197101                                                     | 13.863762                                                     |
| 16.000032 53.535697                                                               | 0.33556649                                                       | 44.146433                                                     | 13.584428                                                     |
| 16.010113 53.17341                                                                | 0.32287426                                                       | 44.084562                                                     | 13.384208                                                     |
| 16.020332 52.85452<br>16.030595 52.572044                                         | 0.30088571                                                       | 44.00/898                                                     | 13.232395<br>13.116217                                        |
| 16.040336 52.34006                                                                | 0.2791571                                                        | 43.804352                                                     | 13.040047                                                     |
| 16.051599 52.080583                                                               | 0.26552128                                                       | 43.674151                                                     | 12.976471                                                     |
| 16.06024 51.881234                                                                | 0.25785212                                                       | 43.563978                                                     | 12.934226                                                     |
| 16.07108 51.635608                                                                | 0.25162267                                                       | 43.426697                                                     | 12.884924                                                     |
| 16.080391 51.37223<br>16.090012 51.012043                                         | 0.24004/13                                                       | 43.324259                                                     | 12./99159                                                     |
| 16.100549 50.635988                                                               | 0 22814824                                                       | 43 231796                                                     | 12 633669                                                     |
| 16.110818 50.28073                                                                | 0.22814824<br>0.2235481                                          | 43.231796<br>43.126883                                        | 12.633669                                                     |
|                                                                                   | 0.22814824<br>0.2235481<br>0.21790273                            | 43.231796<br>43.126883<br>43.031711                           | 12.633669<br>12.465281<br>12.308092                           |
| 16.120765 49.963506                                                               | 0.22814824<br>0.2235481<br>0.21790273<br>0.21408167              | 43.231796<br>43.126883<br>43.031711<br>42.938152              | 12.633669<br>12.465281<br>12.308092<br>12.178518              |
| 16.120765     49.963506       16.13013     49.701158       16.14007     49.452071 | 0.22814824<br>0.2235481<br>0.21790273<br>0.21408167<br>0.2132317 | 43.231796<br>43.126883<br>43.031711<br>42.938152<br>42.848782 | 12.633669<br>12.465281<br>12.308092<br>12.178518<br>12.084544 |

| 16 160049  | 48 936748              | 0 20374235 | 42 589232             | 11 847287 |
|------------|------------------------|------------|-----------------------|-----------|
| 16 170561  | 10.550740              | 0.10025012 | 42.505252             | 11 750207 |
| 16.170301  | 40.000090              | 0.19023012 | 42.313474             | 11.752597 |
| 16.180294  | 48.354863              | 0.18980827 | 42.466396             | 11.622184 |
| 16.190165  | 48.047311              | 0.18697556 | 42.416572             | 11.486847 |
| 16.200317  | 47.749366              | 0.18335292 | 42.373197             | 11.357086 |
| 16.210125  | 47.46502               | 0.17748713 | 42.346041             | 11.220963 |
| 16.220181  | 47.185488              | 0.17523    | 42.320151             | 11.086158 |
| 16.230113  | 46.939221              | 0.17336172 | 42.299314             | 10.970817 |
| 16.24008   | 46.710865              | 0.17173433 | 42.290646             | 10.857691 |
| 16.250016  | 46.496546              | 0.17122122 | 42.288429             | 10.749798 |
| 16.260195  | 46.304094              | 0.17157613 | 42,290263             | 10.656505 |
| 16 270014  | 46 154416              | 0 17785446 | 42 288952             | 10 5851   |
| 16 280039  | 46 05465               | 0 18372405 | 42 2861               | 10 551305 |
| 16 290098  | 45 989218              | 0 19050889 | 42 27721              | 10 540127 |
| 16 200046  | 45.000210              | 0.21150225 | 12.27721              | 10.540127 |
| 16 210274  | 40.024012              | 0.21130333 | 42.23/01              | 10.39/310 |
| 16.310374  | 46.224903              | 0.23421037 | 42.181255             | 10.77862  |
| 16.320225  | 46.492651              | 0.2568/853 | 42.13448/             | 10.993006 |
| 16.330027  | 46.982885              | 0.33691453 | 42.0832/4             | 11.308341 |
| 16.340533  | 47.97191               | 0.46977912 | 42.091316             | 11.903366 |
| 16.350268  | 48.964276              | 0.54113142 | 42.170638             | 12.48926  |
| 16.360079  | 50.143145              | 0.67718593 | 42.259807             | 13.141962 |
| 16.370061  | 51.927454              | 0.89095136 | 42.364617             | 14.200539 |
| 16.380061  | 53.681299              | 1.0340204  | 42.548889             | 15.233699 |
| 16.390243  | 55.370056              | 1.2045018  | 42.744469             | 16.192143 |
| 16.400171  | 56.995567              | 1.3804711  | 42.951278             | 17.111045 |
| 16.410149  | 58.300722              | 1.5064341  | 43.201855             | 17.790031 |
| 16.420392  | 59.126582              | 1.5792001  | 43.494055             | 18.109367 |
| 16.430177  | 59.48631               | 1.5845108  | 43.80359              | 18.115576 |
| 16 440259  | 59.705711              | 1.5730151  | 44 121797             | 18.015428 |
| 16 450343  | 59 847105              | 1 5307002  | 44 444796             | 17 882548 |
| 16 460245  | 59 727///              | 1 1275509  | AA 777003             | 17 596525 |
| 16 470067  | 50 542502              | 1 2200075  | 44.777225             | 17.090020 |
| 16 400176  | 59.542505              | 1 2200421  | 45.000957             | 16 006741 |
| 16.480176  | 59.598202              | 1.2308421  | 45.574954             | 16.996/41 |
| 16.490117  | 58.99/591              | 1.08/2585  | 45.685547             | 16.560259 |
| 16.500045  | 58.41404/              | 0.96255835 | 45.96/6/9             | 15.983/5/ |
| 16.510658  | 57.957842              | 0.86344802 | 46.22981              | 15.511928 |
| 16.520675  | 57.495286              | 0.76495687 | 46.462555             | 15.067588 |
| 16.530713  | 57.065316              | 0.69271583 | 46.654334             | 14.657491 |
| 16.540622  | 56.784356              | 0.64901211 | 46.802932             | 14.379757 |
| 16.550056  | 56.58215               | 0.60178506 | 46.914238             | 14.200549 |
| 16.560832  | 56.395855              | 0.55424758 | 46.996489             | 14.058683 |
| 16.570066  | 56.277202              | 0.53005981 | 47.044609             | 13.975752 |
| 16.580717  | 56.089123              | 0.49034274 | 47.091947             | 13.858618 |
| 16.590241  | 55.839895              | 0.45470369 | 47.119304             | 13.699153 |
| 16.600804  | 55.591277              | 0.43644971 | 47.126288             | 13.546762 |
| 16.610015  | 55.380587              | 0.41930616 | 47.122291             | 13.43195  |
| 16.620536  | 55.161081              | 0.4009499  | 47.094642             | 13.342023 |
| 16.630292  | 54.993466              | 0.39404036 | 47.055862             | 13.290645 |
| 16.640591  | 54.835356              | 0.38655627 | 47.002624             | 13.26829  |
| 16.650153  | 54.720937              | 0.38050081 | 46.937376             | 13.284397 |
| 16.660751  | 54.615537              | 0.3785898  | 46.858885             | 13.317624 |
| 16 670081  | 54 544876              | 0 37990768 | 46 785345             | 13 354/96 |
| 16 680223  | 54 517225              | 0 38638659 | 16 702391             | 13 110531 |
| 16 6000/5  | 57.J1/JJJ<br>5/ /077/  | 0.30030039 | 16 62706              | 13 16500  |
| 1670020043 | 54.43114<br>51 100600  | 0.39040333 | 40.02/00<br>16 550100 | 13 50000  |
| 16 710204  | J4.403033<br>E1 E21020 | 0.4041203  | 40.009400             | 10.JU0U9  |
| 16.700010  | J4.J24938              | 0.44199045 | 40.520009             | 12 520014 |
| 16.720019  | 54.556355              | 0.46415389 | 46.530194             | 13.530914 |
| 16./30054  | 54.62653               | U.49040958 | 46.550458             | ⊥3.540449 |

| 16.74006  | 54.8582                | 0.54607485 | 46.560924              | 13.652262              |
|-----------|------------------------|------------|------------------------|------------------------|
| 16.750169 | 55.308474              | 0.58942556 | 46.588674              | 13.934636              |
| 16.760236 | 55.754149              | 0.62220333 | 46.623553              | 14.211519              |
| 16.770037 | 56.343354              | 0.6813935  | 46.617488              | 14.610681              |
| 16.78001  | 57.254874              | 0.74065799 | 46.597383              | 15.279565              |
| 16.790254 | 58.059928              | 0.78599519 | 46.582357              | 15.872235              |
| 16.800265 | 58.956974              | 0.85037471 | 46.520085              | 16.570156              |
| 16.810238 | 60.111878              | 0.91508987 | 46.430986              | 17.503717              |
| 16.820486 | 60.892834              | 0.9480613  | 46.36867               | 18.150275              |
| 16.830608 | 61.161523              | 0.94883289 | 46.329976              | 18.405915              |
| 16.840549 | 61.058627              | 0.92707488 | 46.307447              | 18.372916              |
| 16.850996 | 60.88634               | 0.90690044 | 46.279719              | 18.288385              |
| 16.860646 | 60.638646              | 0.86953422 | 46.264641              | 18.14453               |
| 16.870525 | 60.197087              | 0.81190651 | 46.255478              | 17.848897              |
| 16.880386 | 59.824961              | 0.77479617 | 46.224997              | 17.605931              |
| 16.890238 | 59.460218              | 0.72729316 | 46.198386              | 17.370893              |
| 16.900055 | 58.850994              | 0.65783969 | 46.192411              | 16.943691              |
| 16.910351 | 58.262123              | 0.61608814 | 46.158316              | 16.53104               |
| 16.920556 | 57.715462              | 0.5/3522/1 | 46.1335/3              | 16.154324              |
| 16.930458 | 57.043865              | 0.52167854 | 46.131648              | 15.6/84/               |
| 16.940061 | 56.455816              | 0.4959002  | 46.1101                | 15.262391              |
| 16.950054 | 55.981025              | 0.4/684046 | 46.080123              | 14.945198              |
| 16.900091 | 55 212005              | 0.455421   | 46.046865              | 14.092302              |
| 16 090030 | 51 010107              | 0.44400011 | 40.0010                | 14.490379              |
| 16 990059 | 54.940107              | 0.4352004  | 45.95554               | 14.309020              |
| 17 000021 | 54.054554              | 0.41717733 | 45.91250               | 14.23900               |
| 17 010271 | 54 066377              | 0.40545042 | 45.8003903             | 13 984714              |
| 17 020049 | 53 778575              | 0 38023014 | 45 763501              | 13 869416              |
| 17.030925 | 53.42996               | 0.36585427 | 45.704352              | 13.719257              |
| 17.040811 | 53.142275              | 0.35594157 | 45.646271              | 13.605669              |
| 17.050463 | 52.846496              | 0.336652   | 45.592808              | 13.482957              |
| 17.060093 | 52.516316              | 0.31969966 | 45.533016              | 13.330066              |
| 17.070569 | 52.185299              | 0.30977639 | 45.463626              | 13.185205              |
| 17.080581 | 51.825431              | 0.29226166 | 45.417798              | 13.008487              |
| 17.090407 | 51.385908              | 0.27551651 | 45.389554              | 12.758602              |
| 17.100753 | 50.969196              | 0.26823057 | 45.354893              | 12.529832              |
| 17.110642 | 50.580248              | 0.25574383 | 45.33937               | 12.312687              |
| 17.1203   | 50.177441              | 0.24110182 | 45.339323              | 12.07204               |
| 17.130638 | 49.798702              | 0.23526966 | 45.333225              | 11.853347              |
| 17.140745 | 49.462261              | 0.22588616 | 45.33552               | 11.660279              |
| 17.150414 | 49.167276              | 0.21554748 | 45.335736              | 11.492694              |
| 17.160154 | 48.909119              | 0.21226792 | 45.328168              | 11.354847              |
| 17.170007 | 48.690644              | 0.20766291 | 45.310496              | 11.252942              |
| 17.18002  | 48.510462              | 0.19906852 | 45.271754              | 11.191197              |
| 17.190541 | 48.35555               | 0.19579589 | 45.218344              | 11.156381              |
| 17.20036  | 48.22317               | 0.19113121 | 45.16/211              | 11.132946              |
| 17.210145 | 48.088232              | 0.18356388 | 45.11/848              | 11.1012/9              |
| 17.220345 | 47.940819              | 0.18061132 | 45.062444              | 11.061231              |
| 17.230295 | 47.802147              | 0.17602006 | 45.008972              | 11.0228/5              |
| 17.240412 | 47.009000              | 0.17525245 | 44.955615              | 10.982067              |
| 17 260211 | 4/.J420/9<br>A7 A21725 | 0.17520240 | 44.9013/9<br>14.9013/9 | 10 943489<br>10 911960 |
| 17 27001  | -/<br>Δ7 354162        | 0.18055819 | 11.019957<br>44 788675 | 10 897041              |
| 17.280462 | 47 32509               | 0.18562467 | 44,716173              | 10.921746              |
| 17.290271 | 47.324582              | 0.19186774 | 44.642502              | 10,960301              |
| 17.300019 | 47.418292              | 0.21154666 | 44.543783              | 11.057877              |
| 17.310077 | 47.666661              | 0.23295914 | 44.431998              | 11.266784              |
|           |                        |            |                        |                        |

| 17.320114 | 47.97536  | 0.25470146             | 44.327182 | 11.504178 |
|-----------|-----------|------------------------|-----------|-----------|
| 17.330563 | 48.543651 | 0.33843113             | 44.206962 | 11.863966 |
| 17.340617 | 49.541683 | 0.45591139             | 44.142398 | 12.468506 |
| 17.350043 | 50.521848 | 0.51776391             | 44.145598 | 13.049702 |
| 17.360067 | 51.703594 | 0.63790583             | 44.165149 | 13.706947 |
| 17.370353 | 53.268412 | 0.82035485             | 44.228307 | 14.598497 |
| 17.380169 | 54.62938  | 0.93124605             | 44.364647 | 15.343718 |
| 17.390542 | 55.927319 | 1.0717652              | 44.535698 | 16.002183 |
| 17.400098 | 57.034749 | 1.2139652              | 44.731703 | 16.528593 |
| 17.410021 | 57.971408 | 1.3148378              | 44.981255 | 16.915591 |
| 17.420079 | 58.634295 | 1.3750514              | 45.269582 | 17.093239 |
| 17.430618 | 59.033622 | 1.3911646              | 45.604748 | 17.065093 |
| 17.440014 | 59.300527 | 1.3918906              | 45.906262 | 16.978146 |
| 17.450192 | 59.54/453 | 1.3689862              | 46.23/20/ | 16.8/1819 |
| 17.460248 | 59.626984 | 1.299/323              | 46.5/3159 | 16.6/6185 |
| 17.4/0332 | 59.660029 | 1.2343/48              | 46.88/2/1 | 16.454776 |
| 17.480072 | 59./1//4/ | 1.1694425              | 47.172468 | 16.28378  |
| 17.490134 | 59.635824 | 1.0623706<br>0.0601550 | 47.462392 | 16.048022 |
| 17.500128 | 59.462456 | 0.9001550              | 47.713137 | 15 52621  |
| 17.520169 | 59.54005  | 0.89037714             | 47.950122 | 15 310185 |
| 17 530393 | 58 983385 | 0.00099000             | 48 252916 | 15 093718 |
| 17 540508 | 58 874333 | 0.67288387             | 48 340413 | 14 955629 |
| 17.550116 | 58.836413 | 0.61624117             | 48.367579 | 14.914834 |
| 17.560264 | 58.918404 | 0.56124107             | 48.320427 | 15.003204 |
| 17.570296 | 58.999764 | 0.53276772             | 48.235405 | 15.102344 |
| 17.580367 | 59.048403 | 0.50031493             | 48.109313 | 15.213185 |
| 17.590173 | 59.090658 | 0.47086971             | 47.942251 | 15.351063 |
| 17.60023  | 59.092862 | 0.45723188             | 47.748525 | 15.46667  |
| 17.610296 | 59.090209 | 0.44106291             | 47.514969 | 15.614107 |
| 17.620114 | 59.291406 | 0.42058478             | 47.211503 | 15.975108 |
| 17.630006 | 59.491896 | 0.41133367             | 46.883539 | 16.345167 |
| 17.640153 | 59.627699 | 0.39955987             | 46.502662 | 16.70741  |
| 17.65005  | 59.87715  | 0.39189786             | 46.075509 | 17.195911 |
| 17.660105 | 60.039059 | 0.39062105             | 45.633955 | 17.622665 |
| 17.670434 | 60.032865 | 0.40006897             | 45.17863  | 17.927503 |
| 17.680192 | 60.001706 | 0.4218824              | 44.755875 | 18.193075 |
| 17.690402 | 59.898183 | 0.43445173             | 44.338456 | 18.408265 |
| 17.700246 | 59./18399 | 0.45243505             | 43.954891 | 18.53206  |
| 17.710232 | 59.564547 | 0.48935303             | 43.393977 | 10 717020 |
| 17.720100 | 59.390099 | 0.511/8898             | 43.277140 | 18 701818 |
| 17 7/0173 | 59.231307 | 0.55687038             | 42.975    | 19 020671 |
| 17 750302 | 59 633645 | 0.55007050             | 42.039730 | 19.020071 |
| 17 760187 | 59 770544 | 0.57865883             | 42 042154 | 19 659943 |
| 17.770257 | 59.8577   | 0.5828183              | 41.744262 | 19.841336 |
| 17.780167 | 59.790276 | 0.58488988             | 41.466702 | 19.879748 |
| 17.791674 | 59.640797 | 0.58717799             | 41.163276 | 19.851987 |
| 17.801419 | 59.416105 | 0.59153784             | 40.937263 | 19.716929 |
| 17.810462 | 59.135211 | 0.59496426             | 40.749587 | 19.517159 |
| 17.820729 | 58.914085 | 0.59735576             | 40.547739 | 19.365193 |
| 17.830941 | 58.70565  | 0.60088565             | 40.368713 | 19.222722 |
| 17.840103 | 58.464508 | 0.60375309             | 40.227945 | 19.054504 |
| 17.850017 | 58.268638 | 0.60394409             | 40.084806 | 18.924225 |
| 17.860116 | 58.01483  | 0.59632324             | 39.963442 | 18.758179 |
| 17.870159 | 57.480583 | 0.57674986             | 39.877292 | 18.381117 |
| 17.880457 | 57.01024  | 0.56503584             | 39.787347 | 18.054692 |
| 17.890812 | 56.553646 | 0.54644406             | 39.719974 | 17.749076 |

| 17.950106   52.360707   0.42547972   39.856334   14.690891     17.960106   52.360707   0.42547972   39.856334   14.690891     17.970365   51.439024   0.39735528   39.98762   14.019868     17.9801069   51.153231   0.38957546   40.040524   13.822985     17.990135   50.87939   0.37066024   40.100281   13.643743     18.00231   50.377686   0.34817438   40.275281   13.085065     18.03134   49.702845   0.31309817   40.37128   12.855801     18.041123   49.372051   0.30288272   40.406052   12.2629904     18.0605   48.772177   0.27326464   40.542965   12.214307     18.07073   48.256907   0.25475498   40.675401   11.86478     18.090821   47.980138   0.22857708   40.888599   11.353362     18.10052   47.548485   0.22857708   40.888599   11.353362     18.10064   46.959912   0.20544502   41.10295   10.992795     18.150648   46.774677   0.19499495   41.179447   10.68533                                                                                                                                                                                                                                                                                                                                                                            | 17.900565                          | 55.814468                                       | 0.51665066                                           | 39.701437                                       | 17.22032                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------|------------------------------------------------------|-------------------------------------------------|--------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17.910449                          | 55.149237                                       | 0.50068574                                           | 39.677695                                       | 16.745697                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17.920053                          | 54.537558                                       | 0.48158659                                           | 39.682522                                       | 16.309302                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17.93023                           | 53.69259                                        | 0.4527882                                            | 39.739971                                       | 15.682245                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17.940438                          | 52.925249                                       | 0.43811966                                           | 39.796391                                       | 15.108057                                        |
| 17.90013550.879390.3706602440.10028113.64374218.00024950.5951740.3583599940.15218113.45547618.01023150.3476860.3481743840.2034213.29723618.0204750.0300240.3263747240.27528113.08506518.03013449.7028450.3130981740.33719812.85580118.04112349.3720510.3028827240.40605212.62990418.05046449.0891180.2870093540.47312812.43597618.060548.772170.2732646440.54296512.21430718.07085348.4972740.2662750140.60872312.0273618.08030748.2569070.2547549840.67540111.8647818.09082147.7801380.2426375440.75144111.67399318.1000947.7708150.22883794940.81311.53336218.11056247.5484850.2285770840.88859911.38542218.12012747.373360.2173387940.96092711.24196318.1304246.9599120.205450241.102495110.9279518.15064846.7746770.19494945441.31200510.67577318.16047446.6174630.1795501141.38497110.58200318.19040446.2297040.1731170141.58728110.3671718.2004946.120090.1751387841.51821110.43100718.2004946.2257040.1721030141.80380810.21463118.2004945.6983950.1726633 <td>17.950106<br/>17.96009<br/>17.970365</td> <td>52.360707<br/>51.85485<br/>51.439024<br/>51.153231</td> <td>0.42547972<br/>0.40715549<br/>0.39735528<br/>0.38957546</td> <td>39.856334<br/>39.925562<br/>39.98762<br/>40.040524</td> <td>14.690891<br/>14.320591<br/>14.019868<br/>13.822985</td>         | 17.950106<br>17.96009<br>17.970365 | 52.360707<br>51.85485<br>51.439024<br>51.153231 | 0.42547972<br>0.40715549<br>0.39735528<br>0.38957546 | 39.856334<br>39.925562<br>39.98762<br>40.040524 | 14.690891<br>14.320591<br>14.019868<br>13.822985 |
| 18.03013449.7028450.3130981740.33719812.8580118.04112349.3720510.3029827240.40605212.62990418.0504449.0891180.2870093540.47312812.43597618.060548.7721770.273264440.54296512.12430718.07085348.4972740.2662750140.60872312.0273618.07085348.2569070.2547549840.67540111.8647818.09082147.9801380.2426375440.75144111.67399318.1005247.5484850.2285770840.88859911.38542518.12012747.3373660.2130216641.03150411.10947718.14030646.9599120.2054450241.1029510.99279518.15064846.7746770.1949949541.17944710.86853718.16049746.6174630.1918534241.24593210.76515418.17008246.4812990.1871284141.31200510.67577318.18041146.3443060.1795501141.38497110.58200318.2004946.120090.1751387841.58281110.4310718.2004946.2275010.172653441.65849410.30839818.23002945.8649830.1724623341.72854910.25963118.24044645.7976460.1721030141.80380810.21463118.2503345.7438720.172338441.9745510.3662318.26037145.6983950.1718360941.94452910.13662318.26037145.6984960.2712031 </td <td>17.990135</td> <td>50.87939</td> <td>0.37066024</td> <td>40.100281</td> <td>13.643743</td>                                                                                                                                                                                                         | 17.990135                          | 50.87939                                        | 0.37066024                                           | 40.100281                                       | 13.643743                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.000249                          | 50.595174                                       | 0.35835999                                           | 40.152181                                       | 13.455478                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.010231                          | 50.347686                                       | 0.34817438                                           | 40.20342                                        | 13.297238                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.020847                          | 50.030024                                       | 0.32637472                                           | 40.275281                                       | 13.085069                                        |
| 18.07085348.497274 $0.26627501$ $40.608723$ $12.02736$ 18.08030748.256907 $0.25475498$ $40.675401$ $11.86478$ 18.09082147.980138 $0.24263754$ $40.751441$ $11.673993$ 18.1005047.5784845 $0.22857708$ $40.813$ $11.533362$ 18.11056247.548485 $0.22857708$ $40.888599$ $11.385422$ 18.12012747.33736 $0.21733879$ $40.960927$ $11.241963$ 18.13039247.137836 $0.21302166$ $41.031504$ $11.09477$ 18.140306 $46.959912$ $0.20544502$ $41.10295$ $10.765154$ 18.15049 $46.774677$ $0.19499495$ $41.79447$ $10.868537$ 18.160497 $46.617463$ $0.19185342$ $41.245932$ $10.765154$ 18.170082 $46.481299$ $0.18712841$ $41.312005$ $10.675773$ 18.180411 $46.344306$ $0.17955011$ $41.384971$ $10.582003$ 18.20049 $46.12009$ $0.17513878$ $41.518211$ $10.43007$ 18.210268 $46.025704$ $0.17216334$ $41.528494$ $10.308398$ 18.220306 $45.938615$ $0.1726534$ $41.658494$ $10.308398$ 18.20029 $45.864983$ $0.17246233$ $41.28549$ $10.279632$ 18.260371 $45.698395$ $0.17183609$ $41.944529$ $10.179432$ 18.260371 $45.699044$ $0.19215333$ $42.073728$ $10.188748$ 18.20164 $45.7975137$ $0.21688663$ $42.066015$ $10.277562$ 18.3006                                                                                                                                           | 18.030134                          | 49.702845                                       | 0.31309817                                           | 40.337198                                       | 12.855801                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.041123                          | 49.372051                                       | 0.30298272                                           | 40.406052                                       | 12.629904                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.050464                          | 49.089118                                       | 0.28700935                                           | 40.473128                                       | 12.435978                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.0605                            | 48.772177                                       | 0.27326464                                           | 40.542965                                       | 12.214307                                        |
| 18.11056247.548485 $0.22857708$ 40.88859911.38542918.12012747.337336 $0.21733879$ 40.96092711.24196318.13039247.137836 $0.21302166$ 41.03150411.10947718.14030646.959912 $0.20544502$ 41.1029510.99279518.15064846.774677 $0.19499495$ 41.17944710.86853718.16049746.617463 $0.19185342$ 41.24593210.76515418.17008246.481299 $0.18712841$ 41.31200510.67577318.18041146.344306 $0.17955011$ 41.38497110.58200318.2004946.12009 $0.17513878$ 41.51821110.43100718.21026846.025704 $0.17311701$ 41.58728110.3671718.22030645.938615 $0.17256534$ 41.65849410.30839818.23002945.864983 $0.17246233$ 41.72854910.25963118.24044645.797646 $0.172103311$ 41.80380810.21463318.25030345.743872 $0.177203318$ 41.99705610.13662318.29080445.699044 $0.19145333$ 42.07372810.18871818.30016345.775137 $0.21686863$ 42.06601510.27756218.31006945.988408 $0.24442915$ 42.04079410.4930418.32014646.299571 $0.27192894$ 42.02131410.77250118.30015348.076436 $0.52780465$ 41.97898512.04419418.35006549.45892 $0.62062692$ 42.06324913.005198<                                                                                                                                                                                                                                         | 18.070853                          | 48.497274                                       | 0.26627501                                           | 40.608723                                       | 12.02736                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.080307                          | 48.256907                                       | 0.25475498                                           | 40.675401                                       | 11.86478                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.090821                          | 47.980138                                       | 0.24263754                                           | 40.751441                                       | 11.673993                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.10009                           | 47.770815                                       | 0.23832949                                           | 40.813                                          | 11.533362                                        |
| 18.15064846.774677 $0.19499495$ 41.179447 $10.868537$ 18.16049746.617463 $0.19185342$ $41.245932$ $10.765154$ 18.17008246.481299 $0.18712841$ $41.312005$ $10.675773$ 18.18041146.344306 $0.17955011$ $41.384971$ $10.582003$ 18.19020246.227501 $0.177513878$ $41.449462$ $10.502986$ 18.2004946.12009 $0.17513878$ $41.518211$ $10.431007$ 18.22030645.938615 $0.17256534$ $41.658494$ $10.308398$ 18.23002945.864983 $0.17246233$ $41.728549$ $10.259631$ 18.24044645.797646 $0.17210301$ $41.803808$ $10.214631$ 18.250303 $45.743872$ $0.1720318$ $41.944529$ $10.179432$ 18.260371 $45.698395$ $0.1771868$ $41.997056$ $10.153535$ 18.290804 $45.699044$ $0.19145333$ $42.073728$ $10.188718$ 18.300163 $45.775137$ $0.21686863$ $42.066015$ $10.277562$ 18.310069 $45.988408$ $0.24442915$ $42.021314$ $10.772501$ 18.320146 $46.299571$ $0.27192894$ $42.021314$ $10.772501$ 18.320146 $46.299571$ $0.2780465$ $11.978852$ $11.213629$ 18.360139 $51.045293$ $0.7893385$ $42.152691$ $14.0466133$ 18.370031 $53.21798$ $1.0430746$ $42.256223$ $15.473036$ 18.380074 $55.229558$ $1.2250131$ $42.466912$ $16.764371$ 18.3                                                                                                                                             | 18.110562                          | 47.548485                                       | 0.22857708                                           | 40.888599                                       | 11.385429                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.120127                          | 47.337336                                       | 0.21733879                                           | 40.960927                                       | 11.241963                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.130392                          | 47.137836                                       | 0.21302166                                           | 41.031504                                       | 11.109477                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.140306                          | 46.959912                                       | 0.20544502                                           | 41.10295                                        | 10.992795                                        |
| 18.190202 $46.227501$ $0.17731872$ $41.449462$ $10.502986$ $18.20049$ $46.12009$ $0.17513878$ $41.518211$ $10.431007$ $18.210268$ $46.025704$ $0.17311701$ $41.587281$ $10.36717$ $18.220306$ $45.938615$ $0.17256534$ $41.658494$ $10.308398$ $18.230029$ $45.864983$ $0.17246233$ $41.728549$ $10.259631$ $18.240446$ $45.797646$ $0.17210301$ $41.803808$ $10.214631$ $18.250303$ $45.743872$ $0.17203318$ $41.874059$ $10.179432$ $18.260371$ $45.698395$ $0.17183609$ $41.944529$ $10.149901$ $18.270273$ $45.671918$ $0.17771868$ $41.997056$ $10.136623$ $18.280042$ $45.676739$ $0.18286002$ $42.038776$ $10.158535$ $18.290804$ $45.699044$ $0.19145333$ $42.073728$ $10.1887168$ $18.300163$ $45.775137$ $0.21686863$ $42.006151$ $10.277562$ $18.300163$ $45.775137$ $0.27192894$ $42.04794$ $10.4934$ $18.320146$ $46.299571$ $0.27192894$ $42.021314$ $10.772501$ $18.330192$ $46.888864$ $0.37142097$ $41.9789851$ $12.044194$ $18.370031$ $53.21798$ $1.0430746$ $42.256223$ $15.473036$ $18.380074$ $55.229558$ $1.2250131$ $42.446912$ $16.764371$ $18.390253$ $56.932497$ $1.4358296$ $42.657482$ $17.773477$ $18.40014$ $58.407565$ $1.6426167$ <t< td=""><td>18.150648</td><td>46.774677</td><td>0.19499495</td><td>41.179447</td><td>10.868537</td></t<> | 18.150648                          | 46.774677                                       | 0.19499495                                           | 41.179447                                       | 10.868537                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.160497                          | 46.617463                                       | 0.19185342                                           | 41.245932                                       | 10.765154                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.170082                          | 46.481299                                       | 0.18712841                                           | 41.312005                                       | 10.675773                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.180411                          | 46.344306                                       | 0.17955011                                           | 41.384971                                       | 10.582003                                        |
| 18.230029 $45.864983$ $0.17246233$ $41.728549$ $10.259631$ $18.240446$ $45.797646$ $0.17210301$ $41.803808$ $10.214631$ $18.250303$ $45.743872$ $0.17203318$ $41.874059$ $10.179432$ $18.260371$ $45.698395$ $0.17183609$ $41.944529$ $10.149901$ $18.270273$ $45.671918$ $0.17771868$ $41.997056$ $10.136623$ $18.280042$ $45.676739$ $0.18286002$ $42.038776$ $10.153535$ $18.290804$ $45.699044$ $0.19145333$ $42.073728$ $10.188718$ $18.300163$ $45.775137$ $0.21686863$ $42.066015$ $10.277562$ $18.310069$ $45.988408$ $0.24442915$ $42.040794$ $10.4934$ $18.320146$ $46.299571$ $0.27192894$ $42.021314$ $10.772501$ $18.330192$ $46.888864$ $0.37142097$ $41.978852$ $11.213629$ $18.340053$ $48.076436$ $0.52780465$ $41.978985$ $12.044194$ $18.350065$ $49.45892$ $0.62062692$ $42.063249$ $13.005198$ $18.360139$ $51.045293$ $0.7893385$ $42.152691$ $14.0466133666666666666666666666666666666666$                                                                                                                                                                                                                                                                                                                                                             | 18.190202                          | 46.227501                                       | 0.17731872                                           | 41.449462                                       | 10.502986                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.20049                           | 46.12009                                        | 0.17513878                                           | 41.518211                                       | 10.431007                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.210268                          | 46.025704                                       | 0.17311701                                           | 41.587281                                       | 10.36717                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.220306                          | 45.938615                                       | 0.17256534                                           | 41.658494                                       | 10.308398                                        |
| 18.270273 $45.671918$ $0.17771868$ $41.997056$ $10.136623$ $18.280042$ $45.676739$ $0.18286002$ $42.038776$ $10.153535$ $18.290804$ $45.699044$ $0.19145333$ $42.073728$ $10.188718$ $18.300163$ $45.775137$ $0.21686863$ $42.066015$ $10.277562$ $18.310069$ $45.988408$ $0.24442915$ $42.040794$ $10.4934$ $18.320146$ $46.299571$ $0.27192894$ $42.021314$ $10.772501$ $18.330192$ $46.888864$ $0.37142097$ $41.978852$ $11.213629$ $18.340053$ $48.076436$ $0.52780465$ $41.978985$ $12.044194$ $18.350065$ $49.45892$ $0.62062692$ $42.063249$ $13.005198$ $18.360139$ $51.045293$ $0.7893385$ $42.152691$ $14.046613$ $18.370031$ $53.21798$ $1.0430746$ $42.256223$ $15.473036$ $18.380074$ $55.229558$ $1.2250131$ $42.446912$ $16.764371$ $18.390253$ $56.932497$ $1.4358296$ $42.657482$ $17.773477$ $18.40014$ $58.407565$ $1.6426167$ $42.896085$ $18.594004$ $18.410439$ $59.500531$ $1.8010201$ $43.192764$ $19.111679$ $18.420349$ $60.063809$ $1.883389$ $43.525821$ $19.248787$ $18.430267$ $60.070028$ $1.8742729$ $43.916396$ $18.981857$ $18.440287$ $59.968555$ $1.84355$ $44.314362$ $18.637002$ $18.450105$ $59.844219$ $1.7747451$ $44.72$                                                                                                            | 18.230029                          | 45.864983                                       | 0.17246233                                           | 41.728549                                       | 10.259631                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.240446                          | 45.797646                                       | 0.17210301                                           | 41.803808                                       | 10.214631                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.250303                          | 45.743872                                       | 0.17203318                                           | 41.874059                                       | 10.179432                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.260371                          | 45.698395                                       | 0.17183609                                           | 41.944529                                       | 10.149901                                        |
| 18.310069 $45.988408$ $0.24442915$ $42.040794$ $10.4934$ $18.320146$ $46.299571$ $0.27192894$ $42.021314$ $10.772501$ $18.330192$ $46.888864$ $0.37142097$ $41.978852$ $11.213629$ $18.340053$ $48.076436$ $0.52780465$ $41.978985$ $12.044194$ $18.350065$ $49.45892$ $0.62062692$ $42.063249$ $13.005198$ $18.360139$ $51.045293$ $0.7893385$ $42.152691$ $14.046613$ $18.370031$ $53.21798$ $1.0430746$ $42.256223$ $15.473036$ $18.380074$ $55.229558$ $1.2250131$ $42.446912$ $16.764371$ $18.390253$ $56.932497$ $1.4358296$ $42.657482$ $17.773477$ $18.40014$ $58.407565$ $1.6426167$ $42.896085$ $18.594004$ $18.410439$ $59.500531$ $1.8010201$ $43.192764$ $19.111679$ $18.420349$ $60.063809$ $1.883389$ $43.525821$ $19.248787$ $18.430267$ $60.070028$ $1.8742729$ $43.916396$ $18.981857$ $18.440287$ $59.968555$ $1.84355$ $44.314362$ $18.637002$ $18.450105$ $59.844219$ $1.7747451$ $44.72254$ $18.306814$                                                                                                                                                                                                                                                                                                                                                 | 18.270273                          | 45.671918                                       | 0.17771868                                           | 41.997056                                       | 10.136623                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.280042                          | 45.676739                                       | 0.18286002                                           | 42.038776                                       | 10.153535                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.290804                          | 45.699044                                       | 0.19145333                                           | 42.073728                                       | 10.188718                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.300163                          | 45.775137                                       | 0.21686863                                           | 42.066015                                       | 10.277562                                        |
| 18.35006549.458920.6206269242.06324913.00519818.36013951.0452930.789338542.15269114.04661318.37003153.217981.043074642.25622315.47303618.38007455.2295581.225013142.44691216.76437118.39025356.9324971.435829642.65748217.77347718.4001458.4075651.642616742.89608518.59400418.41043959.5005311.801020143.19276419.11167918.42034960.0638091.88338943.52582119.24878718.43026760.0700281.874272943.91639618.98185718.44028759.9685551.8435544.31436218.63700218.45010559.8442191.774745144.7225418.306814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18.310069                          | 45.988408                                       | 0.24442915                                           | 42.040794                                       | 10.4934                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.320146                          | 46.299571                                       | 0.27192894                                           | 42.021314                                       | 10.772501                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.330192                          | 46.888864                                       | 0.37142097                                           | 41.978852                                       | 11.213629                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.340053                          | 48.076436                                       | 0.52780465                                           | 41.978985                                       | 12.044194                                        |
| 18.39025356.9324971.435829642.65748217.77347718.4001458.4075651.642616742.89608518.59400418.41043959.5005311.801020143.19276419.11167918.42034960.0638091.88338943.52582119.24878718.43026760.0700281.874272943.91639618.98185718.44028759.9685551.8435544.31436218.63700218.45010559.8442191.774745144.7225418.306814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18.350065                          | 49.45892                                        | 0.62062692                                           | 42.063249                                       | 13.005198                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.360139                          | 51.045293                                       | 0.7893385                                            | 42.152691                                       | 14.046613                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.370031                          | 53.21798                                        | 1.0430746                                            | 42.256223                                       | 15.473036                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.380074                          | 55.229558                                       | 1.2250131                                            | 42.446912                                       | 16.764371                                        |
| 18.43026760.0700281.874272943.91639618.98185718.44028759.9685551.8435544.31436218.63700218.45010559.8442191.774745144.7225418.306814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18.390253                          | 56.932497                                       | 1.4358296                                            | 42.657482                                       | 17.773477                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.40014                           | 58.407565                                       | 1.6426167                                            | 42.896085                                       | 18.594004                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.410439                          | 59.500531                                       | 1.8010201                                            | 43.192764                                       | 19.111679                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.420349                          | 60.063809                                       | 1.883389                                             | 43.525821                                       | 19.248787                                        |
| 18.460158 59.342153 1.6256262 45.188714 17.72   18.470047 58.785006 1.4842614 45.607045 17.100504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18.430267                          | 60.070028                                       | 1.8742729                                            | 43.916396                                       | 18.981857                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.440287                          | 59.968555                                       | 1.84355                                              | 44.314362                                       | 18.637002                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.450105                          | 59.844219                                       | 1.7747451                                            | 44.72254                                        | 18.306814                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.460158                          | 59.342153                                       | 1.6256262                                            | 45.188714                                       | 17.72                                            |

| 10 100062  | E0 200016  | 1 2402674   | 16 01677  | 16 622645 |
|------------|------------|-------------|-----------|-----------|
| 10.400003  | J0.399910  | 1.3402074   | 40.04077  | 10.033043 |
| 18.490023  | 57.918224  | 1.1/04505   | 46.462/49 | 16.12/26/ |
| 18.500139  | 57.394955  | 1.0157924   | 46.832772 | 15.592663 |
| 18.510316  | 57.039067  | 0.89943999  | 47.147027 | 15.202497 |
| 18.520151  | 56.720848  | 0.78746152  | 47.406136 | 14.871062 |
| 18 531034  | 56 440119  | 0 69904353  | 47 622408 | 14 574649 |
| 10 5/0212  | 56 20/02   | 0.65052067  | 47.022400 | 14 414755 |
| 10.540215  | 50.30402   | 0.0000000   | 47.750295 | 14.414/33 |
| 18.550082  | 56.237099  | 0.618835    | 4/.864384 | 14.330817 |
| 18.5606    | 56.230905  | 0.58400702  | 47.932863 | 14.316379 |
| 18.570314  | 56.234505  | 0.56291492  | 47.980058 | 14.314807 |
| 18.580297  | 56.145876  | 0.52775328  | 48.030346 | 14.246834 |
| 18.590378  | 55.916812  | 0.48975667  | 48.076469 | 14.066283 |
| 18.600765  | 55.696084  | 0.47113773  | 48.103208 | 13.892347 |
| 18 610539  | 55 489859  | 0 45187677  | 48 128133 | 13 730988 |
| 19 620475  | 55 262095  | 0 1331079   | 10.120100 | 13 5555/5 |
| 10.020475  | JJ.20290J  | 0.4354970   | 40.151450 | 12 412262 |
| 10.030400  | 55.076575  | 0.4256/541  | 48.100072 | 13.412362 |
| 18.640/92  | 54.911425  | 0.41821919  | 48.18215/ | 13.28//88 |
| 18.650253  | 54.758476  | 0.4132397   | 48.207693 | 13.166073 |
| 18.660318  | 54.62398   | 0.41182005  | 48.234866 | 13.05591  |
| 18.670832  | 54.521895  | 0.41576679  | 48.274003 | 12.955946 |
| 18.680373  | 54.459728  | 0.42678808  | 48.329675 | 12.863632 |
| 18.690178  | 54.417679  | 0.43312661  | 48.398746 | 12.781039 |
| 18 700196  | 54 441973  | 0 44735012  | 48 470887 | 12 731569 |
| 18 710173  | 54 599208  | 0.447926247 | 18 5/2    | 12 75120  |
| 10.710175  | 54.533200  | 0.47920247  | 40.542    | 12.70121  |
| 18.720131  | 54.82/303  | 0.498686    | 48.630/36 | 12.820583 |
| 18./30114  | 55.0960/4  | 0.519/8553  | 48.723033 | 12.905955 |
| 18.740063  | 55.49588   | 0.56954072  | 48.798918 | 13.071361 |
| 18.750159  | 56.034939  | 0.60954771  | 48.891886 | 13.342281 |
| 18.760185  | 56.572131  | 0.64293696  | 48.992524 | 13.606945 |
| 18.770341  | 57.194972  | 0.69583193  | 49.075663 | 13.931736 |
| 18.780441  | 57.926042  | 0.74075032  | 49.160354 | 14.348091 |
| 18.790109  | 58.539369  | 0.76624937  | 49.249733 | 14.682614 |
| 18 800331  | 59 179407  | 0 79038259  | 49 320585 | 15 043667 |
| 10.0000001 | 50 950001  | 0.75050255  | 49.320303 | 15 152011 |
| 10.010300  | 59.059091  | 0.00757459  | 49.370707 | 15.452041 |
| 10.020192  | 60.337433  | 0.012/01/0  | 49.42300  | 15.734516 |
| 18.830212  | 60.693/45  | 0.80298/61  | 49.4/912/ | 15.903135 |
| 18.840128  | 60.845309  | 0.78259646  | 49.532886 | 15.944743 |
| 18.850579  | 60.934041  | 0.76624183  | 49.581419 | 15.938534 |
| 18.860686  | 60.900505  | 0.73159485  | 49.640058 | 15.854487 |
| 18.870561  | 60.622189  | 0.67685241  | 49.713182 | 15.587284 |
| 18.880407  | 60.361505  | 0.64481932  | 49.763425 | 15.334794 |
| 18.890179  | 60.08642   | 0.60521613  | 49.818951 | 15.078616 |
| 18 900184  | 59 697268  | 0 55392812  | 49 88354  | 14 740214 |
| 18 910422  | 59 354651  | 0 52753663  | 49 924125 | 14 437888 |
| 10.010422  | 50 075002  | 0.52755005  | 10 061103 | 14 107246 |
| 10.92022   | 59.075002  | 0.30313010  | 49.901103 | 14.197240 |
| 18.93002   | 58./56295  | 0.4/015966  | 50.005634 | 13.93943  |
| 18.940282  | 58.45917   | 0.45286842  | 50.036005 | 13.698368 |
| 18.95015   | 58.207536  | 0.43499623  | 50.067443 | 13.5003   |
| 18.960183  | 57.910521  | 0.4057655   | 50.112213 | 13.273673 |
| 18.970009  | 57.627533  | 0.39083052  | 50.1444   | 13.056153 |
| 18.980219  | 57.376037  | 0.3773226   | 50.177764 | 12.86774  |
| 18.990038  | 57.104734  | 0.35194648  | 50.227738 | 12.667874 |
| 19.000136  | 56.806457  | 0.3360746   | 50.273808 | 12.443561 |
| 19 01004   | 56 556117  | 0 32512591  | 50 317294 | 12 259671 |
| 19 020565  | 56 27212   | 0 30416821  | 50 3707/0 | 12 057005 |
| 10 021040  | 55 0020E1  | 0.00107010  | 50.515142 | 11 0/0500 |
| 10 0400042 | JJ. 773731 | 0.2912/012  | JU.44U/86 | 11 600010 |
| 19.040094  | 55./83/19  | 0.28406/66  | 5U.491/64 | 11.698218 |
| 19.050404  | 55.544365  | 0.26982704  | 50.561483 | 11.531226 |

| 19.060898 | 55.298681 | 0.25856861 | 50.634765 | 11.359878 |
|-----------|-----------|------------|-----------|-----------|
| 19.070861 | 55.100521 | 0.25400382 | 50.698107 | 11.22733  |
| 19.081384 | 54.908748 | 0.24526817 | 50.761753 | 11.109858 |
| 19.090924 | 54.750365 | 0.23829164 | 50.809271 | 11.022545 |
| 19.101258 | 54.601048 | 0.23514551 | 50.854421 | 10.948235 |
| 19.110479 | 54.475557 | 0.23071479 | 50.887606 | 10.897388 |
| 19.120841 | 54 341976 | 0.22649635 | 50.91158  | 10.860033 |
| 19.130564 | 54 227976 | 0.22557805 | 50.92946  | 10.836021 |
| 19.140362 | 54 114237 | 0.22378464 | 50.942493 | 10.822653 |
| 19.150257 | 53,990194 | 0.21962007 | 50.953005 | 10.811638 |
| 19.160651 | 53.861709 | 0.21801329 | 50.961535 | 10.801327 |
| 19.170185 | 53.736365 | 0.2141087  | 50.974063 | 10.786039 |
| 19.180244 | 53.586529 | 0.20720187 | 50.994682 | 10.75344  |
| 19.190372 | 53.429987 | 0.20489239 | 51.013038 | 10.714434 |
| 19.200039 | 53.278888 | 0.20179425 | 51.033863 | 10.675059 |
| 19.210037 | 53.113803 | 0.19574813 | 51.062716 | 10.625277 |
| 19.220325 | 52.942731 | 0.19337588 | 51.091115 | 10.571005 |
| 19.230093 | 52.785074 | 0.19127866 | 51.118725 | 10.523511 |
| 19.240265 | 52.62176  | 0.18822761 | 51.140895 | 10.480396 |
| 19.250156 | 52.472513 | 0.18700592 | 51.155369 | 10.448995 |
| 19.260096 | 52.327246 | 0.18597265 | 51.165258 | 10.424615 |
| 19.270039 | 52.196009 | 0.18925802 | 51.147513 | 10.421297 |
| 19.280556 | 52.096281 | 0.19272545 | 51.104197 | 10.460981 |
| 19.290045 | 52.026198 | 0.19845221 | 51.050554 | 10.512827 |
| 19.300397 | 52.035207 | 0.21807181 | 50.935974 | 10.641065 |
| 19.310616 | 52.203303 | 0.23655214 | 50.784698 | 10.900669 |
| 19.320304 | 52.428166 | 0.25355582 | 50.643028 | 11.184301 |
| 19.330232 | 52.830075 | 0.31112411 | 50.47672  | 11.556477 |
| 19.340132 | 53.536915 | 0.39368869 | 50.333543 | 12.099976 |
| 19.350037 | 54.263747 | 0.43695161 | 50.240128 | 12.641487 |
| 19.360116 | 55.10163  | 0.52150836 | 50.145943 | 13.207442 |
| 19.370001 | 56.224133 | 0.64443166 | 50.067151 | 13.940796 |
| 19.380014 | 57.320925 | 0.71507922 | 50.048794 | 14.646309 |
| 19.390227 | 58.316706 | 0.80180948 | 50.044174 | 15.243178 |
| 19.40018  | 59.178788 | 0.88884239 | 50.076937 | 15.725276 |
| 19.410065 | 59.825039 | 0.93857427 | 50.149335 | 16.043784 |
| 19.420522 | 60.217944 | 0.95863156 | 50.265684 | 16.169398 |
| 19.43045  | 60.263637 | 0.94836248 | 50.418006 | 16.05846  |
| 19.440082 | 60.221134 | 0.93633894 | 50.567077 | 15.887968 |
| 19.450066 | 60.168411 | 0.91411187 | 50.723914 | 15.728258 |
| 19.460163 | 59.999901 | 0.86470459 | 50.889835 | 15.526084 |
| 19.470115 | 59.814469 | 0.82631025 | 51.03329  | 15.322949 |
| 19.48022  | 59.642258 | 0.78702102 | 51.168576 | 15.152092 |
| 19.490039 | 59.338554 | 0.71697491 | 51.314047 | 14.911892 |
| 19.500045 | 58.92419  | 0.65977866 | 51.43976  | 14.588795 |
| 19.510282 | 58.562959 | 0.61652144 | 51.546968 | 14.317817 |
| 19.520059 | 58.15123  | 0.55508278 | 51.66001  | 14.023594 |
| 19.530355 | 57.633518 | 0.50277242 | 51.763069 | 13.648411 |
| 19.540038 | 57.22575  | 0.47309709 | 51.841315 | 13.361534 |
| 19.55083  | 56.743346 | 0.42672518 | 51.944876 | 13.02644  |
| 19.560421 | 56.281597 | 0.3929845  | 52.032754 | 12.70033  |
| 19.570534 | 55.882969 | 0.37574569 | 52.10551  | 12.42881  |
| 19.580087 | 55.542545 | 0.35293713 | 52.171188 | 12.209673 |
| 19.590476 | 55.195037 | 0.32828113 | 52.226916 | 11.997375 |
| 19.600073 | 54.927125 | 0.31879641 | 52.262277 | 11.845241 |
| 19.610863 | 54.657891 | 0.30457441 | 52.2893   | 11.711621 |
| 19.620246 | 54.453441 | 0.29312338 | 52.290645 | 11.633445 |
| 19.631033 | 54.252613 | 0.28852777 | 52.279591 | 11.573255 |

| 19.640403<br>19.650398<br>19.660158<br>19.670196<br>19.680176<br>19.690439<br>19.700045 | 54.098234<br>53.929466<br>53.769339<br>53.603536<br>53.432706<br>53.257115<br>53.136533 | 0.28315658<br>0.2749466<br>0.27226998<br>0.27011543<br>0.27123858<br>0.27275559<br>0.28267212 | 52.260986<br>52.241317<br>52.218758<br>52.209873<br>52.228106<br>52.25599<br>52.284078 | 11.545347<br>11.513042<br>11.482861<br>11.43699<br>11.357794<br>11.269015<br>11.202354 |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 19.710085<br>19.720331<br>19.730139<br>19.74 53.47                                      | 53.110797<br>53.142127<br>53.227579<br>72031 0.393                                      | 0.31137258<br>0.32692786<br>0.34632998<br>364268 52.40                                        | 52.317033<br>52.373059<br>52.424228<br>6573 11.3                                       | 11.171704<br>11.17633<br>11.2067<br>60689                                              |
| 19.750002                                                                               | 53.961026                                                                               | 0.42522257                                                                                    | 52.366145                                                                              | 11.724593                                                                              |
| 19.770093                                                                               | 55.309939                                                                               | 0.48136539                                                                                    | 52.301901                                                                              | 12.803685                                                                              |
| 19.780103                                                                               | 56.383171                                                                               | 0.50600292                                                                                    | 51.948207                                                                              | 13.710944                                                                              |
| 19.790113                                                                               | 57.287651<br>58 064801                                                                  | 0.52181794                                                                                    | 51.743526                                                                              | 14.492359<br>15 198473                                                                 |
| 19.810002                                                                               | 58.870349                                                                               | 0.56626992                                                                                    | 51.217781                                                                              | 15.950719                                                                              |
| 19.820015                                                                               | 59.40137                                                                                | 0.57411871                                                                                    | 50.951138                                                                              | 16.489327                                                                              |
| 19.83029                                                                                | 59.615581                                                                               | 0.56936901                                                                                    | 50.685016                                                                              | 16.78562                                                                               |
| 19.840584                                                                               | 59.561047                                                                               | 0.55545088                                                                                    | 50.426192                                                                              | 16.869042                                                                              |
| 19.860141                                                                               | 59.215117                                                                               | 0.5290965                                                                                     | 49.933968                                                                              | 16.838679                                                                              |
| 19.870072                                                                               | 58.977487                                                                               | 0.50262956                                                                                    | 49.671063                                                                              | 16.786599                                                                              |
| 19.880654                                                                               | 58.742777                                                                               | 0.48772295                                                                                    | 49.377233                                                                              | 16.7462                                                                                |
| 19.890581                                                                               | 58.503801                                                                               | 0.46384949                                                                                    | 49.104655                                                                              | 16.7013                                                                                |
| 19.900007                                                                               | 57.995695                                                                               | 0.4245/466                                                                                    | 48.8//828                                                                              | 16.435606<br>16.113004                                                                 |
| 19.920325                                                                               | 56.787597                                                                               | 0.37911088                                                                                    | 48.402827                                                                              | 15.755179                                                                              |
| 19.930375                                                                               | 55.937482                                                                               | 0.34443002                                                                                    | 48.24552                                                                               | 15.198051                                                                              |
| 19.940074                                                                               | 55.164844                                                                               | 0.32988686                                                                                    | 48.090924                                                                              | 14.689103                                                                              |
| 19.950233                                                                               | 54.489302                                                                               | 0.31501285                                                                                    | 47.944234                                                                              | 14.260458                                                                              |
| 19.960262                                                                               | 53.229918                                                                               | 0.29199287                                                                                    | 47.831194                                                                              | 13.464957                                                                              |
| 19.980077                                                                               | 52.732216                                                                               | 0.27195772                                                                                    | 47.613654                                                                              | 13.16896                                                                               |
| 19.990113                                                                               | 52.217746                                                                               | 0.25322063                                                                                    | 47.544023                                                                              | 12.855918                                                                              |
| 20.000117                                                                               | 51.697539                                                                               | 0.24302861                                                                                    | 47.483785                                                                              | 12.529006                                                                              |
| 20.010499                                                                               | 51.239943                                                                               | 0.23561987                                                                                    | 47.429194                                                                              | 12.252897                                                                              |
| 20.020354                                                                               | 50.367425                                                                               | 0.22235406                                                                                    | 47.39366                                                                               | 11.706325                                                                              |
| 20.040756                                                                               | 50.01615                                                                                | 0.20814204                                                                                    | 47.384383                                                                              | 11.492252                                                                              |
| 20.050785                                                                               | 49.681906                                                                               | 0.19706846                                                                                    | 47.392572                                                                              | 11.286726                                                                              |
| 20.06018                                                                                | 49.380814                                                                               | 0.18927122                                                                                    | 47.40713                                                                               | 11.097694                                                                              |
| 20.07018                                                                                | 49.106545                                                                               | 0.18569079                                                                                    | 47.420924                                                                              | 10.933006                                                                              |
| 20.080931                                                                               | 48.838938                                                                               | 0.17307653                                                                                    | 47.4400                                                                                | 10.773092                                                                              |
| 20.100552                                                                               | 48.398749                                                                               | 0.17100348                                                                                    | 47.515818                                                                              | 10.516361                                                                              |
| 20.110588                                                                               | 48.207608                                                                               | 0.16718311                                                                                    | 47.5573                                                                                | 10.410342                                                                              |
| 20.120253                                                                               | 48.032884                                                                               | 0.16322846                                                                                    | 47.604088                                                                              | 10.314132                                                                              |
| 20.131051                                                                               | 47.859844                                                                               | 0.16191431                                                                                    | 47.655187                                                                              | 10.223632                                                                              |
| 20.150177                                                                               | 47.586332                                                                               | 0.15732381                                                                                    | 47.754189                                                                              | 10.091431                                                                              |
| 20.160672                                                                               | 47.453914                                                                               | 0.15667475                                                                                    | 47.807438                                                                              | 10.033375                                                                              |
| 20.170185                                                                               | 47.342378                                                                               | 0.15578796                                                                                    | 47.853367                                                                              | 9.9900153                                                                              |
| 20.180238                                                                               | 47.230076                                                                               | 0.15421928                                                                                    | 47.895198                                                                              | 9.9542166                                                                              |
| 20.190041                                                                               | 4/.128634<br>47 020662                                                                  | U.15384259<br>0 1533569                                                                       | 4/.932//                                                                               | 9.9265697<br>9 9017026                                                                 |
| 20.210277                                                                               | 46.934221                                                                               | 0.15247637                                                                                    | 47.98992                                                                               | 9.8922746                                                                              |

| 20.220001 | 46.849017 | 0.15197424 | 48.002155 | 9.889041  |
|-----------|-----------|------------|-----------|-----------|
| 20.23006  | 46.765324 | 0.15192451 | 48.011638 | 9.890178  |
| 20.240062 | 46.687351 | 0.15206662 | 48.011567 | 9.896641  |
| 20.25012  | 46.618609 | 0.1523075  | 47.99952  | 9.9133245 |
| 20.260087 | 46.554891 | 0.15250696 | 47.983819 | 9.9342081 |
| 20.270133 | 46.501259 | 0.15765262 | 47.950074 | 9.9637621 |
| 20.280571 | 46.487906 | 0.16840484 | 47.884164 | 10.033372 |
| 20.290456 | 46.512946 | 0.17481045 | 47.814965 | 10.132035 |
| 20.300331 | 46.570355 | 0.19014858 | 47.727716 | 10.250142 |
| 20.31002  | 46.748423 | 0.22167712 | 47.619624 | 10.449431 |
| 20.320461 | 47.040102 | 0.24807314 | 47.529013 | 10.721476 |
| 20.330235 | 47.366696 | 0.28655022 | 47.458815 | 10.975972 |
| 20.34005/ | 47.892862 | 0.3/634/3  | 47.426296 | 11.292502 |
| 20.350/91 | 48.606573 | 0.45086986 | 47.460245 | 11.698/18 |
| 20.360379 | 49.254251 | 0.50301694 | 47.511806 | 12.043/55 |
| 20.370230 | 50.295447 | 0.01922174 | 47.527521 | 12.023000 |
| 20.30077  | 51.70984  | 0.710/0013 | 47.571105 | 14 120004 |
| 20.390240 | 5/ 102010 | 0.77144590 | 47.041730 | 14.129004 |
| 20.400084 | 55 288377 | 0.04137211 | 47.000707 | 14.023912 |
| 20.410081 | 56 214007 | 0.00023701 | 47.740303 | 15 974134 |
| 20.420330 | 56 967882 | 0.91295010 | 47.833048 | 16 362829 |
| 20.430051 | 57 731243 | 0.91588963 | 47 836533 | 16 783963 |
| 20.450362 | 58 283349 | 0.90701807 | 47.828301 | 17.062285 |
| 20.460255 | 58.618693 | 0.86691906 | 47.801753 | 17.228296 |
| 20.470199 | 58.774045 | 0.80964704 | 47.753036 | 17.293773 |
| 20.480004 | 58.807738 | 0.77052003 | 47.679552 | 17.273243 |
| 20.490118 | 58.661755 | 0.70212166 | 47.60802  | 17.145279 |
| 20.500055 | 58.270615 | 0.62432926 | 47.517168 | 16.848833 |
| 20.510333 | 57.91317  | 0.57680093 | 47.379103 | 16.585605 |
| 20.520174 | 57.638532 | 0.53048392 | 47.221165 | 16.42014  |
| 20.530963 | 57.316612 | 0.47663815 | 47.008583 | 16.266103 |
| 20.540449 | 57.059255 | 0.45236394 | 46.792395 | 16.161827 |
| 20.550656 | 56.786537 | 0.42831204 | 46.548797 | 16.081247 |
| 20.561134 | 56.434166 | 0.39761145 | 46.281021 | 15.98099  |
| 20.570923 | 56.118369 | 0.38199883 | 46.011947 | 15.905442 |
| 20.581197 | 55.813309 | 0.36773204 | 45.719053 | 15.860106 |
| 20.590536 | 55.556534 | 0.34940655 | 45.431472 | 15.85859  |
| 20.600727 | 55.330065 | 0.33887875 | 45.097132 | 15.90698  |
| 20.610107 | 55.13111  | 0.33502244 | 44.///848 | 15.962463 |
| 20.620972 | 55.11156Z | 0.32960928 | 44.356511 | 16.21977  |
| 20.630071 | 55 200062 | 0.32019014 | 43.977741 | 16 957690 |
| 20.040134 | 55 553266 | 0.32904779 | 43.332042 | 17 370079 |
| 20.660118 | 55 984698 | 0.33700302 | 42 577855 | 18 016593 |
| 20.670318 | 56 205162 | 0.34003713 | 42.07616  | 18 507968 |
| 20.680052 | 56 411786 | 0.36809683 | 41.571143 | 18,990258 |
| 20.690098 | 56.771471 | 0.38683628 | 41 04437  | 19,59973  |
| 20.700426 | 56.900466 | 0.39729741 | 40.523351 | 20.028698 |
| 20.710144 | 56.960294 | 0.42209001 | 40.038319 | 20.351272 |
| 20.72022  | 57.025896 | 0.44495085 | 39.564932 | 20.662854 |
| 20.730241 | 56.897638 | 0.4554184  | 39.124726 | 20.808916 |
| 20.740351 | 56.587469 | 0.45929249 | 38.715496 | 20.78655  |
| 20.750125 | 56.107083 | 0.45899899 | 38.351011 | 20.599552 |
| 20.760208 | 55.630641 | 0.45780951 | 37.990834 | 20.410857 |
| 20.77056  | 55.162796 | 0.45098248 | 37.650793 | 20.216074 |
| 20.780672 | 54.495727 | 0.44044438 | 37.351388 | 19.840214 |
| 20.790478 | 53.915045 | 0.43407723 | 37.070505 | 19.519102 |

| 20.800938              | 53.473722             | 0.4264064                   | 36.780236                            | 19.309036              |
|------------------------|-----------------------|-----------------------------|--------------------------------------|------------------------|
| 20.810194              | 53.103309             | 0.41689329                  | 36.530138                            | 19.130408              |
| 20.820319              | 52.814605             | 0.41021846                  | 36.25271                             | 19.022648              |
| 20.830323              | 52.623725             | 0.40435273                  | 35.97634                             | 18.986803              |
| 20.840343              | 52.563823             | 0.39437294                  | 35.684815                            | 19.051988              |
| 20.850667              | 52.582242             | 0.38828038                  | 35.372367                            | 19.183707              |
| 20.86004               | 52.561619             | 0.38503322                  | 35.086109                            | 19.278159              |
| 20.870055              | 52.643401             | 0.3784468                   | 34.762077                            | 19.480896              |
| 20.88049               | 52.700803             | 0.37304647                  | 34.419078                            | 19.679305              |
| 20.890113              | 52.640416             | 0.36824957                  | 34.110275                            | 19.77353               |
| 20.900654              | 52.168244             | 0.34945492                  | 33.802401                            | 19.561455              |
| 20.910298              | 51.499644             | 0.33405197                  | 33.535085                            | 19.1/5843              |
| 20.92020               | 50.928625             | 0.3201/924                  | 22 007614                            | 10 51/207              |
| 20.930191              | 10.50050              | 0.30770072                  | 33.00/014                            | 10.JI4297<br>10 170337 |
| 20.940038              | 49.000204             | 0.29550004                  | 32.731073                            | 17 982117              |
| 20.950021              | 48 921081             | 0.20740333                  | 32 209892                            | 17 89742               |
| 20.900000              | 48 614849             | 0.25776424                  | 31 919293                            | 17 848252              |
| 20.980053              | 48.311063             | 0.25222709                  | 31 632306                            | 17.795086              |
| 20.990115              | 47.89086              | 0.23897139                  | 31.357313                            | 17.656913              |
| 21.000082              | 47.257634             | 0.22629215                  | 31.096135                            | 17.345475              |
| 21.010422              | 46.640102             | 0.22120208                  | 30.825663                            | 17.048995              |
| 21.020487              | 46.169043             | 0.21361516                  | 30.563894                            | 16.865469              |
| 21.030257              | 45.789567             | 0.20527507                  | 30.301293                            | 16.753932              |
| 21.040302              | 45.521859             | 0.20147666                  | 30.022369                            | 16.737899              |
| 21.050223              | 45.313297             | 0.19697883                  | 29.739482                            | 16.773158              |
| 21.060423              | 45.243776             | 0.19095699                  | 29.429396                            | 16.939376              |
| 21.070089              | 45.136069             | 0.18915542                  | 29.135527                            | 17.06643               |
| 21.080404              | 44.938702             | 0.18944834                  | 28.827346                            | 17.140726              |
| 21.090609              | 44.686526             | 0.1909576                   | 28.529366                            | 17.181944              |
| 21.100468              | 44.440265             | 0.19225728                  | 28.247917                            | 17.219732              |
| 21.110394              | 44.186756             | 0.19289935                  | 27.969294                            | 17.250949              |
| 21.12087               | 44.004223             | 0.19362717                  | 27.670538                            | 17.357482              |
| 21.130345              | 43.904072             | 0.1942/8/6                  | 27.399026                            | 17.50488               |
| 21.1402                | 43./61326             | 0.19493341                  | 27.119771                            | 17.624439              |
| 21.150192              | 43./42000             | 0.19624189                  | 20.024132                            | 10 155071              |
| 21.100314<br>21.170424 | 43.02030              | 0.19730004                  | 20.310009                            | 18 38308               |
| 21.170424              | 43.01701              | 0.1904330                   | 25 908886                            | 18 680701              |
| 21,190351              | 44 129414             | 0.21234257                  | 25.598959                            | 19.09002               |
| 21.200068              | 44.219102             | 0.21719164                  | 25.309587                            | 19.379649              |
| 21.21005               | 44.334918             | 0.23848261                  | 25.016019                            | 19.689596              |
| 21.22017               | 44.618769             | 0.25820344                  | 24.737696                            | 20.13043               |
| 21.230125              | 44.776232             | 0.26608943                  | 24.484226                            | 20.462955              |
| 21.240134              | 44.833243             | 0.27227998                  | 24.228931                            | 20.728732              |
| 21.250246              | 45.019842             | 0.27592658                  | 23.969487                            | 21.109484              |
| 21.260032              | 45.055963             | 0.27700829                  | 23.724189                            | 21.362825              |
| 21.270053              | 45.097572             | 0.29304972                  | 23.468031                            | 21.621827              |
| 21.280302              | 45.702909             | 0.32825196                  | 23.208411                            | 22.32017               |
| 21.29013               | 46.340659             | 0.35389727                  | 22.986725                            | 23.025595              |
| 21.300101              | 46.799669             | 0.40796296                  | 22.774152                            | 23.570273              |
| 21.310002              | 48.268176             | 0.53221274                  | 22.602313                            | 24.845295              |
| 21.320584              | 49.89944              | 0.65833297                  | 22.514763                            | 26.202433              |
| 21.33UUL/              | 50./U81/3             | U. / / I I 384' / 1 0160006 | 22.48/216                            | 20.842652              |
| 21.34UZU4<br>21.350176 | JZ.0/U03<br>55 006112 | 1.0109090<br>1.2450005      | 22.JU0/03                            | 20.3/903<br>20 007050  |
| 21.33U1/0<br>21.360/00 | JJ.U00113<br>56 10575 | 1 /3/35/03<br>1 /3/35/0     | 22.0UJJJ<br>22.772000                | 29.90/038<br>30 516103 |
| 21.370533              | 57 490203             | 1 6881832                   | 22.112030                            | 31,256945              |
|                        | 100200                |                             | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 01.200010              |

| 21.400883   59.239769   2.2866443   23.849784   31.692886     21.410041   59.577245   2.4198357   24.152766   31.708176     21.420271   59.92767   2.5352928   24.498185   31.723926     21.440088   59.621883   2.5690912   25.200676   31.733777     21.450026   59.068803   2.5081539   25.569076   30.554201     21.470039   55.376342   2.0178614   26.408313   27.507692     21.480081   54.047748   1.7609247   26.788192   26.403318     21.490149   53.032807   1.4926728   27.677506   23.702542     21.50073   51.550526   1.2346937   27.446842   24.470965     21.50073   50.52188   1.0433898   27.677506   23.702542     21.50054   49.833084   0.88724278   27.844362   22.09175     21.50126   47.004249   0.52344264   27.927324   21.473876     21.50126   47.004249   0.52344264   27.927324   21.473876     21.50126   47.004249   0.52344264   27.927324   21.473876     21.5                                                                                                                                                                     | 21.380738<br>21.390789 | 58.341003<br>58.827005 | 1.9239085<br>2.1073848 | 23.237241<br>23.531109 | 31.598942<br>31.67236 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|------------------------|------------------------|-----------------------|
| 21.410041   59.9377   2.5352928   24.498185   31.730545     21.420271   59.9677   2.5552928   24.498185   31.730545     21.440088   59.621883   2.5690912   25.200676   31.133707     21.450226   59.068803   2.5081539   25.569076   30.554201     21.450226   59.068803   2.5081539   25.569076   30.554201     21.470099   55.376342   2.0178614   26.408311   27.507692     21.480081   54.047748   1.7609247   26.767806   23.702542     21.50073   51.550526   1.2346937   27.446842   24.470965     21.510433   50.52188   1.0433898   27.677506   23.702542     21.50053   47.60552   0.7592572   27.97845   21.808712     21.50124   48.171281   0.46023691   27.34458   21.08032     21.50503   47.60552   0.48712951   27.446758   20.93902     21.50504   46.171928   0.42766812   27.601059   20.948536     21.50503   46.631318   0.41250356   27.446758   20.93902     21.60205                                                                                                                                                                          | 21.400883              | 59.239769              | 2.2866443              | 23.849784              | 31.692886             |
| 21.430195   60.187105   2.599085   24.836609   31.730545     21.440088   59.621883   2.569012   25.200676   30.554201     21.450226   59.668803   2.5081539   25.569073   30.554201     21.460036   57.652247   2.3094078   25.974942   29.354598     21.470099   55.376342   2.0178614   26.408931   27.507692     21.480081   54.047748   1.7609247   26.788192   26.403318     21.490149   53.032807   1.4926728   27.141767   25.600513     21.50073   51.550526   1.2346937   27.446842   24.470965     21.50073   51.550526   1.2346937   27.8445768   23.234624     21.530679   48.837137   0.74570756   27.949417   22.55423     21.550635   47.609592   0.5254263   27.94745   21.808712     21.550635   47.609592   0.5254264   27.94745   21.808712     21.50126   47.04249   0.52344264   27.947458   21.080323     21.50138   0.4623691   27.73458   21.080323     21.600174   45.6578                                                                                                                                                                     | 21.410041              | 59.92767               | 2.5352928              | 24.132700              | 31.723926             |
| 21.440088   59.621883   2.5609012   25.200676   31.133707     21.460036   57.652247   2.3094078   25.974942   29.354598     21.470099   55.376342   2.0178614   26.408931   27.507692     21.480081   54.047748   1.7609247   26.788192   26.403318     21.490149   53.032807   1.4426728   27.446842   24.470965     21.50562   49.83084   0.88724278   27.84768   23.34624     21.50563   49.837137   0.74570756   27.949417   22.554233     21.550535   47.609592   0.55952752   27.97845   21.808712     21.550535   47.004249   0.52344264   27.927324   21.473876     21.550535   47.004249   0.52344264   27.927324   21.473876     21.550534   46.171228   0.46023691   27.734458   21.080323     21.505035   46.071928   0.447266812   27.601059   20.948536     21.600451   45.55138   0.41250356   27.446758   20.93902     21.610451   45.56782   0.41392318   27.666121   22.69859 <td< td=""><td>21.430195</td><td>60.187105</td><td>2.599085</td><td>24.836609</td><td>31.730545</td></td<>                                                              | 21.430195              | 60.187105              | 2.599085               | 24.836609              | 31.730545             |
| 21.450226   59.068803   2.5081539   25.569076   30.554201     21.460036   57.652247   2.3094078   25.974942   29.354598     21.470099   55.376342   2.0178614   26.408931   27.507692     21.480081   54.047748   1.7609247   26.788192   26.403318     21.490149   53.032807   1.4926728   27.446842   24.470965     21.510433   50.52188   1.0433898   27.677506   23.702542     21.50052   49.833084   0.88724278   27.9444842   22.04175     21.550635   47.609592   0.5525725   27.97845   21.808712     21.51164   47.009592   0.552342264   27.97845   21.808712     21.56116   47.009592   0.5525725   27.97845   21.808712     21.56116   47.009592   0.52342264   27.973458   21.080323     21.50116   46.171928   0.44276612   27.601059   20.948536     21.60174   45.563782   0.41392318   27.268053   20.998801     21.60205   46.8488   0.44503833   26.876426   22.34885     21.602                                                                                                                                                                     | 21.440088              | 59.621883              | 2.5690912              | 25.200676              | 31.133707             |
| 21.460036   57.652247   2.3094078   25.974942   29.354598     21.470039   55.376342   2.0178614   26.408312   27.507692     21.480081   54.047748   1.7609247   26.788192   26.403318     21.900143   50.55266   1.2346937   27.446842   24.470965     21.510433   50.52188   1.0433898   27.677506   23.702542     21.530679   48.837137   0.74570756   27.944436   22.94023     21.550635   47.609592   0.59525725   27.97845   21.808712     21.561126   47.004249   0.52344264   27.927324   21.473876     21.505034   46.171928   0.446736812   27.661059   20.948536     21.600174   45.563782   0.41250356   27.446758   20.9302     21.610451   45.563782   0.41250356   27.446758   20.93902     21.600324   46.06956   0.43584178   27.074756   21.499559     21.600354   46.06956   0.43584178   27.074756   21.499559     21.600354   46.06956   0.52956351   25.667137   21.60057   22.04855                                                                                                                                                               | 21.450226              | 59.068803              | 2.5081539              | 25.569076              | 30.554201             |
| 21.40081   50.047748   1.760947   26.788192   26.403318     21.400149   53.032807   1.4926728   27.141767   25.600513     21.500073   51.550526   1.2346937   27.446842   24.470965     21.50073   51.550526   1.2346937   27.446842   24.470965     21.50052   49.833084   0.88724278   27.842768   23.234624     21.550553   47.605592   0.55525725   27.97845   21.808712     21.550635   47.609592   0.5525725   27.97845   21.808712     21.550635   47.609592   0.5525725   27.97845   21.808712     21.550635   47.609592   0.5324264   27.927324   21.473876     21.55059   48.71295   0.4871291   27.646757   21.908338     21.50059   45.82964   0.42766812   27.601059   20.948536     21.600174   45.651318   0.41250356   27.446758   20.999801     21.60037   49.106954   0.41392318   27.667263   20.999801     21.60037   49.106954   0.5074788   26.274194   24.204372     21.6003                                                                                                                                                                     | 21.460036              | 57.652247              | 2.3094078              | 25.9/4942              | 29.354598             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21.470099              | 54.047748              | 1.7609247              | 26.788192              | 26.403318             |
| 21.50007351.5505261.234693727.44684224.47096521.51043350.521881.043389827.67750623.70254221.5205249.830840.8872427827.84776823.23462421.53067948.8371370.7457075627.94941722.55423321.5401248.1252360.6639610327.98443622.0917521.55063547.6095920.5952572527.9784521.80871221.5612647.0042490.5234426427.92722421.47387621.57044146.5332590.4871295127.84452721.22836821.58053446.1719280.4602369127.73445821.00032321.6007445.6537820.4139231827.26805320.9980121.62013946.0699560.4358417827.07475621.49955921.6302546.884880.4603833326.87642622.23488521.64052547.358190.4750929126.68662122.69850921.65003248.1550180.4965609726.49016423.39047321.66035749.1069540.5397760925.42574725.8898321.7002651.5112360.5697162325.22881726.17840121.7026451.9981340.5967987825.0549926.64520821.7027452.4700210.6045981724.45899926.66152321.7021453.470470.573866924.09776627.15253521.7021453.470470.5731663923.92732927.40758321.8007655.3768090.57452492                                                                                                             | 21.490149              | 53.032807              | 1.4926728              | 27.141767              | 25.600513             |
| 21.51043350.521881.043389827.67750623.70254221.52056249.8330840.8872427827.84276823.23462421.53067948.8371370.7457075627.94941722.55423321.55063547.6095920.552572527.9784521.80871221.55012647.0042490.5234426427.92732421.47387621.57044146.532590.4871295127.84452721.22836821.5905945.829640.4276681227.6015920.94853621.60017445.6513180.4125035627.44675820.9990221.61045145.6537820.4358417827.07475621.49955921.6302546.884880.460338326.87642622.22488521.6003749.1069540.5074788926.27419424.20437221.67008749.1069540.5074788926.27419424.20437221.67008749.1069540.5295635125.6349525.56713721.70037851.0904610.5397760925.42574725.888321.71020651.5112360.5697162325.22881726.61506921.73028752.258370.6103985224.90076726.60093321.74055752.4700210.6045981724.45899926.61543321.7021453.479470.5734093124.2913626.78197721.75021752.756390.574529923.3720126.66152321.7021453.479470.574403124.9776627.15253521.7001752.2588370.574529923.5                                                                                                             | 21.500073              | 51.550526              | 1.2346937              | 27.446842              | 24.470965             |
| 21.520562   49.833084   0.88/242/8   27.842/68   23.234624     21.530679   48.837137   0.74570756   27.94417   22.554233     21.54012   48.125236   0.66396103   27.984436   22.09175     21.550635   47.609592   0.59525725   27.978455   21.808712     21.550146   46.33259   0.48712951   27.844527   21.228368     21.50059   45.82964   0.42766812   27.601059   20.948536     21.600174   45.651318   0.41250356   27.446758   20.999021     21.610451   45.653782   0.43384178   27.074756   21.499559     21.620139   46.069956   0.43584178   27.074756   21.499559     21.63025   46.88488   0.46033833   26.876426   22.24885     21.640525   47.35819   0.47509291   26.686621   22.698509     21.660357   49.106954   0.50747889   26.274194   24.204372     21.600352   50.016726   0.51538117   25.863702   25.019719     21.600352   50.69268   0.52956351   25.642594   25.67137     <                                                                                                                                                                 | 21.510433              | 50.52188               | 1.0433898              | 27.677506              | 23.702542             |
| 21.50007   48.132137   0.74370703   21.549417   22.09175     21.550635   47.609592   0.59525725   27.97845   21.808712     21.550635   47.609592   0.59525725   27.97845   21.808712     21.550635   47.609592   0.59525725   27.97845   21.808712     21.570441   46.533259   0.48712951   27.844527   21.228368     21.590509   45.82964   0.42766812   27.601059   20.948536     21.600174   45.651318   0.41250356   27.446758   20.93902     21.610451   45.563782   0.41392318   27.074756   21.499559     21.630205   46.88488   0.46033833   26.876426   22.234885     21.640525   47.35819   0.47509291   26.686621   22.698509     21.650032   48.155018   0.49656097   26.47194   44.204372     21.670087   49.54124   0.51183355   26.077803   24.606051     21.690352   50.69268   0.52956351   25.63495   25.507137     21.670087   49.51026   0.55971623   25.228817   26.17803                                                                                                                                                                          | 21.520562              | 49.833084              | 0.88724278             | 27.842768              | 23.234624             |
| 21.5003547.6095920.595272527.9784521.80871221.56112647.0042490.5234426427.92732421.47387621.57044146.5332590.4871295127.73445821.08032321.58053446.1719280.4602369127.73445821.08032321.59050945.829640.4276681227.60105920.94853621.6017445.6513180.4125035627.44675820.9390221.61045145.6537820.4139231827.026805320.99980121.62013946.0699560.4358417827.07475621.49955921.63020546.884880.4603383326.87642622.23488521.64052547.358190.4750929126.68662122.69850921.65003248.1550180.4965609726.49016423.39047321.66035749.1069540.507478926.27419424.20437221.67008749.541240.5118333526.07780324.6065121.68001550.0167260.5153811725.86370225.01971921.69035250.692680.5295635125.63449525.6713721.70037851.0904610.599767825.05489926.4820821.73028752.2588370.6103985224.90076726.6050321.7021451.9981340.5967987825.05489926.66152321.7021453.4790210.503769224.61281926.61543321.7021552.4508370.5103769224.61281926.61543321.7021552.3768090.5745299                                                                                                         | 21.530079              | 48.125236              | 0.66396103             | 27.984436              | 22.09175              |
| 21.56112647.0042490.5234426427.92732421.47387621.57044146.5332590.4871295127.84452721.22836821.58053446.1719280.4602369127.73445821.08032321.59050945.829640.4276681227.60105920.94853621.60017445.6513180.4125035627.44675820.9390221.61045145.5637820.4139231827.26805320.99980121.62013946.0699560.4358417827.07475621.49955921.63020546.884880.4603383326.87642622.23488521.64052547.358190.4750929126.68662122.69850921.66035749.1069540.5074788926.27419424.20437221.67008749.541240.5118333526.07780325.61971921.66005550.692680.5295635125.63449525.56713721.70037851.0904610.5397760925.42574725.8898321.71020651.5112360.5697162325.2281726.66152321.73028752.2588370.6103985224.90076726.60193321.74055752.4700210.6045981724.75549226.6152321.77021453.479470.5754093124.2913626.78197721.78100754.2898320.573866924.09776627.15253521.79055354.903250.574529923.92732927.40758321.7800755.3768090.574524423.77558327.84466621.8007455.3764090.574244 <td>21.550635</td> <td>47.609592</td> <td>0.59525725</td> <td>27.97845</td> <td>21.808712</td>        | 21.550635              | 47.609592              | 0.59525725             | 27.97845               | 21.808712             |
| 21.57044146.5332590.4871295127.84452721.22836821.58053446.1719280.4602369127.73445821.08032321.59050945.829640.4276681227.60105920.94853621.60017445.6513180.4125035627.44675820.9390221.61045145.6537820.4139231827.26805320.99980121.62013946.0899560.4358417827.07475621.49955921.63020546.884880.4603383326.87642622.269850921.65003248.1550180.4965609726.49016423.39047321.66035749.1069540.5074788926.27419424.20437221.67008749.541240.5118333526.07780325.01971921.69035250.0167260.5153811725.86370225.01971921.69035250.0167260.5597162325.22881726.17840121.70037851.0904610.5397760925.42574725.8898321.73028752.2588370.6103985224.90076726.60093321.74055752.4700210.6045981724.75549226.6152321.77021453.479470.5754093124.2913626.78197721.78100754.2898320.573866924.09776627.15253521.79055354.903250.574529923.92732927.40758321.8007655.3768090.5745424423.73730128.08441921.80269756.5968480.5714447323.37320128.08245121.8007455.3368090.5745                                                                                                    | 21.561126              | 47.004249              | 0.52344264             | 27.927324              | 21.473876             |
| 21.58053446.1719280.4602369127.73445821.08032321.59050945.829640.4276681227.60105920.94853621.60017445.6513180.4125035627.44675820.9390221.61045145.5637820.4139231827.26805320.99980121.62013946.0699560.4358417827.07475621.49955921.63020546.884880.4403383326.87642622.23488521.64052547.358190.4750929126.68662122.69850921.65003248.1550180.4965609726.49016423.39047321.66035749.1069540.5074788926.27419424.20437221.67008749.541240.5118333526.07780324.60605121.68001550.0167260.5153811725.86370225.1971921.69035250.692680.5295635125.63449525.56713721.70037851.0904610.5397760925.42574725.8898321.71020651.5112360.5697162325.22881726.17840121.72015451.9981340.5967987825.05489926.66152321.77021453.0326420.5803042724.45899926.66152321.77021453.479470.5734093124.2913626.78197721.78100754.2898220.573866924.09776627.15253521.8007655.3768090.574529423.37320128.08341921.8023457.0174990.569724923.19130228.24057521.8007157.316690.5424132 </td <td>21.570441</td> <td>46.533259</td> <td>0.48712951</td> <td>27.844527</td> <td>21.228368</td> | 21.570441              | 46.533259              | 0.48712951             | 27.844527              | 21.228368             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21.580534              | 46.171928              | 0.46023691             | 27.734458              | 21.080323             |
| 21.61045145.563782 $0.41392318$ 27.26805320.99980121.62013946.069956 $0.43584178$ 27.07475621.49955921.63020546.88488 $0.46033833$ 26.87642622.23488521.64052547.35819 $0.47509291$ 26.68662122.69850921.65003248.155018 $0.49656097$ 26.49016423.39047321.66035749.106954 $0.50747889$ 26.27419424.20437221.67008749.54124 $0.51183335$ 26.07780324.60605121.68001550.016726 $0.51538117$ 25.86370225.01971921.69035250.69268 $0.52956351$ 25.63449525.56713721.70037851.090461 $0.53977609$ 25.42574725.8898321.71026551.511236 $0.56971623$ 25.22881726.61506921.73028752.258837 $0.61039852$ 24.90076726.60093321.74055752.470021 $0.60459817$ 24.75549226.61543321.77021453.032642 $0.57386692$ 24.01281926.61543321.77021453.47047 $0.57346692$ 24.01281926.66152321.79055354.90325 $0.5745299$ 23.92732927.40758321.8007655.376809 $0.57454244$ 23.74558427.54466621.81094456.01257 $0.57310639$ 23.55669327.81300121.84027357.764286 $0.5643081$ 22.98350528.68248121.8007455.376809 $0.54241332$ 22.5775529.07162521                                           | 21.590509              | 45.651318              | 0.42700012             | 27.446758              | 20.948550             |
| 21.62013946.0699560.4358417827.07475621.49955921.63020546.884880.4603383326.87642622.23488521.64052547.358190.4750929126.68662122.69850921.65003248.1550180.4965609726.49016423.39047321.66035749.1069540.5074788926.27419424.20437221.67008749.541240.5118333526.07780324.60605121.68001550.0167260.5153811725.86370225.01971921.69035250.692680.5295635125.63449525.56713721.70037851.0904610.5397760925.42574725.8898321.71020651.5112360.5697162325.22881726.17840121.73028752.2588370.6103985224.90076726.60093321.74055752.4700210.6045981724.75549226.61506921.75021752.7151670.5903769224.61281926.6152321.77021453.479470.5734063124.9917627.15253521.79055354.903250.5735069224.09776627.15253521.8007655.3768090.574529923.92732927.40758321.8007655.3768090.5745424423.7320128.08341921.80263756.596742622.76865528.9985121.8027357.7642860.56430812.98350528.68248121.8027357.7642860.56430812.98350528.68248121.8014558.3228620.5567642622.768655                                                                                                         | 21.610451              | 45.563782              | 0.41392318             | 27.268053              | 20.999801             |
| 21.63020546.884880.4603383326.87642622.23488521.64052547.358190.4750929126.68662122.69850921.65003248.1550180.496509726.49016423.39047321.66035749.1069540.5074788926.27419424.20437221.67008749.541240.5118333526.07780324.60605121.68001550.0167260.5153811725.86370225.01971921.69035250.692680.5295635125.63449525.56713721.70037851.0904610.5397760925.42574725.8898321.71020651.5112360.5697162325.22881726.17840121.73028752.258370.6103985224.90076726.60093321.74055752.4700210.6045981724.75549226.6152321.77021453.0326420.5803042724.45899926.66152321.77021453.479470.5734093124.2913626.78197721.78100754.2898320.5734506924.09776627.15253521.79053554.903250.574529923.92732927.40758321.8007655.3768090.574524423.74554427.54466621.81094456.0012570.5567642622.76862528.9985121.84027357.7642860.564308122.98350528.68248121.85041558.3228620.5567642622.76862528.9985121.86057258.5460930.5424133222.55795929.07162521.87051158.2304920.50186554<                                                                                                    | 21.620139              | 46.069956              | 0.43584178             | 27.074756              | 21.499559             |
| 21.64052547.358190.4750929126.68662122.69850921.65003248.1550180.4965609726.49016423.39047321.66035749.1069540.5074788926.27419424.20437221.67008749.541240.5118333526.07780324.60605121.68001550.0167260.5153811725.86370225.01971921.69035250.692680.5295635125.63449525.56713721.70037851.0904610.5397760925.42574725.8898321.71020651.5112360.5697162325.22881726.17840121.72015451.9981340.5967987825.05489926.661506921.75021752.7151670.5903769224.61281926.61506921.75021752.7151670.5903769224.61281926.66152321.77021453.479470.5754093124.2913626.78197721.78100754.2898320.5738666924.09776627.15253521.79055354.903250.574529923.92732927.40758321.8007655.3768090.574524423.74558427.54466621.81094456.012570.5731063923.55669327.81300121.82069756.5968480.5714447323.37320128.08341921.86057258.5460930.542413222.55795929.07162521.84027357.7642860.564308122.98350528.68248121.85041558.3228620.5567642622.76862528.9985121.86057258.5460930.54241                                                                                                    | 21.630205              | 46.88488               | 0.46033833             | 26.876426              | 22.234885             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21.640525              | 47.35819               | 0.47509291             | 26.686621              | 22.698509             |
| 21.67008749.541240.5118333526.07780324.60605121.68001550.0167260.5153811725.86370225.01971921.69035250.692680.5295635125.63449525.56713721.70037851.0904610.5397760925.42574725.8898321.71020651.5112360.5697162325.22881726.17840121.73028752.2588370.6103985224.90076726.60093321.74055752.4700210.6045981724.75549226.61506921.75021752.7151670.5903769224.61281926.6152321.77021453.0326420.5803042724.45899926.66152321.77021453.479470.5754093124.2913626.78197721.78100754.2898320.5738666924.09776627.15253521.79055354.903250.574529923.92732927.40758321.8007655.3768090.5745424423.74558427.54466621.81094456.0012570.5731063923.55669327.81300121.82069756.5968480.5714447323.37320128.08341921.86057258.5460930.5424133222.55795929.07162521.87051158.3228620.5567642622.76862528.9985121.86057258.5460930.5424133222.55795929.07162521.87051158.2304920.5018635422.35074828.12556621.90042556.8794760.4177124921.67558327.64148421.90044556.794760.41                                                                                                     | 21.650052              | 49.106954              | 0.50747889             | 26.274194              | 24.204372             |
| 21.68001550.0167260.5153811725.86370225.01971921.69035250.692680.5295635125.63449525.56713721.70037851.0904610.5397760925.42574725.8898321.71020651.5112360.5697162325.22881726.17840121.73028752.2588370.6103985224.90076726.60093321.74055752.4700210.6045981724.75549226.61506921.75021752.7151670.5903769224.61281926.66152321.77021453.0326420.5803042724.45899926.66152321.77021453.479470.5754093124.2913626.78197721.78100754.2898320.573866924.09776627.15253521.79055354.903250.574529923.92732927.40758321.8007655.3768090.5745424423.74558427.54466621.81094456.0012570.5731063923.55669327.81300121.82069756.5968480.5714447323.37320128.08341921.83023457.0174990.5697224923.19130228.24057521.84027357.7642860.564308122.98350528.68248121.8057258.5460930.5424133222.55795929.07162521.87051158.2304920.5018635422.35074828.76684721.89019457.5013160.4637336621.90463228.12556621.90042556.8794760.4177124921.67558327.64148421.90042556.8794760.41                                                                                                    | 21.670087              | 49.54124               | 0.51183335             | 26.077803              | 24.606051             |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21.680015              | 50.016726              | 0.51538117             | 25.863702              | 25.019719             |
| 21.70037851.0904610.5397760925.42574725.8898321.71020651.5112360.5697162325.22881726.17840121.72015451.9981340.5967987825.05489926.4820821.73028752.2588370.6103985224.90076726.60093321.74055752.4700210.6045981724.75549226.61504921.75021752.7151670.5903769224.61281926.661543321.77021453.0326420.5803042724.45899926.666152321.77021453.479470.5754093124.2913627.15253521.79055354.903250.574529923.92732927.40758321.8007655.3768090.5745424423.74558427.54466621.81094456.0012570.5731063923.55669327.81300121.82069756.5968480.5714447323.37320128.08341921.83023457.0174990.5697224923.19130228.24057521.84027357.7642860.564308122.98350528.68248121.86057258.5460930.5424133222.55795929.07162521.86057258.5460930.542413222.35074828.76684721.88070157.731950.4683689222.12399828.33519521.89019457.5013160.4507336621.90463228.12556621.90042556.874770.3948925121.44101827.10550921.92013255.8315830.3850755921.22075326.85874721.93006655.162510.36                                                                                                    | 21.690352              | 50.69268               | 0.52956351             | 25.634495              | 25.567137             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21.700378              | 51.090461              | 0.53977609             | 25.425747              | 25.88983              |
| 21.73028752.2588370.6103985224.90076726.60093321.74055752.4700210.6045981724.75549226.61506921.75021752.7151670.5903769224.61281926.61544321.7601153.0326420.5803042724.45899926.66152321.77021453.479470.5754093124.2913626.78197721.78100754.2898320.5738666924.09776627.15253521.79055354.903250.574529923.92732927.40758321.8007655.3768090.5745424423.74558427.54466621.81094456.0012570.5731063923.55669327.81300121.82069756.5968480.5714447323.37320128.08341921.83023457.0174990.5697224923.19130228.24057521.84027357.7642860.564308122.98350528.68248121.85041558.3228620.5567642622.76862528.9985121.86057258.5460930.5424133222.55795929.07162521.87051158.2304920.5018635422.35074828.76684721.88070157.731950.4683689222.12399828.33519521.89019457.5013160.4507336621.90463228.12556621.90042556.8794760.4177124921.67558327.64148421.9106456.1725270.3948925121.44101827.10550921.92013255.8315830.3850755921.22075326.85874721.93006655.162510.365                                                                                                    | 21.720154              | 51 998134              | 0.59679878             | 25.054899              | 26.48208              |
| 21.74055752.4700210.6045981724.75549226.61506921.75021752.7151670.5903769224.61281926.61544321.7601153.0326420.5803042724.45899926.66152321.77021453.479470.5754093124.2913626.78197721.78100754.2898320.5738666924.09776627.15253521.79055354.903250.574529923.92732927.40758321.8007655.3768090.5745424423.74558427.54466621.81094456.0012570.5731063923.55669327.81300121.82069756.5968480.5714447323.37320128.08341921.83023457.0174990.5697224923.19130228.24057521.84027357.7642860.564308122.98350528.68248121.85041558.3228620.5567642622.76862528.9985121.86057258.5460930.5424133222.55795929.07162521.87051158.2304920.5018635422.35074828.76684721.88070157.731950.4683689222.12399828.33519521.89019457.5013160.4507336621.90463228.12556621.90042556.8794760.4177124921.67558327.64148421.91064456.1725270.3948925121.44101827.10550921.92013255.8315830.3850755921.22075326.85874721.93006655.162510.3652792421.0098426.38063521.94042454.0962020.348                                                                                                    | 21.730287              | 52.258837              | 0.61039852             | 24.900767              | 26.600933             |
| 21.75021752.7151670.5903769224.61281926.61544321.7601153.0326420.5803042724.45899926.66152321.77021453.479470.5754093124.2913626.78197721.78100754.2898320.5738666924.09776627.15253521.79055354.903250.574529923.92732927.40758321.8007655.3768090.5745424423.74558427.54466621.81094456.0012570.5731063923.55669327.81300121.82069756.5968480.5714447323.37320128.08341921.83023457.0174990.5697224923.19130228.24057521.84027357.7642860.564308122.98350528.68248121.85041558.3228620.5567642622.76862528.9985121.86057258.5460930.5424133222.55795929.07162521.87051158.2304920.5018635422.35074828.76684721.89019457.5013160.4507336621.90463228.12556621.90042556.8794760.4177124921.67558327.64148421.91064456.1725270.3948925121.44101827.10550921.92013255.8315830.3850755921.22075326.85874721.93006655.162510.3652792421.0098426.38063521.94042454.0962020.348960820.80537225.60681921.95022253.4125980.342609320.61578425.129153                                                                                                                            | 21.740557              | 52.470021              | 0.60459817             | 24.755492              | 26.615069             |
| 21.7601153.0326420.5803042724.458999926.66152321.77021453.479470.5754093124.2913626.78197721.78100754.2898320.5738666924.09776627.15253521.79055354.903250.574529923.92732927.40758321.8007655.3768090.5745424423.74558427.54466621.81094456.0012570.5731063923.55669327.81300121.82069756.5968480.5714447323.37320128.08341921.83023457.0174990.5697224923.19130228.24057521.84027357.7642860.564308122.98350528.68248121.85041558.3228620.5567642622.76862528.9985121.86057258.5460930.5424133222.55795929.07162521.87051158.2304920.5018635422.35074828.76684721.89019457.5013160.4507336621.90463228.12556621.90042556.8794760.4177124921.67558327.64148421.91064456.1725270.3948925121.44101827.10550921.92013255.8315830.3850755921.22075326.85874721.93006655.162510.3652792421.0098426.38063521.94042454.0962020.3489960820.80537225.60681921.95022253.4125980.342609320.61578425.129153                                                                                                                                                                        | 21.750217              | 52.715167              | 0.59037692             | 24.612819              | 26.615443             |
| 21.77021453.479470.5738666924.2913020.70197721.78100754.2898320.5738666924.09776627.15253521.79055354.903250.574529923.92732927.40758321.8007655.3768090.5745424423.74558427.54466621.81094456.0012570.5731063923.55669327.81300121.82069756.5968480.5714447323.37320128.08341921.83023457.0174990.5697224923.19130228.24057521.84027357.7642860.564308122.98350528.68248121.85041558.3228620.5567642622.76862528.9985121.86057258.5460930.5424133222.55795929.07162521.87051158.2304920.5018635422.35074828.76684721.89019457.5013160.4507336621.90463228.12556621.90042556.8794760.4177124921.67558327.64148421.91064456.1725270.3948925121.44101827.10550921.92013255.8315830.3850755921.22075326.85874721.93006655.162510.3652792421.0098426.38063521.94042454.0962020.3489960820.80537225.60681921.95022253.4125980.342609320.61578425.129153                                                                                                                                                                                                                      | 21./6011<br>21.770214  | 53.032642              | 0.58030427             | 24.458999              | 26.661523             |
| 21.790553 $54.90325$ $0.5745299$ $23.927329$ $27.407583$ $21.80076$ $55.376809$ $0.57454244$ $23.745584$ $27.544666$ $21.810944$ $56.001257$ $0.57310639$ $23.556693$ $27.813001$ $21.820697$ $56.596848$ $0.57144473$ $23.373201$ $28.083419$ $21.830234$ $57.017499$ $0.56972249$ $23.191302$ $28.240575$ $21.840273$ $57.764286$ $0.5643081$ $22.983505$ $28.682481$ $21.850415$ $58.322862$ $0.55676426$ $22.768625$ $28.99851$ $21.860572$ $58.546093$ $0.54241332$ $22.557959$ $29.071625$ $21.870511$ $58.230492$ $0.50186354$ $22.350748$ $28.766847$ $21.890194$ $57.501316$ $0.46836892$ $22.123998$ $28.335195$ $21.900425$ $56.879476$ $0.41771249$ $21.675583$ $27.641484$ $21.910644$ $56.172527$ $0.39489251$ $21.441018$ $27.105509$ $21.920132$ $55.831583$ $0.38507559$ $21.220753$ $26.858747$ $21.930066$ $55.16251$ $0.36527924$ $21.00984$ $26.380635$ $21.940424$ $54.096202$ $0.3489608$ $20.805372$ $25.606819$ $21.950222$ $53.412598$ $0.3426093$ $20.615784$ $25.129153$                                                                    | 21.781007              | 54.289832              | 0.57386669             | 24.097766              | 27.152535             |
| 21.8007655.3768090.5745424423.74558427.54466621.81094456.0012570.5731063923.55669327.81300121.82069756.5968480.5714447323.37320128.08341921.83023457.0174990.5697224923.19130228.24057521.84027357.7642860.564308122.98350528.68248121.85041558.3228620.5567642622.76862528.9985121.86057258.5460930.5424133222.55795929.07162521.87051158.2304920.5018635422.35074828.76684721.88070157.731950.4683689222.12399828.33519521.89019457.5013160.4507336621.90463228.12556621.90042556.8794760.4177124921.67558327.64148421.91064456.1725270.3948925121.44101827.10550921.92013255.8315830.3850755921.22075326.85874721.93006655.162510.3652792421.0098426.38063521.94042454.0962020.3489960820.80537225.60681921.95022253.4125980.342609320.61578425.129153                                                                                                                                                                                                                                                                                                               | 21.790553              | 54.90325               | 0.5745299              | 23.927329              | 27.407583             |
| 21.81094456.0012570.5731063923.55669327.81300121.82069756.5968480.5714447323.37320128.08341921.83023457.0174990.5697224923.19130228.24057521.84027357.7642860.564308122.98350528.68248121.85041558.3228620.5567642622.76862528.9985121.86057258.5460930.5424133222.55795929.07162521.87051158.2304920.5018635422.35074828.76684721.88070157.731950.4683689222.12399828.33519521.89019457.5013160.4507336621.90463228.12556621.90042556.8794760.4177124921.67558327.64148421.91064456.1725270.3948925121.44101827.10550921.92013255.8315830.3850755921.22075326.85874721.93006655.162510.3652792421.0098426.38063521.94042454.0962020.3489960820.80537225.60681921.95022253.4125980.342609320.61578425.129153                                                                                                                                                                                                                                                                                                                                                            | 21.80076               | 55.376809              | 0.57454244             | 23.745584              | 27.544666             |
| 21.82069756.5968480.5714447323.37320128.08341921.83023457.0174990.5697224923.19130228.24057521.84027357.7642860.564308122.98350528.68248121.85041558.3228620.5567642622.76862528.9985121.86057258.5460930.5424133222.55795929.07162521.87051158.2304920.5018635422.35074828.76684721.88070157.731950.4683689222.12399828.33519521.89019457.5013160.4507336621.90463228.12556621.90042556.8794760.4177124921.67558327.64148421.92013255.8315830.3850755921.22075326.85874721.93006655.162510.3652792421.0098426.38063521.94042454.0962020.3489960820.80537225.60681921.95022253.4125980.342609320.61578425.129153                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21.810944              | 56.001257              | 0.57310639             | 23.556693              | 27.813001             |
| 21.83023457.7642860.564308122.98350528.68248121.84027357.7642860.5567642622.76862528.9985121.85041558.3228620.5567642622.5795929.07162521.86057258.5460930.5424133222.55795929.07162521.87051158.2304920.5018635422.35074828.76684721.88070157.731950.4683689222.12399828.33519521.89019457.5013160.4507336621.90463228.12556621.90042556.8794760.4177124921.67558327.64148421.91064456.1725270.3948925121.44101827.10550921.92013255.8315830.3850755921.22075326.85874721.93006655.162510.3652792421.0098426.38063521.94042454.0962020.3489960820.80537225.60681921.95022253.4125980.342609320.61578425.129153                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21.820697              | 56.596848<br>57 017499 | 0.5/1444/3             | 23.3/3201              | 28.083419             |
| 21.85041558.3228620.5567642622.76862528.9985121.86057258.5460930.5424133222.55795929.07162521.87051158.2304920.5018635422.35074828.76684721.88070157.731950.4683689222.12399828.33519521.89019457.5013160.4507336621.90463228.12556621.90042556.8794760.4177124921.67558327.64148421.91064456.1725270.3948925121.44101827.10550921.92013255.8315830.3850755921.22075326.85874721.93006655.162510.3652792421.0098426.38063521.94042454.0962020.3489960820.80537225.60681921.95022253.4125980.342609320.61578425.129153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21.840273              | 57.764286              | 0.5643081              | 22.983505              | 28.682481             |
| 21.86057258.5460930.5424133222.55795929.07162521.87051158.2304920.5018635422.35074828.76684721.88070157.731950.4683689222.12399828.33519521.89019457.5013160.4507336621.90463228.12556621.90042556.8794760.4177124921.67558327.64148421.91064456.1725270.3948925121.44101827.10550921.92013255.8315830.3850755921.22075326.85874721.93006655.162510.3652792421.0098426.38063521.94042454.0962020.3489960820.80537225.60681921.95022253.4125980.342609320.61578425.129153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21.850415              | 58.322862              | 0.55676426             | 22.768625              | 28.99851              |
| 21.87051158.2304920.5018635422.35074828.76684721.88070157.731950.4683689222.12399828.33519521.89019457.5013160.4507336621.90463228.12556621.90042556.8794760.4177124921.67558327.64148421.91064456.1725270.3948925121.44101827.10550921.92013255.8315830.3850755921.22075326.85874721.93006655.162510.3652792421.0098426.38063521.94042454.0962020.3489960820.80537225.60681921.95022253.4125980.342609320.61578425.129153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.860572              | 58.546093              | 0.54241332             | 22.557959              | 29.071625             |
| 21.88070157.731950.4683689222.12399828.33519521.89019457.5013160.4507336621.90463228.12556621.90042556.8794760.4177124921.67558327.64148421.91064456.1725270.3948925121.44101827.10550921.92013255.8315830.3850755921.22075326.85874721.93006655.162510.3652792421.0098426.38063521.94042454.0962020.3489960820.80537225.60681921.95022253.4125980.342609320.61578425.129153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21.870511              | 58.230492              | 0.50186354             | 22.350748              | 28.766847             |
| 21.90042556.8794760.4177124921.67558327.64148421.91064456.1725270.3948925121.44101827.10550921.92013255.8315830.3850755921.22075326.85874721.93006655.162510.3652792421.0098426.38063521.94042454.0962020.3489960820.80537225.60681921.95022253.4125980.342609320.61578425.129153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21.880701              | 57 501316              | 0.46836892             | 22.123998              | 28.335195             |
| 21.91064456.1725270.3948925121.44101827.10550921.92013255.8315830.3850755921.22075326.85874721.93006655.162510.3652792421.0098426.38063521.94042454.0962020.3489960820.80537225.60681921.95022253.4125980.342609320.61578425.129153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21.900425              | 56.879476              | 0.41771249             | 21.675583              | 27.641484             |
| 21.92013255.8315830.3850755921.22075326.85874721.93006655.162510.3652792421.0098426.38063521.94042454.0962020.3489960820.80537225.60681921.95022253.4125980.342609320.61578425.129153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21.910644              | 56.172527              | 0.39489251             | 21.441018              | 27.105509             |
| 21.93006655.162510.3652792421.0098426.38063521.94042454.0962020.3489960820.80537225.60681921.95022253.4125980.342609320.61578425.129153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21.920132              | 55.831583              | 0.38507559             | 21.220753              | 26.858747             |
| 21.940424   54.096202   0.34899608   20.805372   25.606819     21.950222   53.412598   0.3426093   20.615784   25.129153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21.930066              | 55.16251               | 0.36527924             | 21.00984               | 26.380635             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21.940424              | 53.412598              | 0.34899608             | 20.605372              | 25.000819             |

| 21.960087 | 52.466756 | 0.33060385 | 20.460522 | 24.46715  |
|-----------|-----------|------------|-----------|-----------|
| 21.970012 | 51.042331 | 0.31846465 | 20.334486 | 23.43254  |
| 21.980085 | 49.963483 | 0.31287656 | 20.213386 | 22.66413  |
| 21.990063 | 48.92386  | 0.29722366 | 20.130259 | 21.922925 |
| 22.000056 | 47.309831 | 0.28039049 | 20.078431 | 20.717947 |
| 22.010008 | 46.038973 | 0.27297985 | 20.029451 | 19.774183 |
| 22.020874 | 45.061257 | 0.26332771 | 19.995971 | 19.066207 |
| 22.030251 | 44.026941 | 0.25461003 | 19.988855 | 18.303765 |
| 22.040113 | 43.133813 | 0.25072473 | 19.984698 | 17.653031 |
| 22.05045  | 42.46041  | 0.24613895 | 19.991506 | 17.182033 |
| 22.060034 | 41.679104 | 0.23867886 | 20.020929 | 16.623936 |
| 22.070253 | 40.843039 | 0.23347638 | 20.060947 | 16.021535 |
| 22.080065 | 40.220101 | 0.22873324 | 20.107247 | 15.583173 |
| 22.090716 | 39.360808 | 0.2187168  | 20.186125 | 14.956712 |
| 22.10051  | 38.607134 | 0.21396324 | 20.264034 | 14.403979 |
| 22.110322 | 38.028765 | 0.21098267 | 20.344566 | 13.987619 |
| 22.12016  | 37.432715 | 0.20429947 | 20.44303  | 13.552489 |
| 22.130107 | 36.874701 | 0.20026092 | 20.547137 | 13.143085 |
| 22.140275 | 36.430547 | 0.19806275 | 20.653502 | 12.8219   |
| 22.150068 | 36.022086 | 0.1913499  | 20.766147 | 12.522243 |
| 22.16023  | 35.630582 | 0.18578221 | 20.882773 | 12.231417 |
| 22.170364 | 35.317904 | 0.1834317  | 20.995612 | 12.001329 |
| 22.180391 | 35.03929  | 0.17593115 | 21.110304 | 11.791228 |
| 22.190283 | 34.786074 | 0.17142941 | 21.220102 | 11.597941 |
| 22.20004  | 34.580292 | 0.17022811 | 21.325135 | 11.441726 |
| 22.210069 | 34.398138 | 0.16786789 | 21.435713 | 11.302224 |
| 22.220209 | 34.232557 | 0.16665051 | 21.548129 | 11.17351  |
| 22.230128 | 34.099845 | 0.16653562 | 21.657327 | 11.06997  |
| 22.240263 | 33.998844 | 0.16931347 | 21.769485 | 10.988506 |
| 22.250337 | 33.93145  | 0.17307238 | 21.884539 | 10.930394 |
| 22.260145 | 33.890404 | 0.17485585 | 21.999612 | 10.891726 |
| 22.270164 | 33.904411 | 0.18364636 | 22.110033 | 10.885828 |
| 22.280717 | 34.068003 | 0.19864887 | 22.218515 | 10.981728 |
| 22.290372 | 34.325414 | 0.20631288 | 22.320257 | 11.149045 |
| 22.300023 | 34.659608 | 0.22214965 | 22.413877 | 11.354679 |
| 22.310446 | 35.349373 | 0.26270854 | 22.510709 | 11.785465 |
| 22.3201   | 36.168895 | 0.29664565 | 22.635633 | 12.293632 |
| 22.330113 | 37.047762 | 0.34935622 | 22.78854  | 12.787826 |
| 22.340009 | 38.281046 | 0.47826017 | 23.006882 | 13.421929 |
| 22.350139 | 39.790355 | 0.58724144 | 23.32402  | 14.20294  |
| 22.360139 | 41.129299 | 0.6678729  | 23.68229  | 14.830653 |
| 22.370245 | 43.137803 | 0.83687258 | 24.052076 | 15.892433 |
| 22.380036 | 45.471404 | 0.9856585  | 24.457843 | 17.206768 |
| 22.390434 | 47.434242 | 1.0871285  | 24.937015 | 18.211356 |
| 22.400055 | 48.776922 | 1.1742405  | 25.39986  | 18.779123 |
| 22.410042 | 49.69313  | 1.2248731  | 25.908865 | 19.018958 |
| 22.420126 | 50.317017 | 1.2498894  | 26.430783 | 19.043059 |
| 22.430141 | 50.589689 | 1.2334631  | 26.964162 | 18.836895 |
| 22.440144 | 50.708549 | 1.1920188  | 27.482845 | 18.54262  |
| 22.450314 | 50.95288  | 1.1541723  | 27.98131  | 18.356972 |
| 22.460097 | 51.193074 | 1.0739788  | 28.430911 | 18.24097  |
| 22.470159 | 51.34163  | 0.96951374 | 28.846377 | 18.091093 |
| 22.480093 | 51.468636 | 0.89587193 | 29.202777 | 17.942001 |
| 22.490155 | 51.401182 | 0./9615115 | 29.543094 | L/.686558 |
| 22.500041 | 50.96/531 | 0.690804/1 | 29.839914 | 1/.1/9042 |
| 22.510161 | 50.568586 | 0.62545958 | 30.086013 | 16./03178 |
| 22.520326 | 50.250433 | 0.55918063 | 30.30/604 | 16.319511 |
| 22.531234 | 49.698463 | 0.48221104 | 30.512931 | 15./68214 |

| 22.541    | 49.268454 | 0.44599901 | 30.653515  | 15.330212 |
|-----------|-----------|------------|------------|-----------|
| 22 550618 | 18 952521 | 0 /1077717 | 30 776855  | 1/ 000705 |
| 22.330010 | 40.952521 | 0.410///1/ | 50.110055  | 14.999703 |
| 22.560844 | 48.539942 | 0.36799045 | 30.888189  | 14.603508 |
| 22 570169 | 48 230175 | 0 34812456 | 30 962219  | 14 300647 |
| 22.570105 | 40.230173 | 0.34012430 | 50.902219  | 14.00004/ |
| 22.580944 | 47.985282 | 0.33218811 | 31.032796  | 14.05169  |
| 22.590321 | 47.786218 | 0.31281934 | 31.082126  | 13.862838 |
| 00 000000 | 17.00210  | 0.00000070 | 01 1001 01 | 10.001005 |
| 22.600854 | 4/.60490/ | 0.30086879 | 31.120161  | 13.691205 |
| 22.610473 | 47.488888 | 0.2937102  | 31.146808  | 13.580037 |
| 22 620776 | 17 360101 | 0 27022212 | 31 161163  | 13 170062 |
| 22.020110 | 47.500104 | 0.27925212 | 51.104405  | 13.479902 |
| 22.630462 | 47.271543 | 0.27111025 | 31.167669  | 13.405926 |
| 22 640236 | 47 199367 | 0.26881718 | 31 165957  | 13 352437 |
| 22.010200 | 17.110000 | 0.00001710 | 01.170F0   | 12.000474 |
| 22.650449 | 4/.112508 | 0.268802// | 31.1/053   | 13.2864/4 |
| 22.660742 | 47.015762 | 0.27459578 | 31.187238  | 13.203708 |
| 22 670533 | 46 942619 | 0 27962628 | 31 210662  | 13 134477 |
| 22.070000 | 10.912019 | 0.27902020 | 01.050500  | 10.000000 |
| 22.680168 | 46.9140/5 | 0.30022935 | 31.250/93  | 13.0/6353 |
| 22.690018 | 47.003919 | 0.32663379 | 31.306336  | 13.086667 |
| 22 700260 |           | 0 21007120 | 21 201102  | 12 151202 |
| 22.700209 | 4/.1/4/41 | 0.3409/430 | 31.301192  | 13.131203 |
| 22.710212 | 47.574922 | 0.38401859 | 31.440334  | 13.349095 |
| 22.720073 | 48,265322 | 0.42671364 | 31 509123  | 13 748919 |
| 22.720073 | 10.200022 | 0 44022612 |            |           |
| 22.130113 | 49.030658 | ∪.44833613 | 31.600595  | 14.20146  |
| 22.740168 | 49.827436 | 0.47195952 | 31.671237  | 14.665415 |
| 22 750153 | 50 950251 | 0 10221003 | 31 715075  | 15 317624 |
| 22.730133 | JU.0J9ZJI | 0.49221095 | 51./150/5  | 13.31/024 |
| 22.760055 | 51.84689  | 0.50212836 | 31.75695   | 15.94297  |
| 22.770411 | 52.70416  | 0.51687395 | 31.774061  | 16.462377 |
|           | E2 70110C | 0 52007000 | 21 752401  | 17 100700 |
| 22.780302 | 53./91180 | 0.53603993 | 31./53491  | 1/.182/00 |
| 22.790069 | 54.805624 | 0.54933349 | 31.728177  | 17.857713 |
| 22 800402 | 55 575655 | 0 56120024 | 31 69257   | 18 344806 |
| 22.000402 | 55.575055 | 0.50120024 | 51.05257   | 10.011000 |
| 22.810022 | 56.358621 | 0.57227897 | 31.641005  | 18.873173 |
| 22.820066 | 56.893001 | 0.57601693 | 31.593236  | 19.215013 |
| 22 02056  | 57 1/0071 | 0 57424022 | 21 550056  | 10 2/0021 |
| 22.03030  | J/.1400/1 | 0.5/424022 | 51.550050  | 19.349021 |
| 22.840835 | 57.089408 | 0.56374298 | 31.520862  | 19.268622 |
| 22.850191 | 56.866151 | 0.55272084 | 31.499882  | 19.069718 |
| 22.000201 | EC C2001  | 0 52024206 | 21 A04516  | 10 070540 |
| 22.000301 | 10869.0C  | 0.00004200 | 51.484510  | 10.0/2042 |
| 22.870086 | 55.948459 | 0.50393396 | 31.509503  | 18.327088 |
| 22 880404 | 55 065311 | 0 47520816 | 31 540907  | 17 628788 |
| 22.000101 |           | 0.1/020010 | 21.510207  | 17 140001 |
| 22.890654 | 54.446356 | 0.45//9422 | 31.565235  | 1/.140631 |
| 22.900476 | 53.726701 | 0.42579693 | 31.616553  | 16.583165 |
| 22 910097 | 52 9886   | 0 40072032 | 31 665977  | 16 011833 |
| 22.910097 | 52.9000   | 0.40072032 | 51.0000077 | 16.011000 |
| 22.920084 | 52.420036 | 0.38803604 | 31./054/6  | 15.5/446  |
| 22.930557 | 51.829551 | 0.36175497 | 31.763579  | 15.131116 |
| 22 940064 | 51 284254 | 0 34254693 | 31 812931  | 14 723022 |
| 22.940004 | 51.201201 | 0.04204000 | 01.012001  | 14.207722 |
| 22.95015  | JU.8298/3 | U.JJJ86555 | 31.854028  | 14.38//33 |
| 22.960045 | 50.434739 | 0.31669012 | 31.899393  | 14.108549 |
| 22 97023  | 50 020031 | 0 30151/17 | 31 0/1020  | 13 826015 |
| 22.97029  | 50.025554 | 0.30131417 | 51.541025  | 10.020015 |
| 22.980028 | 49.706787 | 0.29582157 | 31.972209  | 13.606567 |
| 22.990055 | 49.414029 | 0.28681915 | 32.007582  | 13.422188 |
| 22 000007 | 10 11101  | 0 27056507 | 22 042252  | 12 226175 |
| 23.000007 | 49.11194  | 0.2/03039/ | 52.045252  | 13.230173 |
| 23.010314 | 48.84431  | 0.27537659 | 32.075472  | 13.078938 |
| 23.020346 | 48.623481 | 0.27164974 | 32.106136  | 12.96415  |
| 22 021202 | 10 100017 | 0 26724520 | 20 12552   | 10 065006 |
| 23.031292 | 40.4U031/ | 0.20/24009 | JZ.13333   | 12.003300 |
| 23.041032 | 48.253698 | 0.26579754 | 32.157281  | 12.807087 |
| 23.050073 | 48.130625 | 0.2636028  | 32.17494   | 12.772024 |
|           |           | 0 25010212 |            | 10 751000 |
| 23.000030 | 40.004133 | 0.20910010 | JZ.109423  | TC./DT208 |
| 23.070105 | 47.89214  | 0.25677068 | 32.198929  | 12.736014 |
| 23.080111 | 47.771039 | 0.25408425 | 32,207981  | 12,721586 |
|           | 17 616000 | 0 24060000 | 22.237201  | 12 602000 |
| ∠3.090431 | 41.010889 | 0.24000098 | 32.214948  | 12.093909 |
| 23.100476 | 47.461127 | 0.24587824 | 32.216895  | 12.665871 |
| 23.110829 | 47.305618 | 0.24446422 | 32.215383  | 12.644153 |
|           | -         |            | -          | -         |
| 23 120572    | 47 174684   | 0 24183196        | 32 205649     | 12 647738     |
|--------------|-------------|-------------------|---------------|---------------|
| 20.120072    | 1/.1/1001   | 0.21100190        | 52.200019     | 12.017730     |
| 23.130455    | 47.058172   | 0.24032504        | 32.189783     | 12.668806     |
| 00 1 4 0 1 0 |             | 0 0001 0005       |               | 10 600 7 40   |
| 23.14019     | 46.9434//   | 0.23916685        | 32.1/2638     | 12.690/49     |
| 23 15002     | 16 915069   | 0 23407753        | 32 1/0557     | 12 713001     |
| 23.13002     | 40.010000   | 0.23407733        | 52.149557     | 12./15001     |
| 23.160939    | 46.656291   | 0.22889557        | 32.116354     | 12.729674     |
|              |             |                   |               |               |
| 23.17063     | 46.505139   | 0.22664781        | 32.083621     | 12.736819     |
| 22 100102    | 16 220062   | 0 01017500        | 22 040077     | 10 700500     |
| 23.180192    | 40.328962   | 0.2191/522        | 52.0489//     | 12.728509     |
| 23 190321    | 46 106969   | 0 21322646        | 32 009952     | 12 690637     |
| 20.190021    | 10.100909   | 0.21022010        | 52.003352     | 12.000007     |
| 23.200089    | 45.882598   | 0.2113695         | 31.970397     | 12.644038     |
| 22 210200    | 45 (17017   | 0 0000000         | 21 020611     | 10 504010     |
| 23.210306    | 45.61/31/   | 0.20644993        | 31.939611     | 12.364616     |
| 23 220154    | 45 319449   | 0 20259498        | 31 917244     | 12 447153     |
| 23.220134    | 40.010440   | 0.20255450        | 51.517244     | 12.44/100     |
| 23.23013     | 45.022483   | 0.20137378        | 31.895382     | 12.328678     |
| 00 040107    | 11 706170   | 0 10000505        | 21 007121     | 10 000000     |
| 23.240137    | 44./264/9   | 0.19829525        | 31.88/131     | 12.202083     |
| 23 250101    | 44 396286   | 0 19536585        | 31 893089     | 12 036531     |
| 20.200101    | 11.000200   | 0.19090000        | 51.055005     | 12.030331     |
| 23.260407    | 44.068502   | 0.19435729        | 31.902881     | 11.871349     |
| 22 270002    | 12 01001    | 0 10052076        | 21 011602     | 11 7520       |
| 23.2/0083    | 43.81804    | 0.19953876        | 21.911003     | 11./552       |
| 23 280411    | 43 637887   | 0 21142956        | 31 922868     | 11 685263     |
|              | 10.007007   | 0.0100000         | 01 0000       | 11 000200     |
| 23.290011    | 43.553109   | U.21928607        | 31.938947     | 11.683903     |
| 22 200051    | N3 E3EEE0   | 0 22022004        | 21 05500      | 11 796050     |
| 23.300031    | 40.000008   | 0.23933004        | 21.20000      | ACU021.TT     |
| 23.310087    | 43.692919   | 0.2798915         | 31.980555     | 11.862612     |
|              | 10.0000000  | 0.0001005         | 02.000000     | 10 0000000    |
| 23.32012     | 43.983/11   | 0.32011825        | 32.051152     | 12.0/34/5     |
| 23 330103    | 11 350602   | 0 30025345        | 30 150136     | 10 005315     |
| 23.330193    | 44.550002   | 0.30023343        | 52.152150     | 12.205515     |
| 23.340226    | 45.048121   | 0.52904876        | 32.331525     | 12.612938     |
|              | 10.010101   | 0 0 0 1 1 0 1 0   | 20 002020     | 10 05 00 1    |
| 23.350463    | 45.983366   | 0.661164//        | 32.620033     | 13.056081     |
| 23 360225    | 16 909995   | 0 77170624        | 32 012030     | 13 167001     |
| 23.300223    | 40.909995   | 0.//1/0024        | 52.942059     | 13.40/001     |
| 23.370251    | 48.585924   | 1.0365153         | 33.272688     | 14.329859     |
| 00.0040      | F0 000010   | 1 0110041         |               | 15 622000     |
| 23.38048     | 50.892019   | 1.3119241         | 33.6/4029     | 15.633099     |
| 23 390027    | 52 766345   | 1 5037676         | 34 11198      | 16 633426     |
| 23.330027    | 52.700545   | 1.000/0/0         | 54.11190      | 10.000420     |
| 23.400333    | 54.562208   | 1.7307359         | 34.603381     | 17.510185     |
| 00 410007    |             | 1 0051400         | 2F 1FF000     | 10 070705     |
| 23.410927    | 55.95/44    | 1.9051426         | 35.155023     | 18.0/0/03     |
| 23 420077    | 56 795142   | 2 0122672         | 35 654642     | 18 294059     |
| 20.1200,7    |             | 2.01220/2         |               | 10.291009     |
| 23.430181    | 57.360454   | 2.0658903         | 36.233514     | 18.29015      |
| 22 4405      | 57 722062   | 2 060510          | 26 020222     | 10 16224      |
| 23.4403      | 57.752005   | 2.009519          | 50.020522     | 10.10334      |
| 23.450228    | 58.10279    | 2.0583244         | 37.377735     | 18.076513     |
|              |             | 1 0000100         |               | 1             |
| 23.460/41    | 58.39/393   | 1.9/281/2         | 37.961592     | 1/.9/82/9     |
| 23 470247    | 58 520205   | 1 8463823         | 38 470035     | 17 829456     |
| 20.4/024/    | 50.520205   | 1.0405025         | 50.470055     | 17.029400     |
| 23.480047    | 58.632746   | 1.7268442         | 38.95807      | 17.678915     |
| 22 100126    |             | 1 5552106         | 20 116066     | 17 161021     |
| 23.490120    | 20.29007    | 1.3333100         | 39.440900     | 1/.404034     |
| 23.500079    | 58.272269   | 1.350425          | 39,900047     | 17.066408     |
|              |             | 1 1 0 0 1 4 0 0   |               | 1 6 8 9 9 9 1 |
| 23.510036    | 5/.9/5835   | 1.1881438         | 40.28/9/4     | 16./00841     |
| 23 520463    | 57 688567   | 1 0227238         | 40 651987     | 16 374232     |
| 23.320403    | 57.000507   | 1.0227230         | 40.031307     | 10.5/4252     |
| 23.530955    | 57.149207   | 0.84915133        | 40.975339     | 15.880518     |
| 22 E40COC    |             | 0 7 / / 0 0 / 0 0 | 11 005400     | 1 = 4 = 01 00 |
| 23.540626    | 20.0/8/20   | 0./4482488        | 41.205469     | 15.450169     |
| 23.550009    | 56.32072    | 0.6647957         | 41.391962     | 15.12744      |
| 20.000000    |             |                   | 11.091902     | ±0.±2,11      |
| 23.560523    | 55.813693   | 0.57043257        | 41.568476     | 14.705075     |
| 23 570110    | 55 /11010   | 0 5177/700        | 11 670102     | 11 275706     |
| 23.370440    | JJ.411015   | 0.31//4/00        | 41.0/9403     | 14.3/3/90     |
| 23.580047    | 55.123849   | 0.48104           | 41.755212     | 14.152242     |
|              | E 4 0000004 |                   | 11 707005     |               |
| 23.59U6/1    | 54.823634   | 0.42449519        | 41./9/327     | ⊥J.9545/2     |
| 23 600235    | 54 596433   | 0 39345209        | 41 793010     | 13 821902     |
| 20.000200    | 51.550155   | 0.0000000         |               | 10.021002     |
| 23.611143    | 54.392395   | 0.373562          | 41.761498     | 13.722433     |
| 23 620057    | 51 210707   | 0 3/076/55        | 11 710276     | 13 676711     |
| 23.02003/    | J4.Z49/9/   | 0.349/0433        | HT. / TA2 / 0 | 11/0/0.21     |
| 23.630212    | 54.118816   | 0.3336867         | 41.625685     | 13.655906     |
|              |             | 0.00050507        | 11 500000     | 10 050500     |
| 23.641275    | 53.995926   | 0.32650508        | 41.520653     | 13.650793     |
| 23 650001    | 53 292991   | 0 31 8 8 7 7 7 0  | 41 420104     | 13 6/0720     |
| 20.000000    |             | 0.01002229        | -1            | 10.010120     |
| 23.660767    | 53.778492   | 0.31643338        | 41.317678     | 13.642575     |
| 23 670006    | 53 672001   | 0 21724602        | 11 220121     | 12 62/010     |
| 23.0/0000    | JJ.0/J994   | U.JI/J40U3        | 41.220434     | 13.034310     |
| 23.680085    | 53.589506   | 0.32809453        | 41.120833     | 13.634566     |
|              |             | 0 040600155       | 11 000 400    | 10.001000     |
| 23.690106    | 53.585979   | 0.34969215        | 41.02/427     | 13.684691     |

| 23.700098<br>23.710347<br>23.720114<br>23.730028<br>23.740065<br>23.75023<br>23.760276<br>23.77013<br>23.780208<br>23.790165<br>23.800103<br>23.810145<br>23.820282<br>23.830037<br>23.840985<br>23.850044<br>23.860405<br>23.870832<br>23.88026<br>23.890061<br>23.900035<br>23.910243<br>23.920309<br>23.930143<br>23.920309<br>23.930143<br>23.920309<br>23.930143<br>23.940195<br>23.950052<br>23.960011<br>23.970097<br>23.980135<br>23.990138<br>24.000014<br>24.020625<br>24.020625<br>24.030318<br>24.041054<br>24.06098<br>24.071002<br>24.080186<br>24.090585 | 53.627471<br>53.810208<br>54.161532<br>54.539827<br>54.970021<br>55.655789<br>56.317447<br>56.847856<br>57.601387<br>58.296883<br>58.722769<br>59.235428<br>59.557683<br>59.643044<br>59.544392<br>59.359586<br>59.127156<br>58.669217<br>58.18436<br>57.786397<br>57.273415<br>56.673527<br>56.673527<br>56.201291<br>55.65615<br>54.914608<br>54.249836<br>53.498209<br>52.582136<br>53.498209<br>52.582136<br>51.811049<br>51.177123<br>50.571957<br>50.043574<br>49.59869<br>49.186011<br>48.782873<br>48.480341<br>48.10606<br>47.760259<br>47.470211<br>47.101555 | 0.36243699<br>0.41262872<br>0.46461508<br>0.49250208<br>0.53296682<br>0.57713141<br>0.60196105<br>0.6310279<br>0.66878965<br>0.79392005<br>0.71440145<br>0.73605363<br>0.74553965<br>0.74558694<br>0.73140607<br>0.71759674<br>0.700535<br>0.66066068<br>0.62955331<br>0.6082386<br>0.56727829<br>0.53122883<br>0.51188462<br>0.4762544<br>0.44154533<br>0.42504098<br>0.39528246<br>0.36825412<br>0.36825412<br>0.35659131<br>0.3347915<br>0.31156539<br>0.30035152<br>0.28514202<br>0.2704952<br>0.26403269<br>0.2582034<br>0.24813637<br>0.2429691<br>0.2380003<br>0.22886976 | 40.950122<br>40.8701<br>40.819775<br>40.800688<br>40.76586<br>40.718267<br>40.683969<br>40.6337<br>40.553305<br>40.477201<br>40.396689<br>40.294559<br>40.198645<br>40.112628<br>40.018068<br>39.938534<br>39.848288<br>39.771556<br>39.694881<br>39.604972<br>39.524539<br>39.432078<br>39.326538<br>39.239151<br>39.604972<br>39.524539<br>39.432078<br>39.326538<br>39.239151<br>39.162863<br>39.079475<br>39.040593<br>39.026256<br>39.079475<br>39.040593<br>39.026256<br>39.005131<br>38.995537<br>38.986866<br>38.943141<br>38.921679<br>38.889977<br>38.865362<br>38.845422<br>38.819094<br>38.819094 | 13.765085<br>13.922895<br>14.193288<br>14.480733<br>14.805291<br>15.341176<br>15.341176<br>15.863885<br>16.294519<br>16.927094<br>17.525309<br>17.925649<br>18.424861<br>18.782717<br>18.956219<br>19.014833<br>18.984228<br>18.931057<br>18.697824<br>18.425363<br>18.22499<br>17.942895<br>17.600636<br>17.357228<br>17.067575<br>16.621077<br>16.226137<br>15.754412<br>15.137901<br>14.628624<br>14.228017<br>13.845073<br>13.524414<br>13.276236<br>13.050183<br>12.84318<br>12.704622<br>12.368846<br>12.239982<br>12.056982 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 24.06098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48.10606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.24813637                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38.845422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.531491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 24.071002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 47.760259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2429691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38.82891                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.368846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 24.080186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 47.470211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2380003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38.819094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.239982                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 24.090585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 47.101555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.22886976                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38.823443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.056982                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 24.101517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46.743789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.22520181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38.823803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.886804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 24.110543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46.490586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.22406399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38.815197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.782114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 24.120242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46.31246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.22105111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38.77579                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.757673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 24.130151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46.212139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.21808674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38.713796                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.805675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 24.140459                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46.135073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.21529473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38.644605                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.878442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 24.150192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46.047901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.20554951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38.571548                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.938895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 24.16041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45.903274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.19791194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38.493337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.957754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 24.170416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45.730351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1949685                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38.415114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.950003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 24.180395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45.503002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.18718838                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38.349419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.892745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 24.190125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45.25313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.18355222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38.28435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.812633                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 24.200167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45.005233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.18277855                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38.215447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.737393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 24.21 44.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9403 0.182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 65065 38.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6754 11.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 80541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 24.220377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 44.560017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.18247989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38.075404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.636121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 24.230071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 44.36847                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.18253123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38.010222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.603564                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 24.240195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 44.167313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.17967912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37.953384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.559517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 24.250162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 43.944432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.17651473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37.907247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.485654                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 24.260123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 43.719126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.17530664                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37.862801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.406121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 24.270403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 43.537658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.18084236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37.802978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.35738                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| 21 200102 | 13 101750              | 0 1007760  | 37 703057             | 11 30010/         |
|-----------|------------------------|------------|-----------------------|-------------------|
| 24.200102 | 43.401739              | 0.1927702  | 57.725957             | 11.599194         |
| 24.290462 | 43.539334              | 0.20158/11 | 37.635411             | 11.535502         |
| 24.300009 | 43.667666              | 0.22108102 | 37.534335             | 11.709477         |
| 24.31029  | 44.144394              | 0.27223085 | 37.391861             | 12.136572         |
| 24.32011  | 44.892282              | 0.31769398 | 37.28029              | 12.746996         |
| 24.33024  | 45.746241              | 0.38610441 | 37.176754             | 13.385094         |
| 24 340008 | 47 254669              | 0 55046217 | 37 095208             | 14 409101         |
| 24 350035 | 19 162114              | 0 69363712 | 37 097/27             | 15 68742          |
| 24.330033 | 49.102114<br>E0 70E401 | 0.09303712 | 27 155220             | 16 (700142        |
| 24.36013  | 50.725451              | 0.80180497 | 37.133229             | 10.0/2310         |
| 24.3/0086 | 52.648664              | 1.0102/63  | 37.204244             | 1/.866/83         |
| 24.380519 | 54.850943              | 1.2193247  | 37.309153             | 19.244698         |
| 24.390478 | 56.251621              | 1.3620576  | 37.464345             | 20.015778         |
| 24.400051 | 57.459287              | 1.509047   | 37.62024              | 20.642425         |
| 24.410386 | 58.518114              | 1.6209479  | 37.816309             | 21.146689         |
| 24.420385 | 59.1907                | 1.6889408  | 38.027583             | 21.375487         |
| 24 430431 | 59 490701              | 1 6895417  | 38 264048             | 21 353147         |
| 24 440271 | 50 35016               | 1 6336975  | 30 5201010            | 21.000110         |
| 24.4402/1 | 59.55010               | 1.0330073  | JO.JZZIIZ             | 21.022410         |
| 24.450053 | 59.185202              | 1.5/45655  | 38.770119             | 20.683976         |
| 24.460307 | 58.610969              | 1.4391356  | 39.08195              | 20.061406         |
| 24.470232 | 57.592426              | 1.273625   | 39.401826             | 19.117794         |
| 24.480155 | 56.837424              | 1.1460748  | 39.677225             | 18.383827         |
| 24.490102 | 56.241036              | 1.0047565  | 39.940472             | 17.814006         |
| 24.500057 | 55.505056              | 0.8622579  | 40.172447             | 17.162138         |
| 24.510153 | 54.958964              | 0.76900655 | 40.342388             | 16.666128         |
| 24 520619 | 54 597207              | 0 68594016 | 40 464868             | 16 356453         |
| 24.520015 | 54.337207<br>54.2171   | 0.60729576 | 40.521422             | 16 160226         |
| 24.550757 | J4.J1/1                | 0.00730370 | 40.521452             | 10.100320         |
| 24.540104 | 54.152434              | 0.56461514 | 40.524008             | 16.06/232         |
| 24.550/99 | 53.998/21              | 0.5218/939 | 40.490136             | 16.022249         |
| 24.560257 | 53.849472              | 0.47252105 | 40.418697             | 16.013961         |
| 24.570081 | 53.630897              | 0.43885695 | 40.313026             | 15.962199         |
| 24.580897 | 53.352858              | 0.40849668 | 40.182732             | 15.882788         |
| 24.590195 | 52.944595              | 0.3691437  | 40.065429             | 15.68827          |
| 24.600567 | 52.435162              | 0.34371177 | 39.914402             | 15.427284         |
| 24 61042  | 52 016519              | 0 33055724 | 39 763375             | 15 231857         |
| 24 620197 | 51 535542              | 0 30983295 | 39 625475             | 14 986438         |
| 24.620177 | 51 032390              | 0.20734265 | 30 195296             | 14 721629         |
| 24.030075 | JI.032309              | 0.29754205 | 20 222472             | 14.721020         |
| 24.640559 | 50.585348              | 0.29315388 | 39.3334/3             | 14.504888         |
| 24.650434 | 50.215//8              | 0.29090574 | 39.201314             | 14.328504         |
| 24.660635 | 49.908082              | 0.29409022 | 39.069948             | 14.191367         |
| 24.670183 | 49.684591              | 0.29737576 | 38.951571             | 14.107968         |
| 24.68045  | 49.578176              | 0.31457754 | 38.825897             | 14.094747         |
| 24.690414 | 49.610334              | 0.33845449 | 38.717781             | 14.16484          |
| 24.700323 | 49.678168              | 0.35176251 | 38.629405             | 14.254575         |
| 24.710194 | 49.883886              | 0.40075832 | 38.55018              | 14.400604         |
| 24 72029  | 50 26159               | 0 45383652 | 38 506897             | 14 646919         |
| 21.72022  | 50 634225              | 0.18063607 | 38 199937             | 1/ 8825/          |
| 24.730220 | 51 000065              | 0.510/0012 | 20 502171             | 15 006504         |
| 24.740179 | 51.009065              | 0.51049012 | 30.302171             | 15.090504         |
| 24.75021  | 51.450965              | 0.55839047 | 38.525554             | 15.348552         |
| 24.760045 | 51.837632              | 0.58021    | 38.571256             | 15.556769         |
| 24.770452 | 52.201485              | 0.60687433 | 38.622209             | 15.729174         |
| 24.780317 | 52.651625              | 0.63716966 | 38.670227             | 15.965449         |
| 24.790126 | 53.114037              | 0.65557238 | 38.724873             | 16.212685         |
| 24.800117 | 53.518402              | 0.66812231 | 38.779247             | 16.410391         |
| 24.810381 | 53.99666               | 0.67763767 | 38.82165              | 16.663122         |
| 24.820097 | 54.39066               | 0.67829767 | 38.859687             | 16.860247         |
| 24 830646 | 54 69337               | 0 67110335 | 38 897435             | 16 981704         |
| 24 840205 | 54 905962              | 0 65237071 | 38 9169/              | 17 052/05         |
| 24.040203 | J4,3UJ300<br>EE 106336 | 0.0323/9/1 | JU.JLUJ4<br>20 010205 | 17 11002400       |
| ∠4.85031/ | JJ.TN0330              | U.6366U8/6 | 38.919305             | ⊥/ <b>.</b> ⊥⊥663 |

| 24.860626 | 55.278816 | 0.62744061 | 38,906618 | 17.171588 |
|-----------|-----------|------------|-----------|-----------|
| 24.870179 | 55.491951 | 0.61796286 | 38.868894 | 17.30399  |
| 24.880648 | 55.74725  | 0.61037699 | 38.809448 | 17.490834 |
| 24.890178 | 55.909936 | 0.60456421 | 38.749525 | 17.615318 |
| 24.900212 | 56.010264 | 0.58626189 | 38.670671 | 17.727635 |
| 24.910058 | 56.05406  | 0.567032   | 38.576847 | 17.809479 |
| 24 920547 | 56 044563 | 0 55408179 | 38 466324 | 17 85661  |
| 24 930523 | 55 905321 | 0.52384928 | 38.359281 | 17.818743 |
| 24 940027 | 55 555083 | 0 49025301 | 38 261088 | 17 61646  |
| 24 950077 | 55 142734 | 0 47088914 | 38 14595  | 17 367277 |
| 24 960218 | 54 540731 | 0.43009235 | 38.064189 | 16.973821 |
| 24 970091 | 53,709683 | 0.39242722 | 37,997709 | 16.391874 |
| 24.9801   | 52.976047 | 0.37499415 | 37.916934 | 15.883451 |
| 24.990071 | 52.292937 | 0.34579363 | 37.866524 | 15.420413 |
| 25.000046 | 51.458533 | 0.31631041 | 37.839182 | 14.832248 |
| 25.010356 | 50.698652 | 0.30287495 | 37.803855 | 14.300914 |
| 25.020052 | 50.102319 | 0.28597278 | 37.787434 | 13.897876 |
| 25.03097  | 49 383274 | 0.26425313 | 37,792962 | 13,400219 |
| 25.040037 | 48.862545 | 0.25626847 | 37.794232 | 13.043957 |
| 25.050019 | 48.391142 | 0.24656878 | 37.803399 | 12.733274 |
| 25.06088  | 47.870514 | 0.23115975 | 37.834389 | 12.383745 |
| 25.070692 | 47.450717 | 0.22457828 | 37.861949 | 12.104504 |
| 25.080402 | 47.103849 | 0.21851912 | 37.893626 | 11.882124 |
| 25.090986 | 46.725823 | 0.20774692 | 37.944843 | 11.634422 |
| 25.100305 | 46.42618  | 0.20332536 | 37.990038 | 11.440227 |
| 25.110955 | 46.138789 | 0.20181015 | 38.041308 | 11.262659 |
| 25.120542 | 45.905062 | 0.2004812  | 38.094445 | 11.12413  |
| 25.130195 | 45.69965  | 0.20076587 | 38.150222 | 11.008643 |
| 25.140743 | 45.509423 | 0.20112287 | 38.212837 | 10.909391 |
| 25.15004  | 45.355917 | 0.2009373  | 38.271731 | 10.836566 |
| 25.160683 | 45.196707 | 0.1999276  | 38.340537 | 10.766671 |
| 25.170944 | 45.060555 | 0.19944377 | 38.406258 | 10.712772 |
| 25.180305 | 44.944502 | 0.19729076 | 38.463793 | 10.673169 |
| 25.190198 | 44.838266 | 0.19656738 | 38.51624  | 10.646728 |
| 25.200273 | 44.743519 | 0.19667127 | 38.566244 | 10.631195 |
| 25.210298 | 44.673773 | 0.19706512 | 38.599243 | 10.640049 |
| 25.220149 | 44.635493 | 0.19687998 | 38.617918 | 10.677624 |
| 25.23009  | 44.607402 | 0.19687805 | 38.633106 | 10.724759 |
| 25.24005  | 44.576532 | 0.19517146 | 38.649275 | 10.765988 |
| 25.250145 | 44.533063 | 0.19348203 | 38.666665 | 10.793403 |
| 25.260326 | 44.473519 | 0.1929719  | 38.684666 | 10.806622 |
| 25.270186 | 44.432962 | 0.19602195 | 38.690948 | 10.824409 |
| 25.280284 | 44.458329 | 0.20173094 | 38.675416 | 10.88625  |
| 25.29065  | 44.547479 | 0.20529679 | 38.647682 | 10.998106 |
| 25.300512 | 44.688949 | 0.21475341 | 38.600926 | 11.131524 |
| 25.310967 | 45.053186 | 0.24478054 | 38.51792  | 11.404774 |
| 25.320669 | 45.526182 | 0.27203693 | 38.46049  | 11.740527 |
| 25.33008  | 46.048362 | 0.32169026 | 38.416071 | 12.0646   |
| 25.340147 | 46.983035 | 0.45155168 | 38.41516  | 12.578357 |
| 25.350241 | 48.157195 | 0.55716452 | 38.500716 | 13.22031  |
| 25.360097 | 49.265487 | 0.6322376  | 38.624804 | 13.789636 |
| 25.37006  | 50.874634 | 0.78744735 | 38.726617 | 14.661912 |
| 25.380138 | 52.913849 | 0.92703624 | 38.862651 | 15.842008 |
| 25.390028 | 54.536543 | 1.0141765  | 39.040876 | 16.707712 |
| 25.400055 | 55.922801 | 1.1045998  | 39.227538 | 17.372932 |
| 25.410218 | 56.996918 | 1.1605904  | 39.447339 | 17.803758 |
| 25.420233 | 57.733838 | 1.1889219  | 39.681102 | 17.990711 |
| 25.43021  | 58.104847 | 1.1779135  | 39.944332 | 17.92615  |

| 25.440309 | 58.140742<br>58.166951 | 1.1376353  | 40.232418 | 17.621253 |
|-----------|------------------------|------------|-----------|-----------|
| 25.460261 | 57.993834              | 1.0267103  | 40.812428 | 16.914047 |
| 25.47025  | 57.601843              | 0.94370464 | 41.119051 | 16.357062 |
| 25.480214 | 57.34893               | 0.88814995 | 41.391129 | 15.917985 |
| 25.490028 | 57.268433              | 0.84066983 | 41.621896 | 15.668462 |
| 25.500173 | 57.320525              | 0.79504518 | 41.81691  | 15.569957 |
| 25.510052 | 57.465924              | 0.76628153 | 41.973884 | 15.566396 |
| 25.520418 | 57.532138              | 0.7229126  | 42.130459 | 15.539371 |
| 25.530655 | 57.368015              | 0.6651/1// | 42.277529 | 15.3/1/13 |
| 25.540234 | 56 99/59               | 0.62890022 | 42.3954/3 | 13.149026 |
| 25.560944 | 56.463196              | 0.5494098  | 42.644622 | 14.605871 |
| 25.570278 | 56.117236              | 0.52416102 | 42.741395 | 14.332134 |
| 25.580345 | 55.824983              | 0.50216678 | 42.835405 | 14.106633 |
| 25.59007  | 55.519342              | 0.47009108 | 42.924104 | 13.878703 |
| 25.600844 | 55.210791              | 0.44744746 | 43.002886 | 13.651609 |
| 25.610517 | 54.994918              | 0.43491421 | 43.062052 | 13.499243 |
| 25.620004 | 54.790432              | 0.41524645 | 43.114857 | 13.362564 |
| 25.630854 | 54.58164/              | 0.40038394 | 43.160504 | 13.228561 |
| 25.650746 | 54.42791               | 0.39443623 | 43.193033 | 13.130043 |
| 25.660263 | 54.27299               | 0.38886321 | 43.233127 | 13.054384 |
| 25.670149 | 54.242606              | 0.39065526 | 43.248149 | 13.046006 |
| 25.68024  | 54.292867              | 0.40497951 | 43.254072 | 13.082792 |
| 25.690074 | 54.456097              | 0.43342926 | 43.257046 | 13.196139 |
| 25.700007 | 54.660874              | 0.45141795 | 43.275692 | 13.339248 |
| 25.710221 | 55.025475              | 0.51974779 | 43.283107 | 13.577276 |
| 25.720192 | 55.601961              | 0.59600723 | 43.314022 | 13.968395 |
| 25./30068 | 56.191959              | 0.639//093 | 43.382292 | 14.369113 |
| 25.740013 | 57 633959              | 0.09233090 | 43.433414 | 14.777504 |
| 25.760208 | 58.412445              | 0.78087077 | 43.519648 | 15.941365 |
| 25.770035 | 59.010526              | 0.80817169 | 43.554329 | 16.368003 |
| 25.780316 | 59.725872              | 0.83540073 | 43.563155 | 16.897165 |
| 25.790032 | 60.302287              | 0.85079719 | 43.570462 | 17.323765 |
| 25.800564 | 60.69523               | 0.85720653 | 43.57435  | 17.608048 |
| 25.81031  | 61.021295              | 0.84979985 | 43.563107 | 17.849986 |
| 25.820258 | 61.199411              | 0.83415222 | 43.54/018 | 1/.9/8181 |
| 25.830635 | 61 139301              | 0.8086/10/ | 43.527250 | 17 920137 |
| 25.850617 | 60.930198              | 0.71538469 | 43.460393 | 17.755537 |
| 25.860223 | 60.759325              | 0.68691556 | 43.408045 | 17.628065 |
| 25.87031  | 60.37916               | 0.64341431 | 43.368446 | 17.353674 |
| 25.880267 | 59.930134              | 0.61160977 | 43.323436 | 17.0306   |
| 25.89018  | 59.589374              | 0.59227744 | 43.269048 | 16.795787 |
| 25.90037  | 59.151919              | 0.55770219 | 43.230868 | 16.501223 |
| 25.910031 | 58.693547              | 0.52934444 | 43.191175 | 16.190618 |
| 25.920016 | 58.318699<br>57 923951 | 0.21366769 | 43.138228 | 15.94/844 |
| 25.940346 | 57.459415              | 0.46023795 | 43.054286 | 15.409416 |
| 25.95012  | 57.083593              | 0.44917225 | 43.004357 | 15.184024 |
| 25.960235 | 56.672857              | 0.43032865 | 42.968038 | 14.956156 |
| 25.970154 | 56.204203              | 0.41249552 | 42.941612 | 14.68916  |
| 25.980153 | 55.773057              | 0.40401077 | 42.910349 | 14.450958 |
| 25.990118 | 55.324548              | 0.38315169 | 42.907844 | 14.200126 |
| 26.000147 | 54./53149              | 0.36004711 | 42.927554 | 13.842707 |
| ZO.UIUI/Q | J4.ZI00//              | 0.34910013 | 42.943033 | T2.20/038 |

| 26.020475<br>26.030725<br>26.040739 | 53.738708<br>53.247811<br>52.828822 | 0.33575728<br>0.32106594<br>0.31469122 | 42.970713<br>43.012071<br>43.047833 | 13.221418<br>12.924293<br>12.681677 |
|-------------------------------------|-------------------------------------|----------------------------------------|-------------------------------------|-------------------------------------|
| 26.050737                           | 52.463819                           | 0.30652738                             | 43.088239                           | 12.489457                           |
| 26.060865                           | 52.084028<br>51 747121              | 0.29360366                             | 43.139669                           | 12.292671                           |
| 26.080163                           | 51.426242                           | 0.2775541                              | 43.23915                            | 11.966531                           |
| 26.090364                           | 51.06377                            | 0.26113891                             | 43.308041                           | 11.780572                           |
| 26.11002                            | 50.424063                           | 0.24683083                             | 43.428727                           | 11.463825                           |
| 26.120072                           | 50.125941                           | 0.23477065                             | 43.48882                            | 11.327138                           |
| 26.130454                           | 49.840754                           | 0.22691066                             | 43.541357                           | 11.204367                           |
| 26.150326                           | 49.36864                            | 0.21484237                             | 43.621133                           | 11.034668                           |
| 26.160173                           | 49.163752                           | 0.20979793                             | 43.643133                           | 10.979804                           |
| 26.180072                           | 48.798268                           | 0.20205251                             | 43.666414                           | 10.939391                           |
| 26.190237                           | 48.624251                           | 0.19635781                             | 43.667063                           | 10.89451                            |
| 26.200055                           | 48.45828                            | 0.19440683                             | 43.664576                           | 10.875651                           |
| 26.220057                           | 48.088056                           | 0.18167979                             | 43.678635                           | 10.793609                           |
| 26.230142                           | 47.891776                           | 0.17985355                             | 43.685006                           | 10.739772                           |
| 26.250072                           | 47.503921                           | 0.17226568                             | 43.698103                           | 10.61825                            |
| 26.260441                           | 47.305142                           | 0.17102454                             | 43.73524                            | 10.552391                           |
| 26.270274                           | 47.133484                           | 0.17228153                             | 43.751374                           | 10.499978                           |
| 26.290127                           | 46.858769                           | 0.17984107                             | 43.775415                           | 10.443123                           |
| 26.300154                           | 46.759956                           | 0.18902355                             | 43.781488                           | 10.437977                           |
| 26.320036                           | 46.789951                           | 0.23561526                             | 43.794638                           | 10.480285                           |
| 26.330006                           | 46.913334                           | 0.27288255                             | 43.817204                           | 10.649737                           |
| 26.340078                           | 47.293494                           | 0.36924386                             | 43.867771                           | 10.854128                           |
| 26.360293                           | 48.468859                           | 0.50192553                             | 44.139605                           | 11.472173                           |
| 26.370016                           | 49.351549                           | 0.6284467                              | 44.282586                           | 11.938005                           |
| 26.390276                           | 51.606458                           | 0.81514104                             | 44.47933                            | 12.584409                           |
| 26.400036                           | 52.709356                           | 0.91139276                             | 44.937658                           | 13.77993                            |
| 26.410065                           | 53.820487<br>54 717143              | 0.9809372                              | 45.17972                            | 14.384445                           |
| 26.430133                           | 55.409187                           | 1.0307106                              | 45.695796                           | 15.141638                           |
| 26.440172                           | 55.885193                           | 1.0160788                              | 45.957494                           | 15.30575                            |
| 26.450053                           | 56.270428                           | 0.94819255                             | 46.493368                           | 15.23353                            |
| 26.470132                           | 56.117652                           | 0.88605584                             | 46.77009                            | 14.961475                           |
| 26.480254                           | 55.96673                            | 0.84201675                             | 47.028053                           | 14.691671                           |
| 26.500059                           | 55.638016                           | 0.71560072                             | 47.487219                           | 14.225504                           |
| 26.510432                           | 55.479364                           | 0.67031185                             | 47.675997                           | 14.012973                           |
| 26.520501                           | 55.066481                           | 0.55122604                             | 47.847082                           | 13.593607                           |
| 26.541051                           | 54.794097                           | 0.5116993                              | 48.125645                           | 13.345195                           |
| 26.550582                           | 54.573569<br>54 303182              | 0.47715194<br>0 43617037               | 48.227639<br>48.317824              | 13.155012<br>12 938639              |
| 26.570059                           | 54.048394                           | 0.4114106                              | 48.384762                           | 12.740461                           |
| 26.580626                           | 53.83332                            | 0.39286739                             | 48.436538                           | 12.584728                           |
| 20.J901/3                           | J2.001002                           | U.J0020091                             | 40.402348                           | 12.4/319/                           |

| 26.600197 | 53.492925  | 0.3532931  | 48.465106 | 12.390704 |
|-----------|------------|------------|-----------|-----------|
| 26.610293 | 53.364054  | 0.34661721 | 48.451683 | 12.337803 |
| 26.620056 | 53.286146  | 0.33805157 | 48.409265 | 12.345146 |
| 26.630026 | 53.250384  | 0.33352294 | 48.344/55 | 12.398042 |
| 26.640081 | 53.220616  | 0.33118564 | 48.2/499  | 12.458609 |
| 26.650026 | 53.170244  | 0.32463324 | 48.2010/1 | 12.509961 |
| 26.66026  | 53.08064/  | 0.319/1814 | 48.126/74 | 12.53082  |
| 26.670633 | 52.966484  | 0.31855661 | 48.051669 | 12.530773 |
| 26.680223 | 52.846826  | 0.32112414 | 47.990062 | 12.509/65 |
| 26.690263 | 52.768701  | 0.33536593 | 47.920719 | 12.515166 |
| 26.700266 | 52./2/488  | 0.34459834 | 4/.85885  | 12.546528 |
| 26.71016  | JZ.823363  | 0.38404238 | 47.771192 | 12.001940 |
| 26.720092 | 53 39796   | 0.42407400 | 47.704029 | 12.090903 |
| 20.730030 | 53 694451  | 0.44470011 | 47.000790 | 13 304007 |
| 26.750032 | 53 00044JI | 0.40075505 | 47.000240 | 13.594007 |
| 26.750052 | 54 271791  | 0.49133030 | 47.53842  | 13 836968 |
| 26.700400 | 54 502606  | 0.50570255 | 47 503054 | 13 999013 |
| 26 780054 | 54 790024  | 0.52765304 | 47 454506 | 14 202969 |
| 26.790135 | 55 094589  | 0.53333491 | 47.399576 | 14 421671 |
| 26.800568 | 55,352276  | 0.53410304 | 47.335756 | 14.603836 |
| 26.810688 | 55.595271  | 0.52968023 | 47.260837 | 14.779    |
| 26.820295 | 55.717844  | 0.52459156 | 47.194472 | 14.860141 |
| 26.830137 | 55.764509  | 0.51931586 | 47.134727 | 14.881724 |
| 26.840397 | 55.633555  | 0.50876137 | 47.101739 | 14.759049 |
| 26.850035 | 55.439502  | 0.50081586 | 47.079486 | 14.585496 |
| 26.860132 | 55.268316  | 0.4931271  | 47.058804 | 14.429907 |
| 26.870595 | 55.027789  | 0.47437016 | 47.058771 | 14.218998 |
| 26.880031 | 54.794137  | 0.46028853 | 47.059751 | 14.014839 |
| 26.890194 | 54.59584   | 0.45157185 | 47.054112 | 13.839927 |
| 26.900344 | 54.4069    | 0.43539244 | 47.048093 | 13.688679 |
| 26.910139 | 54.248719  | 0.42310886 | 47.029011 | 13.576344 |
| 26.920005 | 54.129811  | 0.41691187 | 47.000712 | 13.499957 |
| 26.930412 | 54.005868  | 0.40247    | 46.958222 | 13.454316 |
| 26.94003  | 53.896493  | 0.39079582 | 46.905389 | 13.430314 |
| 26.950001 | 53.790991  | 0.3853637  | 46.842339 | 13.413463 |
| 26.960149 | 53.670564  | 0.37504621 | 46.772636 | 13.398897 |
| 26.9/00/5 | 53.53/5/8  | 0.36525003 | 46.695959 | 13.380825 |
| 26.980032 | 53.401586  | 0.36082675 | 46.61293  | 13.361514 |
| 26.990277 | 53.220125  | 0.34859//5 | 46.0328/4 | 12 244400 |
| 27.000430 | 52.973002  | 0.33910072 | 40.452005 | 13 161299 |
| 27.010207 | 52 138678  | 0.31/07572 | 40.309132 | 13 061011 |
| 27.02051  | 52.450070  | 0.2957288  | 46 238885 | 12 881809 |
| 27.040869 | 51 638785  | 0.28581169 | 46,180071 | 12.680528 |
| 27.050887 | 51 248829  | 0.27255292 | 46,134037 | 12.496465 |
| 27.06094  | 50.800193  | 0.25643982 | 46.10314  | 12.263947 |
| 27.070484 | 50.403979  | 0.2497514  | 46.067789 | 12.066314 |
| 27.080718 | 50.027585  | 0.24420024 | 46.028658 | 11.896953 |
| 27.090054 | 49.696131  | 0.23592158 | 45.995502 | 11.758429 |
| 27.100528 | 49.34916   | 0.23033847 | 45.955862 | 11.622968 |
| 27.110764 | 49.04246   | 0.22479694 | 45.919972 | 11.514867 |
| 27.120587 | 48.726597  | 0.21249382 | 45.899704 | 11.388948 |
| 27.130257 | 48.413675  | 0.20484145 | 45.880008 | 11.258478 |
| 27.14036  | 48.11094   | 0.20074301 | 45.858191 | 11.139771 |
| 27.150295 | 47.80683   | 0.19055044 | 45.85156  | 11.011069 |
| 27.160197 | 47.505137  | 0.18412166 | 45.848189 | 10.879366 |
| 27.170037 | 47.228685  | 0.1818281  | 45.843352 | 10.765675 |

| 27 | 180047  | 46 9527               | 0 17527265 | 45 852054 | 10 650313  |
|----|---------|-----------------------|------------|-----------|------------|
| 27 | 100075  | 46 60202              | 0.1710260  | 45.052054 | 10 524006  |
| 27 | .190075 | 40.00303              | 0.1/10209  | 45.000/90 | 10.334990  |
| 27 | .200221 | 46.43185              | 0.16981853 | 45.881489 | 10.433597  |
| 27 | .21002  | 46.203588             | 0.1671677  | 45.90686  | 10.342018  |
| 27 | .220194 | 45.976548             | 0.16531513 | 45.941719 | 10.24894   |
| 27 | .230085 | 45.772408             | 0.16489702 | 45.977024 | 10.169535  |
| 27 | .240146 | 45.581935             | 0.16467471 | 46.019258 | 10.098322  |
| 27 | .250108 | 45.404807             | 0.16477053 | 46.068185 | 10.032185  |
| 27 | .260166 | 45.239024             | 0.16498233 | 46.119865 | 9.9738273  |
| 27 | .27003  | 45.095792             | 0.17162911 | 46.161679 | 9.9311252  |
| 27 | 28003   | 44.984911             | 0.18546363 | 46.189482 | 9.9177652  |
| 27 | 290515  | 44 906156             | 0 19527136 | 46 216326 | 9 9366156  |
| 27 | 300615  | 11 870391             | 0.2161/1/0 | 40.210320 | 9 9811772  |
| 27 | 310443  | 4.070351              | 0.21014142 | 46 21136  | 10 107103  |
| 27 | .310443 | 44.9J/4J<br>4F 1EF010 | 0.2004920  | 40.21130  | 10.107193  |
| 27 | .320534 | 45.155813             | 0.28/59865 | 46.223297 | 10.302978  |
| 27 | .33024  | 45.439644             | 0.33220753 | 46.244703 | 10.5180/1  |
| 27 | .340163 | 46.011112             | 0.43864684 | 46.292/42 | 10.851311  |
| 27 | .350212 | 46.760499             | 0.52491073 | 46.409724 | 11.272749  |
| 27 | .360208 | 47.519821             | 0.59068128 | 46.564576 | 11.675394  |
| 27 | .370142 | 48.525767             | 0.73539014 | 46.725696 | 12.184195  |
| 27 | .380087 | 49.682071             | 0.86732383 | 46.942154 | 12.778772  |
| 27 | .390066 | 50.730375             | 0.95258928 | 47.208092 | 13.284076  |
| 27 | .400047 | 51.790415             | 1.0596777  | 47.474433 | 13.773186  |
| 27 | .410728 | 52.859638             | 1.1346403  | 47.781657 | 14.257468  |
| 27 | 420382  | 53.648439             | 1.1707693  | 48.075008 | 14.567397  |
| 27 | 430041  | 54 267999             | 1 165648   | 48 365395 | 14 776849  |
| 27 | 440055  | 54 731847             | 1 1309312  | 48 661252 | 14 882286  |
| 27 | 450057  | 55 081963             | 1 0988971  | 48 940598 | 14 909663  |
| 27 | .450057 | 55 250607             | 1.0206410  | 40.940390 | 14.909003  |
| 27 | .40000  | 55.250007             | 1.0300419  | 49.224720 | 14.03/13/  |
| 27 | .4/0259 | 55.228/26             | 0.94529532 | 49.501132 | 14.6416/3  |
| 27 | .480029 | 55.188148             | 0.88//2388 | 49./32/14 | 14.445816  |
| 27 | .490072 | 55.071456             | 0.80862821 | 49.97519  | 14.217761  |
| 27 | .50003  | 54.785769             | 0.72161558 | 50.209873 | 13.877263  |
| 27 | .510177 | 54.510757             | 0.66597059 | 50.411117 | 13.546974  |
| 27 | .520367 | 54.262831             | 0.60847941 | 50.60698  | 13.26029   |
| 27 | .530262 | 53.931497             | 0.54576799 | 50.795853 | 12.927364  |
| 27 | .540336 | 53.626618             | 0.50816365 | 50.959594 | 12.617802  |
| 27 | .550133 | 53.382915             | 0.47619949 | 51.110908 | 12.372186  |
| 27 | .560244 | 53.085692             | 0.43369265 | 51.270401 | 12.096521  |
| 27 | .570113 | 52.828787             | 0.40924318 | 51.405212 | 11.856108  |
| 27 | 580902  | 52.607633             | 0.38831645 | 51.54127  | 11.646553  |
| 27 | .590964 | 52.400411             | 0.36066556 | 51.662595 | 11.457679  |
| 27 | 600557  | 52 238621             | 0 34701614 | 51 758471 | 11 309118  |
| 27 | 610189  | 52.230021             | 0.34450558 | 51 83551  | 11 197636  |
| 27 | 6203    | 52.056604             | 0.34953563 | 51 970129 | 11 17/5/0  |
| 27 | .0203   | 52.050004             | 0.34033303 | JI.070120 | 11.1/4,049 |
| 27 | .030424 | 52.075772             | 0.35353495 | 51.8/6941 | 11.230302  |
| 27 | .640056 | 52.12242              | 0.35533582 | 51.880084 | 11.32311   |
| 27 | .650276 | 52.17933              | 0.35471225 | 51.860716 | 11.448298  |
| 27 | .660404 | 52.225904             | 0.35242465 | 51.838035 | 11.566959  |
| 27 | .670471 | 52.241106             | 0.35197024 | 51.814934 | 11.658049  |
| 27 | .680335 | 52.233794             | 0.35485986 | 51.795266 | 11.718082  |
| 27 | .690242 | 52.234581             | 0.36690383 | 51.775788 | 11.771311  |
| 27 | .700081 | 52.23426              | 0.37466344 | 51.76433  | 11.819489  |
| 27 | .710223 | 52.309323             | 0.4092677  | 51.75049  | 11.892151  |
| 27 | .72018  | 52.465695             | 0.44580108 | 51.756532 | 12.005191  |
| 27 | .730226 | 52.636602             | 0.46446966 | 51.786089 | 12.124418  |
| 27 | .740258 | 52.84124              | 0.49024822 | 51.812076 | 12.251079  |
| 27 | .750116 | 53.106041             | 0.51518688 | 51.83871  | 12.416101  |
|    |         |                       |            |           |            |

| 27.760318                                        | 53.375574                                        | 0.52852303                                          | 51.876378                                        | 12.582325                                        |
|--------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| 27.770106                                        | 53.608797                                        | 0.539616                                            | 51.910355                                        | 12.717019                                        |
| 27.780106                                        | 53.860109                                        | 0.55079116                                          | 51.938774                                        | 12.863571                                        |
| 27.790356                                        | 54.091129                                        | 0.55656707                                          | 51.969926                                        | 12.99462                                         |
| 27.800021                                        | 54.273461                                        | 0.56050655                                          | 51.996792                                        | 13.091472                                        |
| 27.810189                                        | 54.467323                                        | 0.5658145                                           | 52.014631                                        | 13.19855                                         |
| 27.821192                                        | 54.67275                                         | 0.5696788                                           | 52.029403                                        | 13.314503                                        |
| 27.830711                                        | 54.82273                                         | 0.57212896                                          | 52.037301                                        | 13.396261                                        |
| 27.840253                                        | 54.987394                                        | 0.57370343                                          | 52.033317                                        | 13.497291                                        |
| 27.8501                                          | 55.130844                                        | 0.57142225                                          | 52.027925                                        | 13.58479                                         |
| 27.860344                                        | 55.227592                                        | 0.56295939                                          | 52.028118                                        | 13.638342                                        |
| 27.870249                                        | 55.161033                                        | 0.53526371                                          | 52.05005                                         | 13.569333                                        |
| 27.880559<br>27.890087<br>27.900431<br>27.910549 | 54.989909<br>54.838935<br>54.592977<br>54.309189 | 0.49666156<br>0.46611439<br>0.44260888              | 52.071323<br>52.083872<br>52.120795<br>52.158039 | 13.285237<br>13.082151<br>12.849654              |
| 27.920344                                        | 54.078174                                        | 0.43118661                                          | 52.185049                                        | 12.659853                                        |
| 27.930011                                        | 53.827648                                        | 0.40962342                                          | 52.230003                                        | 12.461327                                        |
| 27.940272                                        | 53.555332                                        | 0.39058656                                          | 52.274487                                        | 12.249118                                        |
| 27.950403                                        | 53.335243                                        | 0.38202044                                          | 52.307088                                        | 12.079687                                        |
| 27.960285                                        | 53.134351                                        | 0.36328312                                          | 52.336437                                        | 11.941416                                        |
| 27.970027                                        | 52.939151                                        | 0.34507083                                          | 52.355384                                        | 11.816385                                        |
| 27.980107                                        | 52.761375                                        | 0.33656232                                          | 52.362775                                        | 11.707514                                        |
| 27.99015                                         | 52.567352                                        | 0.31792433                                          | 52.38385                                         | 11.595739                                        |
| 28.000057                                        | 52.327225                                        | 0.29924781                                          | 52.412014                                        | 11.448765                                        |
| 28.010304                                        | 52.083557                                        | 0.29088046                                          | 52.434377                                        | 11.299568                                        |
| 28.020452                                        | 51.854137                                        | 0.27963829                                          | 52.463975                                        | 11.165651                                        |
| 28.031126                                        | 51.597877                                        | 0.26622417                                          | 52.502508                                        | 11.012591                                        |
| 28.040773                                        | 51.386475                                        | 0.26094097                                          | 52.53149                                         | 10.889452                                        |
| 28.050641                                        | 51.192707                                        | 0.25389536                                          | 52.561412                                        | 10.783311                                        |
| 28.060136                                        | 51.013723                                        | 0.24542248                                          | 52.586111                                        | 10.688676                                        |
| 28.070234                                        | 50.850221                                        | 0.24146176                                          | 52.59969                                         | 10.612282                                        |
| 28.090002<br>28.100734<br>28.11023               | 50.706485<br>50.599917<br>50.504853<br>50.42723  | 0.2382195<br>0.23192129<br>0.22738822<br>0.22408439 | 52.602344<br>52.577695<br>52.530855<br>52.482778 | 10.539344<br>10.546415<br>10.56099               |
| 28.12006                                         | 50.349746                                        | 0.21572069                                          | 52.414517                                        | 10.588587                                        |
| 28.130089                                        | 50.271625                                        | 0.21031737                                          | 52.329904                                        | 10.622777                                        |
| 28.140075                                        | 50.188321                                        | 0.20815718                                          | 52.238413                                        | 10.654401                                        |
| 28.150175                                        | 50.112065                                        | 0.20298699                                          | 52.121119                                        | 10.703001                                        |
| 28.160156                                        | 50.054042                                        | 0.20004606                                          | 51.981935                                        | 10.772151                                        |
| 28.170225                                        | 49.996053                                        | 0.19898037                                          | 51.834721                                        | 10.844241                                        |
| 28.190394                                        | 49.951845                                        | 0.19479785                                          | 51.660529                                        | 10.936381                                        |
| 28.190393                                        | 49.905509                                        | 0.19004804                                          | 51.479364                                        | 11.027986                                        |
| 28.200173                                        | 49.837989                                        | 0.18822487                                          | 51.300525                                        | 11.09965                                         |
| 28.210281                                        | 49.724816                                        | 0.18104443                                          | 51.126425                                        | 11.135824                                        |
| 28.220031                                        | 49.56917                                         | 0.1755115                                           | 50.962515                                        | 11.130059                                        |
| 28.23033                                         | 49.382765                                        | 0.17364466                                          | 50.788571                                        | 11.105486                                        |
| 28.240163                                        | 49.201183                                        | 0.17124235                                          | 50.624502                                        | 11.07628                                         |
| 28.250004                                        | 49.01836                                         | 0.16942858                                          | 50.46125                                         | 11.043078                                        |
| 28.260006                                        | 48.837195                                        | 0.16892663                                          | 50.295895                                        | 11.011714                                        |
| 28.270488                                        | 48.668923                                        | 0.17479395                                          | 50.119397                                        | 10.991372                                        |
| 28.290915<br>28.300182<br>28.310367              | 48.471718<br>48.429724<br>48.489684              | 0.19545853<br>0.21397857<br>0.25701893              | 49.957925<br>49.784671<br>49.638449<br>49.493638 | 11.001249<br>11.040329<br>11.085737<br>11.189079 |
| 28.320325                                        | 48.627019                                        | 0.29174261                                          | 49.394499                                        | 11.324606                                        |
| 28.330146                                        | 48.825099                                        | 0.34255718                                          | 49.321057                                        | 11.458579                                        |

| 28.350404     49.876865     0.57086784     49.387457     11.950818       28.360281     50.488567     0.6546101     49.50501     12.211831       28.390259     54.038215     1.1700687     50.266462     13.362497       28.390259     54.038215     1.1700687     50.266462     14.55314       28.40037     55.266053     1.3358457     50.266826     14.55314       28.410048     56.322801     1.4580163     50.36524     15.33358       28.420261     57.191169     1.5446744     50.846247     1.6104877     51.50433       28.4407     58.366247     1.6104877     51.80569     15.733339       28.450334     59.407689     1.475905     52.401008     15.77541       28.480131     59.62513     1.1002653     53.5812     15.27274       28.50004     59.462824     0.99532699     53.56667     15.132336       28.50034     59.462824     0.99532695     53.40245     14.728169       28.50064     59.46283     0.7088945     53.71627     14.428169       28.50034                                                                                                                                                                                                                                                                                 | 28.340025              | 49.264646              | 0.46480748                      | 49.308082              | 11.66823  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|---------------------------------|------------------------|-----------|
| 28.360281     50.489567     0.6546101     49.50501     12.211831       28.370261     51.5046     0.8494312     49.620611     12.68989       28.300132     52.806269     1.0364139     49.620611     12.68989       28.40037     55.26653     1.3358457     50.268826     14.55314       28.40018     56.322801     1.4580163     50.536524     15.5314       28.430115     57.820712     1.5924923     51.1612803     15.544783       28.4407     58.366247     1.6104877     51.805869     15.778339       28.460291     59.146846     1.5715746     52.112078     15.77702       28.470248     59.407689     1.4288262     52.661829     15.750433       28.490197     59.727295     1.2015689     53.156364     15.490112       28.50004     59.462824     0.99532699     53.526667     15.13236       28.50034     59.462824     0.9953269     53.526667     15.13236       28.50045     59.462824     0.7864985     53.771622     14.58329       28.50034     58.060233 <td>28.350404</td> <td>49.876865</td> <td>0.57086784</td> <td>49.387457</td> <td>11.950818</td>                                                                                                                                                                               | 28.350404              | 49.876865              | 0.57086784                      | 49.387457              | 11.950818 |
| 28.370261     51.50496     0.84994312     49.620611     12.689989       28.380132     52.80629     1.0364133     49.790756     13.362497       28.40037     55.266053     1.3358457     50.264826     14.55314       28.410048     56.322801     1.4580163     50.536524     15.033158       28.4007     58.366247     1.6104877     51.501441     15.64783       28.4407     58.366247     1.6104877     51.805869     15.73839       28.460291     59.146846     1.5715746     52.112078     15.77541       28.470248     59.47089     1.4959055     52.240108     15.77541       28.470248     59.47089     1.4288262     52.661829     15.75043       28.400147     59.62513     1.1002633     53.358120     15.294341       28.500297     59.562513     1.1002633     53.358121     15.27434       28.50034     59.462294     0.99532699     53.26667     14.417143       28.50064     57.790801     0.4218901     14.458129       28.50064     57.790801     0.422890                                                                                                                                                                                                                                                                                | 28.360281              | 50.489567              | 0.6546101                       | 49.50501               | 12.211831 |
| 28.380132     52.806269     1.0364139     49.790756     13.362437       28.39025     54.038215     1.1700687     50.026486     14.55314       28.40037     55.266053     1.3358457     50.268826     14.55314       28.420261     57.19169     1.5446744     50.866247     1.6104877     51.805867     55.37338       28.4407     55.366247     1.6104877     51.805867     55.77702       28.470248     59.407689     1.4959055     52.401008     15.77541       28.480131     59.625513     1.2015689     53.56364     15.490112       28.510297     59.565513     1.2015689     53.756634     15.490112       28.50004     59.462824     0.99532699     53.526667     15.132336       28.510297     59.562513     1.1002653     53.75601     14.728169       28.50643     59.462824     0.99532699     53.56667     15.132336       28.507689     58.3166     0.5640548     53.771622     14.58239       28.507689     58.3166     0.5640548     53.715759     14.25012 <tr< td=""><td>28.370261</td><td>51.50496</td><td>0.84994312</td><td>49.620611</td><td>12.689989</td></tr<>                                                                                                                                                                     | 28.370261              | 51.50496               | 0.84994312                      | 49.620611              | 12.689989 |
| 28.300259   54.038215   1.1700687   50.266826   14.55314     28.40037   55.266053   1.3386457   50.266826   14.55314     28.410048   56.322801   1.4580163   50.536524   15.033158     28.420261   57.191169   1.5446744   50.84864   15.353358     28.430115   57.820712   1.5924923   51.162803   15.544783     28.460291   59.146846   1.5715746   52.112078   15.77702     28.470248   59.407689   1.4959055   52.401008   15.77541     28.400197   59.722785   1.326035   52.92146   15.672274     28.50004   59.655051   1.2015689   53.156364   15.490112     28.50004   59.652513   1.1002653   53.358182   15.23336     28.50034   59.642824   0.99532699   53.756671   15.132336     28.50034   58.60238   0.62128901   53.768075   14.417143     28.500621   58.60238   0.62128901   53.768075   14.417143     28.50064   57.790801   0.46761323   53.3922   13.956189     28.60024                                                                                                                                                                                                                                                                                                                                                             | 28.380132              | 52.806269              | 1.0364139                       | 49.790756              | 13.362497 |
| 28.410048   55.266053   1.3338457   50.268260   14.5514     28.410048   56.322801   1.4880163   50.536524   15.033158     28.420261   57.191169   1.5446744   50.84864   15.359358     28.4407   58.366247   1.6104877   51.501441   15.66787     28.450334   58.795124   1.6104877   51.805869   15.738339     28.460291   59.146846   1.5715746   52.1112078   15.77541     28.470248   59.407689   1.495055   52.40108   15.77541     28.490197   59.50511   1.2015689   53.156364   15.490112     28.510297   59.562513   1.1002653   53.358182   15.294341     28.520364   59.462824   0.99532699   53.755641   15.132336     28.50033   59.462824   0.99532699   53.755091   14.728169     28.50033   59.462833   0.761286   53.771622   14.582329     28.500641   58.03383   0.62128901   53.768075   14.417143     28.50064   57.790801   0.46761323   53.9221   13.479464     28.60033 <td>28.390259</td> <td>54.038215</td> <td>1.1700687</td> <td>50.026496</td> <td>13.969898</td>                                                                                                                                                                                                                                                             | 28.390259              | 54.038215              | 1.1700687                       | 50.026496              | 13.969898 |
| 28.420261   57.191169   1.5436744   15.336324   15.35358     28.420261   57.191169   1.5446744   50.836644   15.35358     28.45034   58.366247   1.6104877   51.551441   15.667887     28.45034   59.146846   1.5715746   52.112078   15.77702     28.470248   59.407689   1.4289055   52.401008   15.77541     28.46031   59.624315   1.428262   52.661829   15.750433     28.490197   59.727295   1.326035   52.921486   15.672274     28.50004   59.65051   1.2015689   53.156364   15.490112     28.510297   59.52513   1.1002653   53.358182   15.294341     28.52034   59.662533   1.702898745   53.71622   14.458239     28.550834   58.602383   0.62128901   53.768075   14.417143     28.570684   58.31860   0.52533741   53.4127032   14.58239     28.50064   57.790801   0.46761323   53.353922   13.956189     28.60024   55.446344   0.34378775   52.68991   13.405669     28.600391 </td <td>28.40037</td> <td>55.266053</td> <td>1.3358457</td> <td>50.268826</td> <td>14.55314</td>                                                                                                                                                                                                                                                        | 28.40037               | 55.266053              | 1.3358457                       | 50.268826              | 14.55314  |
| 20.420261     57.191169     1.5440744     50.46464     15.33935       28.430115     57.820712     1.5924923     51.152203     15.544783       28.4407     58.366247     1.6104877     51.501441     15.667887       28.46029     59.146846     1.5715746     52.1122078     15.77702       28.470248     59.407689     1.4959055     52.401008     15.77541       28.490131     59.624315     1.4288262     52.661829     15.75043       28.40014     59.655051     1.2015689     53.156364     15.490112       28.510297     59.5262513     1.1002653     53.358182     15.29334       28.50004     59.646284     0.99532699     53.735091     14.728169       28.500521     58.602383     0.62128901     53.768075     14.417143       28.50064     57.90801     0.46761323     53.5322     13.956189       28.50064     57.27075     0.412636     53.402454     13.79464       28.60064     57.29081     0.46761323     53.5322     13.457055       28.600765     56.689902 </td <td>28.410048</td> <td>56.3228UL</td> <td>1.4580163</td> <td>50.536524</td> <td>15.033138</td>                                                                                                                                                                         | 28.410048              | 56.3228UL              | 1.4580163                       | 50.536524              | 15.033138 |
| 28.4407     58.366247     1.6104877     51.50144     15.667887       28.4407     59.146846     1.5715746     51.50144     15.667887       28.460291     59.146846     1.5715746     52.112078     15.7544       28.470248     59.407689     1.4959055     52.40108     15.77541       28.470248     59.407689     1.4959055     52.40108     15.77541       28.510297     59.562513     1.002653     53.356182     15.294341       28.510297     59.262513     1.1002653     53.358182     15.294341       28.510297     59.262604     0.99532699     53.75667     15.132336       28.510297     59.26853     0.86719912     53.66468     14.910197       28.540803     59.046209     0.78649985     53.77509     14.25012       28.550834     58.860543     0.70898745     53.7768075     14.417143       28.50064     57.790801     0.46761323     53.25767     13.680612       28.50064     57.790801     0.46761323     53.05318     13.257085       28.600235     56.493922                                                                                                                                                                                                                                                                           | 20.420201              | 57 920712              | 1 502/023                       | JU.04004               | 15 544793 |
| 28.45034     58.795124     1.6137674     51.805869     15.738339       28.460291     59.146846     1.5715746     52.112078     15.77702       28.470248     59.407689     1.4959055     52.401008     15.77541       28.400131     59.624315     1.4288262     52.661829     15.750433       28.490197     59.727295     1.326035     52.921486     15.672274       28.50004     59.655051     1.2015689     53.156364     15.490112       28.502364     59.462824     0.99532699     53.526667     15.132336       28.50234     58.60543     0.708975     53.771622     14.78169       28.50064     58.03316     0.5640548     53.715759     14.25012       28.580104     58.10809     0.5253741     53.642411     14.127032       28.50064     57.790801     0.46761323     53.25767     13.680612       28.60025     56.89922     0.37625083     53.08318     13.405669       28.60034     55.927896     0.322651573     51.926612     13.02590       28.60034     55.927896<                                                                                                                                                                                                                                                                           | 28 4407                | 58 366247              | 1 6104877                       | 51 501441              | 15 667887 |
| 28.460291     50.146846     1.5715746     52.112078     15.77702       28.470248     59.407689     1.4959055     52.401008     15.77741       28.480131     59.624315     1.4288262     52.661829     15.75043       28.490197     59.727295     1.326035     52.921486     15.672274       28.50004     59.652513     1.1002653     53.358182     15.294341       28.52024     59.462824     0.99532699     53.56667     15.132336       28.531029     52.38583     0.86719912     53.664689     14.910197       28.550834     58.60543     0.70898745     53.715759     14.25012       28.55084     58.60543     0.70898745     53.715759     14.25012       28.580104     58.108009     0.5253741     53.642411     14.127032       28.50026     57.480308     0.43346802     53.402454     13.79464       28.610663     57.227275     0.412563     53.25767     13.680612       28.60028     56.93992     0.3752898     53.25767     13.680612       28.60039     55.437515<                                                                                                                                                                                                                                                                           | 28 450334              | 58 795124              | 1 6137674                       | 51 805869              | 15 738339 |
| 28.470248   59.407689   1.4959055   52.401008   15.77541     28.480131   59.624315   1.428262   52.661829   15.750433     28.490197   59.727295   1.326035   52.921486   15.672274     28.500004   59.65051   1.2015689   53.156364   15.490112     28.510297   59.562513   1.1002653   53.358182   15.294341     28.520364   59.462824   0.99532699   53.66669   14.910197     28.540803   50.46209   0.78649985   53.735091   14.728169     28.550834   58.6002383   0.62128901   53.768075   14.417143     28.550864   57.790801   0.52533741   53.642411   14.127032     28.590664   57.790801   0.46761323   53.353922   13.956189     28.60028   56.93992   0.37625083   53.08318   13.567085     28.60039   56.183923   0.3275319   52.490129   13.320359     28.60044   55.921835   0.320925   52.98631   13.129186     28.60039   55.466743   0.3200659   52.09375   13.125195     28.6004                                                                                                                                                                                                                                                                                                                                                        | 28.460291              | 59.146846              | 1.5715746                       | 52.112078              | 15.77702  |
| 28.480131     59.624315     1.4288262     52.661829     15.750433       28.490197     59.727295     1.326035     52.921486     15.672274       28.500004     59.65051     1.2015689     53.156364     15.490112       28.510297     59.562513     1.1002653     53.358182     15.294341       28.520364     59.462824     0.99532699     53.526667     15.132336       28.50031     59.046209     0.78649985     53.735091     14.728169       28.550834     58.602383     0.62128001     53.768075     14.417143       28.570698     58.33166     0.56405458     53.71579     14.25012       28.80102     57.480308     0.43346802     53.402454     13.79464       28.601026     57.480308     0.43346802     53.402454     13.79464       28.610263     56.489920     0.37625083     53.08318     13.567085       28.60024     55.93922     0.37625083     53.08318     13.567085       28.60031     56.48902     0.326959     52.09375     13.125195       28.60033     56.4                                                                                                                                                                                                                                                                           | 28.470248              | 59.407689              | 1.4959055                       | 52.401008              | 15.77541  |
| 28.49019759.7272951.32603552.92148615.67227428.5000459.6550511.201568953.15636415.49011228.51029759.5625131.100265353.35818215.29434128.52036459.4628240.9953269953.52666715.13233628.53102959.2385830.8671991253.66468914.91019728.56083458.062430.708874553.77162214.58323928.55083458.6023830.6212890153.76807514.41714328.57069858.331660.5640545853.71575914.2501228.58010458.1080090.5253374153.64241114.12703228.5906457.7908010.4676132353.5392213.95618928.60102657.4803080.4334680253.40245413.7946428.61066357.2272750.41256353.0831813.60708528.6023556.6899020.3568916352.90251213.47910528.64053856.1839230.327531952.49012913.32035928.66004455.9218350.32092552.2968313.21918628.67032155.6670430.320659952.0375613.12519528.6800455.4466820.3265157351.92661213.02560128.6909955.2379660.3416290351.78116312.91188228.70039355.062690.3513622751.65871612.66563328.70039355.6167960.5612321851.44697912.97941628.70039555.2167960.54232185                                                                                                                                                                                                                                                                                                | 28.480131              | 59.624315              | 1.4288262                       | 52.661829              | 15.750433 |
| 28.50000459.6550511.201568953.15636415.49011228.51029759.5625131.100265353.35818215.29441128.52036459.4628240.9953269953.52666715.13233628.53102959.2385830.8671991253.66468914.91019728.54080359.0462090.7864998553.77509114.72816928.55083458.8605430.7089874553.77162214.58323928.56062158.6023830.6212890153.76807514.41714328.5906457.7908010.4676132353.5392213.95618928.60102657.4803080.4334680253.40245413.79464228.6209856.939920.3762508353.0831813.56708528.6003455.921830.320751952.49012913.32035928.6004455.9218350.32092552.29683113.21918628.67032155.6670430.320659952.0337513.12519528.66004455.4466820.3265157351.92661213.02560128.67033155.0626290.3513622751.65381112.81537628.7003355.0626290.3513622751.65381112.81537628.7003355.6167960.5612321851.44697912.97941628.76030556.2203050.5945139651.40903513.38145228.7003756.819650.636304851.34339613.78227528.7003855.6167960.5612321851.40903513.38145228.7003955.6167960.56123218<                                                                                                                                                                                                                                                                                            | 28.490197              | 59.727295              | 1.326035                        | 52.921486              | 15.672274 |
| 28.51029759.5625131.100265353.35818215.29434128.52036459.4628240.9953269953.52666715.13233628.53102959.2385830.8671991253.66468914.91019728.54080359.0462090.7864998553.77509114.72816928.55083458.605430.7089874553.77607514.41714328.57069858.331660.5640545853.71575914.2501228.58010458.1080090.5253374153.64241114.12703228.59066457.7908010.4676132353.5392213.95618928.60102657.4803080.4334680253.40245413.7946428.61066357.2272750.41256353.0831813.56708528.6023556.6899020.3548916352.90251213.47910528.64053856.441340.3437877552.68989113.40566928.65039156.1839230.320659952.0937513.12519528.66004455.9218350.32092552.2968313.21918628.67032155.6670430.320659952.0937513.12519528.6800455.4466820.325517351.92661213.02560128.7003955.0626290.3513622751.65381112.81537628.71016854.977030.4557392551.53178712.66563328.7003555.6167960.5612321851.44697912.97941628.7003555.6167960.5612321851.44697912.97941628.7003556.819650.636304851                                                                                                                                                                                                                                                                                                | 28.500004              | 59.655051              | 1.2015689                       | 53.156364              | 15.490112 |
| 28.52036459.4628240.9953269953.52666715.13233628.53102959.2385830.8671991253.66468914.91019728.55083458.8605430.7089874553.77162214.58323928.55083458.8605430.6212890153.76807514.41714328.55069858.331660.5640545853.71575914.2501228.58010458.1080090.5253374153.64241114.12703228.5906457.7908010.4676132353.5392213.95618928.60102657.4803080.4334680253.40245413.7946428.61066357.2272750.41256353.2576713.68061228.6209856.939920.3762508353.0831813.40566928.64053856.441340.3437877552.69899113.40566928.66004455.9218350.32092552.2968313.21918628.67032155.6670430.3200659952.0937513.12515928.66004455.9218350.32092551.22661213.02560128.69009955.2379960.3416290351.78116312.91188228.70039355.0626290.3513622751.65381112.81537628.70039355.1617960.4512321851.44697912.97941628.76030556.2203050.5945139651.44097912.97941628.70039355.1617960.6512321851.44333913.78227528.70039355.6167960.5612321851.44697912.97941628.70039555.4668510.636348 <td>28.510297</td> <td>59.562513</td> <td>1.1002653</td> <td>53.358182</td> <td>15.294341</td>                                                                                                                                                                                            | 28.510297              | 59.562513              | 1.1002653                       | 53.358182              | 15.294341 |
| 28.53102959.2385830.8671991253.66468914.91019728.55083459.0462090.7864998553.73509114.72816928.55083458.6023830.6212890153.76807514.41714328.57069858.331660.5640545853.71575914.2501228.58010458.1080090.5253374153.64241114.12703228.59066457.7908010.4676132353.5392213.95618928.60102657.4803080.4334680253.40245413.7946428.61066357.2272750.41256353.2576713.68061228.64053856.939920.3762508353.0831813.47910528.64053856.441340.343787552.68989113.40566928.65039156.1839230.327531952.49012913.2035928.66004455.9218350.320920552.2968313.21918628.67032155.6670430.320659952.037513.12519528.68004455.4466820.3265157351.92661213.02560128.6909955.2379660.3416290351.78116312.91188228.70039355.0626290.3513622751.65381112.81537628.71016854.9730190.381497451.56931812.73282828.72023754.9508980.4331521551.21376612.62956928.74015455.1607500.5612321851.44697912.97941628.76030556.62203050.5945139651.40903513.7814528.7003955.6167960.56123218                                                                                                                                                                                                                                                                                            | 28.520364              | 59.462824              | 0.99532699                      | 53.526667              | 15.132336 |
| 28.54080359.0462090.7864998553.73509114.72816928.55083458.8605430.7089874553.77162214.58323928.55062158.6023830.6212890153.76807514.41714328.57069858.331660.5640545853.71575914.2501228.58010458.1080090.5253374153.64241114.12703228.59066457.7908010.4676132353.5392213.95618928.60102657.4803080.4334680253.40245413.7946428.6106357.2272750.41256353.2576713.68061228.6209856.939920.3762508353.0831813.656708528.63023556.6899020.3548916352.90251213.47910528.64053856.441340.3437877552.68989113.40566928.65039156.1839230.327531952.49012913.32035928.66004455.9218350.32092552.2968313.21918628.67032155.6670430.320659952.0937513.12519528.68004455.9466220.3265157351.92661213.02560128.70039355.0626290.3513622751.65311812.31282828.70039355.0626900.3513622751.52876612.62956928.74015455.1607640.561231851.44697912.97941628.7003756.819650.636304851.34339613.78227528.78102257.8048510.7001428551.4903513.38144528.7003556.2203050.59451396 <t< td=""><td>28.531029</td><td>59.238583</td><td>0.86719912</td><td>53.664689</td><td>14.910197</td></t<>                                                                                                                                                                                   | 28.531029              | 59.238583              | 0.86719912                      | 53.664689              | 14.910197 |
| 28.55083458.8605430.7089874553.77162214.88323928.550662158.6023830.6212890153.76807514.41714328.57069858.331660.5640545853.71575914.2501228.58010458.1080090.5253374153.64241114.12703228.59066457.7908010.4676132353.5392213.95618928.60102657.4803080.4334680253.40245413.7946428.61066357.2272750.41256353.2576713.68061228.6209856.939920.3762508353.0831813.56708528.64053856.441340.3437877552.68989113.40566928.65039156.1839230.327531952.49012913.32035928.66004455.9218350.320992552.2968313.21918628.67032155.6670430.320659952.0937513.12519528.68004455.4466820.3265157351.92661213.02560128.69009955.2379960.3416290351.78116312.91188228.70039355.0626290.3513622751.65381112.81537628.7016854.9730190.3891497451.56931812.73282828.72023754.977930.4557392551.2876612.62956928.7015455.1667960.5612321851.44697912.97941628.7003955.6167960.5612321851.44697912.97941628.7003756.819650.636304851.34339613.78227528.7016558.6723030.73691259 <td< td=""><td>28.540803</td><td>59.046209</td><td>0.78649985</td><td>53.735091</td><td>14.728169</td></td<>                                                                                                                                                                                  | 28.540803              | 59.046209              | 0.78649985                      | 53.735091              | 14.728169 |
| 28.56062158.6023830.6212890153.76807514.41714328.57069858.331660.5640545853.71575914.2501228.58010458.1080090.5253374153.64241114.12703228.59066457.7908010.4676132353.5392213.95618928.60102657.4803080.4334680253.40245413.7946428.61066357.2272750.41256353.2576713.68061228.6209856.939920.3762508353.0831813.56708528.64053856.441340.3437877552.68989113.40566928.64053856.441340.3427877552.68989113.40566928.66004455.9218350.32092552.2968313.21918628.67032155.6670430.3200659952.0937513.12519528.68004455.4466820.3266157351.92661213.02560128.6909955.2379960.3416290351.78116312.91188228.70039355.0626290.3513622751.65381112.81537628.71016854.9730190.3891497451.56931812.73282828.72023754.977930.4557392551.52876612.62950328.74015455.16167960.5612321851.44697912.97941628.76030556.2203050.5945139651.40903513.38144528.7703756.819650.636304851.34339613.78227528.76102557.8048510.701428551.201918315.1250928.80038959.4638460.7762266<                                                                                                                                                                                                                                                                                            | 28.550834              | 58.860543              | 0.70898745                      | 53.771622              | 14.583239 |
| 28.57069858.31660.5640548853.71575914.2501228.59010458.1080090.5253374153.64241114.12703228.59066457.7908010.4676132353.592213.95618928.60102657.4803080.4334680253.40245413.7946428.61066357.2272750.41256353.2576713.68061228.6209856.939920.3762508353.0831813.56708528.63023556.6899020.327531952.90251213.47910528.66004455.9218350.320992552.2968313.21918628.65039156.1839230.327531952.49012913.32035928.66004455.9218350.3200659952.0937513.12519528.68000455.4466820.3265157351.92661213.02560128.69009955.2379960.3416290351.78116312.91188228.70039355.0626290.3513622751.65381112.81537628.70039355.0626290.3513622751.65381112.6256928.74015455.160.504849551.49768412.69577228.75009855.6167960.5612321851.44697912.97941628.76030556.2203050.5945139651.4093513.38144228.7703756.819550.636304851.34339613.78227528.78102257.8048510.770626650.97963615.69581728.8038959.4638460.776226650.97963615.69581728.8012661.011290.8427928850.5649                                                                                                                                                                                                                                                                                                | 28.560621              | 58.602383              | 0.62128901                      | 53.768075              | 14.417143 |
| 28.58010458.1080090.5253374153.64241114.12703228.59066457.7908010.4676132353.5392213.95618928.60102657.4803080.4334680253.40245413.7946428.61066357.2272750.41256353.2576713.68061228.6209856.939920.3762508353.0831813.56708528.63023556.6899020.3548916352.90251213.47910528.64053856.441340.3437877552.68989113.40566928.65039156.1839230.327531952.49012913.32035928.66004455.9218350.320992552.2968313.21918628.67032155.6670430.3200659952.0937513.12519528.68000455.4466820.3265157351.92661213.02560128.69009955.2379960.3416290351.78116312.91188228.70039355.0626290.3513622751.65381112.81537628.71016854.9730190.3891497451.56931812.73282828.72023754.9508980.4331521551.3178712.66561328.73009254.9777930.4557392551.52876612.62956928.74015455.6167960.5612321851.44669712.97941628.76030556.2203050.5945139651.40903513.38144528.7003959.4638460.77622650.92398316.35899728.8018660.35320.8209857650.82398316.35899728.8018661.3679350.8279288<                                                                                                                                                                                                                                                                                            | 28.570698              | 58.33166               | 0.56405458                      | 53./15/59              | 14.25012  |
| 28.60102657.4803080.4334680253.40245413.7946428.60102657.2272750.41256353.40245413.7946428.6209856.939920.3762508353.0831813.56708528.63023556.6899020.3548916352.90251213.47910528.64053856.441340.3437877552.68989113.40566928.65039156.1839230.327531952.49012913.32035928.66004455.9218350.320992552.2968313.21918628.67032155.6670430.320659952.0937513.12519528.6800455.4466820.3265157351.92661213.02560128.6900955.2379960.3416290351.78116312.91188228.70039355.0626290.3513622751.65381112.81537628.71016854.9730190.3891497451.56931812.73282828.72023754.9508980.4331521551.52876612.62956928.74015455.160.5612321851.44607912.97941628.76030556.2203050.5945139651.40903513.38144528.77003756.819650.636304851.34339613.78227528.78102257.8048510.7001428551.21351214.49089628.79016558.6723030.7369125951.10918315.1250928.80038959.4638460.72626650.97963615.69581728.8012661.0111290.844554550.66496717.10057728.8016561.3679350.8227928850                                                                                                                                                                                                                                                                                                | 28.580104              | 58.108009              | 0.52533/41                      | 53.642411<br>52 52022  | 12 056100 |
| 28.60102051.40306053.40249413.7940428.61066357.2272750.41256353.2576713.68061228.6209856.939920.3762508353.0831813.56708528.63023556.6899020.3548916352.90251213.47910528.64053856.441340.3437877552.68989113.40566928.65039156.1839230.327531952.49012913.32035928.66004455.9218350.32092552.2968313.21918628.67032155.6670430.320659952.0937513.12519528.6800455.4466820.3265157351.92661213.02560128.6900955.2379960.3416290351.78116312.91188228.70039355.0626290.3513622751.65381112.81537628.71016854.9730190.3891497451.56931812.73282828.72023754.9508980.4331521551.52876612.62956928.74015455.160.5042849551.49768412.69577228.75009855.6167960.5612321851.44667912.97941628.7003756.819650.636304851.34339613.78227528.78102257.8048510.7001428551.21351214.49089628.79016558.6723030.7369125951.10918315.1250928.8038959.4638460.776266650.97963615.69581728.8016561.3679350.8227928850.56496717.10057728.8016561.337530.8437996350.46202617.13                                                                                                                                                                                                                                                                                                | 28.590664              | 57.790801              | 0.40701323                      | 53 102151              | 13 70/6/  |
| 28.6209856.939920.3762508353.0831813.56708528.63023556.6899020.3548916352.90251213.47910528.64053856.441340.3437877552.68989113.40566928.65039156.1839230.327531952.49012913.32035928.66004455.9218350.320992552.2968313.21918628.67032155.6670430.3200659952.0937513.12519528.68000455.4466820.3265157351.92661213.02560128.69009955.2379960.3416290351.78116312.91188228.70039355.0626290.3513622751.65381112.81537628.71016854.9730190.3891497451.56931812.73282828.72023754.9508980.4331521551.513178712.66561328.73009254.9777930.4557392551.52876612.62956928.74015455.160.504849551.49768412.69577228.75009855.6167960.5612321851.44667912.97941628.76030556.2203050.5945139651.40903513.38144528.77003756.819650.636304851.34339613.78227528.78102257.8048510.7001428551.21351214.49089628.8016561.3679350.8209857650.82398316.35899728.8016561.3679350.8209857650.82398316.35899728.8016561.3679350.8527928850.56496717.10057728.8074861.3386480.822871650.                                                                                                                                                                                                                                                                                       | 28 610663              | 57 227275              | 0.43340002                      | 53 25767               | 13 680612 |
| 28.63023556.6899020.3548916352.90251213.47910528.64053856.441340.3437877552.68989113.40566928.65039156.1839230.327531952.49012913.32035928.66004455.9218350.320992552.2968313.21918628.67032155.6670430.3200659952.0937513.12519528.68000455.4466820.3265157351.92661213.02560128.69009955.2379960.3416290351.78116312.91188228.70039355.0626290.3513622751.65381112.81537628.71016854.9730190.3891497451.56931812.73282828.72023754.9508980.4331521551.53178712.66561328.73009254.9777930.4557392551.52876612.62956928.74015455.160.504849551.49768412.69577228.75009855.6167960.5612321851.446697912.97941628.76030556.2203050.5945139651.40903513.38144528.77003756.819650.636304851.34339613.78227528.78102257.8048510.7001428551.21351214.49089628.80038959.4638460.77622650.97963615.69581728.80038959.4638460.77622650.82398316.35899728.8016561.3679350.8527928850.56496717.10057728.8074861.3386480.829871650.37575617.04523328.8074861.3386480.8298716 <td>28.62098</td> <td>56.93992</td> <td>0.37625083</td> <td>53.08318</td> <td>13.567085</td>                                                                                                                                                                                              | 28.62098               | 56.93992               | 0.37625083                      | 53.08318               | 13.567085 |
| 28.640538 $56.44134$ $0.34378775$ $52.689891$ $13.405669$ 28.650391 $56.183923$ $0.3275319$ $52.490129$ $13.320359$ 28.660044 $55.921835$ $0.3209925$ $52.29683$ $13.219186$ 28.670321 $55.667043$ $0.32006599$ $52.09375$ $13.125195$ 28.680004 $55.446682$ $0.32651573$ $51.926612$ $13.025601$ 28.690099 $55.237996$ $0.34162903$ $51.781163$ $12.911882$ 28.700393 $55.062629$ $0.35136227$ $51.653811$ $12.815376$ 28.710168 $54.973019$ $0.38914974$ $51.569318$ $12.732828$ 28.720237 $54.950898$ $0.43315215$ $51.531787$ $12.665613$ 28.730092 $54.977793$ $0.45573925$ $51.528766$ $12.629592$ 28.740154 $55.616796$ $0.56123218$ $51.446979$ $12.979416$ 28.770037 $56.81965$ $0.6363048$ $51.343396$ $13.782275$ 28.781022 $57.804851$ $0.70014285$ $51.213512$ $14.490896$ 28.790165 $58.672303$ $0.73691259$ $51.109183$ $15.12509$ 28.800389 $59.463846$ $0.7766266$ $50.979636$ $15.695817$ 28.80168 $61.367935$ $0.8229288$ $50.564967$ $17.100577$ 28.80165 $61.367935$ $0.82298716$ $50.375756$ $17.045233$ 28.80748 $61.221851$ $0.81318805$ $50.300316$ $16.945825$ 28.80748 $61.221851$ $0.81318788$ $50.2345$ $16.67409$ <t< td=""><td>28.630235</td><td>56.689902</td><td>0.35489163</td><td>52.902512</td><td>13.479105</td></t<> | 28.630235              | 56.689902              | 0.35489163                      | 52.902512              | 13.479105 |
| 28.65039156.1839230.327531952.49012913.32035928.66004455.9218350.320992552.2968313.21918628.67032155.6670430.3200659952.0937513.12519528.68000455.4466820.3265157351.92661213.02560128.69009955.2379960.3416290351.78116312.91188228.70039355.0626290.3513622751.65381112.81537628.71016854.9730190.3891497451.56931812.73282828.72023754.9508980.4331521551.53178712.66561328.73009254.9777930.4557392551.52876612.62956928.74015455.160.504849551.49768412.69577228.75009855.6167960.5612321851.44697912.97941628.76030556.2203050.5945139651.40903513.38144528.77003756.819650.636304851.34339613.78227528.78102257.8048510.7001428551.21351214.49089628.79016558.6723030.776626650.97963615.69581728.80038959.4638460.776626650.97963615.69581728.8018661.3679350.8427928850.56496717.10057728.8018661.3679350.8437996350.4620617.13682728.8074861.3386480.829871650.37575617.04523328.8074861.3218510.8131880550.30031616.94582528.87030960.8628690.77438813 <td>28.640538</td> <td>56.44134</td> <td>0.34378775</td> <td>52.689891</td> <td>13.405669</td>                                                                                                                                                                                           | 28.640538              | 56.44134               | 0.34378775                      | 52.689891              | 13.405669 |
| 28.66004455.9218350.320992552.2968313.21918628.67032155.6670430.3200659952.0937513.12519528.68000455.4466820.3265157351.92661213.02560128.69009955.2379960.3416290351.78116312.91188228.70039355.0626290.3513622751.65381112.81537628.71016854.9730190.3891497451.56931812.73282828.72023754.9508980.4331521551.53178712.66561328.73009254.9777930.4557392551.52876612.62956928.74015455.160.504849551.49768412.69577228.75009855.6167960.5612321851.44697912.97941628.76030556.2203050.5945139651.40903513.38144528.77003756.819650.636304851.34339613.78227528.78102257.8048510.7001428551.21351214.4908628.79016558.6723030.7369125951.10918315.1259928.8038959.4638460.776626650.97938316.35897728.8016661.0111290.8446554550.68587516.84549428.8012661.0111290.8446554550.68587516.84549428.8074861.3386480.829871650.37575617.04523328.80048361.2218510.8131880550.30031616.94582528.87030960.8628690.7743881350.26337316.66740928.88018160.3992020.73818788 </td <td>28.650391</td> <td>56.183923</td> <td>0.3275319</td> <td>52.490129</td> <td>13.320359</td>                                                                                                                                                                                     | 28.650391              | 56.183923              | 0.3275319                       | 52.490129              | 13.320359 |
| 28.67032155.6670430.3200659952.0937513.12519528.68000455.4466820.3265157351.92661213.02560128.69009955.2379960.3416290351.78116312.91188228.70039355.0626290.3513622751.65381112.81537628.71016854.9730190.3891497451.56931812.73282828.72023754.9508980.4331521551.53178712.66561328.73009254.9777930.4557392551.52876612.62956928.74015455.160.504849551.49768412.69577228.75009855.6167960.5612321851.44697912.97941628.76030556.2203050.5945139651.40903513.38144528.77003756.819650.636304851.34339613.78227528.78102257.8048510.7001428551.21351214.49089628.79016558.6723030.7369125951.10918315.1250928.80038959.4638460.776626650.97963615.69581728.81016860.35320.8209857650.82398316.35899728.82012661.0111290.8446554550.66496717.10057728.84075961.4373530.8437996350.46202617.13682728.85074861.3386480.829871650.37575617.04523328.86048361.2218510.8131880550.30031616.94582528.87030960.8628690.7743881350.26337316.66740928.88018160.3992020.73818                                                                                                                                                                                                                                                                                       | 28.660044              | 55.921835              | 0.3209925                       | 52.29683               | 13.219186 |
| 28.68000455.4466820.3265157351.92661213.02560128.69009955.2379960.3416290351.78116312.91188228.70039355.0626290.3513622751.65381112.81537628.71016854.9730190.3891497451.56931812.73282828.72023754.9508980.4331521551.53178712.66561328.73009254.9777930.4557392551.52876612.62956928.74015455.160.504849551.49768412.69577228.75009855.6167960.5612321851.44697912.97941628.76030556.2203050.5945139651.40903513.38144528.77003756.819650.636304851.34339613.78227528.78102257.8048510.7001428551.21351214.49089628.79016558.6723030.7369125951.10918315.1250928.80038959.4638460.776626650.97963615.69581728.81016860.35320.8209857650.82398316.35899728.82012661.0111290.8446554550.68587516.84549428.83016561.3679350.8527928850.56496717.10057728.84075961.4373530.8437996350.46202617.13682728.85074861.3386480.829871650.37575617.04523328.86048361.2218510.8131880550.30031616.94582528.87030960.8628690.7743881350.26337316.66740928.88018160.3992020.7381                                                                                                                                                                                                                                                                                       | 28.670321              | 55.667043              | 0.32006599                      | 52.09375               | 13.125195 |
| 28.69009955.2379960.3416290351.78116312.91188228.70039355.0626290.3513622751.65381112.81537628.71016854.9730190.3891497451.56931812.73282828.72023754.9508980.4331521551.53178712.66561328.73009254.9777930.4557392551.52876612.62956928.74015455.160.504849551.49768412.69577228.75009855.6167960.5612321851.44697912.97941628.76030556.2203050.5945139651.40903513.38144528.77003756.819650.636304851.34339613.78227528.78102257.8048510.7001428551.21351214.49089628.79016558.6723030.7369125951.10918315.1250928.80038959.4638460.776626650.97963615.69581728.81016860.35320.8209857650.82398316.35899728.82012661.0111290.8446554550.68587516.84549428.83016561.3679350.8527928850.56496717.10057728.84075961.4373530.8437996350.46202617.13682728.85074861.2218510.8131880550.30031616.94582528.87030960.8628690.7743881350.26337316.66740928.88018160.3992020.7381878850.234516.30897128.89025160.0317540.7119185450.1974116.02980728.90006759.58440.66383611                                                                                                                                                                                                                                                                                       | 28.680004              | 55.446682              | 0.32651573                      | 51.926612              | 13.025601 |
| 28.70039355.0626290.3513622751.65381112.81537628.71016854.9730190.3891497451.56931812.73282828.72023754.9508980.4331521551.53178712.66561328.73009254.9777930.4557392551.52876612.62956928.74015455.160.504849551.49768412.69577228.75009855.6167960.5612321851.44697912.97941628.76030556.2203050.5945139651.40903513.38144528.77003756.819650.636304851.34339613.78227528.78102257.8048510.7001428551.21351214.49089628.79016558.6723030.7369125951.10918315.1250928.80038959.4638460.776626650.97963615.69581728.81016860.35320.8209857650.82398316.35899728.82012661.0111290.8446554550.68587516.84549428.83016561.3679350.8527928850.56496717.10057728.84075961.4373530.8437996350.46202617.13682728.86048361.2218510.8131880550.30031616.94582528.87030960.8628690.7743881350.26337316.66740928.88018160.3992020.7381878850.234516.30897128.90025160.0317540.7119185450.1974116.02980728.90006759.58440.6638361150.16761215.42941                                                                                                                                                                                                                                                                                                                    | 28.690099              | 55.237996              | 0.34162903                      | 51.781163              | 12.911882 |
| 28.71016854.9730190.3891497451.56931812.73282828.72023754.9508980.4331521551.53178712.66561328.73009254.9777930.4557392551.52876612.62956928.74015455.160.504849551.49768412.69577228.75009855.6167960.5612321851.44697912.97941628.76030556.2203050.5945139651.40903513.38144528.77003756.819650.636304851.34339613.78227528.78102257.8048510.7001428551.21351214.49089628.79016558.6723030.7369125951.10918315.1250928.80038959.4638460.776626650.97963615.69581728.81016860.35320.8209857650.82398316.35899728.82012661.0111290.8446554550.68587516.84549428.83016561.3679350.8527928850.56496717.10057728.84075961.4373530.8437996350.46202617.13682728.85074861.3386480.829871650.37575617.04523328.86048361.2218510.8131880550.30031616.94582528.87030960.8628690.7743881350.26337316.66740928.88018160.3992020.7381878850.234516.30897128.9005160.0317540.7119185450.1974116.02980728.90006759.58440.6638361150.1862915.70544728.90028559.077010.61726585 <td>28.700393</td> <td>55.062629</td> <td>0.35136227</td> <td>51.653811</td> <td>12.815376</td>                                                                                                                                                                                           | 28.700393              | 55.062629              | 0.35136227                      | 51.653811              | 12.815376 |
| 28.72023754.9508980.4331521551.53178712.66561328.73009254.9777930.4557392551.52876612.62956928.74015455.160.504849551.49768412.69577228.75009855.6167960.5612321851.44697912.97941628.76030556.2203050.5945139651.40903513.38144528.77003756.819650.636304851.34339613.78227528.78102257.8048510.7001428551.21351214.49089628.79016558.6723030.7369125951.10918315.1250928.80038959.4638460.776626650.97963615.69581728.81016860.35320.8209857650.82398316.35899728.82012661.0111290.8446554550.68587516.84549428.83016561.3679350.8527928850.56496717.10057728.84075961.4373530.8437996350.46202617.13682728.85074861.3386480.829871650.37575617.04523328.86048361.2218510.8131880550.30031616.94582528.87030960.8628690.7743881350.234516.30897128.89025160.0317540.7119185450.1974116.02980728.90006759.58440.6638361150.1862915.70544728.91028559.077010.6172658550.16761215.342941                                                                                                                                                                                                                                                                                                                                                                    | 28.710168              | 54.973019              | 0.38914974                      | 51.569318              | 12.732828 |
| 28.73009254.977930.4557392551.52876612.62956928.74015455.160.504849551.49768412.69577228.75009855.6167960.5612321851.44697912.97941628.76030556.2203050.5945139651.40903513.38144528.77003756.819650.636304851.34339613.78227528.78102257.8048510.7001428551.21351214.49089628.79016558.6723030.7369125951.10918315.1250928.80038959.4638460.776626650.97963615.69581728.81016860.35320.8209857650.82398316.35899728.82012661.0111290.8446554550.66587516.84549428.83016561.3679350.8527928850.56496717.10057728.84075961.4373530.8437996350.46202617.13682728.85074861.3386480.829871650.37575617.04523328.86048361.2218510.8131880550.30031616.94582528.87030960.8628690.7743881350.26337316.66740928.88018160.3992020.7381878850.234516.30897128.90006759.58440.6638361150.1862915.70544728.91028559.077010.6172658550.16761215.342941                                                                                                                                                                                                                                                                                                                                                                                                                  | 28.720237              | 54.950898              | 0.43315215                      | 51.531/8/              | 12.665613 |
| 28.74013455.1600.304849351.49708412.09377228.75009855.6167960.5612321851.44697912.97941628.76030556.2203050.5945139651.40903513.38144528.77003756.819650.636304851.34339613.78227528.78102257.8048510.7001428551.21351214.49089628.79016558.6723030.7369125951.10918315.1250928.80038959.4638460.776626650.97963615.69581728.81016860.35320.8209857650.82398316.35899728.82012661.0111290.8446554550.68587516.84549428.83016561.3679350.8527928850.56496717.10057728.84075961.4373530.8437996350.46202617.13682728.85074861.3386480.829871650.37575617.04523328.86048361.2218510.8131880550.30031616.94582528.87030960.8628690.7743881350.26337316.66740928.88018160.3992020.7381878850.234516.30897128.90006759.58440.6638361150.1862915.70544728.91028559.077010.6172658550.16761215.342941                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28.730092              | 55 16 0 50/            | 0.45575925<br>19705 51 70       | 31.328700<br>7697 12 6 | 12.029309 |
| 28.76030556.2203050.5945139651.40903513.38144528.77003756.819650.636304851.34339613.78227528.78102257.8048510.7001428551.21351214.49089628.79016558.6723030.7369125951.10918315.1250928.80038959.4638460.776626650.97963615.69581728.81016860.35320.8209857650.82398316.35899728.82012661.0111290.8446554550.68587516.84549428.83016561.3679350.8527928850.56496717.10057728.84075961.4373530.8437996350.46202617.13682728.85074861.3386480.829871650.37575617.04523328.86048361.2218510.8131880550.30031616.94582528.87030960.8628690.7743881350.26337316.66740928.88018160.3992020.7381878850.234516.30897128.90006759.58440.6638361150.1862915.70544728.91028559.077010.6172658550.16761215.342941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28 750098              | 55 616796              | 0 56123218                      | 51 446979              | 12 979416 |
| 28.77003756.819650.636304851.34339613.78227528.78102257.8048510.7001428551.21351214.49089628.79016558.6723030.7369125951.10918315.1250928.80038959.4638460.776626650.97963615.69581728.81016860.35320.8209857650.82398316.35899728.82012661.0111290.8446554550.68587516.84549428.83016561.3679350.8527928850.56496717.10057728.84075961.4373530.8437996350.46202617.13682728.85074861.3386480.829871650.37575617.04523328.86048361.2218510.8131880550.30031616.94582528.87030960.8628690.7743881350.26337316.66740928.88018160.3992020.7381878850.234516.30897128.9006759.58440.6638361150.1862915.70544728.91028559.077010.6172658550.16761215.342941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28.760305              | 56,220305              | 0.59451396                      | 51,409035              | 13.381445 |
| 28.78102257.8048510.7001428551.21351214.49089628.79016558.6723030.7369125951.10918315.1250928.80038959.4638460.776626650.97963615.69581728.81016860.35320.8209857650.82398316.35899728.82012661.0111290.8446554550.68587516.84549428.83016561.3679350.8527928850.56496717.10057728.84075961.4373530.8437996350.46202617.13682728.85074861.3386480.829871650.37575617.04523328.86048361.2218510.8131880550.30031616.94582528.87030960.8628690.7743881350.26337316.66740928.88018160.3992020.7381878850.234516.30897128.90006759.58440.6638361150.1862915.70544728.91028559.077010.6172658550.16761215.342941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28.770037              | 56.81965               | 0.6363048                       | 51.343396              | 13.782275 |
| 28.79016558.6723030.7369125951.10918315.1250928.80038959.4638460.776626650.97963615.69581728.81016860.35320.8209857650.82398316.35899728.82012661.0111290.8446554550.68587516.84549428.83016561.3679350.8527928850.56496717.10057728.84075961.4373530.8437996350.46202617.13682728.85074861.3386480.829871650.37575617.04523328.86048361.2218510.8131880550.30031616.94582528.87030960.8628690.7743881350.26337316.66740928.88018160.3992020.7381878850.234516.30897128.90006759.58440.6638361150.1862915.70544728.91028559.077010.6172658550.16761215.342941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28.781022              | 57.804851              | 0.70014285                      | 51.213512              | 14.490896 |
| 28.80038959.4638460.776626650.97963615.69581728.81016860.35320.8209857650.82398316.35899728.82012661.0111290.8446554550.68587516.84549428.83016561.3679350.8527928850.56496717.10057728.84075961.4373530.8437996350.46202617.13682728.85074861.3386480.829871650.37575617.04523328.86048361.2218510.8131880550.30031616.94582528.87030960.8628690.7743881350.26337316.66740928.88018160.3992020.7381878850.234516.30897128.90006759.58440.6638361150.1862915.70544728.91028559.077010.6172658550.16761215.342941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28.790165              | 58.672303              | 0.73691259                      | 51.109183              | 15.12509  |
| 28.81016860.35320.8209857650.82398316.35899728.82012661.0111290.8446554550.68587516.84549428.83016561.3679350.8527928850.56496717.10057728.84075961.4373530.8437996350.46202617.13682728.85074861.3386480.829871650.37575617.04523328.86048361.2218510.8131880550.30031616.94582528.87030960.8628690.7743881350.26337316.66740928.88018160.3992020.7381878850.234516.30897128.90006759.58440.6638361150.1862915.70544728.91028559.077010.6172658550.16761215.342941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28.800389              | 59.463846              | 0.7766266                       | 50.979636              | 15.695817 |
| 28.82012661.0111290.8446554550.68587516.84549428.83016561.3679350.8527928850.56496717.10057728.84075961.4373530.8437996350.46202617.13682728.85074861.3386480.829871650.37575617.04523328.86048361.2218510.8131880550.30031616.94582528.87030960.8628690.7743881350.26337316.66740928.88018160.3992020.7381878850.234516.30897128.90006759.58440.6638361150.1862915.70544728.91028559.077010.6172658550.16761215.342941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28.810168              | 60.3532                | 0.82098576                      | 50.823983              | 16.358997 |
| 28.83016561.3679350.8527928850.56496717.10057728.84075961.4373530.8437996350.46202617.13682728.85074861.3386480.829871650.37575617.04523328.86048361.2218510.8131880550.30031616.94582528.87030960.8628690.7743881350.26337316.66740928.88018160.3992020.7381878850.234516.30897128.89025160.0317540.7119185450.1974116.02980728.90006759.58440.6638361150.1862915.70544728.91028559.077010.6172658550.16761215.342941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28.820126              | 61.011129              | 0.84465545                      | 50.685875              | 16.845494 |
| 28.84075961.4373530.8437996350.46202617.13682728.85074861.3386480.829871650.37575617.04523328.86048361.2218510.8131880550.30031616.94582528.87030960.8628690.7743881350.26337316.66740928.88018160.3992020.7381878850.234516.30897128.89025160.0317540.7119185450.1974116.02980728.90006759.58440.6638361150.1862915.70544728.91028559.077010.6172658550.16761215.342941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28.830165              | 61.367935              | 0.85279288                      | 50.564967              | 17.100577 |
| 28.85074861.3386480.829871650.37575617.04523328.86048361.2218510.8131880550.30031616.94582528.87030960.8628690.7743881350.26337316.66740928.88018160.3992020.7381878850.234516.30897128.89025160.0317540.7119185450.1974116.02980728.90006759.58440.6638361150.1862915.70544728.91028559.077010.6172658550.16761215.342941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28.840759              | 61.437353              | 0.84379963                      | 50.462026              | 17.136827 |
| 28.86048361.2218510.8131880550.30031616.94582528.87030960.8628690.7743881350.26337316.66740928.88018160.3992020.7381878850.234516.30897128.89025160.0317540.7119185450.1974116.02980728.90006759.58440.6638361150.1862915.70544728.91028559.077010.6172658550.16761215.342941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28.850748              | 61.338648              | 0.8298716                       | 50.375756              | 17.045233 |
| 28.88018160.3992020.7781878850.2337316.66740928.89025160.0317540.7119185450.1974116.02980728.90006759.58440.6638361150.1862915.70544728.91028559.077010.6172658550.16761215.342941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.00U483              | 60 862860              | U. &L J L & & U J<br>0 77720012 | 50.30U316              | 16 667400 |
| 28.89025160.0317540.7119185450.1974116.02980728.90006759.58440.6638361150.1862915.70544728.91028559.077010.6172658550.16761215.342941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.0/UJUY<br>28 880181 | 00.002009<br>60 399707 | U.//430013<br>A 73818789        | JU.2033/3<br>50 2345   | 16 308071 |
| 28.90006759.58440.6638361150.1862915.70544728.91028559.077010.6172658550.16761215.342941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28.890251              | 60.031754              | 0.71191854                      | 50.19741               | 16.029807 |
| 28.910285 59.07701 0.61726585 50.167612 15.342941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28.900067              | 59.5844                | 0.66383611                      | 50.18629               | 15.705447 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28.910285              | 59.07701               | 0.61726585                      | 50.167612              | 15.342941 |

| 28.920459 | 58.681497 | 0.59027602 | 50.128819 | 15.07118  |
|-----------|-----------|------------|-----------|-----------|
| 28.930375 | 58.279931 | 0.54546758 | 50.094955 | 14.817868 |
| 28.940319 | 57.872621 | 0.50829882 | 50.040024 | 14.575854 |
| 28.950312 | 57.539554 | 0.49014048 | 49.963291 | 14.396278 |
| 28.960319 | 57.221658 | 0.46120861 | 49.873555 | 14.26759  |
| 28.970137 | 56.905445 | 0.43440915 | 49.767483 | 14.159133 |
| 28.980025 | 56.608539 | 0.42155643 | 49.645514 | 14.068432 |
| 28.990092 | 56.253431 | 0.39762554 | 49.54021  | 13.943606 |
| 29.000297 | 55.764949 | 0.37283712 | 49.446858 | 13.712757 |
| 29.010406 | 55.282972 | 0.36177057 | 49.348348 | 13.481125 |
| 29.020302 | 54.858942 | 0.34785242 | 49.25419  | 13.295598 |
| 29.030915 | 54.417006 | 0.32943518 | 49.147395 | 13.109382 |
| 29.041651 | 54.036002 | 0.32043236 | 49.022751 | 12.974106 |
| 29.050188 | 53.765622 | 0.30832948 | 48.918452 | 12.897093 |
| 29.060981 | 53.429811 | 0.28643592 | 48.773757 | 12.809921 |
| 29.070147 | 53.131508 | 0.27598966 | 48.643955 | 12.723719 |
| 29.080138 | 52.814532 | 0.26619099 | 48.505596 | 12.635737 |
| 29.090896 | 52.399404 | 0.24872752 | 48.372568 | 12.477286 |
| 29.1104   | 51.688485 | 0.2385158  | 48.108046 | 12.221926 |
| 29.130877 | 51.285528 | 0.2319167  | 47.718331 | 12.27079  |
| 29.150403 | 51.143444 | 0.23315488 | 47.247456 | 12.554226 |
| 29.170317 | 51.346552 | 0.2401828  | 46.628294 | 13.196301 |
| 29.180164 | 52.066276 | 0.25186324 | 46.241073 | 13.68936  |
| 29.200353 | 52.38328  | 0.26349046 | 45.388729 | 14.956856 |
| 29.220317 | 52.372364 | 0.27096801 | 44.550889 | 15.637479 |
| 29.230087 | 52.155387 | 0.27215715 | 44.153543 | 15.801094 |
| 29.240226 | 51.844004 | 0.27075849 | 43.749264 | 15.88672  |
| 29.250156 | 51.481178 | 0.2675015  | 43.364222 | 15.906786 |
| 29.260639 | 51.037719 | 0.26564162 | 42.967507 | 15.869414 |
| 29.270654 | 50.634814 | 0.26891377 | 42.599878 | 15.827025 |
| 29.280791 | 50.263047 | 0.27791869 | 42.24107  | 15.789817 |
| 29.290693 | 49.971739 | 0.28446492 | 41.903361 | 15.801473 |
| 29.300028 | 49.76984  | 0.30126634 | 41.585895 | 15.849647 |
| 29.310309 | 49.858759 | 0.34943657 | 41.238843 | 16.099509 |
| 29.320097 | 50.206796 | 0.39651291 | 40.943278 | 16.506033 |
| 29.330484 | 50.619181 | 0.46816159 | 40.653824 | 16.901709 |
| 29.340632 | 51.685709 | 0.63239417 | 40.40969  | 17.654875 |
| 29.35034  | 52.955527 | 0.76609373 | 40.257463 | 18.517107 |
| 29.360195 | 53.94345  | 0.87458119 | 40.152753 | 19.132286 |
| 29.370179 | 55.578232 | 1.0892691  | 40.040007 | 20.166613 |
| 29.380069 | 57.362393 | 1.2964706  | 39.981343 | 21.293846 |
| 29.390379 | 58.572234 | 1.4524436  | 39.982504 | 21.965769 |
| 29.400263 | 59.573455 | 1.6062407  | 40.000362 | 22.483578 |
| 29.410093 | 60.358768 | 1.7132084  | 40.046857 | 22.86207  |
| 29.420035 | 60.86368  | 1.7834465  | 40.116353 | 23.03605  |
| 29.430174 | 61.091198 | 1.7887307  | 40.205048 | 23.050576 |
| 29.440332 | 61.047409 | 1.7414836  | 40.30552  | 22.890965 |
| 29.450161 | 60.988916 | 1.6911124  | 40.393805 | 22.734693 |
| 29.46011  | 60.695413 | 1.5770381  | 40.498234 | 22.443785 |
| 29.47016  | 60.035358 | 1.4218492  |           | 21.898204 |
| 29.480085 | 59.491303 | 1.2967129  | 40.674231 | 21.448228 |
| 29.490001 | 58.788433 | 1.1419501  | 40.763719 | 20.911724 |

| 29.500236 57.487                     | 7609 0.96              | 843017 40               | .862276              | 19.925794 |
|--------------------------------------|------------------------|-------------------------|----------------------|-----------|
| 29.51029 56.464                      | 1609 0.85              | 336717 40               | 0.904008             | 19.156184 |
| 29.520471 55.705                     | 5276 0.74              | 983591 40               | 0.924184             | 18.617326 |
| 29.530739 54.747                     | 7306 0.64              | 706854 40               | 0.931068             | 17.937287 |
| 29.540053 53.995                     | 5804 0.59              | 100109 40               | ).899487             | 17.411618 |
| 29.550223 53.370                     | 0.54                   | 11485 40                | 0.854579             | 16.99762  |
| 29.560069 52.596                     | )945 U.48<br>)441 0.45 | 415/1 40                | J.819095             | 15 090461 |
| 29.570298 51.880                     | 241 0.43<br>2819 0.42  | 657506 40               | ) 681157             | 15 643758 |
| 29.591071 50.852                     | 2107  0.39             | 46904 40                | 0.601934             | 15.326136 |
| 29.60106 50.439                      | 9652 0.37              | 732408 40               | 0.508962             | 15.073623 |
| 29.610408 50.140                     | )199 0.36              | 608145 40               | 0.41691              | 14.90709  |
| 29.620117 49.806                     | 515 0.34               | 477507 40               | 0.324026             | 14.718807 |
| 29.630726 49.442                     | 2785 0.33              | 016396 40               | 0.213456             | 14.514263 |
| 29.640717 49.163                     | 3412 0.32              | 730459 40               | 0.102786             | 14.370345 |
| 29.650312 48.953                     | 3/L 0.33               | 254489 39               | 9.999985             | 14.2/7809 |
| 29.660446 48.814                     | 1975 U.34<br>5006 0.35 | 675905 30               | 9.899800             | 14.242572 |
| 29.670491 48.725                     | )542 0.33              | 190944 30               | 9.012392             | 14 307724 |
| 29.690009 48.908                     | 3562 0.43              | 633104 39               | 9.683118             | 14.473733 |
| 29.700333 49.121                     | .513 0.46              | 206607 39               | 9.658506             | 14.666581 |
| 29.710179 49.492                     | 2268 0.53              | 248992 39               | 9.640344             | 14.919    |
| 29.72023 50.089                      | 983 0.61               | 032159 39               | 9.660787             | 15.309832 |
| 29.730118 50.661                     | 775 0.65               | 40082 39                | 9.722994             | 15.675213 |
| 29.740152 51.200                     | 0.70                   | 619831 39               | 9.78811              | 15.998108 |
| 29.750011 51.868                     | 3966 0.75              | 961804 39               | 9.85/18              | 16.421806 |
| 29.760201 52.490<br>29.770185 52.975 | 7159 U.79<br>7091 0.82 | 3/68UL 39               | 033173               | 17 093208 |
| 29.780323 53.564                     | 1018 0.85              | 792175 40               | 110568               | 17.45982  |
| 29.790178 54.073                     | 3545 0.87              | 880026 40               | ).190487             | 17.772677 |
| 29.800427 54.452                     | 2475 0.89              | 214051 40               | 0.270563             | 17.984618 |
| 29.810243 54.836                     | 5139 0.89              | 423291 40               | .338038              | 18.212551 |
| 29.820142 55.023                     | 3741 0.88              | 319891 40               | 0.410247             | 18.288357 |
| 29.830567 55.079                     | 387 0.85               | 955505 40               | ).492925             | 18.258972 |
| 29.84038 54.800                      |                        | 888555 40               | 0.589792             | 17.968269 |
| 29.850882 54.424                     | 1997 U.76<br>2607 0.73 | 398675 40               | ).6/9384             | 17 362517 |
| 29.8000325 54.200                    | 3037 0.73<br>308 0.68  | 631458 40               | ) 813494             | 17 081854 |
| 29.880335 53.602                     | 2461 0.64              | 607155 40               | 0.866124             | 16.785682 |
| 29.890527 53.394                     | 1974 0.61              | 99474 40                | 0.900672             | 16.58134  |
| 29.900436 53.088                     | 303 0.57               | 374483 40               | ).938315             | 16.32035  |
| 29.910639 52.722                     | 2278 0.53              | 469014 40               | ).95669              | 16.022751 |
| 29.920399 52.460                     | 0.51                   | 498023 40               | 0.953209             | 15.81154  |
| 29.930159 52.219                     | 049 0.48               | 140544 40               | ).93808              | 15.64232  |
| 29.940496 51.943                     | 3368 0.45              | 014822 40               | ).903421             | 15.458696 |
| 29.950247 51.715<br>29.960223 51.440 | )874 0.43              | 987107 40               | ) 811574             | 15 140345 |
| 29.97028 51.072                      | 2689 0.38              | 552391 40               | 0.764683             | 14.898043 |
| 29.980145 50.741                     | .516 0.37              | 497122 40               | 0.707043             | 14.683547 |
| 29.990039 50.418                     | 3291 0.35              | 373032 40               | 0.655633             | 14.487302 |
| 30.000284 50.028                     | 3002 0.33              | 096712 40               | 0.595941             | 14.248044 |
| 30.010362 49.690                     | 0.32                   | 1145 40                 | ).5227               | 14.051202 |
| 30.020206 49.412                     | 2917 0.30              | 830143 40               | ).444204             | 13.913103 |
| 30.030225 49.161                     | 1385 U.29<br>1535 0.29 | 42163/ 4(<br>818502 / C | J.346435<br>) 231550 | 13.811281 |
| 30.050071 <u>48.96</u>               | 333 0.20<br>3174 0.28  | 455096 40               | ) 104735             | 13 762496 |
| 30.060119 48.834                     | 1813 0.28              | 030207 39               | 9.930954             | 13.90916  |
| 30.070035 48.965                     | 5567 0.27              | 924842 39               | 9.733589             | 14.164211 |

| 30.080182     30.090355     30.100141     30.120378     30.130901     30.140034     30.150503     30.160182     30.170657     30.190689     30.200326     30.210692     30.220139     30.230054     30.240468     30.250104     30.260582     30.270635     30.280802     30.290526     30.300469     30.31012     30.300469     30.31012     30.3256     30.340043     30.350172     30.360312     30.370119     30.380213     30.390064     30.420033     30.420033     30.420033     30.420033     30.420033     30.420033     30.420033     30.420033     30.420033     30.420033     30.420033     30.420033     30.420033     30.510268     30.52058 | 49.070788     49.263077     49.37871     49.352954     49.085347     48.676491     48.330161     47.47583     47.062999     46.672978     45.946684     45.626678     45.330209     45.026147     44.705978     44.381974     44.043119     43.766411     43.55711     43.365455     43.319066     43.365455     43.365455     43.365455     43.365455     43.365455     43.365455     43.365455     43.365455     43.365455     43.365455     43.365455     43.365455     43.365455     50.806413     52.209666     53.399035     54.122845     54.633781     54.633781     54.633781     54.633781     54.633781     54.633781     54.633781     54.633781 | 0.27766467<br>0.27172174<br>0.26662407<br>0.26059506<br>0.24389445<br>0.23309538<br>0.22845137<br>0.2151671<br>0.20725559<br>0.2038302<br>0.19485291<br>0.18751506<br>0.18512531<br>0.17472362<br>0.16724658<br>0.16479876<br>0.16162471<br>0.15993883<br>0.1597353<br>0.16461926<br>0.17378355<br>0.17904427<br>0.19348427<br>0.22599273<br>0.25598235<br>0.30241812<br>0.40830493<br>0.49518289<br>0.56685518<br>0.73549374<br>0.89779595<br>1.0004805<br>1.1288526<br>1.2227826<br>1.2728209<br>1.2874942<br>1.2691546<br>1.2259546<br>1.227826<br>1.2728209<br>1.2874942<br>1.2691546<br>1.245369<br>1.1794801<br>1.0915491<br>1.023331<br>0.93293155<br>0.82923704<br>0.75937967<br>0.68415618<br>0.60585517<br>0.55199903<br>0.50921665<br>0.45655145 | 39.520143<br>39.268935<br>39.020092<br>38.768896<br>38.526715<br>38.273334<br>38.052388<br>37.805983<br>37.576937<br>37.329006<br>37.110136<br>36.866167<br>36.637443<br>36.392017<br>36.16426<br>35.923355<br>35.67978<br>35.462764<br>35.231864<br>35.015013<br>34.805741<br>34.617231<br>34.617231<br>34.617231<br>34.617231<br>34.805741<br>34.617231<br>34.617231<br>34.617231<br>34.056008<br>34.035392<br>34.101674<br>34.206701<br>34.206701<br>34.206701<br>34.309626<br>34.474467<br>34.206701<br>34.309626<br>34.474467<br>34.69222<br>34.101674<br>34.206701<br>35.208482<br>35.488602<br>35.488619<br>36.488619<br>36.488619<br>36.488619<br>36.488619<br>36.488619<br>37.554768<br>37.554768<br>37.554768<br>37.554768<br>37.554768<br>37.554768<br>37.554768<br>37.554768<br>37.554768<br>37.554768<br>37.554768<br>37.554768<br>37.554768<br>37.554768<br>37.212738 | 14.409606<br>14.746972<br>15.020478<br>15.187529<br>15.166135<br>15.037712<br>14.932283<br>14.784153<br>14.630726<br>14.496362<br>14.363562<br>14.231978<br>14.148655<br>14.071659<br>13.99243<br>13.913302<br>13.828522<br>13.726688<br>13.624191<br>13.556457<br>13.529507<br>13.539386<br>13.568394<br>13.657428<br>13.800299<br>13.940305<br>14.193623<br>14.562379<br>14.911563<br>15.671398<br>16.838205<br>17.698808<br>18.427507<br>18.987942<br>19.232104<br>19.239043<br>19.014669<br>18.76411<br>18.377602<br>17.779643<br>17.270201<br>16.828503<br>16.238289<br>15.722893<br>15.303848<br>14.81802<br>14.319566<br>13.963105<br>13.552169<br>13.202869 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30.520558                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 51.699802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.68415618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 38.792917                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.303848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 30.530008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 51.180117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.60585517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 39.040567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.81802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 30.540691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.65345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.55199903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 39.278161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.319566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 30.550449<br>30.560484<br>30.57008<br>30.580422<br>30.590436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50.282636<br>49.834057<br>49.459065<br>49.159779<br>48.862955<br>48.616422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.50921665<br>0.45655145<br>0.42772444<br>0.40606198<br>0.37624202<br>0.35983657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 39.479933<br>39.68198<br>39.848966<br>40.015617<br>40.176327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.963105<br>13.552169<br>13.202869<br>12.913849<br>12.632307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 30.610542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48.434891                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.35130772                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40.451064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.03365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 30.620642                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48.311066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.33874204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40.569072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.067825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 30.630133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48.242738                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.33152827                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40.665321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.982281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 30.6406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 48.21 0.330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 038867 40.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0816 11.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 30.650093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48.26133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.33526224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40.825503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.934535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| 30.660298              | 48.411601  | 0.34573804   | 40.880738 | 12.023796 |
|------------------------|------------|--------------|-----------|-----------|
| 30.670371              | 48.588687  | 0.35279526   | 40.936561 | 12.133696 |
| 30.680041              | 48.851494  | 0.3/520256   | 40.972003 | 12.303377 |
| 30.690205              | 49.201625  | 0.39964057   | 41.022119 | 12.525543 |
| 30.700412              | 49.520957  | 0.41269704   | 41.091112 | 12./1660/ |
| 30.710025              | 49.825508  | 0.45033705   | 41.1//204 | 12.85237  |
| 30.720138              | 50.153694  | 0.49297718   | 41.306583 | 12.965434 |
| 30.730189              | 50.459116  | 0.51522046   | 41.464502 | 13.0539/1 |
| 30.740092              | 50.830958  | 0.54414/11   | 41.613122 | 13.162604 |
| 30.750133              | 51.346954  | 0.5/155//6   | 41./645/5 | 13.359403 |
| 30.760109              | 51.894036  | 0.58522024   | 41.918648 | 13.580098 |
| 30.770583              | 52.506884  | 0.61241283   | 42.053356 | L3.835356 |
| 30.700223              | 53.290440  | 0.63217736   | 42.141134 | 14.209100 |
| 30.790239              | 54.228139  | 0.00390304   | 42.23062  | 15 204714 |
| 30.000010              | 56.011007  | 0.71902086   | 42.30772  | 15 01/16  |
| 30.010340<br>20.020102 | 56 020765  | 0.70019001   | 42.347990 | 15.91410  |
| 20.020103              | 57 200022  | 0.70327311   | 42.390/90 | 16 916274 |
| 20.030400              | 57 000424  | 0.79434360   | 42.4J172  | 17 002051 |
| 30.850368              | 58 078927  | 0.79070037   | 42.492400 | 17 268359 |
| 30 860528              | 58 235443  | 0.79331010   | 42.520055 | 17 367761 |
| 30.870883              | 58 20821/  | 0.75389351   | 42.504750 | 17 3/0016 |
| 30.070003              | 59 096/1   | 0.72655263   | 42.599009 | 17.349910 |
| 30.890023              | 57 96817/  | 0.72055205   | 42.02100  | 17 101/21 |
| 30 900123              | 57 197115  | 0.6461431    | 42.030300 | 16 853971 |
| 30 910346              | 56 756937  | 0.0401451    | 42.091310 | 16 301577 |
| 30.910340              | 56 170992  | 0.59011005   | 42.730171 | 15 967011 |
| 30.920005              | 55 11162   | 0.50684786   | 42.79945  | 15 321    |
| 30 9/0297              | 51 662069  | 0.16313825   | 42.000442 | 1/ 727089 |
| 30 950185              | 54.002009  | 0.40313023   | 42.970097 | 14.727009 |
| 30.950105              | 53 / 92169 | 0.4420337    | 43.040001 | 13 8307// |
| 30 970152              | 52 956605  | 0.40720473   | 43 22285  | 13 429441 |
| 30 980194              | 52.520005  | 0.36483152   | 43.292149 | 13 098023 |
| 30 990038              | 52.522402  | 0 34806858   | 43 348288 | 12 864127 |
| 31 51 90               | )564 0.33F | 517487 43 39 | 319 12 6  | 71583     |
| U                      |            |              |           |           |

**ANNEXE 14** 

## CERTIFICATE

This is to certify that

## ZAIRI Souad

has completed the MIKE Powered by DHI training course

## INTRODUCTION TO WEST

using the following software applications:

WEST

Course dates: 06/05/2020-04/06/2020

Course location: Online

Hørsholm, 25/06/2020

Bly Colord

Fabio Polesel, Trainer

The expert in WATER ENVIRONMENTS

Enrico Ulisse Remigi, Trainer

uchat

Faculté des Sciences et Techniques 123 Avenue Albert Thomas 87060 LIMOGES CEDEX Tél. 05 55 45 72 00 Fax. 05 55 45 00 01



GRESE Groupement de Recherche Eau Sol Environnement

Limoges, le 25 Mai 2016

Michel BAUDU GRESE Groupement de Recherche Eau Sol Environnement (EA 4330)

Tél. 05 55 45 72 04 Fax 05 55 45 72 03 Courriel : michel.baudu@unilim.fr Site internet : www.unilim.fr/grese

Véronique Deluchat GRESE Groupement de Recherche Eau Sol Environnement (EA 4330)

Tél. 05 55 45 74 68 Fax 05 55 45 72 03 Courriel : ... veronique.deluchat@unilim.fr Site internet : www.unilim.fr/grese

## **OBJET : Attestation**

Nous, soussignés, Professeur Michel BAUDU, Directeur du Groupement de Recherche Eau Sol Environnement EA4330 de l'Université de Limoges et Véronique Deluchat, Professeur au sein du Groupement de Recherche Eau Sol Environnement EA4330 de l'Université de Limoges,

Attestent, avoir accueilli dans le laboratoire Mme Souad ZAIRI, Maitre Asistante à l'Université de l'Université Dr MOULAY Tahar Saida en Algérie au cours de la période du 16 au 26 mai. Au cours de ce séjour Mme Souad ZAIRI a pu faire le point sur des outils de modélisation du fonctionnement de station d'épuration biologique. Ces échanges lui ont permis d'identifier les travaux à mener afin de disposer de toutes les données expérimentales nécessaires pour tester puis optimiser les modèles.

Fait pour servir et valoir ce que de droit.

| UNIVERSITE DE LIMOGES<br>FACULTÉ DES SCIENCES et TECHNIQUES<br>GRESE                                         | A Le          |
|--------------------------------------------------------------------------------------------------------------|---------------|
| 123, avenue Albert Thomas<br>87060 LIMOGES CEDEX<br>Tél. 05 55 45 73 67 - Fax 05 55 45 72 03<br>Michel BAUDU | Véronique Del |
| pirecteur du GRESE – EA4330                                                                                  |               |
| ·                                                                                                            |               |