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Abstract

This thesis focuses on the optimization of constrained problems using bio-inspired al-
gorithms, a growing field in artificial intelligence and computational optimization. Con-
strained optimization problems (COPs) are pervasive in real-world applications, requiring
innovative methods to efficiently handle the inherent complexities. The main objective of
this research is to develop and evaluate nature-inspired techniques, particularly focusing
on Differential Evolution (DE) to solve various single objective constrained optimization
problems. Also our research explore the application of the grey wolf optimizer bio-inspired
algorithm in solving the Traveling Salesman Problem.

This study begins by addressing the key challenges in COPs, focusing on handling
constraint violation and maintaining feasibility within complex search spaces. To address
these challenges, a novel adaptive coordinate system based on constrained differential
evolution is proposed, where the DE is adaptively performed in either an Eigen coor-
dinate system or original coordinate system. This flexibility enables the algorithm to
dynamically direct the search, enhancing its ability to explore and exploit promising fea-
sible regions, resulting in improved convergence rates and solution quality. Additionally,
an enhanced Greedy Discrete Grey Wolf Optimizer (GD-GWO) is developed for discrete
optimization, demonstrating superior performance against multiple benchmark instances
of the Traveling Salesman Problem (TSP).

The experimental results highlight the effectiveness of these bio-inspired algorithms
in balancing exploration and exploitation, showing competitive performance compared
to state-of-the-art techniques. The findings suggest that the proposed methods not only
provide promising results for constrained optimization but also offer a foundation for
solving more complex, real-world problems. Future work will investigate broader appli-
cations, multi-objective optimization, and further enhancements of these algorithms for
better scalability and adaptability in diverse problem domains.

keywords : Constrained optimization problems, Bio-inspired algorithms, Differential
evolution, Eigen coordinate system, Constraint-handling techniques, GWO, TSP.
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Résumé

Cette thèse porte sur l’optimisation des problèmes sous-contraints en utilisant des al-
gorithmes bio-inspirés, un domaine en pleine croissance dans l’intelligence artificielle et
l’optimisation computationnelle. Les problèmes d’optimisation sous contraintes (COPs)
sont omniprésents dans les applications réelles, nécessitant des méthodes innovantes pour
gérer efficacement les complexités inhérentes. L’objectif principal de cette recherche est de
développer et d’évaluer des techniques inspirées de la nature, en mettant particulièrement
l’accent sur l’évolution différentielle (DE) pour résoudre divers problèmes d’optimisation
sous contrainte mono-objectif. De plus, notre recherche explore l’application de l’algorithme
bio-inspiré du Grey Wolf Optimizer (GWO) pour résoudre le problème du voyageur de
commerce (TSP).

L’étude commence par explorer les défis liés aux COPs, notamment la gestion des vio-
lations des contraintes et le maintien de la faisabilité au sein des espaces de recherche. Un
nouveau système de coordonnées adaptative basé sur l’algorithme d’évolution différentielle
sous contraintes est introduit, où l’algorithme est effectué de manière adaptative dans un
système de coordonnées propres ”Eigen”, ou dans le système de coordonnées d’origine.
Cette flexibilité permet à l’algorithme de diriger dynamiquement la recherche, améliorant
ainsi sa capacité à explorer et exploiter des régions faisables prometteuses. En outre, la
thèse propose une version améliorée du GWO algorithm adaptée à l’optimisation discrète,
qui démontre une performance supérieure lors des tests sur le problème de TSP.

Les résultats expérimentaux mettent en évidence l’efficacité de ces algorithmes bio-
inspirés dans l’équilibre entre exploration et exploitation, montrant des performances
compétitives par rapport à d’autres techniques. Les résultats montrent que les méthodes
proposées offrent non seulement des résultats prometteurs pour l’optimisation sous con-
traintes, mais fournissent également une base pour résoudre des problèmes réels plus
complexes. Les travaux futurs examineront des applications plus larges, l’optimisation
multi-objectifs, ainsi que des améliorations supplémentaires de ces algorithmes pour une
meilleure évolutivité et adaptabilité dans divers domaines problématiques.

Mots-clés : Problèmes d’optimisation sous contraintes, Algorithmes bio-inspirés,
Évolution différentielle, Système de coordonnées propres, Techniques de gestion des con-
traintes, GWO, TSP.
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ڲڪٌۘ

؇ل و۱ި اܳޚٴ٭أ۰، ݆݁ ݁ފٺ༡ި؇ة ۊިارز݁٭؇ت ً؇ݿٺ༱ڎام اৎگ٭ڎة اৎލఈ႙ၽت ඔ൹ފොູ আॻ༟ ۰༡ޗݠوا ۱ڍه ߵணߙ
ّޚٴ٭گ؇ت ݆݁ اܳأڎࢴࣖ ሒᇭ اৎگ٭ڎة ඔ൹اܳٺۜފ ݁ލఈ႙ၽت དྷྥಾ .ሒᇀ؇ފاࠍ ඔ൹واܳٺۜފ ሒᇼ؇ݬޚٷا اႤ၍ᄳᄟء ሒᇭ اࡺࢦި ངلؕ
۱ڍا ݆݁ ཏཬීෂا اୖڎف റണ೭ټܭ ًڰأ؇ܳ٭۰. ᄭᄥٺ؊ݬৎا اܳٺأگ٭ڎات دارة ݁ٴٺଲ୍ة أݿ؇ܳ٭ص ਐಱޚܹص ؇ᆙᆘ ،௧ਤاܳިاڢ ቕረ؇اܳأ
(DE) ঌॻاܳٺڰ؇ݪ اܳٺޚިر আॻ༟ ༠؇ص ႟ၽ૰ ଃ܋ଫଐܳا ؕ݁ اܳޚٴ٭أ۰، ݆݁ ݁ފٺ༡ި؇ة ّگٷ٭؇ت وّگ٭ࡗࡲ ّޚިߌߵ ሒᇭ اܳٴۜت
اෂී݁؇دي ೞಮᄳᄟا ොފّ݆ ۊިارز݁٭۰ ّޚٴ٭ݑ ألݯً؇ ොຳټٷ؇ ૭ٺܝލژ პაႰ اৎگ٭ڎة. ඔ൹اܳٺۜފ ݁ލఈ႙ၽت ෛٺܹژ ࠍܭ
اܳٺ༲ڎل؇ت ً؇ݿٺܝލ؇ف اᄴᄟراݿ۰ ਊಾڎأ (TSP). اৎٺ۠ިل اܳٴ؇فؕ ᄭႍၽ݁ލ ༡ܭ ሒᇭ اܳޚٴ٭أ۰ ݆݁ اৎފٺ༡ި؇ة (GWO)
༡ߺࠊل إຬ؇د আॻ༟ واࠍڰ؇ظ اܳگ٭ިد اႤ၍؇ዛውᚶت ؕ݁ اܳٺأ؇݁ܭ ܋٭ڰ٭۰ ዻዧذ ሒᇭ ؇ஓ اৎگ٭ڎة، ඔ൹اܳٺۜފ ஓލఈ႙ၽت اৎݠਊಾޚ۰
إරජاء لࡤࡲ ۋ٭ت اৎگ٭ڎة، DE ࠍިارز݁٭۰ ༥ڎࢴࣖ ّܝ٭ࠕࠫ إ༡ڎاਃು؇ت َޙ؇م ቕሹّگڎ لࡤࡲ اܳٴۜت. ڣݯ؇ءات ሒᇭ ይዧٺٷڰ٭ڍ ᄭᄥً؇ڢ
ይዧٺޚٴ٭ݑ. ᄭᄥً؇اܳگ اৎٷ؇ޗݑ واݿٺ؞ఈఃل اݿٺܝލ؇ف আॻ༟ اࠍިارز݁٭۰ ڢڎرة لأݞز ؇ᆙᆘ Eigen، إ༡ڎاਃು؇ت َޙ؇م ሒᇭ اܳٺگ؇ޗؕ
أޖ۳ݠت มฆܳوا اৎٷڰݱܭ، ඔ൹ٺۜފይዧ ا௰௯௫ݱݱ۰ GD-GWO ࠍިارز݁٭۰ ොູފٷً؇ ۰༡ޗݠوا ّگଫଐح ،ዻዧذ ሌᇿإ ً؇ݪ؇ڣ۰
ڣأ؇ܳ٭۰ আॻ༟ اܳݯިء اܳٺ۠ݠྟ٭۰ ༇؇اܳٷٺ ૭ܹޔ اৎٺ۠ިل. اܳٴ؇فؕ ᄭႍၽ݁ލ ݆݁ ڢ٭؇ݿ٭۰ ٭ٷ؇ت আॻ༟ اۊٺٴ؇ر۱؇ ٷڎ ݁ٺڰިڢً؇ ً أداء
ಾ؇ڣފ٭ً؇ ً أداء لޙ۳ݠ ؇ᆙᆘ واݿٺ؞ఈఃل، اݿٺܝލ؇ف ඔ൹ً اܳٺިازن ොູگ٭ݑ ሒᇭ اܳޚٴ٭أ۰ ݆݁ اৎފٺ༡ި؇ة اࠍިارز݁٭؇ت ۱ڍه
اৎލఈ႙ၽت ඔ൹ܳٺۜފ ڣگޔ وا༟ڎة ༇؇ਐ ّިڣݠ  ۰༡ଫଐگৎا اݿ؇ܳ٭ص أن ሌᇿإ ༇؇اܳٷٺ ଫଃ૰ اܳٺگٷ٭؇ت. ً؊༡ڎث ݁گ؇ر۰َ
اৎފٺگٴܹ٭۰ اොຳ؇ث ݿྥٺٷ؇ول .௧ਤاܳިاڢ ቕረ؇اܳأ ሒᇭ ّأگ٭ڎاً ଫأ܋ ݁ލఈ႙ၽت ࠍܭ أݿ؇ݿً؇ ألݯً؇ ّިڣݠ ؇ዛዊوܳـܝ اৎگ٭ڎة،
ؕ݁ واܳٺܝ٭ژ ይዧٺިݿؕ ؇ዛውڢ؇ًܹ٭ ඔ൹ܳٺۜފ اࠍިارز݁٭؇ت ۱ڍه وّأݞߌ߳ ا۱ڎاف، ݁ٺأڎدة وොູފٷ؇ت أوݿؕ، ّޚٴ٭گ؇ت

.۰༟ި݁ٺٷ ݁ލఈ႙ၽت ؇ت

َޙ؇م ،ঌॻاܳٺڰ؇ݪ اܳٺޚިر اۋ٭؇ء، ݆݁ اৎފٺ༡ި؇ة اࠍިارز݁٭؇ت اৎگ٭ڎة، ඔ൹اܳٺۜފ ႟၍؇݁ލ ا༉ໝൄളۻמ١: اڤոஈت
TSP. GWO، اܳگ٭ިد، ؕ݁ اܳٺأ؇݁ܭ ّگٷ٭؇ت ،݆ຬإ إ༡ڎاਃು؇ت
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General Introduction

Context and Motivation

Optimization plays a crucial role in a variety of fields such as engineering, finance, lo-
gistics, and artificial intelligence. Many real-world problems require finding the best
solutions while adhering to certain restrictions, known as constraints. This is critical
for decision-making processes, whether it’s minimizing the cost of constructing a bridge
while ensuring its safety or managing a company’s resources within budget limitations.
These are examples of constrained optimization problems (COPs), which occur when so-
lutions must meet specific conditions or limits. Constraints can range from simple, such
as staying within a budget, to complex, such as meeting safety regulations while keeping
a product affordable. In practice, COPs are encountered in many industries, making
it essential to find efficient methods to solve them. However, traditional optimization
methods often struggle with complex constraints, especially when they are non-linear or
dynamic. As a result, finding reliable and accurate solutions in such situations is chal-
lenging. This has led to a growing interest in alternative approaches like bio-inspired
algorithms, which mimic natural processes like evolution and collective animal behavior.
These algorithms offer flexibility and adaptability in searching for solutions, particularly
in large and complex solution spaces, making them highly effective for constrained op-
timization problems. However, despite the progress in bio-inspired algorithms, many
existing methods still face challenges in balancing the optimization of the objective func-
tion while respecting all constraints. This gap in performance, particularly in real-world
applications, serves as the main motivation for the research presented in this thesis.

Objectives

To address the aforementioned challenges, this thesis proposes several techniques based
on bio-inspired algorithms that aim to provide optimal solutions or high-quality approx-
imations for constrained optimization problems. The primary objectives of the research
are:
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• Develop adaptive bio-inspired algorithms that efficiently solve constrained opti-
mization problems, ensuring solutions respect the constraints while optimizing the
objective function.

• Apply bio-inspired algorithms to complex real-world problems to demonstrate their
effectiveness in handling discrete, nonlinear, and dynamic constraints.

Contributions

This thesis has led to two major contributions, with the first being of particular impor-
tance:

The first contribution introduces a novel adaptive differential evolution algorithm
specifically designed to tackle constrained optimization problems. The algorithm lever-
ages an adaptive coordinate system to improve the search process and effectively navigate
complex solution spaces. It was rigorously evaluated on standard constrained optimiza-
tion benchmarks and demonstrated superior performance, not only in terms of finding
optimal or near-optimal solutions but also in reducing constraint violations. This innova-
tive approach addresses a key gap in the field by offering a flexible and efficient solution
for handling difficult constraints. The significance of this work was recognized through
its publication in a Q1-ranked journal, highlighting its impact and contribution to the
advancement of constrained optimization techniques.

The second contribution focuses on applying bio-inspired algorithms to real-world
constrained optimization problems, specifically the TSP. We developed the Greedy Dis-
crete Grey Wolf Optimizer (GD-GWO), an enhanced version of the Grey Wolf Optimizer,
tailored for discrete optimization. This algorithm demonstrated competitive performance
on several TSP instances and has the potential for broader applications in other rout-
ing problems. A part of this work has been presented at an international conference,
reflecting its relevance and effectiveness in addressing practical optimization challenges.

Thesis Plan

This thesis is structured as follows:
Chapter I introduces the fundamental concepts of optimization, with a focus on con-

strained optimization problems (COPs). It covers the classification of optimization prob-
lems, types of constraints, challenges in solving COPs, and the motivation for using
bio-inspired algorithms. The chapter sets the stage for the structure and contributions
of the thesis.

Chapter II reviews bio-inspired algorithms and their application to optimization. It
provides an overview of key algorithms like genetic algorithms, differential evolution, and
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grey wolf optimizer, highlighting their effectiveness in handling constraints. The chapter
also discusses common constraint-handling techniques in bio-inspired algorithms.

Chapter III details the methodology behind the proposed improvements to Differential
Evolution for constrained optimization. It explains the modifications, such as the adap-
tive coordinate system, and evaluates the improved DE’s performance against benchmark
problems, along with a comparative analysis of other methods.

Chapter IV explores the application of the Grey Wolf Optimizer to the Traveling
Salesman Problem. It describes how the algorithm is adapted for discrete optimization
and introduces the greedy discrete grey wolf optimizer (GD-GWO). The chapter presents
the results of its application on TSP benchmarks and compares its performance with
other algorithms.

Finally, General conclusion is presented, summarizing the key findings and contri-
butions of the thesis. It also discusses the practical implications and potential future
research directions, including extending the proposed methods to other complex opti-
mization problems.

15



Chapter I

Optimization: Theory and Practice



Chapter I
Optimization: Theory and Practice

I.1 Introduction

This chapter provides a comprehensive overview of the fundamental concepts and chal-
lenges associated with optimization, particularly in the context of constrained problems.
The primary goal is to establish a strong theoretical foundation that will support the
subsequent discussions on the methodologies and approaches employed in this thesis. By
defining key terms, categorizing optimization problems, and exploring the general ba-
sics of an optimization process, this chapter lays the groundwork for understanding the
complexities involved in constrained optimization and the need for innovative solutions.
This background is crucial for appreciating the relevance and application of bio-inspired
algorithms that will be discussed in the next chapter.

I.2 Overview of Optimization

Optimization is a fundamental process used across various fields to identify the most
efficient, effective, or optimal solution from a set of possible alternatives. At its core,
(Fig.I.1) optimization seeks to improve performance, reduce costs, or enhance outcomes
based on specific criteria, making it invaluable in areas ranging from engineering design
and resource allocation to machine learning and finance (Sioshansi et al, 2017). The op-
timization process revolves around finding the best solution by adjusting variables within
a system to achieve a desired objective, all while adhering to any imposed limitations or
constraints (Diwekar, 2020).
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Figure I.1: Optimization Application

I.2.1 Fundamental Components of Optimization

To understand how optimization functions in practice, it’s essential to break it down into
its fundamental components. These include the objective function, decision variables,
and constraints, all of which form the backbone of any optimization process Andréasson
et al (2020).

1. Objective Function

The objective function is the mathematical expression that needs to be optimized (mini-
mized or maximized). It quantifies the performance or efficiency of a system or process.
The choice of the objective function is critical, as it determines the criteria for evaluating
different solutions (Rao, 2019).

2. Decision Variables

These are the variables that can be adjusted or controlled to optimize the objective func-
tion. The values of decision variables determine the specific solution to the problem. The
dimensionality and nature (continuous or discrete) of the decision variables significantly
influence the complexity of the optimization problem Diwekar (2020).

3. Constraints

Constraints are conditions or limitations that the solutions must satisfy. They can be
in the form of equalities or inequalities. Constraints play a vital role in optimization
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problems as they define the feasible region within which the optimal solution must lie
Diwekar (2020).

I.2.2 Local and Global Optimum

Optimization problems often require the identification of the best solution from a set of
feasible solutions. These solutions can be categorized as either local or global optimum
(Boyd and Vandenberghe, 2004). Understanding the distinction between local and global
optima is crucial in optimization theory, as it directly impacts the effectiveness of opti-
mization algorithms in finding the best possible solution. Below is a detailed discussion of
local and global optima, along with their mathematical formulations and representative
figure Fig.I.2.

1. Global Optimum

A global optimum refers to the absolute best solution in the entire feasible region of an
optimization problem. In other words, it is the point at which the objective function
reaches its minimum or maximum value, depending on whether the problem is a mini-
mization or maximization task. The global optimum can be represented mathematically
as follows:

For a minimization problem, the global optimum x∗ is defined as:

x∗ = argmin f(x), for all x ∈ S (I.1)

where S is the feasible solution space, and f(x) is the objective function.
For a maximization problem, the global optimum x∗ is defined as:

x∗ = argmax f(x), for all x ∈ S (I.2)

2. Local Optimum

A local optimum, on the other hand, refers to the best solution within a smaller region of
the feasible space (Boyd and Vandenberghe, 2004). It may not be the absolute best solu-
tion (global optimum), but it represents the optimal solution in a specific neighborhood
around a point. A local optimum can be mathematically defined as follows:

For a minimization problem, a local optimum satisfies the following condition:

f(x∗) ≤ f(x), for all x in a neighborhood of x∗ (I.3)

Similarly, for a maximization problem, a local optimum x∗ satisfies the condition:

f(x∗) ≥ f(x), for all x in a neighborhood of x∗ (I.4)
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Figure I.2: local and global optimum (mathworks.com)

It is important to note that while every global optimum is also a local optimum, the
reverse is not necessarily true. In many optimization problems, particularly non-convex
ones (Fig.I.3), there may be multiple local optima, and optimization algorithms must be
designed to avoid getting trapped in these sub-optimal solutions.

Figure I.3: 3D convex and non-convex function illustration

I.2.3 Linear and Non-Linear Optimization

Linear and non-linear optimization are two fundamental categories of optimization prob-
lems that differ based on the relationships between the decision variables (Fletcher, 2013).

1. Linear Optimization

Linear optimization, also known as linear programming, involves problems where the
objective function and constraints are linear (Fletcher, 2013). This means that all rela-
tionships in the model can be expressed as linear equations or inequalities. The general
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form of a linear optimization problem can be stated as follows:

maximize or minimize z = cTx (I.5)

subject to
Ax ≤ b (I.6)

x ≥ 0 (I.7)

where:

• z is the objective function to be maximized or minimized,

• c is a vector of coefficients,

• x is a vector of decision variables,

• A is a matrix of coefficients representing the constraints,

• b is a vector representing the right-hand side of the constraints.

Linear optimization is widely used in various fields, including finance, logistics, and
manufacturing, due to its efficiency and the availability of well-established solution meth-
ods such as the Simplex algorithm.

2. Non-Linear Optimization

Non-linear optimization involves problems where the objective function or at least one of
the constraints is non-linear (Fletcher, 2013). Non-linear problems can be more complex
and challenging to solve compared to linear problems due to the potential for multiple
local optima and the need for specialized algorithms. The general form of a non-linear
optimization problem can be expressed as follows:

maximize or minimize z = f(x) (I.8)

subject to
gi(x) ≤ 0, i = 1, . . . ,m (I.9)

hj(x) = 0, j = 1, . . . , p (I.10)

where:

• f(x) is the non-linear objective function,

• gi(x) are the non-linear inequality constraints,

• hj(x) are the non-linear equality constraints.
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Non-linear optimization problems arise in many applications, such as engineering
design, economics, and machine learning. Due to their complexity, various methods,
including gradient-based approaches, evolutionary algorithms, and heuristic methods,
are often employed to find solutions.

I.2.4 Continuous and Discrete Optimization

Continuous and discrete optimization are two fundamental types of optimization problems
distinguished by the nature of the decision variables (Andréasson et al, 2020).

1. Continuous Optimization

Continuous optimization refers to optimization problems in which the decision variables
can take any value within a specified range. This type of optimization is typically char-
acterized by continuous functions, meaning that small changes in the decision variables
result in small changes in the objective function (Andréasson et al, 2020).

2. Discrete Optimization

Discrete optimization, on the other hand, involves problems where the decision variables
can only take specific discrete values, such as integers or binary values. This type of
optimization often arises in combinatorial problems where the solution involves selecting
from a finite set of options (Rajeev and Krishnamoorthy, 1992).

I.3 Combinatorial Optimization

Combinatorial optimization is a specialized area within the broader field of optimization,
intersecting with operations research, algorithm theory, and computational complexity
theory (Papadimitriou and Yannakakis, 1991). It is dedicated to discovering the optimal
grouping, ordering, or arrangement of discrete elements using mathematical approaches.
The primary objective in combinatorial optimization is to identify the best possible solu-
tion from a finite set of feasible solutions. These solutions are inherently discrete or can
be transformed into discrete forms. The optimal solution in such problems is typically
represented by an integer, a subset, a permutation, or a graph structure. Combinatorial
optimization finds widespread application in various engineering domains, where prob-
lems such as routing, task allocation, and scheduling are often modeled as combinatorial
optimization problems. These problems are then solved using a range of methods that fall
into two distinct categories: exact methods (Nemhauser and Wolsey, 1988) and stochastic
methods (Talbi, 2009). Exact methods are deterministic, providing a guarantee of finding
the optimal solution, but they can be computationally expensive, especially for large-scale
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problems. On the other hand, stochastic methods, while not guaranteeing an exact opti-
mal solution, they offer a more practical approach by providing high-quality approximate
solutions within reasonable computational limits. These methods are particularly useful
in scenarios where exact methods are infeasible due to the problem’s complexity or size.

I.4 Unconstrained Optimization

Unconstrained optimization refers to the process of finding the maximum or minimum
of an objective function without any restrictions or constraints on the decision variables
(Andrei, 2008). This type of optimization is fundamental in various fields, including
mathematics, economics, and engineering, as it simplifies the problem-solving process by
removing the complexities introduced by constraints.

In unconstrained optimization, the objective function f(x) is typically defined over
a continuous domain, where x represents the decision variables. The goal is to find
the optimal solution x∗ that either maximizes or minimizes the function, represented
mathematically as:

x∗ = argmax f(x) or x∗ = argmin f(x) (I.11)

I.4.1 Resolution Approaches

Various methods are employed to solve unconstrained optimization problems, including:

• Gradient Descent: This iterative method uses the gradient (or derivative) of the
objective function to guide the search for optimal solutions. It updates the current
solution by moving in the direction of the steepest descent until a minimum is
reached (Bertsekas and Tsitsiklis, 1999).

• Newton’s Method: This method improves convergence by using second-order
derivative information (the Hessian matrix) to find optimal points. It is more effi-
cient than gradient descent for functions that are well-approximated by a quadratic
model (Wright and Nocedal, 1999).

• Stochastic Methods: Techniques like simulated annealing and genetic algorithms
can also be applied to unconstrained optimization problems, particularly when the
objective function is complex or noisy (Marti et al, 2008).

I.4.2 Neighboring Search

Neighboring search (or neighborhood search) is an important concept in optimization,
particularly relevant for solving discrete and combinatorial optimization problems Hansen
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and Mladenović (2001). It involves exploring the solution space by evaluating solutions
that are in close proximity to a current solution, in the hopes of improving it. The idea is
to move from one solution to a nearby solution, or ”neighbor,” based on predefined rules,
to find better solutions incrementally. The working mechanism is as follows:

1. Neighborhood Structure: A neighborhood structure defines what constitutes a
”neighbor” of a solution (e.g., swapping two elements in a solution sequence).

2. Local Search: A common neighboring search method that iteratively explores
neighboring solutions to find improvements. When a better solution is discovered,
it becomes the new current solution, and this process repeats until no further im-
provements are possible, resulting in a local optimum (Lourenço et al, 2019).

Several optimization algorithms use neighboring search in different ways, depending
on how they explore the solution space. Common methods include:

1. Hill Climbing: This is a simple neighboring search method where the algorithm
selects the best neighboring solution and moves to it, climbing toward better solu-
tions. However, hill climbing can get stuck in a local optimum if no better neighbors
exist(Selman and Gomes, 2006).

2. Simulated Annealing: This technique introduces randomness to escape local op-
tima by occasionally allowing worse moves (to a less optimal neighbor), simulating
the annealing process in metallurgy. As the algorithm progresses, the probability
of accepting worse solutions decreasesVan Laarhoven et al (1987).

3. Tabu Search: Tabu search enhances the basic neighboring search by keeping track
of recently visited solutions, or ”tabu” moves, to avoid cycling back to them. This
memory mechanism helps the algorithm explore new regions of the solution space
(Glover and Laguna, 1998).

I.5 Constrained Optimization

Constrained optimization is a critical area of study within the broader field of optimiza-
tion, particularly because real-world problems are rarely unconstrained (Fioretto et al,
2018; Uryasev, 2013). Most practical optimization problems involve constraints—conditions
or limitations that any feasible solution must satisfy. These constraints can stem from
physical laws, resource limitations, safety requirements, or other practical considerations
(Zhang et al, 2006).

Constrained optimization involves finding the best solution (i.e., minimizing or max-
imizing an objective function) while ensuring that all the constraints of the problem are
met. Mathematically, a constrained optimization problem can be formulated as follows:
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min/max f(x) (I.12)

subject to:
hj(x) = 0, i = 1, . . . , nh

gj(x) ≤ 0, j = 1, . . . , ng

(I.13)

The criterion to be optimized is evaluated through an objective function f(x), where
f : D(nx) → Rm, nx ≥ 1, m ≥ 1. This objective function can take on any mathematical
form, whether linear, convex, or otherwise. It may even be treated as a black-box function,
as long as it assigns a value from the objective space Rm to a valid solution x ∈ D(nx).

In cases where the objective space is Rm with m ≥ 2, the problem is referred to as
multi-objective optimization; if m = 1, it is termed single-objective optimization. Valid
solutions exist within the variable space D(nx), which can be discrete, continuous, or a
combination of both. The dimensionality of a valid solution within this space may be
fixed or variable, depending on the problem at hand.

The optimization problem can be framed as either a minimization or maximization
of f . Notably, any maximization problem can be converted into a minimization problem
by multiplying the objective function by −1, and vice versa. The global optimal solution
x∗ is found when f(x∗) ≤ f(x) ∀x ∈ D(nx).

I.5.1 Types of Constraints

Constraints in optimization problems can be broadly categorized into different types:

• Boundary Constraints: These define the upper and lower bound values for each
decision variable of the optimization problem. The boundaries for each dimension
enforce a hyper-cube within which possible problem solutions must be contained.

• Inequality Constraints: These are conditions where the constraint function must
be either less than or equal to, or greater than or equal to, a specific value. For
instance, in a budgeting problem, an inequality constraint might require that the
total cost does not exceed a certain budget limit:

gi(x) ≤ 0 (I.14)

Inequality constraints define boundaries within which the solution must lie, often
creating a more complex feasible region with potentially disjointed or non-convex
shapes.

• Equality Constraints: These are conditions where the constraint function must
equal a specific value. For example, in an engineering design problem, an equality
constraint might specify that a component’s weight must exactly match a given

25



Chapter I. Optimization: Theory and Practice 26

target:
hi(x) = 0 (I.15)

Equality constraints are often more restrictive and can complicate the optimization
process, as they reduce the feasible region to a lower-dimensional space. They can
also be transformed into an inequality constraint through the transformation:

| hi(x)| − ϵ ≤ 0 (I.16)

In real-world optimization problems, solutions must satisfy a set of constraints, which
typically consist of equality constraints hi(x) = 0 and inequality constraints gi(x) ≤ 0.
These constraints define the feasible region within the variable space, where only solutions
that meet all the constraints are considered valid.

I.5.2 Constraint Handling Techniques

In optimization problems, particularly those involving constraints, finding solutions that
satisfy both the objective function and the constraints is crucial. Various methods have
been developed to handle constraints effectively, each with its own strengths and appli-
cability depending on the problem’s nature. This section delves into some of the most
widely used constraint handling techniques: Penalty Methods, Barrier Methods, Lagrange
Multiplier Method, and Heuristic and Metaheuristic Techniques (Askarzadeh, 2016).

1. Penalty Methods

Penalty methods are a classic approach to handling constraints by transforming a con-
strained optimization problem into an unconstrained one (Luenberger et al, 2016). This
is achieved by adding a penalty term to the objective function, which imposes a cost for
violating any constraints. The transformed objective function, known as the penalized
objective function, can be expressed as:

F (x) = f(x) +
∑

i

λi max(0, gi(x))p +
∑

j

µj|hj(x)|q (I.17)

Where F (x) is the original objective function, gi(x) and hj(x) represent inequality
and equality constraints respectively, and λi, µj, p, and q are penalty parameters. The
values of these parameters influence the severity of the penalty for constraint violations.
Penalty methods are versatile and can be tailored for various optimization problems, but
careful calibration of the penalty parameters is essential for ensuring effective constraint
handling.
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2. Barrier Methods

Barrier methods approach constraint handling by adding a barrier function to the objec-
tive function that becomes infinite as the solution approaches the boundary of the feasible
region (Wright, 1992). This method ensures that the optimization process remains within
the feasible region, making it particularly useful for problems with inequality constraints.
The barrier-augmented objective function can be formulated as:

F (x) = f(x) −
∑

i

1
gi(x) (I.18)

Where gi(x) ≥ 0 are the inequality constraints. The barrier function effectively
”traps” the solution within the feasible region by imposing an infinite cost for approaching
the constraint boundary. Barrier methods are particularly useful when it is crucial to
maintain feasibility during the optimization process, but their application is somewhat
limited to specific types of constraints.

3. Lagrange Multiplier Method

The Lagrange Multiplier Method is a powerful technique for handling constraints, partic-
ularly when dealing with equality constraints (Birgin and Mart́ınez, 2014). This method
introduces Lagrange multipliers, which serve as additional variables that enforce the con-
straints while optimizing the objective function. The Lagrangian function is defined as:

L(x, λ, µ) = f(x) +
∑

i

λigi(x) +
∑

j

µjhj(x) (I.19)

where λi and µj are the Lagrange multipliers corresponding to the inequality gi(x) ≥
0 and equality hj(x) = 0 constraints, respectively. The optimization process involves
finding the saddle point of the Lagrangian, where the derivatives with respect to both
the original variables x and the multipliers λ and µ are zero. The Lagrange Multiplier
Method is a fundamental tool in constrained optimization, particularly in theoretical
analysis and in situations where constraints are explicitly defined.

4. Heuristic and Metaheuristic Techniques

Heuristic and Metaheuristic Techniques form a broad category of methods designed to find
high-quality solutions for complex optimization problems, particularly when traditional
methods struggle with non-linearity, large search spaces, or intricate constraints. These
techniques offer flexibility in addressing constraints either directly or indirectly, making
them effective tools for constrained optimization.

Heuristics are problem-specific strategies aimed at generating good solutions within
a reasonable timeframe. Common heuristic approaches include greedy algorithms, local
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search, and constructive methods (Vince, 2002). Although heuristics do not guarantee
optimal solutions, they are effective in managing constraints by embedding constraint-
handling mechanisms within the search process or by using repair strategies to correct
infeasible solutions.

Metaheuristics, on the other hand, are higher-level frameworks that guide the search
process and can be applied to a wide range of problems. Well-known metaheuristics in-
clude Genetic Algorithms (GAs), Simulated Annealing (SA), Particle Swarm Optimiza-
tion (PSO), and Differential Evolution (DE). These methods often handle constraints us-
ing techniques such as penalty functions, repair mechanisms, and feasibility rules, which
will be discussed in detail in the next chapter.

Heuristic and metaheuristic approaches are particularly valuable for tackling real-
world optimization problems with complex or difficult-to-model constraints. Their flexi-
bility and adaptability make them indispensable tools in constrained optimization.

I.5.3 Search Landscape

The search landscape represents the multidimensional space formed by the parameters,
objectives, and constraints of an optimization problem. This landscape defines the envi-
ronment within which an optimization algorithm operates, seeking the optimal solution
(Zou et al, 2022).

For visualization Figure.I.4, in problems with two variables, the search space can
be depicted as a 2D plane, while in three-variable problems, it forms a 3D cube. As
the number of variables increases beyond three, the search space becomes a hypercube.
However, if the range of each variable differs, the search space takes the shape of a
hyper-rectangle rather than a cube, adding complexity to the optimization process.

Figure I.4: A search landscape with several constraints (Mirjalili and Mirjalili, 2019)

The nature of the search landscape depends on the relationship between the inputs
and outputs. It can be unimodal or multimodal. A unimodal landscape has a single peak
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or valley, representing the global optimum with no local optima to mislead the search. In
contrast, a multimodal landscape contains multiple peaks and valleys, where the global
optimum is one of several possible solutions, making it challenging to identify the best one
(Mirjalili and Mirjalili, 2019). Real-world problems often exhibit multimodal landscapes
with dynamic properties, requiring optimization algorithms to adapt and track shifting
optima over time. Additionally, some landscapes feature multiple global optimum with
identical objective values, further complicating the search process.

Constraints significantly influence the structure of the search landscape, introducing
gaps or ’islands’ that an optimization algorithm must navigate. These constraints can
divide the landscape into isolated regions, making it crucial for the algorithm to explore
and identify promising optima within these regions. Boundaries set by constraints also
restrict the search space, and the algorithm must be capable of managing particles that
stray outside these feasible regions, relocating them appropriately (Sallam et al, 2020).

The challenges presented by the search landscape are especially pronounced in real-
world scenarios, where the landscape is typically more complex. Such landscapes are char-
acterized by a high number of parameters, numerous constraints, multiple local optima,
deceptive slopes, isolated global optima, dynamic changes, and uncertainties. Effective
optimization requires algorithms equipped with sophisticated mechanisms to navigate
these complexities and reliably converge on the optimal solution.

I.5.4 Challenges in Constrained Optimization

Constrained optimization involves optimizing an objective function subject to a set of
constraints, which could be equality or inequality constraints. These constraints represent
the limits or requirements that the solution must satisfy, making the optimization process
more complex compared to unconstrained problems. Several challenges arise when dealing
with constrained optimization, making it a highly intricate and demanding field of study.

1. Complexity of the Feasible Region: One of the primary challenges in con-
strained optimization is the complexity of the feasible region, which is the set of all
solutions that satisfy the constraints. The feasible region can be highly irregular,
discontinuous, or even disconnected, especially in the case of non-linear constraints.
This complexity can make it difficult for optimization algorithms to efficiently ex-
plore the search space and find feasible solutions that also optimize the objective
function. Traditional optimization methods often struggle with this aspect, as they
may become trapped in local optima or fail to find a feasible solution altogether
Zhang and Xu (2023).

2. Trade-Off Between Objective Function and Constraints: Another signifi-
cant challenge is the inherent trade-off between optimizing the objective function
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and satisfying the constraints. In many cases, the optimal solution for the objective
function may lie outside the feasible region, requiring a balance between achieving
the best possible objective value and adhering to the constraints. This trade-off
is particularly challenging in multi-objective optimization problems, where multi-
ple conflicting objectives must be optimized simultaneously while still satisfying all
constraints. The ability to effectively manage this trade-off is crucial for the success
of any constrained optimization algorithm (Wang et al, 2020).

3. Constraint Violation and Infeasibility: Constraint violation and the potential
infeasibility of solutions are major hurdles in constrained optimization (Zhang and
Xu, 2023; Petsagkourakis et al, 2020). A solution is considered infeasible if it does
not satisfy all the given constraints. In many optimization problems, especially
those involving complex or non-linear constraints, finding a feasible solution can be
as challenging as optimizing the objective function. This is particularly true when
the constraints are highly restrictive, leaving only a small portion of the search
space as feasible. Algorithms need to incorporate mechanisms to handle constraint
violations, either by penalizing infeasible solutions or by repairing them to bring
them back into the feasible region.

4. Sensitivity to Initial Conditions and Parameter Setting: Many optimization
algorithms, especially those that are iterative in nature, are sensitive to the initial
conditions and parameter settings. In constrained optimization, this sensitivity can
lead to drastically different outcomes depending on the starting point or the chosen
parameters. Poor initial conditions might lead to early convergence to suboptimal or
infeasible solutions. Similarly, inappropriate parameter settings, such as the choice
of penalty factors in penalty methods, can either overly restrict the search space or
fail to enforce constraint satisfaction adequately (Schulte and Nissen, 2020).

5. Computational Complexity: The computational complexity of constrained op-
timization is another significant challenge. Evaluating the feasibility of solutions
and calculating the objective function can be computationally expensive, particu-
larly when dealing with large-scale problems or problems with complex constraints.
The need to perform these evaluations repeatedly throughout the optimization pro-
cess can result in high computational costs, making it impractical to apply certain
algorithms to large or real-time problems. This challenge necessitates the devel-
opment of more efficient algorithms that can handle constraints without excessive
computational overhead Haeser et al (2019).

6. Handling Dynamic and Uncertain Constraints: In real-world applications,
constraints are not always static; they can change over time or be subject to un-
certainty. Dynamic constraints add another layer of complexity, requiring algo-
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rithms to adapt in real-time as the constraints evolve. Similarly, uncertain con-
straints, where the exact form or parameters of the constraints are not known in
advance, require robust optimization techniques that can handle variability and un-
predictability. Addressing these challenges is crucial for the successful application
of constrained optimization algorithms in practical scenarios Petsagkourakis et al
(2020).

I.5.5 Constrained Optimization Approaches

Constrained optimization problems present unique challenges that require specialized
approaches to address effectively. Traditional optimization methods, while foundational,
often encounter limitations when faced with complex, high-dimensional problems involv-
ing multiple constraints. These methods typically struggle with issues such as handling
non-linearity, navigating fragmented feasible regions, and efficiently finding global optima.

In light of these challenges, recent advancements have introduced more versatile tech-
niques designed to overcome the constraints faced by traditional methods. Bio-inspired
algorithms, which mimic natural processes to solve optimization problems, have emerged
as powerful tools in this context. These algorithms leverage evolutionary principles,
swarm behaviors, and other natural phenomena to explore complex search spaces and
handle constraints more effectively. This section explores the shortcomings of traditional
approaches and highlights the potential of nature-inspired algorithms as a powerful and
innovative alternative.

Traditional optimization methods, such as gradient-based techniques, linear program-
ming (LP), and branch-and-bound methods, have long been the go-to tools for solving
optimization problems. However, these methods exhibit significant limitations when ap-
plied to complex constrained optimization problems.

• Gradient-Based Methods: Gradient-based methods, which rely on the calcula-
tion of derivatives, are well-suited for smooth, continuous optimization problems
(Liu et al, 2021). However, they face significant challenges in constrained optimiza-
tion, particularly when the objective function or constraints are non-differentiable,
non-linear, or contain discontinuities. These methods are also prone to getting
trapped in local optima, especially in non-convex problems, limiting their ability to
find the global optimum. Furthermore, gradient-based methods often require feasi-
ble starting points and can struggle to find feasible solutions in highly constrained
problems.

• Linear Programming (LP): Linear programming techniques are effective for
problems where the objective function and constraints are linear (Asorey-Cacheda
et al, 2017). However, many real-world optimization problems involve non-linear
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relationships, rendering LP methods inadequate. Additionally, LP methods are not
well-suited for problems with complex or non-convex feasible regions, where the
feasible solutions form irregular or disconnected spaces.

• Branch-and-Bound and Other Exact Methods: Exact methods, such as
branch-and-bound, guarantee finding the global optimum by systematically explor-
ing the search space. However, their applicability is limited to small or moderately-
sized problems due to their exponential time complexity. As the problem size
increases, these methods become computationally infeasible, especially when deal-
ing with large-scale problems or those with a high number of constraints (Morrison
et al, 2016).

In traditional optimization methods, constrained problems often prove difficult, es-
pecially in complex, high-dimensional spaces where multiple constraints interact. These
approaches commonly face challenges like handling non-linearity, navigating fragmented
feasible regions, and efficiently finding global optima. In light of these challenges, the
limitations of conventional methods motivate the search for more adaptable solutions.
Bio-inspired algorithms, drawing on natural processes like evolution and swarm behav-
iors, have emerged as effective alternatives (Yang, 2020). In the next chapter, we will
explore these innovative techniques, examining how they can better handle the complex-
ities of constrained optimization compared to traditional approaches.

I.6 Multi-Objective Optimization

Multi-objective optimization (MOO) is a branch of optimization that involves problems
with more than one objective function to be optimized simultaneously (Deb et al, 2016).
Unlike single-objective optimization, where the goal is to find a solution that maximizes
or minimizes a single objective, MOO focuses on optimizing multiple, often conflicting,
objectives. This type of problem is common in real-world scenarios, where decision-
makers must balance trade-offs between competing goals.

I.6.1 Definition and Formulation

A general multi-objective optimization problem can be mathematically formulated as:

minimize f(x) = [f1(x), f2(x), . . . , fk(x)] (I.20)

subject to:
hj(x) = 0, j = 1, . . . ,m
gj(x) ≤ 0, j = 1, . . . , p

(I.21)
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Figure I.5: multi-objective optimization decision and objective space

where fi(x), i = 1, . . . , k are the objective functions, which are to be minimized (or
maximized). The objective functions f1(x), f2(x), . . . , fk(x) often conflict, meaning im-
proving one objective may lead to the deterioration of another. For example, in engineer-
ing design, reducing cost might lead to lower performance, while maximizing performance
may increase costs.

I.6.2 Pareto Optimality

In multi-objective optimization, there is usually no single solution that simultaneously
optimizes all objectives Xue et al (2003). Instead, a set of optimal solutions, known
as the Pareto front or Pareto optimal solutions, is sought. A solution x∗ is considered
Pareto optimal if no other solution x exists that improves at least one objective without
worsening another. Formally, a solution x∗ is Pareto optimal if for every x:

fi(x) ≤ fi(x∗) ∀i and ∃j such that fj(x) < fj(x∗) (I.22)

This represents the trade-offs between conflicting objectives where any improvement
in one objective would lead to the degradation of at least one other objective.

I.6.3 Pareto Front

The Pareto front is the set of all Pareto optimal solutions in the objective space. It
provides a visual representation of the trade-offs between objectives. Decision-makers
often use the Pareto front to select a preferred solution based on their priorities. The
solutions on the Pareto front are non-dominated, meaning no other solutions outperform
them across all objectives. The nature of the Pareto front can vary depending on the
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problem; it may be convex, concave, or discontinuous, influencing the difficulty of finding
the optimal set of solutions.

I.6.4 Solution Techniques for Multi-objective Optimization

Several approaches have been developed to solve multi-objective optimization problems.
These methods can be broadly categorized as scalarization techniques, evolutionary al-
gorithms, and hybrid methods.

1. Scalarization Techniques

Scalarization methods convert a multi-objective problem into a single-objective problem
by combining the objectives into a weighted sum or another scalar function (Giagkiozis
and Fleming, 2015). The main scalarization techniques are:

• Weighted Sum Method: Each objective is multiplied by a weight factor repre-
senting its relative importance, and the sum of the weighted objectives is minimized
(Bazgan et al, 2022). The problem becomes:

minimize f(x) =
k∑

i=1
λifi(x) (I.23)

where λi are the weight factors. Varying the weights generates different Pareto
optimal solutions. However, this method may fail to capture non-convex Pareto
fronts.

• Epsilon-Constraint Method: One objective is optimized while others are treated
as constraints with upper bounds. This approach can produce Pareto optimal
solutions for non-convex problems, but finding an appropriate epsilon ϵ for each
constraint is challenging (Fan et al, 2016).

• Goal Programming: The decision-maker specifies target values for each objective,
and the goal is to minimize the deviation from these targets (Tanino et al, 2013).

Evolutionary Algorithms (EAs) are widely employed as solution techniques for tackling
multi-objective optimization problems, thanks to their ability to explore complex search
spaces and generate diverse solution sets. While this chapter provides an overview of
the fundamental concepts, a detailed discussion of EAs, their mechanisms, and their
applications as effective optimization tools will be covered in the next chapter.
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I.7 Conclusion

In this chapter, we have established the foundational principles necessary for understand-
ing the intricacies of optimization, particularly within the realm of constrained problems.
By defining key concepts, categorizing optimization problems, and examining the general
structure of an optimization process, we have created a theoretical framework that under-
pins the discussions in subsequent chapters. The exploration of constrained optimization
has highlighted both the complexities involved and the need for innovative approaches to
tackle these challenges effectively. This chapter sets the stage for the deeper investiga-
tion into advanced techniques that will follow, with a particular emphasis on bio-inspired
algorithms in the next chapter, where we will explore their application to constrained
problems in greater detail.

35



Chapter II

Bio-Inspired Algorithms



Chapter II
Bio-Inspired Algorithms

II.1 Introduction

This chapter delves into the fundamental principles and applications of Bio-Inspired al-
gorithms, exploring their emergence as robust tools for solving complex optimization
problems, particularly in constrained environments. Building on the theoretical founda-
tion established in the previous chapter, this section provides a comprehensive overview
of the various Bio-Inspired techniques that have gained prominence in recent years.

Bio-Inspired algorithms, which draw inspiration from biological processes such as evo-
lution, swarming behaviors, and natural selection, have proven to be highly effective in
addressing optimization challenges where traditional methods often fall short. Their in-
herent adaptability and ability to handle large, complex search spaces make them partic-
ularly suitable for constrained optimization problems, where satisfying constraints while
optimizing the objective function presents a significant challenge.

In this chapter, we will first explore the key concepts and mechanisms that underpin
Bio-Inspired algorithms, focusing on their unique strengths in balancing exploration and
exploitation, handling diverse constraints, and maintaining robustness in uncertain envi-
ronments. We will then delve into specific algorithms, such as genetic algorithms (GAs),
particle swarm optimization (PSO), ant colony optimization (ACO), etc, and particularly
differential evolution (DE) and grey wolf optimizer (GWO), which will be the primary
focus of the subsequent chapters.

By examining both the theoretical and practical aspects of these algorithms, this
chapter sets the stage for the development and application of novel strategies that im-
prove constraint handling in optimization processes. The insights gained here will form
the basis for understanding the contributions made in this research, where advanced ver-
sions of differential evolution will be employed to address the complexities of constrained
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optimization. Moreover, the application of GWO algorithm on real-world constrained
optimization problem.

II.2 Stochastic and Deterministic Approaches

Stochastic optimization algorithms, which incorporate randomness in their search pro-
cesses, provide a flexible and robust approach to exploring complex search spaces (Liberti
and Kucherenko, 2005). This randomness enables them to avoid the common pitfall of
deterministic algorithms: getting stuck in local optima. Deterministic algorithms follow a
predefined path and, while predictable, often suffer from search stagnation, especially in
high-dimensional or complex landscapes where finding the global optimum is challenging.

In contrast, bio-inspired algorithms such as genetic algorithms, particle swarm opti-
mization, and differential evolution are a subset of stochastic optimization techniques.
They utilize stochastic operators inspired by natural processes to explore search spaces
more freely. By mimicking evolution, social behavior, or other biological phenomena,
these algorithms combine randomness with structured search strategies, increasing their
ability to escape local optima and find more globally optimal solutions.

This comparison highlights the advantages of bio-inspired algorithms in constrained
optimization. While deterministic algorithms may offer theoretical guarantees under
certain conditions, bio-inspired approaches benefit from their stochastic nature, allowing
them to adapt more efficiently to complex, real-world problems where the landscape is
dynamic or uncertain.

Figure II.1: Resolution method
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II.3 Overview of Bio-Inspired Algorithms

Bio-inspired algorithms have emerged as a powerful approach to optimization by drawing
inspiration from the biological processes observed in nature (Kar, 2016). These algorithms
replicate the behaviors of living organisms, converting them into computational models
that can effectively solve complex problems. In nature, species collaborate and interact
to perform critical tasks like survival, hunting, defense, and foraging. By studying the be-
havior of biological systems such as fish schools, ant colonies, and bird flocks, researchers
have discovered how these systems find optimal solutions in their environment. This
has led to the creation of optimization techniques that mimic nature’s problem-solving
abilities, refined over millions of years.

Bio-inspired algorithms are not limited to mimicking animal behavior but also include
mechanisms based on broader natural processes, such as biological evolution. Evolution-
ary algorithms, for instance, simulate natural selection and genetic diversity to explore
solutions effectively. These varied biological processes have proven to be highly adaptable
for solving a wide range of optimization problems in computational contexts.

As population-based metaheuristics, bio-inspired algorithms often employ principles
like self-organization, coevolution, and learning to produce high-quality results. These
algorithms, which represent the most prominent category of bio-inspired techniques, lever-
age the unique characteristics of biological systems to tackle complex computational tasks.

Population-based algorithms evolve a set of initial solutions over successive iterations
by balancing two critical processes: exploration (diversification) and exploitation (inten-
sification). These processes work together to navigate the search space and converge on
optimal solutions (Črepinšek et al, 2013). Exploration involves probing various regions
of the search space to discover promising areas that may contain the global optimum.
During this phase, the algorithm makes significant or frequent changes to candidate so-
lutions to ensure a broad search across different areas. The primary goal is to identify
regions that hold potential, rather than to fine-tune any specific solution. For example, in
Particle Swarm Optimization (PSO), the inertia weight encourages particles to maintain
their current direction, thereby promoting exploration. Similarly, in Genetic Algorithms
(GA), a high mutation rate introduces random variations, ensuring the population ex-
plores diverse regions of the search space. Exploitation, on the other hand, focuses on
refining and improving the best solutions identified during the exploration phase. This
phase involves making smaller, more precise adjustments to candidate solutions, honing
in on the optimal solution within a promising region. The objective here is to intensify the
search around the most successful solutions, maximizing the chances of finding the global
optimum. In PSO, this is achieved by reducing the inertia weight, which increases the
tendency of particles to move toward the best-known solutions. In GA, crossover plays
a key role in exploitation by combining the traits of the best individuals, leading to in-
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Figure II.2: Taxonomy of nature-inspired algorithms

cremental improvements and convergence on an optimal solution. Balancing exploration
and exploitation are essential for the effectiveness of population-based algorithms. While
exploration prevents premature convergence by ensuring the search space is adequately
covered, exploitation ensures that the algorithm can effectively refine and optimize the
best solutions found. This dynamic interplay allows these algorithms to solve complex
optimization problems efficiently.

Bio-inspired algorithms are classified into two dominant classes (Fan et al, 2020):
evolutionary algorithms and swarm intelligence algorithms Fig.II.2. In the following
paragraphs, we will explore the different characteristics of each class, and we will give a
detailed overview of their working principles.
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II.4 Evolutionary Algorithms

Evolutionary algorithms (EAs) represent a key subclass of evolutionary computation,
situated within the broader category of stochastic algorithms. These algorithms have a
rich history and are widely recognized for their effectiveness in solving diverse optimiza-
tion problems (Yu and Gen, 2010). EAs draw inspiration from the principles of natural
evolution, including processes such as reproduction, mutation, and selection. This biolog-
ical metaphor enables EAs to tackle complex, multi-dimensional, nonlinear, and discrete
problems without necessitating an in-depth understanding of the underlying mathemat-
ical structures. The process begins with the generation of one or more initial solutions
within the problem’s search space. EAs operate on a population of individuals, each
corresponding to a potential solution to the given problem. The solutions created in
this initial phase are often referred to as the set of candidate solutions or initial random
guesses, as they are generated using random operators. Once these candidate solutions
are established, EAs work iteratively to enhance their quality, employing techniques that
mimic the evolutionary processes of nature. This iterative improvement continues until
a specified termination condition is met. One of the standout advantages of evolution-
ary algorithms is their simplicity and versatility. They are problem-independent, making
them applicable to a wide range of optimization scenarios. Additionally, EAs are known
for their ability to avoid local optima, a common pitfall in optimization tasks. However,
the effective deployment of EAs requires careful specification of algorithmic parameters,
as their performance can be significantly influenced by these values. Furthermore, EAs
often entail substantial computational overhead, which can be a limiting factor in large-
scale applications. The family of evolutionary algorithms encompasses several well-known
optimization techniques, including Genetic Algorithm (GA), Differential Evolution (DE),
Evolutionary Strategies (ES), and Evolutionary Programming (EP). In the subsequent
sections, we will delve into the details of two of the most prominent algorithms in the lit-
erature: Genetic Algorithm (GA) and Differential Evolution (DE), exploring their unique
characteristics and applications.

II.4.1 Genetic Algorithm

Genetic Algorithms (GAs) are among the most widely utilized optimization techniques
within the family of evolutionary algorithms. First introduced to the scientific community
in 1975 by John Holland, GAs are population-based algorithms that emulate the princi-
ples of natural selection and evolution as articulated by Darwin (Kramer and Kramer,
2017). These principles include selection, recombination (or crossover), and mutation of
genes, enabling GAs to effectively explore complex solution spaces.

In a Genetic Algorithm, each candidate solution is represented as a chromosome,
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which is composed of a series of genes. Typically, these genes are encoded as binary
strings, where each gene can take a value of either one or zero. This binary representation
simplifies the manipulation of candidate solutions and allows for straightforward genetic
operations. The fundamental concept of GAs lies in the idea of survival of the fittest: the
algorithm strives to evolve the fittest chromosomes over successive generations through
the application of reproductive, mutational, and selection operators.

The optimization process begins with the random generation of an initial population of
candidate solutions. Each chromosome in this population represents a potential solution
to the problem at hand. Once the initial population is established, each chromosome
is evaluated using an objective function, which quantifies the quality of the solution it
represents. This evaluation forms the basis for the selection process, where the algorithm
identifies the fittest individuals to contribute to the next generation.

To facilitate genetic diversity and improve the overall quality of solutions, various
selection mechanisms are employed, including:

• Roulette Wheel Selection: Probability-based selection where individuals are
chosen in proportion to their fitness.

• Tournament Selection: A subset of individuals is randomly selected, and the
fittest among them is chosen for reproduction.

• Rank Selection: Individuals are ranked based on their fitness, and selection is
performed according to their rank rather than their absolute fitness values.

Once the selection process is complete, the chromosomes of the selected parents are
combined to generate offspring through the crossover operator. This crossover process
can take various forms, including:

• Single-Point Crossover: A single crossover point is chosen, and the genetic ma-
terial from the parents is exchanged at this point to create two offspring.

• Double-Point Crossover: Two crossover points are selected, leading to a more
complex exchange of genetic material between parents.

Following crossover, the newly created chromosomes undergo a mutation process,
where one or more genes are randomly altered. The mutation operator introduces vari-
ability into the population, preventing premature convergence and helping the algorithm
escape local optima. This mechanism is crucial for maintaining diversity within the pop-
ulation, allowing for a more thorough exploration of the solution space.

The iterative application of selection, crossover, and mutation continues until a pre-
defined termination condition is met—such as a maximum number of generations or a
satisfactory level of solution quality. Upon termination, the Genetic Algorithm returns
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Figure II.3: GA Flowchart

the best chromosome from the final population, which serves as the best approximation
of the global optimum for the given problem.

II.4.2 Evolution Strategies

Evolution Strategies (ESs) were developed by Schwefel (1965); Rechenberg (1973). These
strategies are centered around the concept of intermediate-sized mutations, which are
typically modeled using multivariate normal (Gaussian) distributions. In ESs, a parent
individual at generation t, denoted as mt, generates its k-th offspring xk ∈ Rn according
to:

xk ∼ N (m, σ2C) = m + σ · N (0,C) (II.1)

where C ∈ Rn×n is a positive definite covariance matrix, and σ is the mutation step
size. The parent m serves as the mean of the current mutation distribution.

In each iteration of the (µ + λ)-ES, a set of λ offspring is generated from µ parent
individuals. In the ”plus” selection strategy, denoted as (µ + λ), the best µ individuals
are selected from the combined pool of µ parents and λ offspring to become the parents
of the next generation. In contrast, in the ”comma” selection strategy, denoted as (µ, λ),
the parent population does not carry over to the next generation, and only the best µ
offspring out of λ are chosen to continue.

Research on ES primarily focuses on developing methods to adapt the covariance
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matrix C and, more importantly, the step size σ during the optimization process. The
goal is to find an optimal way to parameterize this adaptation. For a detailed and
comprehensive review of Evolution Strategies, readers are referred to (Hansen et al, 2015).

II.4.3 Covariance Matrix Adaptation Evolution Strategy

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) was introduced by
Hansen and Ostermeier Hansen and Ostermeier (2001) and has become a widely-used
standard for continuous black-box optimization. The key advantage of CMA-ES over
other evolution strategies lies in its use of correlated mutations rather than axis-aligned
ones. By adapting the covariance matrix C, CMA-ES learns an effective mutation dis-
tribution, enhancing the likelihood of repeating successful search directions.

In the (µ/µw, λ)-CMA-ES, the step size σ is adapted using a procedure similar to
CSA-ES and is controlled by the evolution path pσ. However, in CMA-ES, successful
steps are tracked within a coordinate system defined by the principal components of C.
This allows a transformation of sampled points xk back into the sampling space, using
the inverse square root of the covariance matrix, denoted as C− 1

2 .
The covariance matrix update consists of two key components: a rank-one update and

a rank-µ update. The rank-one update tracks the evolution path pc of successful moves of
the mean, mt+1 −mt, and is adjusted similarly to the evolution path pσ. A rank-µ update
then uses weighted covariances of the top µ individuals to adjust the covariance matrix
C, accumulating information from these successful steps. Additionally, in the weighted
active CMA-ES variant, information from unsuccessful steps is incorporated through a
rank-µ update with a negative weight (Hansen and Ros, 2010). The coefficients c1, cµ,
and c− are chosen such that their sum remains below or equal to one to maintain stability
in the adaptation process. Although the optimal parameter settings for CMA-ES remain
an open question, most parameters are chosen based on empirical observations and the
robustness of the algorithm in solving benchmark functions like the Sphere and rotated
Ellipsoid functions (Hansen et al, 2015).

In this thesis, particularly in Chapter III, we utilize Covariance Matrix Adaptation
as the baseline optimization algorithm. This approach serves as a foundational element
for developing our proposed coordinate system, with the goal of enhancing optimization
techniques in single-constrained scenarios. Our focus is on improving constraint handling
and overall algorithm performance to achieve more effective solutions.

II.4.4 Differential Evolution Algorithm

Differential Evolution (DE) is recognized as one of the most effective evolutionary com-
puting techniques. Since its introduction by Storn and Price (1997), DE has become a
preferred optimization method across a diverse range of applications in various scientific
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and engineering fields. The core operating principle of DE is akin to that of standard
evolutionary algorithms ; however, it uniquely employs the differences between parameter
vectors to explore the objective function landscape more effectively.

Similar to Genetic Algorithms, DE seeks to identify a global optimum solution within
a D-dimensional search space. The optimization process commences with the random
generation of an initial population, which consists of several candidate solutions known
as parameter vectors or genomes. Each vector represents a potential solution to the
optimization problem.

1. Initialization

The algorithm starts by initializing a population P 0 of Np candidate solutions (individ-
uals). Each individual x0

i is a D-dimensional vector, where D is the number of decision
variables. The initial population is generated randomly within the predefined bounds for
each dimension:

P 0 = {x0
1, x

0
2, . . . , x

0
Np

} (II.2)

2. Mutation

The mutation process is a pivotal step in DE, where new candidate solutions, referred
to as mutant vectors, are generated. For each individual in the population, a mutant
vector is computed using various mutation strategies. Some common mutation strategies
include:

• DE/rand/1:
vt

i = xt
r1 + F · (xt

r2 − xt
r3) (II.3)

• DE/rand/2:
vt

i = xt
rand1 + F · (xt

r2 − xt
r3) + F · (xt

r4 − xt
r5) (II.4)

• DE/rand-to-best/1:

vt
i = xt

r1 + F · (xt
best − xt

r1) + F · (xt
r2 − xt

r3) (II.5)

• DE/current-to-best/1:

vt
i = xt

i + F · (xt
best − xt

i) + F · (xt
r1 − xt

r2) (II.6)

• DE/current-to-rand/1:

vt
i = xt

i + F · (xt
r1 − xt

i) + F · (xt
r2 − xt

r3) (II.7)
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Here, xt
best denotes the best individual in the current population, xt

i represents the
current individual, and xt

rk
are randomly chosen individuals. F is the scaling factor

that controls the mutation step size. These mutation strategies significantly impact the
algorithm’s performance on optimization problems.

3. Crossover

The mutant vector is combined with the target individual to yield a trial vector through
a crossover operation. The crossover process is defined as follows:

ut
i,j =

v
t
i,j if randi,j ∈ (0, 1) ≤ CR

xt
i,j otherwise

(II.8)

Here, xt
i,j and v⃗t

i,j are the j-th dimensions of x⃗t
i and vt

i respectively, jrand is a random
number uniformly generated between 0 and 1, CR denotes the crossover probability, and
rand generates a random value between 0 and 1.

4. Selection

The trial vector competes with the target individual. If the trial vector is superior, it
substitutes the target individual in the next generation:

x⃗t
i =

u⃗
t
i if f(u⃗t

i) < f(x⃗t
i)

x⃗t
i otherwise

(II.9)

II.5 Swarm Intelligence (SI)

Swarm Intelligence (SI) was first introduced to the field of optimization in 1993 when
researchers leveraged the collective behavior of swarms to develop cellular robotic sys-
tems. SI represents a groundbreaking paradigm within artificial intelligence, particularly
for solving complex optimization problems (Kennedy, 2006). It has opened up a novel
and promising direction in optimization research by mimicking the intelligent behaviors
observed in biological swarms, such as ant colonies, bee hives, bird flocking, and fish
schooling.

In nature, these species demonstrate an ability to co-evolve and cooperate through lo-
cal interactions with each other and their environment. The individuals within a swarm,
often referred to as search agents, operate under simple rules and interact locally, with-
out any centralized control mechanism. Despite the simplicity of their individual be-
haviors, these interactions can lead to the emergence of complex global patterns and
solutions—patterns that are often far beyond the capabilities of any single agent.
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Figure II.4: Swarm intelligence examples

Swarm Intelligence, as defined by Kennedy in 2006, refers to a problem-solving ca-
pability that emerges from the interactions of simple information-processing units. The
term ”swarm” implies multiplicity, stochasticity, randomness, and an inherent messiness,
while ”intelligence” suggests that these problem-solving methods are successful in achiev-
ing their goals. The processing units within a swarm can vary widely, from insects, birds,
and humans to mechanical devices, computational elements, or even abstract mathe-
matical entities. Despite this diversity, the key characteristic of swarm intelligence is
the interaction among these units, which collectively contribute to the problem-solving
process.

This concept has inspired researchers to develop a variety of optimization techniques
by imitating the social behaviors observed in different animal societies Fig.II.4. To harness
this intelligence, researchers focus on understanding the local rules governing interactions
within the swarm, which collectively lead to the emergence of social intelligence. As a
result, swarm intelligence methods have gained recognition as a powerful alternative to
traditional deterministic techniques, often demonstrating superior performance in solving
complex optimization problems.

Swarm intelligence algorithms are a subset of bio-inspired algorithms, specifically
population-based metaheuristics, where a population of agents is maintained and evolved
during the optimization process. The success of these algorithms largely stems from the
shared information among the agents, which facilitates self-organization—leading to the
emergence of higher-level structures and solutions.
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Several factors contribute to the growing popularity of SI-based algorithms:

1. Ease of Implementation: SI-based algorithms are generally straightforward to
implement, making them accessible for a wide range of applications.

2. Minimal Parameter Tuning: Most SI-based algorithms require relatively few
parameters to be adjusted, simplifying the optimization process.

3. Memory Utilization: These algorithms often incorporate memory to retain the
best solutions found throughout the optimization process, enhancing their effective-
ness.

4. Simple Operators: The simplicity of the operators in SI algorithms enables them
to approximate the global optimum efficiently and within a reasonable timeframe.

Due to these advantages, SI-based algorithms have become a favored choice in opti-
mization, offering a robust and flexible approach to solving complex, real-world problems.

II.5.1 Particular Swarm Optimization

Particle Swarm Optimization (PSO) is a swarm intelligence algorithm inspired by the
observation of swarm behaviors in ecological systems (Kennedy and Eberhart, 1995).
The classical PSO algorithm was first proposed by Kennedy in 1995. In PSO, solutions
are represented as particles, each holding two vectors: the position vector and the velocity
vector, which represent the particle’s evolutionary state in the search space. For a problem
in a D-dimensional space, particle i holds the position vector X⃗i and the velocity vector
V⃗i:

X⃗i = (x1
i , x

2
i , . . . , x

D
i ) (II.10)

V⃗i = (v1
i , v

2
i , . . . , v

D
i ). (II.11)

During each iteration of the algorithm, these vectors are updated according to the
following rules:

V⃗
(t+1)

i = w · V(t)
i + c1 · r1 · (pbest(t)

i − X(t)
i ) + c2 · r2 · (gbest(t) − X(t)

i ) (II.12)

X⃗
(t+1)
i = X(t)

i + V(t)
i (II.13)

Here, pbesti is the personal best position discovered by the ith particle, and gbest is
the best so far position found by the entire swarm. c1 and c2 are acceleration coefficients
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Figure II.5: Schematics of PSO algorithm

that balance personal and social experiences. r1 and r2 are random numbers uniformly
distributed in the range [0, 1], and w is the inertia weight. Experimental analysis has
shown that a higher w promotes exploration, while a smaller w enhances exploitation.

Fig II.5 shows the collective behavior of individuals and the pseudo-code of the basic
PSO is presented in algorithm 1

Algorithm 1 Particle Swarm Optimization (PSO)
1: Initialize the swarm of particles with random positions and velocities
2: for each particle do
3: Initialize particle’s position randomly in the search space
4: Initialize particle’s velocity randomly
5: Set the particle’s personal best position (pBest) to its initial position
6: if f(pBest) < f(gBest) then
7: Update gBest to particle’s position
8: end if
9: end for

10: while stopping criterion not met do
11: for each particle do
12: Update particle’s velocity:

Vi = w · Vi + c1 · r1 · (pBesti −Xi) + c2 · r2 · (gBesti −Xi)
13: Update particle’s position
14: Xi = Xi + Vi

15: Evaluate the fitness of the particle’s current position
16: if fitness( Xi) < fitness(pBesti) then
17: Update pBesti to the current position
18: if fitness(pBesti) < fitness(pBest) then
19: Update gBest to pBesti
20: end if
21: end if
22: end for
23: end while
24: Return the global best position (gBest) as the optimal solution
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II.5.2 Whale Optimization Algorithm

The Whale Optimization Algorithm (WOA) is a bio-inspired optimization technique that
mimics the social hunting behavior of humpback whales, particularly their unique bubble-
net feeding strategy. WOA is designed to balance exploration and exploitation by adapt-
ing mechanisms based on the whales’ natural hunting behaviors.

1. Encircling Prey

Humpback whales have an instinctive ability to detect prey and form an encircling forma-
tion around it. In WOA, the optimal solution in the search space is not predetermined;
thus, the algorithm assumes that the best candidate solution at any iteration is likely
close to the global optimum. The other search agents in the population then update
their positions to move closer to this identified best solution. This encircling behavior is
represented by the following equations:

D = |C · X⃗∗(t) − X⃗(t)| (II.14)

X⃗(t+ 1) = X⃗∗(t) − A ·D (II.15)

where:

• t denotes the current iteration,

• A and C are coefficient vectors,

• X⃗∗ is the position vector of the current best solution,

• X⃗ is the position vector of an individual whale,

The position of X⃗∗ is updated in each iteration if a better solution is found. The
coefficient vectors A and C are computed as follows:

A = 2a · r − a (II.16)

C = 2 · r (II.17)

where:

• a is a parameter that linearly decreases from 2 to 0 over the course of the iterations,
balancing exploration and exploitation, and

• r is a random vector within the range [0, 1].
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2. Bubble-Net Attacking Method (Exploitation Phase)

To model the bubble-net behavior observed in humpback whales, two approaches are
implemented in WOA: the shrinking encircling mechanism and the spiral updating posi-
tion. These approaches enable the algorithm to concentrate the search around promising
solutions.

• Shrinking Encircling Mechanism: In this approach, as the value of a decreases,
the range of A is confined within [−a, a]. This restriction allows the search agents
to position themselves between their current locations and the best solution in a
controlled manner, depending on the value of A. When A is randomly set between
[−1, 1], the new position of a search agent can move closer to the current best
solution.

• Spiral Updating Position : This approach simulates the helix-shaped movement of
humpback whales around their prey. The spiral movement is modeled by calculating
the distance between a whale at position X⃗(t) and the prey at X⃗∗(t) as follows:

X⃗(t+ 1) = D′ · ebl · cos(2πl) + X⃗∗(t) (II.18)

where:

– D′ = |X⃗∗(t) − X⃗(t)| is the distance between the whale and the prey,

– b is a constant defining the shape of the logarithmic spiral,

– l is a random number in the range [−1, 1], and

To capture the simultaneous shrinking and spiraling behavior, a probability p (50%)
is introduced to switch between the shrinking encircling mechanism and the spiral
model. The position update rule becomes:

X⃗(t+ 1) =

X⃗
∗(t) − A ·D if p < 0.5

D′ · ebl · cos(2πl) + X⃗∗(t) if p ≥ 0.5
(II.19)

where p is a randomly generated number within [0, 1].

3. Search for Prey (Exploration Phase)

In the exploration phase of the Whale Optimization Algorithm (WOA), humpback whales
search for prey by moving towards diverse areas in the search space, inspired by the
behavior of whales observing the positions of others in their group. This phase encourages
global search and helps the algorithm avoid local optima.
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To achieve exploration, the same variation of the A vector used in the exploitation
phase is applied here with adjustments. Specifically, A is assigned random values greater
than 1 or less than −1, which forces search agents to move farther away from a reference
whale, thereby encouraging them to explore the broader search space. Unlike in the
exploitation phase, where search agents are guided towards the best solution found so
far, in the exploration phase, each search agent updates its position based on a randomly
selected agent from the population. This mechanism, along with setting |A| > 1, enhances
the algorithm’s exploration abilities and enables it to conduct a more global search. The
equations governing this behavior are:

D = |C · X⃗rand − X⃗| (II.20)

X⃗(t+ 1) = X⃗rand − A ·D (II.21)

where:

• X⃗rand represents the position vector of a randomly chosen whale from the current
population, and

• D denotes the distance between the current whale’s position X⃗ and the randomly
selected whale’s position X⃗rand.

II.5.3 Ant Colony Optimization (ACO)

Ant Colony Optimization (ACO) is a prominent algorithm in the realm of swarm in-
telligence, first introduced by Marco Dorigo and his colleagues in 1996. The algorithm
is inspired by the foraging behavior of ants, particularly their method of finding and
optimizing paths to food sources (Dorigo et al, 2006).

In the natural world, ants exhibit a remarkable ability to discover the most efficient
routes to food sources Fig.II.6. This is achieved through the use of a chemical substance
known as pheromone, which ants deposit along their paths. When an ant finds food, it
returns to the nest, laying down a trail of pheromone proportional to the quality of the
food. This pheromone trail serves as a guide for other ants in the colony.

As other ants encounter these pheromone trails, they are more likely to follow paths
with stronger pheromone concentrations, thereby reinforcing those trails. Over time, as
more ants traverse a path and lay down additional pheromones, the colony collectively
converges on the most efficient route—usually the shortest path. The longer paths are
gradually abandoned because the pheromone on these paths evaporates more quickly,
leading to lower pheromone concentrations compared to shorter, more frequently traveled
routes.

The ACO algorithm models this natural behavior to solve optimization problems. In
the algorithm, each ant represents a potential solution. As ants move from one point to
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Figure II.6: Ant colony: Foraging behavior (Dorigo et al, 2006)

another in the search space, they choose their next step in a probabilistic manner based
on a transition rule that considers both the pheromone level on the connecting edge and
a heuristic value associated with that path.

1. Transition Probability

The transition probability for an ant to move from point i to point j is calculated using
the following formula:

pi,j = (τi,j)α(ηi,j)β∑
k(τi,k)α(ηi,k)β

(II.22)

Here, τi,j represents the intensity of the pheromone on the edge between points i
and j, while ηi,j is the heuristic value of the path. The parameters α and β determine
the relative influence of the pheromone trail and the heuristic information on the ant’s
decision.

2. Pheromone Update

Pheromone levels are not static; they decrease over time through a process called evapo-
ration, governed by an evaporation coefficient ρ where 0 < ρ < 1. This evaporation helps
to prevent the algorithm from converging too quickly on suboptimal solutions. After each
iteration, the pheromone levels on each path are updated according to the following rule:

τi,j = (1 − ρ)τi,j + ∆τi,j (II.23)

The term ∆τi,j represents the amount of pheromone deposited by all the ants that
have traversed the edge (i, j) in the current iteration. The sum of these deposits influences
the next generation of ants, guiding them towards potentially better solutions.
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II.5.4 The Bees Algorithm

The Bees Algorithm (BA) was introduced by Pham et al (2006) as a bio-inspired op-
timization technique, emulating the foraging behavior of honeybees in their search for
food sources. In BA, bees are divided into two key groups: scout bees and forager bees.
Scouts are tasked with exploring new areas to locate rich food sources. They begin by
randomly navigating the surroundings of the hive in search of promising flower patches.
Upon discovering a valuable food source, a scout memorizes its location and returns to
the hive to share this information with the foragers. This communication occurs through
a unique behavior known as the waggle dance, which effectively conveys the location of
the discovered food source. The more promising patches, rich in nectar (indicating higher
fitness), attract a larger number of foragers. Subsequently, the scout returns to the iden-
tified flower patch, now accompanied by recruited foragers to gather nectar. Upon their
return to the hive, foragers may also perform the waggle dance, directing others toward
the identified flower patch.

The artificial BA begins by randomly placing ns scout bees within the search space.
Each scout’s position is then evaluated using a fitness function. During each iteration,
the nb scouts that discover the highest fitness solutions perform the waggle dance to
recruit foragers. Among these, the top-rated ne solutions attract the largest number of

Figure II.7: BA flowchart
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foragers (nre). Meanwhile, the remaining scout bees recruit fewer foragers (nrb), with
nrb < nre. This recruitment strategy ensures that a greater number of bees focus on the
most promising areas in the search space.

Forager bees are distributed randomly within the neighborhood of the identified flower
patches. A flower patch represents a promising region, defined by the size of its neigh-
borhood (ngh). If a forager discovers a solution in the neighborhood that outperforms
the one found by the scout, the forager assumes the role of the new scout, taking over
the waggle dance in the next iteration. The remaining scout bees (ns − nb), which have
located less promising food sources, are reallocated randomly to explore new regions
within the search space. These steps are repeated until an optimal solution is reached or
a predefined maximum number of iterations is completed. A visual representation of the
BA’s workflow is provided in Figure II.7.

II.5.5 Grey Wolf Optimization Algorithm

Inspired by the social hierarchy and hunting behavior of grey wolves (Fig.II.9), the Grey
Wolf Optimization (GWO) algorithm was developed by Mirjalili et al. in 2014. GWO
mimics the leadership and hunting strategies of grey wolves to solve optimization problems
effectively (Mirjalili et al, 2014). The algorithm selects three leaders in each iteration:
the fittest wolf, denoted as Xα, the second-best Xβ, and the third Xσ. The remaining
wolves, represented as Xω, follow these leaders during the hunting process.

Figure II.8: Grey wolves in nature (Mirjalili et al, 2014)
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Figure II.9: Grey wolf hierarchy (Mirjalili et al, 2014)

1. Encircling

The encircling process of grey wolves during the hunt is calculated from the following
mathematical equations:

D⃗ =
∣∣∣C⃗ · X⃗p(t) − X⃗(t)

∣∣∣ (II.24)

X⃗(t+ 1) = X⃗p(t) − A⃗ · D⃗ (II.25)

Where t presents the iteration number, x⃗ and x⃗p and indicates the positions vector of
a grey wolf and the prey respectively. Here, a coefficient vectors A⃗ and C⃗ calculated as
follows:

A⃗ = 2a⃗ · r⃗1 − a⃗ (II.26)
C⃗ = 2 · r⃗2 (II.27)

2. Hunting

In order to mathematically simulate the hunting behavior of grey wolves, it is assumed
that the three best candidate solutions alpha, beta, and delta have better knowledge
about the potential location of prey. Therefore, the remaining wolves can update their
positions according to the following expressions:

D⃗α =
∣∣∣C⃗1 · X⃗α − X⃗

∣∣∣
D⃗β =

∣∣∣C⃗2 · X⃗β − X⃗
∣∣∣

D⃗δ =
∣∣∣C⃗3 · X⃗δ − X⃗

∣∣∣
(II.28)
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X⃗1 = X⃗α − A⃗ ·
(
D⃗α

)
X⃗2 = X⃗β − A⃗2 ·

(
D⃗β

)
X⃗3 = X⃗δ − A⃗3 ·

(
D⃗δ

) (II.29)

X⃗(t+ 1) = X⃗1 + X⃗2 + X⃗3

3 (II.30)

Where Dα, Dβ, and Dδ are the estimated distance between grey wolf and the three
best solutions Xα, Xβ, and Xδ respectively at t-th iteration Eqs. II.28 and II.29 . A⃗1,
A⃗2, and A⃗3 are calculated as in Eq. II.26, C⃗1, C⃗2, and C⃗3 are calculated as in Eq. II.27.

3. Attacking

When the prey stops moving indicates that the hunt has finished and wolves the attacking
process begins. This process can mathematically model by the value a⃗ which is linearly
decreased from 2 to 0 over the course of iterations controlling the exploration and ex-
ploitation. In this phase, the search agents take their new positions randomly between
their current position and the position of the prey.

Algorithm 2 The Basic GWO
1: Initialize population of wolves xi(i = 1, 2, . . . , n)
2: Initialize the parameters a, A and C
3: calculate the fitness of each wolf
4: Xα = the best search agent
5: Xβ = the second best search agent
6: Xδ = the third best search agent
7: while t ≥ MaxIter do
8: for each search agent do
9: update the position of current wolf

10: update the values of a, A and C
11: calculate the fitness for all search agent
12: update best wolves Xα, Xβ and Xδ

13: t = t+ 1
14: end while
15: return Xα

The Grey Wolf Optimization algorithm has several notable advantages:

• Simplicity: GWO is easy to implement due to its straightforward mathematical
formulations.

• Fewer Parameters: The algorithm requires fewer parameters to be tuned com-
pared to other optimization methods, such as Genetic Algorithms or Particle Swarm
Optimization.
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• Exploration and Exploitation Balance: The dynamic adjustment of A allows
GWO to effectively balance exploration and exploitation throughout the optimiza-
tion process.

• Flexibility: GWO can be adapted for various optimization problems, including
continuous and discrete optimization tasks.

GWO has been successfully applied in various domains, including engineering design,
feature selection, machine learning, and more (Makhadmeh et al, 2023). Its ability to con-
verge quickly and find high-quality solutions makes it a powerful tool in the optimization
toolbox.

In Chapter IV, we will explore the application of the Grey Wolf Optimization algo-
rithm in solving the Traveling Salesman Problem (TSP), where the unique properties of
GWO will be leveraged to improve solution quality and computational efficiency.

II.5.6 Other bio-inspired algorithms

The literature provides a significant number of bio-inspired. The number of the algorithms
is high to the extent that it is not possible to list all the existing algorithms in one table.
Therefore, the most popular and recent algorithms found in the literature are listed in
the following Table II.1:

Table II.1: Bio-inspired algorithms

Algorithms References

Adaptive Social Behavior Optimization (ASBO) Singh (2012)

African Wild Dog Algorithm (AWDA) Subramanian et al (2013)

Animal Behavior Hunting (ABH) Naderi et al (2014)

Animal Migration Optimization Algorithm (AMO) Li et al (2014b)

Ant Lion Optimizer (ALO) Mirjalili (2015)

Archerfish Hunting Optimizer (AHO) Zitouni et al (2022)

Artificial Butterfly Optimization (ABO) Qi et al (2017)

Artificial Coronary Circulation System (ACCS) Kaveh and Mohsen (2019)

Artificial Electric Field Algorithm (AEFA) Yadav et al (2019)
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Algorithms References

Artificial Jellyfish Search Optimizer (AJSO) Chou and Truong (2021)

Artificial Reaction Algorithm (ARA) Melin et al (2013)

Binary Whale Optimization Algorithm (bWOA) Reddy K et al (2019)

Biology Migration Algorithm (BMA) Zhang et al (2019)

Bird Mating Optimization (BMO) Askarzadeh (2014)

Brain Storm Optimization (BSO) Shi (2011)

Cat Swarm Optimization (CSO) Chu et al (2006)

Chicken Swarm Optimization (CSO) Meng et al (2014)

Circle Search Algorithm (CSA) Qais et al (2022)

Coronavirus Herd Immunity Optimizer (CHIO) Al-Betar et al (2021)

Coronavirus mask protection algorithm Yuan et al (2023)

Electric eel foraging optimization Zhao et al (2024)

Firefly Algorithm (FA) Yang (2009)

Flower Pollination Algorithm (FPA) Yang (2012)

Green anaconda optimization Dehghani et al (2023)

Golden Ball Algorithm (GB) Osaba et al (2014)

Gradient-Based Optimizer (GBO) Ahmadianfar et al (2020)

Harmony Search (HS) Lee and Geem (2005)

Harris Hawks Optimizer (HHO) Heidari et al (2019)

Imperialist Competitive Algorithm (ICA) Atashpaz and Lucas (2007)

Jaya Algorithm (JA) Rao (2016)

Kril Herd (KH) Gandomi and Alavi (2012)

Lévy Flight Distribution (LFD) Houssein et al (2020)

Multi-Verse Optimizer (MVO) Mirjalili et al (2016a)
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Algorithms References

Newton-Raphson-based optimizer Sowmya et al (2024)

Pigeon Inspired Optimization (PIO) Duan and Qiao (2014)

Salp Swarm Algorithm (SSA) Mirjalili et al (2017)

Simulated Annealing (SA) Kirkpatrick et al (1983)

Tree Seed Algorithm (TSA) Kiran (2015)

Water Cycle Algorithm (WCA) Eskandar et al (2012)

II.6 Constraint-Handling Techniques

The inclusion of constraints in optimization problems significantly increases the com-
plexity of the optimization process, particularly in ensuring that these constraints are
satisfied (Mezura-Montes and Coello, 2011). Various challenges inherent in real-world
optimization, such as vast search spaces, noise in objective functions, and the intricacy
of the modeling process, with constraints being a critical factor. Constraints can shift
the focus of the search from optimizing the objective function to merely finding a feasible
(i.e., valid) solution.

Bio-inspired algorithms (BIAs), in their original form, were primarily developed to
navigate unconstrained search spaces. However, the need to handle constraints has led to
the development and integration of specialized constraint-handling techniques into BIAs.
These techniques are crucial for directing the search towards regions that contain feasible
solutions while maintaining the algorithm’s exploratory capabilities.

Constraint-handling techniques for bio-inspired algorithms can be categorized in vari-
ous ways. Previous reviews by Mezura-Montes and Coello (2011) and Coello (2002) have
proposed different classifications for these techniques in the context of nature-inspired
algorithms. Based on these works, a simplified taxonomy of the primary categories in-
cludes:

1. Penalty Functions: Penalty functions transform a constrained optimization prob-
lem into an unconstrained one by augmenting the objective function with terms
that penalize constraint violations. This approach allows standard optimization al-
gorithms to address constraints indirectly by heavily penalizing infeasible solutions,
thereby guiding the search towards feasible regions.

2. Decoders: Decoder methods encode solutions in a way that inherently represents
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the feasible domain of the problem. By designing the genotype-to-phenotype map-
ping such that the decoded phenotypes remain within the feasible region, the opti-
mization process is confined to valid solutions, ensuring that all candidates satisfy
the problem’s constraints.

3. Special Operators: Special operators are tailored mechanisms that prioritize fea-
sible solutions over infeasible ones. These operators adjust the search dynamics
of the algorithm to promote the exploration and exploitation of feasible regions,
thus improving convergence towards optimal solutions within the permissible search
space.

4. Separation Approaches: Unlike penalty functions, this approach maintains a
clear distinction between the objective function and constraints. The optimiza-
tion process addresses these components separately, allowing for more sophisticated
strategies that balance the trade-off between optimizing the objective and satisfying
the constraints, often leading to more effective and nuanced solutions.

In the following subsections, we will introduce five common techniques that exemplify
these categories.

II.6.1 Penalty Methods

Penalty functions have historically been the most prevalent approach for incorporating
constraints into optimization problems, both in evolutionary algorithms and traditional
mathematical programming. Originally proposed in the 1940s, these methods have been
extensively studied and expanded upon due to their simplicity and effectiveness (Smith
et al, 1997).

The fundamental idea behind penalty methods is to modify the fitness landscape by
adding a penalty value to the objective function for each violation of the constraints.
This alteration discourages the selection of infeasible solutions during the optimization
process. In their general form, penalty functions can be expressed as:

ψ = f(x) +
p∑

i=0
ri · max(0, gi(x))α +

q∑
j=1

cj · |hj(x)|α (II.31)

where:

• ψ is the modified fitness function to be minimized,

• f(x) is the original objective function,

• gi(x) and hj(x) represent inequality and equality constraints respectively,

• ri and cj are positive penalty factors,
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• α is typically set to 1 or 2.

Although this general implementation is straightforward, it requires tuning multi-
ple penalty parameters corresponding to each constraint, which can be impractical for
problems with a large number of constraints. To address this issue, several variations of
penalty methods have been developed, including static, dynamic, and adaptive penalty
functions.

1. Static Penalty Functions

The static penalty function is the simplest and most widely used form of penalty meth-
ods. It consolidates all constraint violations into a single term, reducing the number of
parameters that need tuning (Kulkarni et al, 2018). The static penalty function is defined
as:

ψ = f(x) + r · ϕ(x) (II.32)

where:

• r is a constant penalty coefficient,

• ϕ(x) represents the overall constraint violation calculated as:

ϕ(x) =
p∑

i=0
max(0, gi(x))α +

q∑
j=1

|hj(x)|α (II.33)

Setting an appropriate value for r is crucial. If r is too low, the search may favor
regions where the objective function is minimized but constraints are violated, leading to
infeasible solutions. Conversely, if r is too high, the search prioritizes feasibility over opti-
mality, which can cause premature convergence to local optima, especially in disjointed or
highly constrained search spaces. Ideally, r should be just sufficient to ensure feasibility
without overly constraining the search, a concept known as the minimum penalty rule.

2. Dynamic Penalty Functions

Dynamic penalty functions address the limitations of static penalties by allowing the
penalty coefficient r to vary throughout the evolutionary process (Yoo et al, 2021). The
general principle is to use lower penalty values in the early stages to encourage exploration
of the search space and higher values in later stages to enforce feasibility. This adaptive
adjustment aims to balance exploration and exploitation effectively.

While dynamic penalties can be effective, their performance heavily depends on the
chosen schedule for updating r. Designing an appropriate schedule adds complexity and
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requires additional parameters, potentially reducing the method’s attractiveness com-
pared to static penalties. Moreover, this approach tends to work best when the un-
constrained global optimum is close to the constrained global optimum, which may not
always be the case.

3. Adaptive Penalty Functions

Adaptive penalty functions further refine the penalty approach by utilizing information
gathered during the search process to adjust the penalty coefficient dynamically. These
methods aim to automate the tuning of r by responding to the current state of the search,
thereby reducing the need for user-defined parameters.

Implementation of adaptive penalties is relatively straightforward, and they can pro-
vide a more balanced search by continuously adapting to the landscape of the problem.
However, studies have shown that adaptive methods may require a significant number of
iterations to converge to the optimal solution (Barbosa et al, 2015).

II.6.2 Stochastic Ranking

Stochastic Ranking (SR), developed by Runarsson and Yao (2000), is a method that bal-
ances the importance of the objective function and constraint violations in optimization.
Instead of using fixed penalties, SR ranks individuals in the population through a prob-
abilistic process. Two individuals are compared based on their objective function with a
certain probability Pf ; if not, their ranking is determined by their constraint violations.

Once ranked, the top individuals are selected for recombination, ensuring that both
high-performing and feasible solutions contribute to the next generation. This method
helps the optimization process focus on improving both the objective function and meeting
the constraints simultaneously.

II.6.3 Feasibility Rules

Feasibility rules are a constraint-handling technique that prioritizes feasible solutions
over infeasible ones. Unlike penalty functions, which combine information from both
constraint violations and the objective function, feasibility rules treat these two aspects
separately (Mezura-Montes et al, 2004; Deb, 2000). This approach, also known as lexi-
cographical order, relies on a binary tournament selection process based on the following
criteria:

1. Any feasible solution is always preferred over any infeasible solution.

2. Among two feasible solutions, the one with the better objective function value is
preferred.
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3. Among two infeasible solutions, the one with the smaller constraint violation is
preferred.

II.6.4 Epsilon Constrained

To address the challenges associated with feasibility rules in constrained problems, Taka-
hama and Sakai (2010) proposed the ϵ-constrained method for evolutionary algorithms.
This method allows a relaxation of constraints to explore constrained regions more ef-
fectively. The tolerance level of this relaxation, referred to as the ϵ level, defines the
threshold below which solutions are considered feasible. Once feasibility is determined
using the ϵ level, the lexicographical order (i.e., Deb’s feasibility rules) is employed to
select individuals for the next generation. This technique has proven particularly effective
in highly constrained problems, such as those involving equality constraints, because the
controlled relaxation in the early generations facilitates the exploration of regions that
would otherwise be unreachable using strict feasibility rules.

The main drawback of this method is the challenge of setting the ϵ parameter. While
the ϵ level allows for effective exploration of the search space during early generations, it
is crucial that ϵ eventually reaches 0 during the evolutionary process to ensure feasible
solutions. For that a dynamic control of the ϵ level to address this issue:

ϵ =

ϵ0 · (1 − t/T )cp if t ≤ p · T

0 otherwise
(II.34)

The parameter cp is intricately computed by:

cp = − log(ϵ0) + λ

log(1 − p) (II.35)

Here, ϵ0 symbolizes the initial threshold, tailored to reflect the maximum degree of
constraint violation within the initial population. T denotes the maximum number of
generations, with its specific value dictated by the context of the study. The parameter
λ contributes to the calculation of cp, while p governs the degree to which information
from the objective function is utilized. This mathematical framework shows the adaptive
nature of ϵ-constrained optimization and its ability to dynamically respond to changing
population dynamics.

II.7 Conclusion

In this chapter, we have explored various popular bio-inspired algorithms, with a par-
ticular focus on those that will be employed in this thesis. By examining their origins,
inspirations, and applications, we have established a foundational understanding of each
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algorithm, which enables their effective use as benchmark algorithms for the subsequent
studies. In the following chapter, we will introduce a methodology that designates Differ-
ential Evolution (DE) as the primary algorithm for optimizing constraints. DE is selected
due to its robust performance across a wide array of applications and its remarkable
adaptability to various constraint types. The upcoming sections will thoroughly investi-
gate the state of the art in Differential Evolution, emphasizing its core principles, recent
advancements, and specific strategies for effectively managing constraints. This focused
analysis will not only highlight DE’s relevance to our research problem but also validate
its selection as the methodological cornerstone of this study. Additionally, in Chapter
IV, we will discuss an application of the Grey Wolf Optimizer (GWO) to the well-known
Traveling Salesman Problem (TSP), which serves as a classic example of a constrained
optimization problem. This application will further illustrate the diverse capabilities of
bio-inspired algorithms in addressing complex optimization challenges. Having explored
the broader category of bio-inspired algorithms and their inherent strengths in addressing
complex optimization problems, it is evident that these nature-inspired methods provide
a rich and versatile toolkit for tackling constrained optimization challenges. Among these
algorithms, Differential Evolution (DE) distinguishes itself as one of the most effective and
versatile approaches available. Its innovative mechanisms for generating new solutions
through mutation, crossover, and selection make DE particularly adept at optimizing
problems where traditional methods may struggle.
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III.1 Introduction

Constrained Optimization Problems (COPs) are prevalent in various real-world applica-
tions, requiring the optimization of an objective function subject to a set of constraints.
As previously discussed in Chapter II, COPs introduce additional complexities due to
the need to balance objective optimization and constraint satisfaction. The landscape
of these problems can be highly intricate, characterized by narrow feasible regions and
disconnected spaces, making the design of efficient optimization algorithms a significant
challenge. Among the techniques available for addressing COPs, Evolutionary Algo-
rithms (EAs) have gained prominence for their flexibility and robustness. Differential
Evolution (DE) has emerged as one of the most effective algorithms, known for its sim-
plicity and strong performance across diverse optimization scenarios. However, when
applied to COPs, DE faces the challenge of navigating complex search landscapes where
constraints and objective functions interact in non-trivial ways. To address these chal-
lenges, constraint-handling techniques (CHTs) have been integrated into DE, enabling it
to better explore feasible regions and avoid infeasible solutions. However, most existing
DE variants rely on fixed coordinate systems, which limit their adaptability to dynamic
and complex constraint landscapes. Furthermore, recent advances, such as the use of
Eigen coordinate systems, have demonstrated promise in improving DE’s adaptability,
yet most research has focused solely on unconstrained problems, neglecting the role of
constraint violation information. This chapter introduces a novel approach, Adaptive
Coordinate System for Constrained Differential Evolution (ACSCDE), which addresses
these limitations by incorporating dual Eigen coordinate systems one focusing on ob-
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jective function optimization and the other on constraint violation. These coordinate
systems are constructed using an archive-based covariance matrix that captures informa-
tion about both feasible and objective landscapes, improving the algorithm’s ability to
balance exploration and exploitation. In addition, ACSCDE utilizes an adaptive selec-
tion process based on the Upper Confidence Bound (UCB) method, dynamically choosing
the most appropriate coordinate system at each stage of the evolutionary process. By
maintaining the original coordinate system to preserve diversity and applying a tailored
mutation strategy, ACSCDE significantly enhances DE’s performance on COPs. The
contributions of this work are:

1. Development of two Eigen coordinate systems utilizing an archive-based covari-
ance matrix. This approach effectively harnesses population distribution data by
incorporating both objective function values and constraint violation information.

2. Definition of a novel selection process for three coordinate systems based on the
upper confidence bound method and an innovative rewarding mechanism.

3. Achievement of a balanced approach between handling constraints and optimizing
the objective function, leading to enhanced performance of DE.

4. Comprehensive experiments conducted on widely recognized benchmark sets to
evaluate the effectiveness of ACSCDE, with comparisons made against advanced
constrained DE variants.

In this chapter, we will review the relevant related work, present the ACSCDE method
in detail, provide experimental results, and conclude with a summary and discussion of
the findings.

III.2 Related work

During the past decade, constrained DE has attracted much attention by the researchers.
The current studies mainly focus on balancing between constraints and objective function
while maintaining the convergence and diversity of the search. Consequently, numerous
methods including different constraint-handling techniques, mutation strategies and con-
trol parameter setting have been presented to strike that balance.

Wang et al (2020) combine the correlation between the objective function and con-
straints with the penalty function technique to update the search direction. Wang et al
(2016b) integrates the information of the objective function to the feasibility rule by
archiving the discarded individuals with better objective functions for a later replace-
ment mechanism process. Li et al (2023a) presents an adaptive penalty coefficient mech-
anism based on the correlation between constraints and objective function, enhanced
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by a method of updating the search direction using an exponentially weighted average.
Qiao et al (2022) introduces a DE variant based on a self-adaptive resources alloca-
tion method, which incorporates three collaborative mutation strategies and dynamically
assigned it to individuals based on their performance feedback. Liang et al (2021) in-
troduced a rankings-based fitness function that combines two rankings: one based on
the ϵ constraint-handling technique and the other on the objective function. The final
fitness is dynamically weighted, balancing constraint satisfaction and objective optimiza-
tion. The method also uses three differential evolution strategies to enhance diversity
and convergence. Wang et al (2019) proposed a composite DE based on three different
trial vector and two stage selection mechanism based on two different constraint-handling
techniques. Mohamed and Sabry (2012) proposed a modified DE variant for solving con-
strained optimization problems. This version introduces a novel mutation scheme, an
updated parameter selection strategy, and a new constraint-handling approach. The mu-
tation involves adding the base vector to the scaled difference between the global best and
worst vectors. The selection process is modified to select a trial based on three criteria.

Recent studies have explored the use of dynamic coordinate systems based on popula-
tion distribution information to enhance the performance of EAs optimization algorithms.
These approaches help algorithms adapt to diverse function landscapes and generate more
promising solutions. However, the majority of this work has been limited to unconstrained
optimization problems.

Wang et al (2014) enhances DE by incorporating covariance matrix learning to es-
tablish a suitable Eigen coordinate system for the crossover operator which makes the
algorithm more rotation-invariant and better suited for problems with high variable cor-
relation.Wang et al (2016a), propose cumulative population distribution information is
used to build an Eigen coordinate system via covariance matrix adaptation. the algo-
rithm creates two trial vectors—one from the original coordinate system and one from
the Eigen coordinate system—for each target vector, selecting the best one for survival.
An eigenvector-based crossover operator was proposed by Guo and Yang (2015), where
the operator utilizes the eigenvectors of the covariance matrix derived from individual
solutions. This approach makes the crossover rotationally invariant by projecting donor
vectors onto an eigenvector basis, providing an alternative coordinate system. In (Liu
et al, 2019) author introduces an Eigen coordinate system based on cumulative population
distribution information. This is achieved through a covariance matrix adaptation strat-
egy and an archiving mechanism. the proposed framework dynamically tunes between
the Eigen and original coordinate systems using a probability vector, which is updated
based on performance feedback from offspring. This mechanism enables NIOAs to better
identify the modality of the function landscape. Gao et al (2022) proposes a Markov
decision model to adaptively choose between the Eigen and original coordinate systems.
The Eigen coordinate system is constructed using cumulative population distribution

69



Chapter III. Adaptive Coordinate Systems for Constrained Differential Evolution 70

information from an archive-based covariance matrix, while the selection process is con-
trolled via reinforcement learning. CMA-ES Hansen and Ostermeier (2001) introduces
the well-established covariance matrix adaptation evolution strategy. In this approach,
offspring are generated by sampling a multivariate normal distribution from an Eigen
coordinate system that is continuously updated using information from both past and
current generations.

While these methods demonstrate significant improvements in optimization, they are
primarily designed for unconstrained problems and often neglect the complexity intro-
duced by constraints. Our proposed approach extends the use of dynamic coordinate
systems to constrained optimization. this research present an adaptive coordinate sys-
tems for DE to strike the balance between objective and constraints, and exploration and
exploitation.

III.3 Proposed approach

III.3.1 Motivation

Recently, research has shown the potential of using population distribution information
to guide the search process, where the distribution of high-quality solutions can provide
valuable insights into the structural characteristics of the problem landscape. There are
a few works involving the population distribution information during the search process
of DE (Li et al, 2023b; Liang et al, 2020) in which they successfully build an Eigen
coordinate system for the crossover phase that can dynamically adapt to the problem
landscape to enhance the optimization performance. However, their Eigen coordinate
systems are built based on the distribution information of the objective function only and
are addressed to unconstrained optimization problems. That is to say, the information
of the whole search process in constrained optimization (objective function, constraint
violation) is underutilized, and consequently, an unreliable Eigen coordinate system may
be generated to misguide the evolution direction.

Motivated by the above considerations, in this chapter, we propose the ACS-CDE in
which two Eigen coordinate systems based on archive population distribution information
are introduced. Specifically, we employ the information of the objective function to
construct an objective-Eigen coordinate system, and the information of the constraint
violation to establish a constrained-Eigen coordinate system to enhance the population
evolution in both feasible and infeasible regions.

As the main operator of DE, the crossover is sensitive to the rotation of the coor-
dinate system. The proposed coordinate system serves as an alternative to the original
coordinate system employed by individuals during the crossover phase. To maintain
the diversity of the population and prevent premature convergence, we implement the
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crossover in both the original and Eigen coordinate systems by choosing a proper co-
ordinate system in an adaptive manner. This scheme can increase the diversity of the
population and prevent premature convergence.

x''2

x2

x'2

x1

x'1

x''1

G(x) <0

G(x) = 0

Global Optimum Feasible Optimum Individuals

o

Figure III.1: Illustration of finding the optimum on different coordinate system for a
multi-modal function in 2D space.

Fig.III.1 introduced the utilization of three coordinate systems. As demonstrated in
Fig.III.1, the distribution information of the population can reflect the features charac-
teristics of the function landscape and the direction to the feasible region to a certain
degree.

The contours of the objective function are not aligned with the original coordinate
system ox1x2, whereas they are aligned parallely with the objective eigen coordinate sys-
tem ox′

1x
′
2. Additionally, the constrained Eigen coordinate system ox′′

1x
′′
2 is more suitable

for the feasibility direction compared to the original coordinates ox1x2.
Consequently, it is anticipated that DE implemented within the Eigen coordinate

system will be able to determine the function landscape’s modality and the direction of
the search. The generated offspring will fall close to the global optimum . This implies
that the Eigen coordinate system has a higher probability of obtaining the optimum than
the original system. It is hoped that the solutions use the objective eigen coordinate
system to guide the solution toward a promising region with a better objective function,
and also use the constrained eigen coordinate system to help the solution enter the feasible
space in the later stage.

71



Chapter III. Adaptive Coordinate Systems for Constrained Differential Evolution 72

In the following sections, we present the proposed strategy of the ACS-CDE. Specifi-
cally, we first introduce how to build the proposed two eigen coordinate systems in Section
3.2. Then, we explain the adaptive selection mechanism to select a proper coordinate
system among the eigen one and the original one in Section 3.3. Afterwards, we formulate
a modified search strategy and a restart mechanism in Section 3.4.

III.3.2 Eigen coordinate system

Eigen coordinate systems are defined by the columns of an orthogonal matrix B, derived
from the Eigen decomposition of the covariance matrix C:

C = BDBT (III.1)

Here, BT is the transpose of an orthogonal matrix B, where D is a diagonal matrix.
Each column of B represents an eigenvector of C, and diagonal elements of D are the
square root of the eigenvalues of C.

In our approach, we involve the population information of a certain number of previous
generations along with current generation solutions to better estimate the covariance
matrix of both Eigen coordinate systems. For each generation t, an archive At that
preserves these solutions selected for estimation is defined as follows:

At = St ∪ St−1 ∪ · · · ∪ St−k (III.2)

Here St is the set of solutions at generation t, and k denotes the length of the archive
A.

The rank-µ-update strategy is employed to update the covariance matrix, benefiting
from the large size of A for improved estimation. Since we have two eigen coordinate
systems based on different information, two covariance matrices will be constructed. In
which, we initialize each covariance matrix C with an identity matrix I formulated as
Cg = I.

The mean vector m⃗(g+1) of the search distribution is initialized with a randomly gen-
erated point in the search space. At each subsequent generation g, m⃗(g+1) is updated
with (III.3).

m⃗(g+1) =
µ∑

i=1
ωiv⃗(i:AS) (III.3)

where the weight coefficient ωi is computed as:

ωi = ln(µ+ 0.5) − ln i
µ ln(µ+ 0.5) − ∑µ

j=1 ln j , i = 1, . . . , µ (III.4)
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Here, µ is the number of selected individuals, v⃗(i:AS) the i-th best individual from
A, and ωi is the i-th weight coefficient. The updated mean vector m⃗(g+1) is a weighted
average of the best µ individuals from archive A, with higher quality individuals receiving
higher weight coefficients.

It’s noteworthy that the procedure for constructing the covariance matrix of both
eigen coordinate systems is the same, thus we are only presenting one procedure approach.
However, a key distinction arises when selecting the optimal individual from the archive
for each coordinate. In the constrained-Eigen coordinate system, the best individuals are
selected based on their minimal constraint violation degree, i.e.,

g(v⃗1:AS) < g(v⃗2:AS) < · · · < g(v⃗µ:AS). (III.5)

Conversely, in the objective eigen coordinate system, they are chosen based on the best
objective function values, with,

f(v⃗1:AS) < f(v⃗2:AS) < · · · < f(v⃗µ:AS). (III.6)

This selection plays a primary role in identifying the landscape of constraints and the
objective function. Additionally, the archive-based covariance matrix C(g+1) is estimated
and updated as follows:

C(g+1)
µ =

µ∑
i=1

ωi(⃗ai:AS − m⃗g)(⃗ai:AS − m⃗g)T (III.7)

C(g+1) = (1 − cµ)Cg + cµC
(g+1)
µ (III.8)

where Cµ = 1
3 × µeff

D2 , µeff =
(∑µ

i=1 ω2
i

)−1, and D denotes the learning rate, the variance
effective selection mass, and the dimension of the search space, respectively.

Finally, to execute the crossover in the Eigen system, we begin by transforming the
target vector x⃗i and mutant vector v⃗i from the original coordinate system to the eigen
one using Eqs.(III.9)-(III.10).

x⃗′
i = BT x⃗i (III.9)

v⃗′
i = BT v⃗i (III.10)

Subsequently, we apply the crossover operator to these transformed vectors, resulting
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a trial vector u⃗′
i within the eigen coordinate system as per Eq. (III.11).

u′
i,j =

v
′
i,j, if randj ≤ CR or j = jrand

x′
i,j, otherwise.

(III.11)

u⃗i = Bu⃗′
i (III.12)

Finally, the trial vector u⃗′
i is converted back to the original system using Eq. (III.12)

for fitness evaluation. This process ensures that the crossover operation is performed in
the eigen coordinate system, facilitating a more effective exploration of the search space
while maintaining the integrity of the original coordinate system for fitness evaluation.

(a) (b)

Figure III.2: Crossover in the original coordinate system ox1x2 and the eigen coordinate
system ox′

1x
′
2, with xi,G as the target vector, vi,G as its mutant vector, and square markers

indicating possible trial vectors.

Fig. III.2 shows the differences between the crossover operator in the original coor-
dinate system (Fig. III.2(a)) and the crossover operator in the Eigen coordinate system
(Fig. III.2(b)) for a problem with variable correlation. Suppose that the Eigen coordinate
system (i.e.,ox′

1x
′
2) is obtained after analyzing the distribution of the population. From

Fig. III.2, it is clear that crossover in the Eigen coordinate system is more promising to
find the global optimum, since the trial vectors generated by the crossover in the Eigen
coordinate system may be more close to the global optimum than the trial vectors created
by the crossover in the original coordinate system.
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III.3.3 Selecting coordinate system

In optimization problems, selecting an appropriate coordinate system plays a crucial
role in guiding the search process effectively. Different coordinate systems offer unique
strengths and weaknesses (Liu et al, 2019; Gao et al, 2022), making them better suited
for different problem landscapes and optimization phases. For example, the original coor-
dinate system provides a straightforward representation of the problem space, while the
Eigen coordinate system can align with principal directions to facilitate a more targeted
search. However, choosing the right coordinate system at each stage is a challenging
decision that can significantly impact convergence speed and solution quality.

1. Adaptive Selection Methods

Adaptive selection methods are common in optimization to determine the best strategies
or coordinate systems. Several approaches have been proposed in the literature, including
reinforcement learning (RL)-based strategies (Hu and Gong, 2022; Gao et al, 2022), ran-
dom selection Wang et al (2014), probabilistic methods (Palakonda and Mallipeddi, 2020),
and Bandit-based methods (Li et al, 2014a). RL-based strategies, for example, utilize
reward-based frameworks to learn and adapt over time, while random selection meth-
ods aim to balance exploration by stochastically alternating between different strategies.
However, RL-based methods can be computationally expensive and require significant
training periods (Dulac-Arnold et al, 2021), making them less practical for every prob-
lem. Meanwhile, simple random or probabilistic approaches lack structured exploitation
and may fail to efficiently leverage useful coordinate systems.

2. Bandit-Based Methods

Bandit-based methods, particularly those based on Multi-Armed Bandit (MAB) algo-
rithms (Auer et al, 2002), have gained traction due to their ability to balance exploration
and exploitation. In MAB-based approaches, the goal is to allocate resources between dif-
ferent competing strategies (or ”arms”) whose properties are partially known and evolve
with feedback over time. These methods aim to exploit promising strategies while ensur-
ing sufficient exploration of other options that might prove beneficial later in the search.

The Upper Confidence Bound (UCB) algorithm is a notable MAB approach known
for its recent advancements and asymptotic optimality guarantees. In UCB-based MAB
algorithms, each arm possesses an empirical quality estimate q(t)

i , and a confidence interval
based on the number of times it has been sampled n

(t)
i . At each time point t, the arm

maximizing the following function is selected:
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q
(t)
i + C ×

√√√√√2 × ln
(∑K

j=1 n
(t)
j

)
n

(t)
i

(III.13)

Here, C serves as a scaling factor, balancing the trade-off between exploitation (favor-
ing arms with superior empirical rewards) and exploration (favoring less-sampled arms).

To overcome the limitations of existing strategies, we introduce an enhanced Up-
per Confidence Bound (UCB) method that balances exploration and exploitation. This
approach involves two key components which will be further discussed (Li et al, 2014a):

1. A credit assignment scheme which assigns reward values to coordinate systems
based on offspring improvement on both fitness f and constraint violation g aspects.

2. A selection mechanism that dynamically selects the coordinate system using the
assigned credits.

Various strategies for credit assignment have been proposed, differing mainly in the
following aspects: (i) how to measure the impact of strategy application; (ii) how to
allocate credit based on these impact assessments. The most common measure of strategy
application impact is the improvement in fitness resulting from generating new offspring
(Li et al, 2014a). However, for constrained optimization, it is challenging to measure
the performance of the new offspring due to the quality of the offspring depending on
both fitness and constraint violation. Also, the range of fitness improvements varies from
problem to problem and even at different stages of an optimization process.

In this work, we introduce a new strategy that measures the quality of the offspring
improvement. The collected information derived from the offspring when the coordinate
system performs better can be categorized into three ranks ie., (1), (2) and (3) based on
f (function value) and g (constraint violation) which can be introduced as follow:

(1) Offspring is better in both f and g

(2) Offspring is better in g but not f .

(3) Offspring is better in f but not g.

In this strategy, we first calculate the reward value received by each improvement
based on its rank, noted as improvement rank reward (IRR). The value of IRR is flexible
and influenced by the overall improvement distribution of the population at each gen-
eration, where it reflects the changing performance and adjusts accordingly. Here, for
each generation t, we sum the number of candidate solutions that has been successfully
improved with the ith rank (ie., 1, 2 or 3), denoted as St

i . Then, we define the measured
reward value for each rank of improvement using a cumulative sum as follows:
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Figure III.3: A 2D Sliding Window that store individual based reward of each coordinate
system .

IRRt
rank1..3 =

∑n
i=rank S

t
i∑n

i=1 S
t
i

(III.14)

Clearly, the smaller the rank, the larger the reward value it gets. Also, all improve-
ments in the same rank will receive the same IRR value. Each individual i that success-
fully applied a coordinate system j that generated a new offspring solution ranked r will
receive a reward value Rt

ij = IRRt
r for that coordinate system.

A sliding window with NP × W × 2 dimensions is used to store reward values Rij

of the recently used coordinate system by each individual. It is organized as a FIFO
queue, ensuring that the stored performance information is relevant to the current search
situation. Figure III.3 shows the structure of a sliding window: the first layer stores the
coordinate system indexes (1, 2, 3) used by each individual, and their associated reward
values are stored in the second layer.

As for the credit value of a coordinate system, it is the average sum of its recent
received reward R in the current sliding window. Based on that, each individual i has a
credit value for each coordinate system j, denoted as Ct

ij determined at each generation
t. The selection of the coordinate system for each individual is then based on a bandit-
based selection scheme similar to the UCB algorithm. The index of the selected coordinate
system is defined as follows:

Ωi = argmax
j=1,2,3

Ct
ij + δ ×

√√√√2 × ln ∑
nt

ij

nt
ij

 (III.15)

Ct
ij =

∑t
t−k R

t
ij

nt
ij

(III.16)
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Figure III.4: Principal of the proposed approach in achieving the trade-off constraints vs
objective and objective vs convergence.

with Ωi is the selected coordinate system for individual i, δ a scaling factor balancing
exploration and exploitation and nt

ij is the number of times system j has been selected
recently by individual i. It’s worth noting that this method is implemented only after
each system has been tried at least once, ensuring a fair exploration phase.

III.3.4 Diversity and convergence

For further enhancing the convergence and diversity of the search and motivating the
balance between constraints and objective function, we employed a distinct search algo-
rithm for each coordinate system to enhance their specialized performance Fig. III.4. For
the original coordinate system, we utilize the DE/current-to-rand/1 mutation strategy
(II.7). In this approach, the target vector learns from information of a randomly selected
individual. This strategy reinforces population diversity since the original coordinate
system exhibits no bias towards specific search directions. While for both Eigen coordi-
nate systems, we employ the DE/current-to-best/1/bin mutation strategy (II.6). This
choice allows us to utilize information from the best individual in the population to guide
the search. However, the criteria for selecting the best individual differ between the
constrained and objective Eigen coordinate systems:

1. Constraint Eigen Coordinate System: The best individual selected with the least
degree of constraint violation. This selection aims to prioritize the satisfaction of
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constraints.

2. Objective Eigen Coordinate System: The best individual is selected based on the
best value of objective function. This choice aims to focus the search on optimizing
the objective function.

Moreover, to avoid the risk of population stagnation within the highly nonlinear and
multi-modal infeasible regions, we incorporate a restart mechanism, similar to the one
proposed in (Wang et al, 2019). This mechanism is based on the standard deviation
of the constraint violation which is calculated and compared to a defined threshold to
identify premature convergence within the infeasible region. A random population will
be generated when stagnation appears.

CS=2CS=1 CS=3

Initialize the  Population P0 ,
Covariance C1

0, C2
0 , Rewards 

R0 and Archive A0 

For each individual Xt in Pt

Get the selected coordinate system
index based on UCB approach

CS = argmax(R1, R2, R3)

Apply mutation using

DE/current-to-rand/1/bin

Apply mutation using

DE/current-to-bestG/1/bin

Apply mutation using

DE/current-to-bestF/1/bin

Apply the crossover on the original
system

Apply the crossover on the objective
Eigen system

Apply the crossover on the constrained 
Eigen system

Update Rewards (R1, R2, R3) 

Update Archive Population At

Is termination 

condition met?

Output the global optimum

End

Update C1, C2  using  n-Best individuals
from archive A,  based on constraints

violation and objective function
respectively 

Start

Figure III.5: A flowchart of ACS-CDE procedure.
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Algorithm 3 The procedure of ACS-CDE
Require: NP,D,MaxFEs
Ensure: Optimal solution x⃗best

1: Initialize FEs = NP , SW, IRR0 = [1, 2/3, 1/3]
2: Initialize C(0)

obj = B(0)
obj = I, C(0)

cv = B(0)
cv = I

3: Initialize Ω = [1, 3, .., 2]1×NP P(0) = [x⃗1, .., x⃗NP ]D×NP A(0) = ∅
4: Calculate F (x(g)

i ) by the objective function, where i = (1, 2, . . . , N)
5: while FEs ≤ MaxFEs do
6: for i = 1 : NP do
7: if Ωi == 1 then
8: v⃗i generated by Eq. (II.7)
9: u⃗i generated by Eq. (II.8)

10: else if Ωi == 2 then
11: v⃗i generated by Eq. (II.6) with x⃗best (ie., based on objective function)
12: u⃗i generated by Eq. (III.11) with Bobj

13: else if Ωi == 3 then
14: v⃗i generated by Eq. (II.6) with x⃗best (ie., based on constraint violation)
15: u⃗i generated by Eq. (III.11) with Bcv

16: end if
17: Evaluate the offspring F (u⃗i) & G(u⃗i) ;
18: Apply the ϵ-constrained method to compare x⃗i and u⃗i Eq. (II.9)
19: store the selected one into P(t+1);
20: FEs = FEs + 1;
21: end for
22: Update At using Eq. (III.2)
23: Sort At based on objective function values
24: Update Ct+1

obj to obtain Bt+1
obj Eq. (III.8)

25: Sort At based on constraint violation values
26: Update Ct+1

cv to obtain Bt+1
cv Eq. (III.8)

27: compute the reward IRRt associated with each improvement rank by Eq. (III.14)
28: Compute the credit value CSCij of each coordinate system by Eq. (III.16)
29: Update Ω ie., Ω = arg maxj=1,2,3

(
CSCt + δ ×

√
2×ln

∑
nt

ij

nt
ij

)
30: end while

A pseudo-code summary of the ACS-CDE framework is provided in Algorithm 3,
outlining the key steps, including Eigen system construction, adaptive selection, and
population evolution. Additionally, a flowchart III.5 illustrates the main steps of the
algorithm, offering a visual overview of the framework.
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III.4 Experimental study

III.4.1 Benchmark problems and parameter settings

Two benchmark test suites, comprising test functions with different features and com-
plexities, were chosen in order to verify the performance of ACS-CDE. Specifically, IEEE
CEC2010 (Mallipeddi and Suganthan, 2010) and the IEEE CEC2017 (Wu et al, 2017)
competition for single objective constrained optimization, respectively.

Table III.1 describes the population size (NP) and the maximum number of function
evaluations (MaxFEs)

Test Functions MaxFEs NP

10D-CEC2010 2.0E+05 60
30D-CEC2010 6.0E+05 80
50D-CEC2017 1.0E+06 80
100D-CEC2017 2.0E+06 100

Table III.1: Parameter settings for MaxFEs and NP.

Twenty-five (25) separate runs were made for every test function. Also, the value
0.0001 is set for the tolerance value δ as recommended in (Wang et al, 2016b), Parameter
are set the same for the compared algorithms. Furthermore, parameters µ = 10E-8 and
Tc = 0.5 × T for the restart scheme and epsilon-constrained methods respectively.

The Friedman and the multi-problem Wilcoxon tests at significance level of 0.05 were
carried out for testing the statistical significance using KEEL software (Alcalá-Fdez et al,
2009).

III.4.2 Experiment on IEEE CEC2010 benchmark

Firstly, our proposed approach ACS-CDE was tested on 18 test functions for 10-dimensional
(10D) and 18 test functions for 30-dimensional (30D). The performance of ACS-CDE
compared with five competitive COEAs recently proposed: C2oDE (Wang et al, 2019),
FROFI (Wang et al, 2016b), CORCO (Wang et al, 2020), DeCODE (Wang et al, 2021),
ITLBO (Wang et al, 2018). Given that (Mallipeddi and Suganthan, 2010) does not pro-
vide the true optimum of CEC2010 test functions, the record of 25 independent runs
is used to obtain the average and standard deviation of the objective function values.
Following that, multi-problem Wilcoxon’s and Friedman’s statistical tests were used to
compare the algorithm’s performance in concurrently.
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In terms of the statistical results on the test functions with 10D and 30D, Tables
III.4 and III.7 summarize the experimental results of the mean objective function values
and standard deviations for the optimal solutions obtained by various algorithms over 25
independent runs denoted as “Mean OFV”, “Std Dev”. For each test function, “+”, “−”,
and “≈” denote the performance of ACS-CDE is better than, worse than, and similar to
that of other COEAs respectively. The symbol “▽” indicates that an algorithm failed to
find feasible solutions in all 25 runs.

As show in Table III.4, for 10D test functions ACS-CDE outperform C2oDE, FROFI,
CORCO, DeCODE, ITLBO on seven, eight, six, six and eight test functions. Conversely,
it performs less than these algorithms on five, two, four, three and three test functions.
Furthermore, results of the Wilcoxon’s signed ranks test in Table III.3 reflect that ACS-
CDE performs better than five compared algorithms. It can be observed that, the values
of R+ are superior than R- in all cases. Additionally, the Friedman’s test shown in Table
III.2 illustrate that, ACS-CDE achieved the first rank among all the algorithm (2.8611)
followed by CORCO(3.3611).

Algorithm Ranking

ACS-CDE 2.8611
CORCO 3.3611
DeCODE 3.5833
C2oDE 3.5833
FROFI 3.7778
ITLBO 3.8333

Table III.2: Ranking of ACS-CDE and Five Methods Using Friedman’s Test on IEEE
CEC2010 10D

Vs R+ R− p-value α = 0.1 α = 0.05
C2oDE 107.5 63.5 ≥ 0.2 No No
FROFI 124.0 47.0 9.874E-02 Yes No
CORCO 103.0 68.0 ≥ 0.2 No No
DeCODE 100.0 53.0 ≥ 0.2 No No
ITLBO 108.5 44.5 1.389E-01 No No

Table III.3: Wilcoxon Test Results for ACS-CDE vs. Five Methods on 18 IEEE CEC2010
10D
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In term of 30D test functions Table III.7 illustrate that ACS-CDE has an edge over
C2oDE, FROFI, CORCO, DeCODE, ITLBO on 12, 11, 7, 12 and 13 test functions.
However, C2oDE, FROFI, CORCO, DeCODE, ITLBO surpass ACS-CDE on one, three,
four, three and two test functions. Similarly, the results of multi-problem Wilcoxon’s and
Friedman’s tests were summarized in Table III.6 and Table III.5, respectively. In Table
III.6 all, R+ values are superior than R- values in all cases and the significant difference
at α = 0.05 can be observed in four cases. Additionally, ACS-CDE obtain the lowest
value (2.3889) followed by CORCO at the Friedman’s test III.5. These findings suggest
that ACS-CDE has very competitive performance against the compared algorithm and
demonstrates a strong capability on solving both 10 and 30 dimensions of IEEE CEC2010
test functions.

Algorithm Ranking

ACS-DE 2.3889
CORCO 2.8056
FROFI 3.7500
DeCODE 3.7500
C2oDE 3.8611
ITLBO 4.4444

Table III.5: Ranking of ACS-CDE and Five Methods Using Friedman’s Test on IEEE
CEC2010 30D

Vs R+ R− p-value α = 0.1 α = 0.05
C2oDE 132.0 21.0 6.652E-3 Yes Yes
FROFI 133.0 38.0 3.85E-2 Yes Yes
CORCO 87.5 65.5 ≥ 0.2 No No
DeCODE 126.5 26.5 1.62129E-2 Yes Yes
ITLBO 123.5 29.5 2.495E-2 Yes Yes

Table III.6: Wilcoxon Test Results for ACS-CDE vs. Five Methods on 18 IEEE CEC2010
30D Functions
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III.4.3 Experiment on IEEE CEC2017 benchmark

To further investigate the performance of the proposed ACS-CDE, the comparison on
the high dimensional i.e., 50D and 100D 28 test functions of the IEEE CEC2017 are
used. Comparative experiments results are conducted with ECO-HTC (Peng et al, 2023),
CORCO (Wang et al, 2020), ITLBO Wang et al (2018), LSHADE44 (Polakova, 2017)
and DeCODE (Wang et al, 2021). LSHADE44 obtain the top rankings in the IEEE
CEC2017 competition and the rest of competitors are recent advanced CDE which are
tested on these 28 functions and achieved excellent results. Since the optimal solutions
are unknown for the CEC2017 benchmarks, Tables III.10 and III.13 show the comparison
results with the ‘Mean OFV and Std Dev over 25 independent runs for each test function
on 50D and 100D, respectively. Note, that test functions where all algorithms failed to
find feasible solutions on the benchmark are excluded from the comparison.

Algorithm Ranking

ACS-CDE 2.0455
CORCO 3.1818
DeCODE 3.4318
LSHADE44 3.9091
ITLBO 4.0227
ECO-HTC 4.4091

Table III.8: Ranking of ACS-CDE and Five Methods Using Friedman’s Test on IEEE
CEC2017 50D

Vs R+ R− p-value α = 0.1 α = 0.05
ECO-HTC 208.5 22.5 5.588E-4 Yes Yes
CORCO 213.0 18.0 2.412E-4 Yes Yes
ITLBO 220.5 10.5 4.673E-5 Yes Yes
LSHADE44 214.5 38.5 3.046E-3 Yes Yes
DeCODE 202.5 28.5 1.4872E-

3
Yes Yes

Table III.9: Wilcoxon Test Results for ACS-CDE vs. Five Methods on 22 IEEE CEC2017
50D Functions
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In the case of 50D, Table III.10 shows that ACS-CDE has the best performance in
most cases. Particularly it surpasses the ECO-HTC, CORCO, ITLBO, LSHADE44 and
DeCODE on 19, 18, 20, 14 and 17 test functions, respectively. On the other hand, ACS-
CDE performs worse than them on 1, 2, 0, 7 and 3 respectively. The average ranking of
the six approaches on the same experiment according to the Friedman’s test in shown in
Table III.8, where ACS-CDE is ranked far less than other competitors (2.0455) making
it in the top rank. The multiple-problem Wilcoxon test results for 22 functions with 50D
are displayed in Table III.9. It is evident that the R+ values are higher than the R-
values in every case. Additionally, it is shown that significant differences occur in every
scenario where α = 0.1 and 0.05.

As shown in Table III.13, in the case of 100D, ACS-CDE performs better than ECO-
HTC, CORCO, ITLBO, LSHADE44 and DeCODE on 20, 17, 20, 14, 19 test functions
while these competitors provide better results on one, two, zero, seven and two test func-
tions. Therefore, this comparison verifies that ACS-CDE demonstrates superior overall
performance on high-dimensional test functions compared to all the aforementioned algo-
rithms. Table III.11 presents the average ranking of the six approaches according to the
Friedman test on 100D. ACS-CDE achieves a significantly lower (1.6667) rank compared
to the other five algorithms, achieving the top rank. Additionally, Table III.12 displays
the multiple-problem Wilcoxon test results on 21 functions. In all instances, the R+
values are larger than the R- values. Furthermore, significant differences are observed in
all cases when α = 0.1 and α = 0.05.

Algorithm Ranking

ACS-CDE 1.6667
CORCO 2.8571
DeCODE 3.3333
LSHADE44 3.5238
ECO-HTC 4.5238
ITLBO 5.0476

Table III.11: Friedman’s test ranking on IEEE CEC2017 100D

Vs R+ R− p-value α = 0.1 α = 0.05
ECO-HTC 218.0 13.0 8.392E-5 Yes Yes
CORCO 197.5 33.5 3.068E-3 Yes Yes
ITLBO 210.0 0.0 1.9074E-6 Yes Yes
LSHADE44 186.0 45.0 1.2692E-2 Yes Yes
DeCODE 196.0 35.0 3.752E-3 Yes Yes

Table III.12: Wilcoxon test on 21 IEEE CEC2017 100D Functions
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III.4.4 Convergence analysis

To illustrate the convergence behavior of the proposed ACS-CDE algorithm compared
to other algorithms, we employed several benchmark tests functions from the CEC2010
and CEC2017 suites. Only the convergence curves of the comparison algorithms which
we could obtain their source codes are plotted.
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Figure III.6: Convergence graphs of ACS-CDE and comparison algorithms on two repre-
sentative CEC2010 functions with 30D.

Figure. III.6 presents the convergence curves for two representative 30D problems
from the CEC2010 benchmark: C03 and C09. The ACS-CDE algorithm exhibits a conver-
gence rate comparable to that of the CORCO algorithm on both test functions. Notably,
CORCO performs slightly better than ACS-CDE and significantly outperforms other al-
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gorithms, which tend to become trapped in local optima. This prove the ACS-CDE’s
robustness in escaping local minima and achieving superior optimization performance.

In Figure. III.7, we show the convergence curves for two representative 50D problems
from the CEC2017 benchmark: C03 and C25. The results clearly indicate that ACS-CDE
maintains a substantial advantage over competing algorithms throughout the entire opti-
mization process. Figure. III.8 illustrates the convergence behavior on high-dimensional
(100D) problems C03 and C09 from the CEC2017 benchmark. Here, ACS-CDE outper-
forms other algorithms significantly from the early stages of optimization through to the
later stages. This indicates that the proposed ACS-CDE scales effectively with dimen-
sionality, maintaining its optimization efficiency and effectiveness even as the problem
complexity increases.
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Figure III.8: Convergence graphs of ACS-CDE and comparison algorithms on two repre-
sentative CEC2017 functions with 100D.

Overall, the convergence results highlight the competitive performance of ACS-CDE
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Figure III.7: Convergence graphs of ACS-CDE and comparison algorithms on two repre-
sentative CEC2017 functions with 50D.

against other advanced optimization methods on both CEC2010 and CEC2017 bench-
mark problems. Particularly, ACS-CDE shows a marked improvement in high-dimensional
scenarios, where it consistently achieves better convergence than its counterparts. This
demonstrates the capability of our proposed ACS-CDE to handle complex, high-dimensional
optimization problems effectively.
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III.4.5 Effectiveness of Eigen coordinate system

To demonstrate the effectiveness of incorporating the Eigen coordinate system based on
the information of the constraint violation and the objective function, we implemented
two variants of our proposed approach i.e. ACSCDE-objective and ACSCDE-constraint.
In the ACSCDE-objective, we only use the objective Eigen coordinate system and for
the ACSCDE-constraint only the constrained Eigen coordinate system is incorporated,
while the original system is removed from both variants. Additionally, to verify the
effectiveness of the adaptive selection of multiple coordinate system, a third variant noted
as ACSCDE-Random was implemented, where the proposed adaptive system selection
scheme is replaced with a random selection method of the three coordinate system. The
rest of other components for each variant are kept the same as in the original ACSCDE.

The three algorithm variants were assessed using the 18 (30D) test functions from the
IEEE CEC2010 suite. Their performance compared with that of ACS-CDE in table III.16.
As shown in the Table III.16 , the variants ACSCDE-objective, ACSCDE-constraint,
ACSCDE-random obtain inferior results compared with ACSCDE in most test functions
where they only performed better in 5, 3, 3 out of 18 cases respectively. Also, it is
observed that ACSCDE-objective cannot find a feasible solution consistently in two test
functions, those are, C11 and C12 with 30D. The performance of ACSCDE -Constraint
and ACSCDE -Objective on CEC 2010 with 30D reveals their respective strengths and
weaknesses of each system.

Algorithm Ranking

ACS-CDE 2.0000
ACSCDE-Random 2.2778
ACSCDE-Objective 2.6389
ACSCDE-Constraint 3.0833

Table III.14: Friedman’s test of the ACS-CDE and its variants on IEEE CEC2010 with
30D.

VS R+ R− p-value
ACSCDE-Objective 96.0 57.0 ≥ 0.2
ACSCDE-Constraint 137.5 15.5 2.334E-3
ACSCDE-Random 105.0 48.0 1.9E-1

Table III.15: Results obtained by the Wilcoxon test for algorithm ACSCDE and its
variants on IEEE CEC2010 with 30D.
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Furthermore, Table III.14-III.15 present a statistical significant results of the Fried-
man’s test and the Wilcoxon’s signed rank test, respectively, it can be seen the ACSCDE
can get the best results compared with its variants. this imply that utilizing two coordi-
nate systems by leveraging from the information of the objective and constraint function
is very important to improve the performance and achieving the trade-off between con-
straint and objective. Also, by comparing with ACSCDE-random we find that properly
utilizing the Eigen coordinate systems is very crucial to better adapt to the complexity
of various test functions.

The convergence performance of ACS-CDE and its variants across four test func-
tions (C03, C07, C13, C16) is depicted in Fig.III.9. The figure demonstrates that the
convergence rate of ACSCDE can sometimes lag behind the other variants due to its
consideration of both objective function and constraint violation information during the
optimization process. However, ACSCDE consistently manages to identify the optimal
solution in the later stages.
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Figure III.9: The convergence performance of ACS-CDE and its variants on CEC2010
30D: (a) C03, (b) C07, (c) C13, (d) C16.

In summary, the aforementioned experimental findings reveal that designing an adap-
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tive dynamic coordinate system based on the characteristics of the COPs in term of
objective and constraint function information is effective in dealing with COPs with
complex constraints and COPs with complex objective.

III.4.6 Diversity analysis

In this section, we present the population diversity curve for the proposed ACS-CDE
algorithm, as illustrated in Figure III.10. This figure displays the evolution of diversity
throughout the optimization process, comparing the proposed algorithm with its variants
that has been discussed in the previous section III.4.5.
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Figure III.10: Population diversity of ACS-CDE and its variants on CEC2010-30D functions.
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Diversity is calculated using the distribution state Ds of the population, defined as
follows:

Ds =
D∑

i=1
std(x1(i), . . . , xNP (i)), (III.17)

where D represents the number of dimensions and NP is the population size. This
metric is commonly used as an indicator of population diversity during evolution Wang
et al (2020).

The performance of the diversity in our proposed algorithm, which utilizes the orig-
inal coordinate system combined with a mutation strategy that emphasizes diversity, is
particularly notable when compared to variants that do not incorporate the original sys-
tem Fig III.10. This integration enhances the algorithm’s ability to maintain diversity,
thereby improving its performance during the optimization process.

It is crucial to recognize that the nature of the optimization problem significantly in-
fluences diversity outcomes. For simpler problems, the algorithm may converge quickly in
the initial stages, which could lead to a decrease in diversity. This rapid convergence does
not inherently signify poor performance; rather, it may indicate efficient optimization.

III.4.7 Effectiveness of the adaptive selection mechanism

To gain a deeper understanding of the behavior of adaptive selection among the three-
coordinate systems, we recorded the selection count of each system across the entire
population during the search process. We used two representative test functions, C09 and
C12, each with 10 D from the CEC2010, to investigate the effectiveness of the adaptive
selection mechanism.

For the C09 function Fig. III.11, the data indicates that the objective-oriented system
dominates the selection process throughout most of the search, particularly in the early
stages. This suggests that the objective-oriented system is more effective for the C09 test
function, delivering superior performance during the initial exploration.

In contrast in Fig. III.12, for the C12 function, the system selection process observed
three distinct phases. During the initial phase (first 2000 generations), none of the co-
ordinate system consistently dominates and systems are selected almost equally. In the
second phase (second 2000 generations), the constrained-oriented system clearly prevails,
indicating its superior performance at this stage by guiding the search towards feasible
regions. In the final phase (last 2000 generations), as the search process enters the feasible
region, the selection probabilities for the original and constrained systems are converged,
while the dominance of the objective system increases.
Additionally, it is observed that throughout the entire process, even less effective systems
are continuously explored, demonstrating a balance between exploration and exploitation.

97



Chapter III. Adaptive Coordinate Systems for Constrained Differential Evolution 98

0 1000 2000 3000 4000 5000 6000

Generations

10

15

20

25

30

35

40

45

50

55

60
c
o

o
rd

in
a

te
 s

y
s
te

m
 s

e
le

c
ti
o

n
 c

o
u

n
t

original-system

objective-system

constrained-system

(a)

0 500 1000 1500 2000 2500

Generations

10
-6

10
-4

10
-2

10
0

10
2

M
in

 C
o

n
s
tr

a
in

ts
 v

io
la

ti
o

n
 V

a
lu

e

(b)

Figure III.11: Evolution of ACS-CDE on C09 with 10D: (a) coordinate system selection count,
(b) min degree of constraint violation
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Figure III.12: Evolution of ACS-CDE on C12 with 10D: (a) coordinate system selection count,
(b) min degree of constraint violation

These findings imply that the proposed adaptive system effectively selects the most
suitable coordinate system in a manner that is contextually appropriate for different
stages of the search. The observed selection dynamics are influenced primarily by the
complexity of the objective and constraint functions, which dictate the selection rates of
each system. It is essential to explore the search space extensively in the initial stages to
understand the landscape of both the objective and constraints and to focus on exploita-
tion in later stages. Notably, the epsilon-constrained method employed in this research
allow using more information from the objective function at the initial stage.
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III.5 Conclusion

This chapter introduced ACS-CDE, an adaptive coordinate system for constrained dif-
ferential evolution, to address the balance between objective optimization and constraint
satisfaction in constrained optimization problems (COPs). By utilizing two dynamic
coordinate systems—one guiding the population toward optimal solutions and the other
toward feasible regions. The coordinate system constructed using an archive-based covari-
ance matrix. Moreover, an adaptive selection process for the coordinate systems based
on the multi-armed bandit is developed. The algorithm also incorporates an epsilon
constraint-handling technique and a restart mechanism to address complex constraints.

Our experimental results on the CEC2010 and CEC2017 benchmark test suites demon-
strate that ACS-CDE is effective in solving complex COPs, outperforming several ad-
vanced state-of-the-art techniques. The dynamic coordinate system framework enables
ACS-CDE to adaptively navigate the fitness landscape, striking a balance between ex-
ploring feasible regions and optimizing the objective function. However, ACS-CDE has
some limitations. The algorithm may experience slower convergence on certain COPs,
especially those with tightly constrained or highly complex landscapes. Additionally, the
covariance matrix updates can lead to increased computational overhead, which could
limit the algorithm’s scalability to larger, real-world problems with high-dimensional
search spaces.

To address these limitations, future work could focus on improving ACS-CDE’s com-
putational efficiency, such as reducing the frequency of covariance matrix updates and
enhancing convergence speed in highly constrained problems. We also plan to extend
ACS-CDE to handle multi-objective optimization, balancing multiple conflicting objec-
tives and constraints, and apply it to expensive optimization problems where evaluations
are costly. Incorporating surrogate models or reducing the number of evaluations could
make ACS-CDE more applicable to real-world engineering and scientific challenges.
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Chapter IV
Grey Wolf Optimizer for TSP

IV.1 Introduction

In this chapter, we explore the practical application of bio-inspired algorithms, focus-
ing specifically on their adaptation for discrete optimization problems. Building on the
theoretical foundations of constrained optimization and bio-inspired methodologies es-
tablished in previous chapters, we now apply these concepts to address the Traveling
Salesman Problem (TSP), a classic NP-hard challenge. The TSP serves as a crucial
benchmark for assessing optimization algorithms’ effectiveness in tackling complex com-
binatorial problems.

Given the proven success of bio-inspired algorithms in continuous optimization, we
propose an enhanced variant of the Grey Wolf Optimizer (GWO) adapted for discrete
optimization tasks. Through the integration of 2-opt and swap mechanisms, in addition
to a proposed greedy approach for solution construction, we illustrate how these adap-
tations enable effective solutions to the TSP. This chapter demonstrates the versatility
and robustness of bio-inspired algorithms in discrete problem domains, supporting the
broader objectives of this thesis: advancing optimization techniques and showcasing their
applicability across diverse problem contexts.

IV.2 Literature Review

The Grey Wolf Optimizer (GWO) is an effective meta-heuristic algorithm known for
its well-balanced convergence between exploration and exploitation during the search
process. Due to this capability, GWO has attracted significant research interest and
has been successfully applied across various domains, including engineering optimization
(Nadimi-Shahraki et al, 2021), image processing (Li et al, 2017), clustering (Tripathi
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et al, 2018), path planning (Qu et al, 2020), power dispatch (Sulaiman et al, 2015),
and scheduling (Komaki and Kayvanfar, 2015). Given the complexity inherent to these
applications, numerous GWO variants have emerged to address specific challenges.

For instance, an improved GWO (I-GWO) tailored for engineering design optimization
is proposed in (Nadimi-Shahraki et al, 2021), where a dimension-learning hunting (DLH)
strategy is implemented to enhance the balance between exploration and exploitation. In
another study, chaotic maps and Opposition-Based Learning (OBL) are applied to GWO
for improved initial population diversity (Ibrahim et al, 2018). In multi-objective opti-
mization, Mirjalili et al (2016b) developed a multi-objective version of GWO (MOGWO)
with an external archive to support solution diversity.

For discrete optimization challenges, researchers have developed specialized GWO
adaptations. For example, Lu et al (2016) introduced a multi-objective discrete GWO
for real-world scheduling in welding processes, using permutation vectors and a machine
assignment matrix for encoding. In image processing, a modified discrete GWO using
rounding and weighted updating was employed for multiple image thresholding (Li et al,
2017). Additionally, Komaki and Kayvanfar (2015) utilized a largest-position-value ap-
proach in GWO for a two-stage assembly flow shop scheduling problem. Binary GWO
adaptations, such as the one by Emary et al (2016) for feature selection, use binary steps
with crossover and sigmoidal functions for position updates, while Zhang et al (2016)
applied GWO to a 2D path planning problem for unmanned aerial vehicles.

To further enhance GWO’s performance, researchers have hybridized it with various
techniques. For instance, Tripathi et al (2018) combined GWO with Map-Reduce and en-
hanced it with binomial crossover and Lévy flights for clustering tasks, while Jayabarathi
et al (2016) used crossover and mutation operators to solve economic dispatch problems.
Another approach, GWO-DE, hybridizes GWO with Differential Evolution to address
nonlinear systems effectively (Tawhid and Ibrahim, 2020).

This work focuses on developing a novel GWO updating strategy. Various updating
strategies have been proposed to improve GWO, such as a weighted average method in
(Malik et al, 2015) and an exploration-enhanced GWO (EEGWO) that bases updates on
the three best individuals plus a randomly selected individual from the population (Long
et al, 2018a). Additionally, Long et al (2018b) applied GWO to large-scale optimization
by modifying position updates based on personal historical and global best positions.

Despite the extensive research on GWO adaptations, limited attention has been given
to routing problems, particularly the Traveling Salesman Problem (TSP). Panwar and
Deep (2021) introduced a discrete GWO for TSP that employs Hamming distance and
2-opt algorithms for the update mechanism, taking the best of three new solutions as the
final position rather than the standard average. While effective, this approach does not
fully exploit all GWO parameters, which we address in this study through an extended
GWO framework with additional algorithm parameters.

102



Chapter IV. Grey Wolf Optimizer for TSP 103

The TSP remains a popular benchmark for assessing algorithm performance in dis-
crete optimization. Various approaches have been applied to TSP, including classical
methods like Tabu Search (TS) (Knox, 1994), Genetic Algorithms (GA) (Hussain et al,
2017; Moon et al, 2002), Simulated Annealing (SA) (Geng et al, 2011), Ant Colony Op-
timization (Dorigo and Gambardella, 1997), Particle Swarm Optimization (Wang et al,
2003), and Artificial Bee Colony (Karaboga and Gorkemli, 2011). In recent years, novel
meta-heuristic algorithms have also emerged, such as Cuckoo Search (Ouaarab et al,
2014), Pigeon-Inspired Optimization (Zhong et al, 2019), Firefly Algorithm (Jati et al,
2011), Harmony Search (Boryczka and Szwarc, 2019), Spider Monkey Optimization (Ak-
hand et al, 2020), Crow Search Algorithm (Al-Gaphari et al, 2021), and Bat Algorithm
(Osaba et al, 2016), sparrow search algorithm (Zhang and Han, 2022).

This review highlights key contributions in GWO adaptations and TSP solutions.
However, numerous related studies remain beyond the scope of this work. For a broader
overview of GWO applications, readers are referred to Faris et al (2018), and for further
insights into TSP, see Osaba et al (2020).

IV.3 Problem Statement

The Traveling Salesman Problem (TSP) is one of the most well-known and extensively
studied problems in combinatorial optimization literature. As an NP-hard problem, it
poses significant computational challenges, making it an attractive case for developing and
testing optimization algorithms. This complexity has motivated numerous researchers to
devise diverse approaches to solve the TSP efficiently (Lawler et al, 1986).

Figure IV.1: Traveling salesman problem schema
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The objective of the TSP is to determine the shortest possible path that allows a
salesman to visit a set of cities (nodes) exactly once, starting and ending at the same
city. Mathematically, the TSP can be represented by a graph G = (V,E), where V =
{V1, V2, . . . , Vn} represents the set of cities (vertices), and E is the set of arcs (edges)
representing the paths between the cities. Each edge in the graph has an associated
distance or cost.

Formally, let xij represent the distance between city i and city j. The goal is to find
a Hamiltonian cycle—a closed path that visits each vertex exactly once and minimizes
the total travel cost, which can be written as:

min Z =
n∑

i=1

n∑
j=1

dijxij (IV.1)

s.t



∑n

j=1 xij = 1, i ̸= j, i ∈ V∑n

i=1 xij = 1, i ̸= j, j ∈ V

xij ∈ {0, 1}

(IV.2)

where xij is a binary variable that takes the value 1 if the tour travels from city i to
city j, and 0 otherwise.

This classical formulation of TSP provides the foundation for more advanced algo-
rithms and solution techniques explored later in this work. The NP-hard nature of the
problem necessitates the use of approximation, heuristics, or meta-heuristic methods, es-
pecially for larger instances, making TSP a rich field of study in both theoretical and
applied optimization research.

IV.4 Proposed greedy discrete GWO algorithm

This section presents our adaptation of the Grey Wolf Optimizer (GWO) for solving the
Traveling Salesman Problem (TSP). In addition, we introduce a novel solution construc-
tion approach tailored to the discrete nature of the TSP.

As discussed in Chapter 2, the original GWO algorithm is primarily designed for con-
tinuous optimization problems. However, both TSP and other similar routing problems
are combinatorial in nature, requiring discrete optimization techniques. Therefore, sev-
eral modifications to the traditional GWO framework are necessary to adapt it effectively
for TSP.
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Figure IV.2: Flowchart of GD-GWO

To address these challenges, we propose an algorithm with the following procedure:

IV.4.1 Representation and Initialization

In the proposed algorithm, each wolf in the population represents a feasible solution to
the TSP, with the total travel cost of the route serving as the objective function. Each
solution is encoded as a permutation of city indices, which dictates the order in which
the cities are visited.

During the initialization phase, the population is generated by randomly permuting
city indices for each solution. This random initialization helps ensure a diverse starting
population, which is essential for thoroughly exploring the search space and reducing the
risk of premature convergence.
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IV.4.2 Position Update

In the proposed Greedy Discrete Grey Wolf Optimizer (GD-GWO) algorithm, we adapt
the original Grey Wolf Optimizer (GWO) for the Traveling Salesman Problem (TSP)
by incorporating the 2-opt local search algorithm, swapping move and the concept of
Hamming distance. Furthermore we developed a greedy mechanism from the constructing
the final solution. The following procedure describe each of this concepts:

1. Hamming distance-based approach

In this modified GWO approach, we measure the difference between two solutions by
calculating their Hamming distance, which indicates the number of differing elements
between two permutation vectors. For each comparison, only a randomly selected portion
of the sequence is analyzed, controlled by a coefficient C representing a fraction of the
total number of cities. Specifically, the distance-based difference vectors Dα, Dβ, and Dδ

are calculated as follows:

Dα =
∑

k∈subseq
δ(Xi(k), Xα(k)) (IV.3)

Dβ =
∑

k∈subseq
δ(Xi(k), Xβ(k)) (IV.4)

Dδ =
∑

k∈subseq
δ(Xi(k), Xδ(k)) (IV.5)

where:

• subseq is a randomly selected subset of indices within the range [1, n], with size
|subseq| = C × n, where n is the total number of cities.

• δ(Xi(k), Xj(k)) =

1 if Xi(k) ̸= Xj(k)

0 if Xi(k) = Xj(k)
.

For instance, consider two positions in a TSP instance with 10 nodes, as shown in
Figure IV.3. Assuming the parameters C = 5, i = 3, and j = 8, the difference vector D⃗
between X⃗p and X⃗ would yield a value of 3.

Figure IV.3: Illustration of two solution vectors difference
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2. Updating approach

After calculating the approximate distances D, each candidate solution in the basic GWO
updates its position according to alpha, beta, and delta using Eq. II.12. However, this
formula cannot be applied directly to the TSP. Therefore this study provides two leading
operators for the movement update:

• 2-Opt move

2-opt algorithm, introduced by Croes Croes (1958), is a local search technique
widely used to improve route quality in TSP and other routing problems. It op-
timizes the route by iteratively eliminating two randomly chosen edges from the
path and reconnecting them to reduce the overall travel cost. This helps accelerate
convergence and achieve more accurate solutions. In Figure.IV.4, we can see how
the 2-opt move shortens the route by reorganizing connections. An Example of
route transformation using 2-opt:

a

b
c

d

e
f

g

a

b

c

d

e
f

g

Figure IV.4: Example of 2-opt movement

– Initial route: A → B → E → D → C → F → G

– After reconnecting, the new route might look like: A → B → C → D → E →
F → G

The algorithm continues to refine the route with repeated 2-opt moves, progressively
building on improved paths.
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• Swap move

The swap move is another local search technique in which two random cities in the
current route are swapped to adjust the sequence, potentially leading to a better
solution. Example route transformation using swap move between city 2 and 5 in
a sample route:

– Initial route: A → B → E → D → C → F → G

– After swapping cities, the new route is: A → B → F → D → C → E → G

By integrating these two local search techniques, the GD-GWO algorithm enhances
exploration and refines solutions, making it well-suited for the TSP and similar combi-
natorial optimization problems.

Similar to the original Grey Wolf Optimizer (GWO), the proposed algorithm updates
each wolf’s position using the difference vectors Dα, Dβ, and Dδ. In each time step t,
each wolf i generates new candidate positions X1, X2, and X3 based on these vectors:

1. Generating X1: For each generation, wolf i performs a series of Dα 2-opt moves
on its current solution. Each time an improved solution is found, it replaces the
previous one. This approach ensures that the 2-opt moves incrementally enhance
the solution quality Fig.IV.5.

2. Generating X2: Each wolf examines Dβ neighboring solutions by applying 2-opt
move on and selecting the best one as its new position Fig.IV.6.

3. Generating X3: Each wolf examines Dδ neighbors using the swap move, compar-
ing the results and selecting the best one for its next position Fig.IV.7.

Figure IV.5: successive 2-opt moves update approach
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Figure IV.6: 2-opt move update approach

Figure IV.7: swap move update approach

Additionally, to generate a new solution, a modification of the original equation is
used, with two methods available for selecting the wolf’s new position:

1. In the first method, the best candidate among X1, X2, and X3, denoted as Xbest,
is chosen as the wolf’s new position.

2. In the second method, a greedy approach is used to create a new position by com-
paring the current wolf position Xi and Xbest. This approach will be discussed
further in a later section.

The choice of which method to apply is controlled by the parameter |A| from the
original GWO:

X⃗new =

X⃗best, if |A| ≥ 1,

greedy(X⃗i, X⃗best), if |A| < 1.
(IV.6)

This dynamic alternation between exploration (using swap mutation) and exploitation
(via 2-opt moves) enhances the search process, balancing global exploration and local
refinement to improve convergence quality.
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IV.4.3 Proposed Greedy Position Approach

In this section, we describe the Greedy Position Approach used to construct solutions
for the Traveling Salesman Problem (TSP) within the Grey Wolf Optimizer (GWO)
framework. This approach incrementally builds a solution by selecting cities based on
their proximity to the current city, effectively minimizing the travel distance at each
step. Also it balances exploration and exploitation by utilizing both the current agent’s
position and a guide vector generated during the GWO update step. The procedure is
described by the following:

Constructs a new solution by selecting the next city to visit based on the positions of
the corresponding cities in Xcurrent and Xbest. The city closest to the last visited city is
chosen, minimizing the immediate travel distance.

0 1 4 7 3 2 5 6 0 3 5 6 1 4 2 7
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0 1 5

0

0 1 5 7

0 1 5 7 3

0 1 5 7 3 4

0 1 5 7 3 4 2
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Figure IV.8: Demonstration of greedy position approach.

The Greedy Position Approach starts by initializing an empty solution vector and
an unvisited cities set. Each iteration involves selecting the next city based on a greedy
criterion that minimizes the immediate travel distance. The algorithm details are as
follows:
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• Initialization: Begin with an empty solution vector and a set to track visited
cities. The process starts from a predefined starting city.

• Iterative Construction: For each step in the tour:

(Note only cities that align with the same position in the sequence of each vector
are considered see figure IV.8)

– Select two potential next cities: next city current from the current wolf
position vector and next city X from the X⃗best, vector.

– Evaluate both cities for the shortest unvisited option and select the one with
the minimal distance from the current city.

– Update the solution vector with the chosen city and mark it as visited.

• Termination: The process repeats until all cities are visited, resulting in a feasible
TSP route.

The key to this approach lies in the greedy selection mechanism, which is used to
choose the next city to add to the tour based on proximity. Given two candidate cities
(next city current and next city X), the algorithm computes the travel distance from
the current city to each candidate, selecting the one with the shorter distance if both are
unvisited. If only one candidate remains unvisited, it is automatically chosen for the next
step.

The greedy selection mechanism ensures that each addition to the tour is locally
optimized, contributing to a shorter overall path. This greedy heuristic is computationally
efficient and aids in rapid convergence of the algorithm.

Figure IV.8 demonstrates the process of constructing a tour using the Greedy Position
Approach. In this example, we visualize the selection of cities based on distance, with
each step showing the comparison of distances between the candidates and the current
city, resulting in an incrementally constructed optimized tour. For this example, we
consider the X⃗best and X⃗i to construct a new solution X⃗i,new using our strategy. first, we
add the closest city to the depot. then we continue to concatenate the last city of the
new solution by the closest city either from X⃗best or X⃗i based on the strategy chosen.
During the construction process of the new solution, it is necessary to ensure that the
cities chosen from X⃗best and X⃗i are not already in the new solution. The pseudo-code
and the flowchart of the proposed GD-GWO is depicted in Algorithm 4 and Fig.IV.2.
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Algorithm 4 Pseudo Code of GD-GWO
1: Define the cost function f(x)
2: Initialize population of wolves Xi(i = 1, 2, . . . , n)
3: Initialize the parameters a, A, and C

4: while t ≤ MaxIter do
5: Calculate the fitness of each wolf
6: Update value of A
7: Xα = the best search agent
8: Xβ = the second best search agent
9: Xδ = the third best search agent

10: for wolf Xi in the population do
11: Dα = ∑

k∈subseq δ(Xi(k), Xα(k))
12: Dβ = ∑

k∈subseq δ(Xi(k), Xβ(k))
13: Dδ = ∑

k∈subseq δ(Xi(k), Xδ(k))
14: X1 = 2-opt(Xi, Dα)
15: X2 = 2-opt(Xi, Dβ)
16: X3 = swap(Xi, Dδ)
17: Xbest = best(X1, X2, X3)
18: if |A| < 0 then
19: Xi = Xbest

20: else
21: Xi = greedy(Xi, Xbest)
22: end if
23: t = t+ 1
24: end for
25: end while

IV.5 Experimental Evaluation

To assess the effectiveness of the Greedy Discrete Grey Wolf Optimizer (GD-GWO) in
solving the Traveling Salesman Problem (TSP), experiments were conducted on 19 bench-
mark instances from TSPLIB (Reinelt, 1991). These instances varied in size and com-
plexity, from smaller problems like Oliver30 to larger, more challenging instances such as
Pr264 and Pr299.

The experiments for GD-GWO are conducted on a 2.30 GHz CPU Desktop with 4
GB RAM, while implemented on software MATLAB R2016a. It is important to mention
that results obtained by all the comparison techniques DICA, GA, ESA, and IDGA have
been taken from recently published work (Osaba et al, 2016) Also, it is worth mentioning
that results depend on random numbers so they can vary slightly. The primary metric
of comparison was the mean solution quality (Mean) across multiple runs, while addi-
tional metrics, including standard deviation, provided further insight into algorithmic
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performance.
The performance of the proposed GD-GWO algorithm has been compared with four

other algorithms: ESA, DICA, IDGA, and GA summarized in Table IV.2. The results in
Table IV.2 highlight GD-GWO’s ability to achieve superior or comparable results across
multiple instances, demonstrating its robustness and effectiveness in solving optimization
problems.
Comparison with ESA: GD-GWO outperformed ESA in Oliver30, Eil51, Berlin52, St70,
Eil76, KroA100, KroB100, and KroC100. It performed equally in KroD100 and KroE100,
and was outperformed in Eil101, Pr107, Pr124, Pr136, Pr144, Pr152, Pr264, and Pr299.
Comparison with DICA: GD-GWO performed better than DICA in Oliver30, Eil51,
Berlin52, St70, Eil76, KroA100, KroB100, KroC100, and KroD100. It performed equally
in KroE100 and Eil101, and was outperformed in Pr107, Pr124, Pr136, Pr144, Pr152,
Pr264, and Pr299.
Comparison with IDGA: GD-GWO outperformed IDGA in Oliver30, Eil51, Berlin52,
St70, Eil76, KroA100, KroB100, KroC100, KroD100, KroE100, Eil101, Pr107, Pr124,
Pr136, and Pr144. It performed equally in Pr152 and was outperformed in Pr264 and
Pr299.
Comparison with GA: GD-GWO showed the strongest performance against GA, out-
performing it in Oliver30, Eil51, Berlin52, St70, Eil76, KroA100, KroB100, KroC100,
KroD100, KroE100, Eil101, Pr107, Pr124, Pr136, Pr144, and Pr152. It performed equally
in Pr264 and was outperformed in Pr299.

To ensure a fair and rigorous comparison, Friedman’s non-parametric test was con-
ducted on the results using KEEL software (Alcalá-Fdez et al, 2009), to determine any
significant differences between the algorithms considered in the experimentation. The
test results, presented as mean rankings in Table IV.1, indicate that lower mean ranks
correspond to better performance. As seen in the table, the proposed DG-GWO algo-
rithm achieves the lowest mean rank, confirming its superior performance compared to
the other approaches.

Algorithm Ranking

GDGWO 2.11
DICA 2.13
ESA 2.47
IDGA 3.61
GA 4.66

Table IV.1: Average Rankings of the Algorithms
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(a) (b)

(c) (d)

Figure IV.9: Convergence curves of GD-GWO: (a) Eil51, (b) Eil76, (c) kroA100, (d) pr76
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(a) (b)

(c) (d)

Figure IV.10: Best tours obtained by GD-GWO: (a) Eil51, (b) Eil76, (c) kroA100, (d) ratt99
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Fig.IV.9 shows the convergence tests of a number of TSP problem instances of differ-
ent scales which were benchmarked to test the effectiveness of the DG-GWO algorithm
where only the first 100 iterations are shown. It is important to note that convergence
graphs are only presented for the proposed algorithm since the data for the other algo-
rithms, used for comparison, were sourced from the literature, where this information
was unavailable. Furthermore, Fig.IV.10 illustrate some of the best tours achieved by the
proposed approach in some TSP instances.

IV.6 Conclusion

In this chapter, we proposed a Greedy Discrete Grey Wolf Optimizer (GD-GWO) as a
novel approach for solving the Traveling Salesman Problem (TSP), demonstrating the
potential of bio-inspired algorithms in constrained optimization. The original Grey Wolf
Optimizer, designed for continuous optimization, was adapted to handle discrete problems
by incorporating mechanisms like 2-opt and swap mutation, as well as a greedy selection
process. This modification allowed us to effectively address the combinatorial constraints
inherent in the TSP.

Our primary goal was to showcase the success of bio-inspired algorithms, such as
GD-GWO, in solving constrained optimization problems. To validate this, we compared
the performance of GD-GWO with four state-of-the-art algorithms across 10 benchmark
TSP instances. The results clearly demonstrated that GD-GWO provided competitive
solutions, reinforcing the efficacy of bio-inspired methods in navigating the complex search
space of constrained problems like the TSP. Despite the increased computational time
as problem complexity grew, GD-GWO remained a promising alternative to traditional
metaheuristics, showing that bio-inspired strategies can successfully manage constraints
while finding high-quality solutions.

Moreover, the flexibility of GD-GWO suggests that it can be extended to other con-
strained routing problems. Future work may involve enhancing the algorithm by incorpo-
rating additional features from the original GWO and exploring its effectiveness in solving
real-world constrained optimization problems, such as the Capacitated Vehicle Routing
Problem (CVRP) and Rich Vehicle Routing Problem (RVRP). Additionally, more exten-
sive comparisons with other bio-inspired algorithms and exact methods will offer deeper
insights into its performance, particularly in terms of computational efficiency and con-
straint handling, further demonstrating the applicability of bio-inspired approaches to
constrained optimization challenges.
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General Conclusion

In this thesis, we focused on addressing one of the most significant challenges in optimiza-
tion which is solving constrained optimization problems using bio-inspired algorithms.
These problems are prevalent across various fields and impact critical performance crite-
ria, such as cost, accuracy, and computational efficiency. Given their complexity, exact
methods are often inadequate due to the extensive computational time required to reach
optimal solutions. Bio-inspired algorithms have emerged as powerful alternatives, gaining
popularity due to their ability to efficiently explore large and complex search spaces.

Our research made several contributions to the field of constrained optimization by
proposing innovative solutions leveraging bio-inspired techniques. The first major con-
tribution is the development of an adaptive constrained differential evolution. By intro-
ducing the Adaptive Coordinate System for constrained optimization, we enhanced the
balance between optimizing the objective function and constraint satisfaction.

The proposed technique, abbreviated ACSCDE, introduces two novel dynamic co-
ordinate systems to the original Differential Evolution (DE) framework, enhancing the
balance between optimizing the objective function and satisfying constraints. We devel-
oped a new ranking-based improvement metric for evaluating individuals, which allows
for a more nuanced assessment of solution quality in the context of constraint handling.
Additionally, we incorporated innovative mutation strategies to increase the diversity of
the search, promoting a broader exploration of the solution space. we further refine the
ACSCDE approach by implementing an adaptive mechanism to dynamically adjust the
search direction. These improvements aim to enhance the exploration and exploitation
balance of DE, enabling it to handle a wide range of constraint types dynamically. The
experimental results demonstrated that our method offers superior performance in terms
of convergence and accuracy, outperforming several state-of-the-art algorithms.

In the second contribution, we aimed to demonstrate the applicability of bio-inspired
algorithms in real-world constrained optimization scenarios by focusing on the Traveling
Salesman Problem (TSP). To this end, we developed the Greedy Discrete Grey Wolf Op-
timizer (GD-GWO), a hybrid approach that enhances the original Grey Wolf Optimizer
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(GWO) to effectively tackle the complexities associated with discrete optimization. Com-
parative studies showed that our algorithm produced competitive results, positioning it
as a promising solution for complex routing problems. This contribution highlights rein-
forces the relevance of bio-inspired techniques in solving practical constrained real-world
optimization challenges

While the proposed approaches demonstrated their efficiency and adaptability, there
remain several avenues for future work. Enhancements could include:

• Extending our algorithms to multi-objective optimization problems, where multiple
conflicting objectives such as cost, accuracy, and reliability must be considered.

• Addressing real-world complexities such as dynamic constraints, stochastic environ-
ments, and uncertainty in decision variables.

• Implementing our algorithms in real-world scenarios to assess their practical appli-
cability and robustness in solving large-scale optimization problems.

• Investigating hybridization with other advanced bio-inspired techniques to further
improve performance and scalability.

In conclusion, this thesis has shown the potential of bio-inspired algorithms in solving
constrained optimization problems and paves the way for future innovations in the field.
These contributions not only offer solutions to current challenges but also provide a
foundation for addressing more complex optimization problems in a variety of real-world
applications.
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