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Abstract

Within the framework of the theory of operator spaces and noncommutative geometry, we study

problems well known in literature namely, we give a positive answer to the hyperinvariant sub-

space problem for the operators intertwined with weighted bilateral shifts and other partials

results in this context. In the category of Hilbert spaces we study the similarity problem of

certain Hilbert modules by mean of the cohomology groups and we introduce a new class of

operator (bi)modules wich generalizes the Hilbert C*-modules. Finaly, we study the noncom-

mutative version of Serre-Swan theorem in the setting of Banach and Hilbert categories and we

initiate the study of the classification of the Cuntz-Pimsner algebras by mean of thier associates

C*-correspondences.

Key words: Operatos modules, invariant subspace problem, Hilbert modules, Hilbert C*-

modules, Bundles of Banach spaces, Cuntz-PImsner algebras.
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Introduction

Amajor trend in modern mathematics, largely inspired by physics, is towards "non-commutative"

or "quantized" phenomena. In the vast field of functional analysis, this trend has appeared no-

tably under the name of operator spaces and operator modules. This young field covers the

theory of Hilbert modules by Douglass and Paulsen [17], the theory of C*-Hilbert modules by

Kaplansky [38,39,46], noncommutative spaces by E. Efros-Z. Ruan [23,24], D. Blecher [7] V.

Paulsen [55,56] and its interactions with noncommutative geometry by A. Conne [12]. In this

thesis we focus on problems which are well known in the literature, namely the problem of sub-

space (hyper), the problem of the similarity of operators in the category of Hilbert modules, the

representation of some (bi)modules of operators. Also, we study the noncommutative version of

Serre-Swan [69] theorem in the setting of Banach and Hilbert bundles and within the framework

of noncommutative spaces (noncommutative varieties), we study certain C*-algebra defined from

the theory of Hilbert C*-modules, sayed the Cuntz-Pimsner algebras, and we try to answer to the

question: If two C*-correpondences X, Y over a C*-algebras A and B, respectively, are related

in a particular way, what can be said about their Cuntz-Pimsner algebras OX , OY ?.

The invariant subspace problem is a major unsolved problem in operator theory and func-

tional analysis. The problem asks whether every operator T ∈ B(H) has a nontrivial invariant

subspace. In a similar fashion, the Hyperinvariant Subspace Problem is whether every bounded

linear operator such that T 6= αI has a non trivial hyperinvariant subspace. The invariant sub-

space problem was initially posed by David Hilbert in 1900 and has since captured the attention

of mathematicians due to its profound implications. The study of (Hyper)invariant subspaces



4

not only provides insights into the structure of linear operators but also has significant appli-

cations in various branches of mathematics and physics. Understanding the behavior of linear

operators and the existence of invariant subspaces has profound consequences in areas such as

spectral theory, operator algebras, noncommutative geometry and representation of groups and

algebras. Over the years there have been many partial solutions, answering the question for

certain types of Banach space and for certain classes of operators. Famously, the most general

case was answered by Per Enflo in the 1980’s when he showed that there exists an operator on

a Banach space possessing no nontrivial closed invariant subspace. Today the variation of the

problem which remains elusive is the case of operators on a separable Hilbert space. Intertwining

relations of operators with respect to this problem are applied during long time. For example, it

is known from 1970’s that if two operators are quasisimilar, and one of them has nontrivial hy-

perinvariant subspace, then the other has nontrivial hyperinvariant subspace, too. On the other

hand, if UX = XT , for some nonzero operator X and U is an absolutely continuous unitary

operator, then the (Hyper)invariant Subspace Problem is still open even under the assumption

that T is a contraction.

On the other hand, the topology and geometry of a space X can be studied using only alge-

braic information. For example, the Serre-Swan theorem [40] tells us that there is a bijective

correspondence between finitely generated projective C*-modules and vector bundles over X.

Another landmark result is the Gelfand-Naimark theorem [2, 12, 57], published in 1943, which

states that locally compact Haussdorf spaces can be reconstructed, up to homeomorphism, from

the commutative C*-algebra C0(X) of continuous functions vanishing at infinity and, vice versa,

in the category lunguage we can say that there is a complete equivalence between the cate-
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gory of (locally) compact Hausdorff spaces and (proper and) continuous maps and the category

of commutative (non necessarily) unital C∗-algebras and ∗-homomorphisms. If we now consider

non-commutative C*-algebras instead, we can still use these algebraic formulations of topological

features despite our algebra lacking an underlying topological space. We can refer to the "vir-

tual" topological space underlying our non-commutative algebra as a non-commutative space,

this is the main topic of the nonocommutative geometry [12]. A noncommutative C∗-algebra

will be now thought of as the algebra of continuous functions on some ’virtual’ noncommutative

space. The most tautological way to resolve the problem of filling the gap in the noncommutative

version of Gelfand-Naimark theorem is to define the category of non-commutative spaces NCTop

as equal to the category Algop, a non-commutative space is just a non-commutative algebra.

This thesis is organized in four chapters. In the first Chapter, we provide some basic background

on wieghted spaces and weighted shift operators, Banach algebra, C*-algebras, modules, Hilber

C*-modules, operator modules and category theory. Our aim in this chapter is to provide some

basic notations, definitions and theorems.

Following the line of researche and the problems explained before, in the second chapter we give

a positive answer to the hyperinvariant subspace problem for an operator T which intertwines a

weighted bilateral shift and other partial results. Also, in the category of Hilbert modules, by

mean of the cohomology groups we give some partial results concerning the similarity of Hilbert

modules over the Disc algebra.

In the third chapter, we introduce a new class of normed modules over C*-algebras, sayed semi-

inner product (bi)modules, which generalizes the Hilbert C*-modles and we show that it is

representable and it is an operator space, in particular it ia an operator module.
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In the last chapter, on the one hand, we study the noncommutative version of Serre-Swan theo-

rem and we show that the semiinner product (bi)modules represents the noncommutative version

of the continuous fields of Banach spaces in the sens of Fell. On the other hand, within the frame-

work of the theory of noncommutative spaces we are gathering the material necessary to study

and determine the category of noncomuutative spaces (noncommutaive varieties) NCTop and we

initiate the study of the classification of the Cuntz-Pimsner algebras by mean of thier associate

C*-correspondences.



Chapter 1

Preliminairies

1.1 Hilbert spaces

Throughout this thesis, H denotes an infinite dimensional complex separable Hilbert space with

inner product 〈·, ·〉 and B(H,K) denotes the space of all bounded linear operators acting from

H to K. The range of an operator T will be denoted by RanT and the closed subspace spanned

by a set A is denoted by ∨{a : a ∈ A}.

The commutant of T , denoted by {T}8, is the algebra of all operators A ∈ B(H) such that

AT = TA. A closed subspace M ⊆ H is called a nontrivial hyperinvariant subspace for T if

0 6= M 6= Hand AM ⊆ M for every A ∈ {T}8. If TM ⊆ M , then the subspace M , 0 6= M 6= H,

is called a nontrivial invariant subspace for T .

Definition 1.1.1 1. Let A,B be bounded linear operators on the Hilbert spaces H and K

respectively. We say A and B are similar if there exists an invertible operator X such that

XA = BX.
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2. An operator T ∈ B(H) is said to be contraction if ‖T‖ ≤ 1.

3. An operator T ∈ B(H) is said to be polynomially bounded if there exists C > 0 such that

‖P (T )‖ ≤ C‖P‖∞ for every polynomial P , where ‖P‖∞ = sup|z|<1|P (z)|.

It is well known, by von Neumann inequality, that every contraction operator is polynomially

bounded. Recall that a unitary operator is singular (resp. absolutely continuous) if its spectral

measure is singular (resp. absolutely continuous) with respect to the Lebesgue measure on the

unit circle. And any contraction T can be decomposed uniquely as the direct sum T = Us⊕Ua⊕T0,

where Us, Ua are singular and absolutely continuous unitary operators respectively and T0 is a

completely nonunitary contraction. T is said to be absolutely continuous if in this decompo-

sition Us is absent. For this type of decomposition for polynomially bounded operators, see

[10, 21, 36, 71].

We denote by D the open unit disc and by T the unit circle. Let m denote the normalized

Lebesgue measure on the unit circle T (i.e., m = dθ
2π
) and let L2 = L2(T) denote the space of all

complex-valued Lebesgue measurable functions on T such that ‖f‖2 =
∫
T |f(t)|2dm(t) is finite.

As such, L2 is a Hilbert space, a simple calculation using the fact that m(T) = 1 shows that this

space has a canonical orthonormal basis {zn : n ∈ Z} given by zn(ξ) = ξn, for all n ∈ Z; Z being

the set of integers and z denotes the identity function, i.e., z(ξ) = ξ; ξ ∈ T and in the sequel we

set 1 ≡ z0.

The Hardy space H2 = H2(T) is the closed linear span of {zn : n = 0, 1, ...}. The operators of

multiplication by the identity function z on the spaces H2 and H2
− = L2 	H2 are the unilateral

forward shift S in H2 defined by (Sf)(ξ) := ξ.f(ξ) and the unilateral forward shift S− in H2
−
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defined by (S−f)(ξ) := ξ.f(ξ). It is clear that the bilateral forward shift U on L2 has the following

form with respect to the decomposition L2 = H2 ⊕H2
−:

U =

 S 1⊗ z−1

0 S−

 . (1.1)

For a Borel set α ⊂ T, we write L2(α) = L2(α,m), L∞(α) = L∞(α,m) and the operator of

multiplication by the identity function z on the space L2(α) will be denoted by Uα.

Definition 1.1.2 1. An inner function is a bounded analytic function f on D such that

|f(z)| = 1 for almost every z in T, where f(z) is the radial limit of f (i.e, f(z) =

limr→1− f(rz)).

2. Let µ be a positive, finite singular (with respect to the Lebesgue measure m) Borel measure

on T. A singular inner function is an analytic function defined by

φµ(z) = exp(−
∫

ζ+z
ζ−zdµζ), z ∈ D.

If µ = δ1 denotes the point mass at ζ = 1 then

φδ1(z) = exp( z+1
z−1

), z ∈ D.

This type of inner function is called a (singular) atomic inner function.

3 An outer function is an analytic function F on D of the form

F (z) = exp(iγ +
∫

ζ+z
ζ−zφ(ζ)dm(ζ))



10 Preliminairies

where γ is a real constant and φ is a real-valued function in L1.

We recall some well known notations: for every analytic function f in D the function f̃ defined

on D by f̃(z) = f(z) is analytic in D and ̂̃f(n) = f̂(n), n ≥ 0.

For more details, see [33, 43, 66].

1.2 Weighted spaces

Let ω : Z→ (0,∞) be a nonincreasing function. Set

l2(ω) = l2Z(ω) = {f = (fn)n∈Z : ‖f‖2
ω =

∑∞
−∞ |fn|2ω2

n <∞}

l2(ω+) = {f ∈ l2(ω) : fn = 0, n ≤ −1};

l2(ω−) = {f ∈ l2(ω) : fn = 0, n ≥ 0}.

The bilateral weighted shift Sω on l2(ω) is defined by

∀f ∈ l2(ω) : (Sωf)n = fn−1, n ∈ Z.

It is clear that l2(ω+) is an invariant subspace for Sω and the restriction Sω|l2(ω+) of Sω on the

subspace l2(ω+) is a unilateral shift. If ωn = 1, for all n ≥ 0, we write l2(ω+) = l2+. By identifying

elements of the Hardy space H2(D) to their radial limits defined a.e. on T, we can identify H2(D)

with l2+. Then the restriction Sω|l2+ is the simple unilateral forward shift S and the compression

Sω− of Sω acts on the subspace l2(ω−) by the following formula:
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∀f ∈ l2(ω−) : (Sω−f)n = fn−1, n ≤ −1.

Since the function ω is nonincreasing then the operator Sω is a contraction and if ω is a non-

constant function then we can check that Sω is a completely nonunitary. In particular, the

H∞-functional calculus is defined for Sω.

For t ∈ T and f ∈ l2(ω) set (f)t = (fnt
n)n∈Z.

For n ∈ Z by zn the sequence f ∈ l2(ω) is denoted such that fn = 1 and fk = 0 for k ∈ Z, k 6= n.

Let φ ∈ H∞. Then

φ(Sω)zn = (φ̂(k − n))k∈Z =
∞∑
k=0

φ̂(k)zk+n.

Definition 1.2.1 [28] A dissymetric weight is a nonincreasing, unbounded function ω : Z →

[1,∞[ satisfying the following conditions:

1. ω(n) = 1, n ≥ 0.

2. lim sup
ω(n− 1)

ω(n)
<∞.

3. ω(−n)
1
n → 1 when n→∞.

Remark 1.2.2 We note here that if ω is a dissymetric weight then the operator Sω is an in-

vertible completely nonunitary contraction, the invertibily of Sω follows from the condition 2 of

the previous definition. If the dissymetric weight ωn = 1, for all n ∈ Z then we get the classical

spaces l2 = l2(ω), H2
− = l2(ω−) and Sω = U , the usual bilateral shift on l2.
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If T is absolutely continuous polynomially bounded operator and f ∈ H∞ then f(T ∗)∗ = f̃(T ).

For φ ∈ H∞ and for t ∈ T set φt(z) = φ(tz), for every z ∈ D. Then, (φt)
∼ = (φ̃)t, where

(φ̃)t(z) =
∑∞

n=0 φ̂(n)t
n
zn, z ∈ D and

φt(S
∗
ω)(f)t = (φ(S∗ω)f)t

for f ∈ l2(ω), t ∈ T. For more details, see [28, 29, 71].

1.3 Banach algebras and modules

Definition 1.3.1 An algebra A over K = R,C is a linear space over K with product operation .

such that:

1. . is associative,

2. a.(b+ c) = ab+ ac, (a+ b).c = ac+ bc for a, b, c ∈ A.

A is said a unitary algebra if there is a unitary element 1: a.1 = 1.a = a, for all a ∈ A.

A is said a commutative algebra if the product . is commutative.

Definition 1.3.2 1.Let h be a map on a K-linear space X , K = (R or C). h is said to be an

involution on X if, for all x, y ∈ X , α ∈ Cthe following conditions are satisfied:

(i) Additive: h (x+ y) = h (x) + h (y);

(ii) Homogene if K = R: h (αx) = αh (x); anti-homogene if K = C: h (αx) = αh (x);

(iii) Involutive: h (h(x)) = h2(x) = x.

In the sequel h will be noted by ∗.
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2. A normed algebra A with norm ‖.‖ is an algebra and a normed space satisfying the

inequality ‖xy‖ ≤ ‖x‖ ‖y‖, for all x, y ∈ A.

3.If A is completed for this norm, it will be said a Banach algebra.

4. A is said to be an involutive algebra or ∗- algebra if it has an involution ∗ such that (xy)∗ =

y∗x∗, for all x, y ∈ A.

5.A is said to be an involutive normed (Banach) algebra or ∗- normed (Banach) algebra if it

is an involutive algebra and the involution ∗ is isometric with respect to the norm given in A.

Remark 1.3.3 1. If A is a normed algebra with unit 1, we suppose in the sequel that ‖1‖ = 1

(we can find an equivalent norm ‖.‖8 to the original one such that ‖1‖8 = 1).

2. We note if A is ∗-algebra with unit 1, then we from the properties of ∗ that 1∗ = 1. Also,

it’s completion A is an involutive normed algebra.

Definition 1.3.4

1. Let A be a non-unitary algebra on K. On the linear space Aun = A×K we define the

following operation:

∀a, b ∈ A,∀α, β ∈ K : (a, α) · (b, β) = (ab+ αb+ βa, αβ)

2. Let (eα)α ⊆ A. (eα)α is said to be a left (resp. a right) approximate in A if for all

x ∈ A : eαx → x (xeα → x). (eα)α is said to be an approximate identity if it is a left and right

approximate identity A.

Theorem 1.3.5 1. Aun is a unitary algebra on K with unit 1 = (0, 1). The algebra A can be

identified as a subalgebra of Aun under the ambedding map ı : A → Aun; a 7→ (a, 0). (Aun, ı) is



14 Preliminairies

said to be the unitisation of A.

2. If A is an ∗-nonunitary algebra, then its unitisation Aun has one involution † derived from

the ∗ of A as follows:

∀a ∈ A,∀α ∈ K : (a, α)† = (a∗, α)

3. If A is a normed nonunitary algebra, then its unitisation Aun is a normed algebra with

norm ‖.‖un given by

∀a ∈ A,∀α ∈ K : ‖(a, α)‖un = ‖a‖+ |α|

Definition 1.3.6 1. Let A,B be algebras (resp. ∗−algebras) and f be a linear map from A to

B. f is said to be algebra (resp. ∗−algebras) if, for all a, b ∈ A,

f(ab) = f(a)f(b), (resp. f(a∗ = f(a)∗)).

2. Let A be a Banach algebra. A representation of A is a continuous ∗-algebra morphism

from A to B(H), for some Hilbert space.

3. Let π be a representation of A.

. π is said to be a faithfull if it is injective;

. π is said to be irreducible if it has trivial invariant closed subspaces of H.

. A vector ϕ ∈ H is said cyclic if the subspace spanned by the set {π (x)ϕ : x ∈ A} is dense in

H.

Definition 1.3.7 Let A be an algebra and M ⊆ A .

1. The commutant of M is the set

M p = {x ∈ A : xy = yx,∀y ∈M}
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2. The bicommutant de M is the commutant of M p, denoted by M pp.

Definition 1.3.8 let A be a Banach ∗-algebra and A† its topologic dual.

1. A functional ϕ ∈ A† is said a positive functional, ϕ ≥ 0, if ϕ (a∗a) ≥ 0, for all a ∈ A.

2. The space of states of A is the set St(A) =
{
ϕ ∈ A† : ϕ ≥ 0 and ‖ϕ‖ = 1

}
.

3. The weak*-topology on a normed space X is defined by:

(ϕn)n ⊆ X †, ϕ ∈ X †:ϕn → ϕ iff ∀x ∈ X : ϕn (x)→ ϕ (x) .

4. the extremums points of St(A) are said the pur states.

Theorem 1.3.9 1. The unit ball of X † is compact for the weak *-topology.

2. St(A) is convex and compact for the weak *-topology (it is the convex envelop of the

extremum points (Krein-Milman’s theorem).

Definition 1.3.10 A C∗-algebra ,A, is a Banach algebra over the field of complex numbers with

an involution ∗ : a→ a∗ satisfying the C∗-identity ‖a∗a‖ = ‖a‖2, for a ∈ A. We say A is unital,

if there exists a unit element 1 ∈ A.

Example 1.3.11 Let X be a locally Hausdorff space and C0(X) be a space of complex valued

continuous function vanishing at infinity on X.

We define an involution on C0(X) by f ∗(x) = f(x) for x ∈ X. Then C0(X) is a commutative

C∗-algebra. It is unital if and only if X is compact.

Example 1.3.12 The ∗-algebra of n-by-n matrices Mn(C), with the operator norm, is a non-

commutative C∗-algebra.
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Example 1.3.13 An important example of a Banach algebra which is not a C∗-algebra is the

disk algebra A(D), consisting of all continuous functions f ∈ C(D) on the closed disk, which are

analytic in the open disk D.

Definition 1.3.14 A ∗-homomorphism ϕ : A → B between two C∗-algebras is an algebra homo-

morphism such that ϕ(a∗) = ϕ(a)∗ for all a ∈ A.

Theorem 1.3.15 (Gelfand-Naimark-Seagal) Let A be a C∗-algebra. Then there exist a Hilbert

space H and an injective ∗-homomorphism π : A → B(H).

Every C∗-algebra can be embedded into the bounded operators on a Hilbert space. Idea Mo-

tivated from Gelfand duality, look at noncommutative C∗-algebras of operators as algebras of

functions on some noncommutative space.

For more details on Banach algebra and C*-algebras theory, See [15, 16, 18, 72, 57].

Definition 1.3.16 A normed space M will be said to be a left module for the (unital) algebra A

if there exists a map (an action) A×M →M which satisfies:

1. 1h = h, for h ∈M .

2. a(bh) = (ab)h for a, b ∈ A and h ∈M .

3. a(α1h1 + α2h2) = α1ah1 + α2ah2 for a ∈ A and α1, α2 ∈ C and h1, h2 ∈M , and

4. (a+ b)h = ah+ bh for a, b ∈ A and h ∈M
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5 ‖ah‖ ≤ ‖a‖‖h‖ for a ∈ A and h ∈M

If M is a Hilbert space then M is a left Hilbert A-module. If M is a Banach space then M is a

left Banach A-module.

A right A-module M is an A-module where the action on M is defined on the right.

A normed A,B-module M is a left normed A-module and a right normed B-module with the

compatibilty of the actions: (ax)b = a(xb) and ||axb|| ≤ ||a||||x||||b||, for all a ∈ A, b ∈ B, x ∈M .

In addition, we always assume that M is essential in the sense that AM = M = MB. See [17].

1.4 Operator Spaces and Operator Algebras

Definition 1.4.1 A concrete operator space is a closed linear subspace of B(H). To determine

a "matrix norm" on the space Mn(E) ( Mn(E) denotes the linear space of n × n matrices over

E with no other assumed structure) we first look at the natural inclusions

Mn(E) ⊂Mn(B(H)) ' B(Hn).

This determines a norm ‖.‖n on Mn(E) and we will denote this normed space by Mn(E). An

important observation is that we have no real analogue of () since many distinct operator spaces

may have the same underlying normed space. Thus, we can not hope to relate the norm of a

matrix with the norm of its individual entries. Ruan’s axioms for operator spaces are motivated

by the concrete observation.

Theorem 1.4.2 Suppose E ⊂ B(H) is a concrete operator space. The following properties are

satisfied:
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1. (R1): if v ∈Mm(E), w ∈Mn(E) then

‖v ⊕ w‖m+n = max{‖v‖m, ‖w‖n}

2. (R2): if α ∈Mn,m, β ∈Mm,n, and v ∈Mm(E), we have

‖αvβ‖n ≤ ‖α‖‖v‖m‖β‖

Definition 1.4.3 (Ruan’s Axioms) Given a linear space E, a matrix norm ‖.‖ = {‖.‖n}n is an

assignment of a norm ‖.‖n on each linear space Mn(E) for n ∈ N. An abstract operator space in

the pair (E, {‖.‖n}n) where E is a linear space and {‖.‖n}n is a matrix norm that satisfies the

following properties:

1. R1:‖v ⊕ w‖m+n = max{‖v‖m, ‖w‖n},

2. R2:‖αvβ‖n ≤ ‖α‖‖v‖m‖β‖, for all v ∈Mm(E), w ∈Mn(E), α ∈Mn,m, and β ∈Mm,n.

In this case we call ‖.‖ = {‖.‖n}n an operator space matrix norm. We refer to R1,R2 as

Ruan’s axioms.

We may view the linear spaceMm,n(E) as a subspace ofMp(E) where p = max{m,n}, and denote

the inherited normed linear space as Mm,n(E). It is important that we point some properties

that do constrain the properties of our matrix norms. Given v ∈Mm(E) we see that

‖vij‖ = ‖EivE∗j ‖ ≤ ‖v‖
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‖v‖ = ‖
∑

E∗i vijEj‖ = ‖
∑

vij‖

Here we have let Ej ∈ M1,n denote the row matrix with 1 in the jth entry and 0’s elsewhere.

What precisely do these two equations tell us? We see that a sequence v(k) ∈Mn(E) converges

if and only if vij(k) converges for all i and j.Furtheremore, any two such norms on Mn(E) must

be equivalent. Finally, we see that E will be complete if and only if Mn(E) is complete for all

n ∈ N.

A final remark is that a map F = [Fij] : V →Mn is continuous if and only if each Fij is continuous

and thus we define the pairing

〈., .〉 : Mn(E)×Mn(E∗)→ C : 〈v, f〉 :=
∑
i,j

fij(vij)

to identify the linear space Mn(E∗) with the Banach dual Mn(E)∗.

See [23].

Definition 1.4.4 An operator algebra is a norm-closed subalgebra of B(H) for some Hilbert

space H.

Let B be an operator algebra and T : B → B(H) be a bounded, linear map.

For each n ≥ 0 consider the map

T ⊗ In : B ⊗Mn → B(H)⊗Mn,
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where Mn denotes the n × n complex, matrices and In the identity matrix. After identifying

B ⊗Mn
∼= Mn(B) and B(H)⊗Mn

∼= Mn(B(H)) = B(Hn), T ⊗ In equals the map

T (n)([bij]) = [T (bij)].

Definition 1.4.5 Let T : B → B(H) be a bounded, linear map .

1. T is completely bounded if

‖T ⊗ In‖cb := sup
n
‖T ⊗ In‖ <∞.

2. T is completely contractive if ‖T‖cb ≤ 1.

See [7]

1.5 Hilbert C*-modules

Hilbert C*-modules were first introduced in the work of Kaplansky. His idea was to generalize

Hilbert spaces by allowing the inner product to take values in a commutative C*-algebra rather

than the field of complex numbers C. In fact, if A be a commutative C*-algebra; then using the

Gelfand-Naimark theorem, A can be identified with C(X), for some (locally) compact Hausdorff

space. We note that if X is a Riemannian manifold or any Euclidean space, one can analyze it

by geometric techniques, among which is the study of vector bundles, see the example 3 below.

Let H be a right module over the C*-algebra A. We denote the action of a ∈ A and x ∈ H

by x.a.
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Definition 1.5.1 A pre-Hilbert A-module is a right A-module H equipped with a A-sesquilinear

form 〈, 〉 : HxH → A satisfying the following properties:

1. 〈x, x〉 ≥ 0 for every x ∈ H;

2. 〈x, x〉 = 0 only in the case x = 0;

3. 〈x, y〉 = 〈y, x〉∗ for every x, y ∈ H;

4. 〈x, y.a〉 = 〈x, y〉a for every x, y ∈ H and a ∈ A.

The map 〈, 〉 is called an A-valued inner product.

The function

‖.‖ : H → R+, ‖x‖ = ‖〈x, x〉‖
1
2 (1.2)

defines a norm on the A-module H. Further, this function satisfies the following properties.

1. ‖x.a‖ ≤ ‖x‖‖a‖ for every x ∈ H and a ∈ A;

2. 〈x, y〉〈y, x〉 ≤ ‖y‖2〈x, x〉 for all x, y ∈ H;

3. ‖〈x, y〉‖ ≤ ‖x‖‖y‖ for every x, y ∈ H.

Definition 1.5.2 A Hilbert C∗-module H over a C∗-algebra A is a pre-Hilbert A-module and a

Banach space with respect to the norm defined by the relation (1.2).

A Hilbert C∗-module over A is said to be full if 〈H,H〉 = A.

We note here that the action of the algebra A on H and the A-inner product on H extend to

the completion H̃, which thus becomes a Hilbert module over A. In the sequel we denote by the

same symbol H for its completion.
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Example 1.5.3 1. Let A be a C∗-algebra and J be a right ideal of A. It is clear that J

is an A-module and is a pre-Hilbert A-module with respect to the A-sesquilinear form :

〈x, y〉 = x∗y for all x, y ∈ J . Furthermore, J is a Hilbert A-module with respect the induced

norm of A.

In particular, every C∗-algebra A is a free Hilbert A-module with one generator.

2. Let (Hi)i∈N be a countable set of Hilbert A-Hilbert modules. Then the A-module ⊕Hi of all

sequences (xi) such that Σi〈xi, xi〉 is norm convergent in A, called the direct sum A-module,

is a Hilbert A-module with respect to the A-inner product

〈x, y〉 = Σi〈xi, yi〉 for all x, y ∈ ⊕Hi.

2. The direct sum of a countable number of copies of a Hilbert A-module H we shall denote by

l2(H). If H = A then the Hilbert module l2(A) is called the standard Hilbert module over

A. If the C∗-algebra A is unital then the Hilbert module l2(A) possesses the standard basis

{ei : i ∈ N where ei = (0, ..., 0, 1, 0, ...) with the unit at the i-th place.

3. Let X be a compact Hausdorff space and H be a Hilbert space. The space E = C(X,H) of

continuous functions from X to H such that s(t) ∈ Ht, where Ht is a subspace of H, for

every t ∈ X and s ∈ E is a vector bundle over X.

Furthermore, E is a C(X)-module with respect to the action:(s.f)(t) = s(t)f(t) for all

s ∈ E, f ∈ C(X) and E is naturally endowed with a C(X)-valued inner product:

〈ξ, ζ〉(t) = 〈ξ(t), ζ(t)〉H for all ξ, ζ ∈ E, t ∈ X.

This means that E is Hilbert C(X)-module. If H = l2(C) then E may be considered as the
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Hilbert module l2(C(X)) which is the completion of the algebraic tensor product C(X)⊗C l2

with respect to the norm ‖x‖ = ‖〈x, x〉‖
1
2∞, i.e. l2(C(X)) is the space of the sequences (fn)

such that Σnfnf
∗
n is convergent.

Definition 1.5.4 Let H be a right Hilbert C∗-module over a a C∗-algebra A and x, y ∈ H.

We say that x and y are orthogonal with respect to A-valued inner product 〈., .〉 if 〈x, y〉 = 0. We

write x ⊥ y.

It is clear that x ⊥ y ⇒ x ⊥B y for all x, y ∈ H.

See [38,39,46].

1.6 Category theory

Definition 1.6.1 A category C consists of

• A collection Ob(C) of objects. • For every two objects X and Y in C a set of morphisms

homC(X, Y ).

• For any triple of objects X, Y, Z a composition function

◦ : homC (Y, Z)× homC (X, Y ) −→ homC (X,Z)

g, f 7−→ g ◦ f



24 Preliminairies

subject to the following conditions:

(C1) The composition is associative : Given morphisms

X
f−→ Y

g−→ Z
h−→ W

we have that h ◦ (g ◦ f) = (h ◦ g) ◦ f .

(C2) For every object X in C there is an identity morphism 1X : X −→ X with the property that

1X ◦ f = f, g ◦ 1X = g

for any morphisms f : Y −→ X and g : X −→ Z.

(C3) The sets homC(X,Y ) and homC(X′,Y ′) are disjoint unless X = X ′ and Y = Y ′.

Example 1.6.2 • S is the category of sets , whose objects are sets and whose morphisms are

functions between sets.

• RMod is the category of left modules over an associative unital ring R, whose objects are all

left R-modules and whose morphisms are homomorphisms of left R-modules. Similarly, ModR

denotes the category of right modules over R.

• Top is the category of topological spaces, whose objects are all topological spaces and whose

morphisms are continuous maps.

Definition 1.6.3 A category C is called small if the collection of objects Ob C forms a set. The
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category of sets is not a small category , but the category of subsets of a given set would be an

example of a small category.

Definition 1.6.4 A pre-additive category is a category A where the set of morphisms homA(X, Y )

between any two objects X and Y has the structure of an abelian group, and moreover the com-

position

homA(Y, Z)× homA(X, Y )→ homA(X,Z)

is bilinear, i.e. (g + g′) ◦ f = g ◦ f + g′ ◦ f and g ◦ (f + f ′) = g ◦ f + g ◦ f ′ for any morphisms

f, f ′ : X → Y and g, g′ : Y → Z.

Definition 1.6.5 An additive functor between pre-additive categories A and B is a functor F :

A → B such that for every two objects X and Y in A, the function

homA(X, Y )→ homB(F (X), F (Y ))

is a homomorphism of abelian groups, i.e. F (f + g) = F (f) + F (g) for any morphisms f, g :

X → Y .

Definition 1.6.6 Let C and D be categories. A (covariant) functor F : C → D consists of

• For every object X in C an object F (X) in D.

• For any object X in C, we have that F (1X) = 1F (X).

Definition 1.6.7 The opposite category, or dual category, of C is the category Cop whose objects

are the same as those of C but where morphisms are reversed in the sense that

homCop(X, Y ) = homC(Y,X)
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for any objects X and Y . The composition

◦op : homCop(Y, Z)× homCop(X, Y )→ homC(X,Z)

is defined using the composition in C: Given composable morphisms

X
f−→ Y

g

−→ Z

in Cop, this is by definition the same thing as morphisms

X
f←− Y

g

←− Z

in C, and we define

g ◦op f = f ◦ g

This is a morphism from Z to X in C, in other words a morphism from X to Z in Cop.

Definition 1.6.8 A contravariant functor F : C → D is a functor F : Cop → D. A contravariant

functor from C to D can also be thought of as a functor from C to Dop.

Definition 1.6.9 A morphism f : X −→ Y is called an isomorphism if there is a morphism

g : Y −→ X such that f ◦ g = 1Y and g ◦ f = 1X .

A morphism f in a category C is called a monomorphism if f ◦ g = f ◦ h implies g = h.It is

called an epimorphism if g ◦ f = h ◦ f implies g = h.

Any isomorphism is necessarily both a monomorphism and an epimorphism, but the converse
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need not be true. A category is called balanced if any morphism which is both a monomorphism

and an epimorphism is an isomorphism.

See [75].



Chapter 2

Hilbert modules

2.1 Cohohmology groups and Derivations

Let X be a compact, separable, metric space and let C(X) denote the Banach algebra of all

continuous complex-valued functions on X with respect to the sup-norm.

Definition 2.1.1 A function algebra on X is a closed subalgebra of C(X), which contains the

constants functions and separates points of X, i.e, for every x 6= y there is f in the algebra such

that f(x) 6= f(y).

Example 2.1.2 The disc algebra A = A(D) is the closure in C(D) of the polynomials in the

coordinate function z. We give here some properties of the algebra A as follows:

-The functions in A can be characterized as the functions in C(D) which are holomorphic on D.

-The closed subalgebras Af generated by a nonconstant function f ∈ A are isometricaly isomor-

phic to A

- The algebra A ia a maximal closed subalgebra of C(D).
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See [34].

Definition 2.1.3 A Hilbert module H over a function algebra A is a Hilbert space together with

a bounded, unital homomorphism φ : A → B(H).

Such a map is called a representation of the algebra A on H.

Given a representation φ, one defines the module action on H by a a.h = φ(a)h.

It is easy to see that every Hilbert module action arises this way. In fact, if π : A × H → H

defines a bounded module action on H then φ(a) = π(a, h) defines a representation of A on H.

Definition 2.1.4 Given two Hilbert A-modules, (H,φ) and (Kψ), an operator T ∈ B(H,K) is

called a Hilbert module map if Tφ(a) = ψ(a)T for all a ∈ A.

For more details, see [17].

In [17], Douglas and Paulsen presented a first systematic study of Hilbert modules and refor-

mulated several interesting operator theoretic concepts and problems in the language of module

theory. Therefore, in studying Hilbert modules, as in studying any algebraic structure, the stan-

dard procedure is to look at submodules and associated quotient modules. This suggested the

use of cohomological methods to study the extension problem: given two Hilbert modules H and

K over a function algebra A what Hilbert module J may be constructed with submodule H and

associated quotient module J ? We then have a short exact sequence

E : 0→ H →τ J →σ K → 0
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of Hilbert A-modules, where τ, σ are Hilbert module maps. Such a sequence is called an extension

of K by H. The set of equivalence classes of extensions of Ķ by Ḩ, denoted by Ext1A(K,H) has

a natural A-module structure and is said the cohomology group []. The problem then is how to

compute this group and what is its usefulness in the field of operator theory?. If H = H2(D) is

the Hardy module zith respect to the multiplication operator (shift operator) S(f)z = zf(z) over

the disc algebra A = A(D), the characterization of Ext1A(K,H2(D)) was given by Clarck-Clarck

[8] and by Ferguson [31] if K is a weighted Hardy module on the unit disk; as an application she

gave a simple proof of a result due to Bourgain. Using cohomological techniques to study certain

backward shift invariant operator ranges contained in vector-valued Hardy space; in particular

the de Branges-Rovnyak spaces, Ferguson showed a connection between the extension problem

for Hankel operator and the operator corona problem.

Firstly we interpret the cohomolgy groupe Ext1A(K,H) in the language of operator theory.

Let T be a bounded operator on a Hilbert space H and A be a function algebra. If f(T ) is

defined for every f ∈ A then we get a representation of A on H: A → B(H); f 7→ f(T ) and

therefore a Hilbert A-module action f.h = f(T )h; for every h ∈ H and every f ∈ A.

Recall that T is polynomially bounded if and only if the map p 7→ p(T ) extends to a representation

of the disk algebra, A, on H. On the other hand, given a representation π : A → B(H), the

operator T = π(z) is polynomially bounded, where z is the function z 7→ z and π(f) = f(T ), for

every f ∈ A.

Because of this correspondence, in the sequel, we will write HT for the Hilbert module H with

multiplication by z determined by the operator T .

We denote by H(A) for the category of Hilbert A-modules over the disc algebra A, and by
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CH(A) for the category of cramped Hilbert modules, the object are Hilbert A-module similar to

the Hilbert A-module HT where T is a contraction operator. The category H(A) with objects

are the Hilbert A-modules HT , T is a contraction, will be said the category of contractive Hilbert

A-modules.

Definition 2.1.5 Let M be an A-bimodule over an algebra A and let D be a map from A to M .

1. D is said to be a derivation if D is linear and satissfies the following formula:

D(ab) = aD(b) +D(a)b, for all a, b ∈ A.

2. D is said to be an inner derivarion if there is m ∈M such that:

D(a) = am−ma, for all a ∈ A.

It is clear that the space of derivations has a structure of an A-bimodule:

(a.D)(x) = aD(x) and (D.a)(x) = D(x)a, for all a, x ∈ A,

and the space of inner derivations is a subbimodule of the A-bimodule of derivations.

We can interpret the cohomology group ExtH(A)(HB, KA) as the group of derivations modulo

inner derivations as follows: Each extension of Hilbert module HA by a Hilbert module HB in

the category H(A) gives rise a bounded derivation D from A to the A-bimodule B(H ⊕K). It

follows from the second propertie of the disc algebra A cited in the exemple 2.1.2 and the fact

that the polynomial algebra is generated by the coordinate function z 7→ z that every derivation

D can be obtained from the function z 7→ z. Hence, if π and ρ are representations of A on H

and K respectively such that π(z) = A, ρ(z) = B then
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R =

 π D

0 ρ


is a representation of A on the space H ⊕K and

R(z) =

 A D(z)

0 B

 = RX =

 A X

0 B



Furthermore we can check easly that there is a coresspondance bijective betwwen the repre-

sentaion of A on H ⊕ K and the bounded derivations from A to B(H ⊕ K). Threfore, the

cohomology group ExtH(A)(HB, KA) is isomorphic to the group D/I, where D is the space of

operators X : K −→ H for which the operator RX is polynomially bounded (i.e, (H ⊕K)RX is

a Hilbert A-module ), and I is the space of operators of the form AL − LB for some bounded

operator L : K −→ H.

Remark 2.1.6 1. Cohomology groups are invariant under similarity: if HB is Hilbert modules

similar to MC, then the groups ExtH(A)(HB, KA) and ExtH(A)(MC , KA) are isomorphic.

2. The cohomology group ExtH(A)(HB, KA) is in fact an A-modules with the action:

( although not a Hilbert A-module). However, the groupe D/I is a normed space. In particular,

according to the theorem 3, if A = S and H = H2 then the cohomology groupe ExtH(A)(HB,H2)

is isomorphic to the groupe {x ∈ H : Σ∞n=0|〈T nh, x〉|2 <∞;h ∈ H} modulo {x ∈ H : 1⊗ x ∈ I}

It was shown in [31], in the category of cramped Hilbert A-module, that Ext1A(KT ,H2) = {0} if

and only the Hilbert module KT is similar to the isometric Hilbert module. However, it is not
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known if the previous equivalence is still holds in the category of Hilbert A-module H(A). In

this section we introduce a subgroup of Ext1A(K,H), sayed the reduced cohomolgy groupe and

noted by ExtrA(K,H) and then we establish some properties of similarties. As a consequence,

we give positive answer to the previous question.

Definition 2.1.7 Let E be a separable Hilbert space with dimension m; 0 < m ≤ ∞. We define

the following sets:

1. The set of cocycles:

• 1 < m ≤ ∞.

ZT,m = {X ∈ B(H,E) : ‖ΓX‖2 = Σ∞n=0‖XT nh‖2 <∞};

• m = 1.

ZT = {x ∈ H : ‖Γx‖ <∞}.

2. The set of coboundries:

• 1 < m ≤ ∞.

BT,m = {X ∈ B(H,E) : ∃L ∈ B(H,H2(E));X = SmL− LT},

• m = 1.

BT = {k ∈ H : ∃L; 1⊗ k = SL− LT}.

3. The set of closed coboundries:
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• 1 < m ≤ ∞.

BT,m = {X ∈ ZT,m : ∃(Ln)n;X = limn→∞(SmLn − LnT )}; where (Ln)n is a bounded

sequence in B(H,H2(E)),

• m = 1.

BT = {k ∈ ZT : ∃(Ln)n bounded; 1⊗ k = limn→∞(SLn − LnT )}.

4. The reduced cohomology group:

1 ≤ m ≤ ∞. ExtrH(A)(HT ,H2(E)) = ZT,m/BT,m,

It is clear, by the definition of the closed coboundries, that ExtrH(A)(HT ,H2(E)) is a subgroup

of Ext1H(A)(HT ,H2(E)).

Definition 2.1.8 (45) Let A ∈ B(K), B ∈ B(H) and let (Qn)n be a sequence of bounded oper-

ators in B(H,K).

1. (Qn)n is said to be invertibely bounded sequence if (Q−1
n )n is a bounded sequence and

Sup{Qn, Q
−1
n : n = 1, 2, ...} <∞;

2. A is said to be approximately similar to B if there is an invertibly bounded sequence of

operators (Qn)n in B(H,K) such that ‖Q−1
n AQn −B‖ → 0

If dimE = 1 we set R1⊗k = Rk.

Lemma 2.1.9 Let E be a separable complex Hilbert space of dimension m and

RX =

Sm X

0 T
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be an operator on H2(E)⊕H with Sm the forward unilateral shift of multiplicity m on H2(E).

1. ExtH(A)(HT ,H2(E)) = 0 if and only if S ⊕ T is similar to Rk.

2. if ExtrH(A)(HT ,H2(E)) = 0 then S ⊕ T is assymptoticaly similar to Rk.

Proof.

• It follows by the definition of the cohomology group ExtH(A)(HT ,H2); see [8].

• If If ExtrH(A)(HT ,H2(E)) = 0 then ZT,m = BT,m and therefore for every X ∈ ZT,m there is

a bounded sequence (Ln) ⊂ B(H,H2(E)) such that ‖SLn − LnT −X‖ → 0.

Choose the sequence

Qn =

I Ln

0 I


it is obvious that (Qn)n is invertibly bounded sequence with

Q−1
n =

I −Ln
0 I

 .

An easy computation shows that ‖RXQn −QnR0‖ → 0, which means that R0 = S ⊕ T is

approximately similar to RX .

�

We need the following characterization given by Nagy-Foias [70].
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Lemma 2.1.10 Let T ∈ B(H). Then, T is similar to an isometry if and only if there is a

positive number α such that

‖x‖/α ≤ ‖T nx‖ ≤ α‖x‖; for all x ∈ H and all n ≥ 0.

Proposition 2.1.11 Let E be a complex separable Hilbert space with dimE = m. If ExtrH(A)(HT ,H2) =

0 then ExtrH(A)(HT ,H2(E)) = 0

Proof. Let {ek : k ≥ 0} be an orthonormal basis of E and X be a bounded operator from

H to E. Then, Xh = Σk≥0〈h, xk〉ek; where xk = X∗ek.

Let ε > 0. Then, there is an integer N such that

‖Xh− ΣN
k≥0〈h, xk〉ek‖2 = Σk≥N+1|〈h, xk〉|2 <

ε

2
‖h‖2. (2.1)

By the hypothesis H/BT = {0} it follows that for each xk ∈ H there is a sequence of bounded

operators (Lnk) ∈ B(H,H2) and an integer Nk such that

∀n > Nk,∀h ∈ H : ‖SLnkh− LnkTh+ 〈h, xk〉‖2 <
ε

2(N + 1)
‖h‖2; (2.2)

Since (Lnk) ∈ B(H,H2) then the operators (Lnk) have the following form

Lnkh = Σj≥0〈h, ynkj〉zj; ynkj = L∗nkz
j (2.3)

Therefore, the equation (2.2) leads to

Σj≥1|〈h, ynk(j−1) − T ∗ynkj〉|2 + |〈h, xk − T ∗ynk0〉|2 <
ε

2(N + 1)
‖h‖2. (2.4)
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We choose a sequence of bounded operators (Yn)n ⊂ B(H,H2(E)) as follows:

Ynh = Σj≥0YnjhZ
j;Ynjh = ΣN

k≥0〈h, ynkj〉ek;∀h ∈ H. (2.5)

Hence, by (2.3) we get

‖Ynh‖2 = Σj≥0‖Ynjh‖2 = Σj≥0ΣN
k≥0|〈h, ynkj〉|2 = ΣN

k≥0‖Lnkh‖2 <∞, ,∀h ∈ H

Since (Lnk)n is a bounded sequence of operators for each k so that, by the definition of BT and

the uniform boundedness theorem, it follows that (Yn)n is a bounded sequence of operators in

B(H,H2(E)).

On the other hand, an easy computation shows that

‖(X + SmYn − YnT )h‖2 = Σj≥1‖Yn(j−1)h− YnjTh‖2 + ‖(X − Yn0)h‖2

Using (2.5) we get

‖(X + SmYn − YnT )h‖2 =

= Σj≥1ΣN
k=0|〈h, ynk(j−1) − T ∗ynkj〉|2 + ΣN

k=0|〈h, xk − T ∗ynk0〉|2 + Σk≥N+1|〈h, xk〉|2

= ΣN
k=0[Σj≥1|〈h, ynk(j−1) − T ∗ynkj〉|2 + |〈h, xk − T ∗ynk0〉|2] + Σk≥N+1|〈h, xk〉|2.
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Finaly, it follows from the equations (2.1),(2.4) and the previous one that

‖(X + SmYn − YnT )h‖2 < (ΣN
k≥0

ε
2(N+1)

+ ε
2
)‖h‖2 = ε‖h‖2.

Which means that X ∈ BT,m

�

Proposition 2.1.12 Let KR be an isometric Hilbert A-module andM = MS be a submodule (i.e,

an R-invariant subspace) of K with S = R|M . Setting H = K 	M and let T be the compression

of R on H. Then,

ExtrH(A)(HT ,H2) = 0 if and only if the Hilbert A-module HT is similar to an isometric module.

Proof. If HT is similar to an isometric module then; by [8,31], ExtH(A)(HT ,H2) = 0. By

the definition 6, it is clear that ExtrH(A)(HT ,H2) is a subgroup of ExtH(A)(HT ,H2). Thus,

ExtrH(A)(HT ,H2) = {0}.

The converse. If ExtrH(A)(HT ,H2) = {0} then by theorem 3 and lemma 9 R0 = S⊕T is assymp-

toticaly similar to the isometry R. Hence, there is an invertibly bounded sequence of operators

(Qk)k in B(K) such that ‖Q−1
k RQk−R0‖ → 0. Let α = Sup{Qk.Q

−1
k }, so by an easy computation

we get

‖x‖/α ≤ ‖Q−1
k RnQkx‖ ≤ α‖x‖; for all x ∈ K and all n, k ≥ 0.

Therefore,

‖x‖/α ≤ ‖Rn
0x‖ ≤ α‖x‖; for all x ∈ K and all n ≥ 0.
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So by the previous lemma it follows that R0 is similar to an isometry V .

Thus, there is an invertible (positive) operator D such that R0 = D−1V D. If (., .) is the

original inner product in H, we set (h, k)∗ = (Dh,DK) for any h, k ∈ H. It is clear that (., .)∗

defines a new inner product in the linear space K. We note by K∗ for the Hilbert space K with

respect to (., .)∗ and by ‖.‖∗ for its associate norm. Hence, the idendity map τ : K → K∗ is

continuous and invertible. Setting R0∗ = τR0τ
−1, we get

‖R0∗h‖∗ = ‖τR0τ
−1h‖∗ = ‖DR0h‖ = ‖V Dh‖. (2.6)

Since V is an isometry then ‖R0∗h‖∗ = ‖V Dh‖ = ‖Dh‖ = ‖h‖∗.

Hence, R0∗ is an isometry. Therefore, T = R0∗|H is an isometry; which means that the Hilbert

A-module HT is similar to an isometric Hilbert module.

�

2.2 Submodules for Hilbert modules

The Invariant Subspace Problem asks whether every operator T ∈ B(H) has a nontrivial in-

variant subspace. In a similar fashion, the Hyperinvariant Subspace Problem is whether every

bounded linear operator such that T 6= αI has a non trivial hyperinvariant subspace.

The (Hyper)invariant Subspace Problem is old open question in operator theory. Intertwining

relations of operators with respect to this problem are applied during long time. For example,

it is known from 1970s that if two operators are quasisimilar, and one of them has nontrivial

hyperinvariant subspace, then the other has nontrivial hyperinvariant subspace, too. If S is a
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simple unilateral forward shift, T ∈ B(H) and there exists a nonzero operator X such that

SX = XT then the set of eigenvalues of T ∗ contains the open unit disk. Consequently, T has

nontrivial hyperinvariant subspaces. If, in addition, T is an absolutely continuous polynomially

bounded operator, then the closure of Ranφ(T ) is a nontrivial hyperinvariant subspace for every

inner function φ. On the other hand, if UX = XT , for some nonzero operator X and U is an

absolutely continuous unitary operator, then the (Hyper)invariant Subspace Problem is still open

even under the assumption that T is a contraction.

We introduce the theory of representable operator bi-modules and Hochschild cohomology groups

we convert the intertwining relations between operators on the existance of an isometric repre-

sentation of an A,B-bimodules on certain Hilbert spaces. In fact, let HT and KR be Hilbert

modules in the category H(A) then the algebras A has isometric representations on the Hilbert

spaces H and K respectively, i.e,

φ : A −→ B(H), φ(f) = f(T )

ψ : A −→ B(K), φ(f) = f(R)

So that if there exists an isometric representation of an A,B-bimodule M on B(H,K):

π : M −→ B(H,K), π(fxg) = φ(f)π(x)ψ(R)

for all f, g ∈ A, x ∈ M and the first Hochschild cohomology group H0(A,M), see [37], is non

trivial then we get the A-bimodule HomA(K,H) of morphisms from K to H is non trivial. The

A-bimodule HomA(K,H) will be called: the bimodule morphisms.
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2.2.1 The existence of nontrivial Hilbert submodules intertwined with

weighted modules.

We recall the following definitions and notations.

Definition 2.2.1 Let HT be Hilbert module over the algebra H∞ and let

H0 = {x : ‖T nx‖ → 0;n→∞} be a subspace of HT . Then,

1. HT is of class C0., that is strongly stable, if H0(T ) = H.

2. HT is of class C1. if H0(T ) = {0}.

3. HT is of class C.j : j = 0, 1 if HT ∗ is of class Cj.; j = 0, 1.

4. HT is of class Cij : i, j = 0, 1 if HT ∈ Ci. ∩ C.j.

For more details, see [45, 71].

Remark 2.2.2 1. It is well known that H0 is a hypersubmodule for HT .

2. Let δ be a bounded operator on B(H,K) defined by δT,R(X) = TX − XR, where T ∈

B(H), R ∈ B(K) and H,K are Hilbert spaces, it is called a generalized derivation. It is

obvious that KerδT,R is a closed subspace of B(H,K), in fact it is a concrete operator space

and if HT , KR are Hilbert A-modules then KerδT,R is a Banach A-bimodule representable

on B(H,K).

We note here that Nagy-Foias and Kerchy [71,42], have shwon that if HT is of class C01 then

HomH∞(HT , L
2) is non trivial, that is KerδT,U is an H∞-bimodule representable on B(H,L2),

where U is the unitary operator on L2(T). But the (hyper)invariant subspace problem is still
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open in this case.

In what follows we show that if KerδT,S∞ω 6= {0}, S∞ω is a weighted bilateral operator on certain

weighted space, then we give a positive answer to the hyperinvariant subspace problem. We note

also that the algebra A considered in this section is the algebra H∞.

Lemma 2.2.3 Let f be a nonzero function in l2(ω). If there is no n0 such that fn = 0 for every

n ≥ n0, then ∨k≥0,t∈TS
∗k
ω (f)t = l2(ω).

Proof. Let g ∈ l2(ω) be such that 〈S∗kω (f)t, g〉 = 0 for all k ≥ 0, t ∈ T. Let k be fixed. Then

0 = 〈S∗kω (f)t, g〉 = 〈(f)t, S
k
ωg〉 = Σn∈Zfnt

ngn−kω
2(n)

for every t ∈ T. Since Σn∈Z|fn||gn−k|ω2(n) < ∞, we obtain that fngn−k = 0 for every n ∈ Z.

Since 0 ≤ k was arbitrary, we conclude that fngn−k = 0 for every n ∈ Z and k ≥ 0.

Let s ∈ Z. By the assumption on f , there exists n ∈ Z such that n ≥ s and fn 6= 0. Set k = n−s.

Then k ≥ 0, and gs = 0. Thus, g = 0. �

Lemma 2.2.4 Let φ be a nonzero function in H∞ and let f be a nonzero function in l2(ω).

Suppose that φ(S∗ω)f = 0. Then f satisfies the assumptions of the previous lemma.

Proof. Suppose that there exists n0 ∈ Z such that fn = 0 for every n > n0 and fn0 6= 0. Since

φ 6= 0 there exists n1 ≥ 0 such that φ̂(n1) 6= 0 and φ̂(n) = 0 for every 0 ≤ n < n1. Then

0 = 〈φ(S∗ω)f, zn0−n1〉 = 〈f, φ̃(Sω)zn0−n1〉

= 〈
∑
k≤n0

fkz
k,
∞∑

k=n1

ˆ̃φ(k)zk+n0−n1〉

= fn0φ̂(n1)ω2(n0),
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a contradiction. �

Recall that a contractive Hilbert A-module HT is said to be of class C0 if T is a completely

nonunitary and there exists a nonzero function θ ∈ H∞ such that θ(T ) = 0. It is well known that

a C0-contraction has nontrivial hyperinvariant subspaces, see [71]. With the same reasoning as

for C0-Hilbert modules one can show the existence of ψ ∈ H∞ such that the closure of Ranψ(T )

is a nontrivial hypersubmodules for C0-Hilbert A-modules. So that in what follows we suppose

T is not a C0-operator.

We recall some well known facts. The infinite countable orthogonal sum H(∞) of copies of

the Hilbert space H is defined by

H(∞) = {(hn)n∈N : hn ∈ H, ‖(hn)n∈N‖2 =
∑
n∈N

‖hn‖2 <∞},

and for every T ∈ B(H) one can consider the operator T (∞) ,

T (∞)(hn)n∈N = (Thn)n∈N, (hn)n∈N ∈ H(∞).

For k ∈ H and j ∈ N let (k)(j) be the sequence from H(∞) such that hj = k and hn = 0 for

n 6= 0, n ∈ N.

It is clear that if T is an absolutely continuous polynomially bounded operator, then T (∞) is an

absolutely continuous polynomially bounded operator, too, and then φ(T (∞)) = (φ(T ))(∞) for

every φ ∈ H∞.

It is obvious that if HT is a Hilbert A-modules then H∞T∞ is a Hilbert A-module. If T = Sω then
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H∞ω will denote the Hilbert A-module for the bilateral weight operator S∞.

Theorem 2.2.5 Suppose that HT is an absolutely continuous Hilbert A-module, ω : Z→ (0,∞)

is a nonconstant nonincreasing function, there exists a nonzero function φ ∈ H∞ such that

kerφ(S∗ω) 6= {0}, and HomA(HT , H
∞
ω ) 6= {0}. Then HT has nontrivial hyperinvariant subspaces,

that are the closures of Ranψ(T ) for some ψ ∈ H∞.

Proof. As it is mentioned above, one may to assume that HT is not a C0-Hilbert A-module.

Let f be a nonzero function in kerφ(S∗ω).

By Lemmas 2.2.3 and 2.2.4, l2(ω) = ∨k≥0,t∈TS
∗k
ω (f)t. Therefore,

∨n∈N,k≥0,t∈T(S∗kω (f)t)(n) = (l2(ω))(∞).

Let X be a nonzero operator in HomA(HT , H
∞
ω ).

There exist

j ∈ N, k ≥ 0, t ∈ T such that X∗(S∗kω (f)t)(j) 6= 0.

Since, φt(S∗ω)(f)t = (φ(S∗ω)f)t, we have

φt(T
∗)X∗(S∗kω (f)t)(j) = X∗φt((S

(∞)
ω )∗)(S∗kω (f)t)(j)

= X∗(φt(S
∗
ω)(S∗kω (f)t)(j)

= X∗(S∗kω φt(S
∗
ω)(f)t)(j)

= X∗(S∗kω (φ(S∗ω)f)t)(j)

= 0.
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Thus, kerφt(T ∗) 6= {0}. �

Remark 2.2.6 According to the results of [32], if θ ∈ H∞ is an outer function and HT is

an absolutely continuous Hilbert module then θ(T ) is injective and Ranθ(T ) is dense. Also, if

θ ∈ H∞ is a Blaschke product such that Ranθ(T ) is not dense, then, according to [32], T ∗ has

eigenvalue. Hence, in the previous theorem, we can consider only the singular inner functions in

H∞.

Corollary 2.2.7 Suppose that ω : Z → (0,∞) is a nonconstant nonincreasing function and

there exists a nonzero function φ ∈ H∞ such that kerφ(S∗ω) 6= {0}. If HomA(HT , N
∞
ω ) 6= {0},

N∞ω is a submodule for H∞ω ). Then HT has nontrivial hypersubmodules, that are the closures of

Ranψ(T ) for some ψ ∈ H∞.

If there exists a nonzero operator X ∈ HomA(HT , Hω) then X⊕0 ∈ HomA(HT , H
∞
ω ). Therefore,

we obtain the following result.

Corollary 2.2.8 Suppose that HT is an absolutely continuous Hilbert module, ω : Z → (0,∞)

is a nonconstant nonincreasing function, there exists a nonzero function φ ∈ H∞ such that

kerφ(S∗ω) 6= {0}, and I(T, Sω) 6= {0}. Then HT has nontrivial hypersubmodules, that are the

closures of Ranψ(T ) for some ψ ∈ H∞.

The following examples of weighted shifts operators Sω satisfies the assumption kerφ(S∗ω) 6= {0}

for some nonzero function φ ∈ H∞:

1. Sω is a dissymetric weighted shift from [28].
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2. The weighted shifts Sω from [41] are not dissymetric.

3. The weighted shifts Sω from [29], this class of operators is more general than that of [28].

In the remaining part of the paper, as an application of Corollary 2.2.8, we show that if there is

an equivalence class [X] ∈ ExtH(A)(HT ,H2) for some non zero X∗ ∈ HomA(H2, HT ∗) then HT

has a

nontrivial hypersubmodules.

We note here that the operator

 S∗ Γ

0 S

, Γ is a Hankel operator, was used to solve the problem

of whether each polynomially bounded operator on Hilbert space is similar to a contraction. We

refer the reader to [58, 56] for a survey of these classical results.

Proposition 2.2.9 [8] Let HT be a Hilbert A-module. Then x ∈ BT if and only if there exists

nonzero operators X ∈ HomA(HT , L
2) such that X∗z−1 = x.

Lemma 2.2.10 Suppose that HT is Hilbert A-module and T ∗ has no eigenvalues. Then

HomA(HT , l
2
ω) 6= {0}, Sω is a dissymetric weight shift, if and only if there exists a nonzero

x ∈ BT and a nonzero bounded operator Xω ∈ HomA(HT , l
2
ω−) such that X∗ωz−1 = x.

Proof. It is clear that Sω has the following matrix form

Sω =

 S 1⊗ z−1

0 Sω−

 ;

with respect to the decomposition l2(ω) = H2 ⊕ l2(ω−).
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So that if X ∈ HomA(HT , l
2
ω) then

X =

 X+

Xω

 ,

and by simple computation we get

1⊗X∗ωz−1 = X+T − SX+, and Xω ∈ HomA(HT , l
2
ω−).

It is easy to check that X̂ωh(−n) = 〈h, T ∗n−1X∗ωz
−1〉, for every n ≥ 1, h ∈ H.

Suppose that X∗ωz−1 = {0} then Xω = 0 and X+ 6= 0, because of X 6= 0. Thus, HomA(HT ,H2) 6=

{0}. Therefore, T ∗ has non zero eigenvectors, a contradiction. Consequently, there exists a non

zero x = X∗ωz
−1 ∈ BT and Xω ∈ HomA(HT , l

2
ω−). �

Remark 2.2.11 It is easy to check that the converse holds without using the assumption:

T ∗ has no eigenvalues.

Theorem 2.2.12 Let HT be an absolutely continuous Hilbert module and [X] ∈ ExtH(A)(HT ,H2
S∗),

S∗ is the backward unilateral shift on the Hardy space H2. where X(.) =
∑∞

n=0〈., T ∗nx〉zn and

x ∈ BT .

Then there exists a singular inner function ψ such that kerψ(T ∗) 6= {0}.

Proof. By Remark 2.1.6, and the definion of cocycles, we conclude that X is a bounded

operator from H to H2. Since S∗X = XT then

Rn =

 S∗n nXT n−1

0 T n

 , n ≥ 1.
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If there exists a non zero x ∈ BT such that [X] ∈ ExtH(A)(HT ,H2
S∗) then R is a poly-

nomially bounded operator, then R∗ is a polynomially bounded operator, too. In particular,

supn≥1 ‖R∗n(1⊕ 0)‖ <∞. Therefore,

C = sup
n≥1

n‖T ∗(n−1)X∗(1)‖ = sup
n≥1

n‖T ∗(n−1)x‖ <∞.

It is clear that the map ω : Z→ [1,∞) defined by

ω(−n) = na, n ≥ 1 and ω(n) = 1, n ≥ 0,

for a fixed number a : 0 < a < 1
2
, is a dissymetric weight.

According to the section 1.2, we consider the weighted space l2(ω−) and the compression Sω− of

the bilateral weight shift Sω.

Define an operator Y from H to l2(ω−) by the formulas

(Y h)(−n) = 〈h, T ∗(n−1)x〉, n ≥ 1, h ∈ H.

Then

‖Y h‖2
ω =

∞∑
n=1

|〈h, T ∗n−1x〉|2n2a ≤ ‖h‖2

∞∑
n=1

‖T ∗(n−1)x‖2n2a

≤ C2

∞∑
n=1

n2a−2‖h‖2.

Since
∑∞

n=1 n
2a−2 <∞, then Y is a bounded operator fromH to l2(ω−) and Y ∈ HomA(HT , l

2
ω−)

follows from an easy calculation. The conclusion of the theorem follows from Lemma 2.2.10, and

Corollary 2.2.8.
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�

It is well known that the commutant {T}8 of every quasianalytic contraction T of class C10

contains an operator similar to

R =

 S 1⊗X∗z−1

0 A

 .
and the hyperinvariant subspace problem for T is equivalent to that of R, see [44]. The following

result gives a partial result in this context.

Corollary 2.2.13 Let HT be an absolutely continuous Hilbert module, X ∈ HomA(HT ,H2
−),

H2
− is the module quotient of L2 by the submodule H2. If X∗z−1 is cyclic vector for HT and if

[X] ∈ ExtH(A)(HT ,H2
S∗) (i.e,X∗z−1 defines a bounded derivation from A to B(H2, H)) then the

following operator

R =

 S 1⊗X∗z−1

0 T

 .
defines a Hilbert A-module HR in the category H(A) and HR has nontrivial hypersubmodules of

the form Ranψ(T ∗), for some singular inner function ψ.

Remark 2.2.14 If ‖T‖ < 1 then X∗z−1 always defines a bounded derivation from A to B(H2, H)

and therefore the previous corollary holds true without the assumption [X] ∈ ExtH(A)(HT ,H2
S∗).

2.2.2 Some sufficent conditions for nonvanishing of the bimodules mor-

phismes

In what follows we give some sufficient conditions such that HomA(HT , l
2∞
ω ) 6= {0}.
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Lemma 2.2.15 If HT is of class C.0 then there is a singular inner function φ such that

∞∑
n=0

| 1̂
φ

(n)|2‖T ∗nh‖2 <∞. (2.7)

Proof. It follows from [32], that there exists a dissymetric weight ω such that

ω(−n− 1) ≤ 1

‖T ∗nh‖
for sufficiently large n.

By J. Esterle theorem [28], there exists a singular inner function φ such that

∞∑
n=0

1

ω2(−n− 1)
| 1̂
φ

(n)|2 <∞.

So that, for sufficiently large m, we get

∞∑
n=m

| 1̂
φ

(n)|2‖T ∗nh‖2 ≤
∞∑
n=m

1

ω2(−n− 1)
| 1̂
φ

(n)|2.

Thus,

∞∑
n=0

| 1̂
φ

(n)|2‖T ∗nh‖2 <∞, for every h ∈ H.

�

Proposition 2.2.16 If HT is a C.0-contractive Hilbert module then there is an increasing se-

quence of positive numbers (αn)n≥0: α0 = 0 and αn →∞ such that

∞∑
n=0

αn+1‖RT ∗nx‖2 <∞.

for every x ∈ H and R ∈ {DT , DT ∗ , [T
∗, T ]}.
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Proof. Since TDT = DT ∗T and

D2
T ∗ −D2

T = [T ∗, T ] then it suffices to consider only the case R = DT ∗ . Then,

‖DT ∗T
∗nx‖2 = 〈x, T nD2

T ∗T
∗nx〉

= ‖T ∗nx‖2 − ‖T ∗n+1x‖2,∀x ∈ H.

Let (αn)n be a sequence defined by:

α0 = 0; αn+1 =
n∑
0

| 1̂
φ

(n)|2, n ≥ 0.

It is clear that (αn)n is a positive increasing sequence. Since φ is an inner not an outer then

1

φ
/∈ H2. That is, (αn)n is an unbounded sequence (αn → ∞). An easy computation shows, for

every n ≥ 0, that

n∑
k=0

αk+1‖DT ∗T
∗kx‖2

≤
n∑
k=0

αk+1(‖T ∗kx‖2 − ‖T ∗k+1x‖2)

≤
n∑
k=0

(αk+1 − αk)‖T ∗kx‖2 − cαn+1‖T ∗nx‖2

=
n∑
k=0

| 1̂
φ

(k)|2‖T ∗kx‖2 − αn+1‖T ∗nx‖2
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Since αn+1‖T ∗nx‖2 > 0 then

n∑
k=0

αk+1‖DT ∗T
∗kx‖2 ≤

n∑
k=0

| 1̂
φ

(k)|2‖T ∗kx‖2.

for every n ≥ 0. Hence, by the previous Lemma, we get.

∞∑
k=0

αk+1‖DT ∗T
∗kh‖2 <∞.

�

Set

C = {T : ∃A ∈ {T}8, RanA ⊆ RanR} and R ∈ {DT , DT ∗ , [T
∗, T ]}.

We recall that an operator T ∈ B(H) is said to be a quasinormal if

TT ∗T = T ∗TT .

Lemma 2.2.17 The class C contains the quasinormal operators.

Proof. It is clear that if T is a quasinormal operator then TD2
T = D2

TT . Thus, D2
T ∈ {T}8.

Hence, T ∈ C. �

Lemma 2.2.18 [19]. Let A,B ∈ B(H,K). Then the following statements are equivalent:

1. RanA ⊆ RanB,

2. A = BC for some bounded linear operator

C ∈ B(H),
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3. AA∗ ≤ λBB∗ for some λ ≥ 0.

Theorem 2.2.19 Let HT be a C.0-contractive Hilbert module. If one of the following conditions

is satisfied:

1.
∞∑
n=0

1

nt
‖T ∗nx‖2 <∞ for some x ∈ H

and 0 ≤ t < 1,

2. T ∈ C.

Then there is a bounded operator X ∈ I(T, Sω−) from H to l2(ω−).

Proof. 1. Let f(z) =
∞∑
n=0

1

nt
‖T ∗nx‖zn be such that

∞∑
n=0

1

nt
‖T ∗nx‖2 < ∞ for some x ∈ H and

0 ≤ t < 1. Then, f ∈ H2.

Let φ =
∞∑
n=1

1

ns
zn, 0 < s ≤ 1− t. It is clear that φ ∈ H∞. Thus, φ.f ∈ H2.

By the definition of the product of two function we get

(φ.f)(z) =
∞∑
n=1

(
n∑
k=1

1

ks
1

(n− k)t
‖T ∗n−kx‖)zn.

Since T is a contraction, then ‖T ∗nx‖ ≤ ‖T ∗n−kx‖ for every 0 ≤ k ≤ n.

Thus,

∞∑
n=1

|
n∑
k=1

1

ks
1

(n− k)t
‖T ∗n−kx‖|2

≥
∞∑
n=1

|
n∑
k=1

1

ks
1

(n− k)t
|2‖T ∗nx‖2.
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2n∑
k=1

1

ks
1

(n− k)t
=

n−1∑
k=1

1

ks
1

(n− k)t
+

2n∑
k=n

1

ks
1

(n− k)t

≥
n−1∑
k=1

1

ks
1

(n− k)t
+

2n∑
k=n

1

ks+t

Hence,

2n∑
k=1

1

ks
1

(n− k)t
−

n−1∑
k=1

1

ks
1

(n− k)t
≥

2n∑
k=n

1

ks+t
≥

2n∑
k=n

1

k

Since the rest of the harmonic series does not converges to zero then the sequence

(αn)n : αn = (
n∑
k=1

1

ks
1

(n− k)t
)2, n ≥ 1

diverges and therefore there exists a sequence

αn →∞ such that

∞∑
k=0

αn+1‖T ∗kx‖2 <∞.

Then, it follows from [32], that there exists a dissymetric weight ω such that ωn ≤ αn for

sufficiently large n. Thus,

∞∑
n=1

ωn|〈h, T ∗n−1x〉|2 <∞, for every h ∈ H

Therefore, the operator

X : Xh =
∞∑
n=1

〈h, T ∗n−1x〉z−n

is a bounded operator form H to l2(ω−) and X ∈ I(T, Sω−).
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2. If T ∈ C then there is A ∈ {T}8 such that

RanA ⊆ RanR and R ∈ {DT , DT ∗ , [T
∗, T ]}.

Since TDT = DT ∗T and D2
T ∗ −D2

T = [T ∗, T ] then it suffices to consider only the case RanA ⊆

RanDT ∗ .

By Lemma 2.2.18, there exists a bounded operator C such that

‖T ∗nA∗x‖2 = ‖A∗T ∗nx‖2

= ‖C∗DT ∗T
∗nx‖2

≤ ‖C∗‖2‖DT ∗T
∗nx‖2.

According to the proposition 2.2.16, there exists a sequence αn such that

∞∑
n=0

αn+1‖T ∗nA∗x‖2 ≤ ‖C∗‖2

∞∑
n=0

αn+1‖DT ∗T
∗nx‖2 <∞.

Hence, there exists a dissymetric weight ω such that ωn ≤ αn for sufficiently large n and the

operator X(.) =
∞∑
n=1

〈., T ∗n−1A∗x〉z−n ∈ I(T, Sω−). �

Lemma 2.2.20 Suppose that T is a polynomially bounded operator. If there exists a nonzero

x ∈ BT and a nonzero bounded operator Xω ∈ I(T, Sω−) such that X∗ωz−1 = x then I(T, Sω) 6=

{0}.

Conversely, if I(T, Sω) 6= {0} and T ∗ has no eigenvalues then BT 6= {0} and I(T, Sω−) 6= {0}.
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Proof. It is clear that Sω has the following matrix form

Sω =

 S 1⊗ z−1

0 Sω−

 ;

with respect to the decomposition

l2(ω) = H2 ⊕ l2(ω−). By the definition of BT , if x ∈ BT , then there exists an operator X+ such

that

1⊗ x = X+T − SX+.

So that if there exists an operator Xω ∈ I(T, Sω−) of the form:

Xωh =
∞∑
n=1

〈h, T ∗n−1X∗ωz
−1〉z−n

such that X∗ωz−1 = x. Then,

X =

 X+

Xω

 ∈ I(T, Sω)

Conversely, if X ∈ I(T, Sω) then

X =

 X+

Xω

 ,
and by simple computation we get

1⊗X∗ωz−1 = X+T − SX+, and Xω ∈ I(T, Sω−).

It is easy to check that X̂ωh(−n) = 〈h, T ∗n−1X∗ωz
−1〉, for every n ≥ 1, h ∈ H.

Suppose that X∗ωz−1 = {0} then Xω = 0 and

X+ 6= 0, because of X 6= 0. Thus, I(T, S) 6= {0}. Therefore, T ∗ has non zero eigenvectors, a
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contradiction. Consequently, there exists a non zero

x = X∗ωz
−1 ∈ BT and Xω ∈ I(T, Sω−). �

Theorem 2.2.21 Let HT be a absolutely continuous C10-contractive Hilbert module. If one of

the following conditions is satisfied:

1.
∞∑
n=0

1

nt
‖T ∗nx‖2 <∞ for some x ∈ BT and

0 ≤ t < 1,

2. T ∈ C.

then there is a bounded operator X ∈ I(T, Sω) from H to l2(ω) and either the point spectrum of

T ∗ is not empty or T has nontrivial hyperinvariant subspaces of the form Ranφ(T ∗), for some

singular inner function φ.

Proof. The first statement follows from Theorem 2.2.19, and Lemma 2.2.20.

According to Theorem 11, it suffices to show that there exists a singular inner function φ such

that

∞∑
n=0

| 1̂
φ

(n)|‖T ∗nh‖ <∞, h ∈ BT .

By Theorem 2.2.19, there exists a positive unbounded sequence (γn)n such that
∑∞

n=0 αn‖T ∗nx‖2 <

∞ and by [32], there exists a dissymetric weight ω such that

ω(−n− 1) ≤ √γn
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for sufficiently large n. and by Esterle’s theorem [28], we get

∞∑
n=0

∣∣∣∣ 1̂φ(n)

∣∣∣∣‖T ∗nx‖
=

∞∑
n=0

| 1̂
φ

(n)| 1
√
αn

√
αn‖T ∗nx‖

≤
∞∑
n=0

∣∣∣∣ 1̂φ(n)

∣∣∣∣2 1

αn

∞∑
n=0

αn‖T ∗nx‖2

≤
∞∑
n=0

| 1̂
φ

(n)|2 1

ω2(−n− 1)

∞∑
n=0

αn‖T ∗nx‖2

< ∞

The result follows by Theorem 11. �

Lemma 2.2.22 [32, 50] Let T ∈ B(H).

If T is polynomially bounded operator then there is a contraction operator A such that A ≺ T .

Conversely, if T is a contraction operator then there is a polynomially bounded operator A such

that A ≺ T .

We deduce from the previous Lemma and the Theorem 2.2.21 the following result.

Corollary 2.2.23 Let HT be an absolutely continuous Hilbert module of class C10. If one of the

following conditions is satisfied:

1.
∞∑
n=0

1

nt
‖T ∗nx‖2 <∞ for some x ∈ BT and

0 ≤ t < 1,

2. T ∈ C.
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then there is a bounded operator X ∈ I(T, Sω) from H to l2(ω) and either the point spectrum of

T ∗ is not empty or T has nontrivial hyperinvariant subspaces of the form Ranφ(T ∗), for some

singular inner function φ.

We point out here that our results are very powerful compared to those given in [32]. Indeed, if we

set t = 0 in the first statement of the previous corollary we get the the main result obtained in [32].

2.2.3 The existence of nontrivial submodules and representable Ba-

nach bimodules

Unsing the language of Banach bimodules representables, we can give another version of the

theorem obtained in the first section of this chapter as follows.

Theorem 2.2.24 If there exists a Banach H∞-bimodle representable M on B(H, l2∞ω ) and the

first Hochschild cohomology H0(H∞,M) is not vanaishing then the Hilbert module HT has non-

trivial hypersubmodules.

Proof. If there exists a Banach H∞-bimodule representable M on B(H, l2∞ω ) with represen-

tation π then

π(fxg) = f(T )π(x)g(S∞) for all f, g ∈ H∞ and x ∈M .

Since,

H0(H∞,M) = {x ∈M : fx = xg, f, g ∈ H∞}

Then,
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π(H0(H∞,M)) = {π(x) ∈ B(H, l2∞ω ) : f(T )π(x) = π(x)g(S∞), f, g ∈ H∞}

Which means that π(H0(H∞,M)) is a subbimodule of HomH∞(HT , l
2∞
ω ).

Since π is injective then if H0(H∞,M) 6= {0} then, by theorem 2.2.5, HT has nontrivial submod-

ules. �



Chapter 3

Generalized C∗-Hilbert modules

In [63] C.Pop and [14] A.Delarouche introduced a new class of C∗(A,B)-bimodules, called repre-

sentable bimodule, and they showed that it met a condition of C∗(A,B)-convexity; in addition

they showed whereas this condition characterizes the class of C∗(A,B)-bimodules. In the follow-

ing, on the one hand, we introduce a new class of C∗-modules, said C∗-semiinner product and we

prove that it is a representable bimodule and, as a consequence, it is an operator space. On the

other hand, by establishing a contravariant equivalence between the category of representative

bimodules and that of Banach bundles in the sense of Fell we show that this class of bimodules

is the noncommutative version of Banach bundles in the sense of Fell [30].
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3.1 C∗-semiinner product bimodules

Proposition 3.1.1 Let X be an esenntial normed (A,B)-bimodule and A,B be Banach algebras.

If A and B have approximate unites (aα) and (bβ) respectively, then

∀x ∈ X : x = lim
α
aαx = lim

β
xbβ

Proof. This follows from the definition of an essential bimodules. �

Thus, if A (or B) isn’t unital and X is a normed A,B-bimodule we can have a normed

Aun,B-bimodule structure on X , where Aun is the unitisation algebra of A, as follows,

∀a ∈ A, ∀b ∈ B, ∀λ ∈ C,∀x ∈ X : (a, λ)xb = axb+ λxb

Also, if X is a Banach space and A is a C∗− algebra, we can extend the action from A on

X to the multiplier algebra M(A) on A as follows. If m = (L,R) ∈ M(A), a ∈ A and x ∈ X ;

we set m.(ax) = L(a)x. Indeed, if y ∈ X , b ∈ A such that ax = by then, using the approximate

unit (aα) of A we get

m.(ax) = L(a)x = limL(aαa)x = limL(aα)ax = limL(aα)

= limL(aαb)y = L(b)y = m (by) .

By Cohen factorisation theorem [11], we have an action of M(A) on X .

Definition 3.1.2 Let A be a C∗-algebra and X be a left algebraic module over A. If there is a
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map

[., .] : X × X → X

such that following conditions are satisfied:

(i) ∀x ∈ X : [x, x] > 0; [x, x] = 0⇒ x = 0;

(ii) ∀x, y, z ∈ X et ∀α, β ∈ K : [αx+ βy, z] = α[x, z] + β[y, z];

(iii) ∀x, y ∈ X et a ∈ A : [ay, x] = a[y, x];

(iv) ∀x, y ∈ X : ‖[y, x]‖ ≤ ‖[x, x]‖
1
2 ‖[y, y]‖

1
2 .

Then X will be said a left C∗-semiproduct A-module, denoted by left s.p.A-module. In the

same manner we define a right s.p. A-module, we subtitue (iii) by

∀x, y ∈ X and a ∈ A : [ya, x] = [y, x]a.

Example 3.1.3 1. Let A be a C∗−algebra and

[., .] : A×A → A : [y, x] =


1
‖x‖2y (x∗xx∗) : x 6= 0

0 : x = 0

2. Let X be a normed linear space and H a Hilbert C∗-module. The left A-module M = H⊗X

is a left semiinner product A-module with respect to the following A-semiinner product:

[., .] : M ×M → A, [Σi=1,nhi ⊗ yi,Σj=1,mkj ⊗ xj] = Σi,j〈φj(yi)hi, kj〉

where φ ∈ X∗ and φ(x) = ‖x‖2, ‖φ‖ = ‖x‖, φ is said the support functional of x.

We can check easily that [., .] is a A-s.p. but isn’t an A-inner product on A.



64 Generalized C∗-Hilbert modules

It is obvious that the semiproduct defined by G. Lumer [47] and Gilles [35], on normed

spaces, is a particular case of our A-sp. We note that if the map [., .] is linear congugate (i.e.

∀x, y ∈ X : [y, x]∗ = [x, y]) we get the definition of C∗ preHilbert module on A.

Proposition 3.1.4 Let X be a left A-semiinner product. Then X is a left Aun-semiinner prod-

uct. If in addition, X is a Banach space then X is a left M(A)-semiinner product module.

Proof. 1. Let λ ∈ C, x, y ∈ X et a ∈ A, we have

〈(a, λ) .y, x〉 =
〈

lim
α

(aaα + λaα) y, x
〉

=
〈

lim
α
aaαy, x

〉
+
〈

lim
α
λaαy, x

〉
= 〈ay, x〉+ 〈λy, x〉 = a 〈y, x〉+ λ 〈y, x〉 = (a, λ) 〈y, x〉 .

2. Let m = (L,R) ∈M(A), a ∈ A and x ∈ X

〈m (ay) , x〉 = 〈L (a) y, x〉 =
〈

lim
α
L (aαa) y, x

〉
= lim

α
L(aα) 〈ay, x〉 = m 〈ay, x〉 .

�

In what follows we suppose that the algebra A is unital.

Proposition 3.1.5 If X is a left A-preHilbert module then X is a left A-sp.

Proof. It suffices to check (iv) of the definition. We suppose that X is a left A-preHilbert

module with A-produit (., .). We have (ax− y, ax− y) ≥ 0, for all a ∈ A and all x, y ∈ X .

Hence, a (x, x) a∗ − a (x, y) − (y, x) a∗ + (y, y) ≥ 0. We know that if b ∈ A is positive then, for

all a ∈ A, a∗ba ≤ ‖b‖ a∗a, thus 0 ≤ ‖x‖2 aa∗ − a (x, y) − (y, x) a∗ + (y, y). We set a = (y, x)
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and we suppose that ‖x‖ = 1, we get (y, x) (x, y) ≤ (y, y) and for ‖x‖ 6= 1, we deduce that

(x, y)∗ (x, y) ≤ ‖x‖2 (y, y).

It follows from the last inequality that ‖(x, y)‖ ≤ ‖x‖ ‖y‖. �

Proposition 3.1.6 If X is a left A-sp then X is a left A-normed module.

Proof. It suffices to check that the function ‖.‖ defined by ‖〈x, x〉‖
1
2 = ‖x‖, for all x ∈ X ,

is a norm on X . It is clear, by Definition 3.1.2; (i), ‖x‖ = 0⇔ x = 0.

It follows from (ii) et (iii), that

‖x+ y‖2 = ‖〈x+ y, x+ y〉‖ = ‖〈x, x+ y〉+ 〈y, x+ y〉‖ ≤ ‖〈x, x+ y〉‖+ ‖〈y, x+ y〉‖

≤ ‖〈x, x〉‖
1
2 ‖〈x+ y, x+ y〉‖

1
2 + ‖〈y, y〉‖

1
2 ‖〈x+ y, x+ y〉‖

1
2

By the first assertion, if x+ y 6= 0 we get

‖〈x+ y, x+ y〉‖
1
2 ≤ ‖〈x, x〉‖

1
2 + ‖〈y, y〉‖

1
2 or ‖x+ y‖ ≤ ‖x‖+ ‖y‖ .

If x+ y = 0, then

‖ax‖2 = ‖〈ax, ax〉‖ = ‖a 〈x, ax〉‖ ≤ ‖a‖ ‖〈x, ax〉‖ ≤ ‖a‖ ‖x‖ ‖ax‖ . (3.1)

If ax = 0 then it is obvious that 0 = ‖ax‖ ≤ ‖a‖ ‖ax‖ .

If ax 6= 0 then, by (3.1), we get ‖ax‖ ≤ ‖a‖ ‖ax‖ . �

Definition 3.1.7 1. Let X be a semiinner product A-bimodule.

X is said to be full if the linear subspace spanned by {〈y, x〉 : x, y ∈ X} is dense in A. This

subspace is denoted by 〈X ,X〉.
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2. X is said to be A-homogene if and only is for all x, y ∈ X and a ∈ A : 〈y, ax〉 = 〈y, x〉 a∗.

Proposition 3.1.8 Let X be a full semiinner product A-bimodule and let a ∈ A. Then, ∀x ∈

X : ax = 0⇔ a = 0.

Proof. It is clear that a = 0⇒ ∀x ∈ X : ax = 0.

Conversly. Let b ∈ A. Since X is full then

∃ζn ∈ 〈X ,X〉 : b = limn ζn et ζn =
∑mn

i=1 αin 〈yin , xin〉; yin , xin ∈ X , αin ∈ C.

Thus,

ab = a lim
n

mn∑
i=1

αin 〈yin , xin〉 = lim
n

mn∑
i=1

αin 〈ayin , xin〉 = 0,

hence, ab = 0. We choose b = a∗ we get ‖a‖2 = ‖aa∗‖ = 0. Therefore, a = 0. �

Definition 3.1.9 Let X be a semiinner product A-bimodule with A-sp. [., .]

For fixed x ∈ X , the map x̂ : X → A; x̂ (y) = [x, y] is A-lineair and bounded (follows from the

definition of A-s.p.). Hence, we can define a left duality map as follows, Ad : X → HomA (X ,A);

∀x ∈ X :A d (x) = x̂; (3.2)

where HomA (X ,A) is the set of A-bounded linear maps from X to A. It is in fact a left A-

module. It will be noted by X †l.

In the same manner we define the right duality map,

dA : X → Hom (X ,A)A;

∀x ∈ X : dA (x) = x̂. (3.3)
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Also, Hom (X ,A)A is a right A-module, noted by X †r .

Definition 3.1.10 Let X be semiinner product A-bimodule with [., .] sp. and x ∈ X .

1. If R ∈ X ‡L then R is said to be A-support at the point x if R (x) = [x, x]
1
2 and ‖R‖ = 1.

2. If there is one support at x, we say x is A-smooth;

3. X is said to be a smooth A-module if every x ∈ X is A-smooth.

We observe that the notion of smoothness is related to both the A-norme |.|2 = [., .] and

K-norme ‖.‖, which means that A-smoothness generalizes the usuel K-smoothness in the normed

spaces [60].

Definition 3.1.11 [3, 6] Let X be a left algebraic A-module. X is said to be a pre-Finsler

A-module if there is a map z : X → A+ such that

(i) the function ‖.‖ defined by: ∀x ∈ X : ‖x‖ = ‖z (x)‖
1
2 is a norm in X ;

(ii) ∀x ∈ X , ∀a ∈ A : z (ax) = az (x) a∗.

where A+ denotes the positive cone of A.

If X is completed for this norm, X is said to be a Finsler A-module.

We note here that the original definition of Finsler module is that X is assuming a Banach

space for the standard given in (i), [9], Although, C. Akemann [3] showed that the completude

of A-pré-Finsler module with respect to the given norm is in fact a Finsler A-module.

Proposition 3.1.12 Let X be an algebraic A-module.

1. If X is a pre-Finsler A-module then it is a normed A-module.

2. If X is an A-homogene semiinner product A-module then X is a pre-Finsler A-module.
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Proof. 1. ‖ax‖2 = ‖z (ax)‖ = ‖az (x) a∗‖ ≤ ‖a‖2 ‖z (x)‖ = ‖a‖2 ‖x‖2.

Thus, ‖ax‖ ≤ ‖a‖ ‖x‖.

2. We suppose that X is a semiinnerproduct A-bimodule with [., .] sp. We set z (x) = [x, x],

for all x ∈ X . Then, by the definion of [., .], ‖z (x)‖ is a norm in X .

On the other hand, z (ax) = 〈ax, ax〉 = a 〈x, x〉 a∗ = aF (x) a∗, thus X is a pre-Finsler

A-module. �

We note that duality in bimodules is more delicate than the one in the modules. Indeed,

let’s consider the algebraic case without using topology, if X is an algebraic A-bimodule, the

abelian group HomA (X ,A) (the algebraic dual of X ) does not have a structure of an alge-

braic A-bimodule if A is not commutative. To solve this problem, we consider the dual al-

gebraic HomA (X ,A⊗A), where ⊗ is the algebraic tensoriel product of A,and consequently

HomA (X ,A⊗A) becomes an algebraicA−bimodule relative to the follwing actions a. (e⊗ g) .b =

aeb⊗ g. Or we represent the given algebra on some Hilbert spaces, which is part of our work.

Remark 3.1.13 Let A be a C∗− algebra, we denote by RepA for the set of all nondegenrates

representations (π,HA) of A on Hilbert space HA.

Depending on the representation of A on a Hilbert space, we reintroduce a semi-product in X

related to the given representation while keeping the same conditions of the definition except the

third is replaced by the following

(iii’) ∀x, y ∈ X et a, b ∈ A : [ayb, x] = π (a) [y, x] π (b).
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3.2 Representability of Semiinner product bimodules

Now we are ready to prove the main result of this subsection namely; we show that the class

of semiinner C∗-bimodule coincides with the representable bimodule class (or A-bimodules A-

convex) introduced by C.Pop [63], C.A.Delarouche [14] and B.J.Magajna [48].

First we fix some notations. Let X be a normed A-bimodule and (π,HA) ∈ RepA. We

denote by X ‡ = HomA (X , B (HA)) for the set of all continuous A-morphismes from X to

B(HA),
(
X ‡
)

1
for the closed unit ball of X ‡, i.e, the subset of contractive A-morphismes.

And by `∞
((
X ‡
)

1
, B (HA)

)
for the normed space of the suites R = (RT )T∈(X ‡)

1

such that

‖R‖ = supT ‖RT‖ <∞, it is a normed A-bimodule.

Lemma 3.2.1 Let X be a normed A-bimodule A-convex. Then, for all x ∈ X , there is a

contractive morphism of A-bimodules T : X → B(HApp) such that T (x) is positive and ‖T (x)‖ =

‖x‖.

Proof. Let 0 6= x0 ∈ X . Then, there is f ∈ X † (the dual space of X ) such that f (x0) = ‖x0‖.

It is well known, [see 16, 57] that we can find a state ϕ on A such that

∀a, b ∈ A, x ∈ X : (3.4)

|f(axb| ≤ ϕ (aa∗)
1
2 ‖x‖ϕ (b∗b)

1
2 , f(axa∗) ≥ 0

The extension ϕ∗∗ of ϕ from A to App is a normal state, denoted by the same symbol ϕ, and by

[16] it is a vector state, that is there is a unit vector η ∈ HApp with norm 1 such that ϕ = ωη.

Let x ∈ X , then the sesquilinear form on Aη× Aη given by (aη, bη) 7→ f (b∗xa) is definite and
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positive. Indeed, by the previous inequality, we get

|f(b∗xa| ≤ ϕ (a∗a)
1
2 ‖x‖ϕ (b∗b)

1
2 ≤ ‖y‖ ‖aη‖ ‖bη‖ et f (a∗xa) ≥ 0

Thus, for each x ∈ X , there exists a one operator T (x) ∈ B(Aη) such that ‖T (x)‖ ≤ ‖x‖ and

∀a, b ∈ A : f(b∗xa) = (T (x)bη, aη)

Since Aη ⊆ HApp we can consider T (x) as a morphism in HApp , denoted again with the same

notation T (x). We check that T is a morphism of A-bimodules

(T (cxd)bη, aη) = f(b∗cxda) = (T (x)dbη, c∗aη) = (cT (x)dbη, aη)

Thus, ∀c, d ∈ A : T (cxd) = cT (x)d. For x = x0,

∀a ∈ A : f(a∗x0a) = (T (x0)aη, aη) ≥ 0.

Thus, T (x0) is positive and it follows from f (x0) = ‖x0‖ that ‖T (x0)‖ = ‖x0‖. �

Theorem 3.2.2 If X is a normed A-bimodule A-convex with norm ‖.‖ such that all states of A

are vectors with respect to (ρ,HA) ∈ RepA. Then there is B (HA)-s.p. [., .] on X generates the

same norm ‖.‖.

Proof. If X is a normed A-bimodule with norme ‖.‖ and A-convex then, by [63], the

topological dual of X is X ‡ρ = HomA(X , B (HA).
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The dual X ‡ρ has an obvious structure of ρ (A)′-bimodule with respect to the following actions

∀a, b ∈ ρ (A)′ , ∀x ∈ X ,∀T ∈ X ‡ρ : (a.T.b) (x) = aT (x)b

By the previous lemma the normalized duality mapping, Dρ : X → X ‡ρ has the following form,

for all x ∈ X ,

Dρ (x) =
{
T ∈ X ‡ρ : T (x) ∈ B+ (HA) , ‖T (x)‖ = ‖x‖2 et ‖T‖ = ‖x‖

}
,

where B+ (HA) is the positive cone of B (HA).

For each x ∈ X we take one selection T from Dρ (x) we can define a function [., .] : X ×X →

B (HA),

∀x, y ∈ X : [y, x] = T (y).

It is clear that [., .] is a map well defined and, for all x ∈ X , [x, x] = T (x) is a positive operator.

Also, x = 0 is equivalent to [x, x] = 0. Since each selection T , for each x ∈ X , is A-morphism

then we get the others properties of A-semiinner product. �

Remark 3.2.3 If A is identified with its image in its standard form A′′ by the canonical inclu-

sion, the dual (A-dual) of X is simply X ‡ = HomA(X , B (HA′′). It will be called the standard

dual of X .

Since every state of the enveloping algebra A′′ are vectors with respect to the standard representa-

tion. Hence, by the previous theorem, we say that every normed A-bimodule A-convex is a normed

semiinner product A-bimodule and in this case the A-bimodule has a standard B (HA)-sp. [., .].
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Theorem 3.2.4 Let X be semiinner product A-bimodule. Then, there exists a Hilbert space H,

tow faithfull nondegenerates representationsπ of A and J such that J : X → B(H) is isometric

and,

∀a, b ∈ A, x ∈ X : J(axb) = π(a)J(x)π(b)

Proof. Let [., .] be A-sp. in X and (π,HA) ∈ RepA. Let (0 6=)x ∈ X , by the definition of

[., .], the map T : X → B (HA) given by T (y) ∈ 1
‖x‖ [y, x] is A-morphism and ‖T (x)‖ = ‖x‖.

Thus, for all x0 ∈ X there exists a continuous contractive morphism (‖T‖ ≤ 1) T such that

‖T (x0)‖ = ‖x0‖. Hence, ‖x0‖ = sup
‖T‖≤1

‖T (x0)‖.

Let U : X → `∞ ((X ∨)1 , B (HA)) be a map defined by U (x) (T ) = Tx. It follow from the previous

argument that U is an isometric morphism. We have the obvious inclusion `∞ ((X ∨)1 , B (HA)) ⊂

B(H) where H = `2 ((X ∨)1)⊗HA.

We take ρ = 1⊗ π and we define a map J : X → B(H) by

∀x ∈ X : J(x) = U(x)

we deduce that the representation ρ is faithfull and nondegenerate, and since U is an isometric

morphism then J is again an isometric morphism. �

Remark 3.2.5 1. We deduce from the previous arguments that every semiinner product X is an

operator space, in particular is an operator module. In particular, the Hilbert C∗−modules are

operator spaces.

On the other hand, J (X ) is a semiinner product π (A)-bimodule. Indeed, we set [y, x]X =

[J(y), J(x)]J , for all x, y ∈ X where [., .]X is an A-s.p. in X . We can check easly that [., .]J is an
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A-s.p. in J(X ) and the norm of J(X ) is the induced norm of B (HA).

2. Considering an involutive Banach algebra with approximate identity and non degenerate

representation π we get, with the same argument as in the previous theorem, a nondegenerate

representation ρ = 1⊗ π and an isometric morphism J : X → B(H).

C. Pop [63] and B. Magajna [49] have showed separately the equivalence between the A-B-

bimodules A-B-convexes and the A-B-bimodules representables. Thus, we deduce the following

result.

Corollary 3.2.6 Let X be a normed A-bimodule such that every state of A is a vector with

respect to (ρ,HA) ∈ RepA. Then, if X is an A-bimodule A-convex then X is a B(HA)-

semiinner product A-bimodule. Conversly, every A-semiinnerproduct A-bimodule is an A-convex

A-bimodule.

Definition 3.2.7 Let A be a C∗−algebra.

(i) If (π,HA) ∈ RepA, then (π,HA) is said locally cyclic if for all h1, h2, .., h3 ∈ HA there

exists h ∈ HA with hi ∈ π (A)h, i = 1, ., n; [68].

(ii) A is said possed the property (LC) if ∀ (π,HA) ∈ RepA, (π,HA) is locally cyclic; [63].

Theorem 3.2.8 Let X be semiinner product A-bimodule and (π,HA) ∈ RepA such that (π,HA)

is locally cyclic and every state of A is a vector with respect to (ρ,HA) and let F ⊆ X be a A-

subbimodule. If T : F → B(HA) is a contractive morphism of A−bimodules, then there exists a

contractive morphism of A−bimodules T̃ : X → B(HA) which extends T .

Proof. Since X is a semiinner A-bimodule with respect to given nondegenerate faithfull

representation for A, then by theorem 3.1.7, X is A-convexe bimodule and, by extension theorem
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of C.Pop [63], there exists a contractive morphism of A−bimodules T̃ : X → B(HA) witch

extends T . �

Remark 3.2.9 Since the standard representations of the enveloping Von Neumann algebra of

A are locally cyclic then every semiinner product A-bimodule X in its standard form satisfy the

previous extension theorem.

As exemple, every stable C∗-algebra has the property (LC). In [68], it was shown that if a

Von Neumann algebra M acts on a Hilbert H, the inclusion of M in B(H) is locally cyclic if

every normal state of M p is a vector state. In particular, the standard representation of a von

Neumann algebra M is locally cyclic. For a C∗− algebra A, the standard representation of its

enveloping Von Neumann algebra (on some Hilibert space) App is again locally cyclic. It is well

known that the only representation of C that is locally cyclic is the trivial representation.

Proposition 3.2.10 Let H be a Hilbert space andMn (C) be the C∗−algebra of n-square matrices

on C. Then, a representation π : Mn (C)→ B(H) is locally cyclic if and only if π is the sum of

not more than n copies of the identical representation.

Proof. Let I be the identic representation. Then⊕mi=1Ii is a subrepresentation of the standard

representation if m ≤ n thus, from the previous examples, ⊕mi=1Ii is locally cyclic if m ≤ n. We

suppose that m > n and π = ⊕mi=1Ii if π is locally cyclic then, if h1, h2, .., hnm ∈ Cn ⊗ Cm

where the hi are linearly independent and h ∈ Cn ⊗ Cm such that hi ∈ π (Mn (C))h,. Since

dim π (Mn (C))h ≤ n2, we get a contradiction. �

Proposition 3.2.11 Let X be a semiinner product with s.p. A [., .] and let (π,HA) ∈ RepA be

a faithfull isometric representation of A. Then, the map
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π [., .] : X × X → B(H);π [y, x] = π (A [y, x])

for all x, y ∈ X , is a A− C-semiinner product in X .

Proof. (i). Since A [x, x] ≥ 0, for all x, then ∀x ∈ X :π [x, x] = π (A [x, x]) ≥ 0. Since π is

faithfull then π (A [x, x]) = 0⇒A [x, x] = 0, thus x = 0.

(ii)The left linearity is obvious.

(iii) For all a ∈ A and all x, y ∈ X , we get π [ay, x] = π (A [ay, x]) = π (aA [y, x]) =

π (a) π (A [y, x]) = π (a)π [y, x]

(iv) ‖π [x, x]‖B(H) = ‖π (A [x, x])‖B(H) = ‖A [x, x]‖A = ‖x‖2. Hence,

‖π [y, x]‖B(H) = ‖A [y, x]‖A ≤ ‖y‖ ‖x‖. �

By analogy in the case of Hilbert C∗-modules, the existence of a semiinner product [., ] in the

A-representable bimodules X allows us to introduce a notion of orthogonality in X with respect

to [., .]. So that we set the following definition.

Definition 3.2.12 Let X be an A-bimodule representable over a C∗-algebra A with A-semiinner

product [., .] and x, y ∈ H. We say that x and y are orthogonal with respect to the A-valued

semiinner product [., .] if [x, y] = 0. We write x ⊥ y.

Theorem 3.2.13 Let X be an A-bimodule representable over a C∗-algebra A with A-semiinner

product [., .]. Then, there exits a Hilbert C∗-module Xe over A, as a bimodule quotient of X with

respect to a subbimodules of X , with A-inner product (x, y) = [x, e][y, e]∗, for all x, y ∈ Xe.

Proof. Let e be a fixed element in X and let φ be a map from X to A defined by φ(x) = [x, e].

By the definition of [., .], φ is a bounded A-bimodule morphism with Kerφ = {x ∈ X : x ⊥ e}.

Thus, kerφ is a subbimodule of X .



76 Generalized C∗-Hilbert modules

Let (., .) be a map from XxX to A given by (x, y) = φ(x)φ(y)∗. It is clear that (., .) is a

positive semidefinite innerproduct that induces a seminorm. A Hilbert C∗-module, denoted Xe,

is obtained by dividing out by the closed subbimodule Kerφ and completing. �

Remark 3.2.14 In the proof of Theorem 3.1.15, we constructed an A-semiinner product [., .]

from one selection of the normalized duality mapping. Thus, in the sequel, for every representable

A-bimodule X we choose a suitable vector e ∈ X , a convenable selection T from the normalized

duality Dρ(e) and then we consider an A-inner product (x, y)T = T (x)T (y)∗, for every x, y ∈ XT ,

where XT is the Hilbert C∗-module obtained by passing to the quotient and completing.



Chapter 4

Noncommutative bundles and

noncommutative varieties

4.1 Banach bundles over commutative C∗-algebra

We recall the definitions of fields of Banach spaces.

Definition 4.1.1 Let Ω be a Hausdorff. A fields on Ω is a triple Γ = (X ,Ω, P ) where X is a

Hausdorff topological space and P : X → Ω is an open continuous map.

X is called the field of Γ, Ω is the base space and P is the field projection. For all t ∈ Ω,

P−1 (t) = Xt , is the fibre over the point t.

A section of Γ is a function f : Ω→ X such that f(t) ∈ Xt, for all t ∈ Ω.

We said Γ is full if for all x ∈ X , there exists a continuous section f such that x ∈ f(Ω).

Definition 4.1.2 (30) A continuous field of Banach spaces on Ω, in the sense of J.M.G. Fell,
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denoted (F)-continuous field of Banach spaces, is a field Γ = (X ,Ω, P ) such that the stalks Xt

are Banach spaces, for every t ∈ ω, with the following conditions:

1. The function X 3 x 7→ ‖x‖ is continuous.

2. The sum + is a continuous function from {(x, y) ∈ X 2 : P (x) = P (y)} to X .

3. ∀λ ∈ K : the map x 7→ λ.x is continuous.

4. If t ∈ Ω and (xα)α is a net in X such that ‖xα‖ → 0 and P (xα)→ t in Ω, then xα → 0t

in X . 0t is the origin in each stalk Xt.

Definition 4.1.3 A continuous field of Banach spaces on Ω in the sense of K.H. Hoffman,

(H)-field of Banach spaces, has the same definition except the first assertion is subtitue by: the

function X 3 x 7→ ‖xt‖ is upper semi continuous; i.e. {t ∈ Ω : ‖x‖ < δ} is an open of Ω pour

tout δ > 0. For more details, see [22].

Let Ω be Hausdorff compact space and let C = C(Ω) be a C∗-algebra of continuous functions on

Ω. Let X be a essential Banach C−module. For eacht ∈ Ω, we set

Nt = {fx : x ∈ X , f(t) = 0} , Xt = X�N t,

if x ∈ X , we note xt for the image of x by the projection X → Xt. It is obvious that, Xt is a

C-module. The action of C is defined by

fxt = (fx)t = f(t)xt. (4.1)
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Thus, we have a family (Xt)t∈Ω of Banach spaces and a set X̃ = {x̃ : x ∈ X} ⊆ Πt∈ΩXt of

vectors fields ( sections) x̃ : t 7→ xt. If X = H is a Hilbert C-module, we get a familly of Hilbert

spaces (Ht)t∈Ω and H̃, the set of vectors fields (sections)

t 7→ xt

. X̃ is a submodule of Πt∈ΩXt (resp. H̃ is a sub module of Πt∈ΩHt with its C−product

(x̃, ỹ) (t) = (xt, yt)Ht ,for all t ∈ Ω and x̃, ỹ ∈ H̃.

and Φ : X → X, x 7→ x̃ is a surjective homomorphisme of C-modules and ‖Φ (x)‖∞ = supt∈Ω ‖xt‖ ≤

‖x‖.

We ask the natural question: For what class of C-modules X the previous map becomes an

isometry in such a way the module X be represented by (H) or (F)-fields of Banach spaces.

Definition 4.1.4 Let X be a Banach C-module. 1.[24]. We said X is an abelian C-module if

there is a commutative algebra C∗- B with an isometry π : X → B and *-isomorphism ϕ : C → B

such that

π (fx) = ϕ (f)x : ∀x ∈ X ,∀f ∈ C

2. We said that X is a C-convex C-module if, X is C − C bimodule by using

∀f ∈ C, ∀x ∈ X : fx = xf

X is C convex.
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Theorem 4.1.5 [59] Let X be a Banach space. 1. If A = C (Ω) and X is a Banach A-module.

Then the following assertions are equivalent:

i. X is an abelian C-module;

ii. X is a C-convex C-module;

iii. There exists (H)-fields of Banach spaces on Ω such that X is isomorph to a C-module of

continuous fields.

2. If A = L∞ (Ω) is the commutative Von Neumann algebra and X is a Banach A-module.

Then the following assertions are equivalent:

i. X is an abelian A-module;

ii. X is a Finsler A-module with respect to the norm in X .

It follows from the previous theorem that if X is a Banach C-module. Then, the condition X

is semiinnerproduct A-bimodule in the standard form is equivalents to the existance of (H)-fields

of Banach spaces on Ω such that X is isomorphs to C-module of continuous fields.

If Ω is a Haussdorf locally compact space then the space C0 = C0(Ω) is a C∗-algebra of

continuous functions on Ω vanishing to ∞. We note by Ω∞ for the compactification of Ω at ∞

and N∞ = {fx : x ∈ X , f(∞) = 0} = X and then the fibre at ∞ is trivial. X̃|Ω denotes the

restriction of fields X̃ at Ω. We note also that we can see that every Banach C0 (Ω)-module as a

Banach C (Ω∞)-module.

Remark 4.1.6 Since every Banach A-module is a Banach Aun-module (if A is not unitary) in

the same way if X is a A−convex Banach A-module then it is again a Aun− convex Banach

Aun-module. Thus, the previous theorem can be extended to the case of Banach C0-module.
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We recall that, in [73], Takesaki has shown that every HilbertC0-module is isomorph to (F )-

fields of Hilbert spaces.

We observe that every Hilbert module represents the noncommutativity version of fields of

Hilbert spaces represents, in general, the noncommutativity version of fields of Banach spaces.

On the othe hand, the tangent space at point x of a riemanniann manifold is a linear space with

an inner product. Thus, tangent fibre of a riemanniann manifold is a fields of Hilbert spaces. In

other words, the class of Hilbert C∗-modules represents the noncommutativity of the riemanniann

and hermitian geometry.

Theorem 4.1.7 Let X be a Banach C0-module. then the following assertions are equivalent:

1. There is a C0-s.p. [., .] which generates the same norm given in X and X is semiinner

product A-bimodule.

2.There exists (F )-fields of Banach spaces on Ω such that X is isomorphs to C0-module of

continuous fields vanishing at ∞.

Proof. (1)⇒(2): If there exists C0-s.p.g [., .] such that X is semiinner product A-bimodule,

then X is a representable A-module. If Ω is a compact space then the second assertion holds. If

Ω is not compact but locally compact, we note by Ω∞ for the compactification of Ω at the point

∞. Hence, X is a C (Ω∞)-bimodule and it is a Finsler C (Ω∞)-module. Thus, X is isomorphs to

C (Ω∞)-module of continuous fields for certain (F )-fields of Banach spaces. Since [x, x] ∈ C0 (Ω)

for all x ∈ X , then the fibre at the point ∞ is trivial and then X is isomorphic to the restriction

of C0 (Ω)-module of continuous fields vanishing at ∞.

(2)⇒(1): It is obvious that (F )-fields of Banach spaces on Ω leads to the existence of (H)-fields

of Banach spaces on Ω. Thus, by the previous theorem and Theorem 3.1.17, X is a semiinner
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product A-bimodule with its C0 (Ω)- s.p. [., .]. We set, for all t ∈ Ω, [y, x] (t) = [yt, xt]Et où

y, x : Ω → E, continuous sections. Then, it follows that [., .]Et are semiinner products which

generate the same norm in Et for all t ∈ Ω. By the definition of the semiinner product we deduce

that X is a semiinner product bimodule. �

Definition 4.1.8 Let Ω be a compact space. Ω is said hyper-Stonien if C(Ω) is isometric to the

dual of another Banach space.

We recall that if Ω is hyper-Stonnien then C(Ω) is a Von Neumann algebra. The character

space Φµ of the commutative C∗-algebra L∞ (Ω, µ), µ is a positive measure on a compact space

Ω, is a hyper-Stonien space.

We deduce from the previous results the following corollary.

Corollary 4.1.9 If Ω is a hyper-Stonien space and X is a Banach C (Ω)-module then every

semiinner product A-bimodule X is isomorphic to C0-module of continuous fields of certain (F )-

fields of Banach spaces on Ω.

We can say, from the previous results, that the class of semiinner product A-bimodules

Arepresents the noncommutativity version of the continuous fields of Banach spaces.

4.2 Toeplitz and Cuntz-Pimsner Algebras

Algebraically, a vector bundle M → X over a compact Haussdorff space(finite-dimensional man-

ifold X is completely characterized by its continuous (smooth) sections Γ(M,X). In this con-

text, the space of sections is a (right) module over the algebra C(X), (C∞(X)) of continuous
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(smooth) functions over X. Indeed, by the Serre-Swan theorem finite-rank complex vector bun-

dles over a compact Hausdorff space X correspond canonically to finite projective modules over

the algebra C(X), (C∞(X)). Indeed, by this theorem a C∞(X)-module E is isomorphic to a

module Γ(M,X) of smooth sections, if and only if it is finite projective. For a hermitian bun-

dle there is extra structure: the hermitian inner product 〈, 〉x on each fiber Mx, x ∈ X, gives

a C∞(X)-valued hermitian map on the module Γ(M,X). Let End(M) → X be the endo-

morphism bundle with corresponding sections Γ(End(M), X). The latter is an algebra under

composition and there is an identification Γ(End(M), X) ' EndC∞(X)(Γ(M,X)), with the al-

gebra of C∞(X)-endomorphisms of the module Γ(M,X). By its definition EndC∞(X)(Γ(M,X))

acts on the left on the module Γ(M,X). Moreover, in parallel with C∞(X)-valued Hermitian

map on Γ(M,X) there is a EndC∞(X)(Γ(M,X))-valued Hermitian product on Γ(M,X). The

fact that Γ(M,X) is a (EndC∞(X)(Γ(M,X)), C∞(X))-bimodule and is endowed with two Her-

mitian products which are compatible, put it in the context of Morita equivalence that we shall

defined. On the other hand, one sees that the vector bundle M → X is a line bundle if and

only if EndC∞(X)(Γ(M,X)) ' C∞(X). This motivates calling noncommutative line bundle over

the noncommutative algebra A (having the role of C∞(X)), a self-Morita equivalence bimodule

for A, that is a A-bimodule E (having the role of (Γ(M,X)) with extra structures (roughly, two

compatible A-valued Hermitian products on E).

In this section we illustrate how to naturally associate a Fock module over the (noncommutative)

algebra A to any such a correspondance module (noncommutative line bundle) over the algebra

A of the base space. The algebra of corresponding creation and annihilation operators acting on

a Hilbert module (or rigged Hilbert space) can then be realised as the total space algebra of a
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noncommutative principal U(1)-bundle over the algebra A.

4.2.1 Fock modules and Left-Right Creation Operators

Let H be an n−dimensional Hilbert space with orthonormal basis e1, e2, ..., en, 1 ≤ n ≤ ∞.

The full Fock space of H is defined as

F2(H) :=
⊕
k≥0

H⊗k = C⊕H⊕ (H⊗H)⊕ (H⊗H⊗H)⊕ ... (4.2)

with the following inner product, defined on elementary tensors:

〈ζ0 ⊗ ζ1 ⊗ ...⊗ ζj, ξ0 ⊗ ξ1 ⊗ ...⊗ ξk〉 =


0 if j 6= k

n∏
i=0

otherwise
(4.3)

If the underlying Hilbert space is clear, we shall denote F2(H) by F2 and IH by I.

One representation of the full Fock space is given using the free semigroup on n generators.

Let F+
n be the unital free semigroup on n generators, g1, g2, ..., gn, together with the identity g0.

Define the length of an element α ∈ F+
n as |α| := 0 if α = g0 and |α| := k if α = gi1gi2 ...gik , where

1 6 i1, i2, ..., ik 6 n. For each α ∈ F+
n , define

eα :=


egi1 ⊗ egi2 ⊗ ...⊗ egik if α = gi1gi2 ...gik

1 if α = g0

(4.4)

It is clear that the set {eα : α ∈ F+
n } is an orthonormal basis for the full Fock space F2. Thus,

we can identify the full Fock space F2 with the Hilbert space `2(F+
n ). Finally, if (T1, T2, ..., Tn)
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is an n−tuple of operators Ti ∈ B(H) and α = gi1gi2 ...gik ∈ F+
n , define Tα to be the product

Ti1Ti2 ...Tik .

The concept of a row contraction is fundamental in both the study of the full Fock spaces,

modules and the domain algebras introduced by Popescu in [].

Definition 4.2.1 Let H be an n dimensional Hilbert space. A row contraction on H is an

n−tuple of operators (T1, T2, ..., Tn), with Ti ∈ B(H), 1 ≤ i ≤ n, such that

n∑
i=1

TiT
∗
i ≤ IH (4.5)

It is usually beneficial to think of the n−tuple (T1, T2, ..., Tn) as the operator T = [T1T2...Tn]

acting on Hn. In this sense, (T1, T2, ..., Tn) is a row contraction if and only if T is a contraction,

since
n∑
i=1

TiT
∗
i ≤ IH holds exactly when TT ∗ ≤ IHn .

With this definition in mind, we can begin our discussion on the left and right creation

operators.

Definition 4.2.2 For each i = 1, 2, ...n, the left creation operators are defined by

Li : `2(F+
n )→ `2(F+

n ), Lieα = egiα (4.6)

for every α ∈ F+
n . Similarly, for each i = 1, 2, ...n, the right creation operators are defined by

Ri : `2(F+
n )→ `2(F+

n ), Rieα = egαgi (4.7)

for every α ∈ F+
n .
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The left and right creation operators have some important properties. We can check easly the

following proposition.

Proposition 4.2.3 The left (respectively, right) creation operators are isometries with orthogo-

nal ranges. Furthermore, they are row contractions:

n∑
i=1

LiL
∗
i ≤ I,

n∑
i=1

RiR
∗
i ≤ I. (4.8)

For more details, see [64].

Let X be a Hilbert C∗-module over A and Y a Hilbert C∗-module over B. Further, let

φ : A → L(Y ) be a ∗-homomorphism, where L(Y ) is the space of all adjointable operators on

the Hilbert C∗-module Y with respect to the B-product 〈, 〉B.

The homomorphism φ makes Y a left A-module

a · y = φ(a)y a ∈ A, y ∈ Y.

On the balanced algebraic tensor product X⊗A Y , there is a positive semi-definite inner product

satisfying

〈x1 ⊗ y1, x2 ⊗ y2〉 = 〈y1, φ(〈x1, x2〉)y2〉 x1, x2 ∈ X, y1, y2 ∈ Y

that induces a seminorm.

Definition 4.2.4 (Internal tensor product) A Hilbert C∗-module X ⊗φ Y (called the interior
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tensor product and sometimes also denoted X ⊗A Y ) is obtained by dividing out by the null space

N = {z ∈ X ⊗A Y : 〈z, z〉 = 0}

and completing.

Its right B-module structure is the obvious one:

(x⊗ y) · b = x⊗ (yb).

Observe that Y is simultaneously a left-A-module and a right B-module. In fact, it is an (A−B)-

bimodule, meaning the left and right actions commute.

Definition 4.2.5 A C∗-correspondence X from A to B is a right Hilbert C∗-module over a C∗-

algebra B that is also a left A-module whose action is given by a C∗-homomorphism φ : A →

L(Y ). In case A = B, X is called a C∗-correspondence over A.

The correspondence X from A to B is called nondegenerate when A.X = X, where A.X =

{φ(a)x : a ∈ A, x ∈ X}. By the Cohen-Hewitt factorization theorem, a C*-correspondence X is

nondegenerate if and only if X = AX.

A C*-correspondence X from A to B is called injective if the left action φ : A → L(Y ) is injective.

It is called proper if φ(A) is contained in the C∗-algebra K(X), the space of compact adjointable

operators in L(X).

A C∗-correspondence X is called regular if it is both injective and proper. For more detail, see

[27,52].



88 Noncommutative bundles and noncommutative varieties

Example 4.2.6 1. Given an automorphism α : A → A (assumed to be unital and adjoint -

preserving). We set in the previous definition X = A, the algebra A becomes a C∗-correspondence

over A by defining the left action by a · b = α(a)b for a, b ∈ A. This correspondence is denoted

by αA.

2. [52] Let σ : A → B(H) be a C∗-representation and X a right Hilbert C∗-module over A. Ob-

serve that σ makes H C∗-correspondence from A to C. Let X⊗σH be the internal tensor product,

σ can be induced to a representation σX : L(X)→ B(X⊗σH) defined by σX(F )(x⊗h) = F (x)⊗h.

In other words, σX(F ) = F ⊗ IH .

If J is an ideal in a C*-algebra A, write J⊥ for the orthogonal complement {a ∈ A : aJ =

Ja =}.

Definition 4.2.7 Let X be a C*-correspondence from A to B with structure map φ : A → L(X).

We define the ideal

J = φ−1(K(X)) ∩ (Kerφ)⊥

and call it Katsura’s ideal.

Definition 4.2.8 Let A be a C*-algebra. Let X be a right Hilbert A-module with inner product

〈, 〉X . If X is also a left Hilbert A-module with inner product X〈, 〉 satisfying

a(xb) = (ax)b and X〈x, y〉z = x〈y, z〉X

for all x, y, z ∈ X and a, b ∈ A then we call X a Hilbert A-bimodule.

A Hilbert bimodule X is left-full if the closed span of A〈X,X〉 is all of A.

An imprimitivity bimodule X is a Hilbert bimodule that is full on both the left and the right.
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For more details, see [27]. Every Hilbert A-bimodule is a C∗-correspondence over A. Indeed,

it suffice to define the structure map φ : A → L(X) to act by left multiplication, φ(a)x =

ax. It is shown in [lawrance] that φ indeed maps into the adjointable operators on X. If we

restrict φ to KatsuraâĂŹs ideal J then it becomes a *-isomorphism. We can also go the opposite

direction: Any C*-correspondence such that the structure map restricts to an isomorphism from

KatsuraâĂŹs ideal to the compacts can be turned into a Hilbert A-bimodule. Left multiplication

is given by ax = φ(a)x, and the inner product by X〈x, y〉 = φ−1(θx,y); where θx,y(z) = x〈y, z〉X .

Example 4.2.9 Let Ω be a compact Hausdorff space, V a vector bundle over Ω, and η : Ω→ Ω

a homeomorphism. We can turn the right Hilbert C(Ω)-module Γ(V ) into a C*-correspondence

by defining the left action

φ(f)x = x(foη), for all x ∈ Γ(V ), f ∈ C(Ω).

This C*-correspondence Γ(V, η) is studied in [1]. It is shown there that Γ(V, η) is a Hilbert

bimodule if and only if V is a line bundle

Let X, Y be C∗-correspondence from A to B and from C to D respectively.

Definition 4.2.10 A C∗-correspondence homomorphism is a triple (Φ, φl, phir) : X → Y con-

sisting of a linear map Φ : X → Y and *-homomorphisms φl : A → B and φr : C → AD

satisfying:

1. Φ(ax) = φl(a)Φ(x),

2. φr(〈x, y〉)C = 〈Φ(x),Φ(y)〉D

for all x, y ∈ X, a ∈ A.
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The triple (Φ, φl, φr) is called a C*-correspondence isomorphism if, in addition, Φ is bijective and

φl, φr are isomorphisms. In the sequel, we primarily deal with the situation where A = B and

C = D. In that situation, we take φl and φr to be the identity maps on A and C, respectively,

and we simply denote the isomorphism X → Y by Φ instead of the triple (Φ, φl, φr).

Definition 4.2.11 A morphism (π,Φ) of C*-correspondences from X to Y is called covariant if

π(a) ∈ JY and φY (π(a)) = ψΦ(φX(a)), for all a ∈ JX

where X, Y are C∗-correspondence for A and B, respectively, and ψΦ is a *-homomorphism from

K(X) to K(Y ) such that

ψΦ(θx,y) = θΦ(x),Φ(y), for all x, y ∈ X.

Definition 4.2.12 A covariant representation of a C∗-correspondence X on a C∗-algebra B is

a morphism of C*-correspondences from X to B.

Explicitly, a representation of a C∗-correspondence X on a C∗-algebra B is given by a pair (π, T ).

The map π is a *-homomorphism from A to B, and T is a linear map from X to B such that

π(〈x, y〉X) = T (x)∗T (y) and π(a)T (x) = T (φ(a)x), for all x, y ∈ X, a ∈ A.

Fore more details, see [27, 62].

Definition 4.2.13 (Morita equivalence) [65]: an (A,B)-equivalence bimodule is a full (A,B)-

correspondence E where the left action φ : A → L(E) is an isomorphism onto K(E).

One says that two C∗-algebras A and B are Morita equivalent if such an (A,B)-equivalence

bimodule exists.
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In [51], Muhly and Solel introduced the notion of Morita equivalence for C∗-correspondences as

follows: if X, Y are C∗-correspondences for A and B, respectively, then X, Y are called Morita

equivalent if there exists an imprimitivity (A,B)-bimodule M such that X ⊗AM ∼= M ⊗B Y.

Every full Hilbert A-module E is a (K(E);A)-equivalence bimodule. Morita equivalence is

a weaker equivalence relation than isomorphism. Indeed, given an isomorphism: A → B, the

C∗-correspondence is an (A,B)-equivalence bimodule.

We note here that the Morita equivalence is an equivalence relation. Morita equivalence is a

purely noncommutative notion. Indeed, Morita equivalent algebras have isomorphic centers [65],

and therefore two commutative C∗-algebras are Morita equivalent if and only if they are isomor-

phic.

In noncommutative topology Morita equivalence is the most natural equivalence relation to con-

sider: Morita equivalent C∗-algebras have, among other things, the same representation theory

and the same K-theory and K-homology groups.

4.2.2 Pimsner Algebras

Pimsner associates in [62] a very natural and universal C∗-algebra. This important work has

attracted a lot of attention and has been meanwhile generalized in several directions.

We will now define the Cuntz-Pimsner algebra O(X) associated to a C∗-correspondence X.

Let X be a C∗-correspondence over a C∗-algebra A. If (π, U) is a covariant representation of

X on a C∗-algebra B, then C∗(π, U) denotes the C∗-subalgebra of B generated by the images

of π and U . The covariant representation (π, U) is called universal if we have another covariant
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representation (ρ, L) there exists a surjective *-homomorphism Φ from C∗(π, U) onto C∗(ρ, L)

such that ρ = Φoπ and L = ΦoU . We denote the universal covariant representation of X by

(πX , UX).

Definition 4.2.14 (62) The C∗-algebra (πX , UX) is called the Cuntz-Pimsner algebra and is

denoted by O(X).

By definition the universal covariant representation is unique if it exists. To show that it does

exist one has to construct it explicitly, which also shows that the Cuntz-Pimsner algebra of X

exists and is unique.

In his breakthrough paper [62], starting from a full C*-correspondence X such that the left ac-

tion: A → L(X) is an isometric -homomorphism, Pimsner constructed two C*-algebras: these

are now referred to as the Toeplitz algebra TX and the Cuntz-Pimsner algebra OX of the C*-

correspondence X. The former is actually an extension of the second, and can be thought of as

a generalization of the Toeplitz algebra, while the latter encompasses a large class of examples,

like Cuntz-Krieger algebras, graph C*-algebras and crossed products by the integers. Both alge-

bras are characterized by universal properties and depend only on the isomorphism class of the

C*-correspondence.

Let X be a C∗-correspondence over a unital C∗-algebra A with left action φ : A → L(X).

We let X⊗n = X⊗AX⊗A · · · ·⊗AX be the n-fold internal tensor product of X. The left A-action

is given by the ∗-homomorphism φn : A→ L(X⊗n) satisfying

φn(a)(x1 ⊗ x2 ⊗ · · ·xn) = (φ(a)x1)⊗ x2 ⊗ · · · · ⊗xn.
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By convention we declare X⊗0 = A as a C∗-correspondence over itself, with the automorphism

being the identity map A→ A.

Definition 4.2.15 The full Fock space F(X) over X is the C∗-correspondence over A

⊕∞n=0X⊗n = A ⊕ X ⊕ (X ⊗A X) ⊕ · · ·. The left A-module structure is ⊕nφn which we de-

note by φ∞. It can be represented by the diagonal matrix

φ∞(a) =



a

φ (a)

φ2 (a)

.

.

.



, a ∈ A

where φn(a)(ξ1 ⊗ · · · ⊗ ξn = (φ(a)ξ1)⊗ · · ·ξn). Looking at the (1, 1)-entry, it is clear that φ∞ is

injective. Thus, we will often identity A with its image φ∞(a).
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For each x ∈ X, we define the creation operator Tx ∈ L(F(X)) by

Tx =



0

T
(1)
x 0

T
(2)
x 0

T
(3)
x 0

. .

. .



where T (k)
x : X⊗k → X⊗(k+1) is given by the formula

T (k)
x (x1 ⊗ · · · ⊗ xk) = x⊗ x1 ⊗ · · · ⊗ xk

Definition 4.2.16 Let X be a C∗-correspondence over A.

1. The tensor algebra of (X,φ), denoted J+(X) is the norm closed subalgebra of L(F(X))

generated by φ∞(a) and Tx : x ∈ X.

2. The Toeplitz algebra is the C∗-algebra generated by J+(X) in L(F(X)).

If the image of φ is contained in K(X) then the Cuntz-Pismner algebra OX of a full C*-

correspondence (X,φ) is a quotient of the Toeplitz algebra TX appearing in the exact sequence

0→ K(X)→ TX → OX → 0.

It is easy to check that since X is full, then F(X) is a full Hilbert module as well; hence K(X)

is by definition Morita equivalent to the algebra A.
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Example 4.2.17 Let A = C and X = Cn and φ the left action by multiplication. If one chooses

a basis for C, then the tensor algebra J+(X) = An is Popescu’s noncommutative disc algebra

and the Toeplitz algebra of (X,φ) is generated by n isometries V1, ..., Vn satisfying ΣiViV
∗
i ≤ 1.

This is the Toeplitz extension for the Cuntz algebras On: 0→ K(H)→ C∗(V1, .., Vn)→ On → 0.

In particular, for n = 1 one gets F(C) ∼= H2, the classical Hardy space, F+(X) = A(D) is the

classical disc algebra and the classical Toeplitz extension 0→ K(H)→ TC → C(S1)→ 0.

4.3 Main result

The subject of Cuntz-Pimsner algebras has grown into a rapidly expanding area of research, and

determining how the structure of a Cuntz-Pimsner algebra is determined by its C*-correspondence

has become a popular line of investigation. There is a naturel question which is: If two C*-

correspondences X, Y over A and B, respectively, are related in a particular way, what can

be said about their Cuntz-Pimsner algebras OX , OY ?. In [67], the author sparked the idea of

investigating this problem in a categorical framework. Motivated by this idea, in [26], the au-

thors construct a categorical framework that provides direct results, allowing one to immediately

deduce relationships between Cuntz-Pimsner algebras from relationships between the defining

C*-correspondences and they constructed a functor form suitable subcategory of Hilbert C*-

module to their category C*-algebras. As a consequence, it was proved in [27] the following

result.

Theorem 4.3.1 If two C*-correspondences X and Y are Morita equivalent, then their Cuntz-

Pimsner algebras OX and OY are Morita equivalent (in the sense of Rieffel).
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On the other hand, it was shown in [25,40] that Hilbert module over a C*-algebra is equivalent

to the notion of Hilbert bundle over the space of pure states of the C*-algebra provided that

the purely topological structure of the Hilbert bundle is augmented with suitable holomorphic

and uniform structures. (In the commutative case the additional structure is redundant.) They

established the following result which is the noncommutative version of Serre-Swan theorem.

Theorem 4.3.2 (25,40) The category of right Hilbert A-modules is equivalent to the category

of uniform holomorphic Hilbert bundles over P0(A) (the set of pure states of A together with the

functional 0) of dual Hopf type.

Since the Cuntz-Pimsner algebras represent a model for a noncommutative spaces and non-

commutative varieties then, with the same manner in algebraic topology, the problem of their

classifications is not so easy to do, it is a dificult task, it is still open and it is an active reserche

area. Motivated by the results; theorems 4.2.15 and 4.2.16., we show that the Cuntz-Pimsner

algebras can be represented as a bundles of C*-algebras having Cuntz’s algebras fibers (stalks).

Our results generalize the one obtained in [74, 13], where the C*-algebra A considered is com-

mutative or a C(Ω)-algebras. We expect that our results can be applied to the genral model

theory developped by Gelu Popescu [64], In other words, we expect that we can get a fields of

Popescu’models varing continuously with respect to the space of pure states. Also, we can used

our result for studing and classifing the groups of K-homology of Cuntz-Pimsner algebras by

using the topology of fiber bundles and characteristic classes developped in algebraic topology [].

Proposition 4.3.3 Let X be a C*-correspondence for a C*-algebra A with the structure φX :

A→ L(X). Then, X is isomorphic to the C*-correspondence Γ(X) for a C*-algebra Aµ(P0).
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Proof. By theorem 4.3.2, the Hilbert C*-module X is isomorphic to the Hilbert C*-modules

of sections Γ(X) of the Bundle Π : E = (Xf )f∈P0 → P0 and from the proof of [40], we have A is

equivalent to Aµ(P0). Then we can identify A with Aµ(P0).

For x ∈ X, we define the section sx of Γ(X) by sx(p) = [x]p for p ∈ P0. Then ‖sx‖ = ‖x‖ for

every x ∈ X. Then we can define the linear map as follows

V (x) = sx for all x ∈ X.

We can deduce from the proof of [40], that V is an isometric isomorphism from X to Γ(X).

Hence, by the definition of C*-correspondence homomorphism 4.2.10,

φΓ(X)(ξa) ∗ V (x) = V (φX(a)x), for all a ∈ A, x ∈ X, ξa ∈ Aµ(P0).

Witch means that the pair (ξ, V ) is an isomorphism of C*-correspondences from X to Γ(X). �

Let X be a C*-correspondence for a C*-algebra A with the structure φX : A → L(X).

Theorem 4.3.4 The Toepliz algebra TX and the Cuntz-Pimsner algebras OX are represented by

bundle of C*-algebras as a fields of bounded holomorphic operators.

Proof. For each f ∈ P0(A) denote byXf the Hilbert space arising from the positive sesquilin-

ear form on X obtained by composing the A-valued inner product with f . The sections of the

bundle (Xf )f∈P0(A) corresponding to the elements of X constitute the bounded uniformly contin-

uous holomorphic sections of a unique uniform holomorphic Hilbert bundle, Γ(X), over P0(A),

necessarily of dual Hopftype. This space admits a unique structure of right Hilbert Aµ(P0)-

module: s ∗ ξ = s.l + i4yξs, i =
√
−1, 4 is a flat connection on (Xf )f∈P0(A) and yξ is a vector

field in X (P (H)), P (H) is the projective space for Hilbert space H. and then the space of
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adjointable operators on Γ(X) is represented as a fields of bounded operators on the Hilbert

spaces Xf , f ∈ P0(A). That is, for every adjointable operator T ∈ B(Γ(X)) has the following

representations

T = (Tf )f∈P0 and (Ts)f = Tfsf , for all f ∈ P0.

We suppose that the sections of Γ(X) satisfying the following condition

Df = {s(f) : s ∈ Gamma(X)} is dense in Xf , for every f ∈ P0 (∗∗)

Since the fibre bundles (Xf )f∈P0(A) has a uniform and holomorphic structure we deduce from

(∗∗) that every T ∈ B(ΓX) is represented by a uniform holomorphic fields of bounded linear

operators on Hilbert spaces.

If we take the fock module F (X) defined previously over a C*-correspondence X the, by the

previous propostion, F (X) is a C*-correspondence over A and it is isomorphic to the Fock mod-

ules of sections F (Γ(X)) (which is also isomorphic to the modules of sections of the fock module

γ(F (X))), we can check easly that the representation of the left and right creation operators on

B(F (Γ(X))) has the form Ls = (Lsf )f∈P0 , for all s ∈ Γ(X), where Lf is a left creation operator

on the Fock space F (Xf ) which, by Proposition 4.2.3, has nice properties.

Therefore, by the previous discution and the construction of Toeplitz and Cuntz-Pimsner algebras

TX and OX from any C*-correspondence X, we can check easly that TX and OX have represen-

tation as algebras defined by uniform holomorphic fields of bounded (isometric)operators. This

in fact are fields of C*-algebras. � It follows from our results the following corollary, which

generalizes the results that given in [74, 13].
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Corollary 4.3.5 If A = C(Ω), where Ω is a locally compact space, or A is a C(Ω)-algebra,

then the Cuntz-Pimsner algebra of every C*-correspondence over A is represented by a field of

C*-algebras having Cuntz algebras as fibers.

Definition 4.3.6 In the category C∗-algcor, the objects are C*-algebras, and the morphisms from

A to B are the isomorphism classes of A−B correspondences. The composition of [X] : A → B

with [Y ] : B → C is the isomorphism class of the internal tensor product X ⊗B Y ; the identity

morphism on A is the isomorphism class of the identity correspondence A, and the zero morphism

A → B is [O].

We note here that a morphism [X] is an isomorphism in C∗-algcor if and only if X is an imprim-

itivity bimodule, for more details, see [].

Our next aim is to use the previous result in order to study the classifications of the Cuntz-

Pimsner algebras in previous category by means of their C*-correspondences. This task is not

yet finished.
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