
 الجمهوريــة الجزائريــة الديمقراطيــة الشعبيــة

République Algérienne Démocratique et Populaire

 وزارة الـتعـلــيــم الـعـالي و البـحـث الـعلـمــي

Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

THESE de DOCTORAT de 3ème cycle

Spécialité : Informatique

Option : Intelligence Artificielle

Intitulée

Présentée par : Charfaoui Younes

 Le Jeudi 10/10/2024 à 16h00

Devant le jury :

Président Debakla mohamed MCA Univ Mascara

Directeur de thèse BOUFERA FATMA MCA Univ Mascara

C0- Directeur Houari Amina MCB Univ Mascara

Examinateur MEFTAH BOUDJELAL PR Univ Mascara

Examinateur Rebbah Mohamed PR Univ Mascara

Examinateur Dahmani Youcef PR Univ Tiaret

Année Universitaire : 2024/2025

 جامعة مصطفى أسطمبولي

 معسكر

Université MUSTAPHA Stambouli

Mascara

Faculté des Sciences Exactes

Département d’Informatique

Algorithmes de Bi-regroupement pour l’Analyse

des Données Complexes.

contexte de future réseaux

5G.

I would like to dedicate this thesis to

My beloved parents

Your unwavering love, encouragement, and sacrifices have
been the guiding light in my journey. This work is

dedicated to you, the pillars of my strength. Your support
has fueled my aspirations and shaped my path. I am

forever grateful for the love and values you’ve instilled in
me. This achievement is a reflection of the lessons learned

from your wisdom. Thank you for being my constant
source of inspiration.

My dear siblings, Latif, Lina, and Fouad

In every step of my journey, your closeness has been my
source of joy and strength. This dedication is a testament
to the bond we share and the shared memories that have
enriched my life. Latif, with your cheerful spirit; Lina,
with your kindness and laughter; Fouad, with your

unwavering support – each of you has left an indelible
mark on my heart. This accomplishment is as much yours
as it is mine. Thank you for being my companions on this

beautiful journey.

Acknowledgement

I extend my sincere appreciation to Mrs. BOUFERA Fatma for her unwavering sup-
port, guidance, and expertise throughout the course of my academic endeavors. Her
commitment to excellence, insightful feedback, and encouragement have been instrumen-
tal in the successful completion of this thesis. I am truly grateful for her dedication to
my growth and her invaluable contributions to my academic journey.

I would like to express my deep gratitude to Mrs. HOUARI Amina for her invaluable
support and mentorship during the development of this thesis. Her expertise, encourage-
ment, and constructive feedback have played a pivotal role in shaping the outcome of this
research. I appreciate her commitment to fostering a conducive learning environment and
for being an inspiring guiding force throughout my academic pursuit.

Abstract

Biclustering, a well-known bioinformatics technique, is essential for analyzing gene ex-
pression data because it reveals patterns and identifies groupings of genes that behave
similarly under particular conditions. This thesis aims to contribute to the field through
the introduction of three distinct approaches: a Differential Evolution-based method, a
Multi-Objective Differential Evolution-based approach featuring a novel adaptive muta-
tion operator known as BBDE, and a final method that employs Convolutional Denoising
Autoencoders (CDAs) for preprocessing followed by Artificial Bee Colony (ABC) for bi-
clustering. Each strategy displays its usefulness via comprehensive findings, contributing
to the progress of biclustering techniques and improving gene expression data analysis in
computational genomics.

Keywords: Biclustering, Microarray data analysis, Gene Expression, Differential Evolu-
tion, Multi-objective , Artificial Bee Colony, Convolutional Autoencoders.

Résumé

Le biclustering, une téchnique de bioinformatique bien connu, est essentiel pour analyser
les données d’expression génique car il révèle des motifs et identifie des regroupements
de gènes qui se comportent de manière similaire sous des conditions particulières. Cette
thèse vise à contribuer au domaine en introduisant trois approches distinctes : une mé-
thode basée sur l’évolution différentielle, une approche basée sur l’évolution différentielle
multi-objectif avec un nouvel opérateur de mutation adaptatif appelé BBDE, et une mé-
thode finale qui utilise des autoencodeurs de débruitage convolutionnels (CDA) pour le
prétraitement suivi de l’essaim artificiel de colonies d’abeilles (ABC) pour le bicluste-
ring. Chaque stratégie démontre son utilité à travers des résultats complets, contribuant
ainsi à l’avancement des techniques de biclustering et améliorant l’analyse des données
d’expression génique en génomique computationnelle.

Mots Clée : Biclustering, Analyse de données de microréseaux, Expression génique, Évo-
lution différentielle, Multi-objectif, Colonie d’abeilles artificielles, Autoencodeurs convo-
lutionnels.

Contents

List of Figures i

List of Tables ii

1 General Introduction 1

2 State Of The Art 5
2.1 Introduction . 5
2.2 Biclustering . 5

2.2.1 Bicluster Definition . 6
2.2.2 Types of Biclusters . 6
2.2.3 Biclustering as an Optimization Problem 7
2.2.4 Metrics . 7

2.3 Related Work . 10
2.3.1 Systematic Biclustering Algorithms 10
2.3.2 Stochastic Biclustering Algorithms 11
2.3.3 Optimization Frameworks in Biclustering 12
2.3.4 Comprehensive Overview of Exisiting Biclustering Methods 12
2.3.5 Evolutionary Algorithms and Swarm Intelligence for Biclustering

Optimization . 17
2.3.6 Analysis . 18
2.3.7 Addressing Noise in Gene Expression Data 19

2.4 Conclusion . 21

3 DeBic: A Differential Evolution Biclustering Algorithm for Microarray
Data Analysis. 22
3.1 Introduction . 22
3.2 Differential Evolution . 22

3.2.1 Algorithm of Differential Evolution 24

CONTENTS

3.2.2 Mutation Operator . 25
3.2.3 Crossover Operator . 26
3.2.4 The benefits of the DE Algorithm 27

3.3 DeBic Algorithm Description . 27
3.3.1 Algorithm Description . 28

3.4 Experimental Results . 30
3.5 Conclusion . 34

4 AMoDeBic: An Adaptive Multi-Objective Differential Evolution Bi-
clustering Algorithm of Microarray Data Using a Biclustering Binary
Mutation Operator 35
4.1 Introduction . 35
4.2 Differential Evolution . 36

4.2.1 Algorithm of Differential Evolution 36
4.2.2 Multi-objective Differential Evolution 36
4.2.3 Binary Differential Evolution . 38

4.3 AMoDeBic Algorithm . 41
4.3.1 Algorithm Description . 41
4.3.2 Illustrative Example . 45
4.3.3 Parameter Setting . 47
4.3.4 Computational Complexity . 48
4.3.5 Multi-Objective Fitness Functions 49

4.4 Experimental Results . 50
4.4.1 Results on Synthetic Data . 51
4.4.2 Results on Real Data . 54

4.5 Conclusion . 63

5 CDABC: A Convolutional Denoising Autoencoder with Artificial Bee
Colony Biclustering Algorithm for Gene Expression 64
5.1 Introduction . 64
5.2 Autoencoders . 64

5.2.1 Denoising Autoencoders . 65
5.2.2 Convolutional Denoising Autoencoders 65

5.3 Artificial Bee Colony . 66
5.4 Proposed Approach . 69

5.4.1 Representation . 69
5.4.2 Pre-processing: CDAE . 69

CONTENTS

5.4.3 Biclustering: ABC . 71
5.4.4 Illustrative Example . 75

5.5 Experimental Results . 77
5.5.1 Synthetic Data Results . 77
5.5.2 Real Data Results . 80

5.6 Conclusion . 88

6 General Conclusion 89

Bibliography 93

A Biclustering Metric Calculation Examples A

List of Figures

2.1 Types of Biclusters. 7

3.1 Representation of Binary String Encoding for Bicluster Solution. 28
3.2 14 biclusters Discovered By DeBic in The Yeast Cell-Cycle Dataset. 32

4.1 Pareto Optimality Visualization in 2D Objective Space. 37
4.2 Representation of Binary String Encoding for Bicluster Solution. 42
4.3 Noise Effect. A: Constant Biclusters, B: Additive Biclusters. 53
4.4 Overlap Effect. A: Constant Biclusters, B: Additive Biclusters. 54
4.5 Proportions of biclusters significantly enriched by GO annotations (Sac-

charomyces Cerevisiae dataset) . 58
4.6 Proportions of biclusters significantly enriched by GO annotations (Yeast

cell-cycle dataset) . 59
4.7 Nine Biclusters discovered in the Yeast dataset. 61
4.8 Nine Biclusters discovered in the Saccharomyces Cerevisiae dataset. 61

5.1 Representation of Binary String Encoding for Bicluster Solution. 69
5.2 Architecture of the Proposed CDAE. 70
5.3 Noise Effect. A: Constant Biclusters, B: Additive Biclusters. 79
5.4 Overlap Effect. A: Constant Biclusters, B: Additive Biclusters. 80
5.5 Proportions of Biclusters Significantly Enriched by GO Annotations (Yeast

cell-cycle Dataset) . 83
5.6 Proportions of Biclusters Significantly Enriched by GO Annotations (Sac-

charomyces Cerevisiae Dataset) . 84
5.7 Six Biclusters Discovered in the Yeast Cell-Cycle Dataset by CDABC. . . . 86
5.8 Six Biclusters Discovered in the Saccharomyces Cerevisiae Dataset by CD-

ABC. 87

i

List of Tables

3.1 Hyper Parameter Specification . 31
3.2 Biological Processes and Corresponding P-values in the Previous Bicluster. 33
3.3 DeBic Performance Comparison To Other Algorithms. 34

4.1 Hyper Parameter Specification. 51
4.2 Human B-Cell Lymphoma coverage for different algorithms. 56
4.3 Yeast Cell-Cycle coverage for different algorithms. 56
4.4 Five biclusters found By AMoDeBic on Yeast dataset. 57
4.5 Five biclusters found By AMoDeBic on the Human B-Cell Lymphoma

dataset. 57
4.6 AMoDeBic Performance Comparison To Other Algorithms. 59
4.7 Significant GO terms of two biclusters extracted from Yeast Cell-Cycle

dataset using AMoDeBic. 62
4.8 Significant GO terms of two biclusters extracted from Saccharomyces Cere-

visiae dataset using AMoDeBic. 62

5.1 Comparison of Yeast Cell-Cycle Coverage by Different Algorithms. 82
5.2 Comparison of Human B-Cell Lymphoma Coverage by Different Algorithms. 82
5.3 Significant GO terms of two biclusters extracted from Yeast Cell-Cycle

dataset using CDABC. 85
5.4 Significant GO terms of two biclusters extracted from Saccharomyces Cere-

visiae dataset using CDABC. 85

ii

List of Algorithms

1 Differential Evolution with Scheme DE/rand/1/bin 24
2 Binomial Crossover . 26
3 Exponential Crossover . 27
4 DeBic Algorithm Steps . 30

5 AMoDeBic Algorithm Steps . 45

6 CDABC Algorithm . 74

iii

Chapter 1

General Introduction

Context and Motivation

The rapid expansion of data in many domains is changing the way that information
is used and processed. Large-scale datasets are produced by fields including healthcare,
finance, social sciences, and environmental research, which poses particular management
and interpretation difficulties. This increase in data necessitates advanced methods that
can effectively manage large volumes while deriving insightful information. Big data is
becoming a vital component of contemporary research and application, thus analytical
tools need to be not just rapid and accurate but also scalable, noise-resistant, and capable
of identifying intricate patterns in data.

Biclustering has emerged as an effective analytical method for handling big data’s
complexity in a variety of fields. In contrast to conventional clustering techniques, which
examine data along a single dimension at a time, biclustering enables the simultane-
ous grouping of rows and columns, identifying significant patterns that could only be
present in particular dataset subsets. As an approach, it is especially well-suited for high-
dimensional data because of its dual-dimension methodology, which allows it to reveal
subtle patterns and localized associations that could otherwise go overlooked. Bicluster-
ing is an effective and adaptable way to manage and comprehend big data by breaking up
massive datasets into logical groupings that make it easier to find pertinent correlations.

Big data difficulties are particularly noticeable in the field of genomics. Large-scale
data gathering has been made possible by the quick development of genomic technology;
microarray analysis, for example, has produced enormous volumes of gene expression
data. Rich insights into genetic mechanisms and their implications across a variety of

1

CHAPTER 1. GENERAL INTRODUCTION

domains, including evolutionary biology, environmental studies, and biomedical research,
are provided by this data, which is arranged into matrices with genes along rows and
circumstances along columns. Nevertheless, in order to uncover significant patterns, the
size and complexity of genetic data require sophisticated computational techniques.

In genomics, where conventional clustering frequently overlooks the complex interac-
tions between genes and their expressions under various conditions, Biclustering is es-
pecially helpful. It provides a deeper understanding of gene regulation and interaction
networks by identifying gene groupings that exhibit consistent expression characteristics
under particular subsets of conditions. As a result, biclustering becomes the perfect tech-
nique for examining huge genomic datasets, emphasizing pertinent biological processes
and offering new opportunities for investigation and learning.

The biclustering problem was introduced by [1], signifying a notable milestone in the
field. The initial solution was devised by [2], who formulated a greedy search heuris-
tic technique, offering an efficient approach to generate biclusters with approximate op-
timality. Subsequent to these foundational contributions, the field of biclustering has
experienced a surge of innovations. For example, [3] proposed FLOC, a technique ex-
plicitly crafted to concurrently reveal multiple, potentially overlapping biclusters. Fur-
thermore, [4] introduced a novel biclustering approach, centering on the identification of
order-preserving sub-matrices (OPSM). Additionally, [5] introduced the reference tech-
nique Bimax, utilizing a straightforward binary reference model. This progression of
methodologies underscores the diversification and expansion of biclustering techniques,
each tailored to address specific aspects and nuances within the broader domain of data
clustering and pattern discovery.

Furthermore, the increasing adoption of evolutionary algorithms (EAs) in biclustering
is attributed to their effectiveness in navigating complex optimization challenges. For
instance, [6] proposed an EA framework for biclustering, refining Cheng and Church’s
method by integrating an EA-based local search. Another notable contribution comes
from [7], who introduced a multi-objective EA biclustering algorithm featuring integrated
local search heuristics. Additionally, [8] suggested an EA-based biclustering method in-
corporating four objectives: Mean Squared Residue (MSR), row variance, bicluster size,
and overlapping ratio. The prevalence of evolutionary algorithm based biclustering ap-
proaches emphasizes the considerable computational complexity associated with biclus-
tering, a challenge further underscored by its classification as an NP-hard problem [9].
The NP-hardness of biclustering indicates the computational intricacy involved in finding

2

CHAPTER 1. GENERAL INTRODUCTION

an optimal solution or arranging biclusters to meet specific criteria within a reasonable
timeframe.

In conjunction with this, the expansive nature of gene expression data introduces a dy-
namic dimension to the computational intricacies faced by evolutionary algorithm (EA)-
based biclustering approaches. Due to the expansion of the datasets, the search space
and the potential number of biclusters follow an exponential trajectory. The vastness of
this expanding space poses a formidable challenge for exhaustive search and exploration.
Consequently, existing biclustering algorithms, exemplified by established approaches such
as [10], [11], [10], grapple with the intricate task of navigating this extensive search space
efficiently. Moreover, the struggle to effectively balance various objectives becomes more
pronounced, hindering the identification of biclusters that strike a harmonious compro-
mise between conflicting criteria.

Research Contributions

In light of these shortcomings, the research presented in this work contributes to the
evolving landscape of biclustering and computational genomics.

1. DeBic: The first Differential Evolution (DE) based biclustering algorithm, it har-
nesses the robust search capabilities of DE, it’s strengths in global optimization and
effectiveness in handling high-dimensional spaces. DeBic aims to simultaneously
and efficiently detect multiple high-quality biclusters through the adaptation of Dif-
ferential Evolution (DE) to a binary search space, coupled with the implementation
of a different mutation operator.

2. AMoDeBic: a novel approach that capitalizes on the inherent adaptability, robust-
ness, and efficacy of differential evolution. Furthermore, it takes advantage of the
multi-objective framework, enabling the concurrent optimization of multiple objec-
tives. In addition, We have specifically crafted a new mutation operator, named
Biclustering Binary Differential Evolution Mutation (BBDE), designed to adapt
DE to biclustering and tackle it’s constraints. This addition significantly boosts the
efficacy and performance of Differential Evolution (DE), with the aim of delivering
efficient solutions for gene expression data analysis. The enhanced DE approach
yields coherent outcomes and has the capacity to recognize multiple biclusters si-
multaneously.

3. CDABC: This approach integrates Convolutional Denoising Autoencoders (CDAEs)

3

CHAPTER 1. GENERAL INTRODUCTION

for preprocessing and denoising, along with the Artificial Bee Colony (ABC) algo-
rithm. CDAEs aim to reduce noise and uncover underlying patterns in the gene
expression data, enhancing the biclustering process executed by the ABC algo-
rithm, renowned for its effectiveness in optimizing complex problems. Specifically,
we incorporated few adaptations in the ABC algorithm to enable its direct appli-
cation on binary representations within biclusters. By combining the strengths of
CDAEs and adapted ABC, our approach enhances the identification of meaningful
gene expression patterns and facilitates more accurate bicluster discovery.

Thesis Organization

Following the initial chapter, which serves as the general introduction, the subsequent
sections of this thesis are organized as follows:

• Chapter 2: diligently explores the realm of biclustering, providing an all-encompassing
overview of current approaches while conducting an in-depth analysis of their re-
spective strengths and limitations.

• Chapter 3: immerses itself in the domain of differential evolution, undertaking a
meticulous exploration of the algorithm’s principles, steps, and strengths. Further-
more, it introduces and elucidates the DeBic algorithm, revealing its underlying
principles, algorithmic details, and showcasing results achieved in the specific con-
text of biclustering gene expression data.

• Chapter 4: extends the exploration of differential evolution (DE) to encompass its
multi-objective framework and binary DE. These components are crucial in intro-
ducing the AMoDeBic algorithm, accompanied by the innovative mutation operator
BBDE, a novel addition to the field of biclustering. The chapter meticulously out-
lines the algorithm’s structure and highlights compelling results obtained through
its application.

• Chapter 5: conducts a comprehensive examination of both autoencoders and Arti-
ficial Bee Colony. After a thorough review, we introduce the CDABC algorithm, a
fusion of these two techniques designed for efficient biclustering. The chapter reveals
algorithmic details, providing a nuanced understanding of its inner workings, and
presents convincing results that validate its effectiveness.

• Chapter 6: A concluding section where we concisely summarize our innovative con-
tributions and essential findings, and outline potential avenues for future research
in the evolving field of biclustering and computational genomics.

4

Chapter 2

State Of The Art

2.1 Introduction

In the expansive domain of biclustering, a variety of strategies have emerged to solve
the challenging task of identifying patterns within two-dimensional data matrices. This
chapter provides a structured exploration of biclustering, beginning with a comprehensive
review of its fundamental components. We will explain the formal concept of biclustering,
distinguish between the many types of biclusters, and highlight the metrics utilized in the
quantitative evaluation of biclustering outcomes.

Proceeding to the cutting edge of biclustering research—the state-of-the-art bicluster-
ing approaches—our study will thoroughly analyze these advanced techniques, examining
their fundamental concepts, strengths, and applications. This investigation aims to offer
a comprehensive overview of the landscape of biclustering.

2.2 Biclustering

Biclustering is a technique that aims to identify the best biclusters within a given dataset
by arranging data into a matrix and simultaneously assigning the rows and columns of
the matrix.

Biclustering is an essential task that reveals hidden patterns within large datasets, al-
lowing insights that standard approaches might overlook. Biclustering in gene expression
analysis reveals genes that exhibit similar activity under certain conditions, contributing
to the study of biological processes, disease profiling, and medication responses [12], [13].
Beyond genomics, biclustering has applications in text mining, image analysis, and so-
cial network analysis, aiding targeted marketing, picture segmentation, and community

5

CHAPTER 2. STATE OF THE ART

recognition. Biclustering improves knowledge extraction and decision-making across var-
ied domains by overcoming the obstacles provided by high-dimensional data, making it a
vital tool for pattern detection and data-driven discovery.

A DNA microarray dataset is presented in a data matrix in genomic data, where
genes are represented by rows, conditions are represented by columns, and gene expres-
sion levels are represented by cells. The formal definition of this data matrix is as follows:
G = {1, 2,, n} a set of indices of n genes, C = {1, 2,,m} a set of indices of m condi-
tions, and M(G,C) the data matrix associated with G and C.

In this section, we’ll explore the definition of biclusters, their various types, and the
metrics utilized to evaluate them. Additionally, we’ll delve into biclustering as an opti-
mization problem.

2.2.1 Bicluster Definition

A bicluster is a group of genes that are associated with a group of conditions where
these genes are co-expressed. Thus, it is considered to be a subset of the M matrix; it
can be formally defined as follows: A bicluster is a pair (g; c), where g ∈ G and c ∈ C.

This study aims to find as many consistent biclusters as possible, which indicate a set
of genes that exhibit the same behavior under the same set of conditions.

2.2.2 Types of Biclusters

Madeira and Oliveira thoroughly analyze a wide range of bicluster types in [9], provid-
ing detailed insights into particular choices among these types. The following is a brief
description of several of these types:

2.2.2.1 Bicluster with constant values

Constant biclusters have consistent gene expression values across genes and conditions,
indicating homogeneity and consistent gene behavior. They also provide stability and
are less affected by experimental noise, making it easier to identify genes with strong
expression patterns. Additionaly, they reveal genes that are crucial to essential activities,
metabolism, or structural components that remain stable under varying settings. As a
result, these biclusters serve an important role in identifying baseline expression or vital
housekeeping genes required for cellular functioning.

6

CHAPTER 2. STATE OF THE ART

2.2.2.2 Bicluster with constant values on rows or columns

In contrast to constant biclusters, which have consistent values across both genes and
conditions simultaneously, biclusters with constant values on rows or columns represent
consistent gene expression within specified conditions. These biclusters uncover genes that
stay stable under certain circumstances, assisting in the discovery of essential biological
processes or invariant reactions. Their uses range from identifying housekeeping genes to
gaining a better understanding of stable gene relationships.

2.2.2.3 Bicluster with coherent values

Biclusters with coherent values demonstrate synchronized expression patterns across
genes and conditions and emphasize genes whose expression varies over time, assisting in
the decoding of dynamic processes and identifying genes involved in specific pathways.
In contrast to biclusters with constant values, they capture dynamic shifts and trends,
improving our knowledge of temporal biological events.

Figure 2.1: Types of Biclusters.

2.2.3 Biclustering as an Optimization Problem

Since efficiency is the foundation of the biclustering process, extracting biclusters from
a data matrix may be considered a combinatorial optimization issue. The biclustering
problem seeks to extract maximally sized biclusters that meet a coherence requirement.
This allows the computer to sift through and sort a massive quantity of data in less time
than single clustering methods.

2.2.4 Metrics

The vast majority of algorithm comparisons are performed on synthetic or real-world
datasets, with metrics or measurements used for evaluation or validation. In the literature,

7

CHAPTER 2. STATE OF THE ART

several bicluster assessment measures have been proposed [14]. We will look at some of
the most common bicluster metrics.

2.2.4.1 Mean Squared Residue (MSR)

Cheng and Church proposed the MSR metric [2], which is the most widely used coher-
ence measure in biclustering algorithms [14]; it calculates the average squared difference
between gene expression values and the bicluster’s mean expression value. It assesses how
well the genes inside the bicluster align with the central tendency of the bicluster. MSR
for a bicluster B that consists of I rows and J columns is defined as follows:

MSR(B) =
1

|I|.|J |

|I|∑
i=1

|J |∑
j=1

(bij − biJ − bIj + bIJ)2 (2.1)

Where:
bij: represents the expression value of gene i under condition j within the bicluster.
biJ : represents the mean expression value of all genes across condition j in the bicluster.
It is calculated as follows: biJ = 1

|J |
∑

j∈J bij

bIj: represents the mean expression value of gene i across all conditions in the bicluster.
It is calculated as follows: bIj = 1

|I|
∑

j∈J bij

bIJ : denotes the overall mean expression value of the bicluster. Calculated as follows:
bIJ = 1

|I|.|J |
∑

i∈I,j∈J bij

2.2.4.2 Variance (Var)

Hartigan proposed the variance measure to locate biclusters with constant values [1]. It
is a coherence metric that assesses the variation in gene expression values within a cluster.
It measures how much the expression levels of genes within the bicluster depart from the
mean expression value of the bicluster. Greater variance suggests more variability in gene
expression levels within the bicluster. Formally, it is as follows:

V ar(B) =

|I|∑
i=1

|I|∑
j=1

(bij − bIj)2 (2.2)

Where:
B: refers to the bicluster under consideration.
|I| and |J |: the numbers of genes and conditions in the bicluster, respectively. bij: repre-
sents the expression value of gene i under condition j within the bicluster.

8

CHAPTER 2. STATE OF THE ART

bIj: represents the mean expression value of gene i across all conditions in the bicluster.
The Variance metric calculates the squared difference between individual expression val-
ues bij and the mean expression value bIj of gene i across all conditions in the bicluster.
These squared differences are accumulated by the summing terms for all elements inside
the bicluster.

The row variance (rVar) like the variance measure, assesses the diversity of gene ex-
pression within a bicluster. The variance is then normalized by the number of genes and
conditions in the bicluster. The formal definition of the rVar measure is:

rV ar(B) =
1

|I|.|J |

|I|∑
i=1

|I|∑
j=1

(bij − bIj)2 (2.3)

2.2.4.3 Relevance Index (RI)

Yip et al. developed a new assessment metric known as the relevance index (RI) [15] .
RI evaluates the quality of a bicluster as the sum of the relevance indices of the columns.
The relevance index RIj for column j ∈ J is defined as follows:

RIj = 1−
σ2
Ij

σ2
j

(2.4)

Where:
σ2
Ij: refers to the variance of the values in column j for the bicluster.
σ2
j : represents the variance of the values in column j across the entire dataset.

2.2.4.4 Virtual Error (VE)

Pontes et al introduced the VE function to detect shifting or scaling patterns in biclus-
ters [16] . VE measures the difference between a gene’s expression values in a bicluster
and the predicted profile for that gene across all circumstances within the bicluster. Given
a bicluster B containing I genes and J conditions, VE is defined as follows:

V E(B) =
1

I.J

i=I∑
i=1

j=J∑
j=1

(b′ij − P ′i) (2.5)

Where:
b′ij: represents the expression value of gene i under condition j in the bicluster.

9

CHAPTER 2. STATE OF THE ART

P ′i : the expected profile value of gene i across all conditions within the bicluster.

2.3 Related Work

CC, introduced by Cheng and Church [2], stands as a groundbreaking biclustering algo-
rithm tailored for gene expression data analysis. This approach effectively addresses the
limitations found in conventional clustering methods, recognizing the diverse biological
functions of individual genes and the varying behavior of gene groups under different
conditions. Biclustering navigates the intricate landscape of noisy gene expression data
by pinpointing specific groups of genes and conditions within a matrix that share similar
patterns. Beyond its applications in microarray and gene expression studies, Bicluster-
ing has spread across various fields, including pattern discovery [17], text mining [18],
marketing [19], web searches [20], and biomedicine [21]. However, given the challenges
posed by noise and the vast number of potential combinations, discerning the inclusion
of rows and columns in a bicluster becomes a complex task. Biclustering, classified as
an NP-hard problem, faces computational intricacies as the scale of input data increases.
Consequently, many biclustering algorithms adopt heuristic search methods to identify
biclusters and approximate the problem by locating suboptimal solutions. In the litera-
ture, biclustering approaches are broadly categorized into two main types: the systematic
search approach (Heuristic) and the stochastic search (Metaheuristic).

2.3.1 Systematic Biclustering Algorithms

The systematic search-based biclustering algorithms includes the following approaches:

2.3.1.1 Divide and Conquer Approach

The Divide and Conquer technique begins with the complete data matrix as the initial
bicluster. Then, repeatedly partition this bicluster into numerous biclusters that satisfy
specific properties until the termination requirements are verified, as shown in [22]. This
method is characterized by its speed; however, it may eliminate promising biclusters by
dividing them before assessing them. Bimax [5] is an instance of a biclustering approach
that uses divide and conquer strategy

10

CHAPTER 2. STATE OF THE ART

2.3.1.2 Greedy Iterative Search Approach

This method constructs biclusters using an iterative procedure that tries to maximize
or decrease specific functions. This procedure is based on adding or removing rows or
columns until no further additions or deletions are possible. Despite its speed, this ap-
proach has the disadvantage of disregarding some good biclusters by adding or deleting
rows or columns. OPSM [4] and BicFinder [23] are two algorithms that take this tech-
nique.

2.3.1.3 Bicluster Enumeration Approach

This approach identifies the best biclusters, which requires an exhaustive enumeration of
all possible biclusters in the data matrix. The advantage of this approach is the certainty
of finding the best biclusters, but its major drawback is its long duration of calculation
and a significant amount of memory use. Among the algorithms using this approach,
there are BiMine [24], BiMine+ [25], and DeBi [26].

2.3.2 Stochastic Biclustering Algorithms

The stochastic search-based biclustering algorithms includes the following approaches:

2.3.2.1 Neighborhood Search

This method begins with a solution: the complete data matrix or just a bicluster. Then,
each iteration improves the present solution by adding or removing rows or columns to
increase or decrease particular functions. Unlike the Greedy Iterative Search Approach,
the previously removed rows or columns can be added back in this strategy. CC Algorithm
[2], PDNS [27], and LSM [10] are examples of algorithms that use this method.

2.3.2.2 Evolutionary Algorithm (EA)

This technique begins by initializing the population, where each individual represents a
potential solution for this population. It then evaluates each individual using an evaluation
function and picks a certain number among them to form the next population using the
crossover and mutation operators; this operation is repeated until the stopping condition
is met. However, EA can be costly to build and time demanding to run. Furthermore,
the results might be challenging to understand. SEBI [8], SMOB [28], CBEB [29], and
those presented by Nepomuceno et al. in [11] [30] , MOEA [7], and DeBic [31] are some
of the algorithms that use this method.

11

CHAPTER 2. STATE OF THE ART

2.3.2.3 Hybrid Approaches

Hybrid biclustering approaches integrate numerous methodologies to improve the qual-
ity, robustness, and interpretability of biclustering. They increase solution quality, nav-
igate solution spaces more robustly, and provide a clearer understanding of patterns by
integrating varied algorithms. However, they confront obstacles regarding methods com-
patibility, parameter adjustment, and computing complexity. In addition, integrating
approaches can cause assumptions and objectives clash, and determining optimal param-
eters can be difficult and time-consuming. BiHEA [32] and SSB [33] are instances of
hybrid biclustering approaches.

2.3.3 Optimization Frameworks in Biclustering

Biclustering algorithms often operate within optimization frameworks, classifiable as
single-objective or multi-objective [34].

1. Single-Objective Optimization Framework: In this framework, algorithms seek a
singular, optimal solution by optimizing a predefined criterion or objective function.
Examples include SEBI [8] ,BiHEA [11], CBEB [29], SSB [33], BPSO [35].

2. Multi-Objective Optimization Framework: Given this framework, deals with prob-
lems featuring conflicting objectives, aiming to find a set of solutions that represent
trade-offs among these objectives. Examples include MOEA [7], SMOB [28], MO-
SPO [36], MOACO [37].

2.3.4 Comprehensive Overview of Exisiting Biclustering Methods

1. Bimax: Bimax [5] is a biclustering algorithm that uses a straightforward data rep-
resentation to find optimal biclusters efficiently. It employs a binary data model
where genes and conditions are either present (1) or absent (0) in a bicluster. The
algorithm scans each gene and expands conditions while maintaining the gene’s pres-
ence. This approach is simple and fast, making it a good baseline for understanding
biclustering concepts and comparing with more complex methods. However, its
simplicity might overlook intricate patterns in the data.

2. OPSM: The OPSM (Order-Preserving Sub-Matrices) algorithm [4] introduces a
unique approach to biclustering by defining biclusters as sub-matrices where gene
expression levels adhere to a consistent linear ordering of experiments. The algo-
rithm’s main objective is to identify rows that exhibit similar ordering tendencies

12

CHAPTER 2. STATE OF THE ART

within these biclusters. OPSM employs a probabilistic model as its guiding mecha-
nism, which contributes to the efficient identification of order-preserving biclusters.

3. ISA: ISA [38] adopts a versatile approach with a generalized Singular Value Decom-
position (SVD) technique to unveil transcription modules. Beginning with randomly
selected genes or conditions, the algorithm progressively refines the composition of
modules based on defined criteria. This process involves iterative data normalization
and the use of resolution-controlling thresholds. Each iteration produces a distinct
bicluster, and the initial random seed selection allows for potential overlap of genes
and conditions in different biclusters.

4. Xmotif: This algorithm [39] introduces a unique perspective by utilizing conserved
gene expression motifs, called Xmotifs, which represent gene subsets consistently
expressed across specific samples. These motifs are defined using gene expression
intervals with constraints on size, conservation, and maximality. A probabilistic
algorithm exploits the mathematical structure of Xmotifs to compute the largest
one. Through iterative iterations, samples corresponding to each Xmotif are grad-
ually removed, unveiling multiple Xmotifs. However, this approach’s reliance on
iterative sample removal could potentially lead to information loss and biases in
the discovered Xmotifs. The algorithm’s performance is closely tied to the initial
sample selection, impacting the quality and diversity of the resulting Xmotifs.

5. Samba: Samba [40] approaches biclustering through a unique bipartite graph rep-
resentation of data. They assign weights to edges using probabilistic models that
highlight potential biclusters. The algorithm introduces two graph models, one of
which incorporates the direction of expression changes. By iteratively utilizing a
polynomial method, Samba identifies significant biclusters as weighted sub-graphs.
It employs a selection process to find the heaviest sub-graphs, adapting to both
signed and unsigned models based on the data. This adaptability enhances the
algorithm’s robustness, allowing for versatile bicluster discovery.

6. BicFinder: BicFinder [23] is a specialized greedy algorithm designed for biclustering
that uses a novel evaluation function named the Average Correspondence Similarity
Index (ACSI). This function serves as a guiding metric to evaluate the quality of
biclusters. The approach also involves the implementation of a directed acyclic
graph, which is employed as a strategic tool for extracting biclusters from the input
data. These combined features enable BicFinder to effectively identify meaningful
patterns within DNA microarray data sets. However, Due to its greedy nature, it
might not always lead to globally optimal solutions.

13

CHAPTER 2. STATE OF THE ART

7. BiMine: BiMine [24] incorporates three unique aspects. Initially, it employs an inno-
vative assessment metric termed Average Spearman’s rho (ASR). Secondly, BiMine
utilizes a novel tree structure termed Bicluster Enumeration Tree (BET) to catalog
the diverse biclusters uncovered during enumeration. Lastly, BiMine introduces a
parametric guideline to curtail the enumeration process, mitigating the proliferation
of tree branches that might not yield promising biclusters.

8. BiMine+: This is a heuristic enumeration biclustering algorithm designed to extract
substantial and coherent biclusters [25]. These biclusters encompass sizable sets of
genes and conditions, showing strong correlations in their activities across diverse
conditions. The algorithm utilizes a Modified Bicluster Enumeration Tree (MBET)
to depict the identified biclusters. Each MBET node holds the gene profile shape of
a bicluster. The gene profile shape signifies the pattern of gene expression changes
across the conditions. However, it may face scalability challenges with large datasets
due to its exhaustive enumeration approach.

9. DeBi: The DeBi (Differentially Expressed BIclusters) algorithm [26] introduces a
rapid biclustering approach based on frequent itemset mining, a widely recognized
data mining technique. DeBi’s primary objective is to uncover homogeneous biclus-
ters of maximum size, where genes exhibit strong associations with specific subsets
of samples. However, DeBi’s dependence on frequent itemset mining may present
difficulties when handling large or intricate datasets. Furthermore, its emphasis on
gene-sample associations could potentially lead to the oversight of subtle patterns
in the data.

10. CC: The CC algorithm [2] is designed to generate biclusters using an input expres-
sion matrix and an MSR threshold. This method employs a series of phases, in-
volving both node deletion and addition, to maintain the structure of biclusters. To
address the problem of overlap, a substitution phase is employed, replacing elements
within newly identified biclusters with random values. While the CC algorithm ef-
fectively avoids overlap, it has certain limitations. These include potential issues
such as element masking and the reliance on a dataset-specific threshold, which can
affect the rejection of solutions.

11. PDNS: The PDNS algorithm [27] is centered around iterative enhancement of an
initial bicluster candidate solution. It does so by systematically exploring the neigh-
borhood of the candidate solution and making incremental modifications to improve
its quality. PDNS generates its results through a series of runs, each with a distinct
initial solution. However, it’s important to note that PDNS generates one bicluster

14

CHAPTER 2. STATE OF THE ART

at a time, and overlapping among reported solutions is not addressed. The algo-
rithm’s output is not a comprehensive set of biclusters, but rather a sequence of
individual biclusters.

12. SEBI: The SEBI [8] algorithm utilizes a weighted matrix to regulate the degree
of overlap among biclusters. By controlling the sharing of genes and conditions
between biclusters, SEBI manages to control overlap effectively. The algorithm
employs three different strategies for manipulating genetic information: one-point
crossover, two-points crossover, and uniform crossover. However, one limitation of
the SEBI algorithm is that it generates only a single bicluster per run. This requires
multiple iterations to identify multiple biclusters effectively

13. SMOB: SMOB (Sequential Multi-Objective Biclustering) [28] adopts a sequential
approach similar to SEBI, but it diverges in terms of its optimization strategy.
While SEBI employs a single-objective evolutionary algorithm, SMOB leverages a
multi-objective evolutionary algorithm (MOEA) in an iterative manner. In each
iteration of the MOEA, SMOB identifies a bicluster and stores it within a list. The
size of this list corresponds to the number of solutions generated by the MOEA calls

14. CBEB: The CBEB algorithm [29] combines genetic algorithms and hierarchical clus-
tering to identify biclusters. The method partitions rows of the data matrix into
subsets of conditions and then employs parallel genetic algorithms on each subset.
The results from these parallel genetic algorithms are combined using an expanding-
merging approach to produce biclusters. This method efficiently integrates different
techniques to address the biclustering problem. However, its strength lies in pro-
ducing a single bicluster per iteration, which might necessitate multiple iterations
for discovering multiple biclusters.

15. MOEA: The Multi-Objective Evolutionary Algorithm (MOEA) [7] is an optimiza-
tion method inspired by natural evolution. It maintains a population of potential
solutions, applies selection, crossover, and mutation to create new solutions, and
prioritizes those with better objective values. In addition, Local search heuristics
are employed to speed up convergence by refining the chromosomes.

16. DeBic: DeBic [31] is a biclustering algorithm that adapts the principles of Dif-
ferential Evolution (DE) to identify coherent patterns in gene expression data. It
starts by generating a population of solutions, and iteratively evolves the population
through crossover and mutation operations.

15

CHAPTER 2. STATE OF THE ART

17. BiHEA: The BiHEA algorithm [32] incorporates a local search approach that draws
inspiration from the CC algorithm. It employs a two-point crossover operator to
generate new solutions. Additionally, BiHEA integrates an external archive, which
serves as a repository to preserve the best biclusters throughout the evolutionary
process. However, BiHEA’s reliance on a local search strategy could potentially
limit its exploration of the solution space. As a result, it might face challenges in
discovering diverse and more global optimal solutions.

18. SSB: The SSB algorithm [33] employs binary encoding for its biclustering solutions
and incorporates a local search method to enhance biclusters containing positively
correlated genes. While these approaches are beneficial, they rely on predefined
patterns and may not capture more complex relationships within the data. This
can limit their effectiveness in identifying intricate underlying structures.

19. FLOC: FLOC [3] is an innovative approach that extends the bicluster model to
include null values. It introduces a probabilistic algorithm capable of identifying a
collection of potentially overlapping biclusters simultaneously. The FLOC process
involves iterations of gene and condition moves, aiming to minimize residual ele-
ments optimally. In some cases, specific moves might be temporarily "blocked" to
prevent undesirable outcomes, like generating trivial biclusters or violating feature
constraints.

20. MBA: MBA [41] was designed to uncover negatively correlated genes within mi-
croarray data. MBA operates on a set of potential biclusters, leveraging them
to generate new solutions via variation operators like combinations and local en-
hancements. The utilization of a behavior matrix representation guides the local
enhancement process, using positive and negative pattern-based neighborhoods.

21. DdPGA: the Dynamic deme Parallelized Genetic Algorithm (DdPGA) [42] is a
global parallelization (master-slave model) influenced by coarse-grained GA with
overlapping sub-population model. The primary goal is to mine biclusters with
high row variance, low mean square residue, and low overlapping (MSR).

22. EBA: EBA [43] is an evolutionary biclustering algorithm based on genetic operators
such as selection, crossover, and mutation. They proposed two distinct methods for
each of these operators. The first method is based on a parallel approach and em-
ploys four complementary functions: the size function, the mean squared residue
function, the average correlation function, and the coefficient of variation func-
tion, whereas the second method is based on the aggregation of two functions: the

16

CHAPTER 2. STATE OF THE ART

size function and the average correlation function. In addition, they proposed new
crossover and mutation methods for the biclustering problem .

2.3.5 Evolutionary Algorithms and Swarm Intelligence for Biclus-

tering Optimization

Within the realm of biclustering, evolutionary algorithms and swarm intelligence stand
out as two remarkable approaches inspired by natural phenomena. They provide a sys-
tematic and iterative framework that allows the algorithm to adapt and refine solutions
over successive generations, enabling them to navigate the complex search space and over-
come challenges posed by noise and diverse patterns in gene expression data. The ability
of EAs to strike a balance between exploration and exploitation makes them particularly
well-suited for addressing the intricate nature of biclustering problems, making them a
valuable asset in advancing the field. These algorithms, namely GA, PSO, ACO, ABC,
have demonstrated remarkable capabilities and produced impressive results in the field of
biclustering.

GA (Genetic Algorithm) is a nature-inspired approach that falls under the category of
Evolutionary approaches, with inspiration drawn from the micro-evolutionary processes
that underpin animal evolution. A random population of potential solutions encoded
as chromosomes serves as the basis for genetic algorithms. New offspring are created
through crossover and mutation, with parents chosen based on fitness. The cycle repeats
until the termination requirements are met. Swarm-based algorithms use dynamic objec-
tive functions and are adaptive, in contrast to Genetic Algorithms (GA), which only use
trajectory-based objective functions to evaluate solutions; swarm-based algorithms are
able to respond to shifting problem dynamics because of their adaptability. [44] is a case
of GA-based biclustering.

PSO (Particle Swarm Optimisation) is a swarm-based algorithm that draws its inspi-
ration from the social behavior of bird flocking. Random solutions are used to initialize
the particle population. For every generation, each solution updates its velocity, which,
as the name suggests, includes both direction and rate of change of position. This up-
dates the solution’s position with respect to the global Pareto front. MOSPO [36] is an
algorithm that applies PSO in the biclustering field.

ACO (Ant Colony Optimization) is inspired by real ant foraging behavior. In their
search for food, ants engage in an exploratory phase in which they move randomly around

17

CHAPTER 2. STATE OF THE ART

their nest. When ants find a food source, they examine its quantity and quality before
returning to the nest, leaving a pheromone trail on the ground. The algorithm then uses
this trail of pheromones to navigate and effectively solve the task of locating food sources.
Each ant in the algorithm moves from one state to another, representing a more com-
plete solution, depositing some amount of pheromone that represents the desirability of
the move. Each move is probabilistically selected from a feasible set of allowed moves.
MOACO [37] and bicACO [45] are two algorithms that perform biclustering using ACO.

ABC (Artificial Bee Colony): The Artificial Bee Colony (ABC) swarm intelligence
optimization algorithm is based on the notion that an objective can be optimized by
replicating the intelligent behavior of bees. It imitates how bees look for food sources
and share their discoveries to direct colony exploration. Few works that used ABC for
clustering purposes [46, 47] showed how it significantly outperformed other approaches
like DE (Differential Evolution) and PSO. In [35], the authors proposed work employs
a discrete version of the Artificial Bee Colony optimization algorithm for biclustering of
web usage data to produce optimal biclusters (i.e., highly correlated biclusters). It was
demonstrated on a real dataset, and the results showed that the proposed approach was
able to find significant biclusters of high quality and that it outperformed Binary Particle
Swarm Optimization (BPSO).

2.3.6 Analysis

In the study conducted by [5], a comprehensive assessment and comparison of five methods
was performed including CC [2], OPSM [4], ISA [38], Xmotif [39] and Samba [40].

The evaluation encompassed both synthetic and actual datasets. The synthetic datasets
involved biclusters with constant and additive values, undergoing systematic noise in-
crements and increased overlap. Real data evaluation involved incorporating biological
insights using GO annotations [48], metabolic pathway maps [49], and protein-protein
interaction information [50].

In general, the ISA, Samba, and OPSM methods perform well. While some methods
perform better in certain scenarios, they perform poorly in others. Therefore, biclustering
methods are difficult to evaluate and compare because the results depend highly on the
scenario under consideration. Moreover, despite the existence of numerous biclustering
algorithms, there are still several significant challenges to overcome, such as the lack of
data available to define the type of specific biclusters to look for, the amount of noise

18

CHAPTER 2. STATE OF THE ART

present in the data matrices, the computation time required due to the complex calcula-
tions that are frequently required and the problem’s multi-objective nature, because both
the MSR and the bicluster size must be optimized at the same time.

After examining all of these methods, it was revealed that evolutionary algorithms are
the most widely employed approaches for solving the biclustering problem. It is explained
by the numerous benefits provided by EA, which include the ability to handle noise and
incomplete data, flexibility, parallelism, and non-deterministic nature. These benefits
make evolutionary algorithms a powerful approach for the biclustering problem, and they
have been shown to produce state-of-the-art results on a variety of benchmark datasets.
Among the evolutionary algorithms that have been shown to be effective for biclustering
problems are: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Artificial
Bee Colony (ABC). In contrast, Differential Evolution (DE) is another type of evolution-
ary algorithm that has several advantages over other evolutionary algorithms, including
simplicity, robustness, efficiency, versatility, and flexibility. Despite being a powerful and
versatile optimization algorithm capable of solving a wide range of optimization problems,
particularly those involving discrete variables, DE has never been applied to bicluster mi-
croarray data. After researching differential evolution, its process, and its many benefits,
we discovered that it could be used for biclustering gene expression data with a few mod-
ifications to the original algorithm.

Similarily, the Artificial Bee Colony (ABC) algorithm provides numerous potential ad-
vantages over other swarm-based approaches, and it demonstrates remarkable adaptabil-
ity, robustness, ease of implementation, the potential for parallelization, and the ability to
explore and exploit the solution space dynamically. Its inspiration from honey bee forag-
ing behavior offers a unique perspective for solving optimization problems. Nevertheless,
the utilization of ABC in biclustering remains largely unexplored due to a limited number
of studies that have employed this algorithm for such purposes.

2.3.7 Addressing Noise in Gene Expression Data

Conversely, a shared limitation observed in the mentioned algorithms and approaches is
the absence of a data preprocessing stage dedicated to adequately prepare and denoise
the gene expression data before its utilization by the chosen biclustering algorithm. Gene
expression data can be noisy since there are many different sources of noise due to various
factors like experimental errors, technical flaws, and biological variability.

19

CHAPTER 2. STATE OF THE ART

The noise in the gene expression data can introduce unwanted variations and distort
the underlying gene expression patterns causing the accurate biclustering to be hampered
and, therefore, resulting in the formation of fictitious or unstable biclusters, where the
recognized patterns do not accurately reflect true biological relationships.

Numerous denoising methods, including Autoencoders (AE), Principal Component
Analysis (PCA), Singular Value Decomposition (SVD), and Wavelet Denoising, can be
used on gene expression data. Denoising autoencoders, however, are a superior choice
over other denoising techniques for a variety of reasons; Autoencoders are potent neural
network models that can recognize complex patterns in gene expression data and learn
non-linear relationships between the noisy input and the clean output, in contrast to
conventional denoising techniques that rely on linear filters or statistical techniques. Au-
toencoders are algorithms that learn a compressed data representation and then extract
useful features that aid in noise filtering and information preservation which makes them
well-suited for denoising gene expression data [51,52].

Among different types of autoencoders, Convolutional Denoising Autoencoders (CDAEs)
are exceptional at identifying regional patterns and spatial relationships in data. Despite
the fact that gene expression data is not inherently spatial, it might still contain regional
patterns or dependencies that the convolutional layers of a CDAE can recognize. Finding
gene expression patterns linked to particular biological processes or regulatory mecha-
nisms can be a result of this. Additionally, CDAEs’ ability to denoise data enables them
to reconstruct clear gene expression profiles from distorted or noisy data. Utilizing Con-
volutional Denoising Autoencoders (CDAEs) as a preprocessing and denoising technique
for gene expression data can enhance the accuracy and reliability of subsequent analyses,
including biclustering and differential gene expression analysis.

Differential Evolution (DE) and Artificial Bee Colony (ABC) hold enormous promise
in the field of bilcustering for addressing the identified challenges, and their unexplored
potential represents a significant neglected potential, so we have introduced three ap-
proaches to effectively address that. Chapters 3 and 4 provide a thorough examination
of Differential Evolution (DE) in the context of biclustering. Each chapter focuses on
a specific DE approach, giving in-depth discussions and insights on its application and
potential contribution to addressing the stated challenges. In addition, Chapter 5 will
provide a dedicated approach to address noise issues and the limited exploration of ABC
in biclustering.

20

CHAPTER 2. STATE OF THE ART

2.4 Conclusion

Throughout this chapter, we learned about the significance of biclustering as a strategy
for identifying complex relationships within biological datasets. Understanding diverse bi-
cluster types and evaluation metrics provides researchers with essential tools for pattern
detection and algorithm evaluation. Furthermore, we examined state-of-the-art bicluster-
ing approaches, offering a thorough review of their methodology and contributions to the
field of genomics.

Looking ahead, the next chapter will introduce a novel contribution – the first-ever
Differential Evolution approach for biclustering. This approach aims to leverage evo-
lutionary computation for adaptive and effective analysis of genomic data, providing a
practical and innovative addition to the existing biclustering methodologies.

21

Chapter 3

DeBic: A Differential Evolution
Biclustering Algorithm for Microarray
Data Analysis.

3.1 Introduction

In the realm of optimization algorithms, Differential Evolution (DE) has garnered widespread
acclaim for its simplicity, robustness, and efficiency in addressing a variety of optimization
challenges. Its versatility extends to applications in diverse fields, including engineering,
finance, machine learning, and computational biology. This chapter provides a thorough
exploration of the algorithm’s principles, steps, and strengths, encompassing its mutation
and crossover operators. Subsequently, it introduces the first-ever approach to the biclus-
tering problem utilizing the differential evolution algorithm. The chapter elaborates on
its adaptation to the biclustering problem using a unique mutation operator and presents
the results achieved by DeBic or real world datasets.

3.2 Differential Evolution

Recently, Differential evolution has grown in popularity for tackling situations involving
continuous optimization; it has been effectively employed in various scientific and technical
sectors.

The strength of differential evolution is to develop offspring by utilizing directional
information within the population. [53] proposed DE as a simple and efficient heuris-
tic for global optimization over continuous spaces. Their technique demonstrated DE’s
effectiveness in addressing optimization problems.

22

CHAPTER 3. DEBIC: A DIFFERENTIAL EVOLUTION BICLUSTERING ALGORITHM FOR
MICROARRAY DATA ANALYSIS.

DE was examined alongside Genetic Algorithms (GAs) in a comparative study exam-
ining optimization strategies for combinatorial issues in [54], where DE was rigorously
tested on its convergence speed, solution quality, and computing efficiency. The findings
show how DE’s performance was more robust and yielded more valuable outcomes when
compared to GAs. Similarly, DE was compared to the PSO for constrained optimization
in [55], and the results demonstrate that DE exceeds PSO in terms of repeatability (ro-
bustness) and the number of iterations necessary to move the solution candidate within
the feasible range.

DE is a competitive optimization strategy for real-parameter numerical optimization
problems. It is a simple yet powerful method for global optimization over continuous
spaces that uses the greedy selection criteria to choose which competitors will be retained
in the following generation.

Unlike traditional genetic algorithms, DE relies on distance and directional information
via unit vectors for reproduction. Its reproduction operator involves a mutation step to
generate a trial vector, which the crossover operator subsequently uses to produce one
offspring. The sizes of mutation steps are estimated as weighted differences between
randomly chosen individuals. the following is a clear explanation of the main algorithmic
steps of DE:

1. Initialization: DE starts by generating a population of potential solutions, with
the size of the population being determined by the user.

2. Mutation: this step involves the creation of new individuals by perturbing existing
ones. This is done by computing the difference between two randomly selected
individuals and then scaling it by a factor, this scaled difference is then applied to
another individual, resulting in a modified solution.

3. Crossover: this involves randomly choosing components from the mutated solution
and mixing them with the remaining components from the original solution to create
what is called a trial solution.

4. Selection: DE then compares the trial solution created by crossover to the original
solution. If a trial solution proves to be more successful than the corresponding
original solution, it replaces it in the population.

5. Termination: The algorithm repeats these steps for a certain number of genera-
tions or until a particular convergence condition is fulfilled.

23

CHAPTER 3. DEBIC: A DIFFERENTIAL EVOLUTION BICLUSTERING ALGORITHM FOR
MICROARRAY DATA ANALYSIS.

3.2.1 Algorithm of Differential Evolution

Let x ∈ R designate a candidate solution from the present population, where D is the
optimized dimensionality of the problem, and f : R −→ R is the objective function to be
minimized.

Georgioudakis and Plevris performed a comparative study on DE variants in con-
strained structural optimization in [56]. This work contributes to our understanding of
DE’s effectiveness in tackling complicated optimization tasks, and it complements our
exploration of DE’s standard variance in this study. The standard DE method is based
on the DE/rand/1/bin scheme, it’s algorithm is provided as follows:

Algorithm 1: Differential Evolution with Scheme DE/rand/1/bin
Data : NP : population size, F: mutation factor, CR: crossover probability,

MAXFES: maximum number of functions evaluations
1 INITIALIZATION: G = O; Initialize all NP individuals with random

positions in the search space;
2 while FES < MAXFES do
3 for i← 0 to NP do
4 GENERATE: three individuals xr1 , xr2 , xr3 from the current

population randomly. These must be distinct from each other and also
from individual xi, i.e. r1 6= r2 6= r3 6= i.

5 MUTATION Form the donor vector using the formula:
V i = xr1 + F (xr2 − xr3)

6 CROSSOVER The trial vector ui is developed either from the elements
of the target vector xi or the elements of the donor vector vi as follows:

ui,j =

{
vi,j, if ri,j ≤ CR or j = jrand

xi,j, otherwise

}
(3.1)

7 Where i = 1, ..., NP , j = 1, ..., D, ri,j ∼ U(0, 1) is a uniformly distributed
random number which is generated for each j and jrand ∈ 1, ..., D is an
arbitrary integer used to ensure that ui 6= xi in all cases.

8 EVALUATE if f(ui) ≤ f(xi) then replace the individual xi in the
population with the trial vector ui FES = FES + NP

9 end
10 G = G+ 1

11 end

24

CHAPTER 3. DEBIC: A DIFFERENTIAL EVOLUTION BICLUSTERING ALGORITHM FOR
MICROARRAY DATA ANALYSIS.

DE is a prominent optimization approach due to its ability to tackle non-convex, multi-
modal, and nonlinear optimization problems while offering speedy convergence, effective
local search capabilities, and programming simplicity. Given its versatility and simplicity,
and its ability to explore huge solution areas, DE can be a good choice for complicated,
high-dimensional problems including both continuous and discrete variables. Further-
more, DE effectively avoids local optima by using solution populations to increase conver-
gence. DE provides for faster convergence with fewer evaluations when control parameters
are kept to a minimum, making it a very useful optimization strategy. However, DE has
several limitation including sensitivity to parameter settings, difficulties in adapting to
dynamic environments, limited performance on noisy or irregular landscapes. Further-
more, DE has difficulties in retaining its scalability in higher dimensions. As the number
of dimensions rises, DE’s performance and efficiency could decline, making it difficult to
properly navigate complicated solution spaces [57].

3.2.2 Mutation Operator

A difference and a target vector are calculated using two components by the mutation
operator in differential evolution. The target vector designates the parent whose direction
is given priority in creating the unit vector, whereas the difference vector indicates the
differences between two or more parents. The outcome of the mutation process is the unit
vector, which is subsequently given to the current central parent —the parent of interest
excluded from the mutation process— to be crossed over with. The mutation is formally
defined as the following: for each target vector xi(i = 1, 2, ...,m), a mutant vector is
produced as follows:

hi(i+ 1) = xr1 + f(xr2 − xr3) (3.2)

By looking at the mutation operation formula above, we can easily conclude that it is
capable of maintaining the closure only in real numbers field. So despite the simplicity
and effectiveness of the differential evolution algorithm in many branches of engineering,
applying differential evolution to binary optimization issues with binary decision variables
is still uncommon; and to fix this issue, We will employ a new mutation operator known as
the semi-probability mutation operator, that incorporates the original mutation operator
and a fresh probability-based defined operator [58].

25

CHAPTER 3. DEBIC: A DIFFERENTIAL EVOLUTION BICLUSTERING ALGORITHM FOR
MICROARRAY DATA ANALYSIS.

3.2.3 Crossover Operator

Following the mutation phase, the mutant vector undergoes a crossover with the target
vector Xi(g) to produce the trial vector Ui(t+ 1), which has received much less attention
from researchers in this field. The crossover operator is equally essential as the mutation
operator. Two types of crossover operators are commonly used in DE: binomial crossover
and exponential crossover.

3.2.3.1 Binomial Crossover

The binomial crossover is a uniform crossover that uses a binomial distribution. The if
statement condition in the algorithm below ensures that at least one component is taken
from the mutant vector.

Algorithm 2: Binomial Crossover

1 Function BinCrossover(xi, yi) : vector is
2 j ← randi({1, ..., n}) for i ≥ 1, .., n do
3 if randi(0, 1) ≤ CR or i = j then
4 ui ← hi;
5 else
6 ui ← xi;
7 end

8 end
9 return ui

10 end

3.2.3.2 Exponential Crossover

The exponential crossover simulates a two-point crossover in which the first cut point is
chosen at random from {0, ..., 1}, and the second point is chosen in such a way that L
consecutive components are taken from the mutant vector.

26

CHAPTER 3. DEBIC: A DIFFERENTIAL EVOLUTION BICLUSTERING ALGORITHM FOR
MICROARRAY DATA ANALYSIS.

Algorithm 3: Exponential Crossover

1 Function ExpCrossover(xi, hi) : vector is
2 j ← randi({1, ..., n}) i← j ui ← xi L← 0 repeat
3 ui ← hi i← i+ 1 L← L+ 1

4 until randi(0, 1) ≥ CR or L = n;
5 return ui

6 end

Zaharie invistigated the influence of crossover strategies on DE’s performance and
behavior in optimization tasks in [59], the experimental findings indicate that binomial
crossover produces better outcomes on the theory community’s common benchmark issues;
thus, our approach will utilize the binomial crossover.

The complexity of this algorithm is shared in [60], where they measured the run time
and averaging with a varied dimension size and applied it to different bench-marks. The
results lead to an asymptotic bound computational complexity.

3.2.4 The benefits of the DE Algorithm

The power of differential evolution is using directional information within the population
to create offspring. The algorithm has been demonstrated to outperform the Genetic
Algorithm (G.A.) in [54] and [61] alternatively, Particle Swarm Optimization (PSO) in [55]
through numerical benchmarks and experiments because of its simplicity, efficiency, and
local searching property, and speediness.

3.3 DeBic Algorithm Description

We suggest a Differential Evolution Based Biclustering algorithm called DeBic. This
new approach allows us to detect multiple biclusters simultaneously by using the evo-
lutionary algorithm of differential evolution and adapting it to perform Biclustering on
a binary search space with a different mutation operator. Differential evolution is best
known for its exceptional robustness in non-convex, multimodal, and nonlinear problem
optimizations. It is also known for its quick convergence and straightforward program-
ming.

27

CHAPTER 3. DEBIC: A DIFFERENTIAL EVOLUTION BICLUSTERING ALGORITHM FOR
MICROARRAY DATA ANALYSIS.

3.3.1 Algorithm Description

The proposed solution uses differential evolution to drive a population of biclusters so-
lutions toward better solutions. First, it initializes the population by randomly selecting
biclusters, like the most of current biclustering algorithms, the biclusters are represented
by a binary sequence of predetermined length (n + m). The binary sequence is usually
made up of two parts: the first part represents the genes, and the second part represents
the conditions, as illustrated in Figure 3.1.

Figure 3.1: Representation of Binary String Encoding for Bicluster Solution.

After initializing the population, the algorithm employs the mutation operator to mod-
ify an existing individual; these modifications can be made at random or in accordance
with a predetermined strategy. As Discussed in section 3.2.2, we adopted a new mutation
operator that allows us to expand DE into the binary space search, proposed by Chang-
shou et al. in [58], called the semi-probability Mutation operator, defined as the following:

hi(t+ 1) =

xr1 + F (xr2 − xr3), if hi(t+ 1) = 0 or 1

0, if pr < rand

1, otherwise

(3.3)

In the next step, the DeBic algorithm uses the crossover strategy to create a new vector
by mixing the information of the trial and the target vectors, and it is defined as the
following:

ui(t+ 1) =

{
hi(t+ 1), if rand ≤ CR or j = rand(i)

xi(t), otherwise
(3.4)

Where i = 1, 2, . . . ,m; j = 1, 2, . . . , n; rand(i) ∈ (1, 2, . . . , n) is the randomly chosen
index and CR ∈ [0, 1] is crossover constant . In other words, certain elements of the
mutant individual or at least one parameter chosen at random, as well as some of the
target individual’s other attributes, are present in the trial individual.

28

CHAPTER 3. DEBIC: A DIFFERENTIAL EVOLUTION BICLUSTERING ALGORITHM FOR
MICROARRAY DATA ANALYSIS.

The effect of the mutation with the semi-probability operator alongside the inherited
behavior of evolutionary algorithms such as crossover will help maintain diversity in the
population since the different evolution will use those new individuals to create other
improved individuals, which will get selected or discarded in the selection phase.

Then, we compare the trial individual to the corresponding to decide if it should be
a member of the next generation. The selection process relies on the trial participant’s
fitness survival; if it is considerably better than the current solution, we replace it. After a
specific number of iterations, the algorithm reaches stopping criteria and ends the process
by returning the resulting population.

The fitness of an individual X(I, J) used in this study is then given by the formula:

fitness(X) =
MSR(X)

δ
+

1

size(X)
(3.5)

δ is the threshold that represents the most dissimilarity that can exist within a biclus-
ter, and the size function represents the size of the bicluster.

The different steps of DeBic are described in the following:

29

CHAPTER 3. DEBIC: A DIFFERENTIAL EVOLUTION BICLUSTERING ALGORITHM FOR
MICROARRAY DATA ANALYSIS.

Algorithm 4: DeBic Algorithm Steps
Input : A Matrix of size n×m, Population Size p, Crossover probability CP ,

Fitness function fscore
Output: p Bicluster solutions

1 pop← generating p random solutions for initial population solutions;
2 popF itness← calculate the fitness score for all solutions in pop using fscore;

3 while Termination Conditions Isn’t met do
4 a, b, c←select 3 random different solutions from pop in different positions

than i ;

5 /* Create mutant using semi probability mutation */

6 mutant← semiProbabilityMutation(a, b, c);

7 trial←Create Trial Vector using binomial crossover using the mutant and
the current vectors with CP as crossover probability;

8 /* Calculate the score of the new trial vector */

9 currentF itness← fscore(trial);
10 if currentF itness > popF itness[i] then
11 popF itness[i]← currentF itness;
12 pop[i]← trial;

13 end

14 end

15 return p Biclusters pop from last generation;

16 Function semiProbabilityMutation(a: vector, b: vector, c: vector) : vector is
17

vector =

a+ F (b− c), if r = 0 or r = 1

0, if pr < rand

1, otherwise

return vector
18 end

3.4 Experimental Results

In order to assess the effectiveness of the DeBic Algorithm for bicluster detection in
expression data, we conducted some experiments on the Yeast Saccharomyces Cerevisiae
Cell-Cycle expression dataset. The yeast cell cycle is a particularly popular dataset for

30

CHAPTER 3. DEBIC: A DIFFERENTIAL EVOLUTION BICLUSTERING ALGORITHM FOR
MICROARRAY DATA ANALYSIS.

gene expression data experiments, as the genes functions are well-known. This dataset
originated from [56], there are 17 experimental conditions and 2, 884 genes in the associ-
ated expression matrix.

The parameter settings shown in Table 3.1 were used for all the conducted experiments,
and all experiments were carried out on a PC equipped with a 4.30 GHz AMD Ryzen 7
3800XT 8-Core Processor and 64 GB of RAM running with Windows 10.

Hyper Parameter Value
Population Size 75

Generations 100
Initial Crossover Probability 0.75

Table 3.1: Hyper Parameter Specification

14 out of 100 biclusters on the Yeast data set were discovered by the DeBic algorithm,
as shown in 3.2:

31

CHAPTER 3. DEBIC: A DIFFERENTIAL EVOLUTION BICLUSTERING ALGORITHM FOR
MICROARRAY DATA ANALYSIS.

Figure 3.2: 14 biclusters Discovered By DeBic in The Yeast Cell-Cycle Dataset.

32

CHAPTER 3. DEBIC: A DIFFERENTIAL EVOLUTION BICLUSTERING ALGORITHM FOR
MICROARRAY DATA ANALYSIS.

The genes exhibit a similar response under a variety of circumstances, as can be shown
by a visual examination of the additional biclusters suggested in Fig. 2. The result of a
selected set of genes from a bicluster with high biological relevance are shown below:
YBR244W YCR102C YDL022W YEL024W YHR037W YHR104W YIL111W YIL124W
YJR155W YKL150W YKR009C YLR395C YMR145C YMR152W YMR189W YNL037C
YNL134C YOL059W YOR136W YDR185C YDR213W YDR240C YDR294C YDR299W
YDR330W YDR466W YDR479C YEL005C YEL024W YEL046C YEL070W YER028C
YER054C YER062C YER065C YER068W YER141W YER143W YGL013C YGL130W
YGL156W YGL208W YGL219C YGR029W YGR100W YGR146C YHL039W YHL042W
YHR037W YHR129C YIL055C YIL111W YIL124W YIL156W YJL003W YJL091C
YJL101C YJL191W YJR078W YJR096W YJR155W YKL100C YKL150W YKR004C
YKR013W YLL010C YNL336W YNR013C YNR038W YNR077C YOL017W YOL032W
YOL059W YOL064C YOL079W YOL096C YOL108C YOL114C YOL154W YOL158C
YOR094WYOR136WYOR177C YOR178C YOR181WYOR252WYOR283WYPL007C
YPL057C YPL086C YPL094C YPL132W YPL165C YPL186C YPL204W YPL205C
YPL208W YPL228W YPL236C YPL258C YPL268W YPL274W YPR017C YPR043W
YPR068C YPR113W YPR168W YPR182W.

We also recorded the biological process from the previous bicluster with the corre-
sponding P-values (which is a number describing how likely our data would have occurred
by random chance) in Table 3.2.

Biological Process P-Value

polyol metabolic process 5.07e-05
oxidoreductase complex 1.63e-05

oxidoreductase activity, acting on the CH-OH group
of donors, NAD or NADP as acceptor 2.15e-07

oxidoreductase activity, acting on the CH-OH group of donors 5.01e-07
oxidoreductase activity 3.73e-10

oxidation-reduction process 3.33e-10
catalytic activity 1.32e-06

Table 3.2: Biological Processes and Corresponding P-values in the Previous Bicluster.

Table 3.3 compares DeBic’s performance compared to Cheng and Church’s method
(hereafter CC) [2], Yang et al’s algorithm FLOC [62], and MOEAB [7] for the aver-age
residue and average dimension of the discovered biclusters.

33

CHAPTER 3. DEBIC: A DIFFERENTIAL EVOLUTION BICLUSTERING ALGORITHM FOR
MICROARRAY DATA ANALYSIS.

Algorithm Avg. bicluster size Avg. residue Avg. no. of genes Avg. no. of conditions
CC 1576.98 204.29 167 11

FLOC 1825.78 187.54 195 12.8
MOEA 10301 234.87 1095 9.29
DeBic 9889.58 272.13 628.04 14.5

Table 3.3: DeBic Performance Comparison To Other Algorithms.

The outcomes of this actual dataset demonstrate the ability of our suggested approach
to find biclusters with significant biological relevance.

3.5 Conclusion

This chapter has delved into the versatile realm of Differential Evolution, highlighting
its widespread recognition for simplicity, robustness, and efficiency across various opti-
mization challenges. Furthermore, it has effectively provided a comprehensive insight into
DE’s inner workings. The introduction of DE to the biclustering problem marks a signif-
icant milestone in computational genomics. The unique mutation operator incorporated
in the adaptation to biclustering, as demonstrated by the DeBic algorithm, adds a novel
dimension to the algorithm’s application. The chapter concludes with the presentation of
results achieved by DeBic on real-world datasets, further validating its efficacy in tackling
the biclustering challenges inherent in gene expression data.

In the upcoming chapter, we delve into another implementation of Differential Evo-
lution (DE) within a multi-objective framework tailored for biclustering. This novel ap-
proach introduces the Biclustering Binary Mutation Operator (BBDE), representing a
unique and adaptive mutation strategy designed explicitly for the biclustering context.

34

Chapter 4

AMoDeBic: An Adaptive
Multi-Objective Differential Evolution
Biclustering Algorithm of Microarray
Data Using a Biclustering Binary
Mutation Operator

4.1 Introduction

This chapter explores a strong optimization approach noted for its ability in solving com-
plex problems across several domains known as Multi-Objective Differential Evolution
(MODE). Recognizing the significance of MODE, we embark on a comprehensive explo-
ration of its principles and functionalities. Moreover, the chapter extends its focus to
binary Differential Evolution (DE), a critical aspect in AMoDeBic, our novel algorithm
that leverages Multi-Objective Differential Evolution for gene group discovery covered in
this chapter. Within this innovative approach, we unveil the Biclustering Binary Differ-
ential Evolution (BBDE), a new mutation operator designed to enhance the adaptability
and robustness of the biclustering process. The chapter systematically evaluates the ef-
fectiveness of AMoDeBic by comparing its results to state-of-the-art algorithms, utilizing
both synthetic and real datasets.

35

CHAPTER 4. AMODEBIC: AN ADAPTIVE MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION
BICLUSTERING ALGORITHM OF MICROARRAY DATA USING A BICLUSTERING BINARY

MUTATION OPERATOR

4.2 Differential Evolution

Differential Evolution (DE) is a population-based, stochastic optimization algorithm
for solving nonlinear and numerical optimization tasks using REAL number parameters.
The DE algorithm was first introduced by Storn and Price in 1996 [53].

As we covered in Section 3.2, differential Evolution relies upon distance and directional
information through unit vectors for reproduction, unlike standard genetic algorithms.
Its reproduction operator involves a mutation phase to produce a trial vector, It is sub-
sequently used by the crossover operator to create one offspring. Weighted differences
between individuals chosen at random are used to calculate mutation step sizes.

4.2.1 Algorithm of Differential Evolution

A potential solution among the population x ∈ RD , D represents the dimensional-
ity of the optimized problem and the objective function that needs to be minimized is
f : RD −→ R . The standard DE pseudo code that follows the DE/rand/1/bin scheme
is as follows [56]:

Population Initialization
Repeat
Mutation
Crossover
Selection
Until Termination conditions are met

4.2.2 Multi-objective Differential Evolution

As the name implies, a multi-objective method works with more than one objective func-
tion. In many practical or real-world situations, numerous objectives or multiple criteria
are present in most practical decision-making problems. Multi-objective optimization is
sometimes known as vector optimization since a vector of objectives must be simultane-
ously optimized rather than a single objective. A single optimal solution in such instances
no longer exists, but rather a wide variety of solutions of comparable quality.

36

CHAPTER 4. AMODEBIC: AN ADAPTIVE MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION
BICLUSTERING ALGORITHM OF MICROARRAY DATA USING A BICLUSTERING BINARY

MUTATION OPERATOR

4.2.2.1 Multi-objective Framework

Unlike single-objective optimization problems, the Multi-objective Differential Evolution
(MODE) aims to optimize two or more competing aspects represented by fitness functions.
Using single-objective DE to model this situation would include a heuristic evaluation of
numerous factors required in establishing such a scalar-combination-type fitness function.
On the other hand, MODE presents a set of Pareto-optimal solutions [63] that simulta-
neously optimize the conflicting criteria of multiple fitness functions.

A solution is Pareto-optimal if it is dominated by no other possible solution, which
means that no other solution exists that is greater at least in one objective function value
and equal or superior in the different objective function values.

4.2.2.2 Pareto-Based Evaluation

Individuals are evaluated using the Pareto-based rank assignment [64]. Non-dominated
individuals are awarded rank 1, reflecting the highest fitness values in the population, and
these individuals are withdrawn from the competition. A new group of non-dominated
individuals from the rest of the population is ranked as 2 with the following highest
fitness values until all individuals in the population are assigned a rank. The fitness
sharing strategy [64] is commonly used in MODE in the literature to retain several optimal
solutions (cf. Figure 4.1).

Figure 4.1: Pareto Optimality Visualization in 2D Objective Space.

37

CHAPTER 4. AMODEBIC: AN ADAPTIVE MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION
BICLUSTERING ALGORITHM OF MICROARRAY DATA USING A BICLUSTERING BINARY

MUTATION OPERATOR

4.2.2.3 Non-dominated Sorting Genetic Algorithm II

Deb et al. presented a method to implement the fitness-sharing idea in NSGA-II [65] ,
where individuals within each rank who belong to the least crowded region are penalized
less. A crowding distance measure is used to determine the within-rank solution density.
It is calculated for a specific individual by adding the total of the normalized distances
along each objective dimension between the two individuals within the same rank who
define the smallest interval of this individual in that objective dimension.

Among the several multi-objective algorithms, the non-dominated sorting genetic al-
gorithm (NSGA-II) has all the characteristics necessary for a successful MODE [65]. It
has been demonstrated that this can converge to the global Pareto front while retain-
ing population diversity. The NSDE [66] algorithm is a straightforward modification of
the DE algorithm for addressing multi-objective optimization problems. The operation
of NSDE and DE is identical, with the exception of the selection operation, which is
adjusted to handle multi-objective optimization problems. Some works have proposed
multi-objective biclustering algorithms:

Lashkargir et al. proposed a Hybrid algorithm for discovering biclusters in gene ex-
pression data [67], which is based on adaptive multi-objective particle swarm optimization
.

Mitra and Banka developed a novel multi-objective evolutionary biclustering frame-
work that incorporates local search strategies and a new quantitative measure to assess
the goodness of the biclusters [7] .

Liu et al. proposed a new multi-objective particle swarm optimization biclustering
(MOPSOB) algorithm for detecting coherent patterns in microarray data [68]. In addi-
tion, they also proposed the CMOPSOB (Crowding distance-based Multi-objective Par-
ticle Swarm Optimization Biclustering), a clustering approach for microarray datasets to
cluster genes and highly related conditions in sub-portions of the microarray data [36].

Following our examination of Multi-Objective Differential Evolution, Pareto-based
evaluation and the NSGA II algorithm, our exploration naturally extends to another
facet of DE: Binary Differential Evolution. This exploration is as crucial since Binary DE
plays a vital role in shaping our proposed approach.

4.2.3 Binary Differential Evolution

Binary Differential Evolution (BDE) is a DE variant designed to handle binary variable
optimization problems. Each member of the population is represented as a binary string
in BDE, and the mutation and crossover operators have been modified to handle binary

38

CHAPTER 4. AMODEBIC: AN ADAPTIVE MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION
BICLUSTERING ALGORITHM OF MICROARRAY DATA USING A BICLUSTERING BINARY

MUTATION OPERATOR

variables. BDE works by perturbing the individual with the difference between two other
individuals in the population to generate a new candidate solution for each individual in
the population. A selection operator is also included in BDE to select the best individuals
for the next generation.

The mutation operation of DE given by the formula 3.2 shows that it can only maintain
closure in the real number field. Individuals are disturbed by the mutant DE vector, and
when individuals are subjected to more disturbances, solutions with higher fitness results
may result. So creating a suitable mutant vector is the key to DE. The challenge of using
DE to solve discrete issues is preserving the mutant vector’s capacity for disruption. Due
to this, the differential evolution algorithm’s application to binary optimization problems
with binary decision variables is still uncommon despite its simplicity and success in many
engineering fields. The majority of current DE research focuses on issues with continuous
optimization. However, given the various benefits of DE and the prevalence of discrete
and binary optimization issues, there are some works that studied DE to optimize binary
and discrete problems:

Zorarpacı et al. suggested a novel hybrid technique for the feature selection problem
of classification tasks that combines the best characteristics of the ABC [69] and DE [53]
algorithms and includes a new binary mutation phase for the DE algorithm [70]. After
computing the difference vector, the mutant vector is generated for the source individual.
To create a mutant vector, the "OR" binary logic operator is used to the components of
a randomly selected third vector using a difference vector. The difference vector and the
mutant vector are calculated using formulas 4.1 and 4.2:

difference vectordi =

{
0 ifxdr1 = xdr2

xdr1 otherwise
(4.1)

mutant vectordi =

{
1 if differencevectordi = 1

xdr3 otherwise
(4.2)

The crossover step is then executed using the formula 4.3 as follows:

udi =

{
mutant vectordi if σ ≤ CR(t) || d = drand

xdi otherwise
(4.3)

Deng et al. introduced the semi-probability Mutation operator [58], which permits

39

CHAPTER 4. AMODEBIC: AN ADAPTIVE MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION
BICLUSTERING ALGORITHM OF MICROARRAY DATA USING A BICLUSTERING BINARY

MUTATION OPERATOR

the extension of DE into the binary space search and is defined as follows:

hi(t+ 1) =

{ xr1 + F (xr2 − xr3), if (hi(t+ 1) = 0 or 1)

0, pr < rand

1, otherwise
(4.4)

The probability pr is calculated using the formula 4.5:

pr =
1

1 + e−hi
(t+1)

(4.5)

Xu and Wang proposed an elite-guiding binary differential evolution (EGBDE) [71]
, which includes a novel mutation strategy in which the mutant vector is obtained by
comparing every gene of the fittest individual to the corresponding gene of the selected
individuals and then randomly setting the bits from the first different bit to the end of
the gene.

Gong and Tuson proposed the Binary Differential Evolution (BDE) method [72]. In
this method, the continuous difference between two individuals in regular DE is repre-
sented by the hamming distance in the binary search space given the distance D(X(r2, g), X(r3, g))

is d, the scaled distance is:
d′ = F ∗ d (4.6)

The mutant vector is donated by the following formula, with the scaled distance d′ as a
floating number:

D(Mutant,X(r1, g) =

{
(int) d′ + 1, if rand < d′ - (int) d′

(int) d′ , otherwise
(4.7)

Engelbrecht and Pampara [73] presented three approaches using DE to optimize binary-
valued parameters by converting binary variables to real variables: The angle modulated
DE (AMDE) evolves a bitstring generating function using the regular DE like the follow-
ing:

g(x) = sin(2π(x− a)× b× cos(2π(x− a)× c)) + d (4.8)

The second approach is called binDE; it treats the corresponding real variable as having

40

CHAPTER 4. AMODEBIC: AN ADAPTIVE MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION
BICLUSTERING ALGORITHM OF MICROARRAY DATA USING A BICLUSTERING BINARY

MUTATION OPERATOR

a probability of zero or one.

yij(t) =

{
0 if U(0, 1)< f(xij(t))

1 otherwise
(4.9)

where the sigmoid function f is given as follows:

f(x) =
1

1 + e−x
(4.10)

The normDE is the third approach, and it normalizes the real variables by placing them
in the range [0, 1], and then any value less than 0.5 is absorbed to zero, and any value
more than that is absorbed to one.

yij(t) =

{
0 if xij(t)< 0.5

1 otherwise
(4.11)

However, these approaches are not intended for biclustering issues. To address this
issue, we proposed the BBDE mutation strategy, which is heavily inspired by Cheng
and Church’s heuristic of node deletion and addition, who were the first to propose the
biclustering technique.

4.3 AMoDeBic Algorithm

This study introduces AMoDeBic, a Multi-objective Differential Evolution approach for
Biclustering, which integrates the innovative Binary Biclustering Differential Evolution
(BBDE) mutation operator. This novel method detects multiple and diverse biclusters
simultaneously by adapting a non-dominated sorting genetic algorithm (NSGA-II) that
contains all of the characteristics essential for a suitable MODE to execute biclustering
on a binary search space.

4.3.1 Algorithm Description

The suggested solution employs differential evolution to steer a population of bicluster
solutions toward improved solutions. First, it initializes the parent population P by
selecting biclusters at random, and it represents the biclusters with a predetermined
binary string size (n+m), as do most of the current biclustering methods. This binary
string comprises two-bit strings, one for the genes and the other for the conditions. If the

41

CHAPTER 4. AMODEBIC: AN ADAPTIVE MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION
BICLUSTERING ALGORITHM OF MICROARRAY DATA USING A BICLUSTERING BINARY

MUTATION OPERATOR

appropriate gene and/or condition is present in the bicluster, a bit is set to one; otherwise,
it is reset to zero (cf. Figure 4.2).

Figure 4.2: Representation of Binary String Encoding for Bicluster Solution.

After initializing the population, the DE algorithm generates the offspring population
by employing the mutation operator to alter an existing individual. These modifications
can be random or based on a predetermined strategy.
As explained in section 4.2.3, the mutation operator given by the formula 3.2 in the
original DE algorithm can only retain the closure in the field of real numbers. As a result,
we cannot directly apply the original DE in discrete optimization problems. Therefore,
we will employ the new mutation technique proposed in this work called BBDE.

The BBDE operator functions as follows: The first step is to order the randomly
selected vectors xr1, xr2, and xr3 for the mutation phase based on their fitness scores,
with xr1 taking the vector with the best fitness score, xr2 taking the vector with the
second-best fitness scores, and xr3 taking the remaining vector, to ensure the elimination
of the bad characteristics of the vector xr3 that scored less when performing the node
deletion operation part in the formula 3.2 (xr2 − xr3)

hi = nodeAddition(xr1, nodeDeletion(xr2, xr3, F), F) (4.12)

Suppose only the node deletion and node addition are used after a few iterations. In
that case, the resulting individuals will most likely be all 0s (0....0) or all 1s (1...1), signif-
icantly impacting the biclustering results. As a solution to this problem, we will generate
a random number randi ∈ {0, ..., 1} (where i indicates the position of the current bit in
the present individual) and use the factor F to indicate the accepted probability of the
component difference or addition as the following: if the generated number randi is less
than F , the algorithm will apply the node deletion/ addition; if randi is greater than F ,
the node operation will be abolished, knowing that the initial value of F = 0.65.

After the mutation step, the resulting mutant vector will be used in the crossover

42

CHAPTER 4. AMODEBIC: AN ADAPTIVE MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION
BICLUSTERING ALGORITHM OF MICROARRAY DATA USING A BICLUSTERING BINARY

MUTATION OPERATOR

operation with a probability CR initialized at 0.75. The new individual will then be
tested in the selection phase using the fitness functions; if the score has improved, it is
interpreted as positive feedback; thus, the factor F and the crossover probability CR

will remain the same for that individual. However, if no improvement is detected in the
individuals, F and CR will undergo an adaptation by a slight change using the following
formulas:

Fi = normrnd(mean(F), 0.1) (4.13)

CRi = normrnd(mean(CR), 0.1) (4.14)

The new Biclustering Binary Differential Evolution mutation operation with the adapted
node deletion and addition operation is summarized as follows:

nodeDeletion(x, y, F) =

{
0, xi = 0 or (yi = 1 and randi <F)

1, otherwise
(4.15)

nodeAddition(x, y, F) =

{
1, xi = 1 or (yi = 1 and randi<F)

0, otherwise
(4.16)

The algorithm then employs the crossover approach to generate a new vector by com-
bining the information from the trial and target vectors, which is defined as follows:

ui(t+ 1) =

{
hi(t+ 1), rand ≤ CR or j = rand(i)

xi(t), otherwise

}
(4.17)

Where i = 1, 2, ...,m, j = 1, 2, ..., n, CR ∈ [0, 1] is the crossover probability, and rand(i) ∈
(1, 2, ..., n) is the randomly selected index. In other words, the trial individual has some
components of the mutant individual or at least one of the characteristics chosen at
random, as well as some of the target individual’s other parameters. After multiple
iterations, the offspring generation Q will be produced. Next, the algorithm performs the
selection process as follows:

1. It merges both P and Q generations to prepare for the selection process.

2. It uses the multi-objective fitness functions to calculate the score of all solutions.

3. using the dominance criteria, it calculates the non-dominant front.

43

CHAPTER 4. AMODEBIC: AN ADAPTIVE MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION
BICLUSTERING ALGORITHM OF MICROARRAY DATA USING A BICLUSTERING BINARY

MUTATION OPERATOR

4. Finally, it performs the selection process by calculating the crowding distance to
select solutions of low crowded regions.

A higher crowding distance is taken into consideration while choosing individuals. The
selected number is the amount needed to equalize the size of the old and new parent
populations (size(P + Q)/2). The selected solutions from the combined population will
replace the parent population. The DE will generate a new offspring generation following
the above mentioned process. After several iterations, the algorithm achieves ending cri-
teria and terminates by returning the resulting population. The following is a description
of AMoDeBic’s steps:

44

CHAPTER 4. AMODEBIC: AN ADAPTIVE MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION
BICLUSTERING ALGORITHM OF MICROARRAY DATA USING A BICLUSTERING BINARY

MUTATION OPERATOR

Algorithm 5: AMoDeBic Algorithm Steps
Input : A Matrix of size n×m, Population Size p,Initial Crossover probability

CP , Initial Factor F , objective Fitness function f1, f2

Output: p Bicluster solutions

1 popP ← generating p random solutions for initial population solutions;
2 popPFitness← calculate the fitness scores using f1, f2 for all solutions in popP ;
3 CP ← initialize the array of crossover probabilities CP for all individuals in p

score using initial CP ;
4 F ← initialize the array of F factor for all individuals in p score using initial F ;

5 while Termination Conditions Isn’t met do
6 popQ←Initialize popQ with empty list;
7 for i← 0 to p do
8 a, b, c←select 3 random different solutions from popP in different positions

than i and sort them from best to worst according to their fitness ;

9 /* Create mutant using BBDE mutation operator */

10 mutant← BBDE(a, b, c, Fi);

11 trial←Create Trial Vector using binomial crossover using the mutant and
the current vectors with CPi as crossover probability;

12 /* Calculate the score of the new trial vector */

13 currentF itness← calculatefitnessfortrialvector;
14 if currentF itness is not better than popF itness[i] then
15 /* Update the CPi and Fi */

16 CPi ← normrnd(mean(F), 0.1);

17 Fi ← normrnd(mean(CP), 0.1);

18 end

19 end
20 fullPop←merge popP and popQ ;
21 fullPop←Rank the fullPop using the Dominance criteria;
22 cd←Calculate crowding distance within fullPop;
23 popP ←Select Best first p using cd and ranked solutions from fullPop ;

24 end

25 return p Biclusters popP from last generation;

26 Function BBDE(a: vector, b: vector, c: vector, F: real) : vector is
newV ector = nodeAddition(a, nodeDeletion(b, c, F), F)

nodeAddition(x, y, F) =

{
1, if xi = 1 or (yi = 1 and randi<F)

0, otherwise

nodeDeletion(x, y, F) =

{
0, if xi = 0 or (yi = 1 and randi <F)

1, otherwise

return newV ector
27 end

4.3.2 Illustrative Example

The following is an example of how the node addition and deletion given by equations
4.16 and 4.15 work:
considering the matrix M(5,5), where the rows represent genes and the columns represent

45

CHAPTER 4. AMODEBIC: AN ADAPTIVE MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION
BICLUSTERING ALGORITHM OF MICROARRAY DATA USING A BICLUSTERING BINARY

MUTATION OPERATOR

conditions:

M =

5 64 44 2 39

20 6 3 23 68

38 19 12 82 4

1 67 41 27 98

37 12 20 95 53

The first population P generated at random contains four solutions (biclusters); as

shown in Figure 4.2 in section 4.3.1, the biclusters are represented in binary, and the size
of a bicluster depends on the number of genes and conditions in the matrix M; thus, a
bicluster is represented by a 10-bit string.

p =

a 0 1 0 1 0 0 1 1 0 1

b 0 0 1 0 0 1 1 1 0 1

c 0 0 1 1 0 1 0 0 1 1

d 1 0 1 1 1 1 1 1 0 0

The genes and conditions included in the first bicluster (a) of the P population are as

follows: a =

(
6 3 68

67 41 98

)

We use our new BBDE operator, as described in section 5.1, to perform the mutation
operation; it randomly chooses three solutions from the population P, assuming the se-
lected solutions are b,c, and d, and the value of the Factor F = 0.65, the node deletion
and addition operations are executed as the following:

nodeDeletion(c, d, F) =

0 0 1 1 0 1 0 0 1 1
1 0 1 1 1 1 1 1 0 0
0 0 1 0 0 1 0 0 1 0

When performing the node deletion operation presented above, we will generate a
random number randi ∈ {0, ..., 1} (where i represents the position of the current bit
in the current individual), for instance: Because rand10 was less than F , the algorithm
performed node deletion, yielding a result of 0; however, rand9 was greater than F ;
therefore the algorithm did not perform the node deletion, obtaining a result of 1, and

46

CHAPTER 4. AMODEBIC: AN ADAPTIVE MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION
BICLUSTERING ALGORITHM OF MICROARRAY DATA USING A BICLUSTERING BINARY

MUTATION OPERATOR

the same process is repeated for the remaining bits as well as the node addition operation.

nodeAddition(b, nodeDeletion(c, d, F), F) =

0 0 1 0 0 1 1 1 0 1
0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 1 1 0 1

The interpretation of the result of BBDE(b,c,d) is the solution consists of one row and
four columns; therefore it represents the following bicluster:

BBDE(b, c, d) =
(

38 19 12 4
)

4.3.3 Parameter Setting

The selection of parameter settings is frequently influenced by practical experimentation
to determine values that offer higher algorithm performance, while also considering the
specific importance and impact of these parameters on the algorithm’s performance. This
is further elaborated in the following discussion, providing insight into the variables that
inspired these parameter choices.

Population Size (p): The population size, represented by p, determines the number of
evolving solutions in each generation. While a greater population size allows for more ex-
tensive investigation of the solution space, it also increases computational time. Choosing
p necessitates careful assessment of available resources as well as the problem’s complexity.

Initial Crossover Probability (CP): The initial crossover probability (CP) is an im-
portant factor in determining the possibility of using the crossover operator to construct
a trial vector. Starting with a higher CP number may encourage exploration, whereas
starting with a lower value may prioritize exploitation. The value of CP chosen shapes
the compromise between these two factors. CP evolves adaptively in our algorithm de-
pending on the incremental improvements detected in the solutions of each iteration.

Initial Factor (F): The initial factor, abbreviated as F , is a component of the BBDA
mutation operator that impacts mutation strength. Higher F values encourage explo-
ration over exploitation, while lower levels encourage the latter. The precise adjustment
of F ensures that these aspects are balanced. F adapts in our method based on the

47

CHAPTER 4. AMODEBIC: AN ADAPTIVE MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION
BICLUSTERING ALGORITHM OF MICROARRAY DATA USING A BICLUSTERING BINARY

MUTATION OPERATOR

benefits observed after each repetition.

Termination conditions: Algorithms are terminated based on particular conditions
such as maximum iteration count or convergence level. These criteria prevent infinite
execution while giving enough time for a satisfactory solution to emerge.

BBDE Mutation Parameters: There are two aspects to the BBDE mutation: node
addition and deletion. The algorithm’s diversity and exploration abilities are shaped by
parameters inside these components, such as random values and comparisons (e.g., randi
, F).

Crowding Distance and Selection: During the selection step, the calculation of crowd-
ing distance ensures diversity within selected solutions. Careful tuning of crowding dis-
tance parameters provides a harmonic balance between selection pressure and diversity
preservation.

Fitness Functions (f1, f2): The choice of fitness functions is determined by the nature
of the problem. In our scenario, bicluster size and MSR were used to direct the algorithm
toward significant biclusters.

4.3.4 Computational Complexity

The complexity of our approach can be broken down as follows:

• Initializing the population size as p, the vector length as m, Arrays of fitness,
crossover probability CP , and the factor F all lead to an initial complexity of O(p).

• The main loop iterates until a termination condition is met, typically a fixed number
of iterations, resulting in O(iteration) complexity.

• Within each iteration of the main loop:

– Initializing popQ takes O(1).

– Selecting three random solutions takes O(1).

– Applying the BBDE (our proposed mutation operator) takes O(m).

– Calculating fitness for solutions takes O(1).

– Updating control parameters CP and F factor takes O(1).

48

CHAPTER 4. AMODEBIC: AN ADAPTIVE MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION
BICLUSTERING ALGORITHM OF MICROARRAY DATA USING A BICLUSTERING BINARY

MUTATION OPERATOR

– Therefore, the overall complexity within each iteration is O(iteration×p×m).

• Merging popP and popQ takes O(1).

• The procedure of NSGA-II has a complexity of O(mN2), where m is the objective
number (2 objectives in our approach) and N is the solutions number (which is p),
therefore, the result is O(p2).

Putting it all together, the overall complexity of our approach can be approximated as
O(iteration×p×m+ p2)). This can further be simplified to: O(p× (iteration×m+ p)).

This complexity analysis highlights that the computational effort primarily depends on
the population size p, the number of iterations, and the vector length m. Our approach
efficiently balances these factors, making it capable of handling high-dimensional data
with a reasonable computational cost.

4.3.5 Multi-Objective Fitness Functions

We have taken into account a number of strategies to efficiently incorporate multiple
objectives in our AMoDeBic algorithm while designing multi-objective fitness functions.
Normalizing and scaling the goals to a consistent range is a common strategy, assuming
that the domain knowledge is sufficient to calculate the right scaling factors. However,
if precise ranges are unknown or if the right individual weighting is still unclear, this
approach may be difficult.
Genuine multi-objective optimization forms the foundation of an alternative approach
that is frequently more effective. This approach includes pursuing a set of Pareto-optimal
solutions rather than attempting to combine objectives into a single function. The opti-
mization process produces a variety of solutions in this paradigm, each of which excels in
a different aspect of the objectives. For instance, while some solutions excel primarily in
achieving a single objective (e.g., maximizing p), others (e.g., maximizing v), and a vari-
ety of solutions achieve various balancing acts between the two, there are many solutions
that excel in both.

To achieve this, multi-objective evolutionary algorithms offer a well-established toolkit.
Numerous methods have been extensively studied in the literature, including NSGA-II
(Non-dominated Sorting Genetic Algorithm II) [65] and SPEA (Strength Pareto Evolu-
tionary Algorithm) [74]. These methods make sure the algorithm keeps the Pareto-optimal

49

CHAPTER 4. AMODEBIC: AN ADAPTIVE MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION
BICLUSTERING ALGORITHM OF MICROARRAY DATA USING A BICLUSTERING BINARY

MUTATION OPERATOR

solutions diverse, allowing for the discovery of a wide range of trade-off solutions.

In our particular situation, we have used the Pareto optimization method in the
AMoDeBic algorithm with two straightforward but effective objectives: larger bicluster
size and smaller MSR. By doing this, we want to reach a set of biclustering solutions that
represent the optimum trade-offs between various goals, improving the algorithm’s ability
to recognize intricate patterns in microarray data while adhering to numerous biologically
pertinent criteria.

4.4 Experimental Results

The AMoDeBic algorithm is evaluated using both synthetic and real DNA microarray
datasets on multiple levels. The validation criteria is as follows:

Using Synthetic Data:

• Overlap Assessment

– This test assesses AMoDeBic’s capacity to detect biclusters with shared genes
or conditions.

• Noise Resistance Assessment

– This test evaluates AMoDeBic’s resilience in detecting significant biclusters in
the presence of noise.

Using Real Data:

• Test on Well-Known Datasets:

– Yeast Cell-Cycle expression Dataset [75].

– Saccharomyces Cerevisiae Dataset [76] .

– Human B-Cell Lymphoma Dataset [77].

• Statistical Analysis:

– Coverage tests measure the extent of true pattern capture.

– P-value tests assess bicluster statistical significance.

• Biological Relevance

50

CHAPTER 4. AMODEBIC: AN ADAPTIVE MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION
BICLUSTERING ALGORITHM OF MICROARRAY DATA USING A BICLUSTERING BINARY

MUTATION OPERATOR

– In-depth assessment of biclusters’ biological relevance.

By conducting comprehensive evaluations on synthetic and real datasets, encompass-
ing aspects such as overlap resistance, noise handling, biological relevance, and statistical
analysis, AMoDeBic’s performance is thoroughly assessed.
The algorithms employed for comparison include the following:

• For synthetic data, we compare our results with the results of some prominent
biclustering algorithms used by the community; namely, CC [2], OSPM [4], ISA [38],
Bimax [5], and Xmotif [39].

• For real datasets, we compare the performance of our algorithm with the results
of CC [2], BicFinder [23], BiMine [24], BiMine+ [25], SEBI [8], MOEA [7], MOP-
SOB [68], ISA [38], Bimax [5], and MBA [41].

All the experiments for both synthetic and real datasets were carried out with the
parameter settings shown in Table 4.1 on a PC running with Windows 10 and equipped
with a 4.30 GHz AMD Ryzen 7 3800XT 8-Core Processor and 64 GB of RAM.

Hyper Parameter Value
Population Size 100

Generations 100
Initial Crossover Probability 0.75

Initial F (Factor) 0.65

Table 4.1: Hyper Parameter Specification.

4.4.1 Results on Synthetic Data

The purpose of experimenting with synthetic data is to see whether an algorithm can
extract all of the embedded biclusters. For this test, we use the synthetic data generated
by [5] to investigate the effect of noise and overlap in expression matrices with non-
overlapping biclusters on the performance of our algorithm. The datasets contain ten
implanted biclusters and have been used to study the effects of noise on the performance
of the biclustering algorithms, where different types of biclusters, such as constant and
additive biclusters, are embedded, spanning ten genes and five conditions. We will use the
following gene match score proposed by [5] to evaluate the performance of our algorithm

51

CHAPTER 4. AMODEBIC: AN ADAPTIVE MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION
BICLUSTERING ALGORITHM OF MICROARRAY DATA USING A BICLUSTERING BINARY

MUTATION OPERATOR

on synthetic data. This measure is defined as follows:

S∗G(M,Mopt) =
1

|M |
∑

(G1,C1)∈M

max
(G2,C2)∈Mopt

|G1 ∩G2|
|G1 ∪G2|

(4.18)

This score is the average of the maximum match scores for all biclusters in M in
relation to the biclusters in Mopt, where M is the set of extracted biclusters from the
biclustering algorithms, and Mopt is the set of implanted biclusters.

Figures 4.3 A (noise with constant biclusters) and 4.3 B (noise with additive biclus-
ters) demonstrate the performance of several biclustering approaches for extracting non-
overlapping biclusters from scenarios with varying noise levels, while Figures Figure 4.4
A (overlap with constant biclusters) and Figure 4.4 B (overlap with additive biclusters)
present the results of these biclustering algorithms with increasing degrees of overlap in
the absence of noise.

We find that for non-overlapping biclusters and in the absence of noise (Figure 4.3), the
ISA algorithm can identify 100% of the implanted biclusters and that for additive biclus-
ters, both ISA and Bimax can identify almost all of the implanted biclusters. AMoDeBic,
on the other hand, can recognize 90% of constant implanted biclusters and 85% of ad-
ditive biclusters. Only ISA maintained its high percentage at high noise levels for both
types of biclusters under noise influence. AMoDeBic clearly outperforms other bicluster-
ing methods, AMoDeBic maintains its performance for the extraction of both constant
and additive biclusters, even at high noise levels.

52

CHAPTER 4. AMODEBIC: AN ADAPTIVE MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION
BICLUSTERING ALGORITHM OF MICROARRAY DATA USING A BICLUSTERING BINARY

MUTATION OPERATOR

0 0.05 0.1 0.15 0.2 0.25
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Noise Level

Av
g
M
at
ch

Sc
or
e

A: Noise with Constant Biclusters

Bimax CC
ISA OPSM
Xmotif AMoDeBic

0 0.02 0.04 0.06 0.08 0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Noise Level

Av
g
M
at
ch

Sc
or
e

B: Noise with Additive Biclusters

Bimax CC
ISA OPSM
Xmotif AMoDeBic

Figure 4.3: Noise Effect. A: Constant Biclusters, B: Additive Biclusters.

Regarding the impact of overlap (Figure 4.4), it is clear that after a certain amount
of overlap, the performance of most biclustering methods degrades. Bimax’s performance
was maintained for both constant and additive biclusters. ISA was at its best at the
start. However, as the degree of overlap increased, its performance decreased significantly.
AMoDeBic, on the other hand, was able to recognize 90% of constant implanted biclusters
and 80% of additive biclusters. Its performance decreased as the overlap increased, but
it still outperformed the other algorithms.

53

CHAPTER 4. AMODEBIC: AN ADAPTIVE MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION
BICLUSTERING ALGORITHM OF MICROARRAY DATA USING A BICLUSTERING BINARY

MUTATION OPERATOR

0 1 2 3 4 5 6 7 8
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Overlap Degree

Av
g
M
at
ch

Sc
or
e

A: Overlap with Constant Biclusters

Bimax CC
ISA Xmotif
AMoDeBic

0 1 2 3 4 5 6 7 8
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Overlap Degree

Av
g
M
at
ch

Sc
or
e

B: Overlap with Additive Biclusters

Bimax CC
OPSM Xmotif
ISA AMoDeBic

Figure 4.4: Overlap Effect. A: Constant Biclusters, B: Additive Biclusters.

4.4.2 Results on Real Data

After applying and validating the algorithm on synthetic data, we need to validate its ap-
plicability on a real-world dataset; this section provides information and gathered results
for real datasets.

4.4.2.1 Description of Considered Datasets

1. Yeast Cell-Cycle dataset: The Yeast Cell-Cycle [75] is a particularly prominent
dataset in gene expression data. It reveals gene expression profiles across several
stages of the yeast cell cycle, providing information about cell regulation, DNA repli-
cation, and division mechanisms. It’s important for cell and systems biology, drug
development, and understanding basic biological processes. This dataset includes
the expression profiles of 2,884 genes and 17 experimental conditions.

2. Saccharomyces Cerevisiae dataset: The Saccharomyces Cerevisiae dataset [76] is
used for studying basic cellular processes in eukaryotic creatures. Biclustering can
reveal light on metabolic processes, cell cycle regulation, and stress responses by
detecting coherent gene expression patterns. This dataset contains the expression

54

CHAPTER 4. AMODEBIC: AN ADAPTIVE MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION
BICLUSTERING ALGORITHM OF MICROARRAY DATA USING A BICLUSTERING BINARY

MUTATION OPERATOR

levels of 2993 genes under 173 experimental conditions.

3. Human B-Cell Lymphoma dataset: The Human B-Cell Lymphoma dataset [77] has
the potential to reveal gene expression patterns linked with B-cell lymphomas, a
heterogeneous group of malignancies that influence the immune system. Bicluster-
ing can assist in identifying clusters of co-expressed genes that play critical roles in
lymphoma development, progression, and treatment response by uncovering under-
lying biological processes, potentially leading to improved diagnostic and treatment
options. This dataset contains 4026 genes and 96 conditions.

4.4.2.2 Statistical Relevance

A crucial stage in biological validation and interpretation of obtained biclusters is sta-
tistical validation. This involves identifying the statistical significance of the discovered
biclusters to determine whether or not the co-expression patterns seen inside biclusters are
statistically significant when compared to random chance. In our approach, we strongly
rely on the coverage criterion as well as the p-value criterion to assess the statistical rel-
evance of our algorithms.

Coverage:

The coverage refers to the total number of cells comprised by the retrieved biclusters.
This evaluation is used to validate the effectiveness of biclustering methods. Higher cover-
age often demonstrates the algorithm’s capacity to detect important patterns in the data;
this can also lead to less overlap between biclusters, ensuring that each bicluster captures
a different set of genes and samples.

During the evaluation phase, we rigorously tested our algorithm and conducted a com-
parative analysis against several established algorithms: CC [2], BicFinder [23], BiMine
[24], BiMine+ [24], SEBI [8], MOEA [7], MOPSOB [68]. This test was performed on the
datasets Yeast Cell-Cycle and Human B-Cell Lymphoma.

The coverage of the obtained biclusters is shown in Tables 4.2 and 4.3. We notice
that most algorithms produce reasonably close results. The biclusters extracted by our
algorithm AMoDeBic cover 75.31% (respectively 79.94%) of the genes, 100% of the con-
ditions, and 52.73% (respectively 67.28%) of the cells in the Human B-Cell Lymphoma
(respectively Yeast Cell-Cycle) dataset.

55

CHAPTER 4. AMODEBIC: AN ADAPTIVE MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION
BICLUSTERING ALGORITHM OF MICROARRAY DATA USING A BICLUSTERING BINARY

MUTATION OPERATOR

The AMoDeBic algorithm exhibits stronger performance compared to BiMine, BiMine+,
BicFinder, MOPSOB, MOEA, and SEBI, for both total and gene coverage measures. Ad-
ditionally, it surpasses the CC algorithm in terms of total coverage, while the CC algorithm
achieves better gene coverage.

Furthermore, it is important to note that the CC algorithm uses a masking strategy on
groups extracted using random values. This procedure ensures that previously identified
genes/conditions are not chosen in subsequent search iterations. This intentional masking
strategy makes a significant contribution to achieving broad coverage. As a result, the
CC approach outperforms other algorithms on the Yeast Cell-Cycle dataset.

Human B-Cell Lymphoma
Algorithms Total coverage Gene coverage Condition coverage

BiMine 8.93% 26.15% 100%
BiMine+ 21.19% 46.26% 100%
BicFinder 44.24% 55.89% 100%
MOPSOB 36.90% - -
MOEA 20.96% - -
SEBI 34.07% 38.23% 100%
CC 36.81% 91.58% 100%

AMoDeBic 52.73% 75.31% 100%

Table 4.2: Human B-Cell Lymphoma coverage for different algorithms.

Yeast Cell-Cycle
Algorithms Total coverage Gene coverage Condition coverage

BiMine 13.36% 32.84% 100%
BiMine+ 51.76% 68.65% 100%
BicFinder 55.43% 76.93% 100%
MOPSOB 52.40% - -
MOEA 51.34% - -
SEBI 38.14% 43.55% 100%
CC 81.47% 97.12% 100%

AMoDeBic 67.28% 79.94% 100%

Table 4.3: Yeast Cell-Cycle coverage for different algorithms.

Tables 4.4 and 4.5 display details regarding five biclusters identified by AMoDeBic
within the Yeast Cell-Cycle dataset and the Human B-Cell Lymphoma dataset. The
tables include the Mean Squared Residue (MSR) values for each bicluster. Notably, the
largest bicluster in these tables comprises 941 genes for the Yeast Cell-Cycle dataset and
1023 genes for the Human B-Cell Lymphoma dataset.

56

CHAPTER 4. AMODEBIC: AN ADAPTIVE MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION
BICLUSTERING ALGORITHM OF MICROARRAY DATA USING A BICLUSTERING BINARY

MUTATION OPERATOR

Genes Conditions Size MSR
730 15 10950 299.14
209 13 2717 298.94
507 17 8619 298.047
61 10 610 297.77
941 17 15997 299.172

Table 4.4: Five biclusters found By AMoDeBic on Yeast dataset.

Genes Conditions Size MSR
616 42 25,872 1195.627
824 21 17,304 1196.526
772 28 21,616 1196.988
957 20 19,140 1192.104
1023 31 31,713 1199.632

Table 4.5: Five biclusters found By AMoDeBic on the Human B-Cell Lymphoma dataset.

P-value:

This statistical evaluation method assess if the observed patterns inside the biclusters
are statistically significant or could have occurred by chance to evaluate the significance
of each bicluster’s characteristics in the dataset. This method provides a solid statisti-
cal framework for assessing the biclusters’ dependability and meaningfulness, allowing for
more informed decisions concerning their quality and significance, with the most favorable
biclusters displaying an adjusted p-value of less than 0.001%.

We conducted the p-value test using the web tool FuncAssociate 1 [78]. The assess-
ment includes the Yeast Cell-Cycle and Saccharomyces Cerevisiae datasets, as well as a
comparison of our algorithm’s performance to the results of CC [2], ISA [38], Bimax [5],
and MBA [41] algorithms.

Figures 4.5 and 4.6 present the outcomes achieved from the Saccharomyces Cerevisiae
and Yeast Cell-Cycle datasets, considering diverse adjusted p-values (p = 5%; 1%; 0.5%;
0.1%; 0.001%) for each algorithm across the spectrum of total biclusters.

1http://llama.mshri.on.ca/funcassociate/

57

CHAPTER 4. AMODEBIC: AN ADAPTIVE MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION
BICLUSTERING ALGORITHM OF MICROARRAY DATA USING A BICLUSTERING BINARY

MUTATION OPERATOR

Analyzing the Saccharomyces Cerevisiae dataset (Figure 4.5), both the AMoDeBic and
MBA results showcase that approximately 98% of the identified biclusters hold statistical
significance, boasting an adjusted p-value of 0.001%. Remarkably, AMoDeBic and MBA
yield identical results for other adjusted p-values. Conversely, CC, ISA, and CC exhibit
consistently average performance across all p-values, signaling less distinguished outcomes.

CC IS
A

Bi
ma
x

M
BA

AM
oD
eB
ic

0

10

20

30

40

50

60

70

80

90

100
5%
1%

0.50%
0.10%
0.001%

Figure 4.5: Proportions of biclusters significantly enriched by GO annotations (Saccharomyces
Cerevisiae dataset)

Examining the Yeast Cell-Cycle dataset (Figure 4.6), we observe that all the biclusters
identified by the AMoDeBic algorithm attain statistical significance for adjusted p-values
of 0.5%, 1%, and 5%. In contrast, Bimax achieve a complete coverage of extracted
biclusters at a p-value of 1%. Notably, ISA and CC demonstrate their best performance
when the p-value is set to 5%. Consequently, our results surpass those of Bimax, ISA, and
CC. However, it’s pertinent to acknowledge that Bimax exhibits enhanced performance
when p is less than 0.1%.

Table 4.6 presents a comparative analysis of AMoDeBic’s performance on the Yeast
Cell-Cycle dataset in contrast to algorithm like CC [2], FLOC [3], MOEA [7], and DeBic
[31]. The comparison is based on both the average residue and average dimension of the

58

CHAPTER 4. AMODEBIC: AN ADAPTIVE MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION
BICLUSTERING ALGORITHM OF MICROARRAY DATA USING A BICLUSTERING BINARY

MUTATION OPERATOR

CC IS
A

Bi
ma
x

M
BA

AM
oD
eB
ic

0

10

20

30

40

50

60

70

80

90

100
5%
1%

0.50%
0.10%
0.001%

Figure 4.6: Proportions of biclusters significantly enriched by GO annotations (Yeast cell-cycle
dataset)

identified biclusters.

The provided table demonstrates the capability of our algorithm to identify large
biclusters while maintaining an acceptable Mean Squared Residue (MSR). Noteworthy is
our algorithm’s superior performance in terms of the average number of genes compared
to some of the other algorithms. Additionally, it surpasses all algorithms in terms of the
average number of conditions discovered within the Yeast dataset.

Algorithm Avg. bicluster size Avg. residue Avg. no. of genes Avg. no. of conditions
CC 1576.98 204.29 167 11

FLOC 1825.78 187.54 195 12.8
MOEA 10301 234.87 1095 9.29
DeBic 9889.58 272.13 628.04 14.5

AMoDeBic 10756.012 297.02 721.88 14.9

Table 4.6: AMoDeBic Performance Comparison To Other Algorithms.

the statistical analysis, supported by the examination of adjusted p-values and cover-
age metrics, contributes greatly to the decisive conclusions. Using modified p-values, we

59

CHAPTER 4. AMODEBIC: AN ADAPTIVE MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION
BICLUSTERING ALGORITHM OF MICROARRAY DATA USING A BICLUSTERING BINARY

MUTATION OPERATOR

can evaluate the statistical significance of the extracted biclusters, distinguishing between
random occurrences and meaningful patterns. Whereas the coverage parameter assures
that the detected biclusters cover a significant amount of the data, strengthening their
statistical and biological significance.

Furthermore, comparing our algorithm’s performance with established approaches,
particularly in terms of bicluster size, and the number of conditions addressed, validates
our findings. By objectively measuring statistical significance and taking into account the
breadth of bicluster coverage, this combination technique strengthens the robustness of
our study’s conclusions.

4.4.2.3 Biological Relevance

Biological relevance is an essential phase for validating a biclustering approach as it guar-
antees that the identified patterns are consistent with existing biological knowledge. Rel-
evant biclusters represent meaningful functional relationships within biological systems,
improving the results’ credibility and interpretability.

This assessment employs the widely-used web tool GOTermFinder 2, which iden-
tifies significant shared Gene Ontology (GO) terms among selected gene groups. The
GO is categorized into biological process, molecular function, and cellular component.
This evaluation is performed on both the Yeast Cell-Cycle and Saccharomyces Cerevisiae
datasets.

Figures 4.7 and 4.8 showcase nine biclusters identified by the AMoDeBic algorithm
within the Yeast Cell-Cycle and Saccharomyces Cerevisiae datasets, respectively. In these
figures, genes display comparable behavior under specific conditions, as discerned through
visual inspection.

2https://www.yeastgenome.org/goTermFinder

60

CHAPTER 4. AMODEBIC: AN ADAPTIVE MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION
BICLUSTERING ALGORITHM OF MICROARRAY DATA USING A BICLUSTERING BINARY

MUTATION OPERATOR

Figure 4.7: Nine Biclusters discovered in the Yeast dataset.

Figure 4.8: Nine Biclusters discovered in the Saccharomyces Cerevisiae dataset.

The following list contains the most significant Gene Ontology (GO) terms shared
within the first bicluster extracted from the yeast cell-cycle dataset, particularly related
to nuclear nucleosome activity:
YGL211W YGR243W YGR151C YNL031C YBR010W YBR009C YGR142W YGL248W
YGL250WYGL262WYGR149WYGR206WYGR289C YGR190C YGR065C YGR088W

61

CHAPTER 4. AMODEBIC: AN ADAPTIVE MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION
BICLUSTERING ALGORITHM OF MICROARRAY DATA USING A BICLUSTERING BINARY

MUTATION OPERATOR

YGL209W YGL230C YGR039W YGR053C YGR090W YGL236C YGR023W YGR143W
YPL127C YGR010W YGR152C YGR035C YNL030W YGL204C YGR259C YGR041W
YBL002WYGR109C YGR265WYGR214WYGR207C YGR164WYGR099WYGR238C
YHL007C YGR150C YGR153WYGL255WYGR129WYGR146C YGR131WYGR122W
YGR212WYGL246C YGR019WYGR112WYBL003C YGR140WYGR108WYGR245C
YGR159C YGL219C YGL229C YGL232W YGR216C YGR187C YGR104C YGL218W
YGR189C YGL214W YGR239C YGR032W YGR089W YGR138C YGR154C YGR200C
YGR058W YGR043C YGR114C YDR225W YGR042W YGR197C YDR224C YGR113W
YGR118W YGR263C YGR014W YGR288W

Tables 4.7 and 4.8 display the biological annotations for two randomly chosen bi-
clusters within the yeast cell-cycle and Saccharomyces Cerevisiae datasets, respectively.
These annotations are presented across the previously mentioned Gene Ontology (GO)
categories, showcasing the most noteworthy GO terms associated with each bicluster.

GO Terms Bicluster 1 Bicluster 2

Biological Process

biological regulation (29.1%, 9.78e-29)
regulation of cellular process (22.3%, 9.98e-36)

biological regulation (29.1%, 9.78e-29)

heterocycle metabolic process (29.4%, 0.00069)
organelle organization (18.5%, 0.00030)

nucleic acid metabolic process (25.0%, 0.00013)

Cellular component

nucleus (34.7%, 3.80e-13)
membrane-bounded organelle (63.9%, 0.00026)

intracellular organelle (68.1%, 0.00093)

protein-containing complex (31.4%, 9.39e-14)
organelle lumen (14.6%, 0.00348)

organelle (68.2%, 4.60e-05)

Molecular function

binding (48.9%, 4.18e-05)
ion binding (23.4%, 0.00101)

organic cyclic compound binding (33.1%, 0.00832)

heterocyclic compound binding (32.9%,0.00065)
nucleic acid binding (23.1%, 1.90e-05)

DNA binding (8.5%,8.12e-10)

Table 4.7: Significant GO terms of two biclusters extracted from Yeast Cell-Cycle dataset using
AMoDeBic.

GO Terms Bicluster 1 Bicluster 2

Biological Process

Mitotic Nuclear Division (2.3%, 1.43e-18)
Cell Cycle Process (9.1%, 3.10e-11)
organelle fission (3.7%, 5.74e-16)

regulation of cell cycle (4.1%, 3.65e-19)
cell cycle phase transition (3.1%, 2.49e-18)

regulation of biological process (24.2%, 1.55e-07)

Cellular component

polymeric cytoskeletal fiber (1.1%, 3.96e-10)
microtubule cytoskeleton (2.0%, 2.72e-12)
supramolecular complex (3.7%, 2.30e-06)

polymeric cytoskeletal fiber (1.1%, 2.79e-08)
spindle microtubule (0.3%, 1.74e-05)

supramolecular complex (3.7%, 8.66e-08)

Molecular function

cytoskeletal protein binding (1.6%, 4.18e-07)
tubulin binding (0.7%, 3.05e-09)

microtubule binding (0.6%, 8.18e-10)

non-membrane-bounded organelle (21.6%, 0.00354)
astral microtubule (0.1%, 0.00020)

cytoskeleton (3.6%, 1.16e-05)

Table 4.8: Significant GO terms of two biclusters extracted from Saccharomyces Cerevisiae
dataset using AMoDeBic.

Experiments show that the AMoDeBic algorithm, along with the new mutation tech-
nique, is effective as a biclustering approach. The algorithm demonstrates its ability to

62

CHAPTER 4. AMODEBIC: AN ADAPTIVE MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION
BICLUSTERING ALGORITHM OF MICROARRAY DATA USING A BICLUSTERING BINARY

MUTATION OPERATOR

discover numerous significant and large biclusters at the same time. The results show
that AMoDeBic is robust in the presence of noise and overlapping patterns. Furthermore,
the analysis emphasizes the biological significance of the observed biclusters. Neverthe-
less, it is important to point out that the a multi-objective differential evolution based
biclustering algorithm’s performance is sensitive to parameter tuning, requiring careful
optimization to achieve the most effective outcomes. Furthermore, the algorithm’s pro-
cessing complexity may become a challenge when dealing with large datasets, emphasizing
the importance of addressing scalability concerns for efficient analysis.

4.5 Conclusion

In this chapter, we comprehensively examined essential aspects of Differential Evolu-
tion (DE), focusing specifically on Multi-Objective Differential Evolution (MODE) and
Binary DE. The interplay between these components is crucial in the proposed MODE-
based biclustering approach, AMoDeBic. A significant contribution is the introduction
and analysis of the Biclustering Binary Differential Evolution (BBDE) mutation oper-
ator, facilitating DE’s integration into biclustering. We addressed key considerations,
encompassing algorithmic complexity, parameter settings, and the implications of BBDE.
Additionally, we carried out experimental assessments on both synthetic and real-world
datasets, rigorously comparing the proposed AMODEBIC approach with state-of-the-art
methodologies.

The following chapter will focus on a novel approach that harnesses the synergies of
two potent approaches: Convolutional Denoising Autoencoders (CDAs) and Artificial Bee
Colony (ABC).

63

Chapter 5

CDABC: A Convolutional Denoising
Autoencoder with Artificial Bee Colony
Biclustering Algorithm for Gene
Expression

5.1 Introduction

In computational genomics, two key methodologies play crucial roles in our proposed
solution: Convolutional Denoising Autoencoders (CDAs) and the Artificial Bee Colony
(ABC) approach. CDAs serve as adept preprocessing tools, refining gene expression
data by mitigating noise and highlighting intrinsic patterns. Simultaneously, the ABC
algorithm, inspired by the foraging behavior of bees, emerges as a robust optimization
technique for biclustering. This section offers a succinct introduction to CDAs and ABC,
setting the stage for a detailed exploration and subsequent unveiling of CDABC—a novel
biclustering algorithm seamlessly integrating these two methodologies. The upcoming
sections will delve into the algorithmic intricacies of CDABC and present its performance
in comparison to established biclustering approaches.

5.2 Autoencoders

An autoencoder is a feed-forward neural network that uses a lower dimensional hidden
layer to reconstruct the given input. It is composed of an encoder and a decoder. The
encoder maps the input x to a hidden representation z using an affine transformation

64

CHAPTER 5. CDABC: A CONVOLUTIONAL DENOISING AUTOENCODER WITH ARTIFICIAL BEE
COLONY BICLUSTERING ALGORITHM FOR GENE EXPRESSION

followed by a non-linear function. This transformation can be defined as follows [79]:

z = f(Wx + b) (5.1)

The decoder, then, maps back the hidden representation z to reconstruct the original
input data using another nonlinear transformation given as the following [79]:

x′ = g(W ′z + b′) (5.2)

where W and b represent the encoder’s weight and bias matrices, respectively, and
W ′ and b′ represent the decoder’s weight and bias matrices, respectively, while f and g
represent nonlinear activation functions. Several choices exist for the functions f and g,
including a sigmoid function, hyperbolic tangent, and rectified linear function.

5.2.1 Denoising Autoencoders

Denoising autoencoders (DAEs) are a simple modification of autoencoder neural net-
works proposed by Vincent et al. [52]. They are trained to denoise an artificially corrupted
version of their input rather than reconstruct it. While a regular autoencoder with an
overcomplete representation can learn an uninformative identity mapping quickly, a de-
noising autoencoder (DAE) is forced to extract more meaningful features in order to
undertake the much more difficult task of denoising.

The basic idea behind denoising autoencoders is to introduce noise or corruption into
the input data x̌ and then train the network to map it to the corresponding hidden
representation z and ultimately to its reconstruction x′.

5.2.2 Convolutional Denoising Autoencoders

Convolutional Denoising Autoencoders (CDAEs) use the standard DAE architecture
with convolutional encoding and decoding layers; they are primarily used for image pre-
processing, but their applications go beyond that. While previous research has shown
that CDAEs outperform in image-related tasks [80, 81], they show great promise in gene
expression analysis since they exploit the patterns and structures inherent in gene ex-
pression data by using the full power of convolutional neural networks. CDAEs differ
from standard DAEs as they share weights (W) and biases (b) across all gene and condi-
tion combinations to capture spatial and temporal dependencies within the dataset while
preserving important contextual information.

65

CHAPTER 5. CDABC: A CONVOLUTIONAL DENOISING AUTOENCODER WITH ARTIFICIAL BEE
COLONY BICLUSTERING ALGORITHM FOR GENE EXPRESSION

5.3 Artificial Bee Colony

The Artificial Bee Colony (ABC) algorithm put forth by [82] is a swarm intelligence
optimization algorithm that takes its cues from honey bees’ foraging habits. In ABC, an
artificial bee population represents possible answers to an optimization issue. There are
three types of bees: employed bees, onlooker bees, and scout bees, representing the main
components of honey bee behavior that are useful for resolving search issues. Scouts and
observers are also referred to as unemployed bees.

• Employed bees : They are linked to particular food sources (solutions), take advan-
tage of the knowledge they have learned about those sources, and look for new food
sources by conducting local searches close to their current locations.

• Onlooker bees : They observe the employed bees and choose food sources based on
their quality and nectar value (the corresponding fitness values), effectively utilizing
promising search space regions.

• Scout bees : They bring diversity by randomly seeking out food sources. After a
certain number of iterations, they stop using food sources that haven’t improved
and start looking for new ones.

Initially, all food source positions are discovered by scout bees; then, each employed bee
is associated with a single food source. The employed bees can be thought of as trying
to maximize some function of the quality and quantity of the nectar value of the food
source. A food source’s location is communicated to the onlooker bees with a probability
inversely correlated with the nectar value of the food source once it has been discovered.
This mechanism ensures that more bees are attracted to food sources with higher nectar
values, allowing them to exploit these rich sources. When a nectar source is completely
consumed, the bee abandons it and begins searching the immediate area for new nectar
sources.

The ABC algorithm is iterative or cycle-based, with each cycle consisting of the em-
ployed bee phase, onlooker bee phase, and scout bee phase. The algorithm seeks to im-
prove the solutions iteratively by exploring the search space and utilizing the promising
solutions discovered thus far. It continues until a termination condition, such as reaching
a maximum number of iterations or reaching a satisfactory solution, is met.

66

CHAPTER 5. CDABC: A CONVOLUTIONAL DENOISING AUTOENCODER WITH ARTIFICIAL BEE
COLONY BICLUSTERING ALGORITHM FOR GENE EXPRESSION

The algorithmic structure of Artificial Bee Colony is as follows:

Initialization Phase
Repeat
Employed Bees Phase
Onlooker Bees Phase
Scout Bees Phase
Until Cycle = Maximum Cycle Number or a Maximum CPU time

The Artificial Bee Colony delivers promising results when solving optimization prob-
lems; however, it is not originally designed to solve binary optimization problems where
the solutions have a binary representation; this is due to the Eq. 5.3 used in the employed
bees phase to generate new solutions:

vij = xij + θij(xij − xkj) (5.3)

Eq. 5.3 was particularly intended for real-valued optimization and can’t be directly
applied to binary solutions; therefore, some modifications to this formula are required in
order to use ABC for binary optimization problems. Among the studies and adaptations
that have been offered in the literature to address this issue in this context are:

In [83] Kiran and Gündüz presented an XOR-based modification for the ABC algo-
rithm’s solution-updating equation in order to tackle binary optimization problems called
binary ABC (binABC), in which the positions of the solutions are updated in the employed
and onlooker bee phases using the following equation instead of the formula 5.3:

V j
i = Xj

i ⊕ [ϕ(Xj
i ⊕X

j
k)] (5.4)

Where i, k ∈ {1, 2, ..., N}, j ∈ {1, 2, ..., D}and i 6= k, V j
i is the jth dimension of the ith

candidate solution, Xj
i is the jth dimension of the ith employed bee, Xj

k is the jth dimen-
sion of the kth employed bee, ⊕ is The XOR logic operator, and ϕ is the logic NOT gate
with 50% probability. If ϕ is less than 0.5, the result obtained by (Xj

i ⊕X
j
k) is inverted;

otherwise, the result is not inverted.

As another contribution to the binary optimization with ABC, Durgut [84] presents an
updated version of binABC as well as an iterative process for dynamically running the rule
described by [83] for more dimensions than a single one. The estimation of ϕ is carried out
pragmatically by taking into account the neighboring solution. In contrast to the strategy

67

CHAPTER 5. CDABC: A CONVOLUTIONAL DENOISING AUTOENCODER WITH ARTIFICIAL BEE
COLONY BICLUSTERING ALGORITHM FOR GENE EXPRESSION

proposed by Kiran et al. [83] in Eq. 5.3, ibinABC employs a dynamic normalization
factor,ϕ, that varies with each iteration. Eq. 5.3 replaces the initial fixed threshold of
ϕ = 0.5 with a dynamically adaptable threshold. Due to increasing randomness, the
predetermined threshold reduces the exploitation potential, particularly in later phases.
Eq. 5.5 shows an innovative approach for calculating. This rule states that ϕ is set to 0 if
the new solution is worse, and is assigned a computed value between [0,1] if the solution
is better. The value of ϕ is updated based on the current iteration, t:

ϕ =

{ ϕmax − (ϕmax−ϕmin

tmax
)× t; F (xk) < F (xi)

0; otherwise
(5.5)

where ϕmax and ϕmin represent the upper and lower limits of the defined range.
In [85], The suggested method provides a variable for each dimension of the optimiza-

tion problem to track changes from 0 to 1 or 1 to 0. In the jth dimension, where Cj
01

counts change from 0 to 1, and Cj
10 counts change from 1 to 0. Following the generation

of a candidate solution using Eq. 5.4, a greedy choice is made between the candidate
and the present solution. If the candidate solution is superior, the counters are updated
by counting the bits that change from 0 to 1 or 1 to 0 and increasing by 1. The search
equation for onlooker bees is revised to incorporate this knowledge into the generation of
candidate solutions as the following:

P j
01 = Cj

01/(C
j
01 + Cj

10) (5.6)

P j
10 = Cj

10/(C
j
10 + Cj

01) (5.7)

Vi,j =

{ 0; if (rand < P j
10)

1; otherwise
(5.8)

With P j
01 being the probability of transitioning from 0 to 1 and P j

10 being the proba-
bility of transitioning from 1 to 0 for the associated jth decision variable.

In our approach CDABC, we attempt to bridge the gap between the original ABC
algorithm and the unique requirements of binary optimization for biclustering by incor-
porating a new technique for the generation of new solutions, which will be tackled further
in Section 5.4.

68

CHAPTER 5. CDABC: A CONVOLUTIONAL DENOISING AUTOENCODER WITH ARTIFICIAL BEE
COLONY BICLUSTERING ALGORITHM FOR GENE EXPRESSION

5.4 Proposed Approach

This research presents CDABC, a novel Biclustering approach that combines two pow-
erful methodologies: Convolutional Denoising Autoencoder and Artificial Bee Colony. In
CDABC, the data undergoes a preprocessing phase where the CDAE effectively denoises
the data while simultaneously preserving and identifying significant patterns. Subse-
quently, the ABC Algorithm is slightly adapted and applied to the denoised data to
perform biclustering. This innovative approach excels in detecting multiple, diverse, and
high-quality biclusters, even in the presence of noise in the data.

5.4.1 Representation

In biclustering, solutions (biclusters) are generally represented by a binary string of
size (n + m), where n represents the number of genes and m represents the number of
conditions. This binary string is composed of two strings; the first n bits represent the
genes, and the remaining m bits represent the conditions. The value of each bit represents
the presence of a given gene and/or condition in a bicluster, with one signifying presence
and zero indicating absence (Fig. 5.1).

Figure 5.1: Representation of Binary String Encoding for Bicluster Solution.

5.4.2 Pre-processing: CDAE

In this study, the Convolutional Denoising Autoencoder (CDAE) was trained using datasets
generated by specialized software designed for generating biclustering datasets Called G-
Bic 1 [86]. Two datasets were generated: a noise-free dataset and a noisy dataset. The
noisy dataset was obtained by introducing a noise parameter to the generation process,
thereby incorporating varying levels of noise into the data. This approach aimed to train
the CDAE to effectively identify and eliminate noise when used on other datasets in the
experimental phase; notably, the Yeast Cell-Cycle and the Saccharomyces Cerevisiae real-
life datasets were among the datasets used for evaluation. By evaluating the performance

1https://github.com/jplobo1313/G-Bic

69

CHAPTER 5. CDABC: A CONVOLUTIONAL DENOISING AUTOENCODER WITH ARTIFICIAL BEE
COLONY BICLUSTERING ALGORITHM FOR GENE EXPRESSION

of the CDAE on these datasets, we were able to assess its ability to denoise gene expres-
sion data and capture meaningful patterns across different noise conditions.

As shown in Fig. 5.2, the proposed CDAE, like all Autoencoders, is made up of two
major components: an encoder and a decoder with several different layer types each.

Figure 5.2: Architecture of the Proposed CDAE.

In the encoding section, the gene expression matrix is fed into the first convolutional
layer (input layer). This layer is made up of 32 filters of size 3 × 3 that slide over the
input, producing convolutions to capture local patterns while employing ReLU (Rectified
Linear Unit) as the activation function. Then, a batch normalization layer is used to
improve training speed, reduce overfitting, and assist the model in learning generalizable
representations. Following that, the max-pooling layer with a 2× 2 size filter is in charge
of reducing the spatial dimensions of the input feature maps, resulting in the extraction of
the most important patterns while eliminating noise. Finally, a dropout technique with a
0.25 rate is incorporated, which basically drops out 25% of the neurons during training to
force the model to rely only on the remaining neurons to learn relevant patterns, reducing
overfitting and making the training more efficient. The following convolutional layer is
fairly identical to the previous one, with the exception that it has 64 filters that are 3× 3

in size.

A feature map that depicts the compressed data is obtained through the encoding
procedure. The decoder part, which is inversely symmetric to the encoder, the first
deconvolutional layer consists of 64 3 × 3-sized filters, and the second one has 32 3 × 3-
sized filters, both using the ReLU activation function. Following this, the deconvolutional
layers work to recover spatial information, upsample the feature maps, and enhance the
quality of the denoised gene expression reconstruction. The output layer consists of a de-
convolutional layer with a single 3× 3 filter. This layer uses a sigmoid activation function
to produce the final output.

70

CHAPTER 5. CDABC: A CONVOLUTIONAL DENOISING AUTOENCODER WITH ARTIFICIAL BEE
COLONY BICLUSTERING ALGORITHM FOR GENE EXPRESSION

After the gene expression data has been successfully denoised by the Convolutional De-
noising Autoencoder (CDAE) and the pertinent patterns have been captured, the Biclus-
tering algorithm is next implemented using the Artificial Bee Colony (ABC) optimization
method.

5.4.3 Biclustering: ABC

The ABC algorithm, as previously explained in Section 5.3, makes use of three cat-
egories of bees: employed, onlooker, and scout bees. Scout bees begin by randomly
generating the initial population of PS food sources (solutions) in the search space. PS
represents the population size, and each solution xi (where i = 1, 2, ..., PS) is represented
as a D-dimensional vector. The dimensionality, denoted by D, represents the number of
optimization parameters. Each food source gets assigned to an employed bee.

After the initialization phase, the algorithm enters an iterative procedure, where each
employed bee generates a new solution by selecting a solution xi from the population P
and then applying modifications to it. As previously discussed, the formula used for gen-
erating the new solution is applicable only to real numbers and produces solutions that are
also real numbers. To address this issue, we modified the ABC algorithm by altering this
formula so that it may be implemented directly on biclusters with binary representations.
This modification is inspired by Cheng and Church’s heuristic of node deletion and addi-
tion to generate the new solutions; in addition to changing the formula, we made a few
adjustments to promote more diversity in the solutions; as a result, the CDABC generates
three solutions rather than just one as in the original ABC. This procedure goes as follows:

First, for every randomly selected solution xi, we select three different solutions a, b,
and c; then we derive three neighboring solutions from xi denoted as X1, X2, and X3

by altering one bit in the gene sequence, the condition sequence, and both sequences,
respectively, and utilize them to produce three new solutions for each xi. this can be
achieved using the following formula:

hi1 = nodeAddition(a, nodeDeletion(X1, xi, F), F) (5.9)

hi2 = nodeAddition(b, nodeDeletion(X2, xi, F), F) (5.10)

71

CHAPTER 5. CDABC: A CONVOLUTIONAL DENOISING AUTOENCODER WITH ARTIFICIAL BEE
COLONY BICLUSTERING ALGORITHM FOR GENE EXPRESSION

hi3 = nodeAddition(c, nodeDeletion(X3, xi, F), F) (5.11)

The node deletion and addition operations are defined as the following:

nodeDeletion(x, y, F) =

{
0, xj = 0 or (yj = 1 and randj <F)

1, otherwise
(5.12)

nodeAddition(x, y, F) =

{
1, xj = 1 or (yj = 1 and randj<F)

0, otherwise
(5.13)

Where the factor F = 0.65 and randj ∈ {0, ..., 1} (where j indicates the position of
the current bit in the current solution) is a generated random number used together with
the factor F to act as a form of node operation acceptance probability in the following
manner: the node deletion/ addition will be performed only if the generated number
randj is less than F ; otherwise, the node operation will be discarded.

After generating three new solutions from the same selected solution xi, the bees then
assess the fitness value of the freshly generated solutions using an objective function; if
the fitness value of one of the new solutions is greater than the fitness value of the prior
one, the bee memorizes the new solution and replaces the old one in the population. If
not, the same solution is retained.

In the following phase, the employed bees share the nectar information (fitness value)
of the food sources (solutions) with the onlooker bees, where they assess the nectar infor-
mation obtained from the employed bees and select two different food sources xi and a
based on a probability Probi that is proportional to its nectar amount. The probability
is calculated using the following formulas:

Probi =
f(xi)∑PS

n=1(f(xn))
(5.14)

With PS being the size of the population and f(xi) being the fitness value of the so-
lution xi (the nectar information of the food source in position i). Then, a modification
process takes place on the selected food source xi (solution) where only one new solution
hi will be generated using Eq. 5.9, then compare f(xi) and f(hi); the solution that has the

72

CHAPTER 5. CDABC: A CONVOLUTIONAL DENOISING AUTOENCODER WITH ARTIFICIAL BEE
COLONY BICLUSTERING ALGORITHM FOR GENE EXPRESSION

greater fitness value will be retained in the new population. Following the completion of
these steps by all onlooker bees, the algorithm then conducts the scout bee phase, where
it determines whether a particular solution hasn’t been improved for a predetermined
number of iterations called the abandonment threshold. If a solution exceeds this limit, it
gets abandoned, and the employed bee that was assigned to this solution becomes a scout
bee; then, scout bees explore the search space and discover completely new solutions to
replace the abandoned and less promising ones with.

The ABC then proceeds through the iterations, starting from the employed bee phase
once more to the scout bees phase, generating and exploring new solutions while retaining
the best ones until a termination condition is met, such as reaching a maximum number
of iterations or attaining a desired level of solution quality. The steps of CDABC are
described in Algorithm 6:

73

CHAPTER 5. CDABC: A CONVOLUTIONAL DENOISING AUTOENCODER WITH ARTIFICIAL BEE
COLONY BICLUSTERING ALGORITHM FOR GENE EXPRESSION

Algorithm 6: CDABC Algorithm
Input : A Matrix of size n×m, Population Size PS, Factor F , objective

Fitness function f
Output: p Bicluster solutions

1 pop← Initialize the initial population;
2 calculate the fitness scores using f for all solutions in pop;
3 besTSol ← set best solution ;
4 iteNum← Set maximum number of iterations;
5 PS ← Set population size ; Threshold← set threshold;
6 /* PS = onlookerBee = employedBee */

7 iteration← 0;

8 while iteration < iteNum do
9 /* Employed Bee Phase */

10 for i← 1 to employedBee do
11 /* Select a random solution xi */

12 a,b,c← select 3 random solutions from pop in different positions than i;
13 X1 ←xi with one bit altered in the gene sequence
14 X2 ←xi with one bit altered in the condition sequence
15 X3 ←xi with one bit altered in both gene and condition sequences

16 /* Generate three new solutions */

17

hi1 = nodeAddition(a, nodeDeletion(X1, xi, F), F)

hi2 = nodeAddition(b, nodeDeletion(X2, xi, F), F)

hi3 = nodeAddition(c, nodeDeletion(X3, xi, F), F)

18 /* Calculate the fitness of the new solutions */

19 newSolF itness← calculate the fitness of the three new solutions and
keep the best one;

20 if newSolF itness is better than f(xi) then
21 /* The bee memorizes the new solution with the best fitness

value */

22 Replace xi with the new solution in pop;

23 end

24 end
25 /* Onlooker Bee Phase */

26 for i← 1 to onlookerBee do
27 /* Select two new solutions xi and a based on probability

Probi */

28

Probi =
f(xi)∑PS

n=1(f(xn))

29 X ←xi with one bit altered ;
30 /* Generate a new solution */

31

hi = nodeAddition(a, nodeDeletion(X, xi, F), F)

32 Calculate the fitness of the new solution f(hi);
33 if f(hi) is better than f(xi) then
34 /* The bee memorizes the new solution with the best fitness

value */

35 Replace xi with hi in pop;

36 end

37 end
38 /* Scout Bee Phase */

39 for i← 1 to PS do
40 if Improvement iterations of xi exceeds Threshold then
41 abandon solution xi ;
42 employed bee of xi becomes scout bee;
43 generate a new solution to replace xi in pop;

44 end
45 iteration++;

46 end

47 end

48 return p Biclusters pop from last generation;

74

CHAPTER 5. CDABC: A CONVOLUTIONAL DENOISING AUTOENCODER WITH ARTIFICIAL BEE
COLONY BICLUSTERING ALGORITHM FOR GENE EXPRESSION

5.4.4 Illustrative Example

The following is an example of how the employed bees phase work with consideration of
the implemented changes in CDABC.
Considering the matrix M(5,5), where the rows represent genes and the columns represent
conditions:

M =

68 13 5 88 32

10 16 52 38 11

14 83 69 67 77

8 87 14 4 9

81 49 2 71 94

The algorithm randomly generates the first population P, and then selects 4 random

solutions denoted as xi , a, b, and c, these solutions are biclusters that are represented in
binary as shown in Figure 5.1 within the section 3.1. The size of a bicluster depends on
the number of genes and conditions in the matrix M; thus, each bicluster is represented
by a 10-bit string.

Consider the following selected solutions:

xi =
(

0 1 1 1 0 0 1 0 1 1
)

a =
(

1 1 0 0 1 0 0 1 0 1
)

b =
(

1 1 1 1 1 1 0 0 0 1
)

c =
(

1 0 0 1 1 0 0 1 0 1
)

The genes and conditions included in the selected bicluster xi of the P population are as
follows:

xi =

16 38 11

83 67 77

87 4 9

The next step entails creating three neighboring solutions to xi, denoted as X1, X2, and
X3. This is achieved by taking the original solution xi and making slight adjustments.
Specifically, one bit is altered in the gene part, another in the condition part, and a
third in both the gene and condition parts, for each of the three solutions. The resulting
solutions are as follows:

75

CHAPTER 5. CDABC: A CONVOLUTIONAL DENOISING AUTOENCODER WITH ARTIFICIAL BEE
COLONY BICLUSTERING ALGORITHM FOR GENE EXPRESSION

xi =
(

0 1 1 1 0 0 1 0 1 1
)

X1 =
(

0 1 1 1 1 0 1 0 1 1
)

X2 =
(

0 1 1 1 0 0 1 0 1 0
)

X3 =
(

0 1 0 1 0 1 1 0 1 1
)

Afterward, we create completely three new solutions by employing node addition and
deletion operations on all the previous solutions using equations 5.9, 5.10 and 5.10:

hi1 = nodeAddition(a, nodeDeletion(X1, xi, F), F)

hi2 = nodeAddition(b, nodeDeletion(X2, xi, F), F)

hi3 = nodeAddition(c, nodeDeletion(X3, xi, F), F)

Initially, we execute the node deletion operation in the following manner:

nodeDeletion(X1, xi, F) =

0 1 1 1 1 0 1 0 1 1
0 1 1 1 0 0 1 0 1 1
0 0 1 0 1 0 0 0 0 1

In the process of performing the mentioned node deletion operation, a random factor is
generated Specifically, we generate a random number randi ∈ 0, ..., 1, where i represents
the position of the current bit in the individual. For example, if rand9 is less than F ,
the algorithm carries out a node deletion, resulting in 0. On the other hand, if rand10
is greater than F , the algorithm skips the node deletion, resulting in 1. This process is
repeated for the remaining bits and for the node addition operation as well.

nodeAddition(a, nodeDeletion(X1, xi, F), F) =

1 1 0 0 1 0 0 1 0 1
0 0 1 0 1 0 0 0 0 1
1 1 1 0 1 0 0 1 0 1

The result of the solution hi1 is interpreted as representing a bicluster with four row
and two columns, it can be denoted as follows:

76

CHAPTER 5. CDABC: A CONVOLUTIONAL DENOISING AUTOENCODER WITH ARTIFICIAL BEE
COLONY BICLUSTERING ALGORITHM FOR GENE EXPRESSION

hi1 =

5 32

52 11

69 77

2 94

The same process is replicated for the other two solutions, hi2 and hi3.

5.5 Experimental Results

We conducted the experiments using both synthetic data and real data in order to exam-
ine and evaluate the performance of our novel algorithm CDABC.

The experiments covered in this section for both synthetic and real data were con-
ducted using the parameter settings presented in Table 1. The experiments were per-
formed on a Windows 10 PC with an AMD Ryzen 7 3800XT 8-Core Processor running
at 4.30 GHz and equipped with 64 GB of RAM.

5.5.1 Synthetic Data Results

The synthetic data allow us to explore the CDABC’s capacity to identify embedded
biclusters while also rigorously investigating other factors, such as noise and overlap. The
synthetic data used for this test was proposed by Prelic [5], and has been previously used
to study the noise effect on biclustering. The datasets include ten implants of various
bicluster types, including constant and additive biclusters, as well as ten genes and five
conditions.

To assess the efficacy of our algorithm on synthetic data, we will employ Prelic’s [5]
gene match score, and compare the results with those obtained using state-of-the-art
biclustering algorithms, including CC [2], OPSM [4], ISA [38], BiMax [5], Xmotif [39], and
AMoDeBic [87]. The score represents the average of the highest match scores between the
biclusters extracted by the biclustering algorithm in set M and the implanted biclusters
in set Mopt. This metric is defined as follows:

S∗G(M,Mopt) =
1

|M |
∑

(G1,C1)∈M

max
(G2,C2)∈Mopt

|G1 ∩G2|
|G1 ∪G2|

(5.15)

77

CHAPTER 5. CDABC: A CONVOLUTIONAL DENOISING AUTOENCODER WITH ARTIFICIAL BEE
COLONY BICLUSTERING ALGORITHM FOR GENE EXPRESSION

Fig. 5.3.A depicts the performance of several biclustering algorithms in extracting
non-overlapping biclusters under differing degrees of noise, with a focus on scenarios in-
volving constant biclusters. Similarly, Fig. 5.3.B shows how different biclustering methods
perform in cases with additive biclusters and varying noise levels.

In Fig. 5.4.A, the emphasis changes to instances with bicluster overlap with consistent
patterns. The results of the biclustering methods with increasing degrees of overlap and
no noise are shown. Fig. 5.4.B also shows the results of these algorithms in scenarios with
additive biclusters and increasing levels of overlap in the absence of noise.

Our analysis shows that the ISA algorithm detects 100% of the implanted biclusters in
the circumstances with no noise and non-overlapping biclusters (Fig. 5.3). Furthermore,
in settings with additive biclusters, both ISA and BiMax can recognize virtually all of
the implanted biclusters. CDABC, on the other hand, achieves recognition rates of more
than 90% for both constant and additive implanted biclusters.
Remarkably, when significant noise levels are present, ISA maintains its high detection
rate for both types of biclusters. In contrast, when the noise level increases, BiMax’s
ability to identify implanted additive biclusters decreases. CDABC, on the other hand,
has consistent performance in extracting more than 90% of both constant and additive
biclusters, even in the presence of high noise levels. Notably, CDABC clearly surpasses
other biclustering algorithms in terms of performance, indicating its great performance.

78

CHAPTER 5. CDABC: A CONVOLUTIONAL DENOISING AUTOENCODER WITH ARTIFICIAL BEE
COLONY BICLUSTERING ALGORITHM FOR GENE EXPRESSION

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Noise Level

Av
g
M
at
ch

Sc
or
e

A: Noise with Constant Biclusters

Bimax CC ISA
OPSM Xmotif AMoDeBic
CDABC

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Noise Level

Av
g
M
at
ch

Sc
or
e

B: Noise with Additive Biclusters

Bimax CC ISA
OPSM Xmotif AMoDeBic
CDABC

Figure 5.3: Noise Effect. A: Constant Biclusters, B: Additive Biclusters.

In terms of overlap impact (Fig. 5.4), it is clear that the performance of most bi-
clustering approaches degrades as the level of overlap grows. Notably, BiMax exhibits
consistent results for both constant and additive biclusters. ISA functions well at first,
but as the degree of overlap increases, its performance degrades substantially. AMoDeBic
achieves a recognition rate of 90% for constant implanted biclusters and 80% for additive
biclusters, but its performance decreases substantially.
CDABC, on the other hand, distinguishes itself by detecting almost 90% of constant
biclusters and 80% of additive biclusters. While its performance drops when overlap in-
creases, the decrease is not as significant when compared to other techniques. CDABC
surpasses the other approaches significantly, demonstrating its effectiveness and robust-
ness in dealing with overlapping biclusters.

79

CHAPTER 5. CDABC: A CONVOLUTIONAL DENOISING AUTOENCODER WITH ARTIFICIAL BEE
COLONY BICLUSTERING ALGORITHM FOR GENE EXPRESSION

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Overlap Degree

Av
g
M
at
ch

Sc
or
e

A: Overlap with Constant Biclusters

Bimax CC
ISA Xmotif
AMoDeBic CDABC

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Overlap Degree

Av
g
M
at
ch

Sc
or
e

B: Overlap with Additive Biclusters

Bimax CC OPSM
Xmotif ISA AMoDeBic
CDABC

Figure 5.4: Overlap Effect. A: Constant Biclusters, B: Additive Biclusters.

5.5.2 Real Data Results

In addition to synthetic data, we conducted the experiments on three well-known real-
world datasets: the Yeast Cell-Cycle Expression Data Set, the Human B-Cell Lymphoma
Dataset, and the Saccharomyces Cerevisiae Dataset, where the results were compared
to those of CC [2], BicFinder [23], BiMine+ [25], SEBI [8], MOEA [7], MOPSOB [68],
ISA [38], BiMax [5], MBA [41], and AMoDeBic [87]. The following is a description of the
considered datasets:

1. The Yeast Cell-Cycle: This is a particularly prominent dataset in gene expression
data [2]. This dataset includes 2,884 gene expression profiles and 17 experimental
conditions where each gene’s function is well understood.

2. Saccharomyces Cerevisiae: This dataset covers the expression levels of 2993 genes
under 173 different experimental settings.

3. Human B-Cell Lymphoma: This is another well-known dataset for gene expression
data. It consists of 4026 genes and 96 conditions [77].

80

CHAPTER 5. CDABC: A CONVOLUTIONAL DENOISING AUTOENCODER WITH ARTIFICIAL BEE
COLONY BICLUSTERING ALGORITHM FOR GENE EXPRESSION

5.5.2.1 Statistical Relevance

The statistical significance of the biclusters discovered by our algorithm CDABC is critical
for its validation. This evaluation is based on the coverage and p-value criteria.
1. Coverage

The coverage parameter specifies how many cells in the gene expression array are
covered by the biclusters. It is critical for validating biclustering algorithms since it
demonstrates the algorithms’ capacity to capture and detect relevant patterns in data.
This evaluation was performed on the datasets Yeast Cell-Cycle and Human B-Cell Lym-
phoma, and the outcomes are compared to those of the following algorithms: CC [2],
BicFinder [23], BiMine [24], BiMine+ [25], SEBI [8], MOEA [7], MOPSOB [68], Tri-
max [88] and AMoDeBic [87].

The coverage results of the extracted biclusters are shown in Tables 5.1 and 5.2; the
algorithms’ results are quite comparable. CDABC covers 100% of the conditions in both
datasets. Regarding gene coverage, it covers84.78% in the Yeast Cell-Cycle dataset and
80.96% in the Human B-Cell Lymphoma dataset. In terms of cell coverage, it covers
70.29% in the Yeast Cell-Cycle dataset and 44.94% in the Human B-Cell Lymphoma
dataset.

On the Yeast Cell-Cycle dataset, the CC algorithm exhibits the most advantageous
results. It is important to note that the CC method uses a masking technique that prevents
the selection of previously identified genes or circumstances during subsequent search
procedures by excluding groups retrieved with random values. This masking strategy
greatly aids in obtaining thorough coverage. With the exception of the CC algorithm,
CDABC has the highest gene coverage, condition coverage, and total coverage of any
algorithm.

81

CHAPTER 5. CDABC: A CONVOLUTIONAL DENOISING AUTOENCODER WITH ARTIFICIAL BEE
COLONY BICLUSTERING ALGORITHM FOR GENE EXPRESSION

Yeast Cell-Cycle
Algorithms Total coverage Gene coverage Condition coverage

BiMine 13.36% 32.84% 100%
BiMine+ 51.76% 68.65% 100%
BicFinder 55.43% 76.93% 100%
MOPSOB 52.40% - -
MOEA 51.34% - -
SEBI 38.14% 43.55% 100%
CC 81.47% 97.12% 100%

Trimax 15.32% 22.09% 70.59%
AMoDeBic 67.28% 79.94% 100%
CDABC 70.29% 84.78% 100%

Table 5.1: Comparison of Yeast Cell-Cycle Coverage by Different Algorithms.

On the Human B-Cell Lymphoma dataset, CDABC surpasses BiMine, Bimine+,
BicFinder, MOPSOB, MOEA, and SEBI in terms of coverage outcomes in both total
coverage and gene coverage. However, the CC algorithm surpasses CDABC for gene cov-
erage in particular. On the other hand, CDABC performs better than the CC algorithm
in terms of total coverage. AModebic also has higher outcomes in terms of total coverage,
whereas CDABC outperforms in terms of gene coverage.

Human B-Cell Lymphoma
Algorithms Total coverage Gene coverage Condition coverage

BiMine 8.93% 26.15% 100%
BiMine+ 21.19% 46.26% 100%
BicFinder 44.24% 55.89% 100%
MOPSOB 36.90% - -
MOEA 20.96% - -
SEBI 34.07% 38.23% 100%
CC 36.81% 91.58% 100%

Trimax 8.50% 46.32% 11.46%
AMoDeBic 52.73% 75.31% 100%
CDABC 44.94% 80.96% 100%

Table 5.2: Comparison of Human B-Cell Lymphoma Coverage by Different Algorithms.

2. P-value

In this test, we determine the adjusted significance scores for each bicluster using the
online program FuncAssociate 2 [78]. The biclusters with an adjusted p-value of less than

2http://llama.mshri.on.ca/funcassociate/

82

CHAPTER 5. CDABC: A CONVOLUTIONAL DENOISING AUTOENCODER WITH ARTIFICIAL BEE
COLONY BICLUSTERING ALGORITHM FOR GENE EXPRESSION

0.001% are considered to be of the highest quality. This assessment was performed on
the datasets Yeast Cell-Cycle and the Saccharomyces Cerevisiae datasets, and the results
are compared with CC [2], ISA [38], BiMax [5], MBA [41], Trimax [88] and AMoDeBic [87].

The findings of the Yeast Cell-Cycle and Saccharomyces Cerevisiae datasets with var-
ious adjusted p-values (p = 5%; 1%; 0.5%; 0.1%; 0.001%) for each algorithm over the
percentage of total biclusters are shown in Fig. 5.5 and Fig. 5.6.

For the Yeast Cell-Cycle dataset, the algorithms BiMax, Trimax, MBA, AMoDeBic,
and CDABC all were able to achieve 100% of the extracted biclusters when the p-value
was 5% and 1%. In addition, AMoDeBic obtained 100% when p-value = 0.5%, and MBA
achieved 100% with a p-value greater than 0.001%. CDABC, on the other hand, was able
to achieve 99% when p-value = 0.5% and 96% with p-value = 0.001%, which proves that
CDABC performed better than MBA and AMoDeBic, both of which achieved under 95%
of the biclusters.

CC IS
A

Bi
ma
x

Tr
im
ax

M
BA

AM
oD
eB
ic

CD
AB

C
0

10

20

30

40

50

60

70

80

90

100
5%
1%

0.50%
0.10%
0.001%

Figure 5.5: Proportions of Biclusters Significantly Enriched by GO Annotations (Yeast cell-
cycle Dataset)

For the Saccharomyces Cerevisiae Dataset, it is remarkable that Trimax has the best
outcomes for all adjusted P-values. When the p-value is 5%, 1%, 0.5%, and 0.1%, MBA

83

CHAPTER 5. CDABC: A CONVOLUTIONAL DENOISING AUTOENCODER WITH ARTIFICIAL BEE
COLONY BICLUSTERING ALGORITHM FOR GENE EXPRESSION

and AMoDeBic were able to extract 100% of the biclusters, and when the p-value is
0.001%, they were able to extract approximately 98%. CDABC, however, displays no-
table performance in extracting 100% when the p-value is 5%, 1%, and around 99% for
0.5%, 0.1%, and 0.001%.

CC IS
A

Bi
ma
x

Tr
im
ax

M
BA

AM
oD
eB
ic

CD
AB

C
0

10

20

30

40

50

60

70

80

90

100
5%
1%

0.50%
0.10%
0.001%

Figure 5.6: Proportions of Biclusters Significantly Enriched by GO Annotations (Saccha-
romyces Cerevisiae Dataset)

5.5.2.2 Biological Relevance

Another crucial factor in evaluating a biclustering algorithm is the quality of the re-
trieved biclusters, and this could be assessed using a biological criterion that checks
whether the genes of a bicluster share biological traits. This evaluation is carried out
using GOTermFinder 3, a well-known web application that discovers important shared
Gene Ontology (GO) terms among specified sets of genes. The GO is divided into three
categories: biological process, molecular function, and cellular component. In this test,
we used The Yeast Cell-Cycle and Saccharomyces Cerevisiae datasets.

3https://www.yeastgenome.org/goTermFinder

84

CHAPTER 5. CDABC: A CONVOLUTIONAL DENOISING AUTOENCODER WITH ARTIFICIAL BEE
COLONY BICLUSTERING ALGORITHM FOR GENE EXPRESSION

The biological annotations of two randomly selected biclusters by CDABC in the Yeast
Cell-Cycle and Saccharomyces Cerevisiae datasets, respectively, with regard to the previ-
ously described GO categories are presented in tables 5.3 and 5.4. The tables highlight
the most important GO terms related to these biclusters.

GO Terms Bicluster 1 Bicluster 2

Biological Process
regulation of meiotic cell cycle(49.2%, 7.10e-55
cellular response to stimulus(57.4%,1.06e-10)

positive regulation of nitrogen compound metabolic process(39.3%, 1.49e-09)
negative regulation of sexual sporulation

resulting in formation of a cellular spore (4.9%, 0.00035)

Cellular component

nuclear lumen(41.7%,1.75e-05)
membrane part(100.0%, 0.00023)

organelle envelope(87.5%, 8.49e-06)

non-membrane-bounded organelle(90.0%, 0.00024)
MCM core complex(50.0%,1.27e-08)

condensed chromosome (16.4%,7.10e-06)

Molecular function
histone chaperone activity (8.3%, 3.34e-05)

DNA binding (41.7%, 5.33e-06)
ATP-dependent activity (38.9%, 1.41e-08)

helicase activity(27.8%, 4.33e-09)

Table 5.3: Significant GO terms of two biclusters extracted from Yeast Cell-Cycle dataset using
CDABC.

GO Terms Bicluster 1 Bicluster 2

Biological Process
positive regulation of cell cycle (66.7%, 3.71e-14)
mitotic cell cycle phase transition(93.3%, 1.72e-19)

mitotic spindle assembly (66.7%, 3.82e-08)
organelle fission (83.3%, 4.57e-05)

Cellular component
supramolecular complex (58.3%, 2.30e-06)

condensed chromosome, centromeric region (33.3%, 0.00024)
catalytic complex(38.4%, 1.93e-08)

microtubule organizing center (33.3%, 0.00021)

Molecular function
protein binding (58.3%, 0.00317)

microtubule motor activity(16.7%, 0.00321)
RNA pseudouridylation guide activity (38.4%, 6.66e-58)

cytoskeletal protein binding(50.0%, 4.18e-07)

Table 5.4: Significant GO terms of two biclusters extracted from Saccharomyces Cerevisiae
dataset using CDABC.

Fig. 5.7 and Fig. 5.8 illustrate six biclusters found by the CDABC algorithm in
the Yeast Cell-Cycle and Saccharomyces Cerevisiae datasets. These biclusters are distin-
guished by genes that exhibit comparable patterns of behavior under specified situations,
as established by visual inspection.

85

CHAPTER 5. CDABC: A CONVOLUTIONAL DENOISING AUTOENCODER WITH ARTIFICIAL BEE
COLONY BICLUSTERING ALGORITHM FOR GENE EXPRESSION

Figure 5.7: Six Biclusters Discovered in the Yeast Cell-Cycle Dataset by CDABC.

86

CHAPTER 5. CDABC: A CONVOLUTIONAL DENOISING AUTOENCODER WITH ARTIFICIAL BEE
COLONY BICLUSTERING ALGORITHM FOR GENE EXPRESSION

Figure 5.8: Six Biclusters Discovered in the Saccharomyces Cerevisiae Dataset by CDABC.

Considering all the findings in this section, our new method, CDABC, demonstrated
impressive and noteworthy results on both synthetic and real data, showed robustness
to noise and overlap, demonstrated significant coverage, and demonstrated the shared
biological traits among biclusters.

87

CHAPTER 5. CDABC: A CONVOLUTIONAL DENOISING AUTOENCODER WITH ARTIFICIAL BEE
COLONY BICLUSTERING ALGORITHM FOR GENE EXPRESSION

5.6 Conclusion

This chapter actively explores a new approach that leverages the strengths inherent in
two distinct methods: Convolutional Denoising Autoencoders (CDAs) and Artificial Bee
Colony (ABC). Through an in-depth examination, we review and delve into the specifics
of both CDAs and ABC, gaining a thorough understanding of their individual uses and
strengths. Subsequently, we present the CDABC algorithm, providing a comprehensive
explanation of the active modifications and adaptations implemented to the ABC algo-
rithm. These changes are tailored to enhance its functionality, making it well-suited to
effectively address the unique challenges posed by biclustering tasks. Lastly, the effective-
ness of CDABC was validated through experimental results obtained from both synthetic
and real data. The outcomes were systematically compared to established approaches,
further affirming the algorithm’s performance in the field of biclustering challenges.

88

Chapter 6

General Conclusion

Thesis Summary

The findings of this thesis provide various avenues for further research. This section
outlines various promising routes of future study, including the following:

In the growing field of bioinformatics, where maintaining massive volumes of biolog-
ical data is difficult, advanced analytical techniques become essential. Biclustering, an
essential methodology in this vast landscape, is crucial for analyzing subtle patterns in
gene expression data. This thesis, which falls under the broad category of biclustering
techniques, seeks to present practical solutions targeted at directly tackling significant
difficulties. The primary goal is to improve the analytical capabilities necessary for over-
coming the difficulties inherent in large biological datasets. The goal is to enable a more
nuanced and efficient analysis of gene expression patterns, therefore significantly con-
tributing to the progress and evolution of the biclustering field.

The thesis is organized into six chapters. It begins with an overview of bioinformat-
ics and the function of biclustering in the analysis of gene expression data. The second
chapter includes a comprehensive evaluation of known biclustering algorithms, estab-
lishing the foundation for the presentation of three unique techniques in the following
chapters—DeBiC, AMoDeBic, and CDABC. Each chapter is geared to address different
challenges in biclustering approaches, adding to the field’s overall comprehension. The
last chapter summarizes the findings and emphasizes the possible influence of the sug-
gested approaches on future research in biclustering.

Our contributions are distinguished by the introduction of innovative biclustering

89

CHAPTER 6. GENERAL CONCLUSION

methodologies, each carefully tailored to meet specific issues in the field. Our initial
contribution to DeBiC strategically uses Differential Evolution’s extensive search capa-
bilities, global optimization skills, and efficacy in handling high-dimensional landscapes.
Recognizing that DE’s initial mutation operator was not specifically designed to handle
binary values, which is critical for encoding biclusters in biclustering. DeBiC uses a sep-
arate mutation operator known as the semi-probability mutation. The primary objective
of DeBiC is to efficiently discover several high-quality biclusters at the same time, setting
the groundwork for future methodological advances in biclustering.
The experimental results demonstrate the efficacy of using a differential evolutionary algo-
rithm inside a binary search space for global optimization. This approach proves helpful
in collecting significant biclusters of interest with minimum residuals within a reason-
able timeframe. This work represents an initial exploration into the field of differential
evolution algorithms for biclustering, setting the foundation for further examination and
development in this promising area of research.

The second important contribution in this thesis is AMoDeBic, which is a multi-
objective biclustering approach based on DeBiC’s fundamental concepts. Comparably, it
incorporates the resilient elements of Differential Evolution into a multi-objective opti-
mization framework. Notably, AMoDeBic is the first Multi-Objective Differential Evo-
lution (MODE) technique for biclustering, representing a significant advancement in the
field of research. This contribution additionally introduces an entirely novel mutation
operator: the adaptive Biclustering Binary Differential Evolution (BBDE) mutation op-
erator, which incorporates both node addition and deletion. The purpose of this mutation
operator, which is controlled by a factor F , is to promote increased diversity in the so-
lutions, therefore, it significantly enhances the algorithm’s ability to simultaneously and
effectively identify large and diverse biclusters and permits the extension of differential
evolution’s continuous search feature to binary search spaces, demonstrating an effective
method for tackling the complexity issues associated with biclustering.

In validation experiments making use of the Yeast Cell-Cycle, Human Cell B, and Sac-
charomyces datasets, AMoDeBic showcased notable advantages over existing approaches.
The discovered biclusters were exceptionally diverse, resistant to noise and overlap, and
had significant biological significance. These findings were obtained within a reasonable
timeframe, demonstrating the algorithm’s efficiency and effectiveness. Our multi-objective
differential evolution biclustering approach stands out as the first of its kind as it ad-
dresses conflicting objectives and enhances bicluster quality. The strategic combination
of the BBDE mutation operator and multi-objective optimization principles establishes

90

CHAPTER 6. GENERAL CONCLUSION

AMoDeBic as a powerful method for improving our understanding of gene expression
patterns, accelerating biological discoveries, and making significant contributions to the
evolving field of biclustering approaches.

The third contribution of this thesis presents an original approach to biclustering by
combining two powerful methods: the Convolutional Denoising Autoencoder (CDAE) as
a preprocessing step for denoising gene expression data and identifying meaningful pat-
terns, and the Artificial Bee Intelligence (ABC) algorithm, which has been altered to
accommodate biclustering tasks. To evaluate the proposed approach, experiments were
performed on the frequently used Yeast Cell-Cycle, Human Cell B, and Saccharomyces
datasets. The results reveal various benefits over other biclustering approaches, including
noise robustness and the capacity to successfully discover varying and high-quality biclus-
ters.

Future Research

Future research will focus on the use of the suggested biclustering algorithms in vari-
ous constantly evolving fields such as cybersecurity, healthcare, text mining, and others.
DeBiC and AMoDeBic, as well as CDABC, while they were initially designed for gene
expression research, have outstanding flexibility and pattern recognition skills. When we
contemplate their incorporation into cybersecurity, the potential resides in their capacity
to identify small trends across heterogeneous datasets, providing an original approach
of virus identification. Beyond standard approaches, biclustering algorithms have the
ability to handle emerging threats, identify polymorphic malware, and decrease false pos-
itives. While computing needs and real-time analysis must be addressed, the idea of
strengthening cybersecurity defenses with biclustering algorithms is a compelling avenue
for exploration, research, and innovation.

Another intriguing perspective is to eliminate the standard practice of needing up-
front parameters for population and bicluster numbers in typical biclustering approaches.
Instead, we strive to create an innovative model that emphasizes flexibility, removing the
necessity for predefined numbers. The dynamic and changing characteristics of biological
datasets make it difficult to predict these numbers ahead of time. The complexity and
variety of biological datasets make it challenging to precisely predict the ideal number of
populations and clusters at the start of the research. Employing a dynamic framework
that seamlessly adapts to the intricacies of datasets not only offers an interesting area
for continued research but also ensures a more intuitive and user-friendly experience and

91

CHAPTER 6. GENERAL CONCLUSION

increased applicability to datasets of different complexity.

An additional noteworthy consideration for future work involves concentrating on en-
hancing the speed and accuracy of biclustering approaches. The goal is to address com-
putational challenges, optimize algorithms, increase accuracy, and introduce innovative
strategies to ensure efficient and precise analysis of biological data.

Publication List

International journals

Charfaoui, Y., Houari, A., & Boufera, F. (2024). AMoDeBic: An adaptive Multi-objective
Differential Evolution biclustering algorithm of microarray data using a biclustering bi-
nary mutation operator. Expert Systems with Applications, 238, 121863.

International conferences

Charfaoui, Y., Houari, A., & Boufera, F. (2022, November). DeBic: A Differential Evolu-
tion Biclustering Algorithm for Microarray Data Analysis. In International Conference on
Artificial Intelligence: Theories and Applications (pp. 288-302). Cham: Springer Nature
Switzerland.

92

Bibliography

[1] John A Hartigan. Direct clustering of a data matrix. Journal of the american
statistical association, 67(337):123–129, 1972.

[2] Yizong Cheng and George M Church. Biclustering of expression data. In Ismb,
volume 8, pages 93–103, 2000.

[3] Jiong Yang, Haixun Wang, Wei Wang, and Philip S Yu. An improved biclustering
method for analyzing gene expression profiles. International Journal on Artificial
Intelligence Tools, 14(05):771–789, 2005.

[4] Amir Ben-Dor, Benny Chor, Richard Karp, and Zohar Yakhini. Discovering local
structure in gene expression data: the order-preserving submatrix problem. Journal
of Computational Biology, pages 49–57, 2002.

[5] Amela Prelić, Stefan Bleuler, Philip Zimmermann, Anja Wille, Peter Bühlmann,
Wilhelm Gruissem, Lars Hennig, Lothar Thiele, and Eckart Zitzler. A systematic
comparison and evaluation of biclustering methods for gene expression data. Bioin-
formatics, 22(9):1122–1129, 2006.

[6] Stefan Bleuler, Amela Prelic, and Eckart Zitzler. An ea framework for bicluster-
ing of gene expression data. In Proceedings of the 2004 congress on evolutionary
computation (IEEE Cat. No. 04TH8753), volume 1, pages 166–173. IEEE, 2004.

[7] Sushmita Mitra and Haider Banka. Multi-objective evolutionary biclustering of gene
expression data. Pattern Recognition, 39(12):2464–2477, 2006.

[8] Federico Divina and Jesus S Aguilar-Ruiz. Biclustering of expression data with
evolutionary computation. IEEE transactions on knowledge and data engineering,
18(5):590–602, 2006.

[9] Sara C Madeira and Arlindo L Oliveira. Biclustering algorithms for biological data
analysis: a survey. IEEE/ACM transactions on computational biology and bioinfor-
matics, 1(1):24–45, 2004.

93

BIBLIOGRAPHY

[10] Ons Maâtouk, Wassim Ayadi, Hend Bouziri, and Béatrice Duval. Evolutionary local
search algorithm for the biclustering of gene expression data based on biological
knowledge. Applied Soft Computing, 104:107177, 2021.

[11] Juan A Nepomuceno, Alicia Troncoso, Isabel A Nepomuceno-Chamorro, and Jesús S
Aguilar-Ruiz. Integrating biological knowledge based on functional annotations for
biclustering of gene expression data. Computer methods and programs in biomedicine,
119(3):163–180, 2015.

[12] Amina Houari and Sadok Ben Yahia. Top-k formal concepts for identifying positively
and negatively correlated biclusters. In Model and Data Engineering: 10th Interna-
tional Conference, MEDI 2021, Tallinn, Estonia, June 21–23, 2021, Proceedings 10,
pages 156–172. Springer, 2021.

[13] Amina Houari, Wassim Ayadi, and Sadok Ben Yahia. A new fca-based method
for identifying biclusters in gene expression data. International Journal of Machine
Learning and Cybernetics, 9:1879–1893, 2018.

[14] Marta DM Noronha, Rui Henriques, Sara C Madeira, and Luis E Zárate. Im-
pact of metrics on biclustering solution and quality: a review. Pattern Recognition,
127:108612, 2022.

[15] Kevin Y Yip, David W Cheung, and Michael K Ng. Harp: A practical pro-
jected clustering algorithm. IEEE Transactions on knowledge and data engineering,
16(11):1387–1397, 2004.

[16] Beatriz Pontes, Federico Divina, Raúl Giráldez, and Jesús S Aguilar-Ruiz. Virtual
error: A new measure for evolutionary biclustering. In Evolutionary Computation,
Machine Learning and Data Mining in Bioinformatics: 5th European Conference,
EvoBIO 2007, Valencia, Spain, April 11-13, 2007. Proceedings 5, pages 217–226.
Springer, 2007.

[17] Patryk Orzechowski, Moshe Sipper, Xiuzhen Huang, and Jason H Moore. Ebic:
an artificial intelligence-based parallel biclustering algorithm for pattern discovery.
arXiv preprint arXiv:1801.03039, 2018.

[18] Patryk Orzechowski and Krzysztof Boryczko. Text mining with hybrid biclustering
algorithms. In International Conference on Artificial Intelligence and Soft Comput-
ing, pages 102–113. Springer, 2016.

94

BIBLIOGRAPHY

[19] Anis R Amna and Agus Hermanto. Implementation of bcbimax algorithm to de-
termine customer segmentation based on customer market and behavior. In 2017
4th International Conference on Computer Applications and Information Processing
Technology (CAIPT), pages 1–5. IEEE, 2017.

[20] Ricardo Cachucho, Kaihua Liu, Siegfried Nijssen, and Arno Knobbe. Bipeline: a
web-based visualization tool for biclustering of multivariate time series. In Ma-
chine Learning and Knowledge Discovery in Databases: European Conference, ECML
PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings, Part III 16,
pages 12–16. Springer, 2016.

[21] Saziye Deniz Oguz Arikan and Cem Iyigun. A supervised biclustering optimization
model for feature selection in biomedical dataset classification. In Data Mining and
Big Data: First International Conference, DMBD 2016, Bali, Indonesia, June 25-30,
2016. Proceedings 1, pages 196–204. Springer, 2016.

[22] Amela Prelić, Stefan Bleuler, Philip Zimmermann, Anja Wille, Peter Bühlmann,
Wilhelm Gruissem, Lars Hennig, Lothar Thiele, and Eckart Zitzler. A systematic
comparison and evaluation of biclustering methods for gene expression data. Bioin-
formatics, 22(9):1122–1129, 2006.

[23] Wassim Ayadi, Mourad Elloumi, and Jin-Kao Hao. Bicfinder: a biclustering algo-
rithm for microarray data analysis. Knowledge and information systems, 30:341–358,
2012.

[24] Wassim Ayadi, Mourad Elloumi, and Jin-Kao Hao. A biclustering algorithm based on
a bicluster enumeration tree: application to dna microarray data. BioData mining,
2(1):1–16, 2009.

[25] Wassim Ayadi, Mourad Elloumi, and Jin Kao Hao. Bimine+: an efficient algorithm
for discovering relevant biclusters of dna microarray data. Knowledge-Based Systems,
35:224–234, 2012.

[26] Akdes Serin and Martin Vingron. Debi: Discovering differentially expressed biclusters
using a frequent itemset approach. Algorithms for Molecular Biology, 6(1):1–12, 2011.

[27] Wassim Ayadi, Mourad Elloumi, and Jin-Kao Hao. Pattern-driven neighborhood
search for biclustering of microarray data. BMC bioinformatics, 13:1–11, 2012.

[28] Federico Divina and Jesus S Aguilar-Ruiz. A multi-objective approach to discover
biclusters in microarray data. Proceedings of the 9th annual conference on Genetic
and evolutionary computation, pages 385–392, 2007.

95

BIBLIOGRAPHY

[29] Qinghua Huang, Dacheng Tao, Xuelong Li, and Alan Liew. Parallelized evolutionary
learning for detection of biclusters in gene expression data. IEEE/ACM Transactions
on Computational Biology and Bioinformatics, 9(2):560–570, 2011.

[30] Juan A Nepomuceno, Alicia Troncoso, Isabel A Nepomuceno-Chamorro, and Jesús S
Aguilar-Ruiz. Pairwise gene go-based measures for biclustering of high-dimensional
expression data. BioData mining, 11(1):1–19, 2018.

[31] Younes Charfaoui, Amina Houari, and Fatma Boufera. Debic: A differential evolution
biclustering algorithm for microarray data analysis. In International Conference on
Artificial Intelligence: Theories and Applications, pages 288–302. Springer, 2022.

[32] Cristian Andrés Gallo, Jessica Andrea Carballido, and Ignacio Ponzoni. Bihea: a hy-
brid evolutionary approach for microarray biclustering. In Advances in Bioinformat-
ics and Computational Biology: 4th Brazilian Symposium on Bioinformatics, BSB
2009, Porto Alegre, Brazil, July 29-31, 2009. Proceedings 4, pages 36–47. Springer,
2009.

[33] Juan A Nepomuceno, Alicia Troncoso, and Jesús S Aguilar-Ruiz. Biclustering of gene
expression data by correlation-based scatter search. BioData mining, 4:1–17, 2011.

[34] Adán José-García, Julie Jacques, Vincent Sobanski, and Clarisse Dhaenens. Meta-
heuristic biclustering algorithms: From state-of-the-art to future opportunities. ACM
Computing Surveys, 56(3):1–38, 2023.

[35] R Rathipriya and K Thangavel. A discrete artificial bees colony inspired biclustering
algorithm. International Journal of Swarm Intelligence Research (IJSIR), 3(1):30–42,
2012.

[36] Junwan Liu, Zhoujun Li, Xiaohua Hu, and Yiming Chen. Biclustering of microarray
data with mospo based on crowding distance. In BMC bioinformatics, volume 10,
pages 1–10. BioMed Central, 2009.

[37] Junwan Liu, Zhoujun Li, Xiaohua Hu, and Yiming Chen. Moaco biclustering of gene
expression data. International Journal of Functional Informatics and Personalised
Medicine, 3(1):58–72, 2010.

[38] Jan Ihmels, Sven Bergmann, and Naama Barkai. Defining transcription modules
using large-scale gene expression data. Bioinformatics, 20(13):1993–2003, 2004.

[39] TM Murali and Simon Kasif. Extracting conserved gene expression motifs from gene
expression data. In Biocomputing 2003, pages 77–88. World Scientific, 2002.

96

BIBLIOGRAPHY

[40] Amos Tanay, Roded Sharan, and Ron Shamir. Discovering statistically significant
biclusters in gene expression data. Bioinformatics, 18(suppl_1):S136–S144, 2002.

[41] Wassim Ayadi and Jin-Kao Hao. A memetic algorithm for discovering negative cor-
relation biclusters of dna microarray data. Neurocomputing, 145:14–22, 2014.

[42] Shreya Mishra and Swati Vipsita. Biclustering of gene expression microarray data
using dynamic deme parallelized genetic algorithm (ddpga). In 2017 IEEE Con-
ference on Computational Intelligence in Bioinformatics and Computational Biology
(CIBCB), pages 1–8. IEEE, 2017.

[43] Ons Maâtouk, Wassim Ayadi, Hend Bouziri, and Béatrice Duval. Evolutionary bi-
clustering algorithms: an experimental study on microarray data. Soft Computing,
23:7671–7697, 2019.

[44] Anupam Chakraborty and Hitashyam Maka. Biclustering of gene expression data
using genetic algorithm. In 2005 IEEE Symposium on Computational Intelligence in
Bioinformatics and Computational Biology, pages 1–8. IEEE, 2005.

[45] Fabrício O de França, Guilherme P Coelho, and Fernando J Von Zuben. bicaco:
An ant colony inspired biclustering algorithm. In Ant Colony Optimization and
Swarm Intelligence: 6th International Conference, ANTS 2008, Brussels, Belgium,
September 22-24, 2008. Proceedings 6, pages 401–402. Springer, 2008.

[46] S Sudhakar Ilango, S Vimal, Madasamy Kaliappan, and P Subbulakshmi. Opti-
mization using artificial bee colony based clustering approach for big data. Cluster
Computing, 22:12169–12177, 2019.

[47] Fuding Xie, Fangfei Li, Cunkuan Lei, Jun Yang, and Yong Zhang. Unsupervised
band selection based on artificial bee colony algorithm for hyperspectral image clas-
sification. Applied Soft Computing, 75:428–440, 2019.

[48] Michael Ashburner, Catherine A Ball, Judith A Blake, David Botstein, Heather
Butler, J Michael Cherry, Allan P Davis, Kara Dolinski, Selina S Dwight, Janan T
Eppig, et al. Gene ontology: tool for the unification of biology. Nature genetics,
25(1):25–29, 2000.

[49] Audrey P Gasch, Paul T Spellman, Camilla M Kao, Orna Carmel-Harel, Michael B
Eisen, Gisela Storz, David Botstein, and Patrick O Brown. Genomic expression
programs in the response of yeast cells to environmental changes. Molecular biology
of the cell, 11(12):4241–4257, 2000.

97

BIBLIOGRAPHY

[50] Anja Wille, Philip Zimmermann, Eva Vranová, Andreas Fürholz, Oliver Laule, Stefan
Bleuler, Lars Hennig, Amela Prelić, Peter von Rohr, Lothar Thiele, et al. Sparse
graphical gaussian modeling of the isoprenoid gene network in arabidopsis thaliana.
Genome biology, 5(11):1–13, 2004.

[51] Laura Macías-García, José María Luna-Romera, Jorge García-Gutiérrez, Maria
Martinez-Ballesteros, José C Riquelme-Santos, and Ricardo González-Cámpora. A
study of the suitability of autoencoders for preprocessing data in breast cancer ex-
perimentation. Journal of biomedical informatics, 72:33–44, 2017.

[52] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Ex-
tracting and composing robust features with denoising autoencoders. In Proceedings
of the 25th international conference on Machine learning, pages 1096–1103, 2008.

[53] Rainer Storn and Kenneth Price. Differential evolution–a simple and efficient heuris-
tic for global optimization over continuous spaces. Journal of global optimization,
11:341–359, 1997.

[54] Brian Hegerty, Chih-Cheng Hung, and Kristen Kasprak. A comparative study on
differential evolution and genetic algorithms for some combinatorial problems. In Pro-
ceedings of 8th Mexican international conference on artificial intelligence, volume 9,
page 13, 2009.

[55] Mahmud Iwan, Rini Akmeliawati, Tarig Faisal, and Hayder MAA Al-Assadi. Per-
formance comparison of differential evolution and particle swarm optimization in
constrained optimization. Procedia Engineering, 41:1323–1328, 2012.

[56] Manolis Georgioudakis and Vagelis Plevris. A comparative study of differential evolu-
tion variants in constrained structural optimization. Frontiers in Built Environment,
6:102, 2020.

[57] Zhenyu Yang, Ke Tang, and Xin Yao. Scalability of generalized adaptive differential
evolution for large-scale continuous optimization. Soft Computing, 15:2141–2155,
2011.

[58] Changshou Deng, Bingyan Zhao, Yanlin Yang, and Hai Zhang. Binary encoding
differential evolution for combinatorial optimization problems. International Journal
of Education and Management Engineering, 1(3):59–66, 2011.

[59] Daniela Zaharie. Influence of crossover on the behavior of differential evolution al-
gorithms. Applied soft computing, 9(3):1126–1138, 2009.

98

BIBLIOGRAPHY

[60] M Fatih Tasgetiren, Yun-Chia Liang, Gunes Gencyilmaz, and Ipek Eker. A differen-
tial evolution algorithm for continuous function optimization. In IEEE Congress on
Evolutionary Computation, volume 1, 2005.

[61] Aristotelis E Charalampakis and George C Tsiatas. Critical evaluation of meta-
heuristic algorithms for weight minimization of truss structures. Frontiers in Built
Environment, 5:113, 2019.

[62] Jiong Yang, Haixun Wang, Wei Wang, and Philip Yu. Enhanced biclustering on
expression data. In Third IEEE Symposium on Bioinformatics and Bioengineering,
2003. Proceedings., pages 321–327. IEEE, 2003.

[63] Kalyanmoy Deb. Multi-objective optimisation using evolutionary algorithms: an in-
troduction. Springer, 2011.

[64] David E Golberg. Genetic algorithms in search, optimization, and machine learning.
Addion wesley, 1989(102):36, 1989.

[65] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and
elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary
computation, 6(2):182–197, 2002.

[66] Rakesh Angira and BV Babu. Non-dominated sorting differential evolution (nsde):
An extension of differential evolution for multi-objective optimization. In IICAI,
pages 1428–1443, 2005.

[67] Mohsen Lashkargir, S Amirhassan Monadjemi, and Ahmad Baraani Dastjerdi. A
new biclustering method for gene expersion data based on adaptive multi objective
particle swarm optimization. In 2009 Second International Conference on Computer
and Electrical Engineering, volume 1, pages 559–563. IEEE, 2009.

[68] Junwan Liu, Zhoujun Li, Feifei Liu, and Yiming Chen. Multi-objective particle swarm
optimization biclustering of microarray data. In 2008 IEEE International Conference
on Bioinformatics and Biomedicine, pages 363–366. IEEE, 2008.

[69] Dervis Karaboga and Bahriye Basturk. Artificial bee colony (abc) optimization al-
gorithm for solving constrained optimization problems. In Foundations of Fuzzy
Logic and Soft Computing: 12th International Fuzzy Systems Association World
Congress, IFSA 2007, Cancun, Mexico, June 18-21, 2007. Proceedings 12, pages
789–798. Springer, 2007.

99

BIBLIOGRAPHY

[70] Ezgi Zorarpacı and Selma Ayşe Özel. A hybrid approach of differential evolution
and artificial bee colony for feature selection. Expert Systems with Applications,
62:91–103, 2016.

[71] Gening Xu and Xingfeng Wang. Elite-guiding binary differential evolution. In 2015
6th International Conference on Manufacturing Science and Engineering, pages 860–
865. Atlantis Press, 2015.

[72] Tao Gong and Andrew L Tuson. Differential evolution for binary encoding. In Soft
Computing in Industrial Applications: Recent Trends, pages 251–262. Springer, 2007.

[73] Andries P Engelbrecht and Gary Pampara. Binary differential evolution strategies.
In 2007 IEEE congress on evolutionary computation, pages 1942–1947. IEEE, 2007.

[74] Eckart Zitzler and Lothar Thiele. An evolutionary algorithm for multiobjective op-
timization: The strength pareto approach. TIK report, 43, 1998.

[75] Audrey P Gasch, Paul T Spellman, Camilla M Kao, Orna Carmel-Harel, Michael B
Eisen, Gisela Storz, David Botstein, and Patrick O Brown. Genomic expression
programs in the response of yeast cells to environmental changes. Molecular biology
of the cell, 11(12):4241–4257, 2000.

[76] Audrey P Gasch, Paul T Spellman, Camilla M Kao, Orna Carmel-Harel, Michael B
Eisen, Gisela Storz, David Botstein, and Patrick O Brown. Genomic expression
programs in the response of yeast cells to environmental changes. Molecular biology
of the cell, 11(12):4241–4257, 2000.

[77] Ash A Alizadeh, Michael B Eisen, R Eric Davis, Chi Ma, Izidore S Lossos, Andreas
Rosenwald, Jennifer C Boldrick, Hajeer Sabet, Truc Tran, Xin Yu, et al. Distinct
types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature,
403(6769):503–511, 2000.

[78] Gabriel F Berriz, Oliver D King, Barbara Bryant, Chris Sander, and Frederick P
Roth. Characterizing gene sets with funcassociate. Bioinformatics, 19(18):2502–
2504, 2003.

[79] Hsin-Tien Chiang, Yi-Yen Hsieh, Szu-Wei Fu, Kuo-Hsuan Hung, Yu Tsao, and Shao-
Yi Chien. Noise reduction in ecg signals using fully convolutional denoising autoen-
coders. IEEE Access, 7:60806–60813, 2019.

100

BIBLIOGRAPHY

[80] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Ex-
tracting and composing robust features with denoising autoencoders. In Proceedings
of the 25th international conference on Machine learning, pages 1096–1103, 2008.

[81] Jonathan Masci, Ueli Meier, Dan Cireşan, and Jürgen Schmidhuber. Stacked convo-
lutional auto-encoders for hierarchical feature extraction. In Artificial Neural Net-
works and Machine Learning–ICANN 2011: 21st International Conference on Arti-
ficial Neural Networks, Espoo, Finland, June 14-17, 2011, Proceedings, Part I 21,
pages 52–59. Springer, 2011.

[82] Dervis Karaboga and Bahriye Basturk. On the performance of artificial bee colony
(abc) algorithm. Applied soft computing, 8(1):687–697, 2008.

[83] Mustafa Servet Kiran and MESUT Gündüz. Xor-based artificial bee colony algorithm
for binary optimization. Turkish Journal of Electrical Engineering and Computer
Sciences, 21(8):2307–2328, 2013.

[84] Rafet Durgut. Improved binary artificial bee colony algorithm. Frontiers of Infor-
mation Technology & Electronic Engineering, 22(8):1080–1091, 2021.

[85] Mustafa Servet Kiran. A binary artificial bee colony algorithm and its performance
assessment. Expert Systems with Applications, 175:114817, 2021.

[86] jplobo1313. G-Bic. https://github.com/jplobo1313/G-Bic, 2022.

[87] Younes Charfaoui, Amina Houari, and Fatma Boufera. Amodebic: An adaptive
multi-objective differential evolution biclustering algorithm of microarray data us-
ing a biclustering binary mutation operator. Expert Systems with Applications,
238:121863, 2024.

[88] Mehdi Kaytoue, Sergei O Kuznetsov, Juraj Macko, and Amedeo Napoli. Biclustering
meets triadic concept analysis. Annals of Mathematics and Artificial Intelligence,
70:55–79, 2014.

101

https://github.com/jplobo1313/G-Bic

Appendix A

Biclustering Metric Calculation
Examples

A.1 MSR: Calculation Example

MSR for a bicluster B that consists of I rows and J columns is defined as follows:

(2.1)MSR(B) =
1

|I|.|J |

|I|∑
i=1

|J |∑
j=1

(bij − biJ − bIj + bIJ)2 (A.1)

Where:
bij: represents the expression value of gene i under condition j within the bicluster.
biJ : represents the mean expression value of all genes across condition j in the bicluster.
It is calculated as follows: biJ = 1

|J |
∑

j∈J bij

bIj: represents the mean expression value of gene i across all conditions in the bicluster.
It is calculated as follows: bIj = 1

|I|
∑

j∈J bij

bIJ : denotes the overall mean expression value of the bicluster. Calculated as follows:
bIJ = 1

|I|.|J |
∑

i∈I,j∈J bij

Example: Consider the genes and conditions included in the first bicluster as follows:

B =

(
6 3 68

67 41 98

)

When i = 0, j = 0

b00 = 6

bIJ =
6 + 3 + 68 + 67 + 41 + 98

6
=

283

6
≈ 47.167

A

APPENDIX A. BICLUSTERING METRIC CALCULATION EXAMPLES

b0J =
6 + 3 + 68

3
=

77

3
≈ 25.667

bI0 =
6 + 67

2
=

73

2
≈ 36.500

Substitute these values into the MSR equation and keep iterating:

MSR(B) =
1

2× 3

2∑
i=1

3∑
j=1

(bij − biJ − bIj + bIJ)2

After plugging in the values and performing the calculations:

MSR(B) ≈ 43.167

A.2 Var: Calculation Example

The variance metric is formally defined as follows:

(2.2)V ar(B) =

|I|∑
i=1

|I|∑
j=1

(bij − bIj)2 (A.2)

Where:
B: refers to the bicluster under consideration.
|I| and |J |: the numbers of genes and conditions in the bicluster, respectively. bij: repre-
sents the expression value of gene i under condition j within the bicluster.
bIj: represents the mean expression value of gene i across all conditions in the bicluster.
The Variance metric calculates the squared difference between individual expression val-
ues bij and the mean expression value bIj of gene i across all conditions in the bicluster.
These squared differences are accumulated by the summing terms for all elements inside
the bicluster.

Example: Consider the genes and conditions included in the first bicluster as follows:

B =

(
6 3 68

67 41 98

)
When i = 0, j = 0

b00 = 6

bI0 =
6 + 67

2
=

73

2
≈ 36.500

B

APPENDIX A. BICLUSTERING METRIC CALCULATION EXAMPLES

Substitute these values into the Variance equation and keep iterating::

V ar(B) =
2∑

i=1

3∑
j=1

(bij − bIj)2

After plugging in the values and performing the calculations:

V ar(B) ≈ 4321.33

C

