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ABSTRACT

Polyharmonic maps of order k£ are a natural generalization of harmonic maps, for
k = 2, this maps are called biharmonic maps. In this thesis we will study the bihar-
monicity of a vector field X on a pseudo-Riemannian manifold (M, g) viewed as a map
X : (M,g) — (T'M, gs) where gg is the Sasaki metric. More precisely, we establish
the formula of the bitension field of X and we show characterization theorem for X
to be biharmonic map, and we describe the relationship between vector fields X that
are critical points of the bienergy functional Es restricted to variations through vector
fields, equivalently X are biharmonic vector fields, and vector fields which are bihar-
monic maps. Moreover, several applications are included.

Key words: Tangent bundle, Sasaki metric, biharmonic map, vector fields.



RESUME

Les applications polyharmoniques d’ordre k sont une généralisation naturelle des ap-
plications harmoniques, pour k = 2, ces applications sont appelées applications bihar-
moniques. Dans cette these nous étudierons la biharmonicité d’un champ de vecteurs X
sur une variété pseudo-riemannienne (M, g) vue comme une application X : (M, g) —
(T'M, gs) ou gs est la métrique de Sasaki. Plus précisément, nous établissons la for-
mule du champ de bitension de X et nous montrons un théoreme de caractérisation
de X pour qu’il soit une application biharmonique, et nous décrivons la relation entre
les champs de vecteurs X qui sont des points critiques de la fonctionnelle biénergie Fs
limité aux variations sur les champs de vecteurs, de maniere équivalente X sont des
champs de vecteurs biharmoniques, et les champs de vecteurs qui sont des aplications
biharmoniques. De plus, plusieurs applications sont incluses.

Mots clés: Fibré tangent, metrique de Sasaki, application biharmonique, champ de
vecteurs.
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INTRODUCTION

Let (M, g) and (N, h) be smooth pseudo-Riemannian manifolds of dimensions m and n
respectively, and let ¢ : (M, g) — (N, h) be a smooth map between them. The energy
functional or the Dirichlet energy of ¢ over a compact domain D of M is defined by

Ble.D) =5 | 30 eihtdples). deten))oy, 0

where {e;}™, a local pseudo-orthonormal frame field of (M, g) with &; = g(e;, €;) = %1
for all 1nd1ces i =1,2,--- ,m. If M is compact, we write F(p) = F(p, M). The
map ¢ is called harmonic if it is a critical point of the energy functional (1). The
Euler-Lagrange equation of (1) is [3, 11]

((p) TI'g VdSO Z VLP ng 61 dgo(Vezel)} =0.

Here 7(¢) is the tension field of ¢ and V¥ denotes the connection on the vector bundle
@ 'TN — M induced from the Levi-Civita connection V¥ of (N, h) and V the Levi-
Civita connection of (M, g).

Now, denote by X(M) the set of all smooth vector fields on M and by gg the Sasaki
metric on the tangent bundle TM. Any X € X(M) determines a smooth map from
(M, g) to (TM, gs). The energy of X is, by definition, the energy of the corresponding
map. When M is compact and g is positive definite, it was proved in [17, 27| that
X : (M, g) — (TM,gs) is an harmonic map if and only if X is parallel, moreover this
results remain true if X is a harmonic vector field i.e. X is a critical point of the energy
functional E restricted to the set X(M) see [13]. In contrast to the Riemannian case,
it was shown in [5] the existence of non-parallel left-invariant vector fields which define
harmonic maps on three dimensional unimodular and non-unimodular Lorentzian Lie
groups.

10
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One of the first generalizations of harmonic maps is the notion of polyharmonic
maps of order k(k > 2) between Riemannian manifolds introduced by Eells and Lemaire
in [10]. Precisely, polyharmonic maps of order k are critical points of:

1
Bule) = 5 [ 1+,

= 2JM ® )
File) { 5 S IVEWLPOM i k= 21 + 1.

Here
1 —1
W, =A% --A¥7(p) € o TN,
1-1

where
m

A?T(p) = =Y (VEVET(9) = VEu, T(9)
i=1 ’
is the rough Laplacian on ¢ 'T'N. For k = 2, we obtain the bienergy of ¢ as the
functional

Ble) = 5 [ Ir@)Po,

and a smooth map ¢ is biharmonic if and only if it is a critical point of E5. The
associated Euler-Lagrange equation is established in [18]. By definition, it can be
seen that every harmonic map is biharmonic. However, a biharmonic map can be
non-harmonic in which case it is called proper biharmonic. We refer to [28, 31| for
more information on results concerning the theory of biharmonic maps. The notion
of biharmonic map between Riemannian manifolds has been extended to the case of
pseudo-Riemannian manifolds. The corresponding critical point condition has been
derived in [8] as follows

i) = Yoei( (V27 = Ty, )7(6) — B (dole) r(e)dp(en ) =0,

where 73(¢) is the bitension field of ¢ and R is the curvature tensor of N.

On the other hand, when (M, g) is the pseudo-Riemannian manifold, Markellos and
Urakawa [25] defined the bienergy of X € X(M) as the bienergy of the corresponding
map (see [23] for the Riemannian case) and obtained the critical point of the bienergy
functional Ey restricted to the set X(M) (equivalently, X is a biharmonic vector field,
see [23] for the Riemannian case), further in [23] they proved that if g is positive definite
and M is compact then X is biharmonic vector field (resp. biharmonic map) if and only
if X is parallel. In this work, we will study the biharmonicity (polyharmonicity of order
2) of X € X(M) viewed as a map X : (M,g) — (T'M,gs) in both Riemannian case
and pseudo-Riemannian case. More precisely, we address the problem of characterizing
those vector fields which are biharmonic maps, and examine the relationship between
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vector fields X that are critical points of the functional F, restricted to variations
through vector fields (equivalently, X are biharmonic vector fields) and vector fields
which are biharmonic maps.

Let us now briefly describe the contents of the present work, organized into four
chapters.

In the first chapter, after an introduction of basic material and definitions we discuss
known facts about horizontal and vertical lifts of vector fields on a a differentiable
manifold M. We calculate the Lie bracket, define a class of natural metrics g on T'M
and obtain formulae for its Levi-Civita connection V. Afterward we define the Sasaki
metric as an example of a natural metric and calculate its Levi-Civita connection and
its Riemann curvature tensor.

With the second chapter, we recall briefly the notions of harmonic and biharmonic
mappings between pseudo-Riemannian manifolds, integrating them with some more
details.

In the third chapter, we present our work on the biharmonicity of vector fields on
Riemannian manifolds. We compute the expression of the bitension field of a vector
field considered as a map from a Riemannian manifold (M, g) to its tangent bundle
T M equipped with the Sasaki metric gg. As a consequence, we show characterization
theorem for a vector field to be biharmonic map. Moreover, we prove non-existence
results for left-invariant vector fields which are biharmonic without being harmonic
maps and non-harmonic biharmonic maps respectively on unimodular Lie groups of
dimension three.

In the last chapter, we deal with the biharmonicity of a vector field X viewed
as a map from a pseudo-Riemannian manifold (M, g) into its tangent bundle T'M
endowed with the Sasaki metric gg. Precisely, we characterize those vector fields which
are biharmonic maps, and find the relationship between them and biharmonic vector
fields. Afterwards, we study the biharmonicity of left-invariant vector fields on the
three dimensional Heisenberg group endowed with a left-invariant Lorentzian metric.
Finally, we give examples of vector fields which are proper biharmonic maps on the
Godel universe.



CHAPTER 1

PRELIMINARIES

In this chapter, we give basic material and definitions needed later. The references
used are: [3], [7],[21], [20], [22], [28], [33].

1.1 Differentiable manifold

1.1.1 Differentiable manifold

Definition 1.1.1. Let M be a topological Hausdorff space with a countable basis. M
1s called a topological manifold, if there esists an m € N and for every point p € M an
open neighborhood U, of p such that U, is homeomorphic to some open subset V,, C R™.
The integer m is called the dimension of M .

Definition 1.1.2. Let M™ be a topological manifold, U an open and connected subset
of M and ¢ : U — R™ a continuous map homeomorphic onto its image o(U). Then
(U, p) is called a local coordinate on M . A collection A = {(Uy, o) | @ € I} of local
coordinates on M 1is called a C"-atlas if

o M =U,U,, and
e the corresponding transition maps
806 o 90;1 |€0a(UamUﬁ): g@a(Ua N Uﬁ) — Rm

are C" for all o, B € 1.
If Ais a C"-atlas on M then a local coordinate (U, ) on M is said to be compatible

with A if AU (U, ) is a C™-atlas. A C"-atlas A is maximal if it contains all local
coordinates compatible with it. It is also called a C"-structure on M and the pair
(M, A) is called a differentiable C"-manifold. By smooth we mean C* defined by

C>* =nNE,C* We write M™ to denote that M has dimension m.

13
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1.1.2 Orientable manifold

Definition 1.1.3. Let M™ be a smooth manifold. Two charts (Uy, pa) and (Ug, s)
are orientation compatible if the transition map .5 = @go @, ' satisfies

det(dwas)s > 0,

for all x € ¢, (U, NUg). An orientation of M™ is an atlas A = {(U;, pi) }icr whose
charts are pairwise orientation compatible. We say M 1is orientable if it has an orien-
tation.

Theorem 1.1.1. An n-dimensional manifold M is orientable if and only if M admits
a nowhere vanishing n-form.

1.1.3 Manifolds with boundary

Definition 1.1.4. A smooth manifold with boundary is a Hausdorff space M with a
countable basis of open sets and a differentiable structure A = {U,, pa} where ¢, :
Uy = ©u(Us) C H™ is homeomorphism, such that :

o H" = {(z1,...,2,) € R" / 2y > 0}. ( half-space )

e the union of U, cover M

o If (Un, o) and (Us, @g) are two elements of A the @z o @' and ¢, o 9051 are

diffeomorphisms of ¢o(Uy N Ug) and pp(Uy NUg) , open subsets of H™

1

o A is maximal with respect first and third properties.

1.2 Tangent Bundle

1.2.1 Tangent Space

Let M™ denote a C'*° . Just as for R", we define a germ of a C* function at p in M
to be an equivalence class of C* functions defined in a neighborhood of p in M, two
such functions being equivalent if they agree on some, possibly smaller, neighborhood
of p. The set of germs of C'™ real-valued functions at p in M is denoted by C5°(M).
The addition and multiplication of functions make Cp°(M) into a ring; with scalar
multiplication by real numbers, C7°(M) becomes an algebra over R. choosing an
arbitrary (U, ¢) around p it is easily verified that ¢* : CZ7, (M) — Cp°(M) given by
©*(f) = f o is an isomorphism of the algebra of germs of C'™ function at ¢(p) € R"
onto the algebra C°(M).

Definition 1.2.1. A tangent vector X, at p € M is a map X, : C;°(M) — R such
that
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(i) Xpla-f+B-9)=a- - X,(f)+ 8- X,(9) (linearity)
(ii) Xp(f-g9) = g(p) - Xp(f) + f(p) - Xp(f)  ( Leibnitz rule )

for all o, B € R and f,g € C;°(M). The set of all tangent vectors X, and p € M is
denoted by T,M and is called the tangent space of M at p.

The tangent space T, M s turned into a real vector space by defining the operations
+ and - by

(1) (X +Y)(f) = X(f) + Yo ()
(ii) (o Xp)(f) = a- X,(f)
foralla € R and X,,,Y, € T,M.

Definition 1.2.2. Let ¢ : M — N be a map between two manifolds. For a point
p € M we define the map dp, : T,M — T, N by

(dep)(Xp)(f) = Xp(f o)
For all X, € T,M and f € C* The map dy, is called the differential of ¢ at p € M.

Proposition 1.2.1. Let ¢ : M — M and v M — N be two maps between smooth
manifolds, then

(i) the map dy, : T,M — Tw(p)ﬁ is linear,

(ii) if idys is the identity map, then d(idy), = idp,w,
(iil) d(¥ o p)p = dy(p) 0 dpy,

for allp e M.

Proof. The first two points follow directly from the definition, so we only have to prove
the (iii) . If X, € T,M and f € C*, then

(dlﬁ@(p) © d@p(Xp»(f) = (dSOP(Xp))(f 0 1))
Xp(forpoy)
= d(¢o Sp)p(Xp)(f)

]

Corollary 1.2.1. Let ¢ : M — N be a diffeomorphism with inverse ¢ = o=t : N —
M. Then the differential dp, : T,M — T,(p)M at p is bijective and (dp,) ™" = dipy(p).
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Definition 1.2.3. Let M™ be a manifold, (U, x) be a local coordinate on M and {ey|k =
1,...,m} be the standard basis for R™. Forp € M, we define (a%k)p e T,M by

<8%>p fe <§—gfk><p> = 9, (f oo V(al(p))

Proposition 1.2.2. The set {(3% ),k = 1,...,m} is a basis for T,M for allp € U.

Proof. Because M is smooth, it follows that the inverse of z is smooth and therefore
the differential of the inverse satisfies

dx =}

o (00 )(f) = O (f 027 ) (2 (p)) = ((57)p)(f)

for all f € C. O

The tangent space T,M may be viewed in an alternative way. For this we use
the set C(p) of all equivalence classes of locally defined C''-curves passing through the
point p € M. It is possible to identify T, M with C(p) being the set of all tangents to
curves going through the point p. Then a vector v € T,M can be described by

o(f) = 507 028 o

with f: U € M — R a function defined on U containing p and v : I — U an arbitrary
curve with v(0) = p and (0) = v

1.2.2 Tangent Bundle

Definition 1.2.4. Let E and M be smouth manifolds and w : E— M be a continuous
surjective map. If

(i) for each p € M the fiber E, = 7 '(p) is an n-dimensional vector space and,

(ii) for each p € M there exists a bundle chart (= (U), ) consisting of the pre image
of ™ of an open neithborhood U of p and a homeomorphisme v : 7= (U) — U xR"
such that for all ¢ € U the map g = Y\g, : £y — ¢ x R" is a vector space
1somorphism,

then the triple (E, M, m)is called an n-dimensional topological vector bundle over M.
It is said to be trivial if there exists a global bundle chart ¢ : E — M x R™.

Definition 1.2.5. Let (E, M, m) be a topological vector bundle. A continuous map
o: M — E is called a section of the bundle if m o o(p) = p for each p € M.
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Definition 1.2.6. A collection

B ={(r""(Ua),va)la € I}

of bundle charts is called a bundle atlas for (E,M,m) if M = J,Us. For each pair
(o, B) there exists a function A, p: Uy NUg — GL(R™), into the general linear group
GL(R™) of R™, such that the corresponding continuous map

Yo 0 V5 | wants)xre + (Ua NUs) x R" = (Uy N Ug) x R"

s given by

(p;v) = (P, (Aap) (V).
The elements of {(Aap)(v)\e, B € I} are called the transition maps of the bundle atlas
B.

Remark 1.2.1. Since all the maps which we are using are smooth we call a topological
vector bundle smooth, if B is mazimal. A smooth section of (E, M, ) is called a vector
field and we denote the set of all vector fields of (E, M, m) by I'(E).

Definition 1.2.7. By the following operations we make I'(E) into a C*°(M) = C*(M,R)
module

(1) (v+w)p = vy 4wy,
(ii) (f-v)p = f(x) - vp,
for allv,w € T'(E) and f € C*(M). In particular, T'(E) is a vector space over R.

Definition 1.2.8. Let M be a manifold and (E,M,w) be an n-dimensional vector
bundle over M. A set F' = {vy,...,v,} of vector fields

Ul,...,UniUCM%E

is called a local frame for E over U if for each p € U the set {(v1)p, ..., (Un)p} is a basis
for the vector space E,.

Definition 1.2.9. Let M™ be a smooth manifold. The tangent bundle TM of M is
gien by
TM ={(p,u)|r € M,uecT,M}.

The bundle map 7 : TM — M with 7 : (p,u) — p is called the natural projection of
TM.

Theorem 1.2.1. Let M™ be a smooth manifold with C*-atlas A. Then the tangent
bundle TM is a smooth manifold of dimension 2m and A induces a C*-atlas A* on

TM.
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Proof. For every local coordinate z : U — R™ in A we define z* : 771(U) — R™ x R™
by

Then the collection
(z*)" Y (W) c TM|(U,z) € A and W C 2(U) x R™ open

is a basis for a topology Tryr on TM and (7 '(U),z*) is a local coordinate on the
2m-dimensional topological manifold (T'M, Try). If (U,x) and (V,y) are two local
coordinates in A such that x € U NV, then the transition map

(y)o(z*) t:a*(m (U NV)) = R™ x R™

is given by

(p,u) — <yox iai Nu®, ..., Y a—;(x_l(p))uk>

!is smooth, hence (y*)o(z*)~! is smooth and therefor A* =

*|(U,z) € A) is a C™-atlas on TM and (T'M, A*) is a smooth manifold. [J

We are assuming that yox~
(r=1(U),

Remark 1.2.2. For each point p € M the fiber 71 (p) of 7 is the tangent space
T,M of M at p and hence an m-dimensional vector space. For a local coordinate
r:U = R™€ A we definez : 7 (U) = U x R™ by

p,zm:ukai

=1

ol

The restriction T, = &

o T.M — x xR™ to T, M 1is given by

1 m
Ty E u® (%k u'y . u™),

which obuviously is a vector space isomorphism. Hence the T : 7= (U) — U X R™ is a
bundle chart. This implies that

B={(n"'(U),2)|(U.x) € A}

is a bundle atlas transforming (T M, M, ) into an m-dimensional topological vector
bundle. This implies that the vector bundle (T M, M, ) together with the maximal
bundle atlas B induced by B is a smooth vector bundle. A smooth section of (TM, M, )
is called a vector field and we denote the set of all vector fields of (T M, M, m) by I'(T' M)
or X(M).
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Definition 1.2.10. Let M be a manifold and X,Y € I'(TM) be vector fields on M.
Then the Lie bracket [X,Y], of X and Y at p € M is defined by

(X Y,(f) = X,(Y(f)) = Yu(X(f))
where f € C®(M).

1.2.3 Pullback tangent bundle

Definition 1.2.11. Let ¢ : M — N a map of class C'*° between two differentiable
manifolds. The pullback tangent bundle is defined by:

¢ 'TN = {(z,v)|z € M,v € Ty, N}.

A section on ¢ 'T'N is a map of class C*,V : M — TN such that V (x) € TN, Vz €
M. Denote by T(¢'TN) the set of sections of o™ 'TN.

Example 1.2.1. Let ¢ : M — N a map of class C™ between two differentiable mani-
folds.

1. ForallY € T(TN), Yop: M — TN is a section on ¢ 'TN.
2. For all X e T(TM),dp(X) € T(¢~'TN).

3. The vector fields along a curve v in a differentiable manifold M are sections of
—1
o T'M.

1.3 Lie groups

Definition 1.3.1. A Lie group is a group G with a structure of differential manifold,
such that the map

f:GxG — G
(r,y) — oy~

1
18 smooth.
Example 1.3.1. e St = {e" 0 € R}, considered as a group under multiplication.
e Linear Lie groups with matrix multiplications
GL(n,R) = {M € M(n,R)/det M # 0},
SL(n,R) ={M € GL(n,R)/det M = 1},
O(n)={M € GL(n,R)/'MM = 1}.



1.4 Pseudo-Riemannian manifolds 20

1.3.1 Lie algebra of a Lie group

Definition 1.3.2. A Lie algebra g of dimension n on K, is an n-dimensional vector
space on K with a bilinear map, [,] : g X g — @ called Lie bracket which has the
following properties:

1. [X,X] =0 for each X € g.
2. [ X, [V, Z)|+ Y, 2, X]]| + [Z,[ X, Y]] =0 (Jaccobi identity),
for each X,Y, 7 € g.

Definition 1.3.3. A Lie algebra morphism is a Linear map T between two Lie algebras
which preserves the brackets i.e. T([,]) = [T'(), T()].

Definition 1.3.4. Let G be a Lie group, we define the two smooth maps

Ly:G — G
r —> Ly(x)=gx

and,
R,:G — G
r — Ry(x)=uyg
Ly (resp. Ry) is called left translation (resp. right translation).

Definition 1.3.5. Let G be a Lie group, a vector field X € X(G) is said to be left
mvariant if:

(L)X =X (Vyed).

Definition 1.3.6. The Lie algebra of the Lie group G is the space of all left invariant
vector fields on G equipped with the Lie bracket of vector fields.

1.4 Pseudo-Riemannian manifolds

Definition 1.4.1. A pseudo-Riemannian metric tensor g on a manifold M is a sym-
metric non-degenerate (0,2) tensor on M of constant indez, i.e., g assigns to each point
x € M a scalar product g, on T, M and the index of g, is the same for all x € M.

Definition 1.4.2. A pseudo-Riemmannian manifold M™ is an m-dimensional man-
ifold equipped with a pseudo-Riemannian metric tensor g. The common wvalue s,
0 < s < m, of index on M 1is called the index of M. If s = 0, M 1is called a Rie-
mannian manifold. In this case, each g, is a positive definite inner product on T,M.
A pseudo-Riemannian manifold (resp. metric) is also known as a semi-Riemannian
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(resp. metric). A pseudo-Riemanniann metric on an even-dimensional manifold M is
called a neutral metric if its index is equal to %dim M. If the index of M is one, M 1is
called a Lorentz manifold and the corresponding metric is called Lorentzian. A manifold
of dimension > 2 admits a Lorentzian metric if and only if it admits a 1-dimensional
distribution.

Definition 1.4.3. Let ¢ : M — N be a map of class C* between two differentiable
manifolds, and h be a pseudo-Riemannian metric on N. Then h induces a a pseudo-
Riemannian metric on T(o *T'N) given by h(V,W)(z) = hy(w)(Ve, Wa), for all z € M
and V,W € T(p~'TN).

Definition 1.4.4. Let G be a Lie group. A pseudo-Riemannian g on G is left invariant

of
g<X’ Y)x = g((La)*X’ (La)*y)

Va,x € G, and X,Y € T, G, that is, L, is an isometry.

1.5 Levi-Civita connexion

Definition 1.5.1. A linear connection V on a manifold M is a function:
V : T(TM) x T(TM) — T(T'M)
(X,)Y) = VxY
such that for every X,Y,Z € T'(T'M) and f € C*(M), we have:
1. Vx(Y+Z2)=VxY +VxZ.
2. Vx(fY)=X(/)Y + f(VxY).
3. Vxipy(Z)=VxZ + f(VyZ).

VxY is called the covariant derivative of Y with respect to X. The torsion tensor
T of a linear connection V is a tensor of type (1,2) defined by T'(X,Y) = VY —
VyX - [X,Y].

Remark 1.5.1. With respect to a local coordinate system (x;) on M, ¥V is entirely
defined by the Christoffel symbols defined as follows:
v, 0

dx; 8xj K 8xk '

Let X = X' et Y =YI52, then :
% J

% o,
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The following theorem shows that on a pseudo-Riemannian manifold there exists a
unique connection sharing two further properties.

Theorem 1.5.1. On a pseudo-Riemannian manifold (M, g), there exists a unique
linear connection V such that

1. V is torsion free, i.e., [X,Y] = VxY — Vy X, and
2. X(9g(V,2) =9g(VxY,2Z)+ g(Y,VxZ) for all X,Y,Z € T(TM).

This unique linear connection V is called the Levi-Civita connection of (M, g) and it
1s characterized by the Koszul formula:

29(VxY, Z) = X(g(Y, 2)) + Y (9(Z, X)) = Z(9(X,Y))

+9(Z,[X,Y]) + (Y, [Z, X)) — g(X, [V, Z)). (1.1)

1.5.1 Riemann curvature tensor

Remark 1.5.2. For a pseudo-Riemannian manifold (M, g) with Levi-Civita connection
V, the function R : X(M) x X(M) x X(M) — X(M) defined by

R(X,Y)Z =VxVyZ -VyVxZ —Vixy|Z,
is a (1,3) tensor field, called the Riemann curvature tensor.
Proposition 1.5.1. The Riemann curvature tensor R satisfies the following properties:
1. RX,Y)Z =—-R(Y,X)Z.
2. g(R(X,Y)Z, W) =—g(R(X, Y)W, Z).
3. g(RIX,Y)Z,W)=g(R(ZW)X,Y).
4. RX,Y)YZ+R(Y,Z) X+ R(Z,X)Y =0.
For all XY, Z, W € X(M).

1.6 The vertical and horizontal lifts

Let M™ be smooth manifold, T'M the tangent bundle of M, and = : TM — M the
canonical projection. For any £ € T'M; (dn)e : T{TM — TryM is an epimorphism, or
equivalently m : TM — M is a submersion. Explicitly , in local coordinates (2°)1<ij<m
and (2, y")1<i<m, for any & € TM and any X € T¢TM, putting

0

0
oxt ‘f

By <

m-1

X = X*
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where (X%, X™), i< € R*™, we have

0

(dﬂ)§<X) = XZ% ‘7‘((5)

Therefore, the vertical subspace V|¢ = ker(drm)e of T,T'M is given by

V‘g = Span{ (aiyi|§)1§i§m}

Let us now suppose that the manifold M is endowed with a linear connection V whose
components with respect to the local chart (U, ) are T'%; for any £ € 7=(U) is well
defined the map

K¢ : TTM — TroM

: _ vyi 0 m+i 0 | .
such that for any X € T,TM, with X = X' %] + X + 9q7 1€
Ke(X) = (X" + T (m(€) X7y (6)) 0 |

¢ ik Ozt 7€)

which is called the Dombrowski map. The horizontal subspace H of T¢T'M is now
defined by
H = ker(K¢),

and one can easily prove that, for any £ € TM
TeTM = Ve @ He. (1.2)

For example, if we consider a local chart (U, ¢) at x = m(&) of normal coordinates,
the expression of K¢ reduces to
o,
— ym+t .
from witch (1.2) follows immediately, we obtain , in this way, the vertical and the
horizontal distributions on 7'M

VTM == (V§>§GTM and HTM == (Hg)geTM

and the natural projection operators, which we shall denote, respectively, with P, :
D(TTM) — T(VTM) and Py, : T(TTM) — T(HTM). 1t is of a certain importance to
point out the possibility of defining some special types of vector fields on T'M, starting
with a vector field on M, Namely, if we take X € I'(T'M) , it is defined the vertical lift
of X, as the unique vector field XV € I'(TT M), such that, for any £ € TM

(dm)e(XE) =0 and Ke(XY) = Xne)

and the horizontal lift of X as the unique vector field X, such that, for any X" €
D(TTM)
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(dm)e(X}) = Xae  and Ke(X¢) =0

in local coordinates (2°)1<i<m and (2%, y")1<i<m, putting X|y = Xiazi, with X? €
C>=(U), the expression of XV and X" are

v i 8
Xy = (X M)ayi
and
X" = (Xiow)i—(r? o m) (X7 o )yt 0
7=1(U) ot jk Yy dy

from which, in particular, we get

d o
(6@1) |7r_1(U) ayz

and

d \n 0 ,
(%) ’w—l(U) T on (Tig o m)y"

from the previous relations, for any & € T'M

ve=spon{ (), ) md He=soan{ (@), }

therefore obtaining, recalling (1.2)

rerar = span{ ()0 (20 )

Remark 1.6.1. Note that the maps X —— X" and X — X" are isomorphisms
between the vector space T, M and the subspaces Hny and V(,u), respectively. Each
tangent vector Z € T, TM can then be written as

Z=X"+Y"

where X and Y are uniquely determined by X = dmw(Z) andY = K(Z). It follows that
if f: M — R is a smooth real valued function on M, then

XM form)=X(f)om and X"(fom) =0,

for all X e T'(TM).
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1.7 The Lie Bracket

In this section we use the vertical and horizontal lifts to calculate the Lie bracket on
the tangent bundle.

Theorem 1.7.1. Let (M™, g) be a pseudo-Riemannian manifold, V be the Levi-Clivita
connection and R be the Riemann curvature tensor of V. Then the Lie bracket on the
tangent bundle T M of M satisfies the following:

(i) X" Y] =0
(i) (X" Y")e = (VXY
(iii) [X",Y") = —(R(X,Y)2)! + [X, Y],

for any XY € T'(TM) and any ¢ = (x,u) € TM, where Z € I'(TM) such that
Zn(¢) = G-

Proof. Using the inclusion map ¢, we see that there exist vector fields X , YecC (T, T, M)
which are i-related to XV and Y, respectively i.e.

Xy = di(Xy) and Vi) = diY)

for all w € T,M. Hence we get
(XY, Y] = di([X,Y].)

By the definition of the Dombrowski map we know that K(X(, ,)) = X, for all

u € T,M . Therefore X and Y are right-invariant vector fields on T, M in its capacity
as a Lie group. Hence the right-hand side of the formula vanishes, since T,M is an
abelian Lie group. This proves (i). We Know that dr(X%) = X () and dr(Y}) = 0.
Hence dr([X",Y"]) = [dr(X"),dn(Y?)] = 0 and dr((VxY)") = 0, we get

dr([X",Y"]) = dr((VxY)")

and
dr([ X" V") = [X,Y].

So we only have to compute the function K of the right-hand sides in the last two
parts of the theorem. To calculate them we will again use our previous abbreviation

X' = 2 where (z',...,2™) are local coordinates for M . It is sufficient to calculate

both terms just for X,Y € {%, e %}, because all our functions are linear in every

argument. Including the abbreviations is this corollary, and using [%, %] = 0 and

agi (y7) = &;; for all 4,3 € {1,...,2m}, with §;; the Kronecker symbol, we obtain




1.8 Natural Metrics 26

By the definition of the Dombrowski map we obtain:

K([((’?ii>h’ (%)U} (cc,u)) - (Vaiya%L

This provides us with (ii). In the same way as above we will now, calculate.

[(%)hv(a%)h} = Z{%@ZOW)—%(Fﬁ,ow)ﬂrgow)(r;nw)

k,n=1

" 0
—(sz o W)(an © W)?Jla—yk}

- 0
= - (Rﬁj © W)yl_k
k=1 0y

Again, by using the Dombrowski map, we obtain for Z = (z,u)

k()" Go)'],) =R 50) 2

This proves (iii) and completes the proof. ]

1.8 Natural Metrics

Definition 1.8.1. Let (M™, g) be a pseudo-Riemannian manifold. A pseudo-Riemannian
metric g on the tangent bundle TM of M 1is said to be natural with respect to g if :

(1) Gau (X" V) = g,(X,Y),

(i) Gaw (X", Y") =0,

for all vector fields X, Y € T'(TM).

We can now use the Koszul formula to compute the Levi-Civita connection NV for
the tangent bundle (T M, g) equipped with a natural metric g with respect to g on M.

Lemma 1.8.1. Let (M™, g) be a pseudo-Riemannian manifold and T M be the tangent
bundle of M . Then for each (x,u) € TM and every natural metric g on T'M the
corresponding Levi-Civita connection V satisfies.

1. g(Vxn Y Wh) = g(VxY, W),

2. g(VxnY", W) = —3g((R(X,Y)Z)", W),

8. g(VxnY?, Wh) = —3g9(Y", (R(W, X)Z)"),

4 g(Van YU, W0 = 5(XM(g(Y", W*) + g(W", (VxY)")) = g(Y", (VxW)")),
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Vx Y Wh

QI

9(X*, (R(Y,W)Z)"),

( ( (vaXv) _§<Wv7(VYX)U)) _g(XU7(vYW)v))a
(=Wh(g(X",Y") +g(Y", (VwX)")) + 3(X*, (VwY)")),
(X7(g(Y", W) + Y¥(g(W", Y")) = W (g(X",Y"))),

Qi

VoYV, Wh

(V )
(Vxo YY)
9 )

)=

.00.\299”

G(Vn YR Wh

for all X, Y, W € I'(TM), where Z € I'(T'M) such that Z(y.) = (x,u) and R is the
curvature tensor field of V.

Proof. For any vector fields X, Y, W € I'(TM) and i, j, k € {h,v}
2(T ¥R = Xi(g(VI, W)+ Y (g, X)) — W(g(x", v)
+g(WH, (X Y]) + g(v?, (W, X)) — g(X°, [Y7, W),

(1) This s a consequence of Theorem 1.7.1, Definition 1.8.1 and the following compu-
tations

20(Vxn Y W = X"g(Y", wh) + Yh(gWw", X")
—Wh(g(X", Y") — g(X", [y", wh)
+g(Y" W X)) + g(Wh (X YY)
= XY, W) +Y(gW,Y))) - W(9(X,Y))
—g(X" [V, W) + g(Y", W, X)) + g(W", [X,Y]?)

+g(X", (R, W) 2)") = g(Y", (R(W, X)2)")
—g(W", (R(X,Y)Z)")

(2) The second assertion of the lemma is obtained as follows

gV Y W) = X"(g(Y", W) + Y (g(Wwe, X"))
_Wv(g(Xha Yh)) - g(Xh7 [Yha WU])
+g (Y W, XM) + g(We, (X, V)
= W’ (X Y) g(Xha [Yha Wv])
+g(Y", WY, X)) + g(W, (X", Y7).
The first term vanishes, because differentiating a horizontal vector field in a vertical
direction gives zero. The second and third terms also vanish, because the Lie bracket
of a horizontal vector field is vertical, therefore
29(VxnY", W) = g(W, [X",Y"])
= g(WU7 [X7 Y]h - (R(X7 Y)Z)U>
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= —g(W" (R(X,Y)Z)").

(3) This is analogous to the proof of part (2).
(3) The Koszul formula gives

(VY WY = X"g(Y", W) + YV (g(W", X))
—WU(g(X",Y") — g(X" [Y*, W)
+g(Y, W, X)) + g(W (X", Y
= X"gy",w*) —g(x" [yv, w)
+g(YVO WL X)) + gL X YY),

But the Lie bracket of two vertical fields is equal to zero and hence the result is
proven. (5) this is analogous to the proof of part (2), (6) and (7) are analogous to (4),
(8) this is direct consequence of the fact that Lie bracket of two vertical vector fields
vanishes. ]

Corollary 1.8.1. Let (M™, g) be a pseudo-Riemannian manifold and g be a natural
metric on the tangent bundle TM of M. Then the corresponding Levi- Civita connection

satisfies.

(Ve YP)e = (V¥ )l — %(R(X, Y)Z)

for all X,Y € T'(T'M) and any ¢ = (x,u) € TM, where Z € Coo(TM) such that
Zry = G and R is the curvature tensor field of V.

Definition 1.8.2. Let (M™,g) be a pseudo-Riemannian Manifold and let V be the
Levi-Civita connection on the tangent bundle (T'M, g), equipped with a natural metric
g. Let F: TM — TM be a differentiable map preserving the fibers and linear on each
of them. Then we define the vertical and horizontal lifts F¥ and F" by

F(n)' =" miF(z%)" and F(n)"=>0" nF(3%)"

where n =Y ni € m (V) is a local representation of n € T(TM) .

Lemma 1.8.2. For any vector field X € T'(TM) , ¢ = (z,u) € TM and n =
> i Ui% e 7 HV) we have

(1) (VxeF?)e = F(Xo)! + 30 miVxo F(2%)°,

(ii) (@X“Fh)é“ = F(X:L‘)ZL + 221 ni?X”F(aii)h;
(iii) (VxnF¥)e = (Vyn(F(u))?)e,

(iv) (VxnF™)¢ = (Vxn(F(u)")g
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Proof. Let (z',...,2™) be a local coordinate of M™ in a neighborhood V of x. Then,
we have XV - dx; = da'(X) for i € {1,...,n} . Hence we get

(Vx:Fln)') = vavwm(%m

= ZXU 771

m

= mi(X)F(

=1

LA i
= F(X,){+ > mVxF( 7"
i=1

0
+ nleUF(a 1)

0 0
a l) +772VXUF(6 l)

The second step follows by the product rule. Similarily we compute:

(VxeFm)") = va(w(;m

o 8
0
- an +7hVXvF(8$ )

6

For the two remaining equations of the Lemma we use a differentiable curve v :
[0,1] — M such that v(0) = = and 7/(0) = X, to get a differentiable curve U o :
[0,1] = T'M such that (U o y)(0) = ¢ and (U 0v)'(0)) = X/ . By the definition of our
functions F and F" we obtain FV |go,= (F 0 U)" |yoy and F" |ge,= (F o U)" |0y
This proves part (ii7) and (iv) of the Lemma. O

1.9 The Sasaki Metric

Definition 1.9.1. Let (M™,g) be a pseudo-Riemannian manifold. Then the Sasaki
metric gs on the tangent bundle T'M s natural metric given by

gs(XM Y = g(X,Y) o,
gs( XU, Y = go( XM, Y”) =0,
gs(X", YY) =g(X,Y)o
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for all vector fields X,Y € T'(T'M). The Sasaki metric of g with respect to the local
coordinates (z*,y') of TM is [35]

gs = gi;da'dz? + g;;050;

where 8; = dy’ + yhffljd:vj.

It is easy to prove that, if (p, ¢) is the signature of the metric g, then (2p, 2q) is the
signature of the Sasaki metric gg.

Example 1.9.1. We consider the Lorentzian manifold (R%, g), where
g = (do")* + (do*)? + (d2*)? — (dz*)*. (1.4)
Then, by virtue of (1.3) and (1.4), the Sasaki metric of g with respect to the local
coordinates (z°,y") of the tangent bundle of R* is given by:
gs = (dz')* + (dz®)* + (da®)? — (dz*)* + (dy')? + (dy*)* + (dy®)* — (dy*)*.

Example 1.9.2. The Egorov spaces are Lorentzian manifolds (R™, g), m > 3, where
f s a positive smooth function of a real variable and

—2
gy = f(@™) Y (da")? + 2da™ 'da™, (1.5)
1

3

%

These manifolds are named after 1. P. Egorov, who first introduced and studied them in
[12]. If (R™, g¢) is an Egorov space , m > 3, the only possible non-vanishing Christoffel
symbols are the following ones [4]:

0 AR
27 im:ﬁ7

m—1 __
Fii -

i=1,--,m—2. (1.6)

Then, by virtue of (1.3), (1.5) and (1.6), the Sasaki metric of gf with respect to the
local coordinates (z',y") of the tangent bundle of R™ is given by:

m—2

m—2
(97)s =1 Z(dwi)Q + 2da™ ™ + f Z(dyi)Q £ 2dy™ dy™
=1 i=1

m—2 m—2 N2 m—2
! % 1, ], 0 ! t 7, M 7.0 (f) \2 m\2
+f gydx dy' — f ijydy a2 W)
We can now calculate the Levi-Civita connection of the tangent bundle with respect
to gg.

Proposition 1.9.1. Let V be the Levi-civita connection of (TM, gs) equipped with the
Sasaki metric gs. Then
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() (VY = (VY )0 — 3(RIXY)Z), ),

(zu)

(i) (VanY") @y = (VxY)} Cewy 3 (R(Z,Y) X))

(iv) (VoY) () = 0,

for any XY € I'(TM) and any (x,u) € TM, where Z € I'(TM) such that Zr(,.) =

(x,u) and R is the curvature tensor field of V.

Proof. (i) This is nothing but Corollary 1.8.1.
(i7) The part (ii7) of Lemma 1.8.1 .

2g5(Vxn YU, W") = —gs((R(W,X)Z)",Y")
= g(R( 7Y) )
= —g(R(Z,Y)X,W).

Part (iv) of Lemma 1.8.1 implies

205(Vxn YU, W") = X"(gs(Y",W")) + gs(W", (VxY)")
—gs(Y", (VxW)")
= X(g(Y,W))+g(W,VxY) —g(Y,VxW)
= gW,VxY) +g(Y,VxW) +g(Z,VxY) — g(Y,VxW)
= 29(VxY,W).

The last important step follows by the definition of a metric connection.
(i7i) As above we use part (v) of Lemma 1.8.1 we get

2g5(Vxo Y, W) = gs(XV, (R(Y,W)Z)")
9(X, R(Y, W)Z)
= g(R(Z, X)Y,W).

Part (vi) of Lemma 1.8.1 gives us further

2g5(Vo Y, W) = (Y"(gs(W", X"))
—gs(W", (VyX)") — gs(X*, (VyW)")
= Y(g(W, X)) = g(W,VyX) — g(X,VyW) -
= g(W,VyX) + g(X, Vy W)
—g(W,VyX) — g(X, VyW)
=0
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(1v) As usual we use Lemma 1.8.1 to get

205(Vxo YO, W) = (=W"(gs(X",Y")))
+9s(Y", (VwX)?) + gs(X*, (VwY)")
= —W(g(X,Y)) +9g(Y, Vi X) + g(X, Vi) —
—9(Y, VwX) — g(X,ViY) + g(Y, Viy X)
+9(X, VYY)
= 0

and

205(Vxo YU, WY = X°(gs(Y", W?)) 4+ Y*(gs(W", X?))
—W*¥(gs(X",Y"))
= X"(g(Y, W) +Y"(g(W, X)) = W"(g(X,Y))
= 0

The last equation we have, because differentiating a horizontal vector field in the
direction of a vertical one gives zero and by definition of the metric holds g(X,Y) =
gs(X" Y") . This completes the proof. O

1.10 The curvature tensor

For calculating the curvature tensor we need the following result, which is a direct
consequence of Lemma 1.8.2.

Corollary 1.10.1. Let (M™,g) ba a pseudo-Riemannian manifold and let V be the
Levi-Civita connection on the tangent bundle T M, equipped with the Sasaki metric.
Let F: TM — TM be a differentiable map preserving the fibers and linear on each of
them. Then for any x € M and n € T(TTM) we have

VxeF(n)" = F(X)"
- h ho 1 h
Ve Fn)! = FOX)"+ 3 (R(Z,X)F ()"
Proposition 1.10.1. Let (M™,g) be a pseudo-Riemannian manifold and R be the

curvature tensor of the tangent bundle (T'M, gs) equipped with the Sasaki metric. Then
we have the following formulae

(i) Ripw)(X?, Y)Y =0
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(ii)
Riw (X0, Y)W = (R(X,Y)W+iR(Z,Y)(R(Z,Y)W)

_iR(z, Y)(R(Z, X)W))s 0,

(iii) Rgu) (X" Y)W? = —(FR(Y, W)X + JR(ZY)(R(Z W) X)), .

(iv)

é(m)(xv’ YOwh = (iR(MZ’ YW, X)Z + %R(X, W)Y ) o)
FS((VXR)(Z Y)W,
(v)
R (X" YW = = (R(X,Y)W + iR(R(Z, W)Y, X)Z
—ER(R(Z, W)X, Y)Z)(,
_|_%((VXR)(Z7 W)Y — (VYR>(27 W)X)?l“,u)’
(vi)

(z,u)

R (XYW = (Vi R)(X,Y)2);
HRX,Y)Z + iR(Z, ROW,Y)Z)X

J%R(Z, R(X,W)Z)Y + %R(Z, R(X,Y)Z)W){

(z,u)
For any X, Y, W € I'(TM) and any (x,u) € TM, where Z € I'(T'M) such that Z(, . =
(z,u).

Proof. (1) The first part of the proposition follows directly by the last part of propo-
sition 1.9.1 and the fact that the Lie bracket of two vertical vector fields vanishes.
(iii) The last part of Proposition 1.9.1 and the fact that

(X" Y] = (VxY)",
by theorem 1.7.1, provide us with
é(Xh, Y”)W” = ﬁxhevav - %Yvﬁxhwv - 6[Xh’yv]wv
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—6yv%Xth
= —Vye((VxW)"+ F(u)"),

where F': TM — TM is the linear fiber preserving map
1
F:uw §R(u, W)X,

for any (z,u) € TM. By the last part of Proposition 1.9.1 we know that Vy«(VxW)? =
0 and according to Corollary 1.10.1 we have

1

VyF(u)' = F(Y)" + 5 (B, Y)F(w)",

Therefore we obtain
RX" YWY = —VyoVynW?
= Vo (VW) + F(u)"
— —VyF(u)"
1
= R (R Y)F(w)"

- —(%R(Y, W)X + %R(U,Y)(R(u, w)X))"

Hence the third part of the proposition is proven.
(i) Using the 15" Bianchi identity

R(X", Y)W = RW" V") X" — ROW", Y*)Y?,
we get by using part (i)
R(X", Y YW" = (—%R(Y, X)W — %R(Z, Y)R(Z, X)W))"
FGROCYIW + ZR(Z,X)(R(Z, Y )W)

From which the statement follows.
(1v) As above we now introduce two mappings F} : TM — TM and Fy : TM — T M
by

1

and ]
F2(u) = _§R(Xma Wz>u7

the third part of proposition 1.9.1 becomes
%yuwh = F1<U)h
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By the definition of the curvature tensor we obtain

E(Xh, Yv)Wh == %Xhﬁvah - %yu%xhwh - ﬁ[Xh’Yv]Wh
= VarFi(w)" = Yy (VW) + Fo(w)") = Vg oy W"

= (Vx(R(w)) ~ (R, Fy(u)u)"

—%(R(u, Y)VxW)" = Fy(Y)" — %(Rw VxY)W)"
(iR(R(u, Y)W, X)u + %R(X W)Y)
5 (VB Y)W

The last step is only inserting the mappings Fj,Fy and the definition of a covariant
derivative. The middle step uses proposition 1.9.1 and Corollary 1.10.1.
(v) Using part (iv) and the 15" Bianchi identity

R(X" YMW?Y = R(X", W*)Y" — R(Y" W?) X",
therefore
R(R(u, W)Y, X)u)" + %((VXR)(U, W)y )"
(GRORG W)X, Y ) = 2 (Fy R)(u, W) X!

+%(R(X, VYW — R(Y, X)W)".

Which implies the result.
(vi) For the last part we have the following standard computations
RX"YMW" = Vi VynWh — Vyu VW — Vi yn W
= T (VW) — (R W)
Ty (VX W) = 5 (ROX, W)u)")
—V[XY]hW +V(R yyuyr )W

= (VxYVyW)" — Z(R(X,VyW)u)*

1
2
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%(VYR(X, Wu)® + i(R(u, R(X, W)u)Y)"
(Vi )"+ S(RX Y] W)

—i—%(R(u, R(X,Y)u)W)"
S(TwR)(X, Y)a)! + (R(X, Y)0)!
+ X (B, ROV, YY) X)) + }l(R(u, ROX, W)u)Y):

1
4
—l—%(R(u, R(X,Y)u)W)"

The last part of these computations follows by the 2"¢ Bianchi identity, which tells us
that
(VxR) (Y, W)u+ (VyR)(W, X)u+ (VwR)(X,Y)u = 0.

1.11 Induced Connection on the Tangent Bundle

Definition 1.11.1. Let ¢ : M — N be a smooth map between two differentiable man-
ifolds M and N and let V™ be a linear connection on N, then the Pull-back connection
on the tangent bundle o~ *T'N is defined by:

Ve T(TM) x T(¢ 'TN) — T(¢ 'TN),
(X.V) — VRV =ViV (1.7)

where V € T(TN) such that Vo =V.

Locally:
VeV = V% Va(iogp)
X X dy®

(VY 0 0

= X —(—— Veve, (—

(G G o)+ VY% (g 00) )
Note that :

0 0

o (2 — N

vaii (8y0‘ ?) vd@(a%z) dya
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890/3 0

~ (T, —
ox? < aﬂ@y”) oY

- [oVY 2093 0
2V = X (12 —
wiv = (G v e ) (o)
Then the relation (1.7) is independent of the choice of V i.e. this connection is well
defined.

So that

Definition 1.11.2. If ¢ : M — N is a map between differeniable manifolds, then
two vector fields X € I'(T'M), X € I'(T'N) are said to be @-related if

dp.(X) = X@(m vV xe M.

In that case we write X = dp(X).

Proposition 1.11.1. Let ¢ : M — N be a smooth map and let VY be a linear
connection compatible with the Riemaniann metric h on N, then the linear connection
V¢ is compatible with the induce Riemannian metric on ¢ 'T'N, that is

X(h(V,W)) = VLV, W) + h(V, VEW),
for all X e T(TM) and V, W € T'(o"'TN).
Proof.  Let X € D(TM),V,W € I'(¢"'TN) and X,V,W € ['(TN), such that
do(X)=Xop,Vop=Vand Wop=W
Then:

X(h(V,W)) = X(W(V op,Woy))
(h(V W) ° )
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Proposition 1.11.2. Let VY be a torsion free connection on N, then
Vide(Y) = Vidp(X) + de([X,Y]),
For all X, Y € T(T'M).
Proof. Let VW € T'(T'N) be a gp-related with X and Y respectively, then:
[V,Wlop = dpo[X,Y]
VW = VIV +[V,W].
From where:
V&de(Y) = VEWoop
= Vi)W
(Vo) op
= (Vi V+ VW) oy
= Vidp(X) + do([X,Y]).

1.11.1 Divergence Theorem

Proposition 1.11.3. Let D be a compact domain with boundary in a Riemannian

manifold (M, g). Let w differential a 1-forme and X a vector fields defined on a neigh-
borhood included in D. Then :

/(diva)vD :/ w(n)v?? and /(diva)vD :/ g(X, )P,
D oD D oD

where 0D s the boundary of D, and nw = n(x) is the unit vector normal to 0D.

Corollary 1.11.1. For all w a differential 1-form and X a compact supported vector
field in a domain D,then :

/(divw)vD =0 and /(diVX)vD = 0.
D D

1.11.2 Green Theorem

Theorem 1.11.1. Let (M, g) a compact orientable and without boundary Riemannian
manifold (OM = 0). Then, VX € T(TM), Yw € T(T*M), we have :

/ (div X)ov? =0, / (divMw)v? = 0,
M M
where v9 = \/det(g;;)dz A ... A dz™.



CHAPTER 2

HARMONIC AND BIHARMONIC MAPPINGS

This chapter is devoted to recall briefly the notions of harmonic and biharmonic map-
pings between pseudo-Riemannian manifolds, integrating them with some more details.
We shall follow [3, 8, 10, 11, 18, 22, 28, 31, 32|, to which we refer the reader for more
details.

2.1 Harmonic maps

Definition 2.1.1. Let ¢ : (M™,g) — (N", h) be a smooth map between two Rieman-
nian manifolds, the energy functional of ¢ is defined by

1
Be:D) =5 [ ldgl v, (2.)

where D is a compact domain in M, |dp| the Hilbert-Schmidt norm of the differential
dp, and v9 the volume element on (M™, g)

Remark 2.1.1. The Hilbert-Schmidt norm of the differential of ¢ s given by

lde|” = " h(dp(e:), de(ey)),

i=1

with {e1,...,en} be an orthonormal frame, the local expression of the Hilbert-Schmidt
norm 1s :

Ao = h(dp(e;), dip(e;))

=1

_ - a a b a
= Z h(dp(e; axa)vd@(ei%))

i,a,b=1

39
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“ - dp* , 0 o 0
_ 2 ab § _r (——
- g h(awa(aya O(p)v (‘3xb<8y5 OSO)>
a 9,8
_ g Op™ Dy b g 0 o
Z Oxe Ox, \ Oy*’ OyP

=3 3 o)

Definition 2.1.2. A wvariation of ¢ with support in a compact domain D C M, is a
smooth family maps (¢1)ie(—e,e) : M — N, such that oo = ¢ and ¢, = ¢ on M\int(D).

Definition 2.1.3. A map ¢ is called harmonic if it is a critical point of the energy
functional over any compact subset D of M. 1i.e.

d
—F D = 0.
dt (‘1015’ ) —o

2.1.1 First variation of energy

Definition 2.1.4. Let ¢ : (M, g) — (N, h) be a smooth map between two Riemannian
manifolds. The trace of the second fundamental form of ¢ is called the tension field of
@, denoted by

7(p) = trace, Vde. (2.2)

Local expression of tension field
Let a smooth map ¢ : (M, g) — (N, h), we have

T o 0
Z (Vo) (525 5)

G- 0? Oy " O™ 0y " e 8(,0 M 0
~ N1 — Ui = o
Z:: ( 0x'dxl + oxt OxI ap % ¥ 1 Dk oy °Y

=

( a?ci) ( resp. (%)) is a local frame of vector fields on M ( resp. on N)

Theorem 2.1.1. Let ¢ : (M™,g) — (N, h) be a smooth map and let (p;)ic(—ee) be
a smooth variation of ¢ supported in D. Then

d
GE@iD) == [ b,
dt =0 D
d
where v = % denotes the variation vector field of {¢}, and v9 the volume element
t=0
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d
Proof. Let {eq,...e,} an orthonormal frame on (M, g) and - 8 frame of vector field

d
on | —e,e[. Thus, {(e;0),(0, . becomes an orthonormal frame fields for the

prl
dt
diagonal metric g + dt* on the product manifold M x| — ¢, ¢[. We have

d

(€,0),(0, )| =0, Vie{l,...,m}).
dt

Define

¢:Mx|—eel — N.
(ﬂ?,t) — ¢($,t):¢t($)

By the Leibniz’s formula, and :

o) —e,e] — N;

o — N.
> ¢u(x) = (z,1) = pi(2)
We get that :
d¢(€i7 0)(9&,0) - dw¢0(ez|x> + d()gbz(o)
= dm¢0( 2|x>
= dyp(eils);
d d
d¢(0 dt)(:ro :1:¢0( ) + d0¢x(alt:0)
= d%n(%h:o)
= v(x).
Thus:

do(e;,0) = dp(e;) et dp(0, %) =v en t=0.

Let V¢ be the Pull-back connection associated with the map ¢ we compute:

|d90t Ug
| =sa ),

1 2
= 5 /D a|d<ﬁt|

d
dt

E((pt;

Ug
t=0
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Ug
t=0

DN | —

/ % Z h(dpi(ei), dpi(e;))

a / in: h 6170)7d¢(€i70)) v?
D =1 (0, —) =0
"dt
= [ S H T yl0, ot )|
t=0

-/ S (VY 0y dile))e?
D i—y

:/Zh(Vfiv,dga(ei))vg
D i—y

— /D Z [e; (v, dp(e;)) — h(v, VE dp(e;))] v7.

Define a 1-form w with support in D by
w(X) = h(v,dp(X)), VX e (TM).

we find:

m

divM w = " (Vew)(e:)

=1

= Z{eZ i) — w( VMel)}

m

Z{e, v,de(e;)) — h(v, dp(VEe;))}.

By using formulas (2.3) and (2.4) we have :

- v = [ nero)

By the divergence theorem, we obtain

d
—F D
dt (gph )

d
—E(¢; D
dt (Sph )

this completes the proof.

(2.3)

(2.4)
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Therefore

Theorem 2.1.2. The map ¢ € C®(M,N) between two Riemannian manifolds is
harmonic if and only if T(p) = traceVdy = 0.

Example 2.1.1. Let ¢ : (R™, < -,- >) — (R*, < -, - >) with

Al Al e Al
iUl 1 2 m .Tl
1o T (7 IO A I
z™ ™

e, o(X) = (A'XY A2XE .- [ A"XY) be a linear map, where A® denotes the row

vectors of the representation matriz. (R™, < -+ >) (resp. (R, < -,- >)) denotes the

space R™ (resp. (R", < -, - >)) equipped with the standard inner product. Then ¢ is
harmonic, in fact: as ¢ is a linear map, we have:

dﬂa%ww(a)
Therefore
m(e) = Z{vzdw(ea—dw(vime»}

B ZV Zé?xﬂ

Il
.O

2.1.2 Second variation of energy

Theorem 2.1.3. Let ¢ : (M™,9) — (N",h) a harmonic map and D a compact

domain of M, if {¢1s} is a variation of ¢ with two parameters with compact support
m D, then

32
E(prs; D) = / h(A?V — trace RY (V. dp)dp, W) v?,
0y 0y o
where V' = gt’ and W = gt’ denotes the variation vector fields.
tlws=00) S lits)=(00)

Here A?V = —try(V?)*V = =" (VEVEV — VéM V) is the rough Laplacian on

@ YT'N, and RY is the Riemann curvature tensor ofN
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Proof. Let {ey,...,en} an orthonormal frame on (M™, g). We put :

¢ : M x(—€€) X (—€,6) — N,

(x,t,5) — prs()
0 d 0 d
E; = (e;,0,0), 5 (0 — 0) et oo = (0,0%).
Then :
2 1 m 82
ts; D = - ) do , (2.5
pgs D) = / >~ s 00 a0(E) e
1 02 0
5 919 OB, dO(E) = 5 h(V' do(E:), do(E;))
= h(V5 V% do(Ey), do(E;))
(W d¢< i), V% do(E3)), (2.6)
and :

BV, V7, d6(B). d6(E)) = h(V%, V5 do(5),do(E)
R D) d¢<E->>d¢<%>,d¢<E@->>

h(V, W b do( o(Ey))

8)
)
+h(V[ ) 10(55), 9 (). (2.7)

Define an 1—form w with support in D, by :

w(X) = (v¢ do( L dp(X)), X e T(TM).

(t,5)=(0,0)

(98)

As ¢ is a harmonic map, we get:

divMw = Z{el ¢i) —w (Ve e:)}

= Z{ex (V% d¢(as> Jdp(es))) = h(VY d¢<as> (dp(Vile))}
i=1 (t,5)=(0,0) (t,5)=(0,0)
= Z{h V5,V do aS) de(e;)
(t,8)=(0,0)
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(VY do( ) V2 dp(es)) — h(T% do( ) (VM)
9s’|, ) (0.0) or 05 (1 9=(00)
0
= Z{h (V55 V% do(- 0) dip(en) + h(V do(5- )| 7))
5 1(t,5)=(0,0) 5 1(t,5)=(0,0)
_ Z{h (V5. V5% dqﬁ(a ) ,do(e;)) (2.8)
S 1(t,5)=(0,0)

By (2.7) and (2.8), and since [2,¢;] =0, we get :

h(V% V%, do(E;), dp(E;))

Z h(RN(V, dp(e;) )W, dp(e;))

(t,8)=(0,0) p
+divMw. (2.9)

The second term of the right hand side of the equality (2.6) is given by

AV, d9(E), V5, d0(E)) = h(Vido(5). Vido(5))
0
0s

- (<¢< )il )

0
—h(dp(=-), VS Ve do(=)). 2.1
(6(5), Y VEds(S). (210
if n is an 1-form with support in D, defined by
n(X)=hnW,V5V), X e I'(TM).

:>leM77 = Z{ez ez VMGZ)}
= Z{ez (W, VEV)) = (W, V%, V)}. (2.11)

By using (2.10) and (2.11), we obtain

m

> WV, dé(E;), V¥, dé(E;))

= divMy + h(W, V@
Py ot ds (t,s)=(0,0) 1 Z

=Y W(W,VZVEV). (2.12)

i=1
From the equations (2.5), (2.6), (2.9), (2.17), and the divergence theorem we find,

2

ata (QOtSaD

= [ AW dpteye) W)

(t,5)=(0,0)
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+ h(W, V¢

Ve

V) — (W, vgvgm} "

Therefore
2

595 E(¢us; D) Z/h(N’V—trace RNV, dp)dp, W) 7,
(t5)=(00) /D

2.2 Biharmonic maps

Definition 2.2.1. Let ¢ : (M™,g) — (N™, h) be a smooth map between two Rieman-
nian manifolds, and D a compact domain in M. The bienergy functional of ¢ on D is
defined by

By : C®(M,N) — ]R+,
2 — EQ 907 /|T |2

ot |7(0)|* = h(7(p), 7(¢)), and T(p) is the tension field of the map .

Definition 2.2.2. The smooth map ¢ : (M™, g) — (N", h) between two Riemannian
manifold is called btharmonic map if it is a critical point of the bienergy functional
over any compact subset D of M.

d

—F D
dt 2(@t7 )

=0, (2.13)

t=0

here {¢:} is a variation of ¢ with compact support in D.

2.2.1 The first variation of the bienergy
Theorem 2.2.1. Let ¢ : (M™,g) — (N™, h) be a smooth map between two Rieman-

nian manifolds, and {p;} a smooth variation of ¢ with support in D. Then

D) = /D h(v, ma(0))0",

dt

t=0

where v = %’t:o is the field of variation associated with {p;}, and 72(¢) € T( 'TN)
1s called the bitension field defined by

nlp) = =D AVEVET(Y) = Yy, (@)} - ZRN p), di(e:))dip(e:)

= AP7(p) = Y RN(r(¢),do(e;))dip(e).

1=1
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Proof. Let ¢ : M x (—e€,¢) — N a map defined by ¢(x,t) = ¢;(x). Then

d
—Es(¢1; D / Z WV 2 Vdé((e:,0), (e:,0)), Vdo((e;,0), (¢5,0)))v"
di 5,j=1 (©i) t=0
(2.14)
As
0, %) (1,0 = 0
’dt b) (3]
We have ;
¢ —
V(Q%)dgb(emo) V(e o)d(b(()a dt)a (215)
also
Ve L dp(VMe; 0) = V? de(0 i) (2.16)
(0,4) e "0 ) TV (Ve 0) Cdt :

We compute

Vi) Vo (€10, (e,0) = V{4 {VE, 0dd(ei,0) = do(Vii (e, 0)}
= vz;d @i,mdab(ei,m Vi, d0(V g (i 0))
d
= RY(dg(0, ), d(ei, 0))dd(ei, 0) + Vi, o V(, a d(es, 0)

¢ o M
+V[<0,%>,<ei,ond¢(e“ 0) = Vip,4,d6(Ve, i, 0)

d d
= RM(de(0, ) do(e;,0))do(e;, 0) + V (ei O)V((bei,o)dﬁb(oa E)

4y

¢
V(VMG O)de(O dt

Thus

D MV g, V0((61,0) (,0)), Vdo((0) e, 0))|

— Z h(RY (v, dyp(e;))dp(e;) + VeVEiv — VéMe v, 7(9)). (2.17)

Let w € T'(T*M) be a 1-form with support in D defined by
w(X) = h(Viv,7(9)),¥VX € I(TM).

— divMw = Z{ei(w(ei)) - w(Vé\fei)}

= S {elh(VEn,T(9) — MV, v 7(0)} (2.18)



2.2 Biharmonic maps 48

> AMVEVEV,7(0)) + h(VER, VET(9) = MV, v.7(0))]}-
i=1
From (2.17) and (2.18), we obtain

h(w 2, Vd((e1,0), (€3, 0)), Vdp((e;,0), (e5,0)))v"

t=0

h(R™ (v, dp(e;))de(e;), T(9)) + divMw — Zh(Vfiv,VfiT(go)). (2.19)

i=1

Also let n € I'(T*M) be an 1-form to support in D defined by
n(X) = h(v,V57(p)), VX € I(T'M).

— divMy = Z{ez (e:)) —n(V¥e;)}
= Z{ez (v, VET(2)) = h(v, Vi, T(9))} (2.20)
= Z{h(vzv,vzw))+h<v,vzvzr<s@>> W0, V., (@)}
Replacing (2.20) in (2.19), we get

> h(Vf’o,%)VM((% 0), (€:,0)), Vdo((e;,0), (e5,0)))v*

ij=1 =0

=Y W(RN7(¢), dp(ei))de(e;), v) + divMw — divy + h(v, VE VET(9))
=1

—h(v, VéyeiT(go)). (2.21)
From (2.14), (2.21), and the divergence theorem, we obtain

d

—F
di 2(%7

-/ Zh —R™(r (), dp(ex)dgles) = VEVET()
+Vv1\16 (), v)07.

Then
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where
m

() = A%7(p) = Y RY(7(¢), dep(e:))dip(e)

=1

Thus, we deduce

Theorem 2.2.2. The map ¢ € C*°(M,N) between two Riemannian manifolds is
biharmonic if and only if

m

7o) = A%7(p) = > RN (r(p), dip(es))dip(es) = 0. (2.22)

i=1

Remark 2.2.1. The equation (2.22) is called the Euler-Lagrange equation associated
with the bienergy functional.

2.3 Harmonic and biharmonic maps between pseudo-
Riemannian manifolds

The generalization of the concepts of harmonic and biharmonic maps between Rieman-
nian manifolds to the case of pseudo-Riemannian manifolds is straightforward.

Let (M™, g) and (N™ h) be smooth pseudo-Riemannian manifolds, and let ¢ :
(M, g) — (N, h) be asmooth map between them. The energy functional or the Dirichlet
energy of  over a compact domain D of M is defined by

Ble.D) =5 | 3" eihtdples). deten))uy, 229

where {e; }, is a local pseudo-orthonormal frame field of (M™, g) with &; = g(e;, e;) =
+1 for all indices ¢ = 1,2,--- ,m. If M is compact, we write E(¢) = E(¢, M). The
map ¢ is called harmonic if it is a critical point of the energy functional (2.23). The
Euler-Lagrange equation of (2.23) is [3, 11]

m

7(p) = Try(Vdep) = > " e{Vdp(e;) — dp(Ve,e)} = 0.

=1

The notion of biharmonic map between Riemannian manifolds has been extended to
the case of pseudo-Riemannian manifolds as follows [§]:

Definition 2.3.1. A map ¢ : (M™,g) — (N", h) between pseudo-Riemannian mani-
folds is a biharmonic map if its bitension field vanishes identically, i.e.,

i) = Yoei( (V272 = Ty, )7(6) — B (do(e) r()dp(en ) =0,
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where {e;}™, is a local pseudo-orthonormal frame field of (M™, g) with g; = g(e;, €;) =
+1 for all indices i =1,2,--- ,m and RN is the curvature tensor of N.

Remark 2.3.1. Note that the only difference of the tension (and the bitension) fields
between the Riemannian and the pseudo- Riemannian cases lies in the definition of the
trace of a bilinear form in these two different cases.

Example 2.3.1. Any harmonic mapping is trivially biharmonic. However, a bihar-
monic map can be non-harmonic in which case it is called proper biharmonic. We refer
to [3, 8, 28, 31] for more examples on harmonic maps and biharmonic maps.



CHAPTER 3

BIHARMONICITY OF VECTOR FIELDS ON
RIEMANNIAN MANIFOLDS

This chapter presents our work on the biharmonicity of vector fields on Riemannian
manifolds. We compute the expression of the bitension field of a vector field considered
as a map from a Riemannian manifold (M, g) to its tangent bundle T'M equipped
with the Sasaki metric gg. As a consequence, we show characterization theorem for
a vector field to be biharmonic map. Moreover, we prove non-existence results for
left-invariant vector fields which are biharmonic without being harmonic maps and
non-harmonic biharmonic maps respectively on unimodular Lie groups of dimension
three. The references used are: [1], [9],[10], [11], [18], [23], [25], [13], [14].

3.1 Harmonicity of vector fields on Riemannian man-
ifolds

A vector field X on (M, g) can be viewed as the immersion X : (M, g) — (T'M, gs) :
x +— (x,X,) € TM into its tangent bundle T'M equipped with the Sasaki metric gg.
If Y € I'(TM) then, we have (see [9, pp. 50])

dX(Y)={Y"+ (VyX)'} o X. (3.1)

Theorem 3.1.1. [13] Let (M,g) be a Riemannian manifold of dimension m and
(T'M, gs) its tangent bundle equipped with the Sasaki metric, if X : (M, g) — (T'M, gs)
is a smooth vector field then the tension field 7(X) is given by
7(X) = (=S(X))" + (-AX)", (3.2)
where .
S(X) =) R(V.X,X)e;

=1

o1
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and AX is the rough Laplacian given by

m

AX = —t'rg(VQX) = Z<vVeieiX — Ve, Ve, X).

i=1

Proof. Let (x,u) € TM and {e;}/", be a local orthonormal frame on M such that
Veej =0at z € M and u = X,, from the Proposition 1.9.1 and (3.1), we get

T(Xﬂ(m,xx) - Z [ngdX(ei)} {(@Xx)

i=1
= Z [6e?+(VEiX)“ (6? + (ver)v)] |(:B,Xz)
i=1
= " [Verel + Ver (Ve X)" + Vv, xpel + +V (v, x0 (Ve X)'] o2
i=1
= Zl [(_R(veiX7 X)ei)h + (vez-vez-X)v] |(x,Xz)
=S+ (—AX|
O

Theorem 3.1.2. [17] Let (M,g) be a Riemannian manifold of dimension m and
(T'M, gs) its tangent bundle equipped with the Sasaki metric, if X : (M, g) — (T'M, gs)
is a smooth vector field then X is a harmonic map if and only if AX =0 and S(X) = 0.

Note that, for any smooth function f and vector field X of M, we have
S(FX) = f25(X). (3.3)

Definition 3.1.1 ([13]). A vector field X is called harmonic vector field if it is a critical
point of the energy functional (2.1), restricted to variations through vector fields.

Theorem 3.1.3. Let (M, g) be a compact oriented m-dimensional Riemannian mani-
fold, {e;}, a local orthonormal frame field of (M, g), X a tangent vector field on M
and E : X(M) — [0,400) the energy functional restricted to the space of all vector
fields. Then
SEC)| = [ g@x vy,
t=0 M
for any smooth 1-parameter variation U : M X (—e€,€) — TM of X through vector fields
ie., Xi(2) =U(z,t) € T,M for any |t| < € and z € M, or equivalently X; € X(M) for
any |t| < e. Also, V is the tangent vector field on M given by
d

V(z) = %XZ(O)’ z e M,

where X, (t) = U(z,t), (2,t) € M x (—¢,¢€).
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Proof. Let U : M x (—€,€) — T'M be a smooth variation of X ( i.e., U(z,0) = X(z) for
any z € M) such that X;(z) = U(z,t) € T.M for any z € M and any |t| < e. We have

1
E(Xt) = 5 AJ |dXt|2Ug.

Then, from [10], we get

d
—B(X
- E(Xt)

= /M g5V, 7(X))vy,

where V(z) = %Xt(z)‘t:o’ z € M, and from [9, pp. 58], we have
V=V"0X. (3.4)
Taking into account (4.4) and the expression of 7(X) given by (3.2), we find

d
ZEB(X
dt (X1)

= /M gs(V7,7(X))vy,
Z/Mg(V,AX)vg,

as required. O
Then, we deduce the following [13].

Corollary 3.1.1. A vector field X of an m-dimensional Riemannian manifold (M, g)
18 harmonic if and only if B
AX =0, (3.5)

where {e;}™ is a local orthonormal frame field of (M, g).

Remark 3.1.1. Theorem 3.1.3 holds if (M, g) is a non-compact Riemannian manifold
see [23].

Combining Theorem 3.1.1 and Corollary 3.1.1, we get

Corollary 3.1.2. A vector field X of an m-dimensional Riemannian manifold (M, g)
is harmonic map if and only if X is harmonic vector field and S(X) = 0.

Theorem 3.1.4. Let (M, g) be a compact m-dimensional Riemannian manifold and
X € X(M) a vector field. Then X : (M,g) — (T'M, gs) is a harmonic vector field if
and only if X s parallel.
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Proof. We assume that X : (M, g) — (T'M, gs) is parallel, then from Corollary 3.1.1,
X is a harmonic vector field. Conversely, we assume that X : (M,g) — (TM, gs)
is a harmonic vector field, then X € X(M) be a critical point of £ |x. Then
%E(Xt)hzg = 0 for any smooth 1-parameter variation {X;}<. of X. In particular we
may consider the variation

Xi(z)=(1+)X, z€M, [t <e,

hence
0= S E(X) = a{gvaon £y X}
- %{% fM ‘VXt’%g}t:O
= S VX P,
Thus VX =0, i.e X is parallel. O

Theorem 3.1.5. Let (M, g) be a compact m-dimensional Riemannian manifold and
X € X(M) a vector field. Then X : (M,g) — (T'M, gs) is a harmonic map if and
only if X is parallel.

Proof. We assume that X : (M, g) — (T'M, gs) is a harmonic map, then from Corol-
lary 3.1.2, X is a harmonic vector field and, hence X is parallel. Conversely, we assume
that the vector field X is parallel, by virtue of Theorem 3.1.2, X is a harmonic map. [

Lemma 3.1.1 ([16]). Let (M,g) be a Riemannian manifold and X a vector field of
M. Then the following equation is satisfied:

A(FX) = (Af)X + FAX = 2Vga/ X, (3.6)

where f being a smooth function of M and grad f the gradient of f.

3.2 Biharmonicity of vector fields on Riemannian
manifolds

In what follows, we give the formula of the bitension field 75(X) of X. We prove the
following Theorem:

Theorem 3.2.1. Let (M, g) be a Riemannian manifold of dimension m and (T'M, gs)
its tangent bundle equipped with the Sasaki metric, if X : (M,g) — (T'M,gs) is a
smooth vector field then the bitension field of X is given by

n(X)={ - AAX - i[(VGiR)(ei, S(X))X + R(ei, Ve, S(X))X

=1
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+ 2R(es, S(X))VeiX]}v +{ = AS(X) — RO, AX)S(X) + 3 [R(X, Ve, AX)e;
- R(VeiX7 AX)eZ - R(ei, S(X))ez - (VS(X)R)(V&.X, X)el
+ R(X,V,,X)V..S(X) — R(X, R(e;, S(X))X)ei]}h. (3.7)

Proof. Let (z,u) € TM and {e;}/", be a local orthonormal frame on M such that
V.e;j =0at x € M and v = X,, using the Proposition 1.9.1 and (3.1) and (3.2), we
get

D VETX) sy == 2 [Vera(wa,xn (SO + AX]| )
=1 i=1
(SIS0 + LRV X)S(X) + LR AX eV
- {i [V AX - LR(es, S(X))X] }
Pt o 2 ) (z,X2)
and
AXT(X)] 4y = = D VEVER(X) {Z [Ve.Ve.S(X
i=1 i=1

1 - 1
15 Ve RIX, Ve, X)S(X) + iveiR(X, AX)ei+ 5R(X, Ve X)Ve,5(X)

1 1 _
+ R, Ve, X)R(X, Ve, X)S(X) + L R(X, Ve, X)R(X, AX)e;

[

1 — 1 h —
+5 R(X, Ve, AX)e; = L R(X, Rles, S(X)) X)es] }@,xI) + { [V..V..AX

=1

—%VeiR(e,», S(X))X — %R(ei, V., S(X)X — iR(ei, R(X, V. X)S(X)X
1 _ v
— Rlei R(X, AX)e;)X] }(Mm). (3.8)

Let R the curvature tensor field of V. By Proposition 1.10.1, we find

m m

_gﬁ(T(X),dX(ez))dX el wxy {Z; [R(S(X), e1)er
(S(X),e)X)ei + (Vsx)R)(X, Ve, X)e; — §(V€,LR)(X, V., X)S(X)
R(X, Ve X)R(X, Ve, X)S(X) — %(VeiR)(X, AX)e; + gR(AX, V., X)e:

1

_|_

n—)-lkﬁ—‘»lk\co
=
>
=

— ZR(X,AX)S(X) — %R(X, Ve, X)R(X,AX)e;] }h

N}

(LXI)

{30 [ (VRSO0 00X + 2R(S(X), V., X

1 1 _ v
— JR(R(X, Ve, X)S(X), )X = {R(R(X, AX)es, ) X] }(Iyxz). (3.9)
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Summing (3.8) and (3.9) and using the following formulas we get the desired formula

M-

Zm:VeZR(X, Ve, X)S(X) [(Ve, R)(X, Ve, X)S(X) + R(X,V, X )V, S(X)]

Z V., R(ei, S(X))X = Z [(Ve,R)(ei, S(X))X + R(e;, Ve, S(X))X

+ R(e;, S(X))Ve, X].0 (3.10)

Theorem 3.2.2. Let (M, g) be a m-dimensional Riemannian manifold and X € X(M),
then X : (M, g) — (T'M, gs) is a biharmonic map if and only if

BBX + Y (Vo B) (e SCO)X + Res, Vo S(X))X + 2R(e,, X))V, X] =0,

and

AS(X) + R(X,AX)S(X) — Xm:[R(X, Ve, AX)e; — R(Ve, X, AX)e;
— R(es, S(X))es — (ZV_S(X)R)(VCZ.X, X)e: + R(X, Vo, X)V,,S(X)
— R(X, R(e;, S(X))X)e;] =0,

where {e;}™ is a local orthonormal frame field of (M, g).

Definition 3.2.1 ([23]). Let (M,g) be a Riemannian manifold. A vector field X €
X(M) is called biharmonic if the corresponding map X : (M,g) — (T'M,gs) is a

critical point for the bienergy functional Es, only considering variations among maps
defined by vector fields.

Now, by virtue of the formula (3.7), we give another proof of the following Theorem
given in [23].

Theorem 3.2.3. Let (M, g) be a compact oriented m-dimensional Riemannian mani-
fold, {e;}1, a local orthonormal frame field of (M, g), X a tangent vector field on M
and Ey : X(M) — [0,4+00) the bienergy functional restricted to the space of all vector
fields. Then

d
EE2(Xt)

m

_ :/M {Q(AAX + ) [(Ve,R) (e, S(X))X + Rle;, Ve, S(X)X

=1
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+2R(e;, S(X))V. X], V)}Ug,

for any smooth 1-parameter variation U : M X (—e€,€) — T M of X through vector fields
ie., X¢(2) =Ul(z,t) € T,M for any |t| < € and z € M, or equivalently X, € X(M) for
any |t| < e. Also, V is the tangent vector field on M given by

d
V('Z) = EXZ(O)a KRS M,

where X, (t) = U(z,t), (2,t) € M X (—¢,€).

Proof. Let U : M x (—¢,€) — T M be a smooth variation of X ( i.e., U(z,0) = X(z) for
any z € M) such that X;(z) = U(z,t) € T,M for any z € M and any |t| < e. We have

BiX) = 5 [ (X0,

Then, from [18], we get

d
%E2(Xt)

o = _/MQS(V,TQ(X))UQ,

where V(z) = %Xt(z)‘tzo, z € M, and from [9, pp. 58|, we have
V=V7"0X. (3.11)

Taking into account (3.11) and the expression of 7»(X) given by (3.7), we find

d
GEC0| == [ (v n(x0),
dt o y
_ / {9V, BAX + 3" [(Ve R)(er, (X)X
M i=1
+ R(e;, Vo, S(X))X + 2R(ei, S(X) Ve, X]) g,
which completes the proof. n

Then, we deduce the following [23].

Corollary 3.2.1. A vector field X of an m-dimensional Riemannian manifold (M, g)
1s biharmonic if and only if

BAX + 3 I(VaB)(ew SCO)X

+ R(ei, Ve,S(X))X + 2R(e:, S(X))V.. X] = 0, (3.12)

where {e;}™ is a local orthonormal frame field of (M, g).
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Remark 3.2.1. Theorem 3.2.3 holds if (M, g) is a non-compact Riemannian manifold
see [23].

Remark 3.2.2. Combining Theorem 3.2.2 and Corollary 3.2.1, we get that a vector
field X € X(M) is biharmonic map if and only if X is biharmonic vector field and

AS(X)+ R(X,AX)S zm: (X, V.. AX)e
— R(V.,X, AX);— R(es, S(X))e; — (Vs R)(Ve, X, X)e;
+ R(X, V., X)V.,S(X) — R(X, R(e:, S(X))X)e;] = 0.

Theorem 3.2.4. Let (M, g) be a compact m-dimensional Riemannian manifold and
X € X(M) a vector field. Then X : (M, g) — (T'M, gs) is a biharmonic map if and
only if X is parallel.

Proof. We assume that X : (M,g9) — (T'M, gs) is a biharmonic map, then from
Remark 3.2.2, X is a biharmonic vector field and, hence X is parallel [23]. Conversely,
we assume that the vector field X is parallel, by virtue of Theorem 3.2.2, X is a
biharmonic map. O

Example 3.2.1. Consider the solvable Lie group Sols as the Cartesian 3-space R3(z,y, 2)
equipped with the left-invariant metric g given by

g = e*(dz)? + e **(dy)* + (dz)*.
The left-invariant vector fields

0 0 9,

—Zz z

%, €2 =€ 8_3/’

€ =¢

constitute an orthonormal basis of the Lie algebra g of Sols. The corresponding com-
ponents of the Levi-Civita connection are determined by [29]

v6161 = —é€s, vqe? - 07 Vele?) = €1,
Vezel = 0, ve262 = €3, v62€3 = —€9, (313)
V€3€1 = O, ve3€2 = 0, Ve3€3 = 0.

Also the curvature components are given by

R(er, e2)er = —ey, R(er, e2)e2 = ey, R(eq, e2)e3 = 0,
R(GQ, 63)61 = 0, R(BQ, 63)62 = €3, R(GQ, 63)63 = —€9, (314)

R(es,e1)e; = —es, R(es,e1)es =0, R(es,eq)es = e,
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We consider the vector field X = f(z)es, where f(z) is a smooth real function depending
of the variable z. By using (3.13), we get

Ael = _velvelel + Vvelelel - V62v62€1 -+ VV6262€1 - V63V6361 = €1, (315)

and B B
Aes = ey, Aeg = 2e;. (3.16)
Combining relations (3.3), (3.6), and (3.13)-(3.16), we find
AX = Afes+ fAes — 2f'Vees = (2f — f7)es, (3.17)
AAX = A2f — [Mes+ (2f — f")Aes = (f" — Af" + 4f)es,
S(X) = f2S(es) = f? (R(61,63)61 — R(€27€3)€2) =0,

where ' = j—’;, = 227]; etc. On the other hand, using relations (3.13), (3.14) and

(3.17), we obtain

3 3
> R(X,V,AX)e; =0, and Y R(V.X, AX)e; = 0.

i=1 i=1

Then, from Theorem 3.2.2, we get that X is bitharmonic map if and only if the function
f satisfies the following homogeneous fourth order differential equation.

f////—4f”+4f:O, (318)
The general solution of (3.18) is
F(2) = 16V + cpzeV? 4 c3eV 4 cpze Vv, (3.19)

where ¢1,ca,c3 and ¢y are real constants. Note that X = f(z)es is also biharmonic
vector field, where f(z) is given by (3.19).

3.3 Biharmonicity of vector fields of three-dimensional
unimodular Lie groups

In this section, we investigate biharmonicity of left-invariant vector fields on three-
dimensional unimodular Lie groups equipped with a left-invariant Riemannian metric.
Let G be a three-dimensional unimodular Lie group and g its Lie algebra, this is,
tradx = 0 for all X € g, equip G with a left-invariant Riemannian metric <, >. Then,
there exists an orthonormal basis {eq, es, €3} of g such that

[62763] = \eq, [63761] = A\ae2, [61, 62] = \zes,
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Signs of A1, Ao, A3 Associated Lie groups
+, +, + SU(2) or SO(3)
+, +, — SL(2,R) or O(1,2)
+,+,0 E(2)
1,0, — B(1,1)
+,0,0 H3
0,0,0 ReRaR

Y

Table 3.1: Three-dimensional unimodular Lie groups

where A1, A2, A3 are constants. According to the signs of Aj, Ay, A3, Milnor [26] classified
three-dimensional unimodular Lie groups as described in Table 1: let #%,i = 1,2,3, be
the dual one forms of {e;},i = 1,2,3. Let V' = x1e; + x99 + x3e5 an arbitrary left-

invariant vector field on G. The Levi-Civita connection V of G is given by [15]

where

Ve, = pzes ® 0° — H2e3 & 0%,
Vey = —puzer ® 0> + piez ® o'
Ves = pge; ® 0% — pyes @ 6,

1
/’lei()‘1+>\2+)\3)_)\27 2217273

Using (3.20) we get [25]

Velv == Ml(IL’Q@g — 1'362),
V62V = M2($3€1 — Ileg),
V63V = M3($1€2 - 1’261).

While the Riemann curvature tensor is given by [25]

R(Gh 62)62 = (/\3,u3 - ,u1,u2)€1, R )
R(62, 61)61 = ()\3M3 - M1M2)€27 R(ez, 63)63 = (/\1M1 - M2M3)€2;
R(G:s, 61)61 = ()\2,u2 - M1M3)€3, R )

Again from [25] we have

and

AV = (5 + p3)zrer + (ui + p3)xaes + (u + p13)se3

S(V) = Ajxazser + Asxixges + Asxizaes,

(e1,e3)es = (Aopta — papiz)er,

(63762 €y = (>\1,U1 - M2M3)€3-

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

where Ay = p3(us — ) + p3(mn — p2), As = pi(pe — pz) + p3(m — po) and Az =
13 (12 = pus) + B3 (k3 — pa)-
The following theorem follows from (3.21) and (3.23).
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Theorem 3.3.1. A left-invariant vector field V on G is harmonic if and only if one
of the following cases occurs:

1. My = Xy = A3 =0. Then, any vector field V € g is harmonic.
2. =X —A3=0. Then, V = x1e;.
3. A=A —A3=0. Then, V = xqe,.
4. A3= A — X =0. Then, V = x3es.

Moreover, by (3.20), vectors listed above are parallel. Hence, they also define harmonic
maps.

Using (3.20) and (3.23) we obtain
AAV = (Ng + M§)2I1€1 + (,u% + /L;Z))Zl’g@g + (,U/% + M§)2$363. (325)

Combining relations (4.5), (3.20), (3.22)-(3.25), a long but straightforward calculation
gives that the vector field V' = x1e; 4+ x99 + x3€3 is biharmonic if and only if

a{ (15 + p3)* + Ajzs + A3} =0
wo{(pf + 13)% + Ajxg + A3t} =0 (3.26)
w3{(pf + p3)? + Alzy + A3} = 0.

The subcases r1 = 2o = 0, 9 = 3 = 0 and z; = x3 = 0 give vector fields which
define harmonic maps. We proceed as in [?], we deal with the six types of Lie groups
described in Table 1.

Case 1 : R@® R @ R. In this case, Ay = Aa = A3 = 0, therefore the system (3.26)
implies that every left-invariant vector field is biharmonic and defines a biharmonic
maps.

Case 2 : H3. We yield A; =0, Ay = 2u3, Ay = =23, u? = p3 = p2 and the system
(3.26) is transformed to

wi{l+ pi(a3 +a3)} =0
wo{l + pizi} =0
w3{1+ pizi} = 0.
This system admits only the trivial solution xy = x5 = x3 = 0.

Case 3 : E(1,1). In this case, we have p3 = —py > 0, Ay = —2p1p2 + p2(p1 — pa2),
Ay =2p3 <0, Az = =233 + p3(p1 + p2) and the system (3.26) is reduces to

wi{(ui + p3)? + Ajay + Aa3} =0
wo{dpd 4+ A2z + A222} =0 (3.27)
wa{(1 + 13)” + Alzs + Aja7} = 0.
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If x1, 29,23 # 0. We will prove that Ay, A3 # 0. We suppose that A; = 0, the system
(3.27) gives 1 = 0 which is a contradiction. The case A3 = 0 is treated similarly.
Then A, A3 # 0 and the system (3.27) has no solution.

Case 4 : E(2). In this case, we have py = —puy, Ay = 2uip3 + pd(ps — p),
Ay = 2uqp2 — 13 (g + p3), Az = —2u3 and the system (3.26) is reduces to

wi{(ui + p3)* + Ajzl + Ajz3} =0
wo{ (i + p3)* + Afwj + Ajri} =0
w3{dps + Alxs + Ajxi} = 0.

If iy = 0, we obtain A; = Ay = A3 = 0 and we get x1 = x5 = 0 (the harmonic solution).
If 21,29, 23 # 0, we do not have solution following the same procedure appeared in the
case of E(1,1).

Case 5 : SL(2,R) or O(1,2). We distinguish two cases:
e\ =X > A3, Wehave pg = pip = 22, pg = 2228 > 0, Ay = 13 (s — 1), As = — 4y,
A3 = 0. So, the system (3.26) is reduced to

a{ (13 + p3)* + Aja3} =0
wo{ (i + p3)® + Afz3} =0 (3.28)
x3{4,u% + Af(xf + x%)} = 0.

The system (3.28) admits only the zero solution.
® )\ > Xy > Agor Ay > Ay > A3. We have uz > 0. If 21,29, 23 # 0, the system (4.20)
is reduced to

(3 + p3)° + Ajas + Aas =
(2 4 p2)* + A2a2 + A222 =0 (3.29)
(13 + p3)* + Afzs + Ajx] = 0.

We will prove that A;, As, A3 # 0. We suppose that A; = 0, the system (3.29) gives
i3 = 0 which is a contradiction. Similarly for the cases A5 = 0 and A3 = 0. Then
Ay, Ay, Az # 0 and the system (3.29) has no solution.
Case 6 : SU(2) or SO(3). We distinguish two cases:
./\1:)\2:>\3, )\1:>\27é>\3, )\1:>\37é>\2, )\2:>\37é)\1. Weget$1:$2:l‘3:0
(the zero solution).
o N\ # X # A3 If xy,29,23 # 0, the system (3.26) is (3.29). We will prove that
Ay, Ay, As # 0. We suppose that A; = 0, the system (3.29) gives g = po = g = 0,
equivalently, A\ = Ay = A3 = 0 which is a contradiction. Similarly for the cases Ay =0
and Az = 0. Therefore Ay, Ay, A3 # 0 and the system (3.29) has no solution.
Summarizing, we yield

Theorem 3.3.2. Let G be a three-dimensional unimodular Lie group. Then
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1. The set of left-invariant biharmonic vector fields which do not define harmonic
maps into TG is empty.

2. The set of left-invariant vector fields which are biharmonic maps and do not
define harmonic maps into TG is empty.



CHAPTER 4

BIHARMONICITY OF VECTOR FIELDS ON
PSEUDO-RIEMANNIAN MANIFOLDS

This chapter presents our work on the biharmonicity of vector fields on pseudo-Riemannian
manifolds. We deal with the biharmonicity of a vector field X viewed as a map from

a pseudo-Riemannian manifold (M, g) into its tangent bundle T'M endowed with the
Sasaki metric gg. Precisely, we characterize those vector fields which are biharmonic
maps, and find the relationship between them and biharmonic vector fields. After-
wards, we study the biharmonicity of left-invariant vector fields on the three dimen-
sional Heisenberg group endowed with a left-invariant Lorentzian metric. Finally, we
give examples of vector fields which are proper biharmonic maps on the Godel universe.
The references used are: [2], [9],[10], [11], [8], [13], [14], [23], [25].

4.1 Harmonicity of vector fields on pseudo-Riemannian
manifolds

Let (M, g) be a pseudo-Riemannian manifold of dimension m. We know that any
vector field X on (M, g) can be viewed as the immersion X : (M,g) — (T'M, gs) ;
x +— (x,X,) € TM into its tangent bundle T'M equipped with the Sasaki metric gg.

The energy of X is, by definition, the energy of the corresponding map X : (M, g) —
(T'M,gs), that is [14]

B(X) / AX 0, = 2 Vol(M / VX[, (41)

(assuming M compact; in the non-compact case, one works over compact domain).

Theorem 4.1.1. [13] Let (M, g) be a pseudo-Riemannian manifold of dimension m
and (T'M, gs) its tangent bundle equipped with the Sasaki metric, if X : (M,g) —

64
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(T'M, gs) is a smooth vector field then the tension field T(X) is given by
m h m v
r(X) = (= Y aRVLX, X)ei) + (Pa(VeVeX - Ve, X)) |
i=1 i=1

where {e;}™, a local pseudo-orthonormal frame field of (M, g) with €; = g(e;, ;) = £1
for all indices i =1,2,--- ;m.

Proof. Let (z,u) € TM and {e;}!", be a local pseudo-orthonormal frame on M such
that V.,e; =0 at x € M and u = X, using 1.9.1, (3.1) and (4.2), we get

I

(0] xy = 2_ & VadX (]| x,

1

1

.

&i [6e?+(veiX)u (6? + <VEZX>U>:| ‘(-’E,Xz)
1

1

ei[Venel + Vo (Ve, X)' + Vv, xpe; + +V (v, x(Ve, X)"] ’(x,xz)

-

i=1

.

&g [(_R(vera X)ei)h + (VeiveiX)U} ‘(I:XI)

=1

(- Z;siR(VeiX, X)es)' + (D _ei(Ve Ve X = Voo X)) .-

1=1

We can rewrite 7(X) as follows [25]:
T(X) = (=S(X)" + (V'VX)", (4.2)
where

S(X) = &R(Ve X, X)e;,
=1

and V*V X is the rough Laplacian given by

VVX =) &i(Ve, Ve X = Ve, 0, X).

=1

Note that, for any smooth function f and vector field X of M, we have

S(fX) = f*S(X). (4.3)
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Theorem 4.1.2. [13] Let (M, g) be a pseudo-Riemannian manifold of dimension m
and (T'M, gs) its tangent bundle equipped with the Sasaki metric, if X : (M,g) —
(T'M, gs) is a smooth vector field then X is a harmonic map if and only if V*VX =0
and S(X) = 0.

Definition 4.1.1 ([23]). A vector field X is called harmonic vector field if it is a critical
point of the energy functional (1), restricted to variations through vector fields.

Theorem 4.1.3. Let (M, g) be an m-dimensional pseudo-Riemannian manifold, {e;},
a local pseudo-orthonormal frame field of (M, g), X a tangent vector field on M and
E :X(M)— [0,400) the energy functional restricted to the space of all vector fields.

Then

d

“Bx)| = / G(V*VX, V),
dt o Ju

for any smooth 1-parameter variation U : M X (—¢€,€) — TM of X through vector fields
ie., Xi(2) =U(z,t) € T.M for any |t| < € and z € M, or equivalently X; € X(M) for
any |t| < e. Also, V is the tangent vector field on M given by

d
V(z) = %XZ(O)’ z e M,

where X, (t) = U(z,t), (2,t) € M x (—¢,€).

Proof. Let U : M x (—¢,€) — T'M be a smooth variation of X ( i.e., U(z,0) = X(z) for
any z € M) such that X(z) = U(z,t) € T,M for any z € M and any [t| < e. We have

1
E(Xt)zi/M\dXthg.

Then, from [10], we get

d
EE<X1§)

= /M g5V, 7(X))vy,

where V(z) = %Xt<z>‘t:0’ z € M, and from [9, pp. 58], we have
V=V"0X. (4.4)
Taking into account (4.4) and the expression of 7(X) given by (3.1), we find

d
ZB(X
dt (X1)

— [ g7,
t=0 M
_ / oV, V"V X)u,,
M

as required. O
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Then, we deduce the following [23].

Corollary 4.1.1. A vector field X of an m-dimensional pseudo-Riemannian manifold
(M, g) is harmonic if and only if

V*'VX =0, (4.5)
where {e;}™, is a local pseudo-orthonormal frame field of (M, g).
Combining Theorem 4.1.1 and Corollary 4.1.1, we get

Corollary 4.1.2. A vector field X of an m-dimensional pseudo-Riemannian manifold
(M, g) is harmonic map if and only if X is harmonic vector field and S(X) = 0.

4.2 Biharmonicity of vector fields on pseudo-Riemannian
manifolds

In the next Theorem, we compute the bitension field 75(X) of X.

Theorem 4.2.1. Let (M, g) be an m-dimensional pseudo-Riemannian manifold and
(T'M, gs) its tangent bundle equipped with the Sasaki metric, if X : (M, g) — (T'M, gs)
15 a smooth vector field then the bitension field of X is given by

(X)) = {(V*V)QX + isi[(veiR)(ei, S(X))X + R(ei, Ve, S(X))X

i=1
+ 2R(e;, S(X))VeiX]}v + { — V*VS(X) — R(X,V*VX)S(X) + i &i[R(X, Ve, V*VX)e;

— R(Ve,X,V*VX)e; + Rer, S(X))ei — (V) B) (X, Ve, X)e;
~ R(X,V.,X)V..S(X) + R(X, R(es, S(X))X)ei]}h. (4.6)

Proof. Let (z,u) € TM and {e;}!", be a local pseudo-orthonormal frame on M such

that Ve,e; =0at x € M and u= X,. If Y € I'(T'"M) then, we have (see [9, pp. 50])
using 1.9.1, (3.1) and (4.2) one has

Y VERX)] sy =2 Versw.,x)p (SO + V'YX |
i=1 i=1
1 h

{3 (- - fR(X Ve X)S(X) + SR(X, V'V X)ei] |

1 (vaT)

m
=

m . 1 v
Z [Veiv VX + 5R(ei, S(X))X] }(%Xm)

i=1

+

—~

and

m m

S aVEVEAX)| v, = { Dl - Ve Ve S(X)
i=1 i=1
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1 1 1
—5 Ve RX, Ve, X)S(X) + 5 Ve, RIX, V'V X)e; = S R(X, Ve, X) V., S(X)

1 1
—RX. Ve X)R(X, Ve, X)S(X) + {R(X, Ve X)R(X, V'V X)e; + 5 R(X, Ve, V'V X)e;

(LXI)

%R(X, R(es, S(X))X)ei] }h n { is V..V, V'VX + %VeiR(ei, S(X)X
v

1 1 1 v
5 R(e0 Ve SCO)X 4 {Rleq R(X Ve, X)S(X)X — JR(en RX.V'VX)e)X]} o (47)

Let R the curvature tensor field of V. On making use of Theorem 1 in [21], we find

m

1 *
_ Zng (dX (e3), 7(X)dX (e, . { - SR(X.V'VX)S +Zez (i, S
3 1
+ LR(X, Rles, S(X)X)es = (V) R)(X, Ve, Xes + 5 (Ve, R)(X, Ve, X)S(X)
1 1 3
TR Ve X)R(X, Ve, X)S(X) = 5(Ve, R)(X, V' VX)e; + SR(V'VX, V., X)ey
L px, v, x)R(X V*VX)@:]}h + { isi[l(ve,R)(ei S(X)X (4.8)
4 ’ U oy T L& eVl
3 ]_ v

[\V]

=3 RS(X), )V X + iR(R(X, Ve, X)S(X), )X — TR(R(X, V'V X)er, e0)X] }@,xx)‘

On the other hand, we have the following formulae
Zgz e R(X, Ve, X)S(X) =) &i[(Ve,R)(X, Ve, X)S(X) + R(X, Ve, X))V, S(X)]
+ R(X,V*VX)S(X), (4.9)

m

> eV, R(X,V'VX)e; =Y &[(Ve, R)(X,V*VX)e; + R(Ve, X, V'V X)e;
1=1 1=1

+ R(X, V., V*VX)e,], (4.10)

Zel e R(e;, S ))X:Zsi[(veiR)(ei,S(X))X+R(6¢,VeiS(X))X
+ R(e;, S(X))Ve, X]. (4.11)

One can calculate 75(X) by summing up (4.7) and (4.8) and using the formulae (4.9)-
(4.11). O

Then, we give the following characterization theorem.

Theorem 4.2.2. Let (M,g) be an m-dimensional pseudo-Riemannian manifold and
X € X(M), then X : (M, g) — (T'M, gs) is a biharmonic map if and only if

(VVPX + 3 al(Vo B)ers SCO)X + Rles, Vo SCO)X +2R(er, S(X))V,, X] =0,
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and
— V'VS(X) = R(X,V*'VX)S(X) + > _&[R(X,V,V'VX)e;
=1
— R(V, X, V*VX)e; + Rles, S(X))es — (V) R)(X, Ve, X e
— R(X, Ve, X))V, S(X) + R(X, R(e;, S(X)) X)e] =0,

where {e;}™, is a local pseudo-orthonormal frame field of (M, g).

Definition 4.2.1 ([25]). Let (M, g) be a pseudo-Riemannian manifold. A vector field
X € X(M) is called biharmonic if the corresponding map X : (M, g) — (T'M, gs) is a

critical point for the bienergy functional Es, only considering variations among maps
defined by vector fields.

By virtue of the formula (4.6), one obtain another proof of the next Theorem given
in [23].

Theorem 4.2.3. Let (M, g) be a compact oriented m-dimensional pseudo-Riemannian
manifold, {e;}", a local pseudo-orthonormal frame field of (M,g), X a tangent vector
field on M and Ey : X(M) — [0,400) the bienergy functional restricted to the space
of all vector fields. Then

d
ZE(X
dt 2(X4)

_ /M { S(TVPX + 30 & [(Ve R es SCOIX + Rles, T S(X))X

t=0
+2R(e;, S(X))V, X], V)}Ug
for any smooth 1-parameter variation U : M X (—¢€,€) — TM of X through vector fields

i.e., Xi(2) =U(z,t) € T.M for any |t| < € and z € M, or equivalently X; € X(M) for
any |t| < e. Also, V is the tangent vector field on M given by

4
dt
where X, (t) = U(z,t), (2,t) € M x (—¢,¢€).

V(z)=—=X,(0), ze€M,

Proof. Let U : M x (—¢,€) — T'M be a smooth variation of X( i.e., U(z,0) = X(z) for
any z € M) such that X(z) = U(z,t) € T,M for any z € M and any [t| < e. We have

BiX) = 5 [ (X0,

As in the Riemannian case [18], we can write

d
ZE(X
dt 2(Xi)

t():/]\/[gS(v’T2(X))Ug,
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where V(z) = %Xt(z)‘tzo, z € M, however from [9, pp. 58|, we have

V=V"0X. (4.12)
On making use of the expression of 7»(X) given by (4.6) and (4.12), we find
d
—Eh(Xy) :/ gs(VY, (X)), (4.13)
dt o Jur
= [ {oV (TP 4 Y (VR SON)X
M i=1
+R(ei, Ve, S(X))X + 2R(ei, S(X)) Ve, X]) fug,
which completes the proof. O]

Then, we deduce the following [25].

Corollary 4.2.1. A vector field X of an m-dimensional pseudo-Riemannian manifold
(M, g) is biharmonic if and only if

(V*V)2X + zm: &;[(Ve,R)(ei, S(X))X + R(es, Vo, S(X))X + 2R(e;, S(X))V,, X] = 0,

i=1
where {e;}™, is a local pseudo-orthonormal frame field of (M, g).

Remark 4.2.1. Theorem 4.2.3 holds if (M, g) is a non-compact pseudo-Riemannian
manifold see [25].

A reformulation of Theorem 4.2.2 is then

Corollary 4.2.2. Let (M,g) be an m-dimensional pseudo-Riemannian manifold and
X € X(M). Then X is a biharmonic map if and only if X is biharmonic vector field
and
— V'VS(X) = R(X,V*VX)S(X) + ) _&[R(X,V, V'VX)e;
i=1
— R(VeiX, V*VX)Q + R(@i, S(X))& — (Vs(X)R)<X, VeiX)ei
— R(X,V ., X)V.S(X)+ R(X, R(e;, S(X))X)e;] = 0.

4.3 Biharmonicity of left-invariant vector fields of
Heisenberg group

The Heisenberg group Hjz can be seen as the Cartesian 3-space R3(x,y, z) endowed
with multiplication

(z,y,2)(2,9,2) = (x + 2,y + ¥, 2 + Z — 7).



4.3 Biharmonicity of left-invariant vector fields of Heisenberg group 71

Hj is three-dimensional Lie group. In [30], the authors proved that any left-invariant
Lorentzian metric on Hj, is isometric to one of the subsequent metrics

g1 = —dx* + dy* + (vdy + dz)?,
go = da* + dy?* — (zdy + d2)?,
g3 = da* + (wvdy + dz)* — ((1 — x)dy — dz)*.
In this section we investigate biharmonicity of left-invariant vector fields on H3 endowed

with g1, g2 and g3 respectively.

4.3.1 Biharmonicity of left-invariant vector fields on (Hs, 1)

The aim of this subsection is to completely determine the set of left-invariant vector
fields on (Hj, g1) which are biharmonic and biharmonic maps respectively. The left-
invariant vector fields

9 _9o0 9 __ 0
9. 2T oy oz @7 or

€1 =
constitute an orthonormal basis of the Lie algebra of Hz with
gi(er,e1) = gi(ez,e2) =1, gi(es,e3) = —1,
for which, we have the Lie brackets:

[62763] = €1, [61762] = 07 [61763] = 07

The components of the Levi-Civita connection of (Hs, g1) are determined by [30]

1 1
Ve er =0, Ve €2 = 263 Ve, €3 = €2
1 1
V62€1 2 v62€2 = 0, Vezeg 2 (414)
1 1
V€361 2 v8362 = —561, ve3€3 0.
Also the curvature components are given by
1 1
R(Gh 62)61 = 162, R(€17 62)62 = —161, R(@h 62)63 =0,
3 3
R(GQ, 63)61 = O, R(GQ, 63)62 = —163, R(eg, 63)63 = —162, (415)
1 1
R(€3, 61)61 = ——¢€g3, R(€3, 61)62 =0, 3(637 e1)63 = ——€1.

4
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Let X = aey + Pes + ves an arbitrary left-invariant vector field on (Hs, g1). By using
(4.14) and (4.15), one has

V'VX = %el + §€2 + Ley,

2 2
(6]
(V'V)PX = Zer + geg + %eg,
S(X) = %62 + %563. (4.16)

By virtue of (4.14)-(4.16), a long but straightforward calculation we get

Proposition 4.3.1. Let X = ae; + fes + ves be a left-invariant vector field on the
Lorentzian Lie group (Hs, g1). Then,

(V'V)X + 3 &l(Ve, R)(er, S(X)X + Res, Ve, S(X))X
+2R(e;, S(X))Ve, X] = ot (16; - 72))61 + 5(41_6042)62 + 7<41_6a2)63’

and

3
— V'VS(X) = R(X,V'VX)S(X) + > &[R(X, Ve, V'V X)e;
=1
— R(Ve, X, V'V X)e; + R(es, S(X))ei — (Vs R)(X, Ve, X)es
- R(X7 VelX)vezS(X) + R(X7 R(eu S(X))X)ez]
_a(=8-2(y" - %) — o) N af(—8 —2(7* — B%) — a?)
- 16 2 16

From Proposition 4.3.1, we easily conclude that the vector field X = ae; + Ses+yes
is biharmonic map if and only if

a(d—(B*—~%) =0,

ﬁ(4 - a2) = 07 (417)
74 —a?) =0,

€3.

and

{ O(")/(—S - 2(72 - 52) - 052) = 07 (418)

af(—8 = 2(1? = §) — a?) = 0.
In particular, X is biharmonic vector field if and only if (4.17) holds. From the system

(4.17), we obtain that the coordinates of X satisfy the equations of hyperbolas: C; =
{a=2, f2—+?=4} and Cy, = {a = =2, $* —+* = 4}. Summarizing, we yield

Theorem 4.3.1. Let X = ae; + fes + ez be a left-invariant vector field on the
Lorentzian Lie group (Hs, g1). Then,
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1. X = aei+Bes+yes is a biharmonic vector field which does not define biharmonic
map if and only if the coordinates of X satisfy the equations of the equilateral
hyperbolas Cy and Cs.

2. The set of left-invariant vector fields which are proper biharmonic maps into T H3
15 empty.

4.3.2 Biharmonicity of left-invariant vector fields on (Hs, ¢2)

This subsection is devoted to the determination of the set of left-invariant vector fields
on (Hs, g2) which are biharmonic and biharmonic maps respectively. The left-invariant

vector fields
0 0 0 0

= — =T, €3= —
oy oz C

constitute an orthonormal basis of the Lie algebra of Hz with

€1

g2(e1,€1) = ga(e2,€2) = 1, ga(es, e3) = —1,
for which, we have the Lie brackets:
[e1,ea] = €3, ler,e3] =0, [ea,e3] = 0.

The components of the Levi-Civita connection of (Hs, go) are determined by [30]

1 1

Ve e1 =0, Ve e = 563 Ve e3 = 52
1 1
Ve2€1 = —563, ve262 = 0, Vezeg = —561, (419)
1 1
Veser = 52 Veyeo = 51 Veyes = 0.

Also the curvature components are given by

3 3
R(€17€2)61 = _1627 R(61,€2)€2 = Zel’ R(ela 62)@3 = O7
1 1
R(GQ, 63)61 = O, R(eg, 63)62 = 163, R<€2, 63)63 = 162, (420)
1 1
R(es,e1)er = —163, R(es,e1)ex = 0, R(es, e1)es = _Zel'

Let X = aey + Pes + ves an arbitrary left-invariant vector field on (Hs, g2). By using
(4.19) and (4.20), then one obtains

) a B
V*VX = 561 + 562 + %/63,

(V*'V)2X = %61 + %2 + %eg,
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e+ —es. (421)

By virtue of (4.19)-(4.21), a long but direct and easy calculations we get

Proposition 4.3.2. Let X = ae; + fes + ves be a left-invariant vector field on the
Lorentzian Lie group (Hs, g2). Then,

(V'V)2X + > &l(Ve,R)(es, S(X))X + R(e;, Ve, S(X)) X
) a4 +7%)

. +B(4+72)€ +7(4—(a2+52>>

+2R(e;, S(X)) Ve, X] = 16 16

1 €3,

and

3
— V'VS(X) = R(X,V'VX)S(X) + > _&[R(X, Ve, V'VX)e;
=1

— R(V,X,V'VX)e; + R(e;, S(X))e; — (Vsx)R) (X, Ve, X)e;

— R(X,V,X)V,,S(X)+ R(X, R(e;, S(X))X)e]

_ 806 +5(0* + ) = 3) |, —ar(16+ 5(® +5) — 39%),
32 32

2.

From Proposition 4.3.2, one conclude that the vector field X = ae; 4+ fes + yes is
biharmonic map if and only if

a(d+%) =0,
BA+9%) =0, (4.22)
(4 — (a? + %)) =0,
" By(16 + 5( B —3v%) =0
Y -+ O[2+ 2y — 72 =0,
{CW06+5@P+5%—3f):0. (4.23)

In particular, X is biharmonic vector field if and only if (4.22) holds. From (4.22) and
(4.23), one has

Theorem 4.3.2. On the Lorentzian Lie group (Hs, g2). We have

1. The set of left-invariant biharmonic vector fields which do not define harmonic
maps into T Hz 1s empty.

2. The set of left-invariant vector fields which are proper biharmonic maps into T Hs
18 empty.
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4.3.3 Biharmonicity of left-invariant vector fields on (Hs, g3)

In this subsection we aim to completely determine the set of left-invariant vector fields
on (Hs, g3) which are biharmonic and biharmonic maps respectively. The left-invariant
vector fields

0] 0 ) 0] 0 0
%, 62—a—y+< —Jf)a, 63—a—y—$&,

constitute an orthonormal basis of the Lie algebra of Hs with

€1 =

gs(e1, 1) = ga(ez, e2) = 1, ga(es, e3) = —1,
for which, we have the Lie brackets:
leg,e3] =0, [es,e1] =ex —e3, [eg,e1] = €3 —es.

The components of the Levi-Civita connection of (Hs, g3) are determined by [30]

Velel = 0, Veleg = 0, Veleg = O,
Vezel = €9 — €3, V82€2 = —€q, V6263 = —€q, (424)
Vese1 = ez — e3, Ve,e2 = —ey, Vese3 = —ey.

Let X = aey + Pes + ves an arbitrary left-invariant vector field on (Hs, g3). By using
(4.24), we get that V*VX = 0 and since g3 is flat we deduce tat S(X) = 0. Then, we
yield

Theorem 4.3.3. On the Lorentzian Lie group (Hs, g3), every left-invariant vector field
s btharmonic maps.

4.4 Godel universe

An interesting space-time in general relativity is the classical Godel universe [14]. This
model is R* endowed with the metric

1
(-, = dx% + dx% — 562‘”3%13/2 — 2e*“* dydt — dt?,

where « is a positive constant. We denote by d; = v/2(e7*"19, — ;). The Levi-
Civita connection in the pseudo-orthonormal frame field {ey, €9, €3, €4} where e; = 0.,
ey = Oy,, €3 = Oy and e4 = 0y, is given by [14]

(0% «

Ve €4 = —Eeg, Ve,e4 =0, Vese4 = %617
V1 =0, Vee1 =0, Ve,e1 =0,
Vese1 = &64 + aes, Ve,e0 =0, Vese2 =0, (4.25)

V2
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«a
Ve €3 = ——=ey, V€3 = —aey.

V2

Taking the vector field X = f(z3)es, where f(x3) is a smooth real function depending
of the variable z5. From [25] we have

R(el, 64)63 = R(eg, 64)61 = 0, (426)
V*VX = (f"+a*f)es, (4.27)
(V*V)2X — (fl/l/ + 2a2f// + Oé4f)€4,

and

where f' = %, f= (;27]; etc. By virtue of relations (4.25), (4.26) and (4.27), we get

3 3
Y &R(X,V.,V'VX)e; =0, and » &R(V, X, V'VX)e; = 0.

i=1 i=1

Then, from Theorem ?7, it follows that X is biharmonic map if and only if the function
f satisfies the subsequent differential equation.

" 202" + ot f = 0. (4.28)

Note that (4.28) is homogeneous fourth order differential equation with general solution
see [25]

f(x2) = c1 cos(auwa) + cosin(awy) + c3x9 cos(axs) + caxa sin(awxs), (4.29)

where c¢1, 2, c3 and ¢4 are real constants. Particulary, in [23] Markellos and Urakawa
proved that X = f(zy)e, is biharmonic vector field, where f(x2) is given by (4.29).

Proposition 4.4.1. The vector fields X = x9(c3 cos(axs) + ¢4 sin(axy))ey are proper
biharmonic maps of (R, {-,)1).
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