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ABSTRACT

Polyharmonic maps of order k are a natural generalization of harmonic maps, for
k = 2, this maps are called biharmonic maps. In this thesis we will study the bihar-
monicity of a vector field X on a pseudo-Riemannian manifold (M, g) viewed as a map
X : (M, g) → (TM, gS) where gS is the Sasaki metric. More precisely, we establish
the formula of the bitension field of X and we show characterization theorem for X
to be biharmonic map, and we describe the relationship between vector fields X that
are critical points of the bienergy functional E2 restricted to variations through vector
fields, equivalently X are biharmonic vector fields, and vector fields which are bihar-
monic maps. Moreover, several applications are included.
Key words: Tangent bundle, Sasaki metric, biharmonic map, vector fields.
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RÉSUMÉ

Les applications polyharmoniques d’ordre k sont une généralisation naturelle des ap-
plications harmoniques, pour k = 2, ces applications sont appelées applications bihar-
moniques. Dans cette thèse nous étudierons la biharmonicité d’un champ de vecteurs X
sur une variété pseudo-riemannienne (M, g) vue comme une application X : (M, g)→
(TM, gS) où gS est la métrique de Sasaki. Plus précisément, nous établissons la for-
mule du champ de bitension de X et nous montrons un théorème de caractérisation
de X pour qu’il soit une application biharmonique, et nous décrivons la relation entre
les champs de vecteurs X qui sont des points critiques de la fonctionnelle biénergie E2

limité aux variations sur les champs de vecteurs, de manière équivalente X sont des
champs de vecteurs biharmoniques, et les champs de vecteurs qui sont des aplications
biharmoniques. De plus, plusieurs applications sont incluses.
Mots clés: Fibré tangent, metrique de Sasaki, application biharmonique, champ de
vecteurs.
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INTRODUCTION

Let (M, g) and (N, h) be smooth pseudo-Riemannian manifolds of dimensions m and n
respectively, and let ϕ : (M, g)→ (N, h) be a smooth map between them. The energy
functional or the Dirichlet energy of ϕ over a compact domain D of M is defined by

E(ϕ,D) =
1

2

∫
D

m∑
i=1

εih(dϕ(ei), dϕ(ei))vg, (1)

where {ei}mi=1 a local pseudo-orthonormal frame field of (M, g) with εi = g(ei, ei) = ±1
for all indices i = 1, 2, · · · ,m. If M is compact, we write E(ϕ) = E(ϕ,M). The
map ϕ is called harmonic if it is a critical point of the energy functional (1). The
Euler-Lagrange equation of (1) is [3, 11]

τ(ϕ) = Trg(∇dϕ) =
m∑
i=1

εi{∇ϕ
ei
dϕ(ei)− dϕ(∇eiei)} = 0.

Here τ(ϕ) is the tension field of ϕ and ∇ϕ denotes the connection on the vector bundle
ϕ−1TN → M induced from the Levi-Civita connection ∇N of (N, h) and ∇ the Levi-
Civita connection of (M, g).

Now, denote by X(M) the set of all smooth vector fields on M and by gS the Sasaki
metric on the tangent bundle TM . Any X ∈ X(M) determines a smooth map from
(M, g) to (TM, gS). The energy of X is, by definition, the energy of the corresponding
map. When M is compact and g is positive definite, it was proved in [17, 27] that
X : (M, g)→ (TM, gS) is an harmonic map if and only if X is parallel, moreover this
results remain true if X is a harmonic vector field i.e. X is a critical point of the energy
functional E restricted to the set X(M) see [13]. In contrast to the Riemannian case,
it was shown in [5] the existence of non-parallel left-invariant vector fields which define
harmonic maps on three dimensional unimodular and non-unimodular Lorentzian Lie
groups.

10



CONTENTS 11

One of the first generalizations of harmonic maps is the notion of polyharmonic
maps of order k(k ≥ 2) between Riemannian manifolds introduced by Eells and Lemaire
in [10]. Precisely, polyharmonic maps of order k are critical points of:

Ek(ϕ) =
1

2

∫
M

|(d+ δ)kϕ|2vM ,

Ek(ϕ) =

{
1
2

∫
M
|W l

ϕ|2vM , if k = 2l
1
2

∫
M
|∇ϕW l

ϕ|2vM , if k = 2l + 1.

Here
W l
ϕ = ∆ϕ · · ·∆ϕ︸ ︷︷ ︸

l-1

τ(ϕ) ∈ ϕ−1TN,

where

∆ϕτ(ϕ) = −
m∑
i=1

(∇ϕ
ei
∇ϕ
ei
τ(ϕ)−∇ϕ

∇Mei ei
τ(ϕ))

is the rough Laplacian on ϕ−1TN . For k = 2, we obtain the bienergy of ϕ as the
functional

E2(ϕ) =
1

2

∫
D

|τ(ϕ)|2vg,

and a smooth map ϕ is biharmonic if and only if it is a critical point of E2. The
associated Euler-Lagrange equation is established in [18]. By definition, it can be
seen that every harmonic map is biharmonic. However, a biharmonic map can be
non-harmonic in which case it is called proper biharmonic. We refer to [28, 31] for
more information on results concerning the theory of biharmonic maps. The notion
of biharmonic map between Riemannian manifolds has been extended to the case of
pseudo-Riemannian manifolds. The corresponding critical point condition has been
derived in [8] as follows

τ2(ϕ) =
m∑
i=1

εi

((
∇ϕ
ei
∇ϕ
ei
−∇ϕ

∇Mei ei

)
τ(ϕ)−RN(dϕ(ei), τ(ϕ))dϕ(ei)

)
= 0,

where τ2(ϕ) is the bitension field of ϕ and RN is the curvature tensor of N .
On the other hand, when (M, g) is the pseudo-Riemannian manifold, Markellos and

Urakawa [25] defined the bienergy of X ∈ X(M) as the bienergy of the corresponding
map (see [23] for the Riemannian case) and obtained the critical point of the bienergy
functional E2 restricted to the set X(M) (equivalently, X is a biharmonic vector field,
see [23] for the Riemannian case), further in [23] they proved that if g is positive definite
and M is compact then X is biharmonic vector field (resp. biharmonic map) if and only
if X is parallel. In this work, we will study the biharmonicity (polyharmonicity of order
2) of X ∈ X(M) viewed as a map X : (M, g) → (TM, gS) in both Riemannian case
and pseudo-Riemannian case. More precisely, we address the problem of characterizing
those vector fields which are biharmonic maps, and examine the relationship between
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vector fields X that are critical points of the functional E2 restricted to variations
through vector fields (equivalently, X are biharmonic vector fields) and vector fields
which are biharmonic maps.

Let us now briefly describe the contents of the present work, organized into four
chapters.

In the first chapter, after an introduction of basic material and definitions we discuss
known facts about horizontal and vertical lifts of vector fields on a a differentiable
manifold M . We calculate the Lie bracket, define a class of natural metrics ḡ on TM
and obtain formulae for its Levi-Civita connection ∇̄. Afterward we define the Sasaki
metric as an example of a natural metric and calculate its Levi-Civita connection and
its Riemann curvature tensor.

With the second chapter, we recall briefly the notions of harmonic and biharmonic
mappings between pseudo-Riemannian manifolds, integrating them with some more
details.

In the third chapter, we present our work on the biharmonicity of vector fields on
Riemannian manifolds. We compute the expression of the bitension field of a vector
field considered as a map from a Riemannian manifold (M, g) to its tangent bundle
TM equipped with the Sasaki metric gS. As a consequence, we show characterization
theorem for a vector field to be biharmonic map. Moreover, we prove non-existence
results for left-invariant vector fields which are biharmonic without being harmonic
maps and non-harmonic biharmonic maps respectively on unimodular Lie groups of
dimension three.

In the last chapter, we deal with the biharmonicity of a vector field X viewed
as a map from a pseudo-Riemannian manifold (M, g) into its tangent bundle TM
endowed with the Sasaki metric gS. Precisely, we characterize those vector fields which
are biharmonic maps, and find the relationship between them and biharmonic vector
fields. Afterwards, we study the biharmonicity of left-invariant vector fields on the
three dimensional Heisenberg group endowed with a left-invariant Lorentzian metric.
Finally, we give examples of vector fields which are proper biharmonic maps on the
Gödel universe.



CHAPTER 1

PRELIMINARIES

In this chapter, we give basic material and definitions needed later. The references
used are: [3], [7],[21], [20], [22], [28], [33].

1.1 Differentiable manifold

1.1.1 Differentiable manifold

Definition 1.1.1. Let M be a topological Hausdorff space with a countable basis. M
is called a topological manifold, if there esists an m ∈ N and for every point p ∈M an
open neighborhood Up of p such that Up is homeomorphic to some open subset Vp ⊂ Rm.
The integer m is called the dimension of M .

Definition 1.1.2. Let Mm be a topological manifold, U an open and connected subset
of M and ϕ : U → Rm a continuous map homeomorphic onto its image ϕ(U). Then
(U,ϕ) is called a local coordinate on M . A collection A = {(Uα, ϕα) | α ∈ I} of local
coordinates on M is called a Cr-atlas if

• M =
⋃
α Uα, and

• the corresponding transition maps

ϕβ ◦ ϕ−1
α |ϕα(Uα∩Uβ): ϕα(Uα ∩ Uβ)→ Rm

are Cr for all α, β ∈ I.

If A is a Cr-atlas on M then a local coordinate (U,ϕ) on M is said to be compatible
with A if A ∪ (U,ϕ) is a Cr-atlas. A Cr-atlas Â is maximal if it contains all local
coordinates compatible with it. It is also called a Cr-structure on M and the pair
(M, Â) is called a differentiable Cr-manifold. By smooth we mean C∞ defined by
C∞ = ∩∞k=1C

k. We write Mm to denote that M has dimension m.

13



1.2 Tangent Bundle 14

1.1.2 Orientable manifold

Definition 1.1.3. Let Mm be a smooth manifold. Two charts (Uα, ϕα) and (Uβ, ϕβ)
are orientation compatible if the transition map ϕαβ = ϕβ ◦ ϕ−1

α satisfies

det(dϕαβ)x > 0,

for all x ∈ ϕα(Uα ∩ Uβ). An orientation of Mm is an atlas A = {(Ui, ϕi)}i∈I whose
charts are pairwise orientation compatible. We say M is orientable if it has an orien-
tation.

Theorem 1.1.1. An n-dimensional manifold M is orientable if and only if M admits
a nowhere vanishing n-form.

1.1.3 Manifolds with boundary

Definition 1.1.4. A smooth manifold with boundary is a Hausdorff space M with a
countable basis of open sets and a differentiable structure A = {Uα, ϕα} where ϕα :
Uα → ϕα(Uα) ⊂ Hn is homeomorphism, such that :

• Hn = {(x1, . . . , xn) ∈ Rn / x1 ≥ 0}. ( half-space )

• the union of Uα cover M

• If (Uα, ϕα) and (Uβ, ϕβ) are two elements of A the ϕβ ◦ ϕ−1
α and ϕα ◦ ϕ−1

β are
diffeomorphisms of ϕα(Uα ∩ Uβ) and ϕβ(Uα ∩ Uβ) , open subsets of Hn

• A is maximal with respect first and third properties.

1.2 Tangent Bundle

1.2.1 Tangent Space

Let Mm denote a C∞ . Just as for Rn, we define a germ of a C∞ function at p in M
to be an equivalence class of C∞ functions defined in a neighborhood of p in M , two
such functions being equivalent if they agree on some, possibly smaller, neighborhood
of p. The set of germs of C∞ real-valued functions at p in M is denoted by C∞p (M).
The addition and multiplication of functions make C∞p (M) into a ring; with scalar
multiplication by real numbers, C∞p (M) becomes an algebra over R. choosing an
arbitrary (U,ϕ) around p it is easily verified that ϕ∗ : C∞ϕ(p)(M) → C∞p (M) given by

ϕ∗(f) = f ◦ ϕ is an isomorphism of the algebra of germs of C∞ function at ϕ(p) ∈ Rn

onto the algebra C∞p (M).

Definition 1.2.1. A tangent vector Xp at p ∈ M is a map Xp : C∞p (M) → R such
that
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(i) Xp(α · f + β · g) = α ·Xp(f) + β ·Xp(g) (linearity)

(ii) Xp(f · g) = g(p) ·Xp(f) + f(p) ·Xp(f) ( Leibnitz rule )

for all α, β ∈ R and f, g ∈ C∞p (M). The set of all tangent vectors Xp and p ∈ M is
denoted by TpM and is called the tangent space of M at p.

The tangent space TpM is turned into a real vector space by defining the operations
+ and · by

(i) (Xp + Yp)(f) = Xp(f) + Yp(f)

(ii) (α ·Xp)(f) = α ·Xp(f)

for all α ∈ R and Xp, Yp ∈ TpM .

Definition 1.2.2. Let ϕ : M → N be a map between two manifolds. For a point
p ∈M we define the map dϕp : TpM → Tϕ(p)N by

(dϕp)(Xp)(f) = Xp(f ◦ ϕ)

For all Xp ∈ TpM and f ∈ C∞ The map dϕp is called the differential of ϕ at p ∈M .

Proposition 1.2.1. Let ϕ : M → M̃ and ψ : M → N be two maps between smooth
manifolds, then

(i) the map dϕp : TpM → Tϕ(p)M̃ is linear,

(ii) if idM is the identity map, then d(idM)p = idTpM ,

(iii) d(ψ ◦ ϕ)p = dψϕ(p) ◦ dϕp,

for all p ∈M .

Proof. The first two points follow directly from the definition, so we only have to prove
the (iii) . If Xp ∈ TpM and f ∈ C∞, then

(dψϕ(p) ◦ dϕp(Xp))(f) = (dϕp(Xp))(f ◦ ψ)

= Xp(f ◦ ψ ◦ ϕ)

= d(ψ ◦ ϕ)p(Xp)(f)

Corollary 1.2.1. Let ϕ : M → N be a diffeomorphism with inverse ψ = ϕ−1 : N →
M . Then the differential dϕp : TpM → Tϕ(p)M at p is bijective and (dϕp)

−1 = dψϕ(p).
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Definition 1.2.3. Let Mm be a manifold, (U, x) be a local coordinate on M and {ek|k =
1, ...,m} be the standard basis for Rm. For p ∈M , we define ( ∂

∂xk
)p ∈ TpM by

(
∂

∂xk
)p : f 7→ (

∂f

∂xk
)(p) = ∂ek(f ◦ x−1)(x(p))

Proposition 1.2.2. The set {( ∂
∂xk

)p|k = 1, ...,m} is a basis for TpM for all p ∈ U .

Proof. Because M is smooth, it follows that the inverse of x is smooth and therefore
the differential of the inverse satisfies

dx−1
x(p)(∂ek)(f) = ∂ek(f ◦ x−1)(x(p)) = ((

∂

∂xk
)p)(f)

for all f ∈ C∞.

The tangent space TpM may be viewed in an alternative way. For this we use
the set C(p) of all equivalence classes of locally defined C1-curves passing through the
point p ∈ M . It is possible to identify TpM with C(p) being the set of all tangents to
curves going through the point p. Then a vector v ∈ TpM can be described by

v(f) =
d

dt
(f ◦ γ(t)) |t=0,

with f : U ∈M → R a function defined on U containing p and γ : I → U an arbitrary
curve with γ(0) = p and γ(0) = v

1.2.2 Tangent Bundle

Definition 1.2.4. Let E and M be smouth manifolds and π : E →M be a continuous
surjective map. If

(i) for each p ∈M the fiber Ep = π−1(p) is an n-dimensional vector space and,

(ii) for each p ∈M there exists a bundle chart (π−1(U), ψ) consisting of the pre image
of π of an open neithborhood U of p and a homeomorphisme ψ : π−1(U)→ U×Rn

such that for all q ∈ U the map ψq = ψ\Eq : Eq → q × Rn is a vector space
isomorphism,

then the triple (E,M, π)is called an n-dimensional topological vector bundle over M .
It is said to be trivial if there exists a global bundle chart ψ : E →M × Rn.

Definition 1.2.5. Let (E,M, π) be a topological vector bundle. A continuous map
σ : M → E is called a section of the bundle if π ◦ σ(p) = p for each p ∈M .
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Definition 1.2.6. A collection

B = {(π−1(Uα), ψα)|α ∈ I}

of bundle charts is called a bundle atlas for (E,M, π) if M =
⋃
α Uα. For each pair

(α, β) there exists a function Aα,β : Uα ∩ Uβ → GL(Rn), into the general linear group
GL(Rn) of Rn, such that the corresponding continuous map

ψα ◦ ψ−1
β |(Uα∩Uβ)×Rn : (Uα ∩ Uβ)× Rn → (Uα ∩ Uβ)× Rn

is given by
(p, v) 7→ (p, (Aα,β)(v)).

The elements of {(Aα,β)(v)\α, β ∈ I} are called the transition maps of the bundle atlas
B.

Remark 1.2.1. Since all the maps which we are using are smooth we call a topological
vector bundle smooth, if B is maximal. A smooth section of (E,M, π) is called a vector
field and we denote the set of all vector fields of (E,M, π) by Γ(E).

Definition 1.2.7. By the following operations we make Γ(E) into a C∞(M) = C∞(M,R)
module

(i) (v + w)p = vp + wp,

(ii) (f · v)p = f(x) · vp,

for all v, w ∈ Γ(E) and f ∈ C∞(M). In particular, Γ(E) is a vector space over R.

Definition 1.2.8. Let M be a manifold and (E,M, π) be an n-dimensional vector
bundle over M . A set F = {v1, ..., vn} of vector fields

v1, ..., vn : U ⊂M → E

is called a local frame for E over U if for each p ∈ U the set {(v1)p, ..., (vn)p} is a basis
for the vector space Ep.

Definition 1.2.9. Let Mm be a smooth manifold. The tangent bundle TM of M is
given by

TM = {(p, u)|x ∈M,u ∈ TpM}.

The bundle map π : TM → M with π : (p, u) 7→ p is called the natural projection of
TM .

Theorem 1.2.1. Let Mm be a smooth manifold with C∞-atlas A. Then the tangent
bundle TM is a smooth manifold of dimension 2m and A induces a C∞-atlas A∗ on
TM .
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Proof. For every local coordinate x : U → Rm in A we define x∗ : π−1(U)→ Rm ×Rm

by

x∗ : (p,
m∑
k=1

uk
∂

∂xk

∣∣∣
t
) 7→ (x(p), (u1, ..., um)).

Then the collection

(x∗)−1(W ) ⊂ TM |(U, x) ∈ Â and W ⊂ x(U)× Rm open

is a basis for a topology TTM on TM and (π−1(U), x∗) is a local coordinate on the
2m-dimensional topological manifold (TM,TTM). If (U, x) and (V, y) are two local
coordinates in A such that x ∈ U ∩ V , then the transition map

(y∗) ◦ (x∗)−1 : x∗(π−1(U ∩ V ))→ Rm × Rm

is given by

(p, u) 7→
(
y ◦ x−1(p),

m∑
k=1

∂y1

∂xk
(x−1(p))uk, ...,

m∑
k=1

∂ym

∂xk
(x−1(p))uk

)
We are assuming that y◦x−1 is smooth, hence (y∗)◦(x∗)−1 is smooth and therefor A∗ =
(π−1(U), x∗

∣∣(U, x) ∈ Â) is a C∞-atlas on TM and (TM, Â∗) is a smooth manifold.

Remark 1.2.2. For each point p ∈ M the fiber π−1(p) of π is the tangent space
TpM of M at p and hence an m-dimensional vector space. For a local coordinate

x : U → Rm ∈ Â we define x̄ : π−1(U)→ U × Rm by

x̄ : (p,
m∑
k=1

uk
∂

∂xk

∣∣∣
p
) 7→ (x, (u1, ..., um)).

The restriction x̄p = x̂
∣∣
TxM

: TxM → x× Rm to TxM is given by

x̄p :
m∑
k=1

uk
∂

∂xk
∣∣
p
7→ (u1, ..., um),

which obviously is a vector space isomorphism. Hence the x̄ : π−1(U) → U × Rm is a
bundle chart. This implies that

B = {(π−1(U), x̄)|(U, x) ∈ Â}

is a bundle atlas transforming (TM,M, π) into an m-dimensional topological vector
bundle. This implies that the vector bundle (TM,M, π) together with the maximal
bundle atlas B̂ induced by B is a smooth vector bundle. A smooth section of (TM,M, π)
is called a vector field and we denote the set of all vector fields of (TM,M, π) by Γ(TM)
or X(M).
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Definition 1.2.10. Let M be a manifold and X, Y ∈ Γ(TM) be vector fields on M .
Then the Lie bracket [X, Y ]p of X and Y at p ∈M is defined by

[X, Y ]p(f) = Xp(Y (f))− Yp(X(f))

where f ∈ C∞(M).

1.2.3 Pullback tangent bundle

Definition 1.2.11. Let ϕ : M → N a map of class C∞ between two differentiable
manifolds. The pullback tangent bundle is defined by:

ϕ−1TN = {(x, v)|x ∈M, v ∈ Tϕ(x)N}.

A section on ϕ−1TN is a map of class C∞, V : M → TN such that V (x) ∈ Tϕ(x)N,∀x ∈
M . Denote by Γ(ϕ−1TN) the set of sections of ϕ−1TN .

Example 1.2.1. Let ϕ : M → N a map of class C∞ between two differentiable mani-
folds.

1. For all Y ∈ Γ(TN), Y ◦ ϕ : M → TN is a section on ϕ−1TN .

2. For all X ∈ Γ(TM), dϕ(X) ∈ Γ(ϕ−1TN).

3. The vector fields along a curve γ in a differentiable manifold M are sections of
ϕ−1TM .

1.3 Lie groups

Definition 1.3.1. A Lie group is a group G with a structure of differential manifold,
such that the map

θ : G×G −→ G

(x, y) 7−→ xy−1

is smooth.

Example 1.3.1. • S1 = {eiθ, θ ∈ R}, considered as a group under multiplication.

• Linear Lie groups with matrix multiplications

GL(n,R) = {M ∈M(n,R)/ detM 6= 0},

SL(n,R) = {M ∈ GL(n,R)/ detM = 1},

O(n) = {M ∈ GL(n,R)/tMM = 1}.
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1.3.1 Lie algebra of a Lie group

Definition 1.3.2. A Lie algebra g of dimension n on K, is an n-dimensional vector
space on K with a bilinear map, [, ] : g × g −→ g called Lie bracket which has the
following properties:

1. [X,X] = 0 for each X ∈ g.

2. [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 (Jaccobi identity),

for each X, Y, Z ∈ g.

Definition 1.3.3. A Lie algebra morphism is a Linear map T between two Lie algebras
which preserves the brackets i.e. T ([, ]) = [T (), T ()].

Definition 1.3.4. Let G be a Lie group, we define the two smooth maps

Lg : G −→ G

x 7−→ Lg(x) = gx

and,

Rg : G −→ G

x 7−→ Rg(x) = xg

Lg(resp. Rg) is called left translation (resp. right translation).

Definition 1.3.5. Let G be a Lie group, a vector field X ∈ X (G) is said to be left
invariant if:

(Ly)∗X = X (∀y ∈ G).

Definition 1.3.6. The Lie algebra of the Lie group G is the space of all left invariant
vector fields on G equipped with the Lie bracket of vector fields.

1.4 Pseudo-Riemannian manifolds

Definition 1.4.1. A pseudo-Riemannian metric tensor g on a manifold M is a sym-
metric non-degenerate (0, 2) tensor on M of constant index, i.e., g assigns to each point
x ∈M a scalar product gx on TxM and the index of gx is the same for all x ∈M .

Definition 1.4.2. A pseudo-Riemmannian manifold Mm is an m-dimensional man-
ifold equipped with a pseudo-Riemannian metric tensor g. The common value s,
0 ≤ s ≤ m, of index on M is called the index of M . If s = 0, M is called a Rie-
mannian manifold. In this case, each gx is a positive definite inner product on TxM .
A pseudo-Riemannian manifold (resp. metric) is also known as a semi-Riemannian
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(resp. metric). A pseudo-Riemanniann metric on an even-dimensional manifold M is
called a neutral metric if its index is equal to 1

2
dimM . If the index of M is one, M is

called a Lorentz manifold and the corresponding metric is called Lorentzian. A manifold
of dimension ≥ 2 admits a Lorentzian metric if and only if it admits a 1-dimensional
distribution.

Definition 1.4.3. Let ϕ : M → N be a map of class C∞ between two differentiable
manifolds, and h be a pseudo-Riemannian metric on N . Then h induces a a pseudo-
Riemannian metric on Γ(ϕ−1TN) given by h(V,W )(x) = hϕ(x)(Vx,Wx), for all x ∈M
and V,W ∈ Γ(ϕ−1TN).

Definition 1.4.4. Let G be a Lie group. A pseudo-Riemannian g on G is left invariant
if

g(X, Y )x = g((La)∗X, (La)∗Y ).

∀a, x ∈ G, and X, Y ∈ TxG, that is, La is an isometry.

1.5 Levi-Civita connexion

Definition 1.5.1. A linear connection ∇ on a manifold M is a function:

∇ : Γ(TM)× Γ(TM)→ Γ(TM)

(X, Y )→ ∇XY

such that for every X, Y, Z ∈ Γ(TM) and f ∈ C∞(M), we have:

1. ∇X(Y + Z) = ∇XY +∇XZ.

2. ∇X(fY ) = X(f)Y + f(∇XY ).

3. ∇X+fY (Z) = ∇XZ + f(∇YZ).

∇XY is called the covariant derivative of Y with respect to X. The torsion tensor
T of a linear connection ∇ is a tensor of type (1, 2) defined by T (X, Y ) = ∇XY −
∇YX − [X, Y ].

Remark 1.5.1. With respect to a local coordinate system (xi) on M , ∇ is entirely
defined by the Christoffel symbols defined as follows:

∇ ∂
∂xi

∂

∂xj
= Γkij

∂

∂xk
.

Let X = X i ∂
∂xi

et Y = Y j ∂
∂xj

, then :

∇XY = X i
(∂Y k

∂xi
+ ΓkijY

j
) ∂

∂xk
.
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The following theorem shows that on a pseudo-Riemannian manifold there exists a
unique connection sharing two further properties.

Theorem 1.5.1. On a pseudo-Riemannian manifold (M, g), there exists a unique
linear connection ∇ such that

1. ∇ is torsion free, i.e., [X, Y ] = ∇XY −∇YX, and

2. X(g(Y, Z)) = g(∇XY, Z) + g(Y,∇XZ) for all X, Y, Z ∈ Γ(TM).

This unique linear connection ∇ is called the Levi-Civita connection of (M, g) and it
is characterized by the Koszul formula:

2g(∇XY, Z) = X(g(Y, Z)) + Y (g(Z,X))− Z(g(X, Y ))

+ g(Z, [X, Y ]) + g(Y, [Z,X])− g(X, [Y, Z]).
(1.1)

1.5.1 Riemann curvature tensor

Remark 1.5.2. For a pseudo-Riemannian manifold (M, g) with Levi-Civita connection
∇, the function R : X(M)× X(M)× X(M) −→ X(M) defined by

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z,

is a (1, 3) tensor field, called the Riemann curvature tensor.

Proposition 1.5.1. The Riemann curvature tensor R satisfies the following properties:

1. R(X, Y )Z = −R(Y,X)Z.

2. g(R(X, Y )Z,W ) = −g(R(X, Y )W,Z).

3. g(R(X, Y )Z,W ) = g(R(Z,W )X, Y ).

4. R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0.

For all X, Y, Z,W ∈ X(M).

1.6 The vertical and horizontal lifts

Let Mm be smooth manifold, TM the tangent bundle of M , and π : TM → M the
canonical projection. For any ξ ∈ TM ; (dπ)ξ : TξTM → Tπ(ξ)M is an epimorphism, or
equivalently π : TM → M is a submersion. Explicitly , in local coordinates (xi)1≤i≤m
and (xi, yi)1≤i≤m, for any ξ ∈ TM and any X ∈ TξTM , putting

X = X i ∂

∂xi
∣∣
ξ

+Xm+i ∂

∂yi
∣∣
ξ
,



1.6 The vertical and horizontal lifts 23

where (X i, Xm+i)1≤i≤m ∈ R2m, we have

(dπ)ξ(X) = X i ∂

∂xi
∣∣
π(ξ)

Therefore, the vertical subspace V|ξ = ker(dπ)ξ of TξTM is given by

V
∣∣
ξ

= Span
{( ∂
∂yi
∣∣
ξ

)
1≤i≤m

}
Let us now suppose that the manifold M is endowed with a linear connection ∇ whose
components with respect to the local chart (U,ϕ) are Γijk; for any ξ ∈ π−1(U) is well
defined the map

Kξ : TξTM → Tπ(ξ)M

such that for any X ∈ TξTM , with X = X i ∂
∂xi
|ξ +Xm+i ∂

∂yi
|ξ:

Kξ(X) =
(
Xm+i + Γijk(π(ξ))Xjyk(ξ)

) ∂
∂xi
∣∣
π(ξ)

which is called the Dombrowski map. The horizontal subspace H of TξTM is now
defined by

H = ker(Kξ),

and one can easily prove that, for any ξ ∈ TM

TξTM = Vξ ⊕Hξ. (1.2)

For example, if we consider a local chart (U,ϕ) at x = π(ξ) of normal coordinates,
the expression of Kξ reduces to

Kξ(X) = Xm+i ∂

∂xi
∣∣
π(x)

;

from witch (1.2) follows immediately, we obtain , in this way, the vertical and the
horizontal distributions on TM

VTM = (Vξ)ξ∈TM and HTM = (Hξ)ξ∈TM

and the natural projection operators, which we shall denote, respectively, with PV :
Γ(TTM)→ Γ(VTM) and PH : Γ(TTM)→ Γ(HTM). It is of a certain importance to
point out the possibility of defining some special types of vector fields on TM , starting
with a vector field on M , Namely, if we take X ∈ Γ(TM) , it is defined the vertical lift
of X, as the unique vector field Xv ∈ Γ(TTM), such that, for any ξ ∈ TM

(dπ)ξ(X
v
ξ ) = 0 and Kξ(X

v
ξ ) = Xπ(ξ)

and the horizontal lift of X as the unique vector field X, such that, for any Xh ∈
Γ(TTM)
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(dπ)ξ(X
h
ξ ) = Xπ(ξ) and Kξ(X

v
ξ ) = 0

in local coordinates (xi)1≤i≤m and (xi, yi)1≤i≤m, putting X|U = X i ∂
∂xi

, with X i ∈
C∞(U), the expression of Xv and Xh are

Xv
∣∣
π−1(U)

= (X i ◦ π)
∂

∂yi

and

Xh
∣∣
π−1(U)

= (X i ◦ π)
∂

∂xi
− (Γijk ◦ π)(Xj ◦ π)yk

∂

∂yi

from which, in particular, we get( ∂
∂xi
)v∣∣

π−1(U)
=

∂

∂yi

and ( ∂
∂xi
)h∣∣

π−1(U)
=

∂

∂xi
− (Γrik ◦ π)yk

∂

∂yr

from the previous relations, for any ξ ∈ TM

Vξ = Span
{((

∂
∂xi

)v
ξ

)
1≤i≤m

}
and Hξ = Span

{((
∂
∂xi

)h
ξ

)
1≤i≤m

}
therefore obtaining, recalling (1.2)

TξTM = Span
{(( ∂

∂xi
)v
ξ
,
( ∂
∂xi
)h
ξ

)
1≤i≤m

}
Remark 1.6.1. Note that the maps X 7−→ Xh and X 7−→ Xv are isomorphisms
between the vector space TxM and the subspaces H(x,u) and V(x,u), respectively. Each
tangent vector Z ∈ T(x,uTM can then be written as

Z = Xh + Y v,

where X and Y are uniquely determined by X = dπ(Z) and Y = K(Z). It follows that
if f : M −→ R is a smooth real valued function on M , then

Xh(f ◦ π) = X(f) ◦ π and Xv(f ◦ π) = 0,

for all X ∈ Γ(TM).
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1.7 The Lie Bracket

In this section we use the vertical and horizontal lifts to calculate the Lie bracket on
the tangent bundle.

Theorem 1.7.1. Let (Mm, g) be a pseudo-Riemannian manifold, ∇ be the Levi-Civita
connection and R be the Riemann curvature tensor of ∇. Then the Lie bracket on the
tangent bundle TM of M satisfies the following:

(i) [Xv, Y v]ζ = 0

(ii) [Xh, Y v]ζ = (∇XY )vζ

(iii) [Xh, Y h] = −(R(X, Y )Z)vζ + [X, Y ]hζ ,

for any X, Y ∈ Γ(TM) and any ζ = (x, u) ∈ TM , where Z ∈ Γ(TM) such that
Zπ(ζ) = ζ.

Proof. Using the inclusion map i, we see that there exist vector fields X̃, Ỹ ∈ C∞(TuTxM)
which are i-related to Xv and Y h, respectively i.e.

Xv
(x,u) = di(X̃u) and Y(x,u) = di(Ỹu)

for all u ∈ TpM . Hence we get

[Xv, Y v]Z = di([X̃, Ỹ ]u)

By the definition of the Dombrowski map we know that K(Xv
(x,u)) = Xx for all

u ∈ TpM . Therefore X̃ and Ỹ are right-invariant vector fields on TxM in its capacity
as a Lie group. Hence the right-hand side of the formula vanishes, since TpM is an
abelian Lie group. This proves (i). We Know that dπ(Xh

Z) = Xπ(Z) and dπ(Y v
Z ) = 0.

Hence dπ([Xh, Y v]) = [dπ(Xh), dπ(Y v)] = 0 and dπ((∇XY )v) = 0, we get

dπ([Xh, Y v]) = dπ((∇XY )v)

and
dπ([Xh, Y v]) = [X, Y ].

So we only have to compute the function K of the right-hand sides in the last two
parts of the theorem. To calculate them we will again use our previous abbreviation
X i = ∂

∂xi
where (x1, ..., xm) are local coordinates for M . It is sufficient to calculate

both terms just for X, Y ∈ { ∂
∂x1
, ..., ∂

∂xm
}, because all our functions are linear in every

argument. Including the abbreviations is this corollary, and using [ ∂
∂xi
, ∂
∂xj

] = 0 and
∂
∂yi

(yj) = δij for all i, i ∈ {1, ..., 2m}, with δij the Kronecker symbol, we obtain

[( ∂
∂xi
)h
,
( ∂

∂yj
)v]

=
m∑
k=1

(Γkij ◦ π)
∂

∂yk
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By the definition of the Dombrowski map we obtain:

K
([( ∂

∂xi
)h
,
( ∂

∂yj
)v]

(x,u)

)
=
(
∇ ∂

∂xj

∂

∂yj

)
x
.

This provides us with (ii). In the same way as above we will now, calculate.[( ∂

∂xj
)h
,
( ∂

∂yj
)h]

=
m∑

k,l,n=1

{ ∂

∂xj
(Γkil ◦ π)− ∂

∂xi
(Γkjl ◦ π) + (Γnil ◦ π)(Γkjn ◦ π)

−(Γnjl ◦ π)(Γkin ◦ π)yl
∂

∂yk
}

= −
m∑

k,l=1

(Rk
lij ◦ π)yl

∂

∂yk

Again, by using the Dombrowski map, we obtain for Z = (x, u)

K
([( ∂

∂xi
)h
,
( ∂

∂xj
)h]

Z

)
= −R

( ∂

∂xj
,
∂

∂xk

)
Z

This proves (iii) and completes the proof.

1.8 Natural Metrics

Definition 1.8.1. Let (Mm, g) be a pseudo-Riemannian manifold. A pseudo-Riemannian
metric ḡ on the tangent bundle TM of M is said to be natural with respect to g if :

(i) ḡ(x,u)(X
h, Y h) = gx(X, Y ),

(ii) ḡ(x,u)(X
h, Y v) = 0,

for all vector fields X, Y ∈ Γ(TM).
We can now use the Koszul formula to compute the Levi-Civita connection ∇̄ for

the tangent bundle (TM, ḡ) equipped with a natural metric ḡ with respect to g on M .

Lemma 1.8.1. Let (Mm, g) be a pseudo-Riemannian manifold and TM be the tangent
bundle of M . Then for each (x, u) ∈ TM and every natural metric ḡ on TM the
corresponding Levi-Civita connection ∇̄ satisfies.

1. ḡ(∇̄XhY h,W h) = g(∇XY,W ),

2. ḡ(∇̄XhY h,W v) = −1
2
ḡ((R(X, Y )Z)v,W v),

3. ḡ(∇̄XhY v,W h) = −1
2
ḡ(Y v, (R(W,X)Z)v),

4. ḡ(∇̄XhY v,W v) = 1
2
(Xh(ḡ(Y v,W v) + ḡ(W v, (∇XY )v))− ḡ(Y v, (∇XW )v)),
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5. ḡ(∇̄XvY h,W h) = 1
2
ḡ(Xv, (R(Y,W )Z)v),

6. ḡ(∇̄XvY h,W v) = 1
2
(Y h(ḡ(W v, Xv)− ḡ(W v, (∇YX)v))− ḡ(Xv, (∇YW )v)),

7. ḡ(∇̄XvY v,W h) = 1
2
(−W h(ḡ(Xv, Y v) + ḡ(Y v, (∇WX)v)) + ḡ(Xv, (∇WY )v)),

8. ḡ(∇̄XhY h,W h) = 1
2
(Xv(ḡ(Y v,W v)) + Y v(ḡ(W v, Y v))−W v(ḡ(Xv, Y v))),

for all X, Y,W ∈ Γ(TM), where Z ∈ Γ(TM) such that Zπ(x,u) = (x, u) and R is the
curvature tensor field of ∇.

Proof. For any vector fields X, Y,W ∈ Γ(TM) and i, j, k ∈ {h, v}

2ḡ(∇̄XiY j,W k) = X i(ḡ(Y j,W k)) + Y j(ḡ(W k, X i))−W k(ḡ(X i, Y i))

+ḡ(W k, [X i, Y j]) + ḡ(Y j, [W k, X i])− ḡ(X i, [Y j,W k]),

(1) This s a consequence of Theorem 1.7.1, Definition 1.8.1 and the following compu-
tations

2ḡ(∇̄XhY h,W h) = Xh(ḡ(Y h,W h)) + Y h(ḡ(W h, Xh))

−W h(ḡ(Xh, Y h))− ḡ(Xh, [Y h,W h])

+ḡ(Y h, [W h, Xh]) + ḡ(W h, [Xh, Y h])

= X(g(Y,W )) + Y (g(W,Y )))−W (g(X, Y ))

−ḡ(Xh, [Y,W ]h) + ḡ(Y h, [W,X]h) + ḡ(W h, [X, Y ]h)

+ḡ(Xh, (R(Y,W )Z)v)− ḡ(Y h, (R(W,X)Z)v)

−ḡ(W h, (R(X, Y )Z)v)

= 2g(∇XY,W ).

(2) The second assertion of the lemma is obtained as follows

ḡ(∇̄XhY h,W v) = Xh(ḡ(Y h,W v)) + Y h(ḡ(W v, Xh))

−W v(ḡ(Xh, Y h))− ḡ(Xh, [Y h,W v])

+ḡ(Y h, [W v, Xh]) + ḡ(W v, [Xh, Y h])

= −W vg(X, Y )− ḡ(Xh, [Y h,W v])

+ḡ(Y h, [W v, Xh]) + ḡ(W v, [Xh, Y h]).

The first term vanishes, because differentiating a horizontal vector field in a vertical
direction gives zero. The second and third terms also vanish, because the Lie bracket
of a horizontal vector field is vertical, therefore

2ḡ(∇̄XhY h,W h) = ḡ(W v, [Xh, Y h])

= ḡ(W v, [X, Y ]h − (R(X, Y )Z)v)
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= −ḡ(W v, (R(X, Y )Z)v).

(3) This is analogous to the proof of part (2).
(3) The Koszul formula gives

ḡ(∇̄XhY v,W v) = Xh(ḡ(Y v,W v)) + Y v(ḡ(W v, Xh))

−W v(ḡ(Xh, Y v))− ḡ(Xh, [Y v,W v])

+ḡ(Y v, [W v, Xh]) + ḡ(W v, [Xh, Y v])

= Xh(ḡ(Y v,W v)− ḡ(Xh, [Y v,W v])

+ḡ(Y v, [W v, Xh]) + ḡ(W v, [Xh, Y v]).

But the Lie bracket of two vertical fields is equal to zero and hence the result is
proven. (5) this is analogous to the proof of part (2), (6) and (7) are analogous to (4),
(8) this is direct consequence of the fact that Lie bracket of two vertical vector fields
vanishes.

Corollary 1.8.1. Let (Mm, g) be a pseudo-Riemannian manifold and ḡ be a natural
metric on the tangent bundle TMof M . Then the corresponding Levi-Civita connection
satisfies.

(∇̄XhY h)ζ = (∇XY )hζ −
1

2
(R(X, Y )Z)v

for all X, Y ∈ Γ(TM) and any ζ = (x, u) ∈ TM , where Z ∈ C∞(TM) such that
Zπ(ζ) = ζ and R is the curvature tensor field of ∇.

Definition 1.8.2. Let (Mm, g) be a pseudo-Riemannian Manifold and let ∇̄ be the
Levi-Civita connection on the tangent bundle (TM, ḡ), equipped with a natural metric
ḡ . Let F : TM → TM be a differentiable map preserving the fibers and linear on each
of them. Then we define the vertical and horizontal lifts F v and F h by

F (η)v =
∑m

i=1 ηiF ( ∂
∂xi

)v and F (η)h =
∑m

i=1 ηiF ( ∂
∂xi

)h

where η =
∑m

i=1 ηi
∂
∂xi
∈ π−1(V ) is a local representation of η ∈ Γ(TM) .

Lemma 1.8.2. For any vector field X ∈ Γ(TM) , ζ = (x, u) ∈ TM and η =∑m
i=1 ηi

∂
∂xi
∈ π−1(V ) we have

(i) (∇̂XvF v)ζ = F (Xx)
v
ζ +

∑m
i=1 ηi∇̄XvF ( ∂

∂xi
)v,

(ii) (∇̂XvF h)ζ = F (Xx)
h
ζ +

∑m
i=1 ηi∇̄XvF ( ∂

∂xi
)h,

(iii) (∇̂XhF v)ζ = (∇̂Xh(F (u))v)ζ,

(iv) (∇̂XhF h)ζ = (∇̂Xh(F (u))h)ζ
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Proof. Let (x1, ..., xm) be a local coordinate of Mm in a neighborhood V of x. Then,
we have Xv · dxi = dxi(X) for i ∈ {1, ..., n} . Hence we get

(∇̂XvF (η)v) =
m∑
i=1

∇Xv(ηiF (
∂

∂xi
)v)

=
m∑
i=1

Xv(ηi)F (
∂

∂xi
)v + ηi∇̂XvF (

∂

∂xi
)v

=
m∑
i=1

ηi(X)F (
∂

∂xi
)v + ηi∇̂XvF (

∂

∂xi
)v

= F (Xx)
v
ξ +

m∑
i=1

ηi∇̂XvF (
∂

∂xi
)v.

The second step follows by the product rule. Similarily we compute:

(∇̂XvF (η)h) =
m∑
i=1

∇Xv(ηiF (
∂

∂xi
)h)

=
m∑
i=1

Xv(ηi)F (
∂

∂xi
)h + ηi∇̂XvF (

∂

∂xi
)h

=
m∑
i=1

ηi(X)F (
∂

∂xi
)h + ηi∇̂XvF (

∂

∂xi
)h

= F (Xx)
h
ξ +

m∑
i=1

ηi∇̂XvF (
∂

∂xi
)h.

For the two remaining equations of the Lemma we use a differentiable curve γ :
[0, 1] → M such that γ(0) = x and γ′(0) = Xx to get a differentiable curve U ◦ γ :
[0, 1]→ TM such that (U ◦ γ)(0) = ζ and (U ◦ γ)′(0)) = Xh

ζ . By the definition of our

functions F v and F h we obtain F v |U◦γ= (F ◦ U)v |U◦γ and F h |U◦γ= (F ◦ U)h |U◦γ.
This proves part (iii) and (iv) of the Lemma.

1.9 The Sasaki Metric

Definition 1.9.1. Let (Mm, g) be a pseudo-Riemannian manifold. Then the Sasaki
metric gS on the tangent bundle TM is natural metric given by

gS(Xh, Y h) = g(X, Y ) ◦ π,
gS(Xv, Y h) = gS(Xh, Y v) = 0,
gS(Xv, Y v) = g(X, Y ) ◦ π,
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for all vector fields X, Y ∈ Γ(TM). The Sasaki metric of g with respect to the local
coordinates (xi, yi) of TM is [33]

gS = gijdx
idxj + gij∂

∗
yi∂
∗
yj , (1.3)

where ∂∗yi = dyi + yhΓihjdx
j.

It is easy to prove that, if (p, q) is the signature of the metric g, then (2p, 2q) is the
signature of the Sasaki metric gS.

Example 1.9.1. We consider the Lorentzian manifold (R4, g), where

g = (dx1)2 + (dx2)2 + (dx3)2 − (dx4)2. (1.4)

Then, by virtue of (1.3) and (1.4), the Sasaki metric of g with respect to the local
coordinates (xi, yi) of the tangent bundle of R4 is given by:

gS = (dx1)2 + (dx2)2 + (dx3)2 − (dx4)2 + (dy1)2 + (dy2)2 + (dy3)2 − (dy4)2.

Example 1.9.2. The Egorov spaces are Lorentzian manifolds (Rm, gf ), m ≥ 3, where
f is a positive smooth function of a real variable and

gf = f(xm)
m−2∑
i=1

(dxi)2 + 2dxm−1dxm. (1.5)

These manifolds are named after I. P. Egorov, who first introduced and studied them in
[12]. If (Rm, gf ) is an Egorov space , m ≥ 3, the only possible non-vanishing Christoffel
symbols are the following ones [4]:

Γm−1
ii =

−f ′

2
, Γiim =

f ′

2f
, i = 1, · · · ,m− 2. (1.6)

Then, by virtue of (1.3), (1.5) and (1.6), the Sasaki metric of gf with respect to the
local coordinates (xi, yi) of the tangent bundle of Rm is given by:

(gf )S = f

m−2∑
i=1

(dxi)2 + 2dxm−1dxm + f

m−2∑
i=1

(dyi)2 + 2dym−1dym

+ f ′
m−2∑
i=1

yidxmdyi − f ′
m−2∑
i=1

yidymdxi +
(f ′)2

4f

m−2∑
i=1

(yi)2(dxm)2.

We can now calculate the Levi-Civita connection of the tangent bundle with respect
to gS.

Proposition 1.9.1. Let ∇̃ be the Levi-civita connection of (TM, gS) equipped with the
Sasaki metric gS. Then
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(i) (∇̃XhY h)(x,u) = (∇XY )h(x,u) −
1
2
(R(X, Y )Z)v(x,u),

(ii) (∇̃XhY v)(x,u) = (∇XY )v(x,u) + 1
2
(R(Z, Y )X)h(x,u),

(iii) (∇̃XvY h)(x,u) = 1
2
(R(Z,X)Y )h(x,u),

(iv) (∇̃XvY v)(x,u) = 0,

for any X, Y ∈ Γ(TM) and any (x, u) ∈ TM , where Z ∈ Γ(TM) such that Zπ(x,u) =
(x, u) and R is the curvature tensor field of ∇.

Proof. (i) This is nothing but Corollary 1.8.1.
(ii) The part (iii) of Lemma 1.8.1 .

2gS(∇̃XhY v,W h) = −gS((R(W,X)Z)v, Y v)

= −g(R(Z, Y )W,X)

= −g(R(Z, Y )X,W ).

Part (iv) of Lemma 1.8.1 implies

2gS(∇̃XhY v,W v) = Xh(gS(Y v,W v)) + gS(W v, (∇XY )v)

−gS(Y v , (∇XW )v)

= X(g(Y,W )) + g(W,∇XY )− g(Y,∇XW )

= g(W,∇XY ) + g(Y,∇XW ) + g(Z,∇XY )− g(Y,∇XW )

= 2g(∇XY,W ).

The last important step follows by the definition of a metric connection.
(iii) As above we use part (v) of Lemma 1.8.1 we get

2gS(∇̃XvY h,W h) = gS(Xv, (R(Y,W )Z)v)

= g(X,R(Y,W )Z)

= g(R(Z,X)Y,W ).

Part (vi) of Lemma 1.8.1 gives us further

2gS(∇̃XvY h,W v) = (Y h(gS(W v, Xv))

−gS(W v, (∇YX)v)− gS(Xv, (∇YW )v)

= Y (g(W,X))− g(W,∇YX)− g(X,∇YW )−
= g(W,∇YX) + g(X,∇YW )

−g(W,∇YX)− g(X,∇YW )

= 0
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(iv) As usual we use Lemma 1.8.1 to get

2gS(∇̃XvY v,W h) = (−W h(gS(Xv, Y v)))

+gS(Y v, (∇WX)v) + gS(Xv, (∇WY )v)

= −W (g(X, Y )) + g(Y,∇WX) + g(X,∇WY )−
−g(Y,∇WX)− g(X,∇WY ) + g(Y,∇WX)

+g(X,∇WY )

= 0

and

2gS(∇̃XvY v,W v) = Xv(gS(Y v,W v)) + Y v(gS(W v, Xv))

−W v(gS(Xv, Y v))

= Xv(g(Y,W )) + Y v(g(W,X))−W v(g(X, Y ))

= 0

The last equation we have, because differentiating a horizontal vector field in the
direction of a vertical one gives zero and by definition of the metric holds g(X, Y ) =
gS(Xh, Y h) . This completes the proof.

1.10 The curvature tensor

For calculating the curvature tensor we need the following result, which is a direct
consequence of Lemma 1.8.2.

Corollary 1.10.1. Let (Mm, g) ba a pseudo-Riemannian manifold and let ∇̃ be the
Levi-Civita connection on the tangent bundle TM , equipped with the Sasaki metric.
Let F : TM → TM be a differentiable map preserving the fibers and linear on each of
them. Then for any x ∈M and η ∈ Γ(TTM) we have

∇̃XvF (η)v = F (X)v

∇̃XvF (η)h = F (X)h +
1

2
(R(Z,X)F (η))h.

Proposition 1.10.1. Let (Mm, g) be a pseudo-Riemannian manifold and R̃ be the
curvature tensor of the tangent bundle (TM, gS) equipped with the Sasaki metric. Then
we have the following formulae

(i) R̃(x,u)(X
v, Y v)W v = 0
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(ii)

R̃(x,u)(X
v, Y v)W h = (R(X, Y )W +

1

4
R(Z, Y )(R(Z, Y )W )

−1

4
R(Z, Y )(R(Z,X)W ))h(x,u),

(iii) R̃(x,u)(X
h, Y v)W v = −(1

2
R(Y,W )X + 1

4
R(Z, Y )(R(Z,W )X))h(x,u),

(iv)

R̃(x,u)(X
v, Y v)W h = (

1

4
R(R(Z, Y )W,X)Z +

1

2
R(X,W )Y )v(x,u)

+
1

2
((∇XR)(Z, Y )W )h(x,u)

(v)

R̃(x,u)(X
h, Y h)W v = = (R(X, Y )W +

1

4
R(R(Z,W )Y,X)Z

−1

4
R(R(Z,W )X, Y )Z)v(x,u)

+
1

2
((∇XR)(Z,W )Y − (∇YR)(Z,W )X)h(x,u),

(vi)

R̃(x,u)(X
h, Y h)W h =

1

2
((∇WR)(X, Y )Z)v(x,u)

+(R(X, Y )Z +
1

4
R(Z,R(W,Y )Z)X

+
1

4
R(Z,R(X,W )Z)Y +

1

2
R(Z,R(X, Y )Z)W )h(x,u)

For any X, Y,W ∈ Γ(TM) and any (x, u) ∈ TM , where Z ∈ Γ(TM) such that Zπ(x,u) =
(x, u).

Proof. (i) The first part of the proposition follows directly by the last part of propo-
sition 1.9.1 and the fact that the Lie bracket of two vertical vector fields vanishes.

(iii) The last part of Proposition 1.9.1 and the fact that

[Xh, Y v] = (∇XY )v,

by theorem 1.7.1, provide us with

R̃(Xh, Y v)W v = ∇̃Xh∇̃Y vW
v − ∇̃Y v∇̃XhW v − ∇̃[Xh,Y v ]W

v
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= −∇̃Y v∇̃XhW v

= −∇̃Y v((∇XW )v + F (u)h),

where F : TM → TM is the linear fiber preserving map

F : u 7→ 1

2
R(u,Wx)Xx,

for any (x, u) ∈ TM . By the last part of Proposition 1.9.1 we know that ∇̃Y v(∇XW )v =
0 and according to Corollary 1.10.1 we have

∇̃Y vF (u)h = F (Y )h +
1

2
(R(u, Y )F (u))h.

Therefore we obtain

R̃(Xh, Y v)W v = −∇̃Y v∇̃XhW v

= ∇̃Y v(∇XW )v + F (u)h

= −∇̃Y vF (u)h

= −F (Y )h − 1

2
(R(u, Y )F (u))h

= −(
1

2
R(Y,W )X +

1

4
R(u, Y )(R(u,W )X))h.

Hence the third part of the proposition is proven.
(i) Using the 1st Bianchi identity

R̃(Xv, Y v)W h = R̃(W h, Y v)Xv − R̃(W h, Y v)Y v,

we get by using part (iii)

R̃(Xv, Y v)W h = (−1

2
R(Y,X)W − 1

4
R(Z, Y )R(Z,X)W ))h

+(
1

2
R(X, Y )W +

1

4
R(Z,X)(R(Z, Y )W ))h.

From which the statement follows.
(iv) As above we now introduce two mappings F1 : TM → TM and F2 : TM → TM

by

F1(u) 7→ 1

2
R(u, Yx)Wx

and

F2(u) 7→ −1

2
R(Xx,Wx)u,

the third part of proposition 1.9.1 becomes

∇̃Y vW
h = F1(u)h
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By the definition of the curvature tensor we obtain

R̃(Xh, Y v)W h = ∇̃Xh∇̃Y vW
h − ∇̃Y v∇̃XhW h − ∇̃[Xh,Y v ]W

h

= ∇̃XhF1(u)h − ∇̃Y v((∇XW )h + F2(u)v)− ∇̃(∇XY )vW
h

= (∇X(F1(u)))h − 1

2
(R(X,F1(u))u)v

−1

2
(R(u, Y )∇XW )h − F2(Y )v − 1

2
(R(u,∇XY )W )h

= (
1

4
R(R(u, Y )W,X)u+

1

2
R(X,W )Y )v

+
1

2
((∇XR)(u, Y )W )h.

The last step is only inserting the mappings F1,F2 and the definition of a covariant
derivative. The middle step uses proposition 1.9.1 and Corollary 1.10.1.

(v) Using part (iv) and the 1st Bianchi identity

R̃(Xh, Y h)W v = R̃(Xh,W v)Y h − R̃(Y h,W v)Xh,

therefore

R̃(Xh, Y h)W v = (
1

4
R(R(u,W )Y,X)u)v +

1

2
((∇XR)(u,W )Y )h

−(
1

4
R(R(u,W )X, Y )u)v − 1

2
((∇YR)(u,W )X)h

+
1

2
(R(X, Y )W −R(Y,X)W )v.

Which implies the result.
(vi) For the last part we have the following standard computations

R̃(Xh, Y h)W h = ∇̃Xh∇̃Y hW
h − ∇̃Y h∇̃XhW h − ∇̃[Xh,Y h]W

h

= ∇̃Xh((∇YW )h − 1

2
(R(Y,W )u)v)

−∇̃Y h((∇XW )h − 1

2
(R(X,W )u)v)

−∇̃[X,Y ]hW
h + ∇̃(R(X,Y )u)v)W

h

= (∇XY∇YW )h − 1

2
(R(X,∇YW )u)v

−1

2
(∇XR(Y,W )u)v − 1

4
(R(Z,R(Y,W )u)X)h

(∇Y∇XW )h − 1

2
(R(Y,∇XW )u)v
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1

2
(∇YR(X,W )u)v +

1

4
(R(u,R(X,W )u)Y )h

−(∇[X,Y ]W )h +
1

2
(R([X, Y ],W )u)V

+
1

2
(R(u,R(X, Y )u)W )h

=
1

2
((∇WR)(X, Y )u)v + (R(X, Y )W )h

+
1

4
(R(u,R(W,Y )u)X)h +

1

4
(R(u,R(X,W )u)Y )h

+
1

2
(R(u,R(X, Y )u)W )h.

The last part of these computations follows by the 2nd Bianchi identity, which tells us
that

(∇XR)(Y,W )u+ (∇YR)(W,X)u+ (∇WR)(X, Y )u = 0.

1.11 Induced Connection on the Tangent Bundle

Definition 1.11.1. Let ϕ : M −→ N be a smooth map between two differentiable man-
ifolds M and N and let ∇N be a linear connection on N , then the Pull-back connection
on the tangent bundle ϕ−1TN is defined by:

∇ϕ : Γ(TM)× Γ(ϕ−1TN) −→ Γ(ϕ−1TN),

(X, V ) −→ ∇ϕ
XV = ∇N

dϕ(X)Ṽ (1.7)

where Ṽ ∈ Γ(TN) such that Ṽ ◦ ϕ = V .

Locally:

∇ϕ
XV = ∇ϕ

Xi ∂

∂xi

V α(
∂

∂yα
◦ ϕ)

= X i

{
∂V α

∂xi
(
∂

∂yα
◦ ϕ) + V α∇ϕ

∂

∂xi

(
∂

∂yα
◦ ϕ)

}
Note that :

∇ϕ
∂

∂xi

(
∂

∂yα
◦ ϕ) = ∇N

dϕ( ∂

∂xi
)

∂

∂yα

=
∂ϕβ
∂xi

(
∇N

∂

∂yβ

∂

∂yα

)
◦ ϕ
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=
∂ϕβ
∂xi

(
Γγαβ

∂

∂yγ

)
◦ ϕ

So that

∇ϕ
XV = X i

{
∂V γ

∂xi
+ V α∂ϕβ

∂xi
(
Γγαβ ◦ ϕ

)}( ∂

∂yγ
◦ ϕ
)

Then the relation (1.7) is independent of the choice of Ṽ i.e. this connection is well
defined.

Definition 1.11.2. If ϕ : M −→ N is a map between differeniable manifolds, then
two vector fields X ∈ Γ(TM), X̃ ∈ Γ(TN) are said to be ϕ-related if

dϕx(X) = X̃ϕ(x) ∀ x ∈M.

In that case we write X̃ = dϕ(X).

Proposition 1.11.1. Let ϕ : M −→ N be a smooth map and let ∇N be a linear
connection compatible with the Riemaniann metric h on N , then the linear connection
∇ϕ is compatible with the induce Riemannian metric on ϕ−1TN , that is

X(h(V,W )) = h(∇ϕ
XV,W ) + h(V,∇ϕ

XW ),

for all X ∈ Γ(TM) and V, W ∈ Γ(ϕ−1TN).

Proof. Let X ∈ Γ(TM), V,W ∈ Γ(ϕ−1TN) and X̃, Ṽ , W̃ ∈ Γ(TN), such that

dϕ(X) = X̃ ◦ ϕ, Ṽ ◦ ϕ = V and W̃ ◦ ϕ = W

Then:

X(h(V,W )) = X(h(Ṽ ◦ ϕ, W̃ ◦ ϕ))

= X(h(Ṽ , W̃ ) ◦ ϕ)

= d(h(Ṽ , W̃ ) ◦ ϕ)(X)

= dh(Ṽ , W̃ )(dϕ(X))

= dϕ(X)(h(Ṽ , W̃ ))

= X̃(h(Ṽ , W̃ )) ◦ ϕ
= h(∇N

X̃
Ṽ , W̃ ) ◦ ϕ+ h(Ṽ ,∇N

X̃
W̃ ) ◦ ϕ

= h(∇N
X̃◦ϕṼ , W̃ ◦ ϕ) + h(Ṽ ◦ ϕ,∇N

X̃◦ϕW̃ )

= h(∇ϕ
XV,W ) + h(V,∇ϕ

XW ).
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Proposition 1.11.2. Let ∇N be a torsion free connection on N , then

∇ϕ
Xdϕ(Y ) = ∇ϕ

Y dϕ(X) + dϕ([X, Y ]),

For all X, Y ∈ Γ(TM).

Proof. Let V,W ∈ Γ(TN) be a ϕ-related with X and Y respectively, then:

[V,W ] ◦ ϕ = dϕ ◦ [X, Y ]

∇N
VW = ∇N

WV + [V,W ].

From where:

∇ϕ
Xdϕ(Y ) = ∇ϕ

XW ◦ ϕ
= ∇N

dϕ(X)W

=
(
∇N
VW

)
◦ ϕ

=
(
∇N
WV + [V,W ]

)
◦ ϕ

= ∇ϕ
Y dϕ(X) + dϕ([X, Y ]).

1.11.1 Divergence Theorem

Proposition 1.11.3. Let D be a compact domain with boundary in a Riemannian
manifold (M, g). Let ω differential a 1-forme and X a vector fields defined on a neigh-
borhood included in D. Then :∫

D

(divM ω)vD =

∫
∂D

ω(n)v∂D and

∫
D

(divMω)vD =

∫
∂D

g(X, n)v∂D,

where ∂D is the boundary of D, and n = n(x) is the unit vector normal to ∂D.

Corollary 1.11.1. For all ω a differential 1-form and X a compact supported vector
field in a domain D,then :∫

D

(divω)vD = 0 and

∫
D

(divX)vD = 0.

1.11.2 Green Theorem

Theorem 1.11.1. Let (M, g) a compact orientable and without boundary Riemannian
manifold (∂M = ∅). Then, ∀X ∈ Γ(TM), ∀w ∈ Γ(T ∗M), we have :∫

M

(divMX)vg = 0,

∫
M

(divMw)vg = 0,

where vg =
√
det(gij)dx

1 ∧ ... ∧ dxm.



CHAPTER 2

HARMONIC AND BIHARMONIC MAPPINGS

This chapter is devoted to recall briefly the notions of harmonic and biharmonic map-
pings between pseudo-Riemannian manifolds, integrating them with some more details.
We shall follow [3, 8, 10, 11, 18, 22, 28, 31, 32], to which we refer the reader for more
details.

2.1 Harmonic maps

Definition 2.1.1. Let ϕ : (Mm, g) → (Nn, h) be a smooth map between two Rieman-
nian manifolds, the energy functional of ϕ is defined by

E(ϕ;D) =
1

2

∫
D

|dϕ|2 vg, (2.1)

where D is a compact domain in M , |dϕ| the Hilbert-Schmidt norm of the differential
dϕ, and vg the volume element on (Mm, g)

Remark 2.1.1. The Hilbert-Schmidt norm of the differential of ϕ is given by

|dϕ|2 =
m∑
i=1

h(dϕ(ei), dϕ(ei)),

with {e1, . . . , em} be an orthonormal frame, the local expression of the Hilbert-Schmidt
norm is :

|dϕ|2 =
m∑
i=1

h(dϕ(ei), dϕ(ei))

=
m∑

i,a,b=1

h(dϕ(eai
∂

∂xa
), dϕ(ebi

∂

∂xb
))

39
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=
m∑

a,b=1

gab
n∑

α,β=1

h

(
∂ϕα

∂xa
(
∂

∂yα
◦ ϕ),

∂ϕβ

∂xb
(
∂

∂yβ
◦ ϕ)

)

=
m∑

a,b=1

gab
n∑

α,β=1

∂ϕα

∂xa
∂ϕβ

∂xb
h

(
∂

∂yα
,
∂

∂yβ

)
◦ ϕ

=
m∑

i,j=1

n∑
α,β=1

gij
∂ϕα

∂xi
∂ϕβ

∂xj
(hαβ ◦ ϕ).

Definition 2.1.2. A variation of ϕ with support in a compact domain D ⊂ M , is a
smooth family maps (ϕt)t∈(−ε,ε) : M −→ N , such that ϕ0 = ϕ and ϕt = ϕ on M\int(D).

Definition 2.1.3. A map ϕ is called harmonic if it is a critical point of the energy
functional over any compact subset D of M . i.e.

d

dt
E(ϕt;D)

∣∣∣∣
t=0

= 0.

2.1.1 First variation of energy

Definition 2.1.4. Let ϕ : (M, g) −→ (N, h) be a smooth map between two Riemannian
manifolds. The trace of the second fundamental form of ϕ is called the tension field of
ϕ, denoted by

τ(ϕ) = traceg∇dϕ. (2.2)

Local expression of tension field

Let a smooth map ϕ : (M, g) −→ (N, h), we have

τ(ϕ) =
m∑

i,j=1

gij(∇dϕ)(
∂

∂xi
,
∂

∂xj
)

=
m∑

i,j=1

n∑
γ=1

(
∂2ϕγ
∂xi∂xj

+
n∑

α,β=1

∂ϕα

∂xi
∂ϕβ

∂xj
NΓγαβ ◦ ϕ−

m∑
k=1

∂ϕγ

∂xk
MΓkij

)
∂

∂yγ
◦ ϕ.

( ∂
∂xi

) ( resp. ( ∂
∂yα

)) is a local frame of vector fields on M ( resp. on N)

Theorem 2.1.1. Let ϕ : (Mm, g) −→ (Nn, h) be a smooth map and let (ϕt)t∈(−ε,ε) be
a smooth variation of ϕ supported in D. Then

d

dt
E(ϕt;D)

∣∣∣∣
t=0

= −
∫
D

h(v, τ(ϕ)) vg,

where v =
dϕt
dt

∣∣∣∣
t=0

denotes the variation vector field of {ϕt}, and vg the volume element

on (Mm, g)
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Proof. Let {e1, . . . em} an orthonormal frame on (M, g) and
d

dt
a frame of vector field

on ] − ε, ε[. Thus, {(ei, 0), (0,
d

dt
)}mi=1 becomes an orthonormal frame fields for the

diagonal metric g + dt2 on the product manifold M×]− ε, ε[. We have[
(ei, 0), (0,

d

dt
)

]
= 0, ∀i ∈ {1, . . . ,m}.

Define

φ : M×]− ε, ε[ −→ N.

(x, t) 7−→ φ(x, t) = φt(x)

By the Leibniz’s formula, and :

φx :]− ε, ε[ −→ N ;

t 7−→ φx(t) = φ(x, t) = ϕt(x)

φt : M −→ N.

x 7−→ φt(x) = φ(x, t) = ϕt(x)

We get that :

dφ(ei, 0)(x,0) = dxφ0(ei|x) + d0φx(0)

= dxφ0(ei|x)
= dxϕ(ei|x);

dφ(0,
d

dt
)(x,0) = dxφ0(0) + d0φx(

d

dt
|t=0)

= dφx(
d

dt
|t=0)

= v(x).

Thus:

dφ(ei, 0) = dϕ(ei) et dφ(0,
d

dt
) = v en t = 0.

Let ∇φ be the Pull-back connection associated with the map φ we compute:

d

dt
E(ϕt;D)

∣∣∣∣
t=0

=
1

2

d

dt

∫
D

|dϕt|2vg
∣∣∣∣
t=0

=
1

2

∫
D

∂

∂t
|dϕt|2

∣∣∣∣
t=0

vg
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=
1

2

∫
D

∂

∂t

m∑
i=1

h(dϕt(ei), dϕt(ei))

∣∣∣∣
t=0

vg

=

∫
D

m∑
i=1

h(∇φ

(0,
d

dt
)

dφ(ei, 0), dφ(ei, 0))

∣∣∣∣
t=0

vg

=

∫
D

m∑
i=1

h(∇φ
(0,ei)

dφ(0,
d

dt
), dφ(ei, 0))

∣∣∣∣
t=0

vg

=

∫
D

m∑
i=1

h(∇N
dϕ(ei)

v, dϕ(ei))v
g

=

∫
D

m∑
i=1

h(∇ϕ
ei
v, dϕ(ei)) v

g

=

∫
D

m∑
i=1

[
ei h(v, dϕ(ei))− h(v,∇ϕ

ei
dϕ(ei))

]
vg. (2.3)

Define a 1-form ω with support in D by

ω(X) = h(v, dϕ(X)), ∀X ∈ Γ(TM).

we find:

divM ω =
m∑
i=1

(∇eiω)(ei)

=
m∑
i=1

{ei(ω(ei))− ω(∇M
ei
ei)}

=
m∑
i=1

{eih(v, dϕ(ei))− h(v, dϕ(∇M
ei
ei))}. (2.4)

By using formulas (2.3) and (2.4) we have :

d

dt
E(ϕt, D)

∣∣∣∣
t=0

=

∫
D

(divω) vg −
∫
D

h(v, τ(ϕ)).

By the divergence theorem, we obtain

d

dt
E(ϕt;D)

∣∣∣∣
t=0

= −
∫
D

h(v, τ(ϕ))vg,

this completes the proof.
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Therefore

Theorem 2.1.2. The map ϕ ∈ C∞(M,N) between two Riemannian manifolds is
harmonic if and only if τ(ϕ) = trace∇dϕ = 0.

Example 2.1.1. Let ϕ : (Rm, < ·, · >) −→ (Rn, < ·, · >) with

ϕ(X) = ϕ


x1

x2

...
xm

 =


A1

1 A1
2 · · · A1

m

A2
1 A2

2 · · · A2
m

A3
1 A3

2 · · · A3
m

...
...

. . .
...

An1 An2 · · · Anm




x1

x2

...
xm

 ,

i.e., ϕ(X) = (A1X t, A2X t, · · · , AnX t) be a linear map, where Ai denotes the row
vectors of the representation matrix. (Rm, < ·, · >) (resp. (Rn, < ·, · >)) denotes the
space Rm (resp. (Rn, < ·, · >)) equipped with the standard inner product. Then ϕ is
harmonic, in fact: as ϕ is a linear map, we have:

dϕ(ei) = dϕ(
∂

∂xi
)

= Aji
∂

∂xj
.

Therefore

τ(ϕ) =
m∑
i=1

{∇ϕ
ei
dϕ(ei)− dϕ(∇Rm

ei
ei)}

=
m∑
i=1

∇ϕ
ei
Aji

∂

∂xj

= 0.

2.1.2 Second variation of energy

Theorem 2.1.3. Let ϕ : (Mm, g) −→ (Nn, h) a harmonic map and D a compact
domain of M , if {ϕt,s} is a variation of ϕ with two parameters with compact support
in D, then

∂2

∂t∂s
E(ϕt,s;D)

∣∣∣∣
(t,s)=(0,0)

=

∫
D

h(∆ϕV − trace RN(V, dϕ)dϕ,W ) vg,

where V =
∂ϕt,s
∂t

∣∣∣∣
(t,s)=(0,0)

and W =
∂ϕt,s
∂s

∣∣∣∣
(t,s)=(0,0)

denotes the variation vector fields.

Here ∆ϕV = −trg(∇ϕ)2V = −
∑m

i=1(∇ϕ
ei
∇ϕ
ei
V − ∇ϕ

∇Mei ei
V ) is the rough Laplacian on

ϕ−1TN, and RN is the Riemann curvature tensor of N .
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Proof. Let {e1, . . . , em} an orthonormal frame on (Mm, g). We put :

φ : M × (−ε, ε)× (−ε, ε) −→ N ,
(x, t, s) 7−→ ϕt,s(x)

Ei = (ei, 0, 0),
∂

∂t
= (0,

d

dt
, 0) et

∂

∂s
= (0, 0,

d

ds
).

Then :

∂2

∂t∂s
E(ϕt,s;D)

∣∣∣∣
(t,s)=(0,0)

=
1

2

∫
D

m∑
i=1

∂2

∂t∂s
h(dφ(Ei), dφ(Ei)) v

g

∣∣∣∣∣
(t,s)=(0,0)

, (2.5)

1

2

∂2

∂t∂s
h(dφ(Ei), dφ(Ei)) =

∂

∂t
h(∇φ

∂
∂s

dφ(Ei), dφ(Ei))

= h(∇φ
∂
∂t

∇φ
∂
∂s

dφ(Ei), dφ(Ei))

+h(∇φ
∂
∂s

dφ(Ei),∇φ
∂
∂t

dφ(Ei)), (2.6)

and :

h(∇φ
∂
∂t

∇φ
∂
∂s

dφ(Ei), dφ(Ei)) = h(∇φ
∂
∂t

∇φ
Ei
dφ(

∂

∂s
), dφ(Ei))

= h(RN(dφ(
∂

∂t
), dφ(Ei))dφ(

∂

∂s
), dφ(Ei))

h(∇φ
Ei
∇φ

∂
∂t

dφ(
∂

∂s
), dφ(Ei))

+h(∇φ

[ ∂∂t ,Ei]
dφ(

∂

∂s
), dφ(Ei)). (2.7)

Define an 1−form ω with support in D, by :

ω(X) = h(∇φ
∂
∂t

dφ(
∂

∂s
)

∣∣∣∣
(t,s)=(0,0)

, dϕ(X)), X ∈ Γ(TM).

As ϕ is a harmonic map, we get:

divMω =
m∑
i=1

{ei(ω(ei))− ω(∇M
ei
ei)}

=
m∑
i=1

{ei(h(∇φ
∂
∂t

dφ(
∂

∂s
)

∣∣∣∣
(t,s)=(0,0)

, dϕ(ei)))− h(∇φ
∂
∂t

dφ(
∂

∂s
)

∣∣∣∣
(t,s)=(0,0)

, dϕ(∇M
ei
ei))}

=
m∑
i=1

{h(∇φ
Ei
∇φ

∂
∂t

dφ(
∂

∂s
)

∣∣∣∣
(t,s)=(0,0)

, dϕ(ei))
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+h(∇φ
∂
∂t

dφ(
∂

∂s
)

∣∣∣∣
(t,s)=(0,0)

,∇ϕ
ei
dϕ(ei))− h(∇φ

∂
∂t

dφ(
∂

∂s
)

∣∣∣∣
(t,s)=(0,0)

, dϕ(∇M
ei
ei))}

=
m∑
i=1

{h(∇φ
Ei
∇φ

∂
∂t

dφ(
∂

∂s
)

∣∣∣∣
(t,s)=(0,0)

, dϕ(ei)) + h(∇φ
∂
∂t

dφ(
∂

∂s
)

∣∣∣∣
(t,s)=(0,0)

, τ(ϕ))

=
m∑
i=1

{h(∇φ
Ei
∇φ

∂
∂t

dφ(
∂

∂s
)

∣∣∣∣
(t,s)=(0,0)

, dϕ(ei)) (2.8)

By (2.7) and (2.8), and since
[
∂
∂t
, ei
]

= 0, we get :

h(∇φ
∂
∂t

∇φ
∂
∂s

dφ(Ei), dφ(Ei))
∣∣∣
(t,s)=(0,0)

=
m∑
i=1

h(RN(V, dϕ(ei))W,dϕ(ei))

+divMω. (2.9)

The second term of the right hand side of the equality (2.6) is given by

h(∇φ
∂
∂s

dφ(Ei),∇φ
∂
∂t

dφ(Ei)) = h(∇φ
Ei
dφ(

∂

∂s
),∇φ

Ei
dφ(

∂

∂t
))

= ei

(
h(dφ(

∂

∂s
), dφ(

∂

∂t
))

)
−h(dφ(

∂

∂s
),∇φ

Ei
∇φ
Ei
dφ(

∂

∂t
)). (2.10)

if η is an 1-form with support in D, defined by

η(X) = h(W,∇ϕ
XV ), X ∈ Γ(TM).

=⇒ divMη =
m∑
i=1

{ei(η(ei))− η(∇M
ei
ei)}

=
m∑
i=1

{ei(h(W,∇ϕ
ei
V ))− h(W,∇ϕ

∇Mei ei
V )}. (2.11)

By using (2.10) and (2.11), we obtain

m∑
i=1

h(∇φ
∂
∂t

dφ(Ei),∇φ
∂
∂s

dφ(Ei))
∣∣∣
(t,s)=(0,0)

= divMη +
m∑
i=1

h(W,∇ϕ
∇Mei ei

V )

−
m∑
i=1

h(W,∇ϕ
ei
∇ϕ
ei
V ). (2.12)

From the equations (2.5), (2.6), (2.9), (2.17), and the divergence theorem we find,

∂2

∂t∂s
E(ϕt,s;D)

∣∣∣∣
(t,s)=(0,0)

=

∫
D

m∑
i=1

{
−h(RN(V, dϕ(ei))dϕ(ei),W )
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+ h(W,∇ϕ
∇Mei ei

V )− h(W,∇ϕ
ei
∇ϕ
ei
V )
}
vg.

Therefore

∂2

∂t∂s
E(ϕt,s;D)

∣∣∣∣
(t,s)=(0,0)

=

∫
D

h(∆ϕV − trace RN(V, dϕ)dϕ,W ) vg,

2.2 Biharmonic maps

Definition 2.2.1. Let ϕ : (Mm, g) −→ (Nn, h) be a smooth map between two Rieman-
nian manifolds, and D a compact domain in M . The bienergy functional of ϕ on D is
defined by

E2 : C∞(M,N) −→ R+,

ϕ 7−→ E2(ϕ;D) =
1

2

∫
D

|τ(ϕ)|2vg

où |τ(ϕ)|2 = h(τ(ϕ), τ(ϕ)), and τ(ϕ) is the tension field of the map ϕ.

Definition 2.2.2. The smooth map ϕ : (Mm, g) −→ (Nn, h) between two Riemannian
manifold is called biharmonic map if it is a critical point of the bienergy functional
over any compact subset D of M .

d

dt
E2(ϕt;D)

∣∣∣∣
t=0

= 0, (2.13)

here {ϕt} is a variation of ϕ with compact support in D.

2.2.1 The first variation of the bienergy

Theorem 2.2.1. Let ϕ : (Mm, g) −→ (Nn, h) be a smooth map between two Rieman-
nian manifolds, and {ϕt} a smooth variation of ϕ with support in D. Then

d

dt
E2(ϕt;D)

∣∣∣∣
t=0

= −
∫
D

h(v, τ2(ϕ))vg,

where v = dϕt
dt

∣∣
t=0

is the field of variation associated with {ϕt}, and τ2(ϕ) ∈ Γ(ϕ−1TN)
is called the bitension field defined by

τ2(ϕ) = −
m∑
i=1

{∇ϕ
ei
∇ϕ
ei
τ(ϕ)−∇ϕ

∇Mei ei
τ(ϕ)} −

m∑
i=1

RN(τ(ϕ), dϕ(ei))dϕ(ei)

= ∆ϕτ(ϕ)−
m∑
i=1

RN(τ(ϕ), dϕ(ei))dϕ(ei).
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Proof. Let φ : M × (−ε, ε) −→ N a map defined by φ(x, t) = ϕt(x). Then

d

dt
E2(ϕt;D)

∣∣∣∣
t=0

=

∫
D

m∑
i,j=1

h(∇φ

(0, d
dt

)
∇dφ((ei, 0), (ei, 0)),∇dφ((ej, 0), (ej, 0)))vg

∣∣∣∣
t=0

.

(2.14)
As

[(0,
d

dt
), (ei, 0)] = 0.

We have

∇φ

(0, d
dt

)
dφ(ei, 0) = ∇φ

(ei,0)dφ(0,
d

dt
), (2.15)

also

∇φ

(0, d
dt

)
dφ(∇M

ei
ei, 0) = ∇φ

(∇Mei ei,0)
dφ(0,

d

dt
). (2.16)

We compute

∇φ

(0, d
dt

)
∇dφ((ei, 0), (ei, 0)) = ∇φ

(0, d
dt

)
{∇φ

(ei,0)dφ(ei, 0)− dφ(∇M×(−ε,ε)
(ei,0) (ei, 0))}

= ∇φ

(0, d
dt

)
∇φ

(ei,0)dφ(ei, 0)−∇φ

(0, d
dt

)
dφ(∇M×(−ε,ε)

(ei,0) (ei, 0))

= RN(dφ(0,
d

dt
), dφ(ei, 0))dφ(ei, 0) +∇φ

(ei,0)∇
φ

(0, d
dt

)
dφ(ei, 0)

+∇φ

[(0, d
dt

),(ei,0)]
dφ(ei, 0)−∇φ

(0, d
dt

)
dφ(∇M

ei
ei, 0)

= RN(dφ(0,
d

dt
), dφ(ei, 0))dφ(ei, 0) +∇φ

(ei,0)∇
φ
(ei,0)dφ(0,

d

dt
)

−∇φ
(∇Mei ei,0)

dφ(0,
d

dt
).

Thus

m∑
i,j=1

h(∇φ

(0, d
dt

)
∇dφ((ei, 0), (ei, 0)),∇dφ((ej, 0), (ej, 0)))

∣∣∣∣
t=0

=
m∑
i=1

h(RN(v, dϕ(ei))dϕ(ei) +∇ϕ
ei
∇ϕ
ei
v −∇ϕ

∇Mei ei
v, τ(ϕ)). (2.17)

Let w ∈ Γ(T ∗M) be a 1-form with support in D defined by

w(X) = h(∇ϕ
Xv, τ(ϕ)), ∀X ∈ Γ(TM).

=⇒ divMw =
m∑
i=1

{ei(w(ei))− w(∇M
ei
ei)}

=
m∑
i=1

{ei(h(∇ϕ
ei
v, τ(ϕ)))− h(∇ϕ

∇Mei ei
v, τ(ϕ))} (2.18)
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=
m∑
i=1

{h(∇ϕ
ei
∇ϕ
ei
v, τ(ϕ)) + h(∇ϕ

ei
v,∇ϕ

ei
τ(ϕ))− h(∇ϕ

∇Mei ei
v, τ(ϕ))}.

From (2.17) and (2.18), we obtain

m∑
i,j=1

h(∇φ

(0, d
dt

)
∇dφ((ei, 0), (ei, 0)),∇dφ((ej, 0), (ej, 0)))vg

∣∣∣∣
t=0

=
m∑
i=1

h(RN(v, dϕ(ei))dϕ(ei), τ(ϕ)) + divMw −
m∑
i=1

h(∇ϕ
ei
v,∇ϕ

ei
τ(ϕ)). (2.19)

Also let η ∈ Γ(T ∗M) be an 1-form to support in D defined by

η(X) = h(v,∇ϕ
Xτ(ϕ)), ∀X ∈ Γ(TM).

=⇒ divMη =
m∑
i=1

{ei(η(ei))− η(∇M
ei
ei)}

=
m∑
i=1

{ei(h(v,∇ϕ
ei
τ(ϕ))− h(v,∇ϕ

∇Mei ei
τ(ϕ)))} (2.20)

=
m∑
i=1

{h(∇ϕ
ei
v,∇ϕ

ei
τ(ϕ)) + h(v,∇ϕ

ei
∇ϕ
ei
τ(ϕ))− h(v,∇ϕ

∇Mei ei
τ(ϕ))}.

Replacing (2.20) in (2.19), we get

m∑
i,j=1

h(∇φ

(0, d
dt

)
∇dφ((ei, 0), (ei, 0)),∇dφ((ej, 0), (ej, 0)))vg

∣∣∣∣
t=0

=
m∑
i=1

h(RNτ(ϕ), dϕ(ei))dϕ(ei), v) + divMw − divMη + h(v,∇ϕ
ei
∇ϕ
ei
τ(ϕ))

−h(v,∇ϕ
∇Mei ei

τ(ϕ)). (2.21)

From (2.14), (2.21), and the divergence theorem, we obtain

d

dt
E2(ϕt;D)

∣∣∣∣
t=0

= −
∫
D

m∑
i=1

h(−RN(τ(ϕ), dϕ(ei))dϕ(ei)−∇ϕ
ei
∇ϕ
ei
τ(ϕ)

+∇ϕ
∇Mei ei

τ(ϕ), v)vg.

Then
d

dt
E2(ϕt;D)

∣∣∣∣
t=0

= −
∫
D

h(v, τ2(ϕ))vg,
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where

τ2(ϕ) = ∆ϕτ(ϕ)−
m∑
i=1

RN(τ(ϕ), dϕ(ei))dϕ(ei)

Thus, we deduce

Theorem 2.2.2. The map ϕ ∈ C∞(M,N) between two Riemannian manifolds is
biharmonic if and only if

τ2(ϕ) = ∆ϕτ(ϕ)−
m∑
i=1

RN(τ(ϕ), dϕ(ei))dϕ(ei) = 0. (2.22)

Remark 2.2.1. The equation (2.22) is called the Euler-Lagrange equation associated
with the bienergy functional.

2.3 Harmonic and biharmonic maps between pseudo-

Riemannian manifolds

The generalization of the concepts of harmonic and biharmonic maps between Rieman-
nian manifolds to the case of pseudo-Riemannian manifolds is straightforward.

Let (Mm, g) and (Nn, h) be smooth pseudo-Riemannian manifolds, and let ϕ :
(M, g)→ (N, h) be a smooth map between them. The energy functional or the Dirichlet
energy of ϕ over a compact domain D of M is defined by

E(ϕ,D) =
1

2

∫
D

m∑
i=1

εih(dϕ(ei), dϕ(ei))vg, (2.23)

where {ei}mi=1 is a local pseudo-orthonormal frame field of (Mm, g) with εi = g(ei, ei) =
±1 for all indices i = 1, 2, · · · ,m. If M is compact, we write E(ϕ) = E(ϕ,M). The
map ϕ is called harmonic if it is a critical point of the energy functional (2.23). The
Euler-Lagrange equation of (2.23) is [3, 11]

τ(ϕ) = Trg(∇dϕ) =
m∑
i=1

εi{∇ϕ
ei
dϕ(ei)− dϕ(∇eiei)} = 0.

The notion of biharmonic map between Riemannian manifolds has been extended to
the case of pseudo-Riemannian manifolds as follows [8]:

Definition 2.3.1. A map ϕ : (Mm, g) → (Nn, h) between pseudo-Riemannian mani-
folds is a biharmonic map if its bitension field vanishes identically, i.e.,

τ2(ϕ) =
m∑
i=1

εi

((
∇ϕ
ei
∇ϕ
ei
−∇ϕ

∇Mei ei

)
τ(ϕ)−RN(dϕ(ei), τ(ϕ))dϕ(ei)

)
= 0,
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where {ei}mi=1 is a local pseudo-orthonormal frame field of (Mm, g) with εi = g(ei, ei) =
±1 for all indices i = 1, 2, · · · ,m and RN is the curvature tensor of N .

Remark 2.3.1. Note that the only difference of the tension (and the bitension) fields
between the Riemannian and the pseudo- Riemannian cases lies in the definition of the
trace of a bilinear form in these two different cases.

Example 2.3.1. Any harmonic mapping is trivially biharmonic. However, a bihar-
monic map can be non-harmonic in which case it is called proper biharmonic. We refer
to [3, 8, 28, 31] for more examples on harmonic maps and biharmonic maps.



CHAPTER 3

BIHARMONICITY OF VECTOR FIELDS ON

RIEMANNIAN MANIFOLDS

This chapter presents our work on the biharmonicity of vector fields on Riemannian
manifolds. We compute the expression of the bitension field of a vector field considered
as a map from a Riemannian manifold (M, g) to its tangent bundle TM equipped
with the Sasaki metric gS. As a consequence, we show characterization theorem for
a vector field to be biharmonic map. Moreover, we prove non-existence results for
left-invariant vector fields which are biharmonic without being harmonic maps and
non-harmonic biharmonic maps respectively on unimodular Lie groups of dimension
three. The references used are: [1], [9],[10], [11], [18], [23], [25], [13], [14].

3.1 Harmonicity of vector fields on Riemannian man-

ifolds

A vector field X on (M, g) can be viewed as the immersion X : (M, g) → (TM, gS) :
x 7→ (x,Xx) ∈ TM into its tangent bundle TM equipped with the Sasaki metric gS.
If Y ∈ Γ(TM) then, we have (see [9, pp. 50])

dX(Y ) = {Y h + (∇YX)v} ◦X. (3.1)

Theorem 3.1.1. [13] Let (M, g) be a Riemannian manifold of dimension m and
(TM, gS) its tangent bundle equipped with the Sasaki metric, if X : (M, g)→ (TM, gS)
is a smooth vector field then the tension field τ(X) is given by

τ(X) = (−S(X))h + (−∆̄X)v, (3.2)

where

S(X) =
m∑
i=1

R(∇eiX,X)ei

51
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and ∆̄X is the rough Laplacian given by

∆̄X = −trg(∇2X) =
m∑
i=1

(∇∇eieiX −∇ei∇eiX).

Proof. Let (x, u) ∈ TM and {ei}mi=1 be a local orthonormal frame on M such that
∇eiej = 0 at x ∈M and u = Xx, from the Proposition 1.9.1 and (3.1), we get

τ(X)
∣∣
(x,Xx)

=
m∑
i=1

[
∇X
ei
dX(ei)

]∣∣
(x,Xx)

=
m∑
i=1

[
∇̃ehi +(∇eiX)v(e

h
i + (∇eiX)v)

]∣∣
(x,Xx)

=
m∑
i=1

[
∇̃ehi

ehi + ∇̃ehi
(∇eiX)v + ∇̃(∇eiX)ve

h
i + +∇̃(∇eiX)v(∇eiX)v

]∣∣
(x,Xx)

=
m∑
i=1

[
(−R(∇eiX,X)ei)

h + (∇ei∇eiX)v
]∣∣

(x,Xx)

=
[
(−S(X))h + (−∆̄X)v

]∣∣
(x,Xx)

.

Theorem 3.1.2. [17] Let (M, g) be a Riemannian manifold of dimension m and
(TM, gS) its tangent bundle equipped with the Sasaki metric, if X : (M, g)→ (TM, gS)
is a smooth vector field then X is a harmonic map if and only if ∆̄X = 0 and S(X) = 0.

Note that, for any smooth function f and vector field X of M , we have

S(fX) = f 2S(X). (3.3)

Definition 3.1.1 ([13]). A vector field X is called harmonic vector field if it is a critical
point of the energy functional (2.1), restricted to variations through vector fields.

Theorem 3.1.3. Let (M, g) be a compact oriented m-dimensional Riemannian mani-
fold, {ei}mi=1 a local orthonormal frame field of (M, g), X a tangent vector field on M
and E : X(M) −→ [0,+∞) the energy functional restricted to the space of all vector
fields. Then

d

dt
E(Xt)

∣∣∣∣
t=0

=

∫
M

g(∆̄X, V )vg,

for any smooth 1-parameter variation U : M×(−ε, ε)→ TM of X through vector fields
i.e., Xt(z) = U(z, t) ∈ TzM for any |t| < ε and z ∈M , or equivalently Xt ∈ X(M) for
any |t| < ε. Also, V is the tangent vector field on M given by

V (z) =
d

dt
Xz(0), z ∈M,

where Xz(t) = U(z, t), (z, t) ∈M × (−ε, ε).
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Proof. Let U : M × (−ε, ε)→ TM be a smooth variation of X( i.e., U(z, 0) = X(z) for
any z ∈M) such that Xt(z) = U(z, t) ∈ TzM for any z ∈M and any |t| < ε. We have

E(Xt) =
1

2

∫
M

|dXt|2vg.

Then, from [10], we get

d

dt
E(Xt)

∣∣∣∣
t=0

= −
∫
M

gS(V , τ(X))vg,

where V(z) = d
dt
Xt(z)

∣∣
t=0
, z ∈M, and from [9, pp. 58], we have

V = V v ◦X. (3.4)

Taking into account (4.4) and the expression of τ(X) given by (3.2), we find

d

dt
E(Xt)

∣∣∣∣
t=0

=−
∫
M

gS(V v, τ(X))vg,

=

∫
M

g(V, ∆̄X)vg,

as required.

Then, we deduce the following [13].

Corollary 3.1.1. A vector field X of an m-dimensional Riemannian manifold (M, g)
is harmonic if and only if

∆̄X = 0, (3.5)

where {ei}mi=1 is a local orthonormal frame field of (M, g).

Remark 3.1.1. Theorem 3.1.3 holds if (M, g) is a non-compact Riemannian manifold
see [23].

Combining Theorem 3.1.1 and Corollary 3.1.1, we get

Corollary 3.1.2. A vector field X of an m-dimensional Riemannian manifold (M, g)
is harmonic map if and only if X is harmonic vector field and S(X) = 0.

Theorem 3.1.4. Let (M, g) be a compact m-dimensional Riemannian manifold and
X ∈ X(M) a vector field. Then X : (M, g) −→ (TM, gS) is a harmonic vector field if
and only if X is parallel.
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Proof. We assume that X : (M, g) −→ (TM, gS) is parallel, then from Corollary 3.1.1,
X is a harmonic vector field. Conversely, we assume that X : (M, g) −→ (TM, gS)
is a harmonic vector field, then X ∈ X(M) be a critical point of E |X(M). Then
d
dt
E(Xt)|t=0 = 0 for any smooth 1-parameter variation {Xt}|t|<ε of X. In particular we

may consider the variation

Xt(x) = (1 + t)X, x ∈M, |t| < ε,

hence

0 =
d

dt
E(Xt)

∣∣∣∣
t=0

= d
dt

{
m
2
V ol(M) + 1

2

∫
M
|∇Xt|2vg

}
t=0

= d
dt

{
(1+t)2

2

∫
M
|∇Xt|2vg

}
t=0

=
∫
M
|∇X|2vg.

Thus ∇X = 0, i.e X is parallel.

Theorem 3.1.5. Let (M, g) be a compact m-dimensional Riemannian manifold and
X ∈ X(M) a vector field. Then X : (M, g) −→ (TM, gS) is a harmonic map if and
only if X is parallel.

Proof. We assume that X : (M, g) −→ (TM, gS) is a harmonic map, then from Corol-
lary 3.1.2, X is a harmonic vector field and, hence X is parallel. Conversely, we assume
that the vector field X is parallel, by virtue of Theorem 3.1.2, X is a harmonic map.

Lemma 3.1.1 ([16]). Let (M, g) be a Riemannian manifold and X a vector field of
M . Then the following equation is satisfied:

∆̄(fX) = (∆f)X + f∆̄X − 2∇grad fX, (3.6)

where f being a smooth function of M and grad f the gradient of f .

3.2 Biharmonicity of vector fields on Riemannian

manifolds

In what follows, we give the formula of the bitension field τ2(X) of X. We prove the
following Theorem:

Theorem 3.2.1. Let (M, g) be a Riemannian manifold of dimension m and (TM, gS)
its tangent bundle equipped with the Sasaki metric, if X : (M, g) → (TM, gS) is a
smooth vector field then the bitension field of X is given by

τ2(X) =
{
− ∆̄∆̄X −

m∑
i=1

[(∇eiR)(ei, S(X))X +R(ei,∇eiS(X))X
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+ 2R(ei, S(X))∇eiX]
}v

+
{
− ∆̄S(X)−R(X, ∆̄X)S(X) +

m∑
i=1

[R(X,∇ei∆̄X)ei

−R(∇eiX, ∆̄X)ei −R(ei, S(X))ei − (∇S(X)R)(∇eiX,X)ei

+R(X,∇eiX)∇eiS(X)−R(X,R(ei, S(X))X)ei]
}h

. (3.7)

Proof. Let (x, u) ∈ TM and {ei}mi=1 be a local orthonormal frame on M such that
∇eiej = 0 at x ∈ M and u = Xx, using the Proposition 1.9.1 and (3.1) and (3.2), we
get

m∑
i=1

∇X
eiτ(X)

∣∣
(x,Xx)

=−
m∑
i=1

[
∇̃ehi +(∇ei

X)v (S(X)h + ∆̄Xv)
]∣∣

(x,Xx)

=−
{ m∑

i=1

[
∇eiS(X) +

1

2
R(X,∇eiX)S(X) +

1

2
R(X, ∆̄X)ei

]}h

(x,Xx)

−
{ m∑

i=1

[
∇ei∆̄X −

1

2
R(ei, S(X))X

]}v

(x,Xx)

and

∆Xτ(X)
∣∣
(x,Xx)

= −
m∑
i=1

∇X
ei∇

X
eiτ(X)

∣∣
(x,Xx)

=
{ m∑

i=1

[
∇ei∇eiS(X)

+
1

2
∇eiR(X,∇eiX)S(X) +

1

2
∇eiR(X, ∆̄X)ei +

1

2
R(X,∇eiX)∇eiS(X)

+
1

4
R(X,∇eiX)R(X,∇eiX)S(X) +

1

4
R(X,∇eiX)R(X, ∆̄X)ei

+
1

2
R(X,∇ei∆̄X)ei −

1

4
R(X,R(ei, S(X))X)ei

]}h

(x,Xx)
+
{ m∑

i=1

[
∇ei∇ei∆̄X

−1

2
∇eiR(ei, S(X))X − 1

2
R(ei,∇eiS(X))X − 1

4
R(ei, R(X,∇eiX)S(X))X

−1

4
R(ei, R(X, ∆̄X)ei)X

]}v

(x,Xx)
. (3.8)

Let R̃ the curvature tensor field of ∇̃. By Proposition 1.10.1, we find

−
m∑
i=1

R̃(τ(X), dX(ei))dX(ei)
∣∣
(x,Xx)

=
{ m∑

i=1

[
R(S(X), ei)ei

+
3

4
R(X,R(S(X), ei)X)ei + (∇S(X)R)(X,∇eiX)ei −

1

2
(∇eiR)(X,∇eiX)S(X)

− 1

4
R(X,∇eiX)R(X,∇eiX)S(X)− 1

2
(∇eiR)(X, ∆̄X)ei +

3

2
R(∆̄X,∇eiX)ei

− 1

2
R(X, ∆̄X)S(X)− 1

4
R(X,∇eiX)R(X, ∆̄X)ei

]}h

(x,Xx)

+
{ m∑

i=1

[1
2

(∇eiR)(S(X), ei)X +
3

2
R(S(X), ei)∇eiX

− 1

4
R(R(X,∇eiX)S(X), ei)X −

1

4
R(R(X, ∆̄X)ei, ei)X

]}v

(x,Xx)
. (3.9)
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Summing (3.8) and (3.9) and using the following formulas we get the desired formula

m∑
i=1

∇eiR(X,∇eiX)S(X) =

m∑
i=1

[
(∇eiR)(X,∇eiX)S(X) +R(X,∇eiX)∇eiS(X)

]
−R(X, ∆̄X)S(X),

m∑
i=1

∇eiR(X, ∆̄X)ei =

m∑
i=1

[
(∇eiR)(X, ∆̄X)ei +R(∇eiX, ∆̄X)ei

+R(X,∇ei∆̄X)ei
]
,

m∑
i=1

∇eiR(ei, S(X))X =

m∑
i=1

[
(∇eiR)(ei, S(X))X +R(ei,∇eiS(X))X

+R(ei, S(X))∇eiX
]
. (3.10)

Theorem 3.2.2. Let (M, g) be a m-dimensional Riemannian manifold and X ∈ X(M),
then X : (M, g)→ (TM, gS) is a biharmonic map if and only if

∆̄∆̄X +
m∑
i=1

[(∇eiR)(ei, S(X))X +R(ei,∇eiS(X))X + 2R(ei, S(X))∇eiX] = 0,

and

∆̄S(X) +R(X, ∆̄X)S(X)−
m∑
i=1

[R(X,∇ei∆̄X)ei −R(∇eiX, ∆̄X)ei

−R(ei, S(X))ei − (∇S(X)R)(∇eiX,X)ei +R(X,∇eiX)∇eiS(X)

−R(X,R(ei, S(X))X)ei] = 0,

where {ei}mi=1 is a local orthonormal frame field of (M, g).

Definition 3.2.1 ([23]). Let (M, g) be a Riemannian manifold. A vector field X ∈
X(M) is called biharmonic if the corresponding map X : (M, g) −→ (TM, gS) is a
critical point for the bienergy functional E2, only considering variations among maps
defined by vector fields.

Now, by virtue of the formula (3.7), we give another proof of the following Theorem
given in [23].

Theorem 3.2.3. Let (M, g) be a compact oriented m-dimensional Riemannian mani-
fold, {ei}mi=1 a local orthonormal frame field of (M, g), X a tangent vector field on M
and E2 : X(M) −→ [0,+∞) the bienergy functional restricted to the space of all vector
fields. Then

d

dt
E2(Xt)

∣∣∣∣
t=0

=

∫
M

{
g(∆̄∆̄X +

m∑
i=1

[
(∇eiR)(ei, S(X))X +R(ei,∇eiS(X))X
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+ 2R(ei, S(X))∇eiX
]
, V )

}
vg,

for any smooth 1-parameter variation U : M×(−ε, ε)→ TM of X through vector fields
i.e., Xt(z) = U(z, t) ∈ TzM for any |t| < ε and z ∈M , or equivalently Xt ∈ X(M) for
any |t| < ε. Also, V is the tangent vector field on M given by

V (z) =
d

dt
Xz(0), z ∈M,

where Xz(t) = U(z, t), (z, t) ∈M × (−ε, ε).

Proof. Let U : M × (−ε, ε)→ TM be a smooth variation of X( i.e., U(z, 0) = X(z) for
any z ∈M) such that Xt(z) = U(z, t) ∈ TzM for any z ∈M and any |t| < ε. We have

E2(Xt) =
1

2

∫
M

|τ(Xt)|2vg.

Then, from [18], we get

d

dt
E2(Xt)

∣∣∣∣
t=0

= −
∫
M

gS(V , τ2(X))vg,

where V(z) = d
dt
Xt(z)

∣∣
t=0
, z ∈M, and from [9, pp. 58], we have

V = V v ◦X. (3.11)

Taking into account (3.11) and the expression of τ2(X) given by (3.7), we find

d

dt
E2(Xt)

∣∣∣∣
t=0

=−
∫
M

gS(V v, τ2(X))vg,

=

∫
M

{
g(V, ∆̄∆̄X +

m∑
i=1

[
(∇eiR)(ei, S(X))X

+R(ei,∇eiS(X))X + 2R(ei, S(X))∇eiX
]
)
}
vg,

which completes the proof.

Then, we deduce the following [23].

Corollary 3.2.1. A vector field X of an m-dimensional Riemannian manifold (M, g)
is biharmonic if and only if

∆̄∆̄X +
m∑
i=1

[(∇eiR)(ei, S(X))X

+R(ei,∇eiS(X))X + 2R(ei, S(X))∇eiX] = 0, (3.12)

where {ei}mi=1 is a local orthonormal frame field of (M, g).



3.2 Biharmonicity of vector fields on Riemannian manifolds 58

Remark 3.2.1. Theorem 3.2.3 holds if (M, g) is a non-compact Riemannian manifold
see [23].

Remark 3.2.2. Combining Theorem 3.2.2 and Corollary 3.2.1, we get that a vector
field X ∈ X(M) is biharmonic map if and only if X is biharmonic vector field and

∆̄S(X) +R(X, ∆̄X)S(X)−
m∑
i=1

[R(X,∇ei∆̄X)ei

−R(∇eiX, ∆̄X)ei −R(ei, S(X))ei − (∇S(X)R)(∇eiX,X)ei

+R(X,∇eiX)∇eiS(X)−R(X,R(ei, S(X))X)ei] = 0.

Theorem 3.2.4. Let (M, g) be a compact m-dimensional Riemannian manifold and
X ∈ X(M) a vector field. Then X : (M, g) −→ (TM, gS) is a biharmonic map if and
only if X is parallel.

Proof. We assume that X : (M, g) −→ (TM, gS) is a biharmonic map, then from
Remark 3.2.2, X is a biharmonic vector field and, hence X is parallel [23]. Conversely,
we assume that the vector field X is parallel, by virtue of Theorem 3.2.2, X is a
biharmonic map.

Example 3.2.1. Consider the solvable Lie group Sol3 as the Cartesian 3-space R3(x, y, z)
equipped with the left-invariant metric g given by

g = e2z(dx)2 + e−2z(dy)2 + (dz)2.

The left-invariant vector fields

e1 = e−z
∂

∂x
, e2 = ez

∂

∂y
, e3 =

∂

∂z
,

constitute an orthonormal basis of the Lie algebra g of Sol3. The corresponding com-
ponents of the Levi-Civita connection are determined by [29]

∇e1e1 = −e3, ∇e1e2 = 0, ∇e1e3 = e1,

∇e2e1 = 0, ∇e2e2 = e3, ∇e2e3 = −e2, (3.13)

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

Also the curvature components are given by

R(e1, e2)e1 = −e2, R(e1, e2)e2 = e1, R(e1, e2)e3 = 0,

R(e2, e3)e1 = 0, R(e2, e3)e2 = e3, R(e2, e3)e3 = −e2, (3.14)

R(e3, e1)e1 = −e3, R(e3, e1)e2 = 0, R(e3, e1)e3 = e1.
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We consider the vector field X = f(z)e3, where f(z) is a smooth real function depending
of the variable z. By using (3.13), we get

∆̄e1 = −∇e1∇e1e1 +∇∇e1e1e1 −∇e2∇e2e1 +∇∇e2e2e1 −∇e3∇e3e1 = e1, (3.15)

and
∆̄e2 = e2, ∆̄e3 = 2e3. (3.16)

Combining relations (3.3), (3.6), and (3.13)-(3.16), we find

∆̄X = ∆fe3 + f∆̄e3 − 2f ′∇e3e3 =
(
2f − f ′′

)
e3, (3.17)

∆̄∆̄X = ∆
(
2f − f ′′

)
e3 +

(
2f − f ′′

)
∆̄e3 = (f ′′′′ − 4f ′′ + 4f)e3,

S(X) = f 2S(e3) = f 2
(
R(e1, e3)e1 −R(e2, e3)e2

)
= 0,

where f ′ = df
dz

, f ′′ = d2f
dz2

etc. On the other hand, using relations (3.13), (3.14) and
(3.17), we obtain

3∑
i=1

R(X,∇ei∆̄X)ei = 0, and
3∑
i=1

R(∇eiX, ∆̄X)ei = 0.

Then, from Theorem 3.2.2, we get that X is biharmonic map if and only if the function
f satisfies the following homogeneous fourth order differential equation.

f ′′′′ − 4f ′′ + 4f = 0. (3.18)

The general solution of (3.18) is

f(z) = c1e
√

2z + c2ze
√

2z + c3e
−
√

2z + c4ze
−
√

2z, (3.19)

where c1, c2, c3 and c4 are real constants. Note that X = f(z)e3 is also biharmonic
vector field, where f(z) is given by (3.19).

3.3 Biharmonicity of vector fields of three-dimensional

unimodular Lie groups

In this section, we investigate biharmonicity of left-invariant vector fields on three-
dimensional unimodular Lie groups equipped with a left-invariant Riemannian metric.
Let G be a three-dimensional unimodular Lie group and g its Lie algebra, this is,
tr adX = 0 for all X ∈ g, equip G with a left-invariant Riemannian metric <,>. Then,
there exists an orthonormal basis {e1, e2, e3} of g such that

[e2, e3] = λ1e1, [e3, e1] = λ2e2, [e1, e2] = λ3e3,
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Signs of λ1, λ2, λ3 Associated Lie groups

+, +, + SU(2) or SO(3)
+, +, − SL(2,R) or O(1, 2)
+, +, 0 E(2)
+, 0, − E(1, 1)
+, 0, 0 H3

0, 0, 0 R⊕ R⊕ R

Table 3.1: Three-dimensional unimodular Lie groups

where λ1, λ2, λ3 are constants. According to the signs of λ1, λ2, λ3, Milnor [26] classified
three-dimensional unimodular Lie groups as described in Table 1: let θi, i = 1, 2, 3, be
the dual one forms of {ei}, i = 1, 2, 3. Let V = x1e1 + x2e2 + x3e3 an arbitrary left-
invariant vector field on G. The Levi-Civita connection ∇ of G is given by [15]

∇e1 = µ3e2 ⊗ θ3 − µ2e3 ⊗ θ2,

∇e2 = −µ3e1 ⊗ θ3 + µ1e3 ⊗ θ1, (3.20)

∇e3 = µ2e1 ⊗ θ2 − µ1e2 ⊗ θ1,

where

µi =
1

2
(λ1 + λ2 + λ3)− λi, i = 1, 2, 3. (3.21)

Using (3.20) we get [25]

∇e1V = µ1(x2e3 − x3e2),

∇e2V = µ2(x3e1 − x1e3),

∇e3V = µ3(x1e2 − x2e1).

While the Riemann curvature tensor is given by [25]

R(e1, e2)e2 = (λ3µ3 − µ1µ2)e1, R(e1, e3)e3 = (λ2µ2 − µ1µ3)e1,

R(e2, e1)e1 = (λ3µ3 − µ1µ2)e2, R(e2, e3)e3 = (λ1µ1 − µ2µ3)e2, (3.22)

R(e3, e1)e1 = (λ2µ2 − µ1µ3)e3, R(e3, e2)e2 = (λ1µ1 − µ2µ3)e3.

Again from [25] we have

∆̄V = (µ2
2 + µ2

3)x1e1 + (µ2
1 + µ2

3)x2e2 + (µ2
1 + µ2

2)x3e3 (3.23)

and
S(V ) = A1x2x3e1 + A2x1x3e2 + A3x1x2e3, (3.24)

where A1 = µ2
2(µ3 − µ1) + µ2

3(µ1 − µ2), A2 = µ2
1(µ2 − µ3) + µ2

3(µ1 − µ2) and A3 =
µ2

1(µ2 − µ3) + µ2
2(µ3 − µ1).

The following theorem follows from (3.21) and (3.23).
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Theorem 3.3.1. A left-invariant vector field V on G is harmonic if and only if one
of the following cases occurs:

1. λ1 = λ2 = λ3 = 0. Then, any vector field V ∈ g is harmonic.

2. λ1 = λ2 − λ3 = 0. Then, V = x1e1.

3. λ2 = λ1 − λ3 = 0. Then, V = x2e2.

4. λ3 = λ1 − λ2 = 0. Then, V = x3e3.

Moreover, by (3.20), vectors listed above are parallel. Hence, they also define harmonic
maps.

Using (3.20) and (3.23) we obtain

∆̄∆̄V = (µ2
2 + µ2

3)2x1e1 + (µ2
1 + µ2

3)2x2e2 + (µ2
1 + µ2

2)2x3e3. (3.25)

Combining relations (4.5), (3.20), (3.22)-(3.25), a long but straightforward calculation
gives that the vector field V = x1e1 + x2e2 + x3e3 is biharmonic if and only if

x1{(µ2
2 + µ2

3)2 + A2
2x

2
3 + A2

3x
2
2} = 0

x2{(µ2
1 + µ2

3)2 + A2
1x

2
3 + A2

3x
2
1} = 0 (3.26)

x3{(µ2
1 + µ2

2)2 + A2
1x

2
2 + A2

2x
2
1} = 0.

The subcases x1 = x2 = 0, x2 = x3 = 0 and x1 = x3 = 0 give vector fields which
define harmonic maps. We proceed as in [?], we deal with the six types of Lie groups
described in Table 1.

Case 1 : R ⊕ R ⊕ R. In this case, λ1 = λ2 = λ3 = 0, therefore the system (3.26)
implies that every left-invariant vector field is biharmonic and defines a biharmonic
maps.

Case 2 : H3. We yield A1 = 0, A2 = 2µ3
1, A3 = −2µ3

1, µ2
1 = µ2

2 = µ2
3 and the system

(3.26) is transformed to

x1{1 + µ2
1(x2

2 + x2
3)} = 0

x2{1 + µ2
1x

2
1} = 0

x3{1 + µ2
1x

2
1} = 0.

This system admits only the trivial solution x1 = x2 = x3 = 0.
Case 3 : E(1, 1). In this case, we have µ3 = −µ1 > 0, A1 = −2µ1µ

2
2 + µ2

1(µ1 − µ2),
A2 = 2µ3

1 < 0, A3 = −2µ1µ
2
2 + µ2

1(µ1 + µ2) and the system (3.26) is reduces to

x1{(µ2
1 + µ2

2)2 + A2
3x

2
2 + A2

2x
2
3} = 0

x2{4µ2
1 + A2

1x
2
3 + A2

3x
2
1} = 0 (3.27)

x3{(µ2
1 + µ2

2)2 + A2
1x

2
2 + A2

2x
2
1} = 0.
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If x1, x2, x3 6= 0. We will prove that A1, A3 6= 0. We suppose that A1 = 0, the system
(3.27) gives µ1 = 0 which is a contradiction. The case A3 = 0 is treated similarly.
Then A1, A3 6= 0 and the system (3.27) has no solution.

Case 4 : E(2). In this case, we have µ2 = −µ1, A1 = 2µ1µ
2
3 + µ2

1(µ3 − µ1),
A2 = 2µ1µ

2
3 − µ2

1(µ1 + µ3), A3 = −2µ3
1 and the system (3.26) is reduces to

x1{(µ2
1 + µ2

3)2 + A2
3x

2
2 + A2

2x
2
3} = 0

x2{(µ2
1 + µ2

3)2 + A2
1x

2
3 + A2

3x
2
1} = 0

x3{4µ2
1 + A2

1x
2
2 + A2

2x
2
1} = 0.

If µ1 = 0, we obtain A1 = A2 = A3 = 0 and we get x1 = x2 = 0 (the harmonic solution).
If x1, x2, x3 6= 0, we do not have solution following the same procedure appeared in the
case of E(1, 1).

Case 5 : SL(2,R) or O(1, 2). We distinguish two cases:
• λ1 = λ2 > λ3. We have µ1 = µ2 = λ3

2
, µ3 = 2λ1−λ3

2
> 0, A1 = µ2

1(µ3−µ1), A2 = −A1,
A3 = 0. So, the system (3.26) is reduced to

x1{(µ2
1 + µ2

3)2 + A2
1x

2
3} = 0

x2{(µ2
1 + µ2

3)2 + A2
1x

2
3} = 0 (3.28)

x3{4µ2
1 + A2

1(x2
1 + x2

2)} = 0.

The system (3.28) admits only the zero solution.
• λ1 > λ2 > λ3 or λ2 > λ1 > λ3. We have µ3 > 0. If x1, x2, x3 6= 0, the system (4.20)
is reduced to

(µ2
2 + µ2

3)2 + A2
2x

2
3 + A2

3x
2
2 = 0

(µ2
1 + µ2

3)2 + A2
1x

2
3 + A2

3x
2
1 = 0 (3.29)

(µ2
1 + µ2

2)2 + A2
1x

2
2 + A2

2x
2
1 = 0.

We will prove that A1, A2, A3 6= 0. We suppose that A1 = 0, the system (3.29) gives
µ3 = 0 which is a contradiction. Similarly for the cases A2 = 0 and A3 = 0. Then
A1, A2, A3 6= 0 and the system (3.29) has no solution.

Case 6 : SU(2) or SO(3). We distinguish two cases:
• λ1 = λ2 = λ3, λ1 = λ2 6= λ3, λ1 = λ3 6= λ2, λ2 = λ3 6= λ1. We get x1 = x2 = x3 = 0
(the zero solution).
• λ1 6= λ2 6= λ3. If x1, x2, x3 6= 0, the system (3.26) is (3.29). We will prove that
A1, A2, A3 6= 0. We suppose that A1 = 0, the system (3.29) gives µ1 = µ2 = µ3 = 0,
equivalently, λ1 = λ2 = λ3 = 0 which is a contradiction. Similarly for the cases A2 = 0
and A3 = 0. Therefore A1, A2, A3 6= 0 and the system (3.29) has no solution.

Summarizing, we yield

Theorem 3.3.2. Let G be a three-dimensional unimodular Lie group. Then
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1. The set of left-invariant biharmonic vector fields which do not define harmonic
maps into TG is empty.

2. The set of left-invariant vector fields which are biharmonic maps and do not
define harmonic maps into TG is empty.



CHAPTER 4

BIHARMONICITY OF VECTOR FIELDS ON

PSEUDO-RIEMANNIAN MANIFOLDS

This chapter presents our work on the biharmonicity of vector fields on pseudo-Riemannian
manifolds. We deal with the biharmonicity of a vector field X viewed as a map from
a pseudo-Riemannian manifold (M, g) into its tangent bundle TM endowed with the
Sasaki metric gS. Precisely, we characterize those vector fields which are biharmonic
maps, and find the relationship between them and biharmonic vector fields. After-
wards, we study the biharmonicity of left-invariant vector fields on the three dimen-
sional Heisenberg group endowed with a left-invariant Lorentzian metric. Finally, we
give examples of vector fields which are proper biharmonic maps on the Gödel universe.
The references used are: [2], [9],[10], [11], [8], [13], [14], [23], [25].

4.1 Harmonicity of vector fields on pseudo-Riemannian

manifolds

Let (M, g) be a pseudo-Riemannian manifold of dimension m. We know that any
vector field X on (M, g) can be viewed as the immersion X : (M, g) → (TM, gS) ;
x 7→ (x,Xx) ∈ TM into its tangent bundle TM equipped with the Sasaki metric gS.
The energy of X is, by definition, the energy of the corresponding map X : (M, g) →
(TM, gS), that is [14]

E(X) =
1

2

∫
M

|dX|2vg =
m

2
V ol(M) +

1

2

∫
M

|∇X|2vg (4.1)

(assuming M compact; in the non-compact case, one works over compact domain).

Theorem 4.1.1. [13] Let (M, g) be a pseudo-Riemannian manifold of dimension m
and (TM, gS) its tangent bundle equipped with the Sasaki metric, if X : (M, g) →

64
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(TM, gS) is a smooth vector field then the tension field τ(X) is given by

τ(X) =
(
−

m∑
i=1

εiR(∇eiX,X)ei

)h
+
( m∑
i=1

εi(∇ei∇eiX −∇∇eieiX)
)v
,

where {ei}mi=1 a local pseudo-orthonormal frame field of (M, g) with εi = g(ei, ei) = ±1
for all indices i = 1, 2, · · · ,m.

Proof. Let (x, u) ∈ TM and {ei}mi=1 be a local pseudo-orthonormal frame on M such
that ∇eiej = 0 at x ∈M and u = Xx, using 1.9.1, (3.1) and (4.2), we get

τ(X)
∣∣
(x,Xx)

=
m∑
i=1

εi
[
∇X
ei
dX(ei)

]∣∣
(x,Xx)

=
m∑
i=1

εi
[
∇̃ehi +(∇eiX)v(e

h
i + (∇eiX)v)

]∣∣
(x,Xx)

=
m∑
i=1

εi
[
∇̃ehi

ehi + ∇̃ehi
(∇eiX)v + ∇̃(∇eiX)ve

h
i + +∇̃(∇eiX)v(∇eiX)v

]∣∣
(x,Xx)

=
m∑
i=1

εi
[
(−R(∇eiX,X)ei)

h + (∇ei∇eiX)v
]∣∣

(x,Xx)

=
[(
−

m∑
i=1

εiR(∇eiX,X)ei
)h

+
( m∑
i=1

εi(∇ei∇eiX −∇∇eieiX)
)v]∣∣

(x,Xx)
.

We can rewrite τ(X) as follows [25]:

τ(X) = (−S(X))h + (∇∗∇X)v, (4.2)

where

S(X) =
m∑
i=1

εiR(∇eiX,X)ei,

and ∇∗∇X is the rough Laplacian given by

∇∗∇X =
m∑
i=1

εi(∇ei∇eiX −∇∇eieiX).

Note that, for any smooth function f and vector field X of M , we have

S(fX) = f 2S(X). (4.3)
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Theorem 4.1.2. [13] Let (M, g) be a pseudo-Riemannian manifold of dimension m
and (TM, gS) its tangent bundle equipped with the Sasaki metric, if X : (M, g) →
(TM, gS) is a smooth vector field then X is a harmonic map if and only if ∇∗∇X = 0
and S(X) = 0.

Definition 4.1.1 ([23]). A vector field X is called harmonic vector field if it is a critical
point of the energy functional (1), restricted to variations through vector fields.

Theorem 4.1.3. Let (M, g) be an m-dimensional pseudo-Riemannian manifold, {ei}mi=1

a local pseudo-orthonormal frame field of (M, g), X a tangent vector field on M and
E : X(M) −→ [0,+∞) the energy functional restricted to the space of all vector fields.
Then

d

dt
E(Xt)

∣∣∣∣
t=0

=

∫
M

g(∇∗∇X, V )vg,

for any smooth 1-parameter variation U : M×(−ε, ε)→ TM of X through vector fields
i.e., Xt(z) = U(z, t) ∈ TzM for any |t| < ε and z ∈M , or equivalently Xt ∈ X(M) for
any |t| < ε. Also, V is the tangent vector field on M given by

V (z) =
d

dt
Xz(0), z ∈M,

where Xz(t) = U(z, t), (z, t) ∈M × (−ε, ε).

Proof. Let U : M × (−ε, ε)→ TM be a smooth variation of X( i.e., U(z, 0) = X(z) for
any z ∈M) such that Xt(z) = U(z, t) ∈ TzM for any z ∈M and any |t| < ε. We have

E(Xt) =
1

2

∫
M

|dXt|2vg.

Then, from [10], we get

d

dt
E(Xt)

∣∣∣∣
t=0

= −
∫
M

gS(V , τ(X))vg,

where V(z) = d
dt
Xt(z)

∣∣
t=0
, z ∈M, and from [9, pp. 58], we have

V = V v ◦X. (4.4)

Taking into account (4.4) and the expression of τ(X) given by (3.1), we find

d

dt
E(Xt)

∣∣∣∣
t=0

=−
∫
M

gS(V v, τ(X))vg,

=

∫
M

g(V,∇∗∇X)vg,

as required.
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Then, we deduce the following [23].

Corollary 4.1.1. A vector field X of an m-dimensional pseudo-Riemannian manifold
(M, g) is harmonic if and only if

∇∗∇X = 0, (4.5)

where {ei}mi=1 is a local pseudo-orthonormal frame field of (M, g).

Combining Theorem 4.1.1 and Corollary 4.1.1, we get

Corollary 4.1.2. A vector field X of an m-dimensional pseudo-Riemannian manifold
(M, g) is harmonic map if and only if X is harmonic vector field and S(X) = 0.

4.2 Biharmonicity of vector fields on pseudo-Riemannian

manifolds

In the next Theorem, we compute the bitension field τ2(X) of X.

Theorem 4.2.1. Let (M, g) be an m-dimensional pseudo-Riemannian manifold and
(TM, gS) its tangent bundle equipped with the Sasaki metric, if X : (M, g)→ (TM, gS)
is a smooth vector field then the bitension field of X is given by

τ2(X) =
{

(∇∗∇)2X +

m∑
i=1

εi[(∇eiR)(ei, S(X))X +R(ei,∇eiS(X))X

+ 2R(ei, S(X))∇eiX]
}v

+
{
−∇∗∇S(X)−R(X,∇∗∇X)S(X) +

m∑
i=1

εi[R(X,∇ei∇∗∇X)ei

−R(∇eiX,∇∗∇X)ei +R(ei, S(X))ei − (∇S(X)R)(X,∇eiX)ei

−R(X,∇eiX)∇eiS(X) +R(X,R(ei, S(X))X)ei]
}h

. (4.6)

Proof. Let (x, u) ∈ TM and {ei}mi=1 be a local pseudo-orthonormal frame on M such
that ∇eiei = 0 at x ∈M and u = Xx. If Y ∈ Γ(TM) then, we have (see [9, pp. 50])

using 1.9.1, (3.1) and (4.2) one has

m∑
i=1

∇X
eiτ(X)

∣∣
(x,Xx)

=

m∑
i=1

[
∇̃ehi +(∇ei

X)v (−S(X)h +∇∗∇Xv)
]∣∣

(x,Xx)

=
{ m∑

i=1

[
−∇eiS(X)− 1

2
R(X,∇eiX)S(X) +

1

2
R(X,∇∗∇X)ei

]}h

(x,Xx)

+
{ m∑

i=1

[
∇ei∇∗∇X +

1

2
R(ei, S(X))X

]}v

(x,Xx)

and
m∑
i=1

εi∇X
ei∇

X
eiτ(X)

∣∣
(x,Xx)

=
{ m∑

i=1

εi
[
−∇ei∇eiS(X)
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−1

2
∇eiR(X,∇eiX)S(X) +

1

2
∇eiR(X,∇∗∇X)ei −

1

2
R(X,∇eiX)∇eiS(X)

−1

4
R(X,∇eiX)R(X,∇eiX)S(X) +

1

4
R(X,∇eiX)R(X,∇∗∇X)ei +

1

2
R(X,∇ei∇∗∇X)ei

+
1

4
R(X,R(ei, S(X))X)ei

]}h

(x,Xx)
+
{ m∑

i=1

εi
[
∇ei∇ei∇∗∇X +

1

2
∇eiR(ei, S(X))X

+
1

2
R(ei,∇eiS(X))X +

1

4
R(ei, R(X,∇eiX)S(X))X − 1

4
R(ei, R(X,∇∗∇X)ei)X

]}v

(x,Xx)
. (4.7)

Let R̃ the curvature tensor field of ∇̃. On making use of Theorem 1 in [21], we find

−
m∑
i=1

εiR̃(dX(ei), τ(X))dX(ei)
∣∣
(x,Xx)

=
{
− 1

2
R(X,∇∗∇X)S(X) +

m∑
i=1

εi
[
R(ei, S(X))ei

+
3

4
R(X,R(ei, S(X))X)ei − (∇S(X)R)(X,∇eiX)ei +

1

2
(∇eiR)(X,∇eiX)S(X)

+
1

4
R(X,∇eiX)R(X,∇eiX)S(X)− 1

2
(∇eiR)(X,∇∗∇X)ei +

3

2
R(∇∗∇X,∇eiX)ei

− 1

4
R(X,∇eiX)R(X,∇∗∇X)ei

]}h

(x,Xx)
+
{ m∑

i=1

εi
[1
2

(∇eiR)(ei, S(X))X (4.8)

− 3

2
R(S(X), ei)∇eiX +

1

4
R(R(X,∇eiX)S(X), ei)X −

1

4
R(R(X,∇∗∇X)ei, ei)X

]}v

(x,Xx)
.

On the other hand, we have the following formulae
m∑
i=1

εi∇eiR(X,∇eiX)S(X) =

m∑
i=1

εi
[
(∇eiR)(X,∇eiX)S(X) +R(X,∇eiX)∇eiS(X)

]
+R(X,∇∗∇X)S(X), (4.9)

m∑
i=1

εi∇eiR(X,∇∗∇X)ei =

m∑
i=1

εi
[
(∇eiR)(X,∇∗∇X)ei +R(∇eiX,∇∗∇X)ei

+R(X,∇ei∇∗∇X)ei
]
, (4.10)

m∑
i=1

εi∇eiR(ei, S(X))X =

m∑
i=1

εi
[
(∇eiR)(ei, S(X))X +R(ei,∇eiS(X))X

+R(ei, S(X))∇eiX
]
. (4.11)

One can calculate τ2(X) by summing up (4.7) and (4.8) and using the formulae (4.9)-
(4.11).

Then, we give the following characterization theorem.

Theorem 4.2.2. Let (M, g) be an m-dimensional pseudo-Riemannian manifold and
X ∈ X(M), then X : (M, g)→ (TM, gS) is a biharmonic map if and only if

(∇∗∇)2X +
m∑
i=1

εi[(∇eiR)(ei, S(X))X +R(ei,∇eiS(X))X + 2R(ei, S(X))∇eiX] = 0,
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and

−∇∗∇S(X)−R(X,∇∗∇X)S(X) +
m∑
i=1

εi[R(X,∇ei∇∗∇X)ei

−R(∇eiX,∇∗∇X)ei +R(ei, S(X))ei − (∇S(X)R)(X,∇eiX)ei

−R(X,∇eiX)∇eiS(X) +R(X,R(ei, S(X))X)ei] = 0,

where {ei}mi=1 is a local pseudo-orthonormal frame field of (M, g).

Definition 4.2.1 ([25]). Let (M, g) be a pseudo-Riemannian manifold. A vector field
X ∈ X(M) is called biharmonic if the corresponding map X : (M, g) −→ (TM, gS) is a
critical point for the bienergy functional E2, only considering variations among maps
defined by vector fields.

By virtue of the formula (4.6), one obtain another proof of the next Theorem given
in [23].

Theorem 4.2.3. Let (M, g) be a compact oriented m-dimensional pseudo-Riemannian
manifold, {ei}mi=1 a local pseudo-orthonormal frame field of (M, g), X a tangent vector
field on M and E2 : X(M) −→ [0,+∞) the bienergy functional restricted to the space
of all vector fields. Then

d

dt
E2(Xt)

∣∣∣∣
t=0

=

∫
M

{
g((∇∗∇)2X +

m∑
i=1

εi
[
(∇eiR)(ei, S(X))X +R(ei,∇eiS(X))X

+ 2R(ei, S(X))∇eiX
]
, V )

}
vg

for any smooth 1-parameter variation U : M×(−ε, ε)→ TM of X through vector fields
i.e., Xt(z) = U(z, t) ∈ TzM for any |t| < ε and z ∈M , or equivalently Xt ∈ X(M) for
any |t| < ε. Also, V is the tangent vector field on M given by

V (z) =
d

dt
Xz(0), z ∈M,

where Xz(t) = U(z, t), (z, t) ∈M × (−ε, ε).

Proof. Let U : M × (−ε, ε)→ TM be a smooth variation of X( i.e., U(z, 0) = X(z) for
any z ∈M) such that Xt(z) = U(z, t) ∈ TzM for any z ∈M and any |t| < ε. We have

E2(Xt) =
1

2

∫
M

|τ(Xt)|2vg.

As in the Riemannian case [18], we can write

d

dt
E2(Xt)

∣∣∣∣
t=0

=

∫
M

gS(V , τ2(X))vg,
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where V(z) = d
dt
Xt(z)

∣∣
t=0
, z ∈M, however from [9, pp. 58], we have

V = V v ◦X. (4.12)

On making use of the expression of τ2(X) given by (4.6) and (4.12), we find

d

dt
E2(Xt)

∣∣∣∣
t=0

=

∫
M

gS(V v, τ2(X))vg (4.13)

=

∫
M

{
g(V, (∇∗∇)2X +

m∑
i=1

εi
[
(∇eiR)(ei, S(X))X

+R(ei,∇eiS(X))X + 2R(ei, S(X))∇eiX
]
)
}
vg,

which completes the proof.

Then, we deduce the following [25].

Corollary 4.2.1. A vector field X of an m-dimensional pseudo-Riemannian manifold
(M, g) is biharmonic if and only if

(∇∗∇)2X +
m∑
i=1

εi[(∇eiR)(ei, S(X))X +R(ei,∇eiS(X))X + 2R(ei, S(X))∇eiX] = 0,

where {ei}mi=1 is a local pseudo-orthonormal frame field of (M, g).

Remark 4.2.1. Theorem 4.2.3 holds if (M, g) is a non-compact pseudo-Riemannian
manifold see [25].

A reformulation of Theorem 4.2.2 is then

Corollary 4.2.2. Let (M, g) be an m-dimensional pseudo-Riemannian manifold and
X ∈ X(M). Then X is a biharmonic map if and only if X is biharmonic vector field
and

−∇∗∇S(X)−R(X,∇∗∇X)S(X) +
m∑
i=1

εi[R(X,∇ei∇∗∇X)ei

−R(∇eiX,∇∗∇X)ei +R(ei, S(X))ei − (∇S(X)R)(X,∇eiX)ei

−R(X,∇eiX)∇eiS(X) +R(X,R(ei, S(X))X)ei] = 0.

4.3 Biharmonicity of left-invariant vector fields of

Heisenberg group

The Heisenberg group H3 can be seen as the Cartesian 3-space R3(x, y, z) endowed
with multiplication

(x, y, z)(x̄, ȳ, z̄) = (x+ x̄, y + ȳ, z + z̄ − xȳ).
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H3 is three-dimensional Lie group. In [30], the authors proved that any left-invariant
Lorentzian metric on H3, is isometric to one of the subsequent metrics

g1 = −dx2 + dy2 + (xdy + dz)2,

g2 = dx2 + dy2 − (xdy + dz)2,

g3 = dx2 + (xdy + dz)2 − ((1− x)dy − dz)2.

In this section we investigate biharmonicity of left-invariant vector fields on H3 endowed
with g1, g2 and g3 respectively.

4.3.1 Biharmonicity of left-invariant vector fields on (H3, g1)

The aim of this subsection is to completely determine the set of left-invariant vector
fields on (H3, g1) which are biharmonic and biharmonic maps respectively. The left-
invariant vector fields

e1 =
∂

∂z
, e2 =

∂

∂y
− x ∂

∂z
, e3 =

∂

∂x
,

constitute an orthonormal basis of the Lie algebra of H3 with

g1(e1, e1) = g1(e2, e2) = 1, g1(e3, e3) = −1,

for which, we have the Lie brackets:

[e2, e3] = e1, [e1, e2] = 0, [e1, e3] = 0,

The components of the Levi-Civita connection of (H3, g1) are determined by [30]

∇e1e1 = 0, ∇e1e2 =
1

2
e3, ∇e1e3 =

1

2
e2,

∇e2e1 =
1

2
e3, ∇e2e2 = 0, ∇e2e3 =

1

2
e1, (4.14)

∇e3e1 =
1

2
e2, ∇e3e2 = −1

2
e1, ∇e3e3 = 0.

Also the curvature components are given by

R(e1, e2)e1 =
1

4
e2, R(e1, e2)e2 = −1

4
e1, R(e1, e2)e3 = 0,

R(e2, e3)e1 = 0, R(e2, e3)e2 = −3

4
e3, R(e2, e3)e3 = −3

4
e2, (4.15)

R(e3, e1)e1 = −1

4
e3, R(e3, e1)e2 = 0, R(e3, e1)e3 = −1

4
e1.
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Let X = αe1 + βe2 + γe3 an arbitrary left-invariant vector field on (H3, g1). By using
(4.14) and (4.15), one has

∇∗∇X =
α

2
e1 +

β

2
e2 +

γ

2
e3,

(∇∗∇)2X =
α

4
e1 +

β

4
e2 +

γ

4
e3,

S(X) =
αγ

4
e2 +

αβ

4
e3. (4.16)

By virtue of (4.14)-(4.16), a long but straightforward calculation we get

Proposition 4.3.1. Let X = αe1 + βe2 + γe3 be a left-invariant vector field on the
Lorentzian Lie group (H3, g1). Then,

(∇∗∇)2X +
3∑
i=1

εi[(∇eiR)(ei, S(X))X +R(ei,∇eiS(X))X

+ 2R(ei, S(X))∇eiX] =
α(4− (β2 − γ2))

16
e1 +

β(4− α2)

16
e2 +

γ(4− α2)

16
e3,

and

−∇∗∇S(X)−R(X,∇∗∇X)S(X) +
3∑
i=1

εi[R(X,∇ei∇∗∇X)ei

−R(∇eiX,∇∗∇X)ei +R(ei, S(X))ei − (∇S(X)R)(X,∇eiX)ei

−R(X,∇eiX)∇eiS(X) +R(X,R(ei, S(X))X)ei]

=
αγ(−8− 2(γ2 − β2)− α2)

16
e2 +

αβ(−8− 2(γ2 − β2)− α2)

16
e3.

From Proposition 4.3.1, we easily conclude that the vector field X = αe1 +βe2 +γe3

is biharmonic map if and only if
α(4− (β2 − γ2)) = 0,
β(4− α2) = 0,
γ(4− α2) = 0,

(4.17)

and {
αγ(−8− 2(γ2 − β2)− α2) = 0,
αβ(−8− 2(γ2 − β2)− α2) = 0.

(4.18)

In particular, X is biharmonic vector field if and only if (4.17) holds. From the system
(4.17), we obtain that the coordinates of X satisfy the equations of hyperbolas: C1 =
{α = 2, β2 − γ2 = 4} and C2 = {α = −2, β2 − γ2 = 4}. Summarizing, we yield

Theorem 4.3.1. Let X = αe1 + βe2 + γe3 be a left-invariant vector field on the
Lorentzian Lie group (H3, g1). Then,
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1. X = αe1+βe2+γe3 is a biharmonic vector field which does not define biharmonic
map if and only if the coordinates of X satisfy the equations of the equilateral
hyperbolas C1 and C2.

2. The set of left-invariant vector fields which are proper biharmonic maps into TH3

is empty.

4.3.2 Biharmonicity of left-invariant vector fields on (H3, g2)

This subsection is devoted to the determination of the set of left-invariant vector fields
on (H3, g2) which are biharmonic and biharmonic maps respectively. The left-invariant
vector fields

e1 =
∂

∂y
− x ∂

∂z
, e2 =

∂

∂x
, e3 =

∂

∂z
,

constitute an orthonormal basis of the Lie algebra of H3 with

g2(e1, e1) = g2(e2, e2) = 1, g2(e3, e3) = −1,

for which, we have the Lie brackets:

[e1, e2] = e3, [e1, e3] = 0, [e2, e3] = 0.

The components of the Levi-Civita connection of (H3, g2) are determined by [30]

∇e1e1 = 0, ∇e1e2 =
1

2
e3, ∇e1e3 =

1

2
e2,

∇e2e1 = −1

2
e3, ∇e2e2 = 0, ∇e2e3 = −1

2
e1, (4.19)

∇e3e1 =
1

2
e2, ∇e3e2 = −1

2
e1, ∇e3e3 = 0.

Also the curvature components are given by

R(e1, e2)e1 = −3

4
e2, R(e1, e2)e2 =

3

4
e1, R(e1, e2)e3 = 0,

R(e2, e3)e1 = 0, R(e2, e3)e2 =
1

4
e3, R(e2, e3)e3 =

1

4
e2, (4.20)

R(e3, e1)e1 = −1

4
e3, R(e3, e1)e2 = 0, R(e3, e1)e3 = −1

4
e1.

Let X = αe1 + βe2 + γe3 an arbitrary left-invariant vector field on (H3, g2). By using
(4.19) and (4.20), then one obtains

∇∗∇X =
α

2
e1 +

β

2
e2 +

γ

2
e3,

(∇∗∇)2X =
α

4
e1 +

β

4
e2 +

γ

4
e3,
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S(X) =
−βγ

4
e1 +

αγ

4
e2. (4.21)

By virtue of (4.19)-(4.21), a long but direct and easy calculations we get

Proposition 4.3.2. Let X = αe1 + βe2 + γe3 be a left-invariant vector field on the
Lorentzian Lie group (H3, g2). Then,

(∇∗∇)2X +
3∑
i=1

εi[(∇eiR)(ei, S(X))X +R(ei,∇eiS(X))X

+ 2R(ei, S(X))∇eiX] =
α(4 + γ2)

16
e1 +

β(4 + γ2)

16
e2 +

γ(4− (α2 + β2))

16
e3,

and

−∇∗∇S(X)−R(X,∇∗∇X)S(X) +
3∑
i=1

εi[R(X,∇ei∇∗∇X)ei

−R(∇eiX,∇∗∇X)ei +R(ei, S(X))ei − (∇S(X)R)(X,∇eiX)ei

−R(X,∇eiX)∇eiS(X) +R(X,R(ei, S(X))X)ei]

=
βγ(16 + 5(α2 + β2)− 3γ2)

32
e1 +

−αγ(16 + 5(α2 + β2)− 3γ2)

32
e2.

From Proposition 4.3.2, one conclude that the vector field X = αe1 + βe2 + γe3 is
biharmonic map if and only if

α(4 + γ2) = 0,
β(4 + γ2) = 0,
γ(4− (α2 + β2)) = 0,

(4.22)

and {
βγ(16 + 5(α2 + β2)− 3γ2) = 0,
αγ(16 + 5(α2 + β2)− 3γ2) = 0.

(4.23)

In particular, X is biharmonic vector field if and only if (4.22) holds. From (4.22) and
(4.23), one has

Theorem 4.3.2. On the Lorentzian Lie group (H3, g2). We have

1. The set of left-invariant biharmonic vector fields which do not define harmonic
maps into TH3 is empty.

2. The set of left-invariant vector fields which are proper biharmonic maps into TH3

is empty.
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4.3.3 Biharmonicity of left-invariant vector fields on (H3, g3)

In this subsection we aim to completely determine the set of left-invariant vector fields
on (H3, g3) which are biharmonic and biharmonic maps respectively. The left-invariant
vector fields

e1 =
∂

∂x
, e2 =

∂

∂y
+ (1− x)

∂

∂z
, e3 =

∂

∂y
− x ∂

∂z
,

constitute an orthonormal basis of the Lie algebra of H3 with

g3(e1, e1) = g3(e2, e2) = 1, g3(e3, e3) = −1,

for which, we have the Lie brackets:

[e2, e3] = 0, [e3, e1] = e2 − e3, [e2, e1] = e2 − e3.

The components of the Levi-Civita connection of (H3, g3) are determined by [30]

∇e1e1 = 0, ∇e1e2 = 0, ∇e1e3 = 0,

∇e2e1 = e2 − e3, ∇e2e2 = −e1, ∇e2e3 = −e1, (4.24)

∇e3e1 = e2 − e3, ∇e3e2 = −e1, ∇e3e3 = −e1.

Let X = αe1 + βe2 + γe3 an arbitrary left-invariant vector field on (H3, g3). By using
(4.24), we get that ∇∗∇X = 0 and since g3 is flat we deduce tat S(X) = 0. Then, we
yield

Theorem 4.3.3. On the Lorentzian Lie group (H3, g3), every left-invariant vector field
is biharmonic maps.

4.4 Gödel universe

An interesting space-time in general relativity is the classical Gödel universe [14]. This
model is R4 endowed with the metric

〈·, ·〉L = dx2
1 + dx2

2 −
1

2
e2αx1dy2 − 2eαx1dydt− dt2,

where α is a positive constant. We denote by ∂ȳ =
√

2(e−αx1∂y − ∂t). The Levi-
Civita connection in the pseudo-orthonormal frame field {e1, e2, e3, e4} where e1 = ∂x1 ,
e2 = ∂x2 , e3 = ∂ȳ and e4 = ∂t, is given by [14]

∇e1e4 = − α√
2
e3, ∇e2e4 = 0, ∇e3e4 =

α√
2
e1,

∇e4e4 = 0, ∇e1e1 = 0, ∇e2e1 = 0,

∇e3e1 =
α√
2
e4 + αe3, ∇e2e2 = 0, ∇e3e2 = 0, (4.25)
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∇e1e3 = − α√
2
e4, ∇e3e3 = −αe1.

Taking the vector field X = f(x2)e4, where f(x2) is a smooth real function depending
of the variable x2. From [25] we have

R(e1, e4)e3 = R(e3, e4)e1 = 0, (4.26)

∇∗∇X = (f ′′ + α2f)e4, (4.27)

(∇∗∇)2X = (f ′′′′ + 2α2f ′′ + α4f)e4,

and
S(X) = 0,

where f ′ = df
dz

, f ′′ = d2f
dz2

etc. By virtue of relations (4.25), (4.26) and (4.27), we get

3∑
i=1

εiR(X,∇ei∇∗∇X)ei = 0, and
3∑
i=1

εiR(∇eiX,∇∗∇X)ei = 0.

Then, from Theorem ??, it follows that X is biharmonic map if and only if the function
f satisfies the subsequent differential equation.

f ′′′′ + 2α2f ′′ + α4f = 0. (4.28)

Note that (4.28) is homogeneous fourth order differential equation with general solution
see [25]

f(x2) = c1 cos(αx2) + c2 sin(αx2) + c3x2 cos(αx2) + c4x2 sin(αx2), (4.29)

where c1, c2, c3 and c4 are real constants. Particulary, in [23] Markellos and Urakawa
proved that X = f(x2)e4 is biharmonic vector field, where f(x2) is given by (4.29).

Proposition 4.4.1. The vector fields X = x2(c3 cos(αx2) + c4 sin(αx2))e4 are proper
biharmonic maps of (R4, 〈·, ·〉L).
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[15] González-Dávila, J.C., Vanhecke, L.: Invariant harmonic unit vector fields on Lie
groups. Boll. U.M.I.(8) 5(B), 377–403 (2002)

[16] Higuchi, A., Kay, B.S., Wood, C.M.: The energy of unit vector fields on the
3-sphere. J. Geom. Phys. 37(1-2), 137–155 (2001)

[17] Ishihara, T.: Harmonic sections of tangent bundles. J. Math. Univ. Tokushima.
13, 23–27 (1979).

[18] Jiang, G.: 2-Harmonic maps and their first and second variational formulas. Trans-
lated into English by Hajime Urakawa. Note Mat. 28(suppl. n. 1), 209–232 (2008).
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