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Abstract

Our main goal in this research is to refine some well-known numerical radius in-
equalities of operators on a Hilbert space or to discover new bounds for the numerical
radius. In this thesis, after expressing concepts and prerequisites, we give some new
upper bounds for the numerical radius of operators as well as for the numerical radii
of 2 x 2 operator matrices. Also, we improve the triangle inequality of the operator
norm. We refine some earlier existing bounds of the numerical radius. Furthermore,
we derive some new Hilbert-Schmidt numerical radius inequalities for operators as well
as for 2 x 2 operator matrices. Some of these inequalities refine some existing ones.
Then we define a new norm and we study the basic properties of this norm. Finally,
we provide new upper and lower bounds for the p-numerical radius of operators as well
as for 2 x 2 operator matrices.

Key words: Numerical radius, Hilbert-Schmidt numerical radius, p-numerical ra-

dius, inequality.
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The set of natural numbers.

The set of real numbers.

The set of complex numbers.

A field.

A vector space.

Hilbert space.

The set of all bounded linear operators on H.
The Schatten p-class in B(H).

The Hilbert-Schmidt class in B(H).
The class of compact operators in B(H).
n X n matrices in C.

The inner product of x and y.
Norm.

Identity operator.

Unitary operator.

Block of operators in B(H).

The adjoin of T

The absolute value of T'.

The real part of T'.

The imaginary part of 7.

The numerical range of T'.

The numerical radius of T

The generalized numerical radius of 7.



r(T) The spectral radius of T
m(T)  The Crawford number of T

ANT) The eigenvalue of T.

o(T) The spectrum of 7.

C(p) Companion matrix of polynomial p.
tr(T)  Trace of T.

® Direct sum.

Ker(T) The kernel of T.



Introduction

The study of operator and matrix theories have become an interesting topics and
more popular. Mathematicians are attracted to these branches because of there rela-
tions with other scientific domains. There are many notions in operator and matrix
theories, among them the eigenvalues, which have several uses in different fields such
as Physics, Engineering, Economics, ...etc.

The problem of calculating the eigenvalues is delicate. However, in many scientific
fields, it is sufficient to know the localization of the eigenvalues. Researchers introduced

the notion of the numerical range which is related to the eigenvalues. It is defines as
W(T) = (T, ), 5 € A, |Jo] = 1},

where T is a bounded linear operator on a complex Hilbert space, for more details see
[26, 28, 35].

It is well-known that the spectrum of an operator is contained in the closure of
its numerical range. The most important object related to the numerical range is the
numerical radius. Several inequalities involving the numerical radius of one operator
and the numerical radii of operator matrices have been established by many researchers
like Kittaneh, Abu-Omar, Hirzallah, Yamzaki, and others, see [2, 30, 36, 46].

Related subjects to the numerical radius have also been introduced, in particular,
the Hilbert-Schmidt numerical radius [5, 11, 44| and the p-numerical radius [10, 14].
Many papers have appeared in this domains, which highlighted and developed these
topics.

For instance, inequalities among numerical radius and operator norm produce a

lot of upper and lower bounds for numerical radius of a bounded linear operator on



complex Hilbert space and operator matrices. In this thesis, we give a recent results
for numerical radius, Hilbert-Schmidt and p-numerical radius.

This thesis is divided into four chapters.

In the first chapter, we present basic mathematical materials, that will be used later.
In particular, the inner product, the norm and some other concepts will be discussed.

In the second chapter, we provide new inequalities for the classical numerical ra-
dius. Especially, we give some inequalities for the numerical radius of the sum of two
operators. Also, we provide new upper bounds for the numerical radii of 2 x 2 operator
matrices. As an application, an estimation for the zeros polynomial are given too.

In the third chapter, we investigate the Hilbert-Schmidt numerical radius. We derive
some new upper and lower bounds for the Hilbert-Schmidt numerical radius for a single
operator as well as for 2 x 2 operator matrices. Also, we define a new norm, which
helps us to deduce new results concerning the Hilbert-Schmidt numerical radius.

In the fourth chapter, we study the p-numerical radius for one operator and for
product of two operators as well as for 2 x 2 operator matrices. We give new p-numerical
radius inequalities. For the particular cases p = co and p = 2, we refine and rebtain

earlier existing results.
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Chapter 1
Preliminaries

This chapter contains the basic concepts and notions which are necessary in this thesis.
In this chapter, we provide some well-known results. The material in this chapter can
be found in almost every book on operator theory and matrix analysis. For details the
reader can consult [15, 22, 33, 40].

1.1 Hilbert space

Definition 1.1.1. Let E be a vector space over a field K (C orR). A map ||-|| : £ — Ry

18 called a norm on E if

1. ||z|| > 0 for allx € E and ||x|| = 0 if and only if x =0,

2. |lax|| = |a|||z|| for all x € E and a € K,

3. Nz +yll < |zl + llyl| for all z,y € E ( triangle inequality).
We call (E,|| - ||) a normed space.

Definition 1.1.2. Let E be a vector space over a field K(C or R). A function (-,-) :
E x E — C is called an inner product if

1. (x,x) >0 for all z € E and (x,z) = 0 if and only if x = 0.
2. (z,y) = (y,x) forz,y € E.

3. (ax + By, z) = alz,z) + B{y, 2) for all z,y,z € E and o, f € K.



1.2 Cauchy-Schwartz inequality 9

Theorem 1.1.1. Let (E,(-,-)) be an inner product space and ||z|| = /{(z,z). Then

| || is @ norm on E.

Definition 1.1.3. A Hilbert space ‘H is a vector space with an inner product that is

complete with respect to the induced norm.

1.2 Cauchy-Schwartz inequality

Let x,y € H. Then
(2, )] < ll=llllyll,

with equality if and only if z and y are linearly dependent.

1.3 Parallelogram identity

Let x,y € H. Then
lz +yl* + llz = ylI* = 2 (=l + lyl*) -

Let B(H) be the set of all bounded linear operators on a complex Hilbert space.

1.4 Generalized polarization identity

Let T € B(H) and x,y € H. Then

(T2,y) = 3 ((T(t), (o) ~(T (=), (=) +ilT (i), (wig) ~i(T (i), (z—iy) ).

Definition 1.4.1. Let T € B(H). Then
o T is self-adjoint if and only if T = T*.

o T is normal if and only if T*T =TT*.

T is unitary if and only if TT* =T*T = 1.

T is definite positive if T is self adjoint and (T'z,x) > 0 for all z € H.

T is partial isometry if | Tz|| = ||x|| for all x € (Ker(T))*.



1.5 Operator norm 10

1.5 Operator norm

Let '€ B(H). Then

|T|| = sup |[Tz|| = sup [{(Tz,y)l

[[=[|=1 lzll=llyll=1

1.6 Polar decomposition

Theorem 1.6.1. Let T € B(H). Then there ezists a partial isometry operator U €
B(H) such that
T=U|T|.

where |T| = (T*T)z.

1.7 Cartesian decomposition

Theorem 1.7.1. Let T' € B(#H). Then there exist self-adjoint operators A and B such
that
T=A+1iB,

where A =Re(T) = 2(T' +T*) and B =Im(T) = (T —T*).
Theorem 1.7.2. [15] Let T € B(H). Then

o [T[I=1T[ =171

o |TT|| =TT = || T|*.

o [Tl = 172

1.8 Spectral radius

Definition 1.8.1. Let T € M, (C), where M, (C) is the set of all n X n complex
matrices. The complex number \ is called an eigenvalue of T if there exists nonzero
vector x € ‘H such that

Tx = A\x.

The vector x is called an eigenvector of T corresponding to .
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If A1, Ao, -+, A, are the eigenvalues of T', then ¢r(T) = Y7 | ;.
The set of all A € C that are eigenvalues of T is called the spectrum of 7" and it is
denoted by o(T).

Remark 1.8.1. It well known that r(T) < ||T||. Moreover, if T is a normal operator,
then r(T) = ||T|-

Definition 1.8.2. Let T € B,,(H). The spectral radius of T is defined by
r(T) = sup{|A|, A the eigenvalue of T'}.
Theorem 1.8.2. Let T € B(H). Then

r(T) = lim ||T7".

n—ao0

Properties 1.8.1. Let T, S € B(H) and o € C. Then
1. r(aT) = |a|r(T).
2. r(T") = r"(T).
3. r(T*) = r(T).

4. (T'S) =r(ST).

1.9 Numerical range

Definition 1.9.1. Let T € B(H). The numerical range of T is the subset of the complex

numbers given by
W(T)={(Tz,z):x € H, || =1}

Properties 1.9.1. Let T, S € B(H) and o, 5 € C. Then
o W(al+pT)=a+ pW(T).
o W(T'+S) CW(T)+W(S).

o W(T*) = {\, e W(T)}.
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o W(UTU)=W(T) for any unitary operator U € B(H).

Proof. See |26]. O

Example 1.1. Let T' € My(C), such that T =

=[] [ )

] and let ' = (x1,23) be a unit

vector in C2. Then

Then )
W(T) C { 2] < 5}.

Let z=re?, 0 <r < % , if we choose x = (cos1/1,ei9 sinl/)), where sin 2y = 2r < 1 and
0<¢ < 7. Then

(Tx,z) = e costpsinyy = re®.

Thus

W(T) = {z,yz| < %}

Theorem 1.9.1. Let T € B(H). Then
o(T) € W(T).

Proof. See [33]. O

1.10 Numerical radius

Definition 1.10.1. Let T' € B(H). The numerical radius of T is defined

w(T) = sup [(Tz,x)| or w(T)= sup [N
[[=]|=1 AEW(T)
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Notice that, for any vector x € H, we have
(T, 2)] < w(T)|l2|*.

The following theorem is a characterization of the numerical radius.

Theorem 1.10.1. Let T € B(H). Then

w(T) = sup [Re(e“T)|.

0eR

Also, the numerical radius defined as w(T) = sup ||[Zm(e“T)].
0cR

Proof. See [46]. O
Properties 1.10.1. Let T € B(H). Then
o w(T)=w(T*).

o w(UTU*) = w(T) for any unitary operator U € B(H) (w(-) is weakly unitarily

invariant norm,).
o w(T") <w™(T) forneN.
Proof. See |28]. O

Remark 1.10.2. [t is obviously that w(-) is a norm on B(H), but it is not a sub
1 0 0
and S = .

0 1 0

1 0

w(TS)=w =

0 O

On the other hand, we have

oo o]0 1 1 0 e
el e = —Su .
0 0 2 ek ||| 0

w(S) =w(T*) = 5. Hence, we have 1 = w(T'S) > w(T)w(S) = 1.

The numerical radius is not sub multiplicative, but for T, S € B(H), we have

multiplicative norm, to see this, let T' =

1

w (T) = sup
(SN
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o w(TS) < 4w(T)w(S).
o In particular, if T and S are commute, then w(TS) < 2w(T)w(S).
e IfT and S are normal, then w(T'S) < w(T)w(S).

See [32].

The following theorem shows the equivalence between the operator norm and the

numerical radius.

Theorem 1.10.3. Let T € B(H). Then
1
SITI < w(T) < |7 (1.1)
Proof. Let x € H be any unit vector. By applying Cauchy-Schwartz inequality, we get
[(Tz, )| < [T
By taking the supremum in the above inequality over € H with ||z|| = 1, we get
w(T) < |IT1.
Using the generalized polarization identity, we have

AT, )| < (T + ), (@ + y) + (T = y), (@ = )| + KT + iy), (@ + iy))]
+ [(T'(x — iy), (x — iy))]
<w(@)(llz+yl? + llz =yl + o + iyl + o = iy]?)

= 2w(T) (|2l + 1911?).

By taking the supremum in the above inequality over ||z|| = ||y|| = 1 on both sides, we

obtain the first inequality. ]

Theorem 1.10.4. Let T € B(H). Then

r(T) < w(T) <|T1.
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Remark 1.10.5. If T is normal, then

r(T) = w(T) = ||T.

1.11 The generalized numerical radius

In [5], Abu-Omar and Kittaneh define a new norm, which generalizes the classical

numerical radius.

Definition 1.11.1. Let T € B(H). Then

wy(T) = sup N(Re(e®T)) or wy(T) = sup N(Im(eT)),

0eR 0eR
where N(+) is a norm on B(H).
Theorem 1.11.1. wy(-) is is a norm on B(H).

Theorem 1.11.2. Let T € B(H). Then

—N(T) < wy(T).
Moreover, if N(-) is self-adjoint, then

Proof. Since wy(T) = supyer N(Re(eT)) > N(Re(eT)) for all § € R.
By taking @ = 0 and 6 = 7/2, we have

2wN (T)

v

N(Re(T)) + N(Zm(T))
N(Re(T) +iIm(T))
N(T).

v
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On the other hand, if N(-) is self-adjoint, then

wy(T) = sup N(Re(e"T))

1.12 Inequalities

1.12.1 Holder inequality

1 1
Let p, q €]1,+00) such that —+— = 1. Then for all x = (21, ..., 2,), y = (Y1, .., Yn) € H
P q

n n 1 n 1
S| = (L) (Llul)
=1 =1 i=1

1.12.2 Arithmetic-geometric mean inequality

Let a,b > 0. Then
a’ + b?
b < .
W=7

Lemma 1.12.1. Let a,b >0 and 0 <t < 1. Then

a) (ta® + (1 —1)b*)Ys < (ta" + (1 = t)b")Y"  for 0<s <.

b) (@ + b)Y < (a* + b)Y for 0<s<r.



Chapter 2
The numerical radius

In this chapter, we give some new upper bounds for the classical numerical radius of
operators. In addition, we refine some well-known existing results. Also, we improve
the triangle inequality of the operator norm. We give new inequalities for the classical
numerical radii of 2 x 2 operator matrices. As an application, we apply one of our
results to the companion matrix.

In the following theorem, Kittaneh [39] improved the inequalities (1.1) as follows.

Theorem 2.0.2. Let T € B(H). Then
1 2 * |2 2 1 2 *|2
AT+ TPl < wi(T) < SIT + 1T (2.1)

Proof. Let T = A + iB, be the Cartesian decomposition of 7" such that A and B are
the real and the imaginary part of T, respectively. Let x € H be any unit vector. By

using the convexity of the function f(t) = ¢* on [0, 00), we get

(T, x)|* = (Ax,z)* + (Bx, x)*

> 5 ((Az, z)| + |(Bz, z)])*

1
2
1
2

> —|((A+ B)z,z)|* .

Now, taking the supremum on both sides in the above inequality over x € H with
2]l = 1, we get
1
w(T) > A B
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Hence

2(T) > S(A+ B + 54~ BY|

> [|A% + B?.
Therefore, we get the first inequality. We have

(Tx,x))* = (Av,2)* + (B, z)*
< || Az|* + || Bx||*
= (A%z,z) + (B%z,z)
= ((A* + B*)z, z).

By taking the supremum on both sides in the above inequality over x € H with ||z| = 1,

we get the second inequality. O]

2.1 Numerical radius inequalities for the sum of two

operators

In order to improve Theorem 2.0.2, we need the following proposition which can be
found in [41].

Proposition 2.1.1. Let T\, S € B(H) be self-adjoint. Then
w(T +4S) < ||T? + 52

It should be mentioned here that Proposition 2.1.1 can be obtained also from the

inequality (2.1) by considering the Cartesian decomposition. The following lemma can

be found in |28, p. 75-76|
Lemma 2.1.2. Let T' € B(H) and x,y € H. Then

[(Tz,y)| < (|T]z,2)>{|T"]y,y)>.

Recently, Moradi and Sababheh [41] have obtained the following theorem, which

improve the second inequality in (2.1).
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Theorem 2.1.3. Let T, S € B(H). Then
1
w(T +5) < —=w(|T|+ |S| +(|T*| + [57])).
( )_\/5(|||!(\|||))
Proof. Let x € H, using Lemma 2.1.2, we get
(T + )z, x)| < Tz, z)| + [(Sz, 2)]
< (T, 2) (1T |, )= + (IS, 2) 2|5, 2) =
1 « %
< 5 Wz, 2) + (T2, 2) + (|5"|2, 2) + {|S]z, )]
(by Arithmetic-geometric mean inequality)
1 « x
< 5 KT+ 8Dz, 2) + {(T7] + 5™ )z, 2)]
1
< — (T + S| +i(|T*| + |S*]))x, x
_\/§|<(|\ S|+ (|77 + [S7])), )
(by the scalar inequality |a + b| < v/2|a + ib| where a,b € R).
By taking the supremum on both sides in the above inequality over = € H with ||z| = 1,
we get the desired result. ]
Taking S = 0 in Theorem 2.1.3, we get the following corollary.
Corollary 2.1.4. Let T € B(H). Then
(1) < (T +ilT) (22
w —w i : .
V2
Remark 2.1.5. By using Proposition 2.1.1, we obtain
(T) < —w(IT|+ilT) < S ITP + 77
w —w i — .
Which refine the second inequality (2.1).
Lemma 2.1.6. Let T\, S € B(H) be normal operators. Then
w(T + S) < V2w(|T| +1|9)). (2.3)

For more details see [41].
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Theorem 2.1.7. Let T, S € B(H). Then

1
wi (T +8) < 5 [w (T +i157]) + w?(|S] + 4 T7)] + Jw*(IT| + 157+ i(IS] + |T7])-

N |

Proof. Let x € ‘H be any unit vector, we have

(T + S)z,2)* < Tz, z)|* + [(Sz, 2)|* + 2[(Tx, 2)||(Sz, 7))

< ([T, 2)(| Tz, ) + ([S|z, 2)(|S" |2, 2) + 2[{Tx, 2)[[{Sw, )|
(by Lemma 2.1.2)

< & [Tl @) + (T, 2)? + (S, @) + (7], )?)

+ 2|(Tx,x)(Sx, x)|

<5 [ITlz,2)* + (1772, 2)* + (| S|z, 2)* + {|S"|2, z)°]

DN | —
—_

+ 5 ([(Tz,z)| + (S, 2)])°

(by the arithmetic-geometric mean inequality)
1 - -
<5 (AT + 15" D, )P + (S| + 4| T, 2) ]
1 1 1 10 o 112
+ 5 {(Tle, @) (T o, @)} + (ISl 2) (8", 2D
(by Lemma 2.1.2)
1 - -
<5 (AT + 1SN, )P + (S| + 4| T, 2) ]
1 * *
(by the arithmetic-geometric mean inequality)
<

[KATT+il.S" D, 2)* + (S| + T )2, )]

_|_

A= N

AT+ 157 + (S| + 177)), )|

(by the scalar inequality |a + b| < v/2|a + ib|, where a,b € R).

By taking the supremum on both sides in the above inequality over z € H with ||z| = 1,

we obtain the desired assertion. O
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Corollary 2.1.8. Let T € B(H). Then

1 1
w*(T) < le2(’T| +4|T*]) + ng(]T] +|77)). (2.4)
Proof. By taking S =T in Theorem 2.1.7, we obtain the desired result. O

Remark 2.1.9. Using the inequality (2.3), we have

(VAN
DNO| — | =

1 e 1 . e 1 -
O ITIHAT ) + S (IT] + [T7)) < Zw*(IT]+4T7]) + w(IT] +4|T7)

w?(|T| + 4| T*)).

This means that the inequality (2.4) is better than the inequality (2.2).
The following lemma can be found in [41, 47].

Lemma 2.1.10. Let T, S € B(H) be normal operators. Then
IT + 8|l < V2w(T| + il S)).

Using an argument similar to that used in the proof of Theorem 2.1.7, we have the

following result.

Theorem 2.1.11. Let T, S € B(H). Then

1
wH (T + S) < = [w*(|T) +14]S™]) + w*(|T*| + i|S])] + Zw2(|T| +1S8* +4(|S| + |T*))).

N

Corollary 2.1.12. Let T', S € B(H) be two normal operators. Then
1
w (T + 5) < w(|T] +l5]) + 5w’ (IT] +|S]). (2.5)

Proof. Since T, S are normal operators, then |T'| = |T*|,|S| = |S*|. Now, the result

follows immediately from Theorem 2.1.11. ]
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Remark 2.1.13. We have
w?(T + S) < w?(|T| +1ilS]) + %wQ(\T| +15])
= (17| +481) + 5]I1T] + 18]I
< 2w*(|T| +i|S|) ( by Lemma 2.1.10).
Thus, the inequality (2.5) is a refinement of the inequality (2.3).

Theorem 2.1.14. Let T, S € B(H). Then

w (T + 8) < = [w(IT| +i[S*]) + w(|S| + i|T*])] +w(TS) + H|T*\2+|S] .

N |

Proof. Let x € ‘H be any unit vector. Using the identity
supgep [€a + eb| = |a| + |b], where a,b € C, it follows that

(T + )z, 2)* < (T, z)|* + [(Sz, 2)[* + 2|(Tw, 2)||(Sz, 7))
(T2, 2)* +{|T" |2, 2)* + (| S|z, 2)* + (|57 |2, 2)°]

+ 5 (T2, 2)| + [(Sz, 2)])?

<L
2
!
2
1 . |
L) + 115" D )f? + (] + 1T ) ]
+ 1s.up‘e Tx,x) +e " <S*x,x>|2.

2 ocr

By taking the supremum on both sides in the above inequality over = € H with ||z| = 1,

we get
WAT 4 8) < o [wA(IT] +i1S°]) + w(|S] +i|T])]
1
+ 5 sup [[[2Re (" TS)|| + [[IT°] + |SP|]
OeR
1 - .
< 5[ (1T + i|S*]) + w?(IS| + 4| T*))] + w(T'S) + HlT 1?4+ [SP].-
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Corollary 2.1.15. Let T € B(H). Then

1 o 1 1 .
w*(T) < ZwQ(\T\ +i|T*|) + Zw(TQ) +3 1T + |T|?| - (2.6)
Proof. By taking S =T in Theorem 2.1.14, the result follows directly. O]

Remark 2.1.16. Using the power inequality w(T?) < w?(T), it follows that

wX(T) < qw(|T| +4|T°]) + 2 [[IT° + TP

171>+ |T*1?||  (by Proposition 2.1.1).

Hence, the inequality (2.6) is a refinement of the inequality (2.1). The following lemma
can be found in [36], which is called Holder-McCarthy inequality.

Lemma 2.1.17. Let T € B(H) be a positive operator and let x € H be any unit vector.
Then

a) (Tx,x)" < (T"x,x) for r>1.
b) (T"x,x) < (Tx,z)" for 0<r <1

The following inequality was introduced by T. Kato [35], it is called the mixed

Schwarz inequality. Generalization of this inequality have been given in [36].

Lemma 2.1.18. Let T € B(H) and 0 < a < 1. Then
|<T317,y)|2 < <|T|2ax, m>(|T*|2(1_a)y,y> for all x,y € H.

The following lemma is a direct consequence of Jensen’s inequality for convex (con-

cave) functions.

Lemma 2.1.19. Let a,b> 0,0 < a < 1. Then

1
p

a®b' " < aa+ (1 —a)b < laa” + (1 — a)b'] forr>1.
Theorem 2.1.20. [24] Let T € B(H), 0 < a <1, andr > 1. Then

wT(T) < % H|T|2ar 4+ |T*’2(1—a)r” ' (27>
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Proof. For any unit vector x € H, we have

(T, z)| < (T, z)Y3(| T2 =Yg, 2)1/? (by Lemma 2.1.18)

<27t (TP, 2)" + (T2, 2)) " (by Lemma 2.1.19)
<9 {|T)* "z, =) + (|T*|2(1_a)rm,x))l/r : (by Lemma 2.1.17(a))
Thus,
r 1 ar * —a)r
(Tz,2)" < 5 (T, 2) + (T2, 7))

By taking the supremum on both sides in the above inequality over z € H, we get the

result directly. O]

Theorem 2.1.21. Let T, S € B(H) and r > 1. Then

w? (T + 8) <272 {w?(|T|" +i|S*[") + w?(|S]" + i|S*]") }
+ 22’”‘4w2(\T]’” +|S*"+i(|S]"+ |TH7)).

Proof. Let x € ‘H be any unit vector and let » > 1. Then

({Tz, 2)| + [(Sz, 2)])" < 27 (T2, 2)|" + [{Sz, z)]")
(by the convexity of the functionf(t) = t" on [0, 00))
< 2Tz, )3 (T @, )% + (|Slz, 2) 3 (|S|x, 2)2)
(by Lemma 2.1.2 )
<2 (T |z, )" + (| T |2, 2)" + (|Slz, 2)" + (|52, 2)")
(by the arithmetic-geometric mean inequality)
<2 (11w, @) + (|77 2, @) + (|52, 2) + (15772, 7))
(by Lemma 2.1.17 (a))
<PTEN(TY + [S7 +i(S) + [Tz, )
(by the scalar inequality |a 4+ b| < v/2|a + ib|, where a,b € R).

Hence, we obtain the inequality

(T, 2) + [(Sz,a))" < 2772 [TV + 1S +i(|S]" + 1T°"))a, 2)]]. (2.8)
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Therefore,

(T + )z, ) < (T, )| + (S, 2)])"
< 2272 (|(T, 2)[" + (S, )|")*
(by the convexity of the functionf(t) =t" on [0, 00))

=277 ((Tz,z) | + [(Sz,z)[*" + 2|(Tx, z)|"|(Sz, z)|")
<20 (|2, 2)? + (| T 2, 2)* + (|S| 2, 2)* + (||, 2)?]
(|< )|+ [(Sz, ) |)*
< 273 [T + 4|8z, 2) [ + (I SI" + 4T, 2) ]
+ 2T+ 1S (IS + (T, 2) 2
(by the inequality (2.8)).

By taking the supremum on both sides in the above inequality over x € H with ||z| = 1,

we get the desired statement. O

Corollary 2.1.22. Let T € B(H) and r > 1. Then

w(T) < Jw(IT]" +4|T7[") + %wZ(IT\’" +T7). (2.9)

»-lkl>—‘

Proof. By taking S =T in Theorem 2.1.21, the inequality follows immediately. O
Remark 2.1.23. By using the inequality (2.3), we have

T e ataks 1 2 r e acits
W ([T +lT7]") + qw*(IT] +4[77]")

r S| k| T 1 r *|T
T UTT + ) + (T + [777)

IN

w (71" +4|T7[")

VAN
[\JI}—t[\'JIHA;lr—t

|1T1?" +|T**"|| (by Proposition 2.1.1).

Hence, the inequality (2.9) is an improvement of the inequality (2.7) for r > 2 and

1
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Theorem 2.1.24. Let T € B(H), 0 < a <1 andr > 2. Then

w'(T) < zw? (|7 + 4| T*|0=)r). (2.10)

N | —

Proof. Let x € H be any unit vector. By Lemma 2.1.17, we have

(T, z)| < (T2, z)2 (| TPV, z)2

—~

< 5 (TP, ) + (1T V2, 2))

N | —

(by the arithmetic-geometric mean inequality).

Applying Lemma 2.1.19, it follows that for » > 2, we have

(T, 2} 4 ([T, x>f/2>2

e < 2

T|er T* (1—a)r 2
< (<| "z, ) +<2| | x,l‘>) (by Lemma 2.1.17 (a))
1
< 5 (T2, 2)* + (T2, 2)?)

(by the convexity of the function f(t) = ¢* on R)
‘2

[T+ T ")z, )

N | —

By taking the supremum on both sides in the above inequality in the above inequality

over x € ‘H with ||z]] = 1, we get the desired result. O

Remark 2.1.25. Using Proposition (2.1.1), it follows that the inequality (2.10) is
sharper than the inequality (2.7).

The following theorem is a generalization of Theorem 2.1.20, which can be found in
[24].

Theorem 2.1.26. Let T € B(H), 0 <a <1, andr > 1. Then
w(T) < ||| + (1 — a)|T**]|. (2.11)
Theorem 2.1.27. Let T € B(H), 0 <a <1 and r > 2. Then

w?(T) < w? (Va|T|" +ivV1— o|T*"). (2.12)
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Proof. Let x € ‘H be any unit vector. By Lemma 2.1.18, we have

(T, z)* < (TP, ) (| T ", )
< (T2, 2)*(|T**x, )~ (by Lemma 2.1.17 (b))
(a(|T P, )2 + (1 — a) (| T[22, 2)"/2)*" (by Lemma 2.1.19).

IN

Therefore,

(T, )" < (TP, )7 4 (1= a)(|T* P, 2)"%)°
< ((|T)"z,z) + (1 — a){|T*"z,x))*> (by Lemma 2.1.17 (a))
< oI, 2)* + (1 = a)(|T"["z, z)"
(by the convexity of the function f(t) = #* on R)

= {(alT] +ivVI=alT* )z, ).

By taking the supremum on both sides in the above inequality over z € H with ||z| = 1,

we obtain the required inequality. O]

Remark 2.1.28. Using Proposition 2.1.1, it follows that the inequality (2.12) is an
improvement of the inequality (2.11).

In [39], Kittaneh improved the inequality (2.13) as follows.

Theorem 2.1.29. Let T € B(H). Then

1 1
w (1) < ZIITP+ TPl + 5w(T?). (2.13)
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Proof. We have
w?(T) = sup || Re(eT)]|?

R
1 . .

= —sup[|(e”T +e™T")?|
4 ger
1 .

= —sup |T*T + TT* + 2Re(*T?)||
4 0eR
1 1 :

< ST + 7T + 5 sup || Re(e**T?)|
4 2 ger
1 * * 1 2

= ZHT T+TT*| + §w(T ),

as required. N

Theorem 2.1.30. Let T, S € B(H). Then
1
w(T + ) < w*(T) +w?(S) + §H\T\2 + |S*P?|| + w(ST). (2.14)

Proof. See [|42]. O

Theorem 2.1.31. Let T, S € B(H). Then

w*(T + S) < min {% || + [SP|| + w(TS), % 1T+ 1S*P|| + w(ST)}

+ w?(T) + w*(S). (2.15)
Proof. Let x € H be any unit vector. Then

(T + Sz, 2)* < Tz, z)|* + [(Sz, 2)* + 2[(Tx, 2} ||(Sz, 2)]
< (T, 2)]* + [(Sz, z)|* + %(KTWJH + (S, )])?

(by the arithmetic-geometric mean inequality)

1 . .
= |(Tz,x)|* + |(Sz, )| + 5 Sup e (Tx,z) + e (5", x>‘2 :
0eR

By taking the supremum on both sides in the above inequality over z € H with ||z| = 1,

we get
2

1 ) )
w?(T + S) < w*(T) +w?*(B) + 5 Sup T + e~ 5
9eR
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Using the fact that | TT*|| = [|T*T|| = ||T||?, the desired result is obtained. O
Remark 2.1.32. The inequality (2.15) is a refinement of the inequality (2.14).
Remark 2.1.33. By taking S =T in Theorem 2.1.31, we reobtain (2.13).

The next lemma can be found in [21], which is called the Buzano extension of

Schwarz’s inequality.

Lemma 2.1.34. Let x,y,e € H with |le|| = 1. Then

[{z, e)(e; )| < Slzllllyll + [{z, »))-

|

Theorem 2.1.35. Let T, S € B(H). Then

1T+ 817 < 5 {w*(IT +4|S]) + w(IT*| +4lS"D} +w(S"T) + TSI (2.16)

| =

Proof. Let x,y € ‘H be any unit vectors. Then

(T + Sy, 1) P < (T )+ {82, 4) P + 2T, )I|{S,9)
< (T, 2)IT" ) + (Tl 2)(S" s ) + 2T, )15, )
(by Lemma 2.1.2)
< 3 [Tk, ) + {1 )2 + (1S, 22 + (57,0
+ 2T, gy, 52)]

(by the arithmetic-geometric mean inequality)

= 2 [T 2)? + (1Sl 2+ (T + (157
+ 2/(Ta, )y, Sa)
< 5 (KT + 4181y ) + (T 417 ). )1

+ (T, Sz)| + | Tz|||Sz|| (by Lemma 2.1.34).

By taking the supremum on both sides in the above inequality over x,y € H with
2]l = [lyll =1, we get

17+ S|I* < 5 {w*(IT] +4|S]) + w* (1T +ilS*D } + w(S™T) + [ T]I S]],

N —
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as required. N

Remark 2.1.36. Using Proposition 2.1.1, we get

1 , o e .
1T+ 817 < 5 {w* (T +ilS]) + w* (|7 +lS™)) } + w(S*T) + T[] S|
1 * *
<SP+ ISP+ 1P + 1S7P( )+ 20Tl
< ITI* + 11811 + 27115 ]

= (171l + IS1)*.

Hence, the inequality (2.16) is an improvement of the triangle inequality.

2.2 Numerical radius inequalities for 2 x 2 operator

matrices

In the rest of this work in this chapter, we need the following equalities of the numerical

radii for the diagonal and off-diagonal parts of 2 x 2 operator matrices.

Theorem 2.2.1. Let A, B € B(H). Then

A 0
w = max{w(A), w(B)}.
( 0 B > {w(A), w(B)}
Proof. We have
A 0 0 lA 0
w =sup||Re| e
0 B 0cR 0 B
Re(e? A) 0
= sup ,
feR 0 Re(e” B)

= sup max{[[Re(e”A)|, [Re(e" B)||}
0eR

= max{w(A), w(B)},

as required. O
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Theorem 2.2.2. Let A, B € B(H). Then

0 A 1 0 0
w = —sup ||[e“A+e "B . 2.17
( B 0 > 2 6@1}&) ” H ( )
Proof. We have
0 A 210 A
w =sup||Re | e
B 0 R B 0
1 0 e A+ e 0B
= —sup . .
2 ger || |e A" + "B 0

= 1sup HewA + e B
2 ger

Remark 2.2.3. For B = A in Theorem 2.2.2, we find

w( >:w<A>.

The direct sum of two copies of H denoted by H @& H. If A, B,C, D € B(H), then

0 A
A0

the operator matrix 7 =

B
D] can be considered as an operator in B(H @& ?H ), which

A$1 + BI‘Q

Cx1+ Dxy
The next lemma was given by Hou and Du [34].

is defined by Tz =

X1
] ceHIPH.

for every vector x = [
X2

Lemma 2.2.4. Let A,B,C,D € B(H). Then

Theorem 2.2.5. Let T be as described above. Then

A B
¢ D

LA 18]
Il 1ol

w(T) < max{w(A),w(D)}Jr%(HBH +C - (2.18)
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Proof. Using Theorem 2.2.1 and Theorem 2.2.2; we get

ot oo( )

1 ) .
= max{w(A),w(D)} + = sup |e’B +e"C

0 B
c 0

< max{w(4), w(D)} + 5 ~(I1BI + el

O
Theorem 2.2.6. Let T be as described above and 0 < aw < 1. Then
1
w(T) < 5 {w(A) +2w(D) + /a2w?(A) + || B2 + /(1 — a)2w?(A) + ||C||2} :
(2.19)
Proof. For any 6 € R, we have
2| Re(e®T)|| = 2w(Re(e”T))
20(Re(e A))  e®B 2(1 — a)(Re(eA)) e C*
<w a(Re( e w ( a)( e(eA)) e 2w (D)
e B~ 0 e’ 0
20| Re(e? A)| B 2(1 — a)||Re(e? A C
( a|[Re(e? )| |B] ) ., ([ (1= a)[Re(e’ )] |C] ) + 20(D)
1B 0 i 0

< w(A) + /a?(A) + [BIE + /I - 2w (A) + [C]F + 2w(D).

By taking the supremum in the above inequality over 6 € R, we get the desired result.
]

Theorem 2.2.7. Let T be as described above and 0 < o« < 1. Then

w(A) +w(D) + /a2 (w(A) —w(D))? + [ BI? + /(1 - @)*(w(A4) — w(D))* + HCHQ] :
(2.20)

DN | —

w(T) <
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Proof. We have

7 1 [ 2Re(e? A) e’B + e 0C*
w = —Su
2 96]15 _ewC' + e~ B 2Re(e? D)
1 -2aRe(ei9A) e’ B
< 5 sup .
2 ger i e B 2aRe(e? D)
1 2(1 — a)Re(e? A) e 0"
+ 5 sup : ,
2 per e?C 2(1 — a)Re(e? D)
- 1( 2aw(4) |8 H +‘ [2(1—a>w<A> e ”D
2 1Bl 20w(D) 1€ 2(1 = ajw(D)

(by Lemma 2.1.2)

= % |w(4) + w(D) + v/a2(w(A) = (D)) + B + V(T — a)2(w(4) — w(D) + [P

O

We give an example in which we can see that the inequality (2.20) gives a better

estimate than the inequality (2.19).

A
Example 2.1. Let T =

0

B
, where A = |1
b 0

_ o O

1 0 0 1 0 0
0 0 0|l andD= |0 0 0|. Then the upper bounds for w(T) using the inequal-

0 0 1 0 0 0
ities (2.20) and (2.19) are as follows:

1
For the inequality (2.20), w(T) < 5 (1.7 +va20.08 + 1+ /(1 — @)20.08 + 1).

1
For the inequality (2.19), w(T) < 5 <2.7 +va20.5 + 1+ /(1 —a)20.5 + 1).

Corollary 2.2.8. Let T be as described above. Then

) + (D) 2 t) w0+ 1BI A ) — w0 + HCH2]

(2.21)

w(T) <

N

Proof. The result is obtained by taking a = % in Theorem 2.2.7. [
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Remark 2.2.9. [t is easy to see that the inequality (2.21) is better than the inequality
(2.18).

Theorem 2.2.10. Let T be as described above. Then

0 B 0 BD
w? (T) < max{w?(A),w?(D)} + w? +w
(T) < {w*(4), w™(D)} oo oA o
1 * *
+5 max {[||A* + [BP[l, [|C*]* + [DI*[I} - (2.22)
Proof. See [13]. O

Theorem 2.2.11. Let T be as described above. Then
w? (T) < min{a, 8}, (2.23)

where

B 1
o)+ f e s iorl+ im o

2 2 2|0
a = max{w(A),w* (D)} +w ( c

1 , 0 AB
+ - A2+ |CP[ = |I[B]? + [D*|*]])” + 16 w?
4J( 2+ [CP = [l1B]2 + [D*[2]) (DC 0 )
and
2 2 2 (|0 B 1 2 12 12 2
f = max{w*(A),w*(D)} + w oo +Z_L [H|A| + |B*| H+H|C |+ | D] |H

BD

1 2
+ = (A2 + [B*2] = [[|C*2 + | D2[)* + 16 w?
2| AP+ Bl = [[[C*2 + [DJ2])) (CA 0

Proof. Let x € H & H be any unit vector. Than
- - 2 _ _
) A 0 0 B
(Tx,z)|” < z,7 )| + T,z )| +2
10 | ¢ 0

i ] 5 ] ]

A 0 0 B 1
T, T + x,T + =

0 D] 0] 2

)

IN
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|

+ —sup
2 per

2
A 0

0 D

0 B]
T, T
c 0

2
0o Cr

B* 0

)

By taking the supremum in the above inequality over x € H & H with ||z| = 1, we get

2

_0 B- 1 eiGA 671'90*
2 2 2 2
w” (T) < max{w*(A),w* (D)} +w + —sup , )
@) {7 (). w (D)} (_C’ 0_) 20er |||e7®B* €YD ]
0 5]
< max{w?(A), w*(D)} + w?
_C 0_
1 |A*|2 + |C|2 e2i0 AB + e—2i0 0 D*
+ —sup ) .
2 ger || |e 20 B* A* 4 29 DC |B|? + |D*|?
0 B
< max{w?(A),w*(D)} + w?
c 0
1 1A + |CP2]] 1e* AB + e~ C*D¥||
+ —sup . .
2 oer || || AB + e*°C D I1BI? + | D*?|

(by Lemma 2.2.4)

0 B 1o .
< max{w?(4), w?(D)} + v’ ([C ) + 7 1A F+ 1CPI+ 1B + [D7P1]

0 |

1 ) 0 AB
+ 44 (A= +[C]P = B + [ D*[2[)" + 16 w? (
D 0

(by Theorem (2.2.2))

= Q.
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Applying the same argument to 7%, and observing that w(7) = w(7T™), we get

0

w? (T) < max{w?(A),w?(D)} + w? ( c

B 1 * *
0 )+4 AP + [B*PIL + [llC™? + (D]

1 0 BD
+ =2 (AR + [B*2]| = ||C*[2 + | DJ2[|)* + 16 w?
4J( [ B*[2[| = [[[C*]* + |DI*]) w(CA 0)
— 8.
[
Remark 2.2.12. If we put
1 * *
7 AP+ B Pl + e + [DP]
1 0 BD
+ <o [ A2+ B2 = [[|C*[* + | D2|])* + 16w? =d,
4 CA 0
then
1 0 BD
d < —max{|||A]* + |B* ||, |||C*|* + |D*||} + w .
5 maxt [[[A]"+ [ B[ |7 + | DFI} oA o
This means that the inequality (2.23) is sharper than the inequality (2.22).
Theorem 2.2.13. Let T be as described above. Then
0 C*D
1717 < max{||A|I%, [IDI[*} + max{|| BI* |CI*} +w | | .
B*A 0
+ max{[|A], | D} max{{[| BI|, |C]]}. (2.24)
Proof. See [13]. O
Corollary 2.2.14. [153] Let A, B € B(H). Then
2
A B 2 2 *
5 all = [AIZ+ 181" + [[A[[l| B]l + w(B*A). (2.25)
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Theorem 2.2.15. Let T be as described above. Then

ITI" < 5 (maxc{[[|A]” + [CP[[, 1D + 1B} +max {[[|A°[* + 1B 1D + €[ })

1

2
1

+ \/5 (max {[|A[[?, [ DI[*} max {|| BI?, [C|*} + max {w (|C][A]2) , w (| B]*| D|*)}]

+ w ( ) . (2.26)

Proof. Let x,y € H & H be any vectors with ||z|| = ||y|| = 1. Then

0 c*D
B*A 0

2

2
(Top < A 0 L/ooB |40 0 B
z,y)|” < T,y T,y T,y T,y
0 D C 0 0 D c 0
1 /142 +|CP? 0 | 1 /142 + | B2 0
< = x,x )+ 3 vy
2 0 |D” + |B|?] 2 0 |D*|* 4 |C*[?
A 0 0 B A 0 0 B
+ x, )|+ x z|| (by Lemma 2.1.34)
0O D c 0 0 D cC 0
1 /1142 +|C]? 0 | 1/ [142 + |B*|? 0
= 3 €r,x + = Y,y
2 0 |D|* + |BJ?] 2 0 |D*[? + |C*J?
2 2
A 0 0 B A 0 0 B
+ x, X + x,T x, x
0O D c 0 0 D cC 0
1 /142 +|CP]? 0 | 1 /|42 + | B2 0
< = r,T )+ = Y,y
2 0 D]+ |BE 2\ o D2 4 O 2
-2 2
1 A 0 0 B IC]2|A? 0
+ = x z|| + x,T
\ 2 0 D] C 0 0 |B|?|D|?
0 C*D]
+ x,x )| (by Lemma 2.1.34).
B*A 0 |

By taking the supremum on both sides in the above inequality over x,y € H & H with
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[zl = llyll = 1, we obtain

171 < 5 (max{[I|AP* + [CPIL IDP + [BPI} + max{[[[A*[* + |B*[*]|, [|D** + [C**I|})

N | —

+ \/% (max{[| A2, [ DI*} max{[| BI[%, [|C[[*} + max{w([C[*|A]?), w(|B]*| D|*)}]

o )

as required. 0

0 C*D
B*A 0

Remark 2.2.16. We set

1 * * * *
5 (wax{[[|AP +[CP[LI[DP + [BPI} + max{[[|A"* + [BP[L, [|D°] + [C**[1})

+ \/% [max{[| A2, [ DI* } max{[| BI[2, |C[|*} + max{w(|C*|A]?), w(|B*|D*)}] = ¢

(max{[ A" + |CI1% [IDI* + 1 BII*} + max{[|AlI* + || BI*, | DII* + [C[I*})

|
N | —

1
+ ﬁ\/maX{HAH?, 10112} max{[| BIJ?, |12} + max{[[|C2[AP[, [| B2 DJ[|}

< max{||A|]*, || D|*} + max{|| B, || C||*} + max{|| A, | D[} max{|| B, | C|}-

This proves that the inequality (2.26) is a refinement of the inequality (2.24).

Corollary 2.2.17. Let A, B € B(H). Then

2

A B 1 1
<~ (|1A2 + |BP|| + |[|1A*|? + | B*)||) +w(B* A)+——=+/|| Al|I2|| B||? + w(| B|2| AJ]2).
B A 5 (AP + BE|| + [[[A7] + B P|[) +-uw( )\/5\/” 1211 B (IB*|AP]?)
(2.27)
Proof. The result follows by taking C' = B and D = A in Theorem 2.2.15. n

Remark 2.2.18. [t easy to check that the inequality (2.27) is an improvement of the
inequality (2.25).
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2.3 Estimation for the zeros of polynomials

Let p(2) = 2"+ an_12" ' + -+ + a1z + ag be a monic polynomial of degree n > 2 with

complex coefficients ag, aq,- - ,a,-1. Let C(p) be the Frobenius companion matrix of
p(z). ) )
—OQp-1  —Qp-2 - —a1  —do
1 0 0 0
Clp)=1| 0 1 0 0
0 0 0
0 0 10 |

It is well known that the eigenvalues of C(p) are exactly the zeros of the polynomial

p(z). Let A be any zero of the polynomial p(z). Then
Al <w(C(p)) as a(Clp) € W(C(p)).

Several mathematicians have provided lot of estimations of |A| using different techniques

over the years. We cite some of them

1. Cauchy [33] gave the following estimate

Al <1+ max{|a;|: i=0,...,n—1}.
2. Montel [33] provided the following estimate
n—1
|A| < max {1, Z |ai|}.
i=0
3. Carmichael and Mason [33| presented the following estimate

Al <
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4. Paul and Bag [43] provided the following estimate

1 7r T 2
|)\|§§ w(A) + cos (n—2)+ (w(A)—cos(n_2)> + 11+
with A= | "7t T2
1 0

5. Fujii and Kubo [25] gave the following estimate

|A] < cos ( T
n

T ) g | el +

6. Abu-Omar and Kittaneh [2] provided the following estimate

2
IA| < % %(BJF |an—1]) + cos (g) + V(W o8 (%)) +47) ,

with 8 = Z?:_Ol la;|? and v = Z?:_(f la;|2.

7. Al-Dolat, Jaradat and Al Husban [9] provided the following estimate

n—2

™
—) [ @lanal+ ) el + VI+ (1 - a)anal? ]
=0

IA] < |an—1| + 2 cos (n

N —

where « € [0, 1].

Theorem 2.3.1. Let A be any zero of p(z) and let « € [0,1]. Then

n—2
1 s s T

< Z B Z 2 = )2 12 1 — )2 = V2 11
A< 5 (ol cosC) o] —eosCOY + 3 fad W( @)2(|ay 1| — cos()? +

Proof. The result follows by taking A, B,C' and D in Theorem 2.2.7 as follows A =
[_an—l]a B = [_an—27 ) _a0]7 Ct = [17 07 T 70] and
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0 O 0
1 . 0
D=9 . ... 0] and using the fact that w(D) = COS(E), see [26]. O
n
0 -~ 1 0

Example 2.2. Let p(z) = 2° — 42° + 2. Then the upper bounds for the zeros of the
polynomial p(z) estimated by the mathematicians above are as presented in the following

table.:

Cauchy 5

Carmichael and Mason 4.582
Montel 6

Paul and Bag 3.497
Fujii and Kubo 3.256
Abu-Omar and Kittaneh 3.821
Al-Dolat, Jaradat and Al-Husban 3.735

If X is a zero of the polynomial p(z), then for o = 0.8 in Theorem 2.5.1, we obtain
|A| < 3.112, which is better than all of the above estimations.

Example 2.3. Let p(z) = z* — 22 + 3. Then the upper bounds for the zeros of the
polynomial p(z) estimated by the mathematicians above are as presented in the following

table.:

Cauchy 4
Carmichael and Mason 3.741
Montel 5
Paul and Bag 0.809
Fujiv and Kubo 7.49
Abu-Omar and Kittaneh 3.491
Al-Dolat, Jaradat and Al-Husban 3.436

If X is a zero of the polynomial p(z), then for o = 0.795 in Theorem 2.3.1, we obtain
IA| < 2.816, which is better than all of the above estimations except the estimation of
Paul and Bag.



Chapter 3
Hilbert-Schmidt numerical radius

In this chapter, we give new upper and lower bounds for the Hilbert-Schmidt numer-
ical radius. We refine some existing inequalities. Also, we introduce a new norm on
Bay(H) x By(H), where By(H) is the Hilbert-Schmidt class. We study basic properties
of this norm and prove inequalities involving it. As an application, we deduce a chain
of new bounds for the Hilbert-Schmidt numerical radii of 2 x 2 operator matrices. Con-
nection with the classical Hilbert-Schmidt numerical radius of a single operator are also

provided.

3.1 The Hilbert-Schmidt norm

One says that T belongs to Hilbert-Schmidt class By(H), if | T||s = (trT*T)z < oo,
where || - ||2 is called the Hilbert-Schmidt norm, which is unitarily invariant norm, that
is, [ UTV||3 = ||T||2 for any unitary operators U,V € B(H).

The next lemma can be found in [15, p. 96|, which is called the Cauchy-Schwarz

inequality.

Lemma 3.1.1. Let T, S € Bo(H). Then

|tr(TS)] < IT1[2[15]l2- (3.1)
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3.2 Hilbert-Schmidt numerical radius inequalities

As we have seen in the first chapter, if N(-) = || - ||2, then we get the Hilbert-Schmidt
numerical radius wy(-). For T € By(H), the Hilbert-Schmidt numerical radius is defined

as

wy(T) = sup || Re(eT)||2 or wy(T) = sup ||Zm(e“T)||s.
0eR 0eR

The following theorem is a characterization of the Hilbert-Schmidt numerical radius,
given by Abu-Omar and Kittaneh [5].

Theorem 3.2.1. Let T € By(H). Then
2(7) = |72 + 2672
wy(T) = STl + 5[trT™].
2 2
Proof. We have

wy(T) = sup IRe(e”T)]13

= sup tr(Re(eT))?
0eR

1 .
= —sup (||T]3 + Re(e**trT?))
2 ger

1
= S (ITIE +16rT%) .
0

The following theorem gives an equivalence between the Hilbert-Schmidt numerical
radius and the Hilbert-Schmidt norm.

Theorem 3.2.2. Let T € By(H). Then

1
EHTHQ < wy(T) < |2 (3-2)

Proof. See [5]. O

In the following theorem, we introduce a formula for the Hilbert-Schmidt numerical

radius by using the Cartesian decomposition.
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Theorem 3.2.3. Let T € By(H) have the Cartesian decomposition T = A+ iB. Then

1
aH(T) = 5 LA+ IBIE + /(1413 ~ 113" + ateraye].

Proof. We have wy(T') = sup || A cos @ — Bsin ||, by putting o = cos@ and f = —sin ¥,
0cR
we obtain

wd(T) = sup flad+ BBl
a“+pB4=

= sup [tr(aA”+ 5B*)(aA+ (B)]

a2+[82:1

= sup [a®[|A]3+ B%|| B + 2a8tr(AB)]
a?+p2=1

1
=3 [HAH% +1Bll; + \/(HAH§ —IBI3)” +4(tr(AB))?| .

O
Corollary 3.2.4. Let T € By(H). Then
wy(T) < \/I|R€(T)||§ + [ Zm(A)]l3.
Proof. Using the inequality (3.1) and Theorem 3.2.3, we get the desired result. O

Theorem 3.2.5. Let T € By(H) have the Cartesian decomposition T = A+ iB. Then

1 * * 1 2
T+ 1T, + A~ 1BIBY + A(rAB)? < wi(D),

Proof. We have

1
wi(T) > [HAQHQ 11820 + /(1413 - |1 BIRY +4<trAB>2}
1 2 2 2 2\2 2
> [HA + B+ \J(IAIZ — 1BI3)® + (trAB) } .
Then, we get the desired inequality. O

Theorem 3.2.6. Let T € By(H). Then

SITIR + 5 [Re(tr(T2))] < wd(T). (3.3)
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Proof. We have max {||Re(T)|3, |Zm(T)|j3} < w3(T). Then

wy(T) = % (IRe(T)5 + 1 Zm(T) |5 + [[Re(T)5 = IIZm(T)|3])

1 1
= SITIE + 5 [Re(tr(4%)]

0
Remark 3.2.7. The inequality (3.3) is better than the first inequality in (3.2).
Theorem 3.2.8. Let T € By(H). Then
1 1
LT+ 2IRT = [ZmT o] < wn (D). (3.4)
Proof. See [44]. O

3.3 Hilbert-Schmidt numerical radii inequalities for

2 X 2 operator matrices

In this section, we give new bounds of the Hilbert-Schmidt numerical radii for the
diagonal and the off-diagonal parts of 2 x 2 operator matrices.

In order to give the rest of our results, we need the following lemma.

Lemma 3.3.1. Let A, B € By(H). Then

¥

A0
0 B

) < \Jud(A) + wd(B). (3.5)
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Proof. We have
2

) = sup ||Re (ew )
PeR 5

Re(e?A) 0
0 Re(e” B)

A 0
0 B

A0
0 B

2

= sup
0cR
2

= sup ([[Re(e* A)[3 + [[Re(c" B)[2)

< wj(A) +wi(B).

Our next result yields an improvement of the inequality (3.5).

Theorem 3.3.2. Let A, B € By(H). Then

1

Proof. We have

2

A 0
0 B

wj(A) + wy(B) + \/(wi(A) —w3(B))? + 4sup [Re(e? A)|3|Re(e B)|Z] -

A 0
0 B

) = sup [IRe(e”A)I3 + [Re(e” B)|3]

—sup  sup (o Re(e®A)||s + Bl|Re(e?B)||)”
R a,BER
a2+52:1
=sup - sup (a®|Re(e? A) |3 + B*|Re(e” B)|3 + 2a8||Re(e” A)||2||Re(e” B)||2)
€ a,be
a?4+p%=1

< sup (awa(A) + Bwi(B) + 208 sup | Re(e” A) || Re(e” B) |I2>
a,BER HeR
a?+5%=1

[ w3 (A) supger | Re(eA) |2l Re(e” B)l2

< . ,
supgeg | Re(e”A)|2][Re(e” B)|l2 w3 (D)

wj(A) + w3 (B) + \/(w%(A) — w3(B))? + 4sup [Re(e? A)|3{|Re(e” B)|3

1

2

]
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Corollary 3.3.3. Let A, B € By(H) and r > 2. Then

r
w2<

Proof. Using Lemma 1.12.1 (b), we have
) g \/w3<A>+w5<B>.

A0
0 B

) < 257 [uwh(A) + wj(B).

A0
0 B

1
—w
V2 (
The required result follows by using Lemma 1.12.1 (a).

Corollary 3.3.4. Let A, B € By(H) and 0 <r < 2. Then

s

Proof. Using the inequality (3.5), we have

¥

The desired inequality follows by using Lemma 1.12.1 (b).

A0
0 B

) < wy(A) + wy(B).

A 0
0 B

Theorem 3.3.5. Let A, B € By(H). Then

0 A 0 0
w = — e“A+e B*
([ o)) = g B
Proof. We have
0 A 10 A
Wa =sup||Re | €
B 0 0cR B 0 )
1 0 A+ e B
T 25k |||e#4 4 ¢¥B 0 ,

sup HewA +e Z"B*

\/_
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[
Properties 3.3.1. Let A, B € By(H). Then
[0 A (0 B
1. Wo = W2 .
B 0] A 0
0 A [0 A
2. Wo = W2 . .
B 0 B0
TN
3. Wa _A 0_ = \/éU)Q (A) .
Proof. See [11]. O
Lemma 3.3.6. Let A, B € By(H). Then
— max{ws(A+ B),w(A— B)} <w < .
\/§X{2( ), wa( )} 2<BO> V2
Proof. See [11]. O
Lemma 3.3.7. Let A, B € Bo(H). Then
wy(AB) + Re(trA*B) < wi(A + B).
Proof. Using the inequality (3.2), it follows that
2 1 2
wi(A+B) > S| A+ B3
1 *
= SUAIE + 1Bl + 2Re(ir(A"B))]
> ||AB||2 + Re(trA*B)
> wo(AB) + Re(trA*B).
[

Corollary 3.3.8. Let A, B € By(#H). Then

max{ws(AB), wy(BA)} < w) (




3.3 Hilbert-Schmidt numerical radii inequalities for 2 x 2 operator matric9

Proof. The result follows by applying Lemma 3.3.7 and Properties 3.3.1 (1) to the
A 0 0

and .
0 B 0

following matrices

Theorem 3.3.9. Let A, B € By(H). Then

1
—z max{|[Alls, | Bll2} +

V2

\/—H|A+B*H2—HA Bl !<wz< 5

A= )
s ),

Proof. We have

¥

0 A
B 0

0 A

R (T
()

B 0

2

+

SEES

1 0 A 0 Al

— | Re — | Zm

2 B 0 B 0

2 L 17 12

Z—[I\A+B*H2+HA Blla + [|A+ B2 = [|[A = B*|2]]

\/_

—[QmaX{HAHz,HBH FH A+ B2 = |A = B[]

\/_

1
= — max{||A||2, || Bll2} + A+ B*||s — ||[A— B*

7 {1All2, 1 Bl]2} f“' [l — || 2!,

as required. N

Remark 3.3.10. If we take B = A in the inequality (3.6), we reobtain the inequality

(3.4)

Theorem 3.3.11. Let A, B € By(H). Then

1 *[2 20|12 2 *[2]]2 1z 1 2
Qb ) eteras <
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Proof. We have

2 0 A 0 A 0 Al
Wy > max ¢ [|Re MAZm
B 0 B 0 ) B O_ )
] ! ) i
1 0 A 0 A
=5 ||| Re + | Zm
2 B 0 B 0
L 2 L 2
2 2
1 0 A 0 A
+ — ||| Re — Zm
2 B 0 B 0
2 2
1 0 A 0 A
> 5 [||Re +Im’ + |Re(tr AB)|
2| B 0 B 0])|,
1 [l [2(14%12 + | B2 0
-3 (4 +151) + 4| Re(trAB)|
4 0 2(1417 + 1B |,
1 * 2 % 2 1/2 1
= 3 (AP 4 1CPIZ + 1AP + 1B (2) " + 5 [Re(trAB)|

Theorem 3.3.12. Let A, B € By(H). Then

mwﬂA+F%wA—Fh}<w<

0 A
V2 0

A+ B*|3+ |A- B3
>§¢H+ m;u [

Proof. Using Theorem 3.3.5, we get
Wa (

To prove the first inequality, it is sufficient to take § = 0 and 6 = 7. n

0 A
B 0

1 s *
> = Erggg”cos@(A+B ) +isinfd (A — BY)||,

< \/HA + B3 + 1A = B3
—_— 2 .

Remark 3.3.13. If A, B are self-adjoint, then the inequalities in (3.7) are also refine-

ment of the second inequalities in Lemma 3.3.6.
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Corollary 3.3.14. Let A, B € By(H). Then

1. wz( > < VIAIE+11Bl3-
0 A

1
2. SA+ Bl = |4 - B[] + max{||All, | Bll2} < V2w, ( o

0 A
B 0

) |

Proof. The first inequality follows by using the parallelogram law in the inequalities
(3.7)
IA+ B*|lz + |14 = B[l = 2 (I Allz + 1B]12) -

To prove the second inequality, we have

0 A

\/§w2<
B 0

) > max {[|A + B"[|s,[|A — B2}
1 * * * *
=5 (lA+ Blla +[[A= B[z + [|A+ Bl — [[A = B7l2])
1 * *
2 [[All + 514 + Bl = A = B7a-
Using the same argument yields

0 A

\/§IU2<
B 0

1 * *
) 2 ||Bll2 + 54+ B7llz = |14 = B"|2-

Therefore, the second inequality is obtained. O

Theorem 3.3.15. Let T' € By(H) be with the Cartesian decomposition T = A + iB.
0 A

Then
< —w
2~ 2 2( B 0

Proof. See [11]. O

) < wy(T). (3.8)

Theorem 3.3.16. Let A, B € By(H). Then

0 A
0

V2 B

max {4+ B[, 1A ~iB} _ (
- 2

) - ¢ |A+iB[3 + A - B3

Proof. The results follows from Theorem 3.3.12 and Proprieties 3.3.1 (2). O
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Corollary 3.3.17. Let T € By(H) have the Cartesian decomposition T = A + iB.

Then
A

0

1 0
EHT\E < wy ( B ) < |72 (3.9)

Remark 3.3.18. [t easy to see that the inequalities (3.9) are refinements of the in-
equalities (3.8).

Lemma 3.3.19. Let A, B € By(H). Then

2
w2<

Theorem 3.3.20. Let T be as described above. Then

0 A
B

) < wi(A+ B) + w3(A— B). (3.10)

wy (T) < \/wS(A) +wi(D) +[|Bl3 + IC]3- (3.11)
Proof. We have
1
w3 (T) =5 (I + [1r7?))
1
=5 (NAIZ + 1B + [ICN15 + [IDI13 + [tr(A%)| + [tr(D?)| + 2|tr(BC)])

= w3(A) +wy(D) + || BIl; + |C15.

as required. N

Theorem 3.3.21. Let T be as described above and let 0 < o« < 1. Then

1

wy (T) < [¢2a2<w3<A>+w3<D>>+HBH%+¢2<1—a>2<w3<A>+w%<D>>+HOH% .

Sl

2
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Proof. We have

7 1 [ 2Re(e? A) e?B+ e 0C*
w = —Su . .
? 2 Geﬂg _e’HC’ + e B* 2Re(e? D)
1 -2aRe(ei9A) e’ B
< —sup .
2 ger I e 0 B* 20Re(e? D)
1 2(1 — a)Re(e? A) *’90*
+ 5 sup .
2 ger e’ 2(1 — a)Re(e? D)
< 75 [V2eust) + ug0 »+wmg+¢mr—w%@on+waD»+wmﬂ.
O
Remark 3.3.22. By taking a = %, we get
< 5 |VeB) + 3D+ 2B + Juda) + 3D 2. (1)

Using the concavity of the function f(t) = t2 on [0,00), it follows that the inequality
(3.12) is a refinement of the inequality (3.11).

Theorem 3.3.23. Let T be as described above. Then
ws (T) < min{a, B},

where

0 A+ B

A-B 0

1
a=g Jw%(A—I—B)—i—w%(AB)—i—w%(

)

0 D+C

+ | wi(D+C)+wi(D - C) + ws
J2< )+ u3(D~C) Q(D_O .
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and
1 ) 0 A+C
= — w2(A+C) + w2(A - C) 4+ w?
g 2N2< )+ wd(4-C) 2<A_C . )
0 D+ B
+ | w3(D+ B) +w3(D — B) + w?
Jx )+ u3(D ~ B) Q(D_B . )

A B
0

Re <ei9

lzne(eieA)

—1

Proof. Let T} = s

and V =

).

B
0

A B

w3 (T1) = sup 0

PeER

2

1
= —sup

4 ger e~ B*

ol
2Re(e(A + B))
e?(—A— B) + e "(—A* + B¥)

2
e’ B
0

1
= —sup
4 ger

2Re(e? A)

, %4
6—198*

2

1
= —su
16 pek

1

= —su

16 pet

1 0 A+ B
< — |w2(A+ B)+ w2(A - B) +w?

Ll ruda-p (| 0

eiQ(B o A) + e—i@(_A* o B*)

)

] be an unitary operator. Then

2Re(e?(A — B))

2

[2Re(e”(A + B))|I3 + [Re(e”(A — B))I; + 2||e”(A — B) + e™"(A" + B")|[3]
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I
Let U = O] be a unitary operator. Then
A B] 0 0
we (T) <w +w
2(T) S ws 0 0] “\le D>
(4 B] D C
= W2y + wo U>|< U
0 0] 0 0
(4 B] D C
= W2 + woq
0 0] 0 0
[ 0 A+B
< = | w2(A+ B) +wi(A — B) + w?
J 3(A+ B) + wi(4 - B) 2(_A_B . )
[0 D+C
+ = | wi(D+C)+w2(D — C) + w?
Jx ) +u3(D - C) 2(_D_C .
= (.
Similarly,

For T € By(H), define v(T) = /w3(T) + ||T|3.

Corollary 3.3.24. Let T,T',S,S" € By(H) be with the Cartesian decompositions T =
A+iB, T'=A+iC, S=D+iC and S' = D +iB, respectively. Then

A B
¢ D

¥

)<

V2

L winfy(T) +1(8),1(T) +7(8)}-
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Proof. By replacing B by iB and C' by iC', respectively, in Theorem 3.3.23, the result

follows immediately.

B

Now we give lower bounds for ws (

found in [27].

Theorem 3.3.25. Let A, B € By(H). Then

1 A B
— A+ B),wy(A— B)} < .
\/imax{wg( ), wa( )} wg( A g )
Theorem 3.3.26. Let A, B € By(H). Then
a) If A is self-adjoint, then
A —-B

V2max {wy(A), wy(B)} < w, (

b) If B is self-adjoint, then

imax {ws(A), we(B)} < wy (

).
).

0 0
Theorem 3.3.27. Let A, B € By(H). Then

A B

V2max {ws(A), wy(B)} < wy < -B —A

Proof. See [44].

Theorem 3.3.28. Let T be as described above. Then

V2

L max{ws(A + D), wa(A — D), ws(B + C), wa(B — C)} < ws (T).

]

) . The following two theorems can be

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
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= sup
0eR

= sup \/!\Re(ewz‘l)\lé + [[Re(e“ D)3
0eR

Proof. We have

¥

Re(e? A) 0
0 Re(e? D)

0 D

2

Vv

1 ) )
—su Re(e® A)||s + ||Re(e” D
Tsup (IRe(e”A) . + | Re(e" D))

1 .
> —sup ||Re(e’9(A + D))ll2
6cR

1

V2

Replacing D by —D in the inequality (3.18), we get

A 0 B
Wo 0 D = Ws
> > imax{wg(A + D), wy(A— D)}

A 0
Wa \/5

0 D
Since wy(+) is a weakly unitarily invariant norm, we have the pinching inequality

So,

1
- ) > sus(A+ D). (3.18)

A 0
0 D

1
> > EUQ(A - D).

Hence,

A B A0 0 B
Wo > max { Wy S Wa .
C D 0 D C 0
Using Lemma 3.3.6, we obtain the required inequality. O

Remark 3.3.29. 1. If we take C = —A and D = —B in inequality (3.17), then we
reobtain the inequality (5.13).

2. Also, if we take C'= —B and D = —A in inequality (3.17), then we reobtain the
inequality (3.16).

Corollary 3.3.30. Let T\, S € By(H) be with the Cartesian decompositions T = A+iD
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) |

Proof. The result follows by replacing C' and D by iC' and iD, respectively in the
inequality (3.17). O

and S = B +1iC. Then

A B

max{w,(T), wy(5)} < V2w, ( iC iD

Corollary 3.3.31. Let T' € By(H) be with the Cartesian decomposition T = A + iB.
Then

wy(T) < V2w, ([A _O
0 B

Proof. By replacing D by iB in the inequality (3.17), we get

A 0

On the other hand, we have

(A
Wa

0 B

) < \/IAIS + 18113

Corollary 3.3.32. Let A, T € By(H). Then

A =T
T A

V2max {wa(A), wy(T)} < w, (

) . (3.19)

Proof. The inequality (3.19) follows by taking D = A, B = —T and C' = T in the
inequality (3.17). O

Remark 3.3.33. Note that the inequality (3.19) is a generalization of the inequality
(3.14).
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) . (3.20)

Proof. Taking C' = D = 0 in the inequality (3.17), the desired inequality is obtained.
]

Corollary 3.3.34. Let A, B € By(H). Then

A B

0 0

1
7 max{wy(A), wa(B)} < wy (

Remark 3.3.35. Also, note that the inequality (3.20) is an improvement of the in-
equality (3.15).

Theorem 3.3.36. Let T be as described above. Then °

1 2
NG max{wy(AB + DC), ws(AB — DC)} < w5 (T). (3.21)

(A4 0
0 D

[0 AB
o w2
DC 0

Proof. By applying Lemma 3.3.7 and the first inequality in Lemma 3.3.6, we have
0 B
c 0

)
)

> i2 max{ws(AB + DC), ws(AB — DC)}.

ws (T) = ws (

[
Lemma 3.3.37. Let A, B € By(H). Then
A B
2
w ( o > \Jw(A+ B) +u(A+ B).
Proof. See [11]. O

Proposition 3.3.38. Let T' = [1};], where T;; € Bo(H), fori,j € {1,--- ,n}. Then

ITN3 = I0IT5 1105 = ZHTMHQ

i,7=1
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Theorem 3.3.39. Let T = [T;;], where T;; € Bo(H), fori,j € {1,--- ,n}. Then

where

wy(T) < wa([ty]),

Proof. We have

IRe(eT)]l2

wa(T) if 1=7,
tij = 1 0 ij e,
—W 1 1 .
Nk ( T ]) fi#]
Re(e®Tyy) (T + e T3) (T, + e7T)
B $(eTyy + e T7,) Re(eTy) (€T, + e7T,)
_%(eanl +e Ty) (T +e7*T;) ... Re(e®Ty,) 11,
[Re(e”Th)ll2 sleT+e Ty lla oo lle”Tin + e T |2
| Bl + e Tl [Re(eTas)ll2 o €T + e Tl
ST + e T2 5l T + e T3l .. IRe(e“Tun)ll2 ||,
< [Iltss]ll2

(by the norm monotonicity of matrices with nonnegative entries and by Theorem 3.3.5.)

Now, since the matrix [£;;] is real symmetric, then we have ||[t;;][|2 = w2 ([t,,])-

Hence

wy(T) < wa[ty]).

Theorem 3.3.40. Let T be as described above. Then

0 B
c 0

> . (3.22)

wy (T) < | w2(A) +w2(D) + w3 (
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Proof. By Theorem 3.3.39 and Preposition 3.3.1 (1), we obtain

0 B
ws(A) 5 W2 < )
ws (T) < wy . ¢ 0
Lw 0 ¢ wo (D)
V2 2( B 0 ) :

Since M is real symmetric, then wo(M) = ||M||2. Hence we get the result directly. O

Remark 3.3.41. From the first result in Corollary 3.3.14, one can deduce that the
inequality (3.22) is sharper than the inequality (3.11).

3.4 Hilbert-Schmidt numerical radius of a pair of op-

erators

We define the Hilbert-Schmidt numerical radius of a pair of bounded linear operators
A, B € By(H) as follows.

Definition 3.4.1. Let A, B € By(H). The Hilbert-Schmidt numerical radius of (A, B)
is defined by

wy(A, B) = sup \/||R€(€“’A)||3 + [Re(e?B) 3.
bR
Theorem 3.4.1. wy(+,-) is a norm on By(H) X Bo(H).

Proof. Let A, B € By(H). It is obvious that wq(A, B) > 0. Assume that we(A, B) = 0.
Then A = B =0. Now, let A € C. Then there exists a ¢ € R such that A = [A|e?. So

ws(AA, AB) = sup [ [Re(€?AA) |3 + [Re(e7B)|3
fER

= sup \/MI2HR6(6W+¢>A)H% + [A?|Re(e®+) B) |13
feR

= [Nwy(A, B).
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Let A17 AQ, Bl, BQ € BQ(H) Then

wa(Ay + Az, By + Bs) = sup \/I\Re(ew(fh + A2))I5 + [ Re(e(Br + Ba)) |13

9cR
=sup sup (af|Re(e”’ (AL + A2))|l2 + Bl|Re(e”(B1 + Ba))|2)
/cR  «,B€R
o?+62=1
<sup sup (aHRe(ewAl)Hg + ﬁHRe(ewBl)Hg)
eR  «,pER
a?+p%=1
+sup  sup  (af|Re(e” Ay)lls + Bl Re(e” By)ll2)
0cR  a,B€R
a2+52:1

= sup /[ Re(eA4,)[3 + [Re(¢i By) 3
0eR

+ sup \/HRe(ewAz)H% + [IRe(e Bs) |13
0eR
= wy(Ay, By) + wy(Asz, Bs).
L]

Remark 3.4.2. Replacing A and B by 1A and iB, respectively, in Definition 3.4.1,
yields

ws(A, B) = sup /| Tm(e A) | + |Zim(eB) 3
0eR

It is easy to check the following inequalities, which follow from Definition 3.4.1:

max{ws(4), ws(B)} < wo(A, B) < \/wd(A) +w(B). (3.23)
Theorem 3.4.3. Let A, B € By(H). Then

w3 (A, B) = %wg (A+B,A—-DB).
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Proof. We have

wy(4, B) = sup (IRe(e A3 + [Re(e” B)13)

= 2 sup (|Re(e”(A+ B)) + [Re(e”(A ~ B)I3)

feR

(by the parallelogram identity)

1

O
Using Theorem 3.4.3, the following corollary follows from the inequalities (3.23).

Corollary 3.4.4. Let A, B € By(H). Then

%max [w3(A + B),ui(A— B)} < wi(A,B) < %(w%(A L+ B) +wl(A - B)).

In particular, if T'= A + iB is the Cartesian decomposition of 7', then replacing B
by ¢B in Corollary 3.4.4, gives the following corollary.

Corollary 3.4.5. Let T' € By(H) have the Cartesian decomposition T = A+iB. Then

1 .
Z50e(T) < wal4,iB) < walT).

The following theorem is a characterization of wq(A, B).

Theorem 3.4.6. Let A, B € By(H). Then

wi(A, B) = 5 (A5 + IBI3 + [tr(A* + BY)]) .

1
2
Proof. We have

w3 (A, B) = sup (tr|Re(e”A)]* + tr|Re(e’ B)?)

(SN

1 A
= 5 sup (4] + [ BI + trRe(e(4° + B2)))

1
= S (IAIE + I1BII5 + [¢r(A% + B?))).
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Corollary 3.4.7. Let A, B € By(H) be self-adjoint. Then
wy(A, B) = w3(A) + wi(B).

Proof. Since A, B are self-adjoint, then A% B? are positive. Therefore, |tr(A? + B?)| =
|tr A% + |tr B?|. Hence, the result follows from Theorem 3.4.6 and Theorem 3.2.1. [

Theorem 3.4.8. Let A, B € By(H) and o, B € R. Then

sup max {wj(aA+SB), w3 (BA+aB)} <wj(A,B) < inf (wi(ad, BB)+w;(BA, aB)).

Oc2+,32:1 042+ﬁ2=1

Proof. Assume that o + 3% = 1. Then

w34, B) = sup (| Re(e’ A) [ + | Re(e' B)|3)
—Seuﬂg?(“ + 82| Re(e? A3 + (® + 5%)[[Re(e” B)|)3)
€
= sSu
6’eIIR3(

IRe(ead)|3 + | Re(¢”BB)|3 + [IRe(e” BA)3 + [ Re(c’aB)]3)
< sup ([[Re( (e"aA)|l + || Re(e” BB)II3 )+3ug(ll736(6i9614)|!§ + | Re(e”aB)lf3)
€ S

= wi(aA, BB) + wi(BA, aB3).

Hence, we obtain the second inequality.
Also,

w34, ) = sup (| Rec” )|} + [ Re(c B)IE)
= sup (a? + 57) (|Re(c" A3 + [Re(e”B) )
> supmax { (ol Re(e4) | + [3|[Re(e B . (SIIRe(c” Al + lal | Rele B)]:)
(by the Cauchy-Schwarz inequality)
> supmax {|aRe(e”4) £ FRe(c B, | Re(e4) & aRe(c B) )

> sup max{||Re(e”’(aA £ 8B))|3, [Re(e” (BA + aB))|3}

0eR

= max{wi(aA + BB), wi(3A+ aB)}.
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Hence, we get the first inequality. O

Theorem 3.4.9. Let A, B € Bo(H). Then
w3 (A, B) < min{w3(A + B),w3(A — B)} + 2wy (A)wy(B).
Proof. We have
IRe(e A)3 + [IRe(e” B) |3 = [|Re(e” (A = B))|I; + 2tr (Re(e” A)Re (e B)).
Then, by taking the supremum over # € R, in the above identity, we get

wi(A, B) < wi(A— B) + sup 2|tr(Re(e” A)Re(e” B))|
< w3(A— B) + 2sup||Re(e”A)||2[Re(e” B)| 5
9eR
(by the inequality (3.1))
< w3(A — B) + 2wy (A)ws(B).

Thus,
w3 (A, B) < w3(A — B) + 2wy(A)wsy(B).

By replacing B by —B in the above inequality, we get
w3(A, B) < w3(A+ B) + 2wy (A)ws(B).

Therefore, we get the required result. O

Corollary 3.4.10. Let A, B € By(H). Then
wj (A, B) < 2min {w3(A), w3 (B)} + ws(A + B)wy(A — B).

Proof. The result follows from Theorem 3.4.3 and Theorem 3.4.9. O

Theorem 3.4.11. Let A, B € By(H). Then

3 (4,5) < 5 (b (B [(03(4) —wd(B)" + dsup [Re(eOA)EIRe(e B
(3.24)
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Proof. Using the same argument of Theorem 3.3.2, we get the result directly. O

Remark 3.4.12. The inequality (3.24) is an improvement of the second inequality of

Theorem 3.4.13. Let A, B € By(H). Then
a) wh(A, B) < wh(A) +wh(B) forl<r<2.
b) wi(A, B) <227 (wh(A) + wy(B))  for2 <r < oo.

1 1
Proof. The case r = 1 is obvious. Let r,s > 1 be such that — + — = 1. Then
ros

wy (A, B) = sup \/|[Re(e? A)[} + [Re(c B
feR

—sup sup (al[Re(eA)]2 + BIRe(” B) )
OeR a,BER
a?+p3%=1
< sup (la)®+ 8" (wh(A) + wg(B))l/T(by Holder’s inequality).
a,BER
Cl{2+52:1

If1<r<2 then2<s<oo,and sup (Jo|®+ |m3)1/s L

a,BER
a?+p2=1
If2<r<oo, thenl<s<2 and sup (la°+ |ﬁ|5)1/5 _ it
a,BER
a?+p5%=1
This completes the proof. 0

Theorem 3.4.14. Let A, B € By(H). Then

%max {wi(A— B) + mj(A+ B),w;(A+ B) + m3(A— B)} <wj(A,B), (3.25)

where my(A) = ggﬂg | Re(e A)|fs.
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Proof. We have
wy(A, B) = sup (IRe(e” A3 + [[Re(e” B)|I3)

= 2 sup (|Re(e”(A+ B)) + [Re(e”(A ~ B)I3)

feR

sup (|[Re(”(A-+ B))[ + jof [ Re("(A ~ B))|3)

(w2(A + B) +m3(A — B))

1
2
1
2
A similar argument to the previous one yields

w3(A,B) > = (w3(A— B) + m3(A+ B)).

1
2
Therefore, we get the desired result. O

Remark 3.4.15. The inequality (3.25) is a refinement of the first inequality of Corol-
lary (3.4.4).

Theorem 3.4.16. Let A, B € By(H). Then

1
(IIAl5 + 1BII3) + §\Re(trAB*) < w2(A,B).

A

Proof. From Corollary 3.4.4, we have

w3(A, B) > max {wi(A + B), w}(A - B))
> imaX{HA + B3, ||A — B|5} (by the first inequality in (3.2))
é (IA+ Bl + [[A = Bl + [|A+ B3 - |4 - Blj3])
= (B + 1BI3) + 5 |Re(erAB”)].
as required. O

Theorem 3.4.17. Let A, B € By(H). Then

1 1
7 max{| A% + B2, [[AB + BAo} + 7 [IIAll; = | BII3| < w3(A, B).
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Proof. From Theorem 3.4.16, one can deduce that

2(A, B).

1 1
Jmax{[[A* + B[z, | A% = B2} + 3| Re(trAB")| <

Now, by Theorem 3.4.3, we get

wy(4, B)

v

r—wlM»—n-J;IHOOl’—‘oolr—\

max{|[(A + B)* + (A — B)||s, (A + B)* — (A — B)?||2}

Re(tr(A+ B)(A* — BY))|

mﬂAWhWMJAB+BAH}+JRdﬁAA*,M¥+BAW—BBW\
max{||A? + B?||y, ||AB + BA||2} + —!Re( |A||2 — || B|)3 + 2i[m(trBA*))|

= Zmax{HA2 + B?||a, [[AB + BA|2} + 1 H|AH2 —|IBlj3]-

Theorem 3.4.18. Let A, B € By(H). Then
1 1
§|trAB| + Z(maxﬂtr(A2 + B?)|,2[trAB|} + |w3(A+ B) — w3 (A — B)|) < wj(A, B).

Proof. From Corollary 3.4.4, we have

ws(A, B) > %max {wi(A+ B),w3(A— B)}
= 1 (u3(A+ B) + ud(A— B)) + 1 [w3(A+ B) — ud(A~ B)
= (A + BI3 + 114 BIE + lir(A + B + lir(A— BY)
+ i ‘ w5 (A + B) — w3 (A — B)| (by Theorem 3.2.1)
> LI + IBI3 + max{er(4 + B2, 20trABI}) + § |[w3(A4 + B) — w}(4 - B)|
> AR Bl + § (max{itr(4? + )] 2r ABJ) + |uw(A + B) — ud(A — B)|)
> %|trAB| + i(maxﬂtr(AQ + B?)|,2|trAB|} + |wi(A+ B) — wj(A— B)|).

O
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Theorem 3.4.19. Let A, B € By(H). Then
max{ws(A + B)),w3(A — B))} — 2wy (A)wy(B) < wj3(A, B).
Proof. We have
|Re(e”(A+ B))|3 = [|Re(e”A) |3 + |Re(e”B)|5 + 2tr (Re(e” A)Re(e” B)).
Then

IRe(e”(A + B))Il; < [Re(e A)|3 + [Re(e”B)II3 + 2[tr(Re(e” A) (Re(e” B))|
< [[Re(e” A)|3 + [IRe(e” B)|3 + 2| Re(e” A) 12| Re(e” B) |15
(by the inequality (3.1))
< w3 (A, B) + 2wa(A)wy(B).

By taking the suprumum over # € R, in the above inequality, we get the following

inequality
w3 (A + B) < w?(A, B) + 2wy (A)wy(B).

By replacing B by —B in the above inequality, we get
w3 (A — B) < wi(A, B) + 2wy (A)wy(B).

Hence, we get the desired result. O]

3.5 Relation between wy(-, ) and ws(-)

We begin this section with following relation between our new norm ws(-, -) and ws(+).

) . (3.26)

Theorem 3.5.1. Let A, B € By(H). Then
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Proof. We have

w;(4, B) = sup (IRe(e A)II3 + [Re (e B)]3)

2

Re(e? A) 0
= sup ,
9eR 0 Re(e? B) )
2
R 0 A 0
= sup ele
beR o 5/},

) |

It is clear that the inequality (3.5) can be obtained from Theorem 3.5.1 and the

]

second inequality in (3.23).

Remark 3.5.2. In view of Theorem 8.4.14 and Theorem 8.5.1, we see that if A, B €

By(H), then
) . (3.27)

Thus, the inequality (3.27) is an improvement of the inequality of Lemma 3.3.6.

A 0

%max{wg(A—B)—i—m%(A—l—B),w%(A—i—B)—i—mg(A—B)} Swg( 0 B

Corollary 3.5.3. Let T € By(H) be with the Cartesian decomposition T = A + iB.

Then
A 0

0 B

DO | —

(w3 (T) +m5(T)) < w; <

) < wi(T). (3.28)
Proof. The first inequality follows from replacing B by iB in the inequality (3.27) and

the second inequality follows from the second inequality in Corollary 3.4.4. m

Remark 3.5.4. [t is clear that the inequality (3.28) is a refinement of the inequality
(3.17).

Theorem 3.5.5. Let T be as described above. Then

%max{wg(Ameg(A—D), w3 (A—D)+m3(A+D), w3 (B+C), w3 (B—C)} < w;y(T).
(3.29)
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Proof. We have the pinching inequality

()

Now, the desired inequality follows from Theorem 3.3.5 and the inequality (3.27). O

A 0
0 D

0 B
¢ 0

Clearly the inequality (3.29) is better than the inequality (3.17).

) . (3.30)

Remark 3.5.7. The inequality (3.30) is better than the inequality (3.20).

> . (3.31)

wy(A, B) = sup (IRe(e” A3 + [IRe(e” B)I2)

Corollary 3.5.6. Let A, B € By(H). Then

A B
0 0

5 max{ud(4) + ma(4), wd(B)} < w3 (

Theorem 3.5.8. Let A, B € By(H). Then

A B

ws(A, B) = LU& ( B A

V2

Proof. We have

2

1 Re(e®A)  Re(e?B)
= Zsu . .
R Re(e?B)  Re(e? A)

2 per

2
2
A B

B A

1 )
= —sup ||Re | €”
2 ger

2

1 ,(|A B
2% \|p 4|/
O
1 (1 1 . :
Remark 3.5.9. If U = — , then U 1is unitary and
V2 -1 1
A Bl ., |A+B 0
B Al | 0 A-B|
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A B A+ B 0 ,
Thus, ws = Wy . Using Theorem 3.5.1 and Theorem
B A A-B
3.5.8, we have
1 A B 1 A+ B 0 1
wi(A,B) = —w? = —w? = —wi(A+ B,A-DB),
o[ ) 2100 ])-basna o

which gives another proof of Theorem 3.4.5.

It is easy to see that the inequality of Lemma 3.3.37 can be obtained from Theorem
3.5.8 and Corollary 3.4.4.

Remark 3.5.10. In view of Theorem 3.4.14 and Theorem 3.5.8, we see that if A, B €
By(H), then

A B

max {w3(A — B) + m3(A+ B),w3(A+ B) + m3(A— B)} < wj; ( B4

From Theorem 3.5.1 and Theorem 3.5.8, we obtain the following corollary.

) |

% max{wy(AB+ DC), wy(AB— DC)} + % |trA® + trD* + 2tr BC| < w3 (T). (3.32)

Proof. From Corollary 3.4.4, we have

Corollary 3.5.11. Let A, B € By(H). Then

ol 2t

Theorem 3.5.12. Let T be as described above. Then

A 0
0 B

A B
B A

w3(A, B) < = (w3(A+ B) + w3(A— B)). (3.33)

N | —
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Also, by Theorem 3.4.6, we have
1
wy(A,B) = S(IAlz + IBlls + [tr(A* + B%)])
1
> ALl Bl + 3 ir(4” + B%)
1
> wy(AB) + §|tr(A2 + B?)|. (3.34)
Now , by combining the inequalities (3.33) and (3.34), we obtain
1 1
wy(AB) + 5‘1&7‘(142 + B?)| < 5 (w3(A+ B) +w3(A— B)). (3.35)
Applying the inequality (3.35) to the operator matrices and , gives
1 A -B
2 R 2
w; (T) 5 <w2(7')+w2 ( ¢ D ))
- 2
A 0|0 B 1 A0 0 B
> Wo + — |tr
0o pD||C o) 2 p| |c o
[0 AB 1
= Ws +—’tr(A2+D2+2BC)’
DC 0 2
1 1
> 7 max{wy(AB + DC), ws(AB — DC)} + 5 |trA® + trD* + 2tr BC|
(by Lemma 3.3.7).
[

It is easy to see that the inequality (3.32) is an improvement of the inequality (3.21).

By taking B = A in the inequality (3.34), we get the following corollary, which includes

a power inequality for ws(-).

Corollary 3.5.13. Let A € By(H). Then

wy(A?) < 2w3(A) — |trA?|.



Chapter 4
The p-numerical radius

In this chapter we present some new inequalities for the p-numerical radius for a single
operator and product of two operators as well as for the p-numerical radii of 2 x 2

operator matrices. Also, we improve some existing ones.

4.1 The Schatten p-norm

Let IC(#H) be the class of compact operators in B(H). For a compact operator T € K(H)
the Schatten p-norm of 7' is defined by ||T||, = (tr|T|p)%, where 1 < p < oo and
IT| = (T*T)z. For 0 <p <1, |- ||, is a quasi-norm (it does not satisfy the triangle
inequality). The p-Schatten class in B(H), denoted by B,(H), is defined by

By(H) ={T € K(H) : | T, < oo}
for 1 < p < g < o0, the Schatten p-norm of T' satisfies the monotonicity property
1T [|oe < [ITlg < ([T, < IT1]s-

The Schatten p-norm satisfies the unitarily invariant norm condition i.e for T' €

B,(H) and U,V are unitary operators.

IUTVlp = IT1l,-
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For T' € B,(H), where 0 < p < oo, we have the following relations :

1Tl = N1l = 1T, for t > 0. (4.1)
1 1 1
Let T € B,(H), S € By(H). If p,q,r € [1,00) are such that — + — = —, then
p q r
TS € B.(H) and
TSl < [IT1[p[151lg- (4.2)

When p = oo and p = 2 the Schatten p-norms are the operator norm [|T| =

sup ||Tz| and the Hilbert-Schmidt norm ||T'||y = (¢t7T*T)'/?, respectively.
[[f|=1

Lemma 4.1.1. [1] Let A, B € B,(H), where 0 < p < oo, we have

A 0
0 B

0 A
B 0

max{[[ Al [[B[}  forp=oo.

_ { (IA[l2 + | BIE)>  for 0 < p < oo

p p

4.2 The p-numerical radius of operators

As we have seen in the first chapter, if N(-) = || - ||, then we get the p-numerical radius

wy(+). For T € B,(#H), the p-numerical radius is defined as

wy(T) = sup |Re(e?T)|, or wy(T) = sup |Zm(e”T)],.
0eR (U

For T' € B,(H), it easy to see that
1
STy < wp(T) < |71, (4.3)
It should be mentioned here that Bottazzi and Conde [20] have proved that
25Tl < wp(T) < TN, for1<p<2, (44)

and
27T, < wy(T) < ||T],  for2<p< oc. (4.5)

Theorem 4.2.1. Let T € B,(H) and p > 2. Then

1 1
WET) < JITT" + T Tl + ST, (4.6)
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Proof. See |20]. O
In the following theorem, we give a lower bound for w,(-).

Theorem 4.2.2. Let T € B,(H) and p > 1. Then
1 % %
—HTH2 —SHPHW6 (D), = IZm(e* T[] < wy(T). (4.7)
Proof. We have max {||Re(e™T)|2, || Zm(e™T)||2} < w2(T). Then

1 i i 1 i i
wy(T) > —(||736(6 T2+ 1 Zmle wT)Hz) + —}HRG T2 = 1 Zm(e™T)| 2]
> —||R6( T +iZm(e" T2 + HIRe (T2 = 1 Zm(e™T)]3)

= ;1||T||§ + 51 IRe(e™ T)I[; = IZm(e™T)|3]-

Hence, we obtain the required result. O

Remark 4.2.3. [t is easy to see that the inequality (4.7) is also an improvement of the
first inequality in (4.3).

Theorem 4.2.4. Let T € B,(H) and p > 1. Then
1 7 i
HTHp 55U [IRe(e™T)|lp — 1Zm(e™T)|lp| < w, (T). (4.8)
Proof. We have max {||Re(e™T)|,, [|[Zm(e™T)]|,} < w,(T). Then
1 i i i i
wy (1) 2 5 ([Re(eT)llp + | Im (e T, + [ Re(e™ D), — [Zm(e™T)],|)
> S (IRe(e™T) +iZm (e T), + |[Re(™ T, = [ Zm(e T)ll|)
1 1 i i
= Tl + S |IRe(e™ ), = [ Zm(e™ T)ll,|-

Therefore, we get the desired inequality. O]

Remark 4.2.5. [t is clear that the inequality (4.8) is an improvement of the first
inequality in (4.3).

In [14], Benmakhlouf, Hirzallah and Kittaneh have obtained the following theorem.
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Theorem 4.2.6. Let T € B,(H). Then
wy(T) < [Re(D)[; + [[Zm(T)l; - for 1 <p <2 (4.9)

and
wb(T) < 25 ([Re(D) + |Zm(T)[})  for2<p<oo.  (410)

Proof. It can be shown that another form of the p-numerical radius is that

wy(T) = Sup. laRe(T) + SZm(T)]|,-
a,pe
a2+62:1

In particular, we have

wy,(T) = seglg | cos ORe(T) + sin 0Zm(T) ||,

So,

wp(T) < sup (| cos O[[|Re(T)llp + [ sin 0][|Zm(T)]],)
< sup ([ cosel" + |sind]") /" (IRe(D)]; + | Zom(T) )"
€
(by Hoélder inequality).
If 1 <p <2, then 2 < g < oo, which implies that supycg(cos? 6 + sin? 9)3 =1, and so
wy(T) < [Re(T)[ + [[Zm(T)][5,

while if 2 < p < o0, then 1 < ¢ < 2, which implies that supycg(cos? @ + sin? 0)5 =

11 1.1
2¢ 2 =227 and so

D=

wh(T) < 2277 (| Re(T) |5 + [ Zm(T)|I7)
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4.3 The p-numerical radius inequalities for products

of operators

To give our results, we need the following lemmas which we can be found in [37], [38]

and [12], respectively.

Lemma 4.3.1. Let A, B € B(H) be such that AB is self-adjoint and p > 1. Then
[ABIl, < [[Re(BA)[],

Lemma 4.3.2. Let A, B € B,(H) and p > 0. Then

A
B A

=

= (lA+ Bl + A= BIp)*> .

p

Lemma 4.3.3. Let A,B € B,(H) be such that A, B are self-adjoint operators and
p>1. Then
I[A+B["ll, < 2" [|A" + BI"ll,  forr>1.

Lemma 4.3.4. Let A,B € B(H) and p > 1. Then
1 2 *|2
IABl, < A+ B[],

Proof. See [18]. O
Our first theorem can be stated as follows.

Theorem 4.3.5. Let A, B € B,(H) and p > 1. Then

1 *|ar
wi(AB) < SIAP" + B " llpr forr > 1. (4.11)
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Proof. We have
wj(AB) < ||AB];
< 27"|||AP + |B*]?|l; (by Lemma 4.3.4)
=27 [[1AP + B P lloy»
1
< §|||A|2T + |B*[*"||,/» (by Lemma 4.3.3).
O

Remark 4.3.6. If we take p = oo in the inequality (4.11), then we reobtain

1
w"(AB) < §H|A|2T + | B**"|| forr > 1.
Which is proved by Dragomir [23].

Theorem 4.3.7. Let A, B € B,(H) and p > 1. Then

wy(AB) < 20w, (BA) + 25 2|||A]* + | B,
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Proof. We have
wy(AB) = sup || Re(¢“ AB)|,
R

1 ) )
= 5sup |e®AB + e B*A*||,

0eR
1 e’A B[ B 0
= —sup ,
2 ger 0 01 [e A" 0 ,
<Laplre(| B |4 B (by L 4.3.1)
—Su e . cimima 4.9.
= 29k eA* ol 0 0 Y
- p
1 P [¢'BA  |B*|?
= —sup ||Re ,
2 ger |A]? e A*B*
- p
1 2Re(eBA) |A]? + |B*|?
= —Su .
Loek || ||A2 + B2 2Re(¢?BA)
p
1 ] * 7 * 1
= 75 (I2Re(e® BA) +|A]® + |B*[*|l5 + 2Re(e” BA) — |A]* = |B*]?|I5) ¥

(by Lemma 4.3.2)
<252 sup (|[2Re(e” BA)|, + |||A]> + |B**||,) (by the triangle inequality)
beR

= 2577 (2, (BA) + | AP +B"P,) .
Hence, we get the desired inequality. O]
Corollary 4.3.8. Let A,B € B,(H) and p > 1. Then
wih(AB) < 2v Wi (BA) + 20 || |APT + | B ||,y forr > 1. (4.12)
Proof. We have

wh(AB) < 207 (2w, (BA) + I|A]° + [B*P|,)"
< 25" (2"wp (BA) + [[JAP + | B l;)
(by the convexity of the function f(t) = t"on [0, c0))
= 20" wp(BA) + 20 || AP 4 [ B [l
< 207 wl(BA) + 20 2|||AP + |B** ||,y (by Lemma 4.3.3),
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as required. N

Remark 4.3.9. If we choose p = oo in the inequality (4.12), then we obtain
T 1 T 1 2r *|2r
w"(AB) < S (BA) + ZH|A\ + | B*|*"| forr > 1.

Which is given in [45].

Theorem 4.3.10. Let A, B € B,(H) and p > 1. Then

wy(AB) < 20 wy(BA) + 207 ([ Allpl| Bllzp + | ABl,) -

Proof. By replacing A and B by Hf”j"A and HgHz”B, respectively, in Theorem
4.4.14, we get
1 B2 [All2p | 15
2p 2p p

On the other hand, we have

— ||| AT 1Bz
» 0 0

HHBHZP‘ 24 ||A||2p| B
1Al 1Bl2p

2 |A|2 \A|I2p|B*|2 0]

V4
[ [IBlap 4+ Al [Bllz
I ViaeA Bl | Via,A 0
IAll2p 2%
|0 N N RVA T N
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I.Bll2p I Bll2p g% [l All2p
< || Re ””/;‘T"L%A ! ATy A 15125 7
1B, 5 0 0 0 ,
(by Lemma 4.3.1)
IBll2p | Ax|2
< Re< piglAT AB )
- * Ak 2p 2
BrA™ B/
[1Bll2p | A= i
|| A AB
Brar g
i 1Bl 1 211,
_|[[razlAce 0 ] 0 AB
. 0 14120 | 32 B*A* 0
L 1Bll2p 4y P
1
=27 ([[Allp | Bll2p + | AB|,) -
Hence, we obtain the required inequality. O]

The following corollary is an immediate consequence of Theorem 4.3.10. To see this,

it is sufficient to use the inequality (4.2).

Corollary 4.3.11. Let A,B € B,(H) and p > 1. Then
1_ 2_
wy(AB) < 20 wy(BA) + 207 | Allgp | Bl 2p. (4.13)
Remark 4.3.12. If we put p = oo in the inequality (4.13), then we get

1 1
w(AB) < Sw(BA) + || Al B,

which was already given in [4].

4.4 The p-numerical radii of 2 X 2 operator matrices

In order to give our results, we need the following lemmas, which are given in [29].

Lemma 4.4.1. Let A, B € B,(H) and p > 0. Then

p
U}p<

A 0
0 B

) < wp(A) +wh(B)  for p> 0.
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> = sup ||Re (ew >
0eR
P

Re(e? A) 0
= SUu .
bock 0 Re(e”B)

Proof. We have

wp(

A 0
0 B

A 0
0 B

p

= supper (|Re(e”A)|P + |Re(e”B)||2)» (by Lemma 4.1.1)
< (wp(4) +wp(B))”,

as required. N

Lemma 4.4.2. Let A, B € B,(H) and p > 0. Then

wp<

0 A
B 0

) — 9! sup HewA + e*ieB*”p.
0eR

In particular,

Proof. We have

0 A 010 A
wp =sup||Re|e
B 0 R B 0
p
1 0 YA + e B
= —sup ‘ ,
2 per || |e A" 4+ B 0
p
— 9! sup HewA + e*ieB*” )
feR P
as required. O

Lemma 4.4.3. Let A, B € B,(H). Then

25! max{w,(A+B),w,(A—B)} < w, ( B 0

04 ) <257 (wy(A + B) + w,y(A — B)).
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Lemma 4.4.4. Let A, B € B,(H). Then

1 0 A+ B 0o A
— < wp .
2| |A*+ B* 0 B* 0
P
Proof. We have
0 A 210 A
wp =sup||Re | e
B* 0 9cR B* 0
p
0 eA+e B
= —sup A A
2 per || [ B* + e A" 0 ,
1 0 A+ B
> — + (by letting 6 = 0),
2| |A*+ B 0
P
as required. N

Theorem 4.4.5. Let A, B € B,(H). Then

0 A
A+ B, <2 rw . 4.14
4+ B, ([B O) (419
Proof. By Lemma 4.4.4, we have
0 A 1 0 A+ B
wy > —
B* 0 21 |A*+ B* 0
p
1 . Nt
=3 (I[A+ B|b+]|A* + B*[l,)* (by Lemma 4.1.1)
=251 A+ B
=2 ||A+ B},
which is precisely (4.14). O
Theorem 4.4.6. [10] Let A, B € B,(H). Then
0 A
215w < | Allp + | Bllp- 4.15
p(B* 0) 1Al + 1Bl (4.15)
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Proof. By Lemma 4.4.2, we have
» (

as required. O

0 A
B* 0

p

— 9! sup He“’A +epB*
9eR

1_q . . .
<2 (||All, + || Bllp) (by the triangle inequality),

Theorem 4.4.7. Let A, B € B,(H). Then

1 0 A
A+ B|l, <27 rw
| Il p ([B* 0

) < [|All, +1IBl, (4.16)

with equality A = B.

Proof. The result is based on combining Theorem 4.4.5 and 4.4.6.
If A= B, then the boundary terms are obviously equal to 2||Al|,. The middle term

1-1

1
= 27[|A]|, (by Lemma 4.1.1).
The equality has accordingly been proven. O]

18

0 A
A* 0

0 A
A* 0

p

The first result can be stated as follows.

Theorem 4.4.8. Let A, B € B,(H) and p > 2. Then

wp(

0 A
B 0

) <25 min {\/HAA* + BBy + 2uya(AB), /| A* A+ BB+ 2wp/2(BA)}.

(4.17)



4.4 The p-numerical radii of 2 x 2 operator matrices 86

Proof. Using Lemma 4.4.2, we have

wp(

0 A
B 0

p

> — 9! sup HewA + e 0B
0eR

= 2%_1 sup H(eleA + e—iQB*)(eiGA + e—iGB*)* 1/2
S p/2

(by the equality (4.1))

=20 sup [[AA" + B*B + 2Re(e” AB)||}/
feR

1_ ¥ X i 2
<25 sup ([ A4° + B'Bllya + 2 Re(e"AB)] )
S

— 251 (|AA* + B*Bl|,2 + 2w,a(AB)) .

The result follows by symmetry. O
Remark 4.4.9. For B = A in the inequality (4.17), we reobtain the inequality (4.6).

The following lemma, known as Clarkson’s inequalities, which can be found in [19].
Lemma 4.4.10. Let T, S € B,(H). Then

a) 22| TN + [1S|I2) < 1T+ S|E + 1T — S|E < 2(| 7|12+ [IS]12)
for1 <p<2.

b) 2(ITNE+NSIE) < NT + S|E+ (|7 — S| < 221 ([| 7|5 + [|S]15)
for2 <p < .

0 A

In the following theorem, we present further estimations for w, ( 5 0

Theorem 4.4.11. Let A, B € B,(H). Then
0 A

) 2%<HAH§+HBH§>W§%< s 0) for1<p<2.

0 A

1
b) 2» (|| AP + || B]IP)VP < w
) (AL + (1B g o

) for2 <p< .
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Proof. Using Lemma 4.4.2, we have, for 1 < p < 2,

0 A
2w£
B 0

) = 21’p(sup e A + ewB*Hg +sup [|e? A — ewB*Hg)
9eR R
> 217 sup(|eA + OB+ A4 - VB )
9eR
> ||A[[S + (| B[S (by Lemma 4.4.10 (a)).

To obtain the second lower bound for w,(T"), we use an argument similar to that used

in the first one. [

Theorem 4.4.12. Let T € B,(H) and p > 1. Then

25 max{w,(A + D), w,(A — D), wy(B + C),wy(B — C)} < w, (T).

) = sup || Re (ew )
0eR

Re(e? A) 0
0 Re(e? D) )

Proof. We have

%(

A 0
0 D

A 0
0 D

p

= sup
0cR

= sup (||[Re(e”A)||2 + |Re(e”D)|]2) Hr (by the equality (4.1.1))
9eR
> 257 sup ([Rele 4, + [Re(e“ D))

(by the concavity of the function f(¢) = t'/? on [0, 00))
> 20" sup [Re(¢”(4 + D),
9eR

= 2v w,(A + D).

Replacing D by —D in the above argument, gives

%(

A 0
0 D

) > 25w, (A — D).
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> . (4.18)

Thus,
A 0

25! max{w,(A + D), w,(A— D)} < w, ( 0 D

Therefore, the required inequality follows by observing that

A 0 0 B
max { w , W < w, (T) and using the first inequality in
8
Lemma 4.4.3 and the inequality (4.18). O

Remark 4.4.13.

If we take C' = D =0 in Theorem 4.4.12, then we get

A B
0 O

1

25 max{w,(4), wy(B)} < w, (

) . (4.19)

If we make C'= B and D = A in Theorem 4.4.12, then we find that

) . (4.20)

A B
B A

) |

If we take C'= —A and D = —B in Theorem 4.4.12, then we get

20 max{w,(A), w,(B)} < w, (

For p = oo in the inequality (4.20), we get

A B

max{w(A),w(B)} <w ( 54

A B
-A -B

) |

25! max{w,(A — B),w,(A+ B)} < w, (

) . (4.21)

For p = oo in the inequality (4.21), we get

A B

1
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If we choose B = —C" and D = A in Theorem 4.4.12, then we obtain
A —C )

2» max{w,(A),w,(C)} < w, ( c A

Theorem 4.4.14. Let A, B € B,(H) and p > 1. Then

1 A B
max {wp(A),QE*IHBHp} < w, ( - > . (4.22)
I . .
Proof. Let T = and U = 0 | Then U is unitary, and so
1 k
wy (T) = 5 (1, (T) + wp (U°TD))
1
> 5 max {w,(T +U*TU),w,(T — U*TU)}
= max {wy(A), 27| B},
as required. N

Remark 4.4.15. The inequality (4.22) is an improvement of the inequality (4.19)

If we take p = 2 in Theorem 4.4.14, then we get the following corollary.

) . (4.23)

Remark 4.4.17. [t is easy to check that the inequality (4.23) is better than the inequal-
ity (3.20).

Corollary 4.4.16. Let A, B € B,(H). Then

A B
0 0

1
max {ws(A), EHB“Q} < wsy (

It should be mentioned here that the inequality (4.22) has been obtained in [31] for

the case p = oo, i.e., for the usual numerical radius.

Theorem 4.4.18. Let T € B,(H) and p > 1. Then

wy (T) < = (W(A+ D) + wh (A — D) 4257 (wy(B+C) +w,(B—C)).

N
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. Then U is unitary, and so

Proof. Let U Ly
roof. e = —
V2 |1 T

1 A+D —A+D
= —w

2"\ |-A+D A+D

1
< 5 (wp(A+ D)+ uf (A~ D))"

A
The result follows by observing that w, (T") < w, ( 0

using the second inequality in Lemma 4.4.3.

Lemma 4.4.19. Let T = [T;;], where T;; € B,(H) withi,j =1,...,n. Then

LTI <320 Tl for1<p<2.
2. ||T||p <nP=2 3700y I Tiglls for 2 <p < oo
Proof. See [17].

Our last result involves n x n operator matrices.

Theorem 4.4.20. Let T = [T;;|, where T;; € B,(H) withi,j =1,...,n.

(@) wp(T) < 320 5m wp([ti)]) for 1<p<2,
(b) wi(T) <nP=2 350 wi(lty])  for 2<p<oo,

where

Proof. For 1 < p < 2, we have

Then



4.4 The p-numerical radii of 2 x 2 operator matrices 91

R6(6107~H> %(6107—12_’_6—1'0 2*1) %(eiaﬂn+e—i9 n*l)

[Re(e = ||| 2T TR R (€ Ton ¥ € Trt)
P . . .

HEM T+ e T) (T + e T o Re(@Tan)

- ] 1 - % —1 *
<) Re(e T I + > > e Ty + e TillE - (by Lemma 4.4.10).
=1 i—1
7
By taking the supremum over 6 € R in both sides of the above inequality, and using

Lemma 4.4.2, we get the first result. We use a similar argument to obtain the second

inequality for 2 < p < oc. [
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