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Abstract

This thesis focuses on the study of linear or nonlinear dynamic systems either

of order fractional or on time scales or both. The aim of study on the one hand,

Proof the existence and uniqueness of initial value problem of Riemann-Liouville

fractional order on time scales using fixed point theorems. Then, presentation of

the exact solution to a general Norton Massagué Model on time scales with exam-

ples. On the other hand, we study the stability of SAIQH Models on time scales

and we prove that the system is permanent. Finally, we introduce a fractional

order SAIRS model and we prove the existence and the positivity of solution, then

we discuss the loacal and global stability of the system.

Key words : Fractional order model, existence of solution, dynamic equations on

time scales, numerical simulations, stability .
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Notations
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Introduction

Time scales calculus, which has become an essential tool in the study of dif-

ferent fields , was initiated in 1988 by S. Hilger in his Ph.D thesis [26] under the

supervision of professor B. Aulbach to unify and generalize discrete and contin-

uous analysis [14, 15].

The key idea behind calculus on time scales is to consider a dynamic equation

where the domain of unknown function is a time scales, which is an arbitrary

non empty closed subset of the real numbers. By choosing the time scales to be

the set of real numbers, the general results obtained from time scales calculus can

be applied to ordinary differential equations. On the other hand, by choosing

the time scales to be the set of integers, the same general results can be applied

to difference equations. This means that time scales calculus provides a unified

framework for studying both continuous and discrete dynamical systems. By

incorporating these different time scales into the calculus, we can obtain even

more general results.

It has a tremendous potential for applications [4, 11, 13, 16, 27, 57]. For example

[11], Let N(t) be the number of plants of one particular species at time t in a certain

area. By experiments we know that N grows exponentially according to N′ = N

during the months of April until September. At the beginning of October, all the

plants die, but the seeds remain in the ground and start growing again at the

beginning of April, with N now being doubled. So we have the following model:

N′(t) = N(t) for all t ∈ [2k, 2k + 1],

and

N(2k + 2) −N(2k + 1) = N(2k + 1) for all k = 0, 1, 2, . . . .

The domain of this model is different from R, which it isW = ∪∞k=0[2k, 2k + 1]. It
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is a closed subset of R. This remark demonstrates the premise for the time scales

calculus.

Fractional calculus is a theory of integrals and derivatives of arbitrary real

numbers. It is a generalization of classical calculus and therefore retains many

basic properties.

The concept of fractional calculus is generally believed to arise from a question

posed in 1695 by G. A. l’Hospital to G. W. Leibniz wondering about the meaning

of dn y
dxn when n = 1

2? In his response dated September 30, 1695, G. W. Leibniz wrote

to l’Hospital as follows:". . . it is an apparent paradox, from which one day, useful

consequences will be drawn . . ." [35]. The first serious attempt to give a logical

definition for the fractional derivative is due to Liouville who published nine

documents on this subject between (1832) and (1837). Independently, Riemann

proposed an approach which was essentially that of Liouville, and it has since

been called the "Riemann-Liouville approach". Later, other theories appeared

such as that of Grunwald-Leitnikov, Weyl and Caputo.

In recent decades, this theory has begun to affect a significant number of math-

ematicians and other fields [39, 48]. It can provide effective results in modelling,

identifying and controlling systems. Modelling consists of finding a parameter-

ized model whose dynamic behavior approaches that of the system. This rep-

resentation is used for the simulation of systems with the aim of designing and

controlling systems. Recently, fractional derivatives have been used to generalize

models.

D. F. M. Torres [58] allows a new concept fractional operators of Riemann

-Liouville on time scales, introducing the forward jump operator of time scales in

their definition. Using backward jump operator, we found a new definition [63]

where we study the existence and uniqueness of solution to the following initial

value problem:

(αt0
Dy)(t) = f (t, y(t)), t ∈ [t0, t0 + d] = J ⊆ T,

(1−α
t0

Iy)(t0) = 0,

where T is a given time scales, 0 < α < 1, d > 0, αt0
D is the proper (left) Riemann–

Liouville fractional derivative operator or order α defined on Twith ρ, 1−α
t0

I is the

proper (left) Riemann–Liouville fractional integral operator of order 1−α defined

on Twith ρ, and function f : J × T→ R is a right dense continuous function.

The study of dynamical systems on time scales is today an active field of
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research [17, 12, 31, 50, 53, 54, 57, 62]. In 2006, L. Norton and J. Massagué [45]

introduced the general model:

dV(t)
dt

= aVα(t) − bV(t),

where 0 < α < 1 and a, b are constants of anabolism (growth) and catabolism

(death) respectively. Recently, M. Bohner et al [13] studied Solow Models on Time

Scales. Motivated by the work mentioned above, we focus on solving the general

Norton-Simon-Massagué model on arbitrary time scales T:

V∆(t) = a(t)Vα(t) − b(t)V(t),

where 0 < α < 1 and a(t) > 0, b(t) > 0.

M. Khuddush and K. R. Prasad [31] studied the n-species Lotka–Volterra sys-

tem on time scales and derived sufficient conditions for the existence and uniform

asymptotic stability of unique positive almost periodic solution of system. Moti-

vated by aforementioned works, we prove the permanence and positive almost

periodic solution of the following SAIQH type model on time scales:

S∆(t) = Λ + ωnQ(t) − [λ(t)(1 − p) + φp + γ]Sσ(t),

A∆(t) = λ(t)(1 − p)S(t) − [qν + γ]Aσ(t),

I∆(t) = qνA(t) − [δ1 + γ]Iσ(t),

Q∆(t) = φpS(t) + δ1 f1I(t) + δ2(1 − f2 − f3)H(t) − [ωm + γ]Qσ(t),

H∆(t) = δ1(1 − f1)I(t) + η(1 − k)HIC(t) −
[
δ2(1 − f2 − f3) + δ2 f2 + α1 f3 + γ

]
Hσ(t),

H∆
IC(t) = δ2 f2H(t) − [η(1 − k) + α2k + γ]Hσ

IC(t),

where, for all time t ≥ 0,

λ(t) =
β (lAA(t) + I(t) + lHH(t))

N(t)

is a bounded positive function with

N(t) = S(t) + A(t) + I(t) + Q(t) + H(t) + HIC(t),

β, lA, lH > 0, and all the other parameters in the model are non negative. In

addition,

p, 1 − p, k, 1 − k, q, f1, 1 − f1, f2, f3, 1 − f2 − f3 ∈ [0, 1].
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For more details on the mathematical model () we refer the reader to [36]. Then, we

conclude our works by given an example with numerical simulations to illustrate

our theorical results.

Fractional derivatives are one of the new technique that have lately gained

attention in scientific research because they effectively embed memory effects

in dynamical systems. This idea has been successfully used in mathematical

physics, it has also used in other fields more recently [8, 39, 48]. A. Nabti and

B. Ghanbari [42] studied a fractional SVEIR epidemic model of Caputo type.

Inspired by previous work, we prove the existence and uniqueness of solutions

of the following fractional SAIRS epidemic model:
CDα

t S(t) = µ − [βAA(t) + βII(t)]S(t) − (µ + ν + γ)S(t) + γ(1 − A(t) − I(t)),
CDα

t A(t) = [βAA(t) + βII(t)]S(t) − (η + δA + µ)A(t),
CDα

t I(t) = ηA(t) − (δI + µ)I(t),

subject to the initial condition

S(0) = S0 ≥ 0, A(0) = A0 ≥ 0, I(0) = I0 ≥ 0,

where CDα
t is the fractional Caputo derivative having order 0 < α ≤ 1 in order to

describe the memory effects in the proposed epidemic model. We assume that the

functions S(t), A(t), I(t) and their Caputo fractional derivatives of order 0 < α ≤ 1

are continuous functions. The parameters µ, η, βA, βI, ν, γ, δA, δI in the fractional

order SAIRS epidemic model (1) are considered to be positive values. Then, we

study the local and global stability using Lyapunov method and we give some

remarks with numerical simulations to illustrate our theoretical results.

This thesis is organized as follows:

In chapter one, we will explore the different basic concept related to calculus

on time scales such as the differentiation, integral, and the exponential function

with its properties. We give examples about the exact solution of the epidemic

model and the differential equation. Then, we also present the fixed point theory

like the theorem of Banach and Schauder which allow us to show the existence

and uniqueness of problems associated with an ordinary differential equation.

In chapter two, we examine several properties of novel Riemann-Liouville

fractional operators on time scales. We then establish sufficient conditions for

both the existence of a solution and the uniqueness of the solution for a nonlinear

Riemann-Liouville fractional initial value problem on time scales by using the

12



fixed point theory.

In chapter three, we give a general nonlinear first-order Norton Massagué

model on time scales. Then, we define the Cobb-Douglas production function

on time scales and use it to give the solution for the equation that describes the

model, the concrete examples are given.

In chapter four, we explore a SAIQH comportmental model on time scales and

define the Lyapunov function on time scales which allow a stability asymptotic of

the solution. Then, we prove the system’s permanence, the existence of solution,

and sufficient conditions indicating the existence of a unique almost periodic

uniformly asymptotically stable solution for the dynamic system.

In chapter five, we examine a fractional order SAIRS model with vaccination.

Then, we show the locally asymptotically stable of the disease-free (resp. endemic)

equilibrium if R0 < 1 (resp. R0 > 1). Furthermore, if R0 is less than another

threshaold R1( resp.R0 > 1 when γ = 0), we prove that the disease-free(resp.

endemic) equilibrium is globally stable. Finally, we give some remarks with

numerical simulations to illustrate our threshold results.

Contributions
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235.(Chapter book)

N. Zine, B. Bayour and D. F. M. Torres, Permanence and Stability of SAIQH

Models for COVID-19 on time scales. (Submitted)

N. Zine, B. Bayour, N. Helal, and M. Helal, Local and global Stability of fractional

SAIRS Models. (Submitted)
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Chapter 1
Preliminaries

In this chapter, we present a basic notions about time scales, fixed point theo-

rems, fractional operators, and stability. The definitions and results presented in

this chapter can be found in [4, 14, 15, 17, 19, 21, 20, 24, 30, 33, 41].

1.1 Time Scales

1.1.1 Derivation

Definition 1.1.1. A time scales T is an arbitrary nonempty closed subset of the real

numbers R.

Example 1.1.2. The following sets are time scales:

1. R = {real numbers},

2. Z = {integers},

3. N = {1, 2, 3, 4, 5, . . .},

4. N0 = {0, 1, 2, 3, 4, 5, . . .},

5. hZ = {hz ; z ∈ Z}, where h is a fixed real number,

6. Pa,b =
⋃
∞

K=0[K(a + b),K(a + b) + a],

7. [0, 1] ∪ [2, 3], [0, 1] ∪N,

8. The Cantor set.

Example 1.1.3. The following sets aren’t time scales:

14



Figure 1.1: Some time scales

Figure 1.2: The Cantor set

1. Q = {rational numbers},

2. R \Q = {irrational numbers},

3. C = {complex numbers},

4. ]0, 1[= { open interval between 0 and 1}.

We assume throughout that a time scales T has the topology that it inherits

from the real numbers with the standard topology.

Definition 1.1.4. Let T be a time scales. For t ∈ T, we define the forward jump

operator σ : T→ T by

σ(t) = inf{s ∈ T : s > t},
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while the backward jump operator ρ : T→ T by

ρ(t) := sup{s ∈ T : s < t}.

Then, one defines the graininess function µ : T→ [0,+∞[ by

µ(t) = σ(t) − t.

In this definition, we put inf ∅ = supT (i.e. σ(M) = M if T has a maximum M) and

sup ∅ = infT (i.e. ρ(m) = m if T has a minimum m), where ∅ denoted the empty set.

Example 1.1.5. Let us consider different time scales T.

� If T = R, we have σ(t) = t = ρ(t), and µ(t) = 0.

� If T = Z, we have σ(t) = t + 1, ρ(t) = t − 1, and µ(t) = 1.

� If T = hZ, h > 0, we have σ(t) = t + h, ρ(t) = t − h, and µ(t) = h.

� If T = qN, q > 1, we have σ(t) = qt, ρ(t) =
t
q
, and µ(t) = (q − 1)t.

� If T = N2
0 = {n2, n ∈ N0}, we have σ(t) = (

√
t + 1)2, ρ(t) = (

√
t − 1)2, and

µ(t) = 2
√

t + 1.

� If T = {
√

n, n ∈N0}, we obtain σ(t) =
√

t2 + 1, ρ(t) =
√

t2 − 1,

and µ(t) =
√

t2 + 1 − t.

Definition 1.1.6. The operators σ and ρ allow the following classification of points

on time scales T:

• If σ(t) > t, then we say that t is right-scattered, denoted by rs.

• If ρ(t) < t, then t is left-scattered, denoted by ls.

• Points that are right-scattered and left-scattered at the same time are called isolated.

• If t < supT and σ(t) = t, then t is called right-dense, denoted by rd.

• If t > infT and ρ(t) = t, then t is called left-dense, denoted by ld.

• Points that are right-dense and left-dense at the same time are called dense.

The following table illustrates the point classifications:
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Nature of the point t if . . .

t is right-scattered σ(t) > t

t is left-scattered ρ(t) < t

t is isolated ρ(t) < t < σ(t)

t is right-dense σ(t) = t

t is left-dense ρ(t) = t

t is dense ρ(t) = t = σ(t)
Table Classification of points

Definition 1.1.7. Let T be a time scales. We define the set Tκby Tκ = T − {M}, if T

has a left-scattered maximum M. Otherwise, Tk = T.

In summary,

Tκ =

 T−]ρ(supT), supT] if supT < +∞,

T if supT = +∞.

Example 1.1.8. Let T = [a, b].

• If ρ(b) = b, then [a, b]κ = [a, b].

• If ρ(b) < b, then [a, b]κ = [a, b[= [a, ρ(b)].

Example 1.1.9.

1. For T =
{

1
n ,n ∈N

}
∪ {0}, we have supT = 1, and ρ(supT) = ρ(1) =

1
2

. Then

Tκ = T −
]1
2
, 1

]
= T − {1},

i.e. Tκ =
{1

n
,n ∈N − {1}

}
∪ {0}.

2. For T = {2n,n ∈N}, we have supT = +∞, then Tκ = T.

Definition 1.1.10. If f : T→ R is a function, then we define the function

f σ : T→ R by

f σ(t) = f (σ(t)) for all t ∈ T,

i.e., f σ = f ◦ σ.

Definition 1.1.11. Let f : T→ R is a function and let t ∈ Tκ, then we define f ∆(t)

to be the number, provided it exists, with the property that given any ε > 0 there is a

neighborhood U of t (i.e., U = (t − δ, t + δ) ∩ T for some δ > 0) such that∣∣∣[ f σ(t) − f (s)] − f ∆(t)[σ(t) − s]
∣∣∣ ≤ ε|σ(t) − s| for all s ∈ U.
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We call f ∆(t) the delta (or the Hilger) derivative of f at t.

Moreover, we say that f is delta (or Hilger ) differentiable on Tκ provided f ∆(t) exists for

all t ∈ Tκ.

Theorem 1.1.12. Assume that f : T→ R is a function and let t ∈ Tk.

If f is ∆-differentiable at t, then

(i) f is continuous at t,

(ii) f (σ(t)) = f (t) + µ(t) f ∆(t).

Proof. (i) Assume that f is ∆-differentiable at t, and for s ∈ T, we have

σ(t) − s = (σ(t) − t) + (t − s) = µ(t) + (t − s). (1.1)

Let 0 < ε < 1,

ε′ =
ε

1 + | f ∆(t)| + 2µ(t)
.

Then 0 < ε′ < 1.

By definition 1.1.11, there exists a neighborhood U of t such that

| f (σ(t)) − f (s) − (σ(t) − s) f ∆(t)| < ε′|σ(t) − s| for all s ∈ U.

We have

| f (t) − f (s)| = | f (t) − f (s) + f (σ(t)) − f (σ(t)) − f ∆(t)(σ(t) − s) + f ∆(t)(σ(t) − s)|.

By using the condition (1.1), we obtain

| f (t) − f (s)| = | f (t) − f (s) + f (σ(t)) − f (σ(t)) − f ∆(t)(σ(t) − s) + f ∆(t)(σ(t) − t + t − s)|

= | f (t) − f (s) + f (σ(t)) − f (σ(t)) − f ∆(t)(σ(t) − s) + f ∆(t)µ(t) + f ∆(t)(t − s)|

= |[ f (σ(t)) − f (s) − f ∆(t)(σ(t) − s)] − [ f (σ(t)) − f (t) − µ(t) f ∆(t)] + (t − s) f ∆(t)|.

Then, we have for all s ∈ U∩]t − ε′, t + ε′[

| f (t) − f (s)| ≤ ε′|σ(t) − s| + ε′µ(t) + |t − s|| f ∆(t)|

= ε′|µ(t) + (t − s)| + ε′µ(t) + |t − s|| f ∆(t)|

≤ ε′µ(t) + ε′|t − s| + ε′µ(t) + |t − s|| f ∆(t)|
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≤ ε′[µ(t) + |t − s| + µ(t) + | f ∆(t)|]

≤ ε′[1 + | f ∆(t)| + 2µ(t)]

= ε.

Hence, f is continuous at t.

(ii) • If σ(t) = t, then µ(t) = 0 and we have

f (σ(t)) = f (t) = f (t) + µ(t) f ∆(t).

• If σ(t) > t, and f continuous at t, and

f ∆(t) =
f (σ(t)) − f (t)
σ(t) − t

=
f (σ(t)) − f (t)

µ(t)
.

Hense,

f (σ(t)) − f (t) = µ(t) f ∆(t).

Then,

f (σ(t)) = f (t) + µ(t) f ∆(t).

The proof is complete.

�

Example 1.1.13.

1. If T = R, we have σ(t) = t then

f ∆(t) = lim
s→t

f (σ(t)) − f (s)
σ(t) − s

= f ′(t).

2. If T = Z, we have σ(t) = t + 1 then

f ∆(t) = lim
s→t

f (σ(t)) − f (s)
σ(t) − s

=
f (t + 1) − f (t)

t + 1 − t
= f (t + 1) − f (t) = ∆ f (t),

where ∆ is the usual forward difference operator.

3. If T = hZ, we have σ(t) = t + h then

f ∆(t) = lim
s→t

f (σ(t)) − f (s)
σ(t) − s

=
f (t + h) − f (t)

t + h − t
=

f (t + h) − f (t)
h

.
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Example 1.1.14. 1. Let f : T −→ R be a function defined by f (t) = α for all

t ∈ T where α ∈ R, then

f ∆(t) = lim
s→t

f (σ(t)) − f (s)
σ(t) − s

= lim
s→t

α − α
σ(t) − s

= 0.

2. Let f : T −→ R be a function defined by f (t) = t, then

f ∆(t) = lim
s→t

f (σ(t)) − f (s)
σ(t) − s

= lim
s→t

σ(t) − s
σ(t) − s

= 1.

3. Let f : T −→ R be a function defined by f (t) =
√

t, then ∀t ∈ T we have

f ∆(t) = lim
s→t

f (σ(t)) − f (s)
σ(t) − s

= lim
s→t

√
σ(t) −

√
s

σ(t) − s
= lim

s→t

1√
σ(t) +

√
s

=
1√

σ(t) +
√

t
.

4. Let T = {
√

n; n ∈N0} and let f : T −→ R be a function defined by f (t) = t2, then

f ∆(t) = lim
s→t

f (σ(t)) − f (s)
σ(t) − s

= lim
s→t

σ(t)2
− s2

σ(t) − s

=
(σ(
√

n))2
− (
√

n)2

(σ(
√

n)) −
√

n

=
(
√

n + 1)2
− n

√
n + 1 −

√
n

=
n + 1 − n
√

n + 1 −
√

n

=
1

√
n + 1 −

√
n

=
1

√

t2 + 1 − t
=
√

t2 + 1 + t.

Thus, f ∆(t) =
√

t2 + 1 + t.

Theorem 1.1.15. Assume that f , g : T→ R are ∆-differentiable at t ∈ Tk. Then:

(i) The sum f + g : T→ R is ∆-differentiable at t with

( f + g)∆(t) = f ∆(t) + g∆(t).

(ii) For any constant α, α f : T→ R is ∆-differentiable at t with

(α f )∆(t) = α f ∆(t).
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(iii) The product f g : T→ R is ∆-differentiable at t with

( f g)∆(t) = f ∆(t)g(t) + f (σ(t))g∆(t) = f (t)g∆(t) + f ∆(t)g(σ(t)).

(iv) If f (t) f (σ(t)) , 0, then
1
f

: T→ R is ∆-differentiable at t with

(
1
f

)∆

= −
f ∆(t)

f (t) f (σ(t))
.

(v) If g(t)g(σ(t)) , 0, then
f
g

: T→ R is ∆-differentiable at t with

(
f
g

)∆

=
f ∆(t)g(t) − f (t)g∆(t)

g(t)g(σ(t))
.

Example 1.1.16. 1. The derivative of t2 is

t + σ(t),

and the derivative of
1
t

is

−
1

tσ(t)
.

2. Let f : T −→ R be a function, and for all t ∈ Tκ we have

( f 2)∆(t) = ( f . f )∆(t)

= f ∆(t) f (t) + f σ(t) f ∆

= f ∆(t)( f (t) + f σ(t)).

3. Let f , g, and h be three functions defined in T, then for all t ∈ Tκ we have

( f gh)∆(t) = ( f g)∆(t)h(t) + ( f g)σ(t)h∆(t)

= f ∆(t)g(t)h(t) + f σ(t)g∆(t)h(t) + f σ(t)gσ(t)h∆(t).

Remark 1.
Let f , g : R −→ R be two differentiable functions, then the derivative of ( f ◦ g) is given

by

( f ◦ g)′(t) = g′(t) f ′(g(t)).
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This rule is not valid for all time scales. Indeed :

We put T = Z and let the function f : R −→ R, g: T −→ R defined by

f (t) = t2 et g(t) = 2t.

We have

f ∆(t) = 2t et g∆(t) = 2.

We obtain ( f ◦ g)(t) = 4t2 and

( f ◦ g)∆(t) = 4(t + 1)2
− 4t2

= 8t + 4.

On the other hand,
g∆(t) f ∆(g(t)) = 2(2(2t))

= 8t.

We conclude that

( f ◦ g)∆(t) , g∆(t) f ∆(g(t)), for all t ∈ T.

Theorem 1.1.17.
Let f : R −→ R continuously differentiable, and assume that g : T −→ R is ∆-

differentiable. Then f ◦ g : T −→ R is ∆-differentiable and we have the formula

( f ◦ g)∆(t) = g∆(t)
∫ 1

0
f ′[g(t) + hµ(t)g∆(t)]dh

holds.

Example 1.1.18. Let g : Z −→ R and f : R −→ R defined by

g(t) = t2 and f (x) = ex

then

g∆(t) =
g(σ(t)) − g(s)
σ(t) − s

= g(t + 1) − g(t) = (t + 1)2
− t2 = 2t + 1

and

f ′(x) = ex.
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Hence, we have by theorem 1.1.17

( f ◦ g)(t) = g∆(t)
∫ 1

0
f ′(hg(σ(t)) + (1 − h)g(t))dh

= (2t + 1)
∫ 1

0
et2+h(2t+1)dh

= (2t + 1)et2
.

∫ 1

0
eh(2t+1)dh

= (2t + 1)et2
[ 1
2t + 1

.eh(2t+1)
]1

0

= (2t + 1)et2
[ 1
2t + 1

.e2t+1
−

1
2t + 1

]1

0

= et2
(e2t+1

− 1),

and the similar if we calculate ( f ◦ g)∆(t) , we have

( f ◦ g)∆(t) = ∆ f [g(t)] = f [g(t + 1)] − f [g(t)]

= e(t+1)2
− et2

= et2+2t+1
− e2t2

= et2
(e2t+1

− 1).

Corollary 1.1.19. Let f be a continuous function on [a, b] and it is ∆-differentiable

on [a, b[. If f ∆(t) = 0 for all t ∈ [a, b[, then f is a constant function on [a, b].

Corollary 1.1.20. Let f be a continuous function on [a, b] that is ∆-differentiable on

[a, b[. Then, f is increasing, decreasing, nondecreasing, and nonincreasing on [a, b] if

f ∆(t) > 0, f ∆(t) < 0, f ∆(t) ≥ 0, and f ∆(t) ≤ 0 for all t ∈ [a, b[, respectively.

1.1.2 Integration

Definition 1.1.21. A function f : T→ R is called regulated provided its right-sided

limits exist (finite) at all right-dense points in T and its left-sided limits exists (finite) at

all left- dense points in T.

Example 1.1.22. Let T = R and

f (t) =


1
t

for t ∈ R\{0},

0 for t = 0.
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All points of T are denses and lim
t→0−

f (t) = −∞, lim
t→0+

f (t) = +∞. Therefore, the function f

isn’t regulated on R.

Example 1.1.23. Let T =N ∪ [0, 1] and

f (t) =
t2

t − 1
, g(t) =

t
t + 1

, for t ∈ T.

We have 1 is left dense, and lim
t→1

f (t) = ∞ then the function f isn’t regulated.

On the other hand, we have lim
t→1

g(t) =
1
2

(exists and finite) then the function g is regulated.

Definition 1.1.24. A function f : T → R is called rd-continuous provided it is

continuous at right-dense points in T and its left-sided limits exist (finite) at left-dense

points in T.

The set of rd-continuous functions f : T→ R is denoted by Crd = Crd(T) = Crd(T,R).

The set of functions f : T → R that are ∆-differentiable and whose derivative is

rd-continuous is denoted by C1
rd = C1

rd(T) = C1
rd(T,R).

Example 1.1.25. Let

T = {0} ∪
{1

n
; n ∈N

}
∪ {2} ∪

{
2 −

1
n

; n ∈N
}
.

We define
f : T −→ [0.2],

t 7−→ f (t) =

 t if t , 2,

0 if t = 2.

We have the point 0 is rd, and the point 2 is ld.

Then the right limit of f at 0 exists and equal to f (0), thus f is continuous at 0.

On the other hand, f is discontinuous at 2 since lim
t→2

f (t) , f (2) but the left limit of f

exists in 2. Therefore, f is not continuous, but it is rd-continuous.

Theorem 1.1.26. Assume that f : T→ R. Then,

(i) If f is continuous, then f is rd-continuous.

(ii) If f is rd-continuous, then f is regulated.

(iii) Assume that f is continuous. If g : T → R is regulated or rd-continuous, then

f ◦ g has that property too.
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Definition 1.1.27. A continuous function f : T → R is called pre-differentiable

with (region of differentiation) D, provided D ⊂ Tκ, Tκ\D is countable and contains no

right- scattered elements of T, and f is differentiable at each t ∈ D.

Theorem 1.1.28. (Existence of Pre-Antiderivatives) Let f be regulated. Then there

exists a function F which is pre-differentiable with region of differentiation D such that

F∆(t) = f (t) holds for all t ∈ D.

Definition 1.1.29. Assume that f : T→ R is a regulated function. Any function F

as in Theorem 1.1.28 is called a pre-antiderivative of f . We define the indefinite integral

of a regulated function f by ∫
f (t)∆t = F(t) + C,

where C is an arbitrary constant and F is pre-antiderivative of f . We define the Cauchy

integral by ∫ s

r
f (t)∆t = F(s) − F(r) for all r, s ∈ T.

A function F : T→ R is called an antiderivative of f : T→ R provided

F∆(t) = f (t) holds for all t ∈ Tκ.

Example 1.1.30. Let T = Z, evaluate the indefinite integral∫
(3t2 + 5t + 2)∆t.

We put g(t) = t3 + t2. We have σ(t) = t + 1, then

g∆(t) = (t3)∆ + (t2)∆

= [(σ(t))2 + tσ(t) + t2] + [σ(t) + t]

= [(t + 1)2 + t(t + 1) + t2] + [t + 1 + t]

= (t2 + 2t + 1 + t2 + t + t2) + 2t + 1

= 3t2 + 5t + 2.

Thus, ∫
(3t2 + 5t + 2)∆t = t3 + t2 + c,

where c is an arbitrary constant.
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Theorem 1.1.31. (Existence of Antiderivatives) Every rd-continuous function has

an antiderivative. In particular, if t0 ∈ T, then F defined by

F(t) :=
∫ t

t0

f (τ)∆τ for t ∈ T

is an antiderivative of f .

Proposition 1.1.32. [4] Suppose that T is a time scales and f is an increasing

continuous function on the time scales interval [a, b] (i.e.,T ⊆ [a, b]). If F is the extension

of f to the real interval [a, b] given by

F(s) :=

 f (s) if s ∈ T,

f (t) if s ∈ (t, σ(t)) < T.

Then, ∫ b

a
f (t)∆t ≤

∫ b

a
F(t)dt.

Theorem 1.1.33. If f ∈ Crd and t ∈ Tκ, then∫ σ(t)

t
f (τ)∆τ = µ(t) f (t).

Theorem 1.1.34.
If a, b, c ∈ T, α ∈ R and f , g ∈ Crd, then

1.
∫ b

a
[ f (t) + g(t)]∆(t) =

∫ b

a
f (t)∆(t) +

∫ b

a
g(t)∆(t).

2.
∫ b

a
α f (t)∆(t) = α

∫ b

a
f (t)∆(t).

3.
∫ b

a
f (t)∆(t) = −

∫ a

b
f (t)∆(t).

4.
∫ b

a
f (t)∆(t) =

∫ c

a
f (t)∆(t) +

∫ b

c
f (t)∆(t).

5.
∫ b

a
f (σ(t))g∆(t)∆(t) = ( f g)(b) − ( f g)(a) −

∫ b

a
f ∆(t)g(t)∆(t).

6.
∫ b

a
f (t)g∆(t)∆(t) = ( f g)(b) − ( f g)(a) −

∫ b

a
f ∆(t)g(σ(t))∆(t).

7.
∫ a

a
f (t)∆(t) = 0.

8. If | f (t)| ≤ g(t) on [a, b], then |
∫ b

a
f (t)∆(t)| ≤

∫ b

a
g(t)∆(t).

9. If f (t) ≥ 0 for all a ≤ t < b, then
∫ b

a
f (t)∆(t) ≥ 0.
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Theorem 1.1.35.
Let a, b ∈ T and f ∈ Crd.

(i) If T = R, the function f is ∆-integrable on [a, b] and∫ b

a
f (t)∆(t) =

∫ b

a
f (t)dt.

(ii) If [a, b] consists of only isolated points, then

∫ b

a
f (t)∆(t) =


∑

t∈[a,b[ µ(t) f (t) if a < b

0 if a=b

−
∑

t∈[b,a[ µ(t) f (t) if a > b.

(iii) If T = Z, then

∫ b

a
f (t)∆(t) =


∑b−1

k=a µ(t) f (t) if a < b

0 if a = b

−
∑a−1

k=b µ(t) f (t) if a > b.

(iv) If T = hZ, h > 0, then

∫ b

a
f (t)∆(t) =


∑ b

h−1
k= a

h
µ(t) f (t) if a < b

0 if a=b

−
∑ a

h−1

k= b
h
µ(t) f (t) if a > b.

The proof of Theorem 1.1.34 and Theorem 1.1.35 can be directly followed from

[14, 15].

Example 1.1.36. For T = hZ, h > 0. Let’s calculate
∫ t

0
s∆s on T, we have

∫ t

0
s ∆s =

t
h−1∑
k=0

(kh)h = h2

t
h−1∑
k=0

k = h2
[ t
2h

(
t
h
− 1)

]
⇒

∫ t

0
s ∆s =

t(t − h)
2

.
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1.1.3 The exponential function

Definition 1.1.37. For h > 0, we define the Hilger complex numbers, the Hilger real

axis, the Hilger alternating axis, and the Hilger imaginary circle as

Ch := {z ∈ C; z , −
1
h
},

Rh := {z ∈ Ch; z ∈ R and z > −
1
h
},

Ah := {z ∈ Ch; z ∈ R and z < −
1
h
},

Ih := {z ∈ Ch;
∣∣∣∣∣z +

1
h

∣∣∣∣∣ =
1
h
},

respectively. For h = 0, let C0 := C, R0 := R, I0 := iR, andA0 := ∅.

Definition 1.1.38. Let h > 0 and z ∈ Ch. We define the Hilger real part of x by

<h(z) :=
|zh + 1| − 1

h

and the Hilger imaginary part of z by

=h(z) :=
Arg(zh + 1)

h
,

where Arg(z) denotes the principal argument of z (i.e.,−π < Arg(z) ≤ π).

Note that<h(z) and =h(z) satisfy

−
1
h
<<h(z) < ∞ and −

π
h
< =h(z) ≤

π
h
,

respectively. In particular,<h(z) ∈ Rh.

Theorem 1.1.39. If we define "the cicle plus" addition ⊕ on Ch by

z ⊕ w := z + w + zwh,

then (Ch,⊕) is an Abelian group.

Corollary 1.1.40. If z ∈ Ch, then the additive inverse of z under the operation ⊕ is

	z := −
z

1 + zh
.
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Definition 1.1.41. We define "the circle minus" subtraction 	 on Ch by

z 	 w := z ⊕ (	w).

Remark 2. If z, w ∈ Ch, for h > 0, we have

z 	 w =
z − w

1 + wh
.

If h = 0, then z 	 w = z − w.

Definition 1.1.42. A function f : T −→ R is called regressive provided

1 + µ(t) f (t) , 0 for all t ∈ Tk

holds. The set of all regressive and rd-continuous functions f : T −→ R will be denoted

by

R = R(T) = R(T,R).

We define the set

R
+ = R+(T) = R+(T,R) =

{
f ∈ R : 1 + µ(t) f (t) > 0, f or all t ∈ T

}
.

Definition 1.1.43. For h > 0, let Zh be the strip

Zh := {z ∈ C :
−π
h
< =(z) ≤

π
h
}.

For h = 0, let Z0 := C.

Definition 1.1.44. For h > 0, we define the cylinder transformation ξh : Ch → Zh

by

ξh(z) =
1
h

log(1 + zh),

where log is the principal logarithm function. For h = 0, we define ξ0(z) := z for all

z ∈ C.

Definition 1.1.45. Let p, q ∈ R, we define the circle plus addition ⊕ on R by

(p ⊕ q)(t) := p(t) + q(t) + µ(t)p(t)q(t) for all t ∈ T,
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and the circle minus subtraction 	 on R by

(p 	 q)(t) :=
p(t) − q(t)

1 + µ(t)q(t)
for all t ∈ T.

Let introduce the notation

R(α) =

 R if α ∈N

R
+ if α ∈ R \N .

Note that p ∈ R+ implies that

1 + µ(t)p(t)τ > 0 for all t ∈ T and all τ ∈ [0, 1].

Definition 1.1.46. For α ∈ R and p ∈ R(α), we define

(α � p)(t) := αp(t)
∫ 1

0
(1 + µ(t)p(t)τ)α−1dτ.

Theorem 1.1.47. Suppose that p ∈ R and fix t0 ∈ T. Then the initial value problem

y∆ = p(t)y, y(t0) = 1 on T

has a unique solution on T.

Definition 1.1.48. If p ∈ R and fix t0 ∈ T, then one unique solution of the initial

value problem (1.1.47) is denoted by ep(·, s) called the exponential function define by

ep(t, s) := exp
∫ t

s
ξµ(τ)(p(τ))∆τ for s, t ∈ T.

Proposition 1.1.49. If p, q ∈ R(T) and t, s, r ∈ T, then

. e0(t, s) = 1 and ep(t, t) = 1,

. ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s),

. e	p(t, s) =
1

ep(t, s)
,

. ep(t, s) = 1
ep(s,t) = e	p(s, t),

. ep(t, s).eq(t, s) = ep⊕q(t, s),

. ep(t, s).ep(s, r) = ep(t, r),
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.
ep(t, s)
eq(t, s)

= ep	q(t, s),

.
( 1
ep(·, s)

)∆

= −
p(t)

eσp(·, s)
.

Theorem 1.1.50. If α ∈ R and p ∈ R(α), then

eα�p = eαp .

Definition 1.1.51. Let α ∈ R \ {0}, f ∈ Crd

x∆ = [p 	 (
1

α − 1
� ( f xα))]x, (1.2)

is a Bernoulli equation on time scales.

Theorem 1.1.52. Suppose that α ∈ R \ {0}, p ∈ R(α), and f ∈ Crd. Let x0 , 0. If

1
xα0

+

∫ t

t0

eαp (τ, t0) f (τ)∆τ > 0 for all t ∈ T.

Then,

x(t) =
ep(t, t0)[

1
xα0

+
∫ t

t0
eαp (τ, t0) f (τ)∆τ

] 1
α

(1.3)

solves the Bernoulli equation (1.2).

1.2 Point fixed theorems

Let X and Y be two Banach spaces, S a family of functions from X to Y, and

A ⊂ X.

Definition 1.2.1. (Uniformly bounded) we call S uniformly bounded if there exists

M > 0 such that

‖T‖ = sup
x∈A
|T(x)| ≤M on X for T ∈ S.

Definition 1.2.2. (Equicontinuous) The family S is equicontinuous on A if for

every ε > 0, there exists a δ > 0 such that for every pair of elements x, y ∈ A and every

T ∈ S we have ∥∥∥y − x
∥∥∥

X
< δ⇒

∥∥∥T(y) − T(x)
∥∥∥

Y
< ε.
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Theorem 1.2.3. (Ascoli-Arzela theorem) Assume that A is a compact set in X. Then

a set S ⊂ C(A) is relatively compact in C(A) if and only if the functions in S are uniformly

bounded and equicontinuous on A.

Theorem 1.2.4. (Schauder theorem) Let A be a closed convex set in Banach space X

and assume that T : A→ A is a continuous mapping such that T(A) is relatively compact

subset of A. Then T has a fixed point.

Theorem 1.2.5. (Banach theorem) Let T be a contraction on a Banach space X. Then

T has a unique fixed point.

1.3 Fractional operators

We now recall the celebrated gamma function.

Definition 1.3.1 (Gamma function). For complex numbers with a positive real

part, the gamma function Γ(t) is defined by the following convergent improper integral:

Γ(t) :=
∫
∞

0
st−1e−sds.

Remark 3. The gamma function satisfies the following useful property:

Γ(t + 1) = tΓ(t).

Definition 1.3.2. For a given integrable function h(t), the fractional integral

operator of Riemann Liouville Iαt of order α > 0 is given by

Iαt h(t) =
1

Γ(α)

∫ t

0
(t − s)α−1h(s)ds,

with

I0
t h(t) = h(t).

Definition 1.3.3. For a given function h(t) in C[0,T], the fractional derivative

operator of Riemann Liouville sense RLDα
t of order α > 0 is given by

RLDα
t h(t) =

 1
Γ(n−α)

dn

dtn

∫ t

0
h(s)

(t−s)α−n+1 ds, n − 1 < α < n, n ∈N,
dn

dtn h(t), α = n, n ∈N.
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Definition 1.3.4. Let T > 0 and h(t) ∈ Cn[0,T]. The Caputo fractional derivative

operator CDα
t of order α > 0 is defined by

CDα
t h(t) =

 1
Γ(n−α)

∫ t

0
h(n)(s)

(t−s)α−n+1 ds, n − 1 < α < n, n ∈N,
dn

dtn h(t), α = n, n ∈N.

The following two propositions are met in the case of Caputo fractional deriva-

tive

CDα
t (Iαt h)(t) = h(t), Iαt (CDα

t h)(t) = h(t) −
n−1∑
k=0

h(k)(0)
k!

tk, t > 0.

Definitions (1.3.3) and (1.3.4) are different from each other, and the relation be-

tween the two types of fractional derivatives is as follows

CDα
t h(t) =RL Dα

t h(t) −
n−1∑
k=0

rαk (t)h(k)(0), rαk (t) =
tk−α

Γ(k + 1 − α)
.

The Caputo derivative has the main advantage that corresponding problem’s

initial condition has the same value as the ordinary differential equation. More-

over, for a constant valued function, the Caputo derivative is zero.

1.4 Stability

1.4.1 Stability of equilibrium

So it is essential to define the notion of equilibrium points. Equilibrium points

play a crucial role in the study of dynamic systems Henri Poincre( 1854-1912)

showed that to characterize a dynamic system with several variables, there is no

need to calculate detailed solutions; it is enough to know the equilibrium points

and their stability. This very important result considerably simplifies the study

of non-linear systems in the vicinity of these points. So to determine the stability

of an equilibrium point, we must study the behavior of the solutions in a small

neibohood of it. Let f : D→ Rn, D ⊂ Rn then, we study the qualitative behavior

of the solutions of the differential order system:x′(t) = f (x(t)),

x(0) = x0.
(1.4)
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Definition 1.4.1. We say that e is an equilibrium point for (1.4) if and only if f (e) = 0.

Definition 1.4.2. The equilibrium point x = e of (1.4) is

• stable if for each ε > 0, there is δ = δ(ε) > 0 such that

‖x(0) − e‖ < δ⇒ ‖x(t) − e‖ < ε, for all t ≥ 0,

• unstable if it is not stable,

• asymptotically stable if it is stable and δ can be chosen such that

‖x(0) − e‖ < δ⇒ lim
t→∞

x(t) = e.

Definition 1.4.3. A set M is said to be an invariant set with respect to the system

(1.4) if

x(0) ∈M, x(t) ∈M, for all t.

We also say that x(·) approaches a set M as t approaches infinity, if for each ε ≥ 0 there is

T > 0 such that

d(x(t),M) ≤ ε for all t > T.

Definition 1.4.4 (Lyapunov function). We consider the system (1.4). Let e be

an equilibrium point for (1.4), D be a domain containing e, and V : D→ R a continuous

and differentiable function on D.

1. We say that V is a Lyapunov function in the broad sense at e, if it satisfies the

following two properties:

(i) V is positive definite.

(ii) V′(x(t)) ≤ 0 for all x ∈ D.

2. We say that V is a Lyapunov function in e, if satisfies the following two properties:

(i) V is positive definite.

(ii) V′(x(t)) < 0 for all x ∈ D \ {e}.

Theorem 1.4.5 (The principle of fractional invariance Lasalle). Let

Ω ⊂ D be a compact set that is positively invariant with respect to (1.4). Let V : D→ R

be a continuously differentiable function such that V(x(t)) > 0 and V′(x(t)) ≤ 0 in Ω for

x(t) solution of system (1.4). Let E be the set of all points in Ω where V′(x(t)) = 0. Let M

be the largest invariant set in E. Then every solution in Ω approaches M as t→∞.
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Remark 4. Let α ∈ [0, 1], the fractional system CDα
t x(t) = f (x(t)) has the same

equilibrium points as the system x′(t) = f (x(t)).

1.4.2 The basic reproduction number

The basic reproduction number, denoted R0, is topically defined [20] as: the

average number of secondary cases produced by a "typical" infected ( assumed

infectious) individual during his/ her entire life as infectious ( infectious period)

when introduced in a population of susceptibles.

R0 is often found through the study and computation of the eigenvalues of the

Jacobian at the disease-free equilibrium. Diekmann et al [21] follow a different

approach: the next generation operator approach. They define R0 as the spectral

radius of the next generation operator.

We consider the epidemiological models that can be written in the form:
dx
dt = f (x,E, I)
dE
dt = g(x,E, I)
dI
dt = h(x,E, I)

where x ∈ Rr, E ∈ Rs, I ∈ Rn, r, s, n ≥ 0, and h(x, 0, 0) = 0. The components of x

denote the number of susceptibles, recovered, and other classes of non-infected

individuals. The components of E represent the number of infected individuals

who do not transmit the disease. The components of I represent the number

of infected individuals capable of transmitting the disease ( e.g. infectious and

non-quarentined individuals).

Let U0 = (x∗, 0, 0) ∈ Rr+s+n denote the disease-free equilibrium, that is, at

U0 = (x∗, 0, 0), f (x∗, 0, 0) = g(x∗, 0, 0) = h(x∗, 0, 0) = 0. Assume that the equation

g(x∗,E, I) = 0 implicitly determines a function E = g̃(x∗, I). Let A = DIh(x∗, g̃(x∗, 0), 0)

and further assume that A can be written in the form A = M−D, with M ≥ 0 (That

is, mi j ≥ 0) and D > 0, a diagonal matrix.

The spectral bound of matrix B is denoted by m(B) = sup{<λ; λ ∈ σ(B)},where

<λ means the real part of λ, while ρ(B) = lim
n→∞
‖Bn
‖

1
n denote the spectral radius of

B. The proof of the following theorem involving matrix A is found in Diekmann

et al [21]:

Either

m(A) < 0 ⇔ ρ(MD−1) < 1
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or

m(A) > 0 ⇔ ρ(MD−1) > 1.

The basic reproductive number is defined as the spectral radius ( dominant

eigen value) of the matrix MD−1, that is,

R0 = ρ(MD−1).

Example 1.4.6. [19] Many communicable diseases can be modelled using models that

include compartments for the susceptible, exposed, infected and recovered epidemiological

classes. An SEIR model for a homogeneously mixing population is given by the following

set of equations: 
dS
dt = Λ − βS I

N − µS,
dE
dt = βS I

N − (µ + k)E,
dI
dt = kE − (γ + µ)I,
dR
dt = γI − µR,

where E is the number of latent individuals and k is the rate at which a latent individual

becomes infectious. Letting x = (S,R), E = E, I = I, U0 = (Λ
µ , 0, 0, 0) and g̃(x∗, I) =

βI
β+k

gives M =
kβ
µ+k and D = γ + µ. Hence,

R0 = MD−1 =
kβ

(µ + k)(µ + γ)
.

1.4.3 Routh Hurwitz criterion

Let consider the following system:
x′1 = a11x1 + . . . + a1nxn,
...

x′n = an1x1 + . . . + annxn,

(1.5)

where all coefficients ai j, 1 < i < n, 1 < j < n are constants. The characteristic

determinant of the system (1.5) is :

det


a11 − λ a12 . . . a1n

a21 a22 − λ . . . a2n
...

...
. . .

...

an1 an2 . . . ann − λ

 = 0. (1.6)
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By developing the characteristic determinant given in (1.6), we obtain a poly-

nomial of nth degree in λ,

a0λ
n + a1λ

n−1 + . . . + an−1λ + an = 0, (1.7)

where, we can assume that a0 > 0. The Hurwitz’s criterion, which is an algebraic

condition, consists of examining the coefficients of the polynomial characteristic

of classical linear system and constructing a matrix called the Hurwitz matrix

which can be written in the following form:

To apply this criterion, you must first construct a square matrix of dimension

n. This matrix is constructed in the following manner: Beginning with a1, the first

row is a sequential array of the coefficients with odd indices in equation (1.7).

The elements of each subsequent row are formed such that for 0 < 2 j − i ≤ n, the

general element ai j = a2 j−1, otherwise ai j = 0. As the result of such a construction,

the coefficients a1, . . . , an will be on the principal diagonal of the matrix, and all

elements of the last column will be equal to zero, expect the last element. The

following matrix is called Hurwitz Matrix given by [41]:

H =



a1 a3 a5 · · · 0

a0 a2 a4 · · · 0

0 a1 a3 · · · 0
...

...
...

. . .
...

0 0 0 · · · an


. (1.8)

We consider the principal diagonal minors of the matrix (1.8):

∆1 = a1, ∆2 =
∣∣∣∣ a1 a3

a2 a4

∣∣∣∣, . . . , ∆n = an∆n−1. (1.9)

The last expression becomes self-evident if we note that in the last column of the

matrix (1.8) all elements expect an are equal to zero.

Theorem 1.4.7. (Hurwitz criterion) In the characteristic polynomial (1.7), with real

coefficients and a positive coefficient for the leading term, in order for all the roots to have

negative real parts, necessary and sufficient condition is that all principal diagonal minors

in (1.9) be positive:

∆1 > 0, ∆2 > 0, . . . , ∆n−1 > 0, ∆n > 0. (1.10)
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Corollary 1.4.8. When a0 > 0,

1. a necessary condition for all roots of equation (1.7) to have negative real part is that

all coefficients a1, . . . , an must be positive:

a1 > 0, a2 > 0, . . . , an > 0. (1.11)

2. even if one the cofficients a1, . . . , an is negative, then some of the roots λ1, . . . , λn of

equation (1.7) will have positive real parts.

Now we will consider some particular cases:

1. A first-order system (n = 1): The characteristic polynomial has the form:

a0λ + a1 = 0.

For a0 > 0, the asymptotic stability condition is a1 > 0.

2. A second-order system (n = 2):

a0λ
2 + a1λ + a2 = 0.

The matrix (1.8) and Hurwitz’s condition are:a1 0

a0 a2

 , ∆1 = a1 > 0, ∆2 = a1a2 > 0.

For a0 > 0, then the asymptotic stability conditions for a second-order system

become a1 > 0, a2 > 0.

3. A third-order system (n = 3):

a0λ
3 + a1λ

2 + a2λ + a3 = 0.

We construct the corresponding matrix (1.8) and Hurwitz’s condition as
a1 a3 0

a0 a2 0

0 a1 a3

 , ∆1 = a1 > 0, ∆2 = a1a2 − a0a3 > 0, ∆3 = a3∆2 > 0.

Using inequalities (1.11), we directly obtain the conditions for asymptotic
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stability of a third-order system, with a0 > 0, as

a1 > 0, a2 > 0, a3 > 0, ∆2 = a1a2 − a0a3 > 0.
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Chapter 2
Existence and uniqueness of solutions

to proper fractional Riemann-Liouville

value problems on time scales

In this chapter, several properties of new Riemann–Liouville fractional oper-

ators on time scales are studied. Next, we demonstrate sufficient conditions for

a nonlinear Riemann–Liouville fractional initial value problem on an arbitrary

time scales to have a solution, as well as sufficient conditions for the uniqueness

of solution using the fixed point theorems of Schauder and Banach.

2.1 Introduction

LetTbe a time scales, that is, a nonempty closed subset ofR. In [9], Benkhettou,

Hammoudi and Torres introduced a concept of fractional integral,

T
a Iαt h(t) =

1
Γ(α)

∫ t

a
(t − s)α−1h(s)∆s, (2.1)

and the concept of fractional derivative

T
a Dα

t h(t) =
1

Γ(1 − α)

(∫ t

a
(t − s)−αh(s)∆s

)∆

(2.2)

of Riemann–Liouville on time scales. In [58], Torres gives more suitable definitions

of fractional integral (2.1) and fractional derivative (2.2) of Riemann–Liouville

on time scales, introducing the forward jump σ operator of time scales in their
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definition:
T
a Iαt h(t) =

1
µ(α)

∫ t

a
(t − σ(s))α−1h(s)∆s (2.3)

and
T
a Dα

t h(t) =
1

µ(1 − α)

(∫ t

a
(t − σ(s))−αh(s)∆s

)∆

. (2.4)

Here we focus on definitions (2.3) and (2.4), but changing the operator σ into

the backward jump operator ρ. As we shall prove, the new definitions with ρ

provide proper notions with respect to existence and uniqueness of solution to

the following initial value problem (IVP):

(αt0
Dy)(t) = f (t, y(t)), t ∈ [t0, t0 + d] = J ⊆ T, (2.5)

(1−α
t0

Iy)(t0) = 0, (2.6)

where T is a given time scales, 0 < α < 1, d > 0, αt0
D is the proper (left) Riemann–

Liouville fractional derivative operator or order α defined on Twith ρ, 1−α
t0

I is the

proper (left) Riemann–Liouville fractional integral operator of order 1−α defined

on T with ρ, and function f : J × T → R is a right dense continuous function.

Our main results give sufficient conditions for the existence (Theorem 2.4.3) and

uniqueness (Theorem 2.5.1) of solution to problem (2.5)–(2.6).

2.2 Fractional operators on time scales

Now we introduce new notions of fractional operators, analogous to the

Riemann–Liouville fractional operators on time scales proposed in [58].

Definition 2.2.1 (Fractional integral on time scales). Suppose T is a time

scales, [a, b] is an interval of T, and f is an integrable function on [a, b]. Let 0 < α < 1

and t ∈ [a, b]. Then the (left) Riemann–Liouville fractional integral of order α of f is

defined by

(αa I f )(t) :=
∫ t

a

(t − ρ(s))α−1

Γ(α)
f (s)∆s, (2.7)

where Γ is the gamma function.

Definition 2.2.2 (Fractional derivative on time scales). Suppose T is

a time scales, [a, b] is an interval of T, and f is an integrable function on [a, b]. Let

0 < α < 1, t ∈ [a, b]. The (left) Riemann–Liouville fractional derivative of order α of f is

41



defined by

(αa D f )(t) :=
1

Γ(1 − α)

(∫ t

a
(t − ρ(s))−α f (s)∆s

)M
. (2.8)

Fractional operators of negative order are defined as follows.

Definition 2.2.3. If −1 < α < 0, then the (Riemann–Liouville) fractional derivative

of order α is defined as the fractional integral of order−α. Moreover, the fractional integral

of order α is defined as the (Riemann–Liouville) fractional derivative of order −α:

(αa D f )(t) := (−αa I f )(t), (αa I f )(t) := (−αa D f )(t).

Remark 5. Along the work, we consider the order α of the fractional derivatives in the

real interval (0, 1). We can, however, easily generalize our definitions to any positive real

α. Indeed, let α ∈ R+
\N. Then there exists β ∈ (0, 1) such that α = [α] + β, where [α]

is the integer part of α, and we can set

(α
a D f

)
(t) := β

aD
(

f ∆[α]
)

(t).

2.3 Properties of the time scales fractional operators

We begin by proving some fundamental properties of the fractional operators

on time scales. After that, we prove existence of a solution to the fractional order

initial value problem (2.5)–(2.6) defined on a time scales T .

Proposition 2.3.1. Let T be a time scales with derivative ∆; 0 < α < 1. Then,

(α
a Dg

)
(t) =

(
∆ ◦ 1−α

a Ig
)

(t).

Proof. Let g : T→ R. From (2.8) we have

(αa Dg)(t) =
1

Γ(1 − α)

(∫ t

a
(t − ρ(s))−αg(s)∆s

)M
=

(
1−α
a Ig)(t)

)∆

= (∆ ◦ (1−α
a Ig))(t).

The proof is complete. �
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Proposition 2.3.2. For any integrable function g on [a, b]∩T, the Riemann–Liouville

∆−fractional integral satisfies

α
a I ◦ βaI(g) =

α+β
a I(g), for α > 0 and β > 0.

Proof. Similar to the proof of Proposition 16 of [9]. �

Proposition 2.3.3. For any integrable function g on [a, b] ∩ T one has

α
a D ◦ αa Ig = g, 0 < α < 1.

Proof. By Propositions 2.3.1 and 2.3.2, we have

α
a D ◦ αa Ig =

[(
1−α
a I

) (α
a Ig

)
(t)

]M
=

[(
1
aIg

)
(t)

]M
= g(t).

The proof is complete. �

Corollary 2.3.4. For 0 < α < 1, we have

(α
a D

)
◦
(
−α
a D

)
= Id

and
−α
a I ◦ αa I = Id,

where Id denotes the identity operator.

Proof. From Definition 2.2.3 and Proposition 2.3.3, we have that

α
a D ◦ −αa D = α

a D ◦ αa I = Id

and
−α
a I ◦ αa I = α

a D ◦ αa I = Id.

The proof is complete. �

Definition 2.3.5. For α > 0, we denote by α
a I([a, b]) the space of functions that can be

represented by the Riemann–Liouville ∆-integral of order α of some Crd([a, b]) function.

Theorem 2.3.6. Let f ∈ Crd([a, b]) and α > 0. In order that f ∈ α
a I([a, b]), it is

necessary and sufficient that

(1−α
a I f ) ∈ C1

rd([a, b]) (2.9)
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and

((1−α
a I f )(t))|t=a = 0. (2.10)

Proof. Assume that f ∈ α
a I([a, b]), f (t) = (αa Ih)(t) for some h ∈ Crd([a, b]), and

(1−α
a I f )(t) = (1−α

a I)(αa Ih)(t).

From Proposition 2.3.2, we have

(1−α
a I f )(t) = (1

aIh)(t) =

∫ t

a
h(s)∆s.

Therefore,

(1−α
a I f ) ∈ C1

rd([a, b])

and

(1−α
a I f )(t))|t=a =

∫ a

a
h(s)∆s = 0.

Conversely, assume that f ∈ Crd([a, b]) satisfies (2.9) and (2.10). From Taylor’s

formula applied to function I1−α
a f , one has

(1−α
a I f )(t) =

∫ t

a

∆

∆s
(1−α
a I f )(s)∆s, for all t ∈ [a, b].

Let ϕ(t) := ∆
∆t (

1−α
a I f )(t). Note that, by (2.9), ϕ ∈ Crd([a, b]). From Proposition 2.3.2,

we have

(1−α
a I f )(t) = (1

aIϕ)(t) = (1−α
a I)(αa Iϕ)(t)

and thus

(1−α
a I f )(t) − (1−α

a I)(αa Iϕ)(t) ≡ 0.

Then,

[1−α
a I( f − (αa Iϕ)](t) ≡ 0.

This implies that

f − (αa Iϕ) ≡ 0.

We conclude that f = α
a Iϕ and f ∈ α

a I([a, b]). �

Corollary 2.3.7. Let 0 < α < 1 and f ∈ Crd([a, b]) satisfy the condition in Theo-

rem 2.3.6. Then, (α
a I ◦ αa D

)
( f ) = f .
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2.4 Existence of solutions to fractional IVPs on time

scales

Let T be a time scales and J = [t0, t0 + d] ⊂ T. A function y ∈ Crd(J ,R) is a

solution to problem (2.5)–(2.6) if

(αt0
Dy)(t) = f (t, y) on J , 0 < α < 1,(

1−α
t0

Iy
)

(t0) = 0.

To establish the existence of such solution, first we recall the definition of compact

map [24].

Definition 2.4.1. Let X and Y be topological spaces. A map f : X → Y is called

compact if f (X) is contained in a compact subset of Y.

Let us define the operator

T : Crd(J ,R)→ Crd(J ,R)

by

T(y)(t) =
1

Γ(α)

∫ t

t0

(t − ρ(s))α−1 f (s, y(s))∆s.

Lemma 2.4.2. Let 0 < α < 1,J ⊆ T, and f : J ×R→ R. A function y is a solution

to problem (2.5)–(2.6) if, and only if, this function is a solution to the integral equation

y(t) =
1

Γ(α)

∫ t

t0

(t − ρ(s))α−1 f (s, y(s))∆s,

that is, y is a fixed point of operator T: T(y) = y.

Proof. By Corollary 2.3.7, (αt0
I) ◦ (αt0

Dy)(t) = y(t). From (2.8) we have

y(t) =
1

Γ(α)

∫ t

t0

(t − ρ(s))α−1 f (s, y(s))∆s

and the proof is complete. �

Theorem 2.4.3 (Existence of solution). Suppose f : J × R → R is a rd-

continuous bounded function such that there exists M > 0 with
∣∣∣ f (t, y(t))

∣∣∣ < M for all

t ∈ J , y(t) ∈ R. Then problem (2.5)–(2.6) has a solution on J .
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Proof. The proof is given in three steps.

Step 1: T is continuous. Let yn be a sequence such that yn → y in C(J ,R).

Then, for each t ∈ J ,

|T(yn)(t) − T(y)(t)|

≤
1

Γ(α)

∫ t

t0

(t − ρ(s))α−1
∣∣∣ f (s, yn(s)) − f (s, y(s))

∣∣∣∆s

≤
1

Γ(α)

∫ t

t0

(t − ρ(s))α−1 sup
s∈J

∣∣∣ f (s, yn(s)) − f (s, y(s))
∣∣∣∆s

≤

∥∥∥ f (·, yn(·)) − f (·, y(·))
∥∥∥
∞

Γ(α)

∫ t

t0

(t − ρ(s))α−1∆s

≤

∥∥∥ f (·, yn(·)) − f (·, y(·))
∥∥∥
∞

Γ(α)

∫ t

t0

(t − ρ(s))α−1ds.

(2.11)

For 0 < α < 1 we have

(t − ρ(s))α−1 < (t − s)α−1,

and from inequality (2.11) it follows that

∣∣∣T(yn)(t) − T(y)(t)
∣∣∣ ≤ ∥∥∥ f (·, yn(·)) − f (·, y(·))

∥∥∥
∞

Γ(α)
aα

α

≤

aα
∥∥∥ f (·, yn(·)) − f (·, y(·))

∥∥∥
∞

Γ(α + 1)
.

Since f is a continuous function, one has

∣∣∣T(yn)(t) − T(y)(t)
∣∣∣
∞
≤

aα

Γ(α + 1)

∥∥∥ f (·, yn(·)) − f (·, y(·))
∥∥∥
∞
→ 0

as n→∞.

Step 2: For the second part of the proof, we have to show that the set T(C(J ,R))

is relatively compact. Let T(y) ∈ T(C(J ,R)). Then,
∥∥∥T(y)

∥∥∥
∞
≤ l. By hypothesis,
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for each t ∈ J we have

∣∣∣T(y)(t)
∣∣∣ ≤ 1

Γ(α)

∫ t

t0

(t − ρ(s))α−1
∣∣∣ f (s, y(s))

∣∣∣∆s

≤
M

Γ(α)

∫ t

t0

(t − ρ(s))α−1∆s

≤
M

Γ(α)

∫ t

t0

(t − ρ(s))α−1ds. (2.12)

For 0 < α < 1, we know that

(t − ρ(s))α−1
≤ (t − s)α−1,

and from inequality (2.12) and Proposition 1.1.32 we can write that

∣∣∣T(y)(t)
∣∣∣ ≤ Maα

αΓ(α)
=

Maα

Γ(α + 1)
= l.

Therefore, T(C(J ,R)) is uniformly bounded. This set is also equicontinuous since

for every t1, t2 ∈ J , t1 < t2. Let A =
∣∣∣T(y)(t1) − T(y)(t2)

∣∣∣. Then we can write that

A ≤
1

Γ(α)

∣∣∣∣∣∣
∫ t1

t0

(t1 − ρ(s))α−1 f (s, y(s))∆s −
∫ t2

t0

(t2 − ρ(s))α−1 f (s, y(s))∆s

∣∣∣∣∣∣
≤

1
Γ(α)

∣∣∣∣∣∣
∫ t1

t0

(t1 − ρ(s))α−1 f (s, y(s))∆s

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∫ t2

t0

(t2 − ρ(s))α−1 f (s, y(s))∆s

∣∣∣∣∣∣
≤

1
Γ(α)

∫ t1

t0

(t1 − ρ(s))α−1
∣∣∣ f (s, y(s))

∣∣∣∆s +

∫ t2

t0

(t2 − ρ(s))α−1
∣∣∣ f (s, y(s))

∣∣∣∆s,

that is,

A ≤
M

Γ(α)

(∫ t1

t0

((t1 − ρ(s))α−1
− (t2 − ρ(s))α−1)∆s +

∫ t2

t1

(t2 − ρ(s))α−1∆s
)
. (2.13)

For 0 < α < 1,

(t − ρ(s))α−1 < (t − s)α−1
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and it follows that

|T(y)(t1) − T(y)(t2)|

≤
M

Γ(α)

(∫ t1

t0

((t1 − s)α−1
− (t2 − s)α−1)ds +

∫ t2

t1

(t2 − s)α−1ds
)

≤
M

αΓ(α + 1)
[(t2 − t1)α + (t1 − t0)α − (t2 − t0)α + (t2 − t1)α]

=
2M

αΓ(α + 1)
(t2 − t1)α +

M
αΓ(α + 1)

[(t1 − t0)α − (t2 − t0)α].

As t1 → t2, the right-hand side of the above inequality tends to zero. From

the Arzela–Ascoli theorem, adapted to our context, it follows that T(C(J ,R)) is

relatively compact.

Step 3: conclusion. As a consequence of Schauder’s fixed point theorem, we

conclude that T has a fixed point, which is solution of problem (2.5)–(2.6). �

2.5 Uniqueness of solutions to fractional IVPs on time

scales

Theorem 2.5.1 (Existence and uniqueness of solution). LetJ = [t0, t0 +

d] ⊆ T. The initial value problem (2.5)–(2.6) has a unique solution on J if function

f (t, y(t)) is a right-dense continuous bounded function such that there exists M > 0 for

which
∣∣∣ f (t, y(t))

∣∣∣ < M on J and the Lipshitz condition∣∣∣ f (t, x(t)) − f (t, y(t))
∣∣∣ ≤ L

∥∥∥x − y
∥∥∥
∞

holds for some L > 0, for all t ∈ J and all x(t), y(t) ∈ R.

Proof. Let S be the set of rd-continuous functions on J ⊆ T. For y ∈ S, define∥∥∥y
∥∥∥ = sup

t∈J

∥∥∥y(t)
∥∥∥. It is easy to see that S is a Banach space with this norm. The

subset of S(R) and the operator T are defined by

S(R) = {X ∈ S : ‖Xs‖ ≤ R}

and

T(y) =
1

Γ(α)

∫ t

t0

(t − ρ(s))α−1 f (s, y(s))∆s.
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Then,

∣∣∣T(y(t))
∣∣∣ ≤ 1

Γ(α)

∫ t

t0

(t − ρ(s))α−1
∣∣∣ f (s, y(s))

∣∣∣∆s

≤
M

Γ(α)

∫ t

t0

(t − ρ(s))α−1∆s.

Since (t− ρ(s))α−1 is an increasing monotone function, by using Proposition 1.1.32

we can write that ∫ t

t0

(t − ρ(s))α−1∆s ≤
∫ t

t0

(t − ρ(s))α−1ds.

Consequently, ∣∣∣T(y(t))
∣∣∣ ≤ M

Γ(α)

∫ t

t0

(t − ρ(s))α−1ds. (2.14)

For 0 < α < 1 we have

(t − ρ(s))α−1 < (t − s)α−1

and from equation (2.14) it follows that

∣∣∣T(y(t))
∣∣∣ ≤ M

Γ(α)
aα

α
=: R̄.

With R̄ = Maα
Γ(α+1) , we conclude that T is an operator from S(R) to S(R̄). Moreover,

∥∥∥T(x) − T(y)
∥∥∥ ≤ 1

Γ(α)

∫ t

t0

(t − ρ(s))α−1
| f (s, x(s)) − f (s, y(s)) | ∆s

≤

L
∥∥∥x − y

∥∥∥
∞

Γ(α)

∫ t

t0

(t − ρ(s))α−1∆s

≤

L
∥∥∥x − y

∥∥∥
∞

Γ(α)

∫ t

t0

(t − ρ(s))α−1ds. (2.15)

It follows from equation (2.15) that

∥∥∥T(x) − T(y)
∥∥∥ ≤ L

∥∥∥x − y
∥∥∥
∞

Γ(α)
aα

α

=
Laα

Γ(α + 1)

∥∥∥x − y
∥∥∥
∞

for x, y ∈ S(R). If
Laα

Γ(α + 1)
≤ 1, then one has a contraction map. This implies the

uniqueness of solution to problem (2.5)–(2.6). �
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Chapter 3
Exact solution to a general Norton

Massagué Model on time scales

In this chapter, we give a general nonlinear first-order Norton-Simon-Massagué

model on time scales. Then we define the Cobb-Douglas production function on

time scales and use it to give the solution for the equation that describes the model.

Concrete examples are given.

3.1 Introduction

Mathematical models are powerful tools that are often used to describe real-

world problems, illuminating different scientific and technical disciplines [1, 18,

51, 60]. In the literature, we find several mathematical models of tumor growth

that have been proposed, each with its own details and parameters [5]. We

mention, among them, a plethora of macroscopic tumor growth models [10]. In

1960, Bertalanffy derived the equation that can be used to describe a tumor growth

process

dV
dt

= aV
2
3 (t) − bV(t) (3.1)

where a and b are proportionality constants. The solution to the equation (3.1) is

the following form:

V(t) =

[
a
b
− (

a
b
− c)exp(

−bt
3

)
]3

, where c ∈ R.
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In 2005, L. Norton [44] introduced the model.

dV
dt

= aV
d
3 (t) − bV(t) (3.2)

V(t0) = V0. (3.3)

Here d > 0. We point out that the Norton-Massagué equation (3.2)-(3.3) may

be solved in closed form, namely,

V(t) = V(0)
[a
b

V(0)
d
3−1 + e(b( d

3−1)t)(1 −
a
b

V(0)
b
3−1))

] 3
d−3

.

In 2006, L. Norton and J. Massagué [45] introduced the general model

dV(t)
dt

= aVα(t) − bV(t) (3.4)

where 0 < α < 1 and a, b are constants of anabolism (growth) and catabolism

(death), respectively. In this chapter, we will focus on solving the general Norton-

Massagué model on arbitrary time scales T

V∆(t) = a(t)Vα(t) − b(t)V(t) (3.5)

where 0 < α < 1 and a(t) > 0, b(t) > 0. To our knowledge, this is the first study that

considers the resolution of the so-called general Norton-Massagué tumor growth

model on time scales. The study of dynamical systems on time scales is today an

active field of research. Recently, Martin Bohner et al [13] studied solow models

on time scales. Motivated by the work as mentioned above, we study the general

tumor growth model on time scales.

3.2 General tumor growth model on time scales

In this section, we consider the general Norton-Massagué tumor growth model

on time scales

V∆(t) = a(t)Vα(t) − b(t)V(t) (3.6)

V(t0) = V0 (3.7)

where 0 < α < 1 and a, b ∈ Crd or a(t) > 0, b(t) > 0 for all t ∈ T.
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Let f (x) = xα,w(t) = ( 1
α−1 �

bg
a )(t) and g(t) = (1 − α)a(t).

We recall the following definition of generalized Cobb-Douglas production func-

tion on time scales [13].

Definition 3.2.1. We define the generalized Cobb-Douglas production function on

time scales by f (x) = x f̃ (x). Provided that

f̃ (x) :=
b(t) + (w 	 ( 1

α−1 � (gxα−1))(t)
a(t)

(3.8)

is independent of t ∈ T.

Lemma 3.2.2. If µ(t) = 0 at t, then

b(t) + (w 	 ( 1
α−1 � (gxα−1)))(t)
a(t)

= xα−1. (3.9)

Proof. Suppose µ(t) = 0 at t, then we have

b(t) +
(
w 	 ( 1

α−1 � (gxα−1))
)

(t)

a(t)
=

b(t) + w(t) − g(t)xα−1

α−1

a(t)

=
b(t) +

b(t)g(t)
(α−1)a(t) −

g(t)xα−1

α−1

a(t)

=
b(t) − b(t) + a(t)xα−1

a(t)
= xα−1.

The proof is complete. �

Example 3.2.3. If T = R, then f̃ (x) = xα−1, and thus (3.8) holds. Hence the Cobb-

Douglas production function is defined and equals

f (x) = x f̃ (x) = xxα−1 = xα.

Lemma 3.2.4. Let t ∈ T. If µ(t) > 0, suppose A = b(t) + (w	 ( 1
α−1 � (gxα−1)))(t) then

A =
1
µ(t)

b(t)µ(t) − 1 +

(
1 + (1 − α)µ(t)a(t)xα−1

1 + (1 − α)µ(t)b(t)

) 1
1−α

 . (3.10)
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Proof. Let µ(t) > 0 at t ∈ T, then we have

1
α − 1

� (gxα−1)(t) =
1

α − 1
(gxα−1)(t)

∫ 1

0
(1 + µ(t)g(t)xα−1τ)

1
α−1−1dτ

=
1

α − 1
gxα−1

(
1 + µ(t)(gxα−1)(t)τ

) 1
α−1 ]1

0

1
α−1µ(t)gxα−1

=
1
µ(t)

(
(1 + µ(t)gxα−1

) 1
α−1
− 1).

Again, we have

w(t) =
1

α − 1
�

bg(t)
a(t)

=
1

α − 1
� (b(t)(1 − α))

=
1

α − 1
b(t)(1 − α)

∫ 1

0

(
1 + µ(t)b(t)(1 − α)τ

) 1
α−1−1 dτ

= b(t)(1 − α)

 (1 + µ(t)b(t)(1 − α)τ)
1
α−1

µ(t)b(t)(1 − α)

1

0

=
1
µ(t)

[(
1 + µ(t)b(t)(1 − α)

) 1
α−1 − 1

]
;

hence

w 	
( 1
α − 1

� (gxα−1)
)

=
w − (1+µ((gx)α−1)

1
α−1−1

−1
µ

1 + µ
(1+µgxα−1) 1

α−1−1
µ

=
w − (1 + µgxα−1)

1
α−1 − 1

(1 + µgxα−1) 1
α−1

=

(1+µb(1−α))
1
α−1 −1

µ −
(1+µgxα−1)

1
α−1 −1

µ

(1 + µgxα−1) 1
α−1

=
1
µ

−1 +

(
1 + µb(1 − α)

1 + µ(1 − α)axα−1

) 1
α−1


=

1
µ

−1 +

(
1 + µ(1 − α)axα−1

1 + µb(1 − α)

) 1
1−α

 .
Which ends the proof. �

We assume the following additional hypothesis:
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H(1): Let a(t) > 0 and b(t) > 0, for all t ∈ T and suppose ã = a(t)µ(t), b̃ = b(t)µ(t)

are independents of t ∈ T.

Theorem 3.2.5. Let µ(t) > 0, assume that H(1) holds, then (3.8) holds and the

Cobb-Douglas production is defined by

f (x) =
x
ã

b̃ − 1 +

(
1 + (1 − α)ãxα−1

1 + (1 − α)b̃

) 1
1−α

 .
Proof. In view of lemma 3.2.4, we obtain

b(t) +
(
w 	 ( 1

α−1 � (gxα−1))
)

(t)

a(t)
=

1
µ(t)a(t)

{
b(t)µ(t) − 1

+

(
(1 + (1 − α)µ(t)a(t)xα−1)

1 + (1 − α)µ(t)b(t)

) 1
1−α }

=
1
ã

b̃ − 1 +

(
1 + (1 − α)ãxα−1

1 + (1 − α)b̃

) 1
1−α


is independent of t and therefore equals f̃ (x) hence, f (x) = x f̃ (x). �

Example 3.2.6. Assuming T = Z and that a and b are constants then, the cobb-

Douglas production function is defined and equals

f (x) =
x
a

{
b − 1 +

(1 + (1 − α)axα−1

1 + (1 − α)b

) 1
1−α

}
.

Example 3.2.7. Assuming T = qN0 with q > 1 and If ã(t) := (q − 1)ta(t) and

b̃ := (q − 1)tb(t) are independent of t ∈ T then, the cobb-Douglas production function is

defined and equals

f (x) =
x
ã

{
b̃ − 1 +

(1 + (1 − α)ãxα−1

1 + (1 − α)b̃

) 1
1−α

}
.

Theorem 3.2.8. Suppose H(1) and (3.8) holds. Let f be defined by f (x) = x f̃ (x), then

(3.6) holds if and only if

V∆(t) = {w 	 (
1

α − 1
� (gVα−1))}(t)V(t) (3.11)

where g = (1 − α)a and w = 1
α−1 �

bg
a .
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Remark 6. The general Norton-Massagué equation is a special case of a Bernoulli

equation on time scales.

Corollary 3.2.9. Suppose (α − 1) ∈ R − {0}, w = 1
α−1 �

bg
a ∈ R(α − 1) and g =

(1 − α)a ∈ Crd. Let V0 , 0, if

1
Vα−1

0

+

∫ t

0
eα−1

w (τ, 0)g(τ)∆τ > 0 for all t ∈ T,

then

V(t) =
ew(t, 0)[

1
Vα−1

0
+

∫ t

0
eα−1

w (τ, 0)g(τ)∆τ
] 1
α−1

(3.12)

solves the general Norton-Massagué equation (3.6)-(3.7).

Theorem 3.2.10. Assume that a(t) > 0, b(t) > 0 for all t ∈ T and λ :=
a(t)
b(t)

is

independent of t ∈ T. If we define p ∈ R by

p(t) = (1 − α)b(t) for all t ∈ T, (3.13)

then the solution of (3.6)-(3.7) is given by

V(t) =

{
λ +

V1−α
0 − λ

ep(t, t0)

} 1
1 − α

for all t ∈ T (3.14)

provided that λ +
V1−α

0 − λ

ep(t, t0)
> 0.

Proof. Suppose V solves (3.6) such that V(t0) = V0. Let x̃ := Vα−1 by [[15], theorem

2.37], we have:

x̃∆

x̃
= (α − 1) �

V∆

V

= (α − 1) � {ω 	 [
1

α − 1
� (gVα−1)]}

= [(α − 1) � ω] 	 (gVα−1)

= (b(1 − α) 	 (gVα−1));

so

x̃∆ = (p 	 (gx̃))x̃.
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Let z :=
1
x̃

we get

z∆ = (
1
x̃

)∆

= −
(x̃)∆

x̃x̃σ
= −(p 	 (gx̃))zσ

=
gx̃ − p

1 + µgx̃
zσ

hence

(1 + µgx̃)z∆ = gx̃zσ − pzσ;

it means

z∆ + µz∆gx̃ = gx̃zσ − pzσ.

Using the simple useful formula

z∆ + gx̃(zσ − z) = gx̃zσ − pzσ.

Seen that

g = (1 − α)a

= (1 − α)bλ

= λp

we get

z∆ = −pzσ + g (3.15)

the variation of constants in the formula [[15] Theorem 2.74]. The solution to 3.15

is given by

z(t) = z0e	p(t, t0) +

∫ t

t0

g(τ)e	p(t, τ)∆τ

= z0e	p(t, t0) +

∫ t

t0

λp(τ)ep(τ, t)∆τ

= z0e	p(t, t0) + λ

∫ t

t0

p(τ)ep(τ, t)∆τ

= z0e	p(t, t0) + λep(τ, t) |tt0

= z0e	p(t, t0) + λ(1 − e	p(t, t0)).
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We have z0 = V1−α
0 as well as V(t) = 1

z(t)
1
α−1

which shows (3.14). Conversely, V

given by (3.14) is easily seen to be a solution to (3.6)-(3.7). �

3.3 Examples

Example 3.3.1. Let T = mZ with m > 0, considering the following equation

V∆(t) =
√

2V
2
3 (t) − 5V(t), t ∈ T (3.16)

V(0) = 1, (3.17)

here b(t) = 5, a(t) =
√

2, α = 2
3 , g(t) = (1 − α)a(t) = (1 − 2

3 )
√

2 =
√

2
3

and w(t) =
(

1
α−1 �

bg
a

)
(t).

We taking

w(t) =
1

2
3 − 1

�
5
√

2

3
√

2

= (−3) �
5
3

= (−3)
5
3

∫ 1

0
(1 + µ(t)

5
3
τ)−3−1dτ

=
1
m

(
(1 +

5
3

m)−3
− 1

)
also, 1 + µ(t)w(t) = (1 + 5

3m)−3 > 0 hence w ∈ R+. In addition

w 	 (
1

α − 1
� (gxα−1))(t) =

1
m

((1 + 5
3m)−3

− 1) −
√

2m
3 x−

1
3

1 + m
√

2
3 x− 1

3

;

so

f̃ (x) =
b(t) + (w 	 ( 1

α−1 � (gxα−1)))(t)
a(t)

=
1
√

2m

5m + (1 + 5
3m)−3

−

√
2

3 mx−
1
3 − 1

1 +
√

2
3 mx− 1

3


is independent of t. Let λ(t) = a(t)

b(t) =
√

2
5 and according to theorem 3.2.10 the solution of

equation (3.16)-(3.17) is

V(t) =


√

2
5

+
1 −

√
2

5

e 5
3
(t, 0)


3

,
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seen that

e 5
3
(t, o) = exp

(∫ t

0
ζµ(t)(

5
3

)∆t
)

= exp
∑
τ∈[0,t]T

1
m

log(1 +
5
3

m)τ

= (1 +
5
3

m)
t

2m (t+1)

where ∑
τ∈I

τ = m(0 + 1 + 2 + .. +
t
m

)

=
m
2

(
t
m

+ 1)(
t
m

)

=
t
2

(
t
m

+ 1)

here I = {0,m, 2m, 3m, ..., t}, we get

V(t) =


√

2
5

+
1 −

√
2

5

(1 + 5
3m) t

2m (t+1)


3

. (3.18)

It is clear that b̃(t) = mb(t) = 5m > 0 and ã(t) = ma(t) =
√

2m > 0 are independent of t.

On the other hand, according to theorem 3.2.8 the system(3.16)-(3.17) equivalent to

system(3.19)-(3.20)

V∆(t) = (w 	 (
1

α − 1
� (gVα−1)))(t)V(t), t ∈ T (3.19)

V(0) = 1, (3.20)

we have

1 +

√
2

3

∫ t

0
eα−1

w (τ, 0)dτ > 0 for all t ∈ T

according to corollary 3.2.9, the general solution of Norton-Massagué equation (3.16)-

(3.17) gives
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V(t) =
ew(t, 0)[

1
Vα−1

0
+

∫ t

0
eα−1

w (τ, 0)g(τ)dτ
] 1
α−1

=
ew(t, 0)[

1 +
√

2
3

∫ t

0
e−3

w (τ, 0)dτ
]−3

where

ew(t, 0) = exp
(∫ t

0
ζµ(τ)(w(τ))∆τ

)
, (3.21)

since T = mZ with µ(t) = m

ew(t, 0) = exp
(∫ t

0
ζµ(τ)(w(τ))∆τ

)
= exp

( 1
m

t
2

(
t
m

+ 1)log(1 + mw)
)

where ζµ(τ)(w(τ)) = 1
µ(τ) log(1 + µ(τ)w(τ)), and

∑
τ∈[0,t]T

τ =
t
2

(
t
m

+ 1),

therefore

V(t) =
exp

(
1
m

t
2 ( t

m + 1)log(1 + mw)
)

[
1 +

√
2

3

∫ t

0
exp−1

3 ( 1
m
τ
2 ( τm + 1)log(1 + mw))∆τ

]−3

=
exp

(
1
m

t
2 ( t

m + 1)log(1 + 5
3m)

)
[
1 +

√
2

3

∫ t

0
exp−1

3 ( 1
m
τ
2 ( τm + 1)log(1 + 5

3m))∆τ
]−3

=
exp

(
1
m

t
2 ( t

m + 1)log(1 + 5
3m)

)
[
1 +

√
2

3

∑t
τ=0 exp( τ

−6m ( τm + 1)log(1 + 5
3m))

]−3

=
(1 + 5

3m)
t

2m ( t
m +1)[

1 +
√

2
3

∑ t
m
ρ=0(1 + 5

3m)
ρ(ρ+1)
−6

]−3

it means

V(t) = (1 +
5
3

m)
t

2m ( t
m +1)

1 +

√
2

3

t
m∑
ρ=0

(1 +
5
3

m)
ρ(ρ+1)
−6


3

. (3.22)

.
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Conclusion

A new system of general nonlinear first-order Norton-Massagué tumor growth

on time scales has been introduced. Using a resolved Cobb-Douglas production

function on time scales to solve the proposed system and obtain the desired results

generalize the continuous and discrete spaces. The results presented can be used

to assess the solvability of some different classes of problems in the literature.
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Chapter 4
Permanence and Stability of SAIQH

Models for COVID-19 on time scales

This chapter studies a SAIQH (Susceptible-Asymptomatic-Infectious-Quaran-

tined -Hospitalized) compartmental model on time scales where the definition of

the Lyapunov function is given. Then, we prove the permanent of the system, the

existence of solution, and sufficient conditions implying the dynamic system to

have a unique almost periodic solution that is uniformly asymptotically stable.

4.1 Introduction

In 2019, the COVID-19 pandemic has appeared for the first time in Wuhan,

China, attracting many researchers to investigate outbreaks and the spread of

viruses [2, 3]. Some of the studies provided new mathematical compartmental

models, illustrating well the important contributions of Mathematics to fight com-

municable diseases. Such models have been used to analyze the corresponding

dynamics and to supply useful techniques in disease epidemiology [6, 36, 55].

Kim et al. studied a SAIQH (Susceptible, Asymptomatic, Infectious, Quaran-

tined, Hospitalized) mathematical model to analyze the transmission dynamics

of MERS and to estimate transmission rates [32]. Lemos-Paião et al. developed a

SAIQH type model for COVID-19, which was important to describe and under-

stand the pandemic in Portugal [36]. Similar to [36], here we also consider the HIC

class of hospitalized individuals in intensive care units.

Let the total living population under study, denoted by N(t), t ≥ 0, be divided

into six classes: (i) the susceptible individuals S(t); (ii) the infected individuals

without (or with mild) symptoms A(t) (the Asymptomatic); (iii) infected individ-
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uals I(t) with visible symptoms; (iv) quarantined individuals Q(t) in isolation at

home; (v) hospitalized individuals H(t); (vi) and hospitalized individuals HIC(t)

in intensive care units. The mathematical model introduced and studied in [36]

reads:

Ṡ(t) = Λ + ωnQ(t) − [λ(t)(1 − p) + φp + γ]S(t),

Ȧ(t) = λ(t)(1 − p)S(t) − [qν + γ]A(t),

İ(t) = qνA(t) − [δ1 + γ]I(t),

Q̇(t) = φpS(t) + δ1 f1I(t) + δ2(1 − f2 − f3)H(t) − [ωm + γ]Q(t),

Ḣ(t) = δ1(1 − f1)I(t) + η(1 − k)HIC(t) −
[
δ2(1 − f2 − f3) + δ2 f2 + α1 f3 + γ

]
H(t),

ḢIC(t) = δ2 f2H(t) − [η(1 − k) + α2k + γ]HIC(t),
(4.1)

where, for all time t ≥ 0,

λ(t) =
β (lAA(t) + I(t) + lHH(t))

N(t)

is a bounded positive function with

N(t) = S(t) + A(t) + I(t) + Q(t) + H(t) + HIC(t),

β, lA, lH > 0, and all the other parameters in the model are nonnegative. In addition,

p, 1 − p, k, 1 − k, q, f1, 1 − f1, f2, f3, 1 − f2 − f3 ∈ [0, 1].

For more details on the mathematical model (4.1) we refer the reader to [36].

Motivated by the 2019 paper of Khuddush and Prasad on a n-species Lotka–

Volterra system [31], here we extend (4.1) to a time scales T, studying the per-

manence and uniform asymptotic stability of the unique positive almost periodic
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solution of the following SAIQH type model on time scales:

S∆(t) = Λ + ωnQ(t) − [λ(t)(1 − p) + φp + γ]Sσ(t),

A∆(t) = λ(t)(1 − p)S(t) − [qν + γ]Aσ(t),

I∆(t) = qνA(t) − [δ1 + γ]Iσ(t),

Q∆(t) = φpS(t) + δ1 f1I(t) + δ2(1 − f2 − f3)H(t) − [ωm + γ]Qσ(t),

H∆(t) = δ1(1 − f1)I(t) + η(1 − k)HIC(t) −
[
δ2(1 − f2 − f3) + δ2 f2 + α1 f3 + γ

]
Hσ(t),

H∆
IC(t) = δ2 f2H(t) − [η(1 − k) + α2k + γ]Hσ

IC(t),
(4.2)

where all parameters are real nonnegative numbers and λ(t) is bounded positive,

as mentioned before. In the particular case T = R+, system (4.2) reduces to (4.1).

For convenience, in the sequel we put x1 = S, x2 = A, x3 = I, x4 = Q, x5 = H,

and x6 = HIC.

For a function f (t) defined on t ∈ T+, we set

f L := inf
{
f (t) : t ∈ T+} , f U := sup

{
f (t) : t ∈ T+} .

In the following, we give a lemma proved in [27] and some definitions [37].

Lemma 4.1.1. Assume that α > 0, b > 0, and −α ∈ R+. If

y∆(t) ≥ (≤) b − αyσ(t), y(t) > 0, t ∈ [t0,∞)T,

then

y(t) ≥ (≤)
b
α

[
1 +

(
αy(t0)

b
− 1

)
e(−α)(t, t0)

]
, t ∈ [t0,∞)T,

where e·(·, ·) is the standard exponential function of the time scales calculus [15].

Definition 4.1.2. A time scales T is called an almost periodic time scales if

Π =
{
τ ∈ R : t + τ ∈ T, for all t ∈ T

}
, {0} .

Definition 4.1.3. Let T be an almost periodic time scales. A function x ∈ C(T,Rn)

is called an almost periodic function if the ε-translation set of x, that is,

E {ε, x} =
{
τ ∈ Π : |x(t + τ) − x(t)| < ε for all t ∈ T

}
,

is a relatively dense set inT for all ε > 0 and there exists a constant l(ε) > 0 such that each

interval of length l(ε) contains a τ ∈ E {ε, x} for which |x(t + τ) − x(t)|< ε for all t ∈ T.
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The value τ is known as the ε-translation number of x and l(ε) is called the inclusion

length of E {ε, x}.

Definition 4.1.4. LetD be an open set in Rn and let T be a positive almost periodic

time scales. A function f ∈ C(T ×D,Rn) is called an almost periodic function in t ∈ T

uniformly for x ∈ D if the ε-translation set of f ,

E
{
ε, f , S

}
=

{
τ ∈ Π :| f (t + τ) − f (t) |< ε, for all (t, x) ∈ T × S

}
,

is a relatively dense set in T for all ε > 0 and, for each compact subset S ofD, that is, for

any given ε > 0 and each compact subset S ofD, there exists a constant l(ε, S) > 0 such

that each interval of length l(ε, S) contains τ(ε, S) ∈ E
{
ε, f , S

}
for which

| f (t + τ, x) − f (t, x) |< ε, for all (t, x) ∈ T × S.

Consider a system

x∆(t) = h(t, x), (4.3)

where h : T+
× SB −→ Rn, SB = {x ∈ Rn : ‖x‖ < B} and h(t, x) is almost periodic

in t uniformly for x ∈ SB and is continuous in x. In [62] the question of existence

of a unique almost periodic solution f (t, x(t)) ∈ S of (4.3), which is uniformly

asymptotically stable, is investigated. For our model, we obtain from [62] the

following result.

Lemma 4.1.5. Suppose that there exists a Lyapunov function V(t, x, z) defined on

T+
× SB × SB satisfying the following conditions:

(i) a(‖x − z‖) ≤ V(t, x, z) ≤ b(‖x − z‖), where a, b ∈ K

withK =
{
α ∈ C(R+,R+) : α(0) = 0 and α is increasing

}
;

(ii) |V(t, x, z) − V(t, x1, z1)| ≤ L(‖x − x1‖ + ‖z − z1‖), where L > 0 is a constant;

(iii) D+V∆(t, x, z) ≤ −cV(t, x, z), where c > 0, −c ∈ R+,

and D+V∆ is the Dini derivative of V. Furthermore, if there exists a solution x(t) ∈ S of
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system

x∆
1 (t) = Λ + ωnx4(t) − [λ(t)(1 − p) + φp + γ]xσ1(t),

x∆
2 (t) = λ(t)(1 − p)x1(t) − [qν + γ]xσ2(t),

x∆
3 (t) = qνx2(t) − [δ1 + γ]xσ3(t),

x∆
4 (t) = φpx1(t) + δ1 f1x3(t) + δ2(1 − f2 − f3)x5(t) − [ωn + γ]xσ4(t),

x∆
5 (t) = δ1(1 − f1)x3(t) + η(1 − k)x6(t) − [δ2(1 − f2 − f3) + δ2 f2 + α1 f3 + γ]xσ5(t),

x∆
6 (t) = δ2 f2x5(t) − [η(1 − k) + α2k + γ]xσ6(t),

(4.4)

for t ∈ T+, where S ∪ SB is a compact set, then there exists a unique almost periodic

solution f (t) ∈ S of system (4.4), which is uniformly asymptotically stable.

4.2 Main Results

Let t0 ∈ T be a fixed positive initial time. Our main results are: the proof

that system (4.4) is permanent (Section 4.2.1); a sufficient condition for existence

of a solution to system (4.4) (Section 4.2.2); and conditions that imply the dy-

namic system (4.4) to have a unique almost periodic solution that is uniformly

asymptotically stable (Section 4.2.3).

4.2.1 Permanence of solutions

We begin by introducing the notion of permanence of solutions.

Definition 4.2.1. System (4.4) is said to be permanent if there exist positive constants

m and M such that m ≤ lim inft−→∞ xi(t) ≤ lim supt−→∞ xi(t) ≤ M, i = 1, 2, . . . , 6, for

any solution (x1(t), . . . , x6(t)) of (4.4).

Theorem 4.2.2. System (4.4) is permanent.

Proof. Let Z(t) = (x1(t), . . . , x6(t)) be a positive solution of system (4.4). Then,

x∆
1 (t) ≥ Λ − [λU(1 − p) + φp + γ]xσ1(t),

x∆
2 (t) ≥ λL(1 − p)m1 − (qν + γ)xσ2(t),

x∆
3 (t) ≥ qνm2 − (δ1 + γ)xσ3(t),

x∆
4 (t) ≥ φpm1 + δ1 f1m3 − (ωn + γ)xσ4(t),

x∆
5 (t) ≥ δ1(1 − f1)m3 − [δ2(1 − f2 − f3) + δ2 f2 + α1 f3 + γ]xσ5(t),

x∆
6 (t) ≥ δ2 f2m5 − [η(1 − k) + α2k + γ]xσ6(t).
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From Lemma 4.1.1, it follows that

x1(t) ≥
Λ

λu(1 − p) + φp + γ

[
1 +

(
λU(1 − p) + φp + γ

Λ
x1(t0) − 1

)
e−(λU(1−p)+φp+γ)(t, t0)

]
and we have e−(λU(1−p)+φp+γ)(t, t0) −→ 0, as t −→ ∞. Thus,



x1(t) ≥ m1 :=
Λ

λU(1 − p) + φp + γ
, for t ≥ T1,

x2(t) ≥ m2 :=
λL(1 − p)m1

qν + γ
, for t ≥ T2,

x3(t) ≥ m3 :=
qνm2

δ1 + γ
, for t ≥ T3,

x4(t) ≥ m4 :=
φpm1 + δ1 f1m3

ωn + γ
, for t ≥ T4,

x5(t) ≥ m5 :=
δ1(1 − f1)m3

δ2(1 − f2 − f3) + δ2 f2 + α1 f3 + γ
, for t ≥ T5,

x6(t) ≥ m6 :=
δ2 f2m5

η(1 − k) + α2k + γ
, for t ≥ T6.

Let m = min
16i66

mi and T = max
16i66

Ti. We can then write that xi(t) ≥ m for all t > T. �

4.2.2 Existence of solution

For system (4.4), we introduce the following assumption:

(H1) λ(t) is a bounded almost periodic function and satisfy 0 < λL
≤ λ(t) ≤ λU.

To prove existence of solution, we first begin with a technical lemma.

Lemma 4.2.3. If (H1) holds, then, for any positive solution Z(t) = (x1(t), . . . , x6(t)) of

system (4.4), there exist positive constants M and T such that xi(t) < M, i = 1, . . . , 6, for

all t > T.

Proof. Let Z(t) = (x1(t), . . . , x6(t)) be a positive solution of system (4.4). Then,

x∆
1 (t) 6 Λ + ωnΛ

γ − [λL(1 − p) + φp + γ]xσ1(t),

x∆
2 (t) 6 λU(1 − p)M1 − (qν + γ)xσ2(t),

x∆
3 (t) 6 qνM2 − (δ1 + γ)xσ3(t),

x∆
4 (t) 6 φpM1 + δ1 f1M3 + δ2(1 − f2 − f3)Λ

γ − (ωn + γ)xσ4(t),

x∆
5 (t) 6 δ1(1 − f1)M3 + η(1 − k)Λ

γ − [δ2(1 − f2 − f3) + δ2 f2 + α1 f3 + γ]xσ5(t),

x∆
6 (t) 6 δ2 f2M5 − [η(1 − k) + α2k + γ]xσ6(t).
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From Lemma 4.1.1,

x1(t) 6
Λ + ωnΛ

γ

λL(1 − p) + φp + γ

1 +

λL(1 − p) + φp + γ

Λ + ωnΛ
γ

x1(t0) − 1

 e−(λL(1−p)+φp+γ)(t, t0)


and we have e−(λL(1−p)+φp+γ)(t, t0) −→ 0, as t −→ ∞. Then,

x1(t) 6M1 :=
Λ + ωnΛ

γ

λL(1 − p) + φp + γ
,



x1(t) 6M1 :=
Λ + ωnΛ

γ

λL(1 − p) + φp + γ
, for t ≥ T1,

x2(t) 6M2 :=
λU(1 − p)M1

qν + γ
, for t ≥ T2,

x3(t) 6M3 :=
qνM2

δ1 + γ
, for t ≥ T3,

x4(t) 6M4 :=
φpM1 + δ1 f1M3 + δ2(1 − f2 − f3)Λ

γ

ωn + γ
, for t ≥ T4,

x5(t) 6M5 :=
δ1(1 − f1)M3 + η(1 − k)Λ

γ

δ2(1 − f2 − f3) + δ2 f2 + α1 f3 + γ
, for t ≥ T5,

x6(t) 6M6 :=
δ2 f2M5

η(1 − k) + α2k + γ
, for t ≥ T6.

Let M = max
16i66

Mi and T = max
16i66

Ti. Then xi(t) 6M for all t > T. �

Define

Ω = {(x1(t), . . . , x6(t)) : (x1(t), . . . , x6(t))

is a solution of (4.4) and 0 < m ≤ xi ≤M, i = 1, . . . , 6}.

Theorem 4.2.4. If (H1) holds, then the set Ω is nonempty.

Proof. The almost periodicity of λ(t) implies that there is a sequence {ξl} ⊆ T+

with l→∞ such that

λ(t + ξl)→ λ(t) as l→∞.

From Theorem 4.2.2 and Lemma 4.2.3, for each sufficiently small ε > 0, there

exists a t1 ∈ T+ such that

m − ε ≤ xi(t) ≤M + ε, for all t ≥ t1, i = 1, . . . , 6.

Set xil(t) = xi(t + ξl) for t ≥ t1 − ξl, l = 1, 2, . . . For any positive integer k, we

67



obtain that there exists a sequence {xil(t) : l ≥ k} such that the sequence {xil(t)}

has a subsequence, denoted by {x∗il(t)} (x∗il(t) = xil(t + ξ∗l )), converging on any finite

interval of T+ as l→∞. So we have a sequence {yi(t)} such that, for t ∈ T+,

x∗il(t) −→ yi(t), as l→∞, i = 1, . . . , 6. (4.5)

It is easy to see that the above sequence {ξ∗l } ⊆ T
+ with ξ∗l → τ for l → ∞ is

such that

λ(t + ξ∗l ) −→ λ(t), as l→∞,

which, together with (4.5) and

x∗∆1l (t) = Λ + ωnx∗4l(t) − [λ(t + ξ∗l )(1 − p) + φp + γ]x∗σ1l (t),

x∗∆2l (t) = λ(t + ξ∗l ))(1 − p)x∗1l(t) − [qν + γ]x∗σ2l (t),

x∗∆3l (t) = qνx∗2l(t) − [δ1 + γ]x∗σ3l (t),

x∗∆4l (t) = φpx∗1l(t) + δ1 f1x∗3l(t) + δ2(1 − f2 − f3)x∗5l(t) − [ωn + γ]x∗σ4l (t),

x∗∆5l (t) = δ1(1 − f1)x∗3l(t) + η(1 − k)x∗6l(t) − [δ2(1 − f2 − f3) + δ2 f2 + α1 f3 + γ]x∗σ5l (t),

x∗∆6l (t) = δ2 f2x∗5l(t) − [η(1 − k) + α2k + γ]x∗σ6l (t),

yields

y∆
1 (t) = Λ + ωny4(t) − [λ(t)(1 − p) + φp + γ]yσ1(t),

y∆
2 (t) = λ(t)(1 − p)y1(t) − [qν + γ]yσ2(t),

y∆
3 (t) = qνy2(t) − [δ1 + γ]yσ3(t),

y∆
4 (t) = φpy1(t) + δ1 f1y3(t) + δ2(1 − f2 − f3)y5(t) − [ωn + γ]yσ4(t),

y∆
5 (t) = δ1(1 − f1)y3(t) + η(1 − k)y6(t) −

[
δ2(1 − f2 − f3) + δ2 f2 + α1 f3 + γ

]
yσ5(t),

y∆
6 (t) = δ2 f2y5(t) −

[
η(1 − k) + α2k + γ

]
yσ6(t).

It is clear that (y1(t), . . . , y6(t)) is a solution of system (4.4) and

m − ε ≤ yi(t) ≤M + ε, for all t ∈ T+, i = 1, . . . , 6.

Since ε is arbitrary, it follows that

m ≤ yi(t) ≤M, for t ∈ T+, i = 1, . . . , 6.

The proof is complete. �
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4.2.3 Uniform asymptotic stability

Now, we establish sufficient conditions for the existence of a unique positive

almost periodic solution to system (4.4) that is uniform asymptotically stable. We

introduce some more notations. Let

A1 := λL(1 − p) + φp + γ; A2 := qν + γ;

A3 := δ1 + γ; A4 := ωn + γ;

A5 := δ2(1 − f3) + α1 f3 + γ; A6 := η(1 − k) + α2k + γ;

B1 := λU(1 − p) + φp; B2 := qν + 2
γβlA(1 − p)M

Λ
;

B3 := δ1 + 2
γβ(1 − p)M

Λ
; B4 := ωn;

B5 := δ2(1 − f3) + 2
γβlH(1 − p)M

Λ
; B6 := η(1 − k).

Moreover, let A := min
1≤i≤6

Ai and B := max
1≤i≤6

Bi.

In our next result (Theorem 4.2.5), we assume the following additional hy-

pothesis:

(H2) B < A.

Theorem 4.2.5. If (H1) and (H2) hold, then the dynamic system (4.4) has a unique

almost periodic solution Z(t) = (x1(t), . . . , x6(t)) ∈ Ω that is uniformly asymptotically

stable.

Proof. According to Theorem 4.2.2, every solution Z(t) = (x1(t), . . . , x6(t)) of sys-

tem (4.4) satisfies xL
i ≤ xi ≤ xU

i . Hence, |xi(t)| ≤ Ki, i = 1, . . . , 6. Suppose that

Z(t) = (x1(t), . . . , x6(t)) and Ẑ(t) = (̂x1(t), . . . , x̂6(t)) are two positive solutions of

system (4.4). We have

x∆
1 (t) = Λ + ωnx4(t) − [λ(t)(1 − p) + φp + γ]xσ1(t),

x∆
2 (t) = λ(t)(1 − p)x1(t) − [qν + γ]xσ2(t),

x∆
3 (t) = qνx2(t) − [δ1 + γ]xσ3(t),

x∆
4 (t) = φpx1(t) + δ1 f1x3(t) + δ2(1 − f2 − f3)x5(t) − [ωn + γ]xσ4(t),

x∆
5 (t) = δ1(1 − f1)x3(t) + η(1 − k)x6(t) − [δ2(1 − f2 − f3) + δ2 f2 + α1 f3 + γ]xσ5(t),

x∆
6 (t) = δ2 f2x5(t) − [η(1 − k) + α2k + γ]xσ6(t),
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and

x̂∆
1 (t) = Λ + ωnx̂4(t) − [̂λ(t)(1 − p) + φp + γ]̂xσ1(t),

x̂∆
2 (t) = λ̂(t)(1 − p)̂x1(t) − [qν + γ]̂xσ2(t),

x̂∆
3 (t) = qνx̂2(t) − [δ1 + γ]̂xσ3(t),

x̂∆
4 (t) = φpx̂1(t) + δ1 f1x̂3(t) + δ2(1 − f2 − f3)̂x5(t) − [ωn + γ]̂xσ4(t),

x̂∆
5 (t) = δ1(1 − f1)̂x3(t) + η(1 − k)̂x6(t) − [δ2(1 − f2 − f3) + δ2 f2 + α1 f3 + γ]̂xσ5(t),

x̂∆
6 (t) = δ2 f2x̂5(t) − [η(1 − k) + α2k + γ]̂xσ6(t).

Denote

‖Z‖ = ‖(x1(t), . . . , x6(t))‖ = sup
t∈T+

6∑
i=1

|xi(t)| .

Then ‖Z‖ ≤ K and
∥∥∥∥Ẑ

∥∥∥∥ ≤ K where K =

6∑
i=1

Ki. Define the Lyapunov function

V(t,Z, Ẑ) on T+
×Ω ×Ω as

V(t,Z, Ẑ) =

6∑
i=1

∣∣∣xi(t) − x̂i(t)
∣∣∣ =

6∑
i=1

Vi(t), (4.6)

where Vi(t) =
∣∣∣xi(t) − x̂i(t)

∣∣∣. Then the two norms

∥∥∥∥Z − Ẑ
∥∥∥∥ =

6∑
i=1

∣∣∣xi(t) − x̂i(t)
∣∣∣

and ∥∥∥∥Z − Ẑ
∥∥∥∥
∗

= sup
t∈R+

 6∑
i=1

(
xi(t) − x̂i(t)

)2


1
2

are equivalent, that is, there exist two constants η1, η2 > 0 such that

η1

∥∥∥∥Z − Ẑ
∥∥∥∥
∗

≤

∥∥∥∥Z − Ẑ
∥∥∥∥ ≤ η2

∥∥∥∥Z − Ẑ
∥∥∥∥
∗

.

Hence,

η1

∥∥∥∥Z − Ẑ
∥∥∥∥
∗

≤ V(t,Z, Ẑ) ≤ η2

∥∥∥∥Z − Ẑ
∥∥∥∥
∗

.

Let a, b ∈ C(R+,R+), a(x) = η1x, and b(x) = η2x. Then the assumption (i) of
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Lemma 4.1.5 is satisfied. On the other hand, we have

∣∣∣∣V(t,Z(t), Ẑ(t)) − V(t,Z∗(t), Ẑ∗(t))
∣∣∣∣ =

∣∣∣∣∣∣∣
6∑

i=1

∣∣∣xi(t) − x̂i(t)
∣∣∣ − 6∑

i=1

∣∣∣x∗i (t) − x̂∗i (t)
∣∣∣∣∣∣∣∣∣∣

≤

6∑
i=1

∣∣∣∣∣∣xi(t) − x̂i(t)
∣∣∣ − ∣∣∣x∗i (t) − x̂∗i (t)

∣∣∣∣∣∣
≤

6∑
i=1

∣∣∣xi(t) − x∗i (t)
∣∣∣ +

6∑
i=1

∣∣∣̂xi(t) − x̂∗i (t)
∣∣∣

≤ ‖Z − Z∗‖ +
∥∥∥∥Ẑ − Ẑ∗

∥∥∥∥ ,
where L = 1, so condition (ii) of Lemma 4.1.5 is also satisfied.

Now, using Lemma 4.2 of [38], it follows that

D+V∆
i (t) ≤ sign(xσi (t) − x̂σi (t))(x∆

i (t) − x̂∆
i (t)), i = 1, . . . , 6,

where D+V∆
i is the Dini derivative of Vi. For i = 1,

D+V∆
1 (t) ≤ sign(xσ1(t) − x̂σ1(t))(x∆

1 (t) − x̂∆
1 (t))

= sign(xσ1(t) − x̂σ1(t))[ωn(x4(t) − x̂4(t)) − λ(t)(1 − p)xσ1(t)

−[φp + γ](xσ1(t) − x̂σ1(t)) + λ̂(t)(1 − p)̂xσ1(t)]

= sign(xσ1(t) − x̂σ1(t))[ωn(x4(t) − x̂4(t)) − λ(t)(1 − p)xσ1(t)

−[φp + γ](xσ1(t) − x̂σ1(t)) + λ̂(t)(1 − p)̂xσ1(t) + λ(t)(1 − p)̂xσ1(t) − λ(t)(1 − p)̂xσ1(t)]

= sign(xσ1(t) − x̂σ1(t))[ωn(x4(t) − x̂4(t))

−[λ(t)(1 − p) + φp + γ](xσ1(t) − x̂σ1(t))

+(̂λ(t) − λ(t))(1 − p)̂xσ1(t)]

= sign(xσ1(t) − x̂σ1(t))[ωn(x4(t) − x̂4(t)) − [λ(t)(1 − p) + φp + γ](xσ1(t) − x̂σ1(t))

+(̂λ(t) − λ(t))(1 − p)̂xσ1(t)]

≤ ωn
∣∣∣x4(t) − x̂4(t)

∣∣∣ − [λL(1 − p) + φp + γ]
∣∣∣xσ1(t) − x̂σ1(t)

∣∣∣
+
γβlA(1 − p)M

Λ

∣∣∣x2(t) − x̂2(t)
∣∣∣ +

γβ(1 − p)M
Λ

∣∣∣x3(t) − x̂3(t)
∣∣∣

+
γβlH(1 − p)M

Λ

∣∣∣x5(t) − x̂5(t)
∣∣∣ ;
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for i = 2,

D+V∆
2 (t) ≤ sign(xσ2(t) − x̂σ2(t))(x∆

2 (t) − x̂∆
2 (t))

= sign(xσ2(t) − x̂σ2(t))[λ(t)(1 − p)x1(t) − [qν + γ](xσ2(t) − x̂σ2(t)) − λ̂(t)(1 − p)̂x1(t)]

= sign(xσ2(t) − x̂σ2(t))[λ(t)(1 − p)x1(t) − [qν + γ](xσ2(t) − x̂σ2(t))

−λ̂(t)(1 − p)̂x1(t) + λ(t)(1 − p)̂x1(t) − λ(t)(1 − p)̂x1(t)]

= sign(xσ2(t) − x̂σ2(t))[−[qν + γ](xσ2(t) − x̂σ2(t))

+λ(t)(1 − p)(x1(t) − x̂1(t)) − (̂λ(t) − λ(t))(1 − p)̂x1(t)]

≤ λU(1 − p)
∣∣∣x1(t) − x̂1(t)

∣∣∣ − [qν + γ]
∣∣∣xσ2(t) − x̂σ2(t)

∣∣∣
+(1 − p)M

∣∣∣∣λ(t) − λ̂(t)
∣∣∣∣

≤ λU(1 − p)
∣∣∣x1(t) − x̂1(t)

∣∣∣ − [qν + γ]
∣∣∣xσ2(t) − x̂σ2(t)

∣∣∣
+
γβlA(1 − p)M

Λ

∣∣∣x2(t) − x̂2(t)
∣∣∣

+
γβ(1 − p)M

Λ

∣∣∣x3(t) − x̂3(t)
∣∣∣ +

γβlH(1 − p)M
Λ

∣∣∣x5(t) − x̂5(t)
∣∣∣ ;

for i = 3,

D+V∆
3 (t) ≤ sign(xσ3(t) − x̂σ3(t))(x∆

3 (t) − x̂∆
3 (t))

= sign(xσ3(t) − x̂σ3(t))[qν(x2(t) − x̂2(t))

−[δ1 + γ](xσ3(t) − x̂σ3(t))]

≤ qν
∣∣∣x2(t) − x̂2(t)

∣∣∣ − [δ1 + γ]
∣∣∣xσ3(t) − x̂σ3(t)

∣∣∣ ;
for i = 4,

D+V∆
4 (t) ≤ sign(xσ4(t) − x̂σ4(t))(x∆

4 (t) − x̂∆
4 (t))

= sign(xσ4(t) − x̂σ4(t))[φp(x1(t) − x̂1(t)) + δ1 f1(x3(t) − x̂3(t))

+δ2(1 − f2 − f3)(x5(t) − x̂5(t)) − [ωn + γ](xσ4(t) − x̂σ4(t))]

≤ φp
∣∣∣x1(t) − x̂1(t)

∣∣∣ + δ1 f1

∣∣∣x3(t) − x̂3(t)
∣∣∣

+δ2(1 − f2 − f3)
∣∣∣x5(t) − x̂5(t)

∣∣∣ − [ωn + γ]
∣∣∣xσ4(t) − x̂σ4(t)

∣∣∣ ;
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for i = 5,

D+V∆
5 (t) ≤ sign(xσ5(t) − x̂σ5(t))(x∆

5 (t) − x̂∆
5 (t))

= sign(xσ5(t) − x̂σ5(t))[δ1(1 − f1)(x3(t) − x̂3(t)) + η(1 − k)(x6(t) − x̂6(t))

−[δ2(1 − f2 − f3) + δ1 f1 + α1 f3 + γ](xσ5(t) − x̂σ5(t))]

≤ δ1(1 − f1)
∣∣∣x3(t) − x̂3(t)

∣∣∣ + η(1 − k)
∣∣∣x6(t) − x̂6(t)

∣∣∣
−[δ2(1 − f2 − f3) + δ1 f1 + α1 f3 + γ]

∣∣∣xσ5(t) − x̂σ5(t)
∣∣∣ ;

and, finally, for i = 6,

D+V∆
6 (t) ≤ sign(xσ6(t) − x̂σ6(t))(x∆

6 (t) − x̂∆
6 (t))

= sign(xσ6(t) − x̂σ6(t))[δ2 f2(x5(t) − x̂5(t))

−[η(1 − k) + α2k + γ](xσ6(t) − x̂σ6(t)

≤ δ2 f2

∣∣∣x5(t) − x̂5(t)
∣∣∣ − [η(1 − k) + α2k + γ]

∣∣∣xσ6(t) − x̂σ6(t)
∣∣∣ .

It follows that

D+V∆(t) ≤ ωn
∣∣∣x4(t) − x̂4(t)

∣∣∣ − [λL(1 − p) + φp + γ]
∣∣∣xσ1(t) − x̂σ1(t)

∣∣∣
+
γβlA(1 − p)M

Λ

∣∣∣x2(t) − x̂2(t)
∣∣∣ +

γβ(1 − p)M
Λ

∣∣∣x3(t) − x̂3(t)
∣∣∣

+
γβlH(1 − p)M

Λ

∣∣∣x5(t) − x̂5(t)
∣∣∣ + λU(1 − p)

∣∣∣x1(t) − x̂1(t)
∣∣∣

−[qν + γ]
∣∣∣xσ2(t) − x̂σ2(t)

∣∣∣ +
γβlA(1 − p)M

Λ

∣∣∣x2(t) − x̂2(t)
∣∣∣

+
γβ(1 − p)M

Λ

∣∣∣x3(t) − x̂3(t)
∣∣∣ +

γβlH(1 − p)M
Λ

∣∣∣x5(t) − x̂5(t)
∣∣∣

+qν
∣∣∣x2(t) − x̂2(t)

∣∣∣ − [δ1 + γ]
∣∣∣xσ3(t) − x̂σ3(t)

∣∣∣
+φp

∣∣∣x1(t) − x̂1(t)
∣∣∣ + δ1 f1

∣∣∣x3(t) − x̂3(t)
∣∣∣

+δ2(1 − f2 − f3)
∣∣∣x5(t) − x̂5(t)

∣∣∣ − [ωn + γ]
∣∣∣xσ4(t) − x̂σ4(t)

∣∣∣
+δ1(1 − f1)

∣∣∣x3(t) − x̂3(t)
∣∣∣ + η(1 − k)

∣∣∣x6(t) − x̂6(t)
∣∣∣

−[δ2(1 − f2 − f3) + δ1 f1 + α1 f3 + γ]
∣∣∣xσ5(t) − x̂σ5(t)

∣∣∣
+δ2 f2

∣∣∣x5(t) − x̂5(t)
∣∣∣ − [η(1 − k) + α2k + γ]

∣∣∣xσ6(t) − x̂σ6(t)
∣∣∣
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= −[λ(t)(1 − p) + φp + γ]
∣∣∣xσ1(t) − x̂σ1(t)

∣∣∣ − [qν + γ]
∣∣∣xσ2(t) − x̂σ2(t)

∣∣∣
−[δ1 + γ]

∣∣∣xσ3(t) − x̂σ3(t)
∣∣∣ − [ωn + γ]

∣∣∣xσ4(t) − x̂σ4(t)
∣∣∣

−[δ2(1 − f2 − f3) + δ1 f1 + α1 f3 + γ]
∣∣∣xσ5(t) − x̂σ5(t)

∣∣∣
−[η(1 − k) + α2k + γ]

∣∣∣xσ6(t) − x̂σ6(t)
∣∣∣

+
{
λU(1 − p) + φp

} ∣∣∣x1(t) − x̂1(t)
∣∣∣

+

{
qν +

γβlA(1 − p)M
Λ

+
γβlA(1 − p)M

Λ

} ∣∣∣x2(t) − x̂2(t)
∣∣∣

+

{
δ1 f1 + δ1(1 − f1) +

γβ(1 − p)M
Λ

+
γβ(1 − p)M

Λ

} ∣∣∣x3(t) − x̂3(t)
∣∣∣

+ωn
∣∣∣x4(t) − x̂4(t)

∣∣∣ +

{
δ2(1 − f2 − f3) + δ2 f2 +

γβlH(1 − p)M
Λ

+
γβlH(1 − p)M

Λ

} ∣∣∣x5(t) − x̂5(t)
∣∣∣ + η(1 − k)

∣∣∣x6(t) − x̂6(t)
∣∣∣

= −A1

∣∣∣xσ1(t) − x̂σ1(t)
∣∣∣ − A2

∣∣∣xσ2(t) − x̂σ2(t)
∣∣∣

−A3

∣∣∣xσ3(t) − x̂σ3(t)
∣∣∣ − A4

∣∣∣xσ4(t) − x̂σ4(t)
∣∣∣

−A5

∣∣∣xσ5(t) − x̂σ5(t)
∣∣∣ − A6

∣∣∣xσ6(t) − x̂σ6(t)
∣∣∣

+B1

∣∣∣x1(t) − x̂1(t)
∣∣∣ + B2

∣∣∣x2(t) − x̂2(t)
∣∣∣

+B3

∣∣∣x3(t) − x̂3(t)
∣∣∣ + B4

∣∣∣x4(t) − x̂4(t)
∣∣∣

+B5

∣∣∣x5(t) − x̂5(t)
∣∣∣ + B6

∣∣∣x6(t) − x̂6(t)
∣∣∣

= −AV(σ(t)) + BV(t)

= (B − A)V(t) − Aµ(t)D+V∆(t)

and D+V∆(t) ≤ B−A
1+Aµ(t)V(t) ≤ −ψ(t)V(t) with ψ = A−B

1+AµU . By (H2), we have ψ(t) =
A−B

1+AµU > 0 and 1 − ψµ(t) = 1 + A(µU
− µ(t)) + µ(t)B > 0. Hence, −ψ ∈ R+. Thus,

the assumption (iii) of Lemma 4.1.5 is satisfied and it follows from Lemma 4.1.5

that there exists a unique almost periodic solution Z(t) = (x1(t), . . . , x6(t)) of the

dynamic system (4.4) that is uniformly asymptotically stable with Z(t) ∈ Ω. �

We illustrate our results with an example.

Example 4.2.6. Based on [36], let us consider the following system on the time scales
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T = Z+
0 :

x∆
1 (t) = Λ + ωnx4(t) − [λ(t)(1 − p) + φp + γ]xσ1(t),

x∆
2 (t) = λ(t)(1 − p)x1(t) − [qν + γ]xσ2(t),

x∆
3 (t) = qνx2(t) − [δ1 + γ]xσ3(t),

x∆
4 (t) = φpx1(t) + δ1 f1x3(t) + δ2(1 − f2 − f3)x5(t) − [ωn + γ]xσ4(t),

x∆
5 (t) = δ1(1 − f1)x3(t) + η(1 − k)x6(t) − [δ2(1 − f2 − f3) + δ2 f2 + α1 f3 + γ]xσ5(t),

x∆
6 (t) = δ2 f2x5(t) − [η(1 − k) + α2k + γ]xσ6(t),

(4.7)

subject to

x1(0) = 10283785, x2(0) = 13, x3(0) = 2, x4(0) = 0, x5(0) = 0, x6(0) = 0,

where Λ = 22614
53 , ω = 1/31, n = 0.075,

λ(t) =
β (lAx2(t) + x3(t) + lHx5(t))

N(t)

with β = 1.93, lA = 1, lH = 0.1, and N(t) =
∑6

i=1 xi(t), p = 0.68, φ = 1/12, γ = 47833615
N0

with N0 = N(0), q = 0.15, ν = 1/15, δ1 = 1/3, δ2 = 1/3, f1 = 0.96, f2 = 0.21, f3 = 0.03,

η = 1/7, k = 0.03, α1 = 1/7, and α2 = 1/15.

System (4.7) is permanent with λL = 1.876738171 × 10−7, λU = 1.93, M1 =

65.83271997, M2 = 8.722416333, M3 = 0.017498412509, M4 = 4.428264471, M6 =

0.02788991356, M = maxi=1,...,6(Mi) = M1, m1 = 58.16800031, m2 = 7.7068897,

m3 = 0.0154611, m4 = 0.7093454, m5 = 0.0000414, m6 = 6.0482208 × 10−7, and

m = mini=1,...,6(mi) = m6. In addition, the conditions of Theorem 4.2.5 are verified and

we have

4.653775371 = A > B = 4.148857053, ψ = 0.0505839, 1−ψµ(t) = 0.94941603 > 0.

We conclude that system (4.7) has a unique positive almost periodic solution, which is

uniformly asymptotic stable. This is illustrated in Figure 4.1.
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Figure 4.1: Example 4.2.6: solution of (4.7) during 7 days.
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Chapter 5
Local and global Stability of fractional

SAIRS Models

In this chapter, we consider a fractional order SAIRS (Susceptible-Asymptomatic

infected-symptomatic Infected-Recovered-Susceptible) model with vaccination.

Which represents the interaction of four distinct compartments of people in com-

munity with an epidemic. We show that the disease free (resp. endemic) equi-

librium is locally asymptotically stable if R0 < 1 (resp. R0 > 1). Moreover, we

prove that the disease free (resp. endemic) equilibrium is globally asymptotically

stable if R0 is less than another threshold R1 (resp. R0 > 1 when γ = 0). To con-

clude this work we give some remarks with numerical simulations to illustrate

our theoretical results.

5.1 Introduction

We consider an extension of the SAIRS model presented in [50]. The system

of ODEs which describes the model is given by


Ṡ(t) = µ − [βAA(t) + βII(t)]S(t) − (µ + ν)S(t) + γR(t),

Ȧ(t) = [βAA(t) + βII(t)]S(t) − (η + δA + µ)A(t),

İ(t) = ηA(t) − (δI + µ)I(t),

Ṙ(t) = δAA(t) + δII(t) + νS(t) − (γ + µ)R(t),

(5.1)

with initial condition (S(0),A(0),I(0),R(0)) belonging to the set

Γ = {(S,A, I,R) ∈ R4
+ : S + A + I + R = 1}.
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where the parameters µ, η, βA, βI, ν, γ, δA, δI in the SAIRS epidemic model (5.1)

are considered to be positive values. Hence, system (5.1) is equivalent to the

following three dimensional dynamical system
Ṡ(t) = µ − [βAA(t) + βII(t)]S(t) − (µ + ν + γ)S(t) + γ(1 − A(t) − I(t)),

Ȧ(t) = [βAA(t) + βII(t)]S(t) − (η + δA + µ)A(t),

İ(t) = ηA(t) − (δI + µ)I(t),

(5.2)

with initial condition (S(0),A(0),I(0)) belonging to the set

Ω = {(S,A, I) ∈ R3
+ : S + A + I ≤ 1}.

5.2 Definitions

Definition 5.2.1. The Mittag Leffler function of two parameters is given by

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, z ∈ C,

where α, β > 0, and C denote the complex plane.

Note that, when α = β = 1, the Mittag Leffler function E1,1(z) reduces to

the exponential function exp(z). Also, the Mittag Leffler function satisfies the

following useful equality:

Eα,β(z) = zEα,α+β(z) +
1

Γ(β)
, α, β > 0.

Lemma 5.2.2. For a ∈ R and α, β > 0, we obtain [[29] Lemme 2.1]

L(tβ−1Eα,β(atα)) =
sα−β

sα − a
.

Also,

L(CDα
t h(t)) = sα̂h(s) −

n−1∑
k=0

h(k)(0)sα−k−1,

where ĥ(s) = L(h(t)) and L denoted the Laplace transformation.

In the following, we give an elementary lemma proved in [?] , which describes

the Volterra type Lyapunov function for the fractional order epidemic systems.
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Lemma 5.2.3. Let 0 < α < 1, and ζ ∈ C[0,T] be positive valued function. Then, for

all t ∈ [0,T), one has

CDα
t

(
ζ(t) − ζ∗ − ζ∗ ln

ζ(t)
ζ∗

)
≤

(
1 −

ζ∗

ζ(t)

)
CDα

t ζ(t),

for all ζ∗ ∈ R+.

5.2.1 The fractional SAIRS model

Motivated by the classical SAIRS epidemic system (5.2), we deal with the

following fractional SAIRS epidemic model
CDα

t S(t) = µ − [βAA(t) + βII(t)]S(t) − (µ + ν + γ)S(t) + γ(1 − A(t) − I(t)),
CDα

t A(t) = [βAA(t) + βII(t)]S(t) − (η + δA + µ)A(t),
CDα

t I(t) = ηA(t) − (δI + µ)I(t),

(5.3)

subject to the initial condition

S(0) = S0 ≥ 0, A(0) = A0 ≥ 0, I(0) = I0 ≥ 0,

where CDα
t is the fractional Caputo derivative having order 0 < α ≤ 1 in order to

describe the memory effects in the proposed epidemic model. We assume that the

functions S(t), A(t), I(t) and their Caputo fractional derivatives of order 0 < α ≤ 1

are continuous functions. The parameters µ, η, βA, βI, ν, γ, δA, δI in the fractional

order SAIRS epidemic model (5.3) are considered to be positive values.

5.3 Main results

Proposition 5.3.1.

Ω = {(S,A, I) ∈ R3
+; S + A + I ≤ 1}

is a positively invariant region for system (5.3).

Proof. We have

N(t) = S(t) + A(t) + I(t).
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Consequently, adding equation yields

CDα
t N(t) = µ + γ − (µ + γ)N(t) − νS(t) − δAA(t) − δII(t). (5.4)

Then

CDα
t N(t) = µ + γ − (µ + γ)N(t) − νS(t) − δAA(t) − δII(t)

≤ µ + γ − (µ + γ)N(t). (5.5)

Taking the Laplace transform in inequality (5.5) into account, we get

xαN̂(x) − xα−1N(0) ≤
µ + γ

x
− (µ + γ)N̂(x).

Hence,

(xα + µ + γ)N̂(x) =
µ + γ

x
+ xα−1N(0),

N̂(x) ≤ (µ + γ)
xα−(1+α)

xα + µ + γ
+ N(0)

xα−1

xα + µ + γ
.

Accordingly, we have

N(t) ≤ (µ + γ)tαEα,1+α(−(µ + γ)tα) + N(0)Eα,1(−(µ + γ)tα)

≤ 1 − Eα,1(−(µ + γ)tα) + N(0)Eα,1(−(µ + γ)tα)

≤ 1.

Since 0 ≤ Eα,1(−(µ + γ)t) ≤ 1 holds and N(0) ≤ 1, then one obtains N(t) ≤ 1. Thus,

Ω is a positively invariant set, and all initial solutions belong to Ω remain in Ω

for all t > 0. �

Consider the following fractional order system in Caputo sense, as

CDα
t u(t) = φ(t,u(t)), for all t ≥ 0, u(0) = u0 ∈ R

n (5.6)

where φ : R+
×Rn

→ Rn with n ≥ 1.

Lemma 5.3.2. Assume that φ(t,u(t)) satisfies the following:

1. φ is a continuous function with respect to t for all u(t) ∈ Rn,

2. φ and ∂φ
∂u are continuous funtions respect to u(t) ∈ Rn,

3.
∥∥∥φ∥∥∥ ≤ a1 + a2 ‖u‖ for all u ∈ Rn, and all a1, a2 > 0.
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Then, system (5.6) possesses a unique solution on [0,+∞).

The proof of Lemma 5.3.2 can be directly followed from [40], we require the

following lemmas in proving the non negativity of solutions to system subject to

non negative initial condition for the system (5.3).

Lemma 5.3.3. [49] Assume that ϕ(t) ∈ C[a, b] and CDα
t ϕ ∈ C[a, b], with 0 < α ≤ 1.

Then, one has

ϕ(t) = ϕ(a) +
1

Γ(α)
CDα

t ϕ(ξ)(t − a)α, a ≤ ξ ≤ t, for t ∈ (a, b]. (5.7)

Lemma 5.3.4. [49] Let ϕ(t) ∈ C[a, b] and CDα
t ϕ ∈ C[a, b], with 0 < α ≤ 1. If

CDα
t ϕ(t) ≥ 0, then ϕ(t)is non decreasing function for t ∈ [a, b]. If CDα

t ϕ(t) ≤ 0, then

ϕ(t)is non increasing function for t ∈ [a, b].

Let define the set

Θ = {(S,A, I) ∈ R3 : S(t) ≥ 0, A(t) ≥ 0, I(t) ≥ 0}.

Theorem 5.3.5. System (5.3) attains a unique solution on [0,+∞). Further, the

solution of system (5.3) remains non negative and bounded for all t ≥ 0. In addition, we

have

S(t) ≤
µ + γ

µ + υ + γ
+ S(0),

A(t) ≤ A(0),

I(t) ≤ I(0).

Proof. Let us reformulate system (5.3) in the form of a Caputo fractional deriva-

tive system of order 0 < α ≤ 1, as follows

CDα
t u(t) = φ(t,u(t)), for all t ≥ 0, u(0) = u0 ∈ R

3
+, (5.8)

where φ : R+
×R3

→ R3,

φ(t,u(t)) = b + Eu(t) + S(t)Fu(t) + Gu(t), (5.9)

u(t) = (S(t),A(t), I(t))T, u0 = (S0,A0, I0)T, b = (µ + γ, 0, 0)T, and also

E =


−(µ + ν + γ) 0 0

0 −(η + δA + µ) 0

0 0 −(δI + µ)

 ,F =


0 −βA −βI

0 βA βI

0 0 0

 ,
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G =


0 −γ −γ

0 0 0

0 η 0

 . The vector function u(t) also satisfies the first and second

conditions of Lemma 5.3.2. Now, we verify the third condition. From systems

(5.8)and (5.9), one obtain∥∥∥CDα
t u(t)

∥∥∥ ≤ ‖b‖ + (‖E‖ + ‖S(t)‖ ‖F‖ + ‖G‖) ‖u(t)‖ .

Hence, the third condition of Lemma 5.3.2 is verified. Then, system (5.3) has a

unique solution on [0,+∞). Further, we show that the system possesses a non

negative solution. To this end, Suppose that

(S0,A0, I0) ∈ S(t)-axis = {(S(t), 0, 0) : S(t) ≥ 0}

Taking the Laplace transform into account system along with the vector S(t) axis.

Let
CDα

t S(t) = µ + γ − (µ + ν + γ)S(t).

We get

xαŜ(x) − xα−1S(0) =
µ + γ

x
− (µ + ν + γ)Ŝ(x).

Hence,

Ŝ(x) = (µ + γ)
xα−(1+α)

xα + µ + ν + γ
+ S(0)

xα−1

xα + µ + ν + γ
.

Accordingly, we have

S(t) = (µ + γ)tαEα,1+α(−(µ + ν + γ)tα) + S(0)Eα,1(−(µ + ν + γ)tα).

Seen

E(α,α+1)(−(µ + υ + γ)tα) = −
1

(µ + υ + γ)tα
E(α,1)(−(µ + υ + γ)tα) +

1
(µ + υ + γ)tα

Hence,

S(t) = −
µ + γ

µ + υ + γ
E(α,1)(−(µ + υ + γ)tα) +

µ + γ

µ + υ + γ
+ S(0)E(α,1)(−(µ + υ + γ)tα)
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Since 0 ≤ E(α,1)(−(µ + υ + γ)tα) ≤ 1 so one achieves

S(t) ≥ 0andS(t) ≤
µ + γ

µ + υ + γ
+ S(0),

also(
−

µ+γ
µ+υ+γE(α,1)(−(µ + υ + γ)tα) +

µ+γ
µ+υ+γ + S(0)E(α,1)(−(µ + υ + γ)tα), 0, 0

)
∈ S(t)-axis.

By the same argument with A(t)-axis, i.e

CDα
t A(t) = −(η + δA + µ)A(t).

Taking the Laplace transform, we get

xαÂ(x) − xα−1A(0) = −(η + δA + µ)Â(x).

Hence,

Â(x) = A(0)
xα−1

xα + η + δA + µ
.

Accordingly, we have

A(t) = A(0)Eα,1(−(α + δA + µ)tα).

s Seen 0 ≤ Eα,1(−(α + δA + µ)tα) ≤ 1. Hence, A(t) ≤ A(0) and A(t) ≥ 0 also

(0,A(0)Eα,1(−(η + δA + µ)tα), 0) ∈ A(t)-axis.

By the same argument with I(t)-axis, let

CDα
t I(t) = −(δI + µ)I(t).

Taking the Laplace transform, we get

xα̂I(x) − xα−1I(0) = −(δI + µ)̂I(x).

Hence,

Î(x) = I(0)
xα−1

xα + δI + µ
.

Accordingly, we have

I(t) = I(0)Eα,1(−(δI + µ)tα).
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Hence, I(t) ≤ I(0) and I(t) ≥ 0 also

(0, 0, I(0)Eα,1(−(δI + µ)tα)) ∈ I(t)-axis.

This indicates that S(t), A(t), and I(t) are solutions of the system and positive

invariants sets. In sequel, we prove that Θ is a positive invariant set. Let

(S0,A0, I0) ∈ Θ. On the contrary, we suppose there exists a solution (S(t),A(t), I(t))

to escape of Θ. Then, by uniqueness of the solution, (S(t),A(t), I(t)) do not cross

the axes.

If the solution (S(t),A(t), I(t)) escapes by the plan S(t) = 0, there exists t0 such

that S(t0) = 0, A(t0) > 0, I(t0) > 0 and for all t > t0 sufficiently near t0, we have

S(t) < 0. Moreover, we have

CDα
t S(t) |t=t0 = µ + γ − γ(A(t) + I(t))

≥ µ.

Thus, S(t) ≥ 0 for all t > t0, and this is absurd, which implies that S(t) ≥ 0 for all

t ≥ 0. With a similar manner, we prove that A(t) ≥ 0 and I(t) ≥ 0 for all t ≥ 0. �

5.3.1 Local Stability

System (5.3) admits a unique disease free equilibrium point X0 = (S0, 0, 0),

where S0 =
µ+γ
µ+ν+γ . To consider the existence and uniqueness of endemic equilib-

rium X∗ = (S∗,A∗, I∗), we firstly compute the basic reproductive number R0 of

system (5.3).

Let U = (A, I,S)T. Then, system (5.3) can be written as CDα
t U(t) = F(U) − V(U),

where F(U) =


(βAA(t) + βII(t))S(t)

0

0


and V(U) =


(η + δA + µ)A(t)

−ηA(t) + (δI + µ)I(t)

(βAA(t) + βII(t))S(t) + (µ + ν + γ)S(t) + γ(A(t) + I(t)) − µ − γ

. The Ja-

cobian matrices of F and V at the disease free equilibrium X0 are given by

J(F(X0)) =


0 βAS0 βIS0

0 0 0

0 0 0

 and J(V(X0)) =


0 η + δA + µ 0

0 −η δI + µ

µ + ν + γ βAS0 + γ βIS0 + γ

 .
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Now, let us employ the next generation matrix method to compute the basic

reproductive ratio R0 using only the two disease compratments, denoted by A

and I from system (5.3). The next generation matrix is the product of matrices F

andV−1, where

F =

βAS0 βIS0

0 0

 andV =

η + δA + µ 0

−η δI + µ

 .
The basic reproductive ratioR0, defined as the spectral radius of the matrixFV−1,

is obtained as

R0 = ρ(FV−1) =

(
βA +

ηβI

δI + µ

)
γ + µ

(η + δA + µ)(ν + γ + µ)
=

(
βA +

ηβI

h2

)
S0

h1
,

where S0 =
µ+γ
h0

, h0 = µ + ν + γ, h1 = η + δA + µ and h2 = δI + µ.

In the case when (A , 0 and I , 0), system (5.3) admits X∗ = (S∗,A∗, I∗) as a unique

endemic equilibrium point, where

S∗ =
h1h2

βAh2 + βIη
,

I∗ =
ηh0S∗

(
S0

S∗ − 1
)

h1h2 + γ(h2 + η)
=

ηh0S∗ (R0 − 1)
h1h2 + γ(h2 + η)

,

A∗ =
h2

η
I∗.

Clearly, it is evident that if R0 < 1, then system does not admit any positive

endemic equilibrium (it has no biological sense to get negative values for A∗ and

I∗). Thus, we require R0 > 1, to assure the existence and positivity of the endemic

equilibrium point.

Theorem 5.3.6. System (5.3) always has a disease-free equilibrium X0 = (S0, 0, 0). In

addition, if R0 > 1, then there exists a unique endemic equilibrium point X∗ = (S∗,A∗, I∗).

Next, we will discuss the stability of the equilibrium points of system (5.3). At
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the point X(S,A, I), the Jacobian matrix of system (5.3) is given by

J(X) =



−[βAA + βII] − h0 −βAS − γ −βIS − γ

βAA + βII βAS − h1 βIS

0 η −h2


. (5.10)

Using the Jacobian matrix (5.10) and the Matignon condition [48], [52], the local

stability of the equilibrium points of the fractional-order system (5.3) is investi-

gated. We have the following theorems.

Theorem 5.3.7. The disease-free equilibrium X0 = (S0, 0, 0) of the fractional-order

system (5.3) is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proof. The Jacobian matrix (5.10) around the disease-free equilibrium X0 is as

follows

J(X0) =



−h0 −βAS0
− γ −βIS0

− γ

0 βAS0
− h1 βIS0

0 η −h2


.

The eigenvalues of the Jacobian matrix J(X0) around the disease-free equilibrium

X0 are λ1 = −h0 and the roots of the characteristic polynomial of the minor matrix

of J(X0) given by

C(λ) = λ2 + (h1 + h2 − βAS0)λ + h1h2(1 − R0) = 0. (5.11)

WhenR0 < 1, it is evident that h1 +h2−βAS0 = h2 +h1

(
1 − βA

S0

h1

)
> h2 +h1 (1 − R0) >

0. Thus, from the Routh-Hurwitz criterion, all the roots λi of the characteristic

equation (5.11) have negative real parts. By using Matignon’s condition [48], [52],

it can be observed that |arg(λi)| > απ2 for all 0 < α < 1. Therefore, the disease free

equilibrium point X0 is locally asymptotically stable if R0 < 1.

When R0 > 1, we have C(0) < 0 and lim
λ→+∞

C(λ) = +∞, then there exist positive real

root λ∗ > 0 of the characteristic equation (5.11), from Matignon’s condition [48],

[52], it can be observed that |arg(λ∗)| = 0 < απ2 for all 0 < α < 1. Thus, the disease

free equilibrium point X0 is unstable. This result completes the proof. �

It is observed that the disease free equilibrium point X0 is locally asymptotically
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stable when the endemic equilibrium X∗ do not exist.

Next, the stability of the endemic equilibrium X∗ is discussed.

Theorem 5.3.8. The unique endemic equilibrium X∗ of the fractional-order system

(5.3) is locally asymptotically stable if R0 > 1.

Proof. At the endemic equilibrium X∗, The Jacobian matrix (5.10) is given by

J(X∗) =



−h1
A∗
S∗ − h0 − λ −βAS∗ − γ −βIS∗ − γ

h1
A∗
S∗ βAS∗ − h1 − λ βIS∗

0 η −h2 − λ


.

The eigenvalues of the Jacobian matrix J(X∗) around the endemic equilibrium X∗

are the roots of the characteristic equation given by

λ3 + a2λ
2 + a1λ + a0 = 0, (5.12)

where ai, i = 0, . . . , 2 are given as follow,

a2 =
(
h0 + h1

A∗

S∗

)
+

(
h2 +

βII∗S∗

A∗

)
,

a1 = h0

(
h2 +

βII∗S∗

A∗

)
+ (h1 + h2 + γ)h1

A∗

S∗
,

a0 = [(h1 + γ)h2 + ηγ]h1
A∗

S∗
.

It is evident that ai > 0. Moreover, we have

a1a2 − a0 = h0

(
h2 +

βII∗S∗

A∗

) (
h0 + h1

A∗
S∗

)
+ h0

(
h2 +

βII∗S∗

A∗

)2

+
(
h0 + h1

A∗
S∗

)
(h1 + h2 + γ)h1

A∗
S∗ +

(
h2 +

βII∗S∗

A∗

)
(h1 + h2 + γ)h1

A∗
S∗

−[(h1 + γ)h2 + ηγ]h1
A∗
S∗
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= h0

(
h2 +

βII∗S∗

A∗

) (
h0 + h1

A∗
S∗

)
+ h0

(
h2 +

βII∗S∗

A∗

)2

+
(
h0 + h1

A∗
S∗

)
(h2 + γ)h1

A∗
S∗ +

(
h2 +

βII∗S∗

A∗

)
h1h2

A∗
S∗

+
(
h2

1
A∗
S∗ + (h1 + γ)βII∗S∗

A∗

)
h1

A∗
S∗ +

(
h0h1 − ηγ

)
h1

A∗
S∗ > 0.

Then, according to the Routh-Hurwitz criterion, all the roots of the characteristic

equation (5.12) have negative real parts. By using Matignon’s condition [48], [52],

it can be observed that |arg(λ1)| = π > απ2 for all 0 < α < 1. Therefore, the endemic

equilibrium point X∗ is locally asymptotically stable if R0 > 1. �

5.3.2 Global stability

Let us define a function Ψ : R+ → R+ given by

Ψ(ζ(t)) = ζ(t) − ζ∗ − ζ∗ln
ζ(t)
ζ∗
, for all t ≥ 0, ζ∗ > 0.

Note that Ψ(ζ) is a non-negative function for any ζ > 0 that attains a global

minimum at ζ = ζ∗.

Theorem 5.3.9. The disease-free equilibrium X0 of system (5.3) is globally asymptot-

ically stable on Ω, if R0 ≤ R1 where R1 = 1 −

(
η(βA−βI)

2γ2

4(µ+δI )βAβI

)
(µ+η+δA)

[(
η

µ+δI
+1

)
γ+(µ+η+δA)

] .
Proof. Let us consider the following function:

V0(S,A, I) = 2
(
S − S0

)2
+ c1A +

1
(µ + δI)

4γS0 + βI

[
S0
−
γ

βI
+

c1

4

]2 I,

where c1 = 4S0
(

( η
(µ+δI ) +1)γ+(2−R0)(µ+η+δA)

(µ+η+δA)R0

)
. It is easily seen that the above function is

nonnegative and also V0 = 0 if and only if S = S0, A = 0 and I = 0. Applying the

Caputo fractional derivative on equations of system (5.3), we obtain

CDα
t V0(S,A, I) = 4

(
S − S0

)
CDα

t S + c1
CDα

t A

+
1

(µ + δI)

4γS0 + βI

[
S0
−
γ

βI
+

c1

4

]2CDα
t I
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= −4(βAA + βII)
(
S2
− S0S

)
− 4(µ + ν + γ)

(
S − S0

)2

−4γ(A + I)
(
S − S0

)
+c1(βAA + βII)S − c1(µ + η + δA)A

+

(
4γS0 + βI

[
S0
−

γ
βI

+ c1
4

]2
)

(µ + δI)
(
ηA − (µ + δI)I

)
= −4(µ + ν + γ)

(
S − S0

)2

−βAA

4S2
− 4

(
S0
−
γ

βA
+

c1

4

)
S +

(
S0
−
γ

βA
+

c1

4

)2
−βII

4S2
− 4

(
S0
−
γ

βI
+

c1

4

)
S +

(
S0
−
γ

βI
+

c1

4

)2
−H(c1)A

= −4(µ + ν + γ)
(
S − S0

)2
− βAA

[
2S −

(
S0
−
γ

βA
+

c1

4

)]2

−βII
[
2S −

(
S0
−
γ

βI
+

c1

4

)]2

−H(c1)A,

where

H(c1) = c1(µ + η + δA) − 4γS0
− βA

(
S0
−
γ

βA
+

c1

4

)2

−

(
η

µ + δI

) 4γS0 + βI

[
S0
−
γ

βI
+

c1

4

]2
= 4S0


(
η+µ+δI

µ+δI

)
γ + (µ + η + δA)

R0

 (R1 − R0) . (5.13)

From (5.13) we can show that the term H(c1) is negative if and only if R0 ≤ R1.

Thus, we have CDα
t V0(S,A, I) ≤ 0 for all (S,A, I) ∈ Ω and CDα

t V0(S,A, I) = 0 if and

only if (S,A, I) = (S0, 0, 0). Thus, the only invariant set contained in Ω is {(S0, 0, 0)}.

Hence, by Lemma 4.6 in [28], it is proved the convergence of the solutions (S,A, I)

to (S0, 0, 0). Therefore, X0 is globally asymptotically stable in Ω if R0 ≤ R1. �

Theorem 5.3.10. For γ = 0, the endemic equilibrium X∗ of system (5.3) is globally

asymptotically stable on Ω/[0, 1] × {(0, 0)} if R0 > 1.
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Proof. Consider the function

V1(S,A, I) =
(
S − S∗ − S∗ ln

S
S∗

)
+

(
A − A∗ − A∗ ln

A
A∗

)
+

(
(µ + η + δA) − βAS∗

η

) (
I − I∗ − I∗ ln

I
I∗

)
.

This function is positive (since (µ+η+δA)−βAS∗

η =
βIS∗I∗

ηA∗ ) and V1(S,A, I) = 0 if and only

if (S,A, I) = (S∗,A∗, I∗).

By calculating the α-order derivative of V1 along the solution of system (5.3) and

using Lemma 3.1 in [?], we obtain

CDα
t V1(S,A, I) ≤

(
1 −

S∗

S

)
CDα

t S +
(
1 −

A∗

A

)
CDα

t A

+

(
(µ + η + δA) − βAS∗

η

) (
1 −

I∗

I

)
CDα

t I

=
(
1 −

S∗

S

) (
(βAA∗ + βII∗)S∗ − (βAA + βII)S − (µ + ν)(S − S∗)

)
+

(
1 −

A∗

A

) (
(βAA + βII)S − (µ + η + δA)A

)
+

(
(µ + η + δA) − βAS∗

η

) (
1 −

I∗

I

) (
ηA − (µ + δI)I

)
= −

1
S

(µ + ν)(S − S∗)2 + βAA∗S∗
(
2 −

S∗

S
−

S
S∗

)
+βII∗S∗

(
2 −

S∗

S
−

I
I∗

S
S∗

A∗

A

)
+

(
βIS∗I∗ − (µ + η + δA)A∗ + βAS∗A∗

) I
I∗

+ηA∗
(

(µ + η + δA) − βAS∗

η

) (
1 −

I∗

I
A
A∗

)
. (5.14)

Now, replacing

u =
S
S∗
, v =

A
A∗
, w =

I
I∗
, and

(µ + η + δA) − βAS∗

η
=
βIS∗I∗

ηA∗
,

in inequality (5.14), we obtain

CDα
t V1(S,A, I) ≤ −

1
S

(µ + ν)(S − S∗)2 + βAA∗S∗
(
2 −

1
u
− u

)
+βII∗S∗

(
3 −

1
u
−

uw
v
−

v
w

)
. (5.15)
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By the arithmetic mean-geometric mean inequality we have
(
2 − 1

u − u
)
≤ 0 and(

3 − 1
u −

uw
v −

v
w

)
≤ 0 for all u ≥ 0, v ≥ 0 and w ≥ 0. Hence CDα

t V1(S,A, I) ≤ 0, and
CDα

t V1(S,A, I) = 0 if and only if S = S∗ and v = w (i.e. I
I∗ = A

A∗ ). Since S must

remain constant at S∗, CDα
t S is zero. This implies that A = A∗ and I = I∗. Thus, By

Lemma 4.6 in [28], it is proved that the fully endemic equilibrium X∗ is globally

asymptotically stable in Ω/[0, 1] × {(0, 0)}. �

Remark 7. If the initial conditions starts from [0, 1] × {(0, 0)}, then the solution

obviously converges to the disease free equilibrium point X0.

5.4 Conclusion and simulations

In this chapter, we have considered a fractional order SAIRS model. We have

investigated the existence and the stability of the equilibria. This analysis is ob-

tained according the value of R0 and its position with respect to some thresholds

R1 and 1. Using the Lyapunov functionals, we show that the disease free equilib-

rium X0 is globally asymptotically stable for R0 ≤ R1 and unstable for R0 > 1 (see

Fig. 5.1, Fig. 5.2 and Fig. 5.3). Moreover, when the disease free equilibrium X0 is

unstable i.e. R0 > 1, we have showed the existence of a endemic equilibrium X∗

which is also globally asymptotically stable when γ = 0 (see Fig. 5.5).
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Figure 5.1: Numerical solutions of (5.3) with α = 0.5, µ = 1.25, βA = 3.5, βI = 3.5,
ν = 1, γ = 0.5, η = 2.5, δA = 1.5, δI = 1.5 and the initial conditions are S0 = 0.25,
A0 = 0.75 and I0 = 0.5. Note that R0 = 0.81 < R1 = 1, then the disease free
equilibrium X0 is globally asymptotically stable.
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Figure 5.2: Numerical solutions of (5.3) with α = 0.5, µ = 1.25, βA = 4, βI = 3.5,
ν = 1, γ = 0, η = 2.5, δA = 1.5, δI = 1.5 and the initial conditions are S0 = 0.25,
A0 = 0.75 and I0 = 0.5. Note that R0 = 0.76 < R1 = 1, then the disease free
equilibrium X0 is globally asymptotically stable.
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Figure 5.3: Numerical solutions of (5.3) with α = 0.5, µ = 1.25, βA = 5, βI = 2,
ν = 1, γ = 1.25, η = 2.5, δA = 1.5, δI = 1.5 and the initial conditions are S0 = 0.25,
A0 = 0.75 and I0 = 0.5. Note that R0 = 0.93 < R1 = 0.99, then the disease free
equilibrium X0 is globally asymptotically stable.
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Figure 5.4: Numerical solutions of (5.3) with α = 0.5, µ = 1.25, βA = 15, βI = 3.5,
ν = 0.0002, γ = 1.25, η = 2.5, δA = 1.5, δI = 1.5 and the initial conditions are
S0 = 0.25, A0 = 0.75 and I0 = 0.5. Note that R0 = 3.46 > 1, then the endemic
equilibrium X∗ is locally asymptotically stable.
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Figure 5.5: Numerical solutions of (5.3) with α = 0.5, µ = 1.25, βA = 15, βI = 3.5,
ν = 0.0002, γ = 0, η = 2.5, δA = 1.5, δI = 1.5 and the initial conditions are S0 = 0.25,
A0 = 0.75 and I0 = 0.5. Note that R0 = 3.46 > 1, then the endemic equilibrium X∗

is globally asymptotically stable.
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