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ABSTRACT

In this research we give some geometric properties of hypersurfaces (M3, g) in the nilpo-

tent Lie group (Nil4, g̃). First, we give a left invariant metric, the Levi-Civita connection,

Riemannian curvature, and the Ricci tensor in an orthonormal basis of vector field in Nil4,

beside, we note a classification of Codazzi hypersurfaces in a Lie group (Nil4, g̃). We also

give a characterization of a class of minimal hypersurfaces in (Nil4, g̃) with an example of a

minimal surface in this class.

Key words: Codazzi hypersurfaces, minimal hypersurfaces.



RÉSUMÉ

Dans cette recherche, on donnes quelques propriétés géométriques des hypersurfaces (M3, g)

dans le groupe de Lie nilpotent (Nil4, g̃). Tout d´abord, on donnes une métrique invariante

á gauche, la connexion de Levi-Civita, la courbure Riemannienne et le tenseur de Ricci dans

une base orthonormée de champ de vecteurs dans Nil4. De plus, on notes une classification

des hypersurfaces de Codazzi dans un groupe de Lie (Nil4, g̃). On donnes également une

caractérisation d´une classe d´hypersurfaces minimales dans (Nil4, g̃) avec un exemple de

surface minimale dans cette classe.

Mots clés: Hypersurfaces de Codazzi, hypersurfaces minimales.
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INTRODUCTION

Three-dimensional Thurston model geometries are classified by W. Thurston, this classifica-

tion has eight geometries. In 1983 R. Filipkiewicz[14] gave a classification to Thurston ge-

ometry from the fourth dimension, and he classified them into symmetric and non-symmetric

spaces, in addition to this he considered Nil4 as a non-symmetric space.

C. T. C. Wall[33] has studied the complex structures on 4-dimensional Thurston geometries.

S. Maier, in 1998 studied the conformal flatness of 4-dimensional Thurston geometries.

Then, in 2014 Professor BELKHELFA Mohamed and Dr. Hasni gave geometric properties for

some groups in their research [17]. Other studies presented the classifications of subgroups,

such as ” submanifolds”, especially hypersurfaces that are considered as submanifold from

the third dimension.

This research focuses on Nil4 Lie group, presented as following:

Nil4 = R3 nU R

where U(t) = exp(tL), with

L =




0 1 0

0 0 1

0 0 0




Let (M3, g) be a Riemannian hypersurfaces in (Nil4, g̃), where g̃ is left invariant metric.

The second fundamental form B of (M3, g) in (Nil4, g̃) is given by:

B(X, Y ) = h(X, Y )ξ = ∇̃XY −∇XY,

where X, Y ∈ X(M3), ξ the unit normal vector field in M3, and ∇̃(resp ∇)is the Levi-Civita

connection of (Nil4, g̃) (resp (M3, g)).

• (M3, g) is totally geodesic if h = 0.
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• (M3, g) is parallel if ∇h = 0.

• (M3, g) is Codazzi if (∇Y h)(X,Z) = (∇Xh)(Y, Z).

• (M3, g) is minimal if traceg(h) = 0.

This thesis aims to prove that the hypersurface (M3, g) in (Nil4, g̃), every Codazzi is par-

allel and a minimal, however not every minimal is a Codazzi.

In order to get the results we used the definitions and the information distributed in the

chapters as following:

The First Chapter: gives some important definitions of differentiable manifolds.

The Second Chapter: presents the basic definitions and the properties of Riemannian mani-

folds.

The Third Chapter: speaks about the geometries of submanifolds in a Riemannian manifold,

citing the formulas of Gauss and Weingarten, the equations of Gauss and Coddazzi, especially

hypersurfaces.

The Fourth Chapter: defines the geometry of Thurston Nil4, gives its metric and the geo-

metric properties.

The Last Chapter: exposes the results of hypersurface (M3, g) in (Nil4, g̃), giving the condi-

tions of the unit normal vector ξ in M3, where (M3, g) is Codazzi and minimal.



CHAPTER 1

SUBMANIFOLD DIFFERENTIABLE MANIFOLDS

In this chapter, we give definitions of differentiable manifolds, tangent spaces, tangent bundle,

Tensor fields, Lie bracket, and diferential forms. The references used are:[1], [2], [3],[5], [8],

[14], [15], [18], [20], [21], [22], [23], [24], [27], [33]. Differentiable always signifies of class C∞

.

1.1 Differentiable manifolds

Definition 1.1.1. A topology on a set M̃ is any part T of P(M̃) verifying the following

properties:

1. ∅, X ∈ T .

2. if U, V ∈ T then U ∩ V ∈ T .

3. if {Ui}i∈I ∈ T then
⋃

i∈I

Ui ∈ T .

A topological space (M̃, T ) is called a separate space (or a Hausdorff space) for any point

x, y ∈ M̃ where x 6= y there exists two open sets U, V ∈ T with

x ∈ U, y ∈ V and U ∩ V = ∅.

Definition 1.1.2. A topological space M̃ is locally Euclidean of dimension m if every point

p in M̃ has a neighborhood U such that there is a homeomorphism ϕ from U onto an open

subset of Rm. We call the pair (U,ϕ) a chart.
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Definition 1.1.3. A topological manifold M̃ of dimension m is a Hausdorff, locally Euclidean

space of dimension m and has a countable basis of open sets.

Definition 1.1.4. Two charts (U,ϕ : U → Rm), (V, ψ : V → Rm) of a topological are

differentiable compatible if the two maps

ϕ ◦ ψ−1 : ψ(U ∩ V ) −→ ϕ(U ∩ V ), ψ ◦ ϕ−1 : ϕ(U ∩ V ) −→ ψ(U ∩ V ) are differentiable these

two maps are called the transition function between the charts with U ∩ V 6= ∅.

Definition 1.1.5. A differentiable atlas on a locally Euclidean space M̃ is a collection A =

(UI , ϕI) of pairwise differentiable compatible charts that cover M̃ , i.e., such that M̃ =
⋃
I

UI

Definition 1.1.6. A differentiable manifold is a topological manifold together with a differ-

entiable atlas.

Example 1.1.1. 1� Rn is a differentiable manifold of dimension n of class C∞, where

{(Rn, IdRn)} is an atlas.

2� The standard sphere Sn = {u ∈ Rn+1 | ‖u‖ = 1} is a differentiable manifold of dimen-

sion n. Sn is a topological space, where TSn is the topology induced by that of Rn+1 (its

the topology whose openings are of the form U = Ω∩Sn where Ω is an open from Rn+1).

Let the projections stereographic

ϕN : UN = Sn − {N} −→ Rn

(u1, ..., un+1) 7−→
(

u1
1− un+1

, ...,
un

1− un+1

)
.

ϕS : US = Sn − {S} −→ Rn

(u1, ..., un+1) 7−→
(

u1
1 + un+1

, ...,
un

1 + un+1

)
.

The applications ϕN : UN −→ Rn and ϕS : US −→ Rn are homeomorphism.

Using

1− u2n+1 = u21 + ...+ u2n,

we find that

ϕ−1N : Rn −→ UN

(x1, ..., xn) 7−→
(

2x1
‖x‖2 + 1

, ...,
2xn

‖x‖2 + 1
,
‖x‖2 − 1

‖x‖2 + 1

)
.
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ϕ−1S : Rn −→ US

(y1, ..., yn) 7−→
(

2y1
‖y‖2 + 1

, ...,
2yn

‖y‖2 + 1
,−‖y‖

2 − 1

‖y‖2 + 1

)
.

the mapping of charts transitions are given by

ϕS ◦ ϕ−1N =
x

‖x‖2
, ϕN ◦ ϕ−1S =

y

‖y‖2
, ∀x, y ∈ Rn − {0},

which are diffeomorphisms of differentiable. Therefore ASn = {(UN , ϕN), (US, ϕS)} form

a differentiable atlas.

Definition 1.1.7. An atlas for a differentiable manifold M̃ is called oriented if all A =

{(Ui, ϕi)}i∈I such that the charts changes mapping ψij = ϕi ◦ϕ−1j has a positive Jacobian, i.e

J(ψij)p = det(dϕj(p)ψij) > 0.

Definition 1.1.8. A differentiable manifold is called oriented if it possesses an oriented atlas.

Remark 1.1.1. If ϕ be a diffeomorphism of Rn, its Jacobian is defined by:

J(ϕ)p = det(dpϕ).

Example 1.1.2. 1) Rn is an orientable manifold because A = (Rn, IdRn).

2) A surface S in R3 is orientable if it has two sides. Then, one can orient the surface

by choosing one side to be the positive side. Some unusual surfaces however are not

orientable because they have only one side. One classical examples is called the Möbius

strip. So that a Möbius strip is not orientable because the normal vector field an this

surface S is not orientable.

Definition 1.1.9. Let M and M̃ two differentiable manifolds, a mapping f : M −→ M̃ is

said to be differentiable, if for every chart (Ui, ϕi) of M and every chart (Vj, ψj) of M̃ such

that f(Ui) ⊂ Vj, the mapping ψj ◦ f ◦ ϕ−1i : ϕi(Ui) −→ ψi(Vj) is differentiable.

Definition 1.1.10. F is a smooth mapping of Mn into M̃m if for every p ∈M there exist a

coordinated neighborhood (U,ϕ) of p and (V, ψ) of F (p) with F (U) ⊂ V such that ψ◦F ◦ϕ−1 :

ϕ(U) −→ ψ(V ) is differentiable.
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Figure 1.1: The non-oriented Möbius strip

1.2 Tangent Spaces

1.2.1 Tangent vectors

Definition 1.2.1. Let M̃ be a differentiable manifolds and D an open set of M̃ . A function

f : D −→ R is called differentiable at p ∈ D, if there is chart (U,ϕ) of M̃ with p ∈ U and

U ⊂ D such that f ◦ ϕ−1 : ϕ(U) −→ R is differentiable.

C∞(M̃) a set of differentiable functions on M̃ at p.

Definition 1.2.2. Let M̃ be a differentiable manifold of dimension m and p ∈ M̃ . The

tangent vector at p of M̃ is a map

Bp : C∞(M̃) −→ R

f 7−→ Bp(f),

such that:

1 ∗ Bp is a linear mapping of C∞(M̃) into R,

2 ∗ Bp(fg) = (Bpf)g(p) + f(p)(Bpg), for all f, g ∈ C∞(M̃),

3 ∗ If f is a constant in the neighborhood of p then Bp(f) = 0.

Remark 1.2.1. 1 Let M̃ be a differentiable manifold of dimension m, p ∈ M̃ , and γ :

I ⊂ R −→ M̃ a differentiable curve with γ(0) = p and f differentiable function on M̃

at p. The tangent vector at p is the function γ′(0) : C∞(M̃) −→ R given by

γ′(0)(f) =
d(f ◦ γ)

dt
|t=0.
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2 Let M̃ be an m-dimensional differentiable manifold, (U,ϕ) be a chart of M̃ , p ∈ U , and

ϕ(p) = (x1, ..., xm) we define the map:

∂

∂xi

∣∣
p

: C∞(M̃) −→ R

f 7−→ ∂

∂xi

∣∣
p
(f) =

∂(f ◦ ϕ−1)
∂xi

∣∣
ϕ(f)

.

∂
∂xi
|p is said derivative associated to the chart (U,ϕ) and { ∂

∂x1
|p, ..., ∂

∂xm
|p} be a frame

for the tangent space TpM̃ , for all p ∈ U .

Figure 1.2: Tangent vector

Definition 1.2.3. Let M and M̃ two differentiable manifolds, and f a C1 map M −→ M̃ .

Let p ∈ M , q = f(p), and let TpM , TqM̃ be the tangent spaces at p, q respectively. To

each W ∈ TpM there corresponds a tangent vector V ∈ TqM̃ as follows. For g ∈ C∞(M̃)

the function g ◦ f = g∗, say, is in C∞(M). Then define V (g) = W (g∗). This defines a map

TpM −→ TqM̃ which is easily seen to be linear and which is called the differential of f denoted

df . We can also express this definition by the formula

((df)(W ))(g) = W (g ◦ f), W ∈ TpM, g ∈ C∞(M̃).

1.2.2 Tangent bundle

Definition 1.2.4. Let M̃ be a differentiable manifold. We define the tangent bundle of M̃ ,

denoted by

TM̃ =
⋃

p∈M̃

TpM̃.
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Figure 1.3: Tangent space

Remark 1.2.2. T ∗p M̃ is the dual space (cotangent space) of the tangent space TpM̃ of M̃ at

p. Denoted by (dxi|p) form a basis of T ∗p M̃ , we have 〈dxi, ∂
∂xj
〉p = δij with:

δij =

{
1 if i = j

0 if i 6= j

Figure 1.4: Tangent bundle on a 2-sphere

1.2.3 Vector fields

Definition 1.2.5. Let TpM̃ be the tangent space to a differentiable manifold M̃ at p. A vector

field on a differentiable manifold M̃ is a section of the tangent fibre TM̃ of this manifold, i.e,
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the differentiable application

X : M̃ → TM̃

p 7→ X(p).

The set of vector fields on M̃ is denoted by X(M̃).

1.2.4 Tensor fields

Definition 1.2.6. For any point p in M̃ we define the vector space

T (r,d)
p M̃ = TpM̃ ⊗ ...⊗ TpM̃︸ ︷︷ ︸

r−once

⊗T ∗p M̃ ⊗ ...⊗ T ∗p M̃︸ ︷︷ ︸
d−once

.

Let T (r,d)M̃ =
⋃
p∈M̃ T

(r,d)
p M̃ . A element T ∈ T (r,d)

p M̃ is a tensor of type (r, d) above p. A

tensor field of type (r, d) on a manifold M̃ is an assignment section of T (r,d)M̃ i.e. a tensor

is a map:

T : M̃ −→ T (r,d)M̃

p 7−→ T (p) ∈ T (r,d)
p M̃.

Remark 1.2.3. 1. A function on a manifold M̃ is a tensor of type (0, 0): T (0,0) = C∞(M̃).

2. A vector field X is a tensor of type (1, 0): T (1,0) = X(M̃).

3. A differential 1− form is a tensor of type (0, 1): T (0,1) = Ω1(M̃).



1.2.5 Immersions- Embeddings 18

1.2.5 Immersions- Embeddings

Definition 1.2.7. Let Mm and M̃n be differentiable manifolds. A differentiable mapping

f : M −→ M̃ is said to be an immersion if dfp: TpM −→ Tf(p)M̃ injective for all p ∈M . If,

in addition, f is a homeomorphism onto f(M) ⊂ M̃ , where f(M) has the subspace topology

induced from M̃ , we say that f embedding. If M ⊂ M̃ and the inclusion i : M ⊂ M̃ is an

embedding, we say that M is a submanifold of M̃ .

Remark 1.2.4. It can be seen that if f : Mn −→ M̃m is an immersion, then n 6 m, the

difference m− n is called the codimension of the immersion f .

Example 1.2.1. • The curve γ(t) = (t3, t2) is a differentiable mapping but is not an immer-

sion. Indeed, the condition for the map to be an immersion in this case is equivalent to the

fact that γ′(t) 6= 0, which does not occur for t = 0 (Fig (1.5)).

• The curve γ(t) = (t3 − 4t, t2 − 4) (Fig (1.6)) is an immersion, γ : R −→ R2 which has a

self-intersection for t = 2, t = −2.

Therefore, γ is not an embedding.

Figure 1.5: The curve is not an immersion

Proposition 1.2.1. [8] Let f : Mn −→ M̃m, n ≤ m, be an immersion of the differentiable

manifold M into the differentiable manifold M̃ . For every point p ∈ M , there exists a

neighborhood U ⊂M of p such that the restriction f |U → M̃ is an embedding.
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Figure 1.6: The curve is not an embedding

1.2.6 Submanifolds

Definition 1.2.8. A subset Mn of a differentiable manifold M̃m is said to have the n-

submanifold property if each x ∈ M has a coordinate neighborhood (V, ψ), on M̃ with local

coordinates x1, . . . , xm such that

1) ψ(x) = (0, . . . , 0),

2) ψ(V ) = Cm
ε (0), and

3) ψ(V ∩M) = {p ∈ Cm
ε (0)/xn+1 = . . . = xm = 0}. If M has this property, coordinate

neighborhoods of this type are called preferred coordinates (relative to M).

Where Cm
ε (0) = {x ∈ Rm/|xi| < ε, i = 1, . . . ,m}.

Definition 1.2.9. A regular submanifold of a differentiable manifold M is any sub-space M̃

with submanifold property and with a differentiable structure that the corresponding preferred

coordinate neighborhoods determine on it.

Example 1.2.2. A regular surface S ⊂ R3 has a differentiable structure given by its parametriza-

tions xα : Uα −→ S. With such a structure, the mappings xα are differentiable and, indeed,

are embeddings of Uα into S, that is an immediate consequence of condition

a) xα are differentiables homeomorphisms,
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b) The differential (dxα)|p : R2 −→ R3 are injective for all p ∈ Uα.

We are going to show that the inclusion i : S ⊂ R3 is an embedding, that is, S is a submanifold

of R3.

1.2.7 Lie bracket

Definition 1.2.10. Let M̃ be a differentiable manifold and the application [, ] is called a Lie

bracket defined by:

[X, Y ] = XY − Y X

for all X, Y ∈ X(M̃).

The Lie bracket has the the following properties

Proposition 1.2.2. [8] If X, Y and Z are differentiable vector fields on M̃ , a, b are real

numbers, and f, g are differentiable function, then:

1) [X, Y ] = −[Y,X] (anticommutativity),

2) [aX + bY, Z] = a[X,Z] + b[Y, Z] (linearity),

3) [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0(Jacobi identity),

4) [fX, gY ] = fg[Y,X] + fX(g)Y − gY (f)X.

1.3 Lie groups and Lie algebra of a Lie group

The space Rn is a differentiable manifold and at the same time an abelian group with group

operation given by componentwise addition. Moreover the algebraic and differentiable struc-

tures are related: (a, b) 7−→ a+ b is a differentiable mapping of the product manifold Rn×Rn

onto Rn, that is, the group operation is differentiable. We also see that the mapping of Rn

onto Rn given by taking each element a to its inverse a−1 is differentiable. Now, let G be a

group which is at the same time a differentiable manifold. For a, b ∈ G, let ab denote their

product, and a−1 the inverse of a.
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1.3.1 Lie groups

Definition 1.3.1. A Lie group (named Sophus Lie on 17 December 1842) is a finite dimen-

sional smooth manifold G together with a group structure on G, such that the multiplication

G × G → G defined by (x, y) 7−→ xy and the mapping of an inverse G → G defined by

x 7−→ x−1 are differentiable mappings.

Example 1.3.1. Let C∗ be the nonzero complex numbers. Then C∗ is a group with respect

to multiplication of complex numbers, the inverse being Z−1 = 1
Z

. Moreover, C∗ is a one-

dimensional differentiable manifold covered by a single coordinate neighborhood U = C∗ with

coordinate map Z 7−→ ϕ(Z) given by ϕ(Z) = ϕ(x+ iy) = (x, y) for Z = x+ iy. Using these

coordinates, the product W = ZZ ′, Z = x+ iy, and Z ′ = x′ + iy′ is given by

(Z,Z ′) = ((x, y), (x′, y′)) 7−→ (xx′ − yy′, xy′ + yx′) = W

and the mapping Z 7−→ Z−1 by

(x, y) 7−→ (
x

x2 + y2
,
−y

x2 + y2
)

C∗ is a Lie group.

Theorem 1.3.1. [3] If G and G′ are Lie groups, then the direct product G × G′ of these

groups with the differentiable structure of the Cartesian product of manifolds is a Lie group.

Definition 1.3.2. Let G be a Lie group. We denote by Lp the left translation in G by an

element p ∈ G:

Lp(q) = pq,

for every q ∈ G.

Definition 1.3.3. Let G be a Lie group. A vector field X on G is called left-invariant if it

is invariant by all Lp, i.e.,

(Lp)∗(X) = X,

for all p ∈ G, is equivalent to:

dLp(Xq) = Xpq.
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Figure 1.7: The left translation

Definition 1.3.4. Let G be a Lie group. We denote by Rp the right translation G by an

element p ∈ G:

Rp(q) = qp,

for every q ∈ G.

Notation : We denote by XL(G) = {X ∈ X(G)|(Lp)∗(X) = X, ∀p ∈ G} the space of

left-invariant vector fields.

Figure 1.8: left-invariant vector field
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Example 1.3.2. The real three dimensional Heisenberg group is a Lie group in GL(3,R,

defined in the following way

H3 =








1 x z

0 1 y

0 0 1


 ,∀x, y, z ∈ R




.

The group operation is the standard matrix multiplication, which gives the multiplication rule:

(a, b, c).(a′, b′, c′ = (a+ a′, b+ b′, c+ c′ + ab′).

where e = (0, 0, 0) is the identity element, and for any matrix (x, y, z) ∈ H3, the inverse is

given by

(x, y, z)−1 = (−x,−y, xy − z).

In this example we will show that the three vector fields:

X =
∂

∂x
, Y =

∂

∂y
+ x

∂

∂z
, Z =

∂

∂z
.

are left-invariant vector fields on H3.

In deed, the left translation in this group is given by

∀(a, b, c) ∈ H3, L(x, y, z) = (x+ a, y + b, z + c+ xb).

We obtain the following results:

dL(x, y, z) =




1 0 0

0 1 0

0 x 1


 .

So, X is left-invariant vector field, if

deL(x, y, z)(Xe) = X(x,y,z).

Which means that:

deL(x, y, z)(
∂

∂x
|e) =




1 0 0

0 1 0

0 x 1







1

0

0


 =




1

0

0


 =

∂

∂x
|(x,y,z),

X =
∂

∂x
,

for the fields Y, Z we have

deL(x, y, z)((
∂

∂y
+ x

∂

∂z
)|e) =




1 0 0

0 1 0

0 x 1







0

1

0


 =




0

1

x


 = (

∂

∂y
+ x

∂

∂z
)|(x,y,z),
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Y =
∂

∂y
+ x

∂

∂z
,

and

deL(x, y, z)(
∂

∂z
|e) =




1 0 0

0 1 0

0 x 1







0

0

1


 =




0

0

1


 =

∂

∂z
|(x,y,z),

Z =
∂

∂z
.

Theorem 1.3.2. [3] Let G be a Lie group and H a subgroup which is also a regular subman-

ifold. Then with its differentiable structure as a submanifold H is a Lie group.

Example 1.3.3. O(n) = {A ∈ GL(n,R)|AtA = I}, the subgroup of orthogonal n×n matrices

is a regular submanifold and thus a Lie group.

Definition 1.3.5. Let G be a Lie group and X a differentiable manifold. Then G is said to

action on X(on the left) if there is a differentiable mapping φ : G × X → X satisfying two

conditions:

i) If e is the identity element of G, then φ(e, x) = x for all x ∈ X;

ii) If g, g′ ∈ G, then φ(g, φ(g′, x)) = φ(g.g′, x) for all x ∈ X.

Definition 1.3.6. An action G×X → X of a Lie group G on a differentiable manifold X is

called transitive if it has a single orbit, i.e. for any two elements x, y ∈ X, there exist g ∈ G
such that

y = φ(g, x) = g.x.

Definition 1.3.7. Given an action G×X → X of a Lie group G on a differentiable manifold

X, for every element x ∈ X, the stabilizer subgroup of x (also called the isotropy group of x)

is the set of all elements in G that leave x fixed

stab(x) = {g ∈ G | φ(g, x) = x}.

Definition 1.3.8. Let G and G′ be groups and let Aut(G′) the automorphism group of G′ for

the law ” ◦ ”. The direct product G′×G of G′ and G is the group whose underlying set is the
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product set G′ ×G, with the law (x, y)(x′, y′) = (xx′, yy′) for all x, x′ ∈ G′ and y, y′ ∈ G.

The semi-direct product is a generalization of this notion. Let φ : G → Aut(G′) a group

morphism which in particular defines an action y.x = φ(y, x) of G′ on G.

Proposition 1.3.1. [3] We define a group law on the product set G′ ×G in posing:

(x.y).(x′.y′) = (xφ(y, x′), yy′).

This group is called the semi-direct product of G′ by G relative to the action φ, it is denoted

Gnφ G
′ (or simply GnG′).

1.3.2 Lie algebra of a Lie group

Definition 1.3.9. The Lie algebra of a Lie group G is the vector space G = TeG, equipped

with the Lie bracket [., .].

Proposition 1.3.2. [3] If G is a Lie group (with neutral element denoted e), the map X 7−→
Xe is an isomorphism between the vector space of invariant vector fields at left on G and the

tangent space TeG.

Definition 1.3.10. Let G be a Lie group and G a Lie algebra of G. We associate to it the

set

G = Lie(G) = {A ∈ M(n,R)|∀t ∈ R, exp(tA) ∈ G},

where the exponential of a matrix A ∈ M(n,R) is defined by

exp(A) =
∞∑

k=0

Ak

k!
.

1.3.3 Nilpotent Lie groups

Definition 1.3.11. Let G be a group of neutral element denoted by e. The commutator of

two elements A and B of G is defined by

[A,B] = A−1B−1AB.

If H and K are two subgroups of G, we denote [H,K] the subgroup which is generated by the

commutators of the form [A,B] for A ∈ H and B ∈ K.
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We define by recurrence a sequence (the descending central sequence of G) of subgroups by G,

by

C1(G) = G, Cn(G) = [Cn−1(G), G].

Definition 1.3.12. The group G is said to be nilpotent if there exists an integer n such that

Cn(G) = {e}.

Definition 1.3.13. The algebra of Lie G is said to be nilpotent if there exists an integer n > 1

such that Cn(G) = {0}.

Proposition 1.3.3. [3]

1 If G is nilpotent then the Lie algebra G is nilpotent.

2 If G is connected and Lie algebra G is nilpotent then G is nilpotent.

Example 1.3.4. (Heisenberg group). Let

H3 =








1 x z

0 1 y

0 0 1


 , x, y, z ∈ R




.

The Lie algebra of H3 is given by

G = TIdH3 =








0 x z

0 0 y

0 0 0


 , x, y, z ∈ R





So that, for all A ∈ G, we have

A3 =







0 x z

0 0 y

0 0 0







3

=




0 0 xy

0 0 0

0 0 0







0 x z

0 0 y

0 0 0




=




0 0 0

0 0 0

0 0 0




This Lie algebra has a basis

E1 =




0 1 0

0 0 0

0 0 0


 , E2 =




0 0 0

0 0 1

0 0 0


 , E3 =




0 0 1

0 0 0

0 0 0


 .
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Therefore G is a 3-step nilpotent Lie algebra and H3 nilpotent Lie group.



CHAPTER 2

RIEMANNIAN MANIFOLDS

In this chapter we recall some properties and definitions of Riemannian manifolds. The

references used are: [8], [11], [14], [17], [22], [24], [25], [27], [30], [35].

2.1 Riemannian manifold

2.1.1 Riemannian metrics

Definition 2.1.1. A Riemannian metric (or Riemannian structure) on a differentiable man-

ifold M̃ is a correspondence which associates to each point p ∈ M̃ an inner product 〈, 〉p (that

is, a bilinear, symmetric, positive definite form) on the tangent space TpM̃ , which varies dif-

ferentiably in the following sense.

If ϕ : U ⊂ Rm → M̃ is a system of coordinates around p, with

q = ϕ(x1, x2, ..., xm) ∈ ϕ(U),

and
∂

∂xi
(q) = dϕq(0, ..., 1︸︷︷︸

ith

, ..., 0),

then 〈 ∂
∂xi

(q), ∂
∂xi

(q)〉q = g̃ij(x1, ..., xm) is a differentiable function on U .

Definition 2.1.2. The function g̃ij(= g̃ji) is called the local representation of the Riemannian

metric in the coordinate system ϕ : U ⊂ Rm → M̃ . A differentiable manifold with a give

Riemannian metric will be called a Riemannian manifold, denoted by (M̃, g̃).
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Definition 2.1.3. Let M and M̃ be Riemannian manifolds. A diffeomorphism

f : M → M̃ (that is, f is a differentiable bijection with a differentiable inverse) is called an

isometry if

〈X, Y 〉p = 〈dfp(X), dfp(Y )〉f(p), (2.1)

for all p ∈M , X, Y ∈ TpM .

Definition 2.1.4. Let M and M̃ be Riemannian manifolds. A differentiable mapping

f : M → M̃ is a local isometry at p ∈M if there is a neighborhood U ⊂M of p such that

f : U → f(U) is a diffeomorphism satisfying (2.1).

Example 2.1.1. (1) M = Rn with ∂
∂xi

identified with ei = (0, ..., 1, ..., 0). The Riemannian

metric is given by 〈ei, ej〉 = δij. Rn is called Euclidean space of dimension n.

(2) The antipodal mapping A : Sn −→ Sn given by A(p) = −p is an isometry of Sn .

(3) Let S2 the unit sphere defined by

S2 = {(x1, x2, x3) ∈ R3 | x21 + x22 + x23 = 1}.

We consider the parametrization




x1 = cos θ cosα

x2 = sin θ cosα

x3 = sinα

Where 0 < α < π
2

and 0 < θ < 2π.

We compute the induce Riemannian metric on S2 by the (standard) metric 〈, 〉 of R3.

The basic fields on S2 are given by

∂

∂θ
= (

∂x1
∂θ

,
∂x2
∂θ

,
∂x3
∂θ

)

= (− sin θ cosα, cos θ cosα, 0),

∂

∂α
= (

∂x1
∂α

,
∂x2
∂α

,
∂x3
∂α

)

= (− cos θ sinα,− sin θ sinα, cos θ).

So that, the components of the Riemannian metric g are given by

g11 = 〈 ∂
∂θ
,
∂

∂θ
〉R3

= sin2 θ cos2 α + cos2 θ cos2 α

= cos2 α,
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g12 = g21

= 〈 ∂
∂θ
,
∂

∂α
〉R3

= sin θ cosα cos θ sinα− cos θ cosα sin θ sinα

= 0,

g22 = 〈 ∂
∂α

,
∂

∂α
〉R3

= cos2 θ sin2 α + sin2 θ sin2 α + cos2 α

= 1.

Thus

g = g11dθ ⊗ dθ + g12dθ ⊗ dα + g21dα⊗ dθ + g22dα⊗ dα
= cos2 αdθ2 + dα2.

2.2 Linear connection

Definition 2.2.1. A linear connection ∇̃ on a differentiable manifold M̃ is a mapping

∇̃ : X(M̃)× X(M̃) −→ X(M̃),

(X, Y ) 7−→ ∇̃XY

which satisfies the following properties

i) ∇̃X(Y + Z) = ∇̃XY + ∇̃XZ,

ii) ∇̃X(fY ) = X(f)Y + f∇̃XY ,

iii) ∇̃fX+gYZ = f∇̃XZ + g∇̃YZ,

for all X, Y, Z ∈ X(M̃) and f, g ∈ C∞(M̃).

2.2.1 Torsion Tensor

Definition 2.2.2. Let M̃ be a differentiable manifold, and ∇̃ be a linear connection on M̃ ,

then the torsion T of connection ∇̃ is a tensor field of type (1, 2) defined by

T : X(M̃)× X(M̃) −→ X(M̃).

(X, Y ) 7−→ ∇̃XY − ∇̃YX − [X, Y ]
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The connection ∇̃ on the tangent bundle TM̃ is said to be torsion-free if the corresponding

torsion T vanishes i.e.

[X, Y ] = ∇̃XY − ∇̃YX, ∀X, Y ∈ X(M̃).

Remark 2.2.1. T (X, Y ) = −T (Y,X) (T is antisymmetric),∀X, Y ∈ X(M̃).

2.2.2 Levi-Civita connection

Definition 2.2.3. A linear connection ∇̃ on a Riemannian manifold (M̃, g̃) is compatible

with g̃ if

Z(g̃(X, Y )) = g̃(∇̃ZX, Y ) + g̃(X, ∇̃ZY ),

for all X, Y, Z ∈ X(M̃).

Proposition 2.2.1. [8] Let (M̃, g̃) be a Riemannian manifold. Then ∇̃ defined by the Koszul

formula

2g̃(∇̃XY, Z) = X(g̃(Y, Z)) + Y (g̃(Z,X))− Z(g̃(X, Y )) (2.2)

+g̃(Z, [X, Y ]) + g̃(Y, [Z,X])− g̃(X, [Y, Z]),

for all X, Y, Z ∈ X(M̃), is linear connection ∇̃ on M̃ : called the Levi-Cevita connection of

M̃ .

Theorem 2.2.1. [8] Given a Riemannian manifold (M̃, g̃). The Levi-Civita connection ∇̃
on (M̃, g̃) satisfying the conditions

a) ∇̃ is torsion-free,

b) ∇̃ is compatible with the Riemannian metric g̃.

Remark 2.2.2. In a coordinate system (xi) on M̃ , ∇̃ is completely defined by the Christoffel

symbols Γ̃kij defined by:

∇̃ ∂
∂xi

∂

∂xj
=

m∑

k=1

Γ̃kij
∂

∂xk
.

Let X =
∑m

i=1X
i ∂
∂xi

, and Y =
∑m

j=1 Y
j ∂
∂xj

, then

∇̃XY =
m∑

i,k=1

X i

(
∂Y k

∂xi
+

m∑

j=1

Γ̃kijY
j

)
∂

∂xk
.
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Proposition 2.2.2. [8] Let (M̃, g̃) a Riemannian manifold with Levi-Civita connection ∇̃.

Further let (U,ϕ) be a local coordinate on M̃ and put ∂i = ∂
∂xi
∈ X(U). The local frame of

TM̃ on U . Then the Christoffel symbols Γ̃kij : U → R of the Levi-Civita connection ∇̃ with

respect to (U,ϕ) are given by

Γ̃kij =
1

2

m∑

l=1

g̃kl{∂g̃jl
∂xi

+
∂g̃il
∂xj
− ∂g̃ij
∂xl
},

where g̃ij = g̃( ∂
∂xi
, ∂
∂xj

) are the components of g̃, and g̃ij = (g̃ij)
−1 is the inverse matrix.

Proof 2.2.1. Since [∂i, ∂j] = 0, ∀i, j = 1, ...,m, we have

2g̃(∇̃∂i∂j, ∂l) = 2
m∑

s=1

g̃(Γ̃sij∂j, ∂l)

= 2
m∑

s=1

Γ̃sij g̃sl,

and according the Koszul’s formula

2g̃(∇̃∂i∂j, ∂l) = ∂i(g̃(∂j, ∂l)) + ∂j(g̃(∂l, ∂i))− ∂l(g̃(∂i, ∂j)),

we find that

m∑

s=1

Γ̃sij g̃sl =
1

2

{
∂g̃jl
∂xi

+
∂g̃il
∂xj
− ∂g̃ij
∂xl

}
,

so that

m∑

s=1

Γ̃sij g̃slg̃
lk =

1

2
g̃lk
{
∂g̃jl
∂xi

+
∂g̃il
∂xj
− ∂g̃ij
∂xl

}
.

As
m∑

l=1

g̃slg̃
lk = δks,

where δks is the Kronecker symbol.

We conclude that

m∑

s,l=1

Γ̃sij g̃slg̃
lk =

1

2

m∑

l=1

{
∂g̃jl
∂xi

+
∂g̃il
∂xj
− ∂g̃ij
∂xl

}
,

we get

Γ̃kij =
1

2

m∑

l=1

g̃kl
{
∂g̃jl
∂xi

+
∂g̃il
∂xj
− ∂g̃ij
∂xl

}
.
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2.2.3 Curvatures on manifolds

Definition 2.2.4. Let (M̃, g̃) be a Riemannian manifold of dimension m, and ∇̃ Levi-Civita

connection of (M̃, g̃). The tensor of type (1, 3) on M̃

R̃ : X(M̃)× X(M̃)× X(M̃) −→ X(M̃) defined by

R̃(X, Y )Z = ∇̃X∇̃YZ − ∇̃Y ∇̃XZ − ∇̃[X,Y ]Z ∀X, Y, Z ∈ X(M̃),

called a curvature tensor.

The curvature tensor type (1, 4) is given by

R̃(X, Y, Z,W ) = g̃(R̃(X, Y )Z,W ).

Remark 2.2.3. The curvature tensor R̃ is expressed as a function of the Christoffel symbols

R̃(∂i, ∂j)∂k =
m∑

s=1

R̃s
ijk∂s,

where {∂i} is a local basis of the vector fields on M̃ .

Since [∂i, ∂j] = 0 we have

R̃(∂i, ∂j)∂k = ∇̃∂i∇̃∂j∂k −∇∂j∇̃∂i∂k

=
∑

l

(∇̃∂i(Γ̃
l
jk∂l)− ∇̃∂j(Γ̃

l
ik∂l))

=
∑

l

(
∂Γ̃ljk
∂xi

∂l + Γ̃ljk∇̃∂i∂l −
∂Γ̃lik
∂xj

∂l + Γ̃lik∇∂j∂l)

=
∑

l

(
∂Γ̃ljk
∂xi

∂l +
∑

s

Γ̃ljkΓ̃
s
il∂s −

∂Γ̃lik
∂xj

∂l +
∑

s

Γ̃likΓ̃
s
jl∂s)

=
∑

s

{
∂Γ̃sjk
∂xi
− ∂Γ̃sik

∂xj
+
∑

l

(Γ̃ljkΓ̃
s
il − Γ̃likΓ̃

s
jl)

}
∂s.

Therefore, the components of the curvature tensor R̃ is given by

R̃s
ijk =

∑

l

(Γ̃ljkΓ̃
s
il − Γ̃likΓ̃

s
jl) +

∂Γ̃sjk
∂xi
− ∂Γ̃sik

∂xj
.

Proposition 2.2.3. [8] Let (M̃, g̃) be a Riemannian manifold. We have

1. R̃(X, Y )Z = −R̃(Y,X)Z (antisymmetric),
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2. g̃(R̃(X, Y )Z,W ) = −g̃(R̃(X, Y )W,Z),

3. g̃(R̃(X, Y )Z,W ) = g̃(R̃(Z,W )X, Y ),

4. R̃ verified Bianchi’s identity algebraic

R̃(X, Y )Z + R̃(Y, Z)X + R̃(Z,X)Y = 0,

5. R̃ verified Bianchi’s identity differential

(∇̃XR̃)(Y, Z) + (∇̃Y R̃)(Z,X) + (∇̃ZR̃)(X, Y ) = 0.

for all X, Y, Z,W ∈ X(M̃).

Definition 2.2.5. For a point p ∈ M̃ the function

Kp : Tp(M̃)× Tp(M̃) → R,

(X, Y ) 7→ g̃(R̃(X, Y )Y,X)

g̃(X,X)g̃(Y, Y )− g̃(X, Y )2

is called the sectional curvature at p on (M̃, g̃).

The Riemannian manifold (M̃, g̃) is said to be of constant curvature if there exists k ∈ R
such that K(X, Y ) = k, for all X, Y,∈ Tp(M̃).

Definition 2.2.6. Let (M̃, g̃) be a Riemannian manifold. We define the tensor field k1 :

X(M̃)× X(M̃)× X(M̃)→ X(M̃) of type (3, 1) by

k1(X, Y )Z = g̃(Y, Z)X − g̃(X,Z)Y, (2.3)

for all X, Y, Z ∈ X(M̃).

Corollary 2.2.1. Let (M̃, g̃) of dimension m, with (m ≥ 2) be a Riemannian manifold of

constant curvature k. Then the curvature tensor R̃ is given by

R̃(X, Y )Z = k[k1(X, Y )Z],

for all X, Y, Z ∈ X(M̃).
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Definition 2.2.7. The Ricci curvature of a Riemannian manifold (M̃, g̃) of dimension m is

a tensor of type (0, 2) defined by

Ric(X, Y ) = traceg̃(Z 7−→ R̃(Z,X)Y )

=
m∑

i=1

g̃(R̃(ei, X)Y, ei),

for all X, Y ∈ X(M̃), where {ei} is an orthonormal frame on (M̃, g̃).

Proposition 2.2.4. [8] The Ricci curvature is symmetric. Indeed

Ric(X, Y ) =
m∑

i=1

g̃(R̃(ei, X)Y, ei)

=
m∑

i=1

g̃(R̃(Y, ei)ei, X)

=
m∑

i=1

g̃(R̃(ei, Y )X, ei)

= Ric(Y,X),

∀X, Y ∈ X(M̃).

Definition 2.2.8. The Ricci tensor of a Riemannian manifold (M̃, g̃) of dimension m is a

tensor of type (1, 1) defined by

Ricci(X) =
m∑

i=1

R̃(X, ei)ei, ∀X ∈ X(M̃).

Remark 2.2.4. For all X, Y ∈ X(M̃) we have

Ric(X, Y ) = g̃(Ricci(X), Y ).

Definition 2.2.9. We call scalar curvature of a Riemannian manifold (M̃, g̃) of dimension

m, the function defined on M̃ by

S = traceg̃Ric

=
m∑

i,j=1

g̃(R̃(ei, ej)ej, ei),

where {ei} is an orthonormal frame on (M̃, g̃).
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Corollary 2.2.2. Let (M̃, g̃) be a Riemannian manifold of constant curvature k, then

1. Ricci(X) = (m− 1)kX,

2. Ric(X, Y ) = (m− 1)kg̃(X, Y ),

3. S = m(m− 1)k.

where m is the dimension of (M̃, g̃).

Proof 2.2.2. By using the formula (2.3), we have

1.

Ricci(X) = R̃(X, ei)ei

= k(g̃(ei, ei)X, ei)X − g̃(ei, X)ei)

= kmX − kX
= (m− 1)kX;

2.

Ric(X, Y ) = g̃(Ricci(X), Y )

= (m− 1)kg̃(X, Y );

3.

S = g̃(R̃(ei, ej)ej, ei)

= kg̃(g̃(ej, ej)ei − g̃(ej, ei)ej, ei)

= kg̃((δjjei − δjiej), ei)
= kg̃(mei − δjiej, ei)
= kg̃(mei − ei, ei)
= k(m− 1)g̃(ei, ei)

= k(m− 1)δii

= k(m− 1)m.

Example 2.2.1. 1. Let Hm be the upper halfspace model of real hyperbolic m−space

Hm = {(x1, x2, ..., xm) ∈ Rm, xm > 0}.
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2. The hyperbolic metric g̃ on Hm is given by

g̃ii =
1

x2m
, g̃ij = 0 for i 6= j,

3.

K(
∂

∂xi
,
∂

∂xj
) = −1,

4. Ric(xi, xj) = −(m− 1)g̃(xi, xj),

5. S = −m(m− 1), for all pairs (i, j) at every point of Hm.

2.3 Geodesics and Parallel transport

Let (M̃, g̃) be a Riemannian manifold with the Levi-Civita connection ∇̃ and let α : I ⊂
R −→ (M̃, g̃) a curve on M̃

Definition 2.3.1. A vector field X(t) along a curve α is said to be parallel along α, if

(∇̃α̇X)|t = 0,

where α̇(t) = dα(
d

dt
)|t, for all t ∈ I.

Proposition 2.3.1. [27] Let α : I ⊂ R −→ (M̃, g̃) be a curve, t0 ∈ I, and v ∈ Tα(t0)M̃ ,

Then, there is a unique vector field Xv parallel along α such that Xv(t0) = v.

Definition 2.3.2. Let α : I ⊂ R −→ (M̃, g̃) be a curve. α is a geodesic if

∇̃α̇(t)α̇(t) = 0 , ∀t ∈ I. (2.4)

Proposition 2.3.2. [27] Let (M̃, g̃) be a Riemannian manifold with the Levi-Civita connec-

tion ∇̃. For any point p ∈ M̃ and for any vector V ∈ TM̃(the tangent space to M̃ at p) there

exists a unique geodesic α : I ⊂ R −→ (M̃, g̃) such that α(0) = p and α̇(0) = V .

Definition 2.3.3. Given a curve α : I ⊂ R −→ (M̃, g̃), and a vector V0 ∈ Tα(0)M̃ , we define

the parallel transport of V0 along α(t) to be the unique solution V (t) to the ODE

∇̃α̇(t)V (t) = 0,

for any t ∈ I with the initial condition V (0) = V0.
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In terms of local coordinates f(u1, ..., um), the parallel transport equation can be expressed

as follows. Let α(t) = f(α1(t), ..., αm(t)) and V (t) = V i(t) ∂
∂ui

, then

α̇(t) =
m∑

i=1

dαi

dt
(
∂

∂ui
◦ α),

where αi = ui ◦ α for all i = 1,m. We obtain

∇̃α̇(t)V (t) = ∇̃dα( d
dt
)V

i(t)(
∂

∂ui
◦ α)

= ∇α
d
dt

V i(t)(
∂

∂ui
◦ α),

=
dV i

dt
(
∂

∂ui
◦ α) + V i∇α

d
dt

(
∂

∂ui
◦ α)

=
dV i

dt
(
∂

∂ui
◦ α) + V i∇̃dα( d

dt
)
∂

∂ui

=
dV i

dt
(
∂

∂ui
◦ α) + V idαj

dt
(∇̃ ∂

∂uj

∂

∂ui
) ◦ α

=
dV i

dt
(
∂

∂ui
◦ α) + V idαj

dt
(Γkij ◦ α)(

∂

∂uk
◦ α)

=
m∑

k=1

[
dVk
dt

+
m∑

i,j=1

V idαj
dt

(Γkij ◦ α)

]
(
∂

∂uk
◦ α),

where ∇α is the Pull-Buck connection on the inverse fibre α−1TM̃ .

Therefore, the parallel transport equation ∇̃α̇(t)V (t) = 0 is equivalent to

dV k

dt
+

m∑

i,j=1

V jΓ̃kij
dαj
dt

= 0,

for any k.

The equation for parallel transport depends only on the derivative of the curve, not on the

curve itself, allowing the parallel transport of a vector along a vector field. This equation is

a first-order ordinary differential equation ODE with guaranteed existence and uniqueness of

solutions.

Example 2.3.1. Diagram showing geodesics on a manifold M̃ . We consider a differentiable

curve α in terms of local coordinates we can obtain a system of equations required for α

to be a geodesic. Consider a Riemannian manifold (M̃, g̃) and some differentiable curve

α : [−ε, ε] −→ U ⊂ M̃ such that α(0) = p. Let V ∈ TpM̃ be a tangent vector to α at p and ϕ

be a local coordinate chart such that ϕ = (x1, ..., xm) : U ⊂ M̃ −→ Rm with p ∈ U . We have

V =
m∑

j=1

Vj
∂

∂xj
∈ TpM̃.
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Figure 2.1: The parallel transport

Let α : [−ε, ε] −→ U be some differentiable curve with α(0) = p and

(ϕ ◦ α)(t) = (α1(t), ..., αm(t)).

Then we have

α̇(t) =
m∑

j=1

α̇j(t)
∂

∂xj
.

We can derive (see do Carmo[8]) the following system of equations that must be satisfies for

α to be a geodesic with α(0) = p and α̇(0) = V .

1) α̈k(t) +
∑m

i=j=1 α̇i(t)α̇j(t)Γ
k
ij(α(t)) = 0,

2) αk(0) = xk(p),

3) α̇k(0) = Vk.

This is a system of second order ordinary differential equations. The Theory of Ordinary

Differential Equations tells us that there exists a unique solution in a neighbourhood [−ε, ε] of

0. This tells us that geodesics are unique for a particular choice of p ∈ M̃ and V ∈ TpM̃ .
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Figure 2.2: Diagram showing geodesics on a manifold M̃

2.4 Left-invariant metrics on a Lie group

Definition 2.4.1. A Riemannian metric on a Lie group G is left invariant if:

〈X, Y 〉b = 〈(dLa)bX, (dLa)bY 〉La(b)

for all a, b ∈ G and all X, Y ∈ TbG, that is, La is an isometry.

Proposition 2.4.1. Let X, Y be left invariant vector fields on G, for each a ∈ G and for any

differentiable function f on G, we have

dLa[X, Y ]f = [X, Y ](f ◦ La)
= X(dLaY )f − Y (dLaX)f

= (XY − Y X)f

= [X, Y ]f,

we conclude that the bracket of any two left invariant vector fields is again a left invariant

vector field. If Xe, Ye ∈ TeG, we put [Xe, Ye] = [X, Y ]e. With this operation, TeG = G the Lie

algebra of G.

Remark 2.4.1. To introduce a left invariant metric on G, take any arbitrary inner product

〈, 〉e on G and define

〈X, Y 〉a = 〈dLa−1(X), dLa−1(Y )〉e, a ∈ G, X, Y ∈ TaG.

Since La depends differentiably on a, this construction actually produces a Riemannian metric,

which is clearly left invariant.
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Example 2.4.1. 1. A function f : R −→ R given by f(t) = yt+ x, t, x, y ∈ R, y > 0,

is called a proper affine function. The subset of all such functions with respect to the

usual composition law forms a Lie group G. As a differentiable manifold G is simply

the upper half-plane {(x, y) ∈ R2, y > 0} with the differentiable structure induce from

R2. The left invariant Riemannian metric of which at the neutral element e = (0, 1)

coincides with the Euclidean metric
(

1 0

0 1

)
,

is given by (
1
y2

0

0 1
y2

)
.

2. The left invariant Riemannian metric g of Heisenberg H3 is given by

g =




1 0 0

0 x2 + 1 −x
0 −x 1


 .

Let {X, Y, Z} be a left-invariant frame field , where

X =
∂

∂x
,

Y =
∂

∂y
+ x

∂

∂z
,

Z =
∂

∂z
,

and θ1 + θ2 + θ3 is a dual conframe field

θ1 = dx,

θ2 = dy,

θ3 = −xdy + dz.

So then

g = θ21 + θ22 + θ23,



CHAPTER 3

GEOMETRY OF RIEMANNIAN SUBMANIFOLDS

This chapter introduces the following concepts: Riemannian submanifold , Levi-Civita con-

nection of a submanifold, second fundamental form, mean curvature, shape operator of a

submanifold normal connection of a submanifold and the formulas of Gauss and Weingarten

and the equations of Gauss and Codazzi. Some geometric properties of submanifolds: par-

alleles and minimal. The Frobenius Theorem. The references used are: [1], [7], [8], [9], [10],

[12], [25], [26], [27],[29], [35] .

3.1 Riemannian submanifolds

Definition 3.1.1. Let M be a differentiable manifold of dimension n and M̃ a differentiable

manifold of dimension (n + m). The differentiable mapping f : M → M̃ is an immersion if

dpf : TpM → Tf(p)M̃ is injective for all p ∈ M . Then the difference between the dimensions

of the two manifolds (in this case m) is defined as the codimension of the immersion f .

If the Riemannian metric g̃ on M̃ induces a Riemannian metric g on M for all X, Y ∈ TpM
such that

g(X, Y ) = g̃(dfp(X), dfp(Y )),

then f is an isometric immersion, or an embedding. If M ⊂ M̃ is an isometric immersion

then M is a submanifold of M̃ .

We also define the concept of tangent and normal bundles.

Remark 3.1.1. Let M be a differentiable manifold and let the tangent bundle TM be the set of

all tangent vectors for all points of the manifold such that TM = {(p,X) : p ∈M,X ∈ TpM}.
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Then TM is a differentiable structure of dimension 2n.

Definition 3.1.2. Let M be a submanifold isometrically immersed in a Riemannian manifold

(M̃, g̃). Then we can compose the tangent space of the Riemannian manifold (M̃, g̃) into

tangential and normal parts

TpM̃ = TpM ⊕ (TpM)⊥,

where (TpM)⊥ = {v ∈ TpM̃ | g̃(v, w) = 0,∀X ∈ TpM}.
We can locally decompose the tangent bundle of M̃ , TM̃ into the tangent bundle TM and

normal bundle T⊥M .

We also can consider a vector field X in the ambient space M̃ as extensions of vector field X

in the submanifold M .

Proposition 3.1.1. [6] Let X and Y be two vector fields on M and let X and Y be extensions

of X and Y , respectively. Then [X,Y ]|M is independent of the extensions, and

[X,Y ]|M = [X, Y ].

3.2 Covariant differentiation and the Second Funda-

mental Form

Let M be an n-dimensional manifold immersed in an (n + m)-dimensional manifold M̃ .

Then M is a submanifold of M̃ . If the manifold M̃ is covered by a system of coordinate

neighbourhoods (U, xi) for i = 1, ..., n+m and the submanifold is covered by another system

of coordinate neighbourhoods (V, yj) for j = 1, . . . , n, then the submanifold M can be locally

represented by

xi = xi(y1, . . . , yn),∀i = 1, . . . , n+m

We now consider the Riemannian manifold (M̃, g̃). Then the submanifold M is also a Rie-

mannian manifold with an induced metric g, given by

g(X, Y ) = g̃(X, Y ).

We now define The Levi-Civita connection∇XY for a submanifold M in terms of the manifold

M̃ with the Levi-Civita connection on ∇̃XY in the following proposition.

Proposition 3.2.1. [35] Let M be an n-dimensional manifold immersed in a Riemannian

manifold (M̃, g̃) of dimension (n + m). The Levi-Civita connection on M̃ is ∇̃. Since M

has codimension m, at any point we can choose m fields of normal vectors ξ1, ..., ξm of the

normal bundle TM⊥. We can assume that ξ1, ..., ξm are orthonormal for every p ∈ M . We
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define covariant differentiation at a point p on the submanifold M by separating out normal

and tangential components as follows

(∇̃XY )p = (∇XY )p +Bp(X, Y ), (3.1)

where (∇XY )p ∈ TM and Bp(X, Y ) ∈ TpM⊥.

Motivated by this, we define∇ as the induced connection on M . By checking the properties

of covariant differentiation, it can be shown that (∇XY ) is the covariant derivative on M .

We also define the symmetric bilinear mapping B : X(M) × X(M) → X(M)⊥ as the second

fundamental form of M .

In terms of a particular Bp : TpM × TpM → TpM
⊥ is the second fundamental form of M at

p.

More generally, if M is a submanifold of codimension m (i.e. it is immersed in a manifold

M̃ of dimension n+m then we can choose m fields of orthonormal vectors ξ1, ..., ξm. We can

then express B in terms of h in the following way

B(X, Y ) =
m∑

i=1

hi(X, Y )ξi. (3.2)

Similarly, we can separate the covariant derivative of a normal vector field ξ on M , ∇̃Xξ, into

tangential and normal components

(∇̃Xξ)p = −(AξX)p + (∇⊥Xξ)p (3.3)

Here, AξX is the tangential component of ∇̃Xξ and ∇⊥Xξ is the normal.

Definition 3.2.1. The mapping (X, ξ) : TpM × TpM
⊥ → Aξ(X) ∈ TpM is bilinear and

consequently (AξX)p : TpM × TpM⊥ → TpM depends only on X and ξ at p.

The application A is called the Weingarten operator.

We demonstrate how Aξ(X) is related to the second fundamental form B in the following

proposition

Proposition 3.2.2. [35] For each normal vector field ξ on M we have

g(Aξ(X), Y ) = g(B(X, Y ), ξ),∀X, Y ∈ X(M).
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We also can define the operator ∇⊥Xξ as follows

Definition 3.2.2. The mapping (X, ξ) : TpM ×TpM⊥ → ∇⊥Xξ ∈ TpM⊥ defines the covariant

derivative of ξ ∈ TpM⊥ in the X direction, with ∇⊥ being the Riemannian connection for the

normal space TM⊥.

The equations (3.1) and (3.3) are known as the Gauss formula and Weingarten formula

respectively

∇̃XY = ∇XY +B(X, Y ) (Gauss Formula),

∇̃Xξ = −AξX +∇⊥Xξ (Weingarten Formula).

Example 3.2.1. (Hypersurfaces). We now consider the Gauss and Weingarten formula for

hypersurfaces. A hypersurface Mn in M̃n+1, and therefore has a unique normal ξ. Then

g(ξ, ξ) = 1. We differentiate this to obtain g(∇̃Xξ, ξ) = 0 and hence g(∇⊥Xξ, ξ) = 0. Thus

∇⊥Xξ = 0. Weingarten’s formula then becomes ∇̃Xξ = −AξX.

Figure 3.1: Hypersurface
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3.3 The Gauss-Codazzi-Ricci equations

Let (M, g) be a Riemannian submanifold of dimension n in a Riemannian manifold (M̃, g̃) of

dimension (n + m). We denote by R (resp. R̃) Riemannian curvature tensor of M (resp. of

M̃), and ∇ (resp. ∇̃) the Levi-Civita connection on M (resp. of M̃).

The Riemannian curvature tensor for the Riemannian manifold (M̃, g̃)

R̃(X, Y )Z = ∇̃X(∇̃YZ)− ∇̃Y (∇̃XZ)− ∇̃[X,Y ]Z

We consider ∇̃X(∇̃YZ). By using the Gauss and Weingarten formulae this is equal to

∇̃X(∇̃YZ)) = ∇̃X(∇YZ +B(Y, Z))

= ∇̃X(∇YZ) + ∇̃X(
∑

hi(Y, Z)ξi)

= ∇X(∇YZ) +
∑

hi(X,∇YZ)ξi + ∇̃X

∑
hi(Y, Z)ξi

= ∇X(∇YZ −
∑

hi(Y, Z)AiX +
∑
{X.hi(Y, Z) + hi(X,∇YZ)}ξi

+
∑

hi(Y, Z)∇⊥Xξi,

where

X.hi(Y, Z) = ∇Xh
i(Y, Z) + hi(∇XY, Z) + hi(Y,∇XZ).

We immediately notice that ∇̃Y (∇̃XZ) yields the same equation as above by interchanging

X and Y . For ∇̃[X,Y ]Z we use the Gauss Formula to obtain

∇̃[X,Y ]Z = ∇[X,Y ]Z +
∑

hi([X, Y ], Z)ξi

= ∇[X,Y ]Z +
∑
{hi(∇XY, Z)− hi(∇YX,Z)}ξi.

We obtain an expression for R̃(X, Y )Z in terms of the induced connection ∇ and the second

fundamental form

R̃(X, Y )Z = R(X, Y )Z +
∑

hi([X, Y ], Z)ξi

= ∇[X,Y ]Z +
∑
{(∇Xh

i)(Y, Z)− (∇Y h
i)(X,Z)}ξi

+
∑

hi(X,Z)Ai(Y )−
∑

hi(Y, Z)Ai(X)

+
∑

hi(Y, Z)∇⊥Xξi −
∑

hi(X,Z)∇⊥Y ξi.

The tangential component of R̃(X, Y )Z according to the equation above is equal to

R(X, Y )Z +
∑

hi(X,Z)Ai(Y )−
∑

hi(Y, Z)Ai(X).
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Let W be a vector tangent to M at a particular point. We consider the inner product of

R̃(X, Y )Z and W in order to derive the Gauss equation. We obtain

R̃(X, Y, Z,W ) = g(R(X, Y )Z,W ) +
∑

hi(X,Z)g(Ai(Y ),W )

−
∑

hi(Y, Z)g(Ai(X),W )

= g(R(X, Y )Z,W ) +
∑

hi(X,Z)hi(Y,W )

−
∑

hi(Y, Z)hi(X,W )

= g(R(X, Y )Z,W ) + g(B(X,Z), B(Y,W ))− g(B(Y, Z), B(X,W )).

Definition 3.3.1. The Gauss Equation for a Riemannian submanifold (M, g) of dimension

n in a Riemannian manifold (M̃, g̃) of dimension (n + m) is the tangential component of

R̃(X, Y )Z and can be expressed as

R̃(X, Y, Z,W ) = g(R(X, Y )Z,W ) + g(B(X,Z), B(Y,W ))− g(B(Y, Z), B(X,W )), (3.4)

where X, Y, Z,W are tangent vectors to M at a particular point p.

We now consider the normal components of Equation in order to derive the Codazzi equa-

tion. The normal component of R̃(X, Y )Z from Equation is equal to

∑
{(∇Xh

i)(Y, Z)− (∇Y h
i)(X,Z)}ξi +

∑
hi(Y, Z)∇⊥Xξi −

∑
hi(X,Z)∇⊥Y ξi.

We can simplify this expression by defining the covariant derivative of the second Fundamental

form ∇̃XB as

∇̃XB(Y, Z) = ∇⊥X(B(Y, Z))−B(∇XY, Z)−B(Y,∇XZ), (3.5)

we can simplify this to

∇̃XB(Y, Z) = ∇⊥X(
∑

hi(Y, Z)ξi)−
∑
{hi(∇XY, Z) +

∑
hi(Y,∇XZ)}ξi

=
∑

X.hi(Y, Z)ξi +
∑

hi(Y, Z)∇⊥Xξi

−
∑
{hi(∇XY, Z) +

∑
hi(Y,∇XZ)}ξi

=
∑

(∇Xh
i)(Y, Z)ξi +

∑
hi(Y, Z)∇⊥Xξi.

We then see that the normal component of R̃(X, Y )Z can also be expressed by

∇̃XB(Y, Z)− ∇̃YB(X,Z).

This motivates us to define the Codazzi equation.
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Definition 3.3.2. The Codazzi equation for a Riemannian submanifold (M, g) of dimension n

in a Riemannian manifold (M̃, g̃) of dimension (n+m) is the normal component of R̃(X, Y )Z

and can be expressed as

∇̃XB(Y, Z)− ∇̃YB(X,Z) =
∑
{(∇Xh

i)(Y, Z)− (∇Y h
i)(X,Z)}ξi

+
∑

hi(Y, Z)∇⊥Xξi −
∑

hi(X,Z)∇⊥Y ξi.

We now derive the Ricci equation. Consider two particular normal vectors ξ and η.

Then:

R̃(X, Y )ξ = ∇̃X(∇̃Y ξ)− ∇̃Y (∇̃Xξ)− ∇̃[X,Y ]ξ

Using the Gauss and Weingarten formulae this becomes

R̃(X, Y )ξ = ∇̃X(−AξY +∇⊥Y ξ)− ∇̃Y (−AξX +∇⊥Xξ)−∇⊥[X,Y ]ξ)

= ∇̃X∇⊥Y ξ − ∇̃Y∇⊥Xξ + ∇̃YAξX − ∇̃XAξY

+ other terms

= ∇⊥X∇⊥Y ξ −∇⊥Y∇⊥Xξ −∇⊥[X,Y ]ξ + h(Y,AξX)− h(X,AξY )

+ other terms

Motivated by this, we define R⊥ as the Riemannian curvature tensor of the normal con-

nection ∇⊥ on the normal bundle T⊥M in the following way

Definition 3.3.3. The Riemannian curvature tensor of the normal connection ∇⊥ is defined

as

R⊥(X, Y )ξ = ∇⊥X∇⊥Y ξ −∇⊥Y∇⊥Xξ −∇⊥[X,Y ]ξ. (3.6)

We take the inner product of this expression with the normal vector ηto obtain the Ricci

equation. The resulting equation is

R̃(X, Y, ξ, η) = R⊥(X, Y, ξ, η) + g̃(h(Y,AξX), η)− g̃(h(X,AξY ), η)

= R⊥(X, Y, ξ, η) + g(AηAξX, Y )− g(AξAηX, Y ).

Definition 3.3.4. The Ricci Equation for a Riemannian submanifold (M, g) of dimension n

in a Riemannian manifold (M̃, g̃) of dimension (n+m) is defined as

R̃(X, Y, ξ, η) = R⊥(X, Y, ξ, η) + g(AηAξX, Y )− g(AξAηX, Y ),

where

R⊥(X, Y, ξ, η) = g̃(R⊥(X, Y )ξ, η).
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Proposition 3.3.1. [26] If M̃ is a space of constant curvature k, then the Codazzi equation

becomes

(∇̃XB)(Y, Z) = (∇̃YB)(X,Z),

R̃(X, Y )Z is tangent to M for any vectors X, Y, Z ∈ M . This implies that it’s normal

component is zero.

Example 3.3.1. (Hypersurfaces in Rn+1). If we assume that M̃ = Rn+1 and M is a hyper-

surface, then we have

(∇Xh)(Y, Z) = (∇Y h)(X,Z)

⇒ (∇XA)(Y ) = (∇YA)(X).

Proposition 3.3.2. [26] If (M̃, g̃) be a Riemannian manifold of constant curvature k. then

the Ricci equation becomes

R⊥(X, Y, ξ, η) = g(AηAξX, Y )− g(AξAηX, Y ),

R̃(X, Y )Z is tangent to (M, g) for any vectors X, Y, Z ∈ M . This implies that it’s normal

component is zero. Therefore the inner product of R̃(X, Y )ξ with a normal vector η is

zero.

3.4 Geometric of Submanifolds

3.4.1 Minimal Submanifolds

Definition 3.4.1. Let (M, g) of dimension n be a Riemannian manifold in (M̃, g̃) of dimen-

sion (n+m). The mean curvature vector H is defined by

H =
1

n
traceg(B),

where

traceg(B) =
n∑

1

B(ei, ei)

for a local field of orthonormal frame {e1, ..., en} in TM .



3.4.2 Totally geodesic Submanifolds 50

Definition 3.4.2. A submanifold (M, g) of dimension n in a Riemannian manifold (M̃, g̃)

of dimension (n+m) is said to be minimal if

H = 0.

3.4.2 Totally geodesic Submanifolds

Definition 3.4.3. A submanifold (M, g) of dimension n in a Riemannian manifold (M̃, g̃)

of dimension (n+m) is called totally geodesic at p ∈M if every geodesic at p in the ambient

space M̃ tangent to the submanifold M is contained in M .

If M is totally geodesic for all p then M is a totally geodesic submanifold.

Theorem 3.4.1. [9] A submanifold (M, g) of dimension n in a Riemannian manifold (M̃, g̃)

of dimension (n + m) is totally geodesic if and only if its second fundamental form B is

identically zero.

Remark 3.4.1. Every totally geodesic submanifold (M, g) of dimension n of a Riemannian

manifold (M̃, g̃) of dimension (n+m) is minimal.

Figure 3.2: Totally geodesic Submanifold
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3.4.3 Parallel Submanifolds

Let (M, g) of dimension n be a Riemannian manifold in (M̃, g̃) of dimension (n+m). Given

a curve α in (M, g) and two vectors u, v ∈ TpM , with α(0) = p, we have the vector B(u, v)

in the normal space of M at the point p, T⊥p M . At the point α(t0) = q, we can consider two

normal vectors. First, the parallel translate of B(u, v) by ∇⊥, which we denote by B(u, v)∗⊥,

and secondly, the vector B(u∗, v∗) obtained after first parallelly translating u and v by ∇, and

then applying B. A submanifold (M, g) of dimension n in a Riemannian manifold (M̃, g̃)

of dimension (n+m) is called parallel or extrinsically symmetric when ∇̃B = 0.

Proposition 3.4.1. [10] A submanifold (M, g) ba a submanifold of dimension n in a Rie-

mannian manifold (M̃, g̃) of dimension (n+m) is parallel if and only if the parallel transport

of the second fundamental form with respect to ∇⊥ along any curve in M is equal to the

second fundamental form acting on the parallel transport of two tangent vectors to M along

the same curve, that’s to say B(u, v)∗⊥ = B(u∗, v∗).

Proof 3.4.1. Let p ∈ M and α : I ⊂ R −→ a curve in M with α(0) = p. Consider two

vector fields u, v ∈ X(α) so that up = u and vp = v, and ∇α̇u = ∇α̇v = 0.

Assume that M is parallel, i.e. ∇̃B = 0. Because the parallel transport defines a unique

vector field it is sufficient to prove that ∇⊥α̇B(u, v) = 0. In fact,

∇⊥α̇B(u, v) = B(∇α̇u, v) +B(u,∇α̇v) = 0.

Conversely, let us assume that B(u, v)∗⊥ = B(u∗, v∗). Then,

∇̃B(α̇, u, v) |p = (∇⊥α̇B(u, v)−B(∇α̇u, v)−B(u,∇α̇v)) |p
= ∇⊥α̇B(u, v) |p= 0.

Example 3.4.1. We can obtain the geodesics of S2 by intersecting S2 with a plane contain-

ing the origin. These geodesics are the great circles, as shown in Figure (3.4), and can be

considered to be totally geodesic submanifolds of dimension 1 of S2.

3.4.4 The Frobenius Theorem

We are going to study completely integrable distributions. In particular, we will state the

Frobenius Theorem, which gives us the conditions to generalize the result that was given in

the motivation.
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Figure 3.3: Parallel Submanifold

Definition 3.4.4. An d-dimensional distribution D on M̃ is an differentiable assigment of

an d-dimensional subspace Dp of TpM̃ at each point p ∈ M̃ , such that Dp is differentiable

with respect to p.

We also say that a vector field X on M̃ belongs to D if Xp ∈ Dp for any point p ∈ M̃ .

Definition 3.4.5. A submanifold (M, g) ba a submanifold of dimension n in a Riemannian

manifold (M̃, g̃) of dimension (n + m) is called an integral manifold of D, if TpM = Dp for

any point p ∈ M . Moreover, if an integral manifold of D exists through each point of M̃ , D

is said to be completely integrable.

Theorem 3.4.2. [29] Let D be a distribution on a Riemannian manifold (M̃, g̃). Then,

D is completely integrable if and only if for any two vector fields X, Y belonging to D, the

lie-bracket [X, Y ] also belongs to D (a distribution with this property is said to be involutive).

Proof 3.4.2. See p.3 of [29].
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Figure 3.4: geodesics of S2



CHAPTER 4

THURSTON’S GEOMETRY NIL4

The objective of this chapter is to introduce a Thurston model geometry Nil4, define the

metric Nil4, and study the geometric properties of Nil4 space. The references used are: [13],

[14], [17], [21], [32], [33], [34].

4.1 Model geometries

Definition 4.1.1. A model geometry (G,X) is a manifold X with a Lie group G of diffeo-

morphisms of X, such that

1. X is connected and simply connected,

2. The action of G on X is transitive with compact stabilizer,

3. G is maximal in the sense that it is not contained in a group of diffeomorphisms of X

with compact stabilizer,

4. there exists at least one compact manifold modeled (G,X)-manifold.

4.2 Lie group Nil4

A model geometry (Nil4, Nil4) is considred to be a manifold and a Lie group of diffeomor-

phisms of Nil4.



4.3 Metric left-invariant by the nilpotent Lie group Nil4 55

The Nil4 is a nilpotent Lie group and, we have Nil4 = R3 nU R where the U(t) = exp(tL),

with

L =




0 1 0

0 0 1

0 0 0


 , exp(tL) = I3 + tL+

t2

2
L2 =




1 t t2

2

0 1 t

0 0 1


 . (4.1)

Component of its isometry group with identity is Nil4 itself as left translation. The semidi-

rect product in Nil4 is given by

(V, t)(V ′, t′) = (V + exp(tL)V ′, t+ t′)

=






x

y

z


+




1 t t2

2

0 1 t

0 0 1






x′

y′

z′


 , t+ t′




=






x+ x′ + ty′ + t2

2
z′

y + y′ + tz′

z + z′


 , t+ t′


 , (4.2)

for all V =



x

y

z


 , V ′ =



x′

y′

z′


 ∈ R3, and t, t′ ∈ R. We have the parameterization

φ : Nil4 −→ R4.




x

y

z


 , t


 7−→ (x, y, z, t) (4.3)

4.3 Metric left-invariant by the nilpotent Lie group

Nil4

A Riemannian metric on the nilpotent Lie group Nil4 by definition is, a left invariant metric,

if it is invariant with all left translations La. More precisely, we have the following defini-

tion

∀a, a′ ∈ Nil4, ξ, η ∈ Ta′Nil4 g̃a′((dLa)a′(ξ), (dLa)a′(η)) = g̃a′(ξ, η).
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According to the definition above, g̃ is a left invariant metric on Nil4 if for all σ ∈ Nil4

1. g̃σ is a scalar product on TσNil
4,

2. g̃σ = dLσ(e)∗.g̃e,

3. g̃e = dLσ(e)∗.g̃σ with dLσ(e) : TeNil
4 −→ TσNil

4.

Lemma 4.3.1. Let Nil4 be a nilpotent Lie group. Then, the following vectors field

e1 =
∂

∂x
,

e2 = t
∂

∂x
+

∂

∂y
,

e3 =
t2

2

∂

∂x
+ t

∂

∂y
+

∂

∂z
, (4.4)

e4 =
∂

∂t
.

Proof. For any point p(x, y, z, t) at Nil4, the left translation Lp

Lp : Nil4 −→ Nil4

q(x′, y′, z′, t′) 7−→ p.q

We have

Lp(q) = p.q = (



x+ x′ + ty′ + t2

2
z′

y + y′ + tz′

z + z′


 , t+ t′)

The differential Lp is calculated as following

DqLp =




1 t t2

2
0

0 1 t 0

0 0 1 0

0 0 0 1




{V1, V2, V3, V4} is the frame field on TeNil
4 at the neutral element e = (0, 0, 0, 0), ( ∂

∂x
(p), ∂

∂y
(p), ∂

∂z
(p), ∂

∂t
(p))

is the basis of TpNil
4 in the point p(x, y, s, t), Therefore, {e1, e2, e3, e4} are a left-invariant
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vector fields if: DeLp(Vi) = ei, for i ∈ {1, 2, 3, 4}.
Then

DeLp : TeNil
4 −→ TpNil

4

Vi 7−→ ei = DeLp(Vi)

So, that

e1 = DeLp(




1

0

0

0


) =

∂

∂x
,

e2 = DeLp(




0

1

0

0


) = t

∂

∂x
+

∂

∂y
,

e3 = DeLp(




0

0

1

0


) =

t2

2

∂

∂x
+ t

∂

∂y
+

∂

∂z
,

e4 = DeLp(




0

0

0

1


) =

∂

∂t
.
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So that, the dual coframe fields are given by

θ1 = dx− tdy +
t2

2
dz,

θ2 = dy − tdz,
θ3 = dz, (4.5)

θ4 = dt.

The matrix of a Riemannian metric on Nil4

g̃ = θ21 + θ22 + θ23 + θ24

is given by

g̃ =




1 −t t2

2
0

−t 1 + t2 −t(1 + t2

2
) 0

t2

2
−t(1 + t2

2
) 1 + t2 + t4

4
0

0 0 0 1


 .

4.4 Geometric properties of (Nil4, g̃)

Let the nilpotent Lie group (Nil4, g̃), and ∇̃ the Levi-Civita of connections (Nil4, g̃). The

Christoffel symbols of ∇̃ for a point of Nil4 are Γ̃kij for i, j, k ∈ {1, 2, 3, 4}.
Proposition 4.4.1. By Kozsul´s formula, the non-zero of the Levi-Civita connections ∇̃ of

(Nil4, g̃) are as follows:

∇̃e1e2 =
1

2
e4 , ∇̃e1e4 = −1

2
e2

∇̃e2e1 =
1

2
e4 , ∇̃e2e3 =

1

2
e4

∇̃e2e4 = −1

2
(e1 + e3) , ∇̃e3e2 =

1

2
e4

∇̃e3e4 = −1

2
e2 , ∇̃e4e1 = −1

2
e2

∇̃e4e2 =
1

2
(e1 − e3) , ∇̃e4e3 =

1

2
e2.
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Proof. Note that, the non-zero of Christoffel symbols Γ̃kij for i, j, k ∈ {1, 2, 3, 4} are given by

Γ̃4
12 =

1

2
, Γ̃4

13 = − t
2

Γ̃1
14 = − t

2
, Γ̃2

14 = −1

2

Γ̃4
22 = −t , Γ̃4

23 =
1

2
+

3t2

4

Γ̃1
24 = −1

2
+
t2

4
, Γ̃3

24 = −1

2

Γ̃4
33 = −t(1 +

t2

2
) , Γ̃2

34 = −1

2
+
t2

4

Γ̃3
34 =

t

2
.

Proposition 4.4.1 follows from (4.4).

Corollary 4.4.1. The non-zero Lie brackets of the basis {ei}1≤i≤4 are given by

[e4, e2] = e1 , [e4, e3] = e2.

Proof. Follows directly by Proposition 4.4.1, with [ei, ej] = ∇̃eiej−∇̃ejei for all i, j = 1, 2, 3, 4.

Proposition 4.4.2. The only non-zero components of Riemannian curvature of (Nil4, g̃) are

given by

g̃(R̃(e1, e2)e1, e2) = −1

4
, g̃(R̃(e1, e2)e2, e3) =

1

4

g̃(R̃(e1, e4)e1, e4) = −1

4
, g̃(R̃(e1, e4)e3, e4) =

1

4

g̃(R̃(e2, e1)e2, e3) = −1

4
, g̃(R̃(e2, e3)e2, e3) = −1

4

g̃(R̃(e2, e4)e2, e4) =
1

2
, g̃(R̃(e3, e4)e3, e4) =

3

4
.

Proof. Using the definition of Riemannian curvature R̃(X, Y )Z = [∇̃X , ∇̃Y ]Z − ∇̃[X,Y ]Z, the

Proposition 4.4.1, and the Corollary 4.4.1.
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According to Proposition 4.4.2, we have the following Corollary.

Corollary 4.4.2. The matrix of Ricci curvature of (Nil4, g̃) is given by

(Sij) =




1
2

0 0 0

0 0 0 0

0 0 −1
2

0

0 0 0 1


 ,

where Sij =
n∑

a=1

g̃(R̃(ei, ea)ea, ej), for all i, j = 1, 2, 3, 4.

Thus, the scalar curvature of (Nil4, g̃) is

τ = 1.



CHAPTER 5

GEOMETRY OF HYPERSURFACES M 3 IN

THURSTON’S GEOMETRY NIL4

This chapter presents our work on the hypersurface (M3, g) in geometry of Thurston (Nil4, g̃).

we give a classification of Codazzi hypersurfaces in a Lie group (Nil4, g̃). We also give a

characterization of a class of minimal hypersurfaces in (Nil4, g̃) with an example of a minimal

surface in this class. The references used are:[3], [8], [13], [14], [17], [18], [24], [25], [27], [30],

[33], [34]. .

5.1 Classification of Codazzi hypersurfaces in Nil4

Theorem 5.1.1. A hypersurface (M3, g) in the Lie group (Nil4, g̃) is Codazzi if and only if

the unit normal vector field to (M3, g) is ξ = e4.

Proof. Let (M3, g) be a hypersurface in (Nil4, g̃).

We have, ξ = ae1 + be2 + ce3 + de4 the unit normal vector field on (M3, g), where a, b, c, d are

local functions on M3. Thus

X1 = be1 − ae2 , X2 = ce1 − ae3
X3 = de1 − ae4 , X4 = ce2 − be3
X5 = de2 − be4 , X6 = de3 − ce4
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are tangent vectors fields to the hypersurface (M3, g).

Now, assume that the hypersurface (M3, g) is Codazzi, that is

(∇Xh)(Y, Z) = (∇Y h)(X,Z), ∀X, Y, Z ∈ X(M3). (5.1)

Then it follows from the equation of Codazzi (3.4) that

g̃(R̃(Xi, Xj)Xk, ξ) = 0, ∀i, j, k ∈ {1, ..., 6}. (5.2)

By using the curvature components given in Proposition 4.4.2, we get the following

g̃(R̃(X1, X2)X3, ξ) =
1

4
abd(a− c) = 0,

from the which we prove that a = 0 or b = 0 or d = 0 or a = c.

• If a = 0, we have the following equations

g̃(R̃(X1, X4)X1, ξ) = −1

4
b3c = 0,

g̃(R̃(X2, X4)X4, ξ) =
1

4
c2b2 +

1

4
c2 = 0,

g̃(R̃(X1, X5)X4, ξ) =
1

2
b3d+

1

4
bc2d = 0.

Thus c = 0 and bd = 0. So that, ξ = e2 or ξ = e4.

Note that, in the case where ξ = e2, the Lie bracket [e4, e3] = e2 is not tangent vector field

on M3 despite e2 and e4 are tangent vectors fields on M3. So, by Frobenius Theorem, this

case is unacceptable. Then we have ξ = e4.

• If b = 0, we obtain the equations

g̃(R̃(X1, X2)X1, ξ) =
1

4
a2(a2 − c2) = 0,

g̃(R̃(X1, X3)X1, ξ) = −1

4
a2d(3a+ c) = 0.

For a = 0, we get c = 0. Thus ξ = e4. For a = ±c, we find that ad = 0. Hence ξ = e4 or

ξ = 1√
2
(e1 ± e3).

Note that, in the case where ξ = 1√
2
(e1± e3), the Lie bracket [e4, e2] is tangent vector field on

M3 because e2 and e4 are tangent vectors fields on M3. But g̃([e4, e2], ξ) = g̃(e1, ξ) = 1√
2
6= 0,

we obtain a contradiction with the fact that ξ in normal to M3. Therefore, ξ = e4.
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• If d = 0, we have the equations

g̃(R̃(X1, X2)X2, ξ) = −1

4
ab(a− c)2 = 0,

g̃(R̃(X1, X4)X1, ξ) =
1

4
b(a− c)(a2 + b2 + ac) = 0,

g̃(R̃(X2, X4)X4, ξ) = −1

4
c(a− c)(b2 + c2 + ac) = 0,

g̃(R̃(X1, X2)X1, ξ) =
1

4
a(a− c)(a2 + b2 + ac) = 0,

g̃(R̃(X6, X2)X3, ξ) = −a2c2 − 1

4
ac(a2 − c2) = 0.

Hence a = c = 0. Thus, ξ = e2. It is unacceptable, because in this case e3 and e4 are

tangent vectors fields on M3 but [e4, e3] = e2 is not tangent vector field on M3.

• If a = c, we get the following equations

g̃(R̃(X6, X2)X3, ξ) = −c2(c2 +
1

2
d2) = 0,

g̃(R̃(X1, X5)X6, ξ) =
1

2
b2(c2 − d2) = 0.

we obtain c = 0 and bd = 0. Hence, ξ = e4. Here, ξ = e2 is unacceptable.

According to the previous calculations, it suffices to show that

g̃(R̃(X, Y )Z, ξ) = (∇Y h)(X,Z)− (∇Xh)(Y, Z) = 0, (5.3)

for all X, Y, Z ∈ X(M3) for ξ = e4. You can easily check the equations

g̃(R̃(ei, ej)ek, e4) = 0, i, j, k = 1, ..., 3.

Remark 5.1.1. Let (M3, g) be a Codazzi hypersurfaces in (Nil4, g̃) is given by

f : (R3, g) −→ (Nil4, g̃),

(x, y, z) 7−→ (x, y, z, t0)

where t0 ∈ R. Since M3 is a hypersurface of (Nil4, g̃), then g is given by

g =




1 0 0

0 1 0

0 0 1
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Then there exists an orthonormal frame field {e1, e2, e3} on (M3, g), where

e1 =
∂

∂x
, e2 =

∂

∂y

e3 =
∂

∂z
.

So, we find that the second fundamental form h of the hypersurface (M3, g)

h =




0 1
2

0
1
2

0 1
2

0 1
2

0




The components hij of the second fundamental form of M3 are related by

hij = ξt.g̃.∇̃∂ui
∂uj ,

where ∂u1 = e1, ∂u2 = e2, ∂u3 = e3.

In this case

• (M3, g) is not totally geodesic because h 6= 0,

• (M3, g) is parallel because ∇h = 0,

• (M3, g) is Codazzi because ∇h = 0,

• (M3, g) is minimal because traceg(h) = 0.

Corollary 5.1.1. Every hypersurface Codazzi of (Nil4 is a parallel.

The matrix of Ricci curvature of (M3, g) in (Nil4, g̃) is described by

(Sij) =




1
4

0 1
4

0 1
2

0

0 0 1
4


 ,

The scalar curvature of (M3, g) in (Nil4, g̃) is given by

τ = 1

The shape operator of (M3, g) in (Nil4, g̃) is given by

Aξ =




0 1
2

0
1
2

0 1
2

0 1
2

0


 .
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The shape operator and the second fundamental form [3] are related by g(AξX, Y ) = g̃(h(X, Y )ξ, ξ).

So, Aξ = (g−1)t.ht.

The principal curvatures of (M3, g) in (Nil4, g̃) are

− 1√
2
, 0,

1√
2
.
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5.2 Characterization of a class of minimal hypersur-

faces in Nil4

Let (M3, g) be a hypersurface in (Nil4, g̃). In this section, we search the conditions for the

hypersurface (M3, g) to be minimal in (Nil4, g̃), where the unit normal vector field on (M3, g)

is given by ξ = ae1+be2+ce3+de4, and assume that {Xi}1≤i≤3 is a local orthonormal frame on

(M3, g), where Xi = aie1+bie2+cie3+die4 for some local functions {a, b, c, d, ai, bi, ci, di}1≤i≤3
on M3 depends only on the variable t.

Theorem 5.2.1. The hypersurface (M3, g) is minimal in (Nil4, g̃) if and only if

3∑

i=1

[ai (bid− bdi) + bi (cid− cdi) + di (aa
′
i + bb′i + cc′i + dd′i)] = 0.

Proof. The unit normal vector field on (M3, g) is given by

ξ = ae1 + be2 + ce3 + de4.

And assume that {Xi}1≤i≤3 is a local orthonormal frame on (M3, g).

Where

Xi = aie1 + bie2 + cie3 + die4

for some local functions {a, b, c, d, ai, bi, ci, di}1≤i≤3 on M3 depends only on the variable t.

We compute

∇̃Xi
Xi = ∇̃aie1+bie2+cie3+die4 (aie1 + bie2 + cie3 + die4)

= ai

(
ai∇̃e1e1 + bi∇̃e1e2 + ci∇̃e1e3 + di∇̃e1e4

)

+bi

(
ai∇̃e2e1 + bi∇̃e2e2 + ci∇̃e2e3 + di∇̃e2e4

)

+ci

(
ai∇̃e3e1 + bi∇̃e3e2 + ci∇̃e3e3 + di∇̃e3e4

)

+di

(
a′ie1 + ai∇̃e4e1 + b′ie2 + bi∇̃e4e2 + c′ie3 + ci∇̃e4e3

+d′ie4 + di∇̃e4e4

)
. (5.4)

From Proposition 4.4.1, and equation (5.4), we obtain

∇̃Xi
Xi = ai

(
bi
2
e4 −

di
2
e2

)
+ bi

(
ai
2
e4 +

ci
2
e4 −

di
2

(e1 + e3)

)

+ci

(
bi
2
e4 −

di
2
e2

)
+ di

(
a′ie1 −

ai
2
e2 + b′ie2 +

bi
2

(e1 − e3)

+c′ie3 +
ci
2
e2 + d′ie4

)
,
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it is equivalent to the following equation

∇̃Xi
Xi = a′idie1 + di(b

′
i − ai)e2 + di(c

′
i − bi)e3 + [did

′
i + bi(ai + ci)]e4. (5.5)

From Proposition 4.4.1, and equation (5.4), we obtain By equation (5.5).

We have

g̃(∇̃Xi
Xi, ξ) = aa′idi + bdi(b

′
i − ai) + cdi(c

′
i − bi) + d[did

′
i + bi(ai + ci)]. (5.6)

Thus, the hypersurface (M3, g) is minimal if

H =
1

3

3∑

i=1

g̃(∇̃Xi
Xi, ξ) = 0. (5.7)

The Theorem 5.2.1 follows by equations (5.6) and (5.7).
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5.3 Example of minimal hypersurfaces in Nil4

Example 5.3.1. Let (M3, g) be a minimal hypersurface in (Nil4, g̃), defined by

f : (M3, g) −→ (Nil4, g̃).

(y, z, t) 7−→ (2t+
t3

3
, y, z, t)

We consider the following vector fields

ξ =
2√

5(2 + t2)
e1 +

2t√
5(2 + t2)

e2 +
t2√

5(2 + t2)
e3 −

2√
5
e4,

X1 = − t√
1 + t2

e1 +
1√

1 + t2
e2,

X2 = − t2

(2 + t2)
√

1 + t2
e1 −

t3

(2 + t2)
√

1 + t2
e2 +

2
√

1 + t2

2 + t2
e3,

X3 =
4√

5(2 + t2)
e1 +

4t√
5(2 + t2)

e2 +
2t2√

5(2 + t2)
e3 +

1√
5
e4.

We have {Xi}1≤i≤3 is a local orthonormal frame on (M3, g).

Where

Xi = aie1 + bie2 + cie3 + die4

for some local functions {a, b, c, d, ai, bi, ci, di}1≤i≤3 on M3 depends only on the variable t.

The unit normal vector field ξ on (M3, g) which is given by

ξ = ae1 + be2 + ce3 + de4.

We have

aa′idi + bdi(b
′
i − ai) + cdi(c

′
i − bi) + d[did

′
i + bi(ai + ci)] = 0,

So 



aa′1d1 + bd1(b
′
1 − a1) + cd1(c

′
1 − b1) + d[d1d

′
1 + b1(a1 + c1)] = 0

aa′2d2 + bd2(b
′
2 − a2) + cd2(c

′
2 − b2) + d[d2d

′
2 + b2(a2 + c2)] = 0

aa′3d3 + bd3(b
′
3 − a3) + cd3(c

′
3 − b3) + d[d3d

′
3 + b3(a3 + c3)] = 0

a2 + b2 + c2 + d2 = 1

Assume that

c1 = d1 = d2 = 0,

Thus the hypersurface (M3, g) that is defined by these vector fields is minimal.
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5.4 Conclusion

We have interested in studying the geometric properties of hypersurfaces in, one of the 4-

dimensional Thurston model geometries, Nil4. More precisely we have classified the codazzi

hypersurfaces and give examples of minimal surfaces.

As Nil4 is a Lie group, we have to work with a left invariant Riemannian metric. The next

step will be, to have a classification for minimal hypersurfaces in this space with the same

Riemannian metric and to see how the change of a metric, by keeping it left invariant, can

affect these classifications.
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[25] A. Mohammed Cherif, Géométrie Semi-Riemannienne, Notes de cours de Master 2,
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