

Présenté par : BELKHARROUBI Lakhdar

Le 02/05/2024 - 17:00h

 A la faculté des sciences exact université de Mascara

Devant le jury :

Président FEKIR Youcef MCA Université de Mascara

Examinateur 1 ABOU EL HASSAN Benyamina Pr Université Ahmed Benbella/Oran 1

Examinateur 2 BENHAOUA Kamel Pr Université de Mascara

Examinateur 3 ZAGANE Mohammed MCA Université de Mascara

Directeur de la thèse YAHYAOUI Khadidja Pr Université de Mascara

Année universitaire : 2023/2024

Thanks

I would like to express my deepest gratitude to Allah for granting me strength,

guidance, and perseverance throughout my academic journey. Additionally, I extend

my heartfelt appreciation to my supervisor, YAHYAOUI Khadidja, whose unwavering

support, invaluable insights, and encouragement have been instrumental in the

completion of my research. I am also immensely thankful to the esteemed jury

members, including President FEKIR Youcef, and the examiners BENHAOUA Kamel,

ZAGANE Mohammed, and ABOU EL HASSAN Benyamina, for their time, expertise,

and constructive feedback, which have significantly enriched my work. Finally, I am

indebted to all my beloved family members, especially my parents, whose love,

sacrifices, and encouragement have been the cornerstone of my success. Their

unwavering support and belief in my abilities have been my greatest source of

inspiration.

i

List of Publications

JOURNALS:

[1] Lakhdar Belkharroubi, K. Yahyaoui, “A Hybrid Grasp-genetic Algo-
rithm for Mixed-model Assembly Line Balancing Problem Type 2”, In-
ternational Journal of Computing, Sep 2021.

[2] Lakhdar Belkharroubi, K. Yahyaoui, “Solving the mixed-model assem-
bly line balancing problem type-I using a Hybrid Reactive GRASP”, Pro-
duction Manufacturing Research, Apr 2022.

[3] Lakhdar Belkharroubi, K. Yahyaoui, “Solving the energy-efficient Robotic
Mixed-Model Assembly Line balancing problem using a Memory-Based
Cuckoo Search Algorithm”, Engineering Applications of Artificial Intelli-
gence, July 2022.

CONFERENCES:

[1] Lakhdar Belkharroubi, K. Yahyaoui, “Maximization of the assembly line
efficiency using an approach based on Genetic Algorithm”, in 2022 2nd
International Conference on Innovative Research in Applied Science, Engineer-
ing and Technology (IRASET), March 2022, Meknes, Morocco.

[2] Lakhdar Belkharroubi, K. Yahyaoui, “A Hybrid approach for the Mixed-
Model Assembly Line Balancing problem Type-II”, in 2021 11th IEEE
International Conference on Intelligent Data Acquisition and Advanced Com-
puting Systems: Technology and Applications (IDAACS), Sep 2021, Cracow,
Poland.

iii

Contents

List of Publications i

List of Figures vii

List of Tables ix

Abstract 1

1 Introduction 5
1.1 Motivation . 6
1.2 Contributions . 9
1.3 Thesis Outline . 10

2 Assembly Line Balancing Problem: State of the Art 13
2.1 Introduction . 13
2.2 Definition of the assembly line balancing problem 18
2.3 Classification of the assembly line balancing problem 19

2.3.1 Simple assembly line balancing problem (SALBP) 19
2.3.2 General assembly line balancing problem (GALBP) . . . 23

2.3.2.1 Mixed-model assembly line balancing problem
(MiMALBP) . 23

2.3.2.2 Multi-model assembly line balancing problem
(MuMALBP) . 26

2.3.2.3 Robotic assembly line balancing problem (RALBP) 27
2.3.2.4 U-shaped assembly line balancing problem (UALBP) 30
2.3.2.5 Two-sided assembly line balancing problem (TALBP) 33
2.3.2.6 Parallel assembly line balancing problem (PALBP) 36
2.3.2.7 Mixed assembly line balancing problem (Mixed

ALBP) . 37

iv

2.4 Conclusion . 40

3 Energy Efficient Robotic Mixed Model Assembly line Balancing Prob-
lem 41
3.1 Introduction . 41
3.2 The energy-efficient robotic mixed-model assembly line balanc-

ing problem . 42
3.2.1 Problem description and assumptions 42
3.2.2 Mathematical formulation 44

3.3 The original Cuckoo Search Algorithm 46
3.4 Memory-based Cuckoo Search Algorithm (MBCSA) 47

3.4.1 Initialization of the first population 47
3.4.2 Generation of new cuckoo solution and memory usage . 47
3.4.3 Replacement of abandoned solutions 48
3.4.4 Repair mechanism . 50
3.4.5 Fitness evaluation . 50

3.5 Numerical example . 51
3.6 Computational results and discussion 52
3.7 Conclusion . 56

4 The Mixed Model Assembly Line Balancing Problem Type 1 61
4.1 Introduction . 61
4.2 Problem description and mathematical formulation 62

4.2.1 Problem description . 62
4.2.2 Mathematical formulation 62

4.3 Basic and Reactive GRASP . 64
4.4 The proposed Hybrid Reactive Greedy Randomized Adaptive

Search Procedure . 65
4.4.1 The construction phase 66
4.4.2 The local search phase . 67
4.4.3 Evaluation of solutions . 69
4.4.4 Updating of selection probabilities 70

4.5 Computational results . 70
4.6 Conclusion . 79

v

5 A Hybrid Grasp-genetic Algorithm for Mixed-model Assembly Line
Balancing Problem Type 2 83
5.1 Introduction . 83
5.2 Problem description and mathematical formulation 84

5.2.1 Problem description . 84
5.2.2 Mathematical formulation 84

5.3 The proposed algorithms to solve the MiMALBP type 2 85
5.3.1 Genetic algorithm . 86
5.3.2 Greedy randomized adaptive search procedure (GRASP) 88

5.4 Numerical example . 89
5.5 Discussion of obtained results . 92
5.6 Conclusion . 95

6 Maximization of the assembly line efficiency using an approach based
on Genetic Algorithm 97
6.1 Introduction . 97
6.2 Problem description and mathematical formulation 98
6.3 The proposed genetic algorithm-based approach 100

6.3.1 The Adopted approach 100
6.3.2 The Adopted genetic algorithm 102

6.4 Computational experiments . 104
6.5 Results and discussion . 107
6.6 Conclusion . 109

7 A Hybrid Approach for the Mixed-Model Assembly Line Balancing
problem Type-II 111
7.1 Introduction . 111
7.2 Problem description and mathematical formulation 112

7.2.1 Problem description . 112
7.2.2 Mathematical formulation 112

7.3 The proposed HYBRID REACTIVE GRASP 113
7.4 Computational experiments . 115

7.4.1 Data sets and parameters 115
7.4.2 Results and discussion . 116

7.5 Conclusion . 117

vi

8 Conclusions and Perspectives 119

Bibliography 123

vii

List of Figures

2.1 Line layouts: (A) straight line, (B) parallel line, (C) U-shaped line. 15
2.2 Mixed and Multi-Model assembly lines. 16
2.3 Precedence relations graph. 19
2.4 Assembly line balancing problem classification. 20
2.5 Combined precedence relations graph. 24
2.6 Robotic assembly line. 28
2.7 U-shaped assembly line. 31
2.8 Two-sided assembly line. 33
2.9 Parallel assembly lines with a) independent workstations, b) multi-

line workstations. 36

3.1 Illustrative example. 43
3.2 Generation of new solutions using the two-point crossover. . . . 48
3.3 Repair mechanism. 50
3.4 Precedence relations diagrams of the numerical example. 52
3.5 Numerical example. 55
3.6 Numerical example. 60

4.1 The proposed construction phase. 66
4.2 The proposed local search method. 68
4.3 The proposed evaluation method. 69
4.4 Variation of selection probabilities while solving problem 1. . . 78
4.5 Variation of selection probabilities while solving problem 2. . . 78
4.6 Variation of selection probabilities while solving problem 3. . . 79
4.7 Variation of selection probabilities while solving problem 4. . . 79
4.8 Variation of selection probabilities while solving problem 5. . . 79
4.9 Variation of selection probabilities while solving problem 6. . . 79
4.10 Obtained number of workstations for problem 1 (a), problem 2

(b), and problem 3 (c). 80

viii

4.11 Obtained number of workstations for problem 4 (d), problem 5
(e), and problem 6 (f) . 80

5.1 GA-GRASP hybridization. 86
5.2 One-point crossover. 88
5.3 Adopted GRASP approach for MiMALBP resolution. 90
5.4 Combined precedence graph. 92
5.5 Obtained solutions using GRASP. 93
5.6 Obtained Solutions using GRASP-GA. 93
5.7 Model (A) workload, Model (B) workload, Average workload. . 95

6.1 Flowchart of the proposed approach to solve the SLBP-E. 101
6.2 One-point crossover . 103
6.3 Swap mutation. 104

ix

List of Tables

3.1 Model A . 52
3.2 Model B . 53
3.3 Combined model A and model B 53
3.4 Used parameters to solve the numerical example 54
3.5 The first and the final populations for the numerical example . . 54
3.6 Problems’ specifications . 54
3.7 Used parameters in the MBCSA 55
3.8 Used parameters in the GA . 56
3.9 All executions of both algorithms for solving all problems. . . . 57
3.10 Details of the best-obtained solutions by both MBCSA and GA . 58
3.11 Comparison of best objective values obtained by the MBCSA

and the MLCSA . 59

4.1 Problem 1. 71
4.2 Problem 2. 71
4.3 Problem 3. 72
4.4 Problem 4. 73
4.5 Problem 5. 74
4.6 Problem 6. 75
4.7 Problem 7. 76
4.8 Used parameters in the hybrid reactive GRASP for all problems 77
4.9 Numbers of solutions found by the hybrid Reactive GRASP for

each problem . 78
4.10 Assignment of tasks of problem 1. 81
4.11 Assignment of tasks of problem 2. 81
4.12 Assignment of tasks of problem 3. 81
4.13 Assignment of tasks of problem 4. 81
4.14 Assignment of tasks of problem 5. 81

x

4.15 Assignment of tasks of problem 6. 81
4.16 Comparison of taken CPU time for solving problem 7 by the

Hybrid Reactive GRASP and LINGO solver. 82

5.1 Model A . 91
5.2 Model B . 91
5.3 GRASP-GA parameters. 92
5.4 Best sequences found in the final population 94
5.5 Assignment of tasks to workstations 94

6.1 Problem 1 . 105
6.2 Problem 2 . 105
6.3 Problem 3 . 106
6.4 Upper bounds used in generated problems 106
6.5 Used parameters in the Genetic Algorithm 107
6.6 Used parameters in the Hybrid Reactive GRASP 107
6.7 Obtained results for problem 1 108
6.8 Obtained results for problem 2 108
6.9 Obtained results for problem 3 108
6.10 The best found solutions for all problems 109

7.1 Problems characteristics . 116
7.2 Used parameters in the Hybrid Reactive GRASP 116
7.3 Used parameters in the basic GRASP 116
7.4 Obtained results for problem 1 117
7.5 Obtained results for problem 2 117
7.6 Obtained results for problem 3 117

xi

List of Algorithms

1 Original Cuckoo Search Algorithm 46
2 A memory-based Cuckoo Search Algorithm 49

Abstract of thesis entitled

The resource optimization problem for complex

assembly lines

Submitted by Lakhdar BELKHARROUBI

for the degree of PhD in computer science

at University of Mustapha Stambouli Mascara

This thesis delves into the intricacies of resource optimization, with a spe-
cific focus on the Assembly Line Balancing Problem (ALBP) in the context of
complex assembly lines. In a world where advanced technologies have per-
meated various sectors, including industry, medicine, and the military, the ef-
ficient management of assembly lines becomes paramount. The fundamental
objective of this research is to enhance production processes by addressing the
complexities of assembly line balancing. This entails optimizing critical factors
such as cycle time, the number of workstations, and resource allocation. The
ALBP, central to this study, encompasses various forms, including the Mixed-
Model Assembly Line Balancing Problem (MiMALBP) and the Robotic Assem-
bly Line Balancing Problem (RALBP), each presenting unique complexities.
Moreover, as the industry diversifies and production requirements evolve, the
ALBP encounters novel characteristics and constraints, underscoring the need
for innovative solutions. Drawing on meta-heuristic approaches powered by
Artificial Intelligence, this thesis explores the efficient resolution of ALBP, as
well as its variants. The research also tackles the challenge of energy op-
timization in assembly lines designed for the mixed production of multiple
product models. Ultimately, this thesis navigates the ever-evolving industrial
landscape, offering insights into addressing the complexities of assembly line
balancing while harnessing the potential of advanced technologies and meta-
heuristic methods to optimize resources effectively.

Keywords: Meta-heuristics, Heuristics, Assembly lines, Artificial intelli-
gence, Optimization, Bio-inspired Algorithms.

�
����

�	
j
�
Ê
�
Ó

ú
�
Î
�
« �A

�	
g É

�
¾
�
�
��.�

	Q�
»
Q��Ë @ ©

�
Ó , XP

�
@
�
ñ�Ü

�
Ï @

	á�
��

�
m�
��
' �
H@YJ

�
®ª

�
K ú

	
¯
�

�
é
�
kð �Q

�
£

�
B@ è

	
Y�

�
ë

�
�Òª

�
J
�
K

�
I

�
J

�
k Õ

�

�
Ë A
�
« ú

	
¯
�
.
�
èY

�
®ªÖÏ @ ©J
Ò�

�
j.

���
JË @ ñ

�
¢

�	
k

�
�
�
A
�
J
�� ú

	
¯
�

(ALBP) ©J
Ò�

�
j.

���
JË @

�
¡

�	
k

�
é
�	
K
�	P@
�
ñ
�
Ó

��
é
�
Ê¾�

�
�
�
�
Ó

,
�

�
�
�

�
m.

�
Ì'@

�
ð

�
I.

��
¢Ë@

�
ð

�
é
�
«A
�	
J
��
�Ë@

�
½Ë�

�	
X ú

	
¯
�
A �Üß.� ,

�
HA«A¢

�
®Ë@

	

�
Ê
��
J
�	
m
�
× ú

	
¯
�

�
é�

�
Ó
��
Y
��
®
��
J �Ü

�
Ï @

�
HAJ

	
J
�
®
�
JË @

�
I

�
Ê
�	
ª
�
Ê
�	
ª
��
K

@

�	
Y
�
ë

�	áÓ� ú

æ�
�
A
�
�

B@

	
¬

�
Y
�
êË @ . ø

�
ñ
�
�
��
¯

��
é
��
J

��
Ò
�
ë

�
@

�
H@

�	
X ©J
Ò�

�
j.

���
JË @ ñ¢

	
mÌ

�
é
�
Ë A
�
ª
�	
®
�
Ë @

�
è �P@

�
XB
�

�
@

�
I

�
j
�
J.
�
�

�
@

. ©J
Ò�

�
j.

���
JË @

�
¡

�	
k

�
é
�	
K
�	P@
�
ñ
�
Ó

�
H@YJ

�
®ª

�
K

�
é
�
m.

�
Ì'A

�
ª
�
Ó È

�
C
�
	
g�

�	áÓ� h. A
�
J
�	
KB
�
@

�
HA

��
J
Ê�

�
Ô
�
« 	QK

	Q
�

�
ª
��
K

�
ñ
�
ë

�
I

�
j
�
J.

�
Ë @

�J
��

�	
m�
��
' �ð É

�
Ò
�
ª
�
Ë @

�
HA¢m× X

�
Y
�
«
�
ð

�
è �P
�
ð
��
YË@

�
I
�

��
¯
�
ð É

�

�
�
JÓ�

�
é
�
ÖÞ�� Am

Ì'@ ÉÓ� @
�
ñ
�
ª
�
Ë @

	á�
��

�
m�
��
'

�
½Ë�

�	
X Ð 	Q

�

�
Ê
��
J
�
�
�
�

�
ð

��
é
�
Ê¾�

�
�
�
�
Ó

�
½Ë�

�	
X ú

	
¯
�

A �Üß.� ,
�
é
�	
®Ê�

��
J
�	
m
�
× B

�
A¾

�
�

@ ,

�
é
�
�@ �P

��
YË@ è�

	
Y�

�
ë P

�
ñ
�
m×
�
ñ
�
ë
�
ð ALBP É

�
Ò
�
�
�
�
�
 . XP

�
@
�
ñ�Ü

�
Ï @

�ú

Í
�

�
B@ ©J
Ò�

�
j.

���
JË @

�
¡

�	
k

�
é
�	
K
�	P@
�
ñ
�
Ó

�
éÊ¾

�
�Óð (MiMALBP) ¡Ê�

��
J
�	
j�Ü

�
Ï @ h.

	
XñÒ

	
JÊË ©J
Ò�

�
j.

���
JË @

�
¡

�	
k

�
é
�	
K
�	P@
�
ñ
�
Ó

¨
��
ñ
�	
J
��
K ©

�
Ó
�
ð ,

�
½Ë�

�	
X ú

�
Î
�
«

��
è
�
ðC

�
«� . A

�
ê«�

�
ñ
�	
K

�	áÓ�
�
è
�
YK
Q�

�	
¯

�
H@YJ

�
®ª

�
K A

�
Ò
�
î
�	
DÓ� É

�
¿ É

��
�
J �Ü

�
ß
 �
I

�
J

�
k (RALBP)

�
Y

��
»
�
ñ
�
K
 A

��ÜØ� ,
�
è
�
YK
Y�

�
g. @

�
XñJ

�
¯ð �

�� A
�
�

�	
k ALBP ék.�

@
�
ñ
�
K
 , h. A

�
J
�	
KB
�
@

�
HAJ. Ê¢

�
JÓ Pñ¢

�
�ð

�
é
�
«A
�	
J
��
�Ë@

ZA¿

��	
YËAK.�

�
éÓñ«YÖÏ @

�
é
��
J

�
�̄
�
ñ
�	
®
�
Ë @

�
éJ
ËBY

�
J�B@ i.

�
ë� A
�	
J �Ü

�
Ï @ ú

�
Î
�
« X� A

�
Ò
�
J�

�
«B� AK.�

.
�
èQº

�
JJ.Ó È

�
ñ
�
Ê
�
g ú

�
Í@

�
é�
�
k. A

�
m

�
Ì'@

. é
�
K @Q�

	
ª
�
JÓ ú

�
Í@

�
é�

�	
¯A

�	
�B
�

�
AK.�

ALBP �Ë ÈA
�
ª
	
®�

�
Ë @

�
Ém�

�
Ì'@

�
é
�
kð �Q

�
£

�
B@ è

	
Y�

�
ë

	

�
�º

�
J�

�
� , ú

«
�
A
	
J¢�

�
�B� @

�
é
�
Ò
��
Ò
�
��Ü

�
Ï @ ©J
Ò�

�
j.

���
JË @ ñ

�
¢

�	
k ú

	
¯
�

�
é�

��
¯A
��
¢Ë@

	á
�
�
��

�
m�
��
' ú

	
¯
�

É
�
JÒ
�
JÖÏ @ ø

��
Y
�
j

���
JË @ A

�	
��

@

�
I

�
j
�
J.

�
Ë @ È

�
ðA
�	
J
��
�
�
K

ú

	
¯
�

�
é
�
kð �Q

�
£

�
B@ è

	
Y�

�
ë É

�
®
	
J
�
�
�
K ,

	
¬A

�
¢�Ü

�
Ï @

�
é�
�
K
A
�
î
	
E� ú

	
¯
�
.
�
è
�
X
��
Y
�
ª
��
J �Ü

�
Ï @

�
HA

�
j.

��
J
�	
J �Ü

�
Ï @ h.

	
XAÒ

	
JË ¡Ê

�
J
	
jÖÏ @ h. A

��
J
�	
KC
�

�
Ë�

�
¡

�	
k

�
é
�	
K
�	P@
�
ñ
�
Ó

�
H@YJ

�
®ª

�
K

�
é
�
m.

�
Ì'A

�
ª
�
Ó È

�
ñ
�
k ø

�
ð �P Ð

��
Y
��
®
��
K
�
ð, P@ �Q

�
Ò
�
J�
�
�AK.�

Pñ¢
�
JÖÏ @ �ú

«
�
A
�	
J
��
�Ë@ Y�

�
îD
�
�
� �Ü

�
Ï @

É
�
¾
�
�
��.�

XP
�
@
�
ñ�Ü

�
Ï @

	á�
��

�
j
��
JË�

�
é
��
J

�
�̄
�
ñ
�	
®
�
Ë @ I. J
Ë� A

�
�

�
B
�
@
�
ð

�
é
�
Ó
��
Y
��
®
��
J �Ü

�
Ï @

�
HAJ

	
J
�
®
�
JË @

�
HA

�	
K A¾

�
Ó@
�
Q�

	
j�

�
�
��
� ©

�
Ó ©J
Ò�

�
j.

���
JË @

. ÈA
��
ª
�	
¯

, ú

«A
	
J¢�B@ ZA¿

	
YË@ , ©J
Òj.

�
JË @ ñ¢

	
k , ÈBY

�
J�B@ , ú

�
¯ñ

	
®Ë @ ÈBY

�
J�B@ : �

éJ
kA
�
J
	
®Ó

�
HAÒÊ¿

.
�
éK
ñJ
m

Ì'@ 	áÓ
�
èAgñ

�
J�ÖÏ @

�
HAJ
Ó

	PP@ñ
	
mÌ'@ ,

	á�
�j
�
JË @

Abstract

Cette thèse explore les subtilités de l’optimisation des ressources, avec
un accent particulier sur le problème d’équilibrage des chaînes d’assemblage
(ALBP) dans le contexte de chaînes d’assemblage complexes. Dans un monde
où les technologies avancées ont imprégné divers secteurs, notamment l’industrie,
la médecine et l’armée, la gestion efficace des chaînes d’assemblage devient
primordiale. L’objectif fondamental de cette recherche est d’améliorer les pro-
cessus de production en abordant les complexités de l’équilibrage des chaînes
de montage. Cela implique d’optimiser des facteurs critiques tels que le temps
de cycle, le nombre de postes de travail et l’allocation des ressources. L’ALBP,
au cœur de cette étude, englobe diverses formes, notamment le problème d’équi-
librage des lignes à modèles mixtes (MiMALBP) et le problème d’équilibrage
des lignes robotisées (RALBP), chacun présentant des complexités uniques.
De plus, à mesure que l’industrie se diversifie et que les exigences de produc-
tion évoluent, l’ALBP rencontre de nouvelles caractéristiques et contraintes,
soulignant la nécessité de solutions innovantes. S’appuyant sur des approches
méta-heuristiques alimentées par l’intelligence artificielle, cette thèse explore
la résolution efficace de l’ALBP, ainsi que ses variantes. La recherche aborde
également le défi de l’optimisation énergétique dans les chaînes d’assemblage
conçues pour la production mixte de plusieurs modèles de produits. En fin de
compte, cette thèse explore un paysage industriel en constante évolution, of-
frant un aperçu de la manière de résoudre les complexités de l’équilibrage des
chaînes d’assemblage tout en exploitant le potentiel des technologies avancées
et des méthodes méta-heuristiques pour optimiser efficacement les ressources.

Mots Clés: Méta-heuristiques, Heuristiques, Chaînes d’assemblage, Intel-
ligence artificielle, Optimisation, Algorithmes bio-inspirés.

5

Chapter 1

Introduction

In manufacturing environments, the production of a variety of products such
as electronics, automobiles, and furniture is based on important systems known
as assembly lines. In 1913, Henry Ford created the first assembly line in his au-
tomobile industry in America [1], and since that time, assembly lines are still
integrated into different kinds of industries. An assembly line is a set of work-
stations, and at each workstation, a set of tasks are performed while assem-
bling a product. A material handling system is used, such as a conveyor belt,
in order to move a product from one workstation to another one. Assigned
tasks can be performed by two types of operators: humans and robots. Hu-
man operators are used in order to complete some tasks that are not complex
and do not require high precision, whereas robots are used in order to perform
a set of repetitive tasks that require high precision. In some cases, humans
work in collaboration with collaborative robots known as Cobots [2].

The assembly line balancing is based on the optimization of one or several
resources, and this is the critical part of the installation of the line. Optimizing
several resources at the same time, the problem becomes more complex and
hard to solve. The problem related to the optimization of the assembly line is
known in the literature as the assembly line balancing problem (ALBP). The
ALBP is divided into several types, and in each type, there is more than one
version. Each version depends on the characteristics of the assembly line, in-
cluding the line layout and the resources to be optimized, such as the cycle
time, the number of workstations, the number of operators, the energy con-
sumed, etc [3]. The first publication of its mathematical formulation was in
1955 by Salveson [4], and since that time, several works have been done to
solve different ALBP versions using two types of methods: exact methods and

6 Chapter 1. Introduction

approximation methods including heuristics and metaheuristics. The ALB is
one of the NP-hard problems, which cannot be solved in polynomial time [5].
Thus exact methods can only solve small instances. As a solution to this com-
plicated situation, researchers thought to use approximation methods in order
to find good solutions for optimization problems in a reasonable time.

Researchers have classified the ALBP into two categories: simple ALB
problems (SALBPs) and general ALB problems (GALBPs) [6]. This classifi-
cation is based on several factors, including the assembly line layout, the re-
sources to be optimized while designing the line, and the number of models
planned for production. For instance, the SALBPs category includes all ALB
problems related to simple lines that assemble only one model in a straight-
paced line, whereas the GALBPs category includes all problems related to as-
sembly lines having a set of characteristics that make them complex. Several
heuristics have been proposed in order to solve many SALB problems, such as
the ranked positional weight (RPW), the longest task time (LTT), the shortest
task time (STT), etc [7]. The problem is that, in most cases, a simple heuristic
cannot be used to solve recent complicated ALBP versions that generally be-
long to the GALBPs category. Therefore, several metaheuristics, such as the
Genetic Algorithm (GA), the Greedy Randomized Adaptive Search Procedure
(GRASP), the Ant Colony Optimization Algorithm (ACO), and the Cuckoo
Search Algorithm (CSA), have been proposed to solve many GALB problems.
As technology advances, new ALBP versions emerge with greater complexity
than prior versions, necessitating the development of new methods to solve
them.

1.1 Motivation

Nowadays, new advanced technologies are still integrated into several sectors,
such as industry, medicine, and the military, which has created several com-
plex real-world optimization problems that are harder to solve. On the other
hand, advances in computing and artificial intelligence allow researchers to
create new methods and techniques that can be used to find solutions to opti-
mization problems. With the appearance of the industry 4.0 concept, a variety

1.1. Motivation 7

of technologies have been integrated, such as the Internet of Things (IoT), Arti-
ficial Intelligence, the Cyber-Physical System (CPS), Augmented Reality (AR),
3D printing, etc [8]. All these technologies have been integrated in order to
achieve better production and monitoring.

The optimization of the assembly line is an important point when talking
about good production since it covers several resources, such as the cycle time,
by which we can determine the production rate in a specific period. Minimiz-
ing the number of workstations in the assembly line can also help manufactur-
ers achieve a good production process by minimizing the total idle time and
minimizing the total space occupied by the assembly line. Each ALB prob-
lem that has been solved aims to optimize one or multiple resources at the
same time, such as in the case of the ALBP type E, which aims to optimize
both the cycle time and the number of workstations together [9]. Other new
ALB problems have occurred in the industry, having new characteristics, such
as the mixed-model assembly line balancing problem (MiMALBP), the multi-
model assembly line balancing problem (MuMALBP), the robotic assembly
line balancing problem (RALBP), the U-shaped assembly line balancing prob-
lem (UALBP) and so on.

The mixed model assembly line balancing problem is more complex than
the simple one since it takes into consideration several models and constraints.
There exist several MiMALBP types, such as MiMALBP type 1, which aims to
minimize the number of workstations, and MiMALBP type 2, which aims to
minimize the cycle time [10]. The MiMALBP has occurred in the industry due
to the variation of customers’ demands for more than one model of the same
product. Several works have been done aiming at solving the MiMALB prob-
lems but there are some types that have not been solved due to the variation
of resources and characteristics. The complexity of the MiMALBP is higher
in comparison with the SALBP, and it increases when there is more than one
resource to be optimized in the line. In addition, the existence of several con-
straints in the problem makes it difficult to solve. The number of models to be
assembled in the line also influences the complexity of the problem, since each
model has its own properties and tasks.

The integration of robots into the assembly lines in order to accomplish
some complicated repetitive tasks has created a new problem known as the

8 Chapter 1. Introduction

robotic assembly line balancing problem (RALBP). The hard part of the RALBP
is that we need to find not only the best assignment of tasks but also the best
assignment of robots. There are several RALBP types. For instance, RALBP
type 1 aims to minimize the number of workstations, RALBP type 2 aims to
minimize the cycle time; RALBP type cost, and RALBP type O [11]. In a robotic
assembly line, energy is an important resource, and we can find only a few
studies that have been done in order to minimize the total energy consumed in
the line by choosing the best set of robots that will be assigned to workstations.
Furthermore, all published works that aim to minimize energy consumption
focus only on those lines that are designed for the mass production of one
model.

Real-world optimization problems still appear in the industry sector, and
their complexity is increasing in comparison with those problems that have
already been solved. AI approaches such as meta-heuristics are the most com-
monly employed for solving these problems due to their efficiency, especially
when dealing with large-scale problems but the big challenge is to find the ap-
propriate meta-heuristic that can find good solutions for a specific optimiza-
tion problem. In the literature, we can find many several works that have used
meta-heuristics to solve ALBP problems including SALPB, MiMALBP, RALBP,
and other versions. Some ALB problems have not been taken into considera-
tion for many reasons, such as the variation of the line characteristics, the na-
ture of resources, the production type, the nature of operators, the nature of
tasks, etc.

1.2. Contributions 9

1.2 Contributions

The aim of this thesis is to study and solve some optimization problems that
occur in the assembly line and have an influence on some important resources,
such as the cycle time and energy consumed during production. In addition,
we address some assembly line balancing problems that have not been well
studied despite their importance in finding a good assembly line design in
order to achieve better production.

As contributions, we have published six scientific researches including
three articles published in journals indexed in some bases such as Scopus, two
conference papers with proceedings published in IEEE Xplore, and a chapter
included in a book published in WILLY library. Our contributions are detailed
as follows:

In the first contribution [12], the energy efficient robotic mixed-model as-
sembly line balancing problem is addressed. The main goal of solving this
problem is to minimize energy consumption in robotic assembly line where
each robots has its own properties. To solve this complicated problem, we
have proposed a memory based cuckoo search algorithm (MBCSA). The per-
formance of the proposed MBCSA is tested on six different problems, and
the obtained results are compared with those obtained by two other meta-
heuristics.

In the second contribution [13], we have addressed the mixed-model as-
sembly line balancing problem type 1 that aims to minimize the number of
workstations in the line. To solve this problem, we have proposed a hybrid re-
active greedy randomized adaptive search procedure (HRGRASP). The HRGRASP
is based on four principal steps, the construction phase, the local search phase,
the evaluation of obtained solutions, and the update of selection probabilities.
In the construction phase, we have used the shortest processing time heuris-
tic in order to construct a solution. Obtained solutions are replaced by their
best neighbors in the local search phase by applying a simple neighborhood
procedure. The proposed HRGRASP is tested on seven problems, and its per-
formance is compared with other methods.

In the third contribution [14], we have proposed a hybridization between
two meta-heuristics in order to solve the mixed-model assembly line balancing

6 Chapter 1. Introduction

problem type 2 that aims to optimize the cycle time of the line. The two meta-
heuristics are the famous genetic algorithm (GA) and the greedy randomized
adaptive search procedure (GRASP). The aim of using the GRASP in this study
is to create a set of feasible solutions for the addressed problem. The created
set is used as the first population in the genetic algorithm. In order to cre-
ate a solution in the GRASP, we used ranked positional weight (RPW) in its
construction phase, and to ameliorate the solution, a neighborhood procedure
is used in the local search phase. The proposed hybridization is tested on a
numerical example.

In the fourth contribution [15], we have addressed the simple assembly
line balancing problem type E that aims to optimize both the cycle time and
the number of workstations at the same time. As a solution to this problem,
we have proposed an approach that is based on the genetic algorithm (GA).
We have generated three different problems in order to evaluate our approach,
and each problem was solved several times according to the problem data.
The obtained results are compared with those obtained by the reactive greedy
randomized adaptive search procedure.

In the fifth contribution [16], we have proposed a hybridization between
the ranked positional weight (RPW) heuristic and the reactive greedy random-
ized adaptive search procedure (RGRASP) in order to solve the mixed-model
assembly line balancing problem type 2. The RPW is used in the construction
phase of the RGRASP to build feasible solutions. In the local search phase
of the RGRASP, we have used a local search method that aims to find better
neighbor solutions. Three problems of different sizes are generated to test the
proposed algorithm.

1.3 Thesis Outline

This chapter begins with an introduction, followed by our motivation and a
discussion of our contributions. The remainder of this thesis includes seven
chapters as follows:

The state of the art (as chapter 2) in which the background of this thesis
is provided and is organized as follows; we first discuss the assembly lines,

1.3. Thesis Outline 11

different types. Secondly, we define the assembly line balancing problem and
give its general mathematical formulation. Then, we provide the classification
of the ALB problems. Next, we present the optimization methods used by
researchers to solve the ALB problem. Finally, we provide the state of the art.

In chapter 3, we introduce the first contribution, which is related to the
energy efficient robotic mixed model assembly line balancing problem. This
chapter is organized as follows; we first start with an introduction, then we de-
fine the energy efficient RMiMALBP problem, and next we explain our memory-
based cuckoo search algorithm used to solve this problem. Then we provide
our results and the related discussion before concluding the chapter.

Chapter 4 presents the second contribution in which we have solved the
mixed model assembly line balancing problem using the hybrid reactive GRASP.
This chapter starts with an introduction. Secondly, we provide the definition of
the problem and its mathematical formulation. The proposed hybrid reactive
GRASP is then presented, and the results are discussed. Finally, we conclude
the chapter.

In Chapter 5, we introduce our third contribution, in which we proposed
a hybridization between the GRASP and the GA in order to solve type 2 of the
mixed model assembly line balancing problem. First, an introduction to the
chapter is provided, then the mixed model assembly line balancing problem is
defined. Next, we introduce the proposed hybrid GRASP genetic algorithm.
After that, we discuss the results and we conclude the chapter.

Chapter 6 presents the fourth contribution, in which we have solved the
mixed model assembly line balancing problem type 2 using a hybridization
between the reactive GRASP and the RPW. This chapter starts an introduction,
then we define the problem with its assumptions and mathematical formu-
lation. Next, we explain our approach used to solve the problem. Then we
provide the results of the study, and we finish the chapter with a conclusion.

Chapter 7 provides the fifth contribution in which we have solved the sim-
ple assembly line balancing problem type E using a genetic algorithm based
approach. It is organized as follows; first we begin with an introduction, then
we present the SALBP type E and its mathematical formulation. Then, we ex-
plain our genetic algorithm-based approach. Next, the results are provided

12 Chapter 1. Introduction

with the corresponding discussion. Finally, we conclude the chapter.

The last chapter concludes the thesis and all the work carried. It reca-
pitulates the challenges, contributions, and summaries our findings. It also
presents future perspectives that can be followedup by this thesis.

13

Chapter 2

Assembly Line Balancing Problem:
State of the Art

2.1 Introduction

The aim of the assembly process is to bring together two more work-pieces in
order to create a specific product. The work-pieces are added successively in
each workstation until a final product is completed. Historically, the assembly
lines were introduced by Henry Ford in order to achieve good management
in his automobile industry [17]. The first assembly lines were simple and de-
signed for mass production for only one model such as in the case of Henry
company which was created to produce one car model. The assembly line is
composed of a set of workstations and a material handling system, such as the
conveyor belt. The material handling system links all workstations and moves
the product from one workstation to another in order to complete the assem-
bly process [18]. The rhythm of the material handling system differs from one
assembly line to another. For instance, simple assembly lines are considered
paced. In some assembly lines, workstations are decoupled by buffer stocks,
which hold the item when the next station is still working on the previous item
[19].

During the production process, a set of assembly tasks is performed in
each workstation to complete one product, and each workstation has a work-
station time equal to the sum of all task times of assigned tasks [20]. The cycle

14 Chapter 2. Assembly Line Balancing Problem: State of the Art

time by which we can determine the period between two successive accom-
plished products (the production rate), and equal to the maximum worksta-
tion time in the assembly line [21]. The difference between the cycle time and
the workstation time is known as the idle time. In other words, idle time is
the period in which the workstation is inactive [22]. The nature of task times
varies from one assembly line to another. For instance, in the case of the man-
ual assembly line where human operators perform the tasks, the task times are
considered stochastic due to several factors, including the skills and motiva-
tion of human operators [19].

The initial assembly lines were completely manual, which meant that only
human operators were used to complete assembly tasks [23]. Over time, robots
were introduced into assembly lines as a new sort of operator in order to
achieve high automation [24]. The introduction of robots has created a new
assembly line version known as the robotic assembly line. The benefit of us-
ing robots in assembly lines is that it reduces labor costs and variability in task
times from manual work [25]. Unlike human labor, robots can be programmed
to perform different assembly tasks without the worry of fatigue. Robotic as-
sembly lines are more flexible and are characterized by both their speed of
production and the quality of their products [26]. Collaborative robots, or
cobots, may aid in the implementation of a dynamic productive cell capable
of supporting multi-model production while being more adaptable to model
and volume changes [27].

There are several assembly line versions, and each version depends on
its characteristics such as the assembly line rhythm, the operators used in the
line, the assembly line design (or shape), and the type of production. As dis-
cussed before, the rhythm of the assembly line can be paced or unpaced in
the case of using buffers with workstations, and for the operators, there are
two types; humans and robots, which can be used separately or together to
perform assembly tasks. For the assembly line shapes, there are several ones,
including the straight shape, the U shape, and the parallel shape. In straight
assembly lines, workstations are placed in a serial manner and the product
moves in a straight direction, whereas in U-shaped assembly lines, the flow of
the product has the form of the letter "U" as shown in fig 2.1. In the case of
parallel lines, two or more neighboring lines are located in parallel and can be

Figure 2.1: Line Layouts (A) straight line, (B) parallel line, (c) U-shaped Line.

balanced with common workstations that perform tasks for all lines or with independent

workstations[28].

Regarding the type of production, there are three types of assembly lines;

simple assembly lines(SAL), mixed-model assembly lines (MiMAL), and multi-

model assembly lines (MuMAL). The SAL is the first version of the assembly

16 Chapter 2. Assembly Line Balancing Problem: State of the Art

Figure 2.2: Mixed and Multi-Model assembly lines.

line. This type of line is used for the mass production of one model [29]. The
MiMALs are more complex than the SALs, they can assemble more than one
model of the same product in an intermixed sequence with one configuration
[30]. The MuMALs are used to assemble more than one model of the same
product in batches. As shown in fig 2.2, in MuMAL the number of models is
more than one in each batch, unlike in MiMAL [31].

Customers nowadays look for products that have different product vari-
ants with different distinguishing qualities from other products on the mar-
ket. Manufacturing companies face the challenge of upgrading their assembly
lines, and the increased demand for a variety of different products with differ-
ent characteristics is the main reason for the creation of flexible assembly lines
such as mixed-model and multi-model assembly lines, which can meet market
demands.

Designing an assembly line is difficult and complex since it takes into con-
sideration not only the characteristics of the line but the resources to be opti-
mized. In addition to the cycle time and the number of workstations, there are
other resources that can influence the design of the assembly line, such as the
number of operators (humans and robots) and the energy consumed during
the assembly process. In addition to the basic constraints of the ALBP, some

2.1. Introduction 17

other constraints can influence the complexity if they must be taken into con-
sideration when solving the problem such as zoning constraints [32].

The assembly lines are so important and need good design and planning
since they play a crucial role in the production of different kinds of products.
The ALBP is the challenge of optimizing an assembly line by maximizing or
minimizing numerous criteria measurements. In this chapter, the background
of this thesis is provided.

4 Chapter 1. Assembly Line Balancing Problem: State of the Art

1.2 Definition of the assembly line balancing prob-

lem

An assembly line consists of workstations K=1,...,m arranged along a mechan-
ical handling system. The workpieces move from one workstation to another
one in a unidirectional manner. At each workstation, a set of tasks T=1,...,n
are repeatedly performed regarding the cycle time. The time needed to com-
plete a task j is known as task time tj. Partitioning the available tasks among
the workstations with respect to a set of predefined objectives is known as the
Assembly Line Balancing Problem (ALBP) [5].

The assembly tasks are represented in a graph G known as the precedence
graph which illustrates the precedence relations between all the tasks. The
assignment of tasks to workstations is restricted by precedence relations and
by other constraints, such as zoning constraints in some cases. If there is no
zoning constraints, then any task can be performed at any workstation. The
workload of workstation k is determined by the set of tasks Sk assigned to it.

The basic constraints of the assembly line balancing problem are as fol-
lows; All available assembly tasks must be assigned. An assembly task must
be assigned to only one workstation. If task i precedes task j, then, task i must
be assigned before task j. The sum of the task times for tasks in Sk is known as
the workstation time. If the cycle time C is given, then, the workstation time
t(Sk) must not exceed C. If t(Sk) < C, the workstation K has an idle time that is
equal to c - t(Sk) time units in one cycle.

In the illustrative example fig 1.3, we have a precedence graph of one
product. The number inside the circle is the task ID that is used in the problem,
and the number outside the circle is the task time. To complete this product,
8 tasks must be completed, respecting the precedence relations. For example,
we cannot perform task 7 before completing tasks 1, 2, 4, and 5. For this exam-
ple, a feasible balance with m = 4 workstations and cycle time c = 5 is given by
workstation loads s1 = 1, 3, 4, s2 = 2, 5, s3 = 6, 7 and s4 = 8 with an idle time = 2
in workstation s4. Another feasible balance with m = 3 workstations and cycle
time c = 6 is given by s1 = 1, 2, 3, s2 = 4, 6, s3 = 5, 7, 8 with no idle time.

2.3. Classification of the assembly line balancing problem 19

Figure 2.3: Precedence relations graph.

2.3 Classification of the assembly line balancing prob-

lem

The assembly line balancing problem is classified into two categories, the sim-
ple assembly line balancing problem (SALBP) and the general assembly line
balancing problem (GALBP). The SALBP occurs in simple assembly lines and
it has specific assumptions. If an ALB problem has different assumptions in
comparison with the SALBP, then we can consider it like a general assembly
line balancing problem [34]. The GALBP regroups several ALB problems that
have appeared with the advancement in technologies and assembly lines. The
classification of the ALBP is as follows.

2.3.1 Simple assembly line balancing problem (SALBP)

The simple assembly line balancing problem is the best-known and best-studied
among the family of ALB problems. Although the complexity of SALPB is far
from Regarding the complexity of real-world line balancing, it is considered
as the core problem of the ALB. There are four SALBP problems, SALBP type
1 (SALBP-1), SALBP type 2 (SALBP-2), SALBP type E (SALBP-E), and SALBP
type F (SALBP-F) [35, 36]. In the SALBP-1, the aim is to minimize the num-
ber of workstations for a fixed known cycle time, and in the SALBP-2 the aim
is to minimize the cycle time for a fixed known number of workstations. The

20 Chapter 2. Assembly Line Balancing Problem: State of the Art

Figure 2.4: Assembly line balancing problem classification.

2.3. Classification of the assembly line balancing problem 21

SALBP-E aims to optimize both the cycle time and the number of workstations
at the same time [37]. In the SALBP-F both the cycle time and the number of
workstations are known and the aim is to find a feasible assembly line [38, 39].

According to [18, 40, 41] the simple assembly line balancing problem has
the following assumptions:

• An assembly task cannot be split among two or more workstations.

• The line is paced with a common fixed cycle time.

• The line is considered to be serial.

• No parallel elements or feeder lines.

• The sequence of tasks to be processed is restricted by precedence rela-
tions.

• No other constraints besides precedence relations.

• Task times are considered deterministic.

• Assembly tasks are processed in a predetermined mode.

• Mass production of only one product.

• All Workstations are equally equipped with workers and machines.

In the literature, we can find several works that have been done to solve
a variety of simple assembly line balancing problems using exact methods
and approximation methods. Baybars et al. [40] have developed an efficient
single-pass heuristic method that can find good solutions for the deterministic
SALBP. Pastor et al. [42] have proposed an improved mathematical program
to solve both the SALBP type 1 and the SALBP type 2. The key idea in this
work is based on the upper bound on the number of workstations for SALBP-
1 and on the upper bound on the cycle time for SALBP-2. Sewell et al. [43]
have proposed a branch, bound, and remember algorithm for the SALBP. The
proposed algorithm combines a variety of methods to create an approach that
is computationally superior to all exact algorithms that were reported in the
literature.

22 Chapter 2. Assembly Line Balancing Problem: State of the Art

Wei et al. [44] have proposed a solution procedure to solve the SALBP
type E that combines the SALBP-1 and SALBP-2. Kilincci et al. [45] have de-
veloped a Petri net-based heuristic in order to solve SALBP type 2. They de-
veloped three versions of the heuristic by integrating forward, backward, and
bidirectional procedures. They also implemented a binary search procedure
in order to improve the solution. Blum et al. [46] have proposed a hybridiza-
tion between two meta-heuristics the ant colony optimization (ACO) and the
beam search to tackle the siSALBP type 1. Esmaeilbeigi et al. [47] have pro-
posed a mixed integer linear programming formulation in order to solve the
SALBP type E. Furthermore, two enhancement techniques in the form of valid
inequalities and auxiliary variables are proposed to strengthen the presented
formulation even further.

Kilincci et al. [48] have developed a different heuristic approach based
on the P-invariants of Petri nets to solve the SALBP type 1. Zhang et al. [49]
have proposed an improved immune algorithm for the simple assembly line
balancing problem type-1. Zhang et al. [50] have proposed An integer-coded
differential evolution algorithm for SALBP type 2. Pereira et al. [51] have de-
veloped empirical evaluation of lower bounding methods for the SALBP with
the aim of minimizing the number of workstations in the line. Goncalves et al.
[52] have proposed a hybrid genetic algorithm with a local search to tackle the
SALBP type 1.

Gokcen et al. [53] have developed a goal-programming approach based
on an integer programming formulation to solve the simple U-line balancing
problem with the aim of minimizing the number of workstations. Dou et al.
[54] have proposed a feasible task sequence-oriented discrete particle swarm
algorithm to solve the SALBP type 1. Jirasirilerd et al. [55] have developed a
variable neighborhood strategy adaptive search in order to solve SALBP type 2
in the garment industry. Saltzman et al. [56] have presented a two-process im-
plicit enumeration algorithm for the SALBP with the objective of minimizing
the largest station number to which a task is assigned. Sikora et al. [57] have
proposed an integer-based formulation for the SALBP with multiple identical
tasks with the aim of minimizing the cycle time.

Arik et al. [58] have proposed a mixed integer programming model to
solve the SALBP type 1 with grey demand and grey task durations. Ravelo et

2.3. Classification of the assembly line balancing problem 23

al. [59] have proposed in their work approximation algorithms to solve SALB
problems including SALBP-1, SALBP-2, and SALBP-E. Emrani et al. [60] have
used a mathematical model to solve SALBP type 1 under task deterioration.
Baskar et al. [61] have proposed and analyzed a few heuristics based on slope
indices that can be used to tackle the SALBP type 1. Toklu et al. [62] have
proposed a fuzzy goal programming model for the simple U-line assembly
line balancing problem with the aim of optimizing several conflicting goals.
Lalaoui et al. [63] have developed an adaptive generalized simulated annealing
using a fuzzy inference system for the SALBP type 1. Xu et al. [64] have used
a tabu search algorithm for type 2 u-shaped simple assembly line balancing
problem which considers workload smoothing as the secondary objective. In
our study [15], we proposed a genetic algorithm-based approach to solve the
SALBP type E.

2.3.2 General assembly line balancing problem (GALBP)

Real-world ALB problems have other and more complex characteristics in
comparison with those of the SALBP. This difference has created new ALB
problems that fall under the general assembly line balancing problems cate-
gory. In GALBP, the assumptions of the SALBP are relaxed in order to corre-
spond to the real environment [35]. Several GALB problems can be found in
the literature such as the mixed-model ALBP, robotic ALBP, U-shaped ALBP,
Two-sided ALBP, and parallel ALBP. As shown in fig 2.4, each GALBP has four
types (type 1, type 2, type E, and type F), furthermore, there is another category
named mixed ALBP that regroups those problems that are mixed in terms of
line layout, number of models, number of sides and so on.

2.3.2.1 Mixed-model assembly line balancing problem (MiMALBP)

The mixed-model assembly line balancing problem (MiMALBP) is a critical
problem that takes into consideration the tasks of all models when balancing
the line. In order to decrease the complexity of the MiMALBP, it can be trans-
formed into SALBP using two different methods; using the adjusted task pro-
cessing times or combining all precedence graphs of all models in one graph
called the combined precedence graph as shown in fig 2.5 [65]. The MiMALBP

24 Chapter 2. Assembly Line Balancing Problem: State of the Art

Figure 2.5: Combined precedence relations graph.

is also classified into four types; type 1, type 2, type E, and type F. All these
problem types have the same objectives as those types of the SALBP.

In the literature, we can find several studies that have been done to solve
a variety of MiMABLP types. Noorul et al. [66] have addressed the MiMALBP
type 1. They proposed a hybridization between the classical genetic algorithm
and the ranked positional weight (RPW) heuristic. Mamun et al. [67] have

2.3. Classification of the assembly line balancing problem 25

proposed a genetic algorithm-based procedure to solve the MiMALBP with
the aim of minimizing the total number of workstations. Akpinar et al. [68]
have addressed the MiMALBP type 1 with sequence-dependent setup times.
In order to solve the problem, they proposed a hybridization between the ant
colony optimization (ACO) and the genetic algorithm (GA). Sadeghi et al. [69]
have proposed a variable neighborhood descent method in order to solve the
MiMALBP with the objectives of minimizing the number of workstations and
smoothing the operator’s workload.

Thiruvady et al. [70] have presented an ant colony optimization approach
which is based on learning permutations of the operations in order to solve the
MiMALBP type 1. Lalaoui et al. [71] have developed a versatile generalized
simulated annealing using a fuzzy controller to tackle the MiMALBP type 2.
Zhang et al. [72] have addressed a robust MiMALBP with interval task times.
To solve the problem, they proposed a genetic algorithm in hybridization with
a local search procedure and a discrete Levy flight. Gokcen et al. [73] have
developed a binary integer formulation for the MIMALBP type 1. El-Alfy et
al. [74] have addressed a multi-objective MiMALBP in order to minimize the
idle time at the workstations, reduce the delay and avoid waste of production,
improve the quality of assembled products, minimize the number of work-
stations. Erel et al. [75] have presented a shortest-route formulation of the
MiMALBP. The formulation is based on an algorithm that is used to solve the
single-model version. The objective of the study is to minimize the sum of idle
times in the line.

Gokcen et al. [76] have addressed the MiMALBP type 1, and to solve it,
they proposed a goal programming model based on the concepts of earlier re-
searchers, and other models developed for the SALBP. In our contribution [14],
we proposed a hybridization between the greedy randomized adaptive search
procedure (GRASP) and the genetic algorithm in order to solve the MiMALBP
type 2. The ranked positional weight heuristic is used in the GRASP to con-
struct the solutions. In our second contribution [13], we solved the MiMALBP
type 1 using a Hybrid reactive greedy randomized adaptive search procedure
(RGRASP). Sivasankaran et al. [77] have presented seven priority rules in con-
junction with a station-oriented approach in order to solve the MiMALBP type
2. Zhang et al. [78] have designed an ant colony optimization algorithm to

26 Chapter 2. Assembly Line Balancing Problem: State of the Art

solve the MiMALBP with aim of minimizing the number of workstations.

Zhang et al. [79] have proposed a multi-objective genetic algorithm for
the MiMALBP in order to minimize the cycle time of the line based on the
demand ratio of each model. Razali et al. [80] have proposed mathematical
modeling of the MiMALBP type 2 with resources constraints. Liu et al. [81]
have proposed an improved genetic algorithm to solve the MiMALBP with
objectives of minimizing station complexity, minimizing workload differences
between different models, and maximizing productivity. Lia et al. [82] have
developed a decentralized approach using a multi-agent-based framework to
solve the MiMALBP type 1. In this system, a tabu search technique is applied
in the line balancing process. A modified ranked positional weight is used to
produce the initial solution, and a restricted neighborhood strategy is used to
adjust the workloads of machines. Hop et al. [83] has addressed the MiMALBP
with fuzzy processing time, and with the aims of minimizing the number of
workstations, minimizing the total idle time, and maximizing the balancing co-
efficient. To solve the problem, a fuzzy binary linear programming model was
formulated. Burduk et al. [84] have presented a heuristic and simulation-based
approach for balancing both mixed and multi-model assembly line balancing
problems.

2.3.2.2 Multi-model assembly line balancing problem (MuMALBP)

The multi-model assembly line balancing problem is related to those lines that
produce different models in batches. The size of each batch is more than one,
and the configuration of the assembly line is changed when a new batch is
started, unlike the mixed-model assembly line which is designed one time with
one configuration by which several models can be assembled in an intermixed
sequence.

Regarding the literature, the MuMALBP is the least studied in compar-
ison with all the author ALB problems. Chen et al. [85] have developed a
two-phase adaptive genetic algorithm to solve MuMALBP in the thin film
transistor-liquid crystal display. The objectives of this study are to minimize
the number of assigned workers and the workstations opened. Hao et al. [86]
have proposed a genetic algorithm for the MuMALBP. Jafari et al. [87] have

2.3. Classification of the assembly line balancing problem 27

presented a multi-objective mixed-integer linear programming model for bal-
ancing a multi-model assembly line with three objectives (minimizing the cycle
time, maximizing the number of common tasks assigned to the same worksta-
tions, and maximizing the level of workload distribution smoothness between
workstations). Pereira et al. [88] has addressed the MuMALBP found in the
textile industry, and to solve the problem, a hybrid method that combines clas-
sical methods for line balancing with an estimation of distribution algorithm.

2.3.2.3 Robotic assembly line balancing problem (RALBP)

The RALBP is a complex problem related to those lines that require robots in
order to perform some repetitive, complex tasks (see fig 2.6). In this problem,
there are two types of assignments; the assignment of tasks and the assignment
of robots. The assignment of robots is based on several objectives, for instance,
choosing the best robots that can complete tasks in a minimal amount of time,
choosing the best robots that consume less energy, and so on. The RALBP is
classified into several types; type 1, type 2, type E, type F, type Cost, and type
O. The objectives in (type 1, type 2, type E, and type F) are the same as the
other ALB problems. A RALBP is classified as a type Cost if the monetary and
economic aspects are the main objective in the configuration of the line. Prob-
lems that are not classified as types 1, 2, E, F, and cost will be classified in type
O (O for others) [11]. Like other ALB problems, the assumptions of the RALBP
change depending on the situation, but there are some basic assumptions used
in modeling the problem:

• The robotic assembly line is balanced for a single model.

• The assembly tasks are the smallest work element and cannot be subdi-
vided among two or more workstations.

• The task times are deterministic.

• The precedence relations between tasks are known.

• The workstation can be used to execute any task if its robot is capable of
completing it.

• Only one robot is assigned to a workstation.

• All robots can be used without any capacity limitation or breakdown.

28 Chapter 2. Assembly Line Balancing Problem: State of the Art

Figure 2.6: Robotic assembly line.

• The robot movement, tool changing, and setup times are negligible.

Concerning the literature, the RALBP has been addressed in several works.
Li et al. [89] have addressed a cost-oriented RALBP with setup times to min-
imize the cycle time and total purchasing cost simultaneously. In order to
formulate the problem, they developed a mixed-integer programming model,
and to solve it, they developed two algorithms, the elitist non-dominated sort-
ing genetic algorithm (NSGA-II) and an improved multi-objective artificial bee
colony (IMBCA). Sun et al. [90] have proposed an effective hybrid algorithm
fusing the estimation of distribution algorithm, and branch-and-bound (B&B)
based knowledge to solve the RALBP with the aim of minimizing the cycle
time of the line. Abidin et al. [91] have proposed a goal programming ap-
proach to solve the RALBP with the objectives of minimizing the cycle time,
number of workstation and robot cost. Li et al. [92] have addressed the RALBP
type 2. They have developed four mixed-integer linear programming models
encoded in CPLEX for small-sized problem instances, and to solve large-sized
problems, they proposed two simulated annealing algorithms: original simu-
lated annealing algorithm and restarted simulated annealing algorithm.

Borba et al. [93] have proposed lower bound, exact, and heuristic algo-
rithms for the RALBP type 2. In the lower bound, the chain decomposition
is used to explore the graph dependencies, and the exact approach includes a
linear mixed-integer programming model and a branch-bound-and-remember

2.3. Classification of the assembly line balancing problem 29

algorithm. he heuristic is an iterative beam search. Cil et al. [94] have de-
veloped an efficient iterative beam search algorithm to solve the RALBP with
the aim of minimizing the cycle time. Daoud et al. [95] have proposed two
meta-heuristics which are the ant colony optimization (ACO), and the parti-
cle swarm optimization (PSO) to solve the RALBP with the aim of maximizing
the line efficiency (type E). Daoud et al. [96] have addressed the RALBP type E.
They have used a discrete event simulation model to evaluate the performance
of the system. Also, they have proposed three resolution methods which are
based on the ant colony optimization, particle swarm optimization, and ge-
netic algorithm. Gao et al. [97] have proposed an innovative genetic algorithm
hybridized with local search to solve the RALBP type 2.

Janardhanan et al. [98] have addressed the RALB type 2 by considering the
sequence-dependent setup times. They formulated a mathematical model for
the problem, and to solve small-sized problems, they used the CPLEX solver.
Also, they implemented a migrating birds optimization (MBO) algorithm and
some meta-heuristics to solve the problem. Kim et al. [99] have addressed
the RALBP taking into consideration the limited space to store the parts and
tool capacity of the robot hand. To solve this problem they proposed a cutting
plan algorithm. Levitin et al. [100] have proposed a genetic algorithm to solve
the RALBP with the aim of maximizing the production rate of the line (type
2). Rabbani et al. [101] have developed an augmented Multi-Objective particle
swarm optimization (AMOPSO) in order to solve mixed model four-sided as-
sembly line balancing problem considering the collaboration of humans and
robots. Mukund et al. [102] have proposed a particle swarm optimization
method (PSO) to solve the RALBP with the objectives of minimizing the cy-
cle time and maximizing the production rate. The results obtained by the PSO
are improved by using a local exchange procedure.

Mukund et al. [103] have proposed two bio-inspired search algorithms
which are the particle swarm optimization (PSO), and hybrid cuckoo search
and particle swarm optimization (CS-PSO) to solve the RALBP type 2. pant
et al. [104] have addressed the RALBP with the aim of maximizing the line
efficiency by minimizing the energy consumption of the assembly line. To
solve the addressed problem, two meta-heuristics were implemented: parti-
cle swarm optimization (PSO) and differential evolution (DE). Pereira et al.

30 Chapter 2. Assembly Line Balancing Problem: State of the Art

[105] have addressed the cost-oriented RALBP to maximize line efficiency. To
solve the problem, they proposed an elitist memetic algorithm, a combina-
tion of a genetic algorithm with other optimization methods. Chi et al. [106]
have addressed the RALBP with two objectives. The primary objective is to
minimize the number of workstations, and the secondary objective is to min-
imize the energy consumption of the line. To formulate the problem, they
proposed a mixed-integer linear programming (MILP). A simulated anneal-
ing algorithm was developed to solve the problem. Yousefelahi et al. [107]
have proposed three versions of multi-objective evolution strategies (MOES)
to solve the RALBP with the objectives of minimizing the total cycle time of the
line, robot setup costs, and robot costs. Zhou et al. [108] have proposed an im-
proved multi-objective immune clonal selection algorithm to solve bi-objective
RALBP (minimizing assembly line area and the cycle time) considering time
and space constraints.

2.3.2.4 U-shaped assembly line balancing problem (UALBP)

The U-shaped assembly line balancing problem (UALBP) is one of the com-
plex general ALB problems. It is related to those assembly lines that have a
U-shaped layout. In a U-shaped assembly line workstations are arranged in a
U-shaped layout. The advantage of the U-shaped line is that some worksta-
tions can be revisited for some assembly tasks. In addition to this advantage,
some workstations which are idle be exploited to perform other assembly tasks
which helps to improve workstation utilization [3]. Another characteristic of
the U-shaped assembly line is that some tasks share the same operator (hu-
man or robot) are shown in fig 2.7. This characteristic does not change the
precedence relations constraints [35].

Several works that have dealt with the UALBP can be found in the liter-
ature. Pinarbasi et al. [109] has proposed two chance-constrained nonlinear
models for the UALBP with aim of minimizing the number of workstations.
the first model belongs to the mixed-integer programming (MIP) category, and
the second one is constraint programming (CP). Yilmaz [110] has addressed an
integrated bi-objective objective U-shaped assembly line balancing and parts
feeding problem. The problem includes two different objectives, namely min-
imizing the operational cost and maximum workload imbalance. The second

2.3. Classification of the assembly line balancing problem 31

Figure 2.7: U-shaped assembly line.

version of the augmented ϵ-constrained (AUGMECON2) method was used to
find the Pareto-optimal solutions. Sahin et al. [111] have developed a group-
ing genetic and simulated annealing algorithms to solve UALBP type 2. For
medium and small-sized problems, they used a mathematical formulation. Li
et al. [112] have addressed the UALBP type 1 with uncertain task times. An un-
certain programming model was used in this study to minimize the number of
workstations with uncertain task times and to find the optimal solution, they
implemented a method based on branch and bound and remember algorithm.

Zhang et al. [113] have dealt with the UALBP considering the preventive
maintenance scenarios. The objectives of this work are minimizing the cycle
time and total assignment plan alteration cost. To solve the problem, they
implemented a multi-objective JAVA algorithm. Zhang et al. [114] have pro-
posed an improved flower pollination algorithm for solving the UALBP type 2
with energy consideration. Nourmohammadi et al. [115] have implemented a
water-flow-like algorithm to solve the UALBP with two objectives: maximiz-
ing line efficiency as a primary objective and minimizing the workload varia-
tion as a secondary objective. Zhang et al. [116] have addressed the UALBP
type 2 with workers assignment. To solve the problem, they used an enhanced
migrating birds optimization (EMBO). Ajenblit et al. [117] have developed a

32 Chapter 2. Assembly Line Balancing Problem: State of the Art

genetic algorithm in order to solve the UALBP with the aim of minimizing the
number of workstations. Avikal et al. [118] have proposed a heuristic based on
the critical path method to deal with the UALBP with aim of minimizing the
number of workstations in line.

Fattahi et al. [119] have proposed an efficient integer programming formu-
lation with logic cuts for the UALBP with the aim of minimizing the number of
workstations on the line. Ghadiri et al. [120] have addressed the UALBP type 1.
To solve the problem, they developed a competitive hybrid approach based on
the grouping evolution strategy algorithm. The proposed approach is based
on two heuristics: the ranked positional weight (RPW) and COMSOAL algo-
rithm. Hwang et al. [121] have solved the UALBP with the aim of minimizing
the number of workstations by using a multi-objective genetic algorithm. Jon-
nalagedda [122] have used a simple genetic algorithm in order to minimize
the cycle time in a U-shaped assembly line (UALBP type 2). Li et al. [123]
have proposed a heuristic approach based on multiple rules and an integer
programming model to solve the UALBP with the aim of minimizing the cycle
time. Li et al. [124] have proposed a branch-bound-and-remember algorithm
to solve the UALBP with the aim of minimizing the number of workstations.

Li et al. [125] have developed an enhanced beam search heuristic algo-
rithm based on five lower bounds and four dominance rules to solve both the
UALBP type 1 and UALBP type 2. Sresracoo [126] have proposed a differential
evolution algorithm to solve the type 1 UALBP. Khorram et al. [127] have pre-
sented hybrid meta-heuristic algorithms to solve the UALBP with aim of opti-
mizing simultaneously the number of workstations, activity performing qual-
ity, and equipment cost. Ogan et al. [128] have proposed a branch and bound
method to solve the UALBP with the aim of minimizing the total equipment
cost. Zhang et al. [129] have used an exact method to minimize the number of
workstations in a UAL (UALBP type 2). Zhang et al. [130] have proposed an
integer programming formulation to solve the UALBP type 1 with fuzzy task
times. The proposed model was implemented in Lingo solver 9.0 extended
version.

2.3. Classification of the assembly line balancing problem 33

Figure 2.8: Two-sided assembly line.

2.3.2.5 Two-sided assembly line balancing problem (TALBP)

The assembly lines can be classified into two categories, one-sided assembly
lines, and two-sided assembly lines. The two-sided assembly lines are gener-
ally used to assemble large-sized products such as trucks, buses, and cars. The
two-sided assembly lines generally have a pair of workstations facing each
other almost in all operations [5]. For instance, in fig 2.8, workstation 1 and
workstation 2 form the mated workstation 1, and workstation 3 with worksta-
tion 4 form the mated workstation 2, etc. The TALBP is linked to these types
of lines where tasks are divided into three types: L-type, R-type, and E-type.
L-type and R-type are tasks that must be performed from the left and right
sides respectively. Whereas E-type tasks can be performed either from the left
or the right sides [131]. The TALB problems can be also classified into four
types like the other ALB problems: TALBP type 1, TALBP type 2, TALBP type
E, and TALBP type F.

Regarding the literature, we can find several studies that have been done
to deal with a variety of TALBP. Ozcan et al. [132] have presented a tabu search
algorithm to solve the TALBP with the objectives of maximizing the line ef-
ficiency and maximizing the smoothness index. Ozcan et al. [133] have pro-
posed goal programming and fuzzy programming models for the TALBP with
two objectives: minimize the number of mated workstations as the primary
objective and the number of workstations as the secondary objective. Ozbakir

34 Chapter 2. Assembly Line Balancing Problem: State of the Art

[134] have addressed the TALBP type 1 with zoning constraints. They devel-
oped a Bees colony algorithm to solve the problem. Kizilay [135] have pro-
posed mixed-integer linear programming and constraint programming (CP)
models to solve the TALBP with multi-operator workstations in order to min-
imize the number of mated workstations.

Baykasoglu [136] have proposed an ant colony-based heuristic to solve the
TALBP type 1 (minimize the number of workstations) with zoning constraints.
Duan et al. [137] have proposed an improved artificial bee colony algorithm
with MaxTF heuristic rule to solve the TALBP with the aim of minimizing the
cycle time for a given number of mated workstations. Gansterer [138] have
addressed both one and two-sided ALBP with real-world constraints. They
have applied three known meta-heuristics to solve the problems: the genetic
algorithm, the differential evolution algorithm, and the tabu search algorithm.
Kang et al. [139] have addressed a multi-objective TALBP (minimizing the
number of workstations, minimizing cycle time, maximizing line efficiency,
minimizing smoothness index, and minimizing workstation idle time). They
first constructed a fuzzy multi-objective linear programming-weighted model
(FMOLP-W) to solve the problem. Also, they have proposed an evolution-
ary genetic algorithm for large-sized problems that cannot be solved using
the FMOLP-W. Khorasanian [140] have developed a simulated annealing al-
gorithm to solve the TALBP with the objectives of minimizing the number of
workstations, and the number of mated workstations, and maximizing the as-
sembly line tasks consistency (ATC).

Kim et al. [141] have proposed a genetic algorithm in order to solve the
TALBP with the aim of minimizing the number of workstations (type 1). Kim et
al. [142] have proposed a mathematical model and a genetic algorithm to solve
the TALBP type 2. In the GA, they adopted the strategy of localized evolution
and steady-state reproduction to promote population diversity and search ef-
ficiency. Lei et al. [143] have developed a variable neighborhood search (VNS)
algorithm to solve the TALBP type 2. Li et al. [144] have addressed the TALBP
type 1. They have developed two decoding schemes with reduced search space
to balance the workload within a mated workstation and reduce sequence de-
pending on idle time. Then, they extended a simple iterated greedy algorithm
for the TALBP. Li et al. [145] have presented a branch, bound, and remember

2.3. Classification of the assembly line balancing problem 35

(BBR) algorithm in order to minimize the number of mated workstations in a
two-sided assembly line (TALBP type 1).

Li et al. [146] have addressed the TALBP that considers uncertain task
time attributes and incompatible task sets. To solve the problem, they used a
simulated annealing algorithm accelerated with lower bounds. Roshani [147]
have addressed a cost-oriented TALBP. They proposed a mixed-integer pro-
gramming model to solve the problem optimally, and to solve medium and
large-size problems, they developed a heuristic based on a simulated anneal-
ing algorithm. Taha et al. [148] have developed a genetic algorithm in order to
solve the TALBP with the objectives of minimizing the number of mated work-
stations and workstations to increase the line efficiency. Tang et al. [149] have
addressed TALBP type 2 in their work. To solve the problem, they proposed an
improved discrete artificial bee colony (DABC) algorithm. Tapkan et al. [150]
have proposed a Bees algorithm to solve a constrained fuzzy TALBP with three
objectives: maximizing the work slackness index, minimizing the total balance
delay, and maximizing line efficiency. Tapkan et al. [151] have addressed a con-
strained TALBP type 1. They proposed a mathematical programming model to
describe the problem formally. To solve the problem, they used two different
swarm intelligence-based search algorithms (bees algorithm and artificial bee
colony algorithm).

Yang et al. [152] have proposed an improved genetic simulated anneal-
ing for stochastic TALBP type E (maximizing the line efficiency). Tuncel et al.
[153] have addressed a multi-objective (minimizing the number of worksta-
tions and smoothing the workload balance of the workstations) TALBP with
zoning constraints. To solve the problem they used a teaching-learning-based
optimization algorithm. Wang et al. [154] have developed a hybrid imperial-
ist competitive (LAHC) algorithm to solve a multi-constrained (the restriction
of operator number at each workstation, positional constraints, zoning con-
straints, and synchronous task constraints) TALBP with the objectives of min-
imizing the number of mated workstations (line length) and the number of
workstations. Wu et al. [155] have proposed a branch-and-bound algorithm
to solve the TALBP with the aim of minimizing the length of the line (mini-
mizing the number of mated workstations). Zhong et al. [156] have developed
an effective discrete artificial fish swarm algorithm is developed to solve the

36 Chapter 2. Assembly Line Balancing Problem: State of the Art

cost-oriented TALBP with the objectives of minimizing the construction cost
and the number of mated workstations.

2.3.2.6 Parallel assembly line balancing problem (PALBP)

Figure 2.9: Parallel assembly lines with a) independent workstations, b) multi-
line workstations.

Parallel assembly lines are two or more neighboring lines located in paral-
lel. These lines can be balanced independently ((a) in fig 2.9) or with multi-line
workstations as shown in fig ((b) in fig 2.9). Each assembly line produces one
single-model or mixed/multi-model and can work with different or the same
cycle time [28]. Parallel assembly lines have a higher equipment cost but their
are more flexible and reliable. They also increase productivity, product quality,
and workers satisfaction [157]. In the literature, we can find a few works that
have dealt with the pure parallel assembly line balancing problem. [158] have
proposed a hyper-approach based on simulated annealing to solve a stochastic
PALBP with equipment costs.

Ozcan et al. [159] have addressed the PALBP with stochastic task times. To
model the problem, they used chance-constrained, piecewise-linear and mixed
integer programming (CPMIP) formulation. A tabu search algorithm was used
to solve the problem. Baykasoglu [160] have proposed a multi-colony ant al-
gorithm to solve the PALBP type 1 with fuzzy cycle and task times. Bard et al.
[161] have proposed a dynamic programming (DP) algorithm for solving the
PABLP with dead time. Baykasoglu et al. [162] have proposed an ant colony
optimization-based algorithm in order to solve the PALBP with two objectives:

2.3. Classification of the assembly line balancing problem 37

minimizing the number of workstations and the workstations’ idle times. Kara
et al. [163] have used two programming approaches to balance parallel assem-
bly lines with precise and fuzzy goals. Ozbakir et al. [164] have developed a
multiple-colony ant algorithm to solve the PALBP with two objectives: mini-
mizing the idle time and maximizing the line efficiency.

2.3.2.7 Mixed assembly line balancing problem (Mixed ALBP)

Any ALB problem that regroups more than one ALBP can be classified as
Mixed ALBP. The word mixed here means that there is a mixture of problems.
For example, solving a robotic u-shaped multi-model ALBP means that we
have three different problems that must be solved together: robotic ALBP, U-
shaped ALBP, and multi-model ALBP which increases the global complexity.
In the literature, we can find several papers that have dealt with this ALBP
category. Cil et al. [165] have proposed a mathematical model and an itera-
tive beam search (IBM), best search method based on IBS (BIBS) and cutting
BIBS (CBIBS) algorithms to solve the robotic parallel assembly line balancing
problem type 2. Cil et al. [166] have proposed addressed the type 2 mixed-
model assembly line balancing problem with physical human-robot collab-
oration. They proposed mixed-integer linear programming (MILP) to solve
small-size problems. Also, they used a bee algorithm and artificial bee colony
to solve large-sized problems.

Akpinar et al. [167] have proposed a hybrid genetic algorithm to solve the
type 1 mixed-model assembly line balancing problem with parallel worksta-
tions and zoning constraints. Agpak et al. [168] have developed a bi-objective
0-1 integer programming model to solve a two-sided U-shaped assembly line
balancing problem with zoning constraints. The addressed objectives are the
minimization of the number of individual stations, and the minimization of
the number of positions. Yang et al. [169] have addressed the mixed-model
two-sided assembly line balancing problem with two objectives: minimize the
number of mated-workstations as a primary objective, and minimize the num-
ber of workstations as a secondary objective. To solve the problem, they pro-
posed an effective variable neighborhood search (VNS) algorithm. Cil et al.
[170] have proposed a heuristic algorithm based on beam search in order to
solve the robotic mixed-model assembly line balancing problem type 2.

38 Chapter 2. Assembly Line Balancing Problem: State of the Art

Ozcan et al. [171] have developed a genetic algorithm to solve the stochas-
tic mixed-model U-shaped assembly line balancing and sequencing problem.
Chutima et al. [172] have proposed a particle swarm optimization algorithm
with negative knowledge (PSONK) to solve multi-objective two-sided mixed-
model assembly line balancing problems. Esmaeilian et al. [173] have de-
veloped an efficient tabu search (TS) approach to solve mixed-model paral-
lel assembly line balancing problem type 2. Zhang et al. [174] have pro-
posed a Pareto artificial bee colony algorithm (PABC) to solve the energy-
efficient U-shaped robotic assembly line balancing problem with the objectives
of minimizing the cycle time and the total energy consumption. Huang et al.
[175] have developed a combinatorial Benders decomposition-based exact al-
gorithm to solve the mixed-model two-sided assembly line balancing problem
type 1. Kammer et al. [176] have proposed a heuristic algorithm to solve the
type 2 multi-model robotic assembly line balancing problem.

Kucukkoc [177] have proposed a mathematical model and ant colony optimization-
based approach with optimized parameters for solving the type E parallel two-
sided assembly line balancing problem. Kucukkoc et al. [178] have developed
a flexible agent-based ant colony optimization algorithm to solve the mixed-
model parallel two-sided assembly line balancing problem. Li et al. [26] have
solved the two-sided robotic assembly line balancing problem type 2 using a
co-evolutionary particle swarm optimization algorithm. Grasler et al. [23] have
proposed a discrete cuckoo search algorithm to solve the two-sided robotic as-
sembly line balancing problem. Li et al. [179] have proposed a migrating birds
optimization algorithm in order to solve the type 2 robotic U-shaped assem-
bly line balancing problem. Li et al. [180] have addressed the type 2 robotic
two-sided assembly line balancing problem with consideration of sequence-
dependent setup times and robot setup times. To solve the problem, the au-
thors used a set of meta-heuristics which are the local search algorithm, swarm
intelligence algorithm, and co-evolutionary swarm intelligence algorithm.

Li et al. [181] have proposed two simple local search methods, the iter-
ated greedy algorithm and iterated local search algorithm to deal with type
1 mixed-model two-sided assembly line balancing problems. Manavizadeh
et al. [182] have developed a simulated annealing algorithm for solving the
U-shaped mixed-model assembly line balancing problem type 1 considering

2.3. Classification of the assembly line balancing problem 39

human efficiency and the Just-In-Time approach. Mukund et al. [183] have
proposed a particle swarm optimization for solving the robotic U-shaped as-
sembly line balancing problem with the aim of minimizing the cycle time. Rab-
bani et al. [184] have proposed a non-dominated sorting genetic algorithm
(NSGA-II), and a multi-objective particle swarm optimization (MOPSO) in or-
der to deal with the type 2 robotic mixed-model assembly line balancing prob-
lem with four objectives: minimize robot purchasing costs, robot setup costs,
sequence-dependent setup costs, and cycle time.

Rabbni et al. [185] have addressed the type 1 mixed-model assembly line
balancing problem with parallel workstations. The authors used a non-dominated
sorting genetic algorithm (NSGA-II) and multi-objective particle swarm opti-
mization (MOPSO) to solve the problem. Zhang et al. [186] have proposed
a Hybrid Pareto Grey Wolf Optimization (HPGWO) for low-carbon and low-
noise U-shaped robotic assembly line balancing problems. Yagul et al. [187]
have developed an algorithm for solving the U-shaped two-sided assembly
line balancing problem. yadav et al. [188] have proposed a mathematical
model for solving the robotic two-sided assembly line balancing problem with
zoning constraints. yadav [189] have developed a mathematical model in or-
der to solve the parallel two-sided assembly line balancing problem with tools
and tasks sharing. Tapkan et al. [190] have proposed a bees algorithm and an
artificial bee colony algorithm for solving the parallel two-sided assembly line
balancing problem with walking times. Sparling et al. [191] have solved the
mixed-model U-shaped assembly line balancing problem using an approxima-
tion algorithm. Roshani et al. [192] have proposed a mathematical model and
a simulated annealing approach to deal with the mixed-model multi-manned
assembly line balancing problem.

Chutima et al. [193] have developed a fuzzy adaptive biogeography-based
algorithm to solve the multi-objective mixed-model parallel assembly line bal-
ancing problem type 1. Zhang et al. [194] have solved the mixed-model U-
shaped assembly line balancing problem with Fuzzy Times using an improved
heuristic procedure based on the traditional ranked positional weight method,
and some improvements are made on fuzzy number operation and two-direction
search for U-line layout. Zhang et al. [195] have addressed the mixed-model

40 Chapter 2. Assembly Line Balancing Problem: State of the Art

multi-manned assembly line balancing problem with four objectives: mini-
mizing the total number of operators, minimizing the number of workstations,
minimizing the total number of operators whose finishing times exceed cycle
time, and minimizing the total number of workstations whose finishing times
exceed cycle time. To solve the problem, the authors used a robust mixed-
integer linear programming (MILP) model and a robust solution generation
mechanism embedded with dispatching rules.

2.4 Conclusion

In this chapter, we have presented the state of the art on the assembly line
balancing problem. We have described the standard problem and its mathe-
matical formulation, from which all other formulations are inspired. Also, we
have discussed the different assembly line shapes and their structures. Fur-
thermore, we have illustrated the differences between the assembly lines in
terms of production types. We have explained how the new ALBP versions
were created and what their main characteristics are. Also, we have given the
assembly line classification in detail. We have described all existing assembly
line balancing problems and the methods used to solve them. In addition, we
have reviewed all the existing research papers that have been done to tackle
the different ALBP problems. In the following chapters, we will present all
our contributions.

41

Chapter 3

Energy Efficient Robotic Mixed
Model Assembly line Balancing
Problem

3.1 Introduction

The minimization of energy consumption is an important issue in robotic as-
sembly lines where a set of robots are used as operators. In each workstation,
only one robot is assigned to complete the corresponding assigned assembly
tasks. In robotic mixed-model assembly lines where several models are as-
sembled, the minimization of energy consumption is more complex since we
have to find the best assignments of tasks and robots taking into considera-
tion all models. This problem is known as the Energy-Efficient Robotic Mixed
Model Assembly Line Balancing Problem (EERMiMALBP), and it’s classified
as Mixed ALBP based on our classification. As a solution to this problem,
we proposed a new memory-based version of a bio-inspired meta-heuristic
known as the Cuckoo Search Algorithm (CSA).

This chapter is organized as follows; first, we define the energy-efficient
robotic mixed-model assembly line balancing problem. Then, we present our
memory-based cuckoo search algorithm as a solution to this problem. After
that, we present a numerical example that presents a small problem. Finally,
we discuss our computational results.

42
Chapter 3. Energy Efficient Robotic Mixed Model Assembly line Balancing

Problem

3.2 The energy-efficient robotic mixed-model assem-

bly line balancing problem

3.2.1 Problem description and assumptions

In a robotic mixed-model assembly line, several models are planned to be as-
sembled in an intermixed sequence. Each model has a specific precedence
relations graph, and models’ graphs can be combined into one graph in order
to decrease the complexity of the problem. According to precedence relations,
assembly tasks are assigned to a set of workstations that are arranged in the
line. Assembly tasks are performed by robots that have different capabilities
and characteristics. In this problem, the assignment of robots is based on the
energy consumed to perform assembly tasks; this means that the robots that
consume less energy are preferred. The total energy consumption of the line is
the sum of all energy consumed by all assigned robots. The task time of a spe-
cific task varies from one model to another one, and also depends on the robot.
This means that the energy consumed for a specific model varies from one
robot to another one. The energy consumed in one workstation is the sum of
the energy consumed by the assigned robot when performing assembly tasks,
and the energy consumed by the robot in standby mode. Each robot has spe-
cific characteristics including its speed in performing assembly tasks, energy
consumption, and ability to perform all or only certain types of tasks.

The RMiMAALBP is more complex in comparison with existing problems
related to the minimization of energy consumption in robotic assembly lines,
and this is the result of two main factors: the heterogeneity of robots and the
heterogeneity of models. The strategy underlying our approach is to find the
best assignment of existing robots for each feasible task assignment. Since
robots and models are heterogeneous, the search space becomes larger, which
makes finding the best solution for the RMiMAALBP very challenging. The
objective of solving this problem is to find a minimal energy consumption by
finding the best assignment of tasks and robots that satisfy all models’ require-
ments. Figure 3.1 presents an illustrative example. In this example, we have an
assembly line that is configured to assemble two different models, and there
are different robots assigned to the workstations in order to perform assem-
bly tasks according to the combined graph. This configuration is feasible but

3.2. The energy-efficient robotic mixed-model assembly line balancing
problem

43

Figure 3.1: Illustrative example.

maybe there exists another configuration that is better in terms of the energy
consumed by robots.

The assumptions considered in our model formulation are as follows:

1. The models are assembled in an intermixed sequence in a straight assem-
bly line.

2. An assembly task is assigned to only one workstation.

3. The assignment of tasks is based on precedence relations.

4. The task time depends on the assigned robot.

5. There are several types of robots, and there is no limit for each type.

6. The same robot type can be assigned to different workstations.

7. Only one robot is assigned to a workstation.

8. Robots can perform any assembly task.

9. The energy consumed by a robot varies from one model to another.

44
Chapter 3. Energy Efficient Robotic Mixed Model Assembly line Balancing

Problem

10. Based on the energy consumed by robots to produce each model, the
average energy consumed can be calculated and used while optimizing
the line.

3.2.2 Mathematical formulation

Notations

Parameters:
N number of tasks.
i task index.
W number of workstations.
k workstation index.
r robot index.
tri processing time needed by robot r to complete task i.
eri energy consumed by robot r to perform task i.
esr energy consumed each time unit by robot r in the standby period.
Pi immediate predecessors of task i
ECPrk energy consumed by robot r to perform assigned tasks in worksta-
tion k.
ECSrk energy consumed by robot r during the standby period in work-
station k.

Decision variables:
Xik equal to 1 if task i is assigned to workstation k, 0 otherwise
Yrk equal to 1 if robot r is assigned to workstation k, 0 otherwise
TEC total energy consumed
ECk energy consumed by workstation k
CT the cycle time of obtained assignment (or maximum workstation
time).

The proposed mathematical is an amelioration of the basic models that
have been used to solve the one-model robotic assembly line balancing prob-
lems. The objective considered in this mathematical formulation is minimizing
the total energy consumption in the robotic mixed-model assembly line. This
model is based on the energy-based model that was proposed by [196].

3.2. The energy-efficient robotic mixed-model assembly line balancing
problem

45

min TEC =
W

∑
k=1

ECk (3.1)

subject to:

ECK = ECPrk + ECSrk (3.2)

ECPrk =
N

∑
i=1

eri ∗ Xik ≤ f or k = 1, 2, ..., W (3.3)

ECSrk = (CT −
N

∑
i=1

tri ∗ Xik) ∗ esr (3.4)

W

∑
k=1

k ∗ Xhk ≤
W

∑
k=1

k ∗ Xik where h ∈ Pi (3.5)

W

∑
k=1

Xik = 1 f or i = 1, 2, ..., N (3.6)

W

∑
k=1

Yrk = 1 f or i = 1, 2, ..., N (3.7)

Xik ∈ {0, 1} (3.8)

Yrk ∈ {0, 1} (3.9)

The objective function (3.1) minimizes the total energy consumption. Eq.
(3.2) is used to calculate the energy consumption in one workstation. Eq. (3.3)
calculates the energy consumed by robot r to perform assigned tasks at work-
station k. Eq. (3.4) determines the energy consumed by robot r during the
standby mode at workstation k. Eq. (3.5) ensures that all precedence relations
among tasks are respected. Eq. (3.6) ensures that each task is assigned to only

46
Chapter 3. Energy Efficient Robotic Mixed Model Assembly line Balancing

Problem

one workstation. Eq. (3.7) ensures that only one robot is assigned to one work-
station. Equations (3.8) and (3.9) present the type of used decision variables.

3.3 The original Cuckoo Search Algorithm

The cuckoo search algorithm (CSA) is a nature-inspired meta-heuristic. It was
introduced by Xin-she Yanf and Suach Deb in 2009 [197]. This meta-heuristic is
based on the brood parasitism of some cuckoo species like Ani and Guira. The
concept of these cuckoos is that they lay their eggs in the nests of other host
birds, and in some cases, they lay and throw the eggs of the host birds in order
to increase the hatching chances of their eggs [198]. The process of laying eggs
is combined with the levy flight behavior of birds and fruit flies [199]. The host
bird can discover the cuckoo egg, in this case, it either discards the discovered
egg or abandon the nest and build a new one elsewhere [197].

In the CSA meta-heuristic solutions present the host bird egg, and the
cuckoo egg presents the new solution. The goal is to replace the old solu-
tion with the new solution. Three rules are used in the CSA: each cuckoo lays
only one egg at a time in a randomly chosen nest, and the best nests are those
that contain high-quality eggs which enable them to be passed on to the next
generation. the number of available host nests is fixed and the probability of
discovering laid eggs by cuckoos is Pa where Pa ∈ [0,1] [29, 199].

Algorithm 1: Original Cuckoo Search Algorithm
Objective function: f (x), x = (x1, x2, ...xd)
Generate Initial population of N host nests
while Termination criterion is not met do

Generate a cuckoo say Xi randomly using levy flights
Choose a nest among N (say, Xj) randomly
if f (Xi) < f (Xj) then

Replace Xj by Xi in the population
end

A fraction Pa of worst nests are abandoned and new ones are built
Keep the best solutions/nests
Rank the solutions/nests based on their fitness and find the best
current solution

end

3.4. Memory-based Cuckoo Search Algorithm (MBCSA) 47

3.4 Memory-based Cuckoo Search Algorithm (MBCSA)

In this contribution, we propose the MBCSA version to solve the RMiMALBP.
In the literature, we can find two works that have dealt with the robotic as-
sembly line balancing problem using the cuckoo search algorithm. Li et al. [24]
have proposed a discrete CSA to solve the two-sided RALBP, and Mukund et
al. [103] have proposed a hybrid CS particle swarm optimization algorithm
to solve the RALBP type 1. In comparison with the existing CSA versions,
the MBCSA is more intelligent in dealing with the addressed problem. Our
meta-heuristic consists of the following steps.

3.4.1 Initialization of the first population

In the CSA, the population is a set of solutions and each solution presents a
nest. In our MBCSA, the first population is generated randomly. Each solution
is a feasible assignment of tasks and robots to the workstations. The assign-
ment of tasks follows the precedence relations that are presented in the com-
bined precedence graph. The assignment of robots is done after the assignment
of tasks. The robots that consume less energy are preferred in the assignment
process. The obtained solutions in this step are not necessarily optimal.

3.4.2 Generation of new cuckoo solution and memory usage

In order to generate a new cuckoo solution, a nest (say X) is chosen randomly
from the existing solutions (population). Then, a list of neighbors of X (say
N(X)) is generated. This process of choosing a random nest (X) is repeated
until obtaining finding a nest that does not exist in the memory, if not, it stops
when reaching a specific number of iterations fixed by the programmer. Neigh-
bors are obtained by applying the swap mutation operation on X by swapping
two tasks chosen randomly from the sequence. The number of neighbors is
determined and fixed by the programmer. Each solution in N(X) has its own
fitness value on which the ranking of neighbors is based. The best neighbor
that has the best fitness value is selected as the new cuckoo solution.

The new cuckoo solution is compared in terms of energy consumption
with another randomly selected solution (say Y) from the current population.

48
Chapter 3. Energy Efficient Robotic Mixed Model Assembly line Balancing

Problem

In our approach, if the new cuckoo has lower energy consumption in com-
parison with Y, we replace Y with this new cuckoo in the population. At the
end of this step, selected nest X, and the list of neighbors N(X) are placed in
the memory. The objective of this technique is to discover new solutions in
future iterations by ignoring any previously visited solution that exists in the
memory, which decreases the CPU time, especially when the search space is
huge.

3.4.3 Replacement of abandoned solutions

The CSA abandons a fraction Pα of worse solutions (nets) and replaces them
with new ones. In our MBCSA, the crossover operation is applied to create new
solutions. The crossover operator is applied on two nests (parents) selected
randomly from the remaining solutions. For instance, if two nests are aban-
doned, the crossover is applied to generate two new nests, and if more than
two nests are abandoned, the crossover is repeated on other selected solutions
that present a different couple. This process is finished until abandoned solu-
tions are replaced. The reason behind choosing a new couple in each crossover
operation is to obtain new solutions. In the newly generated solution, some
tasks can be duplicated, and to tackle this problem, the MBCSA replace them
with missing ones. Before inserting the new solutions in the population, the
algorithm checks if these solutions do not exist in the memory. If not, the
solutions are inserted in the population, otherwise, the MBCSA repeats the
crossover process until reaching new nets that do not exist in the memory.

Figure 3.2: Generation of new solutions using the two-point crossover.

3.4. Memory-based Cuckoo Search Algorithm (MBCSA) 49

Algorithm 2: A memory-based Cuckoo Search Algorithm
Ojective funciton: f (X), X = (X1, X2, ...Xd)
Generate Initial population of N host nests
Initialize the memory M, max_search, max_generations
while max_generations do

while max_search do
Select randomly a nest (say, Y) from the population
if Y is not in M then

Reset max_search to the initial value
Exit from while loop
end

Decrement max_search
if max_search is equal to 0 then

End the algorithm
end

end
Generate a list of neighbors of Y (say, NL(Y)) using the swap
mutation with repair mechanism
Stock the nest Y and all its neighbors NL(Y) in M
Select the best neighbor from NL(Y) as the new cuckoo (say, C)
Choose a nest among N (say, H) randomly
if f (C) < f (H) then

Replace H by C in the population
end

A fraction Pa of worst nests are abandoned and new ones are built
while max_search do

Choose two parents from the reminder of the population
Apply the crossover on selected parents with the repair
mechanism

if Generated solution are not in M then
Reset max_search to the initial value
Exit from while loop
end

Decrement max_search
if max_search is equal to 0 then

End the algorithm
end

end
Replace abandoned solutions by generated one
Rank the solutions based on the objective value
Select the best solution as the best current solution
Decrement max_generations

end

50
Chapter 3. Energy Efficient Robotic Mixed Model Assembly line Balancing

Problem

3.4.4 Repair mechanism

The repair mechanism is employed in the MBCSA to preserve the feasibility of
solutions. The repair mechanism evaluates the feasibility of solutions by ex-
amining if the order of tasks respects the precedence relations between tasks
after applying the swap mutation and the crossover. If the obtained solution is
not feasible, the positions of tasks that render the solution infeasible are mod-
ified. The resultant solution, as shown in Fig 3.3, does not satisfy the priority
relations depicted in the diagram; hence, the repair mechanism is used by ex-
changing tasks 5 and 2 the first time and tasks 5 and 3 the second time.

Figure 3.3: Repair mechanism.

3.4.5 Fitness evaluation

The energy-based approach provided in [200] is utilized in MBCSA to estimate
the objective value (total energy consumed) of solutions in order to evaluate
them. Tasks are assigned to workstations based on the energy consumption
value and robots with the lowest energy consumption are selected to be as-
signed to workstations. The assignment starts with an initial energy consump-
tion value E0 calculated using Eq. (10), and if all tasks cannot be assigned with
this value, then, it is incremented by a small value fixed by the programmer.
The assignment process is repeated until all tasks of the corresponding solu-
tion/sequence are assigned using the best robot-to-workstation assignment.

3.5. Numerical example 51

E0 = [
N

∑
i=1

min(eri)/Nw] (3.10)

where eri is the energy consumed by robot r (r = 1, ..., Nr) to perform task
i and Nw is the number of workstations.

The total energy consumed at each workstation is the sum of the energy
consumed by the corresponding robot while doing the given tasks and the
energy consumed by this robot while in standby mode.

3.5 Numerical example

In this section, we use the MBCSA to solve a small problem that is composed of
two models (A and B) and two robot types (R1 and R2). Fig 3.4 below shows
the precedence graphs of models A and B and the combined graph. It is as-
sumed in this in this numerical example that both robots consume 1 kj per
one-time unit when processing tasks. While in the standby mode, R1 and R2
consume 0.5kj and 0.4 kj per one-time unit respectively. Tables 3.1 and 3.2 il-
lustrate the parameters of each robot. The mixture of models must be taken
into consideration which makes the problem more complex. In order to de-
crease its complexity, we combine tables 3.1 and 3.2 into one table (table 3.3).
Using the combined diagram and table 3.3, we can obtain a feasible solution
that satisfies all models’ requirements. Table 3.3 shows the calculation of the
average task time and energy consumed for each frequent task. Table 3.4 pro-
vides the parameters that were utilized to solve the numerical case. The max
search parameter specifies how many times the algorithm attempts to find a
random nest that does not exist in memory.

The first and the final populations are shown in table 3.5. There are ten
solutions (nests) in the population, and each one (nest) presents the task and
robot assignments to workstations. The table also shows the total energy spent
during the processing mode (TEC-PM) and standby mode (TEC-SM) for each
solution. The total energy used (TEC) is also determined, which represents the
objective value and is equal to the sum of TEC-PM and TEC-SM. Based on the
objective value, the reader may see that there are both bad and good solutions
in the first population. For example, there are three solutions that have an

52
Chapter 3. Energy Efficient Robotic Mixed Model Assembly line Balancing

Problem

Figure 3.4: Precedence relations diagrams of the numerical example.

Table 3.1: Model A

Task
Robot 1 Robot 2

Task time Energy Task time Energy (kj)

1 1 1 1 1
3 2 2 1 1
4 1 1 1 1
6 1 1 2 2
7 1 1 1 1

objective value of 8, one solution has an objective value of 8.1, two solutions
have an objective value of 8.7, and four solutions have an objective value of
9.25. We can see after 100 generations that all nests in the final population
have good solutions, with the same objective value of 8.

We may deduce from the acquired findings for the provided numerical
example that the minimum energy consumed is 8, and the optimal robot as-
signment that gives this value is when robots 1 and 2 are assigned to worksta-
tions 1 and 2, respectively. Figure 3.5 illustrates one solution chosen from the
final population. In workstation 1, robot 1 does tasks 1, 2, and 3, while robot 2
performs duties 6, 4, 5, and 7 in workstation 2.

3.6 Computational results and discussion

The proposed MBCSA was developed in Python on a personal computer with
an Intel Dual-core 1.7 GHz CPU and 8 GB of memory. Six problems of vary-
ing sizes were developed during this study to test the algorithm’s performance

3.6. Computational results and discussion 53

Table 3.2: Model B

Task
Robot 1 Robot 2

Task time Energy Task time Energy (kj)

1 1 1 1 1
2 1 1 2 2
3 2 2 2 2
5 2 2 1 1
7 1 1 1 1

Table 3.3: Combined model A and model B

Task
Robot 1 Robot 2

Task time Energy Task time Energy (kj)

1 1 1 1 1
2 1 1 2 2
3 2 2 1.5 1.5
4 1 1 1 1
5 2 2 1 1
6 1 1 1 1
7 1 1 1 1

and are available at https://github.com/Belkharroubi-Lakhdar/RoboticMixed-
Model-AL.git. Each problem has its own characteristics, as indicated in table
3.6, including the precedence relations diagram, assembly tasks, number of
models, number of robots, and number of workstations. There are 12 tasks in
problem 1, as well as two models (A and B), two robots (1 and 2), and three
workstations. Problem 2 consists of 20 jobs, two models (A and B), two robots
(1 and 2), and four workstations. There are 25 tasks in problem 3, three models
(A, B, and C), three robots (1, 2, and 3), and five workstations. There are 40
tasks in problem 4, two models (A and B), three robots (1, 2, and 3), and seven
workstations. There are 57 tasks in problem 5, two models (A and B), four
robots (1, 2, 3, and 4), and ten workstations. Finally, there are 72 tasks, three
models (A, B, and C), and 12 workstations in problem 6.

Two comparisons are done in this work to test the performance of the pro-
posed MBCSA. The MBCSA was compared to the genetic algorithm in the first
comparison, and each problem was solved nine times using both techniques.

54
Chapter 3. Energy Efficient Robotic Mixed Model Assembly line Balancing

Problem

Table 3.4: Used parameters to solve the numerical example

Parameter Value

Maximum number of generations 100
Population size 10
Fraction Pa 0.15
max_search 100

Table 3.5: The first and the final populations for the numerical example

First population Final Population

Nests TEC-PM TEC-SM TEC TEC-PM TEC-SM TEC

1 8 0 8 8 0 8
2 8 0 8 8 0 8
3 7.5 0.6 8.1 8 0 8
4 8.5 0.2 8.7 8 0 8
5 8.5 0.75 9.25 8 0 8
6 8 0 8 8 0 8
7 8.5 0.2 8.7 8 0 8
8 8.5 0.95 9.45 8 0 8
9 8.5 0.95 9.45 8 0 8
10 8.5 0.95 9.45 8 0 8

Table 3.6: Problems’ specifications

Problem Tasks Models Robots Workstations

P1 12 A, B 1, 2 3
P2 20 A, B 1, 2 4
P3 25 A, B, C 1, 2, 3 5
P4 40 A, B 1, 2, 3 7
P5 57 A, B 1, 2, 3, 4 10
P6 72 A, B, C 1, 2, 3 12

The MBCSA was compared to another memory-less CSA (MLCSA) identical
to the discrete CSA proposed in [24] as the second comparison. For each prob-
lem, the MLCSA was run nine times. Table 3.7 shows the parameters utilized
to solve each problem using the MBCSA and MLCSA versions. Table 3.8 shows
the parameters used in the GA. Table 3.9 displays the findings of the first com-
parison, including the objective value (total energy consumed), cycle time, and
CPU time in seconds.

3.6. Computational results and discussion 55

Figure 3.5: Numerical example.

Table 3.7: Used parameters in the MBCSA

Problems Generations population’s size Fraction Pa

P1 200 20 0.15
P2 300 30 0.15
P3 300 30 0.15
P4 300 100 0.15
P5 300 100 0.15
P6 300 100 0.15

Beginning with the data for problem 1 obtained using both the MBCSA
and the GA 9 times, we can see that both algorithms achieved the same ob-
jective value (16.4 kJ) and cycle time (5.5) in all executions. The only differ-
ence is that the MBCSA outperforms the GA in terms of CPU time across all
executions. For problem 2, both algorithms produced nearly identical objec-
tive values. The MBCSA and the GA both obtained the minimum obtained
value of 24.3 kJ. Furthermore, in all runs, the MBCSA beats the GA in terms of
CPU time. The average of the MBCSA’s obtained objective values is 24.69 kJ,
whereas the GA’s is 24.58 kJ.

For problem 4, the average values acquired by the MBCSA and the GA are
75.71 kJ and 78.27 kJ, respectively, indicating that the MBCSA obtained better
results, as shown in the table. The MBCSA obtained the smallest value of 72.61
kJ. In all executions, the MBCSA outperforms the GA in terms of CPU time.
The averages of the values obtained by the MBCSA and the GA for problem 5
are 123.70 kJ and 125.17 kJ, respectively. The MBCSA obtained the best value
of 121.39 kJ, while the GA obtained 123.19 kJ. In most circumstances, the GA

56
Chapter 3. Energy Efficient Robotic Mixed Model Assembly line Balancing

Problem

Table 3.8: Used parameters in the GA

Problems Generations population’s size Crossover Mutation Elitism

P1 200 20 0.25 0.1 15 %
P2 300 30 0.25 0.1 10 %
P3 300 30 0.25 0.1 10 %
P4 300 100 0.25 0.1 8 %
P5 300 100 0.25 0.1 7 %
P6 300 100 0.25 0.1 7 %

outperforms the MBCSA in terms of CPU time. For problem 6, the GA outper-
forms the MBCSA in terms of CPU time, but the MBCSA outperforms the GA
in terms of objective values, with an average of 164.76 kJ versus 168.18 kJ for
the GA. The best values achieved by the MBCSA and the GA are 159.95 kJ and
165.42 kJ, respectively. In Fig 3.6, the obtained objective values for all issues
are presented to show the difference between the MBCSA and the GA. We can
clearly conclude that the suggested MBCSA outperformed the GA in terms of
attaining the lowest energy consumption for major problems 4, 5, and 6. For
problems 1, 2, and 3, both algorithms produced nearly identical results.

The details of the best-obtained solutions by both algorithms are shown in
table 3.10. The assignment of robots R in workstations W, the processing time
PT and idle time ID in each workstation, the energy consumed in both process-
ing mode E(PM) and standby mode E(SM), and the total energy consumed TE.
Table ?? shows the objective values obtained by the MBCSA and MLCSA. Nine
times, each problem was solved. According to the best-obtained numbers in
bold font, the MBCSA outperforms the MLCSA when it comes to solving large-
scale problems. These results show the importance of memory integration in
supporting the algorithm in obtaining good solutions that would be difficult
to locate using the memory-less strategy.

3.7 Conclusion

Finding a suitable configuration for the RMiMAL, in which numerous mod-
els are assembled by a group of robots in an intermixed sequence, can save

3.7. Conclusion 57

Table 3.9: All executions of both algorithms for solving all problems.

MBCSA GA

Problem C TEC CPU time (S) C TEC CPU time (S)

P1 5.5 16.4 1.54 5.5 16.4 10.19
5.5 16.4 2.15 5.5 16.4 9.57
5.5 16.4 1.81 5.5 16.4 9.32
5.5 16.4 3.30 5.5 16.4 9.56
5.5 16.4 3.00 5.5 16.4 9.75
5.5 16.4 1.36 5.5 16.4 11.60
5.5 16.4 2.28 5.5 16.4 12.48
5.5 16.4 1.85 5.5 16.4 9.65
5.5 16.4 2.03 5.5 16.4 9.18

P2 7 24.65 21.83 7.5 24.55 70.15
7 24.65 17.91 7 24.65 71.54
7.5 24.3 23.18 7 24.65 68.21
7.5 24.3 20.23 7.5 24.55 65.29
8 24.79 13.19 7 24.35 67.96
7.5 25.55 27.86 8.5 25.35 67.12
7.5 24.8 19.99 7.5 24.3 65.23
7 24.6 21.13 7.5 24.3 76.38
7.5 24.55 19.50 7.5 24.55 67.42

P3 8.5 41.5 29.55 8.5 41.5 71.07
8.5 41.3 47.21 9 42.35 77.70
8.5 41.5 62.97 8.5 41.5 73.24
8 41.45 33.03 8.5 41.5 77.27
8 40.2 27.94 8.5 41.35 77.68
7.5 39.8 28.64 8 40.2 83.83
8.5 41.5 28.43 8 40.0 79.36
9.5 43.5 56.18 8 41.5 83.64
8 40.0 35.9 8.5 41.5 77.30

P4 7.7 75.73 254.35 8 78.06 313.27
7 72.61 235.50 8 78.21 332.09
7.5 75.75 171.87 8 78.15 334.41
8 77.6 204.86 8 79.1 361.2
7.5 75.4 421.30 8 78.61 355.45
7.2 73.11 91.02 7.5 77.2 344.04
7.5 74.45 239.74 8 78.75 325.42
8 78.75 294.45 8 77.66 348.96
8 78.01 182.86 8 78.71 351.52

P5 9.2 125.20 790.58 9.1 126.48 996.63
8.85 121.39 1618.92 8.85 124.45 996.66
8.95 124.85 1706.37 8 126.97 951.62
9.2 125.21 1448.19 9.25 126.55 1006.02
8.95 122.10 1556.07 9 123.98 1165.54
9.2 125.20 1870.87 9.15 125.48 981.38
9.1 125.08 1856.95 9.15 125.23 1215.63
8.95 122.62 1658.89 9.1 124.2 1016.84
8.9 121.61 2029.61 8.85 123.19 944.15

P6 8.5 166.37 2393.53 8.5 168.936 1331.91
8.5 167.27 2362.11 8.5 169.18 1305.63
8.5 168.37 2343.04 8.5 170.02 1264.41
8.5 166.58 1631.94 8.5 168.90 1246.40
8.5 165.94 2204.33 8.5 168.58 1421.76
8 162.47 2364.93 5.5 167.17 1318.00
8 161.59 2059.96 8.5 165.42 1260.41
8 159.95 1712.13 8.5 168.44 1356.92
8 164.3 2255.78 8.5 166.99 1370.88

58
Chapter 3. Energy Efficient Robotic Mixed Model Assembly line Balancing

Problem

Table 3.10: Details of the best-obtained solutions by both MBCSA and GA

MBCSA GA

P W R PT ID E(PM) E(SM) TE R PT ID E(PM) E(SM) TE

1 1 5.5 0 5.5 0 5.5 1 5.5 0 5.5 0 5.5
P1 2 1 5 0.5 5 0.2 5.2 1 5 0.5 5 0.2 5.2

3 2 4.5 1 5.4 0.3 5.7 2 4.5 1 5.4 0.3 5.7

1 1 7.5 0 6 0 6 1 7.5 0 6 0 6
2 1 7 0.5 5.6 0.25 5.85 1 7 0.5 5.6 0.25 5.85

P2 3 2 6 1.5 6 0.45 6.45 2 6 1.5 6 0.45 6.45
4 1 7.5 0 6 0 6 1 7.5 0 6 0 6

1 1 6.5 1 7.8 0.5 8.3 1 7.5 0.5 9 0.25 9.25
2 3 7.5 0 7.5 0.0 7.5 3 8 0 8 0 8

P3 3 3 7 0.5 7 0.15 7.15 3 7 1 7 0.3 7.3
4 2 4.5 2.5 6.75 1.80 8.55 2 4.5 3.5 6.75 2.1 8.85
5 1 6.5 1 7.80 0.5 8.3 3 6 2 6 0.6 6.6

1 2 7 0 10.5 0 10.5 2 7 0.5 10.5 0.3 10.8
2 1 7 0 10.5 0 10.5 1 5.5 2 8.25 1.4 9.65
3 2 6.5 0.5 9.75 0.3 10.05 3 7 0.5 11.2 0.3 11.5

P4 4 3 7 0 11.2 0 11.2 2 7 0.5 10.5 0.3 10.8
5 2 6.5 0.5 9.75 0.3 10.05 2 7.5 0 11.25 0.0 11.25
6 1 6.7 0.3 10.05 0.21 10.26 1 7.2 0.3 10.8 0.21 11.01
7 2 6.5 0.5 9.75 0.3 10.05 2 6.5 1 9.75 0.6 10.35

1 3 8.35 0.5 11.69 0.5 12.19 3 8.2 0.65 11.48 0.65 12.13
2 3 8.1 0.75 11.34 0.75 12.09 1 7.2 1.65 10.8 1.65 12.45
3 3 8.7 0.15 12.18 0.15 12.33 3 8.7 0.15 12.18 0.15 12.33
4 3 8.85 0 12.39 0 12.39 3 8.85 0 12.39 0 12.39
5 3 8.8 0.05 12.32 0.05 12.37 3 8.5 0.35 11.9 0.35 12.25

P5 6 3 8.35 0.5 11.69 0.5 12.19 3 8.8 0.05 12.32 0.05 12.37
7 3 8.8 0.05 12.31 0.05 12.36 3 8.85 0 12.39 0.0 12.39
8 3 8.65 0.20 12.11 0.2 12.31 3 8.5 0.35 11.90 0.35 12.25
9 1 8.4 0.45 11.85 0.45 12.3 2 8.75 0.15 12.75 0.11 12.86
10 3 8.85 0 10.85 0.0 10.85 2 8.85 0 11.76 0.0 11.76

1 3 8 0 14.4 0 14.4 3 8 0.5 14.4 0.5 15
2 2 7.5 0.5 12.75 0.55 13.3 2 8.5 0 14.45 0 14.45
3 2 7.5 0.5 12.75 0.55 13.3 2 8.5 0 14.45 0 14.45
4 2 7.5 0.5 12.75 0.55 13.3 2 8 0.5 13.60 0.5 14.1
5 2 8 0 13.60 0 13.60 3 7.5 1 13.60 1 14.6
6 2 8 0 13.60 0 13.60 2 8.5 0 14.45 0 14.45

P6 7 3 8 0 13.50 0 13.50 2 7.2 1.3 11.90 1.43 13.33
8 2 7 1 11.90 1.1 13 2 7.5 1 12.75 1.0 13.75
9 2 7.5 0.5 12.75 0.55 13.3 1 6.75 1.75 10.5 1.75 12.25
10 1 6.75 1.25 10.5 1.25 11.75 2 8.25 0.25 14.02 0.275 14.295
11 2 7.75 0.25 13.17 0.275 13.44 2 8.25 0.25 14.02 0.275 14.295
12 2 7.75 0.25 13.17 0.275 13.44 3 2.67 5.38 4.806 5.83 10.636

3.7. Conclusion 59

Table 3.11: Comparison of best objective values obtained by the MBCSA and
the MLCSA

Problems MBCSA MLCSA

P1 16.4 kj 16.4 kj
P2 24.3 kj 24.3 kj
P3 39.8 kj 41.35 kj
P4 72.61 kj 72.76 kj
P5 121.39 kj 123.01 kj
P6 159.95 kj 162.83 kj

wasted time and save energy by avoiding the need for the line to be reconfig-
ured at each entrance of a new model. This contribution addresses the energy-
efficient RMiMALBP and proposes a memory-based Cuckoo Search Algorithm
(MBCSA) to solve it. Searching for good solutions to this complicated prob-
lem in a reasonable time is a big challenge, especially for large-sized prob-
lems, which is why the memory technique is integrated into the MBCSA to get
a compromise between diversification and intensification in the search space
while solving (EEMMALBP). Six challenges of varying sizes were constructed
to assess the performance of the proposed MBCSA. The MBCSA findings were
compared to those of the well-known genetic algorithm and the memory-less
CSA. The MBCSA and the GA achieved nearly identical results for issues 1,
2, and 3, but the MBCSA beat the GA in terms of objective values acquired
for large-scale problems 4, 5, and 6. The CPU times required by the MBCSA
to solve tasks 1, 2, and 3 were longer than those required by the GA. In addi-
tion, the MBCSA surpasses the MLCSA when it comes to tackling large-scale
issues. When tackling large-scale issues, the suggested MBCSA is a bit slug-
gish and requires additional CPU time. This flaw is caused by the algorithm’s
use of memory, which allows it to escape from the local optimum and continue
looking for new solutions that were not discovered previously.

60
Chapter 3. Energy Efficient Robotic Mixed Model Assembly line Balancing

Problem

Figure 3.6: Numerical example.

61

Chapter 4

The Mixed Model Assembly Line
Balancing Problem Type 1

4.1 Introduction

The mixed-model assembly line balancing problem consists of finding the best
configuration of the assembly line that can assemble more than one model
of the same product. This problem has become more interesting in the last
few decades due to the increased demands of customers for different models.
Type 1 of this problem aims at finding the optimal number of workstations
for a fixed cycle time in order to maximize the workload and minimize the
line length. To solve this problem, we proposed a Hybrid Reactive Greedy
Randomize Adaptive Search Procedure (HRGRASP).

This chapter is organized as follows; First, we describe the mixed-model
assembly line balancing problem type 1. Then, we discuss the basic and the
reactive GRASP. After that, we present our proposed Hybrid Reactive Greedy
Randomized Adaptive Search Procedure. Finally, we discuss our computa-
tional results.

62 Chapter 4. The Mixed Model Assembly Line Balancing Problem Type 1

4.2 Problem description and mathematical formu-

lation

4.2.1 Problem description

A mixed-model assembly line is created to make M models with similar fea-
tures, and the demand dm (m ∈ M) for each model is known. The sum of
all requests that must be fulfilled in a certain period of time, or PT, is the to-
tal demand, or Dm. To convert the MiMALBP to SALBP, each model m has a
precedence graph G, and all graphs can be joined into a single graph. The sum
of all processing durations for tasks allocated to the same workstation cannot
exceed the cycle time, which is determined using Equation 1. Each task I in the
combined graph must be assigned to a single workstation.

According to the characteristics of the fundamental form of the assembly
line balancing problem, authors adopted the following assumptions for the
MiMALBP-I they are addressing:

1. Task processing times are predictable.

2. The cycle time is predetermined and known.

3. The assembly line is straight.

4. All tasks must be assigned.

5. Common tasks between models are assigned to the same workstation

6. Processing time of common tasks may differ from model to another one.

7. Task assignments are constrained by precedence rules.

4.2.2 Mathematical formulation

i task
N number of tasks
ti processing time of task i
C Cycle time
w workstation
Wmax upper bound on the number of workstation

4.2. Problem description and mathematical formulation 63

Pi the set of predecessors of task i
Xiw equal to 1 if task i is assigned to workstation w, 0 otherwise
yiw equal to 1 if any task is assigned to workstation w, 0 otherwise

The upper bound is derived from the literature to specify the maximum
number of workstations and to restrict the search space. The number of tasks is
the upper constraint in this research, hence Wmax = UB = N denotes that each
workstation will, in the worst scenario, only do one task. Equation 2 provides
the solution to the problem’s objective function.

Minimize
Wmax

∑
w=1

yw (4.1)

Under the following constraints:

Wmax

∑
w=1

Xiw = 1 f or i = 1, 2, ..., N (4.2)

N

∑
i=1

ti ∗ Xiw ≤ C f or w = 1, 2, ..., Wmax (4.3)

Wmax

∑
w=1

w ∗ Xhw ≤
Wmax

∑
w=1

w ∗ Xiw where h ∈ Pi (4.4)

yiw ∈ {0, 1} (4.5)

Xiw ∈ {0, 1} (4.6)

Constraint (4.2) ensures that each task is only assigned to one workstation;
constraint (4.3) ensures that the total processing time of tasks assigned to the
same workstation does not exceed the cycle time; constraint (4.4) imposes the
precedence relations between tasks; constraint (4.5) defines the possible values
of yw; and constraint (4.6) defines the possible values of Xiw.

64 Chapter 4. The Mixed Model Assembly Line Balancing Problem Type 1

4.3 Basic and Reactive GRASP

Many combinatorial problems have been resolved using the greedy random-
ized adaptive search process, a multi-start meta-heuristic. Each iteration of the
GRASP employs the construction phase and the local search phase. The build-
ing phase is used to build a workable solution, but necessarily the best one.
The local search phase uses a local search process to identify a better solution
based on the constructed one. In the building phase, two lists are employed.
The candidate list (CL) comprises all candidates that can be included in the
partial solution, and from this list, the best candidates are chosen to produce
the limited candidate list (RCL). In the fundamental GRASP, the best candi-
dates are chosen from the CL depending on the fixed parameter. The threshold
value is represented by the following equation, which makes use of the alpha
(α) parameter:

TCth = Tmin + α(Tmax − Tmin) (4.7)

where the incremental costs Tmin and Tmax are, respectively, the minimum
and maximum. This is the greedy aspect of the GRASP: the RCL is formed
by choosing all candidates whose costs are less than or equal to the threshold
value. Selecting a candidate at random from the RCL to be added to the partial
solution is where the random element comes into play [201, 202].

The basic GRASP’s drawback is that it cannot learn from previous itera-
tions because all information about obtained solutions is discarded. Addition-
ally, in some circumstances, using a fixed value for the parameter may not be
able to assist the GRASP in convergent toward a global optimum [201]. The
first improvement to the basic GRASP is the reactive GRASP. It was first pro-
posed in [203] for the time slot assignment problem and has since been applied
to a number of optimization problems, including the Strip Packing problem
[204], Capacitated Clustering problem [205], and the Vehicle Routing Problem
[206]. IInstead of using a fixed value in each iteration of the reactive GRASP
algorithm, the α parameter is chosen at random from a defined range of po-
tential values Alpha = {α1, ..., αm} employing probabilities Pi, i=1,...,m. These
probability are based on previously discovered solutions. The probability of

4.4. The proposed Hybrid Reactive Greedy Randomized Adaptive Search
Procedure

65

selection is Pi=1/m for all feasible values of α during the initial GRASP itera-
tion where m is the number of possible α values. At any subsequent iteration
Let Ẑ be the best solution found, And let Ai be the average value of all solu-
tions found using α=αi where i=1,...,m. The selection probabilities are updated
periodically using the following equation :

Pi =
qi

∑m
j=1 qj

(4.8)

where qi = Ẑ/Ai, i=1,...,m. The value of qi is increased if the values of α=αi

lead to the best solutions on average. The probabilities of appropriate values
will then increase when they are updated [202].

4.4 The proposed Hybrid Reactive Greedy Random-

ized Adaptive Search Procedure

The suggested hybrid Reactive GRASP in this study is based on the struc-
ture of the original Reactive GRASP, and we integrated some modifications
in the construction phase and the local search phase to adapt it to handle
the mixed-model assembly line balance problem type-I. The Hybrid Reactive
GRASP is implemented using four main steps: building, local search, eval-
uation of the found solution, and updating selection probabilities at the end
of each session. For the following reasons, the authors of this study decided
to solve the MiMALBP-I using the Reactive GRASP. In compared to other
meta-heuristics that require more steps and intricate calculations, the Reac-
tive GRASP is straightforward. Second, by employing a different heuristic or
meta-heuristic, we can easily make a hybridization in any GRASP step. The
GRASP has reportedly been utilized to solve a number of optimization issues,
and the outcomes have demonstrated that it is an effective meta-heuristic.

66 Chapter 4. The Mixed Model Assembly Line Balancing Problem Type 1

Step 02 : Create The candidate list

Step 03 : Calculate the threshold value

All tasks are

assigned ?

Step 04 : Create the restricted

candidate list

Step 05 : Choose a task from the

restricted candidate list

Step 06 : add the chosen task to the

partial solution

Step 07 : Update the candidate list

End the

construction

phase

Step 01: Evaluate all tasks

Yes

No

Figure 4.1: The proposed construction phase.

4.4.1 The construction phase

The construction phase is where the initial solution is built, and it’s at this
phase that a greedy heuristic is employed to pick the best element first, de-
pending on cost, which varies from problem to problem. In the proposed hy-
brid Reactive GRASP, task processing times are taken into account as costs,
and in the construction phase, the Shortest Processing Time heuristic is used
as a greedy heuristic. As a result, tasks with the shortest processing times
are viewed as the best elements. This approach is known as Hybrid Reac-
tive GRASP-SPT because it combines the Reactive GRASP and the Shortest

4.4. The proposed Hybrid Reactive Greedy Randomized Adaptive Search
Procedure

67

Processing Time heuristic. The adopted construction phase’s flowchart is dis-
played in figure 4.1.

Figure 4.1 illustrates the seven processes that make up the proposed con-
struction phase.

1. All tasks are evaluated by their processing times.

2. To create the candidate list, assignable tasks are selected from the list
of tasks that are available. A work that has no predecessors or whose
predecessors have all been assigned is considered assignable.

3. Equation 8 from Section 4 is used to calculate the threshold value based
on the processing times of the jobs that are present in the candidate list.

4. Each task is selected to be on the restricted candidate list if its processing
time is less than or equal to the threshold value (RCL).

5. A task is randomly selected from the restricted candidate list.

6. Add the selected task to the partial solution.

7. Remove the assigned task from the candidate list and add new candi-
dates to update it (assignable tasks).

4.4.2 The local search phase

The solution that was reached utilizing the construction phase might not be
the best one, so a local search is used to see whether a neighboring solution
with a higher objective value exists. In the proposed reactive GRASP-SPT, we
employ a straightforward local search that seeks out neighbor solutions for a
fixed max_search number, and to search locally, two tasks that are not connected
by a precedence relation are swapped at random. If tasks i and j are randomly
selected to be swapped, and task i is placed before task j in the sequence, the
algorithm first checks to see if the new solution will adhere to the precedence
relations.

The local search phase is based on four main processes, as indicated in
Figure 4.2:

68 Chapter 4. The Mixed Model Assembly Line Balancing Problem Type 1

Figure 4.2: The proposed local search method.

1. After the counter is initialized, the random swap function is used to cre-
ate a neighbor solution. Go to step 2 if the neighbor has not been located
in earlier iterations; otherwise, move to step 3.

2. A neighbor list is updated to include the generated neighbor (LN).

3. If the generated neighbor is already present in the list of neighbors, the
counter is increased by one. Then, if the counter is less than or equal to
the max search number, go to step 1 to start looking for a new neighbor.
If, however, a neighbor with a better objective value is found in the list
of neighbors, go to step 4, otherwise the local search should be stopped.

4. Switch the first solution out for the new, better neighbor solution and
reset the counter to 1.

4.4. The proposed Hybrid Reactive Greedy Randomized Adaptive Search
Procedure

69

Step 02: Open a workstation with an

operational time = cycle time

Step 04: Assign the task and update the

operational time of the workstation

Task time of the current

task <= operational time

Step 05: Select

the next task

Step 01 : number of workstations = 0

Step 03 : number of workstations + = 1

All tasks in the sequence

are assigned ?

Yes

No

Yes No

End

Figure 4.3: The proposed evaluation method.

4.4.3 Evaluation of solutions

The algorithm compares the new solution found during the local search phase
to the solution previously selected as the best solution found; if the new so-
lution has a better objective value (provides a minimum number of worksta-
tions), it is then considered the best solution found and is passed to the subse-
quent iteration.

The evaluation of solutions is based on the five processes depicted in Fig-
ure 4.3:

1. Initialize the number of workstations to 0 in Step 1.

2. Create a new workstation and set its operational time with the fixed
known cycle time.

3. Add 1 to the number of workstations after each opening procedure.

4. If the selected task’s processing time (task time) is less than or equal to

70 Chapter 4. The Mixed Model Assembly Line Balancing Problem Type 1

the operational time of the current workstation, assign it to that worksta-
tion, and update the operational time by deducting the assigned task’s
processing time from it. If not, proceed to step 02 to open a new work-
station.

5. If there are still unassigned tasks, choose the next one and continue the
process; otherwise, the evaluation process will end.

4.4.4 Updating of selection probabilities

The number of solutions found and the sum of the achieved objective values
are calculated for each alpha value in each iteration by the reactive GRASP.
With this knowledge, the algorithm uses Equation 9 from Section 4 to update
the selection probabilities for each alpha value for each period. This learning
mechanism aids the algorithm in determining which alpha value has the most
likelihood of being chosen from the selection probabilities and, as a result, pro-
duces effective solutions.

4.5 Computational results

On a personal computer with an Intel Core i3-4005 U CPU, 1.70 GHz, and 6GB
memory, the proposed hybrid Reactive GRASP is constructed using Python.
To test its performance, 6 types of problems have been produced at random.
A small size problem with two models A and B, ten tasks, and ten precedence
relations is shown in table 4.1. Model A requires 14 time units of operational
time in total, whereas Model B requires 12. There are 24 demands for model A
and 22 for model B, for a total of 46. We get a cycle time of = 4.1 by dividing
the specified time period by the total number of demands. Two models A and
B must be put together in a straight line in the second small-size problem as
shown in table 4.2, which also has a total of 12 tasks and a total of 14 precedence
relations. Model A takes 17 time unit, whereas Model B takes 14 seconds. A
total of 60 demands 30 each for models A and B are presented. With the overall
demands and the allotted time (PT = 300), the obtained cycle time is 5, which
is the given number. Table 4.3 shows a medium-sized MiMALB problem with
two models, A and B, 15 tasks, and a total of 15 precedence relations. Model A
requires 16 time units to be completed, whereas Model B requires 20. 25 units

4.5. Computational results 71

of model A and 15 units of model B must be put together in a period of time
equal to 150, resulting in a cycle time of 4.3.

Table 4.1: Problem 1.

Task Model A Model B Task time Predecessors

1 1.0 1.0 1.0 -
2 2.0 0.0 2.0 -
3 0.0 2.0 2.0 -
4 3.0 1.0 2.0 1, 2
5 2.0 2.0 2.0 -
6 1.0 1.0 1.0 3, 5
7 2.0 0.0 2.0 4
8 0.0 2.0 2.0 4
9 1.0 1.0 1.0 6

10 2.0 2.0 2.0 7, 8, 9
Demands of models : DA = 24, DB =22
Period time = 190
Cycle time = 190/46 = 4.1

Table 4.2: Problem 2.

Task Model A Model B Task time Predecessors

1 1.0 1.0 1.0 -
2 1.0 1.0 1.0 -
3 1.0 1.0 1.0 -
4 2.0 2.0 2.0 1
5 3.0 1.0 2.0 2
6 1.0 3.0 2.0 3
7 0.0 1.0 1.0 4
8 2.0 0.0 2.0 4
9 0.0 1.0 1.0 5, 6

10 2.0 2.0 2.0 7, 8, 5
11 3.0 0.0 3.0 6
12 1.0 1.0 1.0 9, 10, 11

Demands of models : DA = 30, DB =30
Period time = 300
Cycle time = 300/60 = 5

The second medium-sized problem (Table 4.4) contains three models (A,
B, and C), each of which must be completed in 21, 19, and 20 units of time,

72 Chapter 4. The Mixed Model Assembly Line Balancing Problem Type 1

Table 4.3: Problem 3.

Task Model A Model B Task time Predecessors

1 1.0 2.0 1.0 -
2 2.0 0.0 1.0 -
3 2.0 0.0 1.0 -
4 0.0 1.0 2.0 -
5 0.0 3.0 2.0 -
6 0.0 1.0 2.0 -
7 2.0 1.0 1.0 1, 2, 4
8 1.0 2.0 2.0 3, 5, 6
9 3.0 2.0 1.0 7

10 1.0 1.0 2.0 8
11 0.0 1.0 3.0 10
12 1.0 1.0 1.0 9, 11
13 0.0 2.0 1.0 12
14 1.0 1.0 1.0 12
15 2.0 2.0 1.0 13, 14

Demands of models : DA = 20, DB =15
Period time = 150
Cycle time = 150/35 = 4.3

respectively. There are 15 tasks total, and there are overall 17 precedence re-
lations. There are 38 demands for model C, 35 demands for model A, and 35
demands for model B. Based on the problem specifications (PT = 480, Total
number of demands = 108), a cycle time of 4.4 was computed. A large-scale
problem with three models A, B, and C and 22 tasks connected by 25 prece-
dence connections is shown in Table 4.5. Operational times for models A and
B are 27, 31, and 30, respectively. There are 25, 35, and 25 requests for Model
A, Model B, and Model C, respectively. These demands have a time require-
ment of 480, which calls for a cycle time of 5.6. There are four models (A, B, C,
and D) in the second large-size problem Table 4.6 that can be assembled in the
same line. There are 25 tasks in total, with a total of 41 precedence relations.
Models A, B, D, and C require 22, 25, 26, and 26 units of time, respectively, to
complete. There are 40 requests for model A, 15 for model B, 15 for model C,
and 20 for model D. With a period duration of 700 and a cycle time of 7.8, all
of these requirements must be met.

The extremely large problem in Table 4.7 has two models, A and B. 44

4.5. Computational results 73

tasks are included, and there are 45 precedence relationships. 66 time units
are required to complete model A, while 63 time units are needed to complete
model B. 50 demands for model A, compared to 45 for model B, for a total of
95. The given period time is 500 time units, and the cycle time is 5.26 when this
number is divided by the total number of demands. This problem is utilized
to compare the performance of the LINGO solver and the proposed hybrid
Reactive GRASP. Table 4.8 lists all the parameters that were used to address
each issue utilizing the hybrid reactive GRASP.

Table 4.4: Problem 4.

Task Model A Model B Model C Task time Predecessors

1 1.0 1.0 1.0 1.0 -
2 0.0 0.0 3.0 3.0 -
3 0.0 2.0 0.0 2.0 -
4 2.0 0.0 1.0 1.5 -
5 3.0 3.0 3.0 3.0 1
6 1.0 1.0 1.0 1.0 2, 3, 4
7 2.0 2.0 2.0 2.0 5, 6
8 1.0 1.0 0.0 1.0 -
9 2.0 2.0 1.0 1.7 4, 8

10 1.0 0.0 2.0 1.5 6, 9
11 2.0 2.0 2.0 2.0 7
12 2.0 2.0 2.0 2.0 10
13 3.0 1.0 1.0 1.3 11, 12
14 0.0 1.0 0.0 1.0 12
15 1.0 1.0 1.0 1.0 13, 14

Demands of models : DA = 35, DB =35, DC =38
Period time = 480
Cycle time = 480/108 = 4.4

Comparisons are made between the hybrid reactive GRASP’s findings
and those from the standard GRASP, which employs a fixed alpha value through-
out all iterations. We also suggest another method based on three heuristics. In
[207] and [208], the assembly line balance problem was solved using the fun-
damental GRASP. We refer to the suggested method as RWP-NS-LT since it is
based on three heuristics from [209]: the ranked positional weight, the great-
est number of successors, and the longest processing time. According to the

74 Chapter 4. The Mixed Model Assembly Line Balancing Problem Type 1

Table 4.5: Problem 5.

Task Model A Model B Model C Task time Predecessors

1 1.0 1.0 2.0 1.3 -
2 2.0 1.0 2.0 1.7 -
3 2.0 1.0 1.0 1.3 1, 2
4 1.0 0.0 0.0 1.0 -
5 0.0 2.0 1.0 1.5 -
6 2.0 3.0 3.0 2.7 -
7 1.0 1.0 0.0 1.0 -
8 3.0 4.0 1.0 2.7 4, 5, 6, 7
9 1.0 0.0 0.0 1.0 3

10 0.0 1.0 4.0 2.5 3
11 1.0 2.0 3.0 2.0 8
12 2.0 4.0 4.0 3.3 9, 10, 11
13 3.0 0.0 2.0 2.5 -
14 1.0 2.0 1.0 1.3 13
15 3.0 2.0 0.0 2.5 14
16 0.0 3.0 2.0 2.5 15
17 0.0 0.0 1.0 1.0 12
18 1.0 0.0 0.0 1.0 12
19 0.0 1.0 0.0 1.0 16
20 2.0 0.0 1.0 1.5 16
21 0.0 1.0 0.0 1.0 12
22 1.0 2.0 2.0 1.7 17,18,19, 20,21

Demands of models : DA = 25, DB =35, DC =25
Period time = 480
Cycle time = 480/85 = 5.6

suggested method, the task allocated to the workstation with the highest im-
portance is the one with the most positional weight. When two tasks have the
same positional weight, their successor counts are compared, and the task with
the most successors is given top priority. If both tasks have the same number
of successors, their processing times are also compared, and the task with the
longest processing time receives the highest priority. In the event that two jobs
have the same processing time, the RWP-NS-LT finally selects one at random.
In the fundamental GRASP, the fixed alpha value utilized for each presented
problem is 0.

The numbers of solutions found by each alpha value used to solve each

4.5. Computational results 75

Table 4.6: Problem 6.

Task Model A Model B Model C Model D Task time Predecessors

1 1.0 1.0 1.0 1.0 1.0 -
2 0.0 1.0 0.0 0.0 1.0 -
3 0.0 2.0 2.0 0.0 2.0 -
4 2.0 0.0 1.0 0.0 1.5 -
5 0.0 0.0 0.0 1.0 1.0 -
6 0.0 0.0 0.0 1.0 1.0 -
7 3.0 2.0 0.0 1.0 2.0 -
8 2.0 3.0 2.0 2.0 2.25 1
9 0.0 0.0 2.0 0.0 2.0 4
10 1.0 0.0 0.0 3.0 2.0 4, 5
11 1.0 0.0 0.0 2.0 1.5 4, 6, 7
12 0.0 0.0 1.0 0.0 1.0 3
13 1.0 1.0 0.0 0.0 1.0 2, 7
14 0.0 1.0 0.0 0.0 1.0 3, 7
15 0.0 0.0 3.0 0.0 3.0 3
16 2.0 0.0 3.0 0.0 2.5 8, 9, 13
17 2.0 0.0 5.0 5.0 4.0 8,10,11,12, 13
18 4.0 0.0 0.0 4.0 4.0 11
19 0.0 3.0 1.0 3.0 2.3 8,11,12,13, 15
20 1.0 0.0 1.0 1.0 1.0 16,17,18
21 0.0 4.0 2.0 0.0 3.0 14,17,19
22 0.0 5.0 0.0 0.0 5.0 21
23 1.0 0.0 0.0 0.0 1.0 17
24 0.0 0.0 0.0 1.0 1.0 18,19
25 1.0 2.0 2.0 2.0 1.75 20,22,23,24

Demands of models : DA = 40, DB =15, DC =15,
DD = 20
Period time = 700
Cycle time = 700/90 = 7.8

problem are shown in 4.9. In the majority of cases, when α =1, the search space
is expanded and the algorithm can identify more solutions. Some of the so-
lutions found by different alpha values are similar, and some of the solutions
found by α=1 cannot be found by α=0 or α=0.5, but as we can see, the number
of solutions found by α=0 in solving the large size problem 6 is higher than
numbers found by α=0.45 and α=1, so we can conclude that when the alpha
value increases the algorithm can find more solutions. The probability of se-
lection for each alpha throughout the solution of the small size problem 1 is

76 Chapter 4. The Mixed Model Assembly Line Balancing Problem Type 1

Table 4.7: Problem 7.

Task Model A Model B Task time Predecessors
1 1.0 1.0 1.0 -
2 2.0 2.0 2.0 -
3 1.0 0.0 1.0 -
4 1.0 1.0 1.0 -
5 1.0 1.0 1.0 -
6 0.0 1.0 1.0 -
7 2.0 2.0 2.0 1
8 2.0 2.0 2.0 2
9 3.0 0.0 3.0 3
10 2.0 2.0 2.0 4
11 1.0 1.0 1.0 5
12 0.0 1.0 1.0 6
13 1.0 1.0 1.0 7, 8
14 1.0 0.0 1.0 9
15 4.0 2.0 3.0 10
16 3.0 3.0 3.0 11, 12
17 2.0 4.0 3.0 13
18 1.0 0.0 1.0 14
19 3.0 5.0 4.0 15
20 1.0 1.0 1.0 16
21 1.0 0.0 1.0 17
22 0.0 2.0 2.0 17
23 2.0 0.0 2.0 18
24 1.0 1.0 1.0 19, 20
25 1.0 0.0 1.0 21
26 0.0 2.0 2.0 22
27 1.0 0.0 1.0 23
28 1.0 1.0 1.0 24
29 1.0 1.0 1.0 25, 26
30 3.0 0.0 3.0 27
31 1.0 1.0 1.0 28
32 1.0 5.0 3.0 29
33 2.0 2.0 2.0 30, 31
34 1.0 1.0 1.0 32
35 3.0 1.0 2.0 33
36 0.0 4.0 4.0 34
37 3.0 0.0 3.0 34
38 1.0 1.0 1.0 35
39 0.0 1.0 1.0 36
40 1.0 0.0 1.0 37
41 2.0 2.0 2.0 38
42 2.0 2.0 2.0 39, 40
43 1.0 1.0 1.0 41
44 5.0 5.0 5.0 42, 43
Demands of models : DA = 50, DB =45
Period time = 500
Cycle time = 500/95 = 5.26

shown in Figure 4.4, and since there was no change from the first to the last
period, all alpha values have an equal likelihood of obtaining solutions with
the same objective values. Figures 4.5 and 4.6 demonstrate that, when solving
medium-sized problem 3 and small-sized problem 2, the selection probabili-
ties of α=0 and α=0.5 have the same variation over all periods as compared to
α=1, and they increase. This indicates that when alpha takes 0 and 0.5 as val-
ues, the algorithm can find good solutions that have the same objective values
(numbers of workstations).

We can see that the variations of the selection probabilities of the α=0 and

4.5. Computational results 77

Table 4.8: Used parameters in the hybrid reactive GRASP for all problems

Max iterations Max search period alpha values
small size problem 1 1000 30 100 0, 0.5, 1
small size problem 2 1000 30 100 0, 0.5, 1
medium size problem 3 1500 40 100 0, 0.5, 1
medium size problem 4 1500 40 100 0, 0.75, 1
large size problem 5 2000 40 100 0, 0.75, 1
large size problem 6 2000 40 100 0, 0.45, 1

α=0.75 values are similar and improved over the probability of the α=1 from
the second to the last period in Figures 4.7 and 4.8 respectively, which show the
variation of the used alpha values while solving medium-size problem 4 and
large-size problem 5. Figure 4.9 demonstrates that, when compared to α=0.45
and α=1, the probability of selection of α=0 is the highest, indicating that 0 is
the optimum alpha value for the algorithm to use in order to identify the best
solutions for the large-scale problem 6.

Figures 4.10 and 4.11 display six comparisons of the number of worksta-
tions that each algorithm was able to generate after solving the given chal-
lenges. When problems 1 and 6 were solved, all algorithms yielded the same
number of workstations (wr = 5 for problem 1 and wr = 7 for problem 6), as
shown in comparisons (a) and (f). Comparisons (b) and (d) demonstrate that,
when compared to the proposed RWP-NS-LT, the hybrid Reactive GRASP and
the basic GRASP perform better in solving tasks 2 and 4, respectively. After
resolving difficulties 3 and 5, comparisons (c) and (e) reveal that only the hy-
brid Reactive GRASP, when compared to the basic GRASP and the suggested
RWP-NS-LT, finds the optimal values. We can therefore deduce from all com-
parisons that the suggested hybrid Reactive GRASP had an advantage over the
basic GRASP and the proposed RWP-NS-LT in that it was able to find the best
solutions for all size problems. Tables (4.10, 4.11, 4.12, 4.13, 4.14, 4.15) illustrate
found solutions of the hybrid reactive GRASP for all problems.

Table 4.16 compares the CPU time required to solve problem 7 by the pro-
posed Hybrid Reactive GRASP and the LINGO solver. We can easily deduce
from the data analysis for all tries that the Hybrid Reactive GRASP can locate
the ideal number of workstations (w = 16) faster than the LINGO solver.

78 Chapter 4. The Mixed Model Assembly Line Balancing Problem Type 1

Table 4.9: Numbers of solutions found by the hybrid Reactive GRASP for each
problem

small size problem 1 α = 0 α = 0.5 α = 1 total number of solutions

56 58 247 361
small size problem 2 α = 0 α = 0.5 α = 1 total number of solutions

84 194 310 588
medium size problem 3 α = 0 α = 0.5 α = 1 total number of solutions

111 106 494 711
medium size problem 4 α = 0 α = 0.75 α = 1 total number of solutions

8 128 469 605

large size problem 5 α = 0 α = 0.75 α = 1 total number of solutions

48 646 671 1365
large size problem 6 α = 0 α = 0.45 α = 1 total number of solutions

689 652 624 1965

Figure 4.4: Variation of selection probabilities while solving problem 1.

Figure 4.5: Variation of selection probabilities while solving problem 2.

4.6. Conclusion 79

Figure 4.6: Variation of selection probabilities while solving problem 3.

Figure 4.7: Variation of selection probabilities while solving problem 4.

Figure 4.8: Variation of selection probabilities while solving problem 5.

Figure 4.9: Variation of selection probabilities while solving problem 6.

4.6 Conclusion

In this chapter, we presented our contribution to solve MiMALBP type 1. The
mixed-model assembly line is intended to create many models of a single prod-
uct in order to satisfy customer needs on time, and determining the appro-
priate number of workstations to optimize workload at each workstation for
each model is a challenging task. A hybrid reactive GRASP meta-heuristic

80 Chapter 4. The Mixed Model Assembly Line Balancing Problem Type 1

Figure 4.10: Obtained number of workstations for problem 1 (a), problem 2
(b), and problem 3 (c).

Figure 4.11: Obtained number of workstations for problem 4 (d), problem 5
(e), and problem 6 (f)

was presented in this contribution to solve the straight mixed-model assem-
bly line balance problem while decreasing the number of workstations. In the
construction phase, the shortest processing time heuristic is used to identify
the priority rule and assess jobs based on their processing times, and in the
local search phase of the algorithm, a basic local search approach that seeks
for a better neighbor solution is utilized. The hybrid reactive GRASP discov-
ered optimum solutions for all provided issues after addressing all proposed
problems utilizing the hybrid reactive GRASP, the basic reactive GRASP, and
the RPW-SN-LT. The hybrid reactive GRASP findings further demonstrate that
utilizing a set of alpha values makes the algorithm more efficient by discover-
ing more solutions than using a fixed alpha value and allows it to avoid the
local optimum trap. Furthermore, when compared to the LINGO solver, the
suggested reactive GRASP took less time to solve the extremely big issue.

4.6. Conclusion 81

Table 4.10: Assignment of tasks of problem 1.

Wr1 Wr2 Wr3 Wr4 Wr5

1, 3 5, 6, 9 2, 4 7, 8 10

Table 4.11: Assignment of tasks of problem 2.

Wr1 Wr2 Wr3 Wr4

3, 2, 1, 6 5, 9,4 7, 8, 10 11, 12

Table 4.12: Assignment of tasks of problem 3.

Wr1 Wr2 Wr3 Wr4 Wr5 Wr6

3, 2, 1 4, 7, 9 5, 6 8, 10 11, 12 13, 14, 15

Table 4.13: Assignment of tasks of problem 4.

Wr1 Wr2 Wr3 Wr4 Wr5 Wr6 Wr7

8, 4, 1 2 3, 9 5, 6 7, 11 10, 12 14, 13, 15

Table 4.14: Assignment of tasks of problem 5.

Wr1 Wr2 Wr3 Wr4 Wr5 Wr6 Wr7 Wr8

2,7, 5,1 3,4, 9 13,14 15,10 16,19, 20 6,8 11,12 17,18, 21,22

Table 4.15: Assignment of tasks of problem 6.

Wr1 Wr2 Wr3 Wr4 Wr5 Wr6 Wr7

6,1,5, 2,4,10 3,12,9, 7 14,13,11, 8 16,15,19 17,21 23,18,24, 20 22,25

82 Chapter 4. The Mixed Model Assembly Line Balancing Problem Type 1

Table 4.16: Comparison of taken CPU time for solving problem
7 by the Hybrid Reactive GRASP and LINGO solver.

Attempts
Hybrid Reactive GRASP
(CPU / Workstations)

LINGO solver
(CPU / Workstations)

Attempt 1 10 min : 18 sec / 16 29 min : 46 sec / 16
Attempt 2 14 min : 21 sec / 16 21 min : 41 sec / 16
Attempt 3 16 min : 47 sec / 16 45 min : 09 sec / 16
Attempt 4 10 min : 22 sec / 16 28 min : 41 sec / 16
Attempt 5 10 min : 27 sec / 16 37 min : 31 sec / 16
Attempt 6 10 min : 14 sec / 16 23 min : 50 sec / 16

83

Chapter 5

A Hybrid Grasp-genetic Algorithm
for Mixed-model Assembly Line
Balancing Problem Type 2

5.1 Introduction

The mixed model assembly line balancing problem type 2 aims at finding the
minimal cycle time for a fixed number of workstations. By minimizing the
total cycle time of the line, we can reach an important production rate. This
problem became more interesting in the last decades due to the high demands
of customers for a variety of models of the same product. To solve this prob-
lem, we proposed a hybrid approach that combines two meta-heuristics, the
greedy randomized adaptive search procedure (GRASP), and the famous ge-
netic algorithm (GA). In order to build initial solutions, the ranked positional
weight (RPW) was used in the construction phase of the GRASP. Initial solu-
tions are then enhanced in the local search phase using a neighborhood search
procedure.

This chapter is organized as follows; first, we describe the mixed-model
assembly line balancing problem type 2. Then, we discuss the proposed algo-
rithms including the genetic algorithm and the greedy randomized adaptive
search procedure. After that, we present a numerical example. Finally, we
discuss the obtained results.

84
Chapter 5. A Hybrid Grasp-genetic Algorithm for Mixed-model Assembly

Line Balancing Problem Type 2

5.2 Problem description and mathematical formu-

lation

5.2.1 Problem description

Similar models are put together in the mixed model assembly line in a pre-
determined random order. Each model has a set of tasks, and each task has
a specified processing time (or task time). The precedence relations illustrate
all tasks and the relations between them. A task cannot be allocated before its
predecessors since all tasks must be assigned to workstations while taking into
account their relationships of precedence. The cycle time cannot be exceeded
by the total of task times for a single workstation (workstation time). By inte-
grating the precedence relations graphs of the models into a single precedence
graph and calculating the average task processing time for each task, the mixed
model assembly line balancing problem can be reduced to a simple assembly
line balancing problem. So, the goal of solving the MiMALBP-2 is to determine
the optimum job assignment with the shortest cycle time for a set number of
workstations while maintaining the order of precedence. In this study, finding
the ideal sequence of models is not taken into account.

5.2.2 Mathematical formulation

C Cycle time
n number of tasks
i task i where i=1,..., n
m The number of workstations
k Workstation k where k=1,...,m
ti processing time of task i
Pi the set of predecessors of task i
Xik equal to 1 if task i is assigned to workstation k, 0 otherwise

The goal is to maximize the production rate by optimizing the cycle time
(minimizing the cycle time equation 5.1). Baybars et al. [18] developed the
following mathematical formulation of the problem to solve SALBP-2 and it
can be used to solve MiMALBP-2 :

5.3. The proposed algorithms to solve the MiMALBP type 2 85

min C (5.1)

Under the following constraints:

m

∑
k=1

Xi,k = 1 (5.2)

n

∑
i=1

ti · Xi,k ≤ C (5.3)

m

∑
k=1

k · Xh,k ≤
m

∑
k=1

k · Xi,k where h ∈ Pi (5.4)

Xi,k ∈ {0, 1} (5.5)

Equation (5.2) assures that each task is only affected once. Equation (5.3)
requires that the sum of the process times of tasks allocated to the same work-
station be less than or equal to the cycle time. The precedence relations be-
tween tasks are imposed by Equation (5.4). If task h must be completed before
task i the index of the station where task h is affected must be less than or equal
to the index of the station where task i is affected. Lastly, Equation (5.5) reflects
the constraint of the decision variables’ integrity.

5.3 The proposed algorithms to solve the MiMALBP

type 2

The mixed model assembly line problem type 2 is addressed in this study us-
ing the hybridization of two meta-heuristics, the genetic algorithm (GA) and
the GRASP (Greedy Randomized Adaptive Search Process). Every individual
is a unique solution discovered using GRASP because it is utilized to seed the
initial population of the GA. Figure 5.1 displays the suggested hybridization.

86
Chapter 5. A Hybrid Grasp-genetic Algorithm for Mixed-model Assembly

Line Balancing Problem Type 2

Figure 5.1: GA-GRASP hybridization.

5.3.1 Genetic algorithm

A number of assembly line balancing issues have been solved using the ge-
netic algorithm, which is a well-known and efficient metaheuristic [72]. Each
solution (individual) is evaluated in this metaheuristic after its fitness has been
determined using a fitness function F. It starts with initial solutions (popula-
tion), which are the starting point. For operators (crossover and mutation), the
best solutions are chosen. In the end, evaluations are done on the individu-
als produced by the genetic operators. The number of generations is the total
number of times all these GA processes are repeated [thiruvady_ant_2020 ,
210]. We employed the Elitism technique [211] in the proposed GA to ensure
that the best solutions persisted until the final population by keeping 25 % of

5.3. The proposed algorithms to solve the MiMALBP type 2 87

the population’s top performers in each generation to undergo GA operators.
The GA stages are described as follows:

1. Encoding of solutions: Priority-based encoding is employed in this pa-
per to build the task sequence based on the precedence graph. The task
node is represented by the value of the gene, and its assignment priority
is indicated by where it is located in the sequence.

2. The initial population: Each member of the initial population, which
consists of a collection of individuals, symbolizes the final result of the
greedy randomized adaptive search method.

3. Fitness function: The fitness function is computed for each individual in
order to evaluate them. Because the goal of this GA is to maximize the
production rate, the fitness function (F) is dependent on cycle time (C):

F = 1/C (5.6)

4. Selection: Tournament selection is used to choose the finest candidates.
Two players are randomly selected from the remaining 75 % of partici-
pants in each tournament, and the two with the shortest cycle times go
through GA operators (crossover and mutation). Up until the necessary
number of individuals are present in the mating pool, the selection pro-
cedure is repeated.

5. Crossover: The one-point crossover is employed to produce new off-
spring. First, two parents are picked from the list of those who were
part of the selection process. Then, the one-point crossover is used be-
tween two parents to produce new offspring, as depicted in figure 5.2.
Repeated tasks (genes) in the chromosome must be replaced by missing
tasks.

6. Mutation: A swap mutation is one in which the values of two randomly
selected genes (tasks) are switched. To create novel sequences, the pro-
cess of mutation is done to a few individuals selected at random. In the
end, tasks that disregard precedence relations must be reordered in order
to fix unfeasible solutions.

88
Chapter 5. A Hybrid Grasp-genetic Algorithm for Mixed-model Assembly

Line Balancing Problem Type 2

Figure 5.2: One-point crossover.

5.3.2 Greedy randomized adaptive search procedure (GRASP)

Several combinatorial problems have been solved using the meta-heuristic
GRASP. Each iteration of this meta-heuristic comprises the construction phase
and the local search phase. Building a feasible solution is the purpose of the
construction phase, while the local search phase seeks to improve the solution
established during the construction phase using a local search method [212].
The popular heuristic of ranked positional weight (RPW), which has been uti-
lized to tackle the assembly line balancing problem, is employed to identify a
feasible solution in the construction phase. With this heuristic, tasks are listed
in declining order according to their positional weights. All other durations
attributable to the successors are added to the duration of the selected task to
determine the positioning weight [213].

During the construction process, each iteration is based on two lists: the
Candidate List (CL) and the Restricted Candidate List (RCL) [201]. First, all
tasks are included in the candidate list, and the RCL is generated from this
list by selecting tasks with the highest positional weight while adhering to all
criteria (precedence relations and available workstation time). The p elements

5.4. Numerical example 89

with the best positional weight limit the number of elements in the restricted
candidate list. A task is picked at random from the RCL for the assignment.
The selected task is removed from the RCL and CL, and the workstation time
is updated. When all tasks in the CL have been allocated and the specified
number of workstations has been met, the construction phase comes to an end.
Otherwise, the construction phase resumes until a feasible solution with the
precise number of workstations specified is found.

Because the solution identified during the construction phase may not be
ideal, the local search is utilized to improve the produced solution. In the lo-
cal search phase, neighborhood search is used to identify an optimal neighbor-
hood solution by randomly changing the positions of two tasks in the sequence
while obeying precedence relations. The cycle time of the new sequence is de-
termined in order to compare it to the sequence discovered during the con-
struction phase. When no alternative best-neighborhood solution is found, the
process in the local search phase ends.

5.4 Numerical example

The suggested hybrid technique is tested on an example that illustrates a mixed
model problem with two models A and B using Python 3.7.3 on a Computer
with an Intel(R) Core (TM) i3-4005U Processor 1.70 GHz. Each model has its
own precedence relations for each model, and each task in each model may
have a distinct processing time. Tables 5.1 and 5.2 show data from models A
and B, respectively. The first column is the task number, the second is the task
time, and the last column is the immediate predecessors. Certain tasks are not
included in assembling each model. To solve this mixed model assembly line
problem, we transformed it into a simple problem by combining the graphs of
models A and B into one graph, as shown in Figure 5.4. For each common task
between models, the average processing time is calculated, and unnecessary
relations are deleted. The problem contains 12 tasks and 12 precedence rela-
tions that must be respected during the assignment of tasks to workstations.
As shown in Figure 5.4, the values inside the circles are the task numbers, and
T is the average processing time. So, the aim is to find the minimum cycle

90
Chapter 5. A Hybrid Grasp-genetic Algorithm for Mixed-model Assembly

Line Balancing Problem Type 2

Figure 5.3: Adopted GRASP approach for MiMALBP resolution.

time based on the number of workstations. In this example, the number of
workstations is 4.

5.4. Numerical example 91

Table 5.1: Model A

Task Task time Immediate predecessors

1 9 -
2 21 -
3 25 -
4 14 1
5 23 2
6 12 3
7 11 4, 5
8 7 5
9 20 5, 6
10 4 7, 8

Table 5.2: Model B

Task Task time Immediate predecessors

1 3 -
2 25 -
4 19 1
5 17 2
7 7 5, 5
8 15 5
9 8 5
10 13 7, 8
11 17 9
12 13 11

92
Chapter 5. A Hybrid Grasp-genetic Algorithm for Mixed-model Assembly

Line Balancing Problem Type 2

Figure 5.4: Combined precedence graph.

Table 5.3: GRASP-GA parameters.

Parameters Values

GRASP RCL (number of elements) 3
Number of iterations 10

GA

Number of generations 100
Population size 20
Crossover probability 0.5
Mutation Probability 0.15
Elitism 25 %

5.5 Discussion of obtained results

Figure 5.5 depicts the GRASP application in the proposed case. The GRASP
was run 20 times to generate the initial population, with each iteration yield-
ing a different feasible solution. As seen, each solution includes the solution
discovered during the construction phase as well as its best neighborhood as
determined by the local search technique. With cycle time (c = 47.5), 8 optimal
solutions (S1, S5, S7, S9, S10, S12, S14, S17) were discovered. In certain situa-
tions (S7, S11, S13, and S18), no superior nearby solutions were found during
the local search phase.

Figure 5.6 shows the outcome of the hybridization of the two proposed
meta-heuristics (GRASP and Genetic algorithm). All neighborhood solutions
identified in the 20 GRASP executions were employed as an initial population

5.5. Discussion of obtained results 93

in the genetic algorithm, and after 100 generations, 8 improved solutions (S1,
S2, S3, S4, S5, S11, S15, S17) were discovered with cycle time (c= 45). Table 5.4
shows how best-found solutions varied in the order of tasks.

Figure 5.5: Obtained solutions using GRASP.

Figure 5.6: Obtained Solutions using GRASP-GA.

Any of the eight best solutions found in the final population can be chosen
as the final solution because the only variation between them is the sequence of
tasks. The first answer is picked at random as the final solution, and table 5.5
below illustrates the assignment of jobs to workstations based on the chosen
solution.

The workload for each model can be calculated based on the chosen as-
signment; thus, for each workstation, the sum of processing times of assigned
tasks is calculated to find the workload; however, because there is a difference

94
Chapter 5. A Hybrid Grasp-genetic Algorithm for Mixed-model Assembly

Line Balancing Problem Type 2

Table 5.4: Best sequences found in the final population

Solution Tasks order

S1 2, 5, 3, 6, 1, 9, 11, 12, 8, 4, 7, 10
S2 2, 5, 1, 3, 6, 9, 11, 12, 4, 7, 8, 10
S3 3, 6, 1, 2, 5, 9, 11, 12, 4, 8, 7, 10
S4 2, 5, 1, 3, 6, 9, 11, 12, 8, 4, 7, 10
S5 2, 5, 1, 3, 6, 9, 11, 12, 4, 8, 7, 10
S11 2, 5, 3, 1, 6, 9, 11, 12, 4, 7, 8, 10
S15 3, 6, 1, 2, 5, 9, 11, 12, 8, 4, 7, 10
S17 3, 6, 1, 2, 5, 9, 11, 12, 8, 4, 7, 10

Table 5.5: Assignment of tasks to workstations

Workstation Tasks

W1 2, 5
W2 3, 6, 1
W3 9, 11, 12
W4 8, 4, 7, 10

in processing times of common tasks between models, the workloads will be
different, and thus the utilization of workstations during production is not
stable due to the variety of products. Figure 5.7 illustrates the workload for
models A, and B, and the Average workload. Overload and lead time were
also calculated.

The reader can observe that the cycle time is surpassed in workstation 2
for model A and in workstation 4 for model B. This difficulty arises from the
variety of models and can affect line efficiency; therefore, to address this issue
in mixed-model assembly lines, the appropriate sequence of goods that can
minimize work overload must be found. This is recognized in the literature as
the mixed model sequencing problem .

According to the results, the suggested greedy randomized adaptive search
technique was trapped in the local optima in different executions with (c =
47.5) in this example, and the local search procedure did not discover a neigh-
borhood solution that reduces the cycle time in some situations. After hy-
bridizing GRASP with the suggested GA and starting with all neighborhood
solutions discovered using GRASP as the initial population, superior solutions

5.6. Conclusion 95

Figure 5.7: Model (A) workload, Model (B) workload, Average workload.

with a minimum cycle time (c = 45) were discovered.

In solving the proposed numerical example, the genetic algorithm was im-
portant in finding new solutions that could not be found using the proposed
GRASP, and due to the presence of precedence relations constraints, the neigh-
borhood search method was restricted because, for each solution found by the
construction phase, a neighborhood solution that differed only in the positions
of two tasks had to be found. However, by using genetic algorithm opera-
tors (crossover and mutation) over generations, the probability of discovering
novel solutions increases.

5.6 Conclusion

The mixed model assembly line balance problem type 2 is addressed in this
chapter, with the goal of determining the appropriate job assignment across
workstations to reduce cycle time. To seed the initial population of the ge-
netic algorithm, a greedy randomized adaptive search procedure based on a
ranked positional weight heuristic is proposed, and a numerical example rep-
resenting a mixed-model assembly line that assembles two different products
is used to test the proposed hybridization. The results demonstrate the effi-
cacy of the suggested hybridization by applying GA to improve the solutions
discovered by GRASP. The proposed GRASP was trapped in the local optimal
in the first stage due to the use of a fixed alpha value, which cannot help the

96
Chapter 5. A Hybrid Grasp-genetic Algorithm for Mixed-model Assembly

Line Balancing Problem Type 2

GRASP expand the search space, but in the second stage, the genetic algorithm
starts with the GRASP solutions as an initial population to address the GRASP
drawback and, as a result, avoid the local optimal problem.

97

Chapter 6

Maximization of the assembly line
efficiency using an approach based
on Genetic Algorithm

6.1 Introduction

Maximizing line efficiency is an important challenge in manufacturing sys-
tems; it is known as the assembly line balance problem type E, and it requires
finding the ideal combination of workstations and cycle time that maximizes
line efficiency. We proposed a genetic algorithm-based technique for dealing
with SALBP type E in this contribution. To put the suggested genetic algo-
rithm to the test, three different SALBP issues are developed, and the results
are compared to those achieved by the Hybrid Reactive Greedy Randomized
Adaptive Search Procedure.

This chapter is organized as follows; first, we describe the problem. Then,
we discuss the proposed approach and the genetic algorithm used to solve the
SLABP type 2. After that, we have a section that presents the computational
experiments. Then, we discuss the obtained results. Finally, we conclude the
chapter.

98
Chapter 6. Maximization of the assembly line efficiency using an approach

based on Genetic Algorithm

6.2 Problem description and mathematical formu-

lation

n Number of tasks
w Number of workstations
c Cycle time
ti Processing time of task i
tsum The sum of all task times
tmax The maximum task time
I Idle time
Pi The set of predecessors of task i
Xij ∈ 0, 1 1 if task i is assigned to workstation j, 0 otherwise
cmin Lower bound of the cycle time
cmax Upper bound of the cycle time
wmin Lower bound of the number of workstations
wmax Upper bound of the number of workstations

SALBP type E is defined as follows: A single product is made on a se-
rial assembly line by conducting a series of procedures known as tasks. The
precedence relations graph represents the relationships between tasks. To be
performed, each task requires a processing time known as task time, and it is
assumed in SALBP type E that the nature of the task time is deterministic. Each
task should be assigned to a different workstation. Each workstation might
have several tasks, and the workstation time is the sum of all task times given
to the same workstation. The cycle time, which is a set amount of time that
each product unit spends at each workstation, must be longer than or equal to
the workstation time; in other words, the workstation time cannot be longer
than the cycle time. The idle time I is the duration during which the work-
station is inactive and is represented by the difference between the cycle time
and the workstation time. The objective in SALBP type E is to decrease the line
capacity, which is defined as the product of the cycle time and the number of
workstations, to maximize the line efficiency; consequently, the objective func-
tion can be represented by equation (6.1). Both cycle time and the number of
workstations are unknown.

6.2. Problem description and mathematical formulation 99

min
w

Z = c · w (6.1)

The line efficiency is defined as E = tsum
c∗w ∗ 100%. The idle time is defined

as I = (c ∗ w)− tsum. The Objective function 6.1 is under the following con-
straints:

w

∑
j=1

Xi,j = 1 where i = 1, ..., n (6.2)

n

∑
i=1

ti · Xi,j ≤ c where j = 1, ..., w (6.3)

w

∑
j=1

j · Xh,j ≤
w

∑
j=1

j · Xi,j where i = 1, ..., n and h ∈ Pi (6.4)

Xi,j ∈ {0, 1} (6.5)

Constraint (6.2) requires task i to be assigned to just one workstation. Con-
straint (6.3) guarantees that the total time spent on all tasks allocated to the
same workstation does not exceed the cycle time. The priority relations are
imposed by constraint (6.4).

The SALBP type E can be characterized by a [Wmin, Wmax] interval of the
possible number of workstations and/or a [cmin, cmax] interval of the potential
cycle duration [47]. The cycle time must be larger than or equal to the maxi-
mum task time but less than or equal to the total of all task times:

tmin ≤ c ≤ tmax

As stated in [44], the ideal number of workstations may be determined
when the cycle time is selected. The number of workstations lies between Wmin

and Wmax and may be calculated as follows:

Wmin =

⌈
∑n

i=1 ti

c

⌉
(6.6)

100
Chapter 6. Maximization of the assembly line efficiency using an approach

based on Genetic Algorithm

Wmax =

⌈
∑n

i=1 ti

tmax

⌉
(6.7)

Wmin ≤ W ≤ Wmax

It should be noted that if the cycle time is set to tmax, the lower and upper
bounds on the number of workstations will be equal.

6.3 The proposed genetic algorithm-based approach

6.3.1 The Adopted approach

The method used to solve SALBP type E is described in this section. The sug-
gested strategy for dealing with SALBP type E is introduced first, followed by
a description of the Genetic Algorithm that was used in our strategy.

There are two methods that can be utilized to establish the search space
and resolve SALBP type E. The first step is to use the lower bound and upper
bound [Cmin, Cmax] to calculate the cycle time interval. Next, find the ideal
number of workstations for Cmin, Cmax, and any other values between them.
In order to solve a SALBP type 1 sequence using this method, the optimal cou-
ple (cycle time, number of workstations) that maximizes line efficiency must
be determined. This couple is therefore the best solution for SALBP type E.
The second method involves using the lower bound and upper bound [Wmin,
Wmax] to calculate the range of the potential number of workstations, and then
searching for the ideal cycle time for Wmin, Wmax and all values in between.
The optimum combination (cycle duration, number of workstations) that max-
imizes line efficiency is selected as the best solution for SALBP type E in this
situation, which involves solving a sequence of SALBP type 2 problems.

In order to solve each SALBP type 2 and determine the best cycle time
for each given number of workstations, we employed in this study the second
strategy to solve SALBP type E and the genetic algorithm to solve SALBP type
2. The flowchart for the suggested method is shown in Figure 6.1.

6.3. The proposed genetic algorithm-based approach 101

Figure 6.1: Flowchart of the proposed approach to solve the SLBP-E.

Equation (6) is employed to calculate the upper constraint on the number
of workstations, and this upper bound serves as the stopping criterion. Due
to the fact that real-world assembly lines require at least two workstations,
we begin with Wmin = 2 rather than Wmin = 1 for the lower bound. When
solving the ALBP, for instance, certain tasks cannot be assigned to the same
workstation for safety concerns if there are negative zoning constraints that
must be taken into account [167, 214].

102
Chapter 6. Maximization of the assembly line efficiency using an approach

based on Genetic Algorithm

6.3.2 The Adopted genetic algorithm

The genetic algorithm is a meta-heuristic that begins with a set of solutions
known as the initial population, and each of those answers represents an indi-
vidual. This meta-heuristic employs a number of processes to produce a new
population, including the generation of the initial population, the evaluation
of individuals using a fitness function, the process of selection, and the use of
operators (crossover and mutation). These actions are repeated for a specified
number of generations. Each solution in the genetic algorithm we propose
represents a set of tasks, and the precedence rules that govern the order of
the tasks in the set must be observed. The name of this representation is the
"priority-based encoding method," in which each gene represents a task and
the position of the node in the sequence denotes the task’s priority of assign-
ment. The steps below serve as the foundation for the suggested GA to solve
SALBP-2.

• Initial population generation: We produce the initial population at ran-
dom. Every individual in the population represents a feasible solution.

• Individual evaluation: which is based on the fitness function that can be
used to assess individuals. The goal of this suggested genetic algorithm
is to solve SALBP-2, where the cycle time must be minimized. As a result,
the fitness function is based on the cycle time and is provided by F = 1/C,
where C is the cycle time.

• Selection: Using this stage, the population’s top candidates are chosen.
The tournament selection is employed in this GA and operates as follows:
Two participants (solutions) are chosen at random from the population
for each tournament iteration, and the solution with the better fitness
value (the shortest cycle time) is chosen. Up until the mating pool has
the required number of solutions, the selection process is repeated.

• Crossover operator: In this GA, two chosen solutions (parents) from the
mating pool are subjected to the one-point crossover in order to produce
new solutions (offspring). As seen in the picture below, repeated tasks
(genes) in generated solutions are replaced with missing tasks to main-
tain the feasibility of solutions. Additionally, the sequence of tasks is

6.3. The proposed genetic algorithm-based approach 103

checked to ensure that the new solution adheres to precedence restric-
tions.

Figure 6.2: One-point crossover

• Mutation operator: The Swap mutation is applied in this GA. It involves
exchanging the values of two tasks chosen at random from the solution.
Once a new solution has been found, its viability is examined, and any
necessary modifications are made. Depending on the mutation probabil-
ity parameter, which is set by the programmer, the process of mutation is
applied to some individuals.

104
Chapter 6. Maximization of the assembly line efficiency using an approach

based on Genetic Algorithm

Figure 6.3: Swap mutation.

6.4 Computational experiments

We constructed three distinct problems to evaluate the suggested methodol-
ogy. The first problem has 10 tasks, 9 precedence relations, and a total process-
ing time of 23. The second problem has 14 tasks, 16 precedence relationships,
and a 33-second processing time in total. Finally, there are 20 tasks, 22 prece-
dence relations, and a total processing time of 42 in the third problem. The
generated problems are displayed in Tables 6.1, 6.2, and 6.3. A computer with
8 GB of RAM and an Intel dual-core 1.70 GHz CPU is used to implement the
suggested methodology. Python is the programming language used. We uti-
lized the hybrid Reactive GRASP suggested in the next chapter to compare and
assess the effectiveness of the proposed genetic algorithm. For each issue, the
maximum number of workstations is determined using the formula (6). The
upper bounds identified for each issue are shown in table 6.4.

We fixed the lower bound by 2 to identify the range of potential values for
the number of workstations for each problem. As a result, the range of poten-
tial values for problem 1 is [Wmin = 2, Wmax = 6], problem 2 is [Wmin = 2, Wmax

= 7], and problem 3 is [Wmin = 2, Wmax = 9]. We can calculate the number of
SALB problems of type 2 that must be solved for each SALB problem of type
E by establishing the intervals of possible values for the number of worksta-
tions. For instance, the interval for SALBP-E number 1 is [Wmin = 2, Wmax =
6], which requires that 5 SALB problems of type 2 be completed beginning at

6.4. Computational experiments 105

Wmin = 2. The parameters employed by the proposed evolutionary algorithm
and the hybrid Reactive GRASP, respectively, to solve all problems are shown
in tables 6.5 and 6.6, respectively.

Table 6.1: Problem 1

Task Task time Immediate predecessors

1 1 -
2 2 -
3 1 -
4 3 1
5 3 2
6 4 3
7 1 4
8 2 5
9 4 6
10 2 7, 8, 9

Table 6.2: Problem 2

Task Task time Immediate predecessors

1 2 -
2 3 -
3 1 1
4 5 3
5 2 1
6 2 2
7 1 5, 6
8 3 4
9 5 6
10 1 7
11 1 9
12 2 10, 11
13 2 8, 10
14 3 13, 12

106
Chapter 6. Maximization of the assembly line efficiency using an approach

based on Genetic Algorithm

Table 6.3: Problem 3

Task Task time Immediate predecessors

1 3 -
2 1 -
3 1 -
4 2 -
5 2 1
6 2 2
7 4 3, 4
8 5 5, 6
9 1 7
10 2 8
11 3 8
12 3 9
13 2 9
14 2 9
15 1 10
16 1 11
17 1 12
18 3 13
19 2 14
20 1 15, 16, 17, 18, 19

Table 6.4: Upper bounds used in generated problems

Problem Upper bound on the number of workstations

1
⌈23

2

⌉
= 6

2
⌈33

5

⌉
= 7

3
⌈

42
5

⌉
= 9

6.5. Results and discussion 107

Table 6.5: Used parameters in the Genetic Algorithm

Parameters Values

Number of generations (for each problem 3000
Population size (number of individuals) 20
Crossover probability 0.5
Mutation probability 0.15
Elitism (The percentage of best individuals kept to be
passed to the next generation)

25 %

Table 6.6: Used parameters in the Hybrid Reactive GRASP

Parameters Values

Alpha values 0, 0.5, 1
Max iterations 500
Max search iterations (searching for neighborhood) 20
Update period 100

6.5 Results and discussion

Tables 6.7, 6.8, and 6.9 show the results obtained after solving Problems 6.1, 6.2,
and 6.3 using the suggested genetic algorithm and the hybrid reactive GRASP,
respectively. The reader can see from the tables that the outcomes produced
by the two algorithms are comparable. When there are 12, 8, or 6 workstations,
problem 01’s maximum line efficiency is 96 %. The hybrid reactive grasp out-
performs the genetic algorithm in problem 01 when w = 5, which is the only
distinction. When the number of workstations and the cycle time are assumed
to be 2 and 11, respectively, in both methods, the highest line efficiency for
problem 02 is 100 %. The greatest line efficiency for problem 03 is 100 % in
three instances when the cycle time and the number of workstations are corre-
spondingly (2 and 21), (3 and 14), and (6 and 7). We can see that when the line
efficiency is 100% across all problems, there is no lost time since the overall
idle time, which represents the time when workstations are idle, is equal to 0.

As a result of the data, we can draw the conclusion that the suggested ge-
netic algorithm is just as effective as the hybrid reactive GRASP in resolving
the SALBP type E’s subproblem of the simple assembly line balancing prob-
lem type 2. For each issue, the optimal workstation assignments are shown

108
Chapter 6. Maximization of the assembly line efficiency using an approach

based on Genetic Algorithm

Table 6.7: Obtained results for problem 1

Problem N-Workstations Best cycle time Idle time Line efficiency %
GA HRG GA HRG GA HRG

1 2 12 12 1 1 96 96
2 3 8 8 1 1 96 96
3 4 6 6 1 1 96 96
4 5 5 5 2 2 92 92
5 6 5 4 7 1 77 96

Table 6.8: Obtained results for problem 2

Problem N-Workstations Best cycle time Idle time Line efficiency %
GA HRG GA HRG GA HRG

1 2 17 17 1 1 97 97
2 3 11 11 0 0 100 100
3 4 9 9 3 3 92 92
4 5 7 7 2 2 94 94
5 6 6 6 3 3 92 92
6 7 5 5 2 2 94 94

Table 6.9: Obtained results for problem 3

Problem N-Workstations Best cycle time Idle time Line efficiency %
GA HRG GA HRG GA HRG

1 2 21 21 0 0 100 100
2 3 14 14 0 0 100 100
3 4 11 11 2 2 95 96
4 5 9 9 3 3 93 93
5 6 7 7 0 0 100 100
6 7 7 7 7 7 86 86
7 8 6 6 6 6 88 88
8 9 5 5 3 3 93 93

6.6. Conclusion 109

Table 6.10: The best found solutions for all problems

Problem Best solutions/assignments
Genetic algorithm Hybrid reactive GRASP

01 w1:[1,3,6], w2:[4,2]
w3:[5,7,8], w4:[4,10]

w1:[3,6], w2:[2,5,1]
w3:[9,8], w4:[4,7,10]

02
w1:[2,6,1,5,7,3]
w2:[4,10,9]
w3:[8,13,11,12,14]

w1:[2,1,3,4]
w2:[6,5,9,11,7]
w3:[10,12,8,13,14]

03
w1[3,4,7], w2:[1,9,2,14]
w3:[6,12,5], w4:[8,10]
w5:[13,11,16,15], w6:[17,19,18,20]

w1:[3,4,7], w2:[1,2,9,6]
w3:[5,8], w4:[14,11,19]
w5:[13,18,10], w6:[12,16,15,17,20]

in table 6.10 for each solution. The best solution is determined based on the
following criteria: the solution with the highest line efficiency is chosen first,
and if multiple solutions have the same line efficiency (as in problem 03), the
solution with the lowest cycle time is chosen as the best option.

6.6 Conclusion

In this chapter, we presented our contribution in which The simple assembly
line balance issue type E is tackled. The goal is to optimize assembly line ef-
ficiency. The primary problem is divided into multiple small assembly line
balance problems of type 2 in order to discover the ideal combination of work-
station number and cycle duration that maximizes total line efficiency. To solve
each SALBP type 2, an accepted genetic method is presented. The suggested
GA’s performance is tested on three distinct problems, and the findings are
compared to those of the hybrid reactive GRASP. According to the obtained
findings, we concluded that the suggested genetic algorithm is efficient in ad-
dressing the basic assembly line balancing problem and can achieve the same
outcomes as the efficient Hybrid Reactive GRASP.

111

Chapter 7

A Hybrid Approach for the
Mixed-Model Assembly Line
Balancing problem Type-II

7.1 Introduction

Manufacturers utilize mixed-model assembly lines to produce various ver-
sions of a single product in order to satisfy a variety of client needs without
changing the assembly line’s layout. Models are produced in mixed order, and
the cycle time can be used to calculate how long it takes to produce one model.
The mixed-model assembly line balancing problem type II (MiMALBP-II) is
a well-known problem that must be solved in the step of designing the new
assembly line in order to find a minimum average cycle time while taking into
account all models to be produced in the assembly line. Minimizing the cycle
time is a crucial issue by which the production rate of the mixed-model assem-
bly line can be maximized. In order to solve MiMALBP-II, we suggest a hybrid
approach in this study that combines the Ranked Positional Weight (RPW) and
Reactive Greedy Randomized Adaptive Search Procedure (Reactive GRASP)
heuristics. Three problems are used to evaluate the proposed method, and the
outcomes are compared to those of the standard GRASP.

This chapter is arranged as follows: initially, we explain the mixed-model
assembly line balance problem type 2. Following that, we will go through the
proposed hybrid reactive GRASP. The computational experiments are com-
pleted in the next section. The results are then discussed. Finally, we conclude

112
Chapter 7. A Hybrid Approach for the Mixed-Model Assembly Line

Balancing problem Type-II

the chapter.

7.2 Problem description and mathematical formu-

lation

7.2.1 Problem description

In order to create a straight assembly line, a definite number K of workstations
must be placed in a serial fashion. The goal is to determine the best cycle time
C for this setup. Various models M of the same product are put together in
this scenario in an interspersed order, and each model has its own precedence
relations diagram G. The execution priority of each task t is determined by the
precedence relations. The total number of tasks T that must be assigned to
a group of workstations can be determined by combining several precedence
relations diagrams into a single diagram. The workstation time (or cycle time)
cannot be exceeded by the total task times allocated to a given workstation.

7.2.2 Mathematical formulation

T Number of tasks
i Task i
C Cycle time
K Number of workstations
k Workstation k
ti Task time of task i
Pi The set of predecessors of task i
Xik ∈ 0, 1 1 if task i is assigned to workstation j, 0 otherwise

The mathematical formulation of the Simple Assembly Line Balancing
Problem, which is as follows, can be employed by integrating all precedence
diagrams into one diagram:

min C (7.1)

7.3. The proposed HYBRID REACTIVE GRASP 113

Equation (1) defines the objective function (minimizing the cycle time) and
it is under the following constraints:

K

∑
k=1

Xi,k = 1 where i = 1, ..., T (7.2)

T

∑
i=1

ti · Xi,k ≤ c where k = 1, ..., K (7.3)

K

∑
k=1

j · Xh,k ≤
K

∑
k=1

k · Xi,k where h ∈ Pi (7.4)

Xi,k ∈ {0, 1} (7.5)

Task i will always be assigned to a single workstation according to con-
straint (7.2). Constraint (7.3) ensures that the cycle time will not be exceeded
by the total process times of all jobs assigned to the same workstation. The
respect for task hierarchy is ensured by constraint (7.4). The integrity of the
choice variables is finally constrained by constraint (7.5).

7.3 The proposed HYBRID REACTIVE GRASP

The Greedy Randomized Adaptive Search Procedure (GRASP), a multi-start
meta-heuristic, is built on the foundation of two main phases: the construction
phase and the local search phase. While the local search phase is used in the
second stage to improve the first solution, the construction phase is utilized to
create an initial solution that is not always the best one. The candidate list (CL),
which includes all candidates (in our instance, tasks), and the restricted candi-
date list (RCL) are both employed throughout the creation process. The fixed
value of the α (where α ∈ [0, 1]) parameter and the costs of candidates in the
CL are used to calculate a threshold value that determines which items from
the CL should make up the RCL. Following that, one candidate is randomly
selected from the RCL to create the partial solution, and the chosen individual
is then removed from the candidate list [202].

114
Chapter 7. A Hybrid Approach for the Mixed-Model Assembly Line

Balancing problem Type-II

In order to approximate solutions to the time slot assignment problem,
Prais and Ribeiro [203] initially suggested the Reactive GRASP, an improve-
ment of the original GRASP. The reactive GRASP differs from the basic GRASP
in that it incorporates the idea of learning mechanisms during the construction
phase and, rather than using a fixed alpha value during each iteration, selects
at random an alpha value from a discrete set of possible values using selec-
tion probabilities. All selection probabilities have the same value in the initial
iteration. Pi = 1/m, where i = 1,...,m (m is the number of alpha values), and
the Reactive GRASP updates all selection probabilities based on prior results
using equation (6) [202] after each predetermined period.

Pi =
qi

∑m
j=1 qj

(7.6)

Where qi = Ẑ/A i (i=1,...,m), Ẑ is the incumbent answer and Ai is the aver-
age value of all solutions discovered using α = αi where i=1,...,m. If the values
of α = αi result in the best solutions on average, the value of qi is increased.
To develop the initial solution in our proposed Hybrid Reactive GRASP, we
use the Ranked Positional Weight (RPW) heuristic as a greedy function in the
construction phase. The CL contains all assignable jobs in the first iteration,
and the best tasks are chosen from the CL based on their positional weight
calculated by the RPW to generate the RCL. The threshold value must be
determined to decide which tasks from the CL can be selected to form the
RCL. In this stage, we incorporate certain changes to compute the threshold
value; instead of utilizing the positional weight, we use its inverse (1/posi-
tional weight), as shown in the equation below:

TCth = 1/Wmin + α(1/Wmax − 1/Wmin) (7.7)

Where Wmin and Wmax are the minimal and maximal positional weights,
respectively, of tasks that form the CL. The reason for using the inverse of the
positional weight is that the Reactive GRASP uses the threshold value to de-
termine which candidates can be selected from the CL to form the RCL in min-
imization problems, but in our case, we prioritize tasks having maximal posi-
tional weights, and using the inverse of the positional weight, we can maintain

7.4. Computational experiments 115

the concept of the value-based mechanism used by the GRASP [201]. After the
threshold value has been determined, all tasks with inverse positional weights
that are less than or equal to the threshold value are chosen to construct the
RCL. A task is selected at random from the RCL to create the partial solution.
A change must be made by removing the chosen task from the CL at the con-
clusion of the iteration. New jobs that can be assigned are also taken off the
list of tasks that must all be given to the CL. With this method, we combine
the notion of randomization employed by the Greedy Randomized Adaptive
Search Procedure with the concept of the greediness of the Ranked Positional
Weight (desire for tasks having the highest positional weight).

In order to identify a better solution, we employ the local search phase,
which uses the produced initial solution as a parameter. The final solution dis-
covered by the construction phase might not be the best one. To maintain the
viability of solutions, we use a neighbor search procedure in the local search
phase of the proposed Hybrid reactive GRASP to try to find a neighbor as-
signment starting from the initial assignment discovered by the construction
phase. A maximum search value that is supplied as a parameter to the local
search phase controls how the proposed neighbor search procedure searches
for a neighbor solution for a defined number of searches. The final result is the
neighbor solution that yields the best objective value. The solution with the
lowest objective value is kept as the incumbent solution by the Hybrid Reac-
tive GRASP, which compares the objective values of the returned solution and
the one that was previously held as the incumbent solution.

7.4 Computational experiments

On a computer with an Intel Core i3, 1.70 GHz, Python 3.7 was used to im-
plement both the proposed Hybrid Reactive GRASP and the standard GRASP.
The two algorithms are put to the test and compared using three different Mi-
MALBP problems.

7.4.1 Data sets and parameters

The first issue is taken from [215], the second issue is derived from [216],
and the third issue is taken from (https://assembly-line balancing.de/). Each

116
Chapter 7. A Hybrid Approach for the Mixed-Model Assembly Line

Balancing problem Type-II

problem’s features are shown in table 7.1; the parameters utilized in the Hy-
brid Reactive GRASP and the basic GRASP, respectively, to solve all issues, are
shown in tables 7.2 and 7.3.

Table 7.1: Problems characteristics

Problem Size Number of
tasks

Number of
models

Number of work-
stations

Problem1 Small 12 2 4
Problem2 Medium 20 3 5
Problem3 Large 25 4 6

Table 7.2: Used parameters in the Hybrid Reactive GRASP

Problem Iterations Max search Alpha values Update period

Problem1 2000 15 0, 0.5, 1 100
Problem2 2000 25 0, 0.6, 1 100
Problem3 2000 35 0, 0.4, 0.9 100

Table 7.3: Used parameters in the basic GRASP

Problem Iterations Max search Alpha values

Problem1 2000 15 0
Problem2 2000 25 0
Problem3 2000 35 0

7.4.2 Results and discussion

After applying the Hybrid Reactive GRASP and the standard GRASP to solve
problems 1, 2, and 3, respectively, the findings are summarized in tales 7.4,
7.6, and ??. According to Table 7.4, both algorithms discovered the same cycle
time for problem 1, however, the Hybrid Reactive GRASP found more solu-
tions than the classic GRASP did. According to table 7.6, the Hybrid Reactive
GRASP outperformed the basic GRASP in terms of cycle time and produced
more solutions for problem 2. Table ?? shows that the Hybrid Reactive GRASP
for problem 3 achieves the ideal cycle time. The Hybrid Reactive GRASP finds
671 solutions compared to the Basic GRASP’s 23 solutions. Finally, there isn’t
much of a difference in how long it takes for both algorithms to solve every

7.5. Conclusion 117

problem. The Hybrid Reactive GRASP expands the search space and increases
the likelihood of discovering an optimal solution that cannot be discovered
with the standard GRASP, which is based on a fixed alpha value, leading to
the discovery of additional solutions.

Table 7.4: Obtained results for problem 1

Algorithm Execution
time (min)

Number of
solutions
found

Optimal cycle
time

Hybrid Reactive GRASP 9:21.623 362 14.1
Basic GRASP 7:74.325 33 14.1

Table 7.5: Obtained results for problem 2

Algorithm Execution
time (min)

Number of
solutions
found

Optimal cycle
time

Hybrid Reactive GRASP 16:20.682 671 1.5
Basic GRASP 14:50.059 47 1.6

Table 7.6: Obtained results for problem 3

Algorithm Execution
time (min)

Number of
solutions
found

Optimal cycle
time

Hybrid Reactive GRASP 40:01.294 671 7.7
Basic GRASP 35:23.3306 23 8

7.5 Conclusion

In this final contribution, a hybrid reactive GRASP is employed to tackle the
mixed-model assembly line balancing problem with the goal of lowering cy-
cle time to maximize the assembly line’s output rate. The ranking positional
weight heuristic was utilized as a greedy function in the building phase, and a
simple neighbor search strategy was applied to improve produced solutions in
the local search phase. The suggested hybrid reactive GRASP was compared

118
Chapter 7. A Hybrid Approach for the Mixed-Model Assembly Line

Balancing problem Type-II

to the basic reactive GRASP, and three distinct problems were chosen. The re-
sults revealed that the hybrid reactive GRASP outperformed the basic one in
tackling medium and big tasks.

119

Chapter 8

Conclusions and Perspectives

In conclusion, this thesis has delved into the intricacies of resource optimiza-
tion in complex assembly lines, with a primary focus on addressing the assem-
bly line balancing problem. Through extensive research, analysis, and the ap-
plication of various optimization techniques, we have explored the challenges
associated with achieving efficiency, productivity, and cost-effectiveness in these
manufacturing environments. The findings of this study have provided valu-
able insights into the methods and strategies that can be employed to optimize
assembly lines. We have demonstrated that a combination of mathematical
models, heuristics, and meta-heuristics can play a crucial role in achieving
a balance between workstations, reducing cycle times, and reducing energy
consumption, and other resources.

Summary of Our Contributions:

In this thesis, we explored the optimization difficulties of multiple re-
sources in various complicated assembly lines, with an emphasis on the as-
sembly line balancing problem and its various variations. We provided the
state of the art of the problem including its different classifications, and types.
Furthermore, We provided an overview of the various methods used in recent
years to solve the discovered ALBP versions.

The first contribution addresses the problem of energy-efficient robotic
mixed-model assembly line balancing. The primary goal of resolving this issue
is to reduce energy consumption in robotic assembly lines where each robot
has unique properties. We proposed a memory-based cuckoo search algorithm
(MBCSA) to solve this difficult problem.

120 Chapter 8. Conclusions and Perspectives

Our second contribution addressed the mixed-model assembly line bal-
ancing problem type 1, which aims to minimize the number of workstations
in the line. We proposed a hybrid reactive greedy randomized adaptive search
procedure (HRGRASP) to solve this problem. The HRGRASP is comprised
of four major steps: construction, local search, evaluation of obtained solu-
tions, and updating of selection probabilities. During the construction phase,
we used the shortest processing time heuristic to build a solution. In the local
search phase, obtained solutions are replaced by their best neighbors using a
simple neighborhood procedure. The proposed HRGRASP is tested on seven
problems and the results are compared to other methods.

In the third contribution, we proposed a hybridization of two meta-heuristics
(the genetic algorithm and the greedy randomized adaptive search procedure)
to solve the mixed-model assembly line balancing problem type 2, which aims
to optimize the line’s cycle time. The GRASP is used in this study to generate
a set of feasible solutions to the addressed problem. In the genetic algorithm,
the created set serves as the first population. We used ranked positional weight
(RPW) in the GRASP’s construction phase to create a solution, and a neighbor-
hood procedure was used in the local search phase to improve the solution.

In our fourth contribution, We addressed the simple assembly line bal-
ancing problem type E, which aims to optimize both the cycle time and the
number of workstations at the same time. As a solution to this problem, we
have proposed a genetic algorithm (GA)-based approach. To evaluate our ap-
proach, we generated three different problems, and each problem was solved
several times based on the problem data. The obtained results are compared
to the reactive greedy randomized adaptive search procedure’s results.

In the fifth contribution, we proposed a hybridization of the ranked po-
sitional weight (RPW) heuristic and the reactive greedy randomized adaptive
search procedure (RGRASP) to solve the mixed-model assembly line balancing
problem type 2. The RPW is used in the RGRASP construction phase to build
feasible solutions. We used a local search method to find better neighbor solu-
tions during the RGRASP’s local search phase. To put the proposed algorithm
to the test, three problems of varying sizes are generated.

Perspectives and Future Directions:

Chapter 8. Conclusions and Perspectives 121

Hybridization of Algorithms: The various approaches presented in this the-
sis, from memory-based cuckoo search to hybrid reactive greedy randomized
adaptive search procedures, have shown promising results in addressing as-
sembly line balancing problems. Future research can explore further hybridiza-
tion of these algorithms, combining the strengths of different techniques to
tackle even more complex and nuanced variations of assembly line balanc-
ing problems. The pursuit of novel algorithmic combinations may lead to im-
proved solutions and broader applicability.

Energy-Efficient Manufacturing: With a growing emphasis on sustainabil-
ity and energy efficiency, there is a need to delve deeper into the optimization
of energy consumption in robotic assembly lines. Future work can explore
additional factors that affect energy efficiency, such as dynamic workload ad-
justments, resource allocation, and smart scheduling. Developing methods to
integrate real-time data into the assembly line balancing process can contribute
to more sustainable manufacturing practices.

Data-Driven Approaches: The success of assembly line balancing is closely
tied to the quality and availability of data. Future research can focus on data-
driven approaches, including machine learning and predictive analytics, to op-
timize the decision-making process. By integrating data from various sources,
such as sensor networks and historical performance records, assembly line
managers can make more informed decisions for resource allocation and pro-
duction planning.

Dynamic and Real-Time Balancing: Assembly lines are often subjected to dy-
namic changes, such as product variations, machine failures, and unexpected
resource constraints. Future work should explore adaptive assembly line bal-
ancing algorithms capable of dynamically adjusting to these changes in real-
time. These algorithms could make use of predictive maintenance and IoT
technologies to minimize disruptions and enhance overall efficiency.

Benchmark Datasets and Evaluation Metrics: The standardization of bench-
mark datasets and evaluation metrics is crucial for comparing different assem-
bly line balancing algorithms. Future research can focus on the development of
comprehensive benchmark datasets that reflect real-world scenarios, enabling
more rigorous comparisons and fostering healthy competition in the field.

122 Chapter 8. Conclusions and Perspectives

Human-Robot Collaboration: As robotic technologies continue to advance,
there is potential for greater collaboration between humans and robots on as-
sembly lines. Future work can explore how human-robot teams can be effi-
ciently integrated, addressing not only the allocation of tasks but also the dy-
namics of collaboration and coordination. The development of algorithms for
optimizing human-robot assembly lines could lead to enhanced productivity
and worker satisfaction.

In conclusion, the research presented in this thesis provides a solid foun-
dation for addressing the optimization of resources in complex assembly lines.
However, the field is dynamic and evolving, and there are numerous avenues
for further exploration. By continuing to push the boundaries of algorithmic
innovation, embracing data-driven approaches, and adapting to the changing
landscape of manufacturing, researchers can contribute to the advancement of
efficient and sustainable assembly line operations across various industries.

Bibliography

[1] "Assembly Line Balancing Models". 2008, pp. 477–550. DOI: 10.1007/978-1-84800-181-7_7.

[2] M. Peshkin and J.E. Colgate. "Cobots". July 1999, pp. 335–341. DOI:

10.1108/01439919910283722.

[3] R. V. Johnson. "Assembly line balancing algorithms: computation comparisons". May 1981,

pp. 277–287.

[4] U. Saif, Z. Guan, B. Wang, J. Mirza, and S. Huang. "A survey on assembly lines and its types".

June 2014, pp. 95–105. DOI: 10.1007/s11465-014-0302-1.

[5] M. R. Abdullah Make, M.F.F. Ab. Rashid, and M.M. Razali. "A review of two-sided assembly

line balancing problem". Mar 2017, pp. 1743–1763. DOI: 10.1007/s00170-016-9158-3.

[6] N. Boysen, M. Fliedner, and A. Scholl. "A classification of assembly line balancing problems".

Dec 2007, pp. 674–693. DOI: 10.1016/j.ejor.2006.10.010.

[7] S. G. Ponnambalam, P. Aravindan, and G. Mogileeswar Naidu. "A Multi-Objective Genetic

Algorithm for Solving Assembly Line Balancing Problem". Apr 2000, pp. 341–352. DOI:

10.1007/s001700050166.

[8] M. Ghobakhloo. "Industry 4.0, digitization, and opportunities for sustainability". Apr 2020, p.

119869. DOI: 10.1016/j.jclepro.2019.119869.

[9] M. Jusop and M.F.F. Ab Rashid. "Optimisation of Assembly Line Balancing Type-E with

Resource Constraints Using NSGA-II". July 2016, pp. 195–199. DOI:

10.4028/www.scientific.net/KEM.701.195.

[10] B. Yagmahan. "Mixed-model assembly line balancing using a multi-objective ant colony

optimization approach". Sept 2011, pp. 12453–12461. DOI: 10.1016/j.eswa.2011.04.026.

[11] P. Chutima. "A comprehensive review of robotic assembly line balancing problem". Jan 2022,

pp. 1–34. DOI: 10.1007/s10845-020-01641-7.

[12] L. Belkharroubi and K. Yahyaoui. "Solving the energy-efficient Robotic Mixed-Model

Assembly Line balancing problem using a Memory-Based Cuckoo Search Algorithm". Sept 2022,

p. 105112. DOI: 10.1016/j.engappai.2022.105112.

[13] L. Belkharroubi and K. Yahyaoui. "Solving the mixed-model assembly line balancing

problem type-I using a Hybrid Reactive GRASP". Dec 2022, pp. 108–131. DOI:

10.1080/21693277.2022.2065380.

[14] L. Belkharroubi and K. Yahyaoui. "A Hybrid Grasp-genetic Algorithm for Mixed-model

Assembly Line Balancing Problem Type 2". Sept 2021, pp. 424–432.

[15] L. Belkharroubi and K. Yahyaoui. "Maximization of the assembly line efficiency using an

approach based on Genetic Algorithm". 2022 2nd International Conference on Innovative

Research in Applied Science, Engineering and Technology (IRASET). Meknes, Morocco: IEEE,

Mar. 3, 2022, pp. 1–6. DOI: 10.1109/IRASET52964.2022.9737934.

[16] L. Belkharroubi and K. Yahyaoui. "A Hybrid approach for the Mixed-Model Assembly Line

Balancing problem Type II". 2021 11th IEEE International Conference on Intelligent Data

Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS).

Cracow, Poland: IEEE, Sept. 22, 2021, pp. 329–332. DOI:

10.1109/IDAACS53288.2021.9661039.

[17] J. M. Wilson. "Henry Ford vs. assembly line balancing". Feb 2014, pp. 757–765. DOI:

10.1080/00207543.2013.836616.

[18] İ. Baybars. "A Survey of Exact Algorithms for the Simple Assembly Line Balancing

Problem". Aug 1986, pp. 909–932. DOI: 10.1287/mnsc.32.8.909.

[19] A. Scholl. Balancing and sequencing of assembly lines: with 75 tables. 2nd, rev. ed.

Contributions to management science. HeidelbergNewYork: Physica-Verl, 1999. 318pp.

[20] B. Rekiek, A. Dolgui, A. Delchambre, and A. Bratcu. "State of art of optimization methods

for assembly line design". Jan 2002, pp. 163–174. DOI: 10.1016/S1367-5788(02)00027-5.

[21] L. Turpin. "A note on understanding cycle time". Nov 2018, pp. 113–117. DOI:

10.1016/j.ijpe.2018.09.004.

[22] T.R. Hoffmann. "Eureka: A Hybrid System for Assembly Line Balancing". Jan 1992, pp. 39–

47. DOI: 10.1287/mnsc.38.1.39.

[23] I. Gräßler, D. Roesmann, C. Cappello, and E. Steffen. "Skill-based worker assignment in a

manual assembly line". 2021, pp. 433–438. DOI: 10.1016/j.procir.2021.05.100.

[24] Z. Li, N. Dey, A.S. Ashour, and Q. Tang. "Discrete cuckoo search algorithms for two-sided

robotic assembly line balancing problem". Nov 2018, pp. 2685–2696. DOI: 10.1007/s00521-017-

2855-5. URL: http://link.springer.com/10.1007/s00521-017-2855-5 (visited on 09/20/2023).

[25] Executive Summary World Robotics 2018 Industrial Robots. 2018.

[26] Z. Li, M.N. Janardhanan, Q. Tang, and P. Nielsen. "Co-evolutionary particle swarm

optimization algorithm for two-sided robotic assembly line balancing problem". Sept 2016, p.

168781401666790. DOI: 10.1177/1687814016667907.

[27] G. Boschetti, M. Faccio, M. Milanese, and R. Minto. "C-ALB (Collaborative Assembly Line

Balancing): a new approach in cobot solutions". Oct 2021, pp. 3027–3042. DOI: 10.1007/s00170-

021-07565-7.

[28] H. Aguilar, A. García-Villoria, and R. Pastor. "A survey of the parallel assembly lines

balancing problem". Dec 2020, p. 105061. DOI: 10.1016/j.cor.2020.105061.

[29] R. Rachamadugu. "Assembly line design with incompatible task assignments". Oct 1991, pp.

469–487. DOI: 10.1016/0272-6963(91)90006-J.

[30] H. Wang and S. Hu. "Manufacturing complexity in assembly systems with hybrid

configurations and its impact on throughput". 2010, pp. 53–56. DOI: 10.1016/j.cirp.2010.03.007.

[31] S. Keckl, W. Kern, A. Abou-Haydar, and E. Westkämper. "An Analytical Framework for

Handling Production Time Variety at Workstations of Mixed-model Assembly Lines". 2016, pp.

201–206. DOI: 10.1016/j.procir.2015.12.080.

[32] A. Alghazi and M.E. Kurz. "Mixed model line balancing with parallel stations, zoning

constraints, and ergonomics". Jan 2018, pp. 123–153. DOI: 10.1007/s10601-017-9279-9.

[33] C. Becker and A. Scholl. "A survey on problems and methods in generalized assembly line

balancing". Feb 2006, pp. 694–715. DOI: 10.1016/j.ejor.2004.07.023.

[34] O. Battaïa and A. Dolgui. "Reduction approaches for a generalized line balancing problem".

Oct 2012, pp. 2337–2345. DOI: 10.1016/j.cor.2011.11.022.

[35] P. Bryan. "A STUDY ON GENERAL ASSEMBLY LINE BALANCING MODELING

METHODS AND TECHNIQUES". PhD thesis. Clemson University. 257pp.

[36] M. Jusop and M.F.F. Ab Rashid. "A review on simple assembly line balancing type-e

problem". Dec 2015, p. 012005. DOI: 10.1088/1757-899X/100/1/012005.

[37] Y. Kara, T. Paksoy, and C.-T. Chang. "Binary fuzzy goal programming approach to single

model straight and U-shaped assembly line balancing". June 2009, pp. 335–347. DOI:

10.1016/j.ejor.2008.01.003.

[38] M. Vilà and J. Pereira. "An enumeration procedure for the assembly line balancing problem

based on branching by non-decreasing idle time". Aug 2013, pp. 106–113. DOI:

10.1016/j.ejor.2013.03.003.

[39] R. Klein and A. Scholl. "Maximizing the production rate in simple assembly line balancing—

A branch and bound procedure". June 1996, pp. 367–385. DOI: 10.1016/0377-2217(95)00047-X.

[40] İ. Baybars. "An efficient heuristic method for the simple assembly line balancing problem".

Jan 1986, pp. 149–166. DOI: 10.1080/00207548608919719.

[41] B. W. Pearce, K. Antani, L. Mears, K. Funk, M.E. Mayorga, and M.E. Kurz. "An effective

integer program for a general assembly line balancing problem with parallel workers and

additional assignment restrictions". Jan 2019, pp. 180–192. DOI: 10.1016/j.jmsy.2018.12.011.

[42] R. Pastor and L. Ferrer. "An improved mathematical program to solve the simple assembly

line balancing problem". June 2009, pp. 2943–2959. DOI: 10.1080/00207540701713832.

[43] E. C. Sewell and S.H. Jacobson. "A Branch, Bound, and Remember Algorithm for the Simple

Assembly Line Balancing Problem". Aug 2012, pp. 433–442. DOI: 10.1287/ijoc.1110.0462.

[44] N.-C. Wei and I.-M. Chao. "A solution procedure for type E simple assembly line balancing

problem". Oct 2011, pp. 824–830. DOI: 10.1016/j.cie.2011.05.015.

[45] O. Kilincci. "A Petri net-based heuristic for simple assembly line balancing problem of type

2". Jan 2010, pp. 329–338. DOI: 10.1007/s00170-009-2082-z.

[46] C. Blum. "Beam-ACO for Simple Assembly Line Balancing". Nov 2008, pp. 618–627. DOI:

10.1287/ijoc.1080.0271.

[47] R. Esmaeilbeigi, B. Naderi, and P. Charkhgard. "The type E simple assembly line balancing

problem: A mixed integer linear programming formulation". Dec 2015, pp. 168–177. DOI:

10.1016/j.cor.2015.05.017.

[48] O. Kilincci and G.M. Bayhan. "P-invariant-based algorithm for simple assembly line

balancing problem of type-1". May 2008, pp. 400–409. DOI: 10.1007/s00170-007-0975-2.

[49] H.-y. Zhang. "An improved immune algorithm for simple assembly line balancing problem

of type 1". Dec 2017, pp. 317–326. DOI: 10.1177/1748301817710924.

[50] H. Zhang, Q. Yan, Y. Liu, and Z. Jiang. "An integer-coded differential evolution algorithm

for simple assembly line balancing problem of type 2". Aug 2016, pp. 246–261. DOI: 10.1108/AA-

11-2015-089.

[51] J. Pereira. "Empirical evaluation of lower bounding methods for the simple assembly line

balancing problem". June 3 2015, pp. 3327–3340. DOI: 10.1080/00207543.2014.980014.

[52] J. F. Gonçalves and J.R. De Almeida. "A Hybrid Genetic Algorithm for Assembly Line

Balancing". 2002, pp. 629–642. DOI: 10.1023/A:1020377910258.

[53] H. Gökçen and K. Agˇpak. "A goal programming approach to simple U-line balancing

problem". June 2006, pp. 577–585. DOI: 10.1016/j.ejor.2004.09.021.

[54] J. Dou, J. Li, and C. Su. "A novel feasible task sequence-oriented discrete particle swarm

algorithm for simple assembly line balancing problem of type 1”. Dec. 2013, pp. 2445–2457. DOI:

10.1007/s00170-013-5216-2.

[55] G. Jirasirilerd, R. Pitakaso, K. Sethanan, S. Kaewman, W. Sirirak, and M. Kosacka-Olejnik.

"Simple Assembly Line Balancing Problem Type 2 By Variable Neighborhood Strategy Adaptive

Search: A Case Study Garment Industry". Mar 2020, p. 21. DOI: 10.3390/joitmc6010021.

[56] M. J. Saltzman and I. Baybars. "A two-process implicit enumeration algorithm for the simple

assembly line balancing problem". Oct 1987, pp. 118–129. DOI: 10.1016/0377-2217(87)90276-1.

[57] C. G. S. Sikora, T.C. Lopes, D. Schibelbain, and L. Magatão. "Integer-based formulation for

the simple assembly line balancing problem with multiple identical tasks". Feb 2017, pp. 134–144.

DOI: 10.1016/j.cie.2016.12.026.

[58] O. A. Arık, E. Köse, and J. Forrest. "Simple assembly line balancing problem of Type 1 with

grey demand and grey task durations". Oct 2019, pp. 401–414. DOI: 10.1108/GS-05-2019-0011.

[59] S. V. Ravelo. "Approximation algorithms for simple assembly line balancing problems". Mar

2022, pp. 432–443. DOI: 10.1007/s10878-021-00778-2.

[60] Emrani Noushabadi, Bahalke, Dolatkhahi, Dolatkhahi, and Makui. "Simple assembly line

balancing problem under task deterioration". 2011, pp. 583–592. DOI:

10.5267/j.ijiec.2011.02.003.

[61] A. Baskar and M. Anthony Xavior. "Heuristics based on Slope Indices for Simple Type I

Assembly Line Balancing Problems and Analyzing for a Few Performance Measures". 2020, pp.

3171–3180. DOI: 10.1016/j.matpr.2020.03.454.

[62] B. Toklu and U. Özcan. "A fuzzy goal programming model for the simple U-line balancing

problem with multiple objectives". Mar 2008, pp. 191–204. DOI: 10.1080/03052150701651642.

[63] M. Lalaoui and A.E. Afia. "A Fuzzy generalized simulated annealing for a simple assembly

line balancing problem". 2018, pp. 600–605. DOI: 10.1016/j.ifacol.2018.11.489.

[64] M. Arikan. "A Tabu Search Algorithm for Type-2 U-Shaped Simple Assembly Line

Balancing Problem". Vol. 144. Lecture Notes on Data Engineering and Communications

Technologies. Cham: Springer International Publishing, 2022, pp. 435–449. DOI: 10.1007/978-3-

031-10388-9_32.

[65] J. I. Van Zante-de Fokkert and T.G. De Kok. "The mixed and multi model line balancing

problem: a comparison". Aug 1997, pp. 399–412. DOI: 10.1016/S0377-2217(96)00162-2.

[66] A. Noorul Haq, K. Rengarajan, and J. Jayaprakash. "A hybrid genetic algorithm approach to

mixed-model assembly line balancing". Mar. 2006, pp. 337–341. DOI: 10.1007/s00170-004-2373-

3.

[67] A. Mamun, A. Khaled, S. Ali, and M. Chowdhury. "A heuristic approach for balancing mixed-

model assembly line of type I using genetic algorithm". Sept 2012, pp. 5106–5116. DOI:

10.1080/00207543.2011.643830.

[68] S. Akpınar, G. Mirac Bayhan, and A. Baykasoglu. "Hybridizing ant colony optimization via

genetic algorithm for mixed-model assembly line balancing problem with sequence dependent

setup times between tasks". Jan 2013, pp. 574–589. DOI: 10.1016/j.asoc.2012.07.024.

[69] P. Sadeghi, R.D. Rebelo, and J.S. Ferreira. "Balancing mixed-model assembly systems in the

footwear industry with a variable neighborhood descent method". July 2018, pp. 161–176. DOI:

10.1016/j.cie.2018.05.020.

[70] D. Thiruvady, A. Nazari, and A. Elmi. "An Ant Colony Optimisation Based Heuristic for

Mixed-model Assembly Line Balancing with Setups". 2020 IEEE Congress on Evolutionary

Computation (CEC). Glasgow, UK: IEEE, July 2020, pp. 1–8. DOI:

10.1109/CEC48606.2020.9185757.

[71] M. Lalaoui and A.E. Afia. "A versatile generalized simulated annealing using type-2 fuzzy

controller for the mixed-model assembly line balancing problem". 2019, pp. 2804–2809. DOI:

10.1016/j.ifacol.2019.11.633.

[72] J.-H. Zhang, A.-P. Li, and X.-M. Liu. "Hybrid genetic algorithm for a type-II robust mixed-

model assembly line balancing problem with interval task times". June 2019, pp. 117–132. DOI:

10.1007/s40436-019-00256-3.

[73] H. Gökçen and E. Erel. "BINARY INTEGER FORMULATION FOR MIXED-MODEL

ASSEMBLY LINE BALANCING PROBLEM". Apr 1998, pp. 451–461. DOI: 10.1016/S0360-

8352(97)00142-3.

[74] S. Choudhary and S. Agrawal. "Multiobjective Mixed Model Assembly Line Balancing

Problem". 2015, pp. 655–663. DOI: 10.1007/978-3-319-11218-3_58.

[75] E. Erel and H. Gokcen. "Shortest-route formulation of mixed-model assembly line balancing

problem". July 1999, pp. 194–204. DOI: 10.1016/S0377-2217(98)00115-5.

[76] H. Gokcen and E. Erel. "A goal programming approach to mixed-model assembly line

balancing problem". Jan. 1997, pp. 177–185. DOI: 10.1016/S0925-5273(96)00069-2.

[77] P. Sivasankaran and P.M. Shahabudeen. "Heuristics for Mixed Model Assembly Line

Balancing Problem with Sequencing". 2016, pp. 41–65. DOI: 10.4236/iim.2016.83005.

[78] Y. Zhang, L.-f. Tao, and F. Ju. "Balancing of mixed-model assembly line based on ant colony

optimization algorithm". 2011 IEEE 18th International Conference on Industrial Engineering and

Engineering Management (EM2011). Changchun, China: IEEE, Sept. 2011, pp. 898–901. DOI:

10.1109/ICIEEM.2011.6035302.

[79] W. Zhang and M. Gen. "An efficient multiobjective genetic algorithm for mixed-model

assembly line balancing problem considering demand ratio-based cycle time". June 2011, pp. 367–

378. DOI: 10.1007/s10845-009-0295-5.

[80] M. M. Razali, M.F.F. Ab. Rashid, and M.R.A. Make. "Mathematical Modelling of Mixed-

Model Assembly Line Balancing Problem with Resources Constraints". Nov 2016, p. 012002.

DOI: 10.1088/1757-899X/160/1/012002.

[81] X. Liu, X. Yang, and M. Lei. "Optimisation of mixed-model assembly line balancing problem

under uncertain demand". Apr 2021, pp. 214–227. DOI: 10.1016/j.jmsy.2021.02.019.

[82] L. M. Liao, C.J. Huang, and J.H. Huang. "Applying multi-agent approach to mixed-model

assembly line balancing". 2012 IEEE 6th International Conference on Management of Innovation

& Technology (ICMIT2012). Bali, Indonesia: IEEE, June 2012, pp. 684–688. DOI:

10.1109/ICMIT.2012.6225889.

[83] N. V. Hop. "A heuristic solution for fuzzy mixed-model line balancing problem". Feb 2006,

pp. 798–810. DOI: 10.1016/j.ejor.2004.07.029.

[84] D. Krenczyk, B. Skolud, and A. Herok. "A Heuristic and Simulation Hybrid Approach for

Mixed and Multi-Model Assembly Line Balancing". Vol. 637, 2018, pp. 99–108. DOI:

10.1007/978-3-319-64465-3_10.

[85] J. C. Chen, Y.-Y. Chen, T.-L. Chen, and Y.-H. Kuo. "Applying two-phase adaptive genetic

algorithm to solve multi-model assembly line balancing problems in TFT-LCD module process".

July 2019, pp. 86–99. DOI: 10.1016/j.jmsy.2019.05.009.

[86] Hao Yu and Wei Shi. "A genetic algorithm for Multi-Model Assembly Line Balancing

Problem". 2013 IEEE International Symposium on Assembly and Manufacturing (ISAM). Xi’an,

China: IEEE, July 2013, pp. 369–371. DOI: 10.1109/ISAM.2013.6643482.

[87] A. Jafari Asl, M. Solimanpur, and R. Shankar. "Multi-objective multi-model assembly line

balancing problem: a quantitative study in engine manufacturing industry". Sept 2019, pp. 603–

627. DOI: 10.1007/s12597-019-00387-y.

[88] J. Pereira. "Modelling and solving a cost-oriented resource-constrained multi-model assembly

line balancing problem". June 2018, pp. 3994–4016. DOI: 10.1080/00207543.2018.1427899.

[89] Z. Li, M.N. Janardhanan, and S.G. Ponnambalam. "Cost-oriented robotic assembly line

balancing problem with setup times: multi-objective algorithms". Apr 2021, pp. 989–1007. DOI:

10.1007/s10845-020-01598-7.

[90] B.-q. Sun and L. Wang. "An estimation of distribution algorithm with branch-and-bound

based knowledge for robotic assembly line balancing". June 2021. DOI: 10.1007/s40747-020-

00166-z.

[91] Z. Abidin Çil, S. Mete, and K.Ağpak. "A Goal Programming Approach for Robotic Assembly

Line Balancing Problem". 2016, pp. 938–942. DOI: 10.1016/j.ifacol.2016.07.896.

[92] Z. Li, M.N. Janardhanan, P. Nielsen, and Q. Tang. "Mathematical models and simulated

annealing algorithms for the robotic assembly line balancing problem". Oct 2018, pp. 420–436.

DOI: 10.1108/AA-09-2017-115.

[93] L. Borba, M. Ritt, and C. Miralles. "Exact and heuristic methods for solving the Robotic

Assembly Line Balancing Problem". Oct 2018, pp. 146–156. DOI: 10.1016/j.ejor.2018.03.011.

[94] Z. A. Cil, S. Mete, and E. Ozceylan. "An efficient heuristic algorithm for solving robotic

assembly line balancing problem". 8th International Conference on Information Technology

(ICIT). Amman, Jordan: IEEE, May 2017, pp. 412–417. DOI: 10.1109/ICITECH.2017.8080035.

[95] S. Daoud, L. Amodeo, F. Yalaoui, H. Chehade, and P. Duperray. "New mathematical model

to solve robotic assembly lines balancing". Volumes 45.6, May 2012, pp. 1353–1358. DOI: 10

.3182/20120523-3-RO-2023.00183.

[96] S. Daoud, H. Chehade, F. Yalaoui, and L. Amodeo. "Solving a robotic assembly line

balancing problem using efficient hybrid methods". June 2014, pp. 235–259. DOI:

10.1007/s10732-014-9239-0.

[97] J. Gao, L. Sun, L. Wang, and M. Gen. "An efficient approach for type II robotic assembly

line balancing problems". Apr. 2009, pp. 1065–1080. DOI: 10.1016/j.cie.2008.09.027.

[98] M. N. Janardhanan, Z. Li, G. Bocewicz, Z. Banaszak, and P. Nielsen. "Metaheuristic

algorithms for balancing robotic assembly lines with sequence-dependent robot setup times". Jan

2019, pp. 256–270. DOI: 10.1016/j.apm.2018.08.016.

[99] H. Kim and S. Park. "A strong cutting plane algorithm for the robotic assembly line balancing

problem". Aug 1995, pp. 2311–2323. DOI: 10.1080/00207549508904817.

[100] G. Levitin, J. Rubinovitz, and B. Shnits. "A genetic algorithm for robotic assembly line

balancing". Feb 2006, pp. 811–825. DOI: 10.1016/j.ejor.2004.07.030.

[101] M. Rabbani, S. Z. B. Behbahan, and H. Farrokhi-Asl. "The Collaboration of Human-Robot

in Mixed-Model Four-Sided Assembly Line Balancing Problem". Oct 2020, pp. 71–81. DOI:

10.1007/s10846-020-01177-1.

[102] J. Mukund Nilakantan and S. Ponnambalam. "An efficient PSO for type II robotic assembly

line balancing problem” 2012 IEEE International Conference on Automation Science and

Engineering (CASE 2012). Seoul, Korea (South): IEEE, Aug. 2012, pp. 600–605. DOI:

10.1109/CoASE.2012.6386398.

[103] J. Mukund Nilakantan, S. G. Ponnambalam, N. Jawahar, and G. Kanagaraj. "Bio-inspired

search algorithms to solve robotic assembly line balancing problems". Aug 2015, pp. 1379–1393.

DOI: 10.1007/s00521-014-1811-x.

[104] J. M. Nilakantan, S. G. Ponnambalam, and P. Nielsen. "Energy-Efficient Straight Robotic

Assembly Line Using Metaheuristic Algorithms". 2018, pp. 803–814. DOI: 10.1007/978-981-10-

5687-1_72.

[105] J. Pereira, M. Ritt, and Ó. C. Vásquez. "A memetic algorithm for the cost-oriented robotic

assembly line balancing problem". Nov 2018, pp. 249–261. DOI: 10.1016/j.cor.2018.07.001.

[106] Y. Chi, Z. Qiao, Y. Li, M. Li, and Y. Zou. "Type-1 Robotic Assembly Line Balancing

Problem That Considers Energy Consumption and Cross-Station Design". Nov 2022, p. 218. DOI:

10.3390/systems10060218.

[107] A. Yoosefelahi, M. Aminnayeri, H. Mosadegh, and H. D. Ardakani. "Type II robotic

assembly line balancing problem: An evolution strategies algorithm for a multi-objective model".

Apr 2012, pp. 139–151. DOI: 10.1016/j.jmsy.2011.10.002.

[108] B. Zhou and Q. Wu. "An improved immune clonal selection algorithm for bi-objective

robotic assembly line balancing problems considering time and space constraints". July 2019, pp.

1868–1892. DOI: 10.1108/EC-11-2018-0512. (Visited on 09/21/2023).

[109] M. Pınarba¸sı. "New chance-constrained models for U-type stochastic assembly line

balancing problem". July 2021, pp. 9559–9573. DOI: 10.1007/s00500-021-05921-z.

[110] Ö. F. Yılmaz. "An integrated bi-objective U-shaped assembly line balancing and parts

feeding problem: optimization model and exact solution method". Sept 2022, pp. 679–696. DOI:

10.1007/s10472-020-09718-y.

[111] M. Şahin and T. Kellegöz. "An efficient grouping genetic algorithm for U-shaped assembly

line balancing problems with maximizing production rate". Sept 2017, pp. 213–229. DOI:

10.1007/s12293-017-0239-0.

[112] Y. Li, X. Hu, X. Tang, and I. Kucukkoc. "Type-1 U-shaped Assembly Line Balancing under

uncertain task time". 2019, pp. 992–997. DOI: 10.1016/j.ifacol.2019.11.324.

[113] Z. Zhang, Q. Tang, D. Han, and X. Qian. "An enhanced multi-objective JAYA algorithm for

U-shaped assembly line balancing considering preventive maintenance scenarios”. Oct 2021, pp.

6146–6165. DOI: 10.1080/00207543.2020.1804639.

[114] B. Zhang and L. Xu. "An improved flower pollination algorithm for solving a Type-II U-

shaped assembly line balancing problem with energy consideration". Sept 2020, pp. 847–856.

DOI: 10.1108/AA-07-2019-0144.

[115] A. Nourmohammadi, M. Fathi, M. Zandieh, and M. Ghobakhloo. "A Water-Flow Like

Algorithm for Solving U-Shaped Assembly Line Balancing Problems". 2019, pp. 129824–129833.

DOI: 10.1109/ACCESS.2019.2939724.

[116] Z. Zhang, Q. Tang, D. Han, and Z. Li. "Enhanced migrating birds optimization algorithm

for U-shaped assembly line balancing problems with workers assignment". Nov 2019, pp. 7501–

7515. DOI: 10.1007/s00521-018-3596-9.

[117] D. Ajenblit and R. Wainwright. "Applying genetic algorithms to the U-shaped assembly line

balancing problem". 1998 IEEE International Conference on Evolutionary Computation

Proceedings. IEEE World Congress on Computational Intelligence. Anchorage, AK, USA: IEEE,

1998, pp. 96–101. DOI: 10.1109/ICEC.1998.699329.

[118] S. Avikal, R. Jain, P. Mishra, and H. Yadav. "A heuristic approach for U-shaped assembly

line balancing to improve labor productivity". Apr 2013, pp. 895–901. DOI:

10.1016/j.cie.2013.01.001.

[119] A. Fattahi, S. Elaoud, E. Sadeqi Azer, and M. Turkay. "A novel integer programming

formulation with logic cuts for the U-shaped assembly line balancing problem". Mar 2014, pp.

1318–1333. DOI: 10.1080/00207543.2013.832489.

[120] M. Ghadiri Nejad, A. Husseinzadeh Kashan, and S. M. Shavarani. "A novel competitive

hybrid approach based on grouping evolution strategy algorithm for solving U-shaped assembly

line balancing problems". Oct 2018, pp. 555–566. DOI: 10.1007/s11740-018-0836-x.

[121] R. K. Hwang, H. Katayama, and M. Gen. "U-shaped assembly line balancing problem with

genetical algorithm". Aug 2008, pp. 4637–4649. DOI: 10.1080/00207540701247906.

[122] V. Jonnalagedda and B. Dabade. "Application of Simple Genetic Algorithm to U-Shaped

Assembly Line Balancing Problem of Type II". 2014, pp. 6168–6173. DOI: 10.3182/20140824-6-

ZA-1003.01769.

[123] M. Li, Q. Tang, Q. Zheng, X. Xia, and C. Floudas. "Rules-based heuristic approach for the

U-shaped assembly line balancing problem". Aug 2017, pp. 423–439. DOI:

10.1016/j.apm.2016.12.031.

[124] Z. Li, I. Kucukkoc, and Z. Zhang. "Branch, bound and remember algorithm for U-shaped

assembly line balancing problem". Oct 2018, pp. 24–35. DOI: 10.1016/j.cie.2018.06.037.

[125] Z. Li, M. N. Janardhanan, and H. F. Rahman. "Enhanced beam search heuristic for U-shaped

assembly line balancing problems". Apr 2021, pp. 594–608. DOI:

10.1080/0305215X.2020.1741569.

[126] P. Sresracoo, N. Kriengkorakot, P. Kriengkorakot, and K. Chantarasamai. "U-Shaped

Assembly Line Balancing by Using Differential Evolution Algorithm". Dec 2018, p. 79. DOI:

10.3390/mca23040079.

[127] M. Khorram, M. Eghtesadifard, and S. Niroomand. "Hybrid meta-heuristic algorithms for

U-shaped assembly line balancing problem with equipment and worker allocations". Mar 2022,

pp. 2241–2258. DOI: 10.1007/s00500-021-06472-z.

[128] D. Ogan and M. Azizoglu. "A branch and bound method for the line balancing problem in

U-shaped assembly lines with equipment requirements”. July 2015, pp. 46–54. DOI:

10.1016/j.jmsy.2015.02.007.

[129] Z. Zhang and W. Cheng. "An Exact Method for U-Shaped Assembly Line Balancing

Problem". 2010 2nd International Workshop on Intelligent Systems and Applications (ISA).

Wuhan, China: IEEE, May 2010, pp. 1–4. DOI: 10.1109/IWISA.2010.5473379.

[130] Z. Q. Zhang and W. M. Cheng. "Solving Fuzzy U-Shaped Line Balancing Problem with

Exact Method". June 2010, pp. 1046–1051. DOI: 10.4028/www.scientific.net/AMM.26-28.1046.

[131] Z. Li, I. Kucukkoc, and J. M. Nilakantan. "Comprehensive review and evaluation of

heuristics and meta-heuristics for two-sided assembly line balancing problem". Aug 2017, pp.

146–161. DOI: 10.1016/j.cor.2017.03.002.

[132] U. Özcan and B. Toklu. "A tabu search algorithm for two-sided assembly line balancing".

Aug 2009, pp. 822–829. DOI: 10.1007/s00170-008-1753-5.

[133] U. Özcan and B. Toklu. "Multiple-criteria decision-making in two-sided assembly line

balancing: A goal programming and a fuzzy goal programming models". June 2009, pp. 1955–

1965. DOI: 10.1016/j.cor.2008.06.009.

[134] L. Özbakır and P. Tapkan. "Bee colony intelligence in zone constrained two-sided assembly

line balancing problem". Sept 2011, pp. 11947–11957. DOI: 10.1016/j.eswa.2011.03.089.

[135] D. Kizilay and Z. A. Çil. "Constraint programming approach for multi-objective two-sided

assembly line balancing problem with multi-operator stations". Aug 2021, pp. 1315–1330. DOI:

10.1080/0305215X.2020.1786081.

[136] A. Baykasoglu and T. Dereli. "Two-sided assembly line balancing using an ant-colony-based

heuristic". Mar 2008, pp. 582–588. DOI: 10.1007/s00170-006-0861-3.

[137] X. Duan, B. Wu, Y. Hu, J. Liu, and J. Xiong. "An improved artificial bee colony algorithm

with MaxTF heuristic rule for two-sided assembly line balancing problem". June 2019, pp. 241–

253. DOI: 10.1007/s11465-018-0518-6.

[138] M. Gansterer and R. F. Hartl. "One-and two-sided assembly line balancing problems with

real-world constraints". Apr 2018, pp. 3025–3042. DOI: 10.1080/00207543.2017.1394599.

[139] H.-Y. Kang and A. H. I. Lee. "An evolutionary genetic algorithm for a multi-objective two-

sided assembly line balancing problem: a case study of automotive manufacturing operations". Jan

2023, pp. 66–88. DOI: 10.1080/16843703.2022.2079062.

[140] D. Khorasanian, S. R. Hejazi, and G. Moslehi. "Two-sided assembly line balancing

considering the relationships between tasks". Dec 2013, pp. 1096–1105. DOI:

10.1016/j.cie.2013.08.006.

[141] Y. K. Kim, Y. Kim, and Y. J. Kim. "Two-sided assembly line balancing: A genetic algorithm

approach". Jan 2000, pp. 44–53. DOI: 10.1080/095372800232478.

[142] Y. K. Kim, W. S. Song, and J. H. Kim. "A mathematical model and a genetic algorithm for

two-sided assembly line balancing". Mar 2009, pp. 853–865. DOI: 10.1016/j.cor.2007.11.003.

[143] D. Lei and X. Guo. "Variable neighborhood search for the second type of two-sided

assembly line balancing problem". Aug 2016, pp. 183–188. DOI: 10.1016/j.cor.2016.03.003.

[144] Z. Li, Q. Tang, and L. Zhang. "Two-sided assembly line balancing problem of type I:

Improvements, a simple algorithm and a comprehensive study". Mar 2017, pp. 78–93. DOI:

10.1016/j.cor.2016.10.006.

[145] Z. Li, I. Kucukkoc, and Z. Zhang. "Branch, bound and remember algorithm for two-sided

assembly line balancing problem". Aug 2020, pp. 896–905. DOI: 10.1016/j.ejor.2020.01.032.

[146] Y. Li, I. Kucukkoc, and X. Tang. "Two-sided assembly line balancing that considers

uncertain task time attributes and incompatible task sets". Mar 2021, pp. 1736–1756. DOI:

10.1080/00207543.2020.1724344.

[147] A. Roshani, P. Fattahi, A. Roshani, M. Salehi, and A. Roshani. "Cost-oriented two-sided

assembly line balancing problem: A simulated annealing approach". Aug 2012, pp. 689–715. DOI:

10.1080/0951192X.2012.664786.

[148] R. B. Taha, A. K. El-Kharbotly, Y. M. Sadek, and N. H. Afia. "A Genetic Algorithm for

solving two-sided assembly line balancing problems". Sept 2011, pp. 227–240. DOI:

10.1016/j.asej.2011.10.003.

[149] Q. Tang, Z. Li, and L. Zhang. "An effective discrete artificial bee colony algorithm with idle

time reduction techniques for two-sided assembly line balancing problem of type-II". July 2016,

pp. 146–156. DOI: 10.1016/j.cie.2016.05.004.

[150] P. Tapkan, L. Özbakır, and A. Baykasoğlu. "Bees Algorithm for constrained fuzzy multi-

objective two-sided assembly line balancing problem". Aug 2012, pp. 1039–1049. DOI:

10.1007/s11590-011-0344-9.

[151] P. Tapkan, L. Ozbakir, and A. Baykasoglu. "Modeling and solving constrained two-sided

assembly line balancing problem via bee algorithms". Nov 2012, pp. 3343–3355. DOI:

10.1016/j.asoc.2012.06.003.

[152] M. S. Yang, L. Ba, Y. Liu, H. Y. Zheng, J. T. Yan, X. Q. Gao, and J. M. Xiao. "An Improved

Genetic Simulated Annealing Algorithm for Stochastic Two-Sided Assembly Line Balancing

Problem". Mar 2019, pp. 175–186. DOI: 10.2507/IJSIMM18(1)CO4.

[153] G. Tunçel and D. Aydın. "Two-sided assembly line balancing using teaching–learning based

optimization algorithm". Aug 2014, pp. 291–299. DOI: 10.1016/j.cie.2014.06.006.

[154] B. Wang, Z. Guan, D. Li, C. Zhang, and L. Chen. "Two-sided assembly line balancing with

operator number and task constraints: a hybrid imperialist competitive algorithm". Sept 2014, pp.

791–805. DOI: 10.1007/s00170-014-5816-5.

[155] E.-F. Wu, Y. Jin, J.-S. Bao, and X.-F. Hu. "A branch-and-bound algorithm for two-sided

assembly line balancing". Nov 2008, pp. 1009–1015. DOI: 10.1007/s00170-007-1286-3.

[156] Y. Zhong, Z. Deng, and K. Xu. "An effective artificial fish swarm optimization algorithm

for two-sided assembly line balancing problems". Dec 2019, p. 106121. DOI:

10.1016/j.cie.2019.106121.

[157] A. Lusa. "A survey of the literature on the multiple or parallel assembly line balancing

problem". 2008, p. 50. DOI: 10.1504/EJIE.2008.016329.

[158] L. Özbakır and G. Seçme. "A hyper-heuristic approach for stochastic parallel assembly line

balancing problems with equipment costs". Mar 2022, pp. 577–614. DOI: 10.1007/s12351-020-

00561-x.

[159] U. Özcan. "Balancing stochastic parallel assembly lines". Nov 2018, pp. 109–122. DOI:

10.1016/j.cor.2018.05.006.

[160] A. Baykasoğlu, L. Özbakir, L. Görkemli, and B. Görkemli. "Multi-colony ant algorithm for

parallel assembly line balancing with fuzzy parameters". 2012, pp. 283–295. DOI: 10.3233/IFS-

2012-0520.

[161] J. F. Bard. "Assembly line balancing with parallel workstations and dead time". June 1989,

pp. 1005–1018. DOI: 10.1080/00207548908942604.

[162] A. Baykasoglu, L. Ozbakur, L. Gorkemli, and B. Gorkemli. "Balancing parallel assembly

lines via Ant Colony Optimization". July 2009, pp. 506–511. DOI: 10.1109/ICCIE.2009.5223867.

[163] Y. Kara, H. Gökçen, and Y. Atasagun. "Balancing parallel assembly lines with precise and

fuzzy goals" Mar 2010, pp. 1685–1703. DOI: 10.1080/00207540802534715.

[164] L. Ozbakir, A. Baykasoglu, B. Gorkemli, and L. Gorkemli. "Multiple-colony ant algorithm

for parallel assembly line balancing problem". Apr 2011, pp. 3186–3198. DOI:

10.1016/j.asoc.2010.12.021.

[165] Z. A. Çil, S. Mete, E. Özceylan, and K. Ağpak. "A beam search approach for solving type II

robotic parallel assembly line balancing problem". Dec 2017, pp. 129–138. DOI:

10.1016/j.asoc.2017.07.062.

[166] Z. A. Çil, Z. Li, S. Mete, and E. Özceylan. "Mathematical model and bee algorithms for

mixed-model assembly line balancing problem with physical human–robot collaboration". Aug

2020, p. 106394. DOI: 10.1016/j.asoc.2020.106394.

[167] S. Akpınar and G. Mirac Bayhan. "A hybrid genetic algorithm for mixed model assembly

line balancing problem with parallel workstations and zoning constraints". Apr 2011, pp. 449–457.

DOI: 10.1016/j.engappai.2010.08.006.

[168] K. Ağpak, M. F. Yeğül, and H. Gökçen. "Two-sided U-type assembly line balancing

problem". Sept 2012, pp. 5035–5047. DOI: 10.1080/00207543.2011.631599.

[169] W. Yang and W. Cheng. "Modelling and solving mixed-model two-sided assembly line

balancing problem with sequence-dependent setup time". Nov 2020), pp. 6638–6659. DOI:

10.1080/00207543.2019.1683255.

[170] Z. A. Çil, S. Mete, and K. Ağpak. "Analysis of the type II robotic mixed-model assembly

line balancing problem". June 2017, pp. 990–1009. DOI: 10.1080/0305215X.2016.1230208.

[171] U. Özcan, T. Kellegöz, and B. Toklu. "A genetic algorithm for the stochastic mixed-model

U-line balancing and sequencing problem". Mar 2011, pp. 1605–1626. DOI:

10.1080/00207541003690090.

[172] P. Chutima and P. Chimklai. "Multi-objective two-sided mixed-model assembly line

balancing using particle swarm optimization with negative knowledge". Feb 2012, pp. 39–55.

DOI: 10.1016/j.cie.2011.08.015.

[173] G. R. Esmaeilian, S. Sulaiman, N. Ismail, M. Hamedi, and M. M. H. M. Ahmad. "A tabu

search approach for mixed-model parallel assembly line balancing problem (type II)". 2011, p.

407. DOI: 10.1504/IJISE.2011.041803.

[174] Z. Zhang, Q. Tang, Z. Li, and L. Zhang. "Modelling and optimization of energy-efficient U-

shaped robotic assembly line balancing problems". Sept 2019, pp. 5520–5537. DOI:

10.1080/00207543.2018.1530479.

[175] D. Huang, Z. Mao, K. Fang, and B. Yuan. "Combinatorial Benders decomposition for mixed-

model two-sided assembly line balancing problem". Apr 2022, pp. 2598–2624. DOI:

10.1080/00207543.2021.1901152.

[176] M. Kammer Christensen, M. N. Janardhanan, and P. Nielsen. "Heuristics for solving a multi-

model robotic assembly line balancing problem". Jan 2017, pp. 410–424. DOI:

10.1080/21693277.2017.1403977.

[177] I. Kucukkoc and D. Z. Zhang. "Type-E parallel two-sided assembly line balancing problem:

Mathematical model and ant colony optimization based approach with optimized parameters".

June 2015, pp. 56–69. DOI: 10.1016/j.cie.2014.12.037.

[178] I. Kucukkoc and D. Z. Zhang. "Mixed-model parallel two-sided assembly line balancing

problem: A flexible agent-based ant colony optimization approach". July 2016, pp. 58–72. DOI:

10.1016/j.cie.2016.04.001.

[179] Z. Li, M. N. Janardhanan, A. S. Ashour, and N. Dey. "Mathematical models and migrating

birds optimization for robotic U-shaped assembly line balancing problem". Dec 2019, pp. 9095–

9111. DOI: 10.1007/s00521-018-3957-4.

[180] Z. Li, M. N. Janardhanan, Q. Tang, and S. Ponnambalam. "Model and metaheuristics for

robotic two-sided assembly line balancing problems with setup times". Nov 2019, p. 100567. DOI:

10.1016/j.swevo.2019.100567.

[181] Z. Li, M. N. Janardhanan, Q. Tang, and P. Nielsen. "Local search methods for type I mixed-

model two-sided assembly line balancing problems". Mar 2021, pp. 111–130. DOI:

10.1007/s12293-020-00319-0.

[182] N. Manavizadeh, N.-s. Hosseini, M. Rabbani, and F. Jolai. "A Simulated Annealing

algorithm for a mixed model assembly U-line balancing type-I problem considering human

efficiency and Just-In-Time approach". Feb 2013, pp. 669–685. DOI: 10.1016/j.cie.2012.11.010.

[183] J. Mukund Nilakantan and S. Ponnambalam. "Robotic U-shaped assembly line balancing

using particle swarm optimization". Feb 2016, pp. 231–252. DOI:

10.1080/0305215X.2014.998664.

[184] M. Rabbani, Z. Mousavi, and H. Farrokhi-Asl. "Multi-objective meta-heuristics for solving

a type II robotic mixed-model assembly line balancing problem". Oct 2016, pp. 472–484. DOI:

10.1080/21681015.2015.1126656.

[185] M. Rabbani, R. Siadatian, H. Farrokhi-Asl, and N. Manavizadeh. "Multi-objective

optimization algorithms for mixed-model assembly line balancing problem with parallel

workstations". Dec 2016. Ed. by Z. Zhou, p. 1158903. DOI: 10.1080/23311916.2016.1158903.

[186] Z. Zhang, Q. Tang, and L. Zhang. "Mathematical model and grey wolf optimization for low-

carbon and low-noise U-shaped robotic assembly line balancing problem". Apr 2019, pp. 744–

756. DOI: 10.1016/j.jclepro.2019.01.030.

[187] M. F. Yegul, K. Agpak, and M. Yavuz. "A NEW ALGORITHM FOR U-SHAPED TWO-

SIDED ASSEMBLY LINE BALANCING". June 2010, pp. 225–241. DOI: 10.1139/tcsme-2010-

0014.

[188] A. Yadav and S. Agrawal. "Mathematical model for robotic two-sided assembly line

balancing problem with zoning constraints". Feb 2022, pp. 395–408. DOI: 10.1007/s13198-021-

01284-8.

[189] A. Yadav, R. Kulhary, R. Nishad, and S. Agrawal. "Parallel two-sided assembly line

balancing with tools and tasks sharing". Nov 2019, pp. 833–846. DOI: 10.1108/AA-02-2018-025.

[190] P. Tapkan, L. Özbakır, and A. Baykasoglu. "Bee algorithms for parallel two-sided assembly

line balancing problem with walking times". Feb 2016, pp. 275–291. DOI:

10.1016/j.asoc.2015.11.017.

[191] D. Sparling and J. Miltenburg. "The mixed-model U-line balancing problem". Feb 1998, pp.

485–501. DOI: 10.1080/002075498193859.

[192] A. Roshani and F. Ghazi Nezami. "Mixed-model multi-manned assembly line balancing

problem: a mathematical model and a simulated annealing approach". Feb 2017, pp. 34–50. DOI:

10.1108/AA-02-2016-016.

[193] P. Chutima and N. Yothaboriban. "Multi-objective mixed-model parallel assembly line

balancing with a fuzzy adaptive biogeography-based algorithm". 2017, p. 90. DOI:

10.1504/IJISE.2017.083182.

[194] Z. Zhang and W. Cheng. "Improved Heuristic Procedure for Mixed-Model U-line Balancing

Problem with Fuzzy Times". 2015, pp. 395–406. DOI: 10.1007/978-3-662-44674-4_37.

[195] Z. Zhang, Q. Tang, and M. Chica. "A robust MILP and gene expression programming based

on heuristic rules for mixed-model multi-manned assembly line balancing". Sept 2021, p. 107513.

DOI: 10.1016/j.asoc.2021.107513.

[196] J. Mukund Nilakantan, G. Q. Huang, and S. Ponnambalam. "An investigation on minimizing

cycle time and total energy consumption in robotic assembly line systems". Mar 2015, pp. 311–

325. DOI: 10.1016/j.jclepro.2014.11.041.

[197] X.-S. Yang and Suash Deb. "Cuckoo Search via Lévy flights". 2009, pp. 210–214. DOI:

10.1109/NABIC.2009.5393690.

[198] K.-L. Du and M. N. S. Swamy. Search and Optimization by Metaheuristics. Cham: Springer

International Publishing, 2016. DOI: 10.1007/978-3-319-41192-7.

[199] X.-S. Yang. Nature-inspired optimization algorithms. First edition. OCLC: ocn866615538.

Amsterdam; Boston: Elsevier, 2014. 263 pp.

[200] J. M. Nilakantan, S. G. Ponnambalam, and G. Q. Huang. "Minimizing energy consumption

in a U-shaped robotic assembly line." 2015 International Conference on Advanced Mechatronic

Systems (ICAMechS). Beijing, China: IEEE, Aug. 2015, pp. 119–124. DOI:

10.1109/ICAMechS.2015.7287140.

[201] R. Martí, P. M. Pardalos, and M. G. C. Resende, eds. Handbook of Heuristics. Cham:

Springer International Publishing, 2018. DOI: 10.1007/978-3-319-07124-4.

[202] F. Glover and G. A. Kochenberger. Handbook of metaheuristics. International series in

operations research & management science 57. Boston Dordrecht London: Kluwer Academic

Publ, 2003.

[203] M. Prais and C. C. Ribeiro. "ReactiveGRASP: An Application to a Matrix Decomposition

Problem in TDMA Traffic Assignment". Aug 2000, pp. 164–176. DOI:

10.1287/ijoc.12.3.164.12639.

[204] R. Alvarez-Valdes, F. Parreño, and J. Tamarit. "ReactiveGRASP for the strip-packing

problem". Apr 2008, pp. 1065–1083. DOI: 10.1016/j.cor.2006.07.004.

[205] Y. Deng and J. F. Bard. "A reactiveGRASP with path relinking for capacitated clustering".

Apr 2011, pp. 119–152. DOI: 10.1007/s10732-010-9129-z.

[206] T. S. Jaikishan and R. Patil. "A ReactiveGRASP Heuristic Algorithm for Vehicle Routing

Problem with Release Date and Due Date Incurring Inventory Holding Cost and Tardiness Cost."

2019 IEEE International Conference on Industrial Engineering and Engineering Management

(IEEM). Macao, Macao: IEEE, Dec. 2019, pp. 1393–1397. DOI:

10.1109/IEEM44572.2019.8978851.

[207] J. Bautista, R. Suarez, M. Mateo, and R. Companys. "Local search heuristics for the

assembly line balancing problem with incompatibilities between tasks". 2000 ICRA. IEEE

International Conference on Robotics and Automation. Vol. 3. San Francisco, CA, USA: IEEE,

2000, pp. 2404–2409. DOI: 10.1109/ROBOT.2000.846387.

[208] M. Chica, O. Cordón, S. Damas, and J. Bautista. "A Multiobjective GRASP for the 1/3

Variant of the Time and Space Assembly Line Balancing Problem". 2010, pp. 656–665. DOI:

10.1007/978-3-642-13033-5_67.

[209] F. F. Boctor. "A Multiple-Rule Heuristic for Assembly Line Balancing". Jan 1995, p. 62.

DOI: 10.2307/2583836.

[210] A. V. Raj, J. Mathew, P. Jose, and G. Sivan. "Optimization of Cycle Time in an Assembly

Line Balancing Problem". 2016, pp. 1146–1153. DOI: 10.1016/j.protcy.2016.08.231.

[211] H. Du, Z. Wang, W. Zhan, and J. Guo. "Elitism and Distance Strategy for Selection of

Evolutionary Algorithms". 2018, pp. 44531–44541. DOI: 10.1109/ACCESS.2018.2861760.

[212] M. G. C. Resende and C. C. Ribeiro. "Greedy Randomized Adaptive Search Procedures:

Advances and Extensions". 2019, pp. 169–220. DOI: 10.1007/978-3-319-91086-4_6.

[213] R. O. Edokpia and F. Owu. "Assembly Line Re-Balancing Using Ranked Positional Weight

Technique and Longest Operating Time Technique: A Comparative Analysis". Sept 2013, pp.

568–578. DOI: 10.4028/www.scientific.net/AMR.824.568.

[214] N. Boysen, M. Kiel, and A. Scholl. "Sequencing mixed-model assembly lines to minimize

the number of work overload situations". Aug 2011, pp. 4735–4760. DOI:

10.1080/00207543.2010.507607.

[215] W. Grzechca, ed. Assembly Line - Theory and Practice. InTech, Aug. 17, 2011. DOI:

10.5772/824.

[216] N. T. Thomopoulos. Assembly Line Planning and Control. Cham: Springer International

Publishing, 2014. DOI: 10.1007/978-3-319-01399-2.

