Democratic and Popular Algerian Republic
Ministry of Higher Education and Scientific Research

MUSTAPHA STAMBOULI UNIVERSITY OF MASCARA
FACULTY OF SCIENCE AND TECHNOLOGY

Course Handout

Programming with
Matlab

Presented by:

Dr. BESSAIM Mohammed Mustapha

This course is for undergraduate students
specialty Civil Engineering/Public Works

Algeria
2023

Foreword

In the academia’s realm, where learning and innovation converge, the pursuit for knowledge
knows no bounds. It's within this dynamic landscape that we present this modest course on Matlab,
tailored precisely for undergraduate students, enrolled in the field of Civil Engineering,
speciality: Civil Engineering / Public Works.

Matlab, an acronym for “Matrix Laboratory” assists as a trusted tool during your
formation, allowing you to transform abstract concepts towards tangible solutions. Not a limited to a
specified discipline, Matlab offers the keys to unlock any analytical thinking, problem-solving and
creativity.

This course of five chapters was written in a way to allow to the students how to easily get familiar with
Matlab R2019a environment. Furthermore, this course includes set of examples and illustrations to make
students interact directly with the Matlab world.

Overall, our hope is that, armed with the knowledge and insights found in these chapters, you will
approach your studies and research with newfound confidence and enthusiasm.

This course corresponds to the Computer Practical Work 3 (Matlab), which is taught at
the University of Mustapha Stambouli, Mascara, for the undergraduated students, enrolled
in Civil Engineering, specialty: Civil Engineering and Public Works.

Mascara, 12" November, 2023.

Table of contents

FOTBWANT ...ttt b R et e st r e i
N o151 = o1 S TPR iv
NOatioNs @Nd ADFEVIATIONScoiiiiiiiiei et %
INEFOTUCTION ..t bbbt bbbt b et b et eb e 9
Chaptre 1 Introduction t0 Matlab............ccocooiiiiii 11
11 Programming ENVIFONIMENTcuiiiiieii ettt et e s e e st stesbesbe st e b e e eneebesbesbesbenen 11

1.2 RUNNING YOUF COOR ...ttt sttt b et b e b et s e e bt e bt e b e bt e be b e et ene et e abesbenaenen 13

1.3 (1= 1] ol aT=] o TSSOSO 13

14 Scalar quUantities anNd VAITADIESc.ooiiiii ettt 13

15 Rules when naming variables in Matlah............cccovoiiiiiiiiiiicc e 16

1.6 MathematiCal FUNCLIONS.coviiiiii et 17

1.7 The way to display numbers in Matlab: FOrmat...........ccooiiiiiiioiiiiceccceee e 20

1.8 Variables AN thEIT SIZEoviiriiiee bbbttt 21
Chaptre 2 VECtors anNd MALTICESccoiiiiiiiiie e 23
2.1 BT LTod (o] OO OO PSP R TP T 23

211 VECIOIS CIEALION ..ottt sttt b et e bbbt r et n et en e nnene 23

2.1.2 Calculation of the row VECIOr tranSPOSEcviuiiiiiiiiieiiiee ettt st sa e e be st sresaenan 24

2.1.3 Matlab’s syntax When Creating FOW VECTOIS........c..cueirieirieiirieierisiec ettt 25

2.1.4 Acces to any element from & giVeN VECTOKcoiiiiiiiiieeeiee st 26

2.1.5 Element by element Operations fOr VECIOISc..ceiiriiiriininiiiec et 28

2.1.6 The liNeSPACE FUNCHION ...ttt ettt b ettt r e bt et see et ean 31

2.2 IVIBETICES ..tttk bbb bbb h e bR bbbt 32

221 MALFICES CrEALION ...c.viviteete ettt b et e bbbt s et r et n e et en e nnere 32

2.2.2 Referencing and access t0 MatriX ElEMENTS.........coiiiiiiieieecee e 34

2.2.3 SIZ8 OF @ MALIIX ..ttt bbbt bbbttt 37

2.2.4 Matlab’s predefined Matrices fUNCLIONScviiiiiieirce e 38

2.2.5 Element-by-element MatriX OPEIAtiONSccceieirieirieirieirieeresie sttt e snere 39

2.2.6 Additional useful Matrices FUNCHIONScoviiiiriiicre e 42

Chaptre 3 Matlab PIOTEINGcovoiiiiciicee e e e 46
3.1 Matlah PIOt FUNCHION ...ttt b et s be st et et e e e beetesbesbeneenes 46

3.2 CUIVES CUSTOMUZING ...ttt ettt sttt b et b et e bt bt e bt bt b e b e s e R e e Rt e b e e bt e be st et et e st ebeebeabenbenbeean 51

3.3 Multiple CUrVES iN @ SAME GIAPRc.oiiiiie bbbttt 53

331 The commaNd NOIG.........ovoiiice e 53

3.3.2 PlOt With SEVEIal @rGUMENTS.......cuiiuiiieitiieiee ettt ettt s et e bt ste et et eneeresneebeseenaenan 54

34 Histogram and bar graphs in Matlab..............ccoiiiiiiiiiie e 55

3.5 Plotting 3D CUIVES IN IMAHIAD ..ottt sbe e 58

Chaptre 4
4.1
4.2
4.3

Chaptre 5
5.1
5.2
5.3

References

Matlab’s loops and conditional statementscccoovieiviieie s 62
The “if, e1Se, BlESEIT” CONITION . .viiiiiiii et e e b e e s st e e e s sb b e s s sabaessbeaeaens 62
The “switch case otherwise end” CONAITIONccoeiiiiiieiiiie s 64
LOOP CONEIOI SEALEIMENTS.eiueitiieeeeie ettt ettt st b et et b e st e st et et e s e et e e beebesbeebeseenseseaneabeebeaeeneenes 66
TS 1 2 T- T (o] Gl (oo oIS SO OSSP 66
o N 1 1 T T o 1 1= Rl (oo o OSSPSR 67

Matlalh TOOIDOX.......cviiiiiiiiciiic e 69
Add additioNAl TOOIDOXc.cviiiiitiiitees bbbttt bt e s 69
Using of the “Curve Fitting TOOIDOX ™cc.oiiiiiieiee ettt sttt see st naens 71
Creating YOoUr OWN TOOIDOX.......cccvieieieiiiitistest ettt st ettt b b e s seeseeteebesbesbessesaessesessessessessesean 72
.. 78

Abstract

This course destinated for undergraduate students, enrolled in Civil Engineering and
Public Works, aims to enter you into the world of computational exploration and problem-solving via the
Matlab (R2019a) programming language. In this course, our main mission is to offer you the fundamental
elements of Matlab, through a comprehensive foundation and extending into advanced applications.
The set of the given examples ensure that your understanding is tangible and practical.
Moreover, you will discover Matlab's true power shines in its mastery of vectors and matrices.
With intuitive syntax and a wealth of built-in functions given by a set of illustrations, it will show you
how it will be easy to handle complex linear algebra.

Not limited to that, you will explore the Matlab richness in graph plotting, with its extensive
array of functions and libraries, as well as discovering the impressive diversity of chart types offered by
Matlab, passing from simple line graphs, bar charts, 3D plotting and so on.

Beyond plotting, Matlab’'s Toolbox extends to specialized fields. you can explore
the “Curve Fitting Toolbox”, and learn how to manage/add further Toolbox. At the end, you will be able
to creat your own costumized Toolbox.

In summary, this course provides a versatile and accessible platform for learning and applying
computational mathematics, data analysis, as well as enhancing your problem-solving skills.

Keywords: Matlab, Programming Language, Problem Solving, Graph Plotting, Toolbox

Notations and Abreviations

+ Addition

- Minus

* Multiplication

/ Division (From left to right)
\ Division (From right to left)
sin () Sinus in radiant

cos () Cosines in radiant

tan () Tangent in radiant

sind () Sinus in degree

cosd () Cosines in degree

tand () Tangent in degree

asin () Inverse of sinus

acos () Inverse of cosines

atan (). Inverse of tangent

exp () Exponential

log () Natural logarithm

log10 () Common logarithm

sqrt () The square root

abs(x) The absolute value x —[X]|
round(x) Rounds a number to the nearest integer
ceil(x) Rounds a number up to the nearest integer

floor(x) Rounds a number down to the nearest integer

fix(x)
rem(x)
mod(x)
abs(x)
sign(x)
factor(x)
format long
format short
format bank
format rat
clear a
clear, clear all
clc

exit, quit

transpose []

ones(n)
ones(m,n)
zeros(n)
zeros(m,n)
eye(n)
rand(m,n)

magic(n)

Rounds a number to the nearest integer towards zero
The remainder left after division

The signed remainder left after division

The absolute value of x

The sign of x

The prime factors of x

To display 14 digits after the decimal point

To display 4 digits after the decimal point

To display only 2 digits after the decimal point
To display numbers as a ratio

Delete variable a

Delete all variables

clears the Command Window (clear screen)
Close the Matlab environment

The transpose of a vector / matrix
Element-by-element multiplication

Division element by element
Element-by-element power

Generates an n x n matrix with all elements = 1
Generates an m x n matrix with all elements = 1
Generates an n x n matrix with all elements =0

Generates an m x n matrix with all elements =0

Generates an n x n identity matrix (ones on the main diagonal and zeros elsewhere)

Generates an m x n matrix of random values

Generates a magic matrix of dimension n x n

Vi

plot (X, y)

if, elseif, else

switch, case, otherwise
for

while

Draw a 2D line plot of the data, in ‘y’ versus the corresponding values ‘x’
Execute statements if condition is true

Execute one of several groups of statements

for loop to repeat specified number of times

while loop to repeat when condition is true

vii

Introduction

In the field of computational tools, Matlab stands as an incredible titan, revered by
engineers, scientists, and problem solvers of several disciplines. Short for "Matrix Laboratory,” Matlab
is more than just a software; it is a mathematical-engineering package, and a powerful programing
language, that turning complex concepts into practical solutions [1].

Matlab's origins can be traced back to the late 1970s, when it was developed by
“Cleve Moler” as a computational tool for his students at the University of New Mexico.
Over the years, it has evolved into a comprehensive software platform, encompassing an enormous array
of Functions and Toolboxes, that cater to nearly every field of study and research. whether you are
a student exploring the fundamentals of a subject or a seasoned expert pushing the boundaries of your
discipline, Matlab has always something to offer [2].

At its core, Matlab excels in numerical computing, making it an impressive instrument for
tackling mathematical problems as well as performing data analysis. It operates with matrices, which
allows for an effective and an intuitive manipulation of data. However, its value extends far beyond
mathematics. Matlab facilitates programming, modeling and also simulation, while its diverse Toolboxes
are opening doors to different fields. From control systems and optimization to signal analysis,
Matlab provides a wide arsenal of functions for a wide range of applications [3].

One of Matlab's uniqueness features is its emphasis on visualization. The capability to create
captivating, informative graphs and charts is integral to scientific and engineering research.
Matlab's plotting ability are not only versatile but also highly customizable. It offers the creation of 2D
graphs, 3D plots as well as contour maps, all of them enable users to communicate their outcomes
effectively [4].

This course represents a selection of information and data that undergraduate students may be
required to use during their academic background. Furthermore, this course is intended to be a solid basis
for restoring the technical and practical knowledge essential for an efficient usage of the Matlab.

This course comprises five main chapters :
Presentation of the Matlab environment, Scripts and Scalar Quantities and Variables;
Vectors and Matrices creation;
Matlab’s Graphs Plotting;
Loops and Conditional Statements;
o MATLAB’s Toolboxes.

Each chapter encloses sections, that cover specific topics in Matlab.

The first chapter wil explain the Matlab’s environment and start with basic scalar operations,
showing how Matlab can acts as a very powerful calculator.

The second one will illustrate the most useful commands for Vectors and Matrices, allowing to
students how to deal easily with any encountered mathematical operation.

The third chapter, will present a huge variety of graphs, namely 2D line graphs, pie chart as well
as bar graphs. Moreover, a step-by-step explanation is given on how to draw 3D graphs, contour plot,
filled contour plot and a surface plot.

The fourth one will present how to properly use the Matlab’s loops and conditional statement.
Therefore, a set of examples will be given with their flowcharts to make these laters comprehensible for
the students.

The last chapter will show to the students the easiest way to deal with the Matlab’s Toolboxes.
The first part will illustrate how to add and manage Matlab’s Toolboxes. The second part is dedicated to
the use of the “Curve fitting Toolbox™, a relevant example for any future Engineer. The last point
will explain the path to create a customized Toolbox.

At the end, the students will be able to use Matlab effectively in their coursework and research.
Note that each part begins with a listing of Matlab’s commands, followed by a set of examples showing
how to write accurately your programming language.

10

Chapter 1 Introduction to Matlab

The acronym Matlab stands for "matrix laboratory." Other programming languages typically
operate on single integers, whereas Matlab is intended to operate largely on complete matrices and arrays.

It is a language for scientific computing, data analysis, visualization, and algorithm
development. Its interface offers, on the one hand, an interactive console-type window for executing
commands, and on the other hand, an integrated development environment (IDE) for programming
applications [5].

1.1 Programming Environment

The Matlab’s environment is shown in Figure 1.1. As seen, it consisted from four sections:
e The Current folder box showing the folder’s content,
¢ The Matlab Command Window started with sign »,
e The Workspace (memory of Matlab) displaying the used variables;
e The Command history box illustrating the recent commands.

A\ MATLAB R20192
B4 Bl9eE @ [C] | Search Documentation P
y = r New Variable #* Analyze Code (% . (% Community
L HI:IE‘ J (5] Find Files &n L e L\? E {8} Preferences @ o
[Open Variable = éf Run and Time 5) Request Support
New New New Open 12| Compare Import Save Favorites Layout ﬁ Set Path Add-Ons Help
Script Live Script - Data Workspace |7 Clear Workspace v - | Clear Commands ~ - - w [Z] Leam MATLAB
FILE VARIABLE CODE ENVIRONMENT RESOURCES
€= Ha b b Users »
Current Folder @ Command History
B=[x' v' z']
Name e
M M
Details A clc
Workspace | ® LS
B= transpose
Name Value o
B=[x' yv' z']

clc

S

A(l,:)

clc
n(2:3,:)
A(:,2:3)
clc

8
n(1:2,3:4)
clc

magic(4)

§-- 08

Figure 1.1 The Matlab Programming Environment.

11

The Matlab can execute commands typed directly in the Command Window, however, it is

better to store the code in a bespoke ‘m. file’ or Matlab script. The creation of a new script is shown in
Figurel.2.

4\ MATLAB R2019a

HOME

@l & 5

P Mew Variable > Analyze Cod v:| ~
I:Il:ll:I E Ea Find Files I&l E = Now Vare I—'éi g e : E @ Preferences @
Run and Time

Layout @E‘yeﬂ’ath Add-Onz Help
- -

-

t> Open Variable ~
New Open Ig] Compare Import Save Favorites
- - Data ‘Workspace @Clearwm,pane - -
VARIABLE

[Clear Commands ~

CODE ENVIRONMENT
Ll b | ﬁ | ers b
Current Folder [GM Cormmand Window
Mame &>
Details P
Workspace ®
MName Value

Figure 1.2 The creation of a new Script

Thereafter, the following editor window will appear:

4\ MATLAB R2019a

PUBLISH

El‘]j - E [2] Find Files nsert = fi L> L@ -

L%| Run Section é))

=| Compare ¥ GoTow Comment 94 % 1
P =l o i

Breakpoints Run Run and @Advanoe Run and
- - ~ (= Print * \{ Find ~ indent x| Lz | - = Advance Time
FILE MAVIGATE EDIT BREAKFOINTS RUN
<=5 EE b T b Users »
Narme 1
Untitled2
Details ~ —
+
Workspace @
MName Value

Figure 1.3 The editor Window

12

1.2 Running Your Code

Matlab commands can be executed by one of the following ways:
e Type the commands directly in the Matlab Command Window.
e Or if you have created a new script, you should type the commands within it and then
click on the run icon, shown in Figurel.3. Matlab will ask you to save the file if you have
not done this already.

1.3 Getting Help

Matlab has a help icon at the top right of its interface. Furthermore, to the help item in the
menu, Matlab proposes the help command. For instance, help cos prints the help article regarding the
command cos shown directly in the Command Window as shown:

A\ MATLAB R2019a

L IL__E.]E E::,I:' - () Find Files & E iz, New Wariable E{% | s Analyze Code E @ Proferences E% @ £y

_ @ Open Variable v X éf Run and Time ‘M H
New New New Open || Ccompare Import Save Favorites. Layout @ et Path Add-Ons Help
Script Live Script v - Data Workspace (2 Clear Workspace v v [%Clear Commands v - >~ [
FILE VARIABLE CODE ENVIRONMENT RES0)
€ EHEA b Gk Users v
Current Folder (UM Command Window
Mame >> help cos
Details — oos Cosine of argument in radians.
cos (X) is the cosine of the elements of X.
Workspace ®
Name Value See also acos, cosd, cospi.

Reference page for cos

f o> |

Figure 1.4 The help icon

1.4 Scalar Quantities and Variables

The first interactions with Matlab are basic equations and variables. Try to write the following
commands as they are shown :

Command Window

>> T+3

ans =

10
»» T+3;

Jx o=

You may notice that the second command differ from the first one. The second one uses the
semicolon “ ; ”. When using it, Matlab executes the command without showing any output.
By contrast, we can see in the first one that the results have been set 10. Matlab may be used as a
powerful calculator. We can start by considering simple arithmetic operations.

For instance, try to find the outcomes of these operations:
c=21-11; d=7x3;e=4/2

These calculations can be written in Matlab as follows:

Command Window
-

» o=21-11

I3

In aim to approach to idea better, try writing the following instructions into Matlab:
X =32;

y = 16;

z=-7;

x1y;

X—2;

y+z-x.

the answers are 2; 39; -23.

14

Besides, Matlab offers the possibility to write several operations in the same line as shown:

Command Window

== B+3,3%4-2,13-6

ans =

The basic arithmetic operations are summarized in the Table 1:

Table 1. Basic arithmetic operations in Matlab

Operation | Signification
T Addition
- Minus
* Multiplication
/ Division (From left to right)
\ Division (From right to left)
Remarque

Matlab is case sensitive when writing the operation. In the case of division, you may notice that the
inversion of the sign of division / to \ will impact the output, as you can see in the following example:

Command Window

15

1.5 Rules when naming Variables in Matlab

In all previous examples we have simply used variable names which appeared to suit with tasks
at hand with no mention of restrictions on allowable variable names in Matlab. The rules for naming
variables in MATLAB can be summarized like so:

o Variable names in Matlab must be only alphanumeric characters and can be more to 31
characters long;

o Matlab is very case sensitive, so that “ a ”and “ A > are two different variables;

e Variables names must not match with a predefined Matlab command, or with any
user-defined subroutines.

Another important parameter besides on how to name variables is the usage of brackets.
We must make into mind that in Matlab the syntax of x/y*z is not equal to (x/yz) but ((x/y)z).
In aim to ensure that the denominator is calculated first, we would need to use x/(y*z).

To assimilate accurately the use of these brackets, try to determine the value of the following
example:

y -
V+x

'}J + ZX
Where, x=5; y=7 and z=-2.
The solution is:

m = y-x/(y+(y+x)/(z*x))

Command Window

»> X=5
x =
5
= y=T
y =
7
b z=-—2
z =
-2
=rom o= y-x/ (v+(v+x) S (z¥x))
m =
6.137%5

16

1.6 Mathematical Functions

As said before, Matlab is a powerful calculator. The table 2 summarize the additional mathematical
operation.

Table 2. Trigonometric and exponential functions

Symbol Signification
sin () Sinus in radiant
cos () Cosines in radiant
tan () Tangent in radiant
sind () Sinus in degree
cosd () Cosines in degree
tand () Tangent in degree
asin () Inverse of sinus
acos () Inverse of cosines
atan (). Inverse of tangent
exp () Exponential
log () Natural logarithm
log10 () Common logarithm
sqrt () The square root
abs(x) The absolute value x —|x|

To understand better, try to calculate the following expressions:
sin 30°; cos 45°; exp (In (5)); In exp(3+cosn)

17

The answer will be like so:

Command Window

== =ind(30)

0.5000

== cosd(45)

=» log(exp (3+cos(pi)))

ans =

58]

As known, Matlab encloses a huge variety of useful functions. These laters are given in the table
bellow:

Table 3. Useful functions in Matlab

Expression Signification

round(x) Rounds a number to the nearest integer
ceil(x) Rounds a number up to the nearest integer
floor(x) Rounds a number down to the nearest integer
fix(x) Rounds a number to the nearest integer towards zero
rem(x) The remainder left after division

mod(x) The signed remainder left after division
abs(x) The absolute value of x

sign(x) The sign of x

factor(x) The prime factors of x

18

The command round (), ceil (), floor () aims to rounds a number to the nearest, up to the
nearest and down to the nearest integer, respectively. While the command fix () tends to rounds a number
to the nearest integer towards zero.

For instance, a value a equal to 29.36, we would like to use the floor and ceil functions.
The outcome in Matlab will be in this way:

Command Window

»x @a=29.36

29.3600

»>» floor (a)

ans =

24

=» ceil (a)

ans =

30

The command rem(a,b) calculates the remainder when a is divided by b.
For instance, 981 = 6 x163 + 3, so the remainder when 981 is divided by 6 is equal to 3.
We can determine this with Matlab by simply using rem (981,6).

Command Window

>>» remi(981,6)

The command factor provides the prime decomposition of an integer. For instance, factor of the
number 16 in Matlab is as follows:

Command Window

»» factor(le)

58]
28]
28]
28]

19

1.7 The way to display numbers in Matlab: Format

Matlab uses real numbers to perform the calculations, which allows precision in the
calculation of up to 16 significant digits. Accordingly, the following points should be noted:

The result of a calculation operation is by default displayed with four digits after the decimal
point:

e To display more numbers, use the format long command (14 digits after the decimal
point);

To display only 2 digits after the decimal point, use format bank command;
To display humbers as a ratio, use format rat command;
To return to the default display, use the format short command.

The following example illustrate how to use these commands correctly.

Command Window
-

> a=23/7

3.2

£n

57

» format long

» format kank
> a

» format rat
> a

23757

20

Another example is how to write the multiplication result in a ration form.

Command Window

»> 9,2%3.4

31.2800

»» format rat
»» 8.2%3 .4

ans =

TB2/25

1.8 Variables and their size

In Matlab, to see the list of the used variables, either look in the "Workspace' window or use the
‘who' or 'whos' commands.

The who command gives only the names of the variables, whereas whos command illustrates a
detailed description (the name of the variable, its type and its size). The figure bellow illustrates the used
of variables.

= wWwho

Your wariables are:

a ans b c cl e T u w o4 WV =
> wWhos

Hame Size Bytes Class Attributes

a 1=x1 § doukle

ans 1x4 32 doukle

|+ 1=x1 8 doukle

c 1=x1 8 double

d 1=1 g doukle

= 1=x1 8 doukle

r 1=x1 8 doukle

u 3xl 24 doukle

w 1=x5 40 double

* 1=x1 8 doukle

v 1=x1 8 double

= 1=x1 8 doukle

21

If you desire to delete the variable “x”, you can use the command clear x. Matlab offers a set of
command that can erase all the variable or just to clear the screen (Command Window).
The signification of these commands is shown in the table below:

Tablel.5. Matlab’s command to delete variables and exit the Matlab environment

Command Signification
clear a Delete variable a
clear, clear all Delete all variables
clc clears the Command Window (clear screen)

exit, quit

Close the Matlab environment

22

Chapter 2 Vectors and Matrices

Matlab was basically designed to allow mathematicians, scientists and engineers to easily use
the mechanics of linear algebra [6]. In this chapter we will illustrate the idea of initiating vectors and ma-
trices and how to manipulate them as "MATLAB objects".

2.1 Vectors

A vector is an ordered list of elements. If the elements are arranged horizontally, we say that the
vector is a row vector, on the other hand if the elements are arranged vertically, we say that it is a column
vector.

2.1.1 Vectors creation

To create a row vector, simply write the list of its components in square brackets [] and
separate them either by spaces or commas like so:

Command Window

>> a=[1 5 7 -2 8 9]

To create a column vector, it is possible to use one of the following methods:
o Write the components of the vector in square brackets [] and separate them with semico-
lons (;) like so:

Command Window

»>» B=[1:;5:7:-3:8:9]

bh =

tn

-]

4%

[81]

[}

23

¢ Or, we can write the vector vertically:

Command Window

7

-3

8

8]

b =
1
S
T

-3

8
G

2.1.2 Calculation of the row vector transpose

To calculate the transpose of a row vector, two methods exist, either by writing the vector as usual
between square brackets [] and to add the apostrophe []’;

Command Window

»» c=[1,5,7,-3,8,9]"

Command Window

>>» o= Cranspose (a)

24

2.1.3 Matltb’s syntax when creating row vectors

Matlab makes the creation of row vectors a very easy tasks, i.e., if | desire to write a row vector that
runs from ‘a’ to ‘b’ in steps of ‘one = 1°, the code will be in this manner:

Command Window

a =
1 2 3 4] &
»» a=[l:&]
a =
1 2 3 4 5 &

The step can be changed by using the slightly more involved syntax: v = a:s:b, which creates the
vector r running from 0 to 2 in steps of 0.4, as seen accordingly:

Command Window

> r=0:0.4:2

0 0.4000 0.8000 1.2000 1.&000 2.0000

In Matlab, we can write a vector from a previous written vector, as shown in the example:

>> a=[2 4 6]

>» b=[a,11,6,5]

B =

25

2.1.4 Access to any element from a given vector

Matlab allows a rapid and easy access to any elements of a vector. This example shows how to
access selected elements of a vector. We have a vector “a” composed from 5 elements like so:

Command Window

»= a=[e -2 14 -7 B8] % Row wector of &5 elements

== alld) % the 3rd position

14

If we desire to seek elements from the second to the fifth position, it will be as follows:

> al2:h) % from the 2nd to the 5th element

To display elements from the 3rd to the end position, we write accordingly:

Command Window

»>>» a(3:end) i(from the 3rd to the last slement

26

To illustrate the 1%, 3 and 4™ position only, we write the following syntax:

Command Window

>>» a([l,3,4]) % the 1lst, 3rd and 4th position onld

Matlab offers a posibility to replace an element from an already written vector. For instance,
if we would like to replace the 1st element with a value of 8, we write in such way:

Command Window

>» af{l)=8 % Remplace the wvalue of lst element with 8

[54]
|
[

14 =7

8]

[51]
|
[

14 =7

[51]
|
(%]

To add a ninth element with value 5, where the 7th and 8th element are equal to zero, we write
accordingly:

Command Window

> alf2)=5 % Add a 9th element with a value of S

[&4]
|
[3%

14 =7

[54]
|
(1]
]
=]
(4]

27

To erase the second element from the vector “a”, we can rapidly write as shown:

Command Window

== a(2i=[1] % Erase the Z2nd element

[==]
o
4]
=]
4]
(]
(]
4]

To delete Elements from 3 to 5™ element, we write the following syntax:

Command Window

== al(3:5)=[1 % Delete from 3rd to Sth element

[Re]

[
[
[
mn

2.1.5 Element-by-element operations for vectors
The table below illustrates how to perform element-by-element calculations In Matlab.

Table2.1 Basics operations for vectors

Operation Signification

Addition of vectors

Subtraction of vectors

Element-by-element multiplication

A Division element by element

Element-by-element power

For instance, we have two vectors a vector a = [4, -2, 5] and b= [-3, 7, 1]. Try to do the following
operation:

a+3; atb; b-2; b-a; a*3; a.*3; a.*b; a/3; a./3; a./b; a3 ; a.™b

The answers will be in this manner:

e The addition:

Command Window

>> a = [4, -2, 5]
a2 =

4 -z 5
>> b= [-3, T, 11
B =

-3 7 1
>x a+3
ans =

7 1 g
»>» a+t+b
ans =

1 5 6

e The minus:

Command Window

ans =
-5 L] -1
> b-a
ans =
-7 9 -4

29

e The multiplication:

Command Window

ans =
12 -& 15
o
ans =
1z -6 15
*>> a.*b
ans =
-12 -14 L

e The division:

Command Window

ans =

1.3333 —0.666T l.66&T
> a./3
ans =

1.3333 -0.68667 l.6667
> a./b
ans =

-1.3333 -0.2857 5.0000

30

¢ Element-by-element power:

Command Window

ans =
£4 -8 125
> a."b
ans =
0.0156 -128.0000 5.0000
Remarque

Writing an expression such as: a*2 generates an error message.

Command Window
>> a*2
Error using _* ({line 51)
Incorrect dimensions for raising a matrix to a power. Check that the matrix is square and the power is a scalar. To perform
elementwise matrix powers, use '."'
fe »»

The reason is that expression refers to a multiplication of matrices (a*a must be rewritten a*a' or a*a
to be valid).

2.1.6 The linspace function

The linspace function can be used to create a vector with elements that are arranged in a
predetermined order and a known number. The function can be written as follows:

“ linspace (start, end, number of elements)”.

Replicate the following examples to understand accuratly.

Command Window

»> a = linspace (2,20,4)

2 8 14 20

»>» b = linspace (1l2,42,&)

12 18 24 30 36 42

31

The length of a vector (the number of its components) can be obtained by suing the ‘length’ function
thusly:

Command Window

>»> length(a)

»» length (k)

ans =

2.2 Matrices

2.2.1 Matrices creation

A matrix is a rectangular array of (two-dimensional) elements. Vectors are matrices with a single
row or column (one-dimensional). To insert a matrix, you must respect the following rules:
¢ Elements must be enclosed in square brackets [];
e Spaces or commas are used to separate elements in the same line;
e A semicolon (or the enter key) is used to separate lines.

To illustrate this, considering the following matrix:

3 4 5 6
A=|7 8 9 10
11 12 13 14

To write this matrix different syntax ways exists, such as:

Command Window

>> A=[3,4,5,6;7,8,9,10;11,12,13,14]

o=
3 4] &
7 g a 10
11 12 13 14

>> A=[3 4 5 6;7 8 8 10711 12 13 14]

L=
3 4 5 &

7 8 a 10

11 12 13 14

32

Or, we can write like so:

Command Window

= B o= [[3:7:11],[4:8:12]1,[5:9:13]1,[6:10:14]]

L =
3 4 5 @
T i = 10
11 1z 13 14

> L =[3 45 &
78 8 10
11 12 13 14]

A =
3 4 5 &
7 g g 10
11 12 13 14
Remark

The number of elements in each row (number of columns) must be the same in all rows of the
matrix, otherwise an error will be reported by Matlab, as seen in the following example:

Command Window

> b=[2 3; 4 T 8]
Dimensions of arrays being concatenated are not consistent.

fe >> |

A matrix “M” can be generated from a set of vectors (u,v,w) as shown in the following example:

Command Window

»>» w=6:4:18

33

The syntax of the matrix ‘M* will be as follows:

M=
2 3 4 o

@ a 1z

@ 1a 14 18

The transpose of the matrix M can be written from the given vectors (u,v,w) as seen:

Command Window

>» T=[u"' v' w']

T =
2 3 @
3 @ 10
4 a 14
3 12 18

Another point, is the possibility to create a matrix C from the previously ‘u’ vector. Thus, the
syntax will be in this manner:

Command Window

2.2.2 Referencing and access to matrix elements

Matlab allows you to acces to any element from the matrix. For example, a matrix “A” composed
from 3 rows and 4 columns as seen:

Command Window

»>» B=[2 4 6 8; 10 12 14 16; 13 20 22 24]

A=
2 4 @ 8
10 12 14 le
18 20 22 24

34

For instance, to acces to the element situated in the 3 row and 2" column we write the following
syntax:

== L(3,2)

10 12 14 l&

All elements of the first column:

Command Window

b
NS
i)
]

10 1z 14 le

The superior right submatrix, with a size of 2*2:

> B(l:2,3:4)

ans =

14 16

35

The submatrix, rows (1,2) and (3,4) columns:

Command Window

> A([1.2],03,41)

R:
2 [3
10 14 1&
18 22 24

Delete 3" row:

Command Window

== A3, 1)=0]

L =

10 14 1l&

Add a new column of one:

Command Window

»> A = [& , [1:11]

%)
o
cn
[

10 14 1a 1

36

Add a new row of zero:

Command Window

L =
2 @ i 1
1a 14 la 1
0 0 0 0

2.2.3 Size of a matrix

The size of a matrix can be determined by using the function “size”. For instance, the size of the
matrix ‘M’ will be as follows:

Command Window

= =slze (RA)

The Matlab’s outcome will be row x column. In aim to determine the number of rows or columns
separately, we will use the following syntax:

e The number of rows:

Command Window

> 3l= zize (A,1)

e The number of columns:

Command Window

»x 82= gize (&A,2)

37

2.2.4 Matlab’s predefined matrices functions

In Matlab, a set of functions that allow to users to gain time and to automatically generate a
specific matrix. The following table present the most used ones:

Table2.2 Matlab predefined matrices functions

Function Signification
ones(n) Generates an n x n matrix with all elements = 1
ones(m,n) Generates an m x n matrix with all elements = 1
zeros(n) Generates an n x n matrix with all elements =0
zeros(m,n) Generates an m x n matrix with all elements =0
eye(n) Generates an n x n identity matrix (ones on the main diagonal and zeros elsewhere)
rand(m,n) Generates an m x n matrix of random values
magic(n) Generates a magic matrix of dimension n x n

Bellow some examples to clarify the idea.

Command Window

>» ones (4)

ans =

o
o
o
S

Command Window

>> Zeros(4,2)

o o oo
o o oo

38

Command Window

= eye (3,3)

1 a L]
L] 1 L]
L] a 1

16 2 3 13
5 11 10 8
=] 7 & 12
4 14 15 1

»» rand(3,4)

ans =

0.8147 0.92134 0.2785 0.964%
O.3058 0.63249 0.54986% O.1576
0.1270 0.0975 0.9575 0.9706

2.2.5 Element-by-element matrix operations

The element-by-element matrix operations are the same as those for vectors. The only condition
is that the two matrices have the same dimensions. The table below illustrates these operations.

Table 2.3. Matlab basic matrix operations

Operation Signification
+ Addition
- Minus
L* Multiplication Element-by-element
* Matrix multiplication
A Power Element-by-element
) Division Element-by-element
A Inverted division Element-by-element
/ Matrix division

39

To understand better these operations, try to replicate the following example.
e Firstly, write a matrix ones named “u”, composed from 3 rows and 4 columns.
e Secondly, write a matrix zeros “v”, composed from 4 rows and 3 columns.
The outcomes in Matlab will be accordinagly:

Command Window

>>» u= ones(3,4)

1 1 1 1
1 1 1 1
1 1 1 1

=>» w =zeros(4,3)

4]] 4]
0] 0
1]] 1]
o] Q 4]

Now, let’s do the following operations:
e Add four to the matrix v (v+4)

Command Window

[ERY S O
[F Y S Y
[T ST Y

o Multiply u*v

Command Window

ans =
16 16 16
1b le 1b
16 1a 16

40

= ou.Fy

Matrix dimensions must agree.

fe >> |

As reported in the above paragraph, to do element by element multiplication the matrix
dimensions must agree.

Before, let’s do the following operations. Firstly, add a 4™ column composed from 4 as seen:

Command Window

> vi(:,4)=[4 4 4 4]°'

[ST SR R Y
[ST SR R Y
[SR SR Y Y
[SR SR Y Y

Thereafter, delete the 4" row:

Command Window

4 4 4 4
4 4 4 4
g 4 4 4

Now, we can see that the dimensions of matrix “u” and ‘v’ are similar and the multiplication can
be done.

Command Window

4 4 4 4
4 4 4 4
4 4 4 4

41

Another example is by multiplying the matrix ‘u’ with an identity matrix ’eye’. Here also a
condition to be respected. The number of columns in the matrix “‘u” must match with the number of rows
of the matrix eye. For instance, if we would like to multiply u*eye(3) an error message will be generated:

>» u * eye (3)

Error using *

Incorrect dimensions for matrix multiplication.

Check that the number of columns in the first matrix matches the number of rows in the

second matrix. To perform elementwisze multiplication, use '.%'.

By contrast, the syntax will be written in this manner:

Command Window

>> ufeye (4)

1 1 1 1
1 1 1 1
1 1 1 1

2.2.6 Additional useful matrices functions

Matlab knows as a powerful tool when dealing with matrices operations, it has a set of other
useful functions. These are some of most used one.

Firstly, let’s create a matrix ‘M’ as shown:

Command Window

>» M=[2 4 6;8 10 12;14 16 18]

M =
2 4 7
B 10 1z
14 le 18

The determinant of the matrix M can be calculated by using the function “det” as follows:

Command Window

5> det (M)

42

To determine the inverse of the matrix M, we use the function “inv” like so:

Command Window
>> inwv (M)
ans =
=1.0000 0.5000
0.7500 —0.2500

The rank of the matrix can be calculated as seen:

Command Window

»>» rank (M)

To calculate the trace of matrix M, we use the function ‘trace’ as follows:

Command Window

>> trace (M)

10

We use the syntax eig (M) to determinate the eigenvalues of the matrix M

Command Window

>> elig (M)

—-0.7446
10.7446

43

The second example aim to determine the upper and lower triangular part of the matrix “A”.
To do this we use the syntax ‘triu’ and ‘tril’, respectively.

First of all, we create a matrix “A”:

Command Window

>> B=[2 4 €;8 10 12;14 16 18]

o =
2 g o
8 10 12
14 16 18

For example, the upper triangular part can be written as seen:

Command Window

>> triu(d)

2 4 7
a 10 1z
) O 18

Command Window

P btriu(i, 1)

a0 4 o
o o 1z
0 0 O

Command Window

»» triu(if,2)

i) a0 [
) o o
) 0 0

44

For instance, the lower triangular part can be generated as follows:

Command Window

>> tril (&)

2) 0
B 10 0
14 le lg

>> tril (&,-1)

) O
8) O
14 16 0

Command Window

=> tril (A, -2)

ans =
0 O)
0 0 a
14 0)

The third example aims to creates a matrix having the vector ‘v’ in the diagonal and
0 elsewhere.

Command Window

>> u=[1 2 3]

»>» diag (u)

ans =

1 0 0
a0 2 0
a 0 3

45

Chapter 3 Matlab Plotting

One of the most helpful Matlab commands is without a doubt the plot command.
When writing this command, Matlab will open a new figure and plot the parameter (an array) vs its index.
Matlab will interpret the first array as the x-coordinates and the second array as the y-coordinates[7].

3.1 Matlab plot function

The plot function is easily used to plot any given data. The following example aim to simply to
usage of this function in simple 2D plots.

For example, we would like to draw the following function:
e X =-5:10;
o y=X"2-20;

The syntax in Matlab will be as follows:

= —-5:10; % walues of the argumen

> K
> ¥ = X."2 — 20; Fvalues of ©

»» plot (x, ¥)

Accordingly, a new window will be open illustating the figure bellow.

4 Figure 1 = O s
File Edit View Insert Tools Desktop Window Help L]

D@ de @08k [E

80
7r
60 [
50 [
40 r /
30 /'

201
107

o\

0 N e

20 e

Figure 3.1 Matlab 2D line plot

46

Matlab gives us the opportunity to change the type of line, color, and marker of the plotted line.
These laters can all be specified using a third string input. The pre-defined colour strings: ’k’ black ’r’ red
>g’ green *b’ blue *w’ white >m’ magenta ’y’ yellow *¢’ cyan. Figure 5.2 displays the previous figure with
different colors.

4 Figure 1 — O x
File Edit View Insert Tools Desktop Window Help

Ddde | @ |06 L E a

80
70
60 [
50
40 /
0 s

20 1

107
o N

-0 N rd

-20 e

4| Figure 1 - O X

File Edit View Insert Tools Desktop Window Help N

Dodde |2 |08 [E

8D

70T

60

50

40 r

30T

201

107

ot

0|

-20

Figure 3.2 Matlab s plots style. (a) Red 2D line plot. (b) Green 2D line plot
It is possible to change as well the appearance of a curve by changing the shape of the

coordinate points, and the type of line connecting the points. The tables bellow summirize all the changes
that can be made during plotting.

47

Table 3.1. Matlab’s curve color

Operation Signification
b or blue Curve in blue

g or green Curve in green
rorred Curve in red

Cc or cyan Curve in cyan

m or magenta

Curve in magenta

y or yellow

Curve in yellow

k or black

Curve in black

Table 3.2. Matlab’s curve style

Character

Effect

Solid line

Dotted line

Dash dotted line

- Dashed line
Table 3.3. Matlab’s curve effect
Charactere Effect
Point
+ Plus sign
* Star
X Cross
0 Circle
S Square
d Diamond

Upward pointing triangle

48

v Downward pointing triangle

> Right pointing triangle
< Left pointing triangle
P Pentagram

In aim to understand accuratly, let’s draw the function the function y = sin(x) for x = [0 ... 2x]
with step of w/12.

The syntax in Matlab will be as seen:

= x=0:pi/fl2:Z2%pi;

= oy==in(x) ;

Firsly, draw it by trying different shapes:
e starting with black, dotted line with squares.

The code will be like so:

== K = Q0:pdiSlZ:2%pi;

= oy = gin (=) s

> plot(x,v, "k:=")
fx ==

The curve will appear as seen:

[4] Figure 1 — O it
File Edit View Inset Toocls Desktop Window Help k]

DeHde (@0 kE

0.8 | - - 1
06 11 _
u4-:f 1 .
0.2 3 i

o]} g = 1

Figure 3.3 Matlab customized 2D plot (Black, Square, Dotted line)

49

¢ Red color, solid line and with triangles

== o = Qipifl2:2%pi:
> v = 3in(x):
= plot(x,v, "z-7")

The curve will be depicted as follows:

{4 Figure1 - O s

File Edit View Insert Tools Desktop Window Help E

Dode | @ 06| LE

Figure 3.4 Matlab customized 2D plot (Red, Triangle, Solid line)

¢ Blue color, dash dotted line and with stars

Command Window

=x o® o= Qipd/fl2:2%pi;

= oy = gin(x):
»» plot(x, vy, "BE—.%")
Jx o=

50

The outcome will be illustrated as seen:

4\ Figure 1 — O x
File Edit View Insert Tools Desktop Window Help k

A de @ 0| LE

08 _,.r’ \. b

06 s N 1

04t 7 \ .
’ \

0.2 a% * _

0¥ ée\ " _

02F '«

0.4+ \ / 4

D81 AY . -

Figure 3.5 Matlab customized 2D plot (Blue, Start, Dash-dotted line)

3.2 Curves customzing

Matlab allows to customize the curve by adding a grid or by including a legend to to the axes.
Another interesting point, is the ability to indicate the locations of significant points in a curve with a
comment. All these can be done by using the following syntax:

In the beginning, to give a title to a figure containing a curve we use the “title” function as seen:

ﬁg »> title ("title of the cu

H
o
m

Subsequently, to give a title for the horizontal x-axis, we use the “xlabel” function:

»» xlabel ('this is the x-axis')

B o>

51

Besides, to give a title for the vertical y axis, we use the “ylabel” function like so:

>»> ylabel ('this is the y-axis')

s

To write text (a message) to the graphics window at an indicated position by “x” and
“y” coordinates, we use the “text” function:

f > text(x, y, 'this point is important')

To put a text on a desired position chosen manually (with the mouse), we use the “gtext”
function, which has the following syntax:

f{, »» gtext('This point iz chosen rr.a:'.';a_'_;-"]|

To put a grid, use the “grid” (or grid on) command. To remove it, reuse the same “grid”
(or grid off) command.

The following example helps you to understand better.

Cormmand Window

> x = -6:0.5:6;
> ¥y = -3%x."34x."2-2%x%46;
=» plot (x,v)

> grid
>» title('Customized curve')
>» xlabel ('x axiz')
>» ylabel ('y axis')
f o=

52

The curve will appear accordinagly:

|4 Figure 1 - O X
File Edit VYiew Inset Tools Desktop Window Help k!

Odde @ 08| K[E

Customized curve
800 T T T T T

600 Y, |

400 [AN 1

200 e 7

Y axis
(=}
:
|
|
|
I
f
|

200 [R
™

400 | N

-600 1

-800

Figure 3.6 Matlab 2D customized plot

3.3 Multiple curves in a same graph

By default, in Matlab, each new drawing with the plot command erases the previous one.
To force a new curve to coexist with previous curves, there are several methods, such as the hold
command as well as the use plot with several arguments

3.3.1 The command hold

The command “hold” or “hold on” enable the preservation of previous curves, which allows the
display of different curves in the same figure. If we desire ti disable its effect, we can simply rewrite hold
or hold off.

For instance, to draw the curve of the two functions cos(x) and sin(x) in the same figure, we can
write:

=x Xx=0:ipli/Sl2:2%pdi;
»> yl=cos (x):

wx oyZ=sin (x)

»» ploc(x,vl, "kE-o')
»> hold on

>» ploc(x,v2, '"r:o")

B ==

53

4\ Figure 1 - O *

File Edit View Inset Tools Desktop Window Help E

Qcdde @ 08 kE

Figure 3.7 Matlab s multiple curve (hold on command)

3.3.2 Plot with several arguments

We can use plot with various couple (x,y) or triple (x,y, markor) as a arguments.

Command Windaow

»x ¥=0:piflZ2:2%pi:

»» yl=cos (X)) :

== yZ=sin(x):

> plot(x,yvl, "r:4+'", . X, v2, "bBio'")

54

The curve will be illustrated like so:

4\ Figure 1 - O >
File Edit View Inset Tools Desktop Window Help o

Ucdde | @ 0E E

08F - - - 7 I

04 g B B 1

02}: "] E 1

Figure 3.8 Matlab’s multiple curve (Several arguments)

3.4 Histogram and bar graphs in Matlab

The Matlab not only allows the display of points to draw curves, but it also offers the possibility
of drawing bar graphs and histograms. To draw a bar graph, we use the “bar” function, which has the
same operating principle as the plot function.

The following example explains how we can draw bar graphs. First of all, write this code in the
Matlab as seen:

>»> ®x=[1l993:10:2023]:
=x y=[2 4 6; 3 4
>> bar(x,v)

55

The drawn bar graph will be as shown:

4\ Figure1 — O >

File Edit View Insert Tools Desktop Window Help k]

NEde |08k E

8

7F —

1993 2003 2013 2023

Figure 3.9 Matlab’s bar chart

A huge variaty of functions exist that can for instance change the shape of bar graphs,
for example the “bar3” to give a 3D aspect, as seen:

4] Figure 1 = O >

File Edit View Insert Tools Desktop Window Help E

Do de @08 kE

Figure 3.10 Matlab’s 3D bar chart

56

The pie charts can also be drawn in Matlab as seen in the following example:

>» x = [30, 20, 50, 10]:
*» legend = {'A"', 'B',"C',"D'};
>> pie(x, legend)

Fx

4] Figure 1 —] X

File Edit View Inset Tools Desktop Window Help E

DEde | @ 06| KE

Figure 3.11 Matlab’s pie chart

To give the 3D aspect, we use the “pie3” function as given:

»> x= [30, 20, 50,10];

»>» legend = {'A','B"','C','D"}:
>> pield(x, legend)

f 5> |

57

And the 3D aspect is added as seen,

|4\ Figure 1 — O X

File Edit View Insert Tools Desktop Window Help k|

Osde |2 0E|&E

Figure 3.12 Matlab’s 3D pie chart

3.5 Plotting 3D curves in Matlab

The way MATLAB handles two- and three-dimensional graphics is one of its outstanding characteristics.
Although we won't often need to use MATLAB's powerful graphical rendering, we should be familiar
with the fundamental functions. Examples demonstrate a few of the numerous options:

o Firstly, try to write the following code

Command Wind ow

=» ¥ = linspace(-pi/fZ, pi/fZ,40):
P> oW = X

> [X,¥] = meshgrid (x,v):

»» £ = 3in (. Z2-¥."2):

> figure(l)

>>» contour (X,¥,If)

58

 The figure displayed is as follows:

|4\ Figure 1 - O X
File Edit View Inset Tools Desktop Window Help k]
Er R EDE:

Figure 3.13 Matlab contour plot

¢ The second one, try to add the sentences highlighted in red:

»» ® = linspace(-pi/ 2, pi/ Z,40):
Y = X7
> [X,Y] = meshgrid (x,v):
»» £ = 5in (X."2-¥."2};
=>» Ffigure(l)
> contour (XY, F
figure(2)

contourf (X, ¥, £,20)

59

« The figure displayed is as shown:

4\ Figure 1 — O X

File Edit View Insert Tools Desktop Window Help E

NE@@de |2 |08 kE

Figure 3.14 Matlab filled contour plot

o The third example is by using the surf (X,Y,f) command as seen:

Command Window

By

= £

K=

> [X,Y] = meshgrid (=x,v):

»>» figure(l)

»» contour (X,Y,Lf)

»>» Ffigure(2)

»» contourf (X,Y,£,20)

»>» figure(3)
»>» surf(X,¥,£)

linspace (-pi/2, pi/fZ,40);

= ®=:

= sin (X."2-Y."2):

60

4 Figure 1 — O X

File Edit View Inset Tools Desktop Window Help u

AEE DRI EIRE

"”3"’;?55"5? R

‘Wi.. ffff' (/ " (A

i)
7 o QM N ! f

s

q,‘;ﬁ:{i}'&;p
Nyl
.0:#’ W

iz

\ .
R

Figure 3.15 Matlab 3D surface plot
These three graphics, generated with the functions contour(X,Y,f), contour(X,Y,f,20), and

surf(X,Y,f), represent a contour plot, a filled contour plot with 20 contour levels, and a surface plot,
respectively. Using the command meshgrid(x,y), a grid is created and used to visualize the function f.

61

Chapter 4 Matlab’s loops and conditional statements

As several programs, in Matlab you can define set of code that either conditionally execute or
repeat in a loop. Conditional statements use “if” or “switch”, while loops use a “for” or “while” keyword

8.

4.1 The “if, else, elseif” condition

The if statement is among the simplest and most used conditional statements in Matlab.
It executes statements “if” condition is true. Its general syntax can be written accordinagly:
if (condition)
instruction 1
instruction 2
instruction N

end

The condition “if” evaluates an expression, as well as executing a group of statements when the
expression is true. Let’s see the following example to understand better. We would like to display a given
message “this number is > 5”, when the number is superior then 5.

1= i=input ('Enter a number Yy
EX.m 2 - if (i>5)
+ 2= display 'this number iz > 5°"
4 - end

Command Window

P EX
Enter a number 7
this numbker is > 5

o=
5

62

https://www.mathworks.com/help/matlab/ref/if.html#bt_csfy

The condition “if” evaluates an expression, as well as executing a group of statements when the
expression is true. Let’s see the following example to understand better. We would like to display a given
message “this number is > 5”, when the number is superior then 5.

The second conditional statement is by using if — else — end. The syntax is written as seen:
if (condition)

instruction set 1

else

instruction set 2

end

The given example will make us understand better. We would like to give a random number
and the Matlab will display if it is an even or odd number.

L= n=input {'enter an integer number'):;
EX. 1T 2 — if(mod(n,2)== 0)
+ 3 - display 'this is an even number'
4 = else
2= display 'this is an odd number®
& — end

Command Window

x BeM

enter an integer number 11

this is an odd number
.

The given example will make us understand better. We would like to give a random number
and the Matlab will display if it is an even or odd number.

The third conditional statement is “elseif”. Be aware that if it is necessary to check several
conditions, the “elseif” can be used for each additional condition, and at the end we can put an “else” in
the case where no condition has been evaluated true. The syntax can be written thusly:

if (expression_1)
Instruction Set 1
elseif (expression_2)
Instruction Set 2

elseif (expression_n)

Instruction Set n

Else

Set of instructions if all expressions were false
End

63

https://www.mathworks.com/help/matlab/ref/if.html#bt_csfy

The following example explains how we can use this syntax. For instance, we would like to
write a program that defines the stage of your life according to your age:

Command Window

»> age = input ('Enter your ages: "):

if (age < 2)
disp("You are a kaby'")
elseif (age < 13)

disp('"You are a child')
elseif (age < 18)

disp ('"You are a teenager')
elseif (age < &0)

disp ('"You are an adult')
else

disp ("You ar

i

a senior adult')
end
A Enter your age:

4.2 The “switch case otherwise end” condition

The following example explains how we can use this syntax. For instance, we would like to
write a program that defines the stage of your life according to your age:

In Matlab, this condition evaluates an expression and chooses to execute one of several groups
of statements. Accordingly, the syntax takes the following form:

Switch (expression d)
case (expression 1)
Perform task al to an
case (expression 2)

Perform task b1 to bn

case (expression k)
Perform task x1 to xn
otherwise

Perform task z1 to zn
end

64

A really good example is by trying to figure out the month.

1= N=input ('enter the desired month'}:
2 - switch (H)

3 - case (1)

4 - disp('January')

5 - case (2)

a6 — disp('Februarcvy")
T - case (3)

g8 - disp('March')

9 - case (4)

10 — disp('April'")

11 = case (5)

12 — disp('Mav")

13 — case (&)

14 - disp('June"')

15 — case (7T)

16 — disp('July")

17 — case (8)

18 = disp('August')

19 — case (9)

20 — disp('September')
21 — case (10)

22 — disp('Cctober')
23 — case (11)

24 — disp|('Novemnker")
25 — case (12)

26 — disp('December")
27 — otherwise

28 — disp('Not a valid number'}
29 — end

30

The output will be as shown:

Command Window

> eX
enter the desired month 11
Hovember

f s

65

4.3 Loop Control Statements

In Matlab, you may run a block of code repeatedly via using loop control commands.
As known, a loop is a structure for repeating a calculation (or calculations) a predefined number of times.
Accordingly, two different kinds of loops exist: the “for” and “while” loop.

4.3.1 The “for” loop

In Matlab, you may run a block of code repeatedly via using loop control commands.
As known, a loop is a structure for repeating a calculation (or calculations) a predefined number of times.
Accordingly, two different kinds of loops exist: the “for”” and “while” loop. The syntax of “for” loop is as
follows:

for variable = i:s:n

statement(s);

end

with ‘i’ is the initial value, ‘s’ the steps (incremental value) and ‘n’ the final value. For example:

Command Window

>» for 1 = 2:2:4
x=i"2

end

1le

The bellow flowchart explains accurately the loop “for”

Increment i by 2

F 3

Figure 4.1 for loop flowchart

66

4.3.2 The “while” loop

By contrast, the ‘while’ loop is used when the looping process terminates because a prescribed
condition is met. Unlike in the for loop, the number of passes is not known in advance.
The syntax of while loop is like so:

while logical expression
statement (s)
end

On the other hand, the loop must have a value before the while statement and the loop variable
must be changed by the statements. The following example make us understand better.

Command Window

False

True

X=3%-1

v

Figure 4.1 while loop flowchart

The output will be accordinagly:

67

14

41

Overall, the following table summirize the loops and conditional statements in Matlab.

Table 4.1. Matlab Language Syntax

Syntax Signification
if, elseif, else Execute statements if condition is true
switch, case, otherwise Execute one of several groups of statements
for for loop to repeat specified number of times
While while loop to repeat when condition is true

68

Chapter 5 Matlab Toolbox

As known, Matlab has an interface that offers an interactive console-type window for executing
commands, as well as, an integrated development environment (IDE) for programming applications.

Matlab finds its applications in many disciplines. It constitutes a powerful digital tool for the
modeling of physical systems, the simulation of mathematical models, the design and validation
(simulation tests and experimentation) of applications. The basic software can be supplemented by
multiple toolboxes. We can cite for example: Curve Fitting Toolbox; Image Processing Toolbox; Data
Acquisition Toolbox...etc [8].

5.1 Add additional Toolbox

As talked above, Matlab has a limitless variety of Toolboxes. To add any desired toolbox,
you can follow these steps:

e Step 1: Click on Add-Ons

4\ MATLAB R201%a

HOME

] =) [z, New Variable 7 | & Analyze Code
s L IfI]:I J [Find Files & B D - E {0} Preferenclls
[+ Open Variable » éf—* Run and Time
News New New Open IE—‘ Compare Import Save Favorites Layout @ Set Path
Script Live Script - - Data Workspace W Clear Workspace - - [‘_/g Clear Commands ~ -
FILE VARIABLE CODE ENVIRONMER
€« HEA » C: b Users » Desktop »
Workspace OGN Command Window

MName Value f{ =

69

o Step 2: Get Add-Ons

4\ MATLAB R2019a

Lz, New Variable

@ 4} '{Ilj 3 [l Find Files &l

=

[Open Variable +

23

cr

|57 Analyze Code

@ {0} Preferences

_ ’ L[ff Run and Time
New New New Open EE' Compare Import Save Favorites Layout ﬁ Set Path
Script Live Script - - Data @ Clear - - Lg Clear Commands ~ -

FILE VARIABLE ‘CODE ENVIRCNMENT

b C v Users » Desktop »
Command Window

fe »>

I f% Get Add-Ons

B4 mBacbB@el

(% @ (% Community

= uest Support
Hep = Req ppo

P oy

anage -Ons

]
3
Package App

ﬁ Get Hardware Support Packages

Package Toolbox

A window will appear as shows in the figure bellow. By using the research tool above at the
right, you can download any desired toolbox.

MathWorks Toolboxes and Products

sPUs

GUI Layout Toolbox

Numerical Computing with
MATI AR

~ s
- W
<., S 'A
4 o »
-
o
s,

4
Statistics and Machine
Learning Toolbox

Analyze and model data using Design, analyze an

statistics and machine

e
PlIViab - particle image

valacimates (DI tanl with

Lidar Toolbox

eaming processing sy

Simulink Onramp

Shaw All 106

Show All 1,348

L

70

5.2 Using of the “Curve Fitting Toolbox”

Among the powerful Toolbox that we will use in this course is “Curve Fitting Toolbox”.
An application and features for fitting curves and surfaces to data are offered by Curve Fitting Toolbox.
You can use the toolbox to perform exploratory data analysis, pre- and post-process data, remove outliers
and compare candidate models. You can perform regression analysis using the given library of linear and
nonlinear models, or you can create your own custom equations.

The library offers optimized solver parameters as well as starting conditions to enhance the
quality of your fits. The toolbox supports as well non-parametric modeling methods, including splines,
smoothing and interpolation. Now, let’s understand how to use this toolbox via the following steps:

o Firstly, we will create three random matrices, by using the rand function as seen:

»> X = rand(€);
>» ¥ = rand(6):
»» £ = rand(g);
fe 55 |
e Secondly, on the Apps icon, we will select ‘Curve Fitting Tool’. A pop-up window will
appear:
4\ Curve Fitting Tool — O *
File Fit View Tools Desktop Window Help A A X
vl e P =l
untitled fit 1 +
Interpolant o Auto fit
Fit name: |untitled fit 1
Method: |Linear ~ Fit
X data: (none) e
V data: (none) o Center and scale Stop
Z data: (none) e
Weights: | (none) e

Results

Select data to fit curves or surfaces.

71

o Thirdly, we will set the ‘X, Y, and Z Data’ in this window to our inputs, ‘X, y and z’,

respectively.
4\ Curve Fitting Tool —] 4
File Fit View Tools Desktop Window Help N A X
- b [l | & O 3 A |[EE | L HOHAHDO
| untitled fit 1 | + |
Interpolant ~ Auto fit
Fit name: |untitled fit 1
Method: Linear ~ Fit
¥ data: * ~
[Cent d scal
Yotz [y = 4] Center and scale Stop
Z data: z ~
Weights: | (none) ~
Results
~
Linear interpolant:
f(x.y) = piecewise linear surface comp
where x is normalized by mean 0.5196
and where y is normalized by mean 0. : il —
Coefficients: 7 /i O \“._
b = coefficient structure N g e S0 \“‘\".‘
&
Goodness of fit: g
SSE: 0
R-square: 1
Adjusted R-square: NaN
RMSE: MaM
v
< >
e — =

Therefore, a curve be will created as seen in the figure 5.5. In the Result section, you can see the
curve’s equation. Be aware, that by using the dropdown on the top of the curve, you can use a custom
equation.

5.3 Creating your own Toolbox

Matlab allows us to create our own customed Toolbox environment. The following example
will show us how do this. Firstly, we would like to create two Toolbox that will do the sum and the
multiplication between given two numbers, which will be named “custmsum” and “custmprod”,
respectively. Thereafter, we will create these two functions in our device as seen:

e Step 1: Click on New, then Functions:

[\ MATLAB R2019a

HOME

H4 EF9cB @

Favorites

| Analyze Code

E {0} Preferences C% @

Layout @ Set Path Add-Ons Help
- -

-

EMVIRONMENT

(% Community

3 Reguest Support
[E] Learn MATLAB
REEOURCES

Class
System Object >
[Project >
Figure

App

= P News Variable >
E L=y '{_h L [Fnaries = E = sy
- 7 open variable =
New New New | Open 1=l Compare Import Save
Seript Live Seript | = - Data {22 Clear
VARIABLE
El Script Ctri=M
&= =53 » Desktop + Mew Folder
Workspace E Live Seript [OM Command Window
o >>
Mame I fx| Function I fx
| Live Function

72

o Step 2: Do the required changes as it can be seen here:

fow Comment % ¢ &
Yol 4% zd Breakpoints Run Run and @.M\ranoe Run and

= Indent goE| |Fap - * Advance Time
TE EDIT BREAKPOINTS RUN
¥ Desktop * New Folder
Ol
1 function outputArgl = custmsum (inputArgl,inputiArgl)
custmsum.m 2 FUNTITLED Summary of this function goes here
+ 3 % Detailed explanation goes here
4 - outputArgl = inputiArgl + inputiArg2;
== end
6
T

Command Window

Jx x>

-

Thereafter, save the file in a specified folder.
Repeat the same steps to create the “custmprod” and do not forget to modify as seen
previously. The required changes are highlighted in red as seen:

4\ MATLAB R201%a

PUBLISH B: ol 9eo® e

I:D:I i~ % [FindFies <@ 1, nsect 2, % |;> L@ [Run Section é})

|l compare + g GoTow Comment 9% ‘g %]

New Open Save Breakpoints. Run Run and I%Mvanoe Run and
- - ~ (=i Print v |, Find ~ Indent 2| |5 - ~ Advance Time
FILE NAVIGATE EDIT BREAKFOINTS RUN
€= EHmE b C: b Users b gigabyte b Desktop » Mew Folder

Workspace ®

Narne - Value

function outputArgl= custmprod (inputlArgl, inputirg)
SUNTITLED2 io

% Detailed explanation goes
outputArgl = inputArgl * linput.nrgZ:
end

custmsum.m Summary of this function goes here

custmprod.m
+

b oo oo W e

Command Window

Jx >

73

Now, let’s check if our created functions work accurately. To do this let’s do some sample
operations and see the results in the “Command Window”:

| 1 function outputirgl = CUStmSUmMm (inputiArgl, inputiArgl)
custmsum.m 2 FUNTITLED Summary of this function goes here
+ 3 % Detailed explanation goes here
4 - outputArgl = inputArgl + inputirgl;

Command Window

»» custmsum (2, 2)

1 function outputirgl= gustmprod (inputirgl, inputlhrg2)
custmprod.m 2 FUNTITLEDZ Summary of this function goes here
+ 3 % Detailed explanation goes here
4 - cutputirgl = inputirgl * inputirg2;
== end
&
7

Command Window

16

fr = |

74

The two functions work accurately whenever | write the functions path and | will get the output
in my Command Window. However, if | will change the folder, the operations will no longer work and an
error message will be displayed accordinagly:

»>> custmsum (2,8)
'custmsum' is not found in the current folder or on the MATLAB path, but exists in:

C:\Users\

Change the MATIAB current folder or add its folder to the MATLAB path.

fe >> |
Now, let’s create our customed Toolbox, by following these steps:
e Step 1:
a4 B BReocD @ |
% E iz, New Varia.ahle > |j‘ Analyze Code E @ Preterences o_, [(I:_A: Community
port cove > Open wariable = Favories {7 Run and Time Layout =) set Poth o= Reguest Support
Pata Workspace @c.iearwmxspaoe - -~ |3 Clear Commands ~ - ~ L=l Learn MATLAB
VARIABLE CODE ENVIRONMENT RESOURCES
Desktop »
Command Window
fx =
e Step 2:
I 20— C o]
iz Mew \.-"ar'u-ibl-e > |_q"(‘ Analyze Code E P — %vg @ (% Community
[z open variable ~ Fovories %7 Run and Time Layout (= st Path e Reguest Support
k[Clear Workspace - - [Clear Commands ~ - = [E] Learn MATLAB
ARIABLE CODE ENVIROMMENT | ;_E et Add-Oins

Manage Add-Ons -

Package Toolbox I

Package App

Get Hardware Support Packages

75

e Step 3:

4 Package a Toclbox - untitled1.prj - m] >
PACKAGER
|Ad'd tootbax folder
New Open Save
-~
Toolb: formation
Toolbox Name 1.0
Author Name
Email
Select toolbox image
Company
Set as default contact
Summary
Description
v

e Step 4:

4 Package a Toolbox - untitled1.pri®

PACKAGER

o

Select toolbox image

Company

Set as default contact

Summary

Description

Toolbex Files and Fol
’:ﬂ custmprod.m f,ﬂ custmsum.m

Exclude files and folders

e Step 5:

4 Package a Toolbox - untitled1.prj*

PACKAGER

oF

New Open Save

| mycustmtoolbox

FILE TOOLBOX FOLDER

Qf Package

A
& Package and Share

Toolbox Information

mycustmtoolbox 1.0
Author Name
Email
Select toolbox image

Company

Set as default contact

Summary

Description

76

After this we will save it. If we check on Matlab it will appear with an extension “.mltbx”

as seen in the following figure:

4\ MATLAB R2019a

s Analyze Code
{7 Run and Time

HOME
£

= EEU T [rindries & E Hz, New Variable

E @ Preferences E% @/

Add-Ons Help|
= =

t5 open variable =
New New New Open |i:|Ccompare Import Save Favorites Layout @ Set Path
Script Live Script = - Data Workspace |7 Clear Workspace ~ ~ [Clear Commands ~ -
FILE VARIAELE CODE ENVIRONMENT
<4 = H 3= b Cor Users » » Desktop *
Current Folder [GE Command Window
MName fx ==
"~

I] mycustmtoolbesx.mitbx v
A

customedexample.m (Function)

Waorkspace
Mame Value
EH ans 16

then Manage Add-Ons icon. It will show us that it has been successfully installed.

After this, double click to install it. To double check, you can click on the Add-Ons icon,

G4 BEoed

4
= = r New Variable ** Analyze Code vj ~ % Community
I'—‘ﬂl‘ IL!.]L E!‘:II:I Tj Ea Find Files & E = L‘i‘% lﬁ E @ Preferences @ 5
E_} ‘Open Variable + éf‘ Run and Time i:} Request Sup
New New New Open | {=|compare Import Save Favorites Layout @ Set Path Add-Ons Help
Script Live Script ¥ - Data Workspace |7, Clear Workspace = ~ |5 ClearCommands * ¥ - ~ [E] Leam MATLA
FILE VARIABLE CODE EMVIRONMENT RESOURCES
4 = HF P C: b Users » » Desktop »
Current Folder ® | Command Window
4\ Add-On Manager
Installed
Name Type Author
mycustmtoolbox version 1.0 Toolbox

Now, we can easily do the sum or product of any given numbers (even if we will change the

folder) as seen:

»» custmsum (10, 4)
ans =

14
»» custmprod (10,4)

ans =

40

77

References

[1] T. SALAHUDDIN, Numerical Techniques in MATLAB: Fundamental to Advanced Concepts. CRC Press, 2023

[2] Y. A. SHARDT, Using MATLAB to Solve Statistical Problems: A Practical Guide to the Book “Statistics for
Chemical and Process Engineers”. Springer Nature, 2023

[3] S. LOCKHART, T. ERIC, An Engineer's Introduction to Programming with MATLAB 2019, Sdc Publications,
2019.

[4] B.R. HUNT, R. L. LIPSMAN, J. M. ROSENBERG, A guide to MATLAB: for beginners and experienced users
Cambridge university press, 2014.

[5] D. HOUCQUE, Introduction to Matlab for engineering students, Northwestern University, 2005.
[6] Z. MANSOURI, Cours Matlab, Université de Skikda: 20 Aout 1955, 2014

[7] J. CHAKRAVORTY, Introduction to MATLAB Programming, Toolbox and Simulink, India: Universities Press
Pvt. Ltd, 2021

[8] MATHWORKS INC, Matlab: The Language of Technical Computing, Accessed: January November, 2023.
Available: https://www.mathworks.com/help/matlab/index.html?s_tid=hc_panel

78

https://www.abebooks.com/book-search/publisher/universities-press-india-pvt-ltd/
https://www.abebooks.com/book-search/publisher/universities-press-india-pvt-ltd/
https://www.mathworks.com/help/matlab/index.html?s_tid=hc_panel

