
Democratic and Popular Algerian Republic

Ministry of Higher Education and Scientific Research

MUSTAPHA STAMBOULI UNIVERSITY OF MASCARA

FACULTY OF SCIENCE AND TECHNOLOGY

Course Handout

Programming with

Matlab

Presented by:

Dr. BESSAIM Mohammed Mustapha

This course is for undergraduate students
specialty Civil Engineering/Public Works

Algeria
2023

i

Foreword

In the academia’s realm, where learning and innovation converge, the pursuit for knowledge

knows no bounds. It's within this dynamic landscape that we present this modest course on Matlab,

tailored precisely for undergraduate students, enrolled in the field of Civil Engineering,

speciality: Civil Engineering / Public Works.

Matlab, an acronym for “Matrix Laboratory” assists as a trusted tool during your

formation, allowing you to transform abstract concepts towards tangible solutions. Not a limited to a

specified discipline, Matlab offers the keys to unlock any analytical thinking, problem-solving and

creativity.

This course of five chapters was written in a way to allow to the students how to easily get familiar with

Matlab R2019a environment. Furthermore, this course includes set of examples and illustrations to make

students interact directly with the Matlab world.

Overall, our hope is that, armed with the knowledge and insights found in these chapters, you will

approach your studies and research with newfound confidence and enthusiasm.

This course corresponds to the Computer Practical Work 3 (Matlab), which is taught at

the University of Mustapha Stambouli, Mascara, for the undergraduated students, enrolled

in Civil Engineering, specialty: Civil Engineering and Public Works.

Mascara, 12th November, 2023.

ii

Table of contents

Foreward ... i

Abstract ... iv

Notations and Abreviations .. v

Introduction ... 9

Chaptre 1 Introduction to Matlab ... 11

1.1 Programming Environment ... 11

1.2 Running your code ... 13

1.3 Getting help... 13

1.4 Scalar quantities and variables .. 13

1.5 Rules when naming variables in Matlab.. 16

1.6 Mathematical functions .. 17

1.7 The way to display numbers in Matlab: Format .. 20

1.8 Variables and their size .. 21

Chaptre 2 Vectors and Matrices ... 23

2.1 Vectors .. 23

2.1.1 Vectors creation .. 23

2.1.2 Calculation of the row vector transpose ... 24

2.1.3 Matlab’s syntax when creating row vectors .. 25

2.1.4 Acces to any element from a given vector ... 26

2.1.5 Element by element operations for vectors ... 28

2.1.6 The linespace function .. 31

2.2 Matrices .. 32

2.2.1 Matrices creation .. 32

2.2.2 Referencing and access to matrix elements ... 34

2.2.3 Size of a matrix ... 37

2.2.4 Matlab’s predefined matrices functions .. 38

2.2.5 Element-by-element matrix operations ... 39

2.2.6 Additional useful matrices functions ... 42

Chaptre 3 Matlab Plotting ... 46

3.1 Matlab plot function ... 46

3.2 Curves customizing ... 51

3.3 Multiple curves in a same graph .. 53

3.3.1 The command hold .. 53

3.3.2 Plot with several arguments .. 54

3.4 Histogram and bar graphs in Matlab ... 55

3.5 Plotting 3D curves in Matlab ... 58

Error! Use the Home tab to apply Titre to the text that you want to appear here.

iii

Chaptre 4 Matlab’s loops and conditional statements .. 62

4.1 The “if, else, eleseif” condition .. 62

4.2 The “switch case otherwise end” condition ... 64

4.3 Loop control statements .. 66

4.3.1 The “for” loop .. 66

4.3.2 The “while” loop .. 67

Chaptre 5 Matlab Toolbox ... 69

5.1 Add additional Toolbox .. 69

5.2 Using of the “Curve Fitting Toolbox” ... 71

5.3 Creating your own Toolbox .. 72

References .. 78

iv

Abstract

This course destinated for undergraduate students, enrolled in Civil Engineering and

Public Works, aims to enter you into the world of computational exploration and problem-solving via the

Matlab (R2019a) programming language. In this course, our main mission is to offer you the fundamental

elements of Matlab, through a comprehensive foundation and extending into advanced applications.

The set of the given examples ensure that your understanding is tangible and practical.

Moreover, you will discover Matlab's true power shines in its mastery of vectors and matrices.

With intuitive syntax and a wealth of built-in functions given by a set of illustrations, it will show you

how it will be easy to handle complex linear algebra.

Not limited to that, you will explore the Matlab richness in graph plotting, with its extensive

array of functions and libraries, as well as discovering the impressive diversity of chart types offered by

Matlab, passing from simple line graphs, bar charts, 3D plotting and so on.

Beyond plotting, Matlab's Toolbox extends to specialized fields. you can explore

the “Curve Fitting Toolbox”, and learn how to manage/add further Toolbox. At the end, you will be able

to creat your own costumized Toolbox.

In summary, this course provides a versatile and accessible platform for learning and applying

computational mathematics, data analysis, as well as enhancing your problem-solving skills.

Keywords: Matlab, Programming Language, Problem Solving, Graph Plotting, Toolbox

v

Notations and Abreviations

+ Addition

- Minus

* Multiplication

/ Division (From left to right)

\ Division (From right to left)

sin () Sinus in radiant

cos () Cosines in radiant

tan () Tangent in radiant

sind () Sinus in degree

cosd () Cosines in degree

tand () Tangent in degree

asin () Inverse of sinus

acos () Inverse of cosines

atan (). Inverse of tangent

exp () Exponential

log () Natural logarithm

log10 () Common logarithm

sqrt () The square root

abs(x) The absolute value x →|x|

round(x) Rounds a number to the nearest integer

ceil(x) Rounds a number up to the nearest integer

floor(x) Rounds a number down to the nearest integer

vi

fix(x) Rounds a number to the nearest integer towards zero

rem(x) The remainder left after division

mod(x) The signed remainder left after division

abs(x) The absolute value of x

sign(x) The sign of x

factor(x) The prime factors of x

format long To display 14 digits after the decimal point

format short To display 4 digits after the decimal point

format bank To display only 2 digits after the decimal point

format rat To display numbers as a ratio

clear a Delete variable a

clear, clear all Delete all variables

clc clears the Command Window (clear screen)

exit, quit Close the Matlab environment

transpose [] The transpose of a vector / matrix

.* Element-by-element multiplication

./ Division element by element

.^ Element-by-element power

ones(n) Generates an n × n matrix with all elements = 1

ones(m,n) Generates an m × n matrix with all elements = 1

zeros(n) Generates an n × n matrix with all elements = 0

zeros(m,n) Generates an m × n matrix with all elements = 0

eye(n) Generates an n × n identity matrix (ones on the main diagonal and zeros elsewhere)

rand(m,n) Generates an m × n matrix of random values

magic(n) Generates a magic matrix of dimension n × n

vii

plot (x , y) Draw a 2D line plot of the data, in ‘y’ versus the corresponding values ‘x’

if, elseif, else Execute statements if condition is true

switch, case, otherwise Execute one of several groups of statements

for for loop to repeat specified number of times

while while loop to repeat when condition is true

9

Introduction

In the field of computational tools, Matlab stands as an incredible titan, revered by

engineers, scientists, and problem solvers of several disciplines. Short for "Matrix Laboratory," Matlab

is more than just a software; it is a mathematical-engineering package, and a powerful programing

language, that turning complex concepts into practical solutions [1].

Matlab's origins can be traced back to the late 1970s, when it was developed by

“Cleve Moler” as a computational tool for his students at the University of New Mexico.

Over the years, it has evolved into a comprehensive software platform, encompassing an enormous array

of Functions and Toolboxes, that cater to nearly every field of study and research. whether you are

a student exploring the fundamentals of a subject or a seasoned expert pushing the boundaries of your

discipline, Matlab has always something to offer [2].

At its core, Matlab excels in numerical computing, making it an impressive instrument for

tackling mathematical problems as well as performing data analysis. It operates with matrices, which

allows for an effective and an intuitive manipulation of data. However, its value extends far beyond

mathematics. Matlab facilitates programming, modeling and also simulation, while its diverse Toolboxes

are opening doors to different fields. From control systems and optimization to signal analysis,

Matlab provides a wide arsenal of functions for a wide range of applications [3].

One of Matlab's uniqueness features is its emphasis on visualization. The capability to create

captivating, informative graphs and charts is integral to scientific and engineering research.

Matlab's plotting ability are not only versatile but also highly customizable. It offers the creation of 2D

graphs, 3D plots as well as contour maps, all of them enable users to communicate their outcomes

effectively [4].

This course represents a selection of information and data that undergraduate students may be

required to use during their academic background. Furthermore, this course is intended to be a solid basis

for restoring the technical and practical knowledge essential for an efficient usage of the Matlab.

This course comprises five main chapters :

• Presentation of the Matlab environment, Scripts and Scalar Quantities and Variables;

• Vectors and Matrices creation;

• Matlab’s Graphs Plotting;

• Loops and Conditional Statements;

• MATLAB’s Toolboxes.

Each chapter encloses sections, that cover specific topics in Matlab.

The first chapter wil explain the Matlab’s environment and start with basic scalar operations,

showing how Matlab can acts as a very powerful calculator.

The second one will illustrate the most useful commands for Vectors and Matrices, allowing to

students how to deal easily with any encountered mathematical operation.

10

The third chapter, will present a huge variety of graphs, namely 2D line graphs, pie chart as well

as bar graphs. Moreover, a step-by-step explanation is given on how to draw 3D graphs, contour plot,

filled contour plot and a surface plot.

The fourth one will present how to properly use the Matlab’s loops and conditional statement.

Therefore, a set of examples will be given with their flowcharts to make these laters comprehensible for

the students.

The last chapter will show to the students the easiest way to deal with the Matlab’s Toolboxes.

The first part will illustrate how to add and manage Matlab’s Toolboxes. The second part is dedicated to

the use of the “Curve fitting Toolbox”, a relevant example for any future Engineer. The last point

will explain the path to create a customized Toolbox.

At the end, the students will be able to use Matlab effectively in their coursework and research.

Note that each part begins with a listing of Matlab’s commands, followed by a set of examples showing

how to write accurately your programming language.

11

Chapter 1 Introduction to Matlab

The acronym Matlab stands for "matrix laboratory." Other programming languages typically

operate on single integers, whereas Matlab is intended to operate largely on complete matrices and arrays.

It is a language for scientific computing, data analysis, visualization, and algorithm

development. Its interface offers, on the one hand, an interactive console-type window for executing

commands, and on the other hand, an integrated development environment (IDE) for programming

applications [5].

1.1 Programming Environment

The Matlab’s environment is shown in Figure 1.1. As seen, it consisted from four sections:

• The Current folder box showing the folder’s content,

• The Matlab Command Window started with sign »,

• The Workspace (memory of Matlab) displaying the used variables;

• The Command history box illustrating the recent commands.

Figure 1.1 The Matlab Programming Environment.

12

The Matlab can execute commands typed directly in the Command Window, however, it is

better to store the code in a bespoke ‘m. file’ or Matlab script. The creation of a new script is shown in

Figure1.2.

Figure 1.2 The creation of a new Script

Thereafter, the following editor window will appear:

Figure 1.3 The editor Window

13

1.2 Running Your Code

Matlab commands can be executed by one of the following ways:

• Type the commands directly in the Matlab Command Window.

• Or if you have created a new script, you should type the commands within it and then

click on the run icon, shown in Figure1.3. Matlab will ask you to save the file if you have

not done this already.

1.3 Getting Help

Matlab has a help icon at the top right of its interface. Furthermore, to the help item in the

menu, Matlab proposes the help command. For instance, help cos prints the help article regarding the

command cos shown directly in the Command Window as shown:

Figure 1.4 The help icon

1.4 Scalar Quantities and Variables

The first interactions with Matlab are basic equations and variables. Try to write the following

commands as they are shown :

14

You may notice that the second command differ from the first one. The second one uses the

semicolon “ ; ”. When using it, Matlab executes the command without showing any output.

By contrast, we can see in the first one that the results have been set 10. Matlab may be used as a

powerful calculator. We can start by considering simple arithmetic operations.

For instance, try to find the outcomes of these operations:

c= 21-11 ; d=7x3 ; e= 4/2

These calculations can be written in Matlab as follows:

In aim to approach to idea better, try writing the following instructions into Matlab:

x = 32;

y = 16;

z = -7;

x / y ;

x – z ;

y + z – x.

the answers are 2; 39; -23.

15

Besides, Matlab offers the possibility to write several operations in the same line as shown:

The basic arithmetic operations are summarized in the Table 1:

Table 1. Basic arithmetic operations in Matlab

Operation Signification

+ Addition

- Minus

* Multiplication

/ Division (From left to right)

\ Division (From right to left)

Remarque

Matlab is case sensitive when writing the operation. In the case of division, you may notice that the

inversion of the sign of division / to \ will impact the output, as you can see in the following example:

16

1.5 Rules when naming Variables in Matlab

In all previous examples we have simply used variable names which appeared to suit with tasks

at hand with no mention of restrictions on allowable variable names in Matlab. The rules for naming

variables in MATLAB can be summarized like so:

• Variable names in Matlab must be only alphanumeric characters and can be more to 31

characters long;

• Matlab is very case sensitive, so that “ a ” and “ A ” are two different variables;

• Variables names must not match with a predefined Matlab command, or with any

user-defined subroutines.

Another important parameter besides on how to name variables is the usage of brackets.

We must make into mind that in Matlab the syntax of x/y*z is not equal to (x/yz) but ((x/y)z).

In aim to ensure that the denominator is calculated first, we would need to use x/(y*z).

To assimilate accurately the use of these brackets, try to determine the value of the following

example:

Where, x=5; y=7 and z=-2.

The solution is:

m = y-x/(y+(y+x)/(z*x))

17

1.6 Mathematical Functions

As said before, Matlab is a powerful calculator. The table 2 summarize the additional mathematical

operation.

Table 2. Trigonometric and exponential functions

Symbol Signification

sin () Sinus in radiant

cos () Cosines in radiant

tan () Tangent in radiant

sind () Sinus in degree

cosd () Cosines in degree

tand () Tangent in degree

asin () Inverse of sinus

acos () Inverse of cosines

atan (). Inverse of tangent

exp () Exponential

log () Natural logarithm

log10 () Common logarithm

sqrt () The square root

abs(x) The absolute value x →|x|

To understand better, try to calculate the following expressions:

sin 30°; cos 45°; exp (ln (5)); ln exp(3+cosπ)

18

The answer will be like so:

As known, Matlab encloses a huge variety of useful functions. These laters are given in the table

bellow:

Table 3. Useful functions in Matlab

Expression Signification

round(x) Rounds a number to the nearest integer

ceil(x) Rounds a number up to the nearest integer

floor(x) Rounds a number down to the nearest integer

fix(x) Rounds a number to the nearest integer towards zero

rem(x) The remainder left after division

mod(x) The signed remainder left after division

abs(x) The absolute value of x

sign(x) The sign of x

factor(x) The prime factors of x

19

The command round (), ceil (), floor () aims to rounds a number to the nearest, up to the

nearest and down to the nearest integer, respectively. While the command fix () tends to rounds a number

to the nearest integer towards zero.

For instance, a value a equal to 29.36, we would like to use the floor and ceil functions.

The outcome in Matlab will be in this way:

The command rem(a,b) calculates the remainder when a is divided by b.

For instance, 981 = 6 ×163 + 3, so the remainder when 981 is divided by 6 is equal to 3.

We can determine this with Matlab by simply using rem (981,6).

The command factor provides the prime decomposition of an integer. For instance, factor of the

number 16 in Matlab is as follows:

20

1.7 The way to display numbers in Matlab: Format

Matlab uses real numbers to perform the calculations, which allows precision in the

calculation of up to 16 significant digits. Accordingly, the following points should be noted:

The result of a calculation operation is by default displayed with four digits after the decimal

point:

• To display more numbers, use the format long command (14 digits after the decimal

point);

• To display only 2 digits after the decimal point, use format bank command;

• To display numbers as a ratio, use format rat command;

• To return to the default display, use the format short command.

• The following example illustrate how to use these commands correctly.

21

Another example is how to write the multiplication result in a ration form.

1.8 Variables and their size

In Matlab, to see the list of the used variables, either look in the 'Workspace' window or use the

'who' or 'whos' commands.

The who command gives only the names of the variables, whereas whos command illustrates a

detailed description (the name of the variable, its type and its size). The figure bellow illustrates the used

of variables.

22

If you desire to delete the variable “x”, you can use the command clear x. Matlab offers a set of

command that can erase all the variable or just to clear the screen (Command Window).

The signification of these commands is shown in the table below:

Table1.5. Matlab’s command to delete variables and exit the Matlab environment

Command Signification

clear a Delete variable a

clear, clear all Delete all variables

clc clears the Command Window (clear screen)

exit, quit Close the Matlab environment

23

Chapter 2 Vectors and Matrices

Matlab was basically designed to allow mathematicians, scientists and engineers to easily use

the mechanics of linear algebra [6]. In this chapter we will illustrate the idea of initiating vectors and ma-

trices and how to manipulate them as "MATLAB objects".

2.1 Vectors

A vector is an ordered list of elements. If the elements are arranged horizontally, we say that the

vector is a row vector, on the other hand if the elements are arranged vertically, we say that it is a column

vector.

2.1.1 Vectors creation

To create a row vector, simply write the list of its components in square brackets [] and

separate them either by spaces or commas like so:

To create a column vector, it is possible to use one of the following methods:

• Write the components of the vector in square brackets [] and separate them with semico-

lons (;) like so:

24

• Or, we can write the vector vertically:

2.1.2 Calculation of the row vector transpose

To calculate the transpose of a row vector, two methods exist, either by writing the vector as usual

between square brackets [] and to add the apostrophe []’;

or by simply writing transpose [] as shown in the following example:

25

2.1.3 Matltb’s syntax when creating row vectors

Matlab makes the creation of row vectors a very easy tasks, i.e., if I desire to write a row vector that

runs from ‘a’ to ‘b’ in steps of ‘one = 1’, the code will be in this manner:

The step can be changed by using the slightly more involved syntax: v = a:s:b, which creates the

vector r running from 0 to 2 in steps of 0.4, as seen accordingly:

In Matlab, we can write a vector from a previous written vector, as shown in the example:

26

2.1.4 Access to any element from a given vector

Matlab allows a rapid and easy access to any elements of a vector. This example shows how to

access selected elements of a vector. We have a vector “a” composed from 5 elements like so:

We seek for the 3rd element of the vector, we write:

If we desire to seek elements from the second to the fifth position, it will be as follows:

To display elements from the 3rd to the end position, we write accordingly:

27

To illustrate the 1st, 3rd and 4th position only, we write the following syntax:

Matlab offers a posibility to replace an element from an already written vector. For instance,

if we would like to replace the 1st element with a value of 8, we write in such way:

To add a sixth element with value -3

To add a ninth element with value 5, where the 7th and 8th element are equal to zero, we write

accordingly:

28

To erase the second element from the vector “a”, we can rapidly write as shown:

To delete Elements from 3rd to 5th element, we write the following syntax:

2.1.5 Element-by-element operations for vectors

The table below illustrates how to perform element-by-element calculations In Matlab.

Table2.1 Basics operations for vectors

Operation Signification

+ Addition of vectors

- Subtraction of vectors

.* Element-by-element multiplication

./ Division element by element

.^ Element-by-element power

For instance, we have two vectors a vector a = [4, -2, 5] and b= [-3, 7, 1]. Try to do the following

operation:

a+3; a+b; b-2; b-a; a*3; a.*3; a.*b; a/3; a./3; a./b; a.^3 ; a.^b

29

The answers will be in this manner:

• The addition:

• The minus:

30

• The multiplication:

• The division:

31

• Element-by-element power:

Remarque

Writing an expression such as: a^2 generates an error message.

The reason is that expression refers to a multiplication of matrices (a*a must be rewritten a*a' or a'*a

to be valid).

2.1.6 The linspace function

The linspace function can be used to create a vector with elements that are arranged in a

predetermined order and a known number. The function can be written as follows:

“ linspace (start, end, number of elements)”.

Replicate the following examples to understand accuratly.

32

The length of a vector (the number of its components) can be obtained by suing the ‘length’ function

thusly:

2.2 Matrices

2.2.1 Matrices creation

A matrix is a rectangular array of (two-dimensional) elements. Vectors are matrices with a single

row or column (one-dimensional). To insert a matrix, you must respect the following rules:

• Elements must be enclosed in square brackets [];

• Spaces or commas are used to separate elements in the same line;

• A semicolon (or the enter key) is used to separate lines.

To illustrate this, considering the following matrix:

To write this matrix different syntax ways exists, such as:

33

Or, we can write like so:

Remark

The number of elements in each row (number of columns) must be the same in all rows of the

matrix, otherwise an error will be reported by Matlab, as seen in the following example:

A matrix “M” can be generated from a set of vectors (u,v,w) as shown in the following example:

34

The syntax of the matrix ‘M’ will be as follows:

The transpose of the matrix M can be written from the given vectors (u,v,w) as seen:

Another point, is the possibility to create a matrix C from the previously ‘u’ vector. Thus, the

syntax will be in this manner:

2.2.2 Referencing and access to matrix elements

Matlab allows you to acces to any element from the matrix. For example, a matrix “A” composed

from 3 rows and 4 columns as seen:

35

For instance, to acces to the element situated in the 3rd row and 2nd column we write the following

syntax:

All elements of the second row:

All elements of the first column:

All elements of the 1st and 2nd line:

The superior right submatrix, with a size of 2*2:

36

The submatrix, rows (1,2) and (3,4) columns:

The submatrix, rows (1,3) and columns (2,4):

Delete 2nd column:

Delete 3rd row:

Add a new column of one:

37

Add a new row of zero:

2.2.3 Size of a matrix

The size of a matrix can be determined by using the function “size”. For instance, the size of the

matrix ‘M’ will be as follows:

The Matlab’s outcome will be row x column. In aim to determine the number of rows or columns

separately, we will use the following syntax:

• The number of rows:

• The number of columns:

38

2.2.4 Matlab’s predefined matrices functions

In Matlab, a set of functions that allow to users to gain time and to automatically generate a

specific matrix. The following table present the most used ones:

Table2.2 Matlab predefined matrices functions

Function Signification

ones(n) Generates an n × n matrix with all elements = 1

ones(m,n) Generates an m × n matrix with all elements = 1

zeros(n) Generates an n × n matrix with all elements = 0

zeros(m,n) Generates an m × n matrix with all elements = 0

eye(n) Generates an n × n identity matrix (ones on the main diagonal and zeros elsewhere)

rand(m,n) Generates an m × n matrix of random values

magic(n) Generates a magic matrix of dimension n × n

Bellow some examples to clarify the idea.

39

2.2.5 Element-by-element matrix operations

The element-by-element matrix operations are the same as those for vectors. The only condition

is that the two matrices have the same dimensions. The table below illustrates these operations.

Table 2.3. Matlab basic matrix operations

Operation Signification

+ Addition

- Minus

. * Multiplication Element-by-element

* Matrix multiplication

. ^ Power Element-by-element

. / Division Element-by-element

. \ Inverted division Element-by-element

/ Matrix division

40

To understand better these operations, try to replicate the following example.

• Firstly, write a matrix ones named “u”, composed from 3 rows and 4 columns.

• Secondly, write a matrix zeros “v”, composed from 4 rows and 3 columns.

The outcomes in Matlab will be accordinagly:

Now, let’s do the following operations:

• Add four to the matrix v (v+4)

• Multiply u*v

41

• u.*v

As reported in the above paragraph, to do element by element multiplication the matrix

dimensions must agree.

Before, let’s do the following operations. Firstly, add a 4th column composed from 4 as seen:

Thereafter, delete the 4th row:

Now, we can see that the dimensions of matrix “u” and ‘v’ are similar and the multiplication can

be done.

42

Another example is by multiplying the matrix ‘u’ with an identity matrix ’eye’. Here also a

condition to be respected. The number of columns in the matrix ‘u’ must match with the number of rows

of the matrix eye. For instance, if we would like to multiply u*eye(3) an error message will be generated:

By contrast, the syntax will be written in this manner:

2.2.6 Additional useful matrices functions

Matlab knows as a powerful tool when dealing with matrices operations, it has a set of other

useful functions. These are some of most used one.

Firstly, let’s create a matrix ‘M’ as shown:

The determinant of the matrix M can be calculated by using the function “det” as follows:

43

To determine the inverse of the matrix M, we use the function “inv” like so:

The rank of the matrix can be calculated as seen:

To calculate the trace of matrix M, we use the function ‘trace’ as follows:

We use the syntax eig (M) to determinate the eigenvalues of the matrix M

44

The second example aim to determine the upper and lower triangular part of the matrix “A”.

To do this we use the syntax ‘triu’ and ‘tril’, respectively.

First of all, we create a matrix “A”:

For example, the upper triangular part can be written as seen:

45

For instance, the lower triangular part can be generated as follows:

The third example aims to creates a matrix having the vector ‘u’ in the diagonal and

0 elsewhere.

46

Chapter 3 Matlab Plotting

One of the most helpful Matlab commands is without a doubt the plot command.

When writing this command, Matlab will open a new figure and plot the parameter (an array) vs its index.

Matlab will interpret the first array as the x-coordinates and the second array as the y-coordinates[7].

3.1 Matlab plot function

The plot function is easily used to plot any given data. The following example aim to simply to

usage of this function in simple 2D plots.

For example, we would like to draw the following function:

• x = -5:10;

• y = x.^2 - 20;

The syntax in Matlab will be as follows:

Accordingly, a new window will be open illustating the figure bellow.

Figure 3.1 Matlab 2D line plot

47

Matlab gives us the opportunity to change the type of line, color, and marker of the plotted line.

These laters can all be specified using a third string input. The pre-defined colour strings: ’k’ black ’r’ red

’g’ green ’b’ blue ’w’ white ’m’ magenta ’y’ yellow ’c’ cyan. Figure 5.2 displays the previous figure with

different colors.

Figure 3.2 Matlab’s plots style. (a) Red 2D line plot. (b) Green 2D line plot

It is possible to change as well the appearance of a curve by changing the shape of the

coordinate points, and the type of line connecting the points. The tables bellow summirize all the changes

that can be made during plotting.

b

a

48

Table 3.1. Matlab’s curve color

Operation Signification

b or blue Curve in blue

g or green Curve in green

r or red Curve in red

c or cyan Curve in cyan

m or magenta Curve in magenta

y or yellow Curve in yellow

k or black Curve in black

Table 3.2. Matlab’s curve style

Character Effect

- Solid line

: Dotted line

-. Dash dotted line

-- Dashed line

Table 3.3. Matlab’s curve effect

Charactere Effect

. Point

+ Plus sign

* Star

x Cross

o Circle

s Square

d Diamond

^ Upward pointing triangle

49

V Downward pointing triangle

> Right pointing triangle

< Left pointing triangle

P Pentagram

In aim to understand accuratly, let’s draw the function the function y = sin(x) for x = [0 ... 2π]

with step of π/12.

The syntax in Matlab will be as seen:

Firsly, draw it by trying different shapes:

• starting with black, dotted line with squares.

The code will be like so:

The curve will appear as seen:

Figure 3.3 Matlab customized 2D plot (Black, Square, Dotted line)

50

• Red color, solid line and with triangles

The curve will be depicted as follows:

Figure 3.4 Matlab customized 2D plot (Red, Triangle, Solid line)

• Blue color, dash dotted line and with stars

51

The outcome will be illustrated as seen:

Figure 3.5 Matlab customized 2D plot (Blue, Start, Dash-dotted line)

3.2 Curves customzing

Matlab allows to customize the curve by adding a grid or by including a legend to to the axes.

Another interesting point, is the ability to indicate the locations of significant points in a curve with a

comment. All these can be done by using the following syntax:

In the beginning, to give a title to a figure containing a curve we use the “title” function as seen:

Subsequently, to give a title for the horizontal x-axis, we use the “xlabel” function:

52

Besides, to give a title for the vertical y axis, we use the “ylabel” function like so:

To write text (a message) to the graphics window at an indicated position by “x” and

“y” coordinates, we use the “text” function:

To put a text on a desired position chosen manually (with the mouse), we use the “gtext”

function, which has the following syntax:

To put a grid, use the “grid” (or grid on) command. To remove it, reuse the same “grid”

(or grid off) command.

The following example helps you to understand better.

53

The curve will appear accordinagly:

Figure 3.6 Matlab 2D customized plot

3.3 Multiple curves in a same graph

By default, in Matlab, each new drawing with the plot command erases the previous one.

To force a new curve to coexist with previous curves, there are several methods, such as the hold

command as well as the use plot with several arguments

3.3.1 The command hold

The command “hold” or “hold on” enable the preservation of previous curves, which allows the

display of different curves in the same figure. If we desire ti disable its effect, we can simply rewrite hold

or hold off.

For instance, to draw the curve of the two functions cos(x) and sin(x) in the same figure, we can

write:

54

Figure 3.7 Matlab’s multiple curve (hold on command)

3.3.2 Plot with several arguments

We can use plot with various couple (x,y) or triple (x,y, markor) as a arguments.

55

The curve will be illustrated like so:

Figure 3.8 Matlab’s multiple curve (Several arguments)

3.4 Histogram and bar graphs in Matlab

The Matlab not only allows the display of points to draw curves, but it also offers the possibility

of drawing bar graphs and histograms. To draw a bar graph, we use the “bar” function, which has the

same operating principle as the plot function.

The following example explains how we can draw bar graphs. First of all, write this code in the

Matlab as seen:

56

The drawn bar graph will be as shown:

Figure 3.9 Matlab’s bar chart

A huge variaty of functions exist that can for instance change the shape of bar graphs,

for example the “bar3” to give a 3D aspect, as seen:

Figure 3.10 Matlab’s 3D bar chart

57

The pie charts can also be drawn in Matlab as seen in the following example:

Figure 3.11 Matlab’s pie chart

To give the 3D aspect, we use the “pie3” function as given:

58

And the 3D aspect is added as seen,

Figure 3.12 Matlab’s 3D pie chart

3.5 Plotting 3D curves in Matlab

The way MATLAB handles two- and three-dimensional graphics is one of its outstanding characteristics.

Although we won't often need to use MATLAB's powerful graphical rendering, we should be familiar

with the fundamental functions. Examples demonstrate a few of the numerous options:

• Firstly, try to write the following code

59

• The figure displayed is as follows:

Figure 3.13 Matlab contour plot

• The second one, try to add the sentences highlighted in red:

60

• The figure displayed is as shown:

Figure 3.14 Matlab filled contour plot

• The third example is by using the surf (X,Y,f) command as seen:

61

Figure 3.15 Matlab 3D surface plot

These three graphics, generated with the functions contour(X,Y,f), contour(X,Y,f,20), and

surf(X,Y,f), represent a contour plot, a filled contour plot with 20 contour levels, and a surface plot,

respectively. Using the command meshgrid(x,y), a grid is created and used to visualize the function f.

62

Chapter 4 Matlab’s loops and conditional statements

As several programs, in Matlab you can define set of code that either conditionally execute or

repeat in a loop. Conditional statements use “if” or “switch”, while loops use a “for” or “while” keyword

[8].

4.1 The “if, else, elseif” condition

The if statement is among the simplest and most used conditional statements in Matlab.

It executes statements “if” condition is true. Its general syntax can be written accordinagly:

if (condition)

 instruction 1

 instruction 2

 ………

 instruction N

end

The condition “if” evaluates an expression, as well as executing a group of statements when the

expression is true. Let’s see the following example to understand better. We would like to display a given

message “this number is > 5”, when the number is superior then 5.

https://www.mathworks.com/help/matlab/ref/if.html#bt_csfy

63

The condition “if” evaluates an expression, as well as executing a group of statements when the

expression is true. Let’s see the following example to understand better. We would like to display a given

message “this number is > 5”, when the number is superior then 5.

The second conditional statement is by using if – else – end. The syntax is written as seen:

if (condition)

instruction set 1

else

instruction set 2

end

The given example will make us understand better. We would like to give a random number

and the Matlab will display if it is an even or odd number.

The given example will make us understand better. We would like to give a random number

and the Matlab will display if it is an even or odd number.

The third conditional statement is “elseif”. Be aware that if it is necessary to check several

conditions, the “elseif” can be used for each additional condition, and at the end we can put an “else” in

the case where no condition has been evaluated true. The syntax can be written thusly:

if (expression_1)

Instruction Set 1

elseif (expression_2)

Instruction Set 2

....

elseif (expression_n)

Instruction Set n

Else

Set of instructions if all expressions were false

End

https://www.mathworks.com/help/matlab/ref/if.html#bt_csfy

64

The following example explains how we can use this syntax. For instance, we would like to

write a program that defines the stage of your life according to your age:

4.2 The “switch case otherwise end” condition

The following example explains how we can use this syntax. For instance, we would like to

write a program that defines the stage of your life according to your age:

In Matlab, this condition evaluates an expression and chooses to execute one of several groups

of statements. Accordingly, the syntax takes the following form:

Switch (expression d)

case (expression 1)

Perform task a1 to an

case (expression 2)

Perform task b1 to bn

 .

 .

 .

 case (expression k)

 Perform task x1 to xn

 otherwise

 Perform task z1 to zn

 end

65

A really good example is by trying to figure out the month.

The output will be as shown:

66

4.3 Loop Control Statements

In Matlab, you may run a block of code repeatedly via using loop control commands.

As known, a loop is a structure for repeating a calculation (or calculations) a predefined number of times.

Accordingly, two different kinds of loops exist: the “for” and “while” loop.

4.3.1 The “for” loop

In Matlab, you may run a block of code repeatedly via using loop control commands.

As known, a loop is a structure for repeating a calculation (or calculations) a predefined number of times.

Accordingly, two different kinds of loops exist: the “for” and “while” loop. The syntax of “for” loop is as

follows:

for variable = i:s:n

statement(s);

end

with ‘i’ is the initial value, ‘s’ the steps (incremental value) and ‘n’ the final value. For example:

The bellow flowchart explains accurately the loop “for”

Figure 4.1 for loop flowchart

67

4.3.2 The “while” loop

By contrast, the ‘while’ loop is used when the looping process terminates because a prescribed

condition is met. Unlike in the for loop, the number of passes is not known in advance.

The syntax of while loop is like so:

while logical expression

statement (s)

end

On the other hand, the loop must have a value before the while statement and the loop variable

must be changed by the statements. The following example make us understand better.

The while loop can be as illustartes the following flowchart:

Figure 4.1 while loop flowchart

The output will be accordinagly:

68

Overall, the following table summirize the loops and conditional statements in Matlab.

Table 4.1. Matlab Language Syntax

Syntax Signification

if, elseif, else Execute statements if condition is true

switch, case, otherwise Execute one of several groups of statements

for for loop to repeat specified number of times

While while loop to repeat when condition is true

69

Chapter 5 Matlab Toolbox

As known, Matlab has an interface that offers an interactive console-type window for executing

commands, as well as, an integrated development environment (IDE) for programming applications.

Matlab finds its applications in many disciplines. It constitutes a powerful digital tool for the

modeling of physical systems, the simulation of mathematical models, the design and validation

(simulation tests and experimentation) of applications. The basic software can be supplemented by

multiple toolboxes. We can cite for example: Curve Fitting Toolbox; Image Processing Toolbox; Data

Acquisition Toolbox…etc [8].

5.1 Add additional Toolbox

As talked above, Matlab has a limitless variety of Toolboxes. To add any desired toolbox,

you can follow these steps:

• Step 1: Click on Add-Ons

70

• Step 2: Get Add-Ons

A window will appear as shows in the figure bellow. By using the research tool above at the

right, you can download any desired toolbox.

71

5.2 Using of the “Curve Fitting Toolbox”

Among the powerful Toolbox that we will use in this course is “Curve Fitting Toolbox”.

An application and features for fitting curves and surfaces to data are offered by Curve Fitting Toolbox.

You can use the toolbox to perform exploratory data analysis, pre- and post-process data, remove outliers

and compare candidate models. You can perform regression analysis using the given library of linear and

nonlinear models, or you can create your own custom equations.

The library offers optimized solver parameters as well as starting conditions to enhance the

quality of your fits. The toolbox supports as well non-parametric modeling methods, including splines,

smoothing and interpolation. Now, let’s understand how to use this toolbox via the following steps:

• Firstly, we will create three random matrices, by using the rand function as seen:

• Secondly, on the Apps icon, we will select ‘Curve Fitting Tool’. A pop-up window will

appear:

72

• Thirdly, we will set the ‘X, Y, and Z Data’ in this window to our inputs, ‘x, y and z’,

respectively.

Therefore, a curve be will created as seen in the figure 5.5. In the Result section, you can see the

curve’s equation. Be aware, that by using the dropdown on the top of the curve, you can use a custom

equation.

5.3 Creating your own Toolbox

Matlab allows us to create our own customed Toolbox environment. The following example

will show us how do this. Firstly, we would like to create two Toolbox that will do the sum and the

multiplication between given two numbers, which will be named “custmsum” and “custmprod”,

respectively. Thereafter, we will create these two functions in our device as seen:

• Step 1: Click on New, then Functions:

73

• Step 2: Do the required changes as it can be seen here:

Thereafter, save the file in a specified folder.

Repeat the same steps to create the “custmprod” and do not forget to modify as seen

previously. The required changes are highlighted in red as seen:

74

Now, let’s check if our created functions work accurately. To do this let’s do some sample

operations and see the results in the “Command Window”:

75

The two functions work accurately whenever I write the functions path and I will get the output

in my Command Window. However, if I will change the folder, the operations will no longer work and an

error message will be displayed accordinagly:

Now, let’s create our customed Toolbox, by following these steps:

• Step 1:

• Step 2:

76

• Step 3:

• Step 4:

• Step 5:

77

After this we will save it. If we check on Matlab it will appear with an extension “.mltbx”

as seen in the following figure:

After this, double click to install it. To double check, you can click on the Add-Ons icon,

then Manage Add-Ons icon. It will show us that it has been successfully installed.

Now, we can easily do the sum or product of any given numbers (even if we will change the

folder) as seen:

78

References

[1] T. SALAHUDDIN, Numerical Techniques in MATLAB: Fundamental to Advanced Concepts. CRC Press, 2023

[2]

Y. A. SHARDT, Using MATLAB to Solve Statistical Problems: A Practical Guide to the Book “Statistics for

Chemical and Process Engineers”. Springer Nature, 2023

[3] S. LOCKHART, T. ERIC, An Engineer's Introduction to Programming with MATLAB 2019, Sdc Publications,

2019.

[4] B.R. HUNT, R. L. LIPSMAN, J. M. ROSENBERG, A guide to MATLAB: for beginners and experienced users

Cambridge university press, 2014.

[5] D. HOUCQUE, Introduction to Matlab for engineering students, Northwestern University, 2005.

[6] Z. MANSOURI, Cours Matlab, Université de Skikda: 20 Aout 1955, 2014

[7] J. CHAKRAVORTY, Introduction to MATLAB Programming, Toolbox and Simulink, India: Universities Press

Pvt. Ltd, 2021

[8] MATHWORKS INC, Matlab: The Language of Technical Computing, Accessed: January November, 2023.

Available: https://www.mathworks.com/help/matlab/index.html?s_tid=hc_panel

https://www.abebooks.com/book-search/publisher/universities-press-india-pvt-ltd/
https://www.abebooks.com/book-search/publisher/universities-press-india-pvt-ltd/
https://www.mathworks.com/help/matlab/index.html?s_tid=hc_panel

